- -:.ﬁ
EDITORS 281 \

YING |
JT QIAJ

w Advancead

Medical
Statistiecs

i,,a ~




Advanced
Medical
Statistics



Advanced
Medical
Statistics

EDITORS
YING LU

University of Califomnia, San Francisco, USA

JI-QIAN FANG

Sun Yat-Sen University, Guangzhou, China

\\E‘-,\World Scientific

New Jersey * London +Singapore *Hong Kong



Published by

World Scientific Publishing Co. Pte. Ltd.

5 Toh Tuck Link, Singapore 596224

USA office: Suite 202, 1060 Main Street, River Edge, NJ 07661
UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ADVANCED MEDICAL STATISTICS

Copyright © 2003 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the Publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to
photocopy is not required from the publisher.

ISBN 981-02-4799-0
ISBN 981-02-4800-8 (pbk)

Printed in Singapore.



This page intentionally left blank



PREFACE

Since the early last century, many scholars from China have studied
statistics in Western countries. Some of the early pioneers, including
P.L. Hsu, C.L. Chiang, C.C. Lee, K.L. Chung, and G. Tiao, etc., achieved
international recognition for their significant contributions to advanced
statistics. Since the 1960s, many students from Taiwan, Hong Kong,
and Mainland China have received their advanced degrees from universities
in North America and Europe. Some have remained, becoming professors
in academia or scientists in government or industry and making significant
contributions to the fields of statistics and biostatistics. Many have been
elected as fellows of the American Statistical Association and/or senior
members of International Biometric Society. Others have become editors or
associate editors for important journals, including the Annals of Statistics,
the Annals of Probability, the Journals of the Royal Statistical Society,
the Journal of American Statistical Association, Biometrika, Biometrics,
and Statistica Sinnica, etc. Several Chinese statisticians have been honored
with the COPSS award, among whom Professor T.L. Lai and J. Fan have
participated in the creation of this book. Meanwhile, many young statis-
ticians have trained in Mainland China. They have accumulated a rich
store of experience in teaching biostatistics and applying its theory and
methods to medical research in their home country. Many overseas Chinese
statisticians as well as statisticians in Mainland China, Taiwan and Hong
Kong participated in publishing a book in Chinese about advances in
medical statistics, which was published in 2000 by The People’s Health
Press, Beijing. Now, with the help of World Scientific Publishing Co, we

are pleased to present the English version of this book — “Advanced
Medical Statistics” — with a much larger professional community of English
readers.

The book consists of four sections and 29 chapters. The first section
is about statistical methods in biomedical research, including their history
and statistical thinking in medical research, medical diagnoses, dependent
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data, quality control and quality assurance in medical measurements,
cost-effective and evidence-based medicine, quality of life, meta analysis,
descriptive statistics, medical image processing, and time series. Many of
these statistical methods were developed specifically for specific medica
issues. The second section covers the most important statistical issues
in pharmaceutical research and development, including pharmacology
and pre-clinical studies, biopharmaceutical research, toxicological study,
and confirmative clinical trials. Some of the theory and methods are pub-
lished here for the first time. The third section is concerned with statistical
methods in epidemiology, including statistics in genetic studies, risk
assessment, infectious diseases, disease surveys, capture-recapture models
for monitoring epidemics, cancer screening, and causal inferences. Most of
the methods have been newly developed within the past decades. The last
section is dedicated to advanced statistical theory and methods, including
survival analysis, longitudinal data analysis, non-parametric curve esti-
mation, Bayes statistics, stochastic processes, tree structured methods,
EM algorithms, and artificial neural networks. These last chapters not
only summarize the current status of research, future research topics and
applications in medical research, but also provide some necessary theory and
background for the statistical methods discussed in the first three sections.

All the chapters in the book are independent of each other; each is
dedicated to a specific issue. To meet the needs of different readers, all
chapters have a similar structure. The first subsection introduces the general
concepts and the medical questions discussed in the chapter; examples are
usually given in this section. The following sections present more specific
details of concepts, methods and algorithms with the emphasis on applica-
tion and significance. Derivations of proofs are generally not included, but
citations in the literature are provided for interested readers.

This book is targeted to a broad readership. We hope that regardless
of your background whether as a physician, a researcher in bioscience, a
professional statistician, or a graduate student, you will find the book
appropriate to your needs. As statistical thinking and methods are essential
tools in modern medicine and biomedical research, medical researchers,
leaving aside the statistical derivations and mathematical arguments, will
learn what statistical tools are available to them, how to prepare the
necessary information to use these methods, and how to interpret statistical
results and their limitations. For professional medical statisticians, this
book provides a broad perspective on medical statistics, their possible
applications and interactions between special subjects, and suggestions
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about future research topics, which will be helpful to their research as well
as in consultation work with clients. For theoretical statisticians or applied
statisticians working in other areas, the book provides many examples
of statistical applications and challenges facing medical statistics, and which
should help theoretical statisticians to identify new frontiers and possible
application areas of their new methods. Last but not least, this book is a
good reference for graduate students, providing a broad overview of medical
statistics that will help them to select their research topics and guide them
into the heart of the issue.

All the authors are experts in their specific areas. Each chapter reflects
their own research experience, results and achievements. They have given
much under the tremendous pressures of their many other obligations. As
editors, we greatly appreciate their support, dedications and friendship.

Many thanks to our colleagues in the School of Public Health, Sun Yat-
Sen University, who provided assistance in the preparation of the book,
especially Dr. Yu Chuanhua, Dr. Yan Jie, Dr. Wang Xianhong, Dr. Ling Li,
Dr. Xu Zongli, Mr. Shuming Zhu, Ms. Shaomin Wu and Ms. Fangfang
Zeng. We thank the People’s Health Press, Beijing, for kindly permitting
us to freely publish versions other than the Chinese ones. We are most
appreciative to the editors of World Scientific Publishing Co, Singapore,
for their work in bringing this book to publication.

Ying Lu
Jigian Fang
Editors



This page intentionally left blank



ABOUT THE EDITORS

Ying Lu is an associate professor of Radiology at the Department of
Radiology and the director of the Biostatistics Core, UCSF Comprehen-
sive Cancer Center, and faculty of Bioengineering Graduate Program,
University of California, San Francisco. He received his BS in mathe-
matics from Fudan University (1982) and MS in applied mathematics from
Shanghai Jiao Tong University (1984), and PhD in biostatistics from the
University of California, Berkeley (1990). At Berkeley, he received university
fellowships (1985-1988), and Public Health Alumni Association Scholarship
(1989). In 1990, he received Evelyn Fix Memorial Medal for excellent
statistical dissertation on animal carcinogenicity experiments under guid-
ance of Professors Manali and Chiang, followed by being an assistant
professor of epidemiology and public health at the University of Miami
School of Medicine (1990-1993). Then, he moved to the Department of
Radiology at the University of California, San Francisco in 1994. He was
the director of the Biostatistical Laboratory in the Osteoporosis Research
Group specialized in statistical applications in quality control, clinical trial
and diagnosis of osteoporosis; a member of the International Committee for
Standards in Bone Measurement (1996-1998), Vice President (1995-1997)
and President (1999) of the San Francisco Bay Area Chapter, American
Statistical Association.

Dr. Lu has supervised two post-doctor fellows in biostatistics and
more than 20 fellows in radiology and bioengineering. He has authored
or co-authored more than 80 peer-reviewed articles and 4 book chapters
in statistical methods for animal carcinogenicity experiments, medical di-
agnostic tests, and outcome prediction, as well as clinical research areas
of radiology, osteoporosis, and cancer clinical trials. His papers have been
published in various journals, such as Biometrics, Statistics in Medicine,
Mathematical Biosciences, Medical Decision Making, Radiology, Journal of
Bone and Mineral Research, Cancer, etc.



X About the Editors

Ying Lu
Professor, PhD

1) Department of Radiology, Box 0629, University of California
San Francisco, CA 94143-0629, USA
ying.lu@radiology.ucsf.edu

2) Chapter 4. Statistics in Quality Control, Quality Assurance, and Quality
Improvement in Radiological Studies

Ji-Qian Fang, born in Shanghai 1939, earned his BS in 1961 from the
Department of Mathematics, Fudan University and PhD in 1985 from the
Program of Biostatistics, the University of California at Berkeley. His PhD
thesis studied multi-state survival analysis for life phenomena under the
guidance of Professor Chin Long Chiang. During 1985 to 1990, Dr. Fang was
a Professor and Director, the Department of Biostatistics and Biomathe-
matics, Beijing Medical University; Since 1991, he has been the Director
and Chair Professor, Department of Medical Statistics, School of Public
Health, Sun Yat-Sen University. Professor Fang was a visiting professor
of University of Kent, UK in 1987 and Australian National University in
1990, as well as an adjunct professor of Chinese University of Hong Kong
(since 1993). He is the secretary for the Group China of the International
Biometric Society and vice president of the Chinese Association of Health
Statistics.

Professor Fang has published more than 100 peer-reviewed articles,
monographs and text books, including “Methods of Mathematical
Statistics”, “Advanced mathematics”, “Computer and Its Applications in
Medical Field” and “Medical Statistics and Computerized Experiment.”

Professor Fang has supervised 25 master students, 17 PhD students
and 2 post-doctoral fellows in Biostatistics. His own and his joint research
projects worked with his students cover a wide variety of fields, includ-
ing “Stochastic Models of Life Phenomena”, “Gating Dynamics of Ion
Channels”, “Biostatistical Theory and Methods for Research on Cancer
Prevention”, “Bootstrap Studies on Multi-state Models”, “Statistical
Methods for Data on Quality of Life”, “Health and Air Pollution”,
“Analysis of DNA Finger Printing”, and “Linkage Analyses between
Complex Trait and Multiple Genes”, etc. These projects were sponsored by
either the National Foundations of China or by international organizations,
such as the World Health Organization and the European Commission.
Several research projects directed by Professor Fang have received awards



About the Editors xi

from the Government of Beijing Municipal Government or Ministry of
Public Health of China for their significant advances in the biostatis-
tics fields, including the projects on “Sequential Discriminant Analysis”,
“Multi-state Survival Analysis”, “Measurement of Quality of Life in
China” and “Biostatistical Theory and Methods for Research on Cancer
Prevention.”

Ji-Qian Fang
Professor, PhD

1) Department of Medical Statistics, School of Public Health, Sun Yat-Sen
University, 74 Zhongshan Road II, Guangzhou 510080, Guangdong,
PR China
fangjq@qgzsums.edu.cn

2) Chapter 6. Quality of Life: Issues Concerning Assessment and Analysis
Chapter 26. Stochastic Process and Their Application in Medicine



This page intentionally left blank



Preface

Contents

About the Editors

Section 1. Statistical Methods in Biomedical Research

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

1. History of Statistical Thinking in Medicine

Tar Timothy Chen

. Evaluation of Diagnostic Test’s Accuracy in the

Presence of Verification Bias
Xiao-Hua Zhou

. Statistical Methods for Dependent Data

Feng Chen

. Statistics used in Quality Control, Quality Assurance,

and Quality Improvement in Radiological Studies
Ying Lu and Shoujun Zhao

. Cost-Effectiveness Analysis and

Evidence-Based Medicine
Jianli Li

. Quality of Life: Issues Concerning Assessment

and Analysis
Ji-Qian Fang and Yuantao Hao

. Meta-Analysis

Xuyu Zhuo, Ji-Qian Fang, Chuanhua Yu,
Zongli Xu and Ying Lu

. Describing Data, Variability and Over-Dispersion in

Medical Research
Ming Tan

xiii

ix

21

45

101

157

195

233

319



Xiv

Chapter 9.

Chapter 10.

Section 2.

Chapter 11.

Chapter 12.

Chapter 13.

Chapter 14.

Section 3.

Chapter 15.

Chapter 16.

Chapter 17.

Chapter 18.

Chapter 19.

Chapter 20.

Chapter 21.

Contents

Time Series Analysis And Its Applications in
Medical Sciences
Jinxi Zhang, Yingdong Zheng and Dejian Lai

Applications of Statistical Methods in Medical Imaging
Jesse S. Jin

Statistical Methods in Pharmaceutical Research

Statistics in Pharmacology and Pre-Clinical Studies
Tze Leung Lai, Mei-Chiung Shih and Guangrui Zhu

Statistics in Biopharmaceutical Research
Shein-Chung Chow and Annpey Pong

Statistics in Toxicology
James J. Chen

Some Statistical Issues of Relevence to
Confirmatory Trials
George Y. H. Chi, Kun Jin, Gang Chen and Lu Cui

Statistical Methods in Epidemiology

Statistics in Genetics
Zhaohai Li and Minyu Xie

Dose-Response Modeling in Health Risk Assessment
Yiliang Zhu

Statistical Models and Methods in Infectious Diseases
Hulin Wu and Shoujun Zhao

Special Models for Sampling Survey
Sujuan Gao

The Use of Capture-Recapture Methodology in
Epidemiological Surveillance
Anne Chao, H-C. Yang and P. S. F. Yip

Statistical Methods in the Effect Evaluation of
Mass Screening for Diseases
Qing Liu

Causal Inference
Zhi Geng

333

379

407
409

443

495

523

581
583

617

645

685

711

741

7



Contents XV

Section 4. Advanced Statistical Theory and Methods 813

Chapter 22. Survival Analysis 815
Danyu Lin

Chapter 23. Regression Models for the Analysis of

Chapter 24.

Chapter 25.

Chapter 26.

Chapter 27.

Chapter 28.

Chapter 29.

Index

Longitudinal Data 837
Colin Wu and Kai F. Yu

Local Modeling: Density Estimation and 885
Nonparametric Regression
Jianging Fan and Runze Li

Bayesian Methods 933
Minghui Chen and Keying Ye

Stochastic Process and Their Applications in 991
Medical Science
Caixia Li and Ji-Qian Fang

Tree-Based Methods 1033
Heping Zhang

Maximum Likelihood Estimation From Incomplete 1051
Data via EM-Type Algorithms
Chuanhai Liu

Introduction to Artificial Neural Networks 1073
Jielai Xia, Jiang Hongwei and Tang Qiyi

1091



This page intentionally left blank



Section 1

Statistical Methods in Biomedical Research



This page intentionally left blank



CHAPTER 1

HISTORY OF STATISTICAL THINKING
IN MEDICINE

TAR TIMOTHY CHEN

Timothy Statistical Consulting, 2807 Marquis Circle Fast,
Arlington TX 76016, USA

1. Introduction

Biostatistics is a very hot discipline today. Biostatisticians are in demand
in the United States. Medical researchers appreciate statistical thinking
and applications. In laboratory science, clinical research and epidemio-
logical investigation, statisticians’ collaborations are sought after. In many
medical journals, statisticians are asked to serve as reviewers. In NIH
(National Institutes of Health) grant applications, statisticians are required
to be collaborators and statistical considerations have to be incorporated. In
pharmaceutical development, drug companies recruit statisticians to guide
study design, to analyze data, and to prepare reports for submission to FDA
(Food and Drug Administration). All in all, statistical thinking permeates
medical research and health policy. But it was not this way in the beginning.
This article describes the history of application of statistical thinking in the
medicine.

2. Laplace and His Vision

Near the time of American independence and the French Revolution, French
mathematician Pierre-Simon Laplace (1749-1827) worked on probability
theory. He published many papers on different aspects of mathematical
probability including theoretical issues and applications to demography and
vital statistics. He was convinced that probability theory could be applied
to the entire system of human knowledge, because the principal means of
finding truth were based on probabilities. Viewing medical therapy as a
domain for application of probability, he said that the preferred method of
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treatment would manifest itself increasingly in the measure as the number
of observations was increased.!:?

Laplace’s view that the summary of therapeutic successes and failures
from a group of patients could guide the future therapy was hotly debated
within the medical community. Many famous physicians like Pieere-Jean-
Georges Cabanis (1757-1808) claimed that the specificity of each patient
demanded a kind of informed-professional judgment rather than guidance
from quantitative analysis. According to their view, the proper professional
behavior for physicians in diagnosing and treating disease was to match the
special characteristics of each patient with the knowledge acquired through
the course of medical practice. Physicians were able to judge individual
cases in all of their uniqueness, rather than on the basis of quantita-
tive knowledge. Cabanis rejected quantitative reasoning as an intellectual
distraction and viewed medicine as an “art” rather than as a “science.”?

On the other hand, other prominent physicians like Philippe Pinel
(1745-1826) said that physicians could determine the effectiveness of
various therapies by counting the number of times a treatment produced
a favorable response. He considered a treatment effective if it had a high
success rate. He even claimed that medical therapy could achieve the status
of a true science if it applied the calculus of probabilities. His understanding
of this calculation, however, was restricted to counting; he did not under-
stand the detailed nature of the probability theory being developed by
Laplace.*

3. Louis and Numerical Method

Later another prominent clinician, Pierre-Charles-Alexandre Louis (1787—
1872), considered that enumeration was synonymous with scientific rea-
soning. He followed Laplace’s proposal that analytical methods derived
from probability theory help to reach a good judgment and to avoid con-
fusing illusions. His method consisted of careful observation, systematic
record keeping, rigorous analysis of multiple cases, cautious generalizations,
verification through autopsies, and therapy based on the curative power of
nature. He said that the introduction of statistics into diagnosis and therapy
would ensure that all medical practitioners arrive at identical results.®

In his study of typhoid fever, which collected patient data between 1822
and 1827, Louis observed the age difference between the groups who died
(50 patients with mean age 23) and who survived (88 patients with mean
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age 21). He also compared the length of residency in Paris and concluded
that the group which survived lived in Paris longer. More importantly, Louis
studied the efficacy of bloodletting as a therapy for typhoid fever. Among
the 52 fatal cases, 39 patients (75%) had been bled. The mean survival
time for the bled cases was 25.5 days contrasted to 28 days for those who
were not bled. Of the 88 recovery cases, 62 patients (70%) were bled, with
the mean duration of disease being 32 days as opposed to only 31 days for
those not bled.®

Louis also studied the efficacy of bloodletting in treating pneumonitis
and angina tonsillaris, and found it not useful. At that time, the method
of venesection was defended by Francois Joseph Victor Broussais (1772—
1838), the chief physician at the Parisian military hospital and medical
school. Broussais claimed that diseases could be identified by observing the
lesions of organs. Then patients could be treated by bleeding the diseased
organ and by low fat, since most diseases were the result of inflammation.
Louis, in contrast with Broussais, emphasized quantitative results from a
population of sick individuals rather than using pathological anatomy to
observe disease in a particular patient. He contended that the difference
between numerical results and words, such as “more or less” and “rarely
or frequently,” was “the difference of truth and error; of a thing clear and
truly scientific on the one hand, and of something vague and worthless on
the other.” He also proposed the basic concept of controlled clinical trial.”

Louis’s work created more debates before the Parisian Academies of
Sciences and Medicine in the late 1830s. The triggering issue was the
question of the proper surgical procedure for removing bladder stones. A
new bloodless method for removing bladder stones (lithotrity) was inves-
tigated by the surgeon and urologist Jean Civiale (1792-1867). He argued
that, given the fallacy of human memory, surgeons tend to remember their
successful cases more than their unsuccessful ones; errors result from inexact
records. He published the relative rates of death from the traditional sur-
gical procedure and the lithotrity. The death rate of the old procedure was
21.6% (1,237/5,715); the death rate for lithotrity was 2.3% (6/257).3

In response to Civiale’s statistical results, the Academy of Sciences
established a commission in 1835 including the mathematician Simeon-
Denis Poisson (1781-1840) and the physician Francois Double (1776-1842).
Rejecting the attempt to turn the clinician into a scientist through the sta-
tistical method, Double believed that the physician’s proper concern should
remain the individual patient. He claimed it was inappropriate to elevate
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the human spirit to that mathematical certainty found only in astronomys;
the eminently proper method in the progress of medicine was logical not
numerical analysis.®

During that time, Lambert Adolphe Jacques Quetelet (1796-1874)
proposed a new concept of the “average man,” defined as the average of
all human attributes in a country. It would serve as a “type” of the na-
tion similar to the idea of a center of gravity in physics. He formulated
this idea by combining his training in astronomy and mathematics with a
passion for social statistics. He analyzed the first census of Belgium (1829)
and was instrumental in the formation of the Royal Statistical Society. He
maintained that the concept of statistical norms could be useful to medical
practice as it had been to medical research.” At the same time, Poisson
applied probability theory to the voting patterns of judicial tribunals. He
used the “law of large numbers” to devise a 99.5% confidence interval for
binomial probability.°

In 1837, in a lecture delivered before the French Academy of Medicine,
physician Risueno d’Amador (1802-1849) used the example of maritime
insurance to illustrate why the probability was not applicable to medicine.
If 100 vessels perish for every 1,000 that set sail, one still could not know
which particular ships would be destroyed. It depended on other prognostic
variables such as the age of the vessel, the experience of the captain, or
the condition of the weather and the seas. Statistics could not predict the
outcome of particular patients because of the uniqueness of each individual
involved. For d’Amador, the results of observation in medicine were often
more variable than in other sciences like astronomy.!!

In the ensuing debates, Double commented that a Queteletian aver-
age man would reduce the physician to “a shoemaker who after having
measured the feet of a thousand persisted in fitting everyone on the basis
of the imaginary model.” He also claimed that Poisson’s attempts to
mathematize human decision-making were useless because of the pressing
and immediate concerns of medical practice.

Louis-Denis-Jules Gavarret (1809-1890), trained in both engineering
and medicine, addressed the criticism of d’Amador in 1840. He main-
tained that the probability theory merely expressed the statistical results
of inductive reasoning in a more formal and exact manner. He emphasized
that statistical results were useful only if certain conditions prevailed —
namely, the cases must be similar or comparable, and there must be large
enough observations. He followed Poisson’s example in requiring a precision
of 99.5% or 212:1. He commented on the insufficient sample size in Louis’
study of typhoid fever.'?
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In responding to the work of Gavarret, Elisha Bartlett (1804-1855), a
professor of medicine at the University of Maryland and a student of Louis,
said that the value of the numerical method was exhibited by Louis, and its
true principles were developed and demonstrated by Gavarret.'® However,
the British statistician William Augustus Guy (1810-1885) in his Croonian
lecture before the Royal College of Physicians in 1860, said that Gavarret’s
confidence interval could only be applied in rare occasions, and the results
obtained from averaging a small number of cases could generally be assumed
to be accurate.'* In Germany, an ophthalmologist Julius Hirschberg
(1843-1925), concerning about the number of observations required by
Gavarret’s assumption of 212:1 odds, he modified the formula by using
a lower standard of confidence of 11:1 or 91.6%.%°

4. Statistical Analysis Versus Laboratory Investigation

In articles published in 1878 and 1881, German physician Friedrich Martius
(1850-1923) commented that the dreams of Louis and Gavarret about a new
era of scientific medicine had not been fulfilled due to the general “mathe-
matical unfitness” of the medical profession as a whole. As one trained in
laboratory methods, he said that the basis for science lay in laboratory
experimentation rather than mere observation and the collection of
numerical data.3

The legacy of Louis was in his claim that the clinical physician should
aspire to become a scientist. But after Louis’s retirement from the medical
scene by the mid 1850s, some medical researchers began to argue that
the compilation of numerical results might provide some useful insights
about therapy; however, these results should not posses the authoritative
status as “science.” Friedrich Oesterlen (1812-1877) said that “scientific”
results should be the discovery of knowledge which determined the causal
connections, not just the discovery of the correlation.'®

When Joseph Lister (1827-1912) published his pioneering work with an-
tiseptic surgery in 1870, he noted that the average mortality rate was 45.7%
(16/35) for all surgical procedures performed at the University of Edinburgh
in the years 1864-1866 (before antiseptic methods were introduced). And
it was 15% (6/40) for all surgical procedures performed in the three-year
period 1867-1869 (after the introduction of antiseptic methods). Although
he used this statistical result to show the efficacy of the new antiseptic
method, he claimed that the science behind this was the germ theory of
disease as proposed by Louis Pasteur (1822-1895).17 Pasteur developed the
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germ theory and the concept of immunity. He carried out a clinical trial in
1881 to test his new vaccine against anthrax.

The founder of 19th century scientific positivism, Auguste Comte (1798—
1857), believed that mere empiricism (as practiced by Louis) was not really
useful for medicine.'® Claude Bernard (1813-1878) proposed that the sci-
ence of medicine resided in experimental physiology, rather than observa-
tional statistics. As a result of his laboratory-based orientation, he claimed
that the experimental investigation of each individual patient could provide
an “objective” scientific result. He agreed with Louis’s vision of medicine
as a science but saw the science of medicine as focused on the physiological
measurements of individual patients.'®

Other prominent clinicians at that time, like German Carl Wunderlich
(1815-1877), tried to steer a middle ground between Louis and Bernard
and synthesized both approaches. They collected a mass of quantifiable
physiological data and tried to analyze it using numerical method. However,
this approach was not accepted by the medical community in general, and
many still opposed the process of quantification and remained focused on
the individual patient.2°

5. The Beginning of Modern Statistics

The founders of the Statistical Society in London in 1834 chose the motto
“Let others thrash it out,” thus set the general aim of statistics as data
collection. Near the end of the 19th century, scientists began to collect large
amounts of data in the biological world. Now they faced obstacles because
their data had so much variation. Biological systems were so complex that
a particular outcome had many causal factors. There was already a body
of probability theory, but it was only mathematics. Prevailing scientific
wisdom said that probability theory and actual data were separate entities
and should not be mixed. Due to the work of the British biometrical school
associated with Sir Francis Galton (1822-1911) and Karl Pearson (1857—
1936), this attitude was changed, and statistics was transformed from an
empirical social science into a mathematical applied science.

Galton, a half-cousin of Charles Darwin (1809-1882), studied medicine
at Cambridge, explored Africa during the period 18501852, and received
the gold medal from the Royal Geographical Society in 1853 in recognition
of his achievement. After reading Charles Darwin’s 1859 work On the Origin
of Species, Galton turned to study heredity and developed a new vision for
the role of science in society.?! The late Victorian intellectual movement of
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scientific naturalism gave rise to the belief that scientifically trained persons
must become leaders of British intellectual culture.

Galton accepted the evolutionary doctrine that the condition of the
human species could be improved most effectively through a scientifically
directed process of controlled breeding. His interest in eugenics led him
to the method of correlation. He applied the Gaussian law of error to the
intelligence of human beings and, unlike Quetelet, was more interested in
the distribution and deviations from the mean than in the average value
itself.

As a disciple of Galton, Karl Pearson, the founding father of modern
statistics, created the statistical methodology and sold it to the world.
Pearson changed statistics from a descriptive to an inferential discipline.
He majored in mathematics at King’s College, Cambridge. After Cam-
bridge, he studied German literature, read law and was admitted to bar.
He became professor of mathematics at King’s College, London in 1881
and at University College, London in 1883. In June 1884 at age 27 he was
appointed to Goldsmid Professor of Applied Mathematics at University
College, London. Biologists at that time were interested in genetics, inher-
itance, and eugenics. In 1892 Pearson began to collaborate with zoologist
WEFR Weldon, Jodrell Chair of biology at University College, and developed
a methodology for the exploration of life. Two years later Pearson offered
his first advanced course in statistical theory, making University College the
sole place for instruction of modern statistical methods before the 1920s.22

Following Galton, Pearson maintained that empirically determined
“facts” obtained by the methods of science were the sole arbiters of truth.
He argued for the almost universal application of statistical method, that
mathematics could be applied to biological problems and that analysis
of statistical data could answer many questions about the life of plants,
animals, and men.? After a paper was rejected by the Royal Society, he
together with Galton and Weldon founded the journal Biometrika in 1901
to provide an outlet for the works he and his biometrical school generated.
Under Galton’s generous financial support, Pearson transformed his rel-
atively informal group of followers into an established research institute.
Although he was interested in eugenics, he tried to do objective research
using statistical methods and separated his institute from the social
concerns of the Eugenics Education Society.

Pearson’s emphasis on the statistical relevancy to the problems of
biology had very few audiences. Mathematicians despised new endeavor
to develop statistical methodology, and biologists thought mathematicians
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had no business meddling with such things. In 1903 Pearson wrote Galton
that there were only two subscribers of Biometrika in Cambridge, one a
personal friend of Pearson and one of Weldon. Even though his major con-
tributions were correlational methods and chi-square goodness-of-fit test,
in 1906 the Journal of the Royal Society refused to publish a paper because
they failed to see the biological significance of a correlation coefficient. In
1911 after Galton’s death, Pearson became the first Galton Professor of
Eugenics at University College, London.

Pearson also attempted to build an intellectual bridge to medicine by
applying the statistical methods he developed. During his lifetime, the
medical profession was divided about their opinion of the usefulness of
statistical reasoning. Clinicians who continued to emphasize the “art” of
medicine thought that statistics added little information beyond that sup-
plied by experience. Those who argued for the existence of a “clinical
science,” basing diagnosis on physiological instruments or bacteriological
observation, saw statistics as a way to make observation more objective,
but that did not consider that as “scientific” evidence.

6. The Beginning of Medical Statistics

Major Greenwood (1880-1949) was first to respond to Pearson’s “crying
need” for the medical profession to appreciate the importance of new
statistical methods. At the age of 18, he entered medical school and read
Pearson’s Grammar of Science. He wrote to Pearson and applied statis-
tical analyses to his research data while a student at London Hospital.
During the academic year 1904-1905, after obtaining his license to practice
medicine and publishing an article in Biometrika, he chose to study under
Pearson. Despite Pearson’s warning about the difficulty of earning a living
as a biometrician, Greenwood decided to stake his professional career on
the application of mathematical statistical methods to medical problems.
In debating with the bacteriologist Sir Almroth Wright (1861-1947)
about the efficacy of vaccine therapy and a statistical measure called
“opsonic index,” Greenwood invoked the distinction between functional
and mathematical error.?* The former concerned errors in techniques of
measurement, while the latter concerned inferential errors derived from the
fact that data were a sample of population. When he pointed out that
Wright had committed mathematical error, he got the attention of the
medical community.?? Consequently the Lister Institute for Preventive
Medicine in 1903 created the first department of statistics and named him
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its head. Greenwood characterized his department as dealing with problems
of epidemiology and pathology, in contrast to Pearson’s department at the
University College, which dealt with heredity, eugenics and pure mathe-
matical statistics. By training Greenwood, Pearson had helped to create the
role of medical statistician, who as a researcher, understood both medical
results and statistical methods.

Greenwood left the Lister Institute in 1920 for a position at the Ministry
of Health and became affiliated with the newly created Medical Research
Council (MRC). He saw his position at the medical establishment as
instrumental in furthering the impact of statistical methods. Raymond
Pearl (1879-1940) was Greenwood’s American counterpart. He went to
London to study under Pearson after finishing his PhD in biology at the
University of Michigan. In 1918 Pearl began a long-standing relationship
with The Johns Hopkins University as professor of biometry and vital
statistics in the School of Hygiene and Public Health and as statistician
at The Johns Hopkins Hospital.

By the early 1920’s, Greenwood was not alone in arguing for application
of modern statistics in medicine. One writer said in the Journal of the
American Medical Association in 1920 that statistics was of great practical
significance and should be required in the premedical curriculum.?® Pearl in
a 1921 article in the Johns Hopkins hospital Bulletin said that quantitative
data generated by the modern hospital should be analyzed in cooperation
with expert statistician. The arguments for using statistics in medicine were
framed in terms of ensuring that medical research become “scientifically”
grounded.?”

7. Randomization in Experimentation

Besides Pearson, another founder of modern statistics was Sir Ronald
A. Fisher (1890-1962). He also majored in mathematics at Cambridge and
studied the theory of errors, statistical mechanics, and quantum theory.2®
By the age of 22, he published his first paper in statistics introducing the
method of maximum likelihood, and three years later he wrote another
paper deriving the exact sampling distribution of the Pearson correlation
coefficient. He was also interested in applying mathematics to biological
problems. Beginning in 1919, he spent many years at Rothamsted
Experimental Station and collaborated with other researchers. He deve-
loped statistical methods for design and analysis of experiments, which
were collected in his books Statistical Methods for Research Workers?® and
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The Design of Experiments.?® He proposed three main principles — the
essentiality of replication and randomization, and the possibility of reducing
errors by appropriate organization of the experiment.

Fisher’s major contribution to science was using randomization to do
experiments so that the variation in the data could be accounted for
in the statistical analysis, and the bias of treatment assignment could
be eliminated. Greenwood characterized Fisher’s ideas as “epoch-making”
in an article published in 1948, the year before Greenwood’s death. For
Fisher, statistical analysis and experimental design were only two aspects
of the same whole, and they comprised all the logical requirements of the
complete process of adding to natural knowledge by experimentation.3® In
other words, in order to draw inference, statisticians had to be involved
in the design stage of experiments. Fisher, when addressing the Indian
Statistical Congress in 1938, said, “To call in the statistician after the
experiment is done may be no more than asking him to perform a post-
mortem examination: he may be able to say what the experiment died of”.

In addition to the new developments in statistical theory brought about
by Fisher’s work, changes within the organization of the MRC also facili-
tated the emergence of the modern clinical trial. Sir Austin Bradford Hill
(1897-1991), one of Greenwood’s proteges, was the prime motivator behind
these Medical Research Council trials. He learned statistical methods from
Pearson at University College and in 1933 became Reader in Epidemiology
and Vital Statistics at the London School of Hygiene and Tropical Medicine,
where Greenwood became the first professor of Epidemiology and Public
Health in 1927. In 1937 the editors of The Lancet, recognizing the neces-
sity of explaining statistical techniques to physicians, asked Hill to write a
series of articles on the proper use of statistics in medicine. These articles
were later published in book form as Principles of Medical Statistics.?!
Upon Greenwood’s retirement in 1945, Hill took his place both as honorary
director of MRC’s Statistical Research Unit and as professor of medical
statistics at the University of London.3?

8. First Randomized Controlled Clinical Trial

The British Medical Research Council in 1946 began the first clinical trial
with a properly randomized control group trial on the use of streptomycin in
the treatment of pulmonary tuberculosis. This trial was remarkable for the
degree of care exercised in its planning, execution and reporting. The trial
involved patient accrual from several centers, and patients were randomized
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to two treatments — either streptomycin plus bed-rest, or bed-rest alone.
Evaluation of patient X-ray films was made independently by two radio-
logists and a clinician. This blinded and replicated evaluation of a difficult
disease end-point added considerably to the final agreed patient evalua-
tion. Both patient survival and radiological improvement were significantly
better on Streptomycin.33

Hill’s work set the trend for future clinical trials where both the insight
of physicians and the statistical design of professional statisticians were
combined. The convergence of these two separate disciplines constituted
the sine qua non for the emergence of the probabilistically informed clinical
trials. The Laplacian vision of the determination of medical therapy on the
basis of the calculus of probability had finally found fulfillment.

Hill, a non-physician, acknowledged that the medical profession was
responsible for curing the sick and preventing disease, but he empha-
sized that experimental medicine had the third responsibility of advancing
human knowledge, and the statistically guided therapeutic trial was a useful
way to discharge that responsibility. Unlike earlier advocates of statistical
application in medicine, Hill’s work became a rallying cry for supporters of
therapeutic reform on both sides of Atlantic. Among many factors that con-
tributed to this groundswell of support, one was the proliferation of new and
potent industrially produced drugs in the postwar era. Supporters argued
that randomized controlled clinical trials would permit the doctors to select
the good treatment and prevent undue enthusiasm for newer treatments.

To those critics who believed in the uniqueness of the individual,
whether patient or doctor, LJ. Witts, Nuffield Professor of Clinical Medicine
of Oxford University, said in a conference in 1959, that neither patients
nor doctors were as unique as they might have wanted to believe. Witts
conceded that there was a conflict of loyalties between the research for truth
and the treatment of the individual. However, he pointed out that similar
conflict existed between the teaching of clinical students and the treat-
ment of the patient.?* At the same conference, Sir George Pickering, Regius
Professor of Medicine at Oxford, praised the randomized controlled clinical
trials and declared that, in contrast, clinical experience was unplanned and
haphazard, and physicians were victims of the freaks of chance.?®

Americans were not slow in following the British lead in applying
statistics to controlled clinical trials. Americans carried out the largest
and most expensive medical experiment in human history. The trial was
done in 1954 to assess the effectiveness of the Salk vaccine as a protection
against paralysis or death from poliomyelitis. Close to two million children
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participated, and the immediate direct cost was over 5 million dollars. The
reason for such a large trial was that the annual incidence rate of polio was
about 1 per 2000. In order to show that vaccine could improve upon this
small incidence, a huge trial was needed. Originally, there was some resis-
tance to the randomization, but finally about one quarter of the participants
did get randomized. This randomized placebo controlled double-blind trial
finally established the effectiveness of the Salk vaccine.?®

9. Government Regulation and Statistics

Later in the early 1960s, the drug Thalidomide caused an outbreak of
infantile deformity. The US FDA subsequently discovered that over two and
a half million tablets had been distributed to 1,267 doctors who had pre-
scribed the drugs to 19,822 patients, including 3,760 women of childbearing
age. This evidence raised the question whether the “professional judge-
ment” of the medical community could still be trusted. The outcry from
the public led the US Congress to pass the Kefauver—Harris Bill, known
as the Drug Amendments of 1962 and signed by President Kennedy on
October 10, 1962. This law fundamentally altered the character of research
both for the drug industry and for academic medicine. It transformed the
FDA into the final arbiter of what constituted successful achievement in
the realm of medical therapeutics. The FDA institutionalized clinical trials
as the standard method for determining drug efficacy. By the late 1960s the
double-blind methodology had become mandatory for FDA approval in the
US, and the procedure had become standard in most of the other Western
countries by the late 1970s.

The application of statistics in medicine has scientific authority and is
seen as rising above individual opinions and possessing “objectivity” and
“truth.” The emergence of the randomized controlled clinical trials could
be seen as a special case of a more general trend — the belief that “quantifi-
cation is science.” This also coincided with the change of definition about
statistics as a discipline. In a book written by Stanford professors Chernoff
and Moses in 1959, they said, “Years ago a statistician might have claimed
that statistics deals with the processing of data. Today’s statistician will
be more likely to say that statistics is concerned with decision making in
the face of uncertainty.”3”

Through the work of Hill, the father of the modern clinical trial,
statistical methods slowly were adapted in medical research. The reason
that clinical trials gained legitimacy was because that public at large
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realized that the decisions of the medical profession had to be regu-
lated. Only when the issue of “medical decision making” was removed
from the confines of professional medical expertise into the open arena of
political debate could the statistical methods gain such wide acceptance.
This ascendancy of the clinical trial method reflected the close connection
between procedural objectivity and democratic political culture.

Above is the evolutionary history of statistical thinking in medicine.
Medical research is much more than therapeutic research, but all medical
research must lead to improvement of therapeutics or prevention. From this
history one can see how the application of numerical methods in medicine
has been debated throughout the past two hundred years. It shows that it
took a long time for good concepts and procedures to prevail in science. The
debates described could be applicable to the current problems about ther-
apeutic research in alternative and complimentary medicine. Only through
learning from past experience non-orthodox medicine can be modernized
quickly.

10. Epilogue

Early landmarks in clinical investigation anticipated the current
methodology.®® For example, James Lind (1716-1794) in 1753 planned
a comparative trial of the most promising treatment for scurvy. How-
ever, most pre-twentieth century medical experimenters had no appreci-
ation of the scientific method. Trial usually had no concurrent control,
and the claims were totally subjective and extravagant. The publication
by Benjamin Rush (1745-1813) in 1794 about the success of treatment of
yellow fever by bleeding was one example.

Statistics was very influential in the development of population genetics.
Johann Gregor Mendel (1822-1884), a monk in the Augustinian order,
studied botany and mathematics at the University of Vienna. He carried out
experiments on peas to establish the three laws of genetics — uniformity,
segregation and independence. After Darwin advanced the theory of evo-
lution, there was a great debate between the evolutionists (biometricians)
and those believing in the fixation of species (Mendelians). Pearson in his
series of papers, Contributions to the Mathematical Theory of FEvolution,
I to XVI, gave mathematical form to the problems of genetics and evolu-
tion. However, he held the view of continuous change and never accepted

Mendelism.3?
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After reading Pearson’s papers while a student at Cambridge, RA Fisher
made major contributions to the field of genetics, especially he synthesized
and reconciled the fixed inheritance theory of Mendel and the gradual
evolution theory of Darwin.*® He was considered as one of three founders
of the population genetics, together with Sewall Wright and JBS Haldane,
and he occupied an endowed chair of genetics at Cambridge University.
Fisher’s major contributions were the theoretical foundation of statistics
including estimation and the testing of hypotheses, exact distributions of
various statistics, and statistical models of natural phenomena.*!

As mentioned in the debates between the numerical methods school
and the physiological school, physiological measurement data were collected
using precise instruments during the later half of the nineteenth cen-
tury in conjunction with the creation of research universities. Statistical
methods were developed to analyze the data coming from the laboratories.
Later, the controversy between the biometrical school and the bacterio-
logists/immunologists in the laboratory led to the further developments of
correct statistical methods to analyze laboratory data.

Before the development of modern epidemiology, John Graunt (1620—
1674) started to collect data on mortality, derived the life table based on
survival, and thus created the discipline of demographic statistics. William
Farr (1807-1883) further improved the method of the life table and created
the best official vital statistics system in the world for the Great Britain.3®

In 1848, John Snow (1813-1858) carried out the first detailed investi-
gation of the cholera epidemic of London. Development of the discipline
of bacteriology was associated with the investigation of epidemics due to
infectious agents. Mathematics and statistics were used in modeling and
analysis of infectious epidemic data. Modern statistical methods were de-
veloped to investigate the epidemics of non-infectious diseases in the last
half of the 20th century. Epidemiological research has become another field
of statistical application. It has merged with statistical survey methods to
carry out surveillance and disease monitoring, and it is called population
science, in contrast to clinical and laboratory sciences.

In every field of medical research, statistical thinking and methods are
used to provide insight to the data and to verify the hypotheses. The
generation of new data and new hypotheses also propel developments of
new statistical methodology. In the twentieth century, modern statistics as
created by Pearson and Fisher has made a huge impact on the advancement
of human knowledge, and its application to medicine richly demonstrates
the importance of statistics.



History of Statistical Thinking in Medicine 17

Acknowledgment

The author would like to thank Dr. James Spivey for his input to this paper.

References

1. Laplace, P. S. (1951). A Philosophical Essay on Probabilities, 6th ed., trans.
Frederick Wilson Truscott and Frederick Lincoln Emory. Dover, New York.

2. Todhunter, 1. (1865). A History of the Mathematical Theory of Probability,
Macmillan and Co, London.

3. Matthews, J. R. (1995). Quantification and the Quest for Medical Certainty,
Princeton University Press, Princeton, New Jersey.

4. Pinel, P. (1809). Traite medico-philosophique sur lalienation mentale, 2nd
ed., Paris.

5. Louis, P. C. A. (1836). Pathological Researches on Phthisis, trans. Charles
Cowan. Hilliard, Gray, Boston.

6. Louis, P. C. A. (1836). Anatomical, Pathological and Therapeutic Re-
searches upon the Disease Known under the Name of Gastro-Enterite Putrid,
Adynamic, Ataxic, or Typhoid Fever, etc., Compared with the Most Common
Acute Diseases, Vols. 1 and 2, trans. Henry I. Bowditch. Issac R. Butts,
Boston.

7. Louis, P. C. A. (1836). Researches on the Effects of Bloodletting in Some
Inflammatory Diseases, and on the Influence on Tartarized Antimony and
Vesication in Pneumonitis, trans. C. G. Putnam. Hilliard, Gray, Boston.

8. Double, F. J. (1835). Statistique appliquee a la medecine. Comptes rendus
de lAcademie des Sciences 1: 281.

9. Quetelet, L. A. J. (1962). A Treatise on Man and the Development of His
Faculties, trans. R. Knox. Research Works Series #247. Burt Franklin, New
York.

10. Poisson, S. D. (1837). Recherches sur la probabilite des jugements en matiere
criminelle et en matiere civile, Bachelier, Paris.

11. D’Amador, R. (1837). Memoire sue le calcul des probabilites applique a la
medecine, Paris.

12. Gavarret, J. (1840). Principes generaux de statistique medicale. Libraries de
la Faculte de Medecine de Paris.

13. Bartlett, E. (1844). An Essay on the Philosophy of Medical Science. Lea and
Blanchard, Philadelphia.

14. Guy, W. A. (1860). The numerical method, and its application to the science
and art of medicine. British Medical Journal 469: 553.

15. Hirschberg, J. (1874). Die mathematischen Grundlagen der Medicinischen
Statistik, elementar Dargestellt, Veit, Leipzig.

16. Oesterlen, F. (1852). Medical Logic, trans. G. Whitley. Sydenham Society,
London.

17. Lister, J. (1870). Effects of the antiseptic system of treatment upon the
salubrity of a surgical hospital, The Lancet i: 40.

18. Comte, A. (1864). Cours de philosophie positive, 2nd edn., Vol. 3, JB Bailliere,

Paris.



18

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.
31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

T. T. Chen

Bernard, C. (1957). An Introduction to the Study of Experimental Medicine,
trans. Henry Copley Greene. Dover, New York.

Wunderlich, C. A. (1871). On the Temperature in Diseases: A Manual of
Medical Thermometry, trans. W. Bathurst Woodman. New Sydenham Soci-
ety, London.

Stigler, S. M. (1986). The History of Statistics: The Measurement of Uncer-
tainty before 1900. The Belknap Press of Harvard University Press, Cam-
bridge.

Pearson, E. S. (1938). Karl Pearson, Cambridge University Press, London.
Pearson, K. (1911). The Grammar of Science, 3rd edn., Macmillan, New
York.

Cope, Z. (1966). Almroth Wright: Founder of Modern Vaccine-Therapy,
Thomas Nelson, London.

Greenwood, M. (1909). A statistical view of the opsonic index. Proc. Royal
Soc. Med. 2: 146.

Kilgore, E. S. (1920). Relation of quantitative methods to the advance of
medical science. J. Am. Med. Assoc. 88, July 10.

Pearl, R. (1921). Modern methods in handling hospital statistics. The Johns
Hopkins Hospital Bulletin 32: 185.

Box, J. E. (1979). R. A. Fisher: The Life of a Scientist, John Wiley and
Sons, New York.

Fisher, R. A. (1958). Statistical Methods for Research Workers, 13th edn.,
Hafner, New York.

Fisher, R. A. (1960). The Design of Experiments, 7Tth edn., Hafner, New York.
Hill, A. B. (1991). Principles of Medical Statistics. 12th edn., Lancet Ltd.,
London.

Himsworth, Sir Harold. (1982). “Bradford Hill and Statistics in Medicine,”
Statistics in Medicine 1: 301-302.

MRC. (1948). Streptomycin treatment of pulmonary tuberculosis: A Medical
Research Council Investigation, Br. Med. J. 769.

Witts, L. J. (1960). The ethics of controlled clinical trials. In Controlled
Clinical Trials, Blackwell Scientific Publications, Oxford.

Pickering, Sir George. (1960). Conclusion: The Physician. In Controlled Clin-
ical Trials, Blackwell Scientific Publications, Oxford.

Francis, T. Jr. et al. (1955). An evaluation of the 1954 poliomyelitis vaccines
trials — Summary Report, American Journal of Public Health 45(5): 1-63.
Chernoff, H. and Moses, L. E. (1957). Elementary Decision Theory, John
Wiley and Sons, New York.

Gehan, E. A. and Lemak, N. A. (1994). Statistics in Medical Research:
Developments in Clinical Trials, Plenum Publishing Co, New York.
Lancaster, H. O. (1994). Quantitative Methods in Biological and Medical
Sciences: A Historical Essay, Springer-Verlag, New York.

Fisher, R. A. (1958). The Genetical Theory of Natural Selection, 2nd edn.,
Dover, New York.

Fisher, R. A. (1950). Contributions to Mathematical Statistics, ed. WA
Shewhart, John Wiley and Sons, New York.



History of Statistical Thinking in Medicine 19

About the Author

Tar Timothy Chen is currently President, Timothy Statistical Consult-
ing. He was Head of Biostatistics Section and Professor of Biostatistics at
University of Maryland Greenebaum Cancer Center, 1998-2001; Mathe-
matical Statistician, National Cancer Institute (1989-1998). He received
BS in Mathematics (1966) from National Taiwan University; MS (1969),
PhD in Statistics (1972) from the University of Chicago. His research
interests include categorical data analysis, epidemiological methods, and
clinical trial methodology. He has authored or coauthored 102 research
papers published in Biometrics, JASA, Statistica Sinica, Statistics in
Medicine, Controlled Clinical Trials, New England Journal of Medicine,
Journal of Clinical Oncology, Surgery, Ophthalmology, Journal of National
Cancer Institute, etc. He is an elected fellow of American Statistical
Association and American Scientific Affiliation. He was the president of
International Chinese Statistical Association (1999). His biosketch appeared
in Who’s Who in America (1999, 2000, 2001, 2002). American Men and
Women of Science (1989-1998), and Marquis Who’s Who in Cancer (1985).



This page intentionally left blank



CHAPTER 2

EVALUATION OF DIAGNOSTIC TEST’S
ACCURACY IN THE PRESENCE OF
VERIFICATION BIAS

XTAO-HUA ZHOU

Division of Biostatistics,

Health Services Research and Development Center of Excellence,
University of Washington, Veterans Affairs Puget Sound Health Care System,
Building 1, Room 424 (152), 1660 S. Columbian Way, Seattle, WA 98108, USA
Tel: 206-277-3588; azhou@u.washington.edu

1. Introduction

In a rapidly changing world of advancing technology, it is very important
to evaluate the relative accuracies of different diagnostic tests for both
quality of care and cost containment. For example, transrectal ultrasound
imaging costs $150 to $400 per examination and conventional body coil
magnetic resonance imaging (MRI) costs $700 to $1200 per examination.
Both MRI and ultrasound could be used to detect advanced stage prostate
cancer. Rifkin et al.! have shown that the accuracy of transrectal ultrasound
imaging in detecting advanced stage prostate cancer was not statistically
different from that of conventional body coil MRI imaging. Thus, choos-
ing ultrasound over MRI could save $300 to $1050 without compromising
quality of care.

To evaluate the accuracy of a diagnostic test, we need to determine
the disease status for each patient (present or absent) independent of the
patient’s test result. The procedure that establishes the patient’s disease
status is referred to as a gold standard. The gold standard may be based
on surgery, autopsy, or clinical assessments. However, some patients who
underwent the test might not have had their condition status verified by
the gold standard. Usually the patients who did not have their condi-
tion status verified are not a random sample but rather are a selected
group. For example, if the gold standard is based on invasive surgery,
then patients with negative test results are less likely to receive the gold
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standard evaluation than patients with positive test results. Although this
approach may be sensible and cost-effective in clinical practice, when it
occurs in studies designed to evaluate the accuracy of diagnostic tests, the
estimated accuracy of the tests may be biased. This type of bias is called
verification bias.23 For example, in a study of the accuracy of the lactose
breath hydrogen test in the diagnosis of enteropathy in children, patients
with negative test results had rarely undergone jejunal biopsy, the gold
standard.* Therefore, the estimated sensitivity and specificity based on the
verified cases are subject to verification bias.

Selective disease verification can lead to serious bias in estimating the
accuracy of a diagnostic test. To illustrate how verification bias operates
and affects the estimated accuracy of a test, we consider a hypothetical
example where we want to estimate the sensitivity of a certain stress
radiographic procedure in the diagnosis of coronary artery disease.® We
use angiography as the gold standard for coronary artery disease. Assume
the actual sensitivity of the radiographic procedure (which we need to
estimate) is 80%. Thus, 20% of all diseased patients will have false-negative
test results. Suppose 500 patients with coronary artery disease undergo
the stress test; 400 respond positively and 100 respond negatively. Since
angiography is a risky and expensive procedure, instead of verifying all
tested patients by angiography, only 75% of patients with a positive test
undergo angiography, and 10% of patients with a negative test undergo
angiography. Thus, among 400 patients who tested positive, 300 have
angiography, and among 100 who tested negative, only 10 have angiography.
Analysis using only those patients who have angiography would lead to the
mistaken conclusion that the sensitivity of the stress test is 97% (300/310),
a gross overestimation of the true sensitivity. Similarly, we can show an
estimator of specificity using only verified cases can also be biased.

The magnitude of verification bias depends on the association between
selection for verification and the test result. The stronger the association
is, the larger the bias. For example, Drum and Christacopoulos® studied
the accuracy of hepatic scintigraph to detect liver disease. The liver di-
sease verification procedure was either liver biopsy, exploratory laparotomy,
or autopsy. In their study, they performed 650 scans (429 positive and
221 negative). Among the 429 patients with positive test results, 61%
received the disease verification procedure, and of the 221 patients with
negative test results, only 37% received the disease verification procedure.
Using only disease verified cases, Drum and Christacopoulos reported that
the hepatic scintigraph had a sensitivity of 90% and a specificity of 63%.
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However, using Begg and Greenes’s verification bias correction procedure
(to be discussed in more detail in Sec. 2.2)? on all tested patients, the
corrected sensitivity and specificity are 84% and 74%, respectively. Thus,
the reported sensitivity in Drum and Christacopoulos’s paper is inflated by
6%. A more extreme example is found in a study by Marshall et al.® Their
study assessed the accuracy of diaphanography in detecting breast cancer.
A total of 833 patients were tested for breast cancer using diaphanography
(67 positive and 766 negative results). The verification procedure on breast
cancer was biopsy. The proportion receiving the disease verification proce-
dure was 55% for test positive patients and 7% for test negative patients.
Using only verified cases, Marshall et al.® reported a sensitivity of 79%
for diaphanography in detecting breast cancer. Using Begg and Greenes’
correction procedure, the estimated sensitivity becomes 28%. Thus, the
reported sensitivity in the paper is grossly inflated. Therefore, ignoring
verification bias could grossly overestimate the accuracy of a test, and result
in the misuse of a test, leading to possible mismanagement of patient care.

Although verification bias can distort the estimated accuracy of a di-
agnostic test, many published studies on the accuracy of diagnostic tests
fail to recognize verification bias. For example, Greenes and Begg? reviewed
145 studies published between 1976 and 1980 and found that at least 26%
of the articles had verification bias, but failed to recognize it; Bates et al.'°
reviewed 54 pediatric studies and found more than one third had veri-
fication bias; and Philbrick et al.'' reviewed 33 studies on the accuracy
of exercise tests for coronary disease and found that 31 might have had
verification bias. Finally Reid et al.*! looked at 112 studies published in
NEJM, JAMA, BJM and Lancet between 1978 and 1993 and found 54% had
verification bias.

Since it is often unethical or impractical to verify all study patients,
retrospective adjustments are needed to provide correct inferences about
the accuracy of tests. Assuming a gold standard exists, in this chapter,
we review available statistical methods that may be used to correct for
verification bias in evaluating the accuracy of diagnostic tests. In Sec. 2, we
describe bias-correction methods for making inferences about the accuracy
of a single diagnostic test when its response is binary, and in Sec. 3, we
discuss bias-correction methods for comparing the relative accuracy of two
correlated binary tests. In Sec. 4, we discuss bias-correction methods for
making inferences about the accuracy of a single diagnostic test when its
response is ordinal, and in Sec. 5, we present bias-correction methods for
comparing the relative accuracy of two ordinal-scale diagnostic tests. We
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start each section by presenting an overview of the methods, then follow
this with a more detailed discussion.

2. A Single Binary Test
2.1. An overview

When the response of a test is binary, its accuracy is usually measured by
sensitivity and specificity or positive and negative predictive values. The
sensitivity measures how good the test is at providing a positive result
in diseased patients, and the specificity measures how good the test is
at ruling out non-diseased patients. While sensitivity and specificity are
intrinsic properties of a diagnostic test, positive and negative predictive
values represent the accuracy of a diagnostic test when it is applied to
a particular patient.'? Several approaches have been developed to make
inferences on the accuracy of a single binary test in the presence of verifi-
cation bias.?"13 Begg and Greenes? developed a bias-correction procedure
for estimating sensitivity and specificity under the conditional independence
assumption, which requires that selection for verification does not depend
on the true disease status directly. Zhou” extended their method to allow
a general model for verification process and derived the maximum likeli-
hood estimators for sensitivity and specificity of a diagnostic test and their
corresponding variances.

Even though the estimated sensitivity and specificity may be biased
using only verified cases, Zhou'?® showed that under the conditional inde-
pendence assumption, the naive estimators of predictive values, based on
only verified cases, are unbiased. However, If the conditional independence
assumption does not hold, Zhou showed that the naive estimators are still
biased and derived the ML estimators under a model for the verification
process.

2.2. Estimation of a single test

To develop a bias-correction procedure for estimating sensitivity and speci-
ficity, we define the random variables, V', T, and D, to describe the verifi-
cation indicator, the value of the diagnostic test result and the true disease
status of a patient, respectively. Let V = 1 indicate a verified patient and
V = 0 a non-verified patient; let T = 1 indicate a positive test result and
T = 0 a negative test result; and let D = 1 indicate a diseased patient,
and D = 0 non-diseased. Furthermore, we assume that the probability of
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Table 1. Cross-classification of test results by disease status and verification status
X = xj.

Diagnostic results

T=1 T=0
Verified | D=1 S14 50i
D=0 14 T0i
Unverified Ui U0i
Total n1; noq

verifying a patient may be influenced by not only the test results but also
the discrete covariates X, which have I different covariate patterns. Let x;
denote the ith covariate pattern of observed covariates, where i = 1,...,1.
Also, assume that X is a random sample from a discrete space (x1,...,Xr)
with probabilities £ = (&1, ...,&r). The observed data with verification bias
may be displayed as in Table 1. Under the assumption that

L _PV=1|D=1T=1X=x)

YT PWV=1|D=0,T=1,X=x;)
PV =1|D=1,T=0X=x;)

koi =

PV =1|D=0,T=0X=x)
are known, Zhou” showed that the maximum likelihood (ML) estimators
for sensitivity and specificity are

Zle (s€ns;)pin/n

I N
Zizl pini/n

sens =

and
SO0 (spec;) (1 = pini/n
Sy (1= pi)ni/n

spec =

respectively, where

s1inai/(s1: + k1ir1i)

sens; =
’ s1in1i/ (s1i + k1ir1i) + soinoi/ (S0 + koiroi)

koiroinoi/ (S0 + koiro:)
kiiriinii/(s1i + k1ir1i) + koiroinoi / (Soi + koiroi)

which are the ML estimators for sensitivity and specificity of the test in the

spec; =

subpopulation with X = x;, respectively,
P (5T S14 no; S0i
" nisutk koiroi
n; S1i+ KT M4 Soi T KoiToi
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Table 2. Hepatic scintigraph data.

Diagnostic results

T=1 T=0
V=1|D=1 231 27
D=0 32 54
V= 166 140
Total 429 221

I . .
n; = ny; + noi, and n = Zi:l n;.” The corresponding variances may be

computed from the inverse of the Fisher information matrix. If k1; = kg; = 1
for ¢ = 1,..., I, the conditional independence assumption holds, and our
ML estimators reduce to the ones given by Begg and Greenes.?

2.3. An hepatic scintigraph example

Hepatic scintigraph is an imaging scan used in detecting liver disease. Drum
and Christacopoulos® conducted an experiment to determine the sensitivity
and specificity of the hepatic scintigraph in detecting liver disease. There
were 650 patients who participated in the study. Of the 429 patients who
had positive hepatic scintigraph results, 263 (61%) were referred to undergo
a disease verification procedure, which is liver pathology. Of the 221 pa-
tients with negative hepatic scintigraph results, only 81 (37%) were referred
to undergo the disease verification procedure. The data are presented in
Table 2. If only patients with verified condition statuses are used in the
calculation, the biased estimate of sensitivity is 0.90 with a 95% confidence
interval of (0.86, 0.93); and the biased estimate of specificity is 0.63 with
the 95% confidence interval of (0.53, 0.73). If the probability of verifying
a patient depends only on the test results of the hepatic imaging scan,
the verification process is MAR. Using the correction method described
in Proposition 1, the estimated sensitivity is 0.84 with a 95% confidence
interval of (0.79, 0.88), and the estimated specificity is 0.74 with a 95%
confidence interval of (0.66, 0.81).

3. Comparison of Two Correlated Binary Tests
3.1. An overview

To compare the relative accuracies of two binary tests, several approaches
have been developed to correct for verification bias.!4 16 Schartzkin et al.'*
considered the comparison of sensitivities and specificities of two tests in
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an extreme case of verification bias where only those patients who tested
positive on either test proceeded to have their true disease status verified,
and they found that McNemar’s test could still be used for such a
comparison. Baker'® proposed a parametric maximum likelihood proce-
dure for estimating sensitivities and specificities of multiple tests, and
Zhou'® provided a nonparametric ML approach for comparing the relative
accuracies of two correlated binary tests. While both Baker’s method
and Zhou’s method treat the problem of verification bias as a special
type of missing-data and use likelihood-based approaches for missing-data
to correct for verification bias, Baker’s approach primarily focused on
estimation of sensitivities and specificities of multiple tests, and Zhou’s
approach focused on hypothesis testing for the equality of sensitivities
or specificities of two diagnostic tests. Although Baker’s approach al-
lows the disease verification process to depend on the disease status,
its validity still depends on the assumption that one can correctly
model the disease verification process by logistic regression using the
test results and the disease status. While the validity of Zhou’s ap-
proach relies on the assumption that the disease verification process
depends on only the test results and other observed covariates, but not
on the disease status, its validity does not require modeling the diseased
verification process. However, his approach assumes that the effects of
covariates on disease follow a logistic regression model. Baker implemented
his approach by first starting with an EM algorithm and then switching to
the Newton-Raphson algorithm after a few iterations,*®
mented his method using the Newton—Raphson algorithm. The advantage
of Zhou’s approach is that the computation may be done in an existing
software, such as SAS;'” and the advantage of Baker’s approach is that it
may be less sensitive to starting values, but its disadvantage is that it needs
a special program to carry out its computation.

and Zhou imple-

3.2. The ML approach

In this subsection, we discuss Zhou’s approach'® for comparing the relative
accuracies of two correlated binary tests. Let 77 and 75 be binary test
results of two diagnostic tests. Let the definitions of random variables D,
V, X be the same as those in Sec. 2.2. Then, the observed data may be
summarized as in Table 3. To derive the bias-correction procedure, we need
additional notation. Define

gijlZP(D=1‘T1:.]',T2:[,X:X1), and
niji =PI =5,Th=1]X=x5).



28 X.-H. Zhou

Table 3. Cross-classification of test results by disease status and verification status with
X = Xj.

T =1 T =0
To=1|To =0 | To=1| To =0
V=1|D=1 Si11 8410 Sio1 5300
D=0 Ti11 7310 7301 7300
V= Uill Ui10 ;01 U300
Total ni11 ni10 ni01 7500

Because the number of free parameters could grow uncontrollably as
the number of covariates grows, we need to model the joint probability
P(Ty,T5,D | X). We model P(D | Ty, T2, X) by a logistic regression model
and P(Ty, Ty | X) by a multinomial logit model.'® Specifically, these models
are defined by the following equations:

exp(Bo + b1 + BT + Bha;)
14 exp(Bo + f1Th + BoTo + B5x;)

P(D:1|T17T2,X::IJ,‘):

and
exp(aoj + oy, %)

P(T]_:j,TQZZ‘X:fL'i): 1
> by ha=0 EXP(Q0R, Ay + O 4, Ti)

)

for j,l = O, 1, where ap11 = 0 and Q111 = 0. Let

B = (Bo, b1, P2,03), a= (00, 01, X105 ¥100, X101, ¥110)

& =PX=u;), 6= (&,...,&1-1). Let s451, 35 and u;;; be the numbers of
subjectswith (V =1,D=1,T1 =j,To =1),(V=1,D=0,Ty = j,T> = 1),
and (V = 0,11 = j,T» =), respectively. Then, the log-likelihood function
based on the observed data is

I
(a,3,¢) = Z Z {nijilogniji + sijilog Oi 4 1451 log (1 — O55)

i=1 j,1=0
I
+Y o, 0
i=1
where n; = Z;,l:o ngji, and & = 1 — & — --- — §7—1. After obtaining

ML estimates of «, 3, and £ by maximizing Eq. (1) with respect to these
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parameters, we can estimate the sensitivities of the two tests, m; and mo,
by the following formulas:

I 1 I 1
= <Zzéillﬁill€i> /13 and 7y = <Zzéi]‘1ﬁijléi> /ﬁ,

i=1 [=0 =1 j=0

respectively, and their specificities, v1 and vs, by

I

= (ZZ(I - éiol)ﬁioléi) /(1 —p) and
I 1 A A

Dy = (Z (1- 9ij0)ﬁij0§i> /(1 -D),
i=1 j=0

1
p= Z Z éijl'f}ijléi~

We may use the delta method to estimate the corresponding covariance
matrix of 71 and 72 and that of 7 and .

where

4. A Single Ordinal-Scale Test
4.1. An overview

When the response of a diagnostic test is ordinal, there is more than one
way to define a positive test result. Hence, the use of one pair of sensitivity
and specificity values confounded with the chosen confidence threshold for
a positive result. To overcome this limitation, a receiver operating characte-
ristic (ROC) curve was proposed to present the accuracy of an ordinal-scale
test.20:21 An ROC curve is a plot of 1-specificity versus sensitivity as one
varies the confidence threshold from the most liberal to the most conser-
vative views on the presence of disease, and it shows the trade-off between
sensitivity and specificity of a diagnostic test that can arise when one uses
different confidence thresholds.?? For estimating a single ROC curve, several
bias-correction methods have been proposed.!®23-26 Gray et al.2? proposed
a parametric maximum likelihood (ML) approach for estimating an ROC
curve, adjusting for verification bias, under the conditional independence
assumption that the selection probability of verification depends only on
the test results. Their approach has three limitations: (1) it cannot be ap-
plied to the situation where some observed covariates (e.g. sex or age) may
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influence the decision to verify a patient and/or affect the ROC curve itself;
(2) the validity of the approach relies on the normality assumption of the
latent decision variables; and (3) computation of the ML estimates requires
a modified iterative scoring algorithm. Hunink et al.2* proposed an ad-hoc
method for estimating an ROC curve adjusting for the effects of covariates
on the decision to verify and on the ROC curve. However, their approach
does not necessarily provide maximum likelihood estimates nor consistent
variance estimates, as shown by Rodenberg.?6 Rodenberg and Zhou?%-26
proposed a likelihood based approach for estimating an ROC curve when
some observed covariates affect both the verification process and the test’s
accuracy. Their approach first modeled effects of covariates on the accuracy
of a test by an ordinal regression model, then treated the verification bias
problem as a missing-data problem, and finally used the EM algorithm?7 to
compute the ML estimates under the MAR assumption for the verification
process. To overcome the second and third limitations of the Gray et al.’s
approach, Zhou'8 proposed a non-parametric maximum likelihood approach
to correct for verification bias in estimating the area under an ROC curve.
The main idea behind this approach was to treat the verification bias
problem as a missing data problem. Under the missing data framework,
he first derived an explicit expression for a ML estimator of the ROC curve
area without the normality assumption. Then, he presented two approaches
for estimating the corresponding variance. The first approach was based on
the observed Fisher information,?® called the information method, and the
second approach was based on the jackknife method.?? A simulation study
suggests that the estimator obtained using the jackknife method outper-
forms the estimator obtained by the information method. The proposed
approach does not require an iterative algorithm to compute the ML esti-
mates, nor the normality assumption of the latent decision variable. The
proposed approach can also apply to the setting whether some observed
discrete covariates of a patient might influence the decision to verify the
patient. However, this approach can only apply to the area under the ROC
curve, not the ROC curve itself.

4.2. Estimation of a single ROC curve without covariates

Let T be the ordinal-scale test results, and the definitions of random vari-
ables D and V are the same as those in Sec. 2. Then, the observed data may
be summarized as in Table 4. The rating data above may be considered as
a categorization of an unobserved latent random variable T, representing
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Table 4. Cross-classification of an ordinal-scale test by disease status and verification
indicator.

Diagnostic results

T=1]|--- | T=K
Verified | D=1 z11 s ZK1
D=0 210 s ZK0
Unverified u1 S UK
Total ni cee ng

degree of suspicion on the presence of disease for a patient. By postulat-
ing a relationship between the observed 7' and the unobserved T™* and a
parametric distribution for 7™, one can build a parametric model for the
ROC curve of a diagnostic test. Several ROC models have been proposed in
the literature.?’ 33 The most commonly used binormal model is proposed
by Dorfman and Alf,?° and this model can be summarized in the following
result.

Result 1: Assume that K — 1 cut-off points, 61,...,0k_1, exist such that
for each patient, if 01 < T* <Ok, T =k, where k=1,..., K, 8y = —0,
and O = oo. Further assume that given that a patient is diseased, T* is
normally distributed with mean py and variance o2, and that given that
a patient is non-diseased, T is normally distributed with mean po and
variance of. Under these assumptions, the ROC curve of the test is a plot
of 1 — ®(t) versus 1 — ®(bt — a), where ®(.) is the cumulative distribution
function of the standard normal random variable, a = (u1 — po)/o1, and
b=o0¢/01.

Hence, under the binormal model, an ROC curve is determined by two
parameters, a and b, which may be estimated using the maximum likelihood
method. To write down the likelihood function, one first defines the para-
meters for the observed data: pg = P(D =d) and g = P(T =k | D = d),
and then one may write 7 as functions of the parameters of an ROC
curve:

ko = ®(0,_1) — ®(0,) and wE = P(bO),_; —a) — P(bO), — a),

where 0), = (6 —p0)/00, k = 1,..., K. Notice that the probability of having
T =k and D = d for a verified patient is pgmrg and that the probability
of having T=k for an unverified patient is Zil:o PdTkd, & mixture of two
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distributions. Hence, under the MAR assumption that P(V =0 | T, D) =
P(V =0]T), the log-likelihood for the observed data may be written as

K

K 1
Z Z 2kq10g paTra + Z ug log(p17mr1 + PoTro) -
k=1d=0 k=1

Gray et al.?® employed a modified scoring algorithm to maximize this log-
likelihood function with respect to a, b, and 6j, to obtain their ML estimates
and the corresponding variance estimates.

4.3. Estimation of ROC curves with covariates

Let X be the vector of observed covariates that may affect the verification
process and the accuracy of the test. Assume that X can be cross-classified
into I distinct combinations, and x; represents the values of the covariates
for the ith combination. The observed data with X = x; form a contingency
table, displayed in Table 5.

Using the Rodenberg and Zhou’s approac we model the effects of
the covariates X = x; on the distribution of the response of a diagnostic
test by ordinal regression with a probit link34:3:

h,25’26

J— / .
Zﬂjdi=@<ek (aDd—F(J,éXX')), fork=1,..., K -1,
i<k exp(ﬁDd+ﬁXxi)

where mjq; = P(T' = j | D = d,X = x;), and 60}’s are cut-off points of a
latent continuous variable T*, defined in Proposition 1. Denote o =
(ap,ax), B = (Bp,Bx), and 8 = (01,...,0x_1). To emphasize the de-
pendence of 7jq4; on «, 5, and 8, we write 7;jq; = mjqi(c, 8,6). Hence, under
the MAR assumption, that P(V =0 | D,T,X) = P(V =0 | T, X), the

Table 5. Observed data for the verification bias problem when X = x;.

Verification Disease Diagnostic Test Result T

Status V: Status D: 1 2 e K
1 Z11i ®21i - ZK1i
0 2100 2200 - ZKO0i

missing Ul U; s UK

UST n2; o nNKi




Evaluation of Diagnostic Test’s Accuracy in the Presence of Verification Bias 33

log-likelihood, based on the observed data, may be written as

101
Z szdz log(paimrai(y, e, 6))

1d=0 i=1

D3

k=11

I
M=

=~
Il

uki log(prime1i (7, a, 0) + poimroi (7, @, 0)) (2)

™M~

1

where py; = P(D = d | X = x;), the prevalence rate of disease specific to
the subgroup with X = x;. The log-likelihood, based on the observed data,
has a complicated form, involving mixture distributions.

Let wgq; be the number of unverified patients with 7' = k and X = x;
whose disease status is d(D = d). Because of selective verification, one
does not observe wgg;, but instead one observes up; = wgo; + Wg1i. If
all subjects had been verified, we would have observed wgg;, and a much
simpler complete-data log-likelihood could be written as

N

I 1
>3 {zkai + wrai}log(pai)
i=1 d=

0

B
Il

1

+

I K 1
D> {zkai + wiai} log(mrai(a, 5,0))

i=1 k=1d=0

These two separate sums suggest that pg; and m,4; can be maximized sepa-
rately. They also suggest the use of the EM algorithm with a maximization
step for an ordinal regression model of miq4i(a, 3,0) with wgg; assumed
known, which can be done fusing an existing computer program PLUM
developed by McCullagh.3* Here, the expectation step finds new estimates
of wypa; given the current values of a, 3, 6, and p, o™ ™) 9(m)  and
p(™) | using

P&T) Teas (™), 3m) glm))
S0 05 Was(alm), Bm), gim))

Uks

This iterative process is continued until the relative change in successive
ML estimates is small. The convergent values are the ML estimates of
the parameters. Their asymptotic variance-covariance matrix is given by
the inverse of the expected information matrix, defined by Eq. (2).
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4.4. Estimation of the area under an ROC curve

If one is interested in the area under the ROC curve, a simple bias-correction
procedure is available.'® Define

(blki:P(T:k‘)(:Xi)7 and (ZSQ]W‘:.P(D:].|T:]<Z7)(:Xi)7

The log-likelihood, defined in (2), may be re-written as

I K I K
DO nilog(buk) + D (zk1ilog(boki) + zroi log(1 — doi) -

i=1 k=1 i=1 k=1

Maximizing the above log-likelihood yields the following ML estimators for
¢1 and ¢s:

N - Zk1i
and  gop; = ————,
n; Zk1i T 2k0i

Orki =

K
where n; =) ;| M-
Notice that the area under an ROC curve A is a function of ¢ and £
and can be written as

f:_ll Zgl‘(:k-&-l Zf:l(l — Gaki) P1ki&i Zf:l P25i015i&i
+3 Zi{zl Zle(l — ¢oki) P1ki&i Zle D2ki P1kii
ZkK:l Z{:l(l — ¢oki) P1ri&i Zle Zf:l $25i015i&i

Substituting unknown parameters in the equation above by their ML esti-
mates gives the following ML estimator for A:

iy Z]K:k-&-l S (1= owi)Prribi Sy Bagidri
+1 Zszl Zle (1 — dori) il Zle Poribrrils
St Sini (1 — boni)diki&i Zf‘(:l Sy G2jidnjiki
where éz =n;/n.

The corresponding variance estimator can be obtained by either the
jackknife method or the information method.'®

4.5. A real example with fever of uncertain origin

Gray et al.?® reported data from a study on the accuracy of computed

tomography in differentiating focal from nonfocal sources of sepsis among
patients with fever of uncertain origin. In this study only some patients were
verified, depending on their CT results. Hence, this study had verification
bias. Table 6 displays the data.
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Table 6. Observed Data.
T=1|T=2|T=3|T=4|T=5
V=1|D=1 7 7 2 3 37
D=0 8 0 1 1 4
V=0 40 11 3 5 12
Total 55 18 6 9 53
e e &
* - -
-
-
7
S */// *
k3 e
@
= X
‘@
o
a-
()
2
'_
— Indianapolis subjects age 65-74
""""" Indianapolis subjects age 75 and older
---- Ibadan subjects age 65-74
——- l|badan subjects age 75 and older
<
S \ \ \ \ \
0.0 0.2 0.4 0.6 0.8 1.0
False-Positive-Fraction
Fig. 1. ROC curves and empirical (FPF, TPF) estimates for dementia screening test

by site and age group under the best model.

If we useonly the veri ed cases,the estimated empirical and smooth
ROC curves are displayed in Figure 2. The area under the smooth ROC
curve is 0.75with the standard deviation of 0.108.

If we assumethat the probability of veri cation dependsonly on the
result of CT, using all casesthe ML estimatesof ¢ and b are 1.80and 1.75,
respectively. We display the corrected empirical and smooth ROC curves
in Fig. 2. The area under the corrected smooth ROC curve is 0.81 with
standard deviation of 0.07.
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Fig. 2. Corrected and uncorrected ROC curves.

5. Comparison of Two Correlated Ordinal-Scale Tests
5.1. An overview

To estimate ROC curves of multiple tests, Toledano®® adapted the idea of
the weighted generalized estimation equations (GEE)37 to correct for ver-
ification bias under the MAR assumption for the verification process. The
proposed approach first modeled the verification process and then estimated
the probability of verifying a patient given the patient’s observed covariates,
and finally, weighted verified data inversely to this estimated probability of
verification. One advantage of this approach is that it permits estimation
of ROC curves when some observed covariates affect the accuracy of a
test and the verification process without modeling the joint probability of
diagnostic test results. Two disadvantages of the approach may be: (1) its
validity relies on correct modeling of the verification process; and (2) it may
not be as efficient as a likelihood-based approach because it discards the
unverified cases and weights the verified cases inversely to the probability
of having verification.?® For comparing two correlated ROC curve areas,
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Zhou®® extended his previous approach!'® to two correlated tests. The pro-
posed approach first derived explicit nonparametric ML estimators for the
areas under the ROC curves of two correlated tests and their corresponding
variance-covariance matrix when the verification process depends on only
the test results. If some categorical covariates affect the verification process,
the proposed approach incorporated these covariates into the estimates
of the areas by using both a logistic regression and a multinomial regres-
sion models. One strength of the proposed approach is that it does not
require one to model the verification process under the MAR assumption,
and its weakness is that it can only be used to estimate the areas under
ROC curves, but not ROC curves themselves.

5.2. A weighted GEE approach for ROC curves

Let T3 and T3 be the responses of two diagnostic tests of a patient, ranging
from 1 to K7 and from 1 to K5, respectively. Let the definitions of random
variables D, V| and X be the same as those in Sec. 2.2. Then, the observed
data with X = x; form a contingency table and are displayed in Table 7.
Let Tj; be the result of the Ith test on jth patient and Yi;; be a cumulative
indicator of Ty;. That is, Yi;, = 1 if T}; < k and 0 otherwise. Let ji;iq; be
the conditional expected value of Yi;; given D; = d and X = x; (Wjikdi =
EYix | Dj = d,X = x;3)). One may model effects of covariates X = x; on
Hjikas by ordinal regression with a probit link:

01 — apid — o'y x;
exp(Bpid + B xi)

Let B be the vector of all unknown parameters, including ap;, ax;, Bpi,

O (wijrai) =

and Byx;. Using Toledano’s approach®%, one estimates B using a two-stage
procedure. First, given the test results and the observed covariates X, the

Table 7. Cross-classification of ordinal-scale tests by disease and verification indicators
when X = x;.

=1 T =K,
Ty =1 .| To =Ko o T =1 oo | To = Ko
V=1 D=1 21114 Z1Ko1i ZK11i ZK1Koli
D=0 | =20 s | 21K006 coo | ZKq100 | o-- | 2K K206
V=0 U1l UK, UK 1 UK, Ko
Total ni1 N1K, nK,1 NK, Ky
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probability of verifying a patient is modeled by a logistic regression model:

PV, = 11Ty, Toj, X = %)

1
PV, =0Ty, Ty, X; = x1)

= w’(le, TQj, X;)/ .

The unknown parameters w may be estimated by the method of generalized
estimating equation (GEE)*°. Denote & to be the resulting estimates of w,
and denote the probability of verifying the jth patient by

l/j = P(VJ =1 ‘ le7 ng, Xj =Xi).

Then, the following weighted generalized estimating equation is used to
estimate B:

> ((%’%zj(n)lm )

where the notation (.|w = @,n = 7) denotes a function of w and 7
evaluated at @ and 7; Y; = (Yiji,...,Yij0k,-1), Yoi10 - -5 Y2 (ka—1));
By = (Bt (K, —1) H2)15 - - -5 B2j(Ka—1))'3 25(n) = cov(Y;) is an
assumed covariance matrix of Y;; and 7 is a consistent estimator of 7.
Toledano and Gatsonis*? have discussed several ways of choosing the co-
variance matrix ;(n), and Toledano® has shown that the solution B to the
weighted GEE (3) is a consistent estimator of B and has an asymptotically
normal distribution.

w=@»77=77>:0» (3)

5.3. A likelihood-based approach for ROC areas

If one is interested in comparing the areas under the ROC curves, a simpler
approach than the weighted GEE approach is available.?® To derive this
approach, one needs a different notation. For the observed data given as in
Table 7, the following parameters are defined:

b =P(D=1|T1=jTr=1X=x),
tig=PTi=4Te=1|X=x), and & =PX=x;).

Since the problem of verification bias may be considered as a missing-data
problem, the likelihood approach for missing data is used to estimate ¢1;;1,
¢2ij1, and &;. Assume that the missing-data mechanism is MAR, that is,

PV =0|Ty, T, D, X=x;)=P(V =0Ty, Tr, X =x;).
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Then, the contribution of a verified patient to the likelihood is P(Th,
T5,D,X) = P(D | Ty, T2, X)P(T1,T> | X)P(X), and the likelihood contri-
bution of an unverified case is P(Ty, T, X) = P(T1,T> | X)P(X). Further-
more, one may model effects of T3, T5, and X on D by a logistic regression
model:

exp(B1; + Bau + B5xi)
1+ exp(Bij + B + B5xi)

where B1x, = 0 and f2x, = 0, and effects of X on 77 and 75 by a multino-
mial logit model,

P2iji = : (4)

‘ exp(a;xi)
G = P(T = 4. Ty = 1| X = x) = opvam CEC)
Zhl 1 thzl exp(ahthXi)

where ak, k, = 0. Denote 8 = (B11,...,B1(k,—1): P21, - - - Bo(ks—1)5 53)s
o = (all,...,aKl(K2_1))/7 51 = P( = X,) f = (617...75171), and n =
Zf:l M-

To emphasize the dependence of ¢1;5; on o and the dependence of ¢g;j;
on ﬂ, one may write (blijl = (]511‘]‘[(0() and ¢2ijl = ¢2ijl(ﬂ)- Under the MAR
assumption, a valid log-likelihood function is

K1 K> x . 1
(e, 8,6) = ZZZwlogz LT N < e

i=1 j=1 I=1 h1,ho=1 exp(ah1h2x1) i=1
I K, K
n 221225 1log exp(B1; + Ba + B5%i)
Soa T ey + Bu + Bix)
1
+ i lo , 6
ST exp(B1j + Ba + B3%i) (6)
where Nijl = Sijl + Tijl + Uiji and ér=1—-& — - —&7-1.
Let
NS eXP(O‘;zxi)
=> D> niplog =x —
i=1 j=1 =1 by ha=1 OXP(, 5, X1)
1 Y I+ eXp(ﬂlj + B + 53X1)
=1 j=1 [=1
1
+ 745 log

1+ exp(B1j + Bar + Bhxi)
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and

I
&)= mnilog& .
i=1

Then, I(«, 5,€) may be written as the sum of I;(«), l2(8), and I3(€). Here,
l1(a), I2(8), and I3(£) may be considered as the log likelihood function of
all cases modeled by the multinomial logit model defined by Eq. (5), the
log likelihood function of verified cases modeled by the logistic regression
model defined by Eq. (4), and the log likelihood function for a multinomial
distribution based on all cases, respectively. Since the parameters a, (3,
and ¢ are distinct, their ML estimators, &, ﬂ, and 5, may be obtained
by maximizing Iy, l2, and [3 with respect to «, 0, and &, separately. The
observed Fisher information for («, 3,&) is

diag(I1 (), 12(8), 13(8)) (7)
where Iy, I, and I3 are the observed Fisher information matrices on the
log-likelihood functions I3 (), l2(5), and I3(&), respectively.

Maximizing l; (o) with respect to a and l2(8) with respect to 8 yields

ML estimators & and 3, respectively. Since { =1 — -+ — &1, maximizing
13(€) with respect to &; yields ML estimators of &;:
N n;
gi = )
n
i=1,...,1—1.
Note that v = P(D = 1) = Zl 1 Z Zl | ®2i5101451& and that one
may write the area under the ROC curve of a diagnostic test A; as
K;—1 1 K;
A = Z¢u Z¢Q + 5> o@)en )|
I=j+1 j=1
where
I K2 I K2
¢11 Z Z ¢2’L]k¢ ¢lzgk€z 5 ¢12 Z Z ¢2'L]k¢lzgk€z 5
i=1 k=1 i=1 k=1
I K1 I Kl
¢21 Z Z 1 - ¢21k] ¢1zk]§z ) ¢22 Z Z ¢2’Lk‘]¢llk]§2 .

k=1 =1 k=1

The delta method may be used to obtain an estimate of the covariance
matrix for A; and As. Assuming the normality of A; — Ao, one can
then perform the hypothesis tests and construct confidence intervals about
Ay — As.
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5.4. Awvailability of computer software

For analysis of ROC data, several computer programs have been developed
for carrying out computations of the bias-correction methods discussed in
Secs. 4 and 5. Gray et al.?® developed a program called ROCBIAS to es-
timate the ROC curve of a single test when the probability of verifying
a patient depends on only the test results. Rodenberg and Zhou?® de-
veloped a program called EMPLUM to estimate ROC curves when the
probability of verifying a patient depends not only on the test results but
also on other observed covariates. Toledano3® developed special software
written in Fortran to implement the weighted GEE approach for ana-
lyzing correlated ROC curves in the presence of verification bias. Zhou
and Higgs*® implemented the likelihood-based approach for comparing the
areas under the ROC curves in SAS,'” which can be down-loaded from
http:/ /www.biostat.iupui.edu/~ zhou.

6. Discussion

Statistical methods in diagnostic medicine have recently received a lot of
attention.?® In this chapter we have discussed the problem of verification
bias in evaluating the accuracy of diagnostic tests and some available bias-
correction methods. The problem of verification bias is just one of many
problems encountered in diagnostic medicine. For a completely treatment
on statistical methods in diagnostic medicine, we refer readers to textbook
by Zhou et al.**
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1. Introduction

Most classical statistical methods require independent observations. The
issue here is not independence of multiple variables, rather of the samples.
There are many cases of dependent in medical research when requirement
of independence cannot be hold, i.e. observations are correlated.

The existence of such correlation is not a coincident, but due to the
design of the experiments. In some cases, this type of correlation can
be eliminated by suitable procedure without losing any information. The
simplest case is paired design where the observations within the same paired
is correlated. For example, to investigate a new drug’s effects on hyper-
tension, a 2-by-2 crossover design can be used to measure the diastolic
pressure before and after treatment for each subject. Although the pres-
sures across subjects are independent, the observations of the same subject
are correlated.

Unfortunately, we could not eliminate intra-unit correlations in most
cases by traditional statistical methods. For example, in a toxicological
study, 32 pregnant rats were randomly allocated into test and control
groups. Rats in control group were fed with regular food, while rats in test
group were fed with combinations of regular food and suspected teratogen.
The proportion of malformation of pups of two groups was compared after
rat delivery. In this study, the pregnant rats are independent with each
other, but genetic factors, antepartum internal womb environments and
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metabolism conditions of teratogen have effects on the rat pups. Thus, the
rat pups cannot be treated as independent observations because siblings are
more likely to encounter the similar proportion of malformation than pups
from different litters. The litter effect must be taken into account. Special
procedure must be used to deal with this type of data.

The intra-unit correlation or intra-class correlation is a measure
of similarity (or non-independence) among individuals that share some
characteristics. The intra-unit correlation means that observations in
the same unit are not dependent. There are overlaps between the informa-
tion they present. It is inappropriate to ignore the intra-unit correlation.
For example, in a clinical trail, many variables, i.e. vital signs, physiological
index, effects and side effects, should be observed successively in different
time for each subject during the trial period to show the efficacy and
safety of the tested drug. Each subject should be observed several times.
We refer to this type of study as repeated measurement study. There
are two classical ways to deal with this sort of data. One is, to test the
significance of the difference between the test group and the control group
on each occasion respectively including test for the homogeneity of two
groups before treatment and to compare the difference of changes (such
as absolutely increase or decrease, relatively increase or decrease, etc.)
between the two groups at each time. The alternative is to take k obser-
vations of each one of n subjects as one response variable, (the sample
size will be nk) to fit a model (or generalized linear model) in which
time is an explanatory variable. The former one will have low statistical
power because it treats the observations of each occasion independently.
The latter considers the correlations between the treatment effect and
time. However, it ignores the intra-subject correlation of the observations
and takes the data as independent data. Thus, it will increase the type
I error which may result in the approval of the inefficiency drug to
the market.

The set of observations taken from the same subject tend to be cor-
related. They provide rather less information than the same number
independent observations taken from different subjects. The larger the
intra-unit correlation is, the less information will be provided. Therefore, it
will increase the type I error if we use nk observations to fit general linear
model.

The statistical methods for dependent data are described and illus-
trated in this chapter. The methods cover estimation of intra-correlation
coefficient, hypotheses test, estimation of sample size, etc.
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Table 1. Clotting time (min) of serum from 8 volunteers, treated by 4 methods.

Treatment
subject
A B C D
1 8.4 9.4 9.8 12.2
2 12.8 15.2 12.9 14.4
3 9.6 9.1 11.2 9.8
4 9.8 8.8 9.9 12.0
5 8.4 8.2 8.5 8.5
6 8.6 9.9 9.8 10.9
7 8.9 9.0 9.2 10.4
8 7.9 8.1 8.2 10.0

2. Examples of Dependent Data

Dependent data is omnipresent in medical researches, such as, repeated
measurement data, longitudinal data, data of cross-over design, data of
multicenter clinical trial, cluster sampling survey data, and infective dis-
ease, inherited disease, etc. They share the same property, which is the
dependence or intra-unit correlation of observations. We refer to this type
of data as dependent data. In this section, we will illustrate some types of
examples for dependent data, and discuss their common and distinguishing
features.

2.1. Example 1. Randomized block design

To compare the effects on the clotting time of serum of four treatments,
8 volunteers were recruited. Four samples of serum from each subject were
assigned to the four treatments in a random order. The results of the
experiment were presented in Table 1.

The property of the data shown in Table 1 is that the observations of the
same block are correlated, while the observations from different blocks are
independent. Thus, the effects of 4 treatments of 4 serums from one person
are correlated. That is to say the data from block design are dependent.
Observations in the same block in split-plot design and in split-split-plot
design have the same property.

2.2. Example 2. Cluster sampling'

A simple random sample of 30 households was drawn from a census taken
in 1947. The question here is whether they had consulted a doctor in the
last 12 months. Data are shown below. The denominator is the number of
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persons in a household, and the nominator is the number of persons who
saw a doctor.

5/5,0/5,2/3,3/3,0/2,0/3,0/3,0/3,0/4,0/4,0/3,0/2, 0/7, 4/4, 1/3,
2/5,0/4,0/4,1/3,3/3,2/4,0/3,0/3, 0/1, 2/2, 2/4, 0/3, 2/4, 0/2, 1/4

The property of this data is that the members of the same family
tend to be similar, while persons from different families are assumed to
be independent. Our purpose is to estimate the proportion of people who
consulted a doctor, and to measure the similarity of the members in the
same family. Similar results would be obtained for any characteristic in
which the members of the same family trend to act in the same way.

2.3. Example 3. Toxicological study?

In a toxicological study, 32 pregnant rats were randomly allocated into
2 groups: test group and control group. Rats in control group were fed with
regular food, while rats in test group were fed with combination of regular
food with suspected teratogen. The proportions of malformation of pups of
two groups were compared after delivery. The results are shown as follows:

Control group 13/13 12/12 9/9 8/8 8/8 12/13 11/12 9/10 9/10 8/9
11/13  4/5  5/7 7/10 7/10  9/9

Test group  12/12 11/11 10/10 9/9 10/11 9/10 9/10 8/9 8/9 4/5
7/9  4/7  5/10 3/6 3/10 0/7

The denominator is the number of offspring in a litter, and the nomi-
nator is the number of offsprings that are malformation in the litter.

In this study, the pregnant rats are independent to each other, but
genetic factors, antepartum internal womb environments and metabolism
conditions of teratogen have effects on the rat pups. The rat pups cannot
be treated as independent observations because siblings are more alike than
pups from different litters. Data in Example 2 have similar property. Similar
property would be obtained from genetics studies in which the members of
the same family tend to be similar.

2.4. Example 4. Crossover design

For studying the bioequivalence of domestic and imported rosiglita-
zone maleate tablets (RMT), 24 volunteers were recruited in a 4 x 4
crossover study. Four sequence groups are formed by the randomized



Table 2.

Results of 4 x 4 cross-over trial for testing bioequivalence of domestic and imported rosiglitazone maleate tablets.

Stage 1 Stage 2 Stage 3 Stage 4

Id sequence
AUC Cmax T50 AUC Cmax T50 AUC Cmax T50 AUC Cmax T50
1 DCAB 884.27 204.63 3.47 905.09 222.94 3.86 2330.77 455.14 5.50 1936.98 395.55 4.35
2 CBDA 919.50 178.27 3.92 2201.98 346.89 4.58 855.89 205.31 3.79 1939.36 327.12 4.01
3 ADBC 1738.12 326.72 3.95 901.70 130.61 4.56 1889.72 375.37 4.08 870.93 158.99 4.09
4 BACD 2000.29 382.25 3.51 2350.58 479.88 3.83 952.86 187.72 3.68 955.46 202.02 3.69
5 CBDA 823.39 158.72 3.86 1864.97 329.66 3.65 710.06 133.87 3.22 1372.77 309.07 2.99
6 ADBC 2102.11 360.38 4.47 946.33 155.29 4.68 2005.84 339.67 3.53 934.45 176.23 3.72
7 DCAB 907.86 170.88 3.95 991.65 197.54 4.06 2139.65 369.21 3.98 2408.84 368.93 4.62
8 BACD 2139.72 366.84 3.80 2012.09 411.87 3.99 1134.23 200.43 3.94 924.12 223.98 3.70
9 DCAB 787.80 163.07 2.73 905.52 172.22 3.23 1966.42 362.11 3.77 1640.15 331.95 3.15
10 BACD 1785.35 347.46 3.93 1934.66 373.82 4.38 892.89 163.78 3.78 826.27 151.87 3.78
11 ADBC 2031.55 320.43 3.39 975.70 165.38 3.56 1893.99 313.81 3.48 788.06 128.56 3.23
12 BACD 1524.61 381.50 3.12 2525.23 439.42 4.35 952.05 177.75 4.07 940.57 187.22 3.58
13 ADBC 2013.54 314.76 4.99 1005.49 168.16 4.39 2322.68 406.54 4.98 946.92 152.94 4.73
14 DCAB 990.04 163.73 4.63 1118.63 177.61 4.82 2300.18 334.58 4.51 2197.79 293.69 4.72
15 CBDA 839.94 136.99 4.02 1956.45 374.10 3.97 611.43 132.20 2.63 1707.48 273.61 4.03
16 CBDA 1159.85 167.43 4.57 2760.90 349.34 5.59 1007.45 178.00 4.59 2477.37 327.36 5.88
17 DCAB 1032.22 182.99 4.01 1039.21 173.00 3.96 2440.50 380.79 4.53 1860.15 353.41 3.77
18 BACD 1782.62 376.58 3.64 1917.01 426.42 3.44 1048.27 179.42 4.04 882.46 149.33 3.23
19 CBDA 852.84 150.20 3.87 2256.02 284.50 4.04 982.67 157.35 4.19 1924.09 360.50 3.96
20 ADBC 2178.77 436.64 4.09 1273.04 186.33 4.58 2074.44 296.02 4.08 1009.09 190.86 4.57
21 ADBC 2529.23 449.49 4.58 1365.57 190.35 5.21 1868.99 412.40 4.15 1064.39 208.41 4.95
22 CBDA 989.89 167.33 3.85 1936.16 334.66 4.03 904.53 175.76 4.10 2029.20 420.12 4.24
23 BACD 1579.55 328.00 3.72 1756.96 284.65 3.69 949.38 188.22 4.11 951.75 201.15 4.12
24 DCAB 889.20 186.69 3.95 757.79 196.20 3.10 1813.93 441.25 3.57 1523.54 327.47 3.33

DD JuPpUAdI(J 4Of SPOYIDJY [DIUS1DIS
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Latin square below

ADBC
BACD
CBDA
DCAB

Where A, B, C, D are imported RMT 2 mg, domestic RMT 2 mg, imported
RMT 4 mg and domestic 4 mg, respectively.

Twenty-four volunteers were randomly allocated in 4 treatment groups
with 6 in each sequence. Each subject received different treatment on
different cycles. To minimize carryover effects, a 7-day wash-out period
between the two treatment occasions was made. Plasma concentration of
rosiglitazone maleate was detected within 24 hours after orally taking RMT.
Data in Table 2 is the area under curve (AUC'), maximum concentration
(Chax) and time to half maximum concentration (T50). The aim is to test
whether there is difference between domestic and imported RMT.

This is a four-by-four crossover design with 3 variables. In this data set,
the observations in 4 periods and the variables (AUC, Cax and Tsg) are
correlated.

2.5. Example 5. Repeated measurement, linear regression

In a multicenter, randomized, double-blind, three doses (high, middle, and
low = placebo) controlled clinical study, the researchers evaluated the
efficacy and safety of urokinase (UK) in the treatment of acute cerebral
infarctions within 6 hours from the onset of stroke. One interesting variable
is the European stroke scale (ESS). Data are shown in Table 3.

Repeated measurement design, also known as within-subject design, is
a quite common design in medical researches. The feature of this type of
data set is that individuals are measured repeatedly through time. We are
interested in both treatment and temporal effects. Figure 1 displays the data
graphically. Each line connect the repeated observations at different times
of a subject. This simple graph reveals apparent and important patterns.
First, all of 30 subjects are getting better within 8 weeks as ESS is becoming
larger. Second, patients with larger ESS at the beginning of the period tend
to remain larger throughout. This phenomenon is called “tracking.”

There are two ways to deal with this type of data by classical methods.
First, we estimate the average of ESS for each week and fit a regression
model of the means of ESS over time. In fact, we aggregate the data.
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Table 3. ESS of 30 acute cerebral infarctions.

weeks

—
o

treat  Age

0 1 2 3 4 5 6 7 8

1 0 27 107 106 106 108 108 112 112 112 112
2 0 21 107 106 106 106 106 112 112 114 116
3 0 21 100 100 100 106 109 108 114 116 116
4 0 36 107 106 106 107 106 111 112 117 109
5 0 17 110 111 112 112 113 113 113 116 116
6 0 22 105 108 108 106 108 108 108 109 110
7 0 29 102 101 104 100 94 106 106 105 106
8 0 15 97 97 97 99 99 99 101 101 103
9 0 21 108 108 108 110 116 116 120 128 120
10 0 27 108 108 108 114 116 118 118 124 128
11 1 34 98 98 102 121 120 124 124 132 140
12 1 37 100 98 114 118 126 126 134 138 138
13 1 31 104 123 127 129 130 130 136 140 140
14 1 28 108 120 115 119 134 126 126 127 140
15 1 32 106 108 108 108 112 112 112 114 116
16 1 18 103 102 102 104 114 114 116 128 143
17 1 15 101 103 104 108 113 113 118 122 126
18 1 31 91 90 92 93 89 95 102 105 108
19 1 39 94 94 96 99 116 124 135 138 145
20 1 34 104 104 105 105 122 128 131 129 138
21 2 36 107 111 112 127 127 128 138 141 141
22 2 45 109 114 120 130 131 132 139 142 143
23 2 40 103 103 108 112 116 118 123 125 135
24 2 44 110 114 120 124 133 135 142 144 144
25 2 22 95 103 115 113 119 122 126 134 136
26 2 25 92 102 110 108 116 116 116 122 127
27 2 32 98 106 112 112 120 124 126 136 141
28 2 38 106 121 127 126 128 130 132 138 140
29 2 22 102 112 110 119 119 123 125 133 142
2

19 109 109 124 127 128 132 133 144 147

As a result, it increases the correlation and causes a spurious association
between ESS and time. Second, we fit a regression model for all the data on
time. These two models give the same regression coefficients but different
standard errors. Both of them ignore the intra-subject correlation.

2.6. Example 6. Pharmacokinetics study, repeated
measurements, nonlinear regression

A single oral dose Ciclosporin A Capsule was given to 10 healthy volunteers.
Plasma concentration (ng/ml) was detected after medication. The results
are shown in Table 4.
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Table 4. Palsma concentrations of Ciclosporin A Capsule after medication of
10 volunteers.

Time (hour)

Subject
0.5 1 2 3 4 5 6 8 12 16
1 343.3 783.6 443.1 426.8 267.0 155.5 125.0 98.3 75.2 23.8
2 86.6 501.1 817.9 542.7 273.9 226.4 195.7 114.0 799 26.6
3 256.1 534.8 486.8 420.1 370.6 316.7 250.6 192.6 124.5 75.9
4 300.2 849.7 846.0 521.1 373.2 269.4 258.1 182.7 93.0 68.0
5 344.6 826.4 631.0 485.0 389.7 257.7 204.7 172.4 124.5 44.2
6 230.0 780.7 912.3 551.2 299.8 219.3 148.7 75.1 55.9 27.6
7 116.5 943.4 848.2 747.3 410.4 345.5 171.4 1295 63.0 17.5
8 66.7 239.2 814.6 526.9 426.6 213.5 152.5 1185 73.1 38.1
9 67.7 789.1 551.6 520.2 463.0 295.7 191.8 154.4 108.4 32.5
10 216.2 599.9 1099.5 562.9 413.9 297.5 233.2 146.6 94.8 38.7
1200
1000
800 T
600
400 1 ||
200 | |
0

Fig. 2. Plasma concentration-time curve of Ciclosporin A capsule after a single oral
dose in 10 volunteers.

This is an example of repeated measurement with nonlinear trend, which
are distinct from Example 5.

In experimental or pharmacokinetical study, the sample size is relatively
small and the period is usually short. Dropout seldom occurs. Furthermore
both times of repeated measure and time intervals are similar to each other.
However, it is not the case in clinical trial. The observed period is usually
long. Compliance varies among patients and dropouts are routine. Last, but
not least, the times and time intervals are different among patients.
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2.7. Example 7. Mmulti-center clinical study, ranked data

To investigate the effect of nerve growth factor (NGF') for subjects of extra-
neuritis caused by chemical products, an random, double blind, placebo
controlled clinical trial was developed.

One hundred two subjects were random allocated into treatment and
placebo groups. The effectiveness was observed in 8 consecutive weeks for
102 subjects. The results are shown in Table 5, in which Id represents

Table 5. Effects of 102 subjects of extra-neuritis caused by chemical products.

Id cnt Trt com sex age base x1 x2 x3 x4 xb x6 x7 x8
1 1 T A 0 21 13 1 2 2 2 2 2 2 3
2 1 P A 0 27 12 1 2 2 2 2 2 2 2
3 1 T A 0 27 13 1 2 2 2 2 2 2 2
4 1 P B 0 21 13 1 2 2 2 2 2 2 2
5 1 T B 0 34 7 0 1 1 2 2 2 2 2
6 1 T B 0 45 13 1 2 2 2 2 2 2 3
7 1 T B 0 37 13 1 2 2 2 2 2 2
8 1 P A 0 21 13 1 2 2 2 2 2 2 2
9 1 T A 0 31 14 1 2 2 2 3 3 3 3

10 1 T B 0 23 14 2 2 2 2 3 3 3 3

11 1 T A 0 22 13 1 2 2 2 2 2 2 2

12 1 P B 1 28 14 2 2 2 2 2 2 2 2

13 2 P A 1 24 15 2 2 2 2 3 3 m m

14 2 T A 0 28 13 2 2 2 2 3 3 3 m

15 2 T B 0 29 14 2 2 2 2 3 3 m m

16 2 T A 0 21 10 1 2 2 2 3 3 3 3

17 2 P B 0 31 15 2 2 2 2 m m m 3

18 2 T B 1 25 10 1 1 1 1 2 2 3 3

19 2 P A 0 29 8 0 1 1 1 2 2 2 1

20 2 T B 0 20 10 1 1 2 2 2 3 3 3

21 2 T A 0 32 13 1 2 2 2 2 2 2 2

22 3 T A 0 18 14 2 2 2 2 3 3 3 3

23 3 T A 0 31 6 0 0 0 1 1 1 1 1

24 3 T A 0 39 10 1 1 1 2 2 2 2 3

25 3 T B 0 34 9 1 1 1 1 1 2 2 2

26 4 P A 0 15 12 1 1 1 1 2 2 2 2

27 5 P B 0 36 7 1 1 1 1 1 1 1 1

28 5 T B 0 37 5 1 1 1 1 1 1 1 2

29 6 T A 1 15 1 0 0 0 0 0 0 1 1

30 6 T A 1 16 1 0 0 0 0 1 1 1 1

31 6 T B 0 15 11 1 2 2 2 2 2 2 3

32 6 P B 1 16 8 1 1 1 1 1 1 1 1

33 6 P A 1 17 13 1 2 2 2 2 2 2 2

34 7 T B 0 29 13 1 2 2 2 2 2 2 3

35 7 P B 0 19 15 2 2 2 2 3 3 3 3
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Continued.

Table 5.

cnt Trt com sex age base x1 x2 x3 x4 x5 x6 x7 x8

Id

13
13
13
13
12
11

29
29

36
37
38
39
40

17
18
17
18
45

41

42

30
43

43

12
14
14
14
11

44

36
45

45

46

32

47

40
36

48

13
13
13
13
13
13
13
14

49

44
35

50
51

10
10
10
10
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11

38
33
41

52
53
54
55
56
57
58
59
60
61

22
22
28
31

14
15
14
12

37
21

24
25

62

12
15
13
14
13
16
14
11

32

63
64
65

21

20
30
38

66
67
68
69

19
21

g g

gEEE™

15
10
14

25
22
23
21

70
71
72
73

14
15

26
20

74

75

g o

g —~

18
23
24
26
20

76
77
78
79
80
81

15
10
15
13

18
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Table 5. Continued.

Id cnt  Trt

o
o
g
%
o
»
w
%
N
%
33
»
[«
&
%
»
[od]

sex age base x1

82 11 T B 0 22 14 2 2 2 2 m m 3 m
83 11 T B 0 25 15 2 2 2 2 3 3 3 3
84 11 T A 0 19 15 2 2 2 2 3 3 3 3
85 11 T B 0 20 15 2 2 2 2 3 3 m m
86 11 T A 0 29 15 2 2 2 2 3 3 m m
87 11 P A 0 25 8 m m 1 m m 1 m m
88 11 T A 0 24 15 2 2 2 m m 3 m m
89 11 P B 0 21 11 m 1 1 m m m m m
90 11 T B 0 19 15 2 2 2 2 3 3 3 m
91 11 T A 0 21 15 2 2 2 2 3 3 3 m
92 11 T B 0 22 14 2 2 2 2 3 3 3 m
93 11 T A 0 20 15 2 2 2 2 3 3 3 3
94 11 P A 0 29 4 0 0 0 0 1 1 1 1
95 11 T B 0 19 14 2 2 2 2 3 3 3 3
96 11 P B 0 28 12 1 2 m 2 3 2 2 m
97 11 P B 0 21 8 1 1 1 1 1 1 m m
98 11 T B 0 30 15 2 2 2 2 3 3 3 3
99 11 T B 1 27 15 2 2 2 2 3 3 3 3
100 12 P A 0 25 7 0 1 1 1 1 2 1 2
101 12 T B 0 35 7 1 1 1 1 1 2 2 2
102 12 T A 0 33 8 1 1 1 1 2 2 2 2

identification of subjects; Cnt represents the center; Trt represents groups
(Trt = P for placebo, Trt = T for NGF); Com represents companies; Base
represents the MDNS base level before treatment; and x1—x8 are effects
at time from 1 to 8 weeks after treatment. Here, x = 0 stands for invalid
or worse effect of treatment on the subject, 1 for improved, 2 for notable
improved, 4 for recovery, and m for missing.

Except for the intra-subject correlation, the intra-center correlation of
the subjects in the same hospital should be considered for this type of data.

2.8. Example 8. Repeated measurement, count data®

In order to understand whether the progabide reduces the rate of epileptic
seizures, 59 patients of epileptics were recruited in a clinical trial. For each
patient, the number of epileptic seizures was recorded during a baseline
period of 8 weeks. Patients were then randomized to treatment with the
anti-epileptic drug progabide, or placebo. In addition, all of the patients
were treated with standard chemotherapy. The number of seizures was then
recoded in 4 consecutive two-weeks for each epileptic.

Where, treatment variable is group (0 = placebo, 1 = progabide). What
is different from Examples 5 and 7 is that the response variable is the seizure
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counts in unit time (two-week). Poisson regression would be used here for
count data.

In this study, only recurrence episodes were included, not first episode.
The reason of not including the first episode was that the factors asso-
ciated with recurrence of a disease are usually different from those with that
disease. For example, in a model of development of breast cancer, we should
not include women who already had breast cancer, because family history
and late childbearing have the strongest association with development of
breast cancer, whereas stage of disease, hormone receptors, and histological
grade are the strongest risk factors for recurrence of breast cancer.

For those diseases for which it is sensible to speak of a second distinct
episode, the risk factors for a second episode may be similar to the risk
factors for a first episode. Hooton and colleagues were interested in studying
urinary track infections in young women.* With urinary track infections,
patients can have a second (or third, etc.) episode after a “crude” first
episode. Repeated episodes in the same person are not independent obser-
vations because the causes of urinary track infections are likely to be more
similar in repeated episodes in the same person than in separate episodes in
different people. Therefore, Hooton and colleagues included repeat episodes
in their analysis, which increased the power of their study.

2.9. Other examples

Clinical researchers in the fields of ophthalmology, orthopedics, and den-
tistry have a distinct advantage over cardiologists, neurologists, and hepa-
tologists. That is while humans have only one heart, one brain, and one
liver, we have two eyes, thirty-two teeth or so, and most of our joints in
duplicates. In those fields with duplicate organs, it is possible to follow (or
assess) a single subject and have multiple observations. For the cases with
outcomes that are observed more than once in a single subject, you must
use special methods to deal with outcomes that can occur in more than one
body part in the same person.

In a study of complications after breast implantation most women had
bilateral implants.® Some had multiple implants in the same breast. The
investigators therefore performed follow-up of each breast implant until a
complication occurred, the implant was removed, or the end of follow-up
occurred. The survival times of the implants for the same woman are
dependent.

In a study of the relationship of vitamin D to development of osteoar-
thritis of knees, the investigators used the fact that their participants had
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Table 6. Four successive two-week seizure counts for each 59 patients of epileptics.

ID y1 y2 y3 Y4 treat baseline Age |ID yl y2 y3 y4 treat baseline Age
1 5 3 3 3 0 11 31 |31 O 4 3 0 1 19 20
2 3 5 3 3 0 11 30 |32 3 6 1 3 1 10 20
3 2 4 0 5 0 6 25 (33 2 6 7 4 1 19 18
4 4 4 1 4 0 8 36 |34 4 3 1 3 1 24 24
5 7 18 9 21 0 66 22 |35 22 17 19 16 1 31 30
6 5 2 8 7 0 27 29 |36 5 4 7 4 1 14 35
7T 6 4 0 2 0 12 31 |37 2 4 0 4 1 11 57
8 40 20 23 12 0 52 42 |38 3 T 7 1 67 20
9 5 6 6 5 0 23 37139 4 18 72 5 1 41 22
10 14 13 6 0 0 10 28 |40 2 1 1 0 1 7 28
11 26 12 6 22 0 52 36 |41 0 2 4 0 1 22 23
12 12 6 8 5 0 33 24 |42 5 4 0 3 1 13 40
13 4 4 6 2 0 18 23 43 11 14 25 15 1 46 43
14 7 9 12 14 0 42 36 (44 10 5 3 8 1 36 21
15 16 24 10 9 0 87 26 (45 19 7T 6 7 1 38 35
16 11 0 0 5 0 50 26 |46 1 1 2 4 1 7 25
7 0 0 3 3 0 18 28 |47 6 10 8 8 1 36 26
18 37 29 28 29 0 111 31 |48 2 1 0 0 1 11 25
19 3 5 2 5 0 18 32 |49 102 65 72 63 1 151 22

20 3 0 6 7 0 20 21 |50 4 3 2 4 1 22 32

21 3 4 3 4 0 12 29 |51 8 6 5 7 1 42 25

22 3 4 3 4 0 9 21 |52 1 3 1 5 1 32 35

23 2 3 3 5 0 17 32 |53 18 11 28 13 1 56 21

24 8 12 2 8 0 28 25 |54 6 3 4 0 1 24 41

25 18 24 76 25 0 55 30 |55 3 5 4 3 1 16 32

26 2 1 2 1 0 9 40 | 56 1 23 19 8 1 22 26

27 3 1 4 2 0 10 19 |57 2 3 0 1 1 25 21

28 13 15 13 12 0 47 22 |58 0 0 0 0 1 13 36

2911 14 9 8 1 76 18 |59 1 4 3 2 1 12 37

30 8 17 9 4 1 38 32

two knees to their advantage.® Although the Framingham’s study consists
of over 5000 subjects, only 556 participants had X-rays of their knees and
assessments of their vitamin D intake and serum levels. Therefore, they did
this by looking at both knees to maximize their statistical power.

3. Common Structures of Intra-unit Correlation for
Dependent Data

The feature of dependent data is that the variance-covariance matrix of
response variable is not diagonal but block diagonal.

Because the dependent data do not meet the independent requirement
that is essential in classical statistical methods, special methods are needed
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to deal with it. For example, random effects models and/or mixed effects
models are used for repeated measurement or longitudinal data and meta-
analysis is used for multicenter clinical trial.> Many systematic researches
have been achieved in the field. In this section, we try to demonstrate
the connotations of dependent data, how to judge the type of the data
set, to construct reasonable covariance structure or intra-unit correlations
structure, draw valid scientific inferences for the data set. In this section,
we focus on the common structures of intra-unit correlation of dependent
data.”

3.1. A simple case

We first consider the simplest case of a paired design. In this paired design,
the subjects are independent, while two observations on the same subjects
are correlated. If we assume the correlations of two observations of subjects
are equal, say p, then the correlation matrix of 2m observations from m
subjects could be

0 R -~ 0
Ry =1 . . . (1)
0 0 R

where,

Ry = Ll) ﬂ 2)

where 0 is 0 matrix with all elements being 0, Ry is block diagonal matrix
with R in diagonal.

For random block trial, we have a treatments and b blocks. While
individuals from different blocks are independent, those from the same block
tend to be similar and correlated. Because the individuals in the same block
are in the same status, so we can assume that there is a positive correla-
tion, p, between any two individuals from the same block. The intra-block
correlation matrix is defined as

1 p .« .. p
p 1 .« .. p
Ry=1|. . . : 3)

p p 1
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a %X b observations form a correlation matrix which has the same structure
as Ry in (1). Matrices in diagonal block of Ry have the same structure as
R5. It is obviously that R; is a special case of Rs.

Now let’s consider some types of correlation structure of longitudinal
studies. The defining characteristic of a longitudinal study is that
individuals are measured repeatedly through time in a follow-up study.
Correlation structures vary from data set. The commonly used correlation
matrices are equal correlation, neighbor correlation, autocorrelation and
unstructured correlation, etc.

3.1.1. Equal correlation

It is similar to R2, We also refer to equal correlation as exchangeable or
compound symmetry.

3.1.2. Neighbor correlation

Neighbor correlation is that only two closed observations are correlated,
others are independent. For 5 times repeated measurement, the correlation
matrix is given by

0 0 0 ps O

When the correlations of two closed observations are equal, the correla-
tion is refered to as stationary 1-dependence), otherwise, nonstationary
1-dependence. Stationary 2-dependence has the structure as follows

1 p p 0 0
p 1 p p 0
Ri=|p p 1 p p|. (5)
0O p p 1 p
0 0 p p 1

It is not difficult to extend to stationary k-dependence. Obviously, sta-
tionary correlation is a special case of nonstationary, and exchangeable
correlation is a special case of stationary.
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3.1.3. Autocorrelation

Autocorrelation means that correlation depends on the spacing of two
measurements. The correlation between a pair of measurements on the same
subject decays towards 0 as the time separation between the measurements
increases. If the correlation of two observations next to each other is p,
the correlation of two separated observations is p’s power of number of the
observations separated. For 5 times repeated measurements, the correlation
matrix is given by

L p p P
p 1 p p P
Rs;=|p* »p PP (6)
PP p 1 p
pt 0t 1

We refer to (6) as the first order autocorrelation or the first order au-
toregressive process. A natural extension of (6) is given by (7), Rg, the
correlation is inversed to the time interval or spacing of two measurements.

t5—11

1 plz—t pta=ti ptamti
pt2—t 1 pts=tz  pta=te  pts—ts

Rg= |pls—t  pts—t2 1 pla=ts  pts=ts | (7)
pta—ti pta=te ptats 1 pts—ta
pts=ti  pts=te  pts—ts  ts—ts 1

3.1.4. Unstructured or general structure

In this case elements on nondiagonal of block matrix R are unequal.

3.1.5. Independent, zero correlation

Elements on nondiagonal of block matrix R are 0.
The relationships of the matrices mentioned above are as follow

independent C exchangeable C autocorrelation C stationary

C nonstationary C unstructured

where A C B means A is a special case of B.
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3.2. Complicated cases

In random cluster sample study, individuals in the same cluster (household,
class in school, group in enterprise, etc.) tend to act in a similar way on
healthy attitude, eating habit, and so on, and share the same environment,
etc. If family is the unit in cluster sampling, genetic factor should be con-
sidered because the observations measured on the members from the same
family are correlated. For example, in a cluster sampling, a simple random
sample of 54 households was drawn.® The blood pressure observations of
209 subjects were detected. Let Y;; represent a response variable, systolic
pressure, for member j (j = 1,2,...,n;) in household 7 (i = 1,2,...,54).
Where j = 1 stands for father, 2 for mother, 3 and more for children.

Generally speaking, if the interesting variable is affected by genetic
factor or other family factors, the correlation between parents is lower than
the correlations between father and children, mother and children, and
children themselves. In this case, a special but common correlation struc-
ture could be defined as (for example, 4 persons in a family with parents
and two children)

Yo Y Y Yi
Ya /1 r  re 1o\ father
Yio | 1 1 r3 73 | mother . (8)
Yis | o 713 1 rq | child 1
Yig \r2 13 14 1 child 2

In fact, the correlation structure matrix of 4 members (parents and two
children) in one family in the example mentioned above is

1.0000 0.2056 0.4212 0.4212
0.2056 1.0000 0.4292 0.4292
0.4212 0.4292 1.0000 0.5622
0.4212 0.4292 0.5622 1.0000

For stratified cluster sampling and other data with hierarchical struc-
ture, the same strategy could be used to construct the intra-cluster corre-
lation matrices.

In the crossover design, each subject is randomized to a sequence of
two or more treatments and hence acts as his own control for treatment
comparisons. In the simplest paired 2 x 2 crossover design, two subjects
are paired, the first subject in the same paired receives either of two treat-
ments in randomized order in two successive treatment periods which often
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separated by a washout period, while the other received two treatments in
adverse order to the first one in two successive treatment periods. There
are 3 possible correlations in this type of data: (1) correlation between two
observations of the same subject in two periods; (2) correlation between
two subjects in the same paired in the same period; and (3) correlation
between two subjects in the same paired in different periods. The correla-
tion structure, therefore, could be defined as:

Subject 1 Subjects 2
Period 1  Period 2 Period 1  Period 2

Period 1 1 1 T2 T3
Subject 1 .

Period 2 r1 1 T3 ro

Period 1 T2 T3 1 1
Subject 2 .

Period 2 T3 o 1 1

In multicenter clinical trial, although the protocol and standard ope-
rating procedures are implemented similarly at all centers, the level and
opinions of doctors and nurses, equipments, and medical conditions, etc.,
vary from the centers. This is so-called center-effects. Subjects in the same
center are correlated. The repeated observations through time from the
same subjects are also correlated. This is hierarchical structure data. If
subjects from different centers are independent, the intra-center correlation
structure could be defined as (3 visits for each subject):

Subject 1 Subject 2 Subject n
t1 t2 t3 to ts - 1 t2 t3
t1 1 Tt ry | T2 T2 12 re ro  To
Subject 1 to 1 1 ry | re T2 ro | o-- To To To
t3 1 T1 1 T2 T2 T2 s T2 T2 T2
t1 9 r1 [ [ 1 r1 [ [ [
Subject 2 to T [ [ 1 1 ry | e [ [ [
t3 [ [ [ r1 r1 1 [ [ [
t1 [ [ [ [ [ [ 1 r1 r1
Subject n to T [ ro | T2 [ ro | o-- 1 1 1
t3 [ [ [ [ [ [ r1 r1 1

Although, for a real data set, the correlation structure could be defined
and selected by statistical methods, the author suggests that the biological
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and medical backgrounds should be considered to get a reasonable and
acceptable correlation matrix structure.

4. ANOVA Methods and Its Limitation
4.1. Parameter estimations for dependent data
4.1.1. Estimation of means

If there are n observations of variable X, denoted by x1,x2,x3, ..., z, with
mean X and variance o2. We assume the data are dependent.

(1) «; is correlated with z; with a correlate coefficient p

If x; is correlated with x; with a correlation coefficient p (p is assumed to
be larger than 0 without losing general), thus the variance of X was

1
var(X) = Ecov(xl +axo+ - F X, v+ a2+ T

= %[mﬂ +n(n —1)po?]
= Tt (-1 o)

Formula (9) shows that standard error of mean is larger when the data
are dependent than the case when the data are independent. Moreover,
it is in proportion to correlation. In this case, the confidence interval of
population mean is as follows

= o
It is wider than that when the data are independent. When intra-unit corre-
lation is 0, the confidence interval given by (10) is similar to the confidence
interval when data are independent.

(2) a; is correlated with x; with autocorrelation
If x; is correlated with x; with autocorrelation

cov(zs, z;) = a2 pl=il, (11)
The variance of

var(X) = %[n +2(n—1)p+2(n—2)p*+ - +2p" o>, (12)
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(3) Correlation between z; and z; is unstructured

If the correlation between x; and z; is unstructured

cov(zi, ;) = [pijo” Jnxn - (13)
The variance of X is
_ 1 )
var(X) = o n+2 ;pij o°. (14)
i

Thus, the standard error of mean in this case when the data are de-
pendent is larger than the one when the data are independent from each
other. The standard error is in proportion to the correlation as well. The
confidence interval is wider than that of independent data.

4.1.2. Estimation of rate

The independent binary data should generally be handled by the methods
based on binominal distribution. Let incidence rate be 7 and its variance
be 7(1 — 7), then the standard error is /7 (1 — 7)/n.

If the data are correlated with each other, the variance and the standard
error of rate increase. For example, in Example 2, the total incident
rate is 7 = 30/104 = 0.2885, the variance is 0.00197 and 95% CIT is
0.2038-0.3855 if we apply the methods based on binominal distribution.
And its 95% CT is 0.2014-0.3756 if we apply the methods based on
normal approximation.

However, the actual variance of the incident rate in each family is
0.00520, much larger than that given by the pure binominal distribution.
This is because that the incidence, “visiting doctors in the last year”, has a
family aggregation. As a result, we underestimated the variance of depen-
dent incidences by applying methods based on binomial distribution.

The classic way of handling dichotomous data is firstly coding the in-
cidence that happens as 1, otherwise, as 0, and then applying Eq. (9) to
the data. When it comes to a dichotomous data with equal correlation, the
standard error of rate is

S L L (15)

Others can be handled in similar ways.
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4.2. ANOVA with random effect

We begin with the repeated one-way testing designs, of which the block
design is the simplest case. We may assume that there are a treatments
and b blocks. The model of ANOVA can be represented as

Yij = b+ Tj + €45 - (16)

In the equation below, p is the population’s mean, 7; is the effect of the
jth treatment (j =1,2,...,a), e;; is the total residual error of observations
receiving the jth treatment in the ith block.

When we apply a randomized block design, the units in the same block
may have good homogeneity, while units in different blocks may have many
differences. This is the characteristic of block design that makes the observa-
tions in every block to be homoplasy, which is called intra-block correlation.
For this moment, the error term e;; may be denoted as

€ij = Vi + Ujj . (17)

v; is the residual error of the ith block (i = 1,...,b), u;; is the residual error
of observations receiving the jth treatment in the ith block. Therefore, the
ANOVA model of block design should be

Yij = B+ Tj Vi + U (18)

In most cases, the treatment factors of a block design are fixed effects,
while blocks are random effects. Namely, 7; is fixed effect, p; is the mean
of observations in the jth level, and v; is random effects with

Tp = —p, X7 =0
vi=p; —p, Xv;=0, (19)
var(v;) = 03, and cov(v;,vi) =0, i £,
where p; is the mean of the ¢th block. u;; is the random effect, and
Uij = Yij —H—Tj = Vi, Dy =0,
var(u;j) = o3, and cov(usj, uijr) =0, j# 75 (20)
cov(uij,vg) =0 forall i, j k.
In this way, the variance of y;; is

var(y;) = J% + Uf , (21)
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the covariance is
2 . -/
cov(Yij, Vi) = cov(vi + uij, vi +uiy) =05, jF 5,

and others are 0.
Expressed by matrix, the variance and covariance of y;; is

R 0 --- 0
o R --- 0
cov(ei;) = o? ) ) . ) . (22)
0 0 e R abxab
Here, 02 = 07 + 03,
I p p
p 1 P p
R=1 . . . : (23)
p p P 1 axa
The intra-unit correlation coefficient is
2
02
= . 24
P o2 + o2 (24)

Based on the idea of ANOVA, it is obvious that
E(Mstreatment) - bz T12/(Cl - 1) + 012_ )
i=1
E(MSblOCk) = bag + J% R
E(Msresidual) - O'% . (25)
And the variance component o? and o3 are
O'% - E(MSresidual) )

2 MSblock - MSresidual
Oy = b .

If we substitute 0? and 03 in Eq. (24) by equations above, the intra-
correlation coefficient is

(26)

_ MSblock - MSresidual
MSblock + (b - 1)MSresidual '

p (27)
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Table 7. ANOVA of the serum coagulation time of four methods.

Source SS DF MS F P
Total 105.7787 31 3.4122
Between Groups 13.0163 3 4.3388 6.62  0.0025
In Groups 92.7624 28 3.3129
Between Block 78.9888 7 11.2841 17.20  0.0000
Residual 13.7738 21 0.6559

If every block has a different size (e.g. missing values), the intra-unit
correlation of randomized block design data can be denoted as

MSblock - MSresidual

_ 7 28
P MSblock + (mO - 1)A4Sresidual ( )
where
_ 2(mi —m)?
= —_— . 2
mo =1m T (29)

4.3. Example 9. Analysis of randomized block design data

The analysis of Example 1. We begin with the ANOVA Table 7.7
The variance component o7 and 03 are

08 = M Sresidual = 0.6559,
MSblock - MSresidual 11.2841 — 0.6559

2
— = = 2. 1 .
01 b 1 657
And the intra-correlation coefficient is
o? 2.6571

= = 0.8020.
o2 +o0} 0.6599 + 2.6571

Though ANOVA of correlated data is similar to that of traditional
randomized block design in process and result, ANOVA of correlated data
not only answers the question, “whether there is a difference between
treatment groups”, on which that of traditional randomized block design
emphasizes, but also puts more emphasis on the further decomposition of
variance and affords the intra-unit correlation. Thus, its model is more
precise with richer information.

4.4. Example 10. 4 X 4 cross-over design

The analysis of log AUC data in Example 4. For this moment, the fixed
effects that we should take into consideration is 4 treatments, A, B, C, D,
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Table 8. ANOVA of log AUC.

Source SS DF MS F P
Total 15.67277346 95

ID(sequence) 0.96107428 20 0.04805371 4.71 < 0.0001
Sequence 0.06927165 3 0.02309055 2.26 0.0892
Period 0.13519601 3 0.04506534 4.42 0.0068
Treat 13.83396718 3 4.61132239  452.05 < 0.0001
Residual 0.67326434 66 0.01020097

69

4 different periods and 4 different sequences. The 4 observations of the same

subject are correlated.
And,

02 = M SResidual = 0.01020097 ,
5 MSip(sequence) = M SResidual  0.04805371 — 0.01020097

0'1: =

b 4
= 0.009463185 .

Accordingly,
o MSID(Sequence) — M SResidual
MSID(Sequence) + (b - ]-)MSResidual

_ 0.04805371 — 0.01020097
~0.04805371 + (4 — 1) x 0.01020097

p

= 0.4812.

4.5. The condition of using ANOVA

The ANOVA is limited to fairly balanced designs where there are tidy
partitions of the total sum of squares. The model should be fairly simple
so that a suitable covariance structure (symmetry) for the observations can

be produced. For example, if ¢ = 4 in repeated measurement data, the

covariance matrix should be
011 012 013 014
021 O22 023 024
031 032 033 O34
041 042 043 044
So the symmetry means

(1) oii =055 =0,
(2) 045 = po®, i # j.
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In other wards, symmetry means equal variance and equal intra-unit
correlation.

When the data are not symmetry, the ANOVA would increase type 1
error. In 1958, Greenhouse and Geisse suggested a correction coefficient

t2(64 —7..)*
(S o+ Po? 25 7)

where t represents the times of repeated measurement, 7;; is the aver-

E =

(30)

age of variances in diagonal of covariance matrix, ¢, is the average of all
elements in covariance matrix, and &; is the average of elements in ith row
of covariance matrix.

Greenhouse and Geisse have shown that, 1/(t — 1) < e < 1. If € is not
equal to 1, a modified F' = M Styeatment/M SResidual would not follow F'
distribution with degree of freedom Vryeatment and VResiqual but follow F
distribution with degree of freedom evryeatment and EVResidual. Because of
the cutting down of degree of freedom, the modified F' test is conservative.

For the data in Example 1, the variance-covariance matrix is

2.40286

3.23143  5.26411

2.13857 3.00518 2.29125
2.13143 3.41536  2.02036 3.29357

Greenhouse—Geisser’s € = 0.7996. Thus, the degree of freedoms
UTreatment — 0.7996 X 3 = 247
VResidual = 0.7996 x 21 = 16.8,

then F' = 6.62, P = 0.0056, larger than P = 0.0025.

In 1970, Huynh and Feldt have proved that when € = 1, the F' test is
valid. If covariance matrix is symmetry, then € = 1 or otherwise ¢ < 1.
On the other hand, € = 1 does not necessary implies the covariance being
symmetry. The exception is for 2 x 2 covariance matrix for twice repeated
measurements, € always equal to 1 even if the variances are unequal.

We should select a suitable method for dependent data according to the
feature of the data set. Unfortunately, the suitable systematic methods
for all types of dependent data have not been developed. Only several
methods for special data set can be used now. For instance, the mixed
models are employed for repeated measurements or data from randomized
block design, crossover design, and some special procedures for longitudinal



Statistical Methods for Dependent Data 71

data, etc. The multilevel models analysis” would be used if the structure
of variance-covariance matrix is block diagonal. For general structure of
variance-covariance matrix, which is not block diagonal, generalized least
square procedure with Newton—Raphson iterations may be useful. Further
research is needed.

5. GEE for Dependent Data

Generalized estimating equations (GEE) was put forward by Liang Zeger!®
which is an extension of generalized linear models that provides a unified
and flexible approach to analysis of data from a longitudinal study. Of
particular relevance when the repeated measurements are binary variables
or counts, and a number of time dependent covariates are also measured
(Qiguang Chen,!! Lingping Xiong et al.'?). GEE plays an important rule
in modeling the possible correlations among the repeated observations for

a given subject.!3

5.1. Introduction of GEE

The key ideas are presented in terms of repeated measurements with
the simplest dependent structure. Let y;; be the observation of jth mea-
surement of the ¢th unit, where ¢ = 1,2,...,n and j = 1,2,...,m;.
Xij = (2145, T2ij, - - - , Tpij) Tepresents the explanatory variables. The obser-
vations from the same unit are likely to be correlated, but the observations
from different units are assumed in general to be independent.

If the marginal distribution of response variable y;; is one of exponen-
tial family, then, by the theory of generalized linear models, the density
functions would be

f(yiz) = exp[{yiini; — alpiz) + b(yi;) o], (31)
where ¢ is known as dispersion parameter or additional scale, p;; = h(n;;),

nij = X ;8. It can be proved that E(y;;) = a’(uij), var(y;; = a” (pij)/¢.
For random effects model, we have

A 7 (32)
9(pij) = Bo + Brz1ij + -+ + BpTpij

where g(-) = h™1(-) as a link function. If there is correlation between the
repeated observations, the correlation between n; observations in unit ¢ can
be described by working correlation matrix R;(«). The times of repeated
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measurement on subjects are different from each other, so the ranks of
correlation matrices are also different from each other. R;(«)) depends
on unknown parameter «, to which we refer as correlate parameter. For

instance, for Ry in (3)
pst:{l if s=t, (33)
a ifs#t.
for R4 in (5)
if s=t,
pst =9 a H0<|s—t <2, (34)
0 if|s—t>2.
for Rs in (6)

1 if s=t, (35)
Pt =N als=tl ip s £t

then the variance-covariance matrix of y, = (y;1,%:2,-.-,Yim;) has the
form

Vi=A"R(0)A]*/9, (36)

where A; is diagonal matrix with the elements h(u;;) = v;;¢ in diagonal,
which are the function of the variance v and the mean p of y. Liang and
Zeger'® defined the GEE as

> DV'Ei=0, (37)

i=1

o,
where D; = aiﬂl, E, =y, — p;, and p; = (@1, fhia, - - - fim,; )’ -

5.2. Parameters estimations of GEE

There are three types of parameters in GEE, covariate coefficients 3, the
scale parameter ¢, the correlation parameter o. But ¢ and « are functions of
B. We can get the estimation of 3 only if ¢ and a are known. Consequently,
the estimation procedure of GEE is iterative.

The initial value of B will be the estimations from generalized linear
model under the assumption that the observations are independent of one
another, say 3,.

The crude residuals of the model is

i = Yij — tij = Yi; — 9 (Bo + Brxrij + - + BpTpis) - (38)



Statistical Methods for Dependent Data 73

The Pearson residuals are

e )
Tij e (39)
Thus
=3 ry/(N—p). (40)
i=1 j=1

The intra-unit correlation can be estimated from the current Pearson
residuals. For exchangeable correlation, we have

i=1

For first order autocorrelation
n Zmiflr”r“ noNT 2
. j=1 ijlij+1 j=1"1j
& = == - - = . 42
Z m; — 1 Z m; ( )
=1 =1
For stationary k-dependence

n mi 2 mi—1 mi—k n mi 2
&:Z Zj:l T 2uj=1 TijTij+1 Zj:1 TigTij+k Z Zj:1 Tij
m; ’ m; — 1 ’ ’ m; — k m; ’

i=1 i=1

where the first element of « is 1 and the elements after k-order are 0.

At a given iteration, the scale parameter ¢ and correlation parameters «
can be estimated from the current Pearson residuals. Given the estimated of
¢ and «, we can calculate an updated estimate of 3 by iteratively reweighed
least squares (IRLS). These two steps are iterated until the procedure
convergence.

5.3. Analysis of examples
5.3.1. Ezample 11. Analyses of the data in Example 1
The random effect model is

Yij = Bo + B2g2i; + B393i5 + Bagai; + eij

where g1, g2, g3 and g4 are dummy variables of treatment groups. The
correlations between the observations of different treatments for the same
subjects are assumed equal. Results are shown in Table 9.

Intra-subject correlation p = 0.8020. We obtain the same results as in
Example 9.
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Table 9. Estimated results of data in Example 1 by GEE.

Variables  Coefficient SE Z P
g2 0.4125 0.378783 1.09 0.276
g3 0.6375 0.378783 1.68  0.092
ga 1.7250 0.378783 4.55  0.000

Constant 9.3000 0.601958  15.45  0.000

Table 10. The results of fitting two GEE models for data in Example 3.

Logistic Probit
Coefficient  Std. Z P Coefficient  Std. Z P
Group —1.0144 0.4985 —2.03 0.042 —0.5611 0.2702 —2.08 0.038
Constant 2.1484  0.4039 5.32  0.000 1.2564  0.2086 6.02 0.000

5.3.2. Ezample 12. Analysis of data in Example 3

We fit both logistic regression model and probit model as follows
ea+ﬂ treat

Yij = 1 + eatB treat +€ij,

yij = ®H(a + 3 treat) + eij

where the subscripts of treat are omitted. Table 10 shows the results.
Two intra-litter correlation coefficients are estimated based on logistic
model and probit model and they are all equal to 0.1556.

5.3.3. Ezample 13. Analysis of data in Example 8

Example 8 has count data, with successive two-week seizure counts for each
of 59 epileptics. Poisson regression model will be used. In contrast to the
examples mentioned above, beside treatment effects, the covariables, such
as age, In(base), and time effects, should also be considered. The mixed
effect Poisson regression model for the data is

In(\) = a+ F1 treat + B2 time + B3 age + B4 In(base) .

For repeated measurement data, the intra-subject correlation structure
may be exchangeable or first order auto-correlation.

For exchangeable structure, intra-subject correlation estimated from
GEEs is 0.7690, and deviance = 3551.0. For autocorrelate structure the
intra-subject correlation is 0.7990%, where ¢ is time interval between two
observations (1 unit of ¢ is 2 weeks) and deviance = 3554.79.
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Table 11. GEE estimators for data in Example 8.

Parameter  Coefficient SE Z P
Constant —1.7760 0.3692 —4.81 < 0.0001
Treat —0.2938 0.1445 —2.03 0.0420
Time —0.0443 0.0353 —1.26 0.2092
Age 0.0231 0.0067 3.46 0.0005
In(base) 0.9817 0.0796  12.33 < 0.0001

The working matrix of autocorrelation structure is
1.0000 0.4533 0.2055 0.0931
0.4533 1.0000 0.4533 0.2055
0.2055 0.4533 1.0000 0.4533
0.0931 0.2055 0.4533 1.0000

The numbers of parameter of two models are equal. Therefore, the smaller
the deviance is, the better the model will be. According to this, we conclude
that exchangeable structure is suitable for the data. Estimated results are
shown in Table 11.

The results show that the two-week seizure counts for those in test
group are significantly smaller than those in placebo group. The counts are
related to age and the baseline. No evidence shows that the counts change
over time.

GEE can cope with data with missing values. For the numerical data in
a paired design or randomized block design, the paired t-test and ANOVA
require the data are balanced without missing, while the GEE does not.
Furthermore, when the times of measurement are not common to all the
experimental units, or when the numbers of the unit in clusters are not
the same, the use of GEE will still be applicable. Liang® has proved that
if there are not too many missing values and missing is random, the GEE
estimation is robust.

GEE obtains the estimation of covariance matrix V' or working cor-
relation matrix R by using simple regression or “moment” procedures
based upon functions of the actual calculated raw residuals. Theoretically,
the structure of working correlation matrix can be specified arbitrarily.
However, GEE focuses on modeling the fixed effects rather than exploring
the structure of the random component of the model. It does not consider
the case where the explanatory variables have an influence on covariance of
response variable.
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6. Multilevel Models for Dependent Data

Many kinds of dependent data collected in medical and biological sciences
have a hierarchical or clustered structure. We refer to a hierarchy as
consisting of units grouped at different levels. For example, in a clustered
sampling survey where the sampling units are families, offsprings may be
the level 1 units in a 2-level structure where the level 2 units are the
families. Repeated measurements are the level 1 units in a 2-level struc-
ture where the level 2 units are the individuals. Repeated measurements
are the level 1 unit in a 3-level structure where the level 3 units are the
hospitals and level 2 units are the patients. The existence of such data
hierarchies is created by experimental design. Low levels are nested in the
high levels.

6.1. Introduction of multilevel model

Multilevel model was put forward by Harver Goldstein'* for the data with
hierarchical or clustered structure. The key ideals are to estimate vari-
ances on each level and to address how the explanatory variables affect the
variances. The multilevel model, therefore, enables data analysis to obtain
statistically efficient estimations of regression coefficients, and provides cor-
rect standard errors, confidence intervals and significance tests by using the
clustering information.

We discuss a simple 2-level model, without lose of generalizibility, of one
explanatory variable z;.

Yij = Poj + Biyr1 + €ij (44)

¢ stands for level 1 unmits, j for level 2 units. ¢ = 1,...,n;;5 = 1,...,m,
where, fo; and 31; are random variables with

Boj = Bo +ugj, P = P+ uij,

where By and (3, are fixed parameters, ug;, u1; are random variables in
level 2 with parameters

E(uo;) = E(uy;) =0
var(ugj) = 02y, var(ui;) =02y, cov(ug;,u1;) = Oyo1 -
€45 are random variables in level 1 with parameter
E(e1;) =0, var(ey) =op.

We also assume that cov(e;j;, uo;) = cov(ei;, u1;) = 0.
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‘We can now write the level 2 model in the form
Yij = ﬂo + ﬂlx + (UOj + w12 + 51‘]‘) . (45)

The model consists of a fixed part and a random part. In contrast to a
general mixed effect model (for example, variance component model, mixed
linear model, GEE), explanatory variables can be included in random part
of multilevel model with random coefficients u1;. The multilevel model,
therefore, is also refered to as random coefficient model.

The covariance matrices is block diagonal

Vo,
Vs
V= . . (46)
Vo,

If no covariate is included in the random part of the model, 02, = 0
and the model reduces to a general mixed effects model with

2 2 2 2
Tuo T 0% Tu0 Tu0
2 2 2 2
Tu0 ouw tog Tu0
Vni = COV(yi]“Xﬁ) =
2 2 2 2
40 Tu0 0w o0/ L,
(47)

Equation (47) can be denoted as 02J () + 031 (n,). Where, J(,,) is nx 1
vector with all elements 1, I,y is n dimension unit matrix with all elements
in diagonal 1, others 0. Then the intra-unit correlation can be estimated by

cov(ugj + Einj +uoj +Einj)  _ Oug 48
\/Var(qu + 5i1j) . var(uoj + Eizj) 0o T 0§
If covariate was considered, 02, # 0 and
Vi, = (O-ZO + 204017 + U?le2)'](m) + 0(2)1—(71@) . (49)
The intra-unit correlation can be estimated by
2495, 2 .2
p= 00+ 204,01 + 0,1 @ (50)

2 P 2
020+ 200012 + 02,22 + 0}

It is thus clear that intra-unit correlation has relation to the explanatory
variables.
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6.2. Estimation of parameters of multilevel model

Parameters in multilevel model can be estimated by iterative generalized
least squares (IGLS)'* or Restricted Iterative Generalized Least Squares
(RIGLS).*®

Let cov(Y'|X8) =V, if V is known, then according to the generalized
least square estimation

B=XTvx)xXTvly, cov(@)=(XTViX)"t.  (51)

But in fact, V' is usually unknown and expressed by random coefficients.
For known 3 we form the residuals of y;;

Y = {ii;} = {vi; — Xi;8} . (52)

~ ~T
If we form the cross-product matrix YY ) we see that the expected value
of this is simply V. From the equation

vee(YY ') = vee(V) + R, (53)

we estimate parameters 02, 02;, 0,01 and o2 by means of generalized least
squares where vec(-) is the vector operator.

The estimation procedure is iterative. We would usually start from
“reasonable” estimates of the fixed parameters 3. Typically these will be
those from an initial OLS estimation. From these we form the “raw” resi-
duals (52), estimate random coefficients; and obtain an improved estimator
of V; then return to (51) to obtain new estimates of the fixed effects 3;
and so on. Alternate between the random and fixed parameters estimation
until the procedure convergence.

The IGLS procedure produces biased estimates in general and this can
be important in small samples. Goldstein'® shows how a simple modifi-
cation leads to restricted iterative generalized least squares (RIGLS) by
substituting V — X (XTV "1 X)XT for its corresponding term V in (53)
to produce an unbiased estimate.

For multilevel generalized linear model, in order to work with a linea-
rized model, we will use Taylor expansion. There are two produces to treat
high-level residuals when forming Taylor expansion. One is to add current
residuals to the linear component of the nonlinear function and the an-
other does not add. The former is predictive quasi-likelihood (PQL), while
the latter is marginal quasi-likelihood (MQL). In many applications, MQL
procedure tends to underestimate the values of both the fixed and random
parameters, especially where n;; is small. So Goldstein'* suggested that
PQL be used in fitting generalized model rather than MQL. In addition, he
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Table 12. M Ln estimation for data in Example 1.

Variable Coefficient SE Z P
g2 0.4125 0.4049 1.0188 0.3083
g3 0.6375 0.4049 1.5745 0.1154
g4 1.7250 0.4049  4.2603  0.0000

Constant 9.3000 0.6435

also pointed out that greater accuracy is to be expected if the second-order
approximation is used rather than first-order based upon the first term in

the Taylor expansion.'®

6.3. Example 14. Analysis of data in Example 1

This is the simplest case with 4 units in level 1 in a 2-level structure where
the level 2 units are the subjects. The model has the form as

Yij = Bo + B2goij + B393ij + Bagaij + uoj + e -

To obtain IGLS estimation of the parameters, we use software M Ln.'”
The results are shown in Table 12. The estimation of variance in level 1 is
o3 = 0.6559, in level 2 02 = 2.6571, with standard error SE[o§] = 0.1893,
SE[o2 ] = 1.411, respectively.

Then

a2, B 2.6571
02, +02  2.6571+ 0.6559

This results are similar to those from ANOVA and GEE.

p= = 0.8020.

6.4. Example 15. Analysis of data in Example 7

This is a 3-level model. Subjects are level 2 units clustered within centers
that are level 3 units. Repeated measurements from the same subject are
level 1 units nested within level 2 unit. The results are shown in Table 13.
The multilevel model decomposes the variance into 3 levels. 0.1156 for
level 1, 0.3151 for level 2 and 0.1190 for level 3. Thus, intra-subject corre-

lation can be estimated as
o, + 02, 0.3151 4 0.1190

= =0.7897.
o2 +02,+ 0%  0.1156+ 0.3151 + 0.1190
And, intra-center correlation can be estimated as
2 11
v 01190 =0.2165.

02+ 02, +02, 0.1156+ 0.3151 + 0.1190
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Table 13. M Ln estimation of data in Example 7.

Coeflicient SE

Fixed effect CONS 1.7230 0.2545
TREAT 0.3273 0.1135
COMP 0.0384 0.0900
AGE —0.0090 0.0076
SEX —0.2285 0.1483
TIME 0.1616 0.0056

Random effect  Level 3 0’30 0.1190 0.0657
Level 2 o2, 0.3151 0.0859
Level 1 o2 0.1156 0.0065

Theoretically, multilevel model can fit for arbitrary levels. The most
powerful software MLwin could fit models up to 7 levels. It is sufficient
in practice.

6.5. Multilevel logistic regression

Multilevel model can be expanded to the case where the error term in the
model is non-normal distribution.'® In the rest of this section we will focus
on the multilevel models with binomial distribution, or Poisson distribution.
To make matters concrete, consider the data in Example 3. Let y;; be
an observation of ith pup from jth pregnant rat. If the pup is normal then
yij = 0, else y;; = 1. Let f;; be fixed part of the model, and r; be the
random part, and 7;; be the expected value of the response for the ijth
level 1 unit. A 2-level logistic regression model would have the form
exp(fij +7j)
1+ exp(fij +1;)

Yij = Tij +€ij = + &5 (54)

fij = a+ bz + -+ + Bppij
gij = eijy/mij(1 = mij) -

In general, ¢;; follows a binomial distribution, but sometimes it is extra-

binomial. The variance of ;; can be written in the form of o¢m;;(1 — m;;).

Here, o2 is refered to as extra-binomial variance (or over dispersion). When

o8 =1, it is purely binomial. We will assume o2 = 1, and r; ~ N(0,03) in
this section.

Let r;; be the Pearson residual of the model

Yij — T

mii (L — i) /nij

(55)

Tij =
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Table 14. Results of fitting 3 2-level models for data in Example 3.

Models
Parameter
Logit Probit C log-log
«a 1.127(0.3380) 0.6933(0.1929) 0.3463(0.1686)
B 1.028(0.5099) 0.5655(0.2824) 0.4692(0.2383)
a% 1.212(0.5061) 0.3822(0.1578) 0.2779(0.1131)
o2 1 1 1
intra-unit correlation p 0.1731 0.1734 0.1739
—21n(L) 210.686 211.610 213.084

Then the intra-unit correlation can be defined as

= Z:Zl ZJ:1 TijTky — 2221 T3 o 2221 3
p=2. LS = 6)

= nj(n; —1) n;

=1

In contrast to GEE, 2-level logistic model decompose the residuals into
each level. The residuals in the level 1 are linear to the response, while the
residues in level 2 are nonlinear.

The 2-level logistic model for Example 3 can be written as

Yii = exp(a + 6Gr0up + rj)
Y 1+ exp(a + Béroup +75)

+ €ij/ mij (1 — mij)

where the subscripts of Group are omitted. The results are shown in
Table 14.

6.6. Multilevel Probit model and complementary
log-log model

The expected proportion m;; in (55) is modeled using a logit link func-
tion. If we use probit link function, a 2-level probit model would have the
form

Yij = mij + €y = ©(fij + 1) + ey - (57)

If we use complementary log-log link function, then a 2-level complementary
log-log model would have the form

Yij = mij +ij = 1 —exp{—exp(fi; +7;)} +¢€i;. (58)

Other notations are similar to a level 2 logistic model in (54).
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6.7. Example 16

We fitted 2-level logistic, probit, and complementary log-log models for data
in Example 3 respectively. The results are shown in Table 14.

The results show that the intra-unit correlations estimated from 3
models are quite similar.

6.8. Multilevel Poisson regression model

For count data multilevel Poisson regression model would be fitted. For a
2-level model, it can be written as

Yij = mij +€i; = exp(fi; +15) +€ij,
fij = a+ Bizrig + -+ Bplpi - (59)
We usually assume that e;; follows a Poisson distribution with
var(y;;|mi;) = m;;. But sometimes it is extra-Poisson with conditional
variance of var(y;|mi;) = mi; + kmZ;. When k > 0, it is negative bi-
nomial distribution. When k£ = 0, it is purely Poisson. Here we keep

k=0,7; ~ N(0,0%).
Let r;; be Pearson residuals of the model as follow:
Yij — Hij

ri; = ——. (60)

The definition of intra-unit correlation is similar to (55).

6.9. Example 17. Fitting a 2-level Poisson regression model
for data in Example 8

The response is two-week seizure counts for epileptics and is a count data.
The Poisson model is sufficed here. The results are shown in Table 15.
The results show that the counts are correlated with age and time. No

significance can be detected in test group and placebo group. But it is

Table 15. Estimated results of random effect model for Example 8.

Parameter  Coefficient SE Z P

Treat —0.07606 0.27020 —0.28150 0.7783
Trial 0.19900 0.05859 3.39648  0.0007
Time —0.05743 0.02026  —2.83465  0.0046
Age —0.01685 0.01788  —0.94239  0.3460

Constant 1.88100 0.55440
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significantly different between the counts before and after medication. The
intra-subject correlation estimated from the model is 0.7776.

6.10. Multilevel logistic models for multiple
response categories

In this section we extend the multilevel logistic model for binomial response
to the cases of multiple categories and ordinal categories. When the response
is multiple categories without order, a multilevel polytomous logistic model
will be fitted. And when the response is ordinal, a multilevel ordinal logistic
model will be fitted.

For example, let’s consider a 2-level model with one explanatory
variable. The response is now multiple with k categories. A multilevel poly-
tomous logistic model can be defined as

() _ exp(Bo + 519552 + “E{;))
Y Tt exp(Bo + frat) +ul))

+€ij, (61)

s=1,2,...,k. Under the standard assumption that the observed response
proportions follow a multinomial distribution, the level 2 covariance matrix
has the form

1 1
ng)(l_wz(j))

(1),_(2) (2) (2)
1 Mg Mg Tij (1- i )
N (62)
1) (k 2) (k k Kk
_Wz(j)ﬂ—i(j) _ﬂ—i(j)ﬂz(j) T 771‘(3‘)(1 - 7Ti(j ))

If k categories are ordered, we should base our model upon the cumula-
tive response probabilities rather than the responses probabilities for each
category. The multilevel ordinal logistic model can be defined as

) exp(fo+ 519552 + “Ef;‘))
Y 1 exp(Bo + ﬂlx@ + u(()‘})) 7

(63)

where %)

;. is cumulative probability for s = 1,2,...,k. If we assume

an underlying multinomial distribution for the category probabilities, the
cumulative proportions have a covariance matrix given by Wg) (1 —71'2(;»)) /g,
(r <s).
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Table 16. The results of a 3-level cumulative logistic model for data in Example 7.

Parameter Estimation SE

Fixed parameters

Y1 —1.482 0.8162
Y2 0.9309 0.8089
Y3 4.299 0.8284
Comp —0.03902 0.2977
Treat —1.187 0.3245
Sex 0.5575 0.4685
Age 0.03687 0.02515
Time —0.5268 0.03924
Random parameters

Level 3 1.001 0.5818
Level 2 1.586 0.3197
Level 1 1 0

6.11. Example 18. Analysis of data in Example 7

The effectiveness variable in Example 7 is an ordinal response, with 0 stands
for invalid or worse effects of treatment on the subject, 1 for improved, 2
for notable improved, and 3 for recovery. A multilevel ordinal logistic model
with cumulative odds was fitted. The results are shown in Table 16.

Where, the centers are level 3 units, the subjects are level 2 units and
repeated observations are level 1 units.

6.12. Relationship between intra-unit correlation and
explanatory variable

The key idea of multilevel model is to express the variance in each level by
explanatory variables. In many applications, mean squared error is related
to some explanatory variables. As a result, the intra-unit correlations are
related to them, too. This issue would be resolved by adding the explanatory
variables to the random part of multilevel models.

6.13. Example 19. Analysis of the data in Example 5

The data show that the variance of ESS is changing over time. Let G1 and
G2 be the dummy variables of groups. We fit a 2-level model for the data in
which the time variable is added into random part at level 1 of the model.
The results are shown in Table 17.

The results show that in the middle dose group (treat = 1) and the
high dose group (treat = 2), the intra-subject correlation is 0.7956, which
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Table 17. The results of fitting a 2-level model for data in Example 5.

Parameter Estimate SE
Fixed Cons 98.19 4.175
Time 1.283 0.1285
Age 0.18 0.1531
G1 —8.356 3.23
G2 —2.972 3.255
G1*Time 2.778 0.2771
G2*Time 2.977 0.1902
Random
Level 2  Cons/Cons 38.59 10.48
Level 1  Cons/Cons 9.914 1.44
Level 1  G1*Time/Cons 3.195 0.7093
Level 1 ~ G2*Time/Cons 0.195 0.2165

is independent on time. But in the low dose (placebo) group (treat = 0),
the intra-subject correlation coefficient depends upon time. The correlation
of observations at Time; and Times would be estimated by
38.59
/(3859 +9.914 + 3.195 x Time1)(38.59 + 9.914 + 3.195 x Times) ’

6.14. Multivariate multilevel models

So far, we have only considered a single response variable. In many
applications, we wish simultaneously to model several responses functions
of explanatory variables. In Example 4, AUC, Ciax and T5¢ will be con-
sidered together as responses to test the bioequivalence of domestic and
imported rosiglitazone maleate tablets (RMT). This goal could be achieved
by fitting a multivariate multilevel model.

For the sake of convenience, we consider the multivariate multilevel
model with two response, the logarithmic values of AUC (also denoted
AUC) and Chax, and treat the subject as a subject-level unit and 4 treat-
ment effects (observations repeated measured on subjects) as period-level
units which are clustered in subject-level. Besides intra-subject correlation,
other properties of this model should be considered: observations of AUC
are correlated between different periods of trial, and so do Cyax; and AUC
and Chax are correlated either in the same period or in different periods.

The results shown that: the intra-subject correlation of AUC' is

0.008301/(0.008301 4 0.011595) = 0.4172.
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Table 18. The results fitting multivariate multilevel model for data in Example 4.

Intra-subject

Parameters Coefficient SE correlation
Fixed effects Cons_AUC 6.82577 0.02661

Cons_Cmax 5.13547 0.02550

Treat_ AUC 0.03252 0.02198

Treat_Cmax 0.03563 0.02099

Drug_ AUC 0.75844 0.02198

Drug_Chmax 0.73093 0.02099

Random effects
Subject level ~ Cons_AUC/Cons_AUC  0.008301 0.003274 1
Cons_Chmax/Cons_AUC  0.003883 0.002426  0.486
Cons_Cmax/Cons_Cmax  0.007678 0.003017 1
Period level Cons_AUC'/Cons_ AUC  0.011595 0.001936 1
Cons_Crmax/Cons_ AUC  0.003444 0.001369  0.311
Cons_Cmax/Cons_Cmax  0.010572 0.001765 1

The intra-subject correlations of Chax is
0.007678/(0.007678 + 0.010572) = 0.4207 .

The Pearson correlation of AUC and Chyax is 0.311 in level 1, and 0.486 in
level 2.

7. Sampling Distribution and Confidence Interval of
Intra-unit Correlation

7.1. Confidence interval of intra-unit correlation

The intra-unit correlation coefficient estimated by a generalized estimation
equation or a multilevel model is a point estimation. But we did not estimate
its estimation errors and had little ideas of its sampling distribution. The
bootstrap may be applied to estimate the CI of intra-unit correlation.'®
Bootstrap is a data-based simulation method for statistical inference,
which can be used to study the variability of estimated characteristics of
the probability distribution of a set of observations, and provide confidence
intervals for parameters and hypothesis test in situations where these are
difficult or impossible to derive closed form formulas. The basic idea of
the procedure involves sampling with replacement to produce random
samples of size n from original data, each of these is known as a bootstrap
sample and each provides an estimate 6(b) of the interesting parameter,
0. Repeating the process a large number of times, say B = 500 or more,
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provides the required information on the variability of the estimator. For
example, the type of distribution, standard error of the bootstrap esti-
mates. An approximate 95% confidence interval can be derived from mean
+1.96 SD if the bootstrap estimates are normally distributed, and from the
2.5% and 97.5% quartiles of the replicate values if the bootstrap estimates
is not normally distributed. The confidence interval derived from bootstrap
sampling is known as bootstrap confidence interval.

If the population distribution is known, bootstrap samples can be
randomly samped not from the original data, but from the population
distribution. The former produce is known as non-parametric bootstrap,
and the latter as parametric bootstrap.

Research shows that there are two particularities in applying the boot-
strap estimation to data of dependent design.2® First, it is not proper
to adopt a parametric estimation because of the difficulty in making a
judgment to the distribution of the data. So we suggest adopting a non-
parametric estimation. Second, it is not proper to apply a random sample
directly to observations because of the non-independence of observations.
So we suggest that we sample high level units. And if some high level unit
is sampled, all the observations in this unit will be sampled. As examples,
data of Example 2 should be sampled by family; data of Example 3 should
be sampled by litter; and data of Examples 1, 4 and 5 should be sampled
by patient.

The estimator of intra-family correlation of Example 2 is 0.5674. If
we sample the data on families, make 500 resamplings, and estimated
by GEE, then the non-parametric 95% C1I of intra-family correlation is
0.2875-0.8874. If we sample the data of Example 8 on patients and make
the same analysis, we estimated the non-parametric 95% C1T of correlation
0.5219-0.8874. Both of the two bootstrap sampling distributions of intra-
unit correlation are skew. Because both of the two C'Is do not include 0,
we may accept that the intra-subject correlations exist.

7.2. The sampling distribution of intra-unit correlation

To estimate the type and characteristic of distribution of intra-unit cor-
relation, we use the Monte Carlo method. One thousand simulations were
generated from specific population with known p and corresponding as-
sumed parameters. For each set of simulated data, we fit a 2-level model,
2, and then the intra-unit correlation. We then investigate

the distribution of intra-unit correlation based on 1000 estimators of p.

estimate 03, o
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We may assume that there are m individuals (two-level unit) and each
individual have k repeatedly measured values (one-level unit), then we have
n = m X k observations. In order to investigate the effect of units of level 1
and units of level 2 on the intra-unit correlation when overall sample size
of observations are the same, we design the grids are (k,m) = (4, 10),
(4, 20), (4, 30), ..., (4, 100) and (k,m) = (8,5), (8, 10), (8, 15), ...,
(8, 50) respectively, and the intra-unit correlation coefficients is 0.1-0.9
respectively.

Without losing generality, in analog investigation, we do not take fixed
but random effect into account, because the intra-unit correlation is re-
lated only to random effect. Furthermore, we assume that the intra-unit
correlation structure is exchangeable.

Now we may consider two situations. One is the simplest situation

Yij = 1y + €ij - (64)

Only one random effect is considered both in levels 1 and level 2. Then
the variance of y is 03 + ¢2; The variance-covariance matrix of y is V' =
diag(R,R,...,R). If k is 4,

op +o?
73 ag + o7
R= 2 2 2 2 J (65)
o oy og +o¢
o5 o5 i ag + o7

the intra-unit correlation can be calculated by Eq. (48).
Another situation is more complex
Yij = Wy T VjTij A+ eij . (66)

Level 1 has two random effect terms: one is random error. Another random
effect term is related to independent variable, namely the variance of y,
08 +0%(x;;)? + 02, and is affected by explanatory variable. Let x;; = j — 1,

the variance-covariance matrix of y is V' = diag(R, R, ..., R), when k = 4,
o5 +o¢
0(2) 0(2) + O’% + Jg
R= 2 2 2 2., 2
o og og +407 +o;
o3 o3 o3 03 +90% + o2
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We may calculate intra-unit correlation by Eq. (48) after deducting the
effect of explanatory variable to y.

The parameters of the model can be estimated by the Restricted Iter-
ative Generalized Least Square (RIGLS) method. The simulation study is
made by using specialized multilevel model software M Ln.7

Table 19 lists the simulated results of six models. Models A-D are gene-
rated based on Eq. (64), and their amounts of units of levels 1 and 2 are
model A with (k,m) = (4,10), model B with (k,m) = (8,5), model C with
(k,m) = (4,100), model D with (k,m) = (8,50), respectively. The overall
sample size of model A is equal to that of model B, while the overall sample
size of model C is equal to that of model D. Models E and F are generated
based on Eq. (66), and their amounts of units are respectively model E with
(k,m) = (4,100) and model F with (k,m) = (8,50).

The result shows that the type of distribution is related to the value
of intra-unit correlation. And the distribution of intra-unit correlation of
these models indicates that when p = 0.5, its distribution is symmetrical
and resembles the normal distribution; when p > 0.5, its distribution
is positively skew; and when p < 0.5, negatively skew, just as Fig. 3
shows.

In one model, the estimated error is larger when p approaches 0.5, and
becomes smaller gradually as p approaches 0.1 or 0.9.

The mean intra-unit correlation coefficients of model C is closer to the
theoretical value than that of model A, and its standard error is smaller.
Similarly, the mean intra-unit correlation coefficient of model D is closer to
theoretical value than that of model B, and its standard error is also smaller.
Therefore, the larger the sample size, the better the effect of estimation.

In comparisons of model A with B, model C with D and model E with
F respectively, for which each pair has the same sample size, the estimation
of model B is not as good as A, model D not as good as C and model F
not as good as E except that p = 0.1 or 0.2. This is because the amount of
two-level units is small while that of one-level units is large. In fact, because
of the presence of intra-unit correlation, the amount of information is over-
lapped. As an example, the amount of information obtained by measuring
k times repeatedly to the same individual is smaller than that obtained by
measuring once to k individuals.

If we compare model E with C and model F with D respectively, their
overall sample sizes, the amount of one-level units and two-level units are
equal respectively. But models E and F have larger estimated error because
the variance terms of models E and F are more complex.



Table 19. 500 simulated results of intra-unit correlation of 6 populations.
Theoretical Model A Model B Model C Model D Model E Model F
values k=4,m=10 k=8 m=5 k=4,m =100 k=8,m =250 k=4,m =100 k=8,m=250
0.1 0.1235 + 0.1279  0.1057 4+ 0.1146  0.0980 + 0.0471  0.0965 + 0.0411  0.1150 4+ 0.0933  0.1121 4+ 0.1178
0.2 0.2017 + 0.1485 0.1786 + 0.1467  0.1987 £ 0.0540  0.1981 £+ 0.0522  0.2019 4+ 0.1067  0.2075 + 0.1450
0.3 0.2855 + 0.1633  0.2666 + 0.1722  0.3026 £ 0.0534  0.2988 £+ 0.0572  0.2978 4+ 0.1081  0.2963 + 0.1635
0.4 0.3787 + 0.1725  0.3428 £ 0.1884 0.3973 £ 0.0560 0.3936 £+ 0.0616  0.3995 4+ 0.1123  0.3934 +£ 0.1599
0.5 0.4595 + 0.1749  0.4288 £ 0.2054 0.4971 £ 0.0534  0.4942 £ 0.0609  0.4995 4+ 0.1078  0.4981 + 0.1563
0.6 0.5635 + 0.1608  0.5207 £ 0.2042  0.5964 £ 0.0463  0.5931 £+ 0.0570  0.5965 + 0.1018  0.5920 + 0.1507
0.7 0.6663 + 0.1379  0.6232 + 0.1928  0.6967 £ 0.0389  0.6947 £+ 0.0481  0.6974 + 0.0957 0.6891 + 0.1435
0.8 0.7647 + 0.1146  0.7278 £ 0.1702  0.7974 £ 0.0287  0.7935 £ 0.0375  0.7986 4+ 0.0865 0.8042 + 0.1211

0.9

0.8786 + 0.0734

0.8492 £+ 0.1216

0.8985 + 0.0153

0.8965 £+ 0.0213

0.8912 £ 0.0727

0.8891 £ 0.0957

06

uayy oA
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Fig. 3. Sampling distibution of the intra-unit correlations base on model C.

The statistical simulation shows that the estimator of p is little smaller
than the theoretical value. But the larger the sample size is, the closer
the estimator is to its theoretical value. And when given the same overall
sample size, the larger the amount of level 2 units is (the smaller the amount
of corresponding level 1 unit is), the closer the estimated value is to the
theoretical value.

If p is close to 0.5, the sampling distribution of intra-unit correlation is
approximately normal distribution. As p approaches 0, or approaches 1, the
sampling error is becoming smaller and smaller. When p is close to 0, the
distribution is positively skew. And when p is close to 1, the distribution is
negatively skew.

Theoretically, as Goldstein (1998) pointed out, the estimators obtained
by IGLS is biased, while that obtained by RIGLS is unbiased. But the si-
mulated results show that estimators of p obtained by RIGLS are somewhat
smaller than the theoretical values. And the smaller the sample size is, the
further the estimated value is away from its theoretical value. When given
the same overall sample size, the smaller the amount of level 2 unit is (the
larger the amount of corresponding level 1 unit is, of course), the further
the estimated value is biased.

The sampling error of intra-unit correlation is also related to the amount
of units of every level. When given the same overall sample size, the larger
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the amount of level 2 units (the smaller the amount of corresponding level
1 unit is), the smaller the estimated error. The sampling error is also
related to how complex the variance of responding variable is: the larger
the variance, the larger the sampling error.

This section focuses only on the situation when responding variable is
numeric, that is to say that data should be distributed normally. Further
investigation is needed, especially with regard to skew distributions, such
as binominal and Poisson distributions.

8. Sample Size and the Cost-effect of Dependent Test

This section will take the repeated measurement (sampling) as an exam-
ple to discuss sample size and power of hypothesis testing and cost-effect
for dependent data. Because of the overlap of information, the dependent
data tells us less than independent data given the same sample size, which
leads to a low power. And the larger the relationship in groups is, the less
information the data offers and the lower the power shows.

8.1. Sample size and power of test

Let Y;;, represent the jth observation of the ¢th subject in the gth group
(i=1,....m,j =1,...,k;g = 0,1). We also assume the individuals are
independent to each other, and the intra-subject correlations are equal. If
the type I error is a and the power is 1 — 3, the sample size of each group
can be estimated by the equation below:

0'2(Za + Zﬂ)Q
ko2 '
Where ¢ is the difference of effects of the two groups (¢ = 0 and g = 1).
It is oblivious that the number of observations m needed in this design is
smaller, while the overall number of observations n = mk is larger than
those of the independent design. And when p = 0, it is equal to the sample
size of independent design.
The table below is the result of a simulated experiment on the power
of a group of repeated measurements. The intra-unit correlation is 0, 0.1,
0.2, ..., 0.9, respectively; the sample size m and the times of repeated
measures k are (50, 4), (100, 2), (20, 4), (40, 2), respectively; And ¢ are
0, 0.2, 0.4, 0.6, 0.8, 1.0, respectively. All designs were balanced. Based on
each grid, 1000 simulations were generated by using the M Ln package.'”
For each set of simulated data, we fit a multilevel model. The power is then

m = [1+ (k—1)p] (68)
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estimated by the proportion of times of the rejections of null hypothesis in
1000 simulations.

The results corresponding to § = 0 is type I error, while that to p =0
is the power of the independent data. From the Table 20, we can con-
clude that the power decreases as the intra-unit correlation within group
increases. And unless § is large enough, the extent of the decrease is large.
For example, when the repeated times are the same, the power of the design
with m = 50, k = 4 and p = 0.9 is only half of that with n = 200 and p = 0.
When the repeated times are equal, the power has a tendency to increase
as m increases; And when n = mk are equal, the power of the design with
twice measured is larger than that with 4 repeated times.

Table 20. Power of repeated measurement (times of the rejection to null hypothesis in
1000 simulations).

m =50, k=4 m =100, k = 2
5 5
p 0 02 04 06 08 1.0 0 02 04 06 08 10
0 44 234 789 984 1000 1000 54 272 781 989 1000 1000
0.1 55 232 689 961 998 1000 43 268 757 986 999 1000
0.2 68 220 598 915 995 999 55 279 709 979 999 1000
0.3 57 169 557 854 975 999 52 226 692 963 999 1000
04 60 181 474 820 961 998 57 233 661 957 996 1000
0.5 56 157 447 756 936 990 43 205 645 942 999 999
0.6 66 143 393 718 931 983 62 119 600 916 989 1000
0.7 56 138 357 692 889 971 54 208 593 902 992 1000
0.8 62 151 331 647 860 970 62 190 564 883 981 999
0.9 58 117 342 595 829 952 58 168 519 875 988 1000
m=20, k=4 m =40, k=2
5 5
p 0 02 04 06 08 1.0 0 02 04 06 08 10
0 59 133 384 746 927 992 36 139 412 759 932 997
0.1 56 125 336 631 870 967 44 143 380 708 916 993
0.2 63 119 302 573 812 939 62 141 375 678 890 928
0.3 80 108 279 488 744 891 69 140 356 634 887 974
04 58 106 258 464 682 849 61 129 344 592 859 967
05 65 110 228 440 626 805 53 113 296 612 825 959
0.6 69 109 175 372 535 767 57 130 318 577 787 950
07 71 94 194 361 546 731 48 103 301 524 780 927
0.8 59 102 193 333 492 696 61 109 288 528 759 908

09 69 103 179 313 490 692 69 101 263 490 729 898
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8.2. Cost-effect analysis

The estimations of design efficiency and sample size are important conside-
rations during the experiment design. Researchers always have to balance
among design efficiency, sample size and cost-benefit before making a deci-
sion. For example, a physiological experiment uses several rats’ liver cells.
Researchers may sample only once (single sample test, independent) or
several times (repeated sample test, dependent) on each rat. The latter
needs fewer rats than the former, which means the latter costs less. But
data from the latter are dependent while those of the former are indepen-
dent. So, the problem researchers confront is that the test should not only
cost litter, but also achieve enough power of test.

When we discussed the estimation of sample size in the last section,
we did not consider the cost. But the funds are limited in practice. So it
is related to cost-benefit problems. On one hand, given restricted funds
(the cost is constant), we should consider whether to select single sample
or repeated sample to make the effect as large as possible (the variance is
minimum). On the other hand, when the benefit is constant (the variance
is restricted), we should consider whether to sample independently or
repeatedly to make the cost the least.

8.2.1. When the cost is constant, how to evaluate
the benefits of independently sampling design and
repeated sampling design?

In a repeated sampling design, individual is independent with each other.
We can assume the average elemental cost of each individual is Cy, the
average direct cost of sampling once to each individual is Cs, the variation
among individualities and repeated sample measures is o2, and the intra-
subject correlation of samples from the same subject is p.

Let the overall cost be C, the individual numbers (or pairs) needed for
repeated sampling design is m, and the times of repeated sample to each
individual is k, then

It is not difficult to find:
2
- o
Y)=—]1 1)p].
var(Y) = ——[1+ (k + 1)p] (70)

When the restricted overall cost is C, to make var(Y') as little as possible
(equivalent to making the power as large as possible), the optimal number
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of individuals m and the times of repeated sample k to each subject are the
solutions of conditional minimum of function (70) restricted by Eq. (69).
Let f(m,k) = o?[1 + (k — 1)p]/(mk) + X(mC1 + kmCs — C), then

df(m.k) _ —o*(1—p)

ok - mk?2 +AmCz =0 (71)
Of(m. k) —o[L+ (k— 1)) -
. " + A(Cy + kCs) =
That is
a’p
m Zr
ACh (72)
o [A1=p)C
pCa ’

Substituting m and k in (72) for their corresponding terms in (69), because
C' is a specific value, the optimal number of individuals is

CWW-VCE 1-p
Ci[Cip — C2(1 —p)]

So the minimum variance is

var(Y) = o%(y/pCi + C1)?/C. (74)

(73)

If the sample size of independent sampling design is N, the overall cost and
sample error are C = NC and var(Y) = 0%/N respectively.

And if the restricted overall cost is C, to make var(Y) as little as possible
(make the power as large as possible), the optimal number of subjects m is
the solution of conditional minimum of function var(Y) = ¢2/N restricted
by equation C' = NC}.

Let g(N) = 0%/N + ANC1, then

N=C/C. (75)
And the minimum variance of independent sample is
var(Y) = 02C,/C'. (76)

So given restricted overall funds C', whether to sample independently or
repeatedly depends on the value of sample error, which means to work out
when Egs. (76) and (74) will have minimum values, when

Cy — Cy\ 2
p < (701 +C2> . (77)
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The repeated sample design can result in a minimum sample error (the
power is the largest and the effect is better). Otherwise, it would be better
to choose independent sampling design.

8.2.2. When the benefit is constant, how to compare the cost
of independent sample with that of repeated sample?

We should follow the method in the last section to make the overall cost C
as little as possible when var(Y) =V is constant.

The optimal individual number of repeated sampling design m and the
optimal sample times of each subject k& can be worked out by the equations

below, respectively:

~ *VCiplV/Cip +/Cs(1 = p)]
B Vv ’

po JG9U=p)
Cap
The minimum overall cost of repeated sampling design is
C =m(Cy + kCy) = o*[\/Cip +/Ca(1 - p)]?/V, (79)

The optimal individual number of independent sampling design is

N =o%/V. (80)

And the minimum overall cost of independent sample is
CzN01:J2C’1/V. (81)

So under the condition of restricted sample error (the same benefit),
should we select the independent sampling design or the repeated sampling
design? This depends on the overall cost of the sample. We should compare
when Egs. (79) and (82) will have their minimum values. And only if the
intra-subject correlation p meets the need of Eq. (77) can repeated sampling
design make the sample cost as little as possible. Otherwise we’d better use
an independent sampling design.

8.3. Example 20. The cost benefit problems of rat’s
test data

Physiology Laboratory, Nantong Medical College, had finished a test that
needed four rats. Four sets of single spleen T cells turbid liquid were pre-
pared for each rat by normal methods. Then researcher mixed ConA with
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each liquid and measured OD. From pre-experiments or experiences, they
estimated that

02 =0.00054844 and p = 0.52895.

Then if we restricted sampling overall cost C' or sample error var(Y),
should we select an independently sampling design or a repeated sampling
design? This is related to the average elemental cost of each rat C7, the
average direct cost of repeated sampling once to each rat Cy and the intra-
subject coefficient of repeated measurement. We assume that each rat costs
C1 = 20 yuan, each portion (1 ml) of medium and 0.1 ml calf serum costs
C5 = 0.12 yuan. Because

2
p=0.52895 < <M>

20 —0.12 2
= 0.97629
Ci1+Cs ( >

20+ 0.12

this case meets the need of Eq. (77). Thus, it is wise to do repeated sampling
instead of an independent sampling. From Eq. (72), we known that the
repeated sampling times of each rat k is 13.

If the restricted overall cost C = 110 yuan, the repeated sampling design
needs 5 rats and the minimum sampling error is var(Y') = 0.000062 from
Egs. (73) and (74).

If the restricted sampling error is var(Y) = 0.000052, the repeated
sampling design needs m = 6 rats and the minimum sampling cost is
C =130 yuan from Egs. (78) and (82).

In this section we focus on the power of the repeated sample design
in one group, the estimation of sample size and some problems about
cost-effect. The principles of analysis can also be applied to repeated
measurement data of grouped design and longitudinal data, etc.

When estimating the power and sample size of the repeated sampling,
we should take full advantages of the prior information to specify the values
of variation among individuals and repeated samples, the value of intra-
subject correlation coefficient and the values of acceptable error because of
the affection these values have on the estimation of sample size. If there is
not enough prior information, it is better to obtain it through pilot studies.
And the importance of types I and II errors should be determined according
to damages caused by the respectively wrong decisions.

There are two other design methods similar to repeated sampling design.
One of them is the multiple repeated measures, which can improve the
precision of measurements, and reflect whether the measured results have
stability, namely reliablity. And the degree of reliability can be represented
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by constructed validity. The intra-subject correlation among repeated
measures of these data is always low and always has nothing to do with the
covariates. The another one is the regular or irregular follow-up in a longi-
tudinal study, such as the follow up studies of kid’s growth and development
and the metabolism of some kind of drug, etc., in which we are interested
in the occurring, developing, or law of variation of an event. The intra-
subject correlation of these data is always related with the interval of the
follow up. However, repeated sampling is sampling from the same subject.
These samples always have a low intra-subject correlation and are related to
some covariates. Though in several literatures they are all refered to as re-
peated measurement and have similar methods of processing and analyzing,
they have their own particular emphases. So the structures of covariances
matrix of response variables are different. But to applied researchers, more
emphases should be laid on the distinctions of different designs.
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1. Introduction

Quality control, quality assurance, and quality improvement in medical
studies are active and large topics. From 1995-2000, there were more than
40,000 articles in MEDLINE database that had key words of at least one of
these three terms. Quality has many connotations. The term “total quality
management” (TQM) is given to an approach that related to the daily func-
tioning of medical practices or medical research processes. All participated
personnel and operational aspects are involved. Quality control is a very
limited function that “controls” the product, primarily by testing, while
quality assurance regulates the systems and methods for “assuring” the
quality of the product.’

Every aspect of medical practice and research requires quality control
and quality assurance. Although the statistical principles presented here
can apply to other fields such as laboratory medicine, etc. this chapter is
limited to quality control and quality assurance specifically in radiology.
There are several reasons for this focus. First, this is the field in which
the authors have the most experience. Second, radiology evaluation relies
on radiological equipment, whether X-ray, ultrasound, CT, or MRI ma-
chines. As with all machinery, products of different manufacturers vary in
quality. Over time, machine may draft and age can affect performance.
Furthermore, precision errors are always to be expected in any radiological
equipments or technique; even when the same patient is scanned under
identical conditions the results will be different. Last but not least, many
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radiological assessments are based on the experience of reader and are
relatively subjective. It is common to have different readers to give different
interpretations of the same image. Therefore, many factors will affect
the results of radiological assessments. The statistical principles discussed
here can resolve the conflicts among results from different devices and
improve interpretation of the results.

Radiology has been used to help decisions in disease diagnosis and
management of patients. Its use as tools for population screening and for
drug development is increasing. The newly developed response evaluation
criteria in solid tumors (RECIST) uses changes in unidimensional CT
measurement of tumor lesions to define the treatment response rates.?
Osteoporosis is defined by bone mineral density (BMD) measured by dual
X-ray absorptiometry (DXA) scans® and osteoporosis prevention drugs are
assessed according to their effect on BMD.* In fact, medical imaging has
been used as surrogate endpoint or biomarkers in many therapeutic and
diagnostic clinical trials, and radiologists are increasingly involved in these
clinical trials.

Good Clinical Practice (GCP) is an international quality standard for
the design, conduct, recording, and reporting of clinical trials with human
subjects. GCP guidelines not only provide a framework for protecting the
rights of participating patients or volunteers, they also set standards to
safeguard the integrity of data that are used to evaluate treatment effi-
cacy and submitted to regulatory agencies.® In radiology, GCP includes
training documents and standard operating procedures, imaging device
quality control, image acquisition protocols, software validation, record
keeping, and reporting, etc.® Obviously, this is not only a statistical process.
Successful quality control and quality assurance require good leadership
from department chairs or principal investigators and, importantly, a
team of multi-disciplinary experts. The expert team should always include
a statistician. Statisticians are important in planning quality control,
including determining appropriate sampling to avoid bias in selecting test
samples, calculating the sample sizes, analyzing results to identify defi-
ciencies, planning the processing control charts for monitoring machine per-
formance, reassessing the results of quality improvement, and in reporting
data and study results.

There are many aspects of quality control and quality assurance
that are not directly related to statistics.” ? This chapter presents some
statistical tools used in radiological or osteoporosis research based on
the experience of the authors. It is beyond the scope of this book to
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present a complete picture of quality control and quality assurance for all
radiological studies.

This chapter is organized into 5 sections. In the next section, we intro-
duce definitions of different measurement errors for continuous radiological
results and different ways to evaluate these errors. In Sec. 3, we present
applications of process control-charts to monitoring measurement errors
over time. In Sec. 4, we review the statistics of measurement agreement. In
Sec. 5, we discuss the calibration problem.

2. Measurement Errors

Radiological techniques are used to measure physical or mechanical proper-
ties that relate to disease status or progression. We use statistical techniques
or procedures to transform our observations of a variable of interest into a
particular category or number. This is the measurement process. For a cate-
gorical variable, we try to assign a subject into a particular, unambiguous
category, as in the assessment of treatment response of solid tumors? or
evaluation of spine fracture severity.'? In other cases, we derive a numerical
value that reflects the underlying physical quantity, such as tumor volume,
bone mineral content or density, etc.

Measurement errors describe the limits of a quantitative or qualita-
tive assessment of a disease using a particular technique or procedure.
Measurement errors have many sources. This section focuses on 2 types
of measurement errors — precision and accuracy — and their applica-
tions to the diagnosis of osteoporosis and monitoring changes in bone
status. The implications of precision on monitoring changes are emphasized,
including the concepts of standardized precision, longitudinal sensitivity,
and their applications to patient measurements and quality assurance,
i.e. the monitoring of machine performance.

2.1. Measurement errors in radiological instruments

Many sources of errors can affect the measurement and cause varying
results, even when they are from the same region of interest in the same
subject. Some of these variations can be controlled to minimize their impact.
Some of the error sources are — in part — uncontrollable. Controllable
variations are called fixed factors. Our interests, however, are usually on
the uncontrollable random variations.

Errors of measurement are the differences between observed values
recorded under identical conditions and a fixed true value. In osteoporosis



104 Y. Lu & S. Zhao

studies, we always assume there are true quantities for densitometry
parameters for each measured subject, even though we don’t always know
their values. Measurement errors should be random in nature and can be
attributed to two different sources: accuracy errors and precision errors.'!

2.1.1. Accuracy errors

Accuracy errors here are used as equivalent to the term bias. They
reflect the degree to which the measured results deviate from the true
values. To evaluate accuracy errors, we need to know the true values of
the measured parameters. It is not always possible, however, to measure
the accuracy errors because sometimes the true values of the measured
parameters cannot be verified. For example, quantitative ultrasound (QUS)
bone measurements are affected by a number of quantitative and qualita-
tive factors, and there is no single correlate for any QUS measurement.
Therefore, we cannot define a single accuracy error for QUS.!2

For clinical applications only the part of the accuracy error that varies
from patient to patient in an unknown fashion is relevant. The other part,
i.e. the one that is constant, can be averaged across subjects e.g. the
average underestimation of bone density due to the average fat content
of bone marrow in Quantitative Computed Tomography (QCT), can be
ignored. There are two reasons: First, for diagnostic uses, the reference
data will be affected by the same error so the difference between healthy and
diseased subjects is constant. Second, the error is present at both baseline
and follow-up measurements, and does not contribute to measured changes.
Therefore, when discussing the impact of accuracy errors only that part of
the error that changes from patient to patient in an unknown and uncon-
trollable fashion is of interest.'? For this reason, small accuracy errors are of
little clinical significance provided they remain constant.'* In general they
are more relevant to diagnosis and risk assessment than to monitoring.

2.1.2. Precision errors

They reflect the reproducibility of the technique. They measure the ability
of a method to reproducibly measure a parameter for the purpose of
reliably monitoring changes in bone status over time. Precision errors
can be further separated into short-term and long-term precision errors.
Short-term precision errors characterize the reproducibility of a technique
and are useful for describing the limitations of measuring changes in skeletal
status. If they are large they may affect the diagnostic sensitivity of a
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technique. Long-term precision errors are used to evaluate instrument
stability. Because long-term precision errors include additional sources of
random variation attributable to small drifts in instrumental calibration,
variations in patient characteristics, and other technical changes related
to time, they provide a better measure of a technique’s ability to monitor
parameter changes than the short-term precision errors do. For patient
measurements, estimates of long-term precision usually also include true
longitudinal variability of skeletal status. For both of these reasons long-
term precision errors normally are larger than short-term errors. While
precision errors are easy to define, there are many ways to describe them
depending on the purpose at hand, and there is no universal consensus on
which definition is most appropriate.

Mathematically, let 8 be the theoretical true value in which we are
interested, and let X be the observed value. The difference of £ = X — 6
is the measurement error. Furthermore, if X follows a normal distribution

Good Accuracy and Precision
Good for Diagnosis and Monitoring

Poor Accuracy and Good Precision
Acceptable for Monitoring

Good Accuracy and Poor Precision Poor Accuracy and Precision
Unacceptable for Monitoring Unacceptable for Diagnosis and Monitoring

Fig. 1. Precision and accuracy.
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N(u,0?), the accuracy error is p — 6 and precision error is o. Here, 6 is
considered a gold standard.

Figure 1 illustrates the differences between precision and accuracy
errors. If an archer consistently hits the target board close to the bull’s-
eye, but with the arrows spread out around it, it is good accuracy but poor
precision. If the archer consistently hits the board far off the bull’s-eye,
but with all of the arrows in approximately the same location, it is poor
accuracy but good precision.

2.2. Absolute precision errors

Although there are many different ways to describe precision errors, they
can be classified as absolute or relative. For the following descriptions of
precision errors, we introduce some notations. Let X;; be the quantita-
tive results (such as BMD) of the jth measurement for the ith individual,
t=1,...,mand j = 1,...,n;. Because individual subjects have different
underlying true values due to biological variation, it is necessary to mea-
sure individual subjects repeatedly to evaluate precision errors. We use n;
to denote the total number of measurements for the ith individual. The
standard deviation (SD) of bone densitometry parameters from an indi-
vidual subject i as a measure of short-term reproducibility is defined as the
average distance of individual X; ; to the mean value for that subject, X;.
Mathematically, it is the sample standard deviation:

Uz

SDi = | Y (Xij — Xi)%/(ni —1). (1)

Jj=1

Individual precision may vary. To estimate the reproducibility of a
parameter in clinical use, we need to measure a representative set of
individuals and combine their individual precision errors using the root-
mean-square average of individual SD values (RMS SD) or in other
words, within the mean squared errors in Analysis of Variance terms.
Mathematically,

2
RMS SD — \/Zz 1 1(7(1‘3(1_ \/Zz 1 Tznl _)?;:)j 7 (2)

where m is the number of subjects measured for precision evaluation.
When each subject has the same number of measurements, the RMS

SD = /3", SD?/m.
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With long-term precision, the underlying parameter can change for
individual subjects over time. Therefore, instead of measuring the dis-
tance from the observed individual values to the mean of the individual
subject, we use the distances from the observed individual values to the
expected value of the parameter at the time of measurement. In many
situations we assume that the change of the parameter over time is linear
for mathematical convenience. Thus, we can fit a regressmn line for observed
individual measurements over time, i.e. Xz G = a; + b; iti,; with t; ; as the
time of the jth measurement for the ith subject. The variation around the
regression line is the standard error of the estimate (SEE):

X, X2
— \/zH( =K 5

TLi—Q

In this case, SEE rather than SD should be taken as the estimate of the
long-term precision error for an individual subject. For precision errors of a
group of subjects, we use the root-mean-square SEE (RMS SEE) to evaluate
the long-term precision error for clinical use.

RMS SEE; = \/ Diza (i — 2_)82?]3 . (4)

The confidence intervals of RMS SD and RMS SEE can be derived
using transformation of a Chi-squared distribution. The generic formula of
(1 — a) ¢ 100% confidence interval is

d d
7f Absolute Precision, 2f - Absolute Precision | . (5)
Xi-g 4 Xg df

2

Thus, for short-term precision, df = " (n; — 1) and the absolute
precision error is RMS SD. For long-term precision, df = Y. (n; — 2)
and the absolute precision error is RMS SEE. The values of Xi%, df
and X2%’ 4 can be obtained from most software and tables from statistics
text books.

The absolute precision error depends on the unit of measurement. While
it gives important information on measurement errors, it is inadequate for
comparing precision errors across several techniques or measurements. For
diagnosis or for monitoring longitudinal changes, we are usually more inte-
rested in the relative precision of a technique than in the absolute minimum
measurement errors.
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2.3. Relative short-term precision errors
2.3.1. Short-term coefficient of variation

The most commonly used measure of relative precision error is the coeffi-
cient of variation (CV), defined as the ratio of the standard deviation to the
mean measurement. It is usually given on a percentage basis. CV is unit
free and therefore can be used with different techniques and instruments.

CV has a long history as a measure of reproducibility. It was first pro-
posed by Karl Pearson in 1895 to measure the variability of a distribution.
The distribution of CV is complicated. The simplest case is one individual
with repeated measurements. Assuming that X;; obtained from the ith
individual are independent identical samples from a normal distribution
N(u;,0?), the density functions for CV; is'®:

fov, (x;ni, Ai)

—ni)\?/Z oo T\ k . n;—2
e il (v nzAz) r <m+k> T a0,
= - (6)
z <0,

n;+k 7

e~ MiA] /2 Z (—\/Qni)\i)kr‘ (ni + k) |2
(1+4+a2)" 2

VAD(Lgt) &= k! 2
with \; = 0;/p;. Asymptotically, the variance of CV; is A4/ %(% + A2).16

This individual CV is only meaningful if the subject has multiple mea-
surements. When all individuals in a study have only one measurement, a
population CV can be defined similarly to the ratio of population standard
deviation and population mean. Such a CV is no longer related solely to
measurement errors but to a combination of measurement errors and popu-
lation variations. Feltz and Miller'” gave an asymptotic y2-test (DAD test)
to compare the CV from k-populations. Fung and Tsang'® compared the
DAD test with the likelihood ratio test (LRT), and the squared ranks test
(SRT) in a simulation study. They concluded that the DAD test is a very
good test for CVs from k-populations of normal distributions, although it
is not robust, for a symmetric distribution with heavy tails. The LRT does
not control type I errors correctly, although it is very powerful. The SRT
is slightly liberal, but rather robust. In radiological studies, the population
CV is rarely of interest, and it will not be discussed in detail here.

An alternative CV for non-normal distributions is the non-parametric
CV, defined as the ratio of inter-quartile range over the median of
the population.!® The confidence interval and hypothesis testing for the
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non-parametric CV can be derived using bootstrap or jackknife resampling
techniques.20:2!

In radiology, we are more interested measurement errors in a random
effects model. Here, we assume that

Xij=0;+eiy, (7)

where 6, is the unobserved true (expected) value for the ith subject that
follows a N (p, 72), and ei,; are independent measurement errors that follow
N(0,0?). As in Sec. 2.2, the RMS SD in (2) is the best estimate of o. Thus,
for short-term precision, CV is defined as

RMS SD

CV = 100 x %, (8)

Where X is the mean of X; ;. This is also called within-batch CV in
laboratory medicine.?? The distribution of this short-term precision is much
more complicated because means of subjects 6;’s also follow a normal
distribution. Quan and Shih?3 derived the asymptotic sample variances for
short-term CVs. The derivation requires two assumptions: (1) the number
of repeated measurements of a patient n; will not be more than a posi-
tive number C; (2) the proportion of subjects with n; = | converges to a
constant 0 < p; < 1, as m — oco. Under these two concditions, the asymp-
totic standard deviation of moment estimator of short term CV defined in
formula (8) is

\/0_2 o o2+ (O nd)r? o2

+ )
pt (it mi)? 207350 (ni — 1)
for m — oo. The sample variation when Xj ;’s follow log-normal distribu-
tion can also be found in Quan and Shih.?3
It is often useful to compare the CVs of different techniques, or of the
same techniques at different research centers. When comparing the same

(9)

technique at different centers, the measured subjects in different centers
are independent so it is appropriate to use the DAD test similar to Feltz
and Miller.'” When comparing the CVs of different techniques, however, it
is preferable to apply the techniques to the same set of subjects to control
for confounding factors. This resulted correlated estimated CV and testing
can be complicated. A two-step bootstrap algorithm can be used to compare
two or more CVs:

Step 1. Draw m random samples with replacement from the study
subjects.
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Step 2. For each selected subject (possibly selected multiple times but
treating each measurement as an independent sample) in Step 1,
draw n; random samples with replacement from his/her corre-
sponding measurements.

Step 3. Calculate the difference of the two CV’s based on data in Step 2.

Step 4. Repeat Steps 1 to 3 many times (1,000-2,000 times).

Step 5. Calculate the 95% bootstrap confidence intervals of the differ-
ences. If the 95% bootstrap confidence interval excludes 0, the
null hypothesis that the two CVs are equal is rejected.

2.3.2. Alternative forms of short-term coefficient of variation

Intuitively, the larger the CV, the larger the precision errors and the poorer
the technique’s ability to monitor changes. However, this is not always true.
To use CV, the value 0 of a measurement should have some physical mean-
ing. For example, 0 bone mineral content and density have clear physical
meanings. On the other hand, 0 value in speed of sound (SOS) in quan-
titative ultrasound has no physical meaning — the lower limit for speed
of sound in water is around 1500 m/s. When the value 0 has no physical
meaning, the origin of the parameters can be moved up or down so that
CV has no physical meaning. Secondly, using CV to characterize the pre-
cision error of a technique implies that the precision error is proportional
to the quantity of measurements. This is not true for many bone densito-
metry measurements. Normally, we see that the lower the bone density, the
higher the relative precision errors (actually, even the absolute precision
error increases with decreasing BMD). Thus, CV is not always a robust
parameter for evaluating precision, at least for bone densitometry in osteo-
porosis research. Third, the mean value of the measured quantity, in many
cases, is not the primary interest. We are more interested in discriminating
between patients and normal controls, monitoring changes in bone status,
or evaluating treatment responses, and CV is inadequate for these pur-
poses. A major limitation of CV is that it does not take into account the
impact of the technique’s responsiveness to changes caused by disease or
disease progression. When a technique has a very low precision error (i.e. a
very “good” precision) but an even lower responsiveness (e.g. differences
between healthy and diseased subjects or changes as a result of disease
progression or treatment) it will not have a good longitudinal sensitivity to
detect changes caused by disease over short time periods. Therefore, several
approaches to adjust for differences in responsiveness have been proposed.
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Miller et al.?* proposed a standardized coefficient of variation (SCV)
as the ratio of absolute precision over the range (5th to 95th percentiles)
of parameters. The range can be obtained from manufacturer’s normative
data or from the observed study subjects when the sample size is large
enough and sampling procedures are appropriate. Mathematically,

SOV — Absolute Precision o 100%
Range

_ Absolute Precision
© 95% tile — 5% tile
1025

* 100% . (10)

Alternatively, Blake et a
deviations as the measure for the range of the measure. Thus, the precision
error is measured by the ratio of standard deviation of measurement errors

proposed using the population standard

over measured population standard deviation (including both measurement
errors and population variations), which we call it SCV2. SCV2 relates to
the attenuation parameter in the measurement error models?® that mea-
sures the bias caused by measurement errors in linear and non-linear re-
gression analysis. Because the width of the 90th percentile range in SCV is
about 3.3 times the population standard deviation, SCV is approximately
a third of SCV2.

Machado et al.?” proposed a similar standardized precision measure-
ment by replacing the range in the above formula with the differences in
mean values of parameters for diseased and normal subjects, which we call
SCV3. It is important to note that all these standardized CVs are also
unit free.

In osteoporosis research, the population range or standard deviations of
BMD change across different age groups. To adjust for the age effects on
precision errors, Langton®® proposed a precision parameter, ZSD. A ZSD is
the standard deviation of an individual’s Z-scores, z; ;’s, a transformation of
the observed measurement X; ;’s. This Z-score is different from Z-statistics
in statistical literature. Here, Z-score is defined as z; ; = %{ge”
w(age;) and o(age;) are the BMD mean and standard deviation of the age
group for the ith subject. Therefore, a Z-score is the number of population
standard deviations by which a subject’s value varies from the population
age-matched mean. It is unit free. A RMS ZSD will be a measurement for
a technique.

The standard deviation of z; ; is ZSD; = % x 100%. Thus, ZSD;
for the ith subject is actually an age matched SCV2. A RMS ZSD is a RMS
average of individual SCV2’S.

where
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The SCV proposed by Miller et al.?* is an important step in recognizing
the limitations of a traditional CV. SCV often provides different information
than CV. For example, PA spine BMD measured by a DXA scanner such
as the Hologic QDR-1000 has a higher short term CV (1%) than speed of
sound (SOS) (0.3%) measured by quantitative ultrasound machines like the
Hologic Sahara. However, defining the SCV as the ratio of RMS SD over
the young adult population SD gives the opposite result: the SCV of PA
spine BMD is 8% and SOS is 20%.2° Rather than using the population
standard deviation, ZSD uses the age specific population standard devia-
tion. ZSD has advantages when the population variance varies for different
age groups, and the purpose of the technique is to determine the differences
of individual subjects from their corresponding age group means.

An important limitation of SCV and SCV2 is their dependence on the
normative data. In most cases, normative data from different equipment
manufacturers are not comparable. Different manufacturers have different
normative data based on different selection criteria. The procedures for
collecting data may not always follow appropriate statistical sampling
procedures and thus may not represent the true population distribution
of the parameters. Comparing two SCVs based on two different norma-
tive data sets can be like comparing apples to oranges. Many precision
studies have small sample sizes and subjects are recruited from conve-
nient samples. The study sample may not be compatible with normative
populations. These logistic difficulties severely limit the scientific validity
of SCVs.

Statistical properties and hypothesis testing procedures for all the SCVs
are complicated and have not been fully studied. In all these cases, the
bootstrap method can be applied to resolve the real application needs.

2.3.3. Sample size for short-term precision studies

When planning for a short-term precision study, there are always trade-offs
between the number of study subjects and the number of measurements. In
most cases, we plan to have the same number of measurements n for all the
m study subjects. Sample size calculations can be based on the width of
the confidence intervals or on the null hypothesis. In both cases, one should
have some idea of the ratio between population standard deviation 7 and
population mean .

For a given n, the asymptotic (1 — «) e 100% confidence width for
estimated CV A is
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T2 1

A A2
DT AN LA S 11
Z1-a/2 fm\/n+u2+2(n_1) (11)

This is obtained by rearranging formula (9). A similar argument for the
sample size to test the hypothesis Hy : A = Ao versus Hy : A # Ag is
given as

2
m— . (12)
(A1 = Ao)?

Here, a and f3 are the types I and IT errors; A; is the alternative CV; and 7;
and p; are population standard deviation and means under the null (i = 0)

and alternative (i = 1) hypotheses.

Equation (12) shows that the sample size m decreases as number of
measurements n increases. In practice, recruiting subjects is more difficult
and costly than repeating measurements. However, many factors can influ-
ence precision errors and selecting a small number of patients can either
over- or under-state the true precision of the technique in clinical use. For
example, measuring only healthy young women to evaluate DXA scanner
precision will give smaller precision errors and will overstate the preci-
sion of the scanner. Measuring only elderly osteoporotic women will give
larger precision errors and will understate the precision of the scanner.
Some balance of confounding factors for precision errors must be achieved

to represent the clinical population to which the machine or technique will
be applied.!! Within the given cost constraints, one should try to reach as
many subjects as possible.

2.4. Relative long-term precision errors and sensitivity of
monitoring changes

Short-term precision is useful for evaluating the utility of a diagnostic
technique. The smaller the precision error, the easier to separate diseased
and normal subjects. This is particularly true for standardized precision
errors. They cannot, however, describe the ability of a technique to monitor
changes.

2.4.1. Longitudinal CV

Like the limitation of short-term absolute precision errors, RMS SEE de-
pends on the measurement unit and is not appropriate to compare across
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techniques. Correspondingly, we can define a longitudinal CV as
RMS SE
X

If we assume that the changes of measurements for individual subjects over
time follows a linear model, that is

CV =100 x %L . (13)

Xij=a;+bitij +eij, (14)

with ¢; ; the measurement time for the jth measurement of the ith subject,
the longitudinal CV is

ov - \/ZZL S (X — @i — biti )2/ S (ni — 2)
oty Xi/m '

Here, a; and b; are the estimated intercept and slop and X is the average
for the ith subject. Derivation of asymptotic standard deviations of Eq. (15)
has not yet been reported in the literature.

Although, it is inexplicitly, the longitudinal CV depends on the length of
time that the measurement performed. If the length of time and frequency
of measurements are different for the same technique and same subjects,
the CV may be different. This is because that X; = a+ bt;, which is not the
case for the absolute precision. Therefore, to compare the same technique
on different machines, the absolute longitudinal precision in RMS SEE is
more appropriate. When comparing different techniques, the measurement
times should be identical. The best plan is to measure the same subjects at
the same time. Otherwise, their longitudinal CVs will not be comparable.

(15)

2.4.2. The least significant change

For clinical decision making it is important to know the minimum mag-
nitude of measured change that is not caused by measurement errors.
The least significant change (LSC) is defined as 2.8 times the longitudinal

29 ;

absolute precision,*” i.e.

LSC = 2.8 x RMS SEE. (16)

More specifically, if we observe a change of a subject more than LSC, we
will have 95% confidence that the change is beyond measurement errors.
The derivation of the LSC is based on the following argument. Let
X, and X5 be two successive measurements of a subject. If there is no
change in the two measurements, the difference between them is the result
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of longitudinal measurement errors. If we assume the longitudinal measure-
ment variation is o, as estimated by RMS SEE in Eq. (4), Pr(|X; — Xs| >
21—a/2 \/50) = «. The least significant change is also called the “biologically
significant change” in laboratory medicine.??

The longitudinal precision error must be used to evaluate the LSC rather
than the short-term precision error, which is normally smaller than the
longitudinal precision error.

The significance level of 5% has no clinical meaning. Therefore, there
is no need to insist on 95% confidence when evaluating the LSC. To treat
patients early, before the disease progresses, lower confidence levels can be
chosen. Another parameter trend assessment margin (TAM) was proposed
as 1.8 x RMS SEE, which was calculated as corresponding to an 80% con-
fidence level.3Y The LSC and TAM can also be approximately calculated in
percentages based on longitudinal CV’s.

2.4.3. Follow-up time interval

Radiological variables are often used as monitoring tools for individual
patients. To assess the sensitivity of a technique for monitoring patients,
Gluer®® introduced the concept of “monitoring time interval” (MTI). The
MTT for assessment of disease progression or treatment response is an es-
timate of the time period after which a patient will have a 50% chance of
showing changes that exceed the LSC. Thus,

MTT = LSC/Median Changes Per-Annual . (17)

The changes here can be caused by age, disease progression or treatment
efficacy depending on the purpose of the study. The change also should
be consistent with the units of the LSC. That is, if LSC is expressed as
absolute precision, the change should be expressed as absolute changes. If
the LSC is expressed as a percentage, a percentage change should be used.
It is important to note that the unit of MTI is a year.

Similarly to TAM, Gluer3® also suggested the “trend assessment inter-
val” (TAI) an estimate of the follow-up time after which a subject will have
50% chance of changes exceeding TAM.

The determination of appropriate monitoring time intervals always
represents a tradeoff between frequent visits with patient discomfort and
additional costs, and fewer visits with the risk of substantial disease progress
in the interval. MTI requires the usual 95% confidence level, which means
the corresponding monitoring time interval would be almost double the
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TAM. This shows that MTT and TAI, as applications of longitudinal preci-
sion, when defined in this fashion, have a direct and very intuitive meaning
closely related to recommended monitoring time intervals. However, one
should note that there is no single MTI (TAI) for each technique. They will
differ substantially depending on the expected response of the patients. For
their purpose, this is not a disadvantage, since it directly reflects that the
frequency of follow-up measurements will depend on the type of patient
examined. In osteoporosis clinics, for example, fast bone losers should have
MTTs shorter than average postmenopausal women.

2.5. Examples of applications of precision errors

In this subsection, we give some examples of calculating absolute and
relative precision as described in the previous subsections.

2.5.1. Ezxample 1

The short-term precision errors of two quantitative ultrasound scanners
for osteoporosis from two different manufacturers were compared. Twenty

Table 1. SOS (m/sec) at calcaneus of 20 volunteers.

Subject Manufacturer 1 Manufacturer 2
ID Measure 1  Measure 2  Measure 1 = Measure 2
1 1499 1505 1579 1586
2 1487 1488 1594 1590
3 1471 1465 1543 1556
4 1468 1467 1536 1545
5 1501 1504 1587 1588
6 1516 1517 1618 1605
7 1490 1491 1580 1587
8 1569 1565 1670 1683
9 1534 1543 1641 1641
10 1464 1468 1547 1558
11 1509 1510 1591 1593
12 1567 1541 1621 1647
13 1514 1509 1605 1625
14 1539 1540 1619 1614
15 1540 1537 1632 1648
16 1532 1535 1616 1617
17 1544 1531 1629 1636
18 1578 1574 1637 1644
19 1484 1482 1574 1576

20 1518 1522 1606 1610
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Table 2. Short-term precisions and related parameters.

Statistics (and equation number)

Manufacturer
RMS SD (2) CV (8) SD for CV (9) SCV (10) SCV2
1 5.30 0.35% 0.06% 5.33% 16.28%
2 7.59 0.47% 0.07% 8.29% 21.62%

healthy elderly volunteers participated in the study. Speed of sound (SOS)
at the calcaneus was measured twice on the same day for each subject. The
data is given in Table 1.

Therefore, we have m = 20 and n; = --- = ngg = 2. The results are
summarized in the following Table 2.

SCV2 was defined in Sec. 2.3.2, immediately after Eq. (10). We did
not calculate SCV3 and ZSD here because SCV3 requires information from
individual disease status and ZSD requires manufacturer’s normative data,
and neither were available. It is worth-noting that classical CV for SOS
is very low compared to BMD measured by DXA (CV range from 1% to
6%). However, this does not mean that SOS is more precise in clinical
use. The clinically useful range of SOS does not begin with zero and, in
fact, zero is not defined here. That is why SCV and SCV2 are more mean-
ingful in this example. The reported SCV2 for BMD measured by DXA
ranged from 8% to 11%,® far less than SOS on a quantitative ultrasound
scanner.

2.5.2. Ezxample 2

Five normal volunteers participated in a longitudinal quality evaluation
study for two new quantitative ultrasound (QUS) devices from different
manufacturers with in one year. Table 3 lists their SOS measurements.

Table 4 displays the longitudinal precision. Although not all subjects
demonstrated linear changes over time — Subject 3 in particular had
some non-linear changes in Machine 1 — we applied only linear trends
to all individuals. Also, as pointed out in Example 1, CV is not an appro-
priate measurement for SOS in QUS. CV is included in Table 4 only for
demonstration.

Thus, although Machine 2 has higher precision errors, it is more sensitive
to changes in age and may be a better choice for longitudinal follow-up. Of
course, the sample size in this study is too small to reliably determine the
monitoring time intervals.
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Table 3. Longitudinal QC data for 5 normal volunteers.

SOS (m/sec) SOS (m/sec)

Subject  Date Machine 1 Machine 2  Subject Date Machine 1 Machine 2

1 09/21/97 1554 1636 3 05/07/98 1588 1698
1 10/04/97 1563 1642 3 06/01/98 1586 1717
1 11/05/97 1546 1634 3 07/24/98 1587 1708
1 11/18/97 1554 1635 3 09/23/98 1588 1708
1 12/29/97 1560 1656 4 09/22/97 1598 1709
1 01/09/98 1551 1626 4 10/04/97 1595 1694
1 02/04/98 1556 1648 4 10/29/97 1601 1698
1 02/24/98 1548 1642 4 11/17/97 1585 1677
1 03/22/98 1552 1658 4 12/12/97 1590 1696
1 04/11/98 1562 1665 4 12/28/97 1608 1720
1 05/07/98 1544 1637 4 01/25/98 1593 1691
1 07/11/98 1548 1653 4 02/20/98 1595 1692
1 08/13/98 1567 1672 4 03/11/98 1586 1688
1 08/26/98 1563 1658 4 03/23/98 1593 1718
1 09/21/98 1554 1646 4 04/24/98 1594 1722
2 09/22/97 1560 1654 4 06/13/98 1602 1727
2 10/05/97 1565 1660 4 06/26/98 1600 1733
2 11/06/97 1563 1643 4 07/27/98 1598 1708
2 11/19/97 1562 1652 4 08/09/98 1591 1719
2 12/22/97 1558 1663 4 09/21/98 1594 1714
2 01/04/98 1572 1680 5 09/22/97 1591 1664
2 02/05/98 1567 1674 5 11/14/97 1586 1678
2 02/19/98 1566 1667 5 12/17/97 1587 1677
2 03/23/98 1568 1677 5 12/29/97 1605 1703
2 04/12/98 1572 1663 5 02/01/98 1587 1682
2 05/08/98 1569 1661 5 02/15/98 1586 1681
2 07/12/98 1573 1650 5  03/20/98 1588 1688
2 09/21/98 1576 1695 5 04/02/98 1594 1693
3 09/22/97 1579 1654 5  05/05/98 1594 1682
3 11/17/97 1575 1666 5 05/19/98 1593 1684
3 12/15/97 1576 1667 5 06/27/98 1594 1695
3 01/13/98 1571 1669 5  07/11/98 1596 1677
3 01/29/98 1573 1670 5 08/13/98 1594 1675
3 03/03/98 1579 1676 5 08/26/98 1596 1701
3 03/27/98 1580 1690 5 09/21/98 1594 1689
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Table 4. Longitudinal precision for 2 QUS machines.

Machine 1 Machine 2

Subject d.f SEE  Mean CvV SEE  Mean CV

1 13 7.11 1555  0.46%  10.87 1647  0.66%
2 11 3.25 1567  0.21% 12.74 1665 0.77%
3 9 4.07 1580  0.26% 8.17 1684  0.49%
4 14 6.14 1595  0.39% 13.67 1707  0.80%
5 13 4.91 1592 0.31% 10.00 1685  0.59%
Total 60 5.43 1578  0.34% 11.49 1678  0.69%
LSC (m/sec) 15.21 32.18
MTI (yr) 2.5 1.3

3. Statistical Process Control Charts

In Sec. 2, we introduced the concept of measurement errors and the
statistics to evaluate them. Precision errors are usually evaluated when-
ever new techniques or new devices are developed. Precision errors are
also evaluated immediately after a device is installed in clinical sites to
assure that the equipment is performing according to the manufacturer’s
specifications at baseline. Precision errors also are always assessed before
the beginning of clinical trials or longitudinal studies.”3! Although the
manufacturer’s service personnel can set up the device so that precision
errors are within appropriate limits at baseline, it is very important to
monitor the equipment to assure that imprecision remains within acceptable
limits. Despite the remarkable accuracy and reproducibility of radiological
equipment, measurements can still vary because of changes in equipment,
software upgrades, machine recalibration, X-ray source decay, hardware
aging and/or failure, or operator errors.

In an ideal setting, a well maintained equipment produce values that
are randomly spread around a reference value. A change point is defined
as the point in time at which the measured values start to deviate from
the reference value. To evaluate measurement stability and identify change
points, radiologists develop phantoms that simulate human measurements
but, unlike humans, do not change over time.”3?:33 Variations in phantom
measurements should reflect variations in human measurements. Phantoms
are measured regularly to detect one or more of the following events: (1) The
mean values before and after the change point are statistically significantly
different; (2) The standard deviations of measurements before and after the
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Table 5. AP spine BMD of a hologic phantom in a

May 1989).

QC study (13 March 1989 to 15

i Date BMD (X;) 1o o(=pn x 0.5%)
41 03/13/89 1.039 1.033 0.00517
42 03/15/89 1.039 1.033 0.00517
43 03/21/89 1.029 1.033 0.00517
44 03/22/89 1.036 1.033 0.00517
45  03/23/89 1.030 1.033 0.00517
46 03/27/89 1.033 1.033 0.00517
47 03/28/89 1.036 1.033 0.00517
48  03/29/89 1.038 1.033 0.00517
49  03/30/89 1.036 1.033 0.00517
50 04/03/89 1.033 1.033 0.00517
51  04/04/89 1.036 1.033 0.00517
52 04/05/89 1.034 1.033 0.00517
53 04/06/89 1.029 1.033 0.00517
54 04/07/89 1.033 1.033 0.00517
55  04/10/89 1.037 1.033 0.00517
56  04/14/89 1.042 1.033 0.00517
57 04/17/89 1.044 1.033 0.00517
58 04/18/89 1.041 1.033 0.00517
59  04/19/89 1.040 1.033 0.00517
60 04/20/89 1.036 1.033 0.00517
61  04/28/89 1.039 1.033 0.00517
62 05/01/89 1.035 1.033 0.00517
63  05/02/89 1.047 1.033 0.00517
64 05/03/89 1.028 1.033 0.00517
65 05/04/89 1.035 1.033 0.00517
66  05/05/89 1.038 1.033 0.00517
67  05/09/89 1.031 1.033 0.00517
68 05/10/89 1.041 1.033 0.00517
69 05/12/89 1.043 1.033 0.00517
70 05/15/89 1.034 1.033 0.00517

change point are statistically significantly different; (3) The measurements
after the change point show a gradual but significant departure from the

reference value.

In Table 5, we introduce our third example, which is roughly two months
of quality control data from a DXA scanner. In this example, a Hologic
spine phantom was scanned about three times a week. The purpose of the
study was to monitor the stability of the DXA scanner. If the scanner is
functioning acceptably, the coefficient of variation should be less than 0.5%
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in the total AP spine BMD values. (Information on this data set can be
found in Lu et al.3*). In Table 5, 7 is an indicator of the observation number;
date is the date the scan was performed; BMD is the ith measurement; g
is the reference value based on historical QC data; and o is the standard
deviation based on 0.5% CV. We will use this data to illustrate statistical
process control charts.

Statistical process control (SPC) is a powerful collection of problem
solving tools for achieving process stability and improving capacity
through reduction of variability.?® There are several statistical methods for
identifying change points. One is to visually check the retrospective data
to determine the change points and then to verify these changes by a t-test
for means and an F-test for variances. An alternative is to use statistical
process control charts.343% In this section, we introduce these methods and
provide examples of their application in monitoring BMD measured by
DXA scanners in osteoporosis studies.

3.1. Visual inspection

Potential change points in the data can be determined after careful visual
inspection. This can be done by plotting longitudinal phantom data over
time and using visual judgment to identify the potential change points
created by drifts or sudden jumps. Statistical tests, such as the ¢-test, can
be used to confirm the significance of the changes. It is important to note
that there can be multiple potential change points observed for a given
period of time. Careful control for type one errors for repeated tests is
recommended for the t-tests.

Only experienced medical physicists or radiologists should perform
periodic visual inspections. The role of primary evaluator should always be
taken by the same individual to avoid subjective variations. The selection
of the change points is based on the scatter plot in the most recent data.
Once a change point has been identified, its cause should be investigated
to determine if the change is machine related.

Visual inspection is not recommended because its efficiency depends on
the experience of the reviewer and may not be reproducible.

3.2. Shewhart control chart

A Shewhart chart is a graphic display of a quality that has been measured
over time. The chart contains a central horizontal line that represents the
mean reference value. Three horizontal lines above and three below the
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central line indicate 1, 2, and 3 standard deviations from the reference
value. By plotting the observed quality control measurements on the chart,
we can determine if the machine is operating within acceptable limits.

The reference values can be derived from theoretical values for the
phantom, or from the first 25 observations measured at baseline. The refer-
ence value changes whenever the Shewhart chart indicates an out of control
signal and the machine is recalibrated. The new reference value will then
be the mean of the first 25 observations after recalibration. The number of
observations needed to calculate the reference value may vary; the number
25 was chosen based on practical experience to balance the stability of the
reference value with the length of time needed to establish it.

The standard deviation varies among individual devices, and manu-
facturers should be selected accordingly. For example, in one osteoporosis
study, we sometimes use the BMD of a Hologic phantom to monitor DXA
scanner performance. We usually assume the coefficient of variation for
Hologic machines to be 0.5% and Lunar to be 0.6%, based on reported
data on long-term phantom precision.?” Therefore, the standard deviation
for the scanner was calculated as 0.005 and 0.006 times the reference value
for Hologic and Lunar machines respectively.

The original Shewhart chart will signal that there is a problem if
the observed measurement is more than 3 standard deviations from the
reference value. Although intuitive and easy to apply, the chart is not very
sensitive to small but significant changes.?® Therefore, a set of sensitizing
tests for assignable causes has been developed to improve the sensitivity of
Shewhart charts. Eight of the tests are available in the statistical software
package SAS.3® The tests are listed in Table 6.

Table 6. Definition of tests for assignable causes for Shewhart charts.

Tests  Pattern Description

One point is more than 3 standard deviation from the central line.
Nine points in a row on one side of the central line.

Six points in a row steadily increasing or steadily decreasing.
Fourteen points in a row alternating up and down.

T W N~

Two out of 3 points in a row more than 2 standard deviation from the

central line.

6 Four out of 5 points in a row more than 1 standard deviation from the
central line.

7 Fifteen points in a row all within 1 standard deviation from the central
line on either or both sides of the line.

8 Eight points in a row all beyond 1 standard deviation from the central

line on either or both sides of the line.
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Fig. 2.  Shewhart chart for QC data in Example 3.

The sensitizing rules can be used in toto or in part depending on the
underlying processes of interest. For example, for quality control of DXA
machines, we used four tests — 1, 2, 5 and 6.3* Once a change point has
been identified by any one of the tests, the manufacturer’s repair service
should be called to examine the causes and to recalibrate the machine.
We then use the next 25 observations to generate new reference values and
apply the tests to the subsequent data according to the new reference value.

Figure 2 shows the application of a Shewhart chart for Example 3. In
this chart, the dots are the observed BMD. The six lines are the control
limits 1, 2 and 3 standard deviations away from the central reference line.
There is a problem with Test 2 from April 10, 1989.

The sensitizing rules increase the sensitivity of the Shewhart chart, but
also increase the number of clinically insignificant alarms, which is not
desirable. To overcome this problem, a threshold based on the magnitude
of the mean shift can also be implemented. For example, we can select
ten consecutive scans from after the possible change point identified on
the Shewhart chart, and then calculate their mean values. If the mean
differs by more than one standard deviation (which equals 0.5% times the
reference value, in our example) from the reference value, the change point
is confirmed as a true change point. Otherwise, the signal from the Shewhart
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chart is ignored and the reference value is unchanged. This approach filters
out small and clinically insignificant changes. However, the true difference
must be more than one standard deviation for this approach to be effective,
and this approach can delay the recognition of true change points.

3.3. Mowving average chart

An alternative method is to determine the means and standard deviations
of 25 consecutive measurements and then plot them over time. Control
limits can be based on the assumption of a constant coefficient of variation
during the process (0.5% times the reference mean) and a type one error rate
comparable to the original Shewhart method (0.27%).3° More specifically,
we use X;, for i = 1,2,...,n, the measured QC values of n longitudinal
phantom scans from a machine. We define the moving average mean and
standard deviation based on 25 scans as:

Mi= Y X;/25, i=2526,....,n (18)
j=i—24
as the moving average of 25 scans to the date when the ith scan was col-
lected, and

K3
Si=, > (Xj—Mi)2/24, i=25,26,...,n (19)
j=i—24
as the moving standard deviation of the 25 scans to the date when the ith
scan was collected. Note that the first moving average can only be calculated
after the first 25 scans have been collected.

Now if we assume that X;’s independently follow a normal distribu-
tion N(u,0?), it can be shown that the M;’s follow a normal distribution
N(u,0?/25) and 24 S? /0?’s follow a chi-square distribution with 24 degrees
of freedom denoted by x3,. However, note that both M;’s and 24 52 /5?’s are
not independent samples from the normal distribution and the chi-square
distribution, respectively, for different i’s.

Let po be the reference mean. If the machine is operating correctly,
we should accept the null hypothesis, Hy : p = po. If the machine is not
operating correctly, we will accept the alternative hypothesis, Hy : p #
to. We select a type one error level of 0.0027 to be comparable to the
original Shewhart method. We will reject the null hypothesis if |M; — uo| >
21—a/2% = 0.5991c. Thus, the control limits for the moving average are
+59.91% of the standard deviation from the reference mean.
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We assumed that the CV for the machine is constant. Therefore, if
it is functioning correctly, we can derive the standard deviation as equal
to the reference mean times the CV. To check whether the precision of
the machine is acceptable, we will test the null hypothesis, Hy : ¢ = oy,
versus the alternative that Hy : ¢ > o¢. With the same level of type
one error rate as the mean difference, we will reject the null hypothesis
if 24 S57/08 > X34.1_a» OF equivalently, if S; > 1.410¢. Thus, the control
limit of the moving standard deviation is 1.41 times the standard deviation.

Note that there is only an upper limit for the moving standard deviation
chart, as we are interested only in the increase in the standard deviation. In
other words, we are looking for quality control but not quality improvement.
Once the moving average moves out of the control limit, the value of the
moving average at that point is used as the new reference value for scans
performed after that date.

The number of scans used to calculate the moving average will affect
performance of the method. Twenty-five scans were selected based on power
analysis, so that the moving average chart has less than a 0.27% chance of
a false alarm and a 98% chance of detecting an increase in the mean of one
standard deviation. Also, the moving standard deviation chart has a 98%
chance of picking up a 100% increase in the standard deviation.3* Twenty-
five scans is also a typical month’s worth of quality control measurements.

3.4. CUSUM chart

CUSUM chart is short for Cumulative Sum Chart. In applications, we re-
commend a version of CUSUM known as Tabular CUSUM?® because it can
be presented with or without graphs. Mathematically, we define an upper
one-sided tabular CUSUM Sy (i) and a lower one-sided tabular CUSUM
S (i) for the ith QC measurement as the following;:

Sy (i) = max [o, % — k4 Sy(i— 1)} : (20)

M—kJrSL(i—l)]. (21)

Sr (i) = max [0,
Here, po is the reference mean, o is the standard deviation, and k is a
parameter to filter out insignificant variations and is usually set at 0.5. The
initial values of S (0) and St (0) are 0. The chart sends an alarm message
if Sp.(i) or Sy (4) is greater than 5. In other words, when the standardized
BMD value deviates more than k from zero, the cumulative upper bounded
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sum increases by the amount of deviations above k. On the other hand, if
the deviation is less than &, the cumulative sum will be reduced accordingly.
When the cumulative sum is less than zero, we ignore the past data and
set the cumulative sum as zero. However, a cumulative sum greater than 5
is a strong indication of a deviation from the reference mean in the data.

CUSUM also estimates when the change occurred and the magnitude
of the change. We use the estimated magnitude of change to establish the
new reference values.

Table 7 demonstrates the application of CUSUM chart to Example 3.

In this table, Sg (i) and Sr(i) are defined in Egs. (20) and (21), and
we selected k& = 0.5 to detect a mean change of one standard deviation.??
Along with the sequences Sp (i) and Sr(i), sequences Ny (i) and Np (i)
denote the number of scans since the last positive observation of S (%)
and Sg (i), respectively. For example, from records one to four, the Sg(i)’s
were positive, so that Ny (i) goes from 41 to 44. However, Sy (45) was zero.
Therefore, the corresponding Ny (45) = 0. A similar rule applies for N (4).

As explained, the initial reference value was obtained from the mean
of the first 25 observations. However, once S (i) or S(i) exceeded 5, we
concluded that the scanner was malfunctioning. For example, on April 20,
1989, Sy (60) > 5, suggesting that the BMD values were too high. We
estimate that this event could have started on April 10, 1989, by noting the
last date when Ny (i) = 1. Therefore, the investigation of assignable causes
should focus around that time. The magnitude of change from the reference
value can be estimated as o[k + Sy (i)/Ng(i)], which equals the average
difference.?®

Once we know the machine is malfunctioning, we will establish new
reference values. If the manufacturer was involved in correcting the machine,
the new mean should be established by the first 25 observations after the
correction. However, if there is no intervention by the manufacturer or, as
in our case, when performing retrospective data analysis, the new reference
value can be estimated by o + o[k + Sg (i) /Np (7)], if the new BMD values
are greater than the reference value, or by pg — o[k + Sg(i)/Np(7)] when
the new BMD values are smaller than the reference value. This results in a
new j after the 60th scan of 1.040 mg/cm?.

Graphical presentation of the CUSUM chart was shown in Fig. 3. In
some senses, it is easier to review the Table 7 than the chart for identifying
change points.

A separate CUSUM chart can be constructed for a one-sided change
in variance. The one-sided variance chart was constructed according



Table 7. CUSUM table (from 13 March 1989 to 15 May 1989).
i Date X; m o Xiz#o _ 05 Sy(i) Np(i) H=%-05 Sp(i) N
(0.5%)
41 03/13/89 1.039 1.033 0.00517 0.65 0.65 1 —1.65 0.00 0
42 03/15/89 1.039 1.033 0.00517 0.65 1.29 2 —1.65 0.00 0
43 03/21/89 1.029 1.033 0.00517 —-1.29 0.00 3 0.29 0.29 1
44  03/22/89 1.036 1.033 0.00517 0.07 0.07 4 —-1.07 0.00 0
45 03/23/89 1.030 1.033 0.00517 -1.10 0.00 0 0.10 0.10 1
46 03/27/89 1.033 1.033 0.00517 —0.52 0.00 0 —0.48 0.00 0
47 03/28/89 1.036  1.033 0.00517 0.07 0.07 1 —-1.07 0.00 0
48 03/29/89 1.038 1.033 0.00517 0.45 0.52 2 —1.45 0.00 0
49 03/30/89 1.036 1.033 0.00517 0.07 0.58 3 —-1.07 0.00 0
50 04/03/89 1.033 1.033 0.00517 —0.52 0.07 4 —0.48 0.00 0
51 04/04/89 1.036 1.033 0.00517 0.07 0.13 5 —-1.07 0.00 0
52 04/05/89 1.034 1.033 0.00517 —0.32 0.00 0 —0.68 0.00 0
53 04/06/89 1.029 1.033 0.00517 —-1.29 0.00 0 0.29 0.29 1
54 04/07/89 1.033 1.033 0.00517 —0.52 0.00 0 —0.48 0.00 0
55 04/10/89 1.037 1.033 0.00517 0.26 0.26 1 —1.26 0.00 0
56 04/14/89 1.042 1.033 0.00517 1.23 1.49 2 —2.23 0.00 0
57 04/17/89 1.044 1.033 0.00517 1.61 3.10 3 —2.61 0.00 0
58 04/18/89 1.041 1.033 0.00517 1.03 4.13 4 —2.03 0.00 0
59 04/19/89 1.040 1.033 0.00517 0.84 4.97 5 —1.84 0.00 0
60 04/20/89 1.036 1.033 0.00517 0.07 5.04 6 —1.08 0.00 0
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Table 7. Continued.
i Date X; o o Xizto 05 Sy(i) Ng(i) %05 Sp@) Np()
(0.5%p.0)
61 04/28/89 1.039 1.040  0.00520 —0.69 0.00 0 —0.31 0.00 0
62 05/01/89 1.035 1.040  0.00520 —1.46 0.00 0 0.46 0.46 1
63 05/02/89 1.047 1.040  0.00520 0.85 0.85 1 -1.85 0.00 0
64 05/03/89 1.028 1.040  0.00520 —2.81 0.00 0 1.81 1.81 1
65 05/04/89 1.035 1.040  0.00520 —1.46 0.00 0 0.46 2.27 2
66 05/05/89 1.038 1.040  0.00520 —0.88 0.00 0 -0.12 2.15 3
67 05/09/89 1.031 1.040  0.00520 —2.23 0.00 0 1.23 3.38 4
68 05/10/89 1.041 1.040  0.00520 —0.31 0.00 0 —0.69 2.69 5
69 05/12/89 1.043 1.040  0.00520 0.08 0.08 1 -1.08 1.62 6
70 05/15/89 1.034 1.040  0.00520 -1.65 0.00 0 0.65 2.27 7
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Fig. 3. CUSM chart for QC data in Example 3.

to Ryan.?? In this approach, the observed difference of two successive
scans X; — X; 1 was transformed to Z; = {|[(Xi — Xi_1)/V202|"/? —
0.82218}/0.34914, which approximately follows a standard normal distri-
bution N(0, 1). For the variance chart, we selected k = 0.75 to reduce the
number of alarms due to single outliers. When an alarm for a change in
variance is identified, we will investigate the causes of the alarm and may
need to recalibrate the machine.

Table 8 is a variance chart for Example 3. The table has calculated
values of Z;. Since Z; follows a standard normal distribution, the upper
side CUSUM for variance is Sy(i) = max[0,Z; — 0.75 + Sy (i — 1)],
which is given in the eighth column. As before, Ny (i) indicates when a
positive cumulative sum occurs and is useful for finding the assignable
causes. The graphic presentation is similar to Fig. 3 and is not presented
here.

The general procedure for deriving the algebraic boundaries of the
CUSUM chart is given in Montgomery3® and Rice?® and theoretical com-
parisons of Shewhart and CUSUM can be found in both books.

The V-mask chart is another form of CUSUM chart and is essentially
the same as the Tabular CUSUM.3%+40
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Table 8. CUSUM table for change of variance for Example 3.

7 Date X; X — Xi—1 0(0'5%M0) Z; Z; —0.75 SH(Z) NH(Z)
55 04/10/89 1.037 0.004 0.00517 —0.24 —0.99 0.000 0
56 04/14/89 1.042 0.005 0.00517 0.01 —0.74 0.000 0
57 04/17/89 1.044 0.002 0.00517 —0.86 —1.61 0.000 0
58 04/18/89 1.041 —0.003 0.00517 —0.52 —1.27 0.000 0
59 04/19/89 1.040 —0.001 0.00517 —1.30 —2.05 0.000 0
60 04/20/89 1.036 —0.004 0.00517 —0.24 —0.99 0.000 0
61 04/28/89 1.039 0.003 0.00520 —0.52 —1.27 0.000 0
62 05/01/89 1.035 —0.004 0.00520 —0.24 —0.99 0.000 0
63 05/02/89 1.047 0.012 0.00520 1.30 0.55 0.554 1
64 05/03/89 1.028 —0.019 0.00520 2.25 1.50 2.053 2
65 05/04/89 1.035 0.007 0.00520 0.44 —0.31 1.742 3
66 05/05/89 1.038 0.003 0.00520 —0.53 —1.28 0.467 4
67 05/09/89 1.031 —0.007 0.00520 0.44 —0.31 0.156 5
68 05/10/89 1.041 0.010 0.00520 0.99 0.24 0.391 6
69 05/12/89 1.043 0.002 0.00520 —0.86 —1.61 0.000 0
70 05/15/89 1.034 —0.009 0.00520 0.81 0.06 0.060 1

3.5. Comparison of statistical process control charts in
osteoporostis studies

Lu et al.3* compared several statistical process control procedures and their
applications to monitoring DXA scanners based on daily scans of a Hologic
spine phantom. The comparisons were based on their results on longitudinal
quality control data from 5 clinical trial sites as well as simulation studies.
They concluded that visual inspection is relatively subjective and depends
on the operator’s experience and alertness. The regular Shewhart chart with
sensitizing rules has a high false alarm rate. The Shewhart chart with sensi-
tizing rules and an additional filter of clinically insignificant mean changes
has the lowest false alarm rate but relatively low sensitivity. This method
does not require a lot of statistics and can be easily applied to clinical
study sites. The CUSUM approach has the best combination of sensitivity,
specificity, and identification of the time and magnitude of change. It is
recommended for use in quality control centers in clinical trials, especially if
patient data must be recalculated to adjust for change points.*! Combining
a moving average chart and a moving standard deviation chart comes closest
to the performance of the CUSUM method as a quality control procedure
for monitoring DXA scanner performance.
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3.6. Other charts

In all the above procedures, we assumed that there is no autocorrelation
between consecutive measurements. This is rarely true for longitudinal
quality control for radiological equipment. The effects of such an assumption
on the use of statistical process control charts and their decision structures
are rather debatable. At one extreme, Wheeler*? argues that the usual
control limits are contaminated “only when the autocorrelation becomes
excessive (say 0.80 or larger).” He concludes that “one need not be overly
concerned about the effects of autocorrelation upon the control chart.” Our
personal experience with Shewhart or CUSUM charts and DXA quality
control has been positive. This does not preclude autocorrelation from being
a problem for other applications. Johnson and Bagshaw*? concluded that
the problem is potentially quite serious. Strike suggested “clever use” of
CUSUMs in laboratory medicine, such as process control for assays.?2

Statistical approaches for dealing with autocorrelation are to construct
process charts based on residuals after removing the autocorrelation or the
use of an exponentially weighted moving-average (EWMA) control chart.??
EWMA is a flexible approach to statistical process control applications.
When applied to uncorrelated data, it is a good alternative to the CUSUM
chart. Applied to autocorrelated data, it can be adapted to form a control
chart that eliminates the excessive false alarm problem associated with
traditional control charts. Details of EWMA can be found in most books
on quality control.3?39

While all the statistical process control charts presented here are for
univariate continuous measurements, there are other types of charts for
proportions and rates,*»%° and other quality control and improvement
techniques from multivariate approaches.3?:46

4. Assessment of Agreement

In quality control for clinical trials, we must always assess the agree-
ment of measurements. For example, during a longitudinal osteoporosis
trial, a study site might upgrade its DXA machine. Because the change of
BMD from baseline is the key measurement, we must be certain that the
BMD values measured by the old and new machines are equivalent or in
agreement. Also in clinical trials that require a radiologist’s assessment of
outcomes, we must be certain that readings from different radiologists are
the same, and that readings at the beginning and the end of the study are
similar. All these require assessment of agreement.
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After a DXA scanner upgrade, multiple phantoms scans should be per-
formed, and if possible, a group of volunteers should be scanned on both
the old and new devices. If human data is available, it can be used data to
assess the agreement rather than phantom data. We hope the volunteers
present a range of BMD wide enough to cover the spectrum of clinical
uses. Before upgrading a machine that is being used in a clinical trial, the
site must first inform the trial sponsors and quality assurance centers for
their approval and must rely on manufacturers to assure proper installation
and calibration. The site must maintain proper documentation for machine
upgrades.

Assessment of inter-reader agreement among radiologists in a clinical
trial and intra-reader longitudinal consistency during a trial, normally re-
quires group training before the trial starts. A database of representative
images is assembled into a database. Potential readers for the study read the
images together and discuss the grading criteria. Only trained radiologists
can be readers. The group training should be documented. After training,
inter-reader agreement should be assessed. If the agreement does not satisfy
the requirements of the sponsors or protocols, the readers will be re-trained
and a new set of test cases used to test for agreement. The trial cannot
start until reader agreement reaches the pre-specified requirements. During
the trial, the radiologists are required to re-read the test sets periodically to
assess the agreement of their current readings with their baseline readings.
This is necessary to assure longitudinal consistency. All tests for reader
agreement should be documented and archived for auditing purposes.

Evaluation of agreement is also important for other purposes, such as
validation of diagnostic methods or radiological devices. In these cases, a
gold standard will be selected and validation is performed to assure the new
measurements agree with the gold standard.

4.1. Association versus agreement

The concepts of agreement and association are related but different. Agree-
ment means interchangeability of two measurements. In other words, a pa-
tient’s BMD should be the same whether measured on an old DXA scanner
or a new one; and the spine fracture grade of a vertebra should be the same
regardless by whom or when it is read. An association, on the other hand,
suggests that two machines or two readers tend to agree in the same di-
rections. In other words, for two patients with different BMD values, both
DXA machines will find the same lower and higher BMD subjects but their
BMD measurements can be different.
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The best example of the difference between agreement and association
is the correlation coefficient of two continuous variables.*”#8 A correlation
coefficient can apply to any two continuous variables regardless of their
scales, such as height and weight. Even if there is a high association between
height and weight, they are not interchangeable because they measure com-
pletely different things. Even when X and Y are two continuous variables
that measure the same physical properties in the same units, an associa-
tion still cannot indicate agreement. In fact, cor(X,Y) = cor(a + bX,Y).
Thus, the correlation is invariant for a shift of mean or a change of scale.
Further, the estimation of the correlation depends on the range of the true
quantity in the sample: the wider the range, the higher the correlation coef-
ficient. Also, the null hypothesis in testing for a correlation coefficient is the
more independent of two variables, which is not relevant to the agreement.
Therefore, the use of correlation to assess agreement is inappropriate. On
the other hand, a high correlation of two continuous variables in the same
scale suggests that it is possible to calibrate variables so that they agree
with each other.

4.2. Assessment of agreement of two continuous variables

As discussed above, only when two variables measure the same physical
property using the same units can they be assessed for agreement. Let
Y; and Y5 be such continuous variables that follow normal distributions
N(py,,0%,) and N(uy,,0%,). They are measured from the same subjects.
The correlation coefficient between Y; and Y is p. Let D = Y; — Y5 and
A = (Y1+Y2)/2. We want to perform a regression analysis of D = a+[8A+e.
We are interested in a = 8 = 0.47
It is easy to verify that

B =cov(D,A)/oh = 0.5(0%, — 0%,)/(0%, — 0%, +200v,0v,),  (22)

and

. My, ;_'UYZ,B. (23)
Therefore, o = § = 0 implies that uy, = py, and oy, = oy,, i.e., the two
measurements have the same distribution parameters.

Bland and Altman®? further suggested plotting the difference D against
average A and calculating the standard deviation of D (op). With 95%
confidence, the differences between paired data are between +20p. If this
op is less than or equal to the precision errors of Y7 and Y5, then these two

o= (:U’Yl - IU’YZ)
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measurements are exchangeable and therefore, equivalent. Also, if op/A x
100% is less than the CVs for Y7 and Y3, they should be equivalent. Here
we use a bar to denote sample means.

Noting that both D and A are random variables, Bartko*® proposed a
bivariate confidence ellipse for the Bland-Altman plot. The equation of the
95% ellipse is

(A—A)?*)o% —2r(A— A)(D — D)*/oaop + (D — D)*/o%
= ¢,2(0.95,2)(1 — 7). (24)

Here, ¢,2(0.95,2) = 5.991 is the 95% quantile of the x?-distribution with
2 degrees of freedom and r is the sample correlation coefficient of D and A.

The hypothesis & = 3 = 0 can be tested using the Bradley-Blackwood
procedure.®® The test statistic is

(i, D2 = X, (D — 6 — Ba,)?)
(220, (D —a - 3a)?)
which simultaneously tests for the zero intercept and slope.

Table 9 shows a dataset of AP Spine BMD (mg/cm?) from 10 normal
volunteers measured on three different DXA scanners. We are interested in
the equivalence of Scanner 1 and the other two scanners.

As shown in Table 9, we can accept the null hypothesis that there is
no difference in means and standard deviations between Scanners 1 and
2 by the Bradley-Blackwood test. There is, however, a significant differ-
ence between Scanners 1 and 3. Further examination of the data shows
that Scanners 1 and 2 have different standard deviations. Using Bland and
Altman’s method, we can plot the comparison of Scanners 1 versus 2 and
Scanners 1 versus 3 (Fig. 4). The dashed line shows that the 95% confi-
dence interval is the most important measurement of these figures. Even
though there is a significant non-zero intercept or slope in the Bland-Altman
regression, we may still be able to treat the two measurements as inter-
changeable if the variation of differences is less than the in vivo short-term
precision error. The 95% confidence ellipse of a Bland-Altman plot is useful
for indicating the differences between sample variances.

F=(n-2)

~F@2,n—2), (25)

A bivariate normal distribution has 5 parameters: two means, two
standard deviations, and a correlation coefficient. The Bland-Altman
regression compares four of the five parameters. We can have two normal
random variables with the same mean and standard deviation but a nega-
tive correlation coeflicient, such as Y and —Y, when mean Y is 0. Thus, the



Table 9.

AP spine BMD of 10 patients by three DXA scanners.

Observed BMD Data

Comparison Scanners 1 and 2

Comparison Scanners 1 and 3

Subject Scanner 1  Scanner 2  Scanner 3 D A Do As
1 1.342 1.328 1.352 0.014 1.335 —0.010 1.347
2 1.303 1.312 1.317 —0.009 1.308 —0.014 1.310
3 1.093 1.100 1.078 —0.007 1.096 0.015 1.085
4 1.092 1.116 1.087 —0.024 1.104 0.005 1.089
5 1.215 1.215 1.216 0.000 1.215 —0.001 1.216
6 1.155 1.157 1.137 —0.002 1.156 0.018 1.146
7 1.125 1.117 1.097 0.008 1.121 0.028 1.111
8 1.434 1.437 1.447 —0.003 1.436 —0.013 1.441
9 1.230 1.225 1.231 0.005 1.228 —0.001 1.231

10 1.326 1.324 1.313 0.002 1.325 0.013 1.320
op 0.0104 0.0141
Bradley-Blackwood Test F 0.6733 5.3645
p-value 0.5367 0.0333
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Fig. 4.

BMD by Scanner 1 — BMD by Scanner 2

BMD by Scanner 1 — BMD by Scanner 3

Examples of Bland-Altman plots for equivalence of 3 scanners. The dashed lines
are the 95% confidence intervals for the differences between two Scanners. The ellipses
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are the 95% bivariate confidence ellipses.

Bland-Altman regression alone is inadequate for evaluating agreement. We
still need to examine the correlation coefficient between the two measure-
ments, in addition to the Bland-Altman regression. Only a high correlation
with a zero intercept and slope in the Bland-Altman regression can suggest

that the two measurements are equivalent.
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4.3. Intraclass correlation coefficient

An alternative measurement for agreement is the intraclass correlation
coefficient (ICC),%' which is simply the percentage of between readers/
techniques variance in the total variance of the sum of between and
within reader/technique variations. More specifically, we assume that Y;; =
p+pi+rj+(pr)ij +€ij, with ¢ representing the ith individual (i = 1,..., N)
and j representing the jth reader/devices (j = 1,...,K). Here, Y;; is the
observation of the ith individual measured by jth reader/scanner /machine;
w is the overall effect common to all observations; p; is the random patient
effect; r; is the random reader/device effect; (pr);; is the interaction be-
tween patient and reader/device; and ¢;; is the measurement error. Here,
we assume that p; and r; are independent and follow normal distributions
N(0,0%) and N(0,0%), respectively, and ¢;; is independent of p; and r;
and follows N (0,02). Without duplicate observations, the interaction term
(pr)i; cannot be separated from measurement error and can be dropped.
An intraclass correlation coefficient is defined as

2

g
ICC= 5—252——. 26
0% + 0% + 02 (26)

Thus, a high ICC means less difference between two readers as well as less
measurement error. Lee et al. suggested a cut-off value of 0.75 beyond which
the readers or measurement devices are considered to be in agreement."!

The ICC can be estimated based on the output of an ANOVA table of
the two-way mixed model as the following.

B N(MSB — MSE)
PICC= NMSB + K MSR + (KN — K — N)MSE -

(27)

Here, MSB, MSR, and MSE are the mean squared between subject, between
reader/device, and error respectively.

Fleiss and Shrout®? derived an approximate formula for the confidence
interval of picc. Let Fy and Fp, be the upper and lower 100(1 — «/2)%
percentiles, respectively from F' distribution with degrees of freedom (N —1)
and v, where

(K = 1)(N — 1){KprocMSR/MSE + N|[1 + (K — 1)picc] — Kpicc)?
(N — 1)K2p3,MSR?/MSE*+ {N[1 + (K — 1)prcc]— Kpicc}?
(28)

v =



Table 10.

ANOVA Tables and ICC for Data in Example 4.

Agreement for

Scanners 1 and 2

Scanners 1 and 3

All 3 Scanners

Source d.f MS d.f MS d.f MS
Between-subject 9 MSB=o03}+Ko%=0.02660 9  MSB = 0.02992 MSB = 0.04278
Between-scanner 1 MSR =02+ No% =0.00001 1 MSR = 0.00008 MSR = 0.00008
Residual 9 MSE = o2 = 0.00005 9 MSE = 0.00010 18  MSE = 0.00010
Total 19 19 29

9.3622 9.9615 19.9237

v

ICC and 95% C.I.

0.9963 (0.9865, 0.9991)

0.9935 (0.9755, 0.9983)

0.9931 (0.9807, 0.9981)

8€T
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The approximate upper and lower bounds, py and py,, respectively, for the
100(1 — @)% confidence bounds of picc are given as following.

N(MSB — FLMSE)

PU= F[KMSR + (NK — L — N)MSE] + N MSB (29)

and
_ N(MSB — FyMSE)
- Fy[KMSR+ (NK — L — N)MSE] + NMSB

PL (30)
Table 10 shows ANOVA tables for comparison of scanners in Example 4,
and the corresponding intraclass correlation coefficients.

It is clear from this example that ICC is less sensitive to agreement
between two scanners. The ICC for Scanners 1 and 3 is much higher but
the Bland-Altman regression shows significant disagreement. Bland and
Altman®? list other deficiencies of ICC for evaluation of agreement, includ-
ing its dependence on sample variations. On the other hand, it is easier
to use ICC to evaluate agreement among three or more readers or devices.
Bartko*® developed an altered version of ICC, which is simplified and has
an exact formula for confidence intervals.

4.4. Kappa statistics for agreement of categorical variables

Like continuous measurements, agreement between two categorical vari-
ables is only meaningful when the two categorical variables have the same
biological or physical meanings. Agreement of categorical variables is most
commonly applied to qualitative evaluations of health or disease status by
two readers or by the same reader at two different sessions, which are re-
ferred as inter-reader and intra-reader agreement respectively. In clinical
studies using qualitative assessments by multiple readers, we hope that
all readers will produce consistent readings, and that their assessments
will remain consistent during the study period. Thus, periodic review of
inter- and intra-reader agreement should be a part of quality control of
clinical trials. If the readers do disagree with each other, re-training is
necessary.

The simplest way to display categorical variables of two readers is a
2 x 2 table, displayed in Table 11. Here, X; and X, are results from
two readers, with 0 indicating healthy and 1 indicating diseased, and P;;
representing the probability of the event. There are many ways to mea-
sure the agreement of two readers. The probability of agreement, i.e.,
P(X1 = X2) = Pyo + P11 is the most direct measurement. Analysis of the
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Table 11. Joint distribution of outcomes of two binary variables.

X2

Health (X2 =0) Diseased (X2 =1) Total

X1 Health (X1 = 0) Poo Po1 Pot
Diseased (X1 = 1) Pio Py Py
Total Pio Py 1

probability of agreement is just like analysis of binary probability. Sample
size calculations for reader agreement based on duplicated readings were
presented by Freedman, Parmar, and Baker.%*

The drawback of the probability of agreement is a positive chance of
agreement even when the two readers are independent. As a result, Cohen
proposed the use of Kappa statistics,® which offer a means of correcting
measurement of agreement, defined as the following.

_PotPu—PyPro-—PyPn Po-Pgp . (31)

1— Py Pro— Piy P 1— Pg
Here, Po = Py + P11 is the observed probability of agreement and Pr =
Pyt Pyo+ P14+ Py is the probability of agreement due to changes when X3
and X5 are independent. x can reach 100% if there is perfect agreement and
can be as low as —Pg/(1 — Pg), when X; and X» are completely different.

If we use n;; to denote the observed number of subjects in each category
of Table 11, the maximum likelihood estimates for P;;, Py and Py; are
Pij = nij/n, P+j = nit/n and pi; = ny;/n, respectively, with n as the
total number of subjects. Through algebra operations, we can estimate
by substituting the maximum likelihood estimates of the probabilities into
Eq. (31).

2(npon11 — No1M10)

o441 + NypoNi4

R = (32)
There are several methods for calculating the sample variations for MLE
estimates in Eq. (32). Using the delta method, Fleiss et al.’% derived a large
sample variance of the estimator.
1
n(l— Poy Pry — PryPry)?

var(k) =

1
X { D Pull = 2(Piy + Pyy)(1 = w)]
1=0
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+(1=r)>> Y Py(Pri+ Piy)?
i=0 j=0
- [K - (PO+P+O + P1+P+1)(1 — H)]2}. (33)

Alternatively, Kraemer®” and Fleiss and Davies®® proposed the use of

jackknife technique to calculate the variance of the estimated . Let &;;
be the MLE of x when one observation in the (i, j)th cell is excluded, and
Jij (k) = nk — (n — 1)R;;. The jackknife estimator of  is given by

1
= ZZ“ijJij(f%)/na (34)

which should be a less biased estimator than <. The jackknife variance can
be estimated by

var(k.) ZZn” i (R) — #g)%/[n(n —1)]. (35)
=0 j=0
Conditioned on marginal distributions of the 2 x 2 table in Table 11,
Garner®® proposed the following simpler formula:

4
var(k) = 5 — ——— T . (36)
n (1 — Po+P+0 — p1+p+1) (zi:o Zj:[) 1/(nij + 1))
Although all these formulas are asymptotically equivalent, there are still
differences when using them for small samples. A simulation study®® com-
pared the different estimates for & and gave guidance in methods to estimate

and construct confidence intervals for Cohen’s & for small samples as indi-
cated in Table 12. In this table, the “(” and “)” indicate the open-ends of an
interval and “[” and “|” the closed ends of an interval. Landis and Koch®!
provided guidelines for interpreting kappa values as the level of agreement
among readers. Prevalence was defined as (2n11 + n1o + no1)/(2n).52 The
last column indicates the preferred equations for estimating the sample
variance.

The use of Kappa statistics in quality control and quality assurance is
mainly for estimation rather than hypothesis testing. We want to ensure
that the inter-reader agreement is above an acceptable pre-specified level
before we start the study. We also want to be certain that the longitudinal
intra-reader Kappa statistics are beyond that given level. However, the
subject of Kappa applications is very broad and goes far beyond quality
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Table 12. Guidance in selecting a method for constructing confidence intervals for
Cohen’s £.60

Kappa (&) Agreement®! Prevalence®? Sample Size Equations
[0, 0.2) Slight (0.1, 0.9) n > 20 (33)
[0.2, 0.4) Fair (0.1, 0.9] n > 20 (33) or (35)
[0.4, 0.6) Moderate (0.2, 0.8) 20 <n <40 (36)
(0, 0.2] or [0.8, 1) n > 40 (35)
[0.6, 1) Substantial to (0.1, 0.9) n > 20 (36)

almost perfect

assurance. The extensive literature on Kappa statistics includes agreement
for ordinal or multinomial data;53766 for case-control studies;®” for multiple
readers or correlated samples;%8~ 70 and for using logistic regression models
to adjust for the effects of covariates on Kappa statistics.”* These topics are
far beyond the scope of this chapter; interested readers should investigate
the literature.

4.5. Log-linear models for agreement of categorical
variables

Log-linear models can express agreement in terms of components, such as
chance agreement and beyond-chance agreement. They can also display
patterns of agreement among several observers, or compare patterns of
agreement when subjects are stratified by values of a covariate.”® The later
is particularly useful for quality improvement to identify factors that have
an affect on reader agreement.

Let {m;; = nP;;} denote expected frequencies for ratings (i,j) of
n subjects by two observers A and B. Chance agreement, or statistical
independence of the ratings, has log-linear model representation

logmg; = -+ A+ )\f . (37)

An extension of this independent model is the quasi-independent model™

logmg; = pu+ A+ )\f +0il(i—j) (38)

where the indicator /(;—;) equals 1 when i = j and 0 otherwise. Constrains
on the model parameters are >, A = 3 ; )\;3 = 0. Conditional on disagree-
ment by the observers, the rating by A is statistically independent of rating
by B. When 4; > 0, more agreements regarding outcome ¢ occur than would
be expected by chance. The model is easy to fit by most statistical software.
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When we assume a constant §; = 9§, a Kappa-like index of chance-corrected
agreement’ is

ka = (Poo+ P11)(1 —676) = (P00+P11)(1—1@). (39)

Graham extended above model to allow binary covariates.”™ Let X be
the binary covariate with value 0 and 1. Let {m;j; = nP;;(X = k)} be the
frequencies of observing (i, j) by readers A and B when covariate X equals
k. The extended model is

logmije = p+ AL+ AP+ A+ N A ARX + 648 L) + 605X Ty . (40)

Here, terms with single superscripts and subscripts correspond to main
effects. Terms with double superscripts and subscripts represent partial
associations between the superscripted variables, controlling for the variable
omitted from the superscript. As with other log-linear models, we impose
the constraints of zero sums on the main effects and partial associations,
respectively. In this model, 45 represents the overall agreement between
two readers and 6;12X represents the additional chance corrected agreement
associated with covariate X when X = k. A model constraint is zero sum
of 68X, This model readily extends to multiple covariate situations, and
estimates can be obtained using the SAS CATMOD procedure.

In model (40), §{BX is an interpretation of the estimates of the ave-
rage of the two conditional agreement log odds ratios, log[(mik/mjix)/
(miio/mji0)] and log[(myk /mijk)/ (Mjj0/mijo)], for any pair of distinct cat-
egories i and j. In his paper,” Graham applied this model to a study of
the effects of age, sex, and proxy type on agreement between the primary
and proxy respondents regarding the primary respondent’s participation in
vigorous leisure time activity.

4.6. Latent class models

In a latent class analysis of observer agreement, it is assumed that the
ratings of observers appear related because they are, in fact, related to some
latent classification of items that explains all associations in the observed
agreement table. For example, we can assume that there are three types of
subjects in the study population: those that all readers classify as positive
or negative, and those inconclusive subjects that are rated as positives or
negatives by chance by each reader.”® Let K be the prevalence of those
“agreements beyond chance” and p be the probability of conclusive items
belonging to the positive category. Let m be the probability of positively
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Table 13. Probability in a 2 x 2 table with latent classification model.

Rater A Rater B

Positive Negative Total

Positive ~ Kp + (1 — K)m? 1-K)(1—-mr Kp+(1—K)r
Negative (1—K)(1—m7 K1 —-p)+(1—-K)(1-m)?% K(1—-p)+(1—K)(1—-n)

Total Kp+(1-K)mr K(l-p)+(1-K)(1-m) 1

rating for inconclusive subjects. With the assumption of independent rating
by the two readers for inconclusive subjects, the following Table 13 gives
the probability distribution of the 2 x 2 table.

Thus, if p = 7, K is the Cohen’s Kappa statistics. If p/(1 — p) =
72/(1 —7)2, K equals Aickin’s Kappa in Eq. (39).

Latent classification models have many uses.”® Baker, Freedman, and
Parmar”” proposed a model with duplicate observations that allows a
separation of intra- and inter-reader agreement simultaneously for binary
measures.

5. Clibration and Standardization

The most important mission of quality assurance is to prevent measurement
errors from exceeding a pre-specified level. For this purpose, we evaluate
the performance of instruments to ensure that their precision and accuracy
are acceptable for clinical diagnosis or clinical monitoring. Once we have
chosen the particular devices or methods to measure study parameters, we
want to be sure that they are equivalent to each other. During the study,
we use the quality process control charts to monitor whether the instru-
ments are still providing the required precision and/or whether the readers
are giving consistent readings. With each step, we may still find disagree-
ments between instruments or readers. Once we have chosen one of them as
the reference standard, the process of assigning values for other instruments
or readers to correct their differences from the reference standard is called
calibration.

In the example of multi-center studies, we normally choose the coor-
dinating center as the reference standard. Thus, any site/machine that
produces readings or measurements that are different from the reference
standards will be calibrated. This is called cross-calibration in the literature
on quality control of clinical trials.#* Although mathematically any site can
be chosen as the reference standard, in practice, selection of a reference
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standard should take into consideration the qualifications and quality
control history of the selected site. Sometimes, multiple reference stan-
dards are needed. For example, in a clinical trial of osteoporosis that uses
DXA scanners from different manufacturers, one option is to select reference
standards for each manufacturer and then calibrate devices at the other
study sites to the corresponding reference standards. The next step of
calibration is to standardize among the reference standards.

Calibration can also occur for a single radiological machine. In the longi-
tudinal quality control process mentioned in Sec. 3, a radiological machine
was compared to a standard defined by a phantom. We normally look for
the mean and variance changes in reference to the baseline value. One may
also be interested in scale differences, i.e. changes in measurement unit. For
DXA scanners, phantoms with different linear scaled densities can be used
to serve as reference standard and calibration of a scanner may be needed
if there are clinically significant deviations from that standard.

5.1. Calibration of measurements to a standard

To calibrate radiological equipment to the chosen standard, we need to
measure the standard. One method is to measure phantoms with known
theoretical measurement values.?? Another method is to measure a set of
phantoms or a group of sampled subjects to examine the differences between
the reference standard device and all other study instruments, referred as
cross-calibration in multi-center clinical trials.” In all cases, we observe
pairs of data (X;,Y;) with X; representing the reference standard and Y;
representing measurement of the instrument to be calibrated.

The practical question is how to assign a correct X (standard value)
based on measurement Y. A naive solution is to perform a (linear or non-
linear) regression of X; on Y; and use that regression model to correct future
readings of Y. This solution may be adequate, but it has statistical flaws.

When we choose the standard, we assume that the standard should
be accurate, that is its measurement error can be ignored. Thus, the
measurement error should be associated only with Y not X. A proper
linear relationship should be Y = o + X + €, with « and 3 as regression
parameters and € as the random measurement error for Y. These regression
parameters o and [ are also referred as constant bias and relative (scale)
bias.

Maximum likelihood estimates of regression parameters, denoted as &
and ﬂA7 and their covariance matrix as well as model RMSE are easily
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available by many statistical software packages. Based on these estimates,
for a given observation of y, we can calibrate it to the standard by
i =(y—a)/p.

The predicted value T is a biased estimate of true value = except when
r=X.

E(2ly) = = +[S2(z — X))/Sxx5?). (41)

Here, S, is the RMSE of the regression line and X and Sxyx are the
sample mean and sample variance of X;’s used to derive calibrations. This
is because & is estimated by ratio of correlated normal variables. In most
cases, such bias can be ignored for large beta. More specifically, when

g= (t272,0‘0555)/(SXX/32) <0.05. (42)

When g > 0.2, we are not able to calibrate Y to the standard X with
acceptable accuracy.?? Details of the 95% confidence interval of calibrated
Z as well as simultaneous tolerance interval for it can be found in the same
reference.

When we allow measurement errors for standard X, we are dealing with
the calibration problem as a regression with measurement errors, and the
regression and calibration problems are equivalent mathematically. Rear-
rangement of the linear regression gives the following relationship between
X and Y:

X=v%+mY+9. (43)

The difference between this calibration model and regular regression
model is that Y is a random variable with Y = U +¢. This regression is not
always identifiable unless under certain conditions.”® When we assume that
the measurement error € and underlying true U are independent and ¢ has
mean zero and a known variance o2 (such as estimated through repeated

measurements), the calibration formula is

& =px+i10v /(03 —02)(y—py) = px +31(of —02) /ot (y—py) . (44)

Here, 47 is the least squared estimate of slope based on observed Y with
measurement errors.

5.2. Comparative calibrations and latent structure models

Barnett™ first considered a model to assess “the relative calibration and
relative accuracies of a set of p instruments, each designed to measure the
same characteristic, on a common group of individuals.” It is common for
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several manufacturers to produce similar machines that measure the same
physical properties. For various reasons, these machines will not produce
identical measurements for the same subjects. Converting measurements
from different manufacturers is important for clinical studies to reduce
machine introduced variations improving study efficiency and facilitating
comparisons among different studies.

For the ith subject, let a vector ?i = (Y1i, Yai, ..., Ypi)T to denote the
measurements by p instruments for the subject. Here, superscript 7" repre-
sents “transpose.” Statistically, we assume that ?i measures the underlying
unobservable quantity X; from an unknown normal distribution N (u,03).
The relationship between ?Z and Xj; is that

Vi=a+bX;+5 (45)

with unknown regression parameters @ and @, and &; as a p-dimensional
random measurement errors following N (0, X).

The difference between this model and the regular calibration model
is that X; can be observed in a regular problem, while X; is unknown in
comparative calibration problems.5°

The number of sufficient statistics based on observations of ?i is p means
and p(p+ 1)/2 covariance matrix. The number of unknown parameters are
2 for distribution of X, 2p for regression coefficients, and p(p + 1)/2 for
the covariance matrix for measurement errors. Thus, for p < 3, compara-
tive calibration is unidentifiable. Even for p > 3, we still need additional
assumptions to make the model identifiable.

Barnett™ assumed a; = 0 and b; = 1, and the covariant matrix of
measurement errors ¥ as a diagonal matrix. He used moment estimates to
obtain MLE for the modal parameters. Other authors have studied similar
problems,31 -8 The following EM algorithm is a shorter form of a more
extended model by Lu et al.%

Like Barnett, we assume that > is a diagonal matrix. When we do
not observe X, the log-likelihood of our model is pretty complicated. The
log-likelihood function of observations ?i is

PN~ (T
) glogﬂb bTod + 3]

N (V- bue)T (0 b o + )Y —a —buo). (46

To make the model identifiable, we also impose linear constrains on regres-
sion parameters as [ 7@ = ¢; and [ b = ¢3. When | = (1,0,...,0)T
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and ¢; = c3 = 0, the model is similar to Barnett.” When 1 = (1,1,1)7]
c1 = 0 and ¢z = 2.912, the model is similar to Lu et al.3* While the log-
likelihood function is complicated, the likelihood function for known X; is
rather simple:

1 =

a T Xl— 2
xS Y —a@ - bX;) — #
203

p 1
C - 3 log(|X]) — 3 log g —

(47)

Thus, we can treat X; as missing data and use the EM algorithm to derive
the MLE of model parameters. The EM algorithm has the following steps:

Step 0. Set the initial values of the model parameters E,E\, ¥, po and of.
Step 1. E-Step: Calculate the conditional expectation of the sufficient
statistics for the complete likelihood function. They are

V =var(X,|Y;, @b, 5, po,08) = 0TRVb + /o), (48)
B(X;|Y:,a@,b,%, p10,02) = po + VTSN (Y —a@ —bpuo). (49)

Step 2. M-Step: Calculate the MLEs by replacing the conditional sufficient
statistics into the following MLE formulas.

Sy.x —(MX + )\2)2*17

b= : 50

Sx (50)

=Y - bX-\3T, (51)
~ 1 N “ 2 N “ N

Y== (Y — @ — Yi—a— bX;)T 2

- ; iag]( a— bX;)( a— bX;)'], (52)

fio =X, (53)

66 =Y (Xi—fio)*/n. (54)

Here, Y and X are the sample means for ?i and X;, respec-
tively; SY,X = %Z?:l(Xl — X) (?z — ?), and )\1 and )\2 are
the Lagrange-coefficients for conditional maximization with Ay =
(T? —c — CQX)/TTET and \y = [TTsy,X +I1TY X — (c1 +
)X — 2Sx x]/ 1T .

Step 3. Check the convergence of the unconditional log-likelihood function
and decide to stop or go back to Step 1.
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Based on the MLE, we can calibrate the unobserved underlying X
based on measures from any one instrument by inverse linear calibration.
Moreover, this model allows us to calibrate measures from instruments k
to | by the following formula:

Yii=a+ (Y — ax)/by . (55)
Here, subscript ¢ indicates the ith subject and k, [ indicate the instruments;
ay, ay, by, and b; are the kth and I/th components in the vectors @ and 3,
respectively.

A much simpler model is for p = 3, where the closed forms of MLEs
can be derived and asymptotic covariance of the MLEs can be obtained
explicitly.®* This model has been used for standardization of bone mineral
densities measured by three different manufacturers.84:86:87

5.3. Least square approach for comparative calibrations

Alternatively, we define ?; =Y, -Y and X, = G?; + k. Here, k is a real
number and G is a p x p diagonal matrix, G = diag(g;) with g; > 0. If X,
is the standard references for instruments, there should be no differences
between any pairs of its components. Let H be a p X p matrix

1 -1 0 - 0 0

0 1 -1 -+ 0 0
H =

o 0 0 - 1 -1

-1 0 0 - 0 1

Hui et al.®® proposed to find g;’s that minimize the differences between
components in vector X;%8:

n n
min Y XTHTHX; =minY (V1 -V)'GTHTHG(Y; -Y)  (56)

i=1 i=1
under constrains Z;):l g]2» = p. Because of the quadratic constrains, the
solution for minimization Eq. (56) is not in a closed form. Symbolic pro-
gramming languages, such as Maple, can be used to calculate the numeric

solutions.

Like the latent structure models in the previous subsection, this model
needs two constraints in order to make the model identifiable. The constant
parameter k can be determined by a linear constraint as demonstrated in

Hui et al.®®
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After we derive the solutions for g;’s, we can use the following formula
to calibrate values between instruments:

Yij=Y ;j+a/9;(Yir —Y k). (57)

For p = 3, the calibration conversion formulas between instruments
are the same for the least square approach [Eq. (57)] and latent structure
model [Eq. (55)] if and only if the measurement errors of instruments in
latent structure model ojz are equal .3

6. Conclusions

Radiological instrument quality is important for both clinical diagnosis of
disease and clinical monitoring of patient changes. Quality assurance and
quality improvement need efforts of people who involve in the processes
of manufacturing, maintaining, and operating the equipment as well as
statisticians who involved in assessing the quality, monitoring the changes
in quality and identifying areas for quality improvement. In this chapter,
we have introduced some statistical concepts and methods that are com-
monly used in quality assurance of radiology studies. There are many other
materials and considerations that could not be covered because of the limi-
tation of the space. The methods discussed in this chapter have applications
beyond radiological studies and are relevant to most clinical studies. Quality
assurance and quality control is rather a practice than a theoretical discus-
sion. Successful quality assurance can have visible and immediate effects.
Statisticians should actively participate in quality assurance. While it is
important for clinicians and biomedical researchers to realize the impor-
tance of statistics in their quality control and quality assurance practice, it
is also important for biostatisticians to understand the subject issues and
communicate effectively statistical principles to scientists from different
backgrounds. The collaborations between statisticians and biomedical
researchers in other fields will not only benefit clinical researches but also
lead to new challenges for research and development of new statistical
methods.
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1. Introduction

Over the past decades, as pressures to control health care spending have
accelerated, the term “cost-effectiveness” has become increasingly into
common parlance. It is widely used by groups as disparate as the govern-
ment, the congress, the business community, managed-care organizations,
the pharmaceutical industry and the press.

The central purpose of cost-effectiveness analysis (CEA) is to compare
the relative value of different interventions in creating better health and/or
longer life. The results of such evaluations are typically summarized in a
cost-effectiveness ratio, where the denominator reflects the gain in health
from a candidate intervention (measured, for example, in term of years of
life gained, premature birth averted, sight years gained, symptom-free days
gained) and the numerator reflects the cost of obtaining the health gain.
A cost-effectiveness analysis provides information that can help decision
makers sort through alternatives and decide which one best serves their
programmatic and financial needs. Decision maker may be federal, state
or local. They may be in the private sector or the public sector. They
may control dollars or they may run programs. CEA provides a framework
within which decision makers may pose a range of questions.

Cost-effectiveness analyses furnish information that can be useful in a
variety of settings. For example, a managed-care organization might wish
to know the cost per low- birthweight birth averted as a consequence of a
prenatal outreach program. Or it might wish to take the question further
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and ask the cost of this program per year of life saved for its enrolled
population. Or, recognizing that programs that avert premature births may
not primarily save lives but rather avert disability over the lifetime of an
individual, it might want to know the cost of this intervention for each
quality-adjusted life year (QALY) gained. This latter question is addressed
by a particular type of CEA, some times termed “cost utility analysis,”
where adjustments for the value assigned to health-related quality of life
are built into the calculation.

As another example, a pharmaceutical manufacturer might wish to use
CEA in pricing and marketing a new cholesterol-lowering drug. It might ask
the question. How much does our medication cost per year of life gained
compare to a similar product manufactured by a different company? Or,
if the clinical trials show clinically insignificant changes in cholesterol level
between the two products but significantly decreased side effects associated
with the new drug, a drug purchaser or payer might wish then to calculate
the cost per quality-adjusted life year (QALY) gained in using the new
drug. An industry investigator might decide to extend the considerations
of the analysis and explore the cost per year of life or QALY gained when
comparing pharmaceutical treatment with surgical treatment for coronary
disease.

Or, an analysis of a state health department might wish to explore
different strategies for control of blood lead levels in the population. It might
choose to assess the cost-effectiveness of screening all children, compared
to screening only those thought to be at particular risk for elevated lead
levels by reason of housing or environment surrounding.

1.1. Worked examples
1.1.1. Bypass angioplasty revascularization investigation

Percutaneous transluminal coronary angioplastry was introduced in 1977
as a less invasive alternative to coronary-artery bypass surgery. Several
randomized clinical trials of angioplasty and bypass surgery have compared
the clinical outcomes of these procedures. The Bypass Angioplasty Revascu-
larization Investigation (BARI) was a large trial of angioplasty and bypass
surgery in US, which collected five years of follow-up data.

Mark A. Hlatky et al.® conducted a study on a total 934 of the 1829
patients enrolled in the randomized BARI. Detailed data on quality of
life were collected annually, and economic data were collected quarterly.
They compared quality of life, employment, and medical care costs during
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five year of follow-up among patients treated with angioplasty or bypass
surgery. They found that on average, functional status, which was assessed
by scores on the Duke Activity Status Index, was improved more with
bypass surgery than with angioplasty in the first three years (p < 0.05),
whereas in other respects the quality of life was equivalent with either
method of revascularization. Patient in the angioplasty group returned to
work five weeks sooner than did patients in the surgery group (p < 0.001).
The cost of angioplasty was initially $11,234 lower than that of bypass
surgery (a 35% saving, p < 0.001), but higher subsequent costs for hos-
pitalization and medication reduced the saving to $2,644 at five years (a
5% savings, p = 0.047). The five-year cost of angioplasty was significantly
lower than that of surgery among patients with two-vessel disease ($52,930
versus $58,498, P < 0.05), but not among patients with three-vessel disease.
After five years of follow-up, surgery had an overall cost-effectiveness ratio
of $26,177 per year of life added, but unacceptable ratios of $100,000 or more
per year of life added could not be excluded (P = 0.13). Surgery appeared
particularly cost effective in treating patients with diabetes because of their
significantly improved survival.

1.1.2. Treatment of high blood cholesterol

In 1985, in response to the first evidence from a randomized controlled trial
that reducing cholesterol reduces the risk of death from heart disease,!’
the US National Institutes of Health created the National Cholesterol
Education Program (NCEP). Three years later the NCEP published guide-
lines for the management of high blood cholesterol which recommended
that all adults have their cholesterol checked at least every 5 years and
that those with high levels (240 mg/dl) or higher), or borderline-high
levels (200-239 mg/dl) plus other risk factors, be tested further. It was
suggested that those whose low-density lipoproteins (LDL) levels were also
high should be treated by changes in diet or with cholesterol-lowering
drugs.'' It has been estimated that more than one-third of the adult
population requires dietary change and/or drugs when judged by these
criteria.!®

Cost-effectiveness analyses done in the wake of the 1988 guideline
focused on the management of high blood cholesterol once detected. Both
lovastatin, a frequently prescribed drug, and dietary counseling were shown
to vary widely in cost-effectiveness depending on age and other risk factors
for heart disease.
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One study examined the use of lovastatin for people initially free of heart
disease and for those who had already suffered a heart attack.” The authors
found that, for healthy people, saving a year of life in much more costly
among those with cholesterol as their only risk factor than it is for those with
several risk factors, even when cholesterol is very high; the cost ranged up to
$330,000 for men aged 35-44 with no other risk factor and up to $1.5 million
for women in the same category. The cost was considerably lower for people
with other risk factors, reflecting the widely accepted assumption that risk
factors interact to make the adverse effects of any one greater when others
are present. Lovastatin treatment was still more costly per life year gained
for people with levels in the range 250-299 mg/dl.

By contrast, the study found that it is potentially very cost-effective to
treat people with elevated cholesterol who have had heart attacks. Costs
per life year gained are relatively low and for some, such as men aged 35—44,
drug treatment might save money as well as extended life. Another study
found similar results for a program of intensive diet therapy modeled after
the one in the Multiple Risk Factor Intervention Trial (MRFIT).!® For
example, diet therapy costs more than $500,000 per year life for 20-year-
old men with initial cholesterol of 240 mg/dl and no other risk factors. For
men with several risk factors, the cost per life year gained in much lower.

These results suggest that management of high cholesterol in people
without heart disease is often very costly per life year saved. Since they show
that treatment of people whose blood cholesterol levels are not far above
240 mg/dl can be extremely costly, they suggest that the same would be
true for people with levels in the borderline-high range, although the studies
did not analyze this group. Taken together, cost-effectiveness results sug-
gest that resources might better be concentrated on those with very high
cholesterol levels and/or other risk factors for heart disease (and on those
in whom heart disease is already present). Revised guidelines, published by
NCEP in 1993,'2 were somewhat more modest in their aims, in response to
studies like these as well to ongoing debate over whether reducing choles-
terol lengthens life in those without heart disease.

If NCEP’s 1988 guidelines were followed to the letter, it would cost,
depending on the effectiveness of diet in reducing blood cholesterol levels,
$20 billion to $27 billion to provide lovastatin at dose of 20 mg per day, and
$47 billion to $67 billion to provide a higher, more effective, dose of 80 mg
per day.% The saving from a more selective strategy would be substantial,
freeing resources to be applied elsewhere. The CEA results suggest that
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more selective treatment strategies could be designed that would lose little
in health benefits.

2. Foundations of Cost-Effectiveness Analysis
2.1. What is cost-effectiveness analysis?

Cost-effectiveness analysis is a method designed to assess the comparative
impacts of expenditures on different health interventions. As Weinstein and
Stason!? state, it is based on the premise that “for any given level of re-
sources available, society - - - wishes to maximize the total aggregate health
benefits conferred.” For example, we might wish to know whether spend-
ing a certain amount of money on a public campaign to stop smoking will
have greater or lesser effect on health than spending the same amount on
colorectal screening. Cost-effectiveness analysis can be in decision making
at different levels, such as societal level and organizational level.

2.2. The cost-effectiveness ratio

The central measure used in CEA is the cost-effectiveness ratio. Implicit
in the cost-effectiveness ratio is a comparison between alternatives. One
alternative is the intervention under study, while the other is a suitably
chosen alternative — “usual care,” another intervention, or no interven-
tion. The cost-effectiveness ratio for comparing the two alternatives at the
population level can be the ratio of expected costs to expected effect (CER),
E(c)/E(e), and ratio of incremental expected costs to incremental expected
effects (ICER), (E(c;) — E(c;))/(E(e;) — E(ej) or AE(c)/AE(e).

The ratio AE(c)/AE(e) is essentially the incremental price of obtaining
a unit health effect (such as dollars per year, or per quality-adjusted year,
of life expectancy) from given health intervention when compared with an
alternative.

The following situations can arise:

AE(c) <0, AE(e) > 0; dominance; to accept the given intervention;

AE(c) >0, AE(e) < 0; dominance; to reject the given intervention;

AE(c) >0, AE(e) > 0; trade-off; consider magnitude of ratio of difference
in costs to difference in effectiveness;

AE(c) <0, AE(e) < 0; trade-off; consider magnitude of ratio of difference
in costs to difference in effectiveness.

The expected ratio of cost to effect, E(c/e), can be investigated at
patient level.
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2.3. The effectiveness

The effectiveness is the extent to which medical interventions achieve health
improvements in real practice settings.

2.3.1. Individual and social well-being

By describing CEA as a tool for improving general welfare, it can be placed
squarely within the context of welfare economics. The effectiveness mea-
sures could be quantified in term of utility, such as quality-adjusted life
years (QALY); and in term of health status measures, such as the number
of symptom-free days.

2.3.2. A metric of health effect: Quality-adjusted life years

It may appear that CEA cannot even be used to compare interventions
whose effects on health are qualitatively different, such as prevention of
coronary artery disease and treatment of arthritis. However, such a compa-
rison is possible if the measure of effectiveness is general enough to capture
all of the important health dimensions of the effects of the interventions.
Using the quality-adjusted life year (QALY) as the unit of effectiveness
approaches this ideal within the framework of CEA, thus expanding con-
siderably the range of application of CEA. The QALY is a measure of health
outcome which assign to each period of time a weight, ranging from 0 to 1,
corresponding to the quality of life during that period, where a weight of
1 corresponds to perfect health and a weight of 0 corresponds to a health
state judged equivalent to death. The number of quality-adjusted life years,
then, represents the number of healthy years of life that valued equivalently
to the actual health outcome.

2.3.3. How to obtain evidence on effectiveness?

The foundation for economic evaluation is valid data on the effectiveness
of the intervention being evaluated relative to some alternative.

The true cost and effectiveness of an intervention usually are not
known but estimated. The source of estimates may be direct measurement
(sampling) or indirect (non-sampling) methods such as expert opinion and
published literature. There could be two types of data; sampled data where
the sampling variance may or may not be known, and non-sampled data
such as discount rate for which do not have sampling variation, although
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the true value of the parameter may be uncertain. These data can be
used in various combinations in two models of analysis: stochastic analysis
where inferences are drawn using standard statistical methods based on
sampling variation, and deterministic analysis where inferences are drawn
from point estimates of variables but interpretation is conditional upon the
range of uncertainty from sensitivity analysis. The appropriateness of
methods for analyzing uncertainty in costs or effects will depend upon the
mix of sampled and non-sampled data. Cost-effectiveness analysis can be
wholly deterministic, partially stochastic or wholly stochastic.

2.3.4. Deterministic cost-effectiveness analysis

This is used where cost and effect variables are analyzed as point esti-
mates. Sampling variation may not be available because of the source of
the data (e.g. secondary data) or the variable may not have been sampled
(e.g. choice of discount rate, expert opinion). Deterministic CEA models
arise frequently in the early assessment of a new medical technology, where
only limited data are available but some analysis is required for policy
setting. For example, in their analysis of the implantable defibrillator.
Kupperman et al. constructed a cost-effectiveness model where effect data
were taken from reports of patient series in the literature as point esti-
mates of survival probabilities and cost data were derived from a Medicare
claims database and expert opinion. Given these data was not possible to
present cost and effect differences with 95% confidence intervals, therefore
a deterministic point estimate of cost-effectiveness was subject to detailed
sensitivity analysis to explore the impact of uncertainty. Therefore a point
estimate based on expert opinion of resource use was used as a proxy for
variables that could be sampled in the future as part of a prospective study.

2.3.5. Partially stochastic cost-effectiveness analysis

This is used where effectiveness has been estimated from clinical trial(s)
and can be expressed as a mean effect size with an associated variance, but
analysis of costs is deterministic because data are non sampled. This combi-
nation is common in decision analytic models of economic appraisal. Some
studies with such data report confidence intervals for cost-effectiveness
where only variation in effects has been analyzed. For example a study
in ulcer maintenance theory presented 95% confidence intervals around
expected one-year therapy costs including relapse management. But no
primary data had been collected to determine variation between patients in
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costs of managing relapse. The source of variation for the confidence interval
was only the surrounding the estimated incidence of relapse on treatment
and control.

2.3.6. Wholly stochastic cost-effectiveness analysis

This is used where both costs and effects are determined from data sampled
from the same patients in a study. Although our discussion focused on the
randomized controlled trials (RCT) these data might also be measured by
non-experiment-design. If cost and effect data are sampled and variances
are available then formal statistical tests can be performed on observed
differences in costs (treatment-control) or effects.

Randomized controlled trials (RCT) are one valuable source of evidence
on effectiveness, used either as single studies or combined in a meta-anlysis.
There are two general ways in which RCT data can be incorporated into
economic evaluation: (i) combining RCT effectiveness data retrospectively
with cost data from secondary non-trial sources into a decision analysis
model; or (ii) collecting effectiveness and cost data on the same patients
prospectively as part of an RCT.

The growing interest in trial-based prospective cost-effective studies has
raised some interesting statistical questions of study design and analysis.
Given the traditional use of non-sampled secondary data (e.g. published
literature, insurance claims databases, expert opinion) in cost-effectiveness
models the convention for analyzing uncertainty in results has been to
use sensitivity analysis, where the robustness of results is explored over
a range of what if alternative values for uncertain variables. This analytical
approach is marked contrast to the conventional analysis of RCT effec-
tiveness data where standard principle s of statistical inference are used
to construct tests of hypotheses and estimate intervention effect sizes, and
where uncertainty is quantified by a confidence interval which has precise
meaning in terms of probability.

2.4. Sensitivity analysis and beyond

Before considering the adaptation of stochastic methods for economic
evaluation, it is necessary to review the limitation of sensitivity analysis.
This method is widely recommended for assessing problems of data un-
certainty in economic appraisals of health care programs and allied evalua-
tive techniques such as clinical decision analysis. The purpose is to examine
the robustness of an estimated result over a range of alternative values for



Cost-Effectiveness Analysis and Evidence-Based Medicine 165

uncertain parameters. Weinstein and Stason (1977) describe the method
in the following way: “The most uncertain features and assumptions. .. are
varied one at a time over a wide range of possible values. If the basic con-
clusions do not change when a particular feature or assumption is varied,
confidence in the conclusions is increased.”

Whereas the traditional CEA model utilize sensitivity analysis, the
mean-variance data on costs and effects from a prospective trial presents
the opportunity to analyze cost-effectiveness using conventional inferential
statistical methods.'® The statistical approach in CEA have been discussed
by many literatures.

3. Statistical Approach
3.1. Costs and effects as point estimates

The deterministic analysis of effectiveness is a comparison of point esti-
mates. If we consider a treatment that is both more costly and more effective
than control, then a useful way to represent incremental cost-effectiveness
is illustrated in Fig. 1. In this diagram, the = axis represents the difference
in effects between the experimental and control therapy (Ae) and the y axis
the difference in cost between experimental and control (Ac). The slope of
the line extending from origin (the control) through our study point esti-
mate, Ae, Ac, represents the incremental cost-effectiveness of the treatment
relative to control. Clearly, the steeper the slope of the line Ac/Ae the

Ac/ Aet

Acl Ae

Ac

v

A Effectiveness (e —e )

Fig. 1. Cost-effectiveness quasi-confidence interval: Deterministic analysis of cost dif-
ferences and stochastic analysis of effectiveness differences.
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greater is the additional cost at which additional units of effectiveness are
gained by treatment relative to control, and the less attractive treatment
becomes. In the absence of any data on sampling variation for costs or effects
(point a) some form of sensitivity analysis would be useful to determine
plausible ranges that may contain the true cost-effectiveness ratio.

3.2. Sampled effectiveness and non-sampled costs

In the analysis of sampled effect data (with sample variation) the null
hypothesis is usually that there is no difference may come between ex-
perimental and control therapy. This is tested against either a one tailed
alternative (usually that the experimental treatment more effective) or a
two tailed alternative (that the experimental treatment is more or less
effective than control). For a continuos clinical variable such as blood pres-
sure we assume, by convention, that the ratio of the difference in sample
means (ép — €c), where the subscript 7" stands for the treatment group and
subscript C' stands for the control group, to the pooled standard error of
the difference follows some known probability distribution such as Z or t.
Critical values of the test statistics are determined by the analyst’s judge-
ment about the acceptable risk of making a Type 1 (false-positive) error
about a difference existing, this level conventionally being set to 5%.

A problem with hypothesis testing as a form of stochastic analysis is
that an overemphasis tends to be placed on the statistical significance. The
advantages of the confidence interval is two-fold. First it permits hypothesis
testing as described above because if a 95% confidence interval for a differ-
ence includes zero, then the treatment groups are not significantly different
at 5% level. Second, in addition to statistical significance, the confidence
intervals yields information on the magnitude of the observed difference
(quantitative significance or clinical importance). The relationship between
these two parameters is important because a difference can be highly sta-
tistically significantly but of no clinical importance, for example, a small
difference (say, 0.25 mm/Hg) with p < 0.0001. Furthermore, the concept of
a minimum clinically important difference § to be detected is central to the
design of a clinical experiment and determination of sample size.

A familiar two-tailed confidence interval for the treatment-effect size
would be

St Sk

nr nc

(1)

(er —ec) T t(nrtnc—2,1-a/2)

where S2; and S%, are the sample estimates of variances.
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A confidence interval around (the mean effect size) has been drawn in
Fig. 1. Given the confidence interval around A€, one approach to trans-
lating this into variation around the cost-effectiveness ratio is by creating
an interval bounded by the ratio of cost difference to the lower bound of
the effect interval (A./Ael) and the ratio of the cost difference to the ef-
fect upper bound of the effect interval (A./AeV). These upper and lower
bounds for the cost-effectiveness ratio might be termed a quasi-confidence
interval, because they are only based upon knowledge of sampling variation
associated with the measurement of the denominator (effects). This reason-
ing can be applied analogously to a situation where we had stochastic costs
but deterministic effects.

3.3. Sampled effectiveness and sampled costs

As we did in previous sections, we assumed that effects were measured from
a trial and could be expressed as a confidence interval. However, we also
assumed that resource use was measured to enable patient-specific costs to
be estimated from j resources (j = 1,...,J) in quantity @); at unit price
Pj, then the costs for individual ¢ can be expressed ¢; = Z}]:1 P;Q;.
Summing over ¢ patients (i = 1,...,ny) in the treatment group, mean

1 nr . "
7o 2uie1 ¢ with estimated

cost per patient can be expressed as ¢; =
variance
1 <

> (ci—er). (2)

i=1

$4 =

EcT ny (nT . 1)
Therefore the difference between the mean cost associated with treatment
and control can be expresses as a confidence interval:

Sz, 8%,

= = C C!

(er —¢c) £tinrinc—21-a/2) o + e (3)
In this situation the incremental cost-effectiveness ratio is a ratio of two

random variables, both of which can be expressed as a confidence interval

(around a difference in means). If we initially assume zero covariance be-

tween costs and effects then one can conceptualize this ratio in the form of

a two-dimensional confidence plane.

3.4. Joint distribution of cost and effects

It is assumed that in an RCT (or observational study in which valid
inference can made) there are J interventions where n; patients receive
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intervention j, 5 = 1,2,...,J. Costs and effects are viewed as vector ran-
dom variables c; and e; — ¢;; representing the costs incurred and e;; the
effects achieved by patient i on intervention j, ¢ = 1,2,...,n;, during a
specified period. The joint probability distribution function of costs and
effects on a patient level is modeled by the function Fj(c,e;z). A vector
of patient covariate, z, such as diagnosis, gender and age, is introduced to
cover the situation in which the cost-effect relationship of a intervention is
expected to vary for different subgroups. It is assumed that (c;;(z), e;;(z))
are independently and identically distributed over the patients with covari-
ates z receiving intervention j. The marginal distributions of F', which are
the univariate distribution of cost and distribution of effect, are each as-
sociated with parameters such as expected cost E(c), and expected effect,
E(e).

The expected cost and effect, (E(c), E(e)) could be estimated by the
sample means of ¢ and e, that is, (¢, €) and the covariance matrix of (¢, €)
could be presented as:

—9 P
ol PO,
n n
—~— ~2 ’ (4)
D 0.0, o
n n

where o, and 7, are the estimated variances for cost and effect respectively
and p is the estimated correlation coefficient between cost and effect.

The difference in expected cost and effect between two treatments/
interventions, (AE(c), AE(e)) could be estimated by the sample means
of ¢ and e, that is, (¢,e) and the covariance matrix of (A¢, Ae) could be
expressed as:

~2 —~2 ~ ~ o~
O ¢ cj P OciOei Pj0cjOcj
=24+ = +
Tn; T Tn; n; (5)
~ ~ ~2 —~2
Pi0ciO¢i + ijche Uei + Uej
n; Uz n; nj

4. Statistical Inferences on Cost-Effectiveness Measures

4.1. Parametric approaches to estimating the C-E ratio
confidence interval

4.1.1. The confidence box approach

A number of commentators advocated the cost-effectiveness plane (CE
plane) for presenting the results of economic evaluation and for aiding
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policy decision. O’Brien and colleagues'® showed how the CE plane could
be used to present the confidence limits for the estimate of incremental
cost-effectiveness under the assumption of zero covariance between costs
and effects. The difference in effect between two interventions is shown on
the horizontal axis with mean effect difference Aé and upper and lower con-
fidence limits for the effect difference (AeY, Ae%). Similarly, the difference
in cost between two interventions is shown on the vertical axis with mean
cost difference A¢ and upper and lower confidence limits for the effect dif-
ference (AcV, Ac). These “I” bars intersect at point (A€, A¢), hence the
ray that connects this point of intersection to the origin has a slope equal to
the value of the ICER. Under the assumption described above, the center of
the two confidence intervals intuitively can be thought of as the maximum
likelihood of the two-dimensional probability density function. O’Brien and
colleagues argue that combining the limits of the confidence intervals for
costs and effects separately gives natural best and worst case limits on the
ratio; that is, the upper limit of the cost difference over the lower limit of
the effect difference (AcY /Ack) gives the highest values of the ratio (worst
case) and the lower limit of costs divided by the upper limit of effects
(Ael/AeY) gives the lowest (best) value of the ratio. Thus, in Fig. 1, the
slope of the line from the origin through point a is a worst-case scenario
for the incremental cost-effectiveness ratio based upon the upper 95% CI
of the cost estimate and the lower 95% CI of the effect estimate. By similar
reasoning, the line through point c is the best-case scenario. In contrast to
Fig. 1, the slice of “pie” bounded from the origin by the best and worst
cases scenarios has increased in size reflecting increased uncertainty about
where the true cost-effectiveness ratio lies in this region.

There are two problems with this line of reasoning. The first is that the
depiction of the two-dimensional confidence plane as being box-shaped is
misleading. If costs and effects varied independently then the conditional
probability of being at the lower 95% CI of both simultaneously would be
less than 0.05. In principle we might expect such a bivariate probability
density function to be elliptical in shape with lines of equi-probability
central point-estimate (the maximum likelihood) much like an ordnance
survey map of a mountain with height contours. Figure 3 illustrates how
this general concept applies to the current problem. The second problem is
the implicit assumption that costs and effects vary independently (i.e. have
zero covariance). In principle we would expect covariance between costs and
effects, and therefore we cannot assume that the numerator and denomi-
nator in the ratio are independent. This means that the bounds for the cost-
effectiveness ratio depicted in Fig. 2 are still only a quasi-confidence interval
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Fig. 2. Confidence limits on the cost-effectiveness plane and the “confidence box”
approach to estimating confidence limits for the ICER.
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Fig. 3. Hypothetical probability density function around maximum likelihood point-
estimate for cost-effectiveness.

because we have not taken account of all sampling variation. The challenge
is whether a method exists for estimating the sampling distribution for the
ratio of two random variables which may have nonzero covariance.

4.1.2. The Taylor series approximation

The Taylor approximation shows that where y is a function of two random
variables 1 and z9, the variance of y can be expressed in term of the partial
derivatives of y with respect to x1 and s, weighted by the variances and
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covariance of x1 and zo. The Taylor series formula is
ay \’ ay \’
var(y) ~ <a—jl> var(zy) + (3732) var(zz)

+2 (%) ((%) cov(z1, ). (6)

For the ICER AE(c)/AE(e), using the sample estimates of the means and
variance, the variance of the ratio estimator can be given as follows:

72 —

c Ac

N — —— var(Aé) — 2—— cov(Ag, Ae) . 7
N Agt Var(Ae) — 24— cov( ) (7)

Since the variance of difference in mean is equal to the sum of two sampling
variances for those means, then we can simplify

var(R) var(Ac) +

~92 ) ~2 ~2
var(Ae) = 74 4 72 ar(Ae) = 72 4 Te2 (8)
ny o ni n2

and the covariance term can also be simplified

¢o s ¢o , AoAs A A A A
cov(Ac, Ae) = vicr e) + v(ca, e2) _ Pri0aber | padeader )

ni n2 ni n2

Combining these elements gives our expression for the variance of ratio

A2 ~2 ~2 ~2
R Za1 y Te2 ) er 4 Tez
~ n n — ni no
A v R o
B p1 ff;L11 Ge1 + p2 &;Lz Ge2
—2Ac¢ N (10)
Factoring k2 = Ac?/Aé? from the right-hand side simplifies (7) to
var(R) ~ R*[(cv(Ae))? + (cv(Ae))? — 25 co(Ae)cv(Ae)] (11)

where cv(x) is the coefficient of variation for the random variable x
and defined as cv(x) = +/var(z)/Z, and pgy is the correlation coef-
ficient between two random variables x and y and defined as p,y =
cov(z,y)/+/var(z)var(y). The properties of this variance are intuitively
appealing: the cost-effectiveness variance will increase with a greater differ-
ence in costs or effects, with a greater population mean costs between groups
and with greater negative correlation between costs and effects. Conversely
the ratio variance will decrease with greater sample size, with a greater
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difference in population mean effects between groups and a greater positive
correlation between costs and effects.

The accuracy of the approximation in the equation above depends upon
the random variables, A¢ and Ae, having small coefficients of variation.
The coefficient of variation for each random variable is (Z,/2 + Zg)™,
where the two-sided level test « of significance has 1 — § power against
the true difference. For even a 50% power against the true difference the
coefficient of variation would be (1.96)~! = 0.51; small enough to ensure
reasonable accuracy. The accuracy of the approximation begins to fail as
the difference between treatments, with respect to cost or effect, approaches
zero so that the power falls well below 50%.

Similarly, for the ratio E(c)/E(e), we have

. o c
var(R) ~ é%var(é) + é—4var(é) — 2é—3cov(é, €), (12)
var(R) ~ %3/62 + & %3/64] —2¢ [@/eﬂ, (13)
var(R) =~ R?[(cv(c))? + (cv(e))? — 2 cv(c)ev(e)] . (14)

Employing standard parametric assumptions gives the confidence

interval as
(R = 2a/2\/ var(R), R+ za/zx/var(R)> . (15)

Knowledge of the variance of R would also enable some tests of hypo-
theses. For example, suppose we specified some a priori upper threshold
for the cost-effectiveness ratio, Rmax, which was the maximum cost per
unit effect that we would be willing to pay for this new treatment. Hence
Rinax would be the maximum acceptable slope of the cost-effectiveness
line through the origin in Fig. 2. We might set up a one-tailed test of
the hypothesis that the true ratio, R, was less than this maximum. Thus,
we have a null hypothesis, Hy : R = Rmax which is to be tested against an
alternative Ha : R < Runax and using our variance we might construct a
test statistic of the general form:

Z =R — Ryax var(ﬁ) .

In illustrating the possible use of var(R) in estimation and hypothesis
testing we have assumed that the distribution for R will be statistically
well-behaved such that some parametric distribution (e.g. normal) might
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be used in the large sample case. Although this is ultimately an empirical
issue it seems a questionable assumption. For example, the distribution of
a ratio of two differences may not be unimodal. While a non-parametric
analogue of the approach might be developed using rank-order statistics a
more practical alternative might be to generate an empirical distribution
for R by non-parametric bootstrapping.

4.1.3. Fieller’s method

An alternative method of calculating confidence intervals around ratios has
been described by Fieller.?

The advantage of Filler’s method over the Taylor series expansion is that
it takes into account the skew of the ratio estimator. The method assumes
that the numerator and denominator of the ratio follow a joint normal
distribution such that (in the case of the ICER) A¢ — RAEé is normally
distributed. Hence, dividing through by the standard deviation equation
follows the standard normal distribution:

Ac — RAe
VA{var(Ac) + R2var(Ae) — 2R cov(Aé, Ae)}

~ N(0,1). (16)

Setting this expression equal to z,/, and rearranging gives the following
quadratic equation in R:

R[1 - zi/Z(cv(Aé))z} —2RR[1— 22/2 pcv(A€)cv(AZ))
+R2[1 - 22 5 cv(AQ)] =0, (17)

L 1— zi/Q pcv(AE)cv(Ae)
1—22 plev(Ae))?

V]ev(Ae)]2 + [ev(Aé)?] — 2pcv(Ac)cv(Ae)
— 22 jp{cv(A0)]?[ev(Ae)?] — p?[ev(Ac)?[cv(Ae))?}
1- zi/z[cv(Aé)}Q

+ Zi/QR

Similarly, for the ratio E(c)/E(e), we have
¢ — Re
V/{var(¢) + R? var(€) — 2R cov(c, )}

~ N(0,1), (19)
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R[L - 22 5(ev(e))?] — 2RR[L — 225 pev(@)ev(@)] + B[ — 22 c0(@)]

(20)
1= zi/zpcv(é)cv(é)
R l 1—22 ylev(e))?
VO @~ oo
iZi/ZR —za/2{[cv(c)] [cv(@)?] — p*[cv(E)]?[cv(e)]*} (1)

1—22 ylev(e))?

Siegel et al.'® proposed that 7 = & — Reé is normally distributed with
mean ET = 0 and var(r) = (var(c) —2Rcov(c, e) + R?var(e)) /n. Let Fy 1
denote the 95th percentile of an F' distribution with 1 and (n — 1) degrees
of freedom. The probability that

72/ (var (c) — 2R cov(c,e) + R*var (€)) < Fypn_1(n—1)7!

is 0.05 since the random variable of the left side of the inequality is dis-
tributed as an F' distribution with 1 and (n — 1) degree of freedom. Multi-
plying both sides by the denominator and subtracting the right hand side
from both sides of the inequality yields

(@ — Fip1(n—1)" var(c)) — 2R(ce — Fi n_1(n—1)7" éov(c,e))
+R*@E® — Fi1(n—1)""var(e)) <0. (22)

The set of values of R satisfying this inequality is a 95% confidence interval
for the ratio E(c)/E(e).

4.1.4. Confidence interval for the expected cost to effect ratio E(c/e)

Under an assumption of asymptotic normality, the expected value of the
ratio F(c/e) does not exist because ratios of normal random variables follow
the Cauchy distribution. Therefore, in this case neither an estimator nor a
confidence interval makes sense. The approximate distribution function of
the random variable c¢/e, F(y) = P(c/e < yoe/o.) is given by

((wE(e) 0. — E(e)/o)(w? — 2pw + 1)) (23)

where ®(-) is the cumulative normal distribution with mean 0 and variance
1. Here, w = yo./o. where o, and o, are the population standard deviations
of e and ¢ respectively and p is the correlation between them. The median of



Cost-Effectiveness Analysis and Evidence-Based Medicine 175

this distribution is E(c)/E(e). Thus, the ratio of expected costs to expected
effects is the median of the distribution of the distribution of the patient
level ratio of costs to effects. A 95% confidence interval for the median of
this distribution may be obtained by applying the method based on Fieller’s
theorem.

For some data, rather than assuming that the distribution of F' is multi-
variate normal, it may be more appropriate to assume that the distribution
has a form for which E(c/e) does exist. For example, under an assumption
of asymptotic normality of the ratio, the sample mean of c/_e and sample
variance of the ratio 72 /e can be used to form a 95% confidence interval for
the mean cost-weight ratio as follows:

C/_€+tn*1 /O—:c/e\/ﬁa (24)

where n is the number of patients.

4.2. Bootstrap approaches to estimating the C-E ratio

The bootstrap approach for the simple one sample case is straightforward.
Suppose a particular population has a real but unobserved probability
distribution F' from which a random sample x of n observations is taken,
and the statistic of interest s(z) is calculated the concern of inferential
statistics is to make statements about the population parameter 6 based
on the sample drawn from that population. In the “bootstrap world,”
the observed random sample x is treated as the empirical estimate of F
by weighting observation in « by the probability 1/n. Successive random
samples of size n are then draw from x with replacement to give the boot-
strap samples (re-sample from the original sample). The statistic of interest
is calculated for each of these samples and these bootstrap replicates of the
original statistic make up the empirical estimate of the sampling distribu-
tion for that statistic. This estimated sampling distribution can be used in
a variety of ways to construct confidence intervals.

In principle, the bootstrap estimate of the ICER sampling distribution
can be obtained in very similar way to that of the simple one sample case.
How ever, since the ICER is estimated on the basis of four estimators
from two samples care must be taken to bootstrap each sample appropri-
ately. For data structures which are more complicated than a one sample
structure. Efron and Tibshirani* advocate that the bootstrap mechanism
for the observed data mirror the mechanism by which those original data
were obtained. In the case of the ICER, where data on resource use and



176 J. Li

outcome exists for two groups of patients of size n; and n; receiving treat-
ments/interventions T; and T}, respectively this will involve a three-stage
process:

(1) Sample with replacement n; cost/effect pair from the sample of patients
who received treatment 7; and calculate the bootstrap estimates ¢; and
e; for the bootstrap sample.

(2) Sample with replacement n; cost/effect pair from the sample of patients
who received treatment T} and calculate the bootstrap estimates ¢} and
e; for the bootstrap sample.

(3) Calculate the bootstrap replicate of the ICER given by the equation

ok —x
4 ¢ Ac

o> __ ok = ok
e;—e  Ae

R =

. (25)

Repeating this three-stage process many times gives a vector of boot-
strap estimates, which is an empirical estimate of the sampling distribution
of the ICER statistic.

Once the sampling distribution of the ICER has been estimated in this
way, several approaches exit to estimate confidence limits using the boot-
strap estimate of the sampling.

4.2.1. Normal approzimation

One method for confidence interval estimation is to take the bootstrap
estimate of standard error, given by

5 = L BR* R*b)2 26
= mZ( — R*)2 5 (26)

b=1

(where B is the total number of bootstrap replications) and assume that the
sampling distribution is normal. The resulting 100(1—c«/) per cent confidence
interval is

(R—Za/gg*, R+Za/2(§*). (27)

4.2.2. Percentile

The percentile method avoids the problem by making direct use of the
empirical sampling distribution. The 100(a/2) and 100(1 — «/2) percentile
values of the bootstrap sampling distribution estimate are used as the upper
and lower confidence limits for the ICER. The attraction of this method
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is its simplicity and its avoidance of the assumption of normality for the
ICER. However, skewed estimation can cause trouble for the percentile
method. In particular, in this context, the percentile method assumes that
the bootstrap replicates of the ICER are unbiased, whereas it is known that
ratio estimators are biased and that bootstrap replicates will magnify the
bias of the sample estimate.!”

4.2.3. Bias-corrected and accelerated

Efron? suggests a modification of the percentile method, which seeks to
adjust for the bias and skew of the sampling distribution. This is the
bias-corrected and accelerated (BCa) percentile method, which involves
algebraic adjustments to the percentiles selected to serve as the confidence
interval end points. The adjusted percentiles are given by

Cklz(b 2+—,ZA—’_AZO£/2 s
1—a(2+ zq/2)

Qg = oz + Z;—i_AZ(lia/m )
1—a(2+zi-a/2)

(28)

where ®@(+) is the standard normal cumulative distribution function and z, is
the 100« percentile point of standard normal distribution. Two adjustments
to the percentiles are incorporated into Eq. (28): 2 adjusts the sampling
distribution for the bias of the estimator, while a adjusts for the skew of
the sampling distribution. Setting ¢ = 0 yields the adjustment for bias
on the percentile chosen to serve as end points, and is equivalent to the
bias-corrected method advocated by Chaudhary and Stearns':

ap = ®(22 + z4)2) , (29)

Qg = @(22’ + Z(l_a/g)) .

The bias correction, 2, is given by 2 = ®~1(Q) where Q is the proportion
of bootstrap replicates which are less than the sample estimate, R. There-
fore, if the bootstrap sampling distribution has median R, @ = 0.5 which
gives 2 = 0 and (in the absence of a skew adjustment) the percentiles from
Eq. (29) correspond to those from the straightforward percentile method.
However, where the sampling distribution is not centered on R a correc-
tion is made for this bias. Notice that the nonlinear relationship between
the z-score and its probability results in the percentile end points being
shifted at unequal rates. It is also worth nothing that the bias correction
adjustment of BCa method, while not employing distributional assumptions
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concerning the distribution of the ICER itself, does make use of parametric
assumptions concerning the distribution of the observed bias. This reliance
on parametric assumptions has been cited as a potential weakness of the
BCa method (29).
The acceleration constant adjusts for the skew of the sampling distri-
bution. Efron and Tibshirani* suggest using a jack-knife estimate for é&:
_ L (BT - R (30)
61 (R — Ry 272
where RF* is the jack-knife replicate of the ICER with the ith observation
removed, R*s = Y. R**/n for i = 1 to n and n = n; + n.. In terms of the
adjustments to the percentiles given in Eq. (28). In the absence of a bias
correction adjustment, the skew adjustment is given by

a1 = (P (720:/2 ) s
1—azy0

Z(1—a
om (e Y
1- AzZ(1—a/2)
Equation (30) shows that if the sampling distribution is symmetric, @ = 0

and Eq. (31) shows that no adjustment to the percentile interval end points
is made.

A kk

(31)

4.2.4. Parametric bootstrap

Efron and Tibshirani* outline a simulation-based method of confidence
interval estimation that they refer to as a parametric bootstrap approach.
Notice that from the definition of ICER, the difference in cost on the
numerator and the difference in effects on the denominator of the ICER
are both simply the difference between two normally distributed. The
parametric bootstrap approach involves using this property of the distri-
bution of the numerator and denominator in combination with the observe
means, variance and covariance to estimate the parameters of the sampling
distribution of the cost and effect differences. Sampling from each of these
two distributions, while allowing for the estimated covariance between
them, gives an estimate of the ICER. Repeating this process many times
generates an empirical estimate of the sampling distribution of the ICER.
The 100(«/2) and 100(1—c«/2) percentiles of this estimated distribution are
used as estimstes for the upper and lower limits of the confidence interval,
as with the percentile method.
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5. Testing Difference Among the Populations
5.1. Under assumption of normality of distribution
5.1.1. Testing on ICER

Let Ry be a specified value of the incremental cost-effectiveness ratio
(ICER) R. It may be viewed as the maximum amount society is willing
to pay to gain one unit of effectiveness by adopting the test intervention
over the reference. We consider three tests of hypotheses on R:

(a) Hy: R= Ry verse Hy : R # Ro;
(b) Ho: R> Ry verse Hy : R < Ry;
(¢c) Hy: AE(e) > 0or R> Ry verse Hy : AE(e) > 0 and R < Ry.

In (b), rejection of the null hypothesis might be interpreted to mean that
the test intervention is cost-effective, in the sense that the data supports
a CER below the stipulated maximum Ry. Its two-tailed version, (a) tests
whether the data are consistent with a specified value Ry of the ICER. In
(c), we test the joint hypothesis on effectiveness and cost effectiveness. If
the null hypothesis is tenable, the test intervention is either not effective
or not cost-effective. If the alternative is true, then the test intervention is
both effective and cost-effective, relative to the referent intervention. The
covariance matrix of (A¢, Aé)’, ¥ could be represented as follows

~2 ~2 ~ ~ o~
00 Oc1 Pi0ciOci PjO0cjOcj
D +— +
5 — O .P 0O . Tn; nj n; TLj
T s a2 T A~ ~ —~— o~ —~2 —~2
POO0, Pi0ciOei  PjOcj0¢i Ogi O
- i
n; T n; T

(32)

Test of Hy : R = Ry verse Ha : R # Ry.
We formulate our test in terms of the estimated net cost Aé— RgAeé. Under
Hy, the statistic

T = (A¢ — RyAe)/{var(A¢ — RyAe)}/?
or
T = (A¢ — RoAe)/{var(Aé) + RZ var(A&) — 2R2 cov(Ac, Aé)}/?

has an approximate standard normal distribution. The test rejects Hy if
|T'| > 2(1—a/2) Where z(1_q /2 is the 100(1 — /2) percentile of the standard
normal distribution.
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Ac

Region 2

Region 1

Fig. 4. Regions for one-sided test of effectiveness and cost-effectiveness. Region 1: test
intervention both effective and cost-effective. Region 2: referent intervention effective and
cost-effection.

Test of Hy : R > Ry verse Hy : R < Ry

We would reject Hy : R > Ry if A¢ — RoAe < —z(_q/2){var(Ac) +
R3 var(Ae) — 2R3 cov(AC, Aé)} o

Test of Hy : AE(e) <0or R> Ry verse Ha : AE(e) > 0 and R < Ry.

In Fig. 4, the lower shaded region (region 1) in the C_E plane is where
H 4 holds. The complementary shaded region (region 2) in the second and
third quadrants is where the referent intervention is both effective and cost-
effective. Our one-sided test impose asymmetry between the test and the
referent interventions, and region 1 is the appropriate rejection region for
our test.

Based on our previous discussion, an appropriate test would reject Hy
if Ae > ¢; and (A¢ — RgAe) < c¢o where the constant ¢; > 0 and ¢a < 0
need to be specified. The size of the test is

a = sup P[Aé > ¢1, (A¢ — RoAé) < ¢,

where the supremum is taken over all (Ae, A¢) consistent with Hy. By nor-
malization, we may express this in terms of the bivariate normal (Z1, Z2),
with zero means, unit variances and correlation —p*. Then

—(Cl — Aé)
/var(Aé)

L < Cco — (AE — R()Aé)
> ™ {var(Ac¢) + R2 var(Aé) — 2R2 cov(Ac, Aé)}1/2

a=sup P|Z; <
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= max{P

r {Zz = {var(Ac) + R% var(Ae) — 2R3 cov(Ac, Ae)}1/2] } (33)

—C

A{var(Ae)

Z1 <

9

One solution to (33) is
€1 = 01%1—a >

co = —{var(Aé) + R2var(Ae) — 2R2 cov(Ac, Ae)} 2z . (34)

5.1.2. Testing on CER (cost-effectiveness ratio)

If the cost-weight bivariate distributions are normal with mean vectors
(E(ci), E(e;)) and common covariance matrix, the multivariate analysis
of variance, MANOVA, can be used to test the hypothesis that the vectors of
cost-efficiency measures are identical. If the MANOVA finds the means of
the distributions of the populations to be equal and the ¢ — e measure is a
function of the means, e.g. E(c;)/E(e;), then it may be concluded that the
¢ — e measures do not differ.

A likelihood ratio test could be employed to test the hypothesis Hy :
E(c;)/E(e;) = Ry for all 4, that is, E(c¢;) — RoE(e;) = 0.

An asymptotic a-level two sided test of Hy may be obtained by first
using likelihood theory for normal variables for testing the linear hypothesis
that all ratios are equal to a specific value, say, Ry. The desired likelihood
ratio test is found by maximizing the previous likelihood over all possible
values of Rg.

Let n; denote the number of bivariate observations of cost and effect for
treatment ¢ and let n = 3n;. The available data consists of the bivariate
observations (Cij, 61‘]‘), 1 =1, 2, ceey I, j =1, 2, N 17 Let s11 = EiEj(cij -
Ei)Q/TL, S99 = EiEj(eij — éi)z/n, and s12 = EiEj(cij —51‘)(62']' — éz)/’l’L Here,
s;; are the elements of the pooled covariance matrix, S. The hypothesis
E(c;)/E(e;) = Ry is equivalent to the hypothesis F(c;) — RoF(e;) = 0 for
all ¢. For a specific Ry the classical test of the latter linear hypothesis is
based on the Wilks’ statistic, W (Rp). The likelihood ratio statistic for the
same linear hypothesis is given by A(Ro) = W(Ry)"™/2. Maximizing A(Ry)
over all possible values of Ry yields the desired likelihood ratio test. The
test rejects Hy at the Ry level if

—nInxmax < Xia(f —-1). (35)
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Here x3__(I — 1) is the upper 1 — a percentage points of the chi-square
distribution with I — 1 degrees of freedom and ymax is the large of the two
solutions of the following quadratic equation: az? + bx + ¢ = 0 where

a = EiZ]‘Cz- * ZiZ]‘e?j — (Eizjcijeijf s

3
b=[Si5;c]; * Bi(Sjel; — nie;) + LiXjes; + Bi(35¢5; — nic;)
- Q(Eichijeij) * (Ei(chijeij — niéiéi)] s

c= Ei(chizj — nzéf) * Ei(Ejefj — nzéf) — (Ei(chijeij - niéiéi)Q .

5.2. Without assumption of normality of distribution

The distribution of ¢/e is often skewed. The lifetime models can be widely
applied to investigate the distributions of c¢/e and the difference in c¢/e
between populations. A cost-effectiveness distribution function, or ¢ — e
distribution function, could be defined as:

S(ce) =Pr(c/e > ce) . (36)

The parametric, semi-parametric and non-parametric methods are able
to deal with the data, whose distributions do not meet the assumption of
normality and with censored data.

The Weibull, gamma and log-normal distributions could be applied to
estimate the ¢ — e distribution function and the difference in ¢/e between
different populations.

The non-parametric approach, such as Kaplan—Meier method could be
applied to estimate the ¢ — e function. The non-parametric tests such as
Wilcoxon and logrank test can be used to test the equality of the different
groups.

6. Power and Sample Size Assessment for Tests of
Hypotheses on Cost-Effetiveness Ratios

6.1. Test of Hy : R = Ry verse Hy : R # Ry

The power (=1 — ) of this test at the alternative H4 : R = Ra(# Ry) is
given by

P[|Ae — RoAé| < z1_q 2{var(Ae) + R} var(Ae)
—2R2 cov(Ac, Aé) Y2 H ) = 3. (37)
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Under Hya, E(A¢— RyA€) = §(Ra— Ryp), with (# 0) denoting the true
incremental effectiveness. Assuming the covariance matrix of (Ac, Ae)’, %,
is known, Eq. (37) yields

P[—2z1_a/2 — 6(Ra — Ro){var(A¢) + Rj var(Aé)
— QR% cov(Ag, Aé]fl/2 <Z < 21-a/2
—6(Ra — Ro){var(A¢) + R} var(Ae)
—2R2 cov(Ac, Ae} M =3, (38)

where Z is standard normal and na = kng. Depending on the sign of
0(Ra — Rp), the absolute magnitude of one of the limits on Z is usually
large. In either case, we will get, approximately .

|6(Ra — Ro)|
= (21—ay2 + z1-p){var(Ac) + R2var(Ae) — 2R2 cov(Ac, Ae)}/2.
(39)
Routing algebraic steps gives
var(A¢) + R2 var(Aé) — 2R2 cov(AG, Ae) =721 — p2)(1 4 w) ,

where vy = {Ry(7./5.) — p}?/(1 — p?). Supposing n; = kng, where ng
and n; are the number of patients in the test intervention and referent
intervention respectively, we have

(550 + kilagl)(zl—am +21-5)2(1 = ) (1 + vo)
02(Ra — Ro)?

ng = (40)

Under the same design set-up, the sample size ng in the referent inter-
vention needed to guarantee power of 1 — 8 to detect a difference § in the
test of Hgy : Ae = 0 is given by

noy = 67272 + k_lail)(zl—am +21-5)%.
Therefore,

@2+ k7521 =51+ w)
(@2 +k~152)(Ra — Ro)?

no/n()b = (41)

The parameter vy is a function of p* between Aé and (A¢— RyAg). In fact,

p* = —{Ro(0c/0c) — p}// (1 —v2)(1 4+ —vg) .
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Therefore, |p*| = {vo/(1 + vo)}?. Tt will be very large if p* is close to one
and, consequently, the sample sizes in (40) and (41) will also be large. The
correlation between the incremental cost and the incremental effectiveness
is related through (32) to p* the individual correlations py, p1 between cost
and benefit in the two interventions. As is usually the case, Ry > 0 and
both (40) and (41) are monotonically decreasing in p* leading to a smaller
sample size ng and relative size ng/ng, with increasing value of p. Finally,
these sample size formulae are dependent on both the hypothesized CER
Ry and the difference R4 — Ry.

6.2. Test of Hy: R > Rg verse Hy : R < Ry

Analogous sample size calculations yield the following formula, which
replaces (40):
(02 + k102 (z1-0 + 21-5)*(1 — p?)(1 + vo)
62(Ra — Ro)?
For the one-sided test Hp1 : AE(e) = 0, with regard to their effective-
ness and, therefore, should be compared on their costs. The ratio ng/ngsp

compares the sample size requirement of the test Hy : R = Ry with that
for Hyy : Ae = 0, with the latter powered to detect the difference d.

ng = . (42)

6.3. Test of Hy : AE(e) <0 or R > Ry verse
Ha:AFE(e) >0 and R < Ry

With the solution (34), the power (1 — ) of the test can be computed from
the bivariate normal distribution of (Z1, Z2) and is given by

6
1—52P Al < —Zl—q + —, Lo < —Z1_a
01

n 5|R — Ro|
{var(A¢) + R3var(Ae) — 2R2 cov(Ae, Ae)}—1/2 |’

(43)

where § > 0 is the incremental effectiveness and R(< Rg) is the true cost-
effectiveness ratio. This parallels the power considerations leading to (39)
for the test of cost-effectiveness only. The choice of ¢; and ¢g in (33) is
optimal in order to gain maximal power for a given sample size and alter-
native. An implicit expression for the sample size ng corresponding to () can
be derived by making the substitutions 02 = (0%, +k~'02))/no, 0% = (62+
k~102)/ng and var(Ac)+ R3 var(Aé) —2R3 cov(Ac, Ae) = a2(1—p)(1+wvp).
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Note that the previous expression for ng in (42) is a lower bond for the
sample size requirements for testing Hy : AE(e) <0 or R > Ry.

6.4. Numerical computations

In some special cases, simplification of (40)—(43) are possible. Suppose the
costs (cg, 1) and benefit measures (eg,e1) in the two interventions have
the same variance %, = 72, (= 02
assuming equal allocation to the two interventions (k = 1), we have p° =

(po + p1)/2 and the sample size ng, ngp in (40) and (41) reduce to

202212+ 21-8)%(R3 + (3./5.)? — 29 Ro(5./7.))
62(Ra — Ry)? T(44)

nop = 5_226'\3(21,a/2 + Zl_g)2 .

), 72 = @2, (= 72), respectively. Then,

o

From (42), for one-sided testing, z;_o/2 must be replaced by z1_o. The
effect size §/o. is the difference in effectiveness in units of standard
deviation (SD). For the joint hypothesis test of Hy : AE(e) < 0 or R > Ry,
the power and sample size expression (43) becomes

no 1)

1 < —Zi—at ] ==, Z2 < —Zi—-q

1-8=P
A 2 T,

no 6 ‘R - RO|
[0 2 . 45
- 270, {R(Z) + (Ge/Te)* — 2p RO(EC/Ee)}71/2 (45)

The sample size requirement for this joint test to ensure power (1 — )
would be greater than the sample size needed for the one-sided test for
effectiveness alone. For fixed ng, the factor

_ RS+ (5e/e)® — 2pRo(0c/Te)} 12

[R — Ro|
would drive the power, with power decreasing with increasing (. This factor
is the square-root of the sample size ratio ng/nop, in (41). Note that if
|o./T. — Ro| > |Ro — R|, irrespective of the value p° we always have ¢ > 1.
Therefore, (45) should be used to calculate power of the joint test given a

¢

sample size that might be available for testing effectiveness. On the other
hand, (44) is suitable for assessing the sample size needed to establish cost-
effective. It should be noted that the right-hand side of (45) is dependent
on p through the correlation first decrease Z; and Zs. In practice, we are
likely to have Ry > 0./0e, in which case this correlation p first decreases
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with and then increase after the value p° = (Ryo./0.)~!, therefore, in this
circumstance, a strong positive correlation between cost and effectiveness
would suggest a smaller sample size requirement for (45) to hold given (.

7. Examples
7.1. Example 1

We use summary data from Sacristan et al.'* on a trial comparing two
pharmacological agents in this example. Data on 150 patients using the
test drug yield a mean cost of $200,000 (SD = $78,400). Health benefit
measured in QALY is 8 (SD = 2.1) corresponding values on 150 patients
using the standard drug are $80,000 (SD = $27,343) for mean cost, and
5 QALYs (SD = 2.0) for mean health benefit. These values yield the fol-
lowing estimates: Ae = 3, A¢ = $120,000 and from (32) 7, = 0.237 and
0. = 6779. In the absence of a reported value for the correlation between
cost and effectiveness, we consider values py = py1 = 0.7. From (32), we
see that with zero correlations, the incremental cost and incremental effec-
tiveness are uncorrelated (p = 0). For py = p1 = 0.7, we get p° = 0.638
approximately.

7.1.1. Hypothesis testing for the CER

Suppose the hypothesized CER was Ry = $50,000/QALY. From the test of
Hy: R= Ry verse Hy : R # Ry section, the two-sided test of Hy : R = Ry
based on the statistic T = (A¢— RoA&)/{var(A¢— RyA&)}'/? has a p-value
of 0.03 if pyp = 0 and approximately 0.001 if py = 0.7. It can be shown that
the p-values decrease with increasing values of py.

7.1.2. Determining statistical power

What power does this test have to detect an alternative CER, Ry =
$40,000/QALY? We compute the power from (39) assuming an incremental
effectiveness of 3 QALYs. If py = 0 the power is about 59% and increases
to 94% if py = 0.7. A lower power may be acceptable in studies of cost-
effectiveness.

7.1.3. Testing the joint hypothesis on effectiveness and
cost-effectiveness

The power function of this one-sided test is given in (43). To test for sig-
nificance of the difference in effectiveness (i.e. Hoy : AE(e) = 0), we would



Cost-Effectiveness Analysis and Evidence-Based Medicine 187

reject if |Aé/G.| > 21_q/2. In this example, the difference ¢ being highly
significant makes the right-hand side of (43) essentially

d|R — Ro|

Pl|Zy < —2z1_4
2 S T T T AG) + REvar(Ae) — 2REcov(AG, Ae)) 12

The power at 6 =3 and R = $40, 000 is about 0.71 for these data.

7.2. Example 2

Consider the simplifications leading to (44) and (45). To ensure a power
of 80% to detect an effect size §/7. = 0.5 with a two-sided test of
Hy, : AE(e) = 0 with a = 0.05, we get ng, = 63. Suppose the hypothe-
sized ICER is Ry = $80,000/QALY and the relative SD 7./7. = 5,000
(3/QALY). Correlation between the cost and effectiveness measures is likely
to be positive. Let p = 0.7 and assume a known effect size /7. = 0.5.
The sample size ny needed to detect an ICER of $50,000/QALY or less
with 80% power requires ng > 6.51ng,. For two-sided testing, this yields
ng > 410. The sensitivity of p(> 0) to this relative sample size is small. A
zero correlation increase this ratio to 7.1.

Now consider testing the joint hypothesis Hy : AE(e) < 0 or R > Ry
under the same constraints. Suppose we want 80% power to detect an effect
size 0.5 and an ICER of $50,000/QALY. Using (45), we will get ng = 323
when p° = 0.7. Note that the joint hypothesis is formulated as one-sided.
In comparison, a one-sided test for effectiveness would need approximately
50 subjects per arm to detect an effect size of 0.5 with 80% power. As noted
after (45), the power is driven by the probability involving Z5 because ¢ > 1
in this case.

7.3. Example 3

Sample size requirements for testing Hy : AE(e) < 0or R > R are given in
Table 1 for some values of Ry and effective sizes § /.. The test is designed
with a = 0.05 and 80% power at R = $30,000/QALY. We use (45) with
p =0.7 and 7. /7. = 5,000 ($/QALY).

The last column of Table 1 gives the sample size requirement to ensure
80% power in the two-sided test of effectiveness alone. For example, to de-
tect an effect size of 0.4 and a ICER of $30,000/QALY, when the maximum
acceptable level is $50,000/QALY, we require a sample size of 421 for the
test and referent groups. In comparison, for testing Ho; : AE(e) = 0, only
99 subjects are required to detect an effect size of 0.4.
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Table 1. Sample size requirements for testing effectiveness and cost-effectiveness.

Maximum ICER Rg (31000/QALY)  Effectiveness alone
Effective size

40 45 50 55 60
0.3 1848 1060 748 586 490 175
0.4 1040 596 421 330 276 99
0.5 666 382 269 211 177 63
0.6 462 265 187 147 123 44

Because of the relatively large sample size needed to test the joint hypo-
thesis of cost-effectiveness and effectiveness, in practice power could be
calculated from (10) using the sample size that is needed to demonstrate
a difference in effectiveness between two treatments. For example, with
175 subjects per arm, we have 80% power to detect an effect size of 0.3.
with this sample size, p = 0.7 and Ry = $50,000/QALY we will have 64%
power to detect a ICER of $30,000/QALY at an effect size of 0.5 at an
effect size of 0.3, the power is only 33%.

8. Modeling for Cost-Effectiveness Analysis

Cost-effectiveness analysis require estimation of the health effects and
resource costs associated with an intervention and with the alternatives
to which it will be compared. Modeling is frequently necessary since few
studies provide information over sufficiently long periods or for all relevant
costs, effects and population groups.

Cost-effectiveness analysis helps inform different types of decisions
about health interventions. To begin, it can inform the decision to use an
intervention at all by showing whether it is cost-effective enough compared
to alternatives. More often decisions concern hoe to use the intervention.
Should screening for hypertension be done every year, every two years, or
every five years? If hypertension is diagnosed, and non-drug therapies are
unsuccessful, which drugs should be used? Should folic acid supplementa-
tion be accomplished through diet, vitamin supplements, or fortification of
cereal grains? If fortification, how many mg of folic acid per 100 grams of
cereal grain product? Should every patient who presents at the emergency.

A model creates the framework for cost-effectiveness analysis. To serve
its purpose, and enable decision makers to explore the implications of vari-
ation in the intervention, the condition, and the population, it must allow
not only for substantial variation in those factors.
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8.1. Validating effectiveness estimates

Accuracy is essential for a model. Eddy? described four levels of validation.
First, the structure of the model should make sense to experts. Second, the
model should reproduce the outcomes observed in the studies used to esti-
mate its parameters. Third, the models predictions could be compared with
results from studies not used in its construction. Fourth, the model could be
used to predict outcomes for a new program and the predictions compared
with the outcomes when the program is implemented. The first and second
steps are essential. For the third step, randomized clinical trials (RCTs)
offer a challenging, but potentially persuasive, test of a models accuracy.
While trials are usually the benchmark, the model may be accurate on
specific points.

It is reasonable to expect a good model to match the results of trials
available at the time of its construction, but not to expect it to predict the
results of future trials. Models can and should accurately reflect the state
of knowledge at the time they are created.

When is a model going too far beyond the data? The medical and public
health practice are the best guides. Models can appropriately be used to
analyze any circumstances in which the intervention is already being ap-
plied, or in which it is being seriously considered for application. If it is
appropriate to use the intervention in the real world, on real people, it is
an appropriate to analyze the implications of that use of a model.

8.2. Modeling costs

Eddys suggestions described above should be considered for the cost
estimate as well. Modelers need to pay attention to ensuring that the
pathway of events described by a model represents costs as well as it does
effects.

In part, the failure to validate cost estimates reflects the failure to take
cost data as seriously as effectiveness data. A basic requirement for accurate
predictions, often overlooked, is that both costs and effects should apply to
the same population and the same circumstances. Further, data on resource
use and cost need to be associated with the same care and subjected to
the same sorts of consistency checks as effectiveness data — comparing one
source with another, relating differences in costs to characteristics thought
to be associated with those differences and so on.

In addition, the range of variation that could usefully be modeled is as
wide for costs as for effects. An iterventions effectiveness differs across the
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country because populations differ in incidence of the condition, risk factors
and co-morbidities. Costs differ across the country because of differences
in wages and other costs, in practice patterns and in suitable production
technologies. While one purpose of sensitivity analyses is to determine which
parameters have a major influences on cost-effectiveness, it would also be
useful to explore sets of assumptions that describe, as accurately as the
data allow, circumstances in another part of the country or another delivery
system.

The US panel on cost-effectiveness in Health and Medicine has urged
the use of micro-costing for costing events important to an analysis. Micro-
costing could yield a better understanding of the factors that underlie
resource use and costs for various conditions, analogous to the under-
standing of effectiveness built up from epidemiological and clinical research.
That understanding might reveal alternatives for making interventions more
cost-effective by changing the way they are delivered, not just by targeting
them to population subgroup.

Models should be flexible enough to permit exploration of a range of
production possibilities and cost levels for an intervention. Analysts could
then examine plausible differences in costs and production technologies. It
would be useful to evaluate combinations of values that occur in the real
world: conditions in Michigan verse those in San Francisco, conditions in
an inner city, a suburb, or a rural area.

8.3. Modeling form

Models are built from estimates of risk — the probability that a condition
will progress to the next stage, that a test is accurate, that a treatment will
be effective. In medical research, the familiar and convenient mathematical
forms for fitting risk relationships are the logistic and, more recently hazard
models. Both forms incorporate an assumption that the risk relationship
is multiplicative, and thus that the size of the risk reduction caused by
changing one risk factor differs for different levels of the other risk factors.
This assumption implies, for example, that the reduction in risk caused
by lowering systolic blood pressure from 160 mmHg to 140 mmHg will
be larger in people who also smoke, even though they continue to smoke,
than in people whose only risk factor is high blood pressure. Similarly,
the reduction in risk from smoking cessation will be greater in people
who are hypertensive, even if their blood pressure is unchanged, than in
non-smokers.
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In turn, this implies that it will be more cost-effective to apply an in-
tervention to people with several risk factors, not because the programme
achieves economies by treating several riskm factors, but because interven-
tion against a single risk factor is more effective in these people. The point
is clear in an analysis by Taylor et al.'® Of a dietary programme to lower
serum cholesterol modeled after the one employed in MRFIT. Effectiveness
was estimated using logistic coefficients reported from the Framingham
study. Results were presented separately for low-risk men, whose only risk
factors for heart disease were their gender and cholesterol level, and for
high-risk men, who also smoked and had high blood pressure and low HDL
levels. Although the cost of the intervention was the same, cost per life-
year was approximately ten times higher for low-risk men because of the
multiplicative assumption incorporated in the logistic form.

Logistic and hazard models play an important role in some of the situ-
ations for which models are particularly useful — examining differences in
effectiveness and cost-effectiveness among subgroups. When analysts model
the implications of targeting an intervention to subgroups, or extrapolate to
explore its application to less-studied groups, they need to be aware of the
implications of the conventional forms. Modelers cannot supply the data
to resolve this issue, but they can draw attention to it by showing how
estimates change when addictive and multiplicative forms are used. The
ultimate goal is to ensure that estimated differences among subgroups are
not an artifact of a convenient statistical model.
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CHAPTER 6

QUALITY OF LIFE: ISSUES CONCERNING
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1. The Concept of QOL and its Components

What is quality of life? There is no universally agreed definition. Quality
of life (QOL) not only means different things to different people, but it
also varies according to a person’s current situation. When a person falls
sick he thinks QOL is good health, when he is poor, QOL is wealth. To
a town planner, for example, QOL might represent access to green space
and other facilities. In the context of clinical trials we are rarely interested
in QOL in such a broad sense, but are concerned only with evaluating
those aspects that are affected by disease or treatment of disease. This may
sometimes be extended to include indirect consequences of disease such as
unemployment or financial difficulties. To distinguish between QOL in its
more general sense and the requirements of clinical medicine and clinical
trials, the term “health-related quality of life” (HRQOL) is frequently used
in order to remove ambiguity.

There are a number of reasons for developing a quality of life assessment
tool. The main reason is undoubtedly that in recent years there has been a
broadening of focus of the measurement of health beyond traditional health
indicators such as mortality and morbidity.! Indeed, the measurement of
health may now includes assessment of the impact of disease and impair-
ment on daily activities and behaviour,? perceived health measures® and
disability /functional status measures.* These measures, whilst beginning
to provide an indication of the impact of disease, do not access quality of
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life per se, which has been aptly described as “the missing measurement
in health”.® The increasingly mechanistic model of medicine, concerned
only with the eradication of disease and symptoms, reinforces the need
for the introduction of a humanistic element into health care. Health care
is essentially a humanistic transaction in which the patient’s well-being is
the primary aim. By calling for QOL assessment in health care, attention
is focused on this aspect of health, and resulting interventions will pay
increased attention to the problem.

There still has not been a single, clear, universally accepted definition of
HR-QOL. What domains should be included in QOL? There are five major
domains of QOL which are generally referred to by most authors. These
domains are physical status and functional abilities, psychological status
and well being, social interactions, economic and/or vocational status and
factors, and religious and/or spiritual status.

The World Health Organization (WHO) has developed an international
quality of life assessment instrument (WHOQOL) which allows an enquiry
into an individual’s perception of own position in life in the context of
the culture and value systems in which they live, and in relation to their
goals, expectations, standards and concerns. The WHOQOL measures qual-
ity of life related to health and health care. It has been developed in the
framework of a collaborative project involving numerous centres in differ-
ent cultural settings.® QOL is defined by WHO as “individuals’ perceptions
of their position in life in the context of the culture and value systems in
which they live and in relation to their goals, expectations, standards and
concerns”. It is a broad ranging concept incorporating in a complex way the
persons’ physical health, psychological state, level of independence, social
relationships, personal beliefs and their relationships to salient features of
the environment.

This definition reflects the view that quality of life refers to a subjective
evaluation, which is embedded in a cultural, social and environmental
context. As such, quality of life cannot be equated simply with the terms
“health status”, “life style”, “life satisfaction”, “mental state” or “well-
being”. Because the WHOQOL focuses upon respondents’ “perceived”
quality of life, it is not expected to provide a means of measuring in
any detailed fashion symptoms, diseases or conditions, nor disability as
objectively judged, but rather the perceived effects of disease and health
interventions on the individual’s quality of life. The WHOQOL is, there-
fore, an assessment of a multi-dimensional concept incorporating the
individual’s perception of health status, psycho-social status and other
aspects of life.

9 [43
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It is anticipated that the WHOQOL assessment will be used in broad-
ranging ways. It will be of considerable use in clinical trials, in establishing
baseline scores in a range of areas, and looking at changes in quality of life
over the course of interventions. It is expected that the WHOQOL assess-
ment will also be of value where disease prognosis is likely to involve only
partial recovery or remission, and where treatment may be more palliative
than curative.

For epidemiological research, the WHOQOL assessments will allow
detailed quality of life data to be gathered on a particular population,
facilitating the understanding of diseases, and the development of treatment
methods. The international epidemiological studies that would be enabled
by instruments such as the WHOQOL-100 and the WHOQOL-BREF will
make it possible to carry out multi-center quality of life research, and to
compare results obtained in different centers. Such research has important
benefits, permitting questions to be addressed which would not be possible
in single site studies. For example, a comparative study in two or more
countries on the relationship between health care delivery and quality of life
requires an assessment yielding cross-culturally comparable scores. Some-
times accumulation of cases in quality of life studies, particularly when
studying less frequent disorders, is helped by gathering data in several
settings. Multi-center collaborative studies can also provide simultaneous
multiple replications of a finding, adding considerably to the confidence
with which findings can be accepted.

In clinical practice the WHOQOL assessments will assist clinicians in
making judgements about the areas in which a patient is most affected
by disease, and in making treatment decisions. In some developing coun-
tries, where resources for health care may be limited, treatments aimed at
improving quality of life through palliation, for example, can be both effec-
tive and inexpensive. Together with other measures, the WHOQOL-BREF
will enable health professionals to assess changes in quality of life over the
course of treatment.

It is anticipated that in the future the WHOQOL will prove useful
in health policy research and will make up an important aspect of the
routine auditing of health and social services. Because the instrument was
developed cross-culturally, health care providers, administrators and legis-
lators who require a valid QOL instrument for use can be confident that
data yielded by work involving the WHOQOL assessment will be genuinely
sensitive to their setting.

A large number of instruments have been developed for QOL assess-
ment and we can divide them into two categories: generic instruments and
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disease-specific instruments.” Generic instruments are intended for general
use, irrespective of the illness or condition of the patient. These generic
questionnaires may often be applicable to healthy people too. Some of
the earliest ones were developed initially with population surveys in mind,
although they were later applied in clinical trial settings.

There are many instruments that measure physical impairment, dis-
ability or handicap. Although commonly described as QOL scales, these
instruments are better called measures of health status because they focus
on physical symptoms. They emphasize the measurement of general health,
and make the implicit assumption that poorer health indicates poorer
QOL. One weakness about this form of assessment is that different patients
may react differently to similar levels of impairment. Many of the earlier
questionnaires such as the Sickness Impact Profile (SIP)? and the Notting-
ham Health Profile (NHP)® to some degree adopt this approach. Few of the
earlier instruments had scales that examined the subjective non-physical
aspects of QOL, such as emotional, social and existential issues. Newer
instruments such as the Medical Outcomes Study 36-Item Short Form
(SF-36),° however, emphasize these subjective aspects strongly, and also
commonly include one or more questions that explicitly enquire about
overall QOL. More recently, some brief instruments that place even less
emphasis upon physical functioning have been developed. Two such instru-
ments are the EuroQol,'° which is intended to be suitable for use with
cost-utility analysis, and the SEIQol,'' which allows patients to choose
those aspects of QOL that they consider most important to themselves.

Generic instruments, intended to cover a wide range of conditions, have
the advantage that scores from patients with various diseases may be com-
pared against each other and against the general population. On the other
hand, these instruments fail to focus on the issues of particular concern
to patient with disease, and may often lack the sensitivity required to de-
tect differences that arise as a consequence of treatment policies that are
compared in clinical trials. This has led to the development of disease-
specific questionnaires, for example, the EORTC QLQ-C30 (European
Organization for Research and Treatment of Cancer QLQ-C30).12

2. Methods of Developing QOL Measurements

The development of a new QOL instrument requires a considerable amount
of detailed work, demanding patience, time and resources. Some evidence
of this can be seen from the series of publications that are associated with
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such QOL instruments as the SF-36, the FACT and the EORTC QLQ-C30.
These and similar instruments have initial publications detailing aspects of
their general design issues, followed by reports of numerous validation and
field-testing studies.

Many aspects of psychometric validation depend upon collecting and
analysing data from samples of patients or others. However, the statisti-
cal and psychometric techniques can only confirm that the scale is valid in
so far as it performs in the manner that is expected. These quantitative
techniques rely on the assumption that the scale has been carefully and
sensibly designed in the first place. To that end, the scale development pro-
cess should follow a specific sequence of stages, and details of the methods
and the results of each stage should be documented thoroughly. Reference
to this documentation will, in due course, provide much of the justification
for content validity. It will also provide the foundation for the hypothetical
models concerning the relationships between the items on the questionnaire
and the postulated domains of QOL, which are then explored as construct
validity.

Next, we will discuss the steps in instrument development in detail.

2.1. Specifying measurement goals

Before embarking on the development of any new instrument, the investi-
gator should define exactly what the instrument is to measure. This initial
definition will help the investigator design appropriate development and
testing protocols and will enable other users of the instrument to identify
its applicability to their own patients and studies. This process will include
specification of the objectives in measuring QOL, a working definition of
what is meant by “quality of life”, identification of the intended groups
of respondents, and proposals as to the aspects or main dimensions of
QOL that are to be assessed. The investigator should consider at least
the following criteria.

2.1.1. Patient population

As in a clinical trial, there should be clear inclusion and exclusion criteria
that identify the precise clinical diagnosis and basic patient characteristics.
A detailed definition might include age, literacy level, language ability, and
presence of other illness that might have impact on QOL. An investigator
may be thinking of a particular study in which the instrument is to be used,
but constructing an instrument for too specific a population or function may
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limit its subsequent use. One can usually choose a patient population that
is narrow enough to allow focus on important impairments in that disease
or function but board enough to be valid for use in other studies.

2.1.2. Primary purpose

The investigator needs to decide whether the primary purpose of the in-
strument is going to be evaluative, discriminative, or predictive. Although
some instruments may be capable of all three functions, it is difficult to
achieve maximum efficiency in all three.

2.1.3. Patient function

In most disease-specific instruments, investigators want to include all areas
of dysfunction associated with that disease (physical, emotional, social,
occupational). However, there are some instruments that are designed to
focus on a particular function (e.g. emotional function, pain, sexual func-
tion) within a broader patient population. The investigator should decide
whether all or only specific functions are to be included.

2.1.4. Other considerations

The investigator should also decide on the format of the instrument. Will
it be interviewer and/or self-administered? Does it need to be suitable
for telephone/postal interviews? Approximately how many items will the
instrument contain?

Once a working definition of quality of life and study protocol are deve-
loped, a further phase of work involved operationalizing the broad domains
and individual facets of quality of life. Consultants and principal investi-
gators should draft a provisional list of domains and constituent facets of
quality of life. Each facet definition should consist of a conceptual definition,
a description of various dimensions along which a rating can be made for
that facet, and a listing of some example situations or conditions that might
significantly affect that facet at various levels of intensity. Once facets of
QOL are drafted, a series of focus groups should be held with patients, well
persons and health professionals to consider the facet definitions drafted by
health professionals and QOL researchers. On the basis of the focus group
data, a revised set of facet or domain definitions are compiled to guide
subsequent item generation.
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2.2. Item generation

The first task in instrument development is to generate a pool of all
potential relevant items. For this pool, the investigator will later select items
for inclusion in the final questionnaire. The most frequently used methods
of item generation include unstructured interviews with patients who have
insight into their condition, patient focus group discussions, a review of the
disease-specific literature, discussions with health care professionals who
work closely with the patients, and a review of generic QOL instruments.

A question-writing panel should be assembled. The question-writing
panel should consist of the principle investigator, the main focus group
moderator, at least one person with good interviewing skills and experi-
ence, and a lay person, preferably someone who participates in one of the
lay focus groups, to ensure that questions are framed in a way that is easy
to understand.

2.3. Item reduction: Reducing items on the basis
of their frequency and importance

Having generated a large item pool, the investigator must select the items
that will be most suitable for the final instrument. QOL instruments usually
measure health status from the patients’ perspective and so it is appropriate
that patients themselves identify the items that are most important to
them. Investigators should ensure that the patients selected represent the
full spectrum of those identified in the patient population. It is important
to ensure that all of the subgroups are adequately represented.

One approach to item reduction is to ask patients to identify those
items that they have experienced as a result of their illness. For each posi-
tively identified item, they rate the importance using a 5-point Likert type
scale (“extremely important” to “not important”). Results are expressed
as frequency (the proportion of patients experiencing a particular item),
importance (the mean importance score attached to each item), and the
impact, which is the product of frequency and importance.

Very occasionally, there are items that have absolutely no potential
of changing over time either as a result of an intervention or though the
natural course of the disease. If one is developing an evaluative instrument,
one may consider excluding such unresponsive items because they will only
add to the measurement noise and the time taken to complete the question-
naire. However, if such an item is considered very important by patients
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and therefore potentially a future target for therapy, exclusion because of
apparent unresponsiveness to current therapies may be unwise.

A comprehensive set of items will inevitably include some redundan-
cies. How does one decide whether to include them? One approach is to test
whether the items are highly correlated. If Spearman rank order correlations
are high one could consider omitting one of the items. This strategy is par-
ticularly appropriate for a discriminative instrument, for highly correlated
items will, when taken together, give little information in terms of distin-
guishing between those with mild and severe quality of life impairment. It
is somewhat riskier for evaluative instruments; just because items correlate
with one another at the item reduction phase does not guarantee that they
will change in parallel when measured serially over time.

Investigators can select the sample size for the item reduction process
by deciding how precise they want their estimates of the impact of an item
on the population. The widest confidence interval around a proportion (the
frequency with which patients identify items) occurs when the proportion
is 50%; any other value will yield a narrower confidence interval. If one
recruits 25 subjects, and an item is identified by 50% of the population,
the true prevalence of that item is somewhere between approximately 30%
and 70%. If one recruit 50 subjects, the 95% CI around a proportion of 0.5
will be approximately from 0.36 to 0.64. For 100 subjects, the confidence
interval will be from 0.4 to 0.6. It is recommended that researchers recruit
at least 100 subjects for this part of the questionnaire development process.

There are some statistical methods we can use to determine which items
should be included in the instrument. Factor analysis, cluster analysis,
multiple regression, and discriminant analysis are methods often used.

2.4. Questionnaire formatting
2.4.1. Selection of response options

Response options refer to the categories or scales that are available for
responding to the questionnaire items. For example, one can ask whether
the subject has difficulty climbing stairs; two response options, yes and no,
are available. If the questionnaire asks about the degree of difficulty, a wide
variety of response options are available.

An evaluative instrument must be responsive to important changes even
if they are small. To ensure and enhance this measurement property, inves-
tigators usually choose scales with a number of options, such as a 7-point
scale where responses may range from 1 = no impairment to 7 = total
impairment, or a continuous scale such as a 10-cm Visual Analogue Scale
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(VAS). The 7-point Likert scale is often preferred, because although both
yield similar data, the Likert scale has practical advantages over the VAS,
being both easier to administer and easier to interpret.

Likert scale and VAS can be used as discriminative and predictive
instruments, and are likely to yield optimal measurement properties.
However, Likert scale and VAS are more complex than a simple yes/no
response and they are very difficult to use for telephone interviews. In
health surveys, investigators requiring only satisfactory discriminative or
predictive measurement properties of their instrument may choose a simple
response option format.

2.4.2. Time specification

A second feature of presentation is time specification: patients should be
asked how they feeling over a well-defined period of time. Two weeks is
the time frame used by most instruments on the basis of the intuitive
impression that patients can accurately recall. Time specification can be
modified according to the study, and other investigators may have different
impressions of the limits of their population’s memory.

When a new questionnaire is developed, it is necessary to test its
psychometric properties including validity, reliability, responsiveness and
sensitivity. Validation of instruments is the process of determining whether
there are grounds for believing that the instrument measures what it intends
to measure, and that it is useful for its intended purpose. Reliability
concerns the random variability associated with measurements. Ideally,
patients whose QOL status has not changed should make very similar, or
repeatable, responses each time they are assessed. If there is considerable
random variability over time, the measurements are unreliable. Sensitivity is
the ability of measurement to detect differences between patients or groups
of patients. Sensitivity is important in clinical trials since a measurement
is of little use if it cannot detect the differences in QOL that may exist
between the randomised groups. We will discuss these properties in detail
in Sec. 6.

3. Linguistic Validation of QOL Instrument
3.1. Introduction

Most health status measures and psychological tests are used only in the
setting in which they were originally developed. Some are translated into
other languages and used without making any adaptations, and yet this is
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necessary to ensure their usefulness in another culture or language. A very
small number of instruments are produced in equivalent version in different
languages, before assessing the instruments’ validity and reliability that are
prerequisites for the use of instrument in a new culture.

WHO has accrued considerable experience in translating health mea-
surements. This has facilitated the development of a translation methodo-
logy which has significant advantages over the forward-translation and
the translation-back-translation methodologies. We call this procedure
“linguistic validation”. The steps outlined below describe a sequence which
has been used successfully in a number of studies. It is clear that varia-
tions of the method may well be necessary, and indeed desirable, in certain
situations.

The aim of linguistic validation of a QOL questionnaire is to maintain, as
far as possible, conceptual, semantic and technical equivalence between the
target language and source language versions of the instrument. Conceptual
equivalence refers to the same concepts underlying the questions in an
instrument in both source and target languages. Semantic equivalence refers
to the same denotative and connotative elements of words. Denotation
refers to that which is implied by the word, and connotation refers to the
emotional meaning of the word. That is to say, what the words indicate or
are a sign for (denotation) or what is implied by the words in addition to
their emotional meaning (connotation). Technical equivalence refers to two
separate but overlapping issues: first, the equivalence of technical features of
language and their relationship to the socio-cultural context; and secondly,
the feasibility of the nature and mode of questioning of the instrument in
both source and target culture.

The linguistic validation of a QOL questionnaire is a complex process
which requires the recruitment of professional teams who are familiar with
this type of work. The linguistic validation of a questionnaire is not a literal
translation of the original questionnaire, but the production of a translation
which is conceptually equivalent to the original, and culturally acceptable
in the country in which the translation will be used.

In order to work towards an acceptable translation of an instrument in
a given language the following points should be adhered to:

— The translation methodology should be adhered to and the different
phases of the process should be summarised in a report

— The translated version of a questionnaire — obtained if possible in colla-
boration with its developer — should be recognised as the official version
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in the country concerned. This will avoid the proliferation of “pirate”
versions and will help to facilitate the access to translations

— Ideally, a linguistic validation of a QOL questionnaire should be comple-
mented by a psychometric validation of the questionnaire.

3.2. Methodology

The original language in which the questionnaire was developed is called
source language. The language into which the questionnaire is translated
is called target language.

After the recruitment of a QOL specialist in each country concerned,
and having explained the concepts of a linguistic validation in detail, a QOL
instrument is then ideally translated according to Table 1.

Thus, in summary, the linguistic validation of a QOL questionnaire
comprises 7 steps shown in the first column of Table 1.

The questionnaire should always be considered as a whole (i.e. the
response choice could influence the translation of the items and vice verse).

It cannot be assumed that a questionnaire, however, extensively tested
in the originating country, will be valid and reliable once it has been trans-
lated. No instrument for the assessment of psychological states of subjective

Table 1. Methodology for linguistic validation of a QOL questionnaire.

Steps Source Questionnaire
1. “Forward” translation forward version Al
by two independent translators and forward version A2

2. Reconciliation meeting between
the 2 “forward” translators and forward version B
the local project manager

3. “Backward translation” by 1

. backward translation
independent translator

4. Comparison of the source
questionnaire with the
“backward” translation by the
local team

forward version C

5. Cognitive debriefing forward version D

6. International harmonisation (if
the original is translated into final version
more than 1 language)

7. Report
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perceptions is culture-free. In each instance the validity and other metric
characteristics of the instrument must be assessed in the country of ap-
plication. Important components of psychometric testing in cross-cultural
quality of life studies include reliability, validity, responsiveness, and effect
size interpretation.

4. Design Issues Relating to QOL Study
4.1. Study objectives

Clear study goals are prerequisites to developing appropriate design and
analysis strategies that answer clinically relevant questions. Overly general
objectives, such as “describe the QOL of...” do not adequately address
aspects of study such as the comparison of the two treatment arms, whether
the comparisons are limited to the period of therapy or extend across time
within a treatment group. Without a focused objective, unnecessary as-
sessments are often included in protocol designs. This increases problems
of multiple comparisons and missing data, and increases the possibility that
critical assessments will be omitted.

4.2. QOL instruments

QOL assessments should ideally be brief, using an uncomplicated and least
complicated instrument or combination of instruments that adequately
address primary research questions. Adding scales/instruments in order
to obtain less relevant data will increase both the multiple comparisons
problem and the likelihood that data will be incomplete. This will in
turn potentially compromise the ability of the trial to achieve the primary
objectives of the study.

4.3. Timing of assessments

The timing of QOL assessments must also be specified to achieve the goals
of the study. Baseline measures that precede therapy allow for assessment of
treatment-related changes within an individual. Depending on the goals of
the study, it is also important to have a sufficiently long period of follow-up
after therapy to allow for assessment of the long-term treatment effect and
potential late sequelae. In the phase 3 treatment comparison setting, it
is critical that QOL should be assessed regardless of treatment and dis-
ease status. Patients who have changes in status or who have discontinued
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treatment should still take part in QOL assessment, as the biggest differ-
ences in QOL may be in these patients. Without these measurements it
will be difficult to derive summary measures and impossible to make unbi-
ased comparisons of the effects of different therapeutic regimens on QOL.
Procedures for obtaining assessments for patients who have changed status
or discontinued therapy should be explicitly stated in protocols.

The timing of assessments should be chosen to minimize missing data. It
is generally recommended that the frequency of assessments be minimized
for ease of patient and staff burden. However, in some cases more frequent
administration linked to the clinical routine (e.g. at the beginning of every
treatment cycle) may result in more complete data because the pattern of
assessment is established as part of the clinical routine.

4.4. Sample size and power

The sample size and power to detect meaningful differences for primary
QOL hypotheses is critical to any study in which QOL is an important end
point. In addition to the usual estimates of variation and correlations, the
sensitivity of the QOL instrument to detect clinically significant changes is
the most useful information that can be provided during the validation of a
QOL instrument. Specific estimates of the changes in subscales and global
scales related to clinical status give the statistician and the clinician a clear
and familiar reference point for defining differences that clinically relevant.
This is critical for insuring an adequate sample size for the study. It should
be noted that because end points may involve repeated measurements at
different times and/or combinations of subscales, both test-retest correla-
tions and among-subscale correlations are useful and should be reported for
validated instruments.

If the sample size requirements for the QOL component are substan-
tially less than for the entire study, an unbiased strategy for selection of
a subset of patients in which QOL will be assessed should be identified.
For example, the first 500 patients enrolled in the study might be included
in the QOL substudy. This may have an additional advantage in studies
with a long duration of QOL follow-up. This strategy is being used in
the design of an Eastern Cooperative Oncology Group (ECOG) study, in
which patient entry is expected to take 5 years, an additional follow-up of
2.5 years is planned for the survival end point, and the desired duration
of QOL assessment is 5 years. By limiting the patients in which QOL is
assessed to those enrolled in the first 2.5 years, the QOL study is expected
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to be complete at the same time as the final analysis of the primary survival
end points.

5. Characteristics of QOL Data and Statistical Issues

5.1. Primary statistical issues'*

5.1.1. Multiple comparisons

Analysis of QOL data differs from the analysis of other clinical end points
data. There are often a large number of measures resulting from both
multiple dimensions of QOL (multiple instruments and/or subscales) and
repeated assessments over time. Univariate tests for each subscale and time
point can seriously inflate the type I error rate (false positive) for the
overall trial such that the investigator is unable to distinguish between
the true and false positive differences. Furthermore, it is often impossible to
determine the number of tests performed at the end of analysis and adjust
post hoc. Methods that allow summarization of multiple outcome both
simplify the interpretation of the results and often improve the statistical
power to detect clinically relevant differences, especially when small but
consistent differences in QOL occur over time or across multiple domains.
On the other hand, significant differences at a particular time or within a
particular domain may be blurred by aggregation.

5.1.2. Missing data

Missing data refers to missing items in scales and missed and/or mistimed
assessments. If the assessment was not completed for reasons that there
are unrelated to the patient’s QOL, the data are classified as “missing at
random”. Examples might be staff forgetting to administer the assessment,
a missed appointment due to inclement weather, or the patient having
moved out of the area. Data that are missing because the patient had
not been on-study long enough to reach the assessment time point (i.e. the
data are censored or incomplete) are also considered missing at random.
Assessments may be mistimed if they are actually given but the exact timing
does not correspond to the planned schedule of assessments for reasons
unrelated to the patients’ QOL. While these types of missing/mistimed
data make analyses more complex and may reduce the power to detect
differences, the estimates of QOL are unbiased even if they are based only
on the observed QOL assessments.
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Non-randomly missing or informatively censored data present re-
searchers with a much more difficult problem. One example of this type
of missing data is that due to death, disease progression, or toxicity
where the QOL would generally be poorer in the patients who were not
observed than in those who were observed. In the chronic disease setting,
this relationship between QOL and missing data might manifest itself as
study dropout due to lack of relief, presence of side effects, or, conversely,
improvement in the condition. The difficulty occurs because analyses that
inappropriately assume the data are randomly missing will result in biased
estimates of QOL reflecting only the more limited population of patients
who were assessed rather than the entire sample of population under study.
One possibility is to limit the analysis, and thereby the inference, to patients
with complete data. In most cases, however, this strategy is not acceptable
to achieve the goal of comparing QOL assessment for all patients. Unless
careful prospective documentation of the reasons for missing assessments
is available in a clinical trial, it is generally impossible to know definitively
whether the reason for the missing assessment is related to the patient’s
condition and/or to their QOL.

In scales based on multiple items, missing information results in a serious
missing data problem. If only 0.1% of items are randomly missing for a 50-
item instrument, 18% of the subjects will have one or more items missing
over four assessments. If the rate is 0.5%, then only 37% of subjects will
have complete data. Deletion of the entire case when there are missing
items results in loss of power and potential bias if subjects with poorer
QOL are more or less likely to skip an item. Individuals with a high level
of non-response (> 50%) should be dealt with on a case-by-case basis.
Imputing missing items for an individual who has answered most questions
would, in general, be preferable to deletion of the entire case or observation,
although the method used for such imputing must be carefully considered.
A simple method based solely on the patient’s own data would use the
mean of all non-missing items for the entire scale or the specific subscale.
Methods based on other patients would include the mean of that item
in individuals who had responded. Another method utilizing data from
other participants is based on the high correlation of items within a scale
or subscale and utilizes information about the individual’s tendency for
particular items to be scored higher or lower relative to other items. The
procedure here is to regress the missing item on the non-missing items using
data from individuals with complete data, and to then predict the value of
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the missing items using the information gained from the items that the
individual has completed.

5.1.3. Integration of QOL and survival data

In clinical trials with significant disease-related mortality there is need to
integrate survival with QOL. This was identified by the participants in the
1990 NCI QOL workshop who “acknowledged that the use of QOL data in
clinical decision-making will not routinely occur until a larger body of QOL
data is available and models for integrating medical and QOL information
are available”. In studies where both QOL (or toxicity) and clinical end
points indicate the superiority of one treatment over another, the choice of
the best treatment is clear. Similarly, if either QOL or the efficacy outcome
demonstrates a benefit and there is no significant difference in the other,
the choice of treatment is straightforward. The dilemma occurs when there
is a conflict between the QOL and efficacy outcomes. This is often the
case when there is significant toxicity associated with the more effective
treatment.

5.2. Statistical methods used to analyse QOL data
5.2.1. Univariate methods

One approach to the reporting of QOL data has been descriptive univari-
ate statistics such as means and proportions at each specific point in time.
These descriptive statistics may be accompanied by simple parametric or
nonparametric tests such as t-tests or Wilcoxon tests. While these methods
are easy to implement and often used, they do not address any of the three
previously identified issues. One recommended solution to the multiple com-
parisons problem is to limit the number of a priori end points in the design
of the trial to three or less. The analyses of the remaining scales and/or time
points can be presented descriptively or graphically. While theoretically
improving the overall type I error rate for the study, in practice investigators
are reluctant to ignore the remaining data and may receive requests from
reviewers to provide results from secondary analyses with the corresponding
significance level.

An alternative method of addressing the multiple comparisons problem
is to apply a Bonferroni correction, which adjusts the test statistics on k
end points so that the overall type I error is preserved for the smallest p
value. The procedure is to accept as statistically significant only those tests
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with p value that are less than «/k where « is the overall type I error
usually set equal to 0.05.

5.2.2. Multivariate methods

Multivariate analysis techniques include approaches such as repeated mea-
sures analysis of variance (ANOVA) or multivariate ANOVA (MANOVA).
These techniques require complete data, which limits their use in settings
where there is a low risk of mortality and very high compliance with QOL
assessment. If the data are not complete, the inferences are restricted to a
very select and generally non-representative group of patients. Multivariate
statistics such as Hotelling’s T are frequently used to control for type I error.
These statistics, however, answer global questions such as “are any of the
dimensions of QOL different?” or “are there differences in QOL at any
point in time?” without considering whether the differences are in consis-
tent directions. In general, the multivariate test statistics are not sensitive
to differences in the same direction across the multiple end points.

The requirement for complete data can be relaxed by using repeated
measures or mixed effects model with structured covariance. These methods
assume that the data are missing for reasons unrelated to the patients
QOL, such as staff forgetting to administer the assessment for example.
If the missing assessment can reasonably be assumed to be missing at
random, a likelihood-based analysis approach, such as mixed-effects models
or EM (Estimation-Maximization) algorithm for repeated measures models,
incorporates all patients with at least one assessment in the analysis.
This approach has the additional advantages of estimation of within- and
between-subject variation, inclusion of time varying variables, and of being
able to test for significant changes over time.

Other methods often used to determine the risk factors related to
QOL include multiple regression, stepwise discriminant analysis, canonical
correlation, and Logistic regression.

5.2.3. Other methods
5.2.3.1. Quality-Adjusted Life Years (QALY)

An intuitive method of incorporating QOL and time would be to adjust
life years by down-weighting time spent in periods of poor QOL. However,
what would seem to be a simple idea has many methodological challenges.
The first of these challenges is the determination of weights. Torrance!
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describes several techniques for eliciting weights for states of health includ-
ing direct ratings, time trade-offs, and standard gambles. In addition to
the difficulties of administering some of these techniques in clinical trials,
weights elicited by the different techniques or from different respondents
may not result in equivalent measures. The choice of anchor points and
content validity may mean that weights that are appropriate in one set-
ting may be inappropriate in another. The other methodological difficulty
occurs in trials with censored data. Although it might seem appropriate to
undertake a standard survival analysis of individual quality-adjusted sur-
vival times, the usual product limit estimator of the survival function is
biased because censoring is related by the future outcome. For example,
if two groups have the same censoring time due to death, the group with
the poorer QOL will be censored earlier on the QALY scale. This latter
problem can be addressed by estimating the average time spent in each
health state and then computing a weighted average of the time as is done
in the Q-TwiST approach.

5.2.3.2. Q-TwiST

The objective of the Q-TwiST method is to evaluate therapies based on
both quantity and quality of life. Q-TwiST stands for Quality-adjusted
Time Without Symptoms of disease and Toxicity of treatment. It is based
on the concept of quality-adjusted life years (QALYs) and represents a
utility-based approach to QOL assessment in clinical trials. The starting
point is to define QOL-oriented clinical health states, one of which repre-
sents relatively good health with minimal symptoms of disease or treatment
associated toxicity (TWiST). Patients will progress through or skip these
clinical health states, but will not back-track. The next step is to partition
the area under the overall Kaplan—Meier survival curve and calculate the
average time a patient spends in each clinical health state. The final step is
to compare the treatment regimens using weighted sums of the mean dura-
tion of each health state, where the weights are utility based. If these utility
weights are unknown, as is generally the case treatment comparisons can
be made using sensitivity analyses, also called threshold utility analyses.

5.2.3.3. Markov and Semi-Markov Models

Markov and Semi-Markov models have been used to compare treatments
based on estimates of the time spent in different health states and the
probabilities of transitions between these states. The relevant health states
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must be identified and then each is weighted to reflect the relative value of a
health state compared to perfect health. The treatments are then compared
in terms of the total quality-adjusted time, the weighted sum of the health
state durations. In general, to calculate the transition probabilities an
underlying model must be assumed. The most commonly used model is the
Markov chain, which assumes that the transitions from one QOL state to
another are independent and continuous and only depend on the previous
state. This requires that the assessments are made at time points inde-
pendent of the patients’ treatment schedule or health state. Discrete-time
transient semi-Markov processes are used to model the health state transi-
tion probabilities corresponding to prolonged life, while a simple recurrent
Markov process is used to derive the QOL state transition probabilities. In a
semi-Markov process, the state changes from an embedded Markov chain
and the times spent in different health states are mutually independent,
and depend only on the adjoining states.

5.3. Conclusions

We have identified three characteristics of QOL studies that present
challenges for analysis and interpretation. The first is the occurrence of
random and non-random missing data. The analysis of random missing
data is generally well documented with sufficient advice and guidelines for
both practical and theoretical issues. In contrast, development of methods
for analysis of non-random missing data is in its infancy, and we now require
an enhanced knowledge and understanding to determine which methods are
most practical and appropriate.

The second issue addressed is the multivariate nature of QOL studies.
Not only is QOL a multi-dimensional concept measured by multiple scales,
but most studies are longitudinal. Separate analyses of each domain at
multiple time points may make it difficult to communicate the results in
a manner that is meaningful for clinicians and patients. Summary measures
may reduce the multi-dimensionality of the problem but may not make the
interpretation much easier. The issue of weights that vary by technique and
study also adds to the complexity of interpretation. In general, it would be
advisable to perform the analyses using various assumptions to verify that
the results are not sensitive to small changes in the assumptions.

The third issue addressed is the integration of survival data with QOL
measures. This can be addressed from either the perspective of QOL or
from the perspective of time. From a research perspective both approaches
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can be informative; however, currently time is the dimension that both
clinicians and statisticians are most familiar with. Finally, interpretation
of clinical trials may not always be helpful in guiding individual patient
decisions. In theory, individual patients could utilize the threshold utility
analysis of Q-TWIiST, but this may require extensive patient education.

There are a number of statistical methodologies that can be employed
in the analysis of QOL data, each of which is based on specific assumptions,
yields a different summary measure, and thus emphasizes different aspects
of QOL. When there is more than one analysis strategy that best anticipates
the above issues should be considered. Analyses should be clearly and con-
cisely reportable so that the relevant differences can be readily understood
by those who will use the results.

6. The Validation Process: Psychometric Testing

The question of most concern relating to psychometrics is whether a mea-
sures both reliable and valid. Measurement is the process by which a concept
is linked to one or more latent variables, and these are linked to observed
variables. The concept can vary from one that is highly abstract, such as
QOL, or intelligence, to one that is more concrete, such as age, sex, or race.
One or more latent variables may be needed to represent the concept. The
observed variables can be responses to questionnaire items, census figures,
or any other observable characteristics.

The first step of the measurement process is to give the concept a theo-
retical definition. A theoretical definition explains in as simple and precise
terms as possible the meaning of a concept. The second step is to identify
the dimensions and latent variables that will represent it. The next step,
of forming measures, depends on the theoretical definition. This is some-
times referred to as the operational definition. The operational definition
describes the procedures to follow to form measures of the latent variables
that represent a concept. In some situations the latent variables are op-
erationalized as the responses to questionnaire items. The fourth step is
construct the measurement model. A measurement model specifies a struc-
tural model connecting latent variables to one or more measures or observed
variables. A simple measurement model for the latent variables influence
on the two measures is

z1 = An&+ 61,
T = A1 + 02

where £ represents the latent variable, x; and z9 are its indicator. §; and
do are errors of measurement with expected values of zero and uncorrelated

(1)
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with ¢ and with each other. All variables are in deviation form so that
intercepts terms do not enter the equations.

In sum, the four steps in measurement are to give meaning, identify
dimensions and latent variables, to form measures, and to specify a model.
The theoretical definition assigns meaning to a term and the concept as-
sociated with it. On the basis of this definition, we can know a concept’s
dimensions. Each dimension is represented by one latent variable. Guided by
theoretical definitions, we form measures, and hopefully two or more mea-
sures will be formed per latent variable. Finally, we formulate the structural
relation between indicators and latent variables in the measurement model.
Two important properties of measures are their validity and reliability.

6.1. Validity

Validity'® is concerned with whether a variable measures what it is sup-
posed to measure. For instance, does an IQ) test measure intelligence? Does
the WHOQOL-100 measure people’s quality of life? These are questions of
validity. They can never be answered with absolute certainty. Although we
can never prove validity, we can develop strong support for it. Traditionally,
psychologists have distinguished four types of validity: content validity,
criterion validity, construct validity, and convergent and discriminant vali-
dity. Each attempts to show whether a measure corresponds to a con-
cept, though their means of doing so differ. Content validity is largely a
“conceptual test”, whereas the other three types are empirically rooted. If
a measure truly corresponds to a concept, we would expect that all four
types of validity would be satisfied. Unfortunately, it is possible that a valid
measure will fail one or more of these tests or that an invalid measure will
pass some of them.

6.1.1. Content validity

Content validity is a qualitative type of validity where the domain of a
concept is made clear and the analyst judges whether the measures fully
represent the domain. To the extent that they do, content validity is met.
A key question is, how do we know a concept’s domain? For the answer we
must return to the first step in the measurement process. That is, to know
the domain of a concept, we need a theoretical definition that explains the
meaning of a concept. Ideally, the theoretical definition should reflect the
meanings associated with a term in prior research so that a general rather
an idiosyncratic domain results. In addition the theoretical definition should
make clear the dimensions of a concept.
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Does it matter if our measures lack content validity? In general, the
answer is yes. Just as a nonrepresentative sample of people can lead to mis-
taken inferences to the population, a nonrepersentative sample of measures
can distort our understanding of a concept.

The major limitation of content validity stems from its dependence
on the theoretical definition. For most concepts in the social sciences, no
consensus exists on theoretical definitions. The domain of content is am-
biguous. In this situation the burden falls on researchers not only to provide
a theoretical definition accepted by their peers but also to select indicators
that fully cover its domain and dimensions. In sum, content validity is a
qualitative means of ensuring that indicators tap the meaning of a concept
as defined by the analyst.

6.1.2. Criterion validity

Criterion validity is the degree of correspondence between a measure and
a criterion variable, usually measured by their correlation. To assess crite-
rion validity, we need an objective reliable standard measure with which to
compare our measure. Suppose that in a survey we ask each employee in a
corporation to report his or her salary. If we had access to the actual salary
records, we could assess the validity of the survey measure by correlating
the two. In this case employee records represent an ideal, or nearly ideal,
standard of comparison.

The absolute value of the correlation between a measure and a criterion
sometimes is referred to as the validity coefficient. Does this correlation of
a measure and a criterion reveal the validity of a measure? If we represent
the measure as z; and the criterion as c¢p, the validity coefficient may be
represent as pg,,. A simple model of the relation between x; and ¢;, and
the latent variable &; that they measure appears in the following equations:

z1 = A&+ 01,

(2)
c1 = A21&1 + 02,

where §; and Jy are uncorrelated with each other and with &, F(d1) =
E(02) =0.
_ A11A219011 3)

[var(z1) var(cy)]V/2 "

Pzicy

As Eq. (3) reveals, the magnitude of pg,., depends on factors other than
the “closeness” of x1 and &;. This is made clearer if we standardize x1, cq,
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and &; to variances of one. In this case :

Prier = A1)t
COIT(:L‘17§1) = )\11 s (4)
Corr(c1,&1) = Ao -

The validity coefficient, ps,¢,, is affected not only by pa,¢, (= A1) but
also by pe,¢, (= A21). Even if the correlation of z; with & stays at 0.5 the
validity coefficient would be 0.45, 0.35, or 0.25 if the correlation of ¢; and
£1,18 0.9, 0.7, or 0.5. Thus, even with one change in z;’s association with &,
we obtain different values of validity, depending on the criterion’s relation
to 61 .

In sum, criterion validity as measured by pu, ¢, , the validity coeflicient,
has several undesirable characteristics as a means to assess validity. It is
not only influenced by the degree of random measurement error variance in
1 but also by the error in the criterion. Furthermore different criteria lead
to different “validity coeflicient” for the same measure, leaving uncertainty
as to which is an accurate reading of a measure’s validity. Finally, for many
measures no criterion is available.

6.1.3. Construct validity

Construct validity is a third type of validity. Many concepts within the
social science are difficult to defined and formulated, and so content validity
is difficult to apply. As mentioned earlier, appropriate criteria for some
measures often do not exist. This prevents the computation of criterion
validity coeflicients. In these common situations construct validity is used
instead.

Construct validity assesses whether a measure relates to other observed
variables in a way that is consistent with theoretically derived predictions.
Hypotheses may suggest positive, negative, or no significant associations
between constructs. If we examine the relation between a measure of one
construct to other observed variables indicating other constructs, we expect
their empirical association to parallel the theoretically specified associa-
tions. To the extent that they do, construct validity exists.

The major steps in the process begin with postulating theoretical re-
lations between constructs. Then the associations between measures of
the constructs or concepts are estimated. Based on these associations, the
measures, the constructs, and the postulated associations are re-examined.
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o) 02

Fig. 1. Two constructs with one measure each.

Some of the difficulties with construct validity can be illustrated with
a structural equation approach. As a simple example, consider Fig. 1.
Assuming two constructs, & and &. Each has one measure represented
as 1 and xo. As usual §; and 2 are random errors of measurement with
expected values of 0, uncorrelated with each other and with £; and &. Sup-
pose that the construct validity of z; is of interest. We hypothesize that
the two constructs (&1 and &) are positively correlated (¢12 > 0). To test
construct validity, we would compute the correlation between z; and zs.

Pxizy = (p:v1:v1pa:za:2)1/2p€1€z ) (5)

where pg,., is the reliability of x;. It is the squared correlation between
x; and &. The correlation of the two observed variables depends not only
on the correlation of x; and & but also on the correlation between the
constructs &1 and & and the correlation of 1 and zs. Because of this, the
interpretation of construct vability based on pg, ., is seriously complicated.
For instance, if the correlation between £; and &5 is relatively large and that
21 has very high reliability but x2 has low reliability. This would reduce
Pzyx4, Taising doubts about the construct validity of x;.

In practical work, people usually use exploratory factor analysis or
confirmatory factor analysis to test for construct validity. Confirmatory
factor analysis is preferable than exploratory factor analysis, because its
principle is similar to the definition of construct validity.
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6.1.4. Convergent and discriminant validity

Convergent validity is another important aspect of construct validity, which
is intended to show that for example, a postulated dimension of QOL
correlates appreciably with all other dimensions that theory suggests should
be related to it. That is, we may believe that some dimensions of QOL
are related, and we therefore expect the observed measurements to be
correlated. For example, one might anticipate that patients with severe pain
are likely to be depressed, and that there should be a correlation between
pain scores and depression ratings within group.

Many of the dimensions of QOL are interrelated. Very ill patients tend
to suffer from a variety of symptoms, and have high scores on a wide range
of psychological dimensions. As many dimensions of QOL are correlated
with each other, assessment of convergent validity consists of predicting
the strongest and weakest correlations, and confirming that subsequent ob-
served values conform to the predictions. Analysis involves calculating all
pairwise correlation coefficients between scores for different QOL scales.

Discriminant validity, or divergent validity, recognises that some dimen-
sions of QOL are anticipated to be relatively unrelated, and that their
correlations should be low. Convergent and discriminant validity represent
the two extremes in a continuum of associations between dimensions of
QOL. One problem when assessing discriminant validity (and to a lesser
extent, convergent validity) is that two dimensions may correlate spuri-
ously because of some third, possibly unrecognised, construct that links
the two together. For example, if two dimensions are both affected by age,
an apparent correlation can be introduced solely though the differing ages of
the respondents. Another extraneous source of correlation could be that of
social desirability, where patients may report a higher QOL on many dimen-
sions simply to please staff or relative. When specific independent variables
are suspected of introducing spurious correlations, the statistical technique
of “partial correlation” should be used. This is a method of estimating the
correlation between two variables, or dimensions of QOL, whilst holding
other “nuisance” variables constant. In practice, there are usually many
extraneous variables that contribute a little to the spurious correlations
obtained.

Convergent validity and discriminant validity are commonly assessed
across instruments. For convergent validity to exist, those scales from each
instrument that are intended to measure similar constructs should have
higher correlations with each other than with scales that measure unrelated
constructs.
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Table 2. Template for the multitrait-multimethod (MTMM) correlation matrix.

Emotional function  Social function = Role function

Instrument 1 2 1 2 1 2
Emotional 1 R
function 2 C R
Social 1 D R
function 2 D C R
Role 1 D D R
function 2 D D C R

The multitrait-multimethod (MTMM) correlation matrix is a method
for examining convergent and discriminant validity. The general principle of
this technique is that two or more methods, such as different instruments,
are each used to assess the same traits, for example QOL aspects, items or
subscales as estimated by the different methods. Various layouts are used
for MTMM matrices, the most common being shown in Table 2.

In Table 2, the two instruments are methods, while the functioning
scales are traits. Cells marked C show the correlations of the scores when
different instruments are used to assess the same trait. Convergent validity
is determined by the C cells. If the correlations in these cells are high, say
above 0.7, this suggests that both instruments may be measuring the same
thing. If the two instruments were developed independently of each other,
this would support the inference that the traits are defined in a consistent
and presumably meaningful manner.

Similarly, the D cells show the scale-to-scale correlations for each instru-
ment, and these assess discriminant validity. Lower correlation are usually
expected in these cells, because otherwise scales purporting to measure
different aspects of QOL are in fact more strongly related than suppos-
edly similar scales from different instruments. The main diagonal cells,
marked R, can be used to show reliability coefficients, as described later.
These can be either Cronbach’s a for internal reliability or, if repeated
QOL assessments are conducted on patients whose condition is stable,
test-retest correlations. Since repeated values of the same trait measured
twice by the same method will usually be more similar than values of
the same trait measured by different instruments, the R cells containing
test-retest repeatability scores should usually contain the most significant
correlations.

One common variation on the theme of MTMM matrices is to carry
out the patient assessments on two different occasions. The upper-right
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triangle of Table 2 can be used to display the correlations at time 1, and
the correlations at time 2 can be shown the lower-left triangle that we have
been describing above. The diagonal cells dividing the two triangles, marked
R, should then show the test-retest repeatability correlations.

6.1.5. Alternatives to classical validity measures

Thus far we have reviewed four common types of validity: content, crite-
rion, construct, and convergent and discriminant validity. Content validity
is largely a theoretical approach to validation. Criterion validity is largely
an empirical means of validating. Construct validity and convergent-
discriminant validity are both theoretical and empirical. They are theo-
retical in the sense that theory suggests which constructs should correlate
and which should not. The empirical aspect concerns the correlations of
observed measures. The empirical aspect concerns the correlations between
measures, although there are a number of limitations associated with this.
One problem is that they rely on correlations rather than structural coeffi-
cients to test validity. Criterion validity examines the correlation between
the criterion and the observed measure. Construct validity and convergent-
discriminant validity are based on the correlation between measures of the
same and different constructs. These correlations may have little to do with
the validity of a measure. A second problem with these empirical tests is
that they use only observed measures, rather than incorporating the latent
variables into the analysis. The implicit assumption is that the correlation
between two observed variables mirrors an association involving latent vari-
ables, so it is implicitly assumed that the correlation of the criterion and
the measure adequately approximates the correlation between the latent
variable and the measure. In construct and convergent-discriminant validi-
ties the correlation of observed measures is a proxy for the correlation of
the latent constructs. But in fact, it can be a poor proxy under a number
of conditions.

To overcome these limitations, Bollen'® proposed an alternative def-
inition that based on a structural equation approach. In his definition,
the validity of a measure z; of £; is the magnitude of the direct struc-
tural relation between &; and x;. Therefore, for a measure to be valid, the
latent and observed variable must have a direct link. Using this approach, a
natural question is how to measure validity based on it? There is probably
no one ideal measure of validity, but several correspond to this theoretical
definition.
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6.1.5.1. Unstandardized Validity Coefficient ()

One important gauge of validity, the direct structural relation between an
and x; and &, is A;; the unstandardized coefficient linking them. For in-
stance,

Ty = A11&1 + 91, (6)

where \p7 is the unstandardized coefficient, it provides the expected change
in 1 for a one-unit change in &;. The \;; coefficients are in the A, and A,
matrices.

As in multiple regression x; may have a number of explanatory variables.
Consider the following measurement model:

z1 = A& + A2 + Ai3és + 61 . (7)

The validity of 1 with respect to &; is indicated by A11. The A1y coeffi-
cient is interpreted as the expected change in x; for one-unit change in &,
holding constant 2 and 3. In addition the validity of x1 with respect to &2
and &3 can be gauged by A12 and A3 respectively. Thus the unstandardized
validity coefficient A;; is appropriate for measures that depend on one or
more latent variables.

The unstandardized validity coeflicient A;; is also useful for compar-
ing samples from different populations. For example, the same observed
variable may be measured in samples of males and females, samples from
two different countries, or samples of some other groups. A comparison
of validity could be made by comparing the corresponding 5\1»]» coeflicients
in the separate samples. They represent a better measure of the structural
relation of the variables, and are less influenced by differences in population
variances.

One disadvantage in comparing the unstandardized validity coefficients
of measures that depend on the same latent variable is that the observed
variables may be measured on very different scales. Direct comparison of
the magnitude of A’s to determine the relative validity of measures generally
is not appropriate.

6.1.5.2. The Standardized Validity Coefficient, \*
The standardized validity coefficient \* is defined as

. b 1/2
)\ij:)\i][ JJ } ’

var(x;)
where ¢;; is the variance of latent variable &;.
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Unlike A;;, Aj; is one means to compare the relative influence of §; on
several x; variables. For example, if z1 and z2 depend on §; and Aj; is 0.8
and A3; is 0.1, this would indicate that z1 is more responsive to §; than is zo
in standard deviation units. In addition, if x; depends on two or more latent
variables the relative influence of the latent variables can be compared. The
standardized Af; is less useful than A;; in comparing different populations
because it is greatly influenced by the varying standard deviations of the
variables in different populations.

6.1.5.3. Unique Validity Variance, Uy,¢,

The unique validity variance measures that part of explained variance in x;
that is uniquely attributable to &;. The formular for Uy, is

Usie; = RS, — R2,6,) s 9)

where Rii is the squared multiple correlation coefficient or proportion of
variance in z; explained by all variables in a model that have a direct effect
on z; (excluding error terms) and Rii(&) is the proportion of explained
variance in x; by all variables with a direct effect on z; excluding &;.

Ug,e; always varies between zero and one. If only §; has a direct effect
on z;, Ug,¢; equals the squared correlation between £; and &;. Uy,¢, is more
general than pii ¢ since it allows the observed variable to depend on more
than one latent variable and it is zero if &; has no direct effect on ;.
If multiple correlated latent variables underlie x;, Us,¢, will generally not
equal pii ¢ unless the latent variables are uncorrelated.

6.2. Reliability

Reliability is the consistency of measurement. It is not the same as validity
since we can have consistent but invalid measures. To illustrate reliability,
suppose that I wish to measure your level of education. I narrowly define
education as completed years of formal schooling. I operationalize it by
asking:“ How many completed years of formal schooling have you had?”
Next, I record your answer. If I had the ability to erase your memory of
the question and the response you gave, I could repeat the same question
and again, record your answer. Repeating this process an infinite number
of times, I could determine the consistency of your response to the same
question. The reliability of this education measure is the consistency in
your response over the infinite trials. The greater the fluctuation across
your answers, the lower the reliability of the measure.
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It is possible to have a very reliable measure that is not valid. For ex-
ample, repeatedly weighing yourself on a bathroom scale may provide a
reliable measure of your weight but the scale is not valid if it always gives
a weight that is 5 kg too light. A more extreme example would be obtain-
ing a measure of intelligence by asking individuals their shoes size. This
may provide a very reliable measure, but it lacks validity as an intelligence
measure. Thus the distinction between reliability and validity is a very
important one.

Much of the social science literature on reliability originates in classical
measurement, theory from psychology. A fundamental equation of the
theory is

T; =T + €, (10)

where z; is the ith observed variable (or “test” score), e; is the error term
and 7; is the true score that underlies z;. It is assumed that cov(r;,e;) is
zero and that E(e;) = 0. According to classical test theory, the errors of
measurement for different items are uncorrelated. The correlation between
two measures results from the association of their true scores. Thus the
true scores are the systematic components that lead to the association of
observed variables.

Parallel, T-equivalent, and congeneric measures are the three major
types of observed variables in test theory. They can be defined using two
measures z; and x; as shown in the example below:

Ti = ;T + €5,
(11)
Tj = o7 +ej.
The e; and e; are uncorrelated. Assume that the true scores are the same.
If a; = oj =1, var(e;) = var(e;), then x; and z; are parallel measures. If
a; = o =1, var(e;) # var(e;), the measures are 7-equivalent. Finally, if
a; # o, var(e;) # var(e;), then the measures are congeneric. Congeneric
measures are the most general of the three types.
The reliability of a measure p,,, is defined as

a? var(r;)

Paiai = — (12)
For T-equivalent or parallel measures, this simplifies to
var(7;)

var(x;)
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Reliability is the ratio of true score’s variance to the observed variable’s
variance. It is equals to the squared correlation of the observed variable and
the true score:

5 [cov(zi, 7)]?
pIiTi =

)
var(x;) var(r;)

af [var(r;)]?

~ var(z;) var(r;)
_ a? var(r;)
var(x;)

= Paix; - (14)

Thus, ps,», can be interpreted as the variance of x; that is explained by 7;
with the remaining variance due to error.

A number of methods have been proposed for estimating the reliability
of measures. Here will review the four most common: test-retest, alternative
forms, split-halves, and Cronbach’s a.

6.2.1. Test-retest method

The test-retest method is based on administering the same measure for
the same observations at two points in time. The equations for the two
measures are

Ty = Ty + €,

Ti41 = Qey1Te41 + €441, (15)

where t and ¢t 4+ 1 are subscripts representing the first and second time
periods for the x, o, 7 and e. Here it is assumed that E(e;) = E(e;41) =0,
that the true scores (¢, 7¢4+1) are uncorrelated with errors (e¢, e;41), and
that the errors are uncorrelated. In addition this method assumes that
Ty, xr41 are parallel measures and that the true scores are equal.

The reliability estimate is the correlation of x; and z441. Using the definition
of the correlation between two variables and covariance algebra leads to

cov(xy, x var(T,
(T4, Te41) _ ( t)) = Doy, - (16)

Poiin = [var(z;) var(z;1)]Y/2  var(x,

In fact, the correlation of any two parallel measures equals their reliability
since all parallel measures have identical reliability.
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Despite the intuitive appeal of the test-retest reliability technique, it
has several limitations. First, it assumes perfect stability of the true score.
In many cases the true score may change over time so that this assumption
is not reasonable. If lack of equivalence of true scores is the only violated
assumption, then pg,., , is less than the reliability. Secondly, memory ef-
fects are sometimes present. People’s memories of response during the first
interview can influence their response in a second interview. They may have
the tendency to give the same responses.

In short, the test-retest method of estimating reliability has the advan-
tage of simplicity, but it is dependent on assumptions that are unrealistic
in practice.

6.2.2. Alternative forms

Another method for estimating reliability is that of alternative forms. This
is similar to the test-retest method, except that different measures instead
of the same measure are collected at t and ¢ + 1. The equations for the two
measures are

Tr1 =Tt + €, (17)
T2 = Te41 + €41 -

The x; variable is a measure of 7 at time t, x5 is a different measure at
t+1, and x; and x5 are parallel measures. Like the test-retest method it is
assumed that 74 equal 7341, that the expected value of e; and e;4; are zero,
and that the errors are uncorrelated with each other and with =, and 741.
With these assumptions the correlation between z1 and z2(pg, ,2,) equals
the reliability of both measures.

The alternative form does have two advantages. One is that compared
to the test-retest, the alternative form measures are less susceptible to
memory effects since time ¢ and ¢ + 1 have different scales. Second, the
errors of measurement for one indicator are less likely to correlate with a
new measure at the second time period. Compared to test-retest, correlated
errors of measurement are less likely to happen. Although the alternative
forms estimate of reliability overcomes some of the limitations of the test-
retest approach, several unrealistic assumptions remain there. For example,
it is assumed that 7 is still equal to 744;. The assumption that the error
variances are equal is less likely since x1 and x5 are different measures, that
are administered at different time points.
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6.2.3. Split-halves

A third means to estimate reliability is with split-halves. The split-halves
method assumes that a number of items are available to measure 7. Half of
these items are combined to form a new measure, say, x1, and the other half
to form xo. Note that in contrast to the test-retest and alternative form, x;
and zo are measures of 7 in the same time period. It is still assumed that
E(e1) = E(e2) =0, cov(er, e2) = 0, cov(7y, e1) = cov(ry, e2) = 0, and that
x1 and xo are parallel measures. The equations for z; and x5 are

xr1 =T t+e1,

(18)
To =T1 +€2.
The correlation of x; and x5 equals to
1/2
cov(xy, z2) var(y)
Prize = = = Pziz1 = Pzozs - (19)
[var(z) var(az)] var(z1)

In many cases the unweighted sum of two halves forms a composite to
measure 71 so that the reliability of z1 + 22 may be determined. As demon-
strated earlier, in general the squared correlation of 7 with observed score
represents the reliability of a measure. Employing this notion, the squared
correlation of 71 with x1 + x5 is

[cov(T1, 1 + 22)]2
var(my) var(zy + x2)

2
pTl(év1+932)

4[var(ry)]?

var(r ) [(var(z1) + var(xs) + 2cov(zy, 22)]

2var(m )/var(z1)
var(ry)/var(z1) + var(z)/var(z1)

_ 2P
N 1+ Prixzi .

This formula is well known as the Spearman-Brown Prophey formula
for gauging the reliability of a full test based on split-halves.

The split-halves test has several aspects more desirable than the test-
retest and alternative forms methods. For one, the split-halves method does
not assume perfect stability of 7 since 7 is only gauged in one time period.
Secondly, the memory effects that can occur if the same item is asked at
two points in time do not operate with this approach. Third, the correlated
errors of measurement that are likely in test-retest approaches are less likely
for split-halves. A practical advantage is that split-halves are often cheaper
and more easily obtained than overtime data.

(20)
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One disadvantage is that the split-halves must be parallel measures.
Often we cannot know whether the variance of the measurement errors are
equal, or whether o1 and as are equal to one. Another drawback is the
way that the halves are allocated is somewhat arbitrary. There are many
possible ways of dividing a set of items in half, and each split could lead to
a different reliability estimate.

6.2.4. Cronbach’s a coefficient

Cronbach’s a coefficient overcomes some of the disadvantages of the split-
halves method. The Coefficient « is the most popular reliability coefficient
in social science research. It measures the reliability of a simple sum of
T-equivalent or parallel measures. For «, the observed variables x1,xs,
..., x4 are summed. The z}s should be scored so that they are all positively
or all negatively related to 1. I will call this index H so that > ¢, z; = H.
The squared correlation of 71 and H or the reliability of H is

[cov(y, H)]?

Phg=
TH T var(ry) var(H)

_ [eov(ri, w1 a0 -+ z4))?
N var(ry) var(H)

[cov(Ti,qm1 + Y0, €:)]?
var(ry) var(H)

lq var(r)]?

 var(ry) var(H)

q? var(m)
var(H)

= pHH . (21)

This equation provides a general formula for the reliability of the un-
weighted sum of ¢ 7-equivalent or parallel measures. As the next equation
shows, this can be manipulated so that it appears as the typical formula
for Cronbach’s a:

q? var(7y)

HH =
P var(H)

q(q —1)q var(m)
(q—1) var(H)




Quality of Life: Issues Concerning Assessment and Analysis 229

q q? var(ry) — q var(y)
qg—1 var(H)

g—1 var(H)

u q : <var ~Iq Vaigl&{ j; S V&I(Q)})

-(75)
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With these features the advantages of a over the other reliability mea-
sures should be evident. There are no assumptions needed for the stability
of 7. The measures need not be parallel. The possibility of memory effects
are remote since measures for only one time period are applied. There is
no problem in selecting splits of items for testing since all measures can
be treated individually. In addition, computation of « is relatively easy.
However, two drawbacks to « are that it underestimates reliability for
congeneric measures, and it is not suited to work with single indicators.

Measurement is a broad topic in social science research. This section
emphasized the issues of measurement most relevant to a structural
equations approach to measurement models. Most basic is the need to
begin with a clear definition of the concepts to be measured. Without
such a definition, we have little hope of identifying dimensions and latent
variables. Validity and reliability are two basic characteristics of measures.
Validity refers to the direct correspondence between a measure and a con-
cept. Reliability refers to the consistency of a measure, regardless of whether
it is valid. Many researchers have proposed empirical techniques to estimate
validity and reliability. These often are based on correlation coeflicients and
restrictive assumptions about the properties of measures. Several alterna-
tive means have been shown here, that are more general than the traditional
procedures, and they also fit well into a structural equations approach to
measurement.
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The best possible synthesis of available information is essential for
medical researchers, health policy-makers, clinicians and other decision
makers. With the explosion of information in the literature, literally
hundreds of studies may exist on the same topics, and the designs,
participants, outcomes, sample sizes, and interventions among these
studies may differ. How can information derived from those studies be
combined to arrive at a general conclusion? During the past 20 years,
meta-analysis, a statistical procedure for systematically combining and
analyzing the results of previous research, has been applied with increas-
ing frequency to health-related contexts, especially in the fields of clinical
trials.
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1. Introduction
1.1. Definition

The term “meta-analysis” was coined by psychologist Glass in 1976.! The
prefix “meta” has several related meanings, including the ideas of occur-
ring after something else, of transcending, or of being more comprehensive
than the precursor. Glass’ first definition of meta-analysis is the statistical
analysis of a large collection of analyses results from individual studies
for the purpose of integrating the findings. A useful definition was given
by Huque: “...the term ‘meta-analysis
which combines or integrates the results of several independent clinical
trials, considered by the analyst to be ‘combinable’.?” Similar synonyms
of meta-analysis include “overview”, “quantitative review”, “quantitative
synthesis”, and “pooling”. But these alternative terms may be less specific
or less poignant, and were not accepted broadly.

More recently, Evidence-Base Medicine (EBM) has been greatly deve-
loped. EBM, systematic review, and meta-analysis get widely used terms
in medical journals. Systematic review denotes any type of review that has
been prepared using strategies to avoid bias and that which includes a mate-
rial and methods section. Systematic review may or may not include formal
meta-analysis. The Cochrane Collaboration aims to prepare, maintain, and
disseminate comprehensive and systematic reviews of the effects of health
care. Systematic reviews provided by Cochrane Collaboration are regarded
as the best evidence for practicing EBM.? Nowadays, meta-analysis is not
limited to a statistical approach, and defined as a systematic approach
to identifying, appraising, synthesizing, and (if appropriate) combining
the results of relevant studies to arrive at conclusions about the body of

“ 9

refers to a statistical analysis

research.?

1.2. Historical notes

The origins of pooling the results may be traced to statistician Karl Pearson
in 1904, who was the first researcher to report the use of formal techniques
to combine data from different samples. The first article which quantita-
tively synthesized the previous research in medicine, The Powerful Placebo,
and written by Beecher, was published in 1955.° As a formal statistical
technique to combine data from studies for the same topic, meta-analysis
began to be applied to social sciences in the mid-1970s, particularly in
educational and psychological research.
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Widespread use of meta-analysis in medicine quickly followed its
popularization in the social sciences, and mainly focused the research on
the randomized clinical trials. In the late 1980s, there has been a rapid
growth in interest and use of the method. At that time, descriptions of
the method of meta-analysis and guidelines for its application appeared
almost simultaneously in many general influential medical journals, such
as the New England Journal of Medicine, Lancet, and Annals of Internal
Medicine. Meta-analysis has been adopted by MEDLINE as a Medical
Subject Heading (MeSH) term in 1989 and as a sort of Publication
Type (PT) in 1993. Meta-analysis of observational studies has also been
advocated.

Meta-analysis is now commonplace in a wide range of medical research
contexts. Concurrent with the increased number of articles using meta-
analysis in the last decade, there have been numerous articles relating to
statistical issues or concerns. Many methods have been proposed and used,
from crude “vote counting” of studies showing significant or non-significant
results, through method for combination of effect size estimates based on
fixed or random-effects models, to general linear mixed models and Bayesian
methods. Meta-analysis has established itself as an influential branch of
biostatistics.

With the sharp increasing use of meta-analysis, several unresolved
issues concerning meta-analysis still remain. Incomplete or un-standardized
reporting of results, and combing “apples and oranges and the occasional
lemon” — failure to make allowance for varying nature and quality of the
studies reviewed.® Therefore, both the uncritical synthesis of data from
observational studies and the unconsidered synthesis of disparate results
from randomized controlled trials can threaten to damage the validity
and reliability of conclusions of meta-analysis. Other stubborn problems
involved in meta-analysis may be biases, especially publication bias, and
heterogeneity across studies.

1.3. Objectives of meta-analysis

Traditionally, research synthesis was done in a fairly simple way. The classic
narrative reviews have several disadvantages that meta-analysis appear to
overcome. The traditional review is a subjective method of summarizing
research data and therefore prone to bias and error. Without guidance by
formal rules, a narrative review expresses the personal opinions of their
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authors and depends heavily on the perspicacity and personal experience
of the reviewer. Selective inclusion of studies that support the reviewer’s
view is common. On the other hand, a narrative review tends to present a
series of effect measures in the narrative in most situations, and reviewers
potential to ignore the factors that greatly influence the results of primary
study, such as research design, sample size, and effect size. Meta-analysis
provides a logical framework to research a review: Similar measures
from comparable studies are listed systematically and the available effect
measures are combined where possible.

For example, in 1982, use of thrombolytic agents after acute myocardial
infarction was controversial. Table 1 presents the data of eight randomized
clinical trials at that time, which examined the effects of a loading dose of
at least 250,000 international units of intravenous streptokinase on morta-
lity given a short time after an acute myocardial infarction had occurred.
As shown in Table 1, two trials showed a higher risk of mortality in treated
patients, with both 95% confidence intervals covering one, which means
no statistical significance; five showed a lower risk, with four of those 95%
confidence intervals covering one; and one showed same mortality rate in
the treated and the control patients. The trials were all fairly small, and
the difference in mortality between treated and controlled patients was

Table 1. Results of randomized trials of effect on mortality of intravenous streptokinase
following acute myocardial infarction published before 1982.

N Deaths/Total Mortality (%) Estimated relative
Included Study Treated Control Treated Control Risk and its 95% CI
Avery (1969) 20/83 15/84 24.1 17.9 1.35(0.74-2.45)
European Working 69/373 94/357  18.5 26.3 0.70(0.53-0.92)
Party (1971)
Heikinheimo (1971)  22/219 17/207  10.0 8.2 1.22(0.67-2.24)
Dioguardia (1973)  19/164 18/157  11.6 115 1.01(0.55-1.85)
Breddin (1973) 13/102 29/104 127 27.9 0.46(0.26-0.81)
Bett (1973) 21/264 23/253 8.0 9.1 0.88(0.50-1.54)
Aber (1979) 43/302  44/293  14.2 15.0 0.95(0.64-1.40)
UCSG for 18/156 30/159 115 18.9 0.61(0.36-1.04)
Streptokinase
in AMI(1979)*

Summary relative risk 0.80(0.68-0.95)

*European Cooperative Study Group for Streptokinase in acute myocardial infarction.
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statistically significant in only one trial. These studies were interpreted
as inconclusive about the benefit of early treatment with intravenous
streptokinase.

In a meta-analysis based on these trials, Stampfer estimated the relative
risk of mortality in patients treated with intravenous streptokinase to be
0.80 with 95% confidence limits of 0.68 and 0.95, and draw the conclu-
sion that streptokinase reduces the mortality following acute myocardial
infarction.” The findings were published in the famous medical journal,
New England Journal of Medicine, and were not accepted by clinician due
to poor understanding of meta-analysis in early 1980s. Until 1986, a large
clinical trial of intravenous streptokinase after acute myocardial infarc-
tion involving thousands of patients (GISSI 1985) confirmed the conclu-
sion based on the meta-analysis, and streptokinase got to be widely used
in clinical practice.

The objectives of meta-analysis are:

1.3.1. To increase statistical power

Meta-analysis effectively provides a gain in statistical power for average
estimates. In clinical trials, meta-analysis offers an opportunity to observe
more events of interest in the groups followed, when incidence or mortality
is rare, and combined estimates are likely to be more precise. In some
cases, a single study often cannot detect or exclude a modest, albeit clinical
relevant, difference in the effects of two treatments with great confidence.
For example, suppose a drug could reduce the risk of death from myocardial
infarction by 10%, to detect such an effect with 90% confidence (that is, with
a type II error of no more than 10%) over 10,000 patients in each treatment
group would be needed. However, such large samples were difficult to recruit
in a single study. Clearly, if data from more than one study are available
and can be combined, the “sample size” and, thus, power increase, and
relatively small effects can be detected or excluded with confidence.

1.3.2. To improve estimate of effect size

Meta-analysis has historically been useful in summarizing prior research
based on randomized trials when individual studies are too small to yield
a valid conclusion. Results from studies may disagree as to the magnitude
of effects or, of more concern, as to the direction of effects. By integrat-
ing the actual evidence, meta-analysis allows a more objective appraisal,
which can help to resolve uncertainties when the original researches, classic
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reviews, and editorial comments disagree. As an effective tool for quantita-
tive synthesis, meta-analysis may resolve issues relating to inconsistent or
conflicting results from studies, provide the pooled estimate of effect size
with a more precise confidence interval, and draw an explicit conclusion.

1.3.3. To assess the disagreement and generalizability of study results

Studies for the same topic may use different eligibility criteria for partic-
ipants, different definitions of disease, different methods of measuring or
defining exposure, or different variations of treatment. It means there is
heterogeneity between studies. When heterogeneity is large enough to be
detected by a statistical test, it is important to explore its source. Meta-
analysis also systematically assesses the biases and confounding in primary
studies.

On the other hand, meta-analysis can contribute to considerations about
the generalizability of study results. The findings of a particular study may
be valid only for a specific population of patients with the same characteris-
tics as those investigated in the trial. If many trials are available for different
groups of patients, and show similar results, it can be concluded that the
effect of the intervention under study has some generality. Furthermore,
meta-analysis is also superior to individual trials when answering
questions about whether an overall study result varies among subgroups
— for example, among men and women, older and younger patients, or
subjects with different degrees of severity of disease. These questions can
be addressed in the analysis and often lead to insights beyond what is
provided by the calculation of a single combined effect estimate.

1.3.4. To answer new questions that were not previously posed in the
individual studies

Meta-analysis includes the epidemiological exploration and evaluation of
results, new ideas (hypotheses) that were not posed in the individual studies
can thus be developed and tested for further research and further original
studies.

1.4. The main steps involved in a meta-analysis

Meta-analysis should be viewed as an observational study of the evi-
dence. The steps involved are similar to any other research undertaking:
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Formulation of the problem to be addressed, collection and analysis of the
data, and reporting of the results.

1.4.1. Formulating the problem

It is as important to carefully plan a study that involve in a meta-analysis
as to carefully plan a clinical trial, a cross-sectional survey, and a case-
control or a cohort study. Documentation of all aspects of study design and
conduct of the study is a crucial and often overlooked step in carrying out
the meta-analysis.

As with any research, a meta-analysis begins with a well-formulated
question and design. Meta-analysis can, in general, be motivated by a
number of factors. It can be conducted in an effort to resolve conflict-
ing evidence, to answer the questions where the answer is uncertain or to
explain variations in practice.

A well-formulated question is essential for determining the structure of
a meta-analysis. Specifically, it will guide much of the meta-analysis process
including strategies for locating and selecting studies or data, for critically
appraising their relevance and validity, and for analyzing variation among
their results.

There are several key components to a well-formulated question. A
clearly defined question should specify the types of people (participants),
types of interventions or exposures, types of outcomes that are of interest,
and types of study design. In general the more precise one is in defining
components, the more focused the meta-analysis.

The first step in planning the study is to define the problem. The
problem definition is a general statement of the main questions that the
study addresses. For examples, does the thrombolytic therapy lower the risk
of death for patients with acute myocardial infarction? A meta-analysis for
randomized clinical trials. Does the passive smoking increase the risk of
lung cancer for women? A meta-analysis for case-control studies. These
two topics are well-formulated questions that contain the main elements
for a meta-analysis.

Once the problem is defined, developing a detail study protocol is
essential. A protocol is the blueprint for conduct of the meta-analysis.
The protocol should clearly state the objectives, the background, the
hypotheses to be tested, the subgroups of interest, the proposed methods
and criteria for identifying and selecting relevant studies, and extracting
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and analyzing information. The statement of objectives should be concise
and specific.

1.4.2. Searching the relevant information

A comprehensive, unbiased information search is one of the critical differ-
ences between a meta-analysis and a traditional review.

Systematic procedures for literature searching should be described in
protocol in detail. Ideally, all of the relevant information, including the
published literature, unpublished literature, uncompleted research reports,
and work in progress, would be searched and identified in meta-analysis. In
practice, the meta-analyst begins with searches of regular medical databases
of published literature. Developing a search strategy is very important,
which means to present the exact search terms and the search algorithm
for each computer databases. Sometimes restrictions are necessary, such as
language, study objects, publication year, or publication types, and it is
easy to carry out in computer database search.

Skipping over important documents available in databases in search-
ing process may affect the validity and reliability for the results of meta-
analysis. The ability of a search algorithm to identify all of the pertinent
literature can be improved by consultation with a professional librarian
or an expert searcher. Two useful concepts in information retrieval can be
used to describe the success of the search process: Sensitivity and precision.
Sensitivity of a search is its ability to identify all of the relevant material.
Precision (which is the positive predictive value of the search) is the amount
of relevant material among the materials retrieved by the search. The overall
strategy for searching is to maximize sensitivity and precision. But with the
increase of the recall, the precision may be reduced. For meta-analysis, a
higher percent sensitivity may be more important than precision.

MEDLINE is the most powerful bibliographic database that is the
primary source of information on publication in the biomedical literature.
It contains information on publications in over 3,500 and covers the period
from 1966 to the present. MEDLINE provides more than 10 search entries
and is very friendly to users. The use of MeSH (Medical Subject Headings)
terms allows searches of MEDLINE to be focused and specific, which
gives higher sensitivity and precision. Free access to MEDLINE through
the Internet (www.ncbi.nlm.nih.gov/PubMed) greatly enhances the abil-
ity to conduct searches. Other broadly used biomedical databases include
EMBASE, SCI (Web of Science), Cochrane Library, and specific databases,
such as CANCERLINE, TOXLINE, etc.
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The citations or abstracts in databases are browsed in search process,
and those obviously unrelated to the topic are eliminated. The full-text
of the remaining articles is then collected. These articles are read quickly,
and those clearly irrelevant ones are excluded. The remaining publications
are then systematically reviewed to determine whether they are eligible
for the meta-analysis based on predetermined criteria for eligibility. The
reference lists of the articles that contain useful information are searched
for more references, then the new publications retrieved, and the process is
repeated, until all potentially articles on the topic are identified.

Medical information is also presented in professional website, especially
in the medical journal’s website, and some of them also provide free full-
text. Handsearching is often used. Scanning new information in key journals
in the area of interest is an important supplement.

Furthermore, “fugitive” literatures, such as proceedings of conferences,
dissertations and master’s theses, books chapters, and government reports,
are not included in MEDLINE and most other databases. To ignore these
material have the potential to cause bias in the meta-analysis. One of
the effective ways to obtain the information about publications in the
fugitive literature is to consult experts.

Unpublished studies are the ultimate example of fugitive literature. The
existence of large numbers of unpublished studies may cause publication
bias, which will be discussed in detail in the final section in this chapter.

1.4.3. Selecting the studies eligible for inclusion

Studies are chosen for meta-analysis on the basis of inclusion and exclusion
criteria. Inclusion criteria are ideally delineated at the stage of the deve-
lopment of the meta-analysis protocol, and should depend on the specific
objectives of the analysis. The process of determining whether studies are
eligible for inclusion in the meta-analysis should be systematic and rigorous.
Each article must be assessed to see whether the inclusion criteria for
the meta-analysis are met. To ensure reproducibility and minimize bias
in selecting studies, the following six aspects should be addressed in almost
all meta-analyses.

1.4.3.1. Study Population

What types of people should be included in meta-analysis? This involves
deciding whether one is interested in a specific population group deter-
mined on the basis of factors such as age, sex, educational status, or
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presence of a particular condition such as the severity of disease and types
of disease.

For example, in a meta-analysis of the effects of estrogen replacement
therapy on the risk of breast cancer, the inclusion criteria for study po-
pulation is limited to the women who experienced the natural menopause or
who underwent premenopausal hysterectomy, with or without bilateral
oophorectomy. The studies that included subjects with a previous history
of breast cancer are excluded.

1.4.3.2. Study Design

In clinical trials, the effect of non-randomized controlled study is often
overestimated compared with that of randomized study. The treat effect of
single blind design may be different from that of double blind design, even
though other aspects of the studies are the same. When both randomized
and nonrandomized studies are available for a topic, estimates of effect
size should be made separately for the randomized and the nonrandomized
studies.

In observational studies, the results of case-control study and cohort
study may be discrepant for identical problem due to the effects of
confounding factors, the influence of biases, or both. The results of meta-
analysis need to be reported respectively, according to the study design.

1.4.3.3. Intervention or Exposures

One of the key components about eligibility for a meta-analysis is to specify
the intervention or exposure that is of interest, and what types of control
groups that are acceptable also need to be defined. In other words, how
similar intervention (exposure) should be to use them in the same analysis,
such as studies with different doses of the same drug in clinical trials,
and studies with the different intensity of exposures in observational data.

For example, a meta-analysis of low-dose aspirin for the prevention of
pregnancy-induced hypertensive disease included the studies in which the
intervention is aspirin in doses of less than 325 mg/day.

1.4.3.4. Outcomes

Researchers on primary studies often report more than one outcome, and
may report the same outcome using different measures. When defining
eligibility criteria for the meta-analysis, eligibility based on the similarity
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of the outcome will enhance the homogeneity of the studies. Generally,
the end-points that are comparable, quantitative and reflecting the final
outcomes are appropriate to be chosen for meta-analysis. For example,
the chief endpoints, which included in the meta-analysis of randomized
trials of angiotensin-converting enzyme (ACE) inhibitors on mortality
and morbidity in patients with congestive heart failure (CHF), are total
and cause-specific mortality (i.e. progressive heart failure, myocardial in-
farction, and sudden or presumed arrhythmic death) and hospitalization
for CHF.

1.4.3.5. Inclusive dates of publication and English-language
publication

Meta-analysis should be as up-to-date as possible, the cutoff date for
identification of eligible studies should be specified in the report of the
meta-analysis. The inclusive date of publication should be chosen based on
consideration of the likelihood of finding important and useful information
during the period that is chosen, but not simply on convenience, such as
availability of MEDLINE.

A meta-analysis solely based on English-language publications has been
shown to have the potential to cause bias. It is not valid to conduct a meta-
analysis to rely only on the publications and reports that are easily found
and understood.

1.4.3.6. Restriction on sample size or length of follow-up

Most of classical the statistical methods for meta-analysis are based on
asymptotic. Normal under moderately large samples. The precision of
small studies may tend to be overestimated. To avoid the problem of
weighting small studies inappropriately in the meta-analysis, it is reason-
able to make sample size an eligibility criteria for the meta-analysis. Small
studies are excluded.

Sometimes, the length of follow-up may influence the likelihood of ob-
serving a true association in clinical trials. For observational studies, there
are many situations where exposure would not affect the risk of disease
until after a latent period. To avoid these problems, the length of follow-up
could be a criterion for eligibility for the meta-analysis.

An alternative to making study size or length of follow-up an eligibility
criterion is to estimate effect with and without small studies or with and
without studies with short follow-up or low-dose exposure.
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For example, in a meta-analysis of the efficacy of screening mammo-
graphy, one of the inclusion criteria is, the length of follow-up is least 5 years
and with minimum of 10 breast cancer mortality cases in each eligible study.

Generally, highly restrictive eligibility criteria tend to give meta-analysis
greater validity. But the criteria may be so restrictive and require so much
homogeneity as to limit the eligible studies to only one or two studies,
which is conflicted with one of the goals of meta-analysis as a method to
increase statistical power. However, less restrictive criteria may lead to the
accusation that the meta-analysis “mixes apples and oranges”.

1.4.4. Abstracting the data

The process of abstraction of information for meta-analysis from eligible
studies should be reliable, valid, and free of bias. In order to enhance
the reliability of data collection, a standardized form should be developed
to record the information. The key components of a data collect form
generally include study characteristic with methods, participants, interven-
tions, outcome measures and results.

To avoid the selection bias, the abstraction of information should be
done by two abstractors separately, and experts should be consulted for
disagreement. Furthermore, the abstractors should be blinded to the infor-
mation of the authors, the journals, and the funding sources. It is believed
that these factors possibly influence the judgment of the abstractor.

1.4.5. Assessing study quality

It is important to systematically complete critical appraisal of all included
studies, which primarily focus on the validity of studies. If the quality of
original study is poor, the results of meta-analysis will be less reliable and
valid.

The validity of a study is the extent to which its design and conduct
are likely to prevent systematic errors, or bias. Generally, there are four
sources of systematic errors in clinical trials: Selection bias, performance
bias, attrition bias and detection bias. The randomization process, the
measurement of patient compliance, the blinding of patients and observers,
the statistical analyses, and the handling of withdrawals in each primary
study should be examined. For non-experimental studies, control for con-
founding, measurement of exposure and completeness of follow-up are all
the main factors that need to be greatly considered in the process of study
quality assessment.
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Because quality assessment is a subjective process, it may potential
cause error and bias. There is not a “gold standard” for study quality
appraise yet. So, the reliability of the quality rating scales in published
meta-analysis is often not formally evaluated.

1.4.6. Statistical analysis

The process of quantitative combining the data is the key step for meta-
analysis, which is distinguish from the traditional narrative review. The
main procedures involved in the statistical analysis are: Defining the
outcome; homogeneity test for the effect size; model choice (fixed-effects
model or random-effects model); pooled estimate of effect size (point
estimate and confidence interval estimate); hypothesis test for overall effect
size and graphic display of the results.

1.4.7. Sensitivity analysis

The goal of sensitivity analysis in meta-analysis is to assess the robustness of
conclusion when different assumptions are made in conducting the analysis.
Sensitivity analysis is usually conducted to examine the change of the
pooled estimate of effect size, when both fixed- and random-effects model
are used. Sensitivity analysis is also often done including and excluding
certain studies, which are controversial, have large effects and thus domi-
nate the analysis, or cannot be determined to meet the eligibility criteria
but whose exclusion may be problematic. When there is more than one
estimate of effect size available from a study, sensitivity analysis can be
performed using one estimate and then the other.

For example, Egger did a sensitivity analysis in the meta-analysis of
B-blockade in secondary prevention after myocardial infarction.® Firstly,
the overall effect was calculated by different statistical model, the results
showed that the overall effect estimates are virtually identical and that
confidence intervals are only slightly wider with random-effects model.
Secondly, methodological quality was assessed in terms of how patients
were allocated to treatment or control groups, how outcome was assessed,
and how the data were analyzed. The results showed that the three low
quality studies presented more benefit than high quality trials. Exclusion
of these three studies, however, leaves the overall effect and the confidence
intervals practically unchanged. Third, when stratifying the analysis by
study size, the results showed the trials with smallest sample sizes have
the largest effect. However, exclusion of such studies has little effect on the
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overall estimate. Thus, sensitivity analysis showed that the results from this
meta-analysis were robust.

1.4.8. Discussion of results

As with any medical article, the last step in meta-analysis is discussion.

e Investigating and explaining the source of heterogeneity are critically
important component of meta-analysis, when there is “statistically
significant” heterogeneity across studies. Heterogeneity is easier to be
observed in observational studies due to the diversity in their designs,
the methods for collecting data, definitions of endpoints, and the degree
of control for bias and confounding. Indeed, there are no statistical
methods that can deal with the bias and confounding in the original
studies. Meta-regression model and mixed model may adjust somewhat
of heterogeneity by controlling the confounding, but it still cannot explain
the source of heterogeneity. Sensitivity analysis and subgroup are useful
for exploring the heterogeneity. It may not be appropriate with great
difference.

e Subgroup analysis is necessary when treatment effect vary according to
patient-level covariance or trial-level characteristics. For example, the
effect of a given treatment is unlikely to be identical across different
group of participant — for example, young people versus elderly people,
those with mild disease versus with severe disease. A relationship between
the underlying risk of patient and treatment effect may crucially affects
decisions about which patients should be treated from a cost-effectiveness
perspective: Patient at high risk with a small proportionate treatment
benefit may be preferentially treated compared to low risk patients with
a larger proportionate treatment benefit. Sometimes the treatment effect
may be in the opposite direction for patients at low and high risk. Meta-
analysis thus offers a sounder basis for subgroup analysis. But meta-
analytic subgroup analyses are prone to bias and need to be interpreted
with caution. Ideally, if individual patient data in each eligible study can
be obtained, a standardized subgroup analysis can be performed.

e Meta-analysis is essentially viewed as an observational study. Bias can
occur at multiple steps in the process of meta-analysis. Bias may seriously
influence the validity and reliability of meta-analysis, and more attention
needs to be paid to detect and assess of the bias.

e When reporting the conclusion, we should summarized the key finding,
interpret the results in light of the total of available evidence, and suggest
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a future research agenda. But for meta-analysis of observational studies,
generalization of the conclusions must be explained in caution, because
bias and confounding may distort the findings as we have shown above.

For example, the hypothesis from ecological analyses that higher intake
of saturated fat could increase the risk of breast cancer generated much
observational research often with contradictory results. A comprehensive
meta-analysis showed an association from case-control but not from co-
hort studies (odds ratio was 1.36 from case-control studies versus relative
rate 0.95 from cohort study), and this discrepancy was also shown in
two separate large collaborative meta-analyses of case-control and cohort
studies. The most likely explanation for this situation is that biases in
the recall of dietary items and in the selection of study participants have

produced a spurious association in the case-control comparisons.?

2. Statistical Methods in Meta-Analysis
2.1. Definition of the study outcome

The primary studies included in the meta-analysis may report several
different end points. Often the meta-analyst has little control over the
choice of the study outcome, and it is very important to select pooled
statistic that is comparable across all studies. In some situations this task
will be impossible. Here, three classes of outcome measures are discussed:
Measures based on discrete outcome data, that may generally be thought
of as odds ratios, relative risks, or risk differences; those based on con-
tinuous data, such as mean difference, and standardized mean difference;
and a miscellaneous set of outcome measures that may be based on test
statistics.!?

2.1.1. Odds ratios, relative risks and risk differences

Suppose there are K studies for binary discrete measurements included in
the meta-analysis, whose data are in the form of 2 x 2 tables (see Table 2).
Let ¢ index study, in a typical one, clinical trials, let 1 denote treatment
group, and 2 control group. We denote a;, b;, ¢;, and d; as the number
of observations in each of the cells defined by the treatment and outcome
table, with ny; subjects in the treatment group and no; in the control group.
p1; and po;, are the proportions of having the characteristic under study,
such as death, relapse or some other kind of failure. In an epidemiological
case-control study, the two groups would be the cases and controls and



Table 2.  Arrangement of data for 2 x 2 table.

Treated (Exposed)

Not Treated (Not Exposed) Total
Death (Case) a; b; ni;
Survival (Control) ¢ d; na;
Total mi; ma; T;
Table 3. Parameter estimation for three binary measurements.
Parameter Estimator Standard Error
1
. 1 — . L 1 — : 2
Risk Difference D = Py — Py di = pri — Pai  Sai = (p“( Pui) | p2il p2‘)>
n1; n2i
1
1—p1; 1—p2i)\ 2
Relative Risk R=P /P r = p1i/D2i SLog(ri) = < ( p1i) + ( p2t)>
Nn1iP1i n2iP2i
P/1-P p
Odds Ratio o= P/a-h)

(1 — () <1+1+1+1)l
=05 WI=_—F7—= SLog(wi) = | =+ —+ -+ -
P/(1- P) P2s/(1 — P2i) o8 a c

[N

b d
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the characteristic under study would be exposed to the hypothesized risk
factor.

Table 3 gives the formula of parameter inferences in three potential
study summary statistics: The ratio of the odds for the treated group to the
odds for the control group (odds ratio, OR), the ratio of two probabilities
(relative risk, RR), and the difference between two probabilities (risk dif-
ference, RD). OR and RR are typically analyzed on logarithmic scale with
normal distribution approximation, and the confidence intervals for OR and
RR are also computed on the logarithmic scale, then transformed back to
the original scale. In practice, OR is widely used as an outcome measure
for its convenient mathematical properties, which allow for easily combin-
ing data and testing the significance of the overall effect. The OR will be
close to the RR, if the end point occurs relatively infrequently, such as less
than 20%. RD or absolute risk reduction is easy to interpret and defined
for boundary values (proportions of 0 or 1), and is approximately normally
distributed for the modest sample sizes. RD reflects both the underlying
risk without treatment and the risk reduction associated with treatment.
Taking the reciprocal of the RD gives the “number needed to treat” (the
number of patients needed to be treated to prevent one event), which is
very useful in making a decision in clinical practice.

2.1.2. Means differences and standardized means differences

When the primary studies report means as outcome measure on a conti-
nuous scale, there are two situations to be considered. First, all of the
eligible studies use the same measure of effect, and mean difference may be
used as summary measure to estimate pooled effect in the meta-analysis.
Suppose the n1; and no; are the sample sizes, x1; and xs; are the means, for
treatment and control group, respectively. ¥; = X1; — Xo;, with standard
error, s;, calculated as with

2 _ 2 ( 1 1 ) with 2 — (n1; — 1)si; + (n2i — 1)s3;

85 = 87 —+ .
1 7 7
Pr\nu  ny P ni; + ng; — 2

)

where 52, and s2; are the treatment and control group variance, respectively,
of the ith study.

Second, all of the eligible studies address the same question, but the
measure of effect is made using different instruments and thus different
scales. When there is no direct measure common to all the studies, it may be
feasible to transform the study-specific summary to a standardized (scale-
free) statistic denoted as effect size. One common estimator of effect size is
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the standardized mean difference, which is calculated as the difference of
means divided by the variability of the measures. If

Vi~ N o?), j=1,2,...,ny,
YZ‘NN(,U/270—2)7 J=12,.. ,n,
then the standardized means difference is defined as

1_,2
G s
ag

9

which denotes the gain (or loss) as the fraction of the measurements. The
estimator of §, Hedge’s g, is defined as
VA

Sp

hi =

Such standardization leads to a unitless effect measure. The results from
the original studies, where “success” is measured in different ways, can be
standardized to unitless measures and then pooled. The estimated variance

of h; is
1 1 h2
ar(h)) = —+ — |+ ———.
var(hi) <ﬂ1i ﬂ2i> 2(n1; + na;)

2.1.3. Other measures

When the summary data from the primary studies consist of test statistics,
then it is sometimes possible to recover the estimated effect size if the
appropriate pieces of information are also reported. For example, if the z-
statistics is reported, the estimated standardized mean difference may be

calculated as
(o 5m)
z + .
N1 24

In meta-analysis, pooled effects and confidence intervals are usually
obtained by using appropriate parametric statistical models. Just like

ANOVA, analysis the sources of variation may be critical for the model
11,12

5

2.2. Model choice

used in meta-analysis.

There are at least two sources of variation to consider before combining
summary statistics across studies. One is the inner- or within-study varia-
tion, which is derived from sampling error. Sampling error may vary with
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studies. In general, the sampling error may be relatively small for studies
with large sample sizes, which means high degrees of precision and large
weight would be given. The other is the inter- or between-study varia-
tion. The fixed-effects (FE) model assumes each study is measuring the
same underlying parameter and there is no inter-study variation, in other
words, the population from which the given studies were drawn comprises
studies exactly like those in the sample, the only source of variation in
the observations is due to within-study sampling. By contrast, the random
effects (RE) model assumes each study is associated with a different but
related parameter, which means the population believed to produce the
sampled set of studies is a population of studies not exactly alike. For the RE
model, each study’s observed effect results from sampling variation about a
random effect measure, which itself is “drawn” from a distribution of effect
measures.

2.2.1. Fized-effects model

A fixed-effects model assumes that each observed study effect, Y;(i =
1,2,...,K), is a realization of a population of independent studies with
common parameters. Let 6 be the parameter of interest, which quantifies
the average treatment effect. Assume that Y; is such that F(Y;) = 0 and
let s? = var(Y;) be the estimate of variance of the effect in the ith study.
For moderately large study sizes, each Y; should be asymptotically normal
distributed (by the central limit theorem) and approximately unbiased.
Thus,

Y; PSP N (9, 57) (1)

and s? is assumed known.

2.2.2. Random-effects model

The random-effects model framework postulates that each observed study
effect, Y;, is a draw from a normal distribution with a study-specific mean,
0;, and variance, s2. 0; is interpreted as the “true effect” in study . Further-
more, 6; is assumed to be a draw from some hyper-distributions of effects
with mean # and variance 72. @ is the true underlying effect of interest,
represent the average treatment effect, and 72 is the inter-study variance,
or heterogeneity parameter. Thus,

Y;|0;, 52 P N (6, 52) 2)

?
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0,10, 72 "< N(0,72). (3)

Random-effects model “borrow strength” across studies when estimat-
ing study-specific effects, 6;, as well as the population effect 8. RE model of
(2) and (3) is refer to “hierarchic” model. This structure will be particularly
useful in the development of the Bayesian paradigm.

2.3. Statistical inference

A test of homogeneity should be done before any further analysis. If
no significant inter-study variation is found, a fixed-effects approach
is adopted. Otherwise, the meta-analyst either adopts a random-effects
approach or identifies study characteristics that stratify the studies into
subsets with homogeneous effects. The test of heterogeneity is described
next and followed by a description of inference for fixed-effects and random-
effects models. Maximum likelihood, and restricted maximum likelihood
methods are given for both types of models.

2.3.1. Test of homogeneity

The investigation of homogeneity is a crucial part of the meta-analysis. The
fixed effects model assumes that the K study-specific summary statistics
share a common mean 6. A statistical test for the homogeneity of study
means is equivalent to testing

H0:9:91:92:“~:9K,
H; : At least two 0; s different .

The test statistic
k
Qu=>_ Wi(¥;—0) (4)

will asymptotically follow x% , under Hy for large sample sizes. The overall
treatment effect 6, is estimated as a weighted average, that is

é:ZWiY;/ZWi and W, =1/s2.

If Q. is greater than the 100(1 — ) percentile of the x? distribution, the
hypothesis of equal means, Hy, would be rejected at the 100(1 — «) level. If
Hy is rejected, the meta-analyst may conclude that the study means arose
from two or more distinct populations and proceed by either attempting to
identify covariates that stratify studies into the homogeneous populations
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or adopting a random-effects model. If Hy cannot be rejected, it would be
concluded that the K studies share a common mean, 6.

Tests of homogeneity have low power against the alternative var(6;) > 0.
Note that not rejecting Hy is equivalent to asserting that the between-
study variation is small. The results of simulation by Hardy show that the
power of homogeneity test depends on the number of included studies,
the total information (i.e. total weight or inverse variance) available
and the distributions among the different studies.!® In practice, if the
studies are homogeneous, then the choice between the fixed- and random-
effects model is not important, as the models will yield similar results. The
use of the random-effects model is not considered to be a defensible solu-
tion to the problem of heterogeneity. The random-effects model is generally
“conservative”. That is, in most situations, use of the random-effects model
will lead to wider confidence inference and a low chance to call a difference
“statistically significant”.

2.3.2. Parameter estimation

For fixed-effects model, when s? is assumed known, log(L(f|y,s?))

3. ((yis_zo)"’)’ which leads to the maximum likelihood estimator (MLE)

7

k
> i WiYi
k
Zi:l Wi

Standard inferences about 6 are available using the fact that

—1
Ovie ~ N | 6 (Z wi)

For random-effects model, if 72 is known, the MLE of 6 is given by

. 1
OvLe = with W, = 2 (5)

k
é(T)MLE = M with W;(1) = %2 . (6)
> izt wi(T) 5T
However, in the more realistic case of unknown 72, restricted maximum
likelihood (RMLE) can be employed as a method for estimating variance
components in a general linear model. Using the marginal distribution for
1y, the log-likelihood to be maximized is

log(L(0, 72|s%y) Z {IOg(Sz‘Q +77) + 2+ 12

i

+ log (Z(sf —|—T2)71> .

(Y; — ém?}
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The REML of 72 is the solution of
> w(7) (s (Vi — ) - 52)
D w(7) ’

The estimator for the population mean is then calculated as

=

k.
A > wi(Tr)Y; R 1
0p = =—"— (7r) . wi(Tr) =

¥ wil7r) i+ 75

and inferences are made using 0z ~ N (6, (>, wilFr)) ™).

By equating the homogeneity test, ., to its corresponding expected
value, DerSimonian and Laird proposed a non-iterative (method of
moments) estimator of 72 as

— (k-1
72 = max 0, 762 ( > w)2
dowi— S w;
This leads to
5 > s wi(Tpr)Y; . .
L= oy Y P =2

A2 .
s +7phL

fpr is also denoted Cochran’s semi-weighted estimator of 6 and can be
easily programmed using most software packages.

A third estimator of 72 and 6 is to adopt a fully Bayesian approach,
which reflect the uncertainty in the estimates of hyperparameters.

2.4. Classical approaches for meta-analysis

Many methods of meta-analysis have been proposed. Here we focus on the
classic approaches based on two kinds of measures, discrete outcome and
continuous outcome.

2.4.1. Measures based on a discrete outcome

For measures based on discrete outcome, we primary discuss the methods
involve the data in the form of 2 x 2 table, which is widely used in the meta-
analysis of clinical trials, cohort studies and case-control studies. Suppose
the arrangement of data and table notation is still as shown in Table 2.
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2.4.2. Mantel-Haenszel method

The Mantel-Haenzel method is a well-known approach for pooling data
across strata. Since each study included in meta-analysis could be regarded
as a stratum, Mantel-Haenzel method is appropriate for analyzing data for
a meta-analysis. The method is based on the assumption of fixed-effects
model, and the pooled measure is expressed as a combination of stratum-
specific measures. Mantel-Haenzel method can be used when the measure
of effect is a ratio measure, typically an odds ratio.'# In meta-analysis, the
pooled estimate using Mantel-Haenzel method is the weighted average of
the maximum-likelihood estimate of the odds ratios in each study, using
the inverse of study level variances as weights.

The odds ratio for the ith study OR; = %

The weight for the ith study w; = b}ci.

The pooled estimate of odds ratio is

2 (wiOR;) > (aidi/T;)
N T S Y 0

The variance of the OR ;g is equal to

_2F 216G > H
varORn) = S T IS RS 255

with
aidi (ai + d,)
T? ’

K3

F =

a;d;(b; + ¢;) + bici(a; + d;)

G= T2 ,

biCi(bi + Ci)
prmnd 71_‘2 5

?

H
a;d; bic;
T, S = T
The 95% confidence interval for pooled odds ratio is equal to
exp (1n ORwn + 1.96\/\m> . (8)
The @ statistics for homogeneity test is given by
Q=) wi(ln ORyp —In OR;)’

> w; In(OR;))?
> wi '

R =

=Y win(ORy))* -
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Under the null hypothesis of homogeneity, @) has an approximate x%%
distribution.

The test based on Mantel-Haenszel x2 has optimal statistical properties,
being the uniformly most powerful test. But application of the method
requires that data to complete a 2 x 2 table of outcome by treatment groups
for each study are available.

2.4.1.2. Peto method

The Peto method is a modification of Mantel-Haenszel method. It is based
on the fixed-effects model and the effect measure of interest is odds ratio.'®
Peto method uses a score statistics and Fisher information statistics from
conditional likelihood for study-specific effects to estimate pooled effects.
The computation involved in Peto method is relatively simple compared to
Mantel-Haenszel method. Peto method has been extensively used, especially
in clinical trials.

Let O; and E; be the observed and expected number of events in the
treatment group for ith study, respectively, where F; = 1,
The pooled estimate of odds ratio is equal to

i

>_(0; — Ei)
OR, = exp (7 , (10)
> Vi
where V; = % is the variance of the difference O; — E;.

The 95% confidence interval for pooled odds ratio is

exp <anRp + 1.96 > = exp (Z(Oz = Bi) £ 196 ZVZ) . (11)

NoNZ >V

The homogeneity test, @, is given by

2 2
Q=% (O ;Ez‘) _ 20 - By (12)
i > Vi

Under the null hypothesis of homogeneity, () has an approximate X%q
distribution.

Although Peto method is widely used, it has been demonstrated to be
potentially biased when the true common odds ratio is far from unity or
when there are large unbalances between the numbers of death and survival
or exposed and non-exposed. In this situation, Mantel-Haenszel may be
preferred.

Example 1. Table 4 shows data from seven randomized clinical trials of the
effect of aspirin in preventing death after myocardial infarction'® The Peto
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method is used to estimate a summary odds ratio and its 95% confidence
interval for these data is as follows:

Table 4. Data form seven randomized trials of the effectiveness of aspirin after myocar-
dial infarction and the results of meta-analysis (Peto method).

Aspirin Placebo
Study  No. No. No. No. E; O,—E; Vi OR; (O;—E;)?/v
Deaths patient death Patient
1 49 615 67 624 51.6 —8.6 26.3 0.720 2.8
2 44 758 64 771 53.5 —9.5 25.1 0.681 3.6
3 102 832 126 850 112.8 —104 49.3 0.803 24
4 32 317 38 309 354 —34 15.5 0.801 0.7
5 85 810 52 406 91.3 —6.3 27.1 0.798 1.5
6 246 2267 219 2257 233.0 13.0 104.3 1.133 1.6
7 1570 8587 1720 8600  1643.8 —73.8 665.1 0.895 8.2
Total —99.4 912.7 20.8

Source: Fleiss and Gross.16

2.4.1.2.1. Homogeneity test

Calculate E;,V;,0; — E;, and (O; — E;)?/V;, and the results are show in
Table 4.

Oi—EiQ Oi—Ei 2 —99.42
Q:Z< 7 ) _(Z(ZV; ) :20.8—%:10.1.

Here, df = 6, x%0_0576) = 12.6 > 10.1, P > 0.05, the null hypothesis of
homogeneous odds ratio would not be rejected at 5 percent level, so that
the fixed-effects model may be appropriate to be adopted for pooling the

odds ratio.

2.4.1.2.2. Calculate the pooled estimate of odds ratio and
its 95% confidence interval

OR, = exp <Z<O" —_ Ei)) = exp (ﬁ) =0.09

SV 912.7

SNO; — ;) £1.96/5V; —99.4 4+ 1.96\/912.7
P SV, e 912.7

= (0.84,0.96) .
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2.4.1.2.3. Graphical presentation of the results

1.6
1.4 1
1.2t
1.0 F [oomeg g
0.8

Odds ratio (95%CI)
o1
1o

0.6 [

0.4
1 2 3 4 5 6 7 pooled
study

Fig. 1. The odds ratios of seven studies and their 95% confidence interval, and pooled
odds ratio and its 95% confidence interval.

2.4.1.3. Fleiss method

When data to complete a 2 x 2 table is not available, the Peto method could
not be adopted unless those studies are excluded. Sometimes the individual
study may report the proportions having the characteristic under study,
the Fleiss method can be used as alternative the Peto method based on
fixed-effect model. For a clinical trial or cohort study, let p1; and po; be the
mortality rate or incidence rate for treated (exposed) and control group,
respectively. For a case-control study, let p1; and po; be the exposure rate
for case and control group, respectively. Fleiss draws the formula of pooling
the log odds ratio when py; and po; are given in the included study in
meta-analysis.

The effect for 7th study, denoted by ;, is the logarithm of the odds
ratio:

yi = In(OR;) = In(p1i(1 — p2:)/p2i(1 — p1i)) -
The variance and weight of y; are given by
1 1 1

var(y;) = + , W = .
() n1ip1i(1 —p1i)  naip2i (1 — poi) C var(y;)

The pooled estimate of odds ratio is equal to

ORp = exp(y) = exp (Z wiyi/Zwi) . (13)
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The 95% confidence interval for summary odds ratio is given by

exp <y + 1.96/@) . (14)

The @ statistic for homogeneity test is

Q=S wilyi— 9% =3 wir? - Zz‘";f” . (15)

Example 1 (continued). The Fleiss method is used to estimate a pooled
odds ratio and its 95% confidence interval for data in Example 1 in Table 5.
First, calculate the observed effect y; = In(OR;), variance v; weight w;
and w;y;, w;y? for each individual study, results shown in Table 5.
The @ statistic for homogeneity test is

Q= E wi(yi — E wiy? — szyz)
(—99.1391)?
= 20.7849 — ——— =10.8.
910.559

df =6, X%o.os 6) = 12.6 > 10.1, P > 0.05, Hy would not be rejected, so
the fixed-effects model may be appropriate.
Then the pooled estimate of odds ratio is equal to

ORfp = exp (Z wzyz/zwz>
= exp(—99.1391/910.559) = exp(—0.1089) = 0.90.

Table 5. Results of meta-analysis for the effectiveness of aspirin after myocardial
infarction (Fleiss method).

Study vy =In(OR;) w; =1/v; Wiy wiy?
1 —0.3285 25.710 —8.4457 2.7744
2 —0.3842 24.291 —9.3326 3.5856
3 —0.2194 48.801 —10.7069 2.3491
4 —0.2194 15.440 —3.3875 0.7432
5 —0.2332 28.409 —6.6250 1.5449
6 0.1249 103.985 12.9877 1.6222
7 —0.1109 663.923 —73.6291 8.1655

Total 910.559 —99.1391  20.7849
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The 95% confidence interval for pooled odds ratio is given by

exp <y + 1.96/, > wi> = exp(—0.1089 £ 1.96/v/910.559)

= (0.84,0.96) .

Note that, results of Fleiss method are the same as those of Peto method.
If complete 2 x 2 tables are available for all included studies, Peto method
is simpler than Fleiss method, but the latter can be used for those only
proportions reported.

2.4.1.4. General variance-based method

When the effect size is measured as a rate difference, the general variance-
based method would be applied to estimation of the pooled rate difference.
The general variance-based method also used to estimate the pooled risk
ratio, rate ratio and odds ratio.'?> The general variance-based method is
also based on fixed-effect model.

2.4.1.4.1. Effect size is measured as a rate difference

The rate different for ith study is RD; = 2~ — =L

ni; nai
The variance and weight of rate difference are var(RD;) =

w; = 1/var(RD;).
The pooled estimate of rate difference is
>_(wiRD;)
Ywi

The 95% confidence interval of pooled estimate of rate difference is

equal to
RDgy + 1.96/,/Zwi. (17)

2.4.1.4.2. Effect size is measured as an incidence density ratio
or as a risk ratio

n1iN2;
miime; T

RDgv = (16)

The relative risk for ith study is RR; = T‘;M / nc—m

The variance and weight of relative risk are var(RR;) = —221i— 4, =

miime;ni;’
1/var(RR;).
The pooled estimate of relative risk is

2 (wi 1H(RRi))> .

RRGV = exp < Z W

(18)
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The 95% confidence interval of pooled estimate of relative risk is

equal to
exp (m(RRGV) +1.96 / @) . (19)

When each study in meta-analysis just presents the relative risk and
its 95% confidence interval, whereas a complete 2 x 2 table is unavailable,
general variance-based method also could be applied to estimate the pooled
effect using Eqgs. (18) and (19). The formula for estimating variance from
the 95% confidence interval is

1n(R% /6RR1)>2 _ <ln(R]1%.,;éRRi)>2 ’

where RR,, and RR; are the upper and lower bound of the 95% confidence
interval for ith study.

var(RR;) = ( (20)

2.4.1.4.3. Effect size is measured as odds ratio

The pooled estimate of odds ratio is

> (w; In(ORy))
S ) . (21)

The 95% confidence interval of pooled estimate of odds ratio is equal to

exp (m(ORGV) +1.96 / @) , (22)

ORgy = exp (

where
11 1 1\!
P = mOR) ) ' '=(—+—+—+— . 23
i = o (u(OR)] ™ = (54 5+ 2+ ) (29
Note that when pooling the effect, relative risk and odds ratio should

be transform to logarithmic scale in order to be approximately normally
distributed, whereas the rate difference could be computed directly.

2.4.1.5. DerSimonian-Laird method

The approaches we previously described are all based on the fixed-effect
model. When the studies included in meta-analysis lack of homogeneity,
the random-effects model may be appropriate to combine the effect size.
Formulas of applying the DerSimonian-Laird method summarizing studies

in the case where effects are measured as odds ratios are given as follows'":

S wy ln(ORi)> . (24)

ORDL :exp< Zw*—‘
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The 95% confidence interval of pooled estimate of odds ratio is equal to

exp (m ORpL+ 1.96/@) : (25)

where w} is the weighting factor for the ith study, is estimated as

1
w = ———. 26
D is derived from the homogeneity test statistic, @, in Eq. (4). As
described previously about the moment estimate of inter-study variance 72
in model choice and homogeneity test, we have

Q-(K—-1)) w
(P wi)? =Y wy

where k is the number of included studies.

D= and D=0ifQ<k-1, (27)

Example 1 (continued). In the example of meta-analysis of seven clinical
trials in which aspirin was used to prevent the death after myocardial in-
farction, we have calculated the pooled effect sized using the approaches
based on fixed-effects model. The results of homogeneity test is, @ = 10.8,
and df = 6, X%O.OS,G) = 12.6 > 10.8, P > 0.05, the null hypothesis was
not rejected. In order to evaluate the dependence of the conclusions of the
analysis on the model assumption, now we calculate the pooled effect using
random-effects model.

Q—(k—1)> w; 10.1—(7—1)x 910.559
w2 =S w?  910.559 — 456284.69

Each w} for individual study is calculated using Eq. (26), results shown
in Table 6.

D = =0.00977.

Table 6. Results of meta-analysis for the effectiveness of aspirin after myocardial
infarction (DerSimonian-Laird method).

Study  y; = In(OR;) w; wf w} w}y;
1 —0.3285 25.710 661.004 20.54 —6.747
2 —0.3842 24.291 590.053 19.63 —17.542
3 —0.2194 48.801 2381.538 33.04 —7.219
4 —0.2194 15.440 238.394 13.42 —2.944
5 —0.2332 28.409 807.071 22.24 —5.186
6 0.1249 103.985 10812.880 51.58 —6.442
7 —0.1109 663.923  440793.750 88.68 —9.835

Total 910.559  456284.69 249.13 —33.061
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The pooled estimate of odds ratio and its 95% confidence interval are

B Sw! m(OR)\ —33.061
ORpr = exp ( S w! — P\ 21913

= exp(—0.1327) = 0.88,

exp (m ORpr + 1.96/, /Z“’f>

= exp(—0.1327 + 1.96/1/249.13) = (0.77,0.99) .

Now, if we compare the results of fixed-effects and random-effects model,
the pooled point estimate of odds ratio, 0.88 and 0.90, respectively, is
almost the same. The length of the 95% confidence interval based on
random-effects model is 0.22 (0.99-0.77), which is greater than that based
on fixed-effects model, 0.12 (0.96-0.84). So the result of random-effects
model is potentially more conservative. But the two methods yield the
same conclusion, that is, in general, aspirin make the risk of death after
myocardial infarction decrease by nearly 10%.

2.4.3. Measures based on a continuous scale

When the effect size in the studies included in a meta-analysis is measured
on a continuous scale, we primarily focus on the estimates of pooled mean
difference and standardized mean difference.'0-12

Suppose the nq; and no; are the sample sizes, x1; and x2; are the means,
of treatment and control group, respectively. The mean difference y; =

I1; — To9;, with standard error, s;, calculated as

11 i = 1)82 + (ngi — 1)s2,
st=s—+—), where s, = ( Jor; & (n2 )53 .
niy - N P N1 + noi — 2

2.4.2.1. Fixed-Effect model

2.4.2.1.1. Effect size is measured on the same scale

The pooled measure of size effect (mean difference) is y, = Zzwlf]’i“? where

1

w; = 5.
4 2

The Q statistic for homogeneity test is given by

Q _ Z wi(ys Zwlyz szyz)
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The 95% confidence interval of summary measure of effect size is ys +
196/ \/ z Wj.

Example 2. Table 7 presents data about the change in Kurtzke Disability
Status Scale at two years in four randomized trials of the effect of aza-
thioprine treatment in multiple sclerosis. The summary estimate of mean
difference is given as follows:

Table 7. A meta-analysis for Change in Kurzke Disability Status Scale at two years in
four randomized trials of the effect of azathioprine treatment in multiple sclerosis.

Treated Control
Stud, : 2 s2 w Wil Wiy
y Yi Y; i 1 iYi Y5
T14 S15 MN1s  T24 §2i  M24

1 0.30 1.26 162 0.42 1.28 175 —0.12 0.0144 0.019 52.632 —6.316 0.758
2 0.17 0.90 15 0.83 0.98 20 —-0.66 0.4356 0.105 9.524 —6.286 4.149
3 0.20 1.10 30 0.45 1.12 32 -—0.25 0.0625 0.080 12.500 —3.125 0.781
4 0.17 1.38 27 0.42 1.36 25 —0.25 0.0289 0.145 6.897 —1.724 0.431
Total 0.5414 81.5563 —7.451 6.119

Source: Yudkin et al. (1991). Lancet 338: 1051-1055 and Petitti.'?

2.4.2.1.1.1. Homogeneity test
szyl) ) (—17.451)2
i =6.119 - ——— =2.385.
Q=D wi} - TS wi 81.553

Here, df = 3, X(o.os 3) = 7.28 > 2.385, p > 0.05 therefore, the null
hypothesis that the studies are homogeneous is not rejected, and it is ap-
propriate to use fixed-effects model to estimate the pooled weight mean.

2.4.2.1.1.2. Calculating the pooled effect size and its 95% confidence
interval

i —17.451
yo — i ZLTASL 0
Sw, 81553

ys + 1.96/,/2 w; = —0.197 + (1.96/v/31.553) = (—0.414,0.02) .

The results of meta-analysis suggest, the pooled mean difference of the
Kutzke Disability Scale for the effect of azathioprine treatment in multiple
sclerosis is —0.197, but the results are statistically non-significant (95%
confidence interval covers zero). Based on these results, we still cannot
draw the conclusion that azathioprine is beneficial for multiple sclerosis.
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2.4.2.1.2. Effect size is measured on different scale

When studies used different scales to measure effect, the standardized mean

difference is calculated as the estimate of effect size. Let

T1s — Tog
d = T

Spi

then the pooled estimate of effect size is

PREpYLLY (28)
2w

where w; is the weight assigned to each study. This weighted estimator of
the effect size was shown by Hedges to be asymptotically efficient when
sample sizes in the two groups are both greater than 10 and the effect
sizes are less than 1.5.1% When the sample sizes are about equal in the two
groups and both greater than 10, the weight of each study can be estimated
as follows:

2N;

= ——— . 29
YiTsT d? (29)
The 95% confidence interval for the pooled estimate of effect size is

ds £1.96//w; . (30)

The @ statistic for homogeneity test is given by

Q= wild —d;)* =Y wid? - ZZW;U:)) . (31)

2.4.2.2. Random-effects model

If Hy of homogeneity is rejected, which means that the between-study
variance is relatively large, a random-effect model should be used.

The calculation of effect size is the same, that is, d; = i“s;f’“

The pooled estimate of effect size and variance are

- Y wid;
d= ,
2w
§2 — > wi(d; — d)? _ > wid? >
¢ Do wi Y wi ’
where, w; = N; = n1; + no;.
The random-effect model assumes d; = §; + e;, with

(32)

_ 4 12
§=d, eé=0 and sf:z’; (1+%>. (33)
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(1) If s2 > 82, s2 = s%—s2, and the 95% confidence interval of pooled effect
size is
d+1.96s5. (34)

(2) If 82 < s2, s2 = 0, and random-effects model is actually fixed-effect
model, that is

di=90+e;.
The standard error for d is
Se
S;= . 35
d \/E ( )
Then the 95% confidence interval of pooled effect size is
d+1.96s;. (36)

In random-effect model, the statistic for homogeneity test is given by

ks2

2 d

= — 37

(37)

Under the null hypothesis of homogeneity, the statistic follows an
approximate x?_, distribution.

Table 8. Data from meta-analysis of the effect of aminophylline treatment in severe
acute asthma.

Study N; (wl) Spi d; w;d; widf
1 20 0.76 —0.43 —8.6 3.698

2 50 320.00 —0.04 —2.00 0.08
3 48 0.65 —0.84 —40.32 33.869
4 24 0.42 —1.67 —40.08 66.934
5 29 0.22 —1.03 —29.87 30.766
6 20 17.00 —2.41 —48.2 116.162
7 23 0.62 —0.08 —1.84 0.147
8 13 110.00 0.26 3.38 0.879
9 23 2.10 2.93 67.39 197.453
10 51 6.30 0.51 26.01 13.265
11 61 0.50 0.72 43.92 31.622
12 66 0.67 0.03 1.98 0.059
13 40 0.58 —0.02 —0.8 0.016

468 —29.03 494.95

Source: Littenberg (1988). JAMA. 259: 1678-1684 Petitti.!?
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Example 3. Table 8 presents data from a meta-analysis of the effect of
aminophylline in severe acute asthma. The 13 studies included in the meta-
analysis reported different measures on pulmonary function. A standardized
mean difference should be used as common metric. The pooled estimate of
effect size and 95% confidence interval are calculated as follows:

2.4.2.2.1. Homogeneity test

&2 — Swi(di —d)*  Ywid} (3 wid; ?
¢ Zwi B Zwi sz
_494.95 _ (—29.03)2
468 4682

= 1.054,

- Z widi —29.03
d= = —0.062,
S w; 468

4k d? 4% 13 (—0.062)?
2 _ 1+ 2 = 1 = 0.111,
% Zwi<+8> 468 {+ 8

ks2 13 x (1.054)2
2= d " T —130.107.
T s 0.111 30-107
df =12, x%0.05,12) = 21.03, p < 0.05, the null hypothesis of homogeneity
is rejected, which means between-study variance is relatively large, and
random-effects model should be adopted.

2.4.2.2.2. Calculating the summary effect size and
its 95% confidence interval

s2 =52 —s2=1.0564—0.111 = 0.94,

= Zwldl —29.03
d= - = —0.062
S w; 468 0.062,

d 4 1.96s5 = —0.062 = (1.96 x v/0.94) = (—1.962,1.838) .

The results of meta-analysis suggest that the effect of aminophylline
treatment in severe acute asthma is statistically non-significant (95% con-
fidence interval covers zero). In fact, the heterogeneity between studies is
greatly large in the example, the smallest effect size is —0.02, whereas the
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largest is 2.93. It is necessary to explore the source of heterogeneity be-
fore meta-analysis, and assess the source of biases and confounding. If the
combinability of studies is poor, meta-analysis should be abandoned. The
process above is just a typical example for computation.

3. Bayesian Methods in Random-Effects Models for
Meta-analysis

The methods discussed above are basically frequentist procedures. There
have been considerable discussions in the literature on the relative merits
of fixed- and random-effects model. In practice, when combining the effect,
the choice between fixed- and random-effects models is determined by the
results of statistical tests of homogeneity (Q statistic). But the power of
statistical tests of homogeneity is low. The results of random-effects model
may be more “conservative”, which leads to somewhat wider confidence
intervals than the fixed-effects model. Little is known about the approach
describing the random effects quantitatively. The appropriate treatment
for small studies and extreme results included in meta-analysis is still unre-
solved in classic methods. Furthermore, the uncertainty of the parameters,
such as the pooled effect size and variance, is not taken into account to use
current approaches for meta-analysis.

Bayesian methods for meta-analysis give several options to deal with
these problems and have been well-developed in the past decades. Under
the Bayesian framework for random-effect model in meta-analysis, the pa-
rameter is an unknown random variable that has a specific distribution.
The posterior distribution of parameter is derived from prior distribution
and sample information available.

DuMouchel gave a fully Bayesian analysis of the hierarchical model with
a complete conjugate prior structure.'® Carlin developed and implements a
fully Bayesian approach to meta-analysis for 2 x 2 tables, in which uncer-
tainty about effects in comparable studies is represented by an exchangeable
prior distribution.?°

A Bayesian analysis requires integration of each of the conditional pos-
terior distributions. Unfortunately, such integration cannot be performed
in closed form in most situations. Approximate solution can be obtained
through asymptotic or numerical techniques. With the great progress in
Bayesian computational tools, especially the rapid development of Markov
Chain Monte Carlo (MCMC) method, it is effective to deal with the pro-
blems that could not be resolved by classical meta-analysis method. Gibbs
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sampling is a recently developed simulation tool for Bayesian inferences, ob-
taining the simulated joint posterior distribution from the full conditional
distributions of parameters.2!:22

In this section, the Bayesian approaches are introduced, especially the
hierarchical model under a full Bayesian framework and the Gibbs sampling
in random-effects model for meta-analysis.

3.1. Bayesian meta-analysis for DuMouchel’s model

Supporse there are K individual studies included in the meta-analysis, and
the effect for each study is Y7,Y5, ..., Yx. The random-effects model is

E:M’i_'_ei? giNN(Ovo'iQ)7

Hi = p+ e, eiNN(OvTQ)a
with {e;,i = 1,..., K} and {e;,i = 1,..., K} are independent. Let Y =
(Y1,...,Yx), 1 =(1,...,1), m = (p1,..., o), € = (1,...,€x), e =
(e1,...,ex), L =diag(c},...,07) and I the K x K identity matrix, then the
random-effect model in matrix form as Y|m ~ N(m,>), m ~ N(1u,721).
Under the full Bayesian framework, we have the model

Y|m, 0 ~ N(m,o?C),
o~ a(df)
mlu, 7> ~ N, 72 H),
plt® ~ N(0,D — o),

72 ~ 22(df,).

Here, 02, 72 and p are hyperparameters, and C and H are assumed as
known K x K covariance matrices with unknown scale factor o2 and 72,
respectively. The degrees of freedom df,, and df, for inverse-x? prior distri-
butions allow incorporation of how incorporation of how well known C and
H are, respectively. The prior distribution for g is the standard diffused
and independent of 72. In fact, as noted by DuMouchel, these particular
prior distributions are chosen for convenience, so that the posterior distri-
bution of m given Y is a mixture of multivariate student-¢ distribution, each
with degrees of freedom df, + df- + K — 1. For computational convenience,
however, he suggests using a multivariate normal approximation to the
posterior, which can then be completely described through the posterior
mean and covariance matrices.
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. . . _ .2/ 2
Reparameterize the variance parameters as ¢, let ¢ = 72/0%,

W(¢) = (pH+C)™ !,
BY,¢) = I'W(e)1] ' 'W ()Y,
S(Y7 ¢) = [Y - 1ﬂ(Y» ¢)],W(¢) [Y - lﬂ(Y, ¢)] )

dfr +dfs /¢ + S(Y, ¢)
dfy +df; + K —3
The posterior estimate E(u|Y) of u is then given by integrating what
is essentially the weighted least squares estimator of u over the posterior
density of ¢, f(4]Y)

B(uly) = / E(ulé, V) f(4]Y)dg

(Y, ¢) =

Similarly,

var(ulY) = [V OUW(@ + [B(Y. 0) - EulY)

< [B(Y,¢) = E(uY)]'}f($]Y)d .

The approximate 95% credible interval for p using E(u|Y") and var(u|Y)
and the normal distribution, will be

E(pY) £ 1.96+/var(u]Y) .

Posterior mean of o2 are obtained using

B(o?|Y) = / (Y, §) (9] Y)dg .

3.2. Bayesian meta-analysis for Carlin’s model

Carlin adopts a Bayesian approach to meta-analysis for 2 x 2 tables, in
which an exchangeable prior distribution is used. A hierarchical normal
model assumes that

E‘,Uz, O-fLQNN(,uHUzz)? (38)

Ni‘,uv 2 NN(N772)7 (39)

where o; represents the corresponding estimated standard error, which is
assumed known without error. p; is interpreted as the “true effect” in ith
study, which has an exchangeable normal prior, and also it means effects
are independently and identically distributed conditional on the values of
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unknown hyperparameters x and 72. Here, 72 is between-study variance.
Assume the prior distributions of 1 and 72 are non-informative or locally
uniform prior. Under the framework of Bayesian, the posterior distributions
of quantities of interest, conditional on the variance hyperparameter, have
closed form solutions. Let B; = 72/(72 + 02), then we have

> BiY;
> B’
72
S B
The posterior mean and variance for the individuals u;, conditional on
both p and 72, for each 4, are

fo=E(ply,r%) = (40)

var(p|Y,72) = (41)

var(u;|Y, p, 7%) = Bio? . (43)

Note that, B; is usually referred to as the shrinkage factor for the ith
study. The larger the inter-study variation, 72, is the smaller the shrinkage
B; of the observed study effects. Because 0 < B; < 1, the mean is com-
promised between the average treatment effect p and the observed study
summary statistics, ;. When o? = 0, shrinkage is maximized to B; = 1 so
that p1 = po = -+ = pg, = p and the random-effects model reduces to the
fixed-effects model.

Integrating Eqs. (42) and (43) over the posterior distribution of
conditional on 72 we have

E(plY, 72 /E (il Yy 72) f (Y, 72)dpe
= BY; + (1 - Bj)jiz (44)

var(,ui|Y7 T2) = BzUzQ + (]. — Bz)z

> Bi’

The marginal likelihood function

can be obtained by integrating p out of the full likelihood. The posterior
density for 72 is then

F@2Y) = fY ) f(r?),
where f(72) is the prior density of 72. Carlin used Monte Carlo procedure
to compute posterior density of estimates of interest, 72, 7 and ;.
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3.3. Gibbs sampling in random-effects model for
meta-analysis

Gibbs sampling is a procedure for numerical integration of complex func-
tions that has come from its origins in statistical mechanics, through image
processing into modern statistics. It is based on a simple, although compu-
tationally demanding, idea. All unknown quantities are given some initial
values. The technique then involves successively sampling from the condi-
tional distribution of each variable in turn, given the current value of all
the other variables. These “full conditional” distributions are often of fairly
standard form. It can be shown that under broad conditions eventually one
will be sampling from the correct posterior distributions of the unknown
parameters. Recently, there are many literatures on this topic, both on
methodology and applications.

The key feature of Gibbs sampling is, given a joint posterior density
P(0|X), K univariate full conditional densities (the distribution of each
individual component of @ conditional on known values of the data X and
all other components) can be written down in close form.

Now we derive the full conditional distributions for parameters in Gibbs
sampling based on random-effects model for meta-analysis. Consider the
typical Bayesian hierarchical model as previouly described in Egs. (38) and
(39), that is

Level I: Yi|u;, 02 ~ N(ui,02),
Level IT : p;|p, 7% ~ N(p,7%),
Level 11T : p|(a,b) ~ N(a,b), 72|(c,d) ~IG(c,d).

For computationally convenient, the prior distributions for hyper-
parameters 4 and 72 are generally normal distribution and inverse Gamma
distribution, respectively. Under the full Bayesian framework, all full con-
ditional distributions are easily estimated using Gibbs sampling. Samples
from the marginal posterior distributions of interest are simulated using the
following full conditional distributions:

:U’Z‘Yvhykfwu’] #ivuv

2 2 2,2
9 T o; o;T

~N\|\Y, | —— , . 4
g ( <0?+72>+“<03+72> UﬁT"’) 1)

M‘Yh...,Yk,...,Mk,

7_2 7_2
~N ; : ; 4
T (Z“ ( 2+Kb>+a(r2+Kb> T2+Kb> (47
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2
T |Y17"’7Yk7u17"’7ﬂk7

K
w~IG (%K—&-c, %;(ui—u)2+d>. (48)

The processes involved in Gibbs sampling are: (i) u;, u, and 72 are given
some initial values; (ii) Gibbs sampling values are obtained in turn, from
the conditional distributions in Egs. (46), (47) and (48); (iii) update the
Gibbs sampling values successively for ¢ iterations. For each run a “burn-
in” of m iterations is followed by a further ¢-m iterations during which the
posterior marginal density of parameters, y;, u, and 72 are computed; (iv)
check the convergence of Gibbs sampling.

Note that, given the prior and conditional distribution, Gibbs sampling
is easy to be carried out. When deriving the full conditional distributions,
the prior and likelihood are conjugate in the model we discussed above. In
some situations, it may be reasonable to assume that the prior of y and 72
are non-informative prior, and the form of full conditional distribution is
simpler.

WinBUGS is a program that carries out Bayesian inference for complex
statistical analysis via MCMC simulation technique.?? Using WinBUGS
software, Gibbs sampling is easily implemented for many common models
and distributions. The WinBUGS language allows the model to be speci-
fied by way of construction of a directed graphical model. The summary
statistics for the variable, which calculate from the posterior distributions
of parameters of interest, are given in the output. The software also pro-
duce the plots of the kernel density estimate, dynamic trace for sampling,
and autocorrelation function for parameters.

3.4. An example of Gibbs sampling for meta-analysis

Table 9 gives the results of 16 case-control studies about the role of hepa-
titis B virus (HBV) infection, hepatitis C virus (HCV) infection, and dual
infection in the patients with primary hepatocellular carcinoma (PHC) in
Chinese.

The classic approaches for meta-analysis are not suitable for estimating
quantitatively the risk of HBV, HCV and dual infection for PHC. As shown
in Table 9, extreme values (zero) are observed for dual infection in the
control groups in several studies, due to the quite low population-based
dual infection rate. Classic approaches could not deal with the extreme
values unless 0.5 is used to substitute zero or the studies containing zero



Table 9.

The data of 16 case-control studies for HBV, HCV and dual infection in PHC.

Statue of HBV, HCV Infection

Non- HBYV Infection HCYV Infection Dual Infection
Study Infection ca/co OR!0 Y  ca/co ORO YOl  var(Y°l) ca/co ORM! Yl Total
No. ca/co var(Y10) var(Y11) ca/co
1 42/198 77/40 9.08 221 0.07 6/8 3.54 1.26 0.32 15/1 70.71  4.26 1.10 140/247
2 33/101 102/10 31.22 344 0.15 3/3 3.06 1.12 0.71 14/1 42.85 3.76 1.11 152/115
3 34/81 43/8 12.81 2.55 0.19 4/3 3.18 1.16 0.63 11/0* 52.41 3.96  2.13 92/92
4 20/70 49/16 10.72 237 0.15 0/1* 1.75 0.56 3.06 8/0* 56.00 4.03  2.19 T7/87
5 21/36 28/24 2.00 0.69 0.15 8/10 1.37 0.32 0.30 14/1 24.00 3.18 1.15 71/71
6 20/62 64/31 6.40 186 0.11 /7 3.10 1.13 0.35 9/0* 55.80 4.02  2.18 100/100
7 9/75 50/21 19.84 299 0.19 11/3 30.56  3.42 0.55 30/1 250.00 5.52 1.16 100/100
8 35/122 53/20 9.24 222 0.11 3/1 10.46  2.35 1.37 5/1 1743 2.86 1.24 96/144
9 9/123 51/14 49.79 391 0.21 4/2 27.33 3.31 0.87 6/1 82.00 4.41 1.29 70/140
10 22/278 232/73 40.16 3.69 0.07 49/8 77.40 4.35 0.19 58/2 366.45 5.90 0.57 361/361
11 5/57 87/45 22.04 3.09 0.25 6/3 22.80 3.13 0.72 11/4 31.35 3.45 0.56 109/109
12 7/109 45/16 43.79 3.78 0.24 3/1 46.71  3.84 1.49 9/2 70.07 4.25 0.76 61/128
13 11/179 80/26 50.07 3.91 0.15 3/1 48.82  3.89 1.43 10/2 81.36 4.40 0.70 104/208
14 13/105 79/105 6.08 1.80 0.11 3/4 6.06 1.80 0.67 15/6 20.19 3.01 0.32 110/220
15 15/120 100/27 29.63 3.39 0.12 23/2 92.00 4.52 0.62 12/1 96.00 4.56 1.16 150/150
16 10/138 23/10 31.74 3.46 0.25 4/4 13.80 2.62 0.61 1/0* 27.60 3.32 3.11 38/152

Source: Zhou Xuyu (1999). Postgraduate Dissertation of Sun Yat-Sen University of Medical Science.

ca: Case; co: Control.

*: The data of the included study contain extreme value, zero.
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are excluded, and it may potentially lead to biasness. Furthermore, classic
approaches neglect the uncertainly of the parameter of interest, especially
the parameter for inter-study variance. The Bayesian approach based on
random-effects model is flexible. Here, Gibbs sampling is adopted via the
WinBUGS software to obtain pooled estimate of parameters by directly
fitting three logistic models using the data available in 16 studies.

Arrangement of data and table notation for each individual study is
shown in Table 10.

Table 10. Arrangement of data and table notation for 16 case-control studies.

Non Infection HBYV Infection HCYV Infection Dual Infection  Total

Case a; c; e; 9i m;
Control b; d; fi h; ng

For each individual study, the odds ratio (OR), logarithm of OR, and
variance for logarithm of OR, are given using following formula (here 00 de-
note non-infection, 10 denote HBV infection, 01 denote HCV infection, and
11 denote dual infection). The results are also shown in Table 9.

i X by 1 1 1 1
OR}O:;?G‘, Y0 =m ORI, var(¥") = —+—+—+—,
i X by 1 1 1 1
ORI = 200 Y0~ ORY', var(Y?) = o+ 44 o+
i X b; 11 1 1
OR}lzg X ., YN = OR!', var(Y")=—+—+—+ —.
hi x a; a;  bi g by

Three logistic models are introduced for HBV, HCV, and dual infection.
Take HBV infection for example. Let r® and 7% denote the number of
infection in the control and case group in ith study, arising from n%° and
n}0 subjects which are assumed to have probability of p?° and p!° of HBV

infection, respectively. 810 is defined as

B0 = logit(p;®) — logit(p}®) = In pe N In i .
7 (3 k3 1 _ p:;l_O 1 _ p?O

(10 is the true effect for ith individual study, that is, posterior mean of Y;!°.
The prior distribution of 3} is N(u', (5,°)?). ' is the pooled effect size
of interest, and (71°)? is the variance of inter-study. Thus, the full model

can be written as
HBYV infection HCV infection Dual infection

o BERA) O~ B ~ B

RO~ BRI~ B a) o~ Bl el
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n00[i]

for (i IN 1:Num)

Fig. 2. Directed graphic model for HBV infection in WinBUGS.

logit(p}°) = a}” logit(p}°) = af! logit(pf®) = o’
logit(p}”) = i + B}°  logit(p}") = a" + 7' logit(p}') = a}' + B}
ﬂilo ~ N(Hlo’ (7.10)2) ﬁ?l ~ N(Mol’ (7_01)2) 5111 ~ N(,Ltll, (7_11)2) .

Still take HBV infection for example. The prior distribution of hy-
perparameters ' and (71°)? are “non-informative”, u!® ~ N(0.0,106),
(0,°)? ~ IG(107,107°). The prior of parameter a;° are also “non-
informative”, a}® ~ N(0,1075).

In the WinBUGS, we can describe above models intuitively by the way
of construction of directed graphical models, in which nodes in the graph
represent the data and parameters of the model (See Fig. 2).

From the conditional independence conditions expressed in the graph,
the joint distribution takes the form (ignoring n{°, nl° and using the fact
that p9, pl¥ can be expressed in terms of «;, 31°)

)

p(rooa 7’107[1/10, Tlo7ﬂ7a) X H’L[p(r?0|a27ﬂzlo)p(rgl‘a’mﬁzlo)

x p(a)p(BY° |0, 70 (' )p(r17) .

First 5000 iterations were used as a “burn in” in order to reduce the
effect of initial value of parameters. Then running another 20,000 iterations
and the summary statistics of posterior distribution for parameters were
estimated. The main results of Gibbs sampling were seen in Table 11, which
contains the means, standard deviations, and 95% confidence intervals from



Meta-Analysis

277

Table 11. The results of Gibbs sampling for HBV, HCV and dual infection.
Status of Infection  Parameter Mean SD 95%CI
HBV Infection uto 2.862  0.250 2.371-3.360
ORY0 18.050  4.668 10.710-28.800
710 0.892  0.209 0.565-1.380
HCV Infection uot 2.489  0.410 1.663-3.297
OR! 13.110  5.712 5.276-27.020
701 1.344 0.359 0.785-2.191
Dual Infection putt 4.489 0.308 3.901-5.120
ORM 93.540  31.530 49.440-167.300
utt 0.487  0.366 0.033-1.320
mut 0 mucH sl
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Fig. 4. The kernel density of Gibbs sampling for parameters p°, p0, p!t.
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Fig. 5. The autocorrelation of Gibbs sampling for parameters 10, u0t, u't.

the posterior distribution of parameters, 1'%, 72 and OR. WinBUGS also
gives the posterior distributions of “true effect” for each study, 5i°, 39

and 311

The trace, kernel density and autocorrelation plots for summary effects,
pt0, 1O ptt in WinBUGS were presented in Figs. 3-5. The dynamic traces
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Table 12. The results of meta-analysis using DerSimonian-Laird method.

Parameter HBYV Infection HCYV Infection  Dual Infection

m 2.815 2.423 4.026
95%CI 2.359 ~ 3.270 1.639 ~ 3.208  3.553 ~ 4.500
T2 0.711 1.816 0

showed that the Gibbs sampling tends to balance, the plots of kernel density
estimate are smooth, and the autocorrelation of sampling is low.

For comparison, the classical DerSimonian-Laird random-effects model
is used to estimate the pooled effect. For those studies in which the number
of dual infection in control group is zero, 0.5 is substituted in order to
calculate the OR. Results are shown in Table 12.

The results in Table 11 and 12 show that, for HBV, HCV infection, point
estimations and 95% confidence intervals of summary effects for parameters
p'? and p®' from Gibbs sampling and classical method are similar. But
for dual infection, the number of dual infection in control group is quite
small in most of 16 case-control studies, and four of them even contain
zero. The pooled estimation of p!! is 4.489 (95%CI is 3.901-5.120) via
Gibbs sampling, and p'! is 4.026 (95%CI is 3.553-4.500) using classical
method, so the difference is relatively large. Moreover, the pooled estimation
of between-study variance, (Jil)2, is zero, when using DerSimonian-Larid
method, which means the between-study variance could not be identified
for dual infection and result in bias obviously.

In fact, when the data in meta-analysis contain many extreme values,
the pooled estimation of true effect and variance is unreliable using classic
methods, which are basically based on approximately normalization with
large samples.

Gibbs sampling, almost the standard tool for Bayesian method, can be
flexibly deal with a large of complex models that the classical approaches
may difficult handle. The key of Gibbs sampling is to obtain the joint poste-
rior distribution from the full conditional distributions of parameters using
MCMC method, given the prior distribution and likelihood function. When
the full conditional distribution is not given in a close form, Metropolis-
Hastings method may be adopted.

Gibbs sampling can be effectively implemented using WinBUGS soft-
ware, as demonstrated in the example. Furthermore, one can quite easily
adjust for specific covariance that may influence the treatment effect by
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fitting a new model under full Bayesian framework in WinBUGS. For the
choice of prior distribution, student-t distribution as a population prior may
be reasonable and proper in some situations.

4. Meta-analysis of Diagnostic Tests

Studies of the diagnostic accuracy of a test conducted at different centers
often produce estimates of the sensitivity and specificity of a test that vary
greatly. These differences may be due to random sampling variation and
differences in the cutoff points of diagnostic test. In order to get summary
results of diagnostic tests for different centers, meta-analysis of diagnostic
tests is necessary.

The steps in conducting a meta-analysis of diagnostic tests are as
follows:

(i) Determine the objective and scope of meta-analysis
In order to get the diagnostic accuracy, we must determine the test of
interest, the disease of interest and reference standard by which it is
measured, and the clinical question and context.

(ii) Retrieve the relevant literatures and judge the validity of the literatures
Extract and sort data of primary studies, and assess the eligibility and
the quality of retrieved studies for inclusion in the analysis by two
or more reader. Analyze the situations that come from different pri-
mary studies and get differences of diagnostic accuracy. The situations
include as follows: If the reference standard is acceptable as a good re-
presentation of the true presence or absence of the disease of interest;
if between the test and the reference standard are read independently
each other; whether verification by the reference standard is done for
all patients who had the test or a stratified random sample of them; if
the design of primary studies is correct; how much the cutoff point is;
whether the prevalence of population who accept the test is similar to
etc.24726 The first author should consider the results from all readers
overall.

(iii) Estimation of a summary diagnostic accuracy of a test
There are several statistical methods to calculate a summary diag-
nostic accuracy of a test. In this section, we will introduce summary
receiver operating characteristic (SROC for short). In the last part of
this section, we will introduce briefly the other methods to calculate a
summary diagnostic accuracy of a test.
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Fig. 6. Mean sensitivity and specificity cannot summarize results of diagnostic test in
meta analysis.

While the goal of meta-analysis for diagnostic tests and the correspond-
ing protocol development are similar in principals to the meta-analysis for
clinical trials mentioned earlier, there are some specific issues. First, the
performance of a diagnostic test is determined by the sensitivity and the
specificity. Meta-analysis for diagnostic tests has two simultaneous end-
points. Secondly, because of the need to balance both sensitivity and
specificity, the usual meta-analysis for rates, such as weighted average
of sensitivity and specificity separately will miss the essential non-linear
relationship between sensitivity and specificity. Figure 6 illustrates why
the average sensitivity and specificity will not work for meta-analysis of
a diagnostic test. Here, the six points are the observed means for sensi-
tivity and specificity from six studies. The solid line is the corresponding
ROC curve. When we take the average of sensitivity and specificity with-
out considering their inter-relationship, we have the average point in “+”,
which is not on the ROC curve.?” 30 This figure demonstrated that using
traditional meta-analysis on sensitivity and specificity separately results in
the summary characteristics that do not belong to the test.
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The mathematical reason for this difficulty is because of the non-linear
relationship between sensitivity and specificity. Any transformation that
reasonably related 1-specificity in a linear form to sensitivity will help to
simplify the meta-analysis of diagnostic tests. One of these approaches is

the SROC.

4.1. SROC analysis

In order to evaluate the diagnostic accuracy of a test, at first we must be
aware of the true presence or absence of the disease of interest. The standard
which identifies an individual as disease (case) or non-disease (control) is
the reference standard or golden standard. Golden standards which are used
in medical research include biopsy, autopsy, surgery exploration, follow-up
and so on. Although a golden standard need not be perfect, it should be
more credible than the diagnostic test of interest and it should be inde-
pendent with the diagnostic test. For the individuals which are determined
case or control by golden standard, the results which are determined by a
diagnostic test are labeled as positive or negative respectively. The data can
be presented as the form of fourfold table. Among them there are two true
results, that is, case is diagnosed as positive (true positive, TP) and control
is diagnosed as negative (true negative, TN). There are two false results,
that is, case is diagnosed as negative (false negative, FN ) and control is
diagnosed as positive (false positive, FP) (see Table 13).

The true positive rate (T'PR), i.e. sensitivity, is the probability that a
test result is positive in patients with disease of interest, namely:

TPR=a/(a+c), (49)

(1-=TPR) =c/(a+ c) is called false negative rate.
The false positive rate (FPR) which equals to (1-specificity), is the
probability that a test result is positive in patients without the disease of

Table 13. A diagnostic test results for 2 x 2 table.

Golden Standard

Test Results Total
Case Control

Positive a(TP) b(FP) a+b

Negative ¢(FN) d(TN) c+d

Total a+c b+d a+b+c+d=N
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interest, namely:
FPR=1b/(b+d), (50)
(1—FPR) =d/(b+ d) is true negative rate or specificity.

4.1.1. SROC linear regression model
For TPR and FPR, we use logit translation, namely:

logit(TPR) = In[TPR/(1 — TPR)], (51)
logit(FPR) = In[FPR/(1 — FPR)], (52)
let
D = logit(T PR) — logit(EPR) (53)
S = logit(T PR) + logit(FPR) . (54)

Through the formula (53), we can get:

TPR/(1 - TPR)

D= pRia—FPR)

true positive rate x false negative rate
— |p ¢ POSTH ga —mOR.  (55)
false positive rate x true negative rate

Through the formula (54), we can get:

TPRx FPR

5= G =TPR-FPR)

true positive rate x false positive rate

= : _ . (56)
true negative rate x false negative rate

Let D be dependent variable and S be independent variable. In order
to make SROC curve into a linear in (S, D) plane, we establish an SROC
linear regression model as:

D=A+BxS, (57)

where D is a log odds ratio [see formula (55)], representing the odds of a
positive test result among people with the disease relative to the odds of a
positive test result among people without the disease. D value can reflect
the distinguishing ability of a diagnostic test. S is a measure of threshold
for classifying a test as positive, which has a value of 0 when a sensitivity
equals specificity [see formula (56)]. It becomes positive, i.e. S > 0, when
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a threshold is used that increases sensitivity (and decreases specificity)
and becomes negative, i.e. S > 0, when a threshold is used that decreases
sensitivity (and increases specificity). A is the intercept of the linear model
and a log odds ratio when sensitivity equals specificity (S = 0). B is the
regression coefficient and examines the extent to which the odds ratio
(D) is dependent on the threshold (S) used. If the regression coefficient
(B) is near zero and not statistically significant, test accuracy for each
primary study can be summarized by a common odds ratio given by the
intercept A.

4.1.2. Solving the parameter of SROC linear regression model

Unweighted least squares linear regression, weighted least squares linear
regression, and robust method can be used to solve the parameters of SROC
linear regression model (57).

4.1.2.1. Conventional least squares methods

This method can be introduced in a general statistical textbook. The
parameter A and B are solved by making minimum of the square sum of
the difference between observed value and fitted value (i.e. residual). The
disadvantage of the method is not paying more attention to larger study, it
does not consider the sample size of primary studies.

4.1.2.2. Weighted least squares method

In order to give more weight to studies of larger sample size, weighted least
squares method can be used, weighting each observation using the reciprocal
of the variance of log odds ratio (In OR). The parameter A and B are solved
by making minimum of the square sum of weighted residual. Let a, b, ¢,
and d be the number of true positive, false positive, false negative, and true
negative respectively (see Table 13). The weight can be calculated by

W =[var(D)] ™' = (1/a+1/b+1/c+1/d)~". (58)

To deal with the 0 of denominator, if a cell of cross-classification of test
and golden standard value is 0 among a, b, ¢, d, we add 0.5 to each cell of
the primary study. The observation values of the study become (a + 0.5),
(b+0.5), (c+0.5), and (d+ 0.5).

Weighted method is inappropriate if one assumes that individual pri-
mary studies are all measuring the same underlying test accuracy. So,
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Moses, Shapiro and Littenberg suggested a robust modeling technique of
SROC in 1993.%°

4.1.2.3. Robust method

D plotted against S, coordinate points (S, D) of primary studies are plotted.
According to the value of S value, we order the scatters (S, D) pairs and
divide the points into 3 approximately equal groups. The total of studies
divide 3 and round it, we can get the number of scatter points for left or
right side. For example, 10 scatter points are divided, left or right side is
round (10/3) = 3 respectively. Find the medians of S and D among the
left and right side respectively and label them. Link the labeled scatter point
into a line. The slope of the line is regression coefficient B. The intercept
A is derived by positioning the line so that half of the points lie above and
half below it. Let (S1, D7) and (S3, D) represent two points which are on
the line and far from each other (for example, the two median points of S
and D among left or right side respectively). Using the follow formula, we
can calculate the regression parameters A and B.
A= Dlsg—Dzsl B D2—D1
Sp—51 Sy — S
Solveing the parameter of SROC curve using robust method see Fig. 7.
This figure is plotted using the S and D in Table 14. The regression coeffi-
cient of the line is 0.0011. The line parallel approximately the abscissa.

(59)

° r S,D)Scatter  —  Left line ~ 7 Right line

" "Robust line X Median point

Fig. 7. Solving the parameter of SROC curve using robust.
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Table 14. The data of Pap test from 59 primary studies.

Studies TP FP FN TN  Sensitivity 1-specificity Weight

) a b c d TPR FPR w D S
1 8 3 23 84 0.258 0.034 1.947  2.276 —4.388
2 31 3 43 14 0.419 0.176 2.173  1.213 —1.868
3 70 12 121 25 0.66 0.324 6.855 0.187 —1.281
4 65 10 6 6 0.915 0.625 2.229 1.872 2.893
5 20 3 19 4 0.513 0.429 1.458 0.339 —0.236
6 35 92 20 156 0.636 0.371 10.433 1.088 0.032
7 39 8 111 270 0.260 0.029 6.122  2.473 —4.565
8 567 117 140 157 0.802 0.427 41976  1.693 1.105
9 25 37 11 18 0.694 0.673 4.684 0.100 1.542
10 38 28 17 37 0.691 0.431 6.762 1.083 0.526
11 45 35 15 48 0.750 0.422 7.231 1414 0.783
12 71 87 10 306 0.877 0.221 7.761 3.218 0.702
13 4.5 0.5 36.5 5.5 0.110 0.083 0.411 0.305 —4.491
14 2 2 3 21 0.400 0.087 0.724  1.946 —2.757
15 5 9 3 182 0.625 0.047 1.539 3.518 —2.496
16 38 21 7 62 0.844 0.253 4.293 2.774 0.609
17 4 2 16 31 0.200 0.061 1.184 1.355 —4.127
18 87 13 12 9 0.879 0.591 3.535 1.613 2.349
19 15 3 65 15 0.188 0.167 2.074 0.143 —3.076
20 41 1 61 29 0.402 0.033 0.930 2.970 —-3.765
21 76 12 11 12 0.874 0.500 3.694 1933 1.933
22 10 4 48 174 0.172 0.022 2.655 2.204 —5.341
23 28 11 28 T 0.500 0.125 5.704 1.946 —1.946
24 3.5 0.5 5.5 1.5 0.389 0.250 0.319  0.647 —1.551
25 79 26 13 182 0.859 0.125 7.489  3.750 —0.141
26 61 20 27 35 0.693 0.364 7.576 1.375 0.255
27 62 20 16 49 0.795 0.290 6.710 2.251 0.458
28 284 31 68 68 0.807 0.313 15.340 2.215 0.644
29 66 25 20 44 0.767 0.362 7.820 1.759 0.629
30 40 43 12 47 0.769 0.478 6.542 1.293 1.115
31 11 1 1 2 0.917 0.333 0.386  3.091 1.705
32 23 50 10 44 0.697 0.532 5.370 0.705 0.961
33 65 13 42 13 0.607 0.500 5.180 0.437 0.437
34 1269 928 264 1084 0.828 0.461 152.068 1.725 1.415
35 223 22 74 83 0.751 0.210 13.245 2.431 —0.225
36 154 30 20 237 0.885 0.112 10.633  4.108 —0.026
37 6 2 12 81 0.333 0.024 1.312  3.008 —4.394
38 7 4 3 4 0.700 0.500 1.024 0.847 0.847
39 12 5 11 60 0.522 0.077 2.558  2.572 —2.398

40 348 41 212 103 0.621 0.285 23.987 1.417 —0.426
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Table 14. Continued.

Studies TP FP FN TN  Sensitivity 1-specificity Weight

% a b c d TPR FPR w D S
41 8 4 11 34 0.421 0.105 2.019 1.822 —2.459
42 12.5 2.5 6.5 0.5 0.658 0.833 0.380 —0.956 2.263
43 95 9 2 1 0.979 0.900 0.617  1.664 6.058
44 40 18 20 19 0.667 0.486 5.459  0.747 0.639
45 71 13 20 18 0.780 0.419 5.087  1.592 0.942
46 1204 186 455 241 0.726 0.436  79.655  1.232 0.714
47 6 20 51 27 0.105 0.426 3.659 —1.840 —2.440
48 35 9 12 12 0.745 0.429 3.264 1.358 0.783
49 10 31 5 32 0.667 0.492 2.751  0.725 0.661
50 3 5 3 15 0.500 0.250 1.071  1.099 -—1.099
51 118 40 44 183 0.728 0.179 16.216  2.507 —0.534
52 13 3 82 17 0.137 0.150 2.078 —-0.107 —3.576
53 38 14 13 62 0.745 0.184 5.241  2.561 —0.415
54 14 25 67 291 0.173 0.079 7.705 0.889 —4.020
55 12 14 6 12 0.667 0.538 2.471  0.539 0.847
56 238 52 2 16 0.992 0.765 1.707  3.600 5.958
57 111 44 20 39 0.847 0.530 9.313  1.593 1.834
58 491 165 250 701 0.663 0.191 73.944  2.122 —-0.772
59 48 16 38 31 0.558 0.340 7.047 0.895 —0.428

4.1.3. Establishing SROC' curve regression model

Both regression parameters A and B are solved using above methods. We
can establish SROC curve regression model as follow:

-1
1 — FPR\ (I+B)/(1-B)
—————) ) (60)

_ ~A/(1-B)
TPR= |1+4e ( PR

where T' PR represents true positive rate and FPR represents false positive
rate.

For a general ROC analysis, the area under ROC cure is taken as the
diagnostic accuracy of a test. For SROC analysis, we can take TPR* as
the diagnostic accuracy of a test. TPR* is the sensitivity taken by SROC
curve of Eq. (60) and line equation

TPR+FPR=1. (61)

It reflects the extent to which SROC curve approach the top left corner.
The larger the value of TPR* is, the higher the diagnostic accuracy of a
test is. TPR+FPR = 1 is a line through both the top left corner (1, 0) and
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the bottom right corner (0, 1). For the line, sensitivity equals specificity,
namely S = 0.
Using S = 0 and formula (54), we have

S =logit(T' PR) + logit(FPR) = 0
or
logit FPR = —logit TPR. (62)
Substituting formula (62) into formula (53), we have
D =logit(TPR) — logit(FPR) = 2 logit(TPR) = A+ B-S=A,
and
logit(TPR) = A/2 (63)
and
TPR= (14 4/%)71, (64)

In order not to be confused with general TPR, we take the diagnostic
accuracy of a test of SROC curve as

TPR* = (1+e /%71,
Its standard error can be calculated by

o _ _ SE(4)
SE(TPR*) = STeosh A/ (65)

where SE(A) is the standard error of the intercept A of linear regression
model. Cosh(.) is the hyperbolic cosine function.

To compare the diagnostic accuracy between 2 independent groups, if
the numbers of the primary studies is large enough (more than 10), we can
use Z statistic, namely

7 TPR; — TPR;
V/SE2(TPR;) + SE*(TPR;)’

(66)

where Z is a quantile from the standard normal distribution. Both T'PR}
and T PR} are the diagnostic accuracy of compared SROC curves. Either

SE(TPRY) or SE(TPR3) is the standard error of TPR] or TPR3,
respectively.
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If the regression coefficient of a SROC curve has B = 0, for the FPR
of each primary study, the confidence interval of the T PR can be taken as:

(e (5] o (5882 o

where Ay and Ay are the lower and upper confidence interval of the
intercept A respectively.

4.1.4. Analysis using an example

The Pap test involves the collection, preparation, and examination of ex-
foliated cervical cells. It is quick, noninvasive, and relatively inexpensive.
These properties make the test appealing for cervical precancer. Currently
some doctors use it as a screening test and as a follow-up test for women.
Because the accuracy of the test is affected by a doctor understanding the
natural history of cervical cancer, morbidity of cervical cancer, the number
of sampling of cell, the diagnostic accuracy of test has been reported wide
variation. The value of the sensitivity and the specificity ranges from 11%
to 99% and from 14% to 97% respectively. The method of SROC analysis
is illustrated using the data of 59 primary studies reported by Fahey, Irwig
and Macaskill.26

Example 5. In the Data of Fahey, Irwigand and Macaskil, the number
of true positive (TP, a), false positive (FP, b), false negative (FN, ¢),
true negative (TN, d) is not presented, but the number of with disease, the
number of without disease, sensitivity, (1-specificity) were given. For the
method need them, according to the known data we calculate a, b, ¢, d
(see Table 14). Because there were 0s in b of 13th and 24th and d of 42nd
of primary studies, to avoid 0 of denominator, 0.5 was added to a, b, ¢, d
of the 3 studies (see Table 14).

In the 1st study, the weight was calculated using formula (58),

1 1 1 1\*!
—(Z+24+ =4+ =) =10947.
Wi (8+3+23+84> 947

The true positive rate is calculated by formula (49), i.e. TPR = 8/(8+423) =
0.2581. The false positive rate is calculated by formula (50), i.e. FPR =

3/(3+84) = 0.0345. D and S are calculated by formula (55) and (56) re-

0.2581(1—0.0345) _ 0.2581x0.0345
0.0345(1—0.2581) 2.276, S = In (1—0.2581)(1—0.0345)

spectively, i.e. D = In
—4.388 and so on.
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Using above weight, the weighted least square linear regression model
is established taking D as dependent variable, S as independent variable.
The residual standard deviation of the weighted model is 2.430. Intercept
is A = 1.720 and its standard error is SE(A) = 0.100. The result of ¢ test is
t = 17.227 and P = 0.001. Using A =+ t0.05,58SE(A), the 95% confidence
interval of A is 1.520-1.920. The results suggest that the difference between
A and 0 has statistical significance under 0.05 test level.

The regression coefficient is B = —0.015 and its standard error is
SE(B) = 0.070. The result of ¢ test is ¢ = —0.215, P = 0.830. The results
suggest that the difference between B and 0 has no statistical significance
under 0.05 test level.

The odds ratio is exp(A) = exp(1.720) = 5.585. It suggests the odds of
positive test in abnormal group is larger than in the normal group.

According to formula (64) and (65), we can get the diagnostic accuracy
of the test TPR* = 0.703 is and its standard error is SE(TPR*) = 0.010.

The general least square linear regression model is established taking D
as dependent variable and S as independent variable. The residual standard
deviation of the model is 1.1144. Intercept is A = 1.590 and its standard
error is SE(A) = 0.151. The result of ¢ test is t = 10.522 and P = 0.001.
Using A =+ t0.05,58SE(A), the 95% confidence interval of A is 1.288-1.892.
The results suggest that the difference between A and 0 has statistical
significance under 0.05 test level.

Regression coefficient is B = —0.020 and its standard error is SE(B) =
0.063. The result of ¢ test is t = 0.319, P = 0.751. The results suggest that
the difference between B and 0 has no statistical significance under 0.05
test level.

The odds ratio is exp(A) = exp(1.590) = 4.904. It suggests the odds of
positive test in abnormal group is larger than in the normal group.

According to formula (64) and (65), we can get the diagnostic accuracy
of the test is TPR* = 0.689 and its standard error is SE(TPR*) = 0.016.

D plotted against S, coordinate points (S, D) of 59 primary studies are
plotted. According to the value of S value, we order the scatters (S, D) pairs
and divide the points by 3 approximately equal groups. The 59 studies were
divided into 3 groups. The number of scatter points for left or right side is
round (59/3) = 20. The medians of S and D among left side are (S1,D1) =
(—2.916,1.588) and among right side are (S3,D2) = (1.265,1.593). The
intercept A and regression coefficient B are A = 1.5914 and B = 0.0011
respectively obtained by formula (59). So, the linear regression model is

D =1.5914 + 0.0011S.
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To make half the points lie above and half below the line, we need to
move the line up and down. In this situation, the regression parameter is
0.0011 constantly and the intercept A is derived by positioning the line. In
fact, this equals that the number of positive sign equals negative sign of
residual which is from the difference between observed value and predicted
value. Through changed the A value many times, we got the line which
scatter points lie above equals below approximately and the intercept is
A = 1.5914, the odds ratio is exp(A) = exp(1.5914) = 4.9106, and the
diagnostic accuracy is TPR* = 0.6891.

The results obtained from the weighted linear regression, general linear
regression, robust regression are presented in Table 15.

Table 15. The diagnostic accuracy and related result from 3 methods.

SE Odds
Methods A SE(A)  95%CL B SE(B)  95%CL  TPR" (TPR*) Ratio

Weighted  1.720 0.100 1.520 ~ 1.920 —0.015 0.070 —0.155 ~ 0.125 0.703 0.010 5.585
Unweighted 1.590 0.151 1.288 ~ 1.892 0.020 0.063 —1.241 ~ 1.281 0.689 0.016 4.904
Robust 1.591 - - 0.001 - - 0.689 - 4.911

Substituting A, B of 3 methods into formula (60), we obtained the
SROC curves of weighted, unweighted and robust method respectively.
They are as follows:

[ 1— FPR\™™]"
o ~1.694
TPRwelghted 1+e ( FPR ) )
- 4 -1
1— FPR 1.041
TPRunwei wted = |1 il [ —
ghted +e FPR )
- 1-1
1— FPR\ "™
TP obust = 1 —1.593
R bust +e 7FPR

To obtain the smooth SROC curve, let FPR from 0.002 to 0.998 (can
also setup other value) and increase in arithmetic series 0.002. According to
the above SROC curve equations T PR is calculated. 499 SROC coordinate
points were obtained. Using the above coordinate points obtained and point
(0, 0), (1, 1) we can plot the smooth SROC curve. Figure 8 presents smooth
SROC curve and SROC coordinate points of the 59 primary studies from
Table 14.
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Fig. 8. SROC curves of 3 methods and the scatter points of 59 primary studies.

From Fig. 8, it is suggested that the area under curve of weighted
method is larger. Of unweightd method and of robust method are simi-
lar. These results are consistent with the diagnostic accuracy TPR* and
odds ratio in Table 15.

If the association between weighted and unweighted method is ignored
and assuming T PR* obtained by 2 methods is approximately normal
distribution. The formula (66) can be used to test the difference between
2 TPR* s. The result of test is Z = 0.7132, P = 0.4757 for two-side test.
This suggests that the TPR* difference between weighted and unweighted
method have not statistical significance.

4.1.5. The SAS code of solving SROC curves parameter

SAS code 1. SROC analysis of weighted, unweighted and robust method.3!

Number SAS Code
01 OPTIONS LS=76 PS=MAX NODATE;
02 %LET N=59; /*the number of primary studies N= sxkkkkkkkxk/
03 %LET A_ROB=1.5914; /* changed robust intercept A_ROB= x¥kxkkkkkxk/

04 DATA SROC; RETAIN I O;
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SAS code 1. (Continued).

Number SAS Code
05 INPUT TP FN FP TNQG;
06 I+1; N_RL=ROUND(&N/3);
07 W=1/ (1/TP+1/FN+1/FP+1/TN); TPR=TP/(TP+FN);FPR=FP/(FP+TN);
08 D=L0G(TPR/ (1-TPR))-LOG(FPR/ (1-FPR)) ;
09 S=LOG(TPR/ (1-TPR) ) +LOG(FPR/ (1-FPR)) ;
10 CARDS;
11 8 23 3 84 76 11 12 12 8 11 4 34
12 31 43 3 14 10 48 4 174 12.5 6.5 2.5 0.5
13 70 121 12 25 28 28 11 7 95 2 9 1
14 65 6 10 6 3.5 5.5 0.5 1.5 40 20 18 19
15 20 19 3 4 79 13 26 182 71 20 13 18
16 35 20 92 156 61 27 20 35 1204 455 186 241
17 39 111 8 270 62 16 20 49 6 51 20 27
18 567 140 117 157 284 68 31 68 35 12 9 12
19 25 11 37 18 66 20 25 44 10 5 31 32
20 38 17 28 37 40 12 43 47 3 3 5 15
21 45 15 35 48 11 1 1 2 118 44 40 183
22 71 10 87 306 23 10 50 44 13 82 3 17
23 4.5 36.5 0.5 5.5 65 42 13 13 38 13 14 62
24 2 3 2 21 1269 264 928 1084 14 67 25 291
25 5 3 9 182 223 74 22 83 12 6 14 12
26 38 7 21 62 154 20 30 237 238 2 52 16
27 4 16 2 31 6 12 2 81 111 20 44 39
28 87 12 13 9 7 3 4 4 491 250 165 701
29 15 65 3 15 12 11 5 60 48 38 16 31
30 41 61 1 29 348 212 41 103
31 ;
32 TITLE ’to calculate sensitivity, l-specificity, weight, D, S using
33 TP,FN,FP,TN / ;
34 PROC PRINT;RUN;
35 TITLE 'weighted regression model?W=1/(VAR(LN(OR)))’;
36 PROC REG DATA=SROC OUTEST=W OUTSEB SIMPLE;
37 MODEL D=S; WEIGHT W;
38 DATA Wi; SET W;
39 PROC TRANSPOSE DATA=W PREFIX=AW OUT=WW;
40 DATA XX1; SET WW; OR_SROC=EXP (AW1) ;
41 A_L=AW1-AW2*TINV(1-0.05/2,&N-1); A_U=AW1+AW2*TINV(1-0.05/2,&N-1);
42 TPR_S_W=1/(1+EXP(-AW1/2)); SE_TPR_W=AW2/ (8% (COSH(AW1/4))**2);
43 IF _NAME_"='INTERCEP’ THEN DO; AL=.; AU=.;
a4 OR_SROC=.; TPR.S_W=.; SE_TPR_W=.; END;
45 DATA XXX1; SET XX1; IF _NAME_~='INTERCEP’ THEN DELETE; PROC PRINT;
46 PROC REG DATA=SROC OUTEST=NW OUTSEB SIMPLE;
47 MODEL D=S;
48 TITLE ’*xxxx*unweighted general linear regression model sk’
49 DATA NW1; SET NW;
50 PROC TRANSPOSE DATA=NW PREFIX=A OUT=WW;
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SAS code 1. (Continued).

Number SAS Code
51  DATA XX2 ; SET WW; OR_SROC=EXP(A1);
52 A_L=A1-A2*TINV(1-0.05/2,&N-1) ; A_U=A1+A2+TINV(1-0.05/2,&N-1);
53 TPR_STAR=1/(1+EXP(-A1/2)); SE_TPR=A2/(8*(COSH(A1/4))*%2);
54 IF _NAME_~='INTERCEP’ THEN DO; A_L=.; AU=.;
55 OR_SROC=.; TPR_STAR=.; SE_TPR=.; END;
56 DATA XXX2; SET XX2;IF _NAME_~='INTERCEP’ THEN DELETE; PROC PRINT;
57 DATA XXX; MERGE XXX1 XXX2;
58 KEEP TPR_S_W TPR_STAR SE_TPR_.W SE_TPR Z_SROC P_SROC;
59 Z_SROC=(TPR_S_W-TPR_STAR) / (SE_TPR_W**2+SE_TPR*%2) *%0.5;
60 P_SROC=2#* (1-PROBNORM(Z_SROC) ) ; PROC PRINT;
61 TITLE 'compare the TPR_STAR between unweighted and weighted regression
62 model ’;
63 DATA SROCS; SET SROC;PROC SORT; BY S;
64 DATA BS1; KEEP II S D; SET SROCS;
65 II+1; IF II>N_RL THEN DELETE ;
66 PROC UNIVARIATE DATA=BS1 NOPRINT; VAR S; OUTPUT OUT=A1 MEDIAN=S1;
67 PROC UNIVARIATE DATA=BS1 NOPRINT; VAR D; OUTPUT QUT=A2 MEDIAN=D1;
68 DATA BS2; KEEP II S D; SET SROCS;
69 II+1; IF II<=&N-N_RL THEN DELETE ;
70 PROC UNIVARIATE DATA=BS2 NOPRINT; VAR S; OUTPUT OUT=A3 MEDIAN=S2;
71 PROC UNIVARIATE DATA=BS2 NOPRINT; VAR D; OUTPUT QUT=A4 MEDIAN=D2;
72 DATA AA; MERGE A1 A2 A3 A4;
73 A_ROBUST=(D1%S2- D2*S1)/(S2-S1); B_ROBUST=(D2-D1)/(S2-S1);
74 OR_ROB=EXP(&A_ROB) ; TPR_ROB=1/(1+EXP(-&A_ROB/2)); PROC PRINT;
75  TITLE ’#%%x*ROBUST REGRESSION METHOD %%k skkskskskskskokskokokkokkok/ 5
76 DATA AAA; KEEP B_ROBUST A_ROBUST; SET AA;
77 DO J=1 TO &N; B_ROBUST=B_ROBUST; A_ROBUST=A_ROBUST; OUTPUT;END;
78 DATA AAAA; KEEP A _ROBUST B_ROBUST COUNTO-COUNT2;
79 MERGE SROC AAA;
80 Y_HAT=&A_ROB+B_ROBUST*S;
81  SIGN=D-Y_HAT;
82 IF SIGN>0 THEN COUNT1+1; IF SIGN=0 THEN COUNTO+1;
IF SIGN<O THEN COUNT2+1;
83 TITLE /COUNT1 and COUNT2 are the number of scatter lie above or below

respectively, COUNTO is the number of scatter on the line’;
PROC PRINT; RUN;

SAS code 1 can solve the regression parameter A and B of SROC curve
in S, D plane using the above weighted method, unweighted method, and
robust method. The common odds ratio and T'PR* which reflect the diag-
nostic accuracy of the test are also calculated using the parameters obtained

above.

For similar data in Table 14, you need to change the number of primary
studies n in 02nd row of SAS code 1, and the number of true positive (TP),
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false negative (FN), false positive (FP), true negative (TN) from 11th to
30th row.

To obtain exactly the intercept of robust regression, according to the
request of precision of intercept of robust regression (e.g. decimal digits),
the value of 3rd row after “A_ROB=" must be changed again and again
after running the SAS code. After each running, the number of scatter
points lies above line (COUNT1) and lies below line (COUNT2) must be
observed. If COUNT1 = COUNT?2, running SAS is end, the intercept A is
the intercept of robust regression.

The file of SROC is obtained using the row from 04th to 33rd which
include the value of variables of TP, FN, FP, TN, sensitivity, 1-specificity,
weight, D and S. The parameter and related value of weighted regression
model are obtained through the rows from 34th to 44th. The parameter and
related value of unweighted regression model are obtained through the rows
from 45th to 55th. The result comparing the diagnostic accuracy TPR* s
between weighted and unweighted methods is gained through the rows from
56th to 60th. The parameter and related value are obtained through the
rows from 61st to 83rd.

4.1.6. Other practical issues of SROC analysis

TPR* in ROC analysis is often an important summary statistics for
meta-analysis. While it is useful, it may not always relevant clinically. For
example, if all previous studies had false positive rates less than 20%, while
the false positive rate of TPR* is in 30%, TP R* becomes irrelevant because
it is out of the clinical range of practical uses. In such a case, a backward
translation of mean D and mean S into ROC curve can provide a more
informative summary statistics. This summary point is simply expressed as

— exp{(S+ D)/2}
TPR= 1 +exp{(S+D)/2}

and

exp{(5 — D)/2}
1+exp{(S—D)/2}’
which is always on the SROC curve. Another relevant alternative summary
statistics for SROC is the area under the curve (AUC). Like we use AUC of a
ROC curve to compare diagnostic tests, the AUC of SROC does not depend
on the selected threshold that TPR* used. It is particularly useful when
two SROC curves cross to each other. More useful is the conditional AUC

FPR =
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when the upper limit of false positive rates is given. For example, we are
only interested in the performances of diagnostic tests when its specificity
is above 85%. This corresponds to the AUC of SROC in the section of FPR
being less than 15%.

One advantage of SROC is to relate non-linear relationship between
TPR and F PR to linear regression S and D. While formula (66) compares
two T'PR* points as an approach to compare two diagnostic tests, it did not
take advantage of linear relationship between S and D fully. Alternatives in-
clude the use of analysis of covariance in the regression step of S and D. By
adding an additional covariate X to indicate different diagnostic modalities,
linear modal theory can be used to test statistical significance of different
modalities. In addition, we can add other covariates, such as the year of
publication and the design of the studies, into the linear model to assess
the effects of other uncontrollable factors on the diagnostic utilities. When
meta-analysis includes multi-modality studies, i.e. among studies that one
patient being evaluated by several diagnostic techniques, a random-effects
model of individual study can be built into the linear model to control for
correlated results reported in these papers. Several examples of using these
generalized linear models can be found in literature.

In meta-analysis, if each individual accepts several diagnostic tests, in
order to dispel the correlation among several diagnostic tests, the random-
effect model can be established. Some researchers suggest using generalized
linear model to control the correlation.32 34

4.2. Other methods of estimating log odds ratio of
diagnostic test

Both Mantel-Haenszel method and exact-based logit method3® can be used
to calculate the log odds ratio of diagnostic test.

4.2.1. Mantel-Haenszel method

Assume there are h primary studies of diagnostic test and the symbol a;,
b;, ¢;, d;, and n; represent true positive, false positive, false negative, true
negative and the total number from ith study (i = 1,2,...,h) respectively.
Adjusted odds ratios of Mantel-Haenszel method ORp is expressed as:

ORMH:Zh:< ) Z<b0’>. (68)

=1
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Using the formula

X&H_Z(M> Z( (a; + b;)(c; ?;lei_)(il)ingci)(bi+di)>

i=1

(69)

performs the test of statistical significance. 100(1 — «)% confidence interval
of the adjusted odds ratios of Mantel-Haenszel OR;p is

<OR}VI§1—Q/2/V X12v1H7 OR}\L?I_&M/V X12wH> . (70)

Ui_ay2 is a quantile from the standard normal distribution under test level
@, Uj_q/2 of 95% confidence interval is U;_, /9 = 1.96.

4.2.2. FEzact-based logit confidence interval

The method was proposed by Woof in 1955, so it was named Woof method.
The odds ratio ORj, can be expressed as:

h h
ORy, = exp [(Z:(w2 In ORQ) szl . (71)

i=1
The 100(1 — a)% confidence interval is

h
ORp exp _Ul—a/Q/ Zwi
i=1

where OR; is the odds ratio of ith study
w; = var(ln ORL)) ™' = (1/a; + 1/b; + 1/c; + 1/d;) "

If there are 0 in any cell of a study, each cell of the study is added a small
value, e.g. 0.5.

To test if the odds ratio of the primary studies is homogeneity, the
Breslow-Day test of homogeneity can be used. The Breslow-Day statistic is
expressed as:

, OR[ exp Ul—a/2

h
Qsp =Y _lai — E(ai|ORyu))? /var(ai|ORyu) (73)
i=1
where E and var represent expected value and variance respectively.
Statistic pp is an approximate chi-squared statistic with freedom degree
df =h—1.



Meta-Analysis 297

SAS code 2. Calculated odds ratio using Mantel-Haenszel method and logit method.

Number SAS Code
1 DATA C; SET SROC;
2 A=1 ; B=1; F=TP;0UTPUT; A=1 ; B=2; F=FN;0UTPUT;
3 A=2 ; B=1; F=FP;0UTPUT; A=2 ; B=2; F=TN;0UTPUT;
4 TITLE 'CRUDE 0DDS RATIO';
5 PROC FREQ DATA=C ; WEIGHT F;
6 TABLES A*B/ALL RISKDIFF RELRISK NOPRINT;
7 TITLE 'MANTEL-HAENSZEL ODDS RATIO and LOGIT 0ODDS
8 RATIO;
9 PROC FREQ DATA=C ; WEIGHT F;
9 TABLES I*A*B/ALL RISKDIFF RELRISK NOPRINT ;RUN;

4.2.3. An example

Use the file of SROC (data see Example 5) of the SAS code 1 from 01st to
31st and the SAS code 2, the odds ratio of the diagnostic test is estimated
by Mantel-Haenszel method and Exact-based logit method. In the SAS
code 2, the code of row from 1 to 3 is used to transform the SROC file
into the required data format. The code of row from 5 to 6 are used to
calculate the crude odds ratio. The code of row from 8 to 9 is used to
calculate the adjusted odds ratios of Mantel-Haenszel method and odds
ratio of exact-based logit method.

The FREQ procedure in the rows from 4 to 6 calculates the sum-
mary Mantel-Haenszel statistics of 59 studies. The results are x%,; =
2829.032, df = 1, P < 0.001. The crude odds ratio of Mantel-Haenszel
method is 5.542, and 95% confidence interval is (5.203, 5.903). The
crude odds ratio of logit method is 5.542, and 95% confidence interval is
(5.193, 5.915).

The FREQ procedure in the rows from 7 to 9 calculates the summary
Mantel-Haenszel statistics of 59 studies. The results are x3,;; = 2231.929,
df =1, P <0.001. The adjusted odds ratio of Mantel-Haenszel method is
ORpg = 5.573, and 95% confidence interval is (5.189, 5.984). The adjusted
odds ratio of logit method is ORy = 5.557, 95% confidence interval is
(5.137, 6.010).

These results are similar to the odds ratio of weighted regression model.
Breslow-Day test of homogeneity is performed for the data. We have Qpp =
394.286, df = 58, P < 0.001. These suggest the difference among 59 primary
studies have statistical significance.

The above results of analysis suggest that the diagnostic accuracy of
Pap test is similar with those obtained by several methods. TPR* is about
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0.7, The odds ratio of positive diagnostic result is about 5. These suggest
that the test plays an important role in cervical precancer, but these results
suggest that the diagnostic accuracy of the test is not high.

The methods above assumed that the golden standard is perfect. If the
golden standard is imperfect, the diagnostic accuracy of the test must be
adjusted. Walter et al. proposed the method estimating the SROC curves
of test with imperfect reference standards in 1999.29

Although someone proposed the meta-analysis method of diagnostic test
using the area under curve (AUC), how to use both AUC and the data of
sensitivity and specificity need to be studied further.

5. Meta-analysis for Linkage Studies

Recently, linkage studies are rapidly becoming numerous. At the same time,
conflicting claims of linkage also sprout in genome wide scans. Serious
discussion has begun regarding how to control false positives or spurious
linkages. Meta-analysis can quantitatively synthesize results from multiple
independent studies into a pooled measure of the overall effect of genetic
linkage. But because there may exist too many differences between linkage
studies, such as different ascertainment of pedigrees, different disease defini-
tion, different genetic markers or different statistical techniques, a common
effect size is difficult to be found and extracted. And so the general meta-
analysis methods are difficult to be applied directly. We here introduce some
meta-analysis methods that are appropriate for linkage studies.

5.1. Meta-Analysis of P Values
5.1.1. Statistical method

Assume that there are m independent studies assessing linkage of a disease
or trait to a maker. Let P; denote the P value associated with the ith study
(i=1,2,...,n), then n independent P values can be combined into a single
test of significance.

X? =2 Zn: In(P;). (74)

If the null hypothesis is true, i.e. if there are no genes underlying the trait
near the marker locus, this quantity has a x? distribution with two degrees
of freedom as proposed by Fisher in 1954. Alternatively, a weight may be
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assigned to each individual study indicating its importance. Assigning a
weight v; to the ith study, and form the product

Py = PV'PY ... pvn (75)

The validity of the omnibus null hypothesis is tested using the cu-
mulative distribution of P,, Prob(P, < q) = >.p_,(¢*/"*)/ax, where
ar =7, ;4 (Vk—v;)/vi. A simple choice for the weight is v, = n—lk/ > n%_,
where n; is the number of sib-pairs used in the ith study (in sib-pair tests).3¢
One may assign a different level of importance to each individual study
based on the presumption that some designs are more powerful than others.
For example, if 1000 random sib-pairs are needed for a power of 80%, and
the same power could be achieved by using 40 ED sib-pairs or 200 affected
sib-pairs, then all three studies would have equal weights for importance,
although their sample size are considerably different.

If all studies we want to summarize have identical genotyped markers
and same linkage analysis method being used, then one can apply Fisher‘s
method to combine P value directly. Since in gene mapping studies, genetic
markers are used only as references to infer the location of the putative
disease gene at the chromosome or infer whether a disease gene is lo-
cated at a specific region of the genome, different studies may use different
genetic markers, although their objectives are same. Moreover, they may
use different linkage analysis method. If we want to synthesize this kind of
studies, we must firstly extract a single P value for the region from each
study. We will take the summarization of 4 practical studies concerning
linkage of BMI with markers in the human OB gene region as an example
illustrate some techniques in the following paragraph.

5.1.2. The extraction of P value

(i) For study with a single marker, no correction needs to be applied. For
example, Borecki et al.?”
OB gene. This one marker was KELL, located at 7q33. Four hundred pairs
of sibling pairs were included and the Haseman-Elston procedure was used
to yield a p value of 4.8 x 1076, It could be used directly.

(ii) If a separate P value for each of several markers is reported in a chromo-

used only one marker in the area of the human

some region, we could convert each P value to a corresponding (standard
normal) Z-score by means of the inverse standard normal distribution
function Z = ®71(1 — P). The correlation between any two of them is
equal to the correlation of corresponding IBD status between them. For
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example, the correlation between Z, and Z; is r;; = (1 — 201‘]‘)27 where
6 denotes recombination fraction. 6;; can be determined according to the
distance between ith and jth markers. One centimorgan (cM) or 1 million
base pairs (bp) is approximately equal to 8 of 0.01. We could use statistic
Sy = Zle Z; to summarize the information of all markers, the variance of
the sum is the sum of variances plus twice the sum of the covariances for
all component, that is var(Sy) = k+23_,_;
distributed as standard normal, and it can be used to derive a single P
value for the study.

3. S0 statistic T' = %

Example 6. Clement et al.3® evaluated linkage to BMI dichotomized as

“greater than 35” or “less than or equal to 35” with 8 markers ranging from
D7S651 to D7S509 using sib-pair method. A part of results are displayed
in Table 16.

Table 16. Proportion of alleles IBD in OB markers for concordant (obese-obese)
sib-pairs.

Marker n T t P P* Z; =%"1(1-Py)
D7S651 66  0.57 1.98 0.03 0.025970 1.943627
D7S692 59 0.52 0.68 NS 0.249605 0.675734
D7S677 46 049 —0.29 NS 0.386574 0.288260
D7S680 57  0.59 2.47 0.008  0.008292 2.395791
D7S514 53  0.59 2.44 0.009  0.009066 2.362904
D7S530 65 0.59 2.96 0.002  0.002155 2.854504
D7S640 57 0.55 0.99 NS 0.163216 0.981324
D7S509 56 0.54 1.01 NS 0.158459 1.00081

Total 12.50295

P is the P value reported in the original literature.
P* is the P value recovered according to t value and degree of freedom
(n—1).

The distances (cM) between every two adjacent markers in Table 16 are
13, 3, 7,0, 2, 5, 5 respectively. We can get ZKj ri; = 16.3756, var(Sk) =
8 + 2 x 16.3756 = 40.7512. The calculation of Z; is showed in Table 16.
Statistic T' can be calculated as

Sk 12.50295

T = =
Vvar(Sy)  V/40.7515

= 1.958585, P =0.0251.

(iii) If a single P value was provided from a multipoint procedure, then
Lander-Kruglyak correction could be applied to get a corrected P value,
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P =1 —exp(—p(T)), (76)

where u(T) = [C + 2pGT?a(T); T = ®~1(1 — P) is a standard normal
Z-score corresponding to cumulative probability 1 — P; C is the number of
chromosome; G is the genome length measured in Morgans; «(T) = P is
the pointwise significance; p is the crossing over rate between the genotypes
being compared.

Example 7. Duggirala et al.3® examined the linkage of BMI to markers
spanning a 211 ¢M (D7S531 to D7S483) using a multipoint procedure, and
resulted in a combined P value of 0.003.

In this example, C = 1(one chromosome used for the study), p = 2 (for
sib-pair tests), a(T") = 0.003, T' = ®~1(1 — 0.003) = 2.747765,

w(T) = (142 x 2 x 2.11 x 2.747765%) x 0.003 = 0.194171,

P* =0.1765.

(iv) Sometimes researchers may use multiple cutoff points or multiple
criteria to define the affected or unaffected in one study. If the analysis
methods they have used are one-side sib-pair tests, the process of extracting
a single P value is similar to that of (ii). Notice that here the multiple
criteria of classification are concerned but not the multiple markers. The
estimation of correlation is different, for example, the correlation between

min(ng,n;)

Z; and Z; is calculated as r;; = max(ri,ms)
CEARe)

, where n;, n; are the number
of sib-pairs having been used in ith and jth classification respectively.

Example 8. Reed et al*® examined linkage of BMI to 8 markers con-

tained in and surrounding the interval D7S51873 through D7S1875 using
two methods (sib-pair analysis and TDT). Three cutoff points were used
to define obese and linkage analysis has been performed respectively. The
main results are displayed in Table 17 and 18.

If a study used a two-side TDT (Table 18), we could convert the chi-
squares to Z-scores by taking their square root, just like the column 6 in
Table 18. The correlation among the Z’s can again be estimated as the
square root of the proportion of subjects in a subset divided by the number
of subjects in the larger set, For example, the estimated correlation between
the Z-score in subjects with a BMI > 40 and the Z-score for subjects with
a BMI > 30 is 4/70/121 = 0.761. If there are m Z-scores, then statistic
Q = ZR~'Z' has a chi-square distribution with the degree of freedom equal
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Table 17. Mean proportion of the OB gene haplotypes (D7S1873-D7S1875) identical
by descent for obese-obese sib-pairs.

Obese Cutoff  Pairs(n) Proportion of IBD t P Z;=®"1(1- Py)
> 30 213 0.51 £0.33 0.24  0.4038 0.243524
> 35 135 0.50 £ 0.35 0.03  0.4333 0.167979
> 40 59 0.60 +0.33 2.28 0.0132 2.220277
Total 2.63178

Proportion of IBD is expressed as mean+SD.

Table 18. Transmission disequilibrium of a haplotype (D7S504-D7S51875) flanking the
OB locus.

1-5 Transmitted/ —

BMI of Sibling  not Transmitted %Transmitted  x? P Z; = \/X%
> 30 71/50 58.7 3.64 0.056 1.907878

> 35 60/39 60.6 4.45 0.035 2.109502

> 40 46/24 65.7 6.91  0.009 2.628688

tom—1. Where Z = (Z1, Zs, ..., Zm) and R is the correlation matrix. With
the data in Table 18, we get Z = (1.907878 2.109502 2.628688)

1 0.904530  0.760600
Q=ZR'Z =7 0.904530 1 0.84875 | Z' = 6.944753
0.760600  0.840875 1

P =0.0310.

In Example 8, Reed combined the marker information into haplotypes
and conducted their analysis by looking at sharing of haplotypes rather
than alleles. This aspect of their analysis simplifies the extraction of a
single P value since significance is assessed only for IBD sharing at the
single haplotype rather than at each individual locus, so the P values need
not be corrected with Lander-Kruglyak method. With the data in Table 2,
we get ZKj ri; = 1.983509, var(Sx) = 3+ 2 x 1.983509 = 6.967017. The
calculation of Z; are displayed in column 6 of Table 17. Then the statistic

p_ Sk _ 2631718
Vvar(Sp)  V6.967017

=0.997071, P =0.1594.

(v) If a study has performed more than one test with the same data, just like
Example 3, we still have two p values after combination, one from sib-pair
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test and one from TDT. If the correlation between these two tests could be
determined, then one could combine these into a single P value. However,
it is not immediately apparent about how to estimate this correlation.
Allison et al. (1998) propose several alternatives*!': First, one could, on
some a priori grounds of preference, choose one test over another. For ex-
ample, one might argue that because all of the other studies are using a
sib-pair approach rather than TDT it would be more appropriate to com-
bine sib-pair data rather than the TDT data and be consistent with the
others. Second, one could multiply the lowest P value by two (the number
of test) as a form of Bonferroni correction. However, this is overly conser-
vative because it does not take the correlation between the two tests into
account. Third, one could estimate the correlation via simulation. Fourth,
one could conduct the overall meta-analysis with the results of each test.

The results of meta-analysis for the above four studies are displayed in
the last row of 4th and 5th columns in Table 4. When using Reed et al.4°
sib-pair test result, the overall P = 4.9047 x 1076 (d.f. = 8); when using
TDT result, the overall P = 1.1999 x 107% (d.f = 8). Besides these, we
have conducted sensitivity analysis also in this example, the sensitivity
analysis means that each study result was removed from the analysis, and
the chi-square statistic with 6 d.f. (from the remaining study results) was
computed. The corresponding P values are given in first 5 rows of 4th and
5th columns in Table 19. This table shows that Borecki et al.3” study has
a great influence to the overall P value. But even excluding this study,
the remaining results still provide a significant value (P < 0.05). So this
study suggests that there is evidence for linkage of BMI to somewhere in
the OB region. Note that this meta-analysis is only an example, we have
not collected all of possible literatures.

Table 19. The results of overall meta-analysis and sensitivity analysis.

Reference P Value x2 (P Value)® x? (P Value)P
Borecki et al. (1994)37 4.8 x 10~ 14.51(0.0244) 17.79(6.7893 x 10~3)
Clement et al. (1996)38 0.0251  31.64(1.9165 x 10~°) 34.91(4.4856 x 10~6)
Dugirala et al. (1996)39 0.1765  35.54(3.3919 x 1076) 38.81(7.7944 x 10~ 7)
Reed et al. (1996)40 Sibpair  0.1594  35.33(3.7152 x 10~6)

TDT  0.0310 35.33(3.7152 x 10~6)
Overall 39.01(4.90 x 107%)  42.28(1.20 x 1076)

a: Using Reed et al.40 sib-pair test result.
b: Using Reed et al.?0 TDT result.
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5.2. The Meta-analysis for Genome Search

The Genome Search Meta-analysis method (GSMA) uses a non-parametric
ranking procedure to identify genetic regions that show consistently
increased sharing statistics or lod scores among several genome screens. 4243
This method splits the whole chromosomes into bins of approximately equal
length and ranks these bins according to the lod scores, Z-statistics or P
values with the most significant result having the highest rank within each
genome screen. Then the ranks for each bin are summed across screens. For
any bin, the null hypothesis is that no susceptibility loci exist within the
bin, and the ranks are assigned randomly. For m studies and n bins, the
probability that the sum of ranks (X;) is equal to a value R is given by

P (é){z =R>

0 R<m
d
R—kn—-1
= LZ(—l)k " <[ m<R<mn (77)
nm = m—1 k
0 R>mn,

where d is the integer part of (R —m)/n. From this distribution, we can
calculate the probability that a summed rank of R or greater within a bin
under the null hypothesis.

The choice of bin width has several constraints: The bin width must
be appropriate for all chromosomes, with at least two bins on the smallest
chromosome, and at least one marker should be genotyped within each bin.
To ensure the independence of lod score or P value for adjacent markers,
Wise et al. proposed to use 30 ¢cM as the width of each bin.

Since some literatures may report only the most significant results, the
information for some bins is lost. This will not bias the results of the GSMA,
provided a strict lod score or P value cut-off has been used and all chromo-
somes have been genotyped. If ranks can be assigned to the top bins, the
remaining bins could be given equal ranks of (120 — z + 1)/2. If different
genome search contributes differently to the meta-analysis, a weight may be
assigned to each screen, such as log(N), where N is the number of pedigrees
or sib pairs in each study. Although the above probability distribution for
the summed ranks under null hypothesis will no longer hold, the P-value
can be generated through simulation of the weighted ranks.
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5.3. Conclusion

The major forte of Fisher’s combining P value method are its simplicity
in calculation and its flexibility in pooling results from studies which may
examine slightly different hypotheses or use different outcome measures.
However, it also has many drawbacks, sometimes its result is difficult to
explain because only one highly significant P value from a single study
may determine the significance of the Fisher test statistic; it cannot be
used to make inferences about the average effect size or the consistency of
results across studies. But in practice, published results from heterogeneous
studies are likely to report P values only. When nothing else is available,
combining P values can provide an overall assessment of linkage.

GSMA allows systematic integration of data from several genome
screens. The major strength of the GSMA is its application to a diver-
sity of study designs, it is not restricted by different phenotype definitions,
family structures, markers, or analysis methods across studies. Wise
et al.*>* have applied this method to four genome screens in multiple
sclerosis and across 11 screens from autoimmune disorders, which showed
that the GSMA is a valuable data exploration tool to obtain an overview
of the genome search results within and across disease phenotypes.

To ensure the quality of meta-analysis, the pre-analysis process is very
important, we must set strict literature inclusion standard according to
professional knowledge, and collect literatures through multiple ways to
reduce as much publication bias as we can.

6. Bias in Meta-Analysis
6.1. Source of bias

Meta-analysis should be viewed as an observational study of the evidence.
In epidemiology, bias may be defined as any trend in the collection, anal-
ysis, interpretation, publication or review of data that can lead to con-
clusions that are systematically different from the truth. Bias often cause
conflicting results of meta-analysis and threaten its internal validity and
reliability. In each step of meta-analysis, like locating and selecting studies
for inclusion in meta-analysis, or extracting accurate study data, bias may
be introduced. As noted by Felson, there are at least three types of bias
involved in meta-analysis: Sampling bias, selection bias and within study
bias. %4
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6.1.1. Sampling bias

The validity of a meta-analysis depends on complete sampling of all the
studies performed on a particular topic. Any incomplete sampling is poten-
tial to bias. Sampling bias arise when retrieving the relevant studies, which
consists of:

(1) Studies with significant results are more likely to get published than
studies without significant results, leading to publication bias.

(2) In the process of retrieving published studies using computerized
database, indexing bias and search bias may occurr. The former is
defined as biased indexing of published studies, which means index-
ing error or indexing variability. Indexing bias is not under the meta-
analysts control. Search bias is another type of sampling bias due to
inadequate or incomplete search. Index bias or search bias can lead to
failure to capture all indexed studies in a database.

(3) Relying heavily on references published in other articles or in review of
literature may cause reference bias or citation bias into a meta-analysis.

(4) Multiple publications bias occurs when studies whose results are pub-
lished in a series of articles are more likely to be sampled than those
published only once. Multiple publications bias can induce meta-analyst
confusion when the publications do not have the same first author or
when one publication does not refer to the prior one. Multiply used
subjects bias can occur when the same subjects are reported in two
separate studies when they actually a part of only one study.

(5) The included studies in meta-analysis based exclusively on reports in
English may leads to English language bias.

In practice, to reduce or avoid sampling bias require that the meta-
analyst embarking on a database search chooses appropriate index terms
and conducts the search with a systematic strategy.

6.1.2. Selection bias

Selection bias occurs when eligible studies are chosen in a meta-analysis,
according to the criteria of inclusion and exclusion. In this process, two
types of bias may be introduced, one is inclusion criteria bias, and the
other is selector bias. If the inclusion criteria is developed by an investi-
gator familiar with the area under study, the criteria can be influenced by
knowledge of the results of the set of potential studies, and this would cause
bias. Inclusion criteria bias is difficult to avoid since a good knowledge of
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a topic is a prerequisite to develop an inclusion criteria. In selector bias,
inclusion criteria have been set, although they may not be so specific as
to dictate which studies are included or excluded from the meta-analysis.
This leaves the meta-analyst selector free to choose studies, a choice which
is susceptible to bias.

Selection bias of studies is probably the central reason for discrepant re-
sults in meta-analyses. For example, in 1992, two meta-analyses published
in BMJ (British Medical Journal) and Lancet, respectively. Both compared
low molecular weight heparins and standard heparin in the prevention of
thrombosis after surgery, but the conclusions were widely divergent.:46
One concluded that “low molecular weight heparins seem to have a higher
benefit to risk ratio than unfractionated heparin in preventing periopera-
tive thrombosis”, whereas the other considered that “there is at present no
convincing evidence that in general surgery patients low molecular weight
heparins, compared with standard heparin, general a clinically important
improvement in the benefit to risk ratio”. Egger pointed out that the
conflicting results of two meta-analyses were mainly related to the selec-
tion of studies.*” Nurmohamed et al.46 based their analysis on a subgroup
of trials that they considered possess the highest methodological strength,
1.45 included all trials in their analysis. Many other
elements, for example, language restrictions or use of unpublished material

while Leizorovicz et a

— could contribute to conflicting conclusions.

Criteria for including studies in a meta-analysis may be influenced
by knowledge of the results of the set of potential studies and lead to
inclusion bias.

One important way to avoid selection bias is to create extremely spe-
cific and clear study inclusion criteria, so that the selector has little chance
to inject bias into the selection decision. Blind method is also suggested
to limit selector bias. The most common is to blind the methods and re-
sults of studies to make it hard for the meta-analyst selector to determine
the inclusion of a study through results. In this method, there are often
two selectors who work independently. Any disagreement in study selection
is solved by a joint meeting or by a third selector. This process certainly
decreases the chance of selector bias, but it does not eliminate it.

Another way of handling the selection bias is to include all studies that
meet basic entry criteria then perform sensitivity analyses with regard to
the different possible entry criteria. Any conclusions from a meta-analysis
that are highly sensitive to altering the entry criteria should be treated
with caution.
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6.1.3. Within study biases

After studies are selected for a meta-analysis, data should be accurately
extracted from the study. There are several opportunities for bias, the most
likely bias is extractor bias, which can create systematically biased results.
There may be considerable inter- and intra-observer variability in extracting
data from studies. To minimize extractor bias, an extraction sheet should
lay out specific rules for data extraction with clarity.

Meta-analyst bias may affect the scoring of studies for quality. If study
results are weighted for quality in the analysis, a bias in scoring study
quality may have a real impact in meta-analysis results. Giving rigid rules
on how to measure the quality of trials may help lessen observer variability
and mitigate bias.

The primary study paper included in the meta-analysis itself may not
accurately report the study’s result. For example, the study has several out-
comes which were measured, but the only results reported are those which
reach statistical significance, and this can introduce a reporting bias. Unfor-
tunately, the prevalence of reporting bias is unknown, but it is a widespread
problem which could serve to substantially bias meta-analysis results.

6.2. Publication bias

Publication bias is usually used to refer to the greater likelihood of
research with statistically significant results to be submitted and published
compared with non-significant and null results. More generally, publica-
tion bias is the systematic error in a statistical inference by conditioning
on the achievement of publication status. Publication bias occurs because
published studies are not representative of all studies that have ever been
done.

6.2.1. The causes and consequence of publication bias

Publication bias has long been recognized and much discussed. Publica-
tion bias can originate from three sources: The authors, the sponsors of
the study, and the editor or reviewers of the journal to which the paper is
submitted. First, authors may be less likely submit papers if the results are
not significant. Second, the editors of the journal may favor publication of
positive results. Finally, the sponsor may play an important role in gener-
ating publication bias, especially if it is a pharmaceutical company funded
study. The implication is that the pharmaceutical industry discourages the
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publication of studies which have negative findings. In addition, multicenter
studies are more likely to be published than studies from a single center.

Existence of a bias in favor of publication of statistically significant
results is well documented. Easterbrook et al.*® carried out a retrospec-
tive study of 285 research projects that had been approved by the Central
Oxford Research Ethics Committee between 1984 and 1987. They found
154 studies had statistically significant results and 131 did not. Of the
154 studies with statistically significant results, 60.4% had been published,
whereas only 34.4% of the studies that did not have statistically significant
results had been published. Using logistic regression and adjusting for rele-
vant covariates, they found that studies with statistically significant results
were more likely to have been published and/or presented than those with
non-significant results (OR = 3.56, 95%CI 1.82-6.99).48

Publication bias may seriously distort the findings of a meta-analysis,
and certainly threaten the validity and reliability of results. For example, in
a meta-analysis about the effect of an alkylating agent alone comparing with
combination chemotherapy on survival in patients with advanced ovarian
cancer, Simer found that the conclusion based on the published studies is
different from that based on studies registered in the International Cancer
Research Data Bank. The pooled results from published trials showed
significant efficacy, while data from prospectively registered trials (both
published and unpublished) showed no significant advantage of combina-
tion chemotherapy over single agent treatment.*®

6.2.2. Methods of detecting and correcting for publication bias

Although searching for relevant unpublished studies is important and
may sometimes alleviate publication bias, identifying such studies may be
difficult. Hence we need methods to assess the magnitude of publication
bias in a meta-analysis, based on the data in the available studies. In fact,
various methods have been devised to attempt to detect and correct pub-
lication bias, but none of the available methods is entirely satisfactory for
dealing with this problem. Here, commonly used methods are described as
following.

6.2.2.1. Funnel Plot

Funnel Plot, or, funnel graph, is the frequently used method for detecting
the publication bias. The basic idea is that if the point estimates from in-
dividual studies are plotted against the inverse of the variances, or another
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Fig. 9. Two funnel plots based on simulated data. The left plot displays absence of
publication, and the right displays the presence of publication bias.
Source: Normand® Stat. Med. 18: 339.

surrogate for sample size, the points visualized together should produce
a funnel shape, so they are scattered around the true value of the point
estimate with the scattering narrowing as the standard errors decrease.”®
That is, in such a plot, the effect size of studies is plotted against study sam-
ple size. If there is no publication bias, the plot would resemble an inverted
funnel with a wide dispersion of results among studies of small size and
a narrower range of study results for large studies. If the plot shows an
asymmetrical and skewed shape, publication bias may present. This usu-
ally takes the form of a gap in the wide part of the funnel, which indicates
the absence of small studies showing no benefit or harm. Figure 9 demon-
strates two funnel plots based on simulated data. The left plot displays the
simulated summaries for all the studies, which means absence of publica-
tion bias. The right plot displays the simulated summaries for studies that
are statistically significant at the 0.05 level, which suggests the presence of
publication bias.

In fact, the funnel plot is a graphical test for any type of bias that is
associated with sample size. The publication bias and sampling bias are
more likely to affect smaller studies than large trials and may thus lead to
funnel plot asymmetry. Another source of asymmetry arises from differences
in the methodological quality. Smaller studies are, on average, conducted
and analyzed with less methodological rigor than larger studies, and trials
of lower quality tend to show larger effects. Other factor, such as hetero-
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geneity in treatment effect between low and high risk groups can also lead
to asymmetry in the funnel plot.

The major advantage of funnel plot is that it is easy to be performed
which only requires published data. But the method is practically limited to
meta-analysis with large enough numbers of studies to allow one to visualize
(as opposed to fantasize) a funnel shape to the data. The symmetry of
funnel plot is defined informally. So, if the number of studies included in a
meta-analysis is small, it is difficult to detect the symmetry of funnel plot
through visual examination.

6.2.2.2. Egger’s linear regression method®!

Egger proposed a linear regression model to measure funnel plot asymmetry.
It is a formal test for asymmetry in funnel plot. The standard deviate y;,
(y; = t;/si, t; is the effect size, s; is standard error for study i) is regressed
on precision x;(x; = 1/s;), then the significance of intercept differing from
zero (at o < 0.1) is tested. That is, y; = a + bx;. The points from a homo-
geneous set of trials, not distorted by publication bias (or other bias), will
thus scatter about a line that runs through the origin at standard normal
deviate zero (a = 0), with the slope b indicating the size and direction of
effect. This situation corresponds to a symmetry funnel plot [Fig. 10(a)].
If it is asymmetric, with smaller studies showing effects that differ system-
atically from larger studies, the regression line will not pass through the
origin [Fig. 10(b)]. The intercept a provides a measure of asymmetry — the
larger it deviate from zero the more the asymmetric.

_\4.

standardized estimate

01234567881 0122345678810
precision(1/SE) precision(1/SE)

(a) no publication bias (b) publication bias

Fig. 10. Example of the Egger’s regression method using a simulated meta-analysis.
Source: Macaskill (2001). Stat. Med. 20: 644.
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Egger examined whether the regression method predicts discordance of
results when meta-analyses were compared to large trials.! They found in
the eight pairs of meta-analysis and large trial, there were four concordant
and four discordant pairs. In all case discordant cases, meta-analyses show
larger effects. Funnel plot asymmetry was present in three out of four dis-
cordant pair but none of concordant pairs. They also found, in 14 (38%)
journal meta-analysis (from four famous medical journals) and 5 (13%)
Cochrane reviews, funnel plot asymmetry indicating that there was bias.

But the statistical properties of Egger’s linear regression method are not
described, and the test may itself be biased. This method violates the usual
assumptions of simple linear regression. There is measurement error in the
independent variable because the standard errors were estimated from the
observed data, and is therefore subject to sampling error. This results in a
biased estimate of the regression slope.

6.2.2.3. Begg’s rank correlation test®?

Begg’s method uses Kendall’s tau to test for correlation between the stan-
dardized treatment effect ¢}, and the variance of the treatment effect (v;),
where

th=(t: —t)/\/v},
P=3"(t5/v) [ > (10y) and vf =vi =1/ 3 (1/v)).

Alternatively, the test can be based on the correlation between ¢} and
the sample size for each study (n;). Treatment effects are standardized
to obtain a set of estimates that can be assumed to be independent and
identically distributed under the null hypothesis of no publication bias.

The rank correlation test has been described as a direct statistical
analogue of the funnel plot. But the power of the test varies along with
the unknown characteristics in meta-analysis. Even though the result is not
significant, publication bias cannot be ruled out in small meta-analyses.

6.2.2.4. Fail-safe number®3

Rosenthal’s “fail-safe number” (Ngg), is the number of unpublished null
studies needed to remove the significance from the finding of a meta-
analysis. The method involves computing the standardized normal deviate
Z, associated with each published study and then calculating a combined
deviate Zs. The values of Npg required to bring the new overall P-value to
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any desired level can then be calculated, an implausibly high value being
regarded as evidence against the file-drawer hypothesis (publication bias).
It has been suggested that Ngg should be presented for all meta-analyses,
as an aid in the assessment of the degree of confidence that can be placed
in the results.

However, plausibility of existence of certain number of unpublished
studies is judged subjectively. Furthermore, this method assumes published
and unpublished studies are of similar sizes. Even in similar sized studies,
this method will be misleading if the average effect of unpublished studies
is in opposite direction to published studies.?*

Besides the methods describes above, another kind of methods pur-
sues truncated sampling model to deal with publication bias, where it
is assumed that statistically non-significant results do not get published.
Hedges developed a model of the selection process involving a step func-
tion relating the P-value to the probability of selection in the context of
a random-effects model. The model permits the estimation of a weight
function representing selection along with the means and variances of ef-
fects. Dear and Begg’s semi-parametric method is quite similar to that of
Hedgess model, in which the selection publication is modeled also using a
weight function on two-sided P-value scale.?® The difference is that Hedge’s
pre-specifying the region of the P-value scale within which the weight
function is assumed to be constant. Gleser proposed two general models
that revisit Rosenthal’s attempts to explore the number of unpublished
studies and introduce several frequentist methods for interval estimates.?%
These methods take advantage of the fact that under the null hypothesis of
interest, P-values from experiments testing this Hy have a common known
distribution which is independent of each experiment’s design, sample size,
and concomitant variables. But these methods are not widely accepted and
are not recommended.

Recently, source augmentation method has been developed for detect-
ing and correcting the publication bias. Givens used a Bayesian model to
augment observed data by simulating the outcomes for missing studies,
thereby creating a “complete” data for meta-analysis.’” The author de-
scribed how the random-effects model may be extended to account for
publication bias, assuming that in addition to the n observed studies there
are further m studies that are not observed. The number m and relative
risks found from these studies are unknown and must be estimated, and
uncertainties about these estimates are reflected in the final meta-analysis
inference by treating them as parameters in a Bayesian analysis.
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In fact, none of the available methods is entirely satisfactory for deal-
ing with the publication bias so far. Thus, we should consider other
ways to avoid publication bias. First, results of large studies most closely
approximate the average results of all studies, whether published or
unpublished. Furthermore, large studies, even with null results, are almost
always published. Therefore, the meta-analyst can test the pooled results
of studies to see if they approach the overall pooled result. Second, a
meta-analyst can also attempt to obtain data from unpublished studies,
an endeavor recommended. Nonetheless, finding those studies can be very
difficult. Finally, one important solution to publication bias may be the
establishment a clinical trial registries, a movement to register all initiated
studies has begun among those in clinical trials field but not yet among
those conducting observational studies.
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1. Introduction

In an era of rapid advances in molecular biology and genetics, medical
research at all levels (from basic science, to translational research and to
clinical research) produces a wealth of data at an amazing speed. These
data themselves are useless unless they are converted into information and
knowledge. What distinguishes Statistics as a scientific discipline is that
it aims to make inference about the unknown population from analyzing
the sample data. A key concept that is constant in statistical theory and
practice is that of variability. It is inherent in our daily lives, our data
and in statistical estimates derived from the data. Because every person
is different, a wonderful drug or therapy may only work for some but not
all patients. Our blood pressures vary all the time. It can be influenced
by when and how they are taken, whether you are worried or anxious
about it, or you are in good health or not, and some other unknown factors
(the random variation). Random variation is the unexplained variation, the
noise part. In fact, controlling variability due to different possible factors is
the subject of statistical experimental design. As we cannot possibly control
all factors, the random variation is always there. Statistical methods provide
justifications to how many subjects (how large a sample) will be needed to
separate noise from trend, and statistical estimate of variability quantifies
the uncertainty in biomedical findings. This knowledge can be further used
to tailor treatment strategy for patients.
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Clearly, describing the data and understanding the variability ties
closely to the experimental design and biomedical process the data arises
from and also the study design (the deliberate process of generating data for
scientific investigation). Understanding the biological and medical process
is essential to understanding and making sense of the data. Thus, methods
and tools to describe and model the variability in a succinct way allow us
to easily convey information in the data. The key is to understand the vari-
ability underlining the data. Common data analytical techniques are now
well summarized.™” The focus of this chapter is to introduce some more
advanced methods for best describing and understanding variability.

2. Methods for Describing Data

The first step towards understanding data and making any inference is to
understand what type of data we are dealing with since different types
of data require different statistical methods for analysis. This is a fact
sometimes easily overlooked by non-statisticians. We shall first review some
common types of data in biomedical research with special emphasis on those
not often discussed about in textbooks but appears increasingly often in
medical research. We shall also point out the methods that ought to be
used to analyze them.

2.1. Types of data

Although the data in biomedical research often is complex, they do fall into
several common categories. Understanding them will guide us to choose the
right methods for summarizing and analyzing the data. The type of data
determines what methods will be used for analyzing the data and making
inference. In addition to reviewing the basic types of data,! we shall describe
other types of data that occur increasingly common in modern biomedical
research.

2.1.1. Categorical data

When a patient or her conditions are classified into different categories,
those observations would give rise to categorical data (or sometimes called
dichotomous or attribute data). The simplest examples are the two-category
(yes/no observations) such as if a patient has responded to cancer therapy
or whether the patient is smoker or nonsmoker or whether the patient
has colon cancer or not. This type of data is sometimes under the name
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of binary data or 0-1 data. Data of three or more categories include blood
types (A, B, AB, O), combined categories such as female and male leukemia
and non-leukemia patients. Since there is no apparent order among these
categories (blood types, gender/disease classifications), this type of data
is also called nominal data. They can be analyzed with methods for con-
tingency tables or a generalized linear model. Another type of categorical
data include the classification of smokers (total none, occasional, heavy),
the stages of breast cancer (I, II, I, IV), the degree of improvement af-
ter therapy (none, moderate, great, full), and the degree of pain (minimal,
moderate, severe, unbearable) as subjectively assessed. Here, there is an
apparent order among all the categories, these data are called ordinal data.
However, just like in nominal data, arithmetic does not make sense in ordi-
nal data although some of them may appear to be numeric, e.g. it is hard
to say unbearable pain is twice as bad as severe pain.

One case such distinction may become obscure is the score data where
scores are assigned to certain outcomes that does indicate an equal incre-
ment from one point to one point higher.

2.1.2. Continuous data

Continuous data arise when some form of measurements is taken, e.g. body
weight and temperature, blood pressures and most of blood chemistry test
(bilirubin, hemoglobin, cholesterol etc.). Oftentimes, these observations or
its transformation (e.g. its logrithm) are considered normally distributed.
Statistical methods and models for analyzing continuous data are most
comprehensively developed. However, the accuracy of these measurements,
knowledge about the reliability of these measurements is important to make
valid inference.* Especially, it should be noted that when these observations
are used as independent variables in the analysis, an errors-in-variable (or
measurement error) model may be necessary.?

2.1.3. Ratios

Ratio data arise when we take ratio of two variables. For example, ejection
fraction, an important cardiac function index, is the ratio of the differ-
ence between end systolic and diastolic volumes to end systolic volume,
cardiac output, the percent change in renal function (e.g. ,the glomerular
filtration rate) from certain baseline. More recently, the microarray gene
expression ratio has become a focus of many cutting-edge medical research.
The microarray technology has allowed fast large scale (up to thousands
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of genes) analysis of gene expression. In these experiments, the ratios of
gene expression from one color (red) signal to that another color (green)
signal are expressed as spot for each gene. Then, the analysis of these gene
expression ratios must take into account how the ratio is derived and an
appropriate corresponding (in fact, Gamma) distribution should be used
for analysis.>!® The influence and importance of measurement error are
usually not well addressed in elementary textbook. Recent methodological
research has further extended the measurement error models in generalized
linear models and survival models.?

2.1.4. Continuous proportional data

This is really a subtype of ratio data when the ratio is a percentage between
0 and 1. It includes data such as the percentage of decrease in renal functions
at different follow-up times from the baseline, and percentage of change
from pre-treatment to post-treatment in terms of certain physiological vari-
ables or some molecutar or genetic targets. Statistical methods to directly
model the means of the proportional responses have just emerged!?!3
the simplex distribution of Barndorff-Nielsen and Jorgensen.® The simplex
distribution takes into account the fact that such responses are percentages
restricted between 0 and 1 and may as well have large dispersion. It has
been discovered recently that there may well be large dispersion in this kind
of data.

using

2.1.5. Repeated measures

In medical studies, subjects are often followed overtime either in natural
history study of certain disease or therapeutic studies, or measurements
or observations are obtained within certain experimental units or clusters
(e.g. eyes or limbs of an individual). These observations are called repeated
measures data, or if they are obtained over different times from the same
individual, they are sometimes call longitudinal data. This kind of design is
often necessary in order to assess how patients do overtime. For example, we
may be interested how certain physiological variables (glomerular filtration
rate) or genetic variables (for instance, telomere length) change over time,
or whether certain events (e.g. ear infection) occur overtime.

The key issue here is that the within patient or with cluster correlation
needs to be accounted for one in the experimental design and data analysis.
For example, children who have ear infection in one of their ears may be
more likely to have infection in their other ears. Thus, 10 patients with each
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patient having 10 repeated measures do not the same power as 100 patients
alone.

Depending on the type of response variable of interest, we may have
repeated continuous data or categorical data or ordinal data. Different
statistical models need to be used to analyze differnent kind of repeated
measures data although the method is now unified with generalized linear
models (GLIM). For repeated ordinal data, you may have to use models
outside of GLIM, for example, the proportional odds model.'14

2.1.6. Censored and truncated data

When we are not able to measure a variable precisely and only know that
an observation is beyond some threshold, we call the observation censored.
The most common censored data in biomedical research is the survival data,
broadly defined, data of time to the occurrence of certain event, e.g. Epstein-
Barr infection, or the death of a patient. This is perhaps one of the most
common types of data in medical research, since we often want to know if
a new drug regiment or a surgical or a medical procedure can save more
lives than does a conventional treatment. Special techniques are needed
in the analysis of survival data for several reasons. First survival data is
generally not symmetrically distributed so not normally distributed, it is
more satisfactory to use an alternative distribution in the model. Secondly,
at the time of analysis, the survival endpoint (either it be death or remission
of cancer) of some patients have not been observed yet, and the survival
status may never be known since some patients may be lost to follow up.

2.2. Variability

Variability is one of the fundamentally important concepts that underlie
all statistics theory and methods. As the world is full of uncertainty, it is
fortunate to have statistics to study uncertainty scientifically and statisti-
cians are also fortunate for uncertainty. Often a biologically active agent
only has 5% chance to make to the clinic due to the variability experi-
ment and mostly in human. Variability makes statistics and statisticians
indispensable in medical research. So related another essential concept is
to the probability distribution that is used to describe and analyze data.
Often we assume that the observations are from certain distribution that
is known except for some unknown parameters. The most prominent dis-
tribution is the normal distribution, which is fundamentally important in
statistics because the central limit theorem suggests that most common
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statistics be asymptotically normally distributed. Methods that do not as-
sume parametric form is called nonparametric methods. The advantage of a
parametric model is its simplicity and efficiency. Sometimes an intermediate
(semi-parametric) approach is taken in that characteristics of main interest
are assumed of a parametric model. So far parametric and semi-parametric
methods are the most commonly used methods in medical research.

2.3. Basic techniques

The most common techniques for data description are mean and standard
deviation, which is often associated with parametric description of the data.
Normal distributions are completely specified by its mean and standard
deviation. The mean is a measure of the central location and standard
deviation is a measure of variability. Because of the importance of normal
distribution based theory in statistical inference, these two numbers have
special meaning. However, if the distribution of the variable under study
is not normal, then they do not necessarily give good inferential values.
Sometimes the variability may beyond what the assumed distribution can
describe (the so-called over-dispersion).

Another commonly used statistics to describe data is the five number
summary statistics, which are the minimum, maximum and 75%, 50% (the
median) and 25% percentiles. Together with the mean and standard de-
viation, the five-number summary statistics give a good summary about
the distribution of the data. For example, if the distribution is symmetric,
then the mean and median should be equal. If the mean is greater than the
median, the distribution is skewed to the right; and if the mean is less than
the median, the distribution is skewed to the left.

2.3.1. Ezample 1 (Phase I Clinical Trials and Pharmacokinetics
Studies of Topotecan in Solid Tumors)

Topotecan is a new molecular target based anti-cancer agent. It is a semi-
synthetic water-soluble derivative of camptothecin whose anti-tumor effect
is mediated by inhibiting topoisomerase activity by binding to the DNA
topoisomerase I complex. This drug has shown promising anti-tumor acti-
vity in preclinical and clinical studies of adult and pediatric solid tumors.?:!°
The goal of the study is to determine if variability in topotecan lactone
systemic exposure can be reduced by a dose adjustment strategy in a
phase I clinical trial using pharmacokinetics (PK) guided dose escalation.

Intravenous topotecan were given to 15 children with relapsed solid over
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30 minutes 5 days a week for 2 consecutive weeks. Doses were individualized
based on the patient’s topotecan systemic clearance to maintain a single
day plasma topotecan lactone area under the plasma concentration-time
curve (AUC) of 150+ 30 ng/ml*hr (Cohort #1 for the first 8 patients)
or 1004+20 ng/ml*hr (Cohort #2 for 9 patients) where two patients who
had been in Cohort 1 were moved to Cohort 2 due to excessive toxicities.
In fact, the AUC target was lowered to 100 & 20 ng/ml*hr in general for
toxicity concerns. Plasma samples were collected before at 0.25, 0.5, 1, 3,
and 6 hours after completion of the topotecan infusion, which give one PK
study using a two-compartment model. For each cycle of treatment at each
dosage, PK studies were planned to be done on day 1, 3, 6, 8, 10.

2.4. Graphic methods

Indeed sometimes a picture is worth thousand words. Graphic methods
are commonly used in statistics and medical research to depict the data
and illustrate the methods. For example, the five numbers are commonly
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Fig. 1. Comparison of cycle 1 AUC: Days 1 and 3.
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plotted as the box-and-whisker plot,! where the central line represents the
median, the box represents the 25% and 75% percentiles (or the lower to
higher quartiles), and the whiskers are the minimum and the maximum.
To see the distribution and variability of AUC, which measures patient’s
systemic exposure to the drug, Fig. 1 gives box-and-whisker plots for AUC
at days 1 and 3 for the 15 patients. As shown, the AUC is not symmetric
and after dose given on day 1, AUC is skewed to the right, but at day 3,
AUC becomes more symmetric, which partly represents the effect due to
drug dose targeting based on pharmacokinetics.

To describe the distribution and variability of the data, histogram and
some version of smoothing technique is often used. A spline smoothing esti-
mator, a nonparametric estimate of the density, provides a better descrip-
tion of the probability density of the distribution. With modern statistical
software, it is very easy to generate such estimate and overlay on the his-
togram. Figure 2 gives the histograms for the AUCs from the eight patients
in Cohort 1 in Example 1. In the fixed group, the 36 AUCs were calculated
alternatively using a fixed dose of 4 mg/m? divided by the patient’s topote-
can lactone clearance, and in the targeted group, the 8 PK studies from the
first dose of the first cycle and one PK study from the second dose of the

0.025 1 0.025

[ Fixed, N=36
I Targeted, N=27

0.020 | 0.020 T

0.015 0.015 1

0.010 0.010 -

0.005 1 0.005 1

0.000 - 0.000 ! -
80 120 160 200 80 120 160 200

Fig. 2. Fixed and targeted AUC 150.
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first cycle of one patient were excluded, so there were 27 PK studies from
the eight patients whose AUCs were adjusted to the target AUC range by
varying doses.

3. Describing Data via Adjusting for Factors with a Model

As alluded to early, effective description of the data depends on the design.
Sometimes summarizing the data may not be so straightforward because
of the complicated design under which the data are produced, e.g. depen-
dence of the observations and missing values. A straightforward mean and
standard deviation may be misleading. In Example 1, because patients have
multiple cycles of chemotherapy and PK studies were performed at multiple
doses and some patients missed some PKs, this gives rise to an unbalanced
repeated measures data structure. We used a mixed-effects model to es-
timate the PK parameters and compare those whose AUCs fall into the
targeted ranges and those whose AUCs were not. The summary statistics
(such as the means and standard deviations) will need to account for within
patient correlation. Table 1 gives both the estimates that accounted for such
correlation and those that did not for comparison purpose. As shown in this
table, the summary statistics using all the data based on the model may be
different from a straightforward calculation and the ones that accounted for
the within patient correlation should be considered for making inference.
More elaborate estimates based on models are often needed in order
to avoid bias. Several other examples can be found in Meyers et al.® and
Nelson et al.” where a mixed effects spline model was used to estimate the

Table 1. Mean and standard deviation estimates according to dose adjustment require-
ments derived from a mixed effect model.

Estimated mean (SD)

PK Parameter  Adjusted Unadjusted p-value

Ve 31.67 (2.51)  30.90 (2.10)  0.76
Kel 1.28 (0.12)  1.21 (0.11)  0.30
Kcp 0.90 (0.13)  0.83 (0.13)  0.59
Kpc 0.68 (0.06)  0.68 (0.04)  0.54
Alpha 2,51 (0.27)  2.36 (0.25)  0.51
T1/2_alpha 0.34 (0.04)  0.37(0.03)  0.44
Beta 0.34 (0.02)  0.33(0.02)  0.44
T1/2_beta 2.28 (0.19)  2.34 (0.19)  0.58
CL 33.88 (1.62)  32.14 (1.30)  0.20
)

Vdss 66.13 (3.78 64.55 (3.11) 0.55
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mean glomerular filtration rate for diabetic patients at different stages of
their lives and the associated standard errors.

4. Over-Dispersion Issues

The term over-dispersion refers to the phenomenon that the observed vari-
ability (the variance) is more than the nominal variability (variance) under
a presumed model. Statistically speaking, over-dispersion depicts that the
mean-variance relationship of the assumed distribution is not correct.
Although it is generally recognized that over-dispersion occurs in discrete
data models under the binary and Poisson distribution assumptions. It also
occurs in continuous proportional data shown recently in Song and Tan.'?
The existence of over-dispersion is noticed a long time ago in statistics.
Fisher noticed a lot of data in practice is over-dispersed in 1951. Several
natural questions arise such as what is the consequence of ignoring over-
dispersion in the analysis and what are the appropriate techniques to detect
and model the dispersion. In this section, we shall discuss thee questions in
several distributions including the more familiar binary and Poisson data
and the recent developments on proportional data.

4.1. Binomaial data

Binary outcome, e.g. success/failure of therapy, response to a cancer drug,
etc. is one of the most common outcomes in medical research. Generically,
let the success probability be p and the binary (0-1) outcome of each of
the n binary sequences (e.g. n cells, n mice, and perhaps n patients). Then
the binomial outcome is ¥ = Y7 | Y;. Over-dispersion arises when the
empirical variance is greater than the binary variance np(1 — p), which
is a function of the mean p. In this case, the distribution is completed
determined by the mean parameter p. Then the variance of the binomial is

var(Y;) —|—QZ cov(Y;,Y;) =np(l —p) + 22 cov(Y;,Y;).

n
=1 i<j i<j

K3

Therefore, when the binary sequences are not independent of each
other, namely, cov(Y;,Y;) is not zero, over-dispersion would occur. The
consequence would depend on how much the over-dispersion is. Generally,
over-dispersion can not be ignored.

Testing if over-dispersion presents can be obtained through generalized
linear models. With recent development in generalized linear mixed effects
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model and Bayesian hierarchical model, over-dispersion can be accounted
for directly in the modeling process.

4.2. Poisson data

Similar to binomial data, Poisson distribution is determined by its mean
parameter. Since Poisson model belongs to the generalized linear model,
similar test statistics and modeling methods can be used in testing and
modeling over-dispersion.

4.3. Continuous proportional data

The continuous proportional data have not been talked about much is the
continuous proportional data and the directional data. The continuous pro-
portional data arise when the response of interest is a percentage between 0
and 1, for instance, the percentage of decrease in renal functions at different
follow-up times from the baseline, or the percentage of decrease in blood
pressures from the baseline. The usual practice has been just to treat them
as normal distribution. However, as shown in Song and Tan'? the variabi-
lity in the response percentage is far beyond what the normal distribution
can describe. In fact, although when the dispersion parameter is small, the
dispersion models are approximately normal,® real world data are often
with large dispersion as studied by Fisher in 1953. Here the normal model
is usually not appropriate since if two variables are normally distributed,
an assumption which is often considered plausible, the ratio of the two is
generally not.

4.3.1. Example 2 (A prospective ophthalmalogy study on the use of
intraocular gas in retinal repair surgeries®)

The outcome variable of the study was the percentage of gas left in the
eye. The gas was injected into the eye before surgery for a total of
31 patients. The patients were then followed three to eight (average of
5) times over a three-month period. The volume of the gas in the eye at the
follow-up times was recorded as a percentage of the initial gas volume in
that eye. An important issue was to estimate the kinetics of the disappear-
ance of the gas (e.g. decay rate of the gas). Clearly the response variable
here is confined between 0 and 1. Although, for instance, a logit transfor-
mation results in a transformed response in, linear regression models with
nonlinear transformed responses are often difficult to interpret. Particularly
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the serial correlation structure of the nonlinear transformed responses can
not be easily converted to that of the original responses. Our goal was to
be able to model the dependence of mean gas decay on certain covariates
directly. A common practice has been to assume that the response variable
is normally distributed and ignore the fact that the responses are percent-
ages confined between 0 and 1. However, as shown later, the variability in
the response percentage is far beyond what the normal distribution can
describe. In fact, although when the dispersion parameter is small, the
dispersion models are approximately normal,® real world data are often
with large dispersion.

A moment estimator of the dispersion parameter ¢? may be obtained
by using he fact that the expected value of d(Y'; 1) = 02 Therefore,

6 = ZZdywu
Z =1~ P53
which is a consistent estimator of o as m tends to infinity provided that
fii;’s are consistent.

In Example 2, the estimate of dispersion parameter 02 = 14.2. The
p-value based on a x2? distribution with 2 degree of freedom is 0.0008,
suggesting that the dispersion parameter is significantly greater than 0,
that is, significantly greater than the dispersion of a normal distribution.
Thus, the gas volume is not normally distributed at all. In fact, graphically,
the simplex density function with this large dispersion parameter indicates
the density has a dominant mass between 0.8 and 1, which is consistent with
the feature of the data, that is, over 40% of observations are in this range.
Therefore, indeed, the dispersion is needed to analyze this kind of data.
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Appendix

The density of a simplex distribution,® with mean (location parameter)
p € (0,1) and dispersion parameter o2 > 0,is given by

pys p, 0°) = [2m0*{y(1 — y)}*]"/? exp{—d(y; n/(20®)}, y € (0,1),
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where
(y — p)?
1—y)p2(1— p)?
The advantage of using this distribution is that the simplex distribution is
a dispersion model,® where the response has density function of the form

a(y; 0%) exp{—d(y; )/ (20%)}, y€(0,1).

The density for this dispersion model seems analytically similar to that of a
normal distribution (see Jorgensen,® for details) and it also includes a large
class of distributions confined in (0, 1), ranging from highly skewed to very
flat distributions (see, e.g. Fig. 1.7 of Jorgensen®).

The dispersion model is more general than the familiar generalized linear
model based on exponential family of distributions.

d(y; p) = o
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1. Introduction to Time Series Analysis

When we try to observe dynamic variables x1, s, 23, ..., Z;, ... in a medical
research, these variables can be regarded as a stochastic process, since there
are a considerable number of adventitious factors that may have effects
on the data themselves with uncertainty. For example, the vital readings
obtained from a monitor and from prevalence or mortality rates of some
diseases in a particular region across time. The series of these observed
values is called a time series. In Fig. 1, a time series of the number of outpa-
tient visits in the Second Affiliated Hospital of Shanxi Medical University
from January 1980 to December 1999 is shown. Generally speaking, the
observed results of a series may not be expressed by a deterministic func-
tion; they can be treated as a realization of a stochastic process due to the
influence of random factors. Let {z;} denote the stochastic process with
Z1,%2, X3, ..., %4, .... Here t does not necessarily represent time; it may be
the index of a space, temperature or vector.

Any observed result at a particular time is determined by many influ-
ential factors. Because of the interaction of these factors, the analysis of
time series becomes quite complicated. The frequently encountered factors
are the mode of trend, seasonality, periodicity or irregularity. In order to
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Fig. 1. The number of outpatient visits in the Second Affiliated Hospital of Shanxi
Medical University in 1980-1999.

effectively apply the time series models, all these factors above must be
taken into considerations.

Statistical predictions are usually based on previous and present in-
formation. The prediction derived from statistical models can guide our
future decisions, avoid unnecessary mistakes and minimize the loss. Many
phenomena, not only in nature, but also in life sciences are of statistical
relationship. It is feasible in theory to treat those observed dynamic results
as a time series with special properties.’

Statistical predictions can be divided into qualitative and quantitative
areas. The necessary assumption is that the dynamics in trend, speed, etc.,
will be of relatively persistent in a long period of time. As they are changing
almost all the time to some extent, the assumption becomes really fragile.
The accumulation of changes in quantity may lead to a leap of quality; as
a result, the relationship before and after the leap may be quite different.
The prediction in quality is possible anyway. It is often true that more
abundant collection of data can provide more reliable predictions. Thus, it
is necessary to collect data as much and precise as possible.

If there are causal relationships among the variables, to establishment of
these relationships using statistical models will make the prediction possi-
ble. However, neither finding the causal relationship nor collecting sufficient
data to construct the model is simple.
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Hannan? gave a detailed discussion on time series theory and the spec-
tral analytical methodology. There are many strategies to calculate p — the
order of autocorrelation and ¢ — the order of moving average and relatively
satisfied results may be found only when ¢ = 0. Box and Jenkins summa-
rized and presented some experiential principles from their experience to
determine p and ¢ in 1970.2 Some more strategies have been reported after
that, but they are generally based on exploratory trials.

In a series of reports given by S. M. Pandit and Wu, all stationary
processes can be expressed as ARMA (n,n—1), a simple mathematical form
that we will explain in details later. Even if a stationary process is not in
this simple format, it can still be approximated by an ARMA(n,n—1) with
acceptable accuracy.? Furthermore, many practically observed series can be
represented by ARMA(2, 1). The fitness of ARMA(n,n — 1) to time series
can be performed easily and effectively, even when the series comes from
a ARIMA(p, d,q) or a ARMA(n,m) (here, m # n), two more complicated
versions that will be discussed later. This shows it is unnecessary to worry
that a time series may have a very complicated form in modeling and makes
us confident that ARMA models can satisfactorily fit with common time
series.

The linear trend is sometimes caused by unduly small intervals of
sampling and this is called pseudo-trend. The solution is to use a smaller
interval (when the observation cannot be done in a longer period) or
to extend observation for longer period (when the intervals cannot be
shortened). If neither the intervals nor the period can be changed, we need
be aware of those tendencies, especially when the special explanation is
difficult to be drawn.

The lag-free difference and seasonal difference are both helpful to change
a nonstationary series to become a stationary one. Modeling is based on
the attributes of autocorrelation function and periodograms or even the
attributes of the original data itself. When data show a trend or season-
ality, the autocorrelation will not attenuate rapidly and the corresponding
periodograms tend to be distorted. In this situation, the lag-free and sea-
sonal difference may make the identification of ARMA model less difficult.
One useful strategy is that when there is any modulus of roots equal to 1 in
the equation of model, differential operation is introduced into the equation
in order to make full use of the provided information in time series.

One of the essential characteristics of time series is the correlation be-
tween observations, which is a basis for further analysis.2 The procedure
of analysis is generally divided into the followings: (1) model selection and
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parameter estimation; (2) adaptability of the model; (3) prediction. The
commonly used models are ARIMA models, exponential average, linear or
multiple regression, growth curve, Markov chain and gray model.

Our past research experience focuses less in frequency domain but more
in time domain. The effective prediction is also needed when missing obser-
vations exist. The observations in practice can be regarded as a realization
of a stochastic process. As it is a sample from the whole process, the pe-
riodicity needs to be examined via a hypothesis test. Nonlinear analysis of
time series has been popular recently in time series and nonlinear theory is
needed to identify the model.

1.1. Models for time series analysis

Time series analysis has been applied in economy, meteorology, geology,
hydrology, military and other different fields of science successfully. Medical
statisticians are also trying to utilize it in medical research.

The much-concerned research is not only on the essential conditions for
applications of particular forms of models, but also on ideal fitness and
prediction of those models. There are two types of seasonality — definite
and indefinite. The definite seasonality means that the fitted model in-
cludes a term, which is the summation of periodic function and stationary
noise. The indefinite seasonality means that the correlation between obser-
vations is significant with periodic intervals. For the definite seasonality,
the difference will make the fitting and predicting difficult. For the indefi-
nite seasonality, the difference is a necessary procedure for stationary. The
research given by Bell and Hillmer® shows that the business per month
may change because of the difference in numbers of Sundays in different
months. Easter in western countries and Spring Festival in China may be
located in different month according to the Gregorian calendar, and this
also leads to the variation of business in that month. The effectiveness of
the model may be improved when the above-mentioned situation is con-
sidered for monthly—based observations. The emendatory form of ARIMA
model is Z; = ZZ 1 BT +aH(T,t) + 3B ()5()3) ;. The first and the second
terms in the right hand of the equation are correspondent with Sundays
and Easters.

Multivariate time series analysis is another point of much interest.®
It can be summarized into two aspects”: (1) to determine the mode of
correlation, such as circumstance, causation, or feedback; (2) to improve
precision of predictions. When the predicted variable contains some
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information from other external variables, the prediction will become more
effective if these variables are included in the model. Tiao and Box? have
pointed out the significance of spectral analysis: (1) to detect the correla-
tion (lags may exist) in time series; (2) to be helpful to the explanation of
the model. Chan and Wallis® put forward reformed vector autoregression
model to prove the interactions between variables and to simplify the model
(the explanation of interactions is coincident with professional knowledge
although the variance of residuals increases). Ahn? discussed the low order
components of scalar quantity after the first difference so as to improve the
estimation of parameters in the model.

The parameters in time series models may be treated as time-varying
sometimes and this has been verified by some practical experience. Stock!?
studied the elements A in V; = 7v; = (A/T)v, which is the change of pa-
rameter. He has deduced the asymptotic unbiased estimator for the median
of A. Conditional heterogeneity appears as the change of variation situation
along with time. Engle summarized this seminar paper in 1982'! and pre-
sented ARCH model. The research on this topic followed with much interest
from then on, especially in economic areas.'?!3 Many researchers have at-
tempted to use semi-parametric or nonlinear nonparametric methods to fit
the time series and the goodness of fit has been discussed a lot.!4 16

It is known that ARIMA models have short-term effects. For long-term
effects, autoregressive fractionally integrated moving average (ARFIMA)
models are needed.!”'® The models can be expressed as p(B)(1 — B)°Z; =
0(B)et, in which we have (1 — B)® = 372 C;(8) B/, where § € (=1,0.5).
As a matter of fact, with the term § the observations in the infinite past
may also have effects on the present value. ARFIMA is an example of
long-memory time series model.

ARIMA model can be regarded as a transformation from original data
into white noise. The residuals after modeling are the estimation of error
and they are asymptotic to the error when the original series are long
enough. The statistic @ =n Y ;. 77 is constructed and it is asymptotically
of a x? with degree of freedom v = m — p — ¢ when the series belongs to
ARMA (p, q).*° McLeod and Li?° found that the variance of @ tends to be
smaller and the precision of evaluation to the goodness of fit is improved
coinstantaneously when the sample size becomes larger. Ljung and Box?!
presented that @ still can be used as the measurement of goodness of fit even
though the errors €; may not be normal distribution. The statistics S; =
T=INV*=1x* and Sy = TN\ (V*+G1GY) ™1 A\* have been constructed by
Poskitt and Tremayne?? in doing diagnostic test to the model. The studies
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on noise have involved the nonlinearity and chaos theory. This makes the

dimensions of the dynamic system to be fractions.??

1.1.1. The memory in time series

In statistical point of view, the dynamic characteristic appears as the corre-
lation between the present events and the historical events. The correlation
function is used to portray the characteristic in time series.

In the view of systems theory, memory means dynamic characteristic,
with which the subsequent outputs are influenced by the present input. The
system has dynamic characteristic of first order when any particular obser-
vation only effects the next observation following it. Similarly, the system
has dynamic characteristic of n order when any particular observation can
effect the next n observations after it. For example, a patient takes analgesic
drug at the time of T'; it can be regarded as an input to the system at 7.

When the drug reacts only at the next observing time, as it may be
illustrated as Fig. 2, we say the metabolism system is of the first order.
It shows that after taking drug at 7" the situation of the observation next
to it becomes very well, but becomes worse after that point. When the
drug is effective during the next four observing points although becomes
less effective gradually in this period (Fig. 3), this is called the fourth order
system.

When the input does not only influence the present output (by the
intensity of ) but also the next output (by the intensity of (1), the model

T T+1 T+2

Fig. 2. The effectiveness of an analgesic drug (memory of 1st order).

T T+1 7+2 7+3 7+4 T+5

Fig. 3. The effectiveness of an analgesic drug (memory of 4th order).
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can be denoted as Xy = oW + @1 W;_1. The generalized form is
Xt = oWy + o1 Wit +@2Wi_g + -+,

Where ¢;(j =0,1,2---) are the influential intensity of W;_; to X; and ¢
is called memory function. As a matter of fact, the memorial characteristic
is the basis for us to establish models for the system and predict the future
situation.

1.1.2. The collection of data

Observing and recording the output from the system with given intervals
is called sampling. The sampling intervals are often denoted by A. The
sampled observation after kth intervals is denoted as X. It is the discretized
results X (to + kA) from X (¢). Sometimes a time series may be the values
of accumulated results. For example, the numbers of births in a month in
a region or the daily urine output from a patient can form a time series.

As time series can be viewed as the output from a dynamic system, the
systems theory can be used to analyze the dynamic structure and evolu-
tive relationship. However, the discretized results may lose the information
between ¢y + (i — 1)A and tg + i¢A. The shorter the interval A is, the less
information is lost. At the same time, we get more observations and may
waste our resource without much additional useful information. To choose
proper interval lengths to sample the underlying dynamic system is also a
critical procedure for the researchers.

1.1.3. The pre-treatment of time series

Just like any other statistical tools, time series analysis deserves careful
treatment. It is not recommended to model the time series blindly without
careful check and pre-treatment.

Take the time series of the natural growth rates of Chinese population
for a simple example. The growth rates are the ratios of the changed num-
bers and the average population size in a given period. In the consideration
of population management, the length of the period is usually the calendar
year from January 1 to December 31.

The definition of the variable should keep consistent. Although Hong
Kong has returned back to China in 1997, considering of the consistency,
“Chinese population” still means the population in the Mainland China
after that year. Another consideration is to the calculation method for the
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annual average population. For example, we can use half of the sum of the
population at the beginning and the population at the end of the year, i.e.
the mid year population

__population at the beginning + population at the end
= 5 .

1.1.4. Missing values and the interpolation

During sampling of observations, missing values may occur due to malfunc-
tion of instruments, mal-operation to the instrument or the unexpected
observing conditions. They may also occur when trying to subdivide the
sampling intervals.

When such missing values exist, the time series is corrupt. The fragmen-
tary series is hard to be analyzed with commonly used time series models.
However, it may not be possible to repeat the history values. An easy
remedy is to interpolate the observations according to the tendency of the
series. On the other hand, the models that are effective to the series of
unequal intervals are beneficial in such situation.

1.1.5. Stationary process

The stationary process is a process? that has steady statistic characteristics.
When the following equation holds to any continuous t¢1, to, ..., t, and any
given ¢,

Fo(x1,x2,... &n; ti,to, ... ty) = Fp(T1, 22, .., Tp; t1+6,...,tn + )

where F,(z1,22,...,2Zn;t1,t2,...,1,) is the distribution function of z1,
Ta,...,T, at time ty,ts,...,t, for any n. Then {X;} is called a strict
stationary process.

As the distribution function describes the statistical characteristics per-
fectly, the above equation means that all statistical characteristics will not
change along with time. It is so called strongly stationary process. It seems
that these characteristics may be used to establish a principle to judge
whether a process is stationary. Unfortunately, this will be difficult for
practical use. Stationarity of the process indicates the environment and
main influential factors retain relatively stable along the period of time.
For example, when manufacturing drugs, the output can be regarded as
a stationary process as the raw material, the functions of product line,
proficiency of workers are the same.
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A better workable stationarity of the time series is the weak stationary
defined as followings?4:

E[X] =a Vie T
EXiy: —al[Xy —al=R(r) Vitt+7eT.

Here, R(7) is the covariance function of X;, which is independent of ¢.

1.1.6. Test for stationarity®®

As we have mentioned in Sec. 1.1.5, we now discuss the stationarity in two
forms — weak and strong stationarity. In practice, we may consider not
only the statistics but also dynamic system characteristics. One useful way
is to check the absolute value of the latent roots A s. If there is a || > 1,
that indicates that stationarity is not tenable.?

A trend may be random or deterministic. The deterministic trend has
a consistent influence and makes the series non-stationary.?2 However, the
system can still be treated as stationary when the trend drifts randomly.

(1) Plot We can examine the periodic trend by the plot of X; changing
along with t to check the stationarity. The series can be treated as stationary
if there is no evidence of periodicity. This strategy is easy to understand
and perform. However, the performer needs plenty of experience and the
results may be different from each other.

(2) Autocorrelation and partial autocorrelation The autocorrelation
and partial autocorrelation of a standardized time series (Exz(t) = 0) are
either tailed or cut off. If the two functions belong to neither of the above
situations, the series may be nonstationary. For example, autocorrelation
decreasing gradually (periodically or not) indicates that a particular trend
or periodicity may exist.

(3) Eigenvalue Fitting the series with a model and then calculate the
eigenvalues of the eigenfunction corresponded with the model. If all the
eigenvalues satisfy |\ < 1, the series is stationary. Otherwise, it is
nonstationary.

(4) Parameters Autocorrelations can be used to define the stationarity.
We can check the model of time series and calculate the autocorrelations.
The following array can be obtained, where ¢y = —1. The parameters in
the first row are autocorrelations, in the second row are autocorrelations



342 J. Zhang, Y. Zheng € D. Lai

row parameters
1 %0 P1 P2 e Pn
2 Pn Pn—1 Pn—2 e %200]
3 ao ay az e an—1
4 an—1 an—2 an—3 ce ao
5 bo by b e brn—2
6 bn72 bn73 bn74 R bo
2n — 3 lo I l2

ordered inversely, in the third row are

Yo Pn—i
Pn Pi

In the determinant a;, the first column is the elements located in the first
two rows and the first column of the table, the second column is the elements

located in the first two rows and the ith column. In the fourth row are the
same elements as in the third row but ordered inverse-wise. In the fifth row

a; = = QYoPYi — PnPn—i, i:O,l,?,...,n—l.

are,

ag Ap—1—4 .
=apQ; — Qp—10ap—1—;, +=0,1,2,...,n—2.
An—1 a;

The elements in the sixth row are same as those in the fifth row but ordered
inverse-wise. The other rows are calculated in the similar way. Only three
elements are left in the (2n — 3)th row. The series is stationary when the
following three conditions are satisfied.
p1+p2+ps+--ton <1
—p1+ 2 — @3+ 4 (1) "0, <1

lonl <lpol,  lan-1| < laol
[bri—2] < [bo|

‘lg| < |l0‘

(5) Inverse order test?® Inverse order test is a method to detect special
tends of mean or variance. The procedure is as follows.

e Cut the series into M parts and calculate their means or variances and
the results are analyzed.
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e Count the numbers of inversed orders. An inversed order is defined as
that, there is a value in the series greater than value that situated for-
merly, y; > y;(j > 7). The number of inversed orders of y; is denoted as
A;. The total number of inverse orders is A = Zﬁ;l A;.

e Construct a statistic for hypothesis test. The expectation and variance
of the test statistics under the null hypothesis of no trend are as the
followings:

B(4) = TM(M ~ 1) 1)

DQQZJW@M’QMW—5) @)

Here M is the length of the series y;. We then establish a statistic Z,
[A+3 - B(A)]

o ?

which distributes asymptotically as N(0,1). The original series z; is sta-
tionary when |Z| < 1.96 under the significant level a = 0.05. Otherwise, z;
is nonstationary.

The series x; contains an increasing trend when A is large and contains
a decreasing trend when A is small.

The hypothesis test mentioned here is effective to those monotonic
trends. As to those complicated trends, other strategies are needed.

(6) Hypothesis test based on number of runs?® Assume that the mean
of {X;} is X and we transform the original series into a series of signs. Those
values equal or greater than X are changed to be “+” and the rest to be
“—”_ A piece of the new series composed of continuous and same signs is
called a run. For the series X,

5 6 6 9 5 6 4 8 3 8
the mean is X = 6 and the new series is,
-+ 4+ 4+ -+ -+ - ¥

there are 8 runs in it.

The basic logic of run test is that the observations take values randomly
around the mean if the time series is stationary. If there are too few numbers
of run, the observations continuously get values higher or lower than the
mean, which indicates the existence of some monotonic trends or periodic
fluctuations. If there are numerous numbers of run, some nonrandom factors
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may also exist. For example, if there are n — 1 runs in a time series with
sample size n, it indicates that the observations are correlated negatively
with the first order.

Let N1 be the number of “+”s and Ny be the number of “—”s in the
transformed series and the total number of runs be r. To a random series,

we have
2N1 Ny
E(r) = 1
() === +1,
2N1N3(2N1 Ny — N
D(T) _ 1 2( 14V2 )
N2(N -1)
When both N; and Ny are bigger than 15, the statistic Z = —T_g((r)) is

distributed asymptotically as N(0,1).

Under the significance level o, if rp, < r < ry(rp = E(r) — 1.964/D(r)
and ry = E(r) + 1.964/D(r)) or when |Z] < 1.96 holds, the series is sta-
tionary. Otherwise, the series is nonstationary.

1.2. Inverse autocorrelation and its application in the
identification of ARMA models

Two important considerations to fit ARMA models are the goodness of fit
and abstention of parameters. Let’s assume that {x;} is a stationary time
series in which mean and auto-covariance both satisfy the weak stationary
conditions. The following is well known to us: If autocorrelation r(k) or
auto-covariance (k) is quite close to zero (i.e. cut off) after k¥ = ¢ and
partial autocorrelation p(k) decreased gradually (i.e. tailed down), {z;} is
often an MA(q) series. On the other hand, if partial autocorrelation p(k)
cut off at k = p and autocorrelation (k) tailed down, {z;} is often a AR(p)
series. If both autocorrelation r(k) and partial autocorrelation p(k) tails
down, then {z;} is often an ARMA(p, q) series. When we try to establish
a proper model for time series, we wish a parsimonious model without too
much lack of fitness and nor over fitness may happen. Inverse autocorre-
lation is helpful for us to find a relatively optimal model as it may show
much structural information of the series.

1.2.1. Definition

We denote the spectral density of {z;} as S(f), auto-covariance of
as {z:}y(k) autocorrelation of {z;} as r(k) and k the number of lag
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(k=0,1,...). We have,
1
27 ik
A = [ S,
0

r(k) = ~v(k)/7(0).

Let Si(f) =1/S(f) and 1/S(f) is integrable, then inverse autocorrelation
is defined as

1
(k) = /0 ¢TIk S (F)df (4)
ri(k) = 7i(k)/7i(0) (5)

Here, ri(k) can be comprehended as the autocorrelation of a time series
corresponded to a spectral density Si(f).

1.2.2. Some characteristics of ri(k)

(1) When {z;} fits an AR(p) model,
Tyt a1r1 a2+t aplip + iy = &y
we have
ri(k) #0 k<p
ri(fk) =0 k>p

If {x:} fits an MA(q) model, the ri(k) tends to tail down gradually.

(2) The inverse autocorrelation ri(k) can be used together with r(k) to
estimate the parameters in an ARMA(p, ¢) model. Assume that {z;} is a
series satisfying ARMA(p, ¢) model @y +3"%_; ajzy—j+p = ee+) 1, Bici—;
and we have the following difference equations:

r(k)+air(k—1)+ - +apr(k—p) =0 k>gq
ri(k) + Giri(k — 1) +-- -+ Bgri(k—q) =0 k>p

When r(k)’s and ri(k)’s are substituted with #(k)’s and 7i(k)’s respectively.
The estimations of a;’s and 3;’s are obtained by solving the above simul-
taneous linear equations. The least squares solution may be used when £ is
large enough.

(3) If any parameters in an ARMA model equal to zero and the number
of necessary estimators are fewer than (p + ¢ + 2), the model changes into
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an ARMA with sparse coefficients.
Tt + Q1T4—q1 + Qa%t—i2 + -+ QipTe—ip + [

=&+ Bj1€i—j1 + Bjoci—jo + -+ Big€i—jq, Whereip>p, jqg>q.

These kinds of models commonly happen in seasonal time series. It is diffi-
cult to judge the formation of the suitable model with only the information
from autocorrelation and partial autocorrelation. Fortunately, if the ay’s
are zero, the corresponding 7i(k)’s are approximately zero. This will be
helpful for us to find a model with abstentious parameters and simplify the
calculation of parameter estimation.

1.2.3. Estimation of 7i(k)

Assume that {z;} belongs to a model with pth order autocorrelation. Any
invertible ARMA series can be changed into an AR series with a higher
order (possibly infinite).?® 6* and &;(j = 1,2,...,p) are estimates to o
and «; according to the information in the original series. ri(k)’s can be
estimated by,
p—k ~ A ~
ik, p) = 7Zj:2, a]?é;+k ,  where %=1,
j:Oaj :1,2,...,]).

The &;’s can be solved by Yule-Walker’s Eq. (7) or Durbin’s recurrence
formulas.?

In practice, the order p is unknown at the beginning. When {z;} is a
pure AR process, p can be estimated by partial autocorrelation; When {z;}
is not a pure AR process, then inspect the 7i(k, p)’s with different p. At the
place where p stops to fluctuate, the corresponding p is a suitable order.
7i(k) can also be estimated by periodogram.?

1.2.4. The use of 7i(k)

The procedure to find suitable order of ARMA(p, ¢) is usually based on try
and error.? In practice, p is the value where the residual variance begins
to be stable. If p is too small, the estimation of #i(k;p) is more likely to
be biased. If p is too big, the standard error is large. A good strategy is
to calculate a series of 7i(k; p) with different p. After the proper p, 7i(k; p)
tends stable.

With larger p and ¢, the ARMA(p, ¢) model may fit the data better.
However, larger order may lead to the increase of the estimation errors of
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the parameters. Take AR(p) model for example. When api1 = apio =
-+ = a = 0, the real model AR(p) becomes a specific form of AR(p) when
p > p. The precision of parameter estimation declines because of the extra
estimation for api1, apio,. .., ap.

With the information provided by #i(k), the fitted model has a more
solid foundation. Especially to sparse coefficient models and seasonal au-
tocorrelation models, the effectiveness of the estimation will be improved
considerably. Some other principles such as FPE, AIC and BIC are also
commonly applied in model selection.?” No matter which principle is used,
the diagnostic tests on the residuals are necessary. If the residuals can pass
the tests of randomness, the model is an acceptable one. Otherwise, more
investigations are needed to find an effective model.

2. Predictions in Time Series

A condition for time series prediction is that the series can be summa-
rized with a set of parameters and they are consistent after the observing
time. The research by Box and Tiao?® showed that the predictive errors
will increase when the model fails to describe the series. Assume that the
prediction residuals are ai, as, ..., am, the variance of noise is 62 and then
the statistic Q =62 Sy a? belongs to a F distribution with degree of
freedom m and (n — p), where p is the number of parameters in the model.
When Q is larger than the critical value, we conclude that the model is lack
of fit.

When the original assumptions of the time series are changed and the
model fails to describe the time series, under the new conditions, we say
a structural break happens in the dynamic system. It is reported that?®
we can decrease or offset the changes in the conditions with innovation of
intercept or difference of series. Structural breaks are ubiquitous caused by
known or unknown reasons. Granger and his colleagues have provided some
suggestions3® for model construction: If the structural breaks is expected,
the different models to the separate periods should be assigned correspond-
ingly. If it is unexpected, the preparation for dealing with the breaks should
also be considered before hand.

How to perform prediction after the breaks? Clements and Hendry3!
have done some research on structural breaks. They conclude that an ideal
goodness of fit may not necessarily lead to a satisfactory predictions; a
definite change (e.g. the unification of the Western and Eastern Germany)
may not produce an item in the commonly used forecasting model. A
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precipitate innovation to the intercept may improve the predictive precision.
When structural breaks happen, the first thing for the researcher to do is
to find it as soon as possible. Then it is necessary to update the model
effectively. They both deny that nonlinear models have obvious signifi-
cance to economic data although the nonlinear theory has been developed
extensively.

The subjective prediction based on experience and the objective pre-
diction based on statistical modeling are both important in practice.??
With the development of computing power, objective prediction has moved
forward greatly. However, the performance of the prediction is based on as-
sumptions and the application is also constrained. For the objective method,
the assumptions are relatively weak and easy to apply. Many special topics
are available in the literature like how to detect and analyze the trend in
time series, the skills for dealing with seasonality, the flexibility in time
series, the way to treat noises in time series data, the effectiveness corre-
sponded with the length of historical values, how to choose a proper lead
time in prediction, the feedback effects in time series and how to present
results with an essential form.

Bewley3? has discussed how to combine these two aspects with the
examples of diffusion models and vector autoregressive models. Ten items
of principle is summarized for performing statistical predictions.

Seasonality is an important ingredient in time series analysis. Seasonal
difference and X-11 method for ARIMA series are used to detect particular
periodicity or other deterministic elements.?” The following model is needed
to describe the situation where some periodic elements exist.

s s s s
Tt = Z 'Ust,l + Z ¢s,l + Z ¢s,le,t~rt—1 +---+ Z djs,st,txt—p + Mt

s=1 s=1 s=1 s=1
where D, (s =1,2,...,5) are dummy variables. When ¢ is in the sth sea-
son, Dy = 1. Otherwise, D,; = 0. This model above is called univariate
periodic time series model, which makes the prediction more effective.?*
However, any inadequate seasonal adjustments will distort the character-
istics of the series in trend, periodicity and non-linearity.?® As to the unit
root test, it tends to accept the null hypothesis and lead to the abuse of

difference.36-37

Wallis and Whitley3® reviewed the predictive errors occurred in eco-
nomic prediction in England from 1984 to 1988. They found that the theo-
retical characteristics and practical efficiency are quite different. Innovation

is needed to supply necessary information to the model for prediction. If the
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conditions of the original series have changed considerably, the prediction
errors will certainly increase. It is also reported that3” trend may appear
as the autocorrelation with lower orders, introducing into the model with
an autocorrelation item instead of a trend item will lead to the increase of
residuals. Welch suggested*” that the correlation between closely-located
values not be taken seriously into account but the shift of mean be paid
more attention. In one word, there is no such model that can substitute the
others. The predictive efficiency is correlated with special conditions and
the ideal model is only locally optimal.*!

The time series analysis has used achievements in other disciplines.
The prediction with ARMA model has borrowed the principle from sys-
tem theory to process a signal with a filter, which has a particular
form of transfer function.?? The state transfer function and the mea-

surement function are z, = Fx;_1 + Ge;_1 and y = H'z; + &, where
G=(p1—01,02—02,...,0,—0,), H=(1,0,...,0)". We have,
[ 1 1 0 -~ 0 0] [0, 1 0 -~ 0 0]
@2 0 1 0 0 0 0 1
F = B FO - )
¢r—2 0 O -~ 1 O 0o 0 0O --- 1 0
¢r—1 0 0 -+ 0 1 6,1 O 1
L ¢ o o0 -~ 0 0] | 0, 0 O . 0 0]

and we can get the state transfer function as,

—1
Py =Fy {Pt,t_l — P HY H’Pt,t_l} Fy.

t

Swanson*? tried to fit economic time series with several other models.
His results showed that flexible specification models and less flexible fixed
specification linear models both tend to capture the shifting trend easily,
especially when the lead time is longer than 1. When the strategy for model
selection has changed, the model may become less optimal and special cost
functions are needed for the evaluation of the models.

The prediction precision is one important consideration for model selec-
tion. The selection principles can be separated into the aggregate selection
rule and the individual selection rule. The former one is to select a uni-
form model for all variables and the later one is to select different models
for all variables respectively. Shah** managed to apply individual selection
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rule combined with discriminate analysis. The result is that the individual
selection based on the scores of discriminate analysis is better than any
aggregate selections.

The disputes on the efficiency of established models are concentrated on
whether the mathematical models can summarize the causal or contextual
relations hidden in the time series. Lim and O’Connor®® have investigated
this issue. Their conclusion is that the effectiveness of prediction is not
improved if the information is not reliable. Otherwise, it will be better
than so called optimal model by the proceeding selection. However, some
researchers?S still engage themselves to obtain an optimal model that may
summarize the causal and contextual relation. The innovation to predictive
values is neglected.

2.1. ARIMA model and its application to the prediction of
medical supplies in a hospital

The sufficient supply of medical consumed material in polyclinics should be
provided to serve for the diagnostic and treatment activity. The prediction
is needed in order to avoid conflict between supply and demand.?%

2.1.1. The method for prediction

The medical material demanded in a hospital is influenced by many factors,
which are difficult to be modeled with. However, the observed time series
of the consumed material can be treated as one realization of stochastic
process.?”

The theoretical and practical researches on quantitative prediction have
been attracted more and more attention. The strategies such as moving
average, trend fitting, exponential move, seasonal trend model, Markov

chain, gray models and ARIMA models are all widely used.

2.1.2. ARIMA model
The ARMA(p, q) model was put forward synthetically by Box and Jenk-

ins in 19702 and is also called the Box-Jenkins model. The model can be
expressed as the following,

Yt = P1Yt—1 + PaYi—2 + -+ OpYi—p + 0 — Oras 1
— egat_z — s — ant_q (6)
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where @1, p2,...,¢p and 61,02, . .., 0, are the coefficients of autoregression
and moving average. It can be simplified as ¢(B)y: = 6(B)a;, where

@(B) =1—¢1B—@sB® — - — 0, B
0(B)=1—6,B—0,B*>—---—0,B1
and
By: = yi—1 .

B is called the back shift operator. If the dth difference transform can
make a nonstationary time series change into ARMA(p, q),% the model is
an ARIMA (p, d, ¢) model.

2.1.3. Identification of the model

Autocorrelation, inverse autocorrelation and partial autocorrelation are
three main resources for us to select models for a stationary time series.2?
We have mentioned some principles about this at the beginning part in
Sec. 1.2. For those nonstationary series, using ARIMA (p, d, q) models may
be applicable. ARIMA(p, d, ¢)(P, D, @)s models are useful to the series that
contains seasonality.?” The effectiveness of fitting is evaluated by analysis
of residuals. When the residuals are accepted as white noise, the model fits
the time series well.

2.1.4. Estimation of parameters and diagnostic test

The sample autocorrelation 7 is the correlation of the time series with the
same series with a lag of k defined as

_ i @ - ) (e — 7)

Doy (ze —7)?

Tk

By the relations of sample autocorrelations with the coeflicients ¢ and
Ok, the estimation of the coefficients in the model can be realized using
Yule-Walker equations.?S

To the pth ordered autoregression process AR(p)x; = ¢p121—1 + Pai_2
+ -+ + ¢pxt_p + a+, we have the following simultaneous equations which
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are called Yule-Walker equations.

p1 = ¢1+ Pap1+ -+ Pppp—1,

p2=¢1p1+ o2+ + Oppp—1, o
7

Pp = P1Pp—1+ P2pp—2+ -+ Py,

where pr = cov(zy, zi—k). The estimated results of autoregression coeffi-
cients from (7) are called Yule-Walker estimators. Let

b1 p1 1 p1 p2 o Pp—t
P2 p2 p1 1 pr ot Pp—2

o= . y Pp = . ) PP = . . . . : (8)
bp Pp Pp—1  Pp—2  Pp-3 - 1

Using the sample autocorrelations we have p, = qui;. The Egs. (7) can be
denoted as ¢ = P, ' p), where

le P1
A ¢32 . A P2
¢ = s B=I], p=
Qgp Pp
When p = 2, we can estimate ¢; and ¢ with the following formulas:
y 7"1(1 — 7“2)
¢1 - 1— ’F% )
2
T ro — Ty
2= 1—r}

The relationship between partial autocorrelations ¢g; and autocorrelations
p is?
Pj = Qr1pj—1+ Pr2pj—2+- + Op—1)Pj—k+1+ PkkPj—k, J=1,2,...k,
where not all the ¢;’s are zero.

1 p1 p2 o Pr—1| | Pk p1

p1 1 p1 o pr—2| | Pr2 P2

Pk—1  Pk—2  Pk-3 - 1 Dkk Pk
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i.e.

Py = pr -
The solutions of the equations can be deduced when k£ =1,2,3,...
1 P1
p1 P2 — p?
b1 =p1, Q= — 2 p17
1 m; 1—p?
;1
1 pp m 1 p p2

dsz=1|p1 1 pa|=|pt 1 p1
P2 P11 pP3 p2 p1 1

This is how we get partial autocorrelation ¢gy.

The hypothesis test for the validity of the model includes at least the

followings:

Stationarity and invertibility. This is to make sure that all the roots
in ¢(B) = 0 and #(B) = 0 are within the unit circle.

The hypothesis test on residuals. When all the absolute values of the
sample autocorrelations of the residual series are smaller than 1.96//n,
the series are regarded as being fitted well enough. Another method is
to use the statistic Q = nZk 1 r3, where @) is asymptotically x(k p—a)
distribution. Here p and ¢ are the orders of autoregression and moving
average, while n = N —d, N is the length of the series and d is the order
of difference.

The hypothesis test to overfitting. All the redundant parameters are
supposed to be excluded from the model although we need to increase
the orders so as to reduce the sum of squared residuals.?

2.1.5. Prediction

Wi

ith the model ¢(B)y; = 6(B)a;, we can get

g = (B)0(B)a; = Zwkat—k

and

oo
Yl = Yotiqr + V104 —1 + -+ Yr_1ap41 + Z Yryjar—j.
=0
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The predicted value with the lead time [ is
9e(1) =D Wiy
j=0

The weight coefficients ¢7+j75 can be calculated by the principle of least
squared predicted values. The estimator of the predicted value is g, (I) =
> w0 Vi jai—j. The variance is Elay(1)]* = (¢§ +¢7 +-- -+ 47 ))os.” Here

2
PR DM
= &=t

2 is the variance of the white noise. The 95% confidence interval

of the prediction is

1/2
-1 /

Ge(1)£1.96 |1+ 97| 6.

j=1

2.1.6. An example

In the management of medical material (take X-ray film for example), de-
mand exceeds supply and supply exceeds demand are both the situations
that hospital wants to avoid. It is beneficial for hospital and patients to
forecast the demand of X-ray film.

In this section, we present an example on predicting the seasonal de-
mand of X-ray film in the Second Affiliated Hospital of Shanxi Medical
University using the information of seasonal demand from 1987 to 1997.
After transformation of Box-Cox with A = 0.192, ARIMA model is used
and the resulting model is ARIMA(0, 1, 1)(0, 1, 1)s.2” The predicted values
in the first and the second season are 212.01 and 274.61. The relative errors
are —5.77% and —10.55%, respectively.

2.2. The efficiency of prediction

One of the purposes of modeling a time series is for predicting the future.
The prediction variance increases along with the increase of the lead time [.
The prediction precision declines gradually as [ increases. If the prediction
needs be performed with a high value [, it is suggested combine the ARIMA
model with other techniques.*”

2.2.1. Prediction errors and the confidence interval of prediction

The prediction error with lead time one can be defined as e;—1(1) = z; —
Z4—1(1) = a;. At the time ¢ — 1, x4 is a random variable, so is the error.
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The error is e;_1(1) ~ NID(0,02). The conditional distribution of the
observations for an AR(1) model is?

(mt‘mt—l) ~ NID(¢1$t—1, (7?1) .

The confidence interval of the prediction with confident level 95% is
Z—1(1) £ 1.960,, or ¢p1zi—1 £ 1.960,.

2.2.2. Correlation between prediction errors

The prediction errors from a fitted time series model are correlated. Take an
AR(1) model for example, the errors e;(2) = ai+o + ¢r1ai41 and e41(2) =
at4+3 + P1a442 are not independent. In fact, the covariance between them is,

Covles(2), e111(2)] = E(arr2 + ¢prari1)(ars + ¢ra2) = d1o,
and the correlation can be expressed as

Covles(2), e111(2)] $102 b1

Tt ¢hez 142

Covle:(2), e141(2)] = {Var[e;(2)]Var[e;11(2)]}1/2

The prediction error to a ARMA(p, ¢) with lead time [ is
et(l) = aty1 + Gragyi—1 + - + Gi1ae4a,

where G is called Green function. For the prediction errors e4(l) and ey (1),
we have covariance and correlation function as the following:

Covlei(l), e145(D)] = El(ar+i + Gragpi—1 + - + Gi-1as41) -

(aty1—j +Gragyr—j-1 + -+ G164 j41)]
ZJE(G]' +G1Gj+1 +G2Gj+2 +-'-+Glfj,1Gl,1) (j < l)
~0 G0
Gj + GlGj+1 + GQG]‘+2 + -+ Glfj,1Gl,1

. N o | <1
ovlet(1), ery; ()] 1+G+G3+---+G7 v )

=0 (G>1).
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2.2.3. Improve the prediction precision by indicator series

Indicator series is helpful for the improvement of prediction although an
ARMA model may fit a stationary time series with any needed precision
theoretically.? However, take one or more correlated series into consi-
deration for the model, the prediction efficiency may not be necessarily
ameliorated.

For a given time series, the important foundations to establish the model
are dynamic characteristic, memory or correlation. One may not be able to
take into account all of the characteristics and that will lead to disappointed
results. In this situation, the indicator series may provide help for modeling
in some aspects. Firstly, indictor may supply some necessary supplemen-
tary information to the series especially when the prediction series is short.
Another situation is that, the probability structure is changing along the
time and the indicator may be useful to model the change.*® Scientific
knowledge in the subject area is needed to decide whether an indicator
series should be included into the model or not.

2.3. Combined predictions

Combined predictions are the methods with which to perform prediction
with the combination of several kinds of models so as to improve the pre-
diction efficiency. As long as the combination is properly organized, the aim
could be reached effectively.? All the combined models have some rational
components in it and this is the foundation to expect the improvement of
efficiency by combination of models.

2.3.1. Unequal weights

As the efficiency of a model may change at different segments of the time
series, unequal weights are more reasonable comparing with the constant
ones. If a model is poor at all segments, the model should be excluded. If
a model is perfect all the time, it should be maintained as the only desired
model. Combination becomes meaningless under these two situations. The
unequal weights are coincided with the characters of the models.*’
Comparing the combined predictions with unequal weights > . | w; (t)
;(t) to those with constant weights Y . | w;7;(t), we can construct objec-
tive functions for the purpose of minimizing the sum of squared errors. It
sounds reasonable for the combined predictions with unequal weights to
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reflect the dynamic correlation between observations and this makes the
predictions with unequal weights adapt to more types of time series.

2.3.2. Optimization of the weights

If a vector of weights K, can minimize the sum of squared errors, then
K, is called the optimized weights vector. Many Chinese statisticians have
done a lot concerning optimized combination. Tang et al.°° has paid much
attention on how to optimize the weights.

Although we have optimized values for the unequal weights, it is diffi-
cult to calculate them. According to the definition of optimized combined
prediction, the vector of optimal weights is an n-dimension column vector,
in which only one element is 1 and other elements equal to 0. The location
of 1 is uncertain. Most of the time the vector cannot be solved out since it
is difficult for any single strategy of combination to summarize the proper-
ties of all kinds of methods. Under different circumstances, we may have to
apply different combination to conform prediction precision.

3. Spectral Analysis

3.1. Considerations on seasonality (periodicity,
circadian rhythm) in time series

Seasonality (periodicity) is a commonly observed phenomenon in time series
and it is an important basis for us to establish models. In the frequency
domain, seasonality can be identified by “the peaks in a periodogram
located at certain particular frequencies”. In the time domain, it shows
as the regular cycles caused by seasonal factors (for example the climate,
religious festivals, etc.). The features include external variables that cannot
be controlled by artificial means but may be predicable to some extent.
The consideration on seasonality is more significant in long-term predic-
tions than in short-term predictions in some cases.’! Fisher and Wallis
indicated some main factors, such as external variables, residual innova-
tion, some dynamic characteristics of the series and the annual projects,
are the direct causations to seasonality.?? The adjustments on these causa-
tions may counteract the influence of seasonality. In one medical research
on the relations of mood with sunshine and temperature, many patients
are detected to be influenced by these two factors after the seasonality has
been taken into account.
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Albertson and Avlen®® compared the effects of different models when
using seasonality. Their results showed that goodness of fit and prediction
can be improved considerably if seasonality was modeled. The periodic au-
toregressive model is only good in short-term predictions. However, ARIMA
models with dummy variables work fine in many situations. It is suggested
introduce terms with bigger lags so as to capture the property with longer
intervals of periodicity.?

US Census Bureau developed the X-11 model to process time series
including periodicity of month or season.?” The original series is denoted
as a summation model or multiplication model. Take multiplication model
(O = S;CyDyI}) for example, Cy is the term of trend, which also includes
other long-term. S; is the change that happens within a year and the value
of S; is constant or shift slowly in every year. The item D; corresponds to
trade date, which may locate at different positions in the calendar. The ir-
regularity is denoted by I; that is the residuals left and cannot be explained
by S, Cy and D;. C; and O, are at a similar quantitative scale. The three
other terms may have values near 1.0 (or in the percentage form, 100.0).
Eliminating the seasonal component will be helpful to reveal the difference
between two months or two seasons. The adjusted series may show more
clearly the importance of trend. In general, the application of this strategy
has improved the effectiveness of seasonal adjustment.?* 56

Hillmer and Tiao have discussed the seasonality in ARIMA models.®”
Let Z; = S; + T; + N; be the summation-formed model, where S;, T}
and N; are seasonality, trend and random noise respectively. Assume that
these three components belong to an ARIMA model themselves, ¢4(B)S; =
ns(B)be, ¢1(B)Ty = nr(B)Cy and ¢n(B)Ny = nn(B)d;. As to Z;, we have
©(B)Z; = 6(B)ay. Here the highest order in ¢5(B), ¢7(B) and ¢y (B) is the
same as the order of ¢(B),0(B) and o2 can be obtained by the following
equation:

0(B)O(F)oi _ ns(B)ns(F)op | nr(B)nr(F)od | v (B)nw (F)og
@(B)p(F) ¢s(B)gs(F) — or(B)¢r(F) — on(B)on(F)

The research of Burridge and Wallis®® has showed that seasonality
adjustment and Kalman filter may reserve and prolong the information
about the difference of variances in all the seasons.?® They have deduced
out the calculation of variances for season-adjusted data. For predictions to
seasonal series, Chen®® studied the robustness of different models with the
Monte Carlo method. Under the parsimonious principle, he found that Holt-
Winters method (a model with consideration of trend and seasonality) and
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ARIMA models are good enough in terms of robustness to most seasonal
influences. If parsimony is not concerned, ARIMA models, classical regres-
sion models and structural component models are not robust. One of the
hottest research areas in time series is to decompose trend and seasonality
from the series. Smoothness Priors-State Space Model is put forward by
Kitagawa and Gersch®! to portray information on these two aspects. They
used the statistic @) to measure the goodness of fit and the focus of attention
was on residuals. The selection principles (e.g. AIC) focus on the abilities
of the models.

3.2. The basic concepts on spectral analysis

The spectral analysis on stationary models is to infer the distribution func-
tions according to the observed series, such as the estimation or hypothesis
test to spectral density or characteristic peaks in the periodogram. The
spectrum of stationary series is a description of its statistical characteris-
tics. As to multiple time series, principal component analysis and canonical
correlation can be used for detecting frequency components in the series.
Window functions are needed to improve the characteristics of the esti-
mation. The spectral density function f (w) is called the estimation with a
spectral window.2

The squared amplitude I; in the periodogram corresponds with the
variance that the ¢th component contributes to the total variance.
G(r)=1I(r)/ Zf\il 1; is constructed to determine whether the rth biggest
component is of statistical significance.*?

The autocorrelation function in time domain and the spectrum in fre-
quency domain are equivalent mathematically. They both are important
foundation in time series modeling.

3.3. The application to time series

It is well known that a beam of sunlight can be decomposed into red, orange,
yellow, green, blue and violet colors. A particular color is corresponding
to a wave with particular frequency. The similar situations exist in time
series. The vibrations in time series can be decomposed into sine (or co-
sine) waves with different frequencies and amplitudes. Studying the spectral
characteristics in medical time series is helpful for revealing the nonrandom
information that conceals in the series and benefits the effectiveness of
fitting.4?



360 J. Zhang, Y. Zheng € D. Lai

3.3.1. Time domain and frequency domain

Time series {x:} can be regarded as the observed result of a dependent
variable while the corresponding independent variable is time. Some func-
tions such as autocorrelation, partial autocorrelation can be constructed in
time domain in order to describe the series.?* The analysis that only uses
the functions whose corresponding dependent is time is called the analysis
in time domain. With Fourier transformation, the dependent variable
turns into frequency and the related analysis is performed in frequency
domain.
For the stationary time series {z},

(p(B)l‘t = G(B)Clt
p(B)=1—¢1B—-+—¢pBP,
B)=1-6B—---—0,B9,
we have the spectral density function as the following:

—i27 2
o2 [ 12 Xl Orce ™ leyed (10)
TR pxe KT 2=71=3)

where

Sarmal(f) =

IA

3.3.2. White noise

For white noise, the spectral density is s,(f) = > p_ . rre 2K/ =52,
The density function becomes a constant just like white light contains all
kinds of light with equal amplitudes.

If a time series fits a model very well, the residuals will be white noise
series. The goodness of fit becomes a hypothesis test on residuals.

The hypothesis test on white noise is to judge whether all the autocor-
relations pg(a) = 0(K # 0) in time domain. While in frequency domain, it
is the test to judge whether s,(f) is a constant.?*

Hy: {a:},t=1,2,...,N is white noise.

When N is large enough, the M components (M is an integer, M < %)
are

\/Nﬁl(a)v \/NﬁZ(a)v LR \/NﬁM(a)

distribute as N(0, 1) approximately under the null hypothesis of Hy. The
test on the independency of {a:} becomes the test on whether the M
estimates are distributed as N(0,1) asymptotically. The statistic @Q =
S (VNpj(a))? = szj\il ﬁ?(a) is a X2 distribution with freedom of
(M — p — q). When we have @ < X?X(M—p—q)’ we say the model is well
fitted.?



Time Series Analysis and its Applications in Medical Sciences 361

3.4. Spectral analysis for outpatient flow

Spectral analysis has become an important skill in data process and
systematic analysis in engineering and other related fields, especially after
Cooley and Tukey introduced Fast Fourier Transform (FFT) in 1965 and
the availability of the computing power. Here an example in hospital
management is given to illustrate the application.

3.4.1. Transformation from time domain to frequency domain

With Fourier transformation, a time series can be transformed from time
domain to frequency domain.?*

+oo
X(w) = / 2(t)e_sondt . (1)
The inverse transformation can also be fulfilled with the following:
[t ,
x(t) = — X (w)e™tdw, (12)
27 J_ o

which is called inverse Fourier transformation.
When the observations are obtained at discrete time, the definition of
Fourier transformation is,

N—-1
1 —i2nk/N
Xk:N;xte . k=0,1,2,... (13)

X}, is called the finite discrete Fourier transformation (DFT) and can be
abbreviated as X = DFT[x]. The inverse discrete Fourier transformation
is,

N-1
Ty = Z X ei2mk/N (14)
k=0

Assume that the discrete series {zs}, s = 0,1,2,...,N — 1 is sample
from the continuous procedure z(t) in [—%7 %] with equal intervals. Here
N is the sample size, T is the length of sampling time and A = T/N is
the length of interval for sampling. Fourier transformed form of x and x(t)
have the relation as the following:

X(w) = lim TIEI;OTKIC

—0
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3.4.2. Spectral density function and its estimation

For the time series {z:} = 0,1,2,..., N — 1 with sample size N, the power
spectral function can be defined as?*

].Nfl

When Xj is the Fourier transformation of x;, the following can be
proved:

N-1
Py =Y |X.
k=0

The spectral function

Su(k) = T|Xi[?, (15)

N-1

1

N E Tt * Tttt
t=0

The spectral function is an important statistical description of a stationary
process. The estimation of spectral density function is based on the infor-
mation from the observed values. Spectral windows are used to construct
consistent estimate of the special density function of the time series.52:%3

S*(k) =T -DET =T -DETI[C,]. (16)

3.4.3. An example

The outpatient attendances with respiratory, gastrointestinal and cardio-
vascular diseases in the second affiliated hospital of Shanxi Medical Uni-
versity from May 1989 to December 1998 are studied. Bartlett Window is
used to smooth the periodogram.

The spectral analysis was done with SAS6.12 software. The statistic of
Kolmogorov-Smirnov is larger than a/1/(m —1) = 1.364/1/(116 — 1) =
0.1268 (m is the sample size). The hypothesis, that the original series is a
white noise, is rejected.

The characteristics of Figs. 4 and 5 are similar. There are two peaks at
4 months and 12 months, respectively, although the heights are different.
These two peaks correspond with two periodic components in the series and
we have one more obvious peak at 24 months in respiratory patient flow. In
these series, the peaks at 12 and 24 months are related to the annual periodi-
city corresponding to physiological regularities of human being, pathogenic
microorganism and other pathogenic factors. In spring, pollen in the air is
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Fig. 4. Periodogram of the outpatient attendance of gastrointestinal disease in the
second affiliated hospital of Shanxi Medical University.
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Fig. 5. Periodogram of the outpatient attendance of respiratory disease in the second
affiliated hospital of Shanxi Medical University.

high; in autumn, artemisia plants are prosperous; in winter, the temperature
is very low. These three important pathogenic factors cause outbreak in
the interval of 4 months and they leads to the peak at four months in the
periodogram. As to the periodogram for gastrointestinal patient flow there
is a peak at four months. At the end of summer and beginning of autumn
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Fig. 6. Periodogram of the outpatient attendance of cardiovascular disease in the second
affiliated hospital of Shanxi Medical University.

we have a high prevalence rate on enteritis because of much more raw food
and cold drink. During the shifting time from winter to spring and from fall
to winter, the prevalence rates of gastritis and gastric ulcer diseases turn to
be high (further pathology explanation is needed). The three events above
have nearly the interval of four months.

In the periodogram of cardiovascular patient attendance, there is a
12-months peak corresponding to seasonality. This may be caused by
physiological regularities of human being and other pathogenic factors. The
characteristics of periodograms corresponding to different factors are quite
different.

3.5. The identification of potential periodicity
in time series

It is important to identify potential periodicity in time series analysis in
frequency domain.

3.5.1. The mathematic model to describe the periodic components
A time series {z;} that consists periodicity can be described as the following

k
T = Z(ai cos 2w fit + b; sin 27 fit) 4+ €4 . (17)
i=1
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The estimations of @;,b;,i = 1,2,...,k may be obtained by the least
squared method. Set some particular frequencies fi, f2,... and construct
the model as (17). Take frequency f; for example, the estimations of a;
and b; will make a? + IA)% significantly larger than zero if f; locates near
to a potential frequency. Otherwise, we say that they are not significantly
different from zero and the corresponding frequency may not exist.

3.5.2. Hypothesis test for the peaks in the periodogram

Not all the peaks located in a periodogram are significantly different from
zero. It is true that we may find some peaks in the periodogram even though
the corresponding time domain series is a white noise due to the variability
of the estimate. Hypothesis test is needed to statistically test the peaks
that are caused by nonrandom variation.

The hypothesis test intends to test the amplitude ¢; = y/a? + b?.

H()ICZ':O, 221,2,,]§
Let s = [4], I, is the periodogram ordinate. The statistic for hypothesis
test is constructed as

maxi<;j<s(/))
= ——5i—7, (18)
Zj:l I;

which is called a Fisher statistic. Under the assumption of H, Fisher proved
that the distribution of g is,

s(s—1)
2

s!

Plg> 2] =s(1-2)""" - (1-22)%""

44 (1) (1—az)*t. (19)

al(s —a)!
Here, a is the maximum integer less than 1/Z.

Fisher test deals with only the highest peak in the periodogram.
Whittle?* popularized it to the second highest peak. Let I is the first
highest peak, I;> is the second highest peak and the corresponding statistic
is

1
2= =
i L) — In

The distribution of g, above is similar with that of (19). If the hypothesis
test to I;2 is significant, we continue to test the next highest peak until all
the significant peaks are detected.
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3.5.3. The cleavage of a peak

A single peak may split into several nearly located peaks when the Fourier
frequencies 27 f; do not contain the non-Fourier frequency of the cyclic
mechanism of the time series. It can be proved that periodogram is an
unbiased estimation of power spectrum. However, it is not a consistent
estimator of the spectral density function.

4. Nonlinear Model
4.1. Threshold autoregressive model

This model is brought forward by Tong%* in 1978. The general formation
is,

Pj
X, = SOE)]) + Z@E])thi + EE]) 7
i=1

while Tj—1 S Xt—d S Ty j = 1,2, .. .,/{3. (20)

The set of rj’s (—oco =19 <711 < - <rp=00,7r5,5 =1,2,...,k—1) are
called threshold values, d is called the parameter of delay. {5§j )} is a white
noise series that has a variance of 0. {egj )} and {59 /)} are independent to
each other when j # j'.

The Eq. (20) shows that the threshold values divide the axis (—o0, 00)
into k intervals. In every intervals, X; is expressed by an autoregressive
model with the order of p;. Actually, the model is composed of k au-
toregressive models with different orders. It can be denoted as SETAR
(dv kvph s 7Pk)~

The most commonly used threshold autoregressive model is SETAR
(d,2,p1,--.,pk). This model can be expressed as,

x (1) + 905 T o o - vel) Xea<m, (21)
t =
(2) P bt oD Xy P Xea>

In medical research, the thresholds can be determined by professional
knowledge. For example, in a relatively fixed population, the prevalence
rate of tuberculosis is correlated with the average antibody level r1. For the
cases of the prevalence higher or lower than the critical value, the dynamics
of prevalence are quite different. In this situation, a threshold autoregres-

sion model is applicable and the average antibody level r; is used as the
threshold.
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4.2. Bilinear model

This model is raised in economic field.%® For example, the output in the tth
year is z; and it is used as the input of the next year. The rate of recovery
y¢ is an MA (1) model

Tt — Tt—1
Y= ——"—=-¢;+ 01,
Tt—1

The output of this year is,
Ty =Tp1 + €41 + Oer1 1,

which is called a bilinear model.
A generalized form of it is

p q Q P
Ty = Z PiTp—i + Z Oier—i + Z Z Bri€t—kTi—1 -
=1 i=0

k=0 1=1

Here, {;} is a white noise series. £; and ¢, are dependent random variables,
with means are zero and variance is o2. (p,q, P,Q) are the orders of the
model.

This model is a linear function of x; when &; is given and is a linear
function of £, when x; is given. That is why it is called a bilinear model.

4.3. Exponential autoregressive model
It was put forward by Ozaki.®® The generalized form of this model is,

P

2
Ty = Z(tpl + ¢ieirmt‘1)mt_i + &¢ .
=1

Here, @;,1;,7 > 0 are all constants and {e;} is a white noise series.
This model is used to describe some medical time series where the am-
plitudes are closely correlated.

4.4. State dependent model

This model was raised by Priestley® in 1980. The generalized form is,

P q
e = w(xi—1) + Z 0 (@p—1)Te—j + Zei(mt—l)&—i + €&,

j=1 i=1
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where xt—1 = (€4—g,...,Et—1,Tt—p,...,&¢—;)7 and the model can be
denoted as SDM(p, q).

SDM(p, q) is a widely used model.

(1) It becomes an ARMA(p, q) when p(x¢—1), ¢;(2:—1) and 0;(x—1) are
dependent on x;_1.

(2) When 6;(z;-1) =0(i = 1,2,...,q), 24—q € R, we have @;(z;-1) =
<p§-),u(xt_1) =p 5 =1,2,....p. R() = (ri—1,r, 0 =1,2,...,],—0c0 =
ro <711 < - <711 <r;=o00. In this situation, the SDM(p, ¢) becomes a
threshold autoregressive model.

p _ ‘
ve= D+ 3 oWy + e whilez,ge RO i=1,2,...1.
j=1

(3) When 6;(xi—1) = 0@ = 1,2,...,¢q), p(zi—1) = 0, @j(zi-1) =
v + 'Iﬁje_Tm?*I(] = 1,2,...,p), the SDM(p,q) becomes an exponential
autoregressive model.

(4) When p(z—1),;(x—1)(j = 1,2,...,p) are constants and 6;(x;_1) =
Vi+ >0 BikTi—k, j = 1,2,...,max(q, Q). Here p and @ are both positive
integers. When ¢ < @, 6; = 0; wheng > Q, 8, =0,7 =1,2,...,max(q, Q).
SDM(p, q) becomes to be a bilinear model.

5. Multivariable ARMA Model

To those complicated medical phenomena, multivariable time series analysis
is useful.®®

5.1. The concept

Let X; = (X1, Xot, ..., Xge)™ is a k-dimension stationary time series with
mean zero (to every Xy, i =1,2,... k). X; satisfies,
Xt — g01Xt_1 — s — @pXt—p =&t — 91615_1 — s — qut—p (22)

Here, @;(i = 1,2,...,p), 6;(j = 1,2,...,q) are all k x k matrix. ¢, # 0,
0y #0, e = (1, €2¢5- - -, €xt)” 1s k-dimension white noise series. That is,

S, whent=s

Eey =0, Egiel =
0, whent#s.

Here S is a k x k positive definite matrix. Fe; X[ ; =0, 7 =1,2,....
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The polynomial of operator B is also a k x k matrix.
@(B)=1—¢1B— B> —--- — ¢,B?
0(B)=1—-6,B—0,B>—-.-—0,B.

Here, I is a k x k unit matrix. When all the roots of det(p) = 0 are located
in the unit circle, the series is stationary. When all the roots of det(f) =0
are located in the unit circle, the series is invertible. The original series is
called an ARMA(p, q) series. It is well known that any ARMA(p, q) series
can be approximated by an AR(p) model.

5.2. The Yule- Walker estimation of the parameters

Assume that stationary {X;} is an AR(p) series with mean 0,
Xt_golthl_"'_@pthp:{':tv t:1,2,...,n. (23)

X[_,, is multiplied at the both sides of the equation. After the expectation
is performed, we have

P
Y=Y 9ivi-ie + 5,
ij=1

P
Y= Py, h=1,2,.... (24)
j=1

Here v, h = 1,2, ... are all positive definite matrixes. Let h = 1,2,...,p.
Because of y_; = 7}, we have the linear equations as the following:

" Yo Moo Y1 | |l
Yz 1 Yoo ot Yp—2 5

2 | _ 1 P ®2 . (25)
Yo Yo-1  Yp—2 0 ©p

The estimation can be obtained when we substitute v; above with .
As to the 45’s they can be derived by the following formula

An = Z T xy_p /10 (26)

t=h+1
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Let
Yo oo et g o1
- ot Yoo Ype2 é = Y3 o, = @3 (27)
Y1 Y2 Yo Yp @5
be the estimation of (25) can be fulfilled by
o, =T1,'¢,, (28)

which is called Yule-Walker estimation (or moment estimation).
In practice, we can use least square estimation, recursive algorithm to

estimate the parameters.5?

5.3. Predictions and errors

Assume that the AR(p) model is denoted as
Xe—opXio1r = —oppXyp = 1.
The prediction with the lead of one is X;_1(1), that is
thl(l) = p1Xi—1 FopaXi—o 4+ F oppXi—p,

and the prediction error is X = X — Xt,l(l) = ¢;. The variance matrix of
the prediction is EX}X[ = Eeie] = 5, If the parameters are estimated by
Gp1, Pp2s - - - » Ppp, the prediction with lead of one is T;_1(1) = Pp1 Xt—1 +
@p2Xi o+ -+ @ppXi_p. The variance of the prediction error D, = EX, X7
can be obtained from

R kp kp\ ! P
Dy = (1 + ;) (1 - ;) Yo — Z Poij | - (29)
j=1

6. Some Supplementary Topics

The research on time series has been driven by applications. There are many
new development: (1) from linearity to nonlinearity; (2) apply the time
series theory to the unbalanced models and establish dynamic unbalanced
models to perform prediction; (3) combine Bayes theory with time series
analysis to detect the changing point in dynamic data.
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6.1. Nonlinear time series model
6.1.1. The smooth state transform model®®
Xit1 = Wi + o(r" W) (ag W) + & .
©(-) is a monotonous limited function on (0, 1), 77 W; is the transforming

variable, which is applied to fulfill the transform between two states.
The model above can be expressed as the following,

state 1: Xy = o] Wi+ ey, r"Wy =0 and ¢(0)=0
state 2: Xypi=(a]+al)Wi+e, rrWy=1 and ¢(0)=1.
6.1.2. The model with time variable parameters
Xt+1 = thWt + &¢. (30)

Here, oy is a parameter that change across time and it is not a function of
Wi_;(j # 0). For example oy = o1 + a¢, while a; is white noise and unit
roots exist.

a; can be regarded as a marginal cost parameters. Time variable
parameters can be estimated by Kalman algorithm.5®

6.1.3. Projective pursuing model
q
Xepr = Wi+ Y 10 (BTW; +05) + erpa - (31)
j=1

Here, ¢;(-) is a smooth function and the estimation is performed first to
those given values.

6.1.4. The system of neural network

q
Xepr = Wi+ > rjp(Bi Wy +6;) + 141 - (32)

Jj=1

Here, ¢(+) is a monotonic limited function e.g. ¢(z) = (1 + exp(—2)) L.

The models (31) and (32) are both a kind of weighted projecting pro-
cesses, which can be used in complicated medical time series. Even to
outliers from the regular scatters, these models work fine.
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6.1.5. Product model%®
Xepi =" We+ Xy jer i+ Yijer—i.

Here W, contains the lagged X and lagged Y. The product item will lead
to nonlinearity.

6.1.6. Flexible Fourier model%®

q
Xt+1 = O(TWt + Z’I"j COS(ﬁ;Wt + 9]) + Et+1 -
j=1
The estimation to the parameters is relatively complicated. Some par-
ticular transformations are needed to produce a linear or nonlinear model.
Then, the estimation will be meliorated.

6.2. Vector autoregression model (VAR)

Sims®® put forward this model, as he doesn’t deem the assumption is helpful
that some variables be treated as external variables, nor the assumption
that some parameters equal to zero reasonable.

Sims suggested that the same numbers of variables are needed in the
structural equations in order to find all the possible interaction. The main
difference of the classical viewpoints and Sims’s idea is that whether a
variable can be defined as a internal or external one.

Generally speaking, a VAR model has the following shortcomings: The
model will depend on the transformation of data and the series is assumed to
be stationary; there is a gap between the theory and practice; the simplified
multinomial should be orthogonalized when it is used to prediction. As no
feedback relation is included in the model, the influence with a delay cannot
be described.

6.3. Bayesian theory in medical time series prediction

To the ordinary linear model Y = X B + U, all frequentist’s methods
are based on an assumption that all the estimated parameters are fixed.
Unfortunately, it seems that this assumption does not hold all the time. In
the view of Bayesian theory, the parameters B’s are random. The posterior
distribution is determined by prior knowledge. The change of model struc-
ture is detected and the theoretical hypothesis is tested. The most special
point in Bayesian methods is that prior knowledge is used in prediction.
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In recent years, a new idea is to apply time series theories into Bayesian

models to predict the change points in the dynamic data with prior

information.55

6.4. Unbalanced time series model

This model was used to predict the economy situation in Poland by
Bowditch®® in 1987. Because of the confinement from the unbalanced theory
and the modeling skills, the application of this method keeps at a logjam.
However, it is always a possible topic in economic prediction.

Some researchers begin to combine time series theory with unbalanced
model and a new direction is formed.%® This direction is paid much attention
as it can explain the complex medical time series very well under some
particular situation.
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Medical images are two-dimensional stochastic signals. There are many
common issues of stochastic signals such as noise removal, signal restora-
tion, signal sampling, etc. There are also many special issues which are
relevant to high dimensional signals only, such as segmentation, cluster-
ing, etc. This chapter discusses issues of medical imaging. In particular,
we will discuss the application of statistical methods in this area.

1. Introduction

Medical imaging is a fast growing area with the richest source of informa-
tion and variety of modalities such as Magnetic Resonance Imaging (MRI),
X-ray Transmission Imaging (X-ray), Computerised Tomography (CT),
ultrasound images (both 2D and 3D), Positron Emission Tomography
(PET), Single-Photon Computed Tomography (SPECT), Magnetic Source
Imaging (MSI), Electrical Source Imaging (ESI), X-ray Mammography
(MG), Orthopantomograms (OPG), and many others.

MRI is one of the most powerful non-invasive techniques in diagnostic
clinical medicine and biomedical research. The technique is an application
of nuclear magnetic resonance (NMR), a well-known analytical method of
chemistry, physics and molecular structural biology. MRI is primarily used
as a technique for producing anatomical images, but MRI also gives infor-
mation on the physical-chemical state of tissues, flow diffusion and motion
information. Magnetic Resonance Spectroscopy (MRS) gives chemical/
composition information. MRI has revolutionised imaging of the brain,
spine and the musculoskeletal system. Superb soft tissue contrast and
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spatial resolution have made MRI the investigation of choice in many
neurologic and orthopaedic diseases.

X-rays are generated by the interaction of accelerated electrons with a
target material (usually tungsten). X-rays are deflected and absorbed to
different degrees by the various tissues and bones in the patient’s body.
The amount of absorption depends on the tissue composition. For example,
dense bone matter will absorb many more X-rays than soft tissues, such
as muscle, fat and blood. The amount of deflection depends on the density
of electrons in the tissues. Tissues with high electron densities cause more
X-ray scattering than those of lower density. Thus, since less photons reach
the X-ray film after encountering bone or metal rather than tissue, the
X-ray will look brighter for bone or metal.

CT became generally available in the mid 1970s and is considered one
of the major technological advances of medical science. X-ray CT gives
anatomical information on the positions of air, soft tissues, and bone.
Three-dimensional imaging is achieved by rotating an X-ray emitter around
the patient, and measuring the intensity of transmitted rays from different
angles.

Ultrasound, as currently practiced in medicine, is a real-time tomo-
graphic imaging modality. Not only does it produce real-time tomograms
of the position of reflecting surfaces (internal organs and structures), but
it can be used to produce real-time images of tissue and blood motion.

The history of PET can be traced to the early 1950s, when workers in
Boston first realized the medical imaging possibilities of a particular class
of radioactive isotopes. Whereas most radioactive isotopes decay by release
of a gamma ray and electrons, some decay by the release of a positron.
A positron can be thought of as a positive electron. Widespread interest
and an acceleration in PET technology was stimulated by development of
reconstruction algorithms associated with X-ray CT and improvements in
nuclear detector technologies. By the mid-1980s, PET had become a tool
for medical diagnosis, for dynamic studies of human metabolism and for
studies of brain activation.

PET has a million fold sensitivity advantage over other techniques used
to study regional metabolism and neuroreceptor activity in the brain and
other body tissues. In contrast, magnetic resonance has exquisite resolu-
tion for anatomic studies and for flow or angiographic studies. In addition,
magnetic resonance spectroscopy has the unique attribute of evaluating
chemical composition of tissue but in the millimolar range rather than the
nanomolar range. Since the nanomolar range is the concentration range of
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most receptor proteins in the body, positron emission tomography is ideal
for this type of imaging. The major clinical applications of PET have been
in cancer detection of the brain, breast, heart, lung and colorectal tumors.
Another application is the evaluation of coronary artery disease by imaging
the metabolism of heart muscle.

SPECT, like PET, acquires information on the concentration of radionu-
clides introduced to the patients body. SPECT dates from the early 1960s,
when the idea of emission traverse section tomography was introduced by
D. E. Kuhl and R. Q. Edwards prior to either PET, X-ray CT, or MRI.

Iron currents arising in the neurons of the heart and the brain produce
magnetic fields outside the body. These fields can be measured by arrays
of SQUID (Superconducting QUantum Interference Device), detectors that
are placed on or near the head or chest. The recording of magnetic fields of
the head is known as MagnetoEncephaloGraphy (MEG) while that of the
heart is called MagnetoCardioGraphy (MCG). Magnetic Source Imaging
(MSI) is the general term for the reconstruction of current sources in the
heart or brain from the measurements of external magnetic fields.

Electrical source imaging (ESI) is an emerging technique for reconstruct-
ing electrical activity in the brain or heart from electric potentials measured
on the scalp or torso. Standard ElectroEncephaloGraphic (EEG), Electro-
CardioGraphic (ECG) and VectorCardioGraphic (VCG) techniques are lim-
ited in their ability to provide information on regional electrical activity or
localize bioelectrical events within the brain and heart. Noninvasive ESI
of the brain requires simultaneous electric potential recordings from 20 or
more electrodes for the brain and 100 to 250 torso electrode sites to map
the body surface potential from the heart.

X-ray mammography (MG) is an effective method to diagnose the breast
cancer. A low dose X-ray screening mammograms are performed on a
woman’s breasts with no symptoms to detect breast cancer at an early
stage. The practice can perform diagnostic mammography. Breast needle
localisation prior to surgery can be performed to provide location informa-
tion and fine tissue information.

Orthopantomograms (OPG) and lateral cephalograms are the latest
techniques for dental or orthodontic assessment.

Medical images are 2D stochastic signals. There are many common
issues of stochastic signals such as noise removal, signal restoration, signal
sampling, etc. There are also many special issues which are relevant to
high dimensional signals only, such as segmentation, clustering, etc. We
will discuss issues of medical imaging. In particular, we will discuss the
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image sampling and compression in Sec .2, filtering in Sec .3, segmentation
in Sec .4 and registration in Sec .5. Finally, there is a conclusion.

2. Sampling and Compression Using Statistical Features
of Images

Computer-based advanced medical imaging techniques such as Positron
Emission Tomography (PET) have been playing a crucial and expanding
role in modern medical research and diagnosis. However, these powerful
techniques have being accompanied by the growing size of image data sets
as well. For example, a routine dynamic PET study using the CTI 951
scanner usually acquires 31 cross-sectional image planes of 128 x 128 pixels
each, at 20 to 30 time points. It results a 4D data set containing up
to 11 million data points with approximately 22 Mbytes storage space.
As the resolution of current PET imaging improves, the large volume of
related data will further increase. It has therefore, prompted significant
recent interest in developing efficient image compression techniques which
can contribute to the current expansion in medical digitalization, image
database management and telemedicine.

Taking advantage of domain specific physiological kinetic knowledge
related to dynamic PET images and physiological tracer kinetic modeling,
this paper presents a novel knowledge-based near-lossless data compression
algorithm for dynamic PET images. The proposed compression algorithm
consists of three stages: (a) compression in the temporal domain using
optimal image sampling schedule design; (b) compression in the spatial
domain through cluster analysis; and (c¢) index image compression using
standard still image compression techniques. In this section, clinical human
brain PET studies using the [*®F| 2-fluoro-deoxy-glucose (FDG) tracer are
presented to illustrate the proposed compression algorithm. The technique
can be easily applied to other PET studies with different tracers. The

conventional?? and proposed techniques are implemented on clinical dy-
namic PET images. Empirical results are given to illustrate the compression

performance and the image quality.

2.1. Tracer kinetic modeling and functional imaging

Tracer kinetic techniques with PET are widely applied to extract valuable
information from dynamic processes in the body. This information is usu-
ally defined in terms of a mathematical model u(t|p), wheret =1,2,...,T
and p are the model parameters. The parameters describe the delivery,
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transport and biochemical transformation of the tracer. The driving
function for the model is the plasma blood input function, which is often
obtained from blood sampling.?? Measurements acquired by PET define
the tissue time activity curve (TAC), or output function, denoted z;(t),
where t = 1,2,...,T are discrete sampling times of the measurements,
and ¢+ = 1,2,...,I corresponds to the ith pixel in the imaging region.
The purpose of dynamic PET image analysis is to obtain tracer TACs
and parameter estimates for each pixel in the imaging region. These para-
meters can then be used to define physiological parameters, such as the
local cerebral metabolic rate of glucose (LCMRGlc).

The conventional method uses the complete set of acquired PET pro-
jection data. Through the parameter estimation on a pixel-by-pixel basis
using certain rapid estimation algorithms,'6-22:36 functional images can be
generated. In this section, the Patlak method%:3% was used to generate the
LCMRGIc functional images for the purpose of comparing the estimation
accuracy of the original and compressed data.

2.2. Sampling and compression in temporal and
spatial domains

The sampling and compression scheme using statistical features of tracer
kinetics consists of three stages.5

2.2.1. Stage 1: Compression in the temporal domain using
optimal image sampling schedule

In dynamic PET studies, the reliability of temporal frames is directly
influenced by the sampling schedules and duration used to acquire the
data. The longer the duration and greater the radio-activity counts, the
more reliable the temporal frames. However, in order to obtain quantita-
tive information from the dynamic processes, a certain number of temporal
frames are required. Recently, it has been shown that the minimum number
of temporal frames required is equal to the number of model parameters to
be estimated.?S Based on this, an algorithm that automatically determines
optimal image sampling schedule (OISS) and maximizes the information
content of the acquired PET data was developed.2?® The algorithm utilizes
the accumulated/integral PET measurements.

In the design of OISS, a new objective function based on the Fisher
Information Matriz,'° was proposed to limit the loss of dynamic informa-
tion. This objective function was used to discriminate between different
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experimental protocols and sampling schedules. OISS can be directly ap-
plied to acquisition of PET projection data. This reduces the number of
temporal frames obtained and therefore, reduces data storage. Furthermore,
as fewer temporal frames are reconstructed the computational burden posed
by image reconstruction is reduced. Details of this algorithm can be found

in Li et al.?8

2.2.2. Stage 2 : Compression in the spatial domain through
cluster analysis

The prior knowledge has the form of tracer kinetic model to a time series of
PET tracer uptake measurements. From the model, using cluster analysis,
the image-wide TACs can be extracted and further classified into a certain
numbers of TAC groups which corresponding to different tissue regions,
according to the similarity of their kinetics.

Cluster analysis aims at grouping and classifying image-wide TACs,
zi(t) (where ¢ = 1,2,...,I), into C; cluster groups (where j = 1,2,...,J
and J < I) by measuring the magnitude of natural association (similarity
characteristics). It is expected that TACs with high degrees of natural as-
sociation will belong to different groups.® It should be noted that each
TAC must be assigned uniquely to a cluster group. In this paper, a
hierarchical-agglomerative clustering algorithm based on the Euclidean
distance measurement was used to classify the clinical dynamic PET image
data.

Using the results of cluster analysis, an index table containing the mean
TAC within each cluster and an indexed image can be formed. The indexed
image represents a mapping from the cluster to its respective pixel TAC
locations. This image together with the index table forms the basis of the
compressed temporal/spatial data. With PET, the number of distinguish-
able clustering groups may generally not exceed 64. This means that an
8-bit indexed image is sufficient to represent the cluster mapping.

2.2.3. Stage 3 : Index image compression

A lossless compression scheme is considered in this paper for further reduc-
tion of the indexed image. The PNG (Portable Network Graphics)!! format
was used to compress and store the indexed image obtained from cluster
analysis. The coding technique presently defined and implemented for PNG
is based on deflate/inflate compression with a 32-Kb sliding window. The
PNG format was chosen over other lossless image compression file formats
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Fig. 1. Compression results. (a) A set of 22 temporal-frame images (scaled) for the
15th plane from one patient study. (b) Results of the proposed compression method in
temporal domain: 5 temporal-frame images (scaled), obtained from 1(a).
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due to its portability, flexibility and being legally unencumbered. Details
on the PNG format can be found in Crocker.!!

Human dynamic FDG-PET brain studies were performed using an
eight-ring, fifteen-slice PET scanner (GE/Scanditronix PC4096-15WB).
This scanner contains 4096 detectors and achieves axial and trans-axial
resolutions of 6.5-mm full width at half maximum (FWHM) at the center
of the field of view. Between 200 and 400 mBq (approximately 0.5 mg) of
FDG was injected intravenously and arterial blood sampling commenced
immediately thereafter. The blood samples (each 2-3 ml) were taken at
8 x 0.25 minute intervals for the first 2 minutes, then at 2.5, 3, 3.5, 7, 10,
15, 20, 30, 60, 90 and 120 minutes. These samples were immediately placed
on ice and the plasma was subsequently separated for the determination of
plasma FDG and “cold” glucose concentration. Figure 1(a) shows a set of
temporal frames for the 15th plane from one patient study. Due to the lower
tracer concentration in the first few frames, these images were scaled to be
visible.

3. Noise Reduction Using Statistical Anisotropic Diffusion

Diffusion processes have been widely used in quantum physics, material
science, fluid dynamics, nuclear science, medicine and chemical physics.
Perona and Malik®®3? introduced it to image processing and proposed a
multi-scale smoothing and edge detection scheme. It has the good property
of eliminating noise while preserving high frequency components, namely
edges.?

Diffusion is an iterative process. The degree of diffusion depends on
the threshold of diffusion, i.e. the contrast cut-off. A contrast above
the threshold will be enhanced during the diffusion process and that
below the threshold will be smoothed out. The selection of the thresh-
old is vital to the filtering process. However, the threshold varies from
image to image. The problem compounds with the contrast variation from
region to region and with intensity distortion of the same region in an
image. It is thus desirable to have an adaptive criterion for selecting
a threshold.

The threshold in a diffusion process is closely correlated with the con-
trast of the edges in an image. Selecting the threshold is a process of
analysing local contrast. In low contrast images, especially when noise
is present and the signal-noise ratio (SNR) is low, the contrast between
regions is not significant and will be very difficult to pick up. The diffi-
culty lies in the noise presence, unknown distribution of a stochastic signal,
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and unknown combination of multiple interferences. In most of these cases,
the histogram of the region shows a single peak. Many automatic thresh-
old selection mechanisms require a bi-peak histogram such as Tsai and
Chen*® and Bhandari et al.> A bi-peak or multi-peak histogram may not
exist in many cases. Luijendijk?® proposed an automatic threshold selection
using two histograms based on the count of 4-connected regions. Tseng and
Huang?” proposed to select the threshold using edge information, i.e. the
intensity along edge intervals. Nagawa and Rosenfeld?? fitted the histogram
with two Gaussian functions, and Cho et al.” applied bias correction fac-
tors. Glaseby'8 combined them with an amendment using iteration. The
assumption of Gaussian distribution is weak and correction does not make
up this vital defect. Furthermore, iteration makes the computation very
expensive.

Another difficulty is due to intensity distortion. The applicability of
histogram analysis is based on the assumption that all image pixels which
have a similar grey level correspond to one object or region of interest in
the image. However, this assumption is not always true for most images.
Rodriguez and Mitchell! used an adaptive thresholding method that
extracts the background in two phases. The first step uses a global thresh-
old to extract the structure of the regions and the second step refines the
segmentation. Parker3 used a local threshold to grow a region after find-
ing a seed pixel in an object. Spann and Horne** grow regions from low
resolution to high resolution in a quadtree structure. The adaptive scheme
is a proper way to combat the distortion of intensity. However, the above
mentioned methods have a try-and-error nature and do not have a solid
theoretical foundation.

This section describes an adaptive diffusion scheme by applying the
Central Limit Theorem. Regression is used to separate the distribution of
the major object in a local window from other objects in a single-peak
histogram. The separation will help to automatically determine the thresh-
old. We have applied the algorithm to X-ray angiogram (XRA) images to
extract brain arteries. The algorithm works well for single-peak distribu-
tions where there are no valleys in the histograms. It has also been used
for filtering microscope images of kidneys where there are multiple visual
objects and the contrast between objects is very low. The scheme shows
that a fully automatic filtering process can be achieved. It works well with
images which have texture patterns and are contaminated with noise while
the distribution of noise is unknown. These kinds of images have posed a
significant problem for traditional filtering schemes such as wavelet based
de-noising. 3
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3.1. Non-linear anisotropic diffusion

Low-pass filters have been used to remove noise. Most filters are isotropic.
Isotropic filtering tends to smear the corners and loses the accuracy of edges.
To examine the problem carefully, we notice that the gradient along an edge
is not isotropic. It has the highest value perpendicular to the edge and is
dilated along the edge. It is therefore proper to increase the smoothing
function parallel to the edge and stop the smoothing perpendicular to the
edge. Non-linear anisotropic diffusion provides such a function. It takes the
form

%I(m,y,t) = div(g(VI)VI), (1)

where I(x,y,t) is the signal and g(VI) is a dilation function of gradients.
There are two frequently used dilation functions:

1
gl x? y?t = T T () 2
(@.000) = o7 )

2
gZ(m’y7t) = €xXp {_ (W) } : (3)

Calculation of diffusive filtering can be performed by a difference operation
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Diffusion encourages intra-region smoothing in preference to smoothing
across boundaries. The basis of this method is to suppress smoothing at
boundaries by selecting locally adaptive diffusion strengths. The parameter
k plays an important role in diffusion. If the s value is set to too high
the filter will act as a smoothing filter, diffusing across the edge boundary;
while if x is too low, small dilation will result in many iterations. At some k
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values, an extra edge will be introduced between the region of high intensity
and region of low intensity. Therefore, the vital question in our design is
the selection of .

3.2. Selection of the cut-off contrast

Images requiring processing often have very low contrast with many inten-
sity layers. Determining an appropriate threshold for such images is difficult.
Figure 2 shows an XRA image of the brain artery (a) and its histogram (b)
which is a single peak histogram. The selection of a threshold value from
such a histogram is ambiguous and not viable by trial and error. We have
developed a region-based method to dynamically select a threshold using
regression.

(b)

Fig. 2. Histogram analysis on background. (a) An XRA image; (b) Its histogram.
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Fig. 3. Segmenting histogram using Gaussian regression.

3.2.1. Selecting the threshold by regression and
likelihood classification

Our scheme is based on the Central Limit Theorem. It is difficult to segment
brain arteries from the background because of the low contrast and an over-
whelming proportion of the background. We do not know the histogram dis-
tribution of the background. However, from the Central Limit Theorem we
know that if z1,xs, ..., x, are independent, identically distributed random
variables with expectation y and finite variance o2, then y = 377" | z; is
asymptotically normal (i, 0?) when n is large enough.*? Regression using
a Gaussian distribution can separate the background histogram from the
foreground histogram, as shown in Fig. 3, where shaded area shows the
background histogram and the darker area is the foreground histogram.
After separating the histogram, it is easy to select a threshold for image
segmentation and to analyse foreground objects.

The sampling data for regression is obtained from partial histogram.
We calculate the mean value of the histogram and take the half with less
variance. Then we find the modal of that half histogram. The sampling
data, h;,i € S, is on the same side with the modal against the mean value.
The regression is obtained by

p = max(h;)
o= [2) (hi—p)?*.
iES

However, when the number of background pixels is not large enough, it
is improper to use the Gaussian distribution in regression. Figure 4 shows
another XRA image (a) and its histogram (b). Figure 4(c) is the histogram
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Fig. 4. Segmentation using regressions. (a) The original image; (b) Its histogram;
(c) Gaussian regression does not show clear separation; (d) Rayleigh regression shows a
clear separation.

after regression using Gaussian distribution over the background. It does
not show a valley between two peaks as we expect, which means there is
no clear separation. In this situation, we apply the Rayleigh distribution
in regression. Probability theory states that when n is not large enough,
T = T, satisfies Rayleigh distribution:

22

xr ==
—262u2 x>0

0 z<0.
The Rayleigh regression is obtained by

= 5o

4 —m
2

.

3.2.2. Eztracting a cut-off contrast

The diffusion process is critically depended on the  value in functions (2)
and (3). The parameter x can be associated with the contrast. The following
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discussion on extracting x will be based on diffusion function (2) but it can
be easily converted to function (3) by dividing & by /2. Although we can
obtain a proper estimation of the distribution of one visual object in the
image, e.g. background in XRA images, we do not have information on
other objects, e.g. vessels in XRA images. It is very difficult to estimate the
average contrast between two objects. We use likelihood classification®®
to separate pixels from two objects after we separate the background
histogram from the foreground histogram. These two histograms are used
as the probability distributions of two clusters in likelihood classification.
We calculate k value from the following

Ny
k=<1 le{mo.%}ém F;pvp[(x,y)/l\fl ,
where [V; is the pixel number with gray level [, and P is a set of neighboring
pixel pairs whose two pixels belong to different clusters. This calculation can
be restricted to a local region. If two neighbor pixels belong to two clusters,
we accumulate their difference into a difference histogram. The contrast can
be extracted from the modal of differences within a local region.

4. Medical Imaging Segmentation

Segmentation is the process in which an image is divided into constituent
objects or parts. It is often the first and most vital step in an image analysis
task. Effective segmentation can usually dictate eventual success of the
analysis. For this reason, many segmentation techniques have been deve-
loped by researchers worldwide.'® Segmentation of intensity images usually
involves four main approaches, namely thresholding, boundary detection,
region-based and hybrid methods.

Thresholding techniques*® are based on the postulate that all pixel
whose value lie within a certain range belongs to one class. Such meth-
ods neglect all of the spatial information of the image and do not cope well
with noise or blurring at boundaries.

Boundary-based methods are sometimes called edge-detection,!? be-
cause they assume that pixel values change rapidly at the boundary be-
tween two regions. The basic method is to apply a gradient filter to the
image. High values of this filter provide candidates for region boundaries,
which must then be modified to produce closed curves representing the
boundaries between regions.

Region-based segmentation algorithms postulate that neighbouring
pixels within the same region have similar intensity values, of which the
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split-and-merge?! technique based on homogeneity criterion is probably the
most well know. It includes seeded region growing®? and unseeded region
growing.

Hybrid methods combine one or more of the above-mentioned criteria.
This class includes the morphological watershed?? segmentation, variable-
order surface fitting* and active contour?* methods.

This section presents two methods among which statistical features are
used in segmentation.

4.1. Probilistical segmentation using
expectation-mazximization

Intensity-based classification of MR images has proven problematic, even
when advanced techniques are used. Intra-scan and inter-scan intensity
inhomogeneities are a common source of difficulty. While reported methods
have had some success in correcting intra-scan inhomogeneities, such
methods require supervision for the individual scan. This section describes
a new method called adaptive segmentation that uses knowledge of tissue
intensity properties and intensity inhomogeneities to correct and segment
MR images. Use of the EM algorithm leads to a method that allows for more
accurate segmentation of tissue types as well as better visualization of MRI
data, that has proven to be effective in a study that includes more than 1000
brain scans. Implementation and results are described for segmenting the
brain in the following types of images: axial (dual-echo spin-echo), coronal
(3DFT gradient-echo T1-weighted) all using a conventional head coil; and
a sagittal section acquired using a surface coil. The accuracy of adaptive
segmentation was found to be comparable with manual segmentation, and
closer to manual segmentation than supervised multi-variate classification
while segmenting gray and white matter.

Advanced applications that use the morphologic contents of MRI
frequently require segmentation of the imaged volume into tissue types.
Such tissue segmentation is often achieved by applying statistical classifica-
tion methods to the signal intensities?*? in conjunction with morphological
image processing operations.? 17

Conventional intensity-based classification of MR images has proven
problematic, however, even when advanced techniques such as non-
parametric, multi-channel methods are used. Intra-scan intensity inho-
mogeneities due to RF coils or acquisition sequences (e.g. susceptibility
artifacts in gradient echo images) are a common source of difficulty.
Although MRI images may appear visually uniform, such intra-scan
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inhomogeneities often disturb intensity-based segmentation methods. In
the ideal case, differentiation between white and gray matter in the brain
should be easy since these tissue types exhibit distinct signal intensities.
In practice, spatial intensity inhomogeneities are often of sufficient magni-
tude to cause the distributions of signal intensities associated with these
tissue classes to overlap significantly. In addition, the operating conditions
and status of the MR equipment frequently affect the observed intensities,
causing significant inter-scan intensity inhomogeneities that often
necessitate manual training on a per-scan basis.

Intra- and inter-scan MRI intensity inhomogeneities is modeled with a
spatially-varying factor called the gain field that multiplies the intensity
data. The application of a logarithmic transformation to the intensities
allows the artifact to be modeled as an additive bias field. If the gain field
is known, then it is relatively easy to estimate tissue class by applying
a conventional intensity-based segmenter to the corrected data. Similarly,
if the tissue classes are known, then it is straightforward to estimate the
gain field by comparing predicted intensities and observed intensities. It
may be problematic, however, to determine either the gain or the tissue
type without knowledge of the other. It will be shown that it is possible
to estimate both using an iterative algorithm (that converges in five to ten
iterations, typically).

A Bayesian approach is used to estimating the bias field that represents
the gain artifact in log-transformed MR intensity data. First, a logarithmic
transformation of the intensity data is computed as follows:

Y; = g(Xi) = (In([X;]1), m([Xi]2), - . In([Xi]m)) " (5)

where X; is the observed MRI signal intensity at the ¢th voxel, and m is
the dimension of the MRI signal.

Similar to other statistical approaches to intensity-based segmentation
of MRI,*17 the distribution for observed values is modeled as a normal
distribution (with the incorporation of an explicit bias field):

p(Yill's, Bi) = Gyr, (Y — p(Li) — (Bi), (6)
where
m ]- —
G¢Fi (.’E) = (2’”)77 |/(/}Fz ‘7% exp (_ixTwFilx>
is the m-dimensional Gaussian distribution with variance ¢, and where

Y, is the observed log-transformed intensities at the ith voxel;
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T'; is the tissue class at the ith voxel;

() is the mean intensity for tissue class ;
1, is the covariance matrix for tissue class x;
B; is bias field at the ith voxel.

Here, Y;, p(z), and B; are represented by m-dimensional column vectors,
while 1, is represented by an m x m matrix. Note that the bias field has a
separate value for each component of the log-intensity signal at each voxel.
In words, (6) states that the probability of observing a particular image
intensity, given knowledge of the tissue class and the bias field is given by
a Gaussian distribution centered at the biased mean intensity for the class.

A stationary prior (before the image data is seen) probability distribu-
tion on tissue class is used, it is denoted as p(T';).

If this probability is uniform over tissue classes, our method devolves
to a maximum-likelihood approach to the tissue classification component.
A spatially-varying prior probability density on brain tissue class has been
studies.?? Such a model might profitably be used within this framework.

The entire bias field is denoted by 3 = (B0, B1,...,0n_1)", where n is
the number of voxels of data. The bias field is modeled by a n-dimensional
zero mean Gaussian prior probability density. This model allows us to cap-
ture the smoothness that is apparent in these inhomogeneities:

P(B) = Gy, (B), (7)

where
1
Gy, (B) = (2m) " E[ths, |72 exp (——xT% )

is the n-dimensional Gaussian distribution. The n x n covariance matrix
for the entire bias field is denoted vg. Although g will be too large to
manipulate directly in practice, tractable estimators can result when ¢ is
chosen so that it is banded.

It is assumed that the bias field and the tissue classes are statisti-
cally independent, this follows if the intensity inhomogeneities originate
in the equipment. Using the definition of conditional probability the joint
probability on intensity and tissue class can be obtained as follows:

p(Y:, Lr]Bi) = p(Yi|li, Bi)p(T:), (8)

and we may obtain the conditional probability of intensity alone by
computing a marginal over tissue class:

p(YilBi) Zp Vi, TilB) =Y p(YilTi, Bi)p(Ts) . 9)
Ir;
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This expression may be written more compactly as

9
+ a[ﬁi]kp(ﬁ)

ZWU Y Hi = /81)]143 p(ﬁ)

=0 VYik  (10)
p=p
with the following definition of W;, (which are called the weights),
I_p(ri)Gwr_ (Y - M(F) - ﬁzJF =tissuee-class—j

2p, P(La)Gyp, (Vi = p(T5) = i)

where subscripts ¢ and j refer to voxel index and tissue class respectively,
and defining

(11)

i = p(tissue-class-j)
as the mean intensity of tissue class j. The mean residual is defined as

Ro= YW 0 ). (12)

and the mean inverse covariance is
Zj Wiji/);1 if j =K
Yl = (13)
0 otherwise .
The result of the statistical modeling in this section has been to formu-
late the problem of estimating the bias field as a non-linear optimization
problem embodied in

or
=W T+y;) 'R, (14)
This optimization depends on the mean residual of observed intensities and
the mean intensity of each tissue class, and on the mean covariance of the
tissue class intensities and the covariance of the bias field.

The expectation-maximization (EM) algorithm is used to obtain bias

field estimates from the non-linear estimator of (10). The EM algorithm

iteratively alternates evaluations of the expressions appearing in models
(11) and (14),

Lp(FZ)GlﬁI‘l (Y - :U/(F) - /Bi)Jl—‘l—ti::bue -class-j
ZFi ( )Gwr (Y M( ) ﬂz) ’

B— @ T+y;) 'R, (16)

Wij —

(15)
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(a) (b) (©)

Fig. 5. Segmentation using expectation-maximization. (a) Original MRI brain slide;
(b) Bias fied estimation; (c) Segmentation result.

In other words, model (15) is used to estimate the weights given an es-
timated bias field, then model (16) is used to estimate the bias, given
estimates of the weights.

The adaptive segmentation can be applied to spin-echo and gradient-
echo images. Examples are shown for the coronal (3DFT gradient-echo
T1-weighted) images. All of the MR images shown in this section were
obtained using a General Electric Signa 1.5 Tesla clinical MR imager
[General Electric Medical Systems, Milwaukee, WI]. An anisotropic dif-
fusion filter described in Sec. 3 was used as a pre-processing step to reduce
noise.

Figure 5(a) shows the input image, a slice from a coronal 3DFT
gradient-echo T1-weighted acquisition. The brain tissue ROI was generated
manually. Figure 5(b) shows the final bias field estimate. The largest value
of the input data was 85, while the difference between the largest and
smallest values of the bias correction was about 10. Figure 5(c) shows the
segmentation resulting from adaptive segmentation.

Note the significant improvement in the right temporal area. In the ini-
tial segmentation the white matter is completely absent in the binarization.

4.2. Unseeded region growing

Unseeded region growing is similar to seeded region growing except that
no explicit seed selection is necessary: the seeds can be generated by the
segmentation procedure automatically. Therefore, this method can achieve
fully automatic segmentation with the added benefit of robustness from
being a region-based segmentation.
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Formally, the segmentation process initializes with region A; containing
a single image pixel, and the running state of the segmentation process
consist of a set of identified regions, A1, As, ..., A,. Let T be the set of all
unallocated pixels which borders at least one of these regions

T{x¢ OAZ-AEIk:N(mﬂAk)#@},

i=1

Fig. 6. Segmenation using unseeded region growing. (a) Noisy image (¢ = 10.0);
(b) X-ray angiogram; (c) Ultrasound heart image.



Applications of Statistical Methods in Medical Imaging 399

where N (x) are immediate neighboring pixels of point x. Further, we define
a difference measure

6(x, Ai) = |g(w)-meanyea,[g(y)]|,

where g(z) denotes the image value at point z, and ¢ is an index of the
region such that N(z) intersect A;.

The growing process involves selecting a point z € T' and region A;
where j € [1,n] such that

§(z,A;) = min  {6(z, 4;)}.
z€T,k€[1,n]

If 6(z,A;) is less than the predefined threshold ¢, then the pixel is added
to A;. Otherwise, we must choose the most substantially similar region A
such that

A = argmin{d(z, Ay)} .
Ag

If 6(z, A) < t, we can assign the pixel to A. If neither of these two conditions
above apply, then it is apparent that the pixel is significantly different from
all the regions found so far, so a new region, A, 11 would be identified and
initialized with pint z. In all three cases, the statistic of the assigned region
must be updated once the pixel has been added to the region.

The URG segmentation procedure is inherently iterative, and the above
process is repeated until all pixels have been allocated to a region. To
ensure correct behavior with respect to the homogeneity criterion, the
region growing operation requires the determination of the “best” pixel
each time a region statistic is changed. The details of implementation can
be found in Lin et al.?® The segmentation results can be seen in Fig .6.

5. Improving Confidence Intervals of Image Registration
Using 3-D Monte Carlo Simulations

Clinical diagnosis and treatment usually require registration of images with
multiple modalities. Most of the medical image registration methods3%:31:48
minimize or maximize values of certain cost functions to achieve the global
optimized match. These functions are usually the sum of squares of the
distances between certain homogenous features in the two image sets to be
registered. The sum of distances between homogenous point pairs of the two
image sets,'® distances between skin surfaces of CT, MR and PET images
of the head in the “head-hat” method,®” the absolute difference between
pixel values of PET image and pixel values of image simulated by MR
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image,?® and the ratio between pixel values and their means in the same
3:51 are examples of these cost functions. However, most of these
cost functions do not directly reflect the distance between the actual and
estimated positions of targets, i.e. the target registration error (TRE). Most
medical applications demand accuracy and precision assessment methods
to justify their results. Internal consistency measures were used by
Woods et al.®! to place limits on registration accuracy for MRI data.
Almost all other registration accuracy assessment methods fall into two
broad categories: qualitative evaluations by visual inspection and quan-
titative evaluation by reference to results from a gold standard registra-
tion method. The former methods require special expertise and extensive
experience, while the latter methods require an extremely accurate gold
standard that cannot be easily achieved. Different methods may not always
be comparable to each other under identical criteria.

Using the terminology of nonlinear regression analysis, *
problem of image registration as a nonlinear least sum of squares estimation
of the transformation parameters that result in the optimal fitting of one
set of image (function) to the other set of image (data). For least square
estimation methods, the cost function could be assumed to be linear around
the neighborhood of the current parameter values. So that we can calculate
the confidence intervals or regions using the following equation!?:

(0= 00)Y (f) < (@*(n=1))F(pn—p,1-a), (17)

where F' is a chosen F-test value of the corresponding confidence level,
o2 is the residual sum of squares (registration cost function) value at the
location of the estimated parameters, and Y (f’) represents the sum of the
derivatives of the reference model image to the transformation parameters.
0 and 6, are the parameters corresponding to the confidence level and the
optimal parameters found by the registration procedure, respectively.

Since all the data points involved in the calculation of (17) should be
statistical independent to each other, and the data points in the images are
correlated, the number of points in the image could not be used directly as n
and the effective number of independent data points needs to be estimated.

To determine the effective number of independent data points involved
in the estimation of confidence intervals, we first used one Monte Carlo
simulation study based on normal conditions. The same number n selected
according to this simulation results was found to be consistent for both the
95% and 90% confidence levels. We have further investigated the validity
of the selected number n in various simulated conditions in other parts of
the study.

tissue class

4 we can refer the
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Monte Carlo studies to simulate 2D PET images and subsequent regis-
trations of the simulated images were conducted. The resulted distributions
of the estimated transformation parameters were used to assess the consis-
tency of 90%, 95% and 99% confidence intervals with the distributions in
the parameter space. 2D grey matter and white matter sinograms of the
segmented 2D Hoffman brain phantom?® were combined with the grey-to-
white ratios of 2:1, 3:1 and 4:1 before reconstruction to see whether the
discrepancies of the ratios in two images can affect the confidence intervals.
Then, filtered back-projection reconstruction programs with various filters
(i.e. Hanning, Ramp, Butter-worth, Ham, Parzen and Shepp-Logan filters)
were employed to reconstruct images of size 128 x 128. Various amounts
of spatial displacements (i.e. rotations of 0.3, 0.8, 1.2 and 3.3 degrees, and
translations of 0.16, 0.8, 1.6 and 2.4 mm) were introduced. Various levels
of Poisson noise (i.e. total counts of 5 x 105, 1 x 10 and 2 x 10°) were
simulated. A Gaussian smoothing filter with a FWHM of 5 mm is applied
to both sets of images before registration. The Powell’s algorithm® was
selected as the optimization procedure.

In the cases of extreme noise conditions and large contrast discrepancies,
the residual sum of squares (RSS) consists of two parts: the systematic error
and the error due to statistical noise:

RSS = RSSSystem + RSSnoise . (18)

The systematic error is contributed by the innate difference between the two
images, inappropriate registration method, precision error of the program,
etc. Such errors are independent of the initial displacements and noise. The
second part of the residual sum of squares is due to statistical noise. If the
systematic error is relatively large compared to the noise term, i.e. for cases
with very low noise levels and high grey-to-white ratio discrepancies, the
estimated residual sum of squares needs to be adjusted for systematic error.

Since the systematic component in RSS is much less sensitive to spa-
tial smoothing than the other component in Eq. (18), it can be estimated
by applying smoothing filters to both sets of images with relatively large
FWHDMSs when the parameters are found. By removing the systematic com-
ponent, the result RSS provides an estimation of the noise component in
Eq. (18).

The calculated confidence intervals based on statistical regression are
consistent with the simulation results for sample distributions of the trans-
formation parameters of image co-registration. Varying the amount of dis-
placement, reconstruction processes, noise levels, or tracer distributions
have little impacts on the validity of the calculated confidence intervals.
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After adjusted for systematic errors in the estimated residual sum of
squares, confidence intervals can be calculated accurately even for very
noisy conditions and with large distribution discrepancies between the
two sets of images. Since multi-modality registration can be viewed as
mono-modality registration of one image set with another simulated from
the other image modality, this method is also expected to be applicable
to multi-modality registration. Hence, visual inspection and validations by
experts are not necessary for assessing the precision of the registration
results. The results indicate the use of statistical confidence intervals has
a potential to provide an automatic and objective assessment of individual
image registration.

6. Conclusion

We have attempted a brief summary of the applications of statistical
methods in image processing in general and medical imaging in parti-
cular. The issues cover image sampling, compression, filtering, segmentation
and registration. Methods have been discussed in theory and illustrated in
empirical results. Statistical methods are powerful tools in many signal
processing applications. We hope this summary will provide an insight for
the further use of statistical methods in image processing.
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1. Introduction

Pharmacology' as the science dealing with interactions between living
systems and molecules, especially chemicals introduced from outside the
system. This broad definition includes clinical pharmacology, whose objec-
tive is to prevent, diagnose and treat diseases with drugs, and the patho-
genesis of diseases due to chemicals in the environment. A drug is defined
! as a small molecule that, when introduced into the body, alters the
body’s function. The component of a cell or organism that interacts with
a drug and initiates the chain of biochemical events leading to the drug’s
therapeutic and toxic effects is called a receptor. The receptor concept has
become the central focus of investigation of pharmacodynamics — the study
of drug effects and their mechanisms of action. The relation between the
dose of a drug and its clinically observed effects can be quite complex.
In carefully controlled in vitro systems, however, the relation between the
concentration of a drug at the site(s) of action and its effects can often be
described by relatively simple mathematical models.

in
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How a drug dose produces its effects involves not only pharmaco-
dynamics but also pharmacokinetics. The latter is concerned with the
concentration-time curve that is associated with the following “history”
of a single adminstration of a drug:

(i) absorption phase of the drug into the body — transfer of the drug from
its site of administration (via oral, or inhalational, or intravenous, or
other route) into the bloodstream,

(ii) distribution phase — distribution of the drug to different compart-
ments of the body, including receptor binding sites in the target tissue,
and resulting in rapid decline in plasma concentration,

(iii) elimination phase — excretion of chemically unchanged drug or elim-
ination via metabolism that converts the drug into one or more
metabolites (e.g. at the liver).

Section 2 presents an overview of the basic principles, models and statis-
tical methods in pharmacokinetics and pharmacodynamics. An active area
of research in the field is pharmacometrics and Sec. 2 also gives some recent
trends in this area. Particular attention will be directed to population phar-
macokinetics and its interactions with several branches of modern statistics,
including nonlinear mixed effects models, hierarchical and empirical Bayes
methods, and generalized linear mixed effects models.

Section 2 also discusses the role of pharmacokinetic and pharmaco-
dynamic studies in drug development. Specifically they are used to
determine the dosage regimen of the drug (i.e. how much and how often it
should be taken). These studies are initially performed in vitro and then
on animals to come up with rough guesses of a region of dosage regimens in
which clinical studies on human subjects are to be performed. The in vitro
and animal studies are called pre-clinical and precede the clinical studies
that are classified as Phase I studies (on healthy volunteers) and Phases II
and IIT clinical trials (on patients).

Other statistical applications in pharmacology and pre-clinical studies
include bioequivalence and bioavailability (treated in Sec. 3), assay deve-
lopment and validation (summarized in Sec. 4), drug discovery (reviewed
in Sec. 5) and toxicology (treated in Chapter 13).

2. Pharmacokinetics and Pharmacodynamics

Drug administration can be divided into two phases, a pharmacokinetic
(PK) phase in which the kinetics of drug absorption, distribution, and
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elimination translate into drug concentration-time relationships in the
body, and a pharmacodynamic (PD) phase in which the drug concentration
at the site(s) of action leads to the response/effects produced. Knowledge
of both phases is important for the design of a dosage regimen to achieve
the therapeutic objective. Since both the desired response and toxicity
of the drug are functions of the drug concentration at the site(s) of action,
the therapeutic objective can be achieved only when the drug concentra-
tion lies within a “therapeutic window,” outside which the therapy is either
ineffective or has unacceptable toxicity. Drug concentrations, however, can
rarely be measured directly at the sites of action and are typically measured
at the plasma, which is a more accessible site. An optimal dosage regimen
can therefore be defined as one that maintains the plasma concentration of
a drug within the therapeutic window. This can be achieved for many drugs
by giving an initial dose to yield a plasma concentration within the thera-
peutic window and then maintaining the concentration within this window
by periodic doses to replace the drug lost over time.

2.1. PK/PD models

Many PK and PD models have been developed in clinical pharmacology.
The monographs! ® give a comprehensive introduction to these models and
their applications. The PK models can be roughly classified as “mecha-
nistic” or “empirical,” while mechanistic models can be classified as “physio-
logic” or “compartmental.” In physiologic models, the body is viewed in
physiologic terms, making use of a priori knowledge of physiology, anatomy
and biochemistry. Although the tissues or organs differ from one another,
they share many qualitative features. As an illustrative example, consider
how anatomy affects elimination. First “clearance” CL is defined as the
rate of elimination divided by the concentration of the drug. If the organs
of elimination are in parallel, then CL is the sum of the CL; over the
elimination organs 7. On the other hand, if the organs of elimination are
in series (working sequentially one after another), then CL is proportional
to 1 —II(1 — E;), where E; is the extraction ratio of the drug at organ i.
In particular, since the gut-liver system is in series for portal circulation
whereas the portal and arterial systems into the liver are in parallel, it
follows that

CL =Qu{fupr[l — (1 = Egut)(1 = Eiver)] + (1 = fup)Egut}, (1)

where fgp is the fraction of total hepatic blood flow Qg that enters the
liver via the hepatic portal vein.
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In compartmental models, the body is viewed in terms of kinetic
compartments between which the drug distributes and from which elimina-
tion occurs. The kinetics is often described by a linear system of ordinary
differential equations, which have explicit solutions involving exponential
functions. On the other hand, the rate constants of a compartmental model
may be functions of the concentration of the drug itself or another metabo-
lite/interacting drug, leading to a system of nonlinear differential equations
that have to be solved numerically. Empirical PK models are typically
poly-exponential models of the form Yo e~*it. It is well known that differ-
ent compartmental models may imply the same poly-exponential models,
leading to identifiability difficulties with compartmental models in empirical
work.”8

A basic goal of PD models is to describe and quantify the steady-state
relationship of drug concentration (C') at an effector site to the drug effect
(E). The simplest PD model for one drug is the so-called “Emax model”
defined by

FE = emaXC’/(C + C50) R (2)

where epax is the maximum effect that the drug can produce and csg is
the concentration that yields 50% of enay. Note that this equation is the
same as the Langmuir model in thermodynamics or the Michaelis-Mantern
model in enzyme kinetics, in which the equilibrium state of ligand binding
reactions is given by

B=vF/(a+F), (3)

where B and F' are the concentrations of the bound and free ligand, respec-
tively, v is the capacity of the binding site and 1/« is the affinity constant.
In fact, assuming that F is proportional to B, Eq. (2) follows from Eq. (3).
A variant of Eq. (2) to incorporate the baseline effect eq is

E=e¢y+ emaXC’/(C + 650) . (4)
When the effect decreases response, eg = eémax and Eq. (4) has the form
E=¢y— 600/(0 + 050) = 60050/(0 + 050) .

A convenient surrogate for the drug concentration at an effector site, which
is difficult to measure directly, is dose (D). In empirical work, the Emax
model is often reformulated as

E =e¢¢+ emaxD/(D + ED50) . (5)
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A more general form of Eq. (2) is
E=bX/(X+a). (6)

For b = epax, a = 1 and X = (C/c50)Y with v > 0, Eq. (6) is called the
“Sigmoid-Emax model.” While the special case v = 1 of such models re-
duces to Eq. (2), the inclusion of 7 gives an additional adjustable parameter
in fitting the model from data.

A general Emax model for two drugs, with concentrations C' and C*,
incorporating both competitive and noncompetitive interactions is of the
form

B = o { (LU EAC ) 48O C i) )
T L+ (Cfeso) + (O [ezg) +6(Cfeso) (C fexo) |

where 0 < a<1,0<§d<1,and § >0 with 8 =0 if 6 = 0. In particular,
for 6 =1 and 8 = 1 + «, the right hand side of Eq. (7) can be written
as a sum of (C/es0)/{1+ (C/es0)} and a(C* /cty) /{14 (C*/ciy)}, yielding
additive effects of the two drugs. The case = § = 0 gives a “competitive
interaction model,” which can be written as a linear combination of two
terms of the form in Eq. (6) with b = emax and (X, a) = (C/cs0, 1+C*/cty)
or (C*/cty, 1+ C/cs0). The case B > § > 0 shows synergism between the
two drugs, while § > max(/,0) shows antagonism. In particular, the case
B =0and § = 1 gives a “non-competitive antagonism model,” which can
be written as a linear combination of two terms of the form in Eq. (6) with
b= emax and

(X,a) = (C/cs0, 1+ C* Jcty + CC* Jesocky)  or
(C*/Cgoa 1+ C/CSO + CC*/CE)()C;O) .

Non-competitive antagonism can be explained by using receptor theory as
follows. A drug interacts with two sites, one of which activates a receptor
which may still interact with a second drug to form another non-activated
receptor.

2.2. PK parameters and their nonparametric estimates

Several physiologic (e.g. maturation of organs in infants) and pathologic
(e.g. kidney failure, heart failure) processes require dosage adjustments in
individual patients to modify specific PK parameters. Two basic parameters
in this connection are clearance (a measure of the ability of the body
to eliminate the drug) and volume of distribution (a measure of the
apparent space in the body available to contain the drug).
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Drug clearance principles are similar to clearance concepts in renal
physiology, in which creatinine or urea clearance is defined as the rate of
elimination of the compound in the urine relative to the plasma concentra-
tion. Thus clearance CL of a drug is the rate of elimination by all routes
relative to the concentration C' of the drug in a biologic fluid:

CL = Rate of elimination/C'. (8)

The commonly used biologic fluid in Eq. (8) is plasma, for which CL is,
strictly speaking, “plasma clearance.” When C' is C} (blood concentration)
or C,, (unbound or free drug concentration), then Eq. (8) gives “blood
clearance” or “clearance based on unbound drug concentration,” respec-
tively. In healthy subjects, the clearance of amikacin is 91 ml/min, with 98%
of the drug excreted in the urine unchanged. This means that the kidney is
able to remove this drug from approximately 89 ml of plasma per minute.
Propranolol is cleared at the rate of 840 ml/min, almost exclusively by the
liver. This means that the liver is able to remove this drug from 840 ml of
plasma per minute. For most drugs, clearance is constant over the plasma
or blood concentration range in clinical settings, so the rate of elimination
of the drug is proportional to its concentration C, in view of Eq. (8).

Clearance is perhaps the most important PK parameter to be considered
in defining a rational drug dosage regimen. In most cases, the clinician
would like to maintain steady-state drug concentrations Css within a known
therapeutic window. Steady state will be achieved when the dosing rate
(rate of active drug entering the systemic circulation) equals the rate of
drug elimination. Therefore,

Dosing rate = CL x Cs; . (9)

The two major sites of drug elimination are the kidneys and the liver.
Clearance of unchanged drug in the urine represents renal clearance. Within
the liver, drug elimination occurs via biotransformation of the drug to
one or more metabolites, or excretion of unchanged drug into the bile,
or both. When no other organs are involved in elimination of the drug,
CL = CL;enal + CLjjver since the liver and kidneys work in parallel. The
rate of elimination of a drug by a single organ can be defined in terms of
the blood flow entering and exiting from the organ and the concentration of
drug in the blood. The rate of presentation of the drug to the organ is the
product of blood flow (@) and entering drug concentration (C;), while the
rate of exit of drug from the organ is the product of blood flow and exiting
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drug concentration (C,). The difference between these rates at steady state
is the rate of drug elimination:

Rate of elimination = Q x C; — Q x C,. (10)

Dividing Eq. (10) by the concentration C; of the drug entering the organ
yields

CLorgan =

QxC’i—‘QxC’o C’i—C’o. (1)

cl =0x =

The expression (C; —C,)/C; is called the extraction ratio (ER) of the drug.

Bioavailability is the fraction of unchanged drug reaching the systemic
circulation after its administration by any route. For an intravenous dose of
the drug, bioavailability is 1. For a drug administered orally, bioavailability
may be less than 1 since the drug may be incompletely absorbed, or metabo-
lized in the gut, the portal blood or the liver prior to entry into the systemic
circulation. If a drug is metabolized in the liver or excreted in bile, some of
the active drug absorbed from the gastrointestinal tract will be inactivated
by hepatic processes before the drug can reach the general circulation and
be distributed to its sites of action. If the metabolizing or biliary excreting
capacity of the liver is great, the so-called “first-pass effect” on the extent
of availability will be substantial. The systemic bioavailability (F') of a drug
that is completely absorbed and eliminated only by metabolism in the liver
is given by

F=1-ER, (12)

where ER = CLjiyer/Qliver is the hypatic extraction ratio.

The AUC (area under the plasma or blood concentration-time curve)
is a commonly used measure of the extent of absorption or availability of
the drug absorbed in the body. It is usually calculated using the trapezoidal
rule based on the blood or plasma concentrations obtained at various blood
sampling times. Yeh and Kwan® considered spline and Lagrange interpola-
tion schemes in lieu of the linear interpolation implied by the trapezoidal
rule and compared these methods. Let Cy,C4,...,Ck be the plasma or
blood concentrations obtained at times 0, t1, . . ., t, respectively. The AUC
from time 0 to ¢y, denoted by AUCy,, can be obtained via the trapezoidal
rule as

k
AUCO,tk = Z(tz — ti_l)(Ci + Ci_l)/Q . (13)

i=1
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Typically t; should be chosen so that Cj does not fall below the so-called
“limit of quantitation” (LOQ) that will be defined in Sec. 4. In principle,
the AUC should be calculated from 0 to co (not just to the time of the last
blood sample), and the portion of the remaining area from ¢j to co can be
large. An estimate of AUC (= AUCy,) is

AUC = AUC 4, + Cre /X, (14)

where A, called the elimination rate constant, is estimated from the elimina-
tion phase of the graph of log-concentration versus time by linear regression,
assuming that it is linear so that A\ corresponds to the slope of the fitted
regression line; (see Ref. 2, Chapter 3 and Appendix A). The United States
Food and Drug Administration (FDA) regulations require that sampling
be continued through at least 3 half-lives of the active drug ingredient,
measured in blood or urine, so that the remaining area beyond time tj is
only a small proportion of AUCy,, .

The AUC also provides a simple relationship between the volume of
distribution and dose. The volume of distribution (V') is defined as

V = Amount of drug in body/C', (15)

where C' is the concentration of the drug in blood or plasma, depending
on the fluid measured. It reflects the apparent space available in both the
general circulation and the tissue of distribution. It does not represent a
real volume but should be regarded as the size of the pool of blood fluids
that would be required if the drug were distributed equally throughout all
parts of the body. From mass balance and steady state considerations, V' is
related to clearance via CL = AV, where A is the elimination rate constant
in Eq. (14). Moreover, F' x Dose = CL x AUC (= total amount eliminated),
where F is the systematic bioavailability in Eq. (12).2 Hence,

V =CL/\ = (F x Dose)/(A x AUC). (16)

Besides CL, V, and AUC (measuring bioavailability), another PK vari-
able, called the elimination half-life and denoted by t;/5, has to be
considered when designing drug dosage regimens. It is given by

t1/2 = (£n2)/A = 0.693 V/CL (17)

and corresponds to the time taken for the concentration to drop to half of its
initial level, assuming a one-compartment model for the drug’s elimination
phase in the body, as is usually done in designing drug dosage regimens.
In view of Eq. (17), t1/2 can be estimated by (Pn2)/X, where \ is an
estimate of the elimination rate constant described after Eq. (14). When
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F =1, we can estimate CL by CL = Dose/AUC. Without assuming F' to be
1, we have to replace Dose above by F x Dose, where F' is an estimate of F.
Once CL has been estimated, we can estimate V' by (/31/5\ To estimate F,
we need additional data following an intravenous dose D*, yielding AUC*
and whose F'* can be assumed to be 1. Then F' can be estimated from the
original (extravascular) dose D and AUC by

. AUC/D
F—mln{m,l}.

The above PK parameters are considered in a single dose trial. In
practice, drugs are most commonly prescribed to be taken at fixed and
equal time intervals, each of width 7. The maximum, minimum, and average
concentration of the drug in steady state, denoted by Cssmax, Cssmin
and Cs; 4y, respectively, are considered in conjunction with the steady-
state volume of distribution and AUC during a dosing interval in steady
state. See Chapter 7 of Rowland and Tozer,? which also shows how to
develop a dosage regimen from knowledge of these PK parameters and the
therapeutic window of a drug. Data obtained on multiple dosing can be
used to estimate the PK parameters of a drug as follows. The most useful
information derived from a multiple dosing study is the ratio of clearance
to availability. It is obtained from

CL _ (Dose/T) 7 (18)
F Css,a'u

where Cjsg o0 is determined from the area under the plasma concentration-
time curve within a dosing interval at steady state divided by 7. Occa-
sionally, the drug is given as a multiple intravenous regimen, in which
case the ratio (Dose/T)/Cgss.qv is simply clearance, since F' = 1. The
accuracy of the clearance estimate depends on the number of plasma con-
centrations measured in the dosing interval and on the ratio of 7/t ;.
The estimate can be improved by using several dosing intervals in steady
state. Equation (18) is also useful for determining the relative availa-
bility of a drug administered extravascularly, between two treatments
(e.g. dosage forms) A and B. Assuming that clearance remains unchanged,
we have

ss,av D
Relative availability = (Cos.av) : (Dose/7).4 (19)

(Css,av)A (DOSG/T)B .
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2.3. Parametric and population PK/PD models

The nonparametric estimates of PK parameters described above assume
that the blood (or urine) samples are collected frequently through at least
3 half-lives of the active ingredient, so that the curve between successive
times t; and tx41 is well approximated by the line joining its values at
these two points. When the experiment does not meet such conditions, the
nonparametric estimates of AUC, CL and t; / become unreliable and there
are no satisfactory ways to evaluate the bias and standard error of such
estimate. In this case it is preferable to use a parametric approach, based
on the commonly used one-compartment model

Dk,
V(ka — ke)
in which y; is the concentration at time ¢; after the administration of a
single oral dose D. Here V, k,, k. are the volume of distribution, absorption
rate constant and elimination rate constant, respectively. Note that model
(20) has the form of a bi-exponential model a; e~ 1t 4age A2t

Lai” gives a review of the literature on fitting the poly-exponential
regression model y; = 3 + 22:1 are Ml + ¢;, in which the errors ¢; are
assumed to be independent with zero means and

Y = (e_ketj — e_k“tj) +e, 1<j<n, (20)

with a1 = Q9.

(i) var(e;) = 0% (constant variance error models), or
(ii) var(e;) = f2(t;)o? (constant coefficient of variation error models), or
(iii) var(e;) = fo(t;)o? (Poisson-type error models),

where 6 = (\1,..., \g;aa,...,ax, 3) and fo(t) = B+ . are” M. We can
estimate 6 by weighted least squares, i.e. by minimizing

S) =3 wily; = folt)]*- (21)

For fixed A1,..., g, fo(t) is linear in the parameters (,aq,...,ar and
standard formulas in multiple linear regression can be used to find least
squares estimates of the linear parameters 3, a,...,ax. This reduces the
problem of minimizing S(#) to that of minimizing

S* (A, ) = 5 min  S(0).

FIeS RRRRTYe 2
In the case of the Poisson-type or constant coefficient of variation error
model, the weights w; also involve the unknown parameter 6 and can be
determined at each iteration from the previous iterate. It is shown in Lai”
that S* not only provides a relatively stable numerical algorithm for finding
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the least squares estimates but also sheds light on the range of models
that are compatible with the data. Depending on the experimental design,
S* can be very flat over a broad region containing the minimum or can
decrease steeply to the minimum. It is also shown in Lai” that although
the parameter vector § may be poorly estimated because S* is relatively
flat, the function fy(-) is typically well estimated by weighted least squares.
Therefore derived parameters like AUC can still be well estimated from
the estimated f; even though § does not estimate 6 well because of the
experimental design.

Parametric modeling also facilitates the evaluation of standard errors
and construction of confidence intervals. For the Emax model (2), which
can be rewritten as E/C = aE + b with a = —1/¢50 and b = emax/ 50,
Scatchard® proposed to estimate a and b by linear regression of the observed
E/C on C. This simple method is usually adequate for point estimation
because of the large signal-to-noise ratio in the measurements. It is, how-
ever, unsatisfactory for constructing confidence intervals of the unknown
parameters, as has been noted in the ligand-binding literature related to
the mathematically equivalent model (3). Lai and Zhang!® give a review
of the literature and propose a new approach using nonlinear least squares
and bootstrap methods to construct confidence regions for the parameters.
The numerical studies reported in Lai and Zhang'® show that these confi-
dence regions are markedly different from the elliptical confidence regions
based on asymptotic normal approximations.

So far we have considered estimation of the PK/PD parameters of a
subject from the data in a study on the subject. In many PK/PD studies,
however, data are collected from a number of subjects, some of whom may
have intensive blood sampling while others only have sparse data. A primary
objective of these studies is to study the PK/PD characteristics of the en-
tire population, such as how they vary with certain covariates. This requires
embedding the individual parametric PK/PD models in a population
model. For example, the y; in model (20) are now replaced by y;;, where ¢
denotes the subject number. Since the dose, volume of distribution, absorp-
tion and elimination rate constants may vary from subject to subject, we
also have to replace D,V kq, ke,n by D;, Vi, kai, kei and n; in model (20).
Let 6; be the vector consisting of the logarithms of the PK parameters
Vi, kqiy kei- The unknown 6; may vary with certain covariates, such as
the subject’s age and body weight. How can the individual subjects’
data be used to analyze such relationships for the target population, of
which the subjects can be regarded as a sample? We shall show that
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nonlinear mixed effects modeling provides a valuable tool to address this
problem.

Returning to the PD model (2), the variable C refers to concentration
at an effector (tissue) site. It is usually impossible to measure C' directly,
so some surrogate for C' has to be used, as in model (5). On the other
hand, if one has a kinetic model for C, then it can be used to impute the
value of C' from the blood/urine measurements. Chapter 9 of Davidian and
Giltinan!! illustrates how population PK/PD models can be synthesized
for such tasks.

2.4. Nonlinear mixed effects models

The preceding population PK/PD models are special cases of nonlinear
mixed effects models (NONMEM) of the form

yij = fi(tij,0:) €5, Oi=g(xi,8)+b; (1<j<n;,1<i<K), (22)

in which 6; is a 1 x r vector of the ith subject’s parameters whose regres-
sion function on the subject’s observed covariate z; is given by g(z;, 5)
with 1 X s parameter vector 3, which is the “fixed effect” to be estimated.
The “random effects” b; in model (22) are assumed to be independent and
identically distributed, having common distribution G with mean 0. The
ith subject’s response y;; at t;; has mean f;(¢;;,6;), in which f; is a known
function. Given 6;, the random errors €;; are assumed to be normal with
mean 0 and standard deviation ow(#;), in which w is a given function and
o is an unknown parameter. The regression function g relates 6; to the
1th subject’s physiologic characteristics that constitute the covariate vector
x; in model (22). The first equation of (22) is often called the individual
measurement model and the second equation the population structure
model. The population distribution G is usually assumed to be normal
with mean 0 and covariance matrix X so that 3, o, ¥ can be estimated
by maximum likelihood. However, unlike linear mixed effects models in
which the normal assumption on G yields closed-form expressions of the
likelihood, the normality of G in nonlinear mixed effects models leads to
computationally intensive likelihoods that involve K integrals. A commonly
used approach, as adopted in the software package NONMEM!? or the nlme
procedure in S-Plus, is to develop iterative schemes based on first-order
approximations of f;(t;;, g(z;, 8) + b;) in model (22) so that the normal
assumption on G can be used to reduce the problem to that of a linear
Gaussian mixed effects model at each iterative step.
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Unless otherwise stated, we shall assume throughout the sequel that the
random errors €;; in model (22) have common variance o2 (so w(f) = 1).
The likelihood function L(S, o, X) is proportional to

K
S]] [ e
i=17R"

Uz

1 1
x exp{ sy > v — filtig, 9(wi, B) + b)) — 0% 1bf}dbi,
=1

(23)

where |X| denotes the determinant of 3. For the case of more general
w(#;), simply replace o in model (23) by cw(g(x;, 3) + b;). Computing
the maximum likelihood estimate of (3, o, X) via numerical integration and
nonlinear optimization becomes difficult for large K. Letting n = (o, %),
Lindstrom and Bates'® proposed the following iterative procedure that
involves successive linear approximations to f;(t;;, g(xi, 3) +b). At the mth
iteration, the Lindstrom—Bates procedure consists of a pseudo-data step
and a linear mixed effects (LME) step.

(a) The pseudo-data step: Given the current estimate 7™ of n, compute
B = 3(7™) and I;Em) = b;(™), 1 < i < K, that jointly minimize

Z{w(m))iz Si(b, B) + bi(2™) 71T /2}, where

1(8.5) = Yolos — Fltsaatend) +07 2. (@)

j=1

This can be carried out by modifying a standard nonlinear least squares
routine; see Sec. 6.1 of Lindstrom and Bates.'® Define the s x n;, r x n; and
1 X n; matrices

m 7] 7 7(m
Xi( ) = <8J; (tw,g(l'“ﬂ)"’bg ))|,8_B(m)> ’
1<j<n;

m a 1 A(m
7" = < / (tij, g, B ))+bz‘)|bi_ggm>> :

9b; 1<5<n;

Y™ = (yi — filti, g(ai, B7) + bgm)))lngni + B(m)Xi(m) + BEm)Z§m) :
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(b) The LME step: Linear approximation to f;(t:;, g(z, 3) + b;) around
(B(m), 1357") leads to the linear mixed effects model

m) :IBXZ-(m) —‘rblZl(m) +(5i1;~~~75im)~ (25)

The integrals in expression (23) for the likelihood function of the linear
mixed effects model (25), instead of model (22), have closed-form expres-
sions, yielding maximum likelihood estimates of the form

X 1
B — (Z }/Z(m)v le > (Z X(m)v 1X m)T > \ (26)
i=1

where Vi = 2™7T$2™ 4 621, and §) = (6,%) is computed via the
Newton—-Raphson algorithm to maximize the likelihood; see Sec. 6.2 of
Lindstrom and Bates'® where a restricted maximum likelihood (REML)
variant of the procedure is also given.

Several alternatives to the linearization approach have been proposed
in the literature. One is Monte Carlo integration, whose accuracy and
computational complexity depend critically on how and how many samples
are drawn. Importance sampling and periodic updating of the impor-
tance weights during iterative maximization of the likelihood have been
proposed.!4~16 Another alternative, proposed by Pinheiro and Bates,!”
to use an adaptive version of Gaussian quadrature based on ideas similar to
importance sampling in Monte Carlo integration. A third approach is to use
MCEM (Monte Carlo EM) in which the E-step of the usual EM algorithm
is replaced by an empirical estimate based on a random sample generated
from the conditional distribution.'®

Instead of applying Monte Carlo methods to compute the integrals in the
likelihood function to be maximized in the maximum likelihood approach,
it seems more direct to apply Markov Chain Monte Carlo (MCMC) to
evaluate the posterior distribution of (3, 0, ¥) when a prior distribution on
these parameters is assumed. MCMC enables one to generate a sequence
of random samples whose limiting distribution is the target distribution
(in this case the posterior distribution of (3,0, %)) and thereby avoids the
calculation of normalizing constants and the numerical integration asso-
ciated with any probability statements of interest. The most popular
MCMC method used in the mixed effects model framework is the Gibbs
sampler. This is because the (hierarchical) Bayes model allows a natural
grouping of the vector of all unknown or unobserved parameters into



Statistics in Pharmacology and Pre-Clinical Studies 423

subvectors 3, o, ¥ and (0;, i = 1,...,n), where drawing samples for
each component is much easier than drawing samples for the whole vector.
Successful usage of Gibbs sampler for NONMEM in population PK studies
has been reported in Refs. 11, 18-22. The relative efficiencies of different
MCMC procedures have been investigated by Bennett et al.?3 and Shih.?*
In addition to considerations in choosing transition functions, there are
other practical issues one has to deal with when implementing MCMC, such
as the number of chains to run, the length of burn-in sequences, and how
to monitor convergence. These are no general answers to these questions
and they often need to be addressed empirically by numerical experiments;
see Chapter 26.

The normality assumption on the population distribution G has been
weakened by Davidian and Gallant,?® who assume that G has a density
function of the form of a product of a multivariate normal N (0, X) density
function and the square of a polynomial of degree p, which was intro-
duced in another context and called the “smooth nonparametric” (SNP)
model by Gallant and Nychka.?6 The coefficients of the polynomial and
the components of the matrix ¥ can be estimated by maximum likelihood,
while the degree p of the polynomial can be chosen via standard model
selection criteria like BIC, AIC or the Hannan-Quinn criterion. Magder
and Zeger?” proposed an alternative method that uses mixtures of normals,
while Fattinger et al.2® modeled each component of b; as a data-dependent
monotone spline transformation of the corresponding component of a
multivariate normal vector. All these methods require considerably more
intensive computation to maximize the likelihood function than the case of
normal G assumed before.

Since the normality assumption on G only provides numerically
tractable maximum likelihood estimates after various approximations and
since attempts to relax that assumption have led to even more computa-
tionally intensive procedures, a natural alternative is to try estimating G
nonparametrically (by a distribution with finite support, with the number
of support points depending on the sample size). However, even for the
simple case n; = n and f;(t;;,0;) = 0; with known § and o, it is difficult
to estimate G well since the optimal rate of convergence of the estimate to
G is very slow when G has a smooth density function, as pointed out by
Carroll and Hall?® and Fan.?® When G has fixed support, Chen?! showed
that the optimal convergence rate is K ~/2
is known but decreases to K ~1/* otherwise as K — co. Lindsay®? showed

if the number of support points
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that the nonparametric maximum likelihood estimate G of G is unique
and discrete, with no more than K support points, and Mallet®® made use
of this and other properties of G to develop an algorithm to compute G.
The situation becomes considerably worse when ¢ and 3 are unknown and
fi(tij,0;) is nonlinear in ;, for which little is known about the performance
of nonparametric estimates and it is also difficult to compute G.

One way to ensure that 3 and o can be well estimated is to require the
dataset to contain a subset from subjects whose 6; can be well estimated.
This idea was introduced in the work of Ibragimov and Has'minskii?* who
consider estimation of («, G) from independent random variables y1, ...,y
such that the conditional density function of y; given 6; has the parametric
form f,(:|6;), in the presence of another “direct” sample 61,...,0; from
G. Let K = I 4+ J. They show that under certain regularity conditions,
a variant of the nonparametric maximum likelihood estimate that is
initialized at a y/n-consistent estimate of (a, G) is asymptotically efficient.
Their model of the data {61,...,05;91,...,ys} is commonly called the
Ibragimov-Has'minskii (IH) model. We shall relax the model assump-
tions and extend them to our setting, providing what will be called an
“Ibragimov-Has’minskii (IH) environment.”

In an TH environment, there are I (< K) subjects whose 6; can be
well estimated by the nonlinear least squares estimate 0, based on (Yij, tij)s
1 < j < n,;. Without loss of generality we can assume that these are the
first I subjects. We can determine from the data the standard error of each
component of 6; using the asymptotic formulas in nonlinear regression.33
The ith study is deemed “good” if all components of 6; have reasonably
small standard errors relative to their absolute values. A consistent estimate
of o2 is given by

I n; B
5° = ZZ(W(Gi))_Q(yw fi(tij, 0 Z (27)
i=1 j=1

Such TH environments arise in most population PK studies, which use
combined data from several Phases I, IT and III trials. The subjects in
Phase I trials are usually healthy volunteers or patients with the intent-to-
treat disease, from whom intensive blood sampling is conducted, and thus
provide natural candidates for good studies.

Lai and Shih3¢ developed the following iterative scheme to compute the
MLE of (§, 0, G) in an IH environment. First note that in the case w(#) =1
the likelihood function is proportional to
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K M
L(B,0,G) = Hofm Z am
i=1 m=1

X exp{ - r;i[yij —fi(tij,g($i7ﬂ)+Cm)]2} (28)

when G has a finite support {¢1,...,(n} and puts mass a,, at (. For the
case of more general w(#; ), simply replace o in model (28) by cw(g(w;, 5)+
Cm). The initial estimate (3,5, G(©) is obtained as follows: Let 6(0) =
& and B be the least squares estimate $(® which minimizes 21121(9: —
g(zi, BT (0; — g(a:, 8)). Let by = 6; — g(x;, ), 1 < i < I, denote the
residuals, and let b; = b; — (231:1 IZ)/I be the centered residuals. Let G(%)
be the distribution putting weight 1/I at each centered residual. (37 0, G’)
is computed via an iterative procedure in which the following two steps are

used to compute (ﬁ(k)7&(k)7G(’“)) from (B("”'*l),&("”'*l)7é(’“*1)); see Ref. 36
where a termination criterion and numerical examples are given.

Step 1. Suppose G~ puts mass aj at G (j=1,...,Mp_1). Find the
maximizer (6*),5®)) of L(8, 0, GH=1).

Step 2. Use Mallet’s algorithm?? to maximize L(ﬂA(k) ,6%) @) over the set
of distributions G with no more than K support points.

2.5. Empirical Bayes methods for individualization
and diagnostics

We now consider the prediction problem of estimating a function h(6) of the
unobservable parameter 6 for a new subject with covariate x and from whom
some data have been collected. For example, in population PK studies, it
is believed that efficacy and toxicity of a drug are directly related to the
drug concentrations at the target site, which are generally not available
but for which blood concentrations are often good surrogates; therefore
the criteria for designing the dosing regimen for a specific subject often
involve functions of individual concentrations, or equivalently, functions
of the individual parameter . The subject’s data are often too sparse to
provide an adequate estimate 6 of 6 so that h(f) can be used to estimate
h(6). If 8, o and G are known, then a natural estimate of h(6) in the mixed
effects model is the posterior mean Eg 2 ¢[h(f) |subject’s data]. Without
assuming /3, 02 and G to be known, the empirical Bayes approach in Ref. 36
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replaces them by their estimates B, 52, G from the K studies so that h(6)
is estimated by

h/(—H\) = Ej ;2 ¢[h(0) [subject’s data] . (29)

This idea of borrowing information from other subjects is in fact
one of the main motivations for building population structure models.
In particular, because of ethical and practical reasons, intensive blood
sampling is often not feasible for clinical patients, for whom this individua-
lization of dosing regimen can be obtained by combining the patient’s
sparse data and characteristics (as measured by x) with the large database
for the population model. See also Berzuini®*® for an example of medical
monitoring.

Empirical Bayes ideas can also be used to derive diagnostics for the
regression model (22). If the individual parameters 6; were observed, the
residuals r; = 6; — g(xi7ﬁ) would provide approximations for the un-
observable i.i.d. random variables b;. Therefore substantial deviation of
these residuals from i.i.d. patterns would suggest inadequacies and pos-
sible improvements of the assumed regression model. Since the 6; are
not observed, we propose to replace them by the empirical Bayes esti-
mate EB,Er?,G‘(ei | Vi1, -« s Yings ti, Ti), leading to the following generalized
residuals in the sense of Cox and Snell®?:

’Fz:E(f}ﬁ{é)(ez‘yzlu7y1n“tzvml)_g(xu/8)7 7':]-77K (30)

The 7#; can be interpreted as estimates of the independent zero-mean ran-
dom variables r; = E(g,52.¢)(0: | yi1, - - -, Yin,» ti, ) — g(24, ).

Instead of using the posterior mean in Eq. (30), it is popular in
population PK studies to use the posterior mode

8 = arg max Pg 2,6y (0i [ Wity - Ying s iy wi) (31)
to form the residuals §; — g(xi,ﬂA), where pg ,2,c) denotes the posterior
density in the Bayesian model with given 3, o2 and G. This was first sug-
gested by Maitre et al.*® in connection with linearization methods under
the assumption of normality for the population distribution, but is also
used as a general strategy in the semiparametric models of Davidian and
Gallant?® and the hierarchical Bayesian models of Wakefield and Racine-
Poon.** For linear Gaussian mixed effects models, the mean and the mode
of the conditional distribution of 6; given y;1,...,yin, coincide since the
conditional distribution is Gaussian, so the theoretical justification for
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the r; via an empirical Bayes point of view applies also to the s;. In the
case of nonlinear mixed effects models, the posterior mean and mode no
longer coincide, and 7; is usually easier to compute and more robust. In the
above empirical Bayes approach, we have replaced (3,02, G) in the pos-
terior mean Eg ,2 ¢[h(0) |subject’s data] by an estimate (3,62,@). This
estimate (3,62, G) can be either parametric, as in Lindstrom and Bates,3
or nonparametric, as given above.

We next list some examples of using empirical Bayes/hierarchical
Bayes/posterior mode estimates in NONMEM to quantify covariate effects
on PK parameters in the literature:

(a) Population PK analysis of felbamate in epileptic patients*?: Apparent
clearance of felbamate was found to decrease with age for children (age
< 12) and to stay relatively constant beyond 13 years of age. There were
1-17 blood samples per subject. This study, undertaken by Zhu and
his collaborators at Schering-Plough Research Institute and Wallace
Laboratories, led to the FDA approval of the labeling of felbamate for
its prescription to children.

(b) Population PK analysis of quindine in hospitalized patients treated for
atrial fibrillation over ventricular arrhythmias!®2%43: The effects of di-
chotomized creatinine clearance, body weight and «;-acid glucoprotein
concentration on clearance were analyzed from a study consisting of
1-11 blood samples per subject.

(c) Population PK analysis of phenobarbital in neonates'!:2>44: The effects
of birth weight and 5-minute Apgar score on clearance and volume were
analyzed from a study with sparse PK data in each subject (having only
1-6 concentration measurements).

Model validation methodology for population PK analysis is still in its
infancy. One commonly used approach is to use m-fold cross-validation or
bootstrap to estimate the prediction errors based on a fitted model. Here
the prediction error may be associated with prediction of concentrations
or prediction of PK parameters (that can be estimated nonparametri-
cally only from subjects with intensive measurements). Given the compu-
tational complexity associated with fitting nonlinear mixed effects models,
m-fold cross-validation (with m < 20) appears to be more feasible than the
bootstrap (for which the FDA recommends using at least 200 bootstrap
samples).
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2.6. The Lindstrom—Bates algorithm and related
statistical methods

Vonesh?® proposed an alternative to the Lindstrom-Bates algorithm (con-
sisting of the pseudo-data and LME steps described in Sec. 2.4) by applying,
for fixed B and 7, Laplace’s asymptotic formula

/ el®) g ~ (2m)7/2| — [(B)| /2! ® (32)

to each integral in expression (23), where | denotes the Hessian matrix
of second partial derivatives of [ and b maximizes I(b). Earlier, Wolfinger46
derived the pseudo-data step of the Lindstrom—Bates algorithm by applying
for fixed n Laplace’s asymptotic formula to the multiple integral

K
/.../exp {Zli(bi;ﬂ)} dBdbydby - - - dbg , (33)
=1

and then used a Gauss—Newton approximation of —1[ to derive the REML
version of the LME step. Laplace’s asymptotic formula has also been used
by Breslow and Clayton?” and Lee and Nelder?® to derive their estimators in
generalized linear mized models (GLMM) and hierarchical generalized linear
models (HGLM), respectively. The HGLM involves independent random
vectors (y;, 1, 2I') such that the conditional density function of y; given a
1 x K vector of random effects b has the GLM (generalized linear model)
form

fylb, zi, 2i) = cly, @) exp{(0iy — ¢(6:))/a(9)}, (34)

in which ¢ is a dispersion parameter, 6; is the canonical parameter such
that E(y|b, z;, z;) = g(Bx; + bz;) and g is the inverse of a monotone link
function. Letting f, be the density function of b with unknown parameter
a, Lee and Nelder®® define the hierarchical likelihood (h-likelihood) by

h(b, B, ¢, ) = log fa(b) + Y log f(yilb, zi,z:) . (35)
=1

They propose to estimate 3, ¢, a by an iterative procedure whose mth
iteration consists of the following two steps:

(i) Given the current estimate (¢(™, &™) of (¢,a), compute the maxi-
mizer (b0, 3™ of h(b, 8, (™, &™) by solving the score equations
Oh/0B3 =0 and Oh/0b = 0.
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(ii) Given the current estimate (5™, (™
profile h-likelihood ha(¢p,a) = h(b¢
with

(b, B), maximize the adjusted

) of
™, B, ¢, a) + (log [2m¢H 1) /2

b

(b,8)=(bm),5m)
by solving the score equations dh4/0¢ = 0 and Oh4/0a = 0.

[ 9*h/oB>  9*h/0p0b
~ \ 02h/0bOB  O2h/Ob?

For the special case of normal f, with mean 0 and covariance matrix
Y(a), the HGLM reduces to the GLMM considered by Breslow and
Clayton*” who make use of the normality assumption to come up with an
explicit expression for Laplace’s approximation to the likelihood function
[ e8¢0 g, yielding an algorithm similar to that of Lindstrom and Bates
for NONMEM. The Lee-Nelder procedure above is somewhat different
and is motivated by generalizing Henderson’s*® joint likelihood for linear
models with normal random effects. It can be derived by applying Lapalce’s
approximation to [ [ e"*#:#®)dbd3, analogous to integral (33).

Let By and o( denote the true values of # and o. A sufficient condition
for the validity of Laplace’s asymptotic formula (32) is that [(b) = NA(b),
where N — oo and A is a fixed smooth function with a unique maximum.

The integral for the ith subject in model(23) has the form
/ exp{l;(b|3,0,%)}db, where
R’!‘

lz(b|ﬁv g, E) = _Si(bv ﬁ)/02 - bzile/2 — Ny IOgU, (36)

in which S; is computed via Eq. (24) from n; observations (y;j,t;;), 1 <
j < ny;. If these observations are sufficiently informative about the ith
subject’s parameter vector 8; = g(z;, Bo) + b;, then for (8, 0) near (5o, 0p),
S; (b, 8) becomes peaked around b; and can be approximated by a quadratic
function in a neighborhood of the maximizer b; = b;(3, o, 2) of I; (b3, o, ).
Laplace’s asymptotic formula basically replaces [; in integral (36) by the
approximating quadratic function of b as /\min(—fi(l;ﬂ B,0,%)) — oo, where
Amin (+) denotes the minimum eigenvalue of a symmetric matrix.

When the ith subject has sparse data (yij;,t:;), Si(b,5) is no longer
peaked around b; and Laplace’s asymptotic formula may be a poor approx-
imation to integral (36). A better way to compute integral (36) in this case
is to use Monte Carlo, expressing integral (36) as the expectation

Es{exp(~8i(b, §)/0°)} . (37)
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where Fy, denotes expectation under the probability measure for which b
is a normal random vector with mean 0 and covariance matrix ». Lai and
Shih37 proposed the following hybrid method for evaluating model (36).
Take ¢ > 10 and let V; = —i(b;|5, 0, %).

(1) If Amin(Vi) < ¢, evaluate integral (36) by Monte Carlo approximation
to expression (37):

B
B™Y " exp{—Si(bi;, 3)/0°},
j=1
where b;;, j = 1,...,B, are independent samples from the N(0,X%)
distribution.
(ii) If Amin(V3) > ¢, evaluate integral (36) by its Laplace approximation

(2m)" 2|V |72 exp{li(bi] 8,0, )} -

By performing simple diagnostics on the appropriateness of using
Laplace’s asymptotic formula to evaluate the integral in expression (23)
for the ith subject, the hybrid approach preserves the computational sim-
plicity of Laplace’s method when it can be used and switches to the Monte
Carlo method when Laplace’s method fails. In practice, the actual popula-
tion distribution G of the random effects b; may differ substantially from
the assumed normal distribution with unknown covariance matrix, which
at best can only be regarded as an approximation to G. If the ith subject
has only sparse data so that S;(b, 8) is relatively flat in b, then applying the
Monte Carlo approach to the subject is tantamount to choosing a certain
random distribution G;, which is the empirical distribution of a sample of
size B from a normal distribution, to approximate G. Since the assumed
normal distribution is itself also an approximation to G, there is no need
for a “high resolution” in the random distribution used to approximate the
normal distribution, so using 50 < B < 200 samples in the Monte Carlo
method should be able to provide enough statistical detail so that the re-
sultant estimator of (3, o, X)) still has a low computational cost comparable
to that of the Lindstrom—Bates estimator. On the other hand, if the ith
subject has enough data so that S;(b, ) is peaked around b; for 3 near Bo,
the Monte Carlo approach becomes unreliable unless B is sufficiently large
and importance sampling is needed to generate the B samples from a distri-
bution that is peaked around l;i, so Laplace’s method gives a much better
approximation to (36) in this case. Thus the Monte Carlo and Laplace’s
methods complement each other in the hybrid approach, which uses either
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N(0,X) or the empirical distribution of a sample of size B from N(0,X)
as the approximation G;(:|X) to the unknown (and possibly non-normal)
mixing distribution G. Using this hybrid approach to compute expression
(23) approximately, Lai and Shih®” make use of numerical differentiation
and iterative optimization schemes such as conjugate gradient and quasi-
Newton methods®® to maximize this approximation to expression (23),
providing the estimator (3,8,3) of (8,0,%). Good starting values in this
iterative scheme to compute (B,&, f]) can be obtained by running several
steps of the Lindstrom—Bates nlme procedure.

Lai and Shih®7 also develop an asymptotic theory of the hybrid esti-
mator (3,6) as the number K of subjects becomes infinite. This theory
does not require all subjects to have sufficient data to estimate their 6;
consistently, nor does it require the actual G to be normal. Under the as-
sumption that a sufficiently large subset of the subjects have good studies
in the sense that their Ay, (Vi) exceeds the threshold ¢ for applicability of
Laplace’s approximation to evaluate integral (36) and some additional re-
gularity conditions, (ﬁ, &) is shown to converge with probability 1 to (8o, 00)
as K — o0o. Let n =n1 +--- 4+ ng. It is also shown in Lai and Shih37 that
\/ﬁ(ﬁn — Bo,6n — 0p) has a limiting normal distribution as K — oo under
these and some other conditions. Moreover, this hybrid estimator and its
asymptotic theory have been extended in Lai and Shih3” to the HGLM of
Lee and Nelder*® and the GLMM of Breslow and Clayton.*”

3. Bioavailability and Bioequivalence

Generic drug products (manufactured by other companies that are not
the innovator) have become increasingly popular since the 1960s. For the
approval of a generic drug product, the FDA usually does not require a
regular new drug application (NDA) submission to demonstrate the efficacy
and safety of the product. Instead, it requires the generic drug company to
submit bioavailability (BA) information on the generic drug and to provide
evidence of its bioequivalence (BE) to the standard (or reference) drug in an
“abbreviated new drug application” (ANDA), following certain regulations
that became effective in 1977 and are codified in 21 CFR 320, in which BA
is defined as “the rate and extent to which the active ingredient or active
moiety is absorbed from a drug product and becomes available at the site
of action.” In Sec. 2.2 we have discussed how the PK data of a drug can
be used to measure its BA. This section focuses on BE and the statistical
methods in BE studies.



432 T. L. Lai, M.-C. Shih & G. Zhu

Two drug products are said to be bioequivalent if they contain either
identical amounts of the same active ingredient (i.e. are “pharmaceutical
equivalents”) or an identical therapeutic moiety and if their rates and
extents of absorption are not significantly different when administered
at the same dose under similar experimental conditions. BE studies are
conducted not only for ANDAs of generic drugs but also for formulation
change of an approved drug. For example, clinical trials for the NDA of a
drug usually use the drug produced in a laboratory setting. After approval,
commercial batches produced from manufacturing plants have to be demon-
strated to be bioequivalent to the clinical trial batches. Moreover, there may
also be changes from tablet to capsule formulations so that BE studies are
needed.

BE studies typically use healthy normal subjects and do not involve
Phases IT and IIT trials. A pilot study using a small number (e.g. 6) of sub-
jects can be carried out in advance to assess inter-subject and intra-subject
variabilities, sample size, time intervals to collect blood or urine samples
and to provide other information. Instead of the commonly used randomized
designs in Phases II and III studies, in which each subject is randomly
assigned to one and only one formulation of a drug (parallel designs),
BE studies typically use the crossover design, which is a modified ran-
domized block design in which each block (consisting of a subject or a
group of subjects) receives more than one formulation of a drug at dif-
ferent time periods. Crossover designs have the following advantages in
BE studies:

(a) Each subject serves as his/her own control, allowing a within-subject
comparison between formulations.

(b) Inter-subject variability is removed from the comparison between
formulations.

(c) With proper randomization of subjects to the sequence of formulation
administrations, a crossover design can provide the best unbiased esti-
mates of the differences (or ratios) between formulations. On the other
hand, care must be taken to address the “carry-over” effects in crossover
designs. In BE studies, the “washout” period, which is defined as the
rest period between two treatment periods for the effect of the preceding
treatment period to taper off, must be long enough so that the carry-
over effect from one treatment period to the next is negligible. There is
an extensive literature on crossover designs for clinical trials,®*®7 and

for BE studies.?®
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Although parallel designs are infrequently used in BE studies since
crossover designs usually provide much better ways of identifying and
removing the inter-subject variability from the comparison between formu-
lations based on a sample of typically 18-24 subjects, there are situations in
which a parallel design is preferable to a crossover design, e.g. when (i) the
inter-subject variability is relatively small compared to the intra-subject
variability, or (ii) the drug has long elimination half-life so that the long
washout period in a crossover design prolongs the study and increases the
chance of drop-out of the subjects, or (iii) the cost of increasing the number
of subjects is smaller than that of adding an additional treatment period,
or (iv) extensive blood collection is not feasible from the subjects.

Suppose there are two formulations, one of which is a test formulation
(T) and the other a reference (or standard) formulation (R) of a drug.
For a standard 2 x 2 crossover design, each subject is randomly assigned
to either the first sequence RT or the second sequence TR at two dosing
periods. A subject assigned RT receives R at the first dosing period and T
at the second period. The dosing periods are separated by a washout period
of sufficient length to rule out carry-over effects. More generally, an m x n
crossover design involves m sequences of formulations that are administered
at n time periods. Examples are the 2 x 4 crossover design consisting of the
two sequences TRTR and RTRT, and Balaam’s 4 x 2 crossover design®!
consisting of the four sequences TT, RR, RT and TR.

A widely used statistical model to perform inference in these designs is
the linear mixed effects model

Yijk = 1+ aj + ik + bjk + ¢j—1k + €ijk (38)

where i refers to the subject number, j the period number and &k the
sequence number. Here p is the overall mean, a; is the fixed effect of the
Jjth period (with Xa; = 0), 1, is the random effect (assumed to be normal
with mean 0) of the ith subject in the kth sequence, b;i is the fixed effect
of the formulation in the jth period of the kth sequence, and €;j; is the
within-subject random error which is assumed to be normal with mean 0.
In particular, for a standard 2 x 2 crossover design, ;. is the fixed effect of
R (resp. T) if j = k (resp. j # k). Note that model (38) assumes first-order
(i.e. one-period) carry-over effects: ¢;_1; represents the (fixed) residual
effect carried over from period 7 — 1 to period j in the kth sequence. For

two-period designs, carry-over effects can only occur in the second period.

2
n

and var(e;j;) = o2. Standard ANOVA techniques can be used to construct

It is also assumed that the n;; and €5 are independent with var(n;;) = o
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unbiased estimates and confidence intervals of linear contrasts of the
fixed effects, while the variance parameters af]
by the method of moments or restricted maximum likelihood.?®3° The Yijk
in model (38) is typically some transformation of the observed response
(e.g. logarithm of the AUC) to make it approximately normal. Note that
the logarithmic transformation converts multiplicative effects into additive
effects, as assumed in model (38).

Although model (38) leads to standard F-tests of equality between
the formulations T and R, it has been recognized since the 1970s
that testing the usual hypothesis of equality is inappropriate for BE,

and o2 can be estimated

whose purpose is to verify that the two formulations have no “biolog-
ically significant” differences.®®®1 One way to address this difficulty is
to change the null hypothesis of equality (versus the alternative hy-
pothesis of inequality) into a null hypothesis of the form Hy : 6 <
0, or 8 > 605, with an interval alternative hypothesis H; : 67 <
0 < 63, where 0 is the parameter of interest and the interval (61,05)
is a biological indifference zone. Schuirmann®®% and Anderson and
Hauck® have developed test procedures for what is now called aver-
age bioequivalence. Instead of relying on hypothesis testing, Westlake®!
proposed the following confidence interval procedure to assess average
bioequivalence. Let ur(pr) denote the mean response of a subject receiving
treatment T(R) in model (38). If a (1 — 2a) x 100% confidence interval for
ur — g is within the acceptance limits as recommended by the regulatory
agency, then accept the test formulation T as bioequivalent to the reference
formulation R.

Average bioequivalence only compares the means of the marginal
distributions of the PK parameters of interest, such as AUC or Ciax,
associated with the two formulations. Under normality assumptions, the
equivalence between distributions is characterized by the equivalence of
their means and variances. Population bioequivalence therefore also com-
pares the variances of the two formulations. The intra-subject variability,
particularly associated with switching from one formulation to another,
leads to another criterion in assessing BE, called individual bioequivalence.
To explain the underlying motivation, suppose a patient switches from R
to T that has a much higher intra-subject variability than R. This may
push the AUC of the patient outside the established therapeutic window
of R. Consequently, population BE does not guarantee that the two formu-
lations are exchangeable and therapeutically equivalent and individual BE
is needed.
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To see what is involved in assessing these three criteria of BE, assume
for simplicity that there are no carry-over effects and no period-sequence
interactions so that (38) can be reduced to a form that involves T and R
more directly as

Yisv = [s + Qis + €is (39)

where 7 is the subject number, § = T or R, v denotes the number of times
that § appears in a sequence and therefore 1 < v < ns (= largest number of
times that ¢ appears in the available sequences). The ¢;5, are independent
normal with mean 0, variance o2 and are independent of the random effects
(cir, air) that are independent and have a bivariate normal distribution
with var(a;r) = vr, var(a;gr) = vg and var(a;r — a;g) = 0%. According
to the 1999 FDA Guidance on Bioequivalence, average BE is established if
the 90% confidence limits for e#T /e#E are 4/5 and 5/4, or equivalently, if
+4n(1.25) are the 90% confidence limits for pup — pr. Note that the total
variance of the T formulation is 0% = 02 4 vy, while that of the R formula-
tion is 0% = 02 + vg. Population BE is established if the 95% upper confi-
dence bound for {(ur —pr)*+ (02 —0%)}/o% falls below the FDA specified
limit of {(¢n1.25)% + 0.02}/(0.2)? = 1.745. Individual BE is established if
the 95% upper confidence bound for {(ur — ug)? + 0%}/0? falls below
another FDA specified limit. These upper confidence bounds can be
obtained by appealing to the central limit theorem and using the delta
method to compute the asymptotic standard errors. Alternatively, boot-
strap methods can be used to compute the confidence bounds and confi-
dence intervals; see in particular Chapter 25 of Efron and Tibshirani® and
Sec. 4.5.3 of Chow and Liu.?® The inclusion of population BE and individual
BE besides average BE by the FDA in its guidelines for the pharmaceu-
tical industry reflects its concerns about prescribability and switchability
of generic drug products. Prescribability means that when a physician pre-
scribes a generic drug product to a patient for the first time, they should
both be assured that the drug product yields safety and efficacy results
comparable to that of the reference product in the patient population.
Switchability means that when a physician switches a reference product
to a generic product for a patient, they should both be assured that the
generic product will yield comparable safety and efficacy results for the
same individual.

Nonparametric and Bayesian approaches to BE have also been deve-
loped in the literature.®® There are intriguing theoretical problems con-
cerning BE in statistical decision theory.®® Crossover designs and average
BE for more than two formulations have also been studied.®®
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4. Assay Development and Validation

The availability of reliable assays is central to determining the drug con-
centrations in blood, urine, etc., in PK studies. When a pharmaceutical
compound is discovered, it is necessary to develop an assay method to
measure the substance levels in plasma, serum, etc. The substance that
is being measured is called an analyte, and the objective is to determine
the analyte’s potency, which refers to its content or activity (e.g. number of
particles, gravitometric mass, percent of impurity). There are three types of
assays that are commonly used in the pharmaceutical industry: (i) chemical
assays such as HPLC (high performance liquid chromatographs), (ii) immu-
noassays (e.g. radioimmunoassays, enzyme-linked immunosorbent assays),
(iii) biological assays (measuring the analyte’s potency relative to some
standard drug in terms of the magnitudes of their effects on responses from
living subjects).

For the development of an assay method of a pharmaceutical compound,
the FDA requires that the assay method meet the established specifications,
for which instrument calibration is essential. A common approach to cali-
bration is to have a number of known standard concentration preparations
put through the instrument to obtain the corresponding responses. Fitting
an appropriate statistical model to the data yields an estimated calibration
curve, called the standard curve. Simple linear regression of the response
on the standard is perhaps the most widely used statistical model. The
standard curve is used to determine the unknown potency.%”

Validation of an assay method is the process by which it is estab-
lished, in laboratory studies, that the performance characteristics of the
method indeed meets the specified criteria. As specified in Chow and
Liu,57 these criteria include (i) accuracy (no systematic error in the assay
method), (ii) precision (measurement error of the method), (iii) limit of
detection/quantitation (LOD/LOQ, which is the lowest concentration of
analyte in a sample that can be detected/determined with acceptable pre-
cision under the specified experimental conditions), (iv) range (reliable
range of the method), (v) linearity (whether the assay generates results
that are directly proportional to the concentration of analyte within a given
range), (vi) specificity (whether the assay measures the analyte and no other
substance in the specimen), (vii) ruggedness (degree of reproducibility of
assay results under a variety of normal test conditions, such as different la-
boratories, assay temperatures, days). Commonly used statistical methods
for assay validation include:
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(a) regression analysis (particularly with respect to accuracy, linearity and
LOD/LOQ),

(b) analysis of variance (particularly with respect to ruggedness); see
Chapter 3 of Chow and Liu.67

Lin% introduces a concordance correlation coefficient to evaluate repro-
ducibility and ruggedness, while Chapter 10 of Davidian and Giltinan!!
applies nonlinear mixed effects models to the analysis of assay data.

5. Drug Discovery

As pointed out in the preceding section, assay development is an impor-
tant facet in the drug discovery process. Another important facet is of a
biological nature and involves the identification of a biological target or
pathway. In recent years, advances in bioinformatics and genomics have
provided new tools and opportunities in this direction. Besides applica-
tions to assay development and bioinformatics, statistical methods are also
useful in screening compounds for clinically active drugs, and in searching
for novel, active compounds.

A pharmaceutical company typically has a large inventory of com-
pounds, of which an unknown small proportion is truly active. Dunnett%?
developed a model that takes into account the costs and benefits of any
screening procedure to derive an optimal procedure; see also the subsequent
work of Bergman and Gittins™ in this direction. Colton” and King" consi-
dered multistage screening procedures, while Redman and King”® proposed
group screening that uses balanced and partially balanced incomplete
block designs to increase the rate of compound screening without reducing
necessary replication.

Numerical topology is the assignment of numerical values to topolo-
gically invariant features of molecules. There is an isomorphism between
two-dimensional molecular diagrams and connected graphs; the edges and
vertices of the graphs correspond to bonds and atoms of molecules, yielding
numerical representation of compounds or parts of compounds. With this
representation, search for active compounds involves a very large set of
graphs. Moreover, there may also be a large number of potential chemical
modifications at different sites that one may want to experiment with. Ex-
perimental design techniques are particularly useful for such problems.”%7?
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1. Pharmaceutical Research and Development

In the process of research and development of a pharmaceutical entity,
statistics are necessarily applied at various critical stages of the process to
meet regulatory requirements for the effectiveness, safety, identity, strength,
quality, purity, stability, and reproducibility of the pharmaceutical entity
under investigation. A pharmaceutical entity could be a drug product, a
biological product, a medical device, or a combination of a drug product, a
biological product and a medical device. The critical stages of the process of
pharmaceutical research and development include pre-IND (Investigational
New Drug Application), IND, NDA (New Drug Application) and post-
NDA. The role of statistics at these critical stages is briefly described below.

At the very early stage of pre-IND, pharmaceutical scientists may
have to screen thousands of potential compounds in order to identify a
few promising compounds. An appropriate use of statistics with efficient
screening and/or optimal designs will assist pharmaceutical scientists to
cost effectively identify the promising compounds within a relatively short
period of time. As indicated by the United States Food and Drug Admini-
stration (FDA), an IND should contain information regarding chemistry,
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manufacturing, and controls (CMC) of the drug substance and drug product
to ensure the identity, strength, quality, and purity of the investigational
drug. In addition, the sponsors are required to provide adequate information
regarding pharmacological studies for absorption, distribution, metabolism,
and excretion (ADME) and acute, subacute, and chronic toxicological
studies and reproductive tests in various animal species to support that
the investigational drug is reasonably safe to be evaluated in clinical trials
in humans. At this stage, statistics are usually applied to (i) validate a
developed analytical method, (ii) establish drug expiration dating period
through stability studies, and (iii) assess toxicity through animal studies.
Statistics are required to meet standards of accuracy and reliability.

Before the drug can be approved, the FDA requires that substantial
evidence of the effectiveness and safety of the drug be provided in the
Technical Section of Statistics of an NDA submission. Since the validity
of statistical inference regarding the effectiveness and safety of the drug
is always a concern, it is suggested that a careful review be performed to
ensure an accurate and reliable assessment of the drug product. In addi-
tion, in order to have a fair assessment of the efficacy and safety of the
investigational drug, the FDA also establishes advisory committees, each
consisting of clinical experts, pharmacological experts, statistical experts,
and one advocate (not employed by the FDA) in designated drug classes
and specialties, to provide a second but independent review of the submis-
sion. The responsibility of the statistical expert is not only to ensure that
a valid design is used but also to evaluate whether statistical methods used
are appropriate for addressing the scientific and medical questions regarding
the effectiveness and safety of the drug.

After the drug is approved, the FDA also requires that the drug product
be tested for its identity, strength, quality, purity, and stability before it can
be released for use. For this purpose, the current Good Manufacturing Prac-
tice (¢cGMP) is necessarily implemented to (i) validate the manufacturing
process, (ii) monitor the performance of the manufacturing process, and (iii)
provide quality assurance of the final product. At each stage of the manufac-
turing process, the FDA requires that sampling plans, acceptance criteria,
and valid statistical analyses be performed for the intended tests such as po-
tency, content uniformity, and dissolution.®® For each test, sampling plan,
acceptance criteria, and valid statistical analysis are crucial for determi-
ning whether the drug product pass the test based on the results from a
representative sample.
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In this chapter, we will not only introduce some key statistical con-
cepts commonly encountered in pharmaceutical research and development,
but also provide a comprehensive review of some important topics such as
assay validation, stability design and analysis, individual bioequivalence,
statistical principles for good clinical practice, and statistics in diagnostic
imaging. Detailed information regarding the application of statistics at
various critical stages during the process of pharmaceutical research and
development can be found in Chow.”

2. Key Statistical Concepts

Key statistical concepts in the design and analysis of studies that are
commonly conducted at various stages of pharmaceutical research and
development are described below.

2.1. Bias and variability

For approval of a drug product, regulatory agencies usually require that the
results of the studies conducted at various stages of drug research and deve-
lopment must be accurate and reliable to provide a valid and fair assessment
of the treatment effect. The accuracy and reliability are usually referred
to as the closeness and the degree of the closeness of the results to the
true value (i.e. true treatment effect). Any deviation from the true value is
considered a bias, which may be due to selection, observation, and statistical
procedures. Pharmaceutical scientists should make any attempts to avoid
bias whenever possible to ensure that the collected data are accurate. The
reliability of a study is an assessment of the precision of the study, which
measures the degree of the closeness of the results to the true value. The
reliability reflects the ability to repeat or reproduce similar outcomes in
the targeted population. The higher precision a study is, the more likely the
results would be reproducible. The precision of a study can be characterized
by the variability incurred during the conduct of the study.

In practice, since studies are usually planned, designed, executed,
analyzed, and reported by a team consisting of pharmaceutical scientists
from different disciplines, bias and variability inevitably occurs. It is then
suggested that possible sources of bias and variability be identified at the
planning stage of the study not only to reduce the bias but also to minimize
the variability.
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2.2. Type I error, significance level, and power

In statistical analysis, two different kinds of mistakes are commonly en-
countered when performing hypotheses testing. As an example, consider
the example of pharmaceutical application. Suppose that a pharmaceutical
company is interested in demonstrating that a newly developed drug is
efficacious. The null hypothesis is often chosen as that the drug is in-
efficacious vs. the alternative hypothesis of that the drug is efficacious.
The objective is to reject the null hypothesis and conclude the alternative
hypothesis that the drug is efficacious. Under the null hypothesis, a type
I error is made if we conclude that the drug is efficacious when in fact it
is not. This error is also known as consumer’s risk. The acceptable level of
probability of committing type I error is known as the significance level.
If the probability of observing type I error based on the data is less than
the significance level, we conclude that a statistically significant result is
observed. The probability of observing type I error is usually referred to as
p-value of the test. Similarly, a type II error is committed if we conclude
that the drug is inefficacious when in fact it is. This error is referred to
as the producer’s risk. The power is defined as the probability of correctly
concluding that the drug is efficacious when in fact it is. For assessment
of drug effectiveness and safety, a sufficient sample size is often selected
to have a desired power with a pre-specified significance level. The pur-
pose is to control both type I error (significance level) and type II error
(power).

2.3. Confounding and interaction

In pharmaceutical research and development, there are many sources of
variation, which have impact on the evaluation of the treatment. If these
variations are not identified and properly controlled, then they may be
mixed up with the treatment effect for which the studies are intended to
demonstrate. In this case, the treatment effect is confounded with the effects
due to these variations. Statistical interaction is to investigate whether the
joint contribution of two or more factors is the same as the sum of the
contributions from each factor when considered alone. If an interaction
between factors exists, an overall assessment cannot be made. In practice,
it is suggested that possible confounding factors be identified and properly
controlled at the planning stage of the studies. When significant interac-
tions among factors are observed, subgroup analyses may be necessary for
a careful evaluation of the treatment effect.
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2.4. Randomsization

Statistical inference on a parameter of interest of a population under study
is usually derived under the probability structure of the parameter. The
probability structure depends upon the randomization method employed
in sampling. The failure of the randomization will have a negative impact
on the validity of the probability structure. Consequently, the validity,
accuracy, and reliability of the resulting statistical inference of the pa-
rameter are questionable. Therefore, it is suggested that randomization be
performed using appropriate randomization method under a valid randomi-
zation model according the study design to ensure the validity, accuracy,
and reliability of the derived statistical inference. Details regarding various
randomization models and methods that are commonly employed in clinical
research can be found in Chow and Liu.!?

2.5. Sample size determination/justification

One of the major objectives of most studies during drug research and deve-
lopment is to determine whether the drug is effective and safe. During
the planning stage of a study, the following questions are of particular
interest to the pharmaceutical scientists: (i) how many subjects are needed
in order to have a desired power for detecting a meaningful difference,
(ii) what is the trade off if only a small number of subjects are available for
the study due to limited budget and/or some scientific considerations. To
address these questions, a statistical evaluation for sample size determina-
tion/justification is often employed. Sample size determination is usually
referred to the calculation of sample size for some desired statistical proper-
ties such as power or precision, while sample size justification is to provide
statistical justification for a selected sample size, which is often a small
number.

For a given study, sample size can be determined/justified based on
some criteria on type I error (a desired precision) or type II error (a desired
power). The disadvantage for sample size determination/justification based
on the criteria of precision is that it may have a small chance of detecting a
true difference. As a result, sample size determination/justification based on
the criteria of power becomes the most commonly used method. Sample size
is selected to have a desired power for detection of a meaningful difference
at a pre-specified level of significance.

In practice, however, it is not uncommon to observe discrepancies
among study objective (hypotheses), study design, statistical analysis (test
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statistic) and sample size calculation. These inconsistencies often result in
(i) wrong test for right hypotheses, (ii) right test for wrong hypotheses,
(iii) wrong test for wrong hypotheses, or (iv) right test for right hypotheses
with insufficient power. Therefore, before the sample size can be deter-
mined, it is suggested that the following be carefully considered; (i) the
study objective or the hypotheses of interest be clearly stated, (ii) a valid
design with appropriate statistical tests be used, and (iii) sample size be
determined based on the test for the hypotheses of interest.

Note that procedures for sample size calculation based on a pre-study
power analysis for comparing means, proportions, time-to-event data, and
variabilities can be found in Chow, Shao and Wang.?!

2.6. Statistical difference and scientific difference

A statistical difference is defined as a difference that is unlikely to occur by
chance alone, while a scientific difference is referred to as a difference that
is considered to be of scientific importance. A statistical difference is also
referred to as a statistically significant difference. The difference between
the concepts of statistical difference and scientific difference is that sta-
tistical difference involves chance (probability), while scientific difference
does not. When we claim there is a statistical difference, the difference is
reproducible with a high probability.

When conducting a study, basically, there are four possible outcomes.
The result may show that (i) the difference is both statistically and
scientifically significant, (ii) there is a statistically significant difference
yet the difference is not scientifically significant, (iii) the difference is of
scientifically significant yet it is not statistically significant, and (iv) the
difference is neither statistically significant nor scientifically significant.

If the difference is both statistically and scientifically significant or it is
neither statistically or scientifically significant, then there is no confusion.
However, in many cases, a statistically significant difference does not agree
with the scientifically significant difference. This inconsistence has created
confusion/arguments among pharmaceutical scientists and biostatisticians.
The inconsistence may be due to large variability and/or insufficient sample
size.

2.7. One-sided test versus two-sided test

For evaluation of drug product, the null hypothesis of interest is often the
one of no difference. The alternative hypothesis is usually the one that there
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is a difference. Statistical test for this setting is called a two-sided test. In
some cases, the pharmaceutical scientist may test the null hypothesis of no
difference against the alternative hypothesis that the drug is superior to
the placebo. Statistical test for this setting is known as one-sided test.

For a given study, if a two-sided test is employed at the significance level
of 5%, then the level of proof required is one out of 40. In other words, at
the 5% level of significance, there is 2.5% chance (or one out of 40) that we
may reject the null hypothesis of no difference in the positive direction and
conclude the drug is effective at one side. On the other hand, if a one-sided
test is used, the level of proof required is one out of 20. It turns out that one-
sided test allows more ineffective drugs to be approved because of chance
as compared to the two-sided test. It should be noted that when testing
at the 5% level of significance with 80% power, the sample size required
increases by 27% for a two-sided test as compared to a one-sided test. As
a result, there is a substantial cost saving if a one-sided test is used.

However, there is no universal agreement among the regulatory,
academia, and the pharmaceutical industry as to whether a one-sided test or
a two-sided test should be used. The FDA tends to oppose the use of a one-
sided test though several pharmaceutical companies on the Drug Efficacy
Study Implementation (DESI) drugs at the Administrative Hearing have
challenged this position. Dubey?® pointed out that several viewpoints that
favor the use of one-sided test were discussed in an administrative hearing.
These points indicated that one-sided test is appropriate in the following
situations of (i) where there is truly only concern with outcomes in one tail
and (ii) where it is completely inconceivable that the results could go in the
opposite direction.

2.8. Good Statistics Practice

Good Statistics Practice (GSP) is defined as a set of statistical principles
for the best pharmaceutical practices in design and analysis of studies con-
ducted at various stages of drug research and development.® The purpose
of GSP is not only to minimize bias but also to minimize variability that
may occur before, during, and after the conduct of the studies. More
importantly, GSP provides a valid and fair assessment of the drug product
under study. The concept of GSP can be seen in many guidelines and
guidance that issued by the FDA and the International Conference on
Harmonization (ICH) at various stages of drug research and develop-
ment. These guidelines and guidances include Good Laboratory Practice
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(GLP), Good Clinical Practice (GCP), current Good Manufacturing Prac-
tice (¢cGMP), and Good Regulatory Practice (GRP). Another example of
GSP is the guideline on Statistical Principles in Clinical Trials recently
issued by the ICH.*? As a result, GSP can not only provide accuracy and
reliability of the results derived from the studies but also assure the validity
and integrity of the studies.

The implementation of GSP in pharmaceutical research and develop-
ment is a teamwork, which requires mutual communication, confidence,
respect, and cooperation between statistician, pharmaceutical scientists
in the related areas, and regulatory agents. The implementation of GSP
involves some key factors that have an impact on the success of GSP.
These factors include (i) regulatory requirements for statistics, (ii) the
dissemination of the concept of statistics, (iii) an appropriate use of statis-
tics, (iv) an effective communication and flexibility, (v) statistical training.
These factors are briefly described below.

In the pharmaceutical development and approval process, regulatory
requirements for statistics are the key to the implementation of GSP. They
not only enforce the use of statistics but also establish standards for sta-
tistical evaluation of the drug products under investigation. An unbiased
statistical evaluation helps pharmaceutical scientists and regulatory agents
in determining (i) whether the drug product has the claimed effectiveness
and safety for the intended disease, and (ii) whether the drug product
possesses good drug characteristics such as the proper identity, strength,
quality, purity, and stability.

In addition to regulatory requirements, it is always helpful to dis-
seminate the concept of statistical principles described above whenever
possible. It is important for pharmaceutical scientists and regulatory agents
to recognize that (i) a valid statistical inference is necessary to provide a
fair assessment with certain assurance regarding the uncertainty of the drug
product under investigation, (i) an invalid design and analysis may result
in a misleading or wrong conclusion about the drug product, (iii) a larger
sample size is often required to increase statistical power and precision of
the studies. The dissemination of the concept of statistics is critical to estab-
lish the pharmaceutical scientists and regulatory agents’ brief in statistics
for scientific excellence.

One of the commonly encountered problems in drug research and
development is the misuse or sometimes the abuse of statistics in some
studies. The misuse or abuse of statistics is critical which may result in
either having the right question with the wrong answer or having the right
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answer for the wrong question. For example, for a given study, suppose
that a right set of hypotheses (the right question) is established to reflect
the study objective. A misused statistical test may provide a misleading or
wrong answer to the right question. On the other hand, in many clinical
trials, point hypotheses for equality (the wrong question) are often wrongly
used for establishment of equivalency. In this case, we have right answer (for
equality) for the wrong question. As a result, it is recommended that ap-
propriate statistical methods be chosen to reflect the design, which should
be able to address the scientific or medical questions regarding the intended
study objectives for implementation of GSP.

Communication and flexibility are important factors to the success
of GSP. Inefficient communication between statisticians and pharmaceu-
tical scientists or regulatory agents may result in a misunderstanding of
the intended study objectives and consequently an invalid design and/or
inappropriate statistical methods. Thus, effective communications among
statisticians, pharmaceutical scientists and regulatory agents is essential
for the implementation of GSP. In addition, in many studies, the assump-
tion of a statistical design or model may not be met due to the nature
of drug product under investigation, experimental environment, and/or
other causes related/unrelated to the studies. In this case, the traditional
approach of doing everything by the book does not help. In practice, since
the concerns from a pharmaceutical scientist or the regulatory agent may
translate into a constraint for a valid statistical design and appropriate
statistical analysis, it is suggested that a flexible and yet innovative solution
be developed under the constraints for the implementation of GSP.

Since regulatory requirements for the drug development and approval
process vary from drug to drug and country to country, various designs
and/or statistical methods are often required for a valid assessment of a
drug product. Therefore, it is suggested that statistical continued /advanced
education and training programs be routinely held for both statisticians and
non-statisticians including pharmaceutical scientists and regulatory agents.
The purpose of such continued/advanced education and/or training pro-
gram is threefold. First, it enhances communications within the statistical
community. Statisticians can certainly benefit from such a training and/or
educational program by acquiring more practical experience and knowledge.
In addition, it provides the opportunity to share/exchange information,
ideas and/or concepts regarding drug development between professional so-
cieties. Finally, it identifies critical practical and/or regulatory issues that
are commonly encountered in drug development and regulatory approval
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process. A panel discussion from different disciplines may result in some
consensus to resolve the issues, which helps in establishing standards of
statistical principles for implementation of GSP.

3. Pharmaceutical Validation
3.1. Assay validation

When a new pharmaceutical compound is discovered, the FDA requires
that an analytical method or test procedure for determination of the active
ingredients of the compound be developed and validated before it can
be applied to animal and/or human subjects. The cGMP requires that
test methods, which are used for assessing compliance of pharmaceutical
products with established specifications, must meet proper standards of
accuracy and reliability. The USP/NF defines the validation of analytical
methods as the process by which it is established, in laboratory studies,
that performance characteristics of the methods meet the requirement for
the intended analytical application.

The analytical application may be referred to as a drug potency which
is usually based on gas chromatography (GC) or high performance liquid
chromatography (HPLC) for potency and stability studies, immunoassays
such as radioimmunoassay (RIA) for the in wvitro activity of an antibody
or antigen, or a biological assay for the in vivo activity such as median
effective dose (EDs5p). The performance characteristics include accuracy,
precision, limit of detection (LOD), limit of quantitation (LOQ), selectivity
(or specificity), linearity, range, and ruggedness, which are useful measures
for assessment of accuracy and reliability of the assay results. Among these
performance characteristics, accuracy, precision, and ruggedness are con-
sidered the primary parameters for the validation of an analytical method.

For the validation of an analytical method, whether the analytical
method can generate true values is often of great concern. To address
this question, one may measure how close the assay result obtained by
the analytical method is to the true value. This performance characteristic
is referred to as the accuracy of the assay result. In practice, one may
consider the analytical method to be validated in terms of accuracy if the
mean value is within +15% of the actual value, except at LOQ, where it
should not deviate by more than 20%.%° In addition, the precision, which is
defined as the degree of agreement among individual assay results when the
assay method is applied repeatedly to multiple sampling of a homogenous
sample can be measured based on measurement error of the assay. Similarly,
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Shah et al.%® indicated that one may claim that the analytical method is
validated if the precision around the mean value does not exceed a 15%
coefficient of variation (CV), except for LOQ, where it should not exceed
20% CV.

In many cases, different analysts and different laboratories under
different operating circumstances such as different instruments, different
lots of reagents, different elapse time, or different assay temperatures may
perform a specific analytical method. Assay ruggedness is often used to
assess the influence of uncontrollable factors or the degree of reproducibility
on assay performance. One may conclude that the analytical method is
validated in terms of reproducibility if its assay ruggedness is within 15%
of the mean value.

Accuracy is typically assessed using multiple testing by linear regres-
sion. Precision can be assessed by testing the null hypothesis that the
variability is less than an acceptable limit. Typical approaches for assessing
assay ruggedness include the one-way nested random effects model and the
two-way crossed-classification mixed model. For the assessment of assay
ruggedness, it should be noted, however, that the classical analysis of
variance method may produce negative estimates for the variance compo-
nents and that the sum of best estimates of variance components may not
be the best estimate of the total variability. In these situations, methods
proposed by Chow and Shao'# and Chow and Tse?? are useful. In practice,
the validation of an analytical method can be carried out by the following
steps: First, it is important to develop a prospective protocol which clearly
states the validation design, sampling procedure, acceptance criteria for
the performance characteristics to be evaluated, and how the validation is
to be carried out. Second, collect the data and document the experiment,
including any violations from the protocol that may occur. The data should
be audited to assure their quality. The collected data are then analyzed
based on appropriate statistical methods. Appropriate statistical methods
are referred to as those methods, which can reflect the validation design
and meet the study objective. Finally, draw a conclusion regarding whether
the analytical method is validated based on the statistical inference drawn
about the accuracy, precision, and ruggedness of the assay results.

3.2. Process validation

The objective of the validation of a manufacturing process is to ensure
that the manufacturing process does what it purports to do. A validated
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process assures that the final product has a high probability of meeting the
standards for identity, strength, quality, purity, and stability of the drug
product. A manufacturing process is a continuous process, which usually
involves a number of critical stages. For example, for the manufacturing
of tablets, the process may include initial blending, mill, primary blending,
final blending, compression, and coating stages. At each critical stage, some
problems may occur. For example, the ingredients may not be uniformly
mixed at the primary blending stage; the segregation may occur at the
final blending stage, and the weight of tablets may not be suitably con-
trolled during the compression stage. In practice, therefore, it is important
to evaluate the performance of the manufacturing at each critical stage
by testing in process and/or processed materials for potency, dosage
uniformity, dissolution, and disintegration according to sampling plans and
acceptance criteria stated in the USP/NF. These tests are usually referred
to as the USP tests. For sampling plans of USP tests, the USP/NF requires
that representative samples be drawn from the container.

A manufacturing process is considered to pass the USP/NF tests if
each critical stage of the manufacturing process and the final product meet
the required USP/NF specifications for the identity, strength, quality, and
purity of the drug product. A manufacturing process is considered validated
if at least three validation batches (or lots) pass all required USP/NF tests.
Since manufacturing procedures vary from drug product to drug product
and/or from site to site during the development of a validation protocol
of manufacturing process, it is important to discuss the issues such as (i)
critical stages, (ii) equipment to be used at each critical stage, (iii) possible
problems, (iv) USP tests to be performed, (v) sampling plans, (vi) test-
ing plans, (vii) acceptance criteria, (viii) pertinent information, (ix) test
or specification to be used as reference, and (x) validation summary with
project scientists to acquire a good understanding of the manufacturing
process.

Process validation usually refers to as the establishment of documented
evidence that a process does what it purports to do. Basically, there are
four different types of manufacturing process validations in the pharma-
ceutical industry: prospective, concurrent, retrospective, and re-validation.
Prospective validation establishes documented evidence that a process does
what it purports to do based on a preplanned protocol. Prospective valida-
tion is usually performed in the situations where (i) historical data are not
available or sufficient and in-process and end-product testing data are not
adequate, (ii) new equipment or components are used, (iii) a new product



Statistics in Biopharmaceutical Research 455

is reformulated from an existing product, or there are significant modifica-
tions or changes in the manufacturing process, and (iv) the manufacturing
process is transferred from development laboratory to full-scale production.
Retrospective validation provides documented evidence based on review
and analysis of historical information, which is useful when there is a stable
process with a larger historical database. One of the objectives of the retro-
spective validation is to support the confidence of the process. Concurrent
validation evaluates the process based on information generated during
actual implementation of the process. In some situations where (i) a step of
the process is modified, (ii) the product is made infrequently, and (iii) a new
raw material must be introduced, a concurrent validation is recommended.
In practice, a well-established manufacturing process may need to be revali-
dated when there are changes in critical components (e.g. raw materials),
changes/replacement of equipment, changes in facility /plant (e.g. location
or size), and a significant increase and/or decrease in batch size.

For a validated process, there is no guarantee that if the test is performed
again it will have a high probability of meeting the specification. Thus, it
is of interest to conduct some in-house acceptance limits (specifications),
which guarantee that future batches produced by the process will pass the
USP test with a high probability. A common approach to process validation
is to obtain a single sample and test the attributes of interest to see whether
the USP/NF specifications are met. Bergum? proposed constructing accep-
tance limits that guarantee that future samples from a batch will meet a
given product specification a given percentage of times. The idea is to con-
sider a multiple stage test. If the criteria for the first stage are met, the
test is passed. If the criteria for the first stage are not met, then additional
stages of testing are done. If the criteria at any stages are met, the test
is passed. Acceptance limits for a validation sample are them constructed
based on sample mean and standard deviation of the test results to assure
that a future sample will have at least a certain chance of passing a multiple
stage test. More details can be found in Chow and Liu.!?

4. Stability Studies
4.1. Drug shelf-life

For every drug product in the marketplace, the FDA requires that an
expiration dating period (or shelf-life) must be indicated on the imme-
diate container label. The shelf-life is defined as the time interval at which
the characteristics of a drug product (e.g. strength) will remain within
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the approved specifications after manufacture. Along this line, Shao and
Chow®? studied several statistical procedures for estimation of drug shelf-
life. Before a shelf-life of a drug product can be granted by the FDA,
the manufacturers (drug companies) need to demonstrate that the aver-
age drug characteristics can meet the approved specifications during the
claimed shelf-life period through a stability study.

For determination of the shelf life of a drug product, both the FDA
stability guideline and the stability guideline issued by the ICH requires that
a long term stability study be conducted to characterize the degradation of
the drug product over a time period under appropriate storage conditions.
Both the FDA and ICH stability guidelines suggest that stability testing
be performed at 3-month intervals during the first year, 6-month intervals
during the second year, and annually thereafter. The degradation curve can
then be used to establish an expiration dating period or shelf life applicable
to all future batches of the drug product.

For a single batch, the FDA stability guideline indicates that an accept-
able approach for drug products that are expected to decrease with time is
to determine the time at which the 95% one-sided lower confidence bound
for the mean degradation curve intersects the acceptable lower product
specification limit, e.g. as specified in the USP/NF.2?

4.2. Statistical model

Consider the case where the drug characteristic is expected to decrease with
time. The other case can be treated similarly. Assume that drug charac-
teristic decreases over time linearly (i.e. the degradation curve is a straight
line). In this case, the slope of the straight line is considered as the rate
of stability loss of the product. Let X; be the jth sampling (testing) time
point (i.e. 0 months, 3 months, etc.) and Y;; be the corresponding testing
result of the ith batch (j =1,...,n;i =1,...,k). Then

Y;j = ; + ,Bin + e (1)
where e;; are assumed to be independent and identically distributed (i.i.d.)
random errors with mean 0 and variance o2. The total number of observa-

tions is N = kn. The «; (intercepts) and f; (slopes) vary randomly from

batch to batch. It is assumed that a;(i = I, ..., k) are i.i.d. with mean a and
2

a’

O'g. The e;;, ;, and §; are mutually independent.
If 02 = 0 (i.e. a; are equal), then the above model has a common
intercept. Similarly, if 02 = 0 (i.e. 3; are equal), then the above model has

variance o5, and that §;(i = [,...,k) are i.i.d. with mean b and variance
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a common slope. If both 02 = 0 and ¢ = 0, then there is no batch-to-batch
variation and the above model reduces to a simple linear regression. Under
the above model, Chow and Shao'® proposed several statistical tests for
batch-to-batch variation.

4.3. Statistical methods
4.3.1. Fized batches approach

If there is no batch-to-batch variation, a commonly used method for fitting
the above model is the ordinary least squares (OLS) and a 95% lower
confidence bound for E(Y) = a + b€, the expected drug characteristic at
time &, can be obtained as

a+be — t0.955(€)

where @ and b are the OLS estimators of a and b, respectively, tg.95 is the
one-sided 95th percentile of the ¢ distribution with N —2 degrees of freedom,

and
2
S%(¢) = MSE{ ! +k2(€ (XX) SSE }
Jj=1
where
x-1y
n o
and

MSE——

HM»

Z —a—bX;)*.
The estimated shelf-life can be obtained by solving the following equation

n=a+bE —t9955(€),

where 7 is a given approved lower specification limit.

When there is a batch-to-batch variation (i.e. there are different inter-
cepts and different slopes), the FDA recommends the minimum approach
be used for estimation of the shelf-life of a drug product. The minimum ap-
proach considers the minimum of the estimated shelf-lives of the individual
batches. The minimum approach, however, has received considerable criti-
cisms because it lacks of statistical justification. As an alternative, Ruberg
and Hsu®® proposed an approach using the concept of multiple comparisons
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to derive some criteria for pooling batches with the worst batch. The idea
is to pool the batches that have slopes similar to the worst degradation rate
with respect to a pre-determined similarity (equivalence) limit.

4.3.2. Random batches approach

As indicated in the FDA guideline, the batches used in long-term stabi-
lity studies for establishment of drug shelf-life should constitute a random
sample from the population of future production batches. In addition, all
estimated shelf-lives should be applicable to all future batches. As a result,
statistical methods based on random effects model seem more appropriate.
In recent years, several methods for determination of drug shelf-life with
random batches have been considered.”1%:16:49:61 UUnder the assumption
that batch is a random variable, stability data can be described by a linear
regression model with random coefficients. Consider the following model

Yij = Xi;0i +eij

where Y;; is the jth assay result (percent of label claim) for the ith batch,
X;j is a pxl vector of the jth value of the regressor for the ith batch and X {j
is its transpose, (; is a pxl vector of random effects for the ith batch, and
e;j is the random error in observing Y;;. Note that X/;3; is the mean drug
characteristic for the ith batch at X;; (conditional on ;). The primary
assumptions for the model are similar to those for model (1). Since X;; is
usually chosen to be x; for all ¢, where z; is a pxl vector of nonrandom
covariate which could be of the form (1,¢;,t;w;)" or (1,t;,w;,tjw;)", where
t; is the jth time point and w; is the jth value of gxl vector of nonrandom
covariate (e.g. package type and dosage strength). Denote x; = z(t;, w;),
where z(t,w) is a known function of ¢ and w. If there is no batch-to-batch
variation, the average drug characteristic at time ¢ is x(¢)’b and the true
shelf-life is equal to

tirue = inf{t : 2(t)'b < n},
which is an unknown but nonrandom quantity. The shelf-life is then given by
t=inf{t: L(t) <n},

where
1/2

P (XX o (t) g

L(t) = 2(t)'D — tamk—p iy




Statistics in Biopharmaceutical Research 459

in where SSR is the usual sum of squared residuals from the ordinary least
squares regression.

When there is batch-to-batch variation, t4,,. is random since [3; is ran-
dom. Chow and Shao'®¢ and Shao and Chow®' proposed considering an
(1 — @) x 100% lower confidence bound of the eth quantile of ¢ as the
labeled shelf-life, where ¢ is a given small positive constant. That is,

Pltigper <te}>1—a,
where t. satisfies
P{tirue <t:} =c¢.
It follows that
te =inf{t:z(t)'b—n=z2.0(t)},

where 2. = ®71(1 —¢) and o(¢) is the standard deviation of z(t)'3;. As a
result, the shelf-life is given by

f=inf{t:z(t)b<7(t)},
where

ﬁ(t) =+ 05(670‘)756 U(t) )

1
Cﬁ(c‘:,a) = —\/EZ toc,Kfl,\/Ezg ,
5

v(t) = ki1m(t)’(X’X)*lx’SX(X’X)*lm(t).

Note that £_ . Vhz, 18 the ath upper quantile of the noncentral ¢ distri-

bution with (k — 1) degrees of freedom and noncentrality parameter Vkze.

4.4. Two-phase shelf-life estimation

Unlike most drug products, some drug products are required to be stored at
several temperatures such as —20°C, 5°C and 25°C (room temperature) in
order to maintain stability until use.*” The drug products of this kind are
usually referred to as frozen drug products. Unlike the usual drug products,
a typical shelf life statement for frozen drug products usually consists of
multiple phases with different storage temperatures. For example, a com-
monly adopted shelf life statement for frozen products could be either
(i) 24 months at —20°C followed by 2 weeks at 5°C or two days at 25°C or
(ii) 24 months at —20°C followed by 2 weeks at 5°C and one days at 25°C.
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As a result, the drug shelf life is determined based on a two-phase stability
study. The first phase stability study is to determine drug shelf-life under
frozen storage condition such as —20°C, while the second phase stability
study is to estimate drug shelf-life under refrigerated or ambient conditions.
A first phase stability study is usually referred to as a frozen study and a
second phase stability study is known as a thawed study.

Since the stability study of a frozen drug product consists of frozen and
thawed studies, the determination of the shelf-life involves a two-phase lin-
ear regression. The frozen study is usually conducted similar to a regular
long term stability study except the drug is stored at frozen condition. In
other words, stability testing will be normally conducted at 3-month inter-
vals during the first year, 6-month intervals during the second year, and
annually thereafter. Stability testing for the thawed study is conducted fol-
lowed by the stability testing for the frozen study, which may be performed
at 2-day intervals up to two weeks. It should be noted that the stability at
the second phase (i.e. thawed study) might depend upon the stability at
the first phase (i.e. frozen study). In other words, an estimated shelf-life
from the thawed study followed stability testing at 3-month of the frozen
study may be longer than that obtained from the thawed study followed
the frozen study at 6-month. For simplicity, Mellon*” suggested that stabil-
ity from the frozen study and the thawed study be analyzed separately to
obtain a combined shelf life for the drug product. As an alternative, Shao
and Chow®? consider the following method for determination of drug shelf
lives for the two phases based on a similar concept proposed before.!6:61

For the first phase shelf-life, we have stability data

Yir =a+ Bt + i,

where ¢ = 1,...,1 > 2 (typically ¢; = 0, 3, 6, 9, 12, 18 months), k =
1,...,K; > 1, o and 3 are unknown parameters, and €;1,’s are i.i.d. random
errors with mean 0 and variance o > 0. The total number of data for the
first phase is ny = ), K; (= IK if K; = K for all 7).

At time ¢;, K;; > I second phase stability data are collected at time
intervals ¢;;,7 = 1,...,J > 2. The total number of data for the second
phase is ny = >3, >, K;; (= IJK if K;; = K for all i and j). Data from
two phases are independent. Typically, t;; = t;+s;, where s; = 1, 2, 3 days,
etc.

Let «(t) and 3(t) be the intercept and slope of the second phase degrada-
tion line at time ¢. Since the degradation lines for the two phases intersect,

alt) = o+ Bt.
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Then, at time ¢;,7 = 1,..., I, we have stability data
Yijk = a+ Bti + B(t:)s; + eiji ,

where §(t) is an unknown function of ¢ and e;;;’s are 1.i.d. random errors
with mean 0 and variance o3; > 0.
We assume that §(t) is a polynomial in ¢. Typically,

B(t) = By Common slope model,
B(t) = o + fit Linear trend model,
or
B(t) = Bo + Pit + Bot? Quadratic trend model .

In general,

H
ﬂ(t) = Z ﬂhth )
h=0

where [’s are unknown parameters and H + 1 < Zj K;; for all ¢, and
H<I

4.4.1. First phase shelf-life

The first phase shelf-life can be determined based on the first phase data
{Yix} as the time point at which the lower product specification limit inter-
sects the 95% lower confidence bound of the mean degradation curve.29-40
Let & and B be the least squares estimators of « and (3, based on the first
phase data, and let

L(t) = &+ Bt — t.o5:m, —23/0(t)

be the 95% lower confidence bound for « + ¢, where t 5., —2 is the upper
0.05 quantile of the t-distribution with (n; — 2) degrees of freedom,

nt? — (2 Zi,k ti)t + Zi,k tzz
nZz—,k t7 — (sz ti)? 7

and

1 ~
A2 _ - oA . 2
o1 = ny — 2 E p ()/zk g ﬂtz)

1/7
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is the usual error variance estimator based on residuals. Suppose that the
lower limit for the drug characteristic is 7 (we assume that o+ 8t decreases
as t gincreases). Then the first phase shelf-life is the first solution of L(t) =

n, i.e.
t=inf{t: L(t) <n}.
Note that the first phase shelf-life is constructed so that
P{t < the true first phase shelf-life} = 95%

assuming that e;;’s are normally distributed. Without the normality
assumption, result approximately holds for large n.

4.4.2. The case of equal second phase slopes

To introduce the idea, we first consider the simple case where the slopes
of the second phase degradation lines are the same. When 3(t) = S, the
common slope §y can be estimated by the least squares estimator based on
the second phase data:
B Zi,j,k(sj = 5)Yijk
0 — — )
Zi,j,k(sj —5)?

where s; is the second phase time intervals and 5 is the average of s;’s. The
variance of 3y is

_ o3

V(Bo) = NCETE

which can be estimated by

V() = 2
SRR VIO
where
A~ 1 A~ 3 3
7 = gy S Wk — 0+ Bt sy

i,k
For fixed ¢ and s, let

v(t,s) = v(t) + V(Bo)s”
and

L(t,s) = 6 + Bt + Bos — t.95:n1+na—2—1(H+2) V V(t,5) .
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For any fixed t less than the first phase true shelf-life, i.e. ¢ satisfying o +
Bt > n, the second phase shelf-life can be estimated as

5(t) =inf{s > 0: L(t,s) < n}

(if L(t,s) < n for all s, then §(¢) = 0). That is, if the drug product is taken
out of the first phase storage condition at time ¢, then the estimated second
phase shelf-life is §(t).

The justification for §(t) is that for any ¢ satisfying o + 8t > 7,

P{5(t) < the true second phase shelf-life} = 95%

assuming that e;;’s and e;;;’s are normally distributed. Without the nor-
mality assumption, the above result approximately holds for large nq,
and ns.

In practice the time at which the drug product is taken out of the
first phase storage condition is unknown. In such a case we may apply
the following method to assess the second phase shelf-life. Select a set of
time intervals t; < t, 1 = 1,..., L, and construct a table (or a figure) for
(t1,5(t1)), L = 1,...,L. If a drug product is taken out of the first phase
storage condition at time ¢, which is between ¢; and ¢;11, then its second
phase shelf-life is §(¢;41).

However, a single shelf-life label may be required. We propose the
following method.

4.4.3. Determination of a single two-phase shelf-life label

In most cases, L(%, s) is less than 7 for all s, i.e. §(f) = 0. Hence, we propose
to select a £; < £ such that 4(f) > 0 and use #; + 5(f;) as the two phase
shelf-life label. The justification for this two-phase shelf-life label is:

1. If the drug product is stored under the first phase storage condition until
time 1, then

P{#, < the true first phase shelf-life} > 95% ,

since t; < .
2. If the drug product is taken out of the first phase storage condition at
time £, < £, then its estimated second phase shelf-life is 5(), and

P{5(f;) < the true second phase shelf-life at time ¢y}
> P{5(ty) < the true second phase shelf-life at time to}

> 95%
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However, this two-phase shelf-life label is very conservative if ¢y is much
less than #;.

A general rule of choosing #; is that ¢; should be close to # while §(f) is
reasonably large. For example, if the units of the first and second phase shelf
lives are month and day, respectively, and if £ = 24.5, then we can choose
t; = 24; if £ = 24, then we choose {; = 23. A table on (t;,5(t;)),l=1,...,L,
will be useful for the selection of #;.

4.4.4. The general case of unequal second phase slopes

In general, the slope of the second phase degradation line varies with time.
Let Y; be the average of Y;;;’s with a fixed 4, Z;jx = Yijr — Yi, and Xpij =
(s; — 5)th. Then the least squares estimator of (Bo,...,Sx) denoted by

(ﬂAO7 ..., BH), is the least squares estimator of the following linear regression
model:
H
Zijk = Z ﬂhXhij -+ error.
h=0
Let

H
Bty = sut"
h=0
and
V(B(t) = 531" (X'X) "1,
where 1/ = (1,¢,t2---t1T), X is the design matrix and
"o 2
(Zijk - Z/BhXhij> .
h=0

The second phase shelf-life and the two-phase shelf-life label can be deter-
mined in the same way as described in the previous section with

Q>
[N
|

1
_nQ—(f{—|—2)Z

.5,k

L(t,s) = &+ Bt + B(t)s — t.osinytns— 14y VO (E, )

and

o(t,s) = v(t) + V(B(t)s>.
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For the proposed method for two-phase shelf-life estimation, assume that
the assay variabilities are the same across different phases. Detailed in-

d.17’62 In

formation regarding two-phase shelf-life estimation can be foun
practice, the assay variability may vary from phase to phase. In this case, the
proposed method is necessarily modified for determination of the expiration
dating period of the drug product.

In practice, it is of interest to determine the allocation of sample size at
each phase. For a fixed total of sample size, it is of interest to examine the
relative efficiency for estimation of shelf lives using either more sampling
time points in the first phase and less sampling time points in the second
phase or less sampling time points in the first phase and more sampling
time points in the second phase. The allocation of sampling time points
at each phase then becomes an interesting research topic for two-phase
shelf-life estimation. In addition, since the degradation at the second phase
is highly correlated with the degradation at the first phase, it may be of
interest to examine such correlation for future design planning.

4.5. Practical issues
4.5.1. Matrizing and bracketing designs

For a new drug product, stability studies are necessarily conducted not
only to characterize the degradation of the compound over time but also to
determine the expiration dating period (shelf-life). The estimated shelf-life
should be applicable for all strengths and packages of the drug product.
However, accelerated stability testing is required for 6 months and long-
term stability testing is required for the length of shelf-life. The cost of
the stability studies could be substantial. As a result, it is of interest to
adopt a design where only a fraction of the total number of samples are
tested but at the same still maintain the validity, accuracy and precision
of the estimated shelf-life. For this consideration, matrixing and bracketing
designs have become increasingly popular in drug research and development
for stability. As indicated in the ICH stability guideline, bracketing design
is defined as the design of a stability schedule so that at any time point only
the samples on the extremes, for example, of container size and/or dosage
strengths, are tested.*! Matrix design is a design where only a fraction of
the total number of samples is tested at any specified sampling point.*!+>!
The matrixing design and bracketing design were evaluated by Pong and
Raghavarao.>*
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Lin*? indicated that a matrixing design might be applicable to strength
if there is no change in proportion of active ingredients, container size, and
immediate sampling time points. The application of a matrixing design to
situations such as closure systems, orientation of container during storage,
packaging form, manufacturing process, and batch size should be evaluated
carefully. It is discouraged to apply a matrixing design to sampling times at
two endpoints (i.e. the initial and the last) and at any time points beyond
the desired expiration date. If the drug product is sensitive to temperature,
humidity, and light, the matrixing design should be avoided.

4.5.2. Bias and interval estimation of shelf-life

As indicated in the FDA stability guideline, the estimated shelf-life of a
drug shelf-life can be obtained at the time point at which the 95% one-
sided lower confidence limit for the mean degradation curve intersects the
acceptable lower specification limit. In practice, it is of interest to study the
biasedness of the estimated shelf-life. If the bias is positive, the estimated
shelf-life overestimates the true shelf-life. On the other hand, if there is a
downward bias, the estimated shelf-life is said to underestimate the true
shelf-life. In the interest of the safety of the drug product, the FDA might
prefer a conservative approach, which is to underestimate rather than over-
estimate the true shelf-life. Sun et al.%% studied distribution properties of
the estimated shelf-life'6:%1 for both cases with and without batch-to-batch
variation. The result indicate that when there is no batch-to-batch variation
2 = 6} =0), there is a downward bias which is given by

(ie. 02 =

N 1/2
to0e f (bX +a —n)?

voln Y x|

where t,, is the (1 — a)th quantile of the ¢ distribution with (k — 1) degrees
of freedom.

4.5.3. Shelf-life estimation with multiple active components

For the study of drug stability, the FDA guideline requires that all drug
characteristics be evaluated. In most drug products, we obtain an estimated
drug shelf-life based primarily on the study of the stability of the strength of
the active ingredient. However, some drug products may contain more than
one active ingredient. For example, Premarin (conjugated estrogens, USP)
contains three active ingredients: estrone, equilin, and 17a-dihydroequilin.
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The specification limits for each component are different. To ensure identity,
strength, quality, and purity, it is suggested that each component be evalu-
ated separately for determination of drug shelf-life. In this case, although a
similar concept can be applied, the method suggested in the FDA stability
guideline is necessarily modified. It should be noted that the assay values
observed from each component might not add up to a fixed total, which
is due to the possible assay variability for each component. The modified
model should be able to account for these sources of variation. Pong and
Raghavarao®® proposed a statistical method for estimation of drug shelf-life
for drug products with two components. The distributions of shelf-life for
two components were evaluated by Pong and Raghavarao®® under different
designs.

4.5.4. Stability analysis with discrete responses

For solid oral dosage forms such as tablets and capsules, the FDA stability
guideline indicates that following characteristics should be studied in sta-
bility studies: (i) Tablets — appearance, friability, hardness, color, odor,
moisture, strength, and dissolution, and (ii) capsules — strength, moisture,
color, appearance, shape brittleness and dissolution. Some of these charac-
teristics are measured based on discrete rating scale. As a result, the usual
methods for stability analysis may not be appropriate. Chow and Shao!®
proposed some statistical methods for estimation of drug shelf-life based
on discrete responses following the concept as described in the FDA sta-
bility guideline. However, it may be of interest to consider a mixture of a
continuous response variable (e.g. strength) and a discrete response vari-
able (e.g. color or hardness) for estimation of drug shelf-life. This requires
further research.

5. Bioequivalence and Bioavailability

In pharmaceutical research and development, in vivo bioequivalence testing
is usually considered a surrogate for assessment of clinical efficacy and
safety. This is based on the so-called Fundamental Bioequivalence Assump-
tion that when two formulations of the same drug product or two drug
products (e.g. a brand-name drug and its generic copy) are equivalent
in the rate and extent of drug absorption, it is assumed that they will
reach the same therapeutic effect or they are therapeutically equivalent.'?
Pharmacokinetic (PK) responses such as area under the blood or plasma

concentration-time curve (AUC) and maximum concentration (Cpyax,) are
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usually considered to assess the rate and extent of drug absorption. The
current regulation of the FDA requires that the evidence of bioequivalence
in average bioavailabilities in terms of some primary PK responses such as
AUC and Cy,ax, between the two formulations of the same drug product
or the two drug products be provided.?8:3! This type of bioequivalence is
usually referred to as average bioequivalence (ABE). Under current ABE
criterion, however, it is not clear whether we are able to demonstrate that
the absorption profiles of a brand-name drug and its generic copies are
similar; consequently, it is not clear whether the brand name drug and its
generic copies will have the same therapeutic effect in terms of efficacy and
safety and hence can be used interchangeably.

In medical community, as more generic drug products become avail-
able in the marketplace, it is of great concern whether a number of
generic drug products of the same brand-name drug can be used safely
and interchangeably. Basically drug interchangeability can be classified as
drug prescribability or drug switchability. Drug prescribability is defined
as the physician’s choice for prescribing an appropriate drug product for
his/her new patients between a brand-name drug product and a number of
generic drug products of the brand-name drug product, which have been
shown to be bioequivalent to the brand-name drug product. The underlying
assumption of drug prescribability is that the brand-name drug product and
its generic copies can be used interchangeably in terms of the efficacy and
safety of the drug product. Under current practice, the FDA only requires
evidence of equivalence in average bioavailabilities be provided, the bioe-
quivalence assessment does not take into account equivalence in variability
of bioavailability. A relatively large intrasubject variability of a test drug
product (e.g. a generic drug product) as compared to that of the refer-
ence drug product (e.g. its brand-name drug product) may present a safety
concern. To overcome this disadvantage, in addition to providing evidence
of ABE, it is recommended that bioequivalence in variability of bioavaila-
bilities between drug products be established. This type of bioequivalence is
called population bioequivalence (PBE). In practice, although PBE is often
considered for assessment of drug prescribability, it does not fully address
drug switchability due to possible existence of the subject-by-formulation
interaction.

Drug switchability is related to the switch from a drug product (e.g. a
brand-name drug product) to an alternative drug product (e.g. a generic
copy of the brand-name drug product) within the same subject whose con-
centration of the drug product has been titrated to a steady, efficacious, and
safe level. As a result, drug switchability is considered more critical than
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drug prescribability in the study of drug interchangeability for patients
who have been on medication for a while. To assure drug switchability, it is
recommended that bioequivalence be assessed within individual subjects.
This type of bioequivalence is known as individual bioequivalence (IBE).
The concept of IBE has attracted FDA’s attention since introduced by
Anderson and Hauck,! which has led to a significant change in regulator
consideration for assessment of bioequivalence.?? In what follows, we will
focus on the review of guidance on Statistical Approaches to Establishing
Bioequivalence, which was recently issued by the FDA .32

5.1. Limatations of average bioequivalence

Under current FDA regulation, two formulations of the same drug or two
drug products are said to be bioequivalent if the ratio of means of the
primary PK responses such as AUC and Cy,,x between the two formulations
of the same drug or the two drug products is within (80%, 125%) with 90%
assurance.?831 A generic drug product can serve as the substitute of its
brand-name drug product if it has been shown to be bioequivalent to the
brand-name drug. The FDA, however, does not indicate that a generic drug
can be substituted by another generic drug even though both of the generic
drugs have been shown to be bioequivalent to the same brand-name drug.
Bioequivalence among generic copies of the same brand-name drug is not
required. As more generic drugs become available in the marketplace, it is
very likely that a patient may switch from one generic drug to another.
Therefore, an interesting question to the physicians and the patients is
whether the brand-name drug and its generic copies can be used safely and
interchangeably.

Chen® pointed out that current ABE approach for bioequivalence as-
sessment has limitations for addressing drug interchangeability especially
for drug switchability. These limitations include (i) ABE focuses only
on the comparison of population average between the test and reference
drug products, (ii) ABE does not provide independent estimated of the
intrasubject variances of the drug products under study, and (iii) ABE
ignores the subject-by-formulation interaction, which may have an impact
on drug switchability. As a result, Chen® suggested that current regulation
of ABE be switched to the approach of PBE and IBE to overcome these
disadvantages.

Chow and Liu'! proposed to perform a meta-analysis for an overview of
ABE. The proposed meta-analysis provides an assessment of bioequivalence
among generic copies of a brand-name drug that can be used as a tool to



470 S. C. Chow € A. Pong

monitoring the performance of the approved generic copies of the brand-
name drug. In addition, it provides more accurate estimates of intersubject
and intrasubject variabilities of the drug product.

5.2. Drug interchangeability

As indicated earlier, drug interchangeability can be classified as drug pre-
scribability or drug switchability. It is recommended that PBE and IBE
be used to assess drug prescribability and drug switchability, respectively.
More specifically, the FDA guidance recommends that PBE be applied to
new formulations, additional strength, or new dosage forms in NDAS, while
IBE should be considered for ANDA (abbreviated new drug application) or
AADA (abbreviated antibiotic drug application) for generic drugs. In what
follows, we will only focus on the concept, decision rule, and statistical
method of IBE for assessment of drug interchangeability.

5.2.1. Individual bioequivalence

The individual bioequivalence is motivated by the 75/75 rule which claims
bioequivalence if at least 75% of individual subject ratios (i.e. relative in-
dividual bioavailability of the generic drug product to the innovator drug
product) are within (75%, 125%) limits. Along this line, Anderson and
Hauck! first proposed the concept of testing for individual equivalence
ratios (TIER). The idea is to test individual bioequivalence based on the
dichotomization of continuous PK metrics by calculating the p value for at
least the observed number of subjects who fall within bioequivalence limits
with the minimum proportion of the population in which the two drug
products must be equivalent in order to claim individual bioequivalence.
It should be noted that no universal definition of IBE exists which is uni-
formly accepted by researchers from the regulatory agency, the academia
and the pharmaceutical industry. For example, IBE may be established
based on the comparison between distributions within each subject or it
could be based on the distribution of the difference or ratio within each
subject.%® In addition to average bioavailability and variability of bioavai-
lability, we may also consider assessment for the variability due to the
subject by formulation interaction. In this case, IBE can be assessed by
means of a union-intersection test approach, which concludes IBE if and
only if all of the hypotheses are rejected at a pre-specified level of signifi-
cance. Most current methods for assessment of IBE, however, are derived
from the distribution of either difference or ratio within each subject. Under
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this setting, IBE can be classified as probability-based and moment-based
according to different criteria for bioequivalence.!»27:39,59,64

To address drug switchability, the FDA proposed the following aggre-
gated, scaled moment based one-sided criterion:

150 - W =R} +ob + (Ohr —ofr) _,
rnax(a%VR7 U%VO) -

b

where O’%VT and (T%V r are the within subject variances for the test drug
product and the reference drug product, respectively, 0% is the variance
due to subject-by-formulation interaction, 012,[,0 is a constant which can be
adjusted to control the probability of passing IBE, 8; and is the bioequiv-
alence limit. The FDA 2001 guidance suggests that 6; be chosen as follows

(In1.25)% + ¢
0= 1L,
9wo
where € is the variance allowance factor which can be adjusted for control
sample size. As indicated in the FDA 2001 guidance, £; may be fixed be-
tween 0.04 and 0.05. For the determination of o3, the FDA 2001 guidance

recommends the use of individual difference ratio (IDR), which is defined as
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Therefore, assuming that the maximum allowable IDR is 1.25, substitu-
tion of (In1.25)%/0%,, for IBC without adjustment of the variance term
approximately yields owo = 0.2.

The FDA 2001 guidance suggests that a mixed effects model in conjunc-
tion with the restricted maximum likelihood (REML) method be used to
estimate variance components of 0%,, 0%, and 03, . An intuitive statistical
test can then be obtained by simply replacing the unknown parameters with
their corresponding estimates. However, exact statistical properties of the
resultant test are unknown. The FDA 2001 guidance recommends that the
small sample method proposed by Hyslop et al.?® be used to obtain the con-
fidence interval or confidence bound of the test. If the upper 95% confidence
bound is less than 0, we conclude IBE.
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5.3. A review of the FDA guidance on
population/individual bioequivalence

As indicated earlier, the FDA 2001 guidance on Statistical Approaches to
Establishing Bioequivalence is intended to address drug interchangeability.
As a result, the guidance for assessment of PBE and IBE has a significant
impact on pharmaceutical research and development. In what follows, we
provide a comprehensive review of the FDA 2001 guidance on population
and individual bioequivalence from both scientific/statistical and practical
points of view. Without loss of generality, we will only focus on IBE.

5.3.1. Aggregated criteria vs. disaggregated criteria

The FDA 2001 guidance recommends aggregated criteria as described
earlier for assessment of IBE. The IBE criterion takes into account for
average of bioavailability, variability of bioavailability, and the variability
due to subject-by-formulation interaction. Under the proposed aggregated
criteria, however, it is not clear whether IBE criterion is superior to
ABE criterion for assessment of drug interchangeability. In other words,
it is not clear whether or not IBE implies ABE under aggregate criteria.
Hence, the question of particular interest to pharmaceutical scientists is
that whether the proposed aggregated criterion can really address drug
interchangeability?

Liu and Chow*® suggested disaggregated criteria be implemented for
assessment of drug interchangeability. The concept of disaggregated criteria
for assessment of IBE is described below. In addition to ABE, we may
consider the following hypotheses testing for equivalence in variability of
bioavailabilities, and variability due to subject-by-formulation interaction:

Hy : ojyr/oivg > Ay
vs. Hy @ opyr/owr < Ay
and
Hy : 0123 > Ay
vs. H, : 0123 < Ag

where A, is bioequivalence limit for the ratio of intrasubject variabilities
and A; is an acceptable limit for variability due to subject-by-formulation
interaction. We conclude IBE if both 100(1 — «)% upper confidence limit
for 03,1 /0%, k is less than A, and 100(1 — )% upper confidence limit for
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02, is less than A,. Under the above disaggregated criteria, it is clear that
IBE implies ABE.

In practice, it is of interest to examine the relative merits and disadvan-
tages between the FDA recommended aggregated criteria and the disaggre-
gated criteria described above for assessment of drug interchangeability. In
addition, it is also of interest to compare the aggregated and disaggregated
criteria of IBE with the current ABE criterion in terms of the consistencies
and inconsistencies in concluding bioequivalence for regulatory approval.

5.3.2. Masking effect

The goal for evaluation of bioequivalence is to assess the similarity of the
distributions of the PK metrics obtained either from the population or from
individuals in the population. However, under the aggregated criteria, dif-
ferent combinations of values for the components of the aggregated criterion
can yield the same value. In other words, bioequivalence can be reached by
two totally different distributions of PK metrics. This is another artifact
of the aggregated criteria. For example, at the 1996 Advisory Committee
meeting, it was reported that the data sets from the FDA’s files showed
that a 14% increase in the average (ABE only allow 80% to 125%) is offset
by a 48% decrease in the variability and the test passes IBE but fails ABE.

5.3.3. Power and sample size determination

For the proposed aggregated criterion, it is desirable to have sufficient sta-
tistical power to declare IBE if the value of the aggregated criterion is small.
On the other hand, we would not want to declare IBE if the value is large. In
other words, a desirable property for assessment of bioequivalence is that
the power function of the statistical procedure is a monotone decreasing
function. However, since different combinations of values of the components
in the aggregated criteria may reach the same value, the power function
for any statistical procedure based on the proposed aggregated criteria is
not a monotone decreasing function. The experience for implementing the
aggregated criteria in regulatory approval of generic drugs is lacking.
Another major concern is how the proposed criteria for IBE will affect
the sample size determination based on power analysis. Unlike ABE, there
exists no closed form for the power function of the proposed statistical
procedure for IBE. As a result, the sample size may be determined through
a Monte Carlo simulation study. Chow and Shao'” provided formulas (based
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on normal approximation) for sample size calculation for assessment of PBE
and IBE under a 2 x 4 replicated crossover design. Sample sizes calculated
from the formulas were shown to be consistent with those obtained from
simulation studies.

5.3.4. Two-stage test procedure

To apply the proposed criteria for assessment of IBE, the FDA 2001
guidance suggests the constant scale be used if the observed estimator of
oTR or ow g is smaller than opg or oywg. However, statistically, the observed
estimator of orr or owpg being smaller than org or oy does not mean
that org or ow g is smaller than org or oy. A test on the null hypothesis
that org or owpg is smaller than org or oy is necessarily performed. As
a result, the proposed statistical procedure for assessment of IBE becomes
a two-stage test procedure. It is then recommended that the overall type I
error rate and the calculation of power be adjusted accordingly.

5.3.5. Study design

The FDA 2001 guidance recommends a 2 x 4 replicated designs, i.e. (TRTR,
RTRT) be used for assessment of IBE without any scientific and/or statis-
tical justification. As an alternative to the 2 x 4 replicated design, the FDA
2001 guidance indicates that a 2 x 3 replicated crossover design, i.e. (TRT,
RTR) may be considered. Several questions are raised. First, it is not clear
whether the two replicated crossover designs the optimal design (in terms
of power) among all 2 x4 and 2 x 3 replicated crossover designs with respect
to the aggregated criterion? Second, it is not clear what is the relative effi-
ciency of the two designs if the total number of observations is fixed. Third,
it is not clear how these two designs compare to other 2 x 4 and 2 x 3
replicated designs such as (TRRT, RTTR) and (TTRR, RRTT) designs
and (TRR, RTT) and (TTR, RRT) designs. Finally, it may be of interest
to study the relative merits and disadvantages of these two designs as com-
pared to other designs such as Latin square designs and four sequence and
four period designs.

Other issues regarding the proposed replicated designs include (i) it will
take longer time to complete, (ii) subject’s compliance may be a concern,
(iii) it is likely to have a higher dropout rate and missing values especially
in 2 x 4 designs, and (iv) there are little literature on statistical methods
dealing with dropouts and missing values in a replicated crossover design
setting.
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Note that the FDA 2001 guidance provides detailed statistical pro-
cedures for assessment of PBE and IBE under the recommended 2 x 4
replicated design. However, no details regarding statistical procedures for
assessment of PBE and IBE under the alternative 2 x 3 replicated design are
given. Detailed statistical procedures for assessment of PBE and IBE are
available.'®20 In addition, Chow and Shao'” pointed out that the statistical
procedure for assessment of PBE under the recommended 2 x 4 replicated
design as described in the FDA 2001 guidance was inappropriate due to the
violation of the primary assumption of independence.

5.4. Outlier detection

The procedure suggested for detection of outliers is not appropriate for
the standard 2 x 2, the 2 x 3 or the 2 x 4 replicated crossover designs
because the observed PK metrics from the same subject are correlated. For
a valid statistical assessment, the procedures proposed by Chow and Tse??
and Liu and Weng?® should be used. These proposed statistical procedures
for outlier detection in bioequivalence studies were derived under crossover
designs, which incorporate the correlations within the same subject. The
FDA 2001 guidance provides little or no discussion regarding the treatment
of identified outliers.

6. Statistical Principles for Good Clinical Practice

For approval of a drug product, the FDA requires that substantial evidence
of the effectiveness and safety of the drug product be provided through the
conduct of two adequate and well-controlled clinical studies. To assist the
sponsors in preparation of final clinical reports for regulatory submission
and review, the FDA developed guidelines for the format and content of a
clinical report in 1988. In addition, in 1994, the Committee for Proprietary
Medicinal Products (CPMP) Working Party on Efficacy on Medicinal
Products of the European Community issued a similar guideline entitled
A Note for Guidance on Biostatistical Methodology in Clinical Trials in
Applications for Marketing Authorizations for Medicinal Products. At the
same time, the ICH also signed off on the step 4 final draft of the Structure
and Content of Clinical Study Reports and recommended its adoption to
the three regulatory authorities of the United States, European Community,
and Japan. The ICH guidelines require that some critical statistical issues
be addressed in the final clinical report. These critical issues include base-
line comparability, adjustments for covariates, dropouts or missing values,
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interim analyses and data monitoring, multicenter studies, multiplicity,
efficacy subsets, active control trials, and subgroup analyses, which are
briefly described below (see also, Pong and Chow.>3).

6.1. Baseline comparability

Baseline measurements are those collected during the baseline periods as
defined in the protocol. Baseline usually refers to at randomization and prior
to treatment. Sometimes, measurements obtained at screening are used as
baselines. Basically, the objectives for analysis of baseline data are three-
fold. First, the analysis of baseline data is to provide a description of patient
characteristics of the targeted population to which statistical inference is
made. In addition, the analysis of baseline data provided useful information
regarding whether the patients enrolled in the study are a representative
sample of the targeted population according to the inclusion and exclusion
criteria of the trial. Second, since baseline data measure the initial patient
disease status, they can serve as reference values for the assessment of the
primary efficacy and safety clinical endpoints evaluated after the admini-
stration of the treatment. Finally, the comparability between treatment
groups can be assessed based on baseline data to determine potential co-
variates for statistical evaluations of treatment effects. The ICH guideline
requires that baseline data on demographic variables such as age, gender,
or race and some disease factors such as specific entry criteria, duration,
stage and severity of disease and other clinical classifications and subgroups
in common usage or of known prognostic significance be collected and
presented.

The commonly employed statistical tests for baseline comparability are
Cochran-Mantel-Henzsel test for categorical data and analysis of variance
for continuous variables. Preliminary investigation of baseline comparabi-
lity helps identifying possible confounding and interaction effects between
treatment and baseline characteristics.

6.2. Adjustments for covariates

For assessment of the efficacy and safety of a drug product, it is not un-
common that the primary clinical endpoints are affected by some factors
(or covariates) such as demographic variables, patient characteristics,
concomitant medications, and medical history. If these covariates are known
to have an impact on the clinical outcomes, one may consider stratified
randomization. In practice, however, one may collect information on some
covariates, which may influential and yet unknown at the planning stage
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of the trial. In this case, if patients are randomly assigned to receive
treatments, the estimated treatment effect is asymptotically free of the acci-
dental bias induced by these covariates. If the covariate were balanced, then
the difference in simple treatment averages would be an unbiased estimate
for the treatment effect. On the other hand, if the covariate is not balanced,
then the difference in simple average between treatment groups will be bi-
ased for estimation of the treatment effect. In this case, it is suggested that
the covariates be included in the statistical model such as an analysis of
variance (or covariance) model for an unbiased estimate of the treatment
effect. In the case where covariates are balanced between the treatment
groups, it is still necessary to adjust for covariates for clinical endpoints in
order to obtain valid inference of the treatment effect if the covariates are
statistically significantly correlated with the clinical endpoints.

The ICH guidelines require that selection of and adjustments for
demographic or baseline measurements, concomitant therapy, or any other
covariate or prognostic factor should be explained. In addition, methods
of adjustments, results of analyses, and supportive information should be
included in the detailed documentation of statistical methods.

6.3. Dropouts or missing values

In clinical research, there are many possible causes for the occurrence of
dropouts and missing values. These possible causes include the duration
of the study, the nature of the disease, the efficacy and adverse effects
of the drug under study, intercurrent illness, accidents, patient refusal or
moving, or other administrative reasons. The ICH guidelines suggest that
the reasons for the dropouts, the time to dropout, and the proportion of
dropouts among treatment groups be analyzed to examine the effects of
dropouts for evaluation of the efficacy and safety of the study drug. Little
and Rubin** classified missing values into three different types based on the
possible causes. If the causes of missing values are independent of the ob-
served responses, then the missing values are said to be completely random.
On the other hand, if the causes of missing values are dependent on the
observed responses but are independent of the scheduled but unobserved
responses, then missing values are said to be random. The missing values
are said to be informative if the causes of missing values are dependent
upon the scheduled but unobserved measurements.

If missing mechanism is either completely random or random, then
statistical inference derived from the likelihood approaches based on
patients who complete the study is still valid. However, the inference is
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not as efficient as it supposes to be. If the missing values were informative,
then the inference based on the completers would be biased. As a result, it
is suggested that despite the difficulty, the possible effects of dropouts and
missing values on magnitude and direction of bias be expressed as fully as
possible.

6.4. Interim analysis and data monitoring

Interim analysis and data monitoring are commonly employed for clinical
trials in treatment of life-threatening disease or severely debilitating illness
with long-term follow-up and endpoints such as mortality or irreversible
morbidity. Interim analyses based on the data monitoring can be clas-
sified into formal interim analysis and administrative analysis. The aim
of a formal interim analysis is to determine whether a decision for early
termination can be reached before the planned study completion due to
compelling evidence of beneficial effectiveness or harmful side effects. The
administrative interim analysis is usually carried out without any intentions
of early termination because of the results of the interim analysis results.
Since interim analyses, either formally or informally, can introduce bias
and/or increase type I error, the ICH guidelines require that all interim
analyses, formal or informal, pre-planned or ad hoc, by any study partici-
pant, sponsor staff member, or data monitoring group should be described
in full, even if the treatment groups were not identified. Data monitoring
without code-breaking should also be described, even if this kind of moni-
toring is considered to cause no increase in type I error.

6.5. Multicenter studies

A multicenter trial is often conducted to expedite the patient recruitment
process. The objective of the analysis of clinical data from a multicenter
trial is two-fold. It is not only to investigate whether a consistent treatment
effect can be observed across centers but also to provide an estimate of
the overall treatment effect. A set of four conditions under which evidence
from a single multicenter trial would provide sufficient statistical evidence
of efficacy is proposed.®®

Although all of the centers in multicenter trials follow the same protocol,
many practical issues are likely to occur. For example, some centers may
be too small for a reliable interpretation of the results, while some centers
may be too big which dominate the results. In addition, there may be a
significant treatment-by-center interaction. As a result, a statistical test
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for homogeneity across centers is necessarily performed for detection of
possible quantitative or qualitative treatment-by-center interaction. Gail
and Simon®* indicated that the existence of a quantitative interaction
between treatment and center dose not invalidate the analysis by pooling
data across centers. However, if a qualitative interaction between treat-
ment and center is observed, an overall or average summary statistic may
be misleading and hence considered inadequate. In this case, treatment
effect should be carefully evaluated by center.

6.6. Multiplicity

In clinical trials, multiplicity may occur depending upon the objective of
the intended trial, the nature of the design, and statistical analysis. The
causes of multiplicity are mainly due to the formulation of statistical hy-
potheses and the experiment-wise false positive rates in subsequent analyses
of the data. The ICH guidelines require that the overall type I error rate be
adjusted to reflect multiplicity. Basically, multiplicity in clinical trials can
be classified as repeated interim analyses, multiple comparisons, multiple
endpoints, and subgroup analyses.

In the interest of an overall type I error rate, the commonly employed
approach is probably the application of the Bonferroni technique. The
concept of Bonferroni’s technique is to adjust p values for control of
experiment-wise type I error rate for pairwise comparisons. Bonferroni’s
method does not require that the structure of the correlation among com-
parisons be specified. In addition, it allows an unequal number of patients
in each treatment group. Bonferroni’s method works well when the num-
ber of treatment groups is small. When the number of treatment groups
increases, however, Bonferroni’s adjustment for p values becomes very con-
servative and may lack adequate power for the alternative in which most
or all efficacy endpoints are improved. In this situation, as an alternative,
one may consider a modified procedure proposed by Hochberg (1988).37
Hochberg’s procedure is shown to be more powerful because it only re-
quires one p value smaller than o to declare one statistically significant
comparison.

6.7. Efficacy subsets

In clinical trials, despite the fact that there is a thoughtful study proto-
col, deviation from the protocol may be encountered during the course of
the trial. In addition, it is very likely that patients will withdraw from the
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study prematurely before the completion of the trial due to various reasons.
Patients who complete the study might miss some scheduled visits. As
a result, which patients should be included in the analysis for a valid
and unbiased assessment of the efficacy and safety of the treatment is a
legitimate question to ask.

To provide a fair and unbiased assessment of the treatment effect, the
ICH guideline suggests that the primary analysis for the demonstration of
the efficacy and safety of the drug product should be conducted based on
the intention-to-treat sample. In addition to the intention-to-treat sample,
some subsets of the intention-to-treat sample may be constructed for effi-
cacy analysis. These subsets are usually referred to efficacy subsets. These
efficacy subsets include (i) patients with any efficacy observations or with
a certain minimum number of observations, (ii) patients who complete the
study, (iii) patients with an observation during a particular time window,
and (iv) patients with a specified degree of compliance. The ICH guidelines
require that efficacy subsets be analyzed to examine the effects of dropping
patients with available data from analyses because of poor compliance,
missed visits, ineligibility, or any other reasons. Any substantial differences
resulting from the analyses of the intention-to-treat sample and the efficacy
subsets should be the subject of explicit discussion.

6.8. Active control trials

An active control trial is often considered an alternative to placebo control
study for evaluation of the effectiveness and safety of a test drug with
very ill patients or patients with severe or life-threatening diseases based
on ethical considerations. The primary objective of an active control trial
could be to establish the efficacy of the test drug, to show that the test
drug is equivalent to an active control agent, or to demonstrate that the
test drug is superior to the active control agent. Pledger and Hall®? pointed
out that active control trials offer no direct evidence of effectiveness of the
test drug. The only trial that will yield direct evidence of effectiveness of
the test drug is a placebo-controlled trial, which compares the test drug
with a placebo. Temple®® indicated that if we cannot be very certain that
the active control agent in a study would have beaten a placebo group, the
fundamental assumption of the active control study cannot be made and
that design must be considered inappropriate.

ICH guidelines indicated that if an active control study is intended to
show equivalence between the test drug and an active control, the analysis
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should show the confidence interval for the comparison between the two
agents for critical endpoints and the relation of that interval to the pre-
specified degree of inferiority that would be consider unacceptable.

7. Statistics in Diagnostic Imaging

The techniques for evaluation of the performance of diagnostic medical
products are very different from therapeutic pharmaceuticals and non-
diagnostic devices. However, medical imaging drugs are generally governed
by the same regulations as other drug and biological products. Because of
the medical imaging drugs have special characteristics that do not reflect
from other drug and biological products. The purpose of this section will
focus on the different considerations for designs in diagnostic studies.

7.1. Introduction

Medical imaging drug products are drugs used with medical imaging
methods (such as radiography, computed tomography [CT], ultrasono-
graphy [US], and magnetic resonance imaging [MRI]) to provide infor-
mation on anatomy, physiology and pathology. The term “images” can
be used as films, likenesses or other renderings of the body, body parts,
organ systems, body functions, or tissues. For example, an image of the
heart obtained with a diagnostic radiopharmaceutical or ultrasound con-
trast agent may in some cases refer to a set of images acquired from different
views of the heart. Similarly, an image obtained with an MRI contrast agent
may refer to a set of images acquired with different pulse sequences and
interpluse delay times. In other words, medical imaging uses advanced tech-
nology to “see” the structure and function of the living body. The intentions
of a medical imaging drug have two-fold: (i) delineate nonanatomic struc-
tures such as tumors or abscesses (ii) detect disease or pathology within an
anatomic structure. Therefore, the indications for medical imaging drugs

Table 1. Most common used contrast drug products in combination with medical
imaging devices.

Modality Contrast Drug Products
X-Ray and CT Todine agents (photon scattering)
MRI Gadolinium, dysprosium, helium
Ultrasound Liposomes, microbubbles

Suspensions Nuclear  Tc¢-99rn, T1-201, indium, samarium
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may fall within the following general categories. However, they need not be
mutually exclusive:

Structure delineation — normal or abnormal;
Functional, physiological, or biochemical assessment;
Disease or pathology detection or assessment;

o op

Diagnostic or therapeutic patient management.

The details of drug regulations are shown in the draft guidance to INDs,
NDAs, biologics license applications (BLAs), ANDAs, and supplements to
NDAs or BLAs for the medical imaging drug and biological products. This
guidance was issued by FDA for industry entitled Development Medical
Imaging Drugs and Biologics.?® Usually, images are created from compute-
rized acquisition of digital signals. The medical imaging drugs can be clas-
sified into contrast drug products and diagnostic radiopharmaceuticals.

7.1.1. Contrast drug product

Contrast drug products are used to increase the relative difference of signal
intensities and to provide the additional information in combination with an
imaging device beyond by the device alone. In other words, imaging with
the contrast drug product should add value when compared to imaging
without the contrast drug product.

7.1.2. Diagnostic radiopharmaceuticals

Radiopharmaceuticals are used for a wide variety of diagnostic, monitoring,
and therapeutic purposes. Diagnostic Radiopharmaceuticals are used to
image or otherwise identify an internal structure or disease process. In other
words, diagnostic Radiopharmaceuticals are radioactive drugs that contain
a radioactive nuclide that may be linked to a legend and carrier. These
products are used in planar imaging, single photon emission computed to-
mography (SPECT), positron emission tomography (PET), or with other
radiation detection probes.

7.2. Design of blinded-reader studies

In order to demonstrate efficacy of a medical imaging drug, readers who are
both independent and blinded should perform evaluation of images. These
independent, blinded image evaluations are intended to limit possible bias
that could be introduced into the images evaluation by non-independent
or unblinded readers. This evaluation is conducted in controlled setting
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with minimal clinical information provided to the reader. The definitions
of “independent” and “blinded” are defined next.

The independent readers are defined as those who have not participated
studies and who are not affiliated with the sponsor or with institutions at
which the studies were conducted. The meaning of blinding differs from
the common way the term used in therapeutic clinical trials. Blinding in
this sense is a critical aspect of clinical trials of medical imaging agents.
“Blinded readers” are those who are unaware (1) of treatment identity used
to obtain a given image and (2) of patient-specific clinical information or
study protocol. For example, blinded readers should not have the knowledge
about which images were obtained prior to drug administration and which
were obtained after drug administration, although this may be apparent
upon viewing the images. In addition, blinded readers should not know
the patients’ final diagnoses and may have limited or no knowledge of the
results of other diagnostic tests that were performed on the patients. In
some cases, blinded readers should not be familiar with the inclusion and
exclusion criteria for patient selection that were specified in the protocol.

7.2.1. Assessing reader agreement

As indicated in the draft guidance,’ at least two independent, blinded
readers (and preferably three or more) are recommended for each study
that is intended to demonstrate efficacy. The purpose is to provide a better
basis for the findings in the studies. Therefore, the determination of inter-
reader agreement and variability is the typical design issue to blinded read
studies.

According to the guidance, the consistency among readers should be
measured quantitatively. The most commonly used statistical test to assess
the inter-reader agreement is the x (kappa) statistic. The Cohen’s kappa
coefficient,?* is a measure of inter-reader agreement in terms of count data.

For a 2 x 2 table,

_ Py—P.
T 1-P

where

Py = Z pit = proportion of observed agreement

?

P, = Z pi.p.j = proportion of expected agreement
0,J
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It assumes that two response variables are two independent ratings of the n
subjects. It should be noted that the kappa coefficient equals +1 when there
is complete agreement of the readers. When the observed agreement exceeds
chance agreement, kappa is positive. Also, the magnitude of kappa statistics
reflects the strength of agreement. In a very unusual practice, kappa could
be negative when the observed agreement is less than chance agreement.
The total range of kappa is between —1 and 1. The asymptotic variance
of simple kappa coefficient can be estimated by the following, according to
Fleiss et al.33:

A+B+C
Var(ﬁ)):m7

n

where

A= Zpii[l — (pi-+pJ)(1 = &),

7

B=(1—-#/)>Y > pijpi-+pj)*,

i#j g
C=[k—P(1-k)>.

For measuring the inter-reader agreement in continuous data, Snedecor and
Cochran proposed the intra-class correlation.®

7.3. Diagnostic accuracy

To determine how well a diagnostic imaging agent can distinguish disease
subjects and non-diseased subjects, the outcome may often be classified into
one of the four groups depending on (i) whether disease is present and (ii)
the results of the diagnostic test of interest (positive or negative). The terms
“positive” and “negative” concern some particular disease status, which
must be specified clearly. The categories can be defined in any meaningful
way to the problem. For example, patients could be classified as having one
or more tumors (positive) or no tumor (negative), malignant (positive) or
benign/no tumor (negative).

It should be noted that the disease is often determined with a “truth”
standard or “gold” standard. A “truth” standard or “gold” standard is an
independent method of measuring the same variable being measured by the
investigational drug that is known or believed to give the truth state of a
patient or true value of a measurement. In other words, “truth” standards
are used to demonstrate that the results obtained with the medical imaging
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Table 2. The typical outcome table (2 X 2) in the evaluation of a diagnostic test.

Disease Status

Present | Absent

Diagnostic | Positive a(TP) b(FP)

Test Negative | c¢(FN) d(TN)

drug are valid and reliable. For example, for a MRI contrast agent intended
to visualize the number of lesions in liver or determine whether a mass
is malignant, the truth standard might include results from the pathology
or long-term clinical outcomes. In diagnostic imaging studies, “truth” or
“gold” standard are usually called as standard of reference (SOR). Possible
choices of SOR in an imaging trail are:

Histopathology;

Therapeutic response;

Clinical outcome;

Another valid imaging procedure (validated against a valid gold
standard);

e. Autopsy.

e o

TP, FP, FN, TN represent the true positive, false positive, false negative,
and true negative, respectively. After completing a well-defined classifica-
tion based on the disease status and diagnostic test of interest, the efficacy
of imaging agent can be expressed as the diagnostic performance of the
agent.

The simplest measure of diagnostic decision is the fraction of cases for
which the physician is correct, which is often called “accuracy”. In other
words, the accuracy is defined as the proportion of cases, considering both
positive and negative test results, for which the test results are correct. It
also can be expressed in mathematics as following:

a+d
at+bt+ct+d’

However, accuracy is of limited usefulness as an index of diagnostic per-

Accuracy =

formance because two diagnostic modalities can yield equal accuracies but
perform differently with respect to the types of decisions. Also, it can be
affected by the disease prevalence strongly. Due to the limitation of the
accuracy index, the sensitivity and specificity are used in the evaluation
scheme.
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L Number of TP decisions a
Sensitivity = — =
Number of actually positive cases a+ ¢
. Number of TN decisions d
Specificity =

Number of actually negative cases ) +d

In effect, sensitivity and specificity represents two kinds of accuracy: the
first is for actually positive cases and the second is for actually neg-
ative cases. However, very often a single pair of sensitivity and speci-
ficity measurements may provide a possibly misleading and even hazardous
oversimplification of accuracy.” This is how the ROC (Receiver Operating
Characteristic) curve comes into picture and is introduced in Sec. 7.4.1. It
should be noted that the method for evaluating and comparing sensitivity
and specificity for diagnostic tests is based on:

Assumption 1: Diagnostic tests are independent given the disease status;
Assumption 2: The gold standard is error free.

These two assumptions are not always valid. Several statistical methods
have been considered.?3:57

7.4. Statistical analysis

Most of the imaging trials are designed to provide dichotomous or ordered
categorical outcomes. Therefore, the statistical tests for proportions and
rates are commonly used, and the methods based on ranks are often
applied to ordinal data. The analyses based on odds ratios and the Mantel-
Haenszel procedures are useful for data analysis. In addition, the use of
model-based techniques, such as logistic regression models for binomial
data, proportional odds models for ordinal data, and log-linear models for
normal outcome variables are usually applied.

The diagnostic validity can be assessed in many ways. For example,
the pre- and post-images can be compared to the gold standard, and the
sensitivity and specificity of the pre-image compared to the post-image.
Similarly, the same approaches can be used for two different active agents.
The common methods used to test for differences in diagnosis are the Mc-
Nemar test and Stuart-Maxwell test. The confidence intervals for sensitivity
and specificity, and other measures can be also provided in the analysis.

Recently, the Receiver Operating Characteristic (ROC) analyses are
becoming increasing important. Not only because it is recommended in
the FDA draft guidance,®® but also its advantage over more traditional
measures of diagnostic performance.*
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7.4.1. Receiver operating characteristic (ROC) analyses

In the use of most diagnostic test, test data do not necessarily fall into one
of two obviously defined categories. Imaging studies usually require some
confidence threshold be established in the mind of the decision maker. For
example, if an image suggests the possibility of disease, how strong the
suspicion is in order for the image to be called positive? Therefore, the
decision maker chooses between positive and negative diagnosis by compar-
ing his/her confidence concerning with an arbitrary confidence threshold.
Figure 1 is an example of the model that underlies ROC analysis. The bell-
shaped curves represent the probability density distributions of a decision
maker’s confidence in a positive diagnosis that arise from actually positive
patients and actually negative patients.

The true positive fraction (TPF) is represented by the area under the
left-hand distribution to the threshold. Similarly, the false positive fraction
(FPF) is represented by the area under the left-hand distribution to the
threshold. These imply that the sensitivity and specificity vary inversely
as the confidence threshold is changed. In other words, TPF and FPF will
increase or decrease together as the confidence threshold is changed.

If we change the decision threshold several times, we will obtain several
different pairs of TPF and FPF. These pairs can be plotted as points on
a graph, such as that in Fig. 2. This curve is called the ROC curve for

Model of ROC Analysis

Threshold
r'd

Actually
Negative

Actually
Positive

T T T T T T

Less <«—  Confidence in a Positive Decision =~ —» More

Fig. 1. Model of ROC Analysis.
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Typical ROC Curve
1.0
.......... >
less strict
True confidence
Positive
Fraction .
0.5 typical ROC curve
(TPF) X
/ stricter
¥ confidence
0 |
0.5 1.0

False Positive Fraction (FPF)

Fig. 2. Typical ROC Curve.

diagnostic test. Then, we may conclude that better performance is indicated
by an ROC curve that is higher to the left in the ROC space.

A practical technique for generating response data that can be used to
plot a ROC curve is called the rating method. This method requires the
decision maker select a value from a continuous scale, such as definitely
negative, probably negative, questionable, probabyly positive or definitely
positive.

The advantages of the ROC curves are it is simple and graphical. Also,
it is independent of prevalence and it provides a direct visual comparison
between tests on a common scale. However, the drawbacks of the ROC
curves are the decision thresholds and the numbers of subjects are usually
not displayed on the graph. In addition, the appropriate software may not
be widely available.

The ROC curve provides more information than just a single sensitivity
and specificity pair to describe the accuracy of a diagnostic test. The curve
depicts sensitivity and specificity levels over the entire range of decision
thresholds. However, it would be helpful if the performance of a diagnostic
test could be assessed by a single number. One such measurement that
can be derived from the ROC curve is the area under the curve (AUC).
If a diagnostic test that discriminates almost perfect, then its ROC curve
passes near the upper left corner. This makes an AUC approaching 1. On
the other hand, if the curve of a test that discriminates almost randomly,
then the curve would lie near the 45 degree diagonal line. This would turn
an AUC close to 0.5. The AUC range is between 0.5 and 1.
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The AUC is calculated by summing the area of the trapezoids formed
between the graph and the horizontal axis. This nonparametric method
of calculation makes no assumptions regarding the underlying distribu-
tions of the diseased and non-diseased status. The meaning of AUC has
been proved mathematically to be the probability that a random pair of
positive/diseased and negative/non-diseased individuals would be identified
correctly by the diagnostic test.3® Also, it had been shown that the statis-
tical properties of the Mann-Whitney-Wilcoxon statistics could be used to
predict the statistical properties of AUC.36 For comparing corrected ROC
curves, Delong et al.?®
the AUCs. For the parametric approach, Swets and Pickett®” proposed a
more exact method using the maximum likelihood estimation to estimate
the AUC and its standard error. A comparison of nonparametric and bino-
mial parametric areas can be found in Center and Schwartz.®

suggested a nonparametric approach for comparing
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Toxicology is the study of the adverse effects of chemical substances
on biological systems. Toxicological research is typically directed toward
providing scientific information for the hazard potential of drugs and
chemicals used by humans. Human epidemiology and animal toxicology
are two major sources of scientific information for evaluation of toxic
chemicals or drugs. Epidemiological studies, which attempt to associate
disease or other adverse outcomes with an exposure, have the advantage
of directly measuring an effect in humans at exposure conditions. Main
limitations on the epidemiological studies are the lack of comprehensive
data associated with unintentional or complex exposures, such as quan-
tifying the actual dose concentration and no safety data for new drug or
chemical products. Safety evaluation of the use of drug and chemicals
are primarily based on animal studies in which animals are considered
as surrogates for humans. In Vitro mutagenicity studies and structure-
activity relationships may be used to support the interpretation of the
information from the animal or human studies. In this chapter, we focus
on two major toxicological studies: long-term carcinogenicity testing and
reproductive testing.

Statistical analyses of various endpoints have been of two aspects:
qualitative testing and quantitative estimation for risk assessment. The
qualitative testing is to determine if the chemical cause an adverse health
effect (if there is a statistically significant difference between treated and
control groups. Statistical analysis discussed in this section focuses on
the qualitative testing with respect to carcinogenic and reproductive
endpoints. Statistical modeling for quantitative risk estimation is given
in Chapter 11.
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1. Animal Carcinogenicity Experiments

Long-term rodent bioassays have been the government’s primary means
of screening chemicals to assess carcinogenic potential to human risk. The
United States Food and Drug Administration (FDA) and other countries
require that new drugs and certain medical devices must be approved for
safety and effectiveness for their intended use before being marketed. As a
part of the drug approval process, the FDA requires that the sponsor submit
the results of a rodent tumorigenicity bioassay to assess the carcinogenic
potential of a drug for chronic use of humans. In the last 25 years the
National Toxicology Program (NTP) has conducted about 500 long-term
animal carcinogenesis bioassays for safety assessment of environmental com-
pounds, and Food and Drug Administration (FDA) has reviewed hundreds
of such studies of pharmaceuticals conducted by drug companies. Data
from these studies have been a major database for safety assessment of
compounds in the environment and industry.

A standard carcinogenic study is conducted in both sexes of two rodent
species, typically rats and mice. A carcinogenicity experiment consists of a
control and several dose groups. The mazimum tolerated dose (MTD) has
been used as the high-dose level. The MTD is defined as the dose that causes
no more than a 10% body weight decrement, as compared to the appropriate
control groups. The MTD is often estimated from the results of subchronic
studies (generally three months of duration). Typically, dosage is measured
in mg/kg body weight per day. The number of dose groups and allocation
of animals among the dose groups depend on the objective of the study.
A typical NTP carcinogenicity experiment consists of a control and three
dose levels (0, 1/4 NTD, 1/2 MTD, MTD) with 50 animals per group.
Animals are assigned randomly to dose groups or cages. As an example,
consider a situation of 200 animals to be assigned to four groups of 50 with
four animals from the same group caged together. Thus, 52 cages are used
for the 200 animals. Each animal, first, is given to a number according to
their order of presentation. A random number sequence of 52 cages numbers
each with 4 replicates is, then, generated for placing animals in cages. For
example, a sequence may be

Animal number 1 2 3 4 5 6 7 8 9 10
Random cage number 42 7 8 13 9 11 18 7 22 38

The animal #1 would be placed in cage #42, and animal #2 in cage #7, and
so on. After randomization of the animals to cages (and into experimental
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dose groups), the cage position may need to be rotated during the course
of the experiment in order to balance the environmental effects.

The animals are given the test substance for a major portion of their
lifespan. The test substance may be given in the diet or administered by
other routes, such as inhalation, skin paints, or oral gavage. The experiment
is terminated according to a predetermined stopping time, for example,
78-104 weeks for mice and 104 weeks for rats. Animal body weights and
food consumption are measured weekly, the weeks of death of animals
are recorded. Animals which die or are sacrificed are necropsied. Tissues
taken from different organs and sites are examined microscopically for the
presence of tumors for an evidence of carcinogenic effects.

One main objective of a long-term carcinogenicity experiment is to
compare control and dose groups of animals with respect to tumor deve-
lopment. Statistical analysis of tumor responses includes the comparisons
between dosed and control groups as well as a test for dose-related trend
for each tumor site/organ. A typical experiment investigates approximate
20-50 tumor sites routinely. Because a large number of statistical tests are
performed, the chance of false positive findings could increase. For example,
the false positive rate is about 0.64 (=~ 1 — (1 —0.05)2°) for tests of 20 inde-
pendent tumor types (sites/organs) all at the 0.05 significance level. For a
particular tumor type, the primary response variable (endpoint) for compa-
rison is the incidence of first tumors. One factor that affects the performance
of methods is the animal survival time. A high degree of animal mortality
will cause a significant censoring of the tumor response. Comparisons should
be adjusted for the survival time because the crude incidence rate can be
biased by the differential mortality (across groups). Another complication
is that most tumor types are occult and therefore detectable only after
the animal has died; that is, the time to the (first) tumor onset is not di-
rectly observable. This section will describe the commonly used statistical
procedures for the analysis of animal tumor response data.

1.1. Time-to-tumor model

Kodell and Nelson! presented a tumor-death model which uses survival/
sacrifice data to describe the sequence of events comprised by histological
appearance of a tumor followed by death from that tumor. Three random
variables can be used to describe the model:

X: The potential time to tumor onset, transition time from the normal
state (N) to the tumor-bearing state (T).
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T: The potential time from tumor onset to death, transition time from
tumor state (T) to the death from the tumor state (Dr).

Z: The potential time until death from a competing cause, transition time
from the normal state (N) or the tumor state (Dr) to the death from
competing risk (D).

Sacrificed animals are considered to be dead from a competing risk.
The three random variables X, T, Z completely determined the fate of each
animal. The two random variables Y and Z are the survival time of an
animal, where Y = X + T is the potential time until death from tumor.
Note that X is not observable for the occult tumors.

A survival-adjusted method, that has been widely accepted, is to require
that pathologists assign a “context of observation” (cause-of-death) to each
tumor.? Tumors can be classified as “incidental”, “fatal”, and “mortality-
independent (or observable)”. Tumors that do not alter an animal’s risk
of death and are observed only as the result of a death from an unrelated
cause are classified as an incidental context. Tumors that affect mortality
by either directly causing death or indirectly increasing the risk of death
are classified as a fatal context. Tumors, such as skin tumors, whose de-
tection occurs at times other than when the animal dies are classified as a
mortality-independent (or observable) context. It should be noted that the
validity of context of observation is under the assumption: tumor-bearing
and tumor-free animals of the same age have identical hazard functions for
death unrelated to tumor.

In the context of observation, one of the four events will be observed on
each animal:

A. Appearance of a visible tumor (mortality-independent context, X is
observable).

B. Animal died from the tumor of interest (fatal context, ¥ < Z).

C. Animal had a tumor and died from competing cause (incidental context,
X<Z<Y).

D. Animal did not have a tumor and died from a competing cause (Z < X).

Let tq,to,...,t, be the distinct times at which the above events are ob-
served, and ag, bg, ¢k, and dg, k = 1,...,m, are the number of events of A,
B, C, and D at time ¢, respectively. Define the tumor resistance (survival)
functions for X and Y as Sx(¢) = Pr(X > t), and Sy () = Pr(Y > ¢). Let
fx(t) and fy(t) be the density function of X and Y, respectively. For the
tumors observed in a mortality-independent context, the likelihood function
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is given as
Lo = [ ] fx (tx)™ Sx (tx)* .

The likelihood function for the tumors observed in a fatal context is

Ly = HfY(tk)kaY(tk)dk .

The likelihood functions L, and L are essentially the same. The likelihood
function for the tumors observed in an incidental context is

Le = ]It — Sx ()] Sx (tr)™ .

In the general case, when a tumor is observed in a fatal cases for some
animals and is also observed in an incidental context for other animals, the
likelihood function is

La = [ 1y &))" [Sy (ts) — Sx (t)] [Sx (t)] ™ .
Kodell et al.3 showed that
Sy (t) = Sx(t) =[1 = Q()]Sy (t),

where Q(t) = Sx(t)/Sy(t) is the conditional probability of tumor onset
after time ¢, given tumor-free survival through time ¢. It follows that

La = [y (6] [Sy (t)]* T4 [1 = Q(tx)]* Q(tx) ™ .

That is, L4 can be expressed as the product of the two likelihood functions

LYy = [Ty )] [Sy (k)]

and
a=110 - eeul*Qt)™.

The LY and LS represent the contributions of the fatal and incidental
tumors, respectively.

1.2. FEstimation

An important first step in the evaluation of animal carcinogenicity data is
to estimate the animal survival curve for the assessment of any effects of
exposure to the test compound on mortality. The survival curve for each
dose group is calculated by the Kaplan-Meier method.* In this calculation,
the weeks of death for animals killed accidentally or sacrificed are considered
as censored observations.® For a given group, suppose that the death time
of the animals are observed at tx, k = 1,...,m. Let ny denote the number
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of animals that died at or after ¢; (the number of animals at risk), and xy,
denote the number of deaths (out of ny). The Kaplan-Meier estimate of the
conditional probability of survival beyond t; given survival beyond #;_1)
is (nx — xx)/ng. The estimated survival function is

~ N — I
S(