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PREFACE

Since the early last century, many scholars from China have studied

statistics in Western countries. Some of the early pioneers, including

P.L. Hsu, C.L. Chiang, C.C. Lee, K.L. Chung, and G. Tiao, etc., achieved

international recognition for their significant contributions to advanced

statistics. Since the 1960s, many students from Taiwan, Hong Kong,

and Mainland China have received their advanced degrees from universities

in North America and Europe. Some have remained, becoming professors

in academia or scientists in government or industry and making significant

contributions to the fields of statistics and biostatistics. Many have been

elected as fellows of the American Statistical Association and/or senior

members of International Biometric Society. Others have become editors or

associate editors for important journals, including the Annals of Statistics,

the Annals of Probability, the Journals of the Royal Statistical Society,

the Journal of American Statistical Association, Biometrika, Biometrics,

and Statistica Sinnica, etc. Several Chinese statisticians have been honored

with the COPSS award, among whom Professor T.L. Lai and J. Fan have

participated in the creation of this book. Meanwhile, many young statis-

ticians have trained in Mainland China. They have accumulated a rich

store of experience in teaching biostatistics and applying its theory and

methods to medical research in their home country. Many overseas Chinese

statisticians as well as statisticians in Mainland China, Taiwan and Hong

Kong participated in publishing a book in Chinese about advances in

medical statistics, which was published in 2000 by The People’s Health

Press, Beijing. Now, with the help of World Scientific Publishing Co, we

are pleased to present the English version of this book — “Advanced

Medical Statistics” — with a much larger professional community of English

readers.

The book consists of four sections and 29 chapters. The first section

is about statistical methods in biomedical research, including their history

and statistical thinking in medical research, medical diagnoses, dependent

v
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data, quality control and quality assurance in medical measurements,

cost-effective and evidence-based medicine, quality of life, meta analysis,

descriptive statistics, medical image processing, and time series. Many of

these statistical methods were developed specifically for specific medica

issues. The second section covers the most important statistical issues

in pharmaceutical research and development, including pharmacology

and pre-clinical studies, biopharmaceutical research, toxicological study,

and confirmative clinical trials. Some of the theory and methods are pub-

lished here for the first time. The third section is concerned with statistical

methods in epidemiology, including statistics in genetic studies, risk

assessment, infectious diseases, disease surveys, capture-recapture models

for monitoring epidemics, cancer screening, and causal inferences. Most of

the methods have been newly developed within the past decades. The last

section is dedicated to advanced statistical theory and methods, including

survival analysis, longitudinal data analysis, non-parametric curve esti-

mation, Bayes statistics, stochastic processes, tree structured methods,

EM algorithms, and artificial neural networks. These last chapters not

only summarize the current status of research, future research topics and

applications in medical research, but also provide some necessary theory and

background for the statistical methods discussed in the first three sections.

All the chapters in the book are independent of each other; each is

dedicated to a specific issue. To meet the needs of different readers, all

chapters have a similar structure. The first subsection introduces the general

concepts and the medical questions discussed in the chapter; examples are

usually given in this section. The following sections present more specific

details of concepts, methods and algorithms with the emphasis on applica-

tion and significance. Derivations of proofs are generally not included, but

citations in the literature are provided for interested readers.

This book is targeted to a broad readership. We hope that regardless

of your background whether as a physician, a researcher in bioscience, a

professional statistician, or a graduate student, you will find the book

appropriate to your needs. As statistical thinking and methods are essential

tools in modern medicine and biomedical research, medical researchers,

leaving aside the statistical derivations and mathematical arguments, will

learn what statistical tools are available to them, how to prepare the

necessary information to use these methods, and how to interpret statistical

results and their limitations. For professional medical statisticians, this

book provides a broad perspective on medical statistics, their possible

applications and interactions between special subjects, and suggestions
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about future research topics, which will be helpful to their research as well

as in consultation work with clients. For theoretical statisticians or applied

statisticians working in other areas, the book provides many examples

of statistical applications and challenges facing medical statistics, and which

should help theoretical statisticians to identify new frontiers and possible

application areas of their new methods. Last but not least, this book is a

good reference for graduate students, providing a broad overview of medical

statistics that will help them to select their research topics and guide them

into the heart of the issue.

All the authors are experts in their specific areas. Each chapter reflects

their own research experience, results and achievements. They have given

much under the tremendous pressures of their many other obligations. As

editors, we greatly appreciate their support, dedications and friendship.

Many thanks to our colleagues in the School of Public Health, Sun Yat-

Sen University, who provided assistance in the preparation of the book,

especially Dr. Yu Chuanhua, Dr. Yan Jie, Dr. Wang Xianhong, Dr. Ling Li,

Dr. Xu Zongli, Mr. Shuming Zhu, Ms. Shaomin Wu and Ms. Fangfang

Zeng. We thank the People’s Health Press, Beijing, for kindly permitting

us to freely publish versions other than the Chinese ones. We are most

appreciative to the editors of World Scientific Publishing Co, Singapore,

for their work in bringing this book to publication.

Ying Lu

Jiqian Fang

Editors
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CHAPTER 1

HISTORY OF STATISTICAL THINKING

IN MEDICINE

TAR TIMOTHY CHEN

Timothy Statistical Consulting, 2807 Marquis Circle East,

Arlington TX 76016, USA

1. Introduction

Biostatistics is a very hot discipline today. Biostatisticians are in demand

in the United States. Medical researchers appreciate statistical thinking

and applications. In laboratory science, clinical research and epidemio-

logical investigation, statisticians’ collaborations are sought after. In many

medical journals, statisticians are asked to serve as reviewers. In NIH

(National Institutes of Health) grant applications, statisticians are required

to be collaborators and statistical considerations have to be incorporated. In

pharmaceutical development, drug companies recruit statisticians to guide

study design, to analyze data, and to prepare reports for submission to FDA

(Food and Drug Administration). All in all, statistical thinking permeates

medical research and health policy. But it was not this way in the beginning.

This article describes the history of application of statistical thinking in the

medicine.

2. Laplace and His Vision

Near the time of American independence and the French Revolution, French

mathematician Pierre-Simon Laplace (1749–1827) worked on probability

theory. He published many papers on different aspects of mathematical

probability including theoretical issues and applications to demography and

vital statistics. He was convinced that probability theory could be applied

to the entire system of human knowledge, because the principal means of

finding truth were based on probabilities. Viewing medical therapy as a

domain for application of probability, he said that the preferred method of

3
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treatment would manifest itself increasingly in the measure as the number

of observations was increased.1,2

Laplace’s view that the summary of therapeutic successes and failures

from a group of patients could guide the future therapy was hotly debated

within the medical community. Many famous physicians like Pieere-Jean-

Georges Cabanis (1757–1808) claimed that the specificity of each patient

demanded a kind of informed-professional judgment rather than guidance

from quantitative analysis. According to their view, the proper professional

behavior for physicians in diagnosing and treating disease was to match the

special characteristics of each patient with the knowledge acquired through

the course of medical practice. Physicians were able to judge individual

cases in all of their uniqueness, rather than on the basis of quantita-

tive knowledge. Cabanis rejected quantitative reasoning as an intellectual

distraction and viewed medicine as an “art” rather than as a “science.”3

On the other hand, other prominent physicians like Philippe Pinel

(1745–1826) said that physicians could determine the effectiveness of

various therapies by counting the number of times a treatment produced

a favorable response. He considered a treatment effective if it had a high

success rate. He even claimed that medical therapy could achieve the status

of a true science if it applied the calculus of probabilities. His understanding

of this calculation, however, was restricted to counting; he did not under-

stand the detailed nature of the probability theory being developed by

Laplace.4

3. Louis and Numerical Method

Later another prominent clinician, Pierre-Charles-Alexandre Louis (1787–

1872), considered that enumeration was synonymous with scientific rea-

soning. He followed Laplace’s proposal that analytical methods derived

from probability theory help to reach a good judgment and to avoid con-

fusing illusions. His method consisted of careful observation, systematic

record keeping, rigorous analysis of multiple cases, cautious generalizations,

verification through autopsies, and therapy based on the curative power of

nature. He said that the introduction of statistics into diagnosis and therapy

would ensure that all medical practitioners arrive at identical results.5

In his study of typhoid fever, which collected patient data between 1822

and 1827, Louis observed the age difference between the groups who died

(50 patients with mean age 23) and who survived (88 patients with mean
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age 21). He also compared the length of residency in Paris and concluded

that the group which survived lived in Paris longer. More importantly, Louis

studied the efficacy of bloodletting as a therapy for typhoid fever. Among

the 52 fatal cases, 39 patients (75%) had been bled. The mean survival

time for the bled cases was 25.5 days contrasted to 28 days for those who

were not bled. Of the 88 recovery cases, 62 patients (70%) were bled, with

the mean duration of disease being 32 days as opposed to only 31 days for

those not bled.6

Louis also studied the efficacy of bloodletting in treating pneumonitis

and angina tonsillaris, and found it not useful. At that time, the method

of venesection was defended by Francois Joseph Victor Broussais (1772–

1838), the chief physician at the Parisian military hospital and medical

school. Broussais claimed that diseases could be identified by observing the

lesions of organs. Then patients could be treated by bleeding the diseased

organ and by low fat, since most diseases were the result of inflammation.

Louis, in contrast with Broussais, emphasized quantitative results from a

population of sick individuals rather than using pathological anatomy to

observe disease in a particular patient. He contended that the difference

between numerical results and words, such as “more or less” and “rarely

or frequently,” was “the difference of truth and error; of a thing clear and

truly scientific on the one hand, and of something vague and worthless on

the other.” He also proposed the basic concept of controlled clinical trial.7

Louis’s work created more debates before the Parisian Academies of

Sciences and Medicine in the late 1830s. The triggering issue was the

question of the proper surgical procedure for removing bladder stones. A

new bloodless method for removing bladder stones (lithotrity) was inves-

tigated by the surgeon and urologist Jean Civiale (1792–1867). He argued

that, given the fallacy of human memory, surgeons tend to remember their

successful cases more than their unsuccessful ones; errors result from inexact

records. He published the relative rates of death from the traditional sur-

gical procedure and the lithotrity. The death rate of the old procedure was

21.6% (1,237/5,715); the death rate for lithotrity was 2.3% (6/257).3

In response to Civiale’s statistical results, the Academy of Sciences

established a commission in 1835 including the mathematician Simeon-

Denis Poisson (1781–1840) and the physician Francois Double (1776–1842).

Rejecting the attempt to turn the clinician into a scientist through the sta-

tistical method, Double believed that the physician’s proper concern should

remain the individual patient. He claimed it was inappropriate to elevate
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the human spirit to that mathematical certainty found only in astronomy;

the eminently proper method in the progress of medicine was logical not

numerical analysis.8

During that time, Lambert Adolphe Jacques Quetelet (1796–1874)

proposed a new concept of the “average man,” defined as the average of

all human attributes in a country. It would serve as a “type” of the na-

tion similar to the idea of a center of gravity in physics. He formulated

this idea by combining his training in astronomy and mathematics with a

passion for social statistics. He analyzed the first census of Belgium (1829)

and was instrumental in the formation of the Royal Statistical Society. He

maintained that the concept of statistical norms could be useful to medical

practice as it had been to medical research.9 At the same time, Poisson

applied probability theory to the voting patterns of judicial tribunals. He

used the “law of large numbers” to devise a 99.5% confidence interval for

binomial probability.10

In 1837, in a lecture delivered before the French Academy of Medicine,

physician Risueno d’Amador (1802–1849) used the example of maritime

insurance to illustrate why the probability was not applicable to medicine.

If 100 vessels perish for every 1,000 that set sail, one still could not know

which particular ships would be destroyed. It depended on other prognostic

variables such as the age of the vessel, the experience of the captain, or

the condition of the weather and the seas. Statistics could not predict the

outcome of particular patients because of the uniqueness of each individual

involved. For d’Amador, the results of observation in medicine were often

more variable than in other sciences like astronomy.11

In the ensuing debates, Double commented that a Queteletian aver-

age man would reduce the physician to “a shoemaker who after having

measured the feet of a thousand persisted in fitting everyone on the basis

of the imaginary model.” He also claimed that Poisson’s attempts to

mathematize human decision-making were useless because of the pressing

and immediate concerns of medical practice.

Louis-Denis-Jules Gavarret (1809–1890), trained in both engineering

and medicine, addressed the criticism of d’Amador in 1840. He main-

tained that the probability theory merely expressed the statistical results

of inductive reasoning in a more formal and exact manner. He emphasized

that statistical results were useful only if certain conditions prevailed —

namely, the cases must be similar or comparable, and there must be large

enough observations. He followed Poisson’s example in requiring a precision

of 99.5% or 212:1. He commented on the insufficient sample size in Louis’

study of typhoid fever.12
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In responding to the work of Gavarret, Elisha Bartlett (1804–1855), a

professor of medicine at the University of Maryland and a student of Louis,

said that the value of the numerical method was exhibited by Louis, and its

true principles were developed and demonstrated by Gavarret.13 However,

the British statistician William Augustus Guy (1810–1885) in his Croonian

lecture before the Royal College of Physicians in 1860, said that Gavarret’s

confidence interval could only be applied in rare occasions, and the results

obtained from averaging a small number of cases could generally be assumed

to be accurate.14 In Germany, an ophthalmologist Julius Hirschberg

(1843–1925), concerning about the number of observations required by

Gavarret’s assumption of 212:1 odds, he modified the formula by using

a lower standard of confidence of 11:1 or 91.6%.15

4. Statistical Analysis Versus Laboratory Investigation

In articles published in 1878 and 1881, German physician Friedrich Martius

(1850–1923) commented that the dreams of Louis and Gavarret about a new

era of scientific medicine had not been fulfilled due to the general “mathe-

matical unfitness” of the medical profession as a whole. As one trained in

laboratory methods, he said that the basis for science lay in laboratory

experimentation rather than mere observation and the collection of

numerical data.3

The legacy of Louis was in his claim that the clinical physician should

aspire to become a scientist. But after Louis’s retirement from the medical

scene by the mid 1850s, some medical researchers began to argue that

the compilation of numerical results might provide some useful insights

about therapy; however, these results should not posses the authoritative

status as “science.” Friedrich Oesterlen (1812–1877) said that “scientific”

results should be the discovery of knowledge which determined the causal

connections, not just the discovery of the correlation.16

When Joseph Lister (1827–1912) published his pioneering work with an-

tiseptic surgery in 1870, he noted that the average mortality rate was 45.7%

(16/35) for all surgical procedures performed at the University of Edinburgh

in the years 1864–1866 (before antiseptic methods were introduced). And

it was 15% (6/40) for all surgical procedures performed in the three-year

period 1867–1869 (after the introduction of antiseptic methods). Although

he used this statistical result to show the efficacy of the new antiseptic

method, he claimed that the science behind this was the germ theory of

disease as proposed by Louis Pasteur (1822–1895).17 Pasteur developed the
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germ theory and the concept of immunity. He carried out a clinical trial in

1881 to test his new vaccine against anthrax.

The founder of 19th century scientific positivism, Auguste Comte (1798–

1857), believed that mere empiricism (as practiced by Louis) was not really

useful for medicine.18 Claude Bernard (1813–1878) proposed that the sci-

ence of medicine resided in experimental physiology, rather than observa-

tional statistics. As a result of his laboratory-based orientation, he claimed

that the experimental investigation of each individual patient could provide

an “objective” scientific result. He agreed with Louis’s vision of medicine

as a science but saw the science of medicine as focused on the physiological

measurements of individual patients.19

Other prominent clinicians at that time, like German Carl Wunderlich

(1815–1877), tried to steer a middle ground between Louis and Bernard

and synthesized both approaches. They collected a mass of quantifiable

physiological data and tried to analyze it using numerical method. However,

this approach was not accepted by the medical community in general, and

many still opposed the process of quantification and remained focused on

the individual patient.20

5. The Beginning of Modern Statistics

The founders of the Statistical Society in London in 1834 chose the motto

“Let others thrash it out,” thus set the general aim of statistics as data

collection. Near the end of the 19th century, scientists began to collect large

amounts of data in the biological world. Now they faced obstacles because

their data had so much variation. Biological systems were so complex that

a particular outcome had many causal factors. There was already a body

of probability theory, but it was only mathematics. Prevailing scientific

wisdom said that probability theory and actual data were separate entities

and should not be mixed. Due to the work of the British biometrical school

associated with Sir Francis Galton (1822–1911) and Karl Pearson (1857–

1936), this attitude was changed, and statistics was transformed from an

empirical social science into a mathematical applied science.

Galton, a half-cousin of Charles Darwin (1809–1882), studied medicine

at Cambridge, explored Africa during the period 1850–1852, and received

the gold medal from the Royal Geographical Society in 1853 in recognition

of his achievement. After reading Charles Darwin’s 1859 work On the Origin

of Species, Galton turned to study heredity and developed a new vision for

the role of science in society.21 The late Victorian intellectual movement of
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scientific naturalism gave rise to the belief that scientifically trained persons

must become leaders of British intellectual culture.

Galton accepted the evolutionary doctrine that the condition of the

human species could be improved most effectively through a scientifically

directed process of controlled breeding. His interest in eugenics led him

to the method of correlation. He applied the Gaussian law of error to the

intelligence of human beings and, unlike Quetelet, was more interested in

the distribution and deviations from the mean than in the average value

itself.

As a disciple of Galton, Karl Pearson, the founding father of modern

statistics, created the statistical methodology and sold it to the world.

Pearson changed statistics from a descriptive to an inferential discipline.

He majored in mathematics at King’s College, Cambridge. After Cam-

bridge, he studied German literature, read law and was admitted to bar.

He became professor of mathematics at King’s College, London in 1881

and at University College, London in 1883. In June 1884 at age 27 he was

appointed to Goldsmid Professor of Applied Mathematics at University

College, London. Biologists at that time were interested in genetics, inher-

itance, and eugenics. In 1892 Pearson began to collaborate with zoologist

WFR Weldon, Jodrell Chair of biology at University College, and developed

a methodology for the exploration of life. Two years later Pearson offered

his first advanced course in statistical theory, making University College the

sole place for instruction of modern statistical methods before the 1920s.22

Following Galton, Pearson maintained that empirically determined

“facts” obtained by the methods of science were the sole arbiters of truth.

He argued for the almost universal application of statistical method, that

mathematics could be applied to biological problems and that analysis

of statistical data could answer many questions about the life of plants,

animals, and men.23 After a paper was rejected by the Royal Society, he

together with Galton and Weldon founded the journal Biometrika in 1901

to provide an outlet for the works he and his biometrical school generated.

Under Galton’s generous financial support, Pearson transformed his rel-

atively informal group of followers into an established research institute.

Although he was interested in eugenics, he tried to do objective research

using statistical methods and separated his institute from the social

concerns of the Eugenics Education Society.

Pearson’s emphasis on the statistical relevancy to the problems of

biology had very few audiences. Mathematicians despised new endeavor

to develop statistical methodology, and biologists thought mathematicians
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had no business meddling with such things. In 1903 Pearson wrote Galton

that there were only two subscribers of Biometrika in Cambridge, one a

personal friend of Pearson and one of Weldon. Even though his major con-

tributions were correlational methods and chi-square goodness-of-fit test,

in 1906 the Journal of the Royal Society refused to publish a paper because

they failed to see the biological significance of a correlation coefficient. In

1911 after Galton’s death, Pearson became the first Galton Professor of

Eugenics at University College, London.

Pearson also attempted to build an intellectual bridge to medicine by

applying the statistical methods he developed. During his lifetime, the

medical profession was divided about their opinion of the usefulness of

statistical reasoning. Clinicians who continued to emphasize the “art” of

medicine thought that statistics added little information beyond that sup-

plied by experience. Those who argued for the existence of a “clinical

science,” basing diagnosis on physiological instruments or bacteriological

observation, saw statistics as a way to make observation more objective,

but that did not consider that as “scientific” evidence.

6. The Beginning of Medical Statistics

Major Greenwood (1880–1949) was first to respond to Pearson’s “crying

need” for the medical profession to appreciate the importance of new

statistical methods. At the age of 18, he entered medical school and read

Pearson’s Grammar of Science. He wrote to Pearson and applied statis-

tical analyses to his research data while a student at London Hospital.

During the academic year 1904–1905, after obtaining his license to practice

medicine and publishing an article in Biometrika, he chose to study under

Pearson. Despite Pearson’s warning about the difficulty of earning a living

as a biometrician, Greenwood decided to stake his professional career on

the application of mathematical statistical methods to medical problems.

In debating with the bacteriologist Sir Almroth Wright (1861–1947)

about the efficacy of vaccine therapy and a statistical measure called

“opsonic index,” Greenwood invoked the distinction between functional

and mathematical error.24 The former concerned errors in techniques of

measurement, while the latter concerned inferential errors derived from the

fact that data were a sample of population. When he pointed out that

Wright had committed mathematical error, he got the attention of the

medical community.25 Consequently the Lister Institute for Preventive

Medicine in 1903 created the first department of statistics and named him



May 30, 2003 16:0 WSPC/Advanced Medical Statistics chap01

History of Statistical Thinking in Medicine 11

its head. Greenwood characterized his department as dealing with problems

of epidemiology and pathology, in contrast to Pearson’s department at the

University College, which dealt with heredity, eugenics and pure mathe-

matical statistics. By training Greenwood, Pearson had helped to create the

role of medical statistician, who as a researcher, understood both medical

results and statistical methods.

Greenwood left the Lister Institute in 1920 for a position at the Ministry

of Health and became affiliated with the newly created Medical Research

Council (MRC). He saw his position at the medical establishment as

instrumental in furthering the impact of statistical methods. Raymond

Pearl (1879–1940) was Greenwood’s American counterpart. He went to

London to study under Pearson after finishing his PhD in biology at the

University of Michigan. In 1918 Pearl began a long-standing relationship

with The Johns Hopkins University as professor of biometry and vital

statistics in the School of Hygiene and Public Health and as statistician

at The Johns Hopkins Hospital.

By the early 1920’s, Greenwood was not alone in arguing for application

of modern statistics in medicine. One writer said in the Journal of the

American Medical Association in 1920 that statistics was of great practical

significance and should be required in the premedical curriculum.26 Pearl in

a 1921 article in the Johns Hopkins hospital Bulletin said that quantitative

data generated by the modern hospital should be analyzed in cooperation

with expert statistician. The arguments for using statistics in medicine were

framed in terms of ensuring that medical research become “scientifically”

grounded.27

7. Randomization in Experimentation

Besides Pearson, another founder of modern statistics was Sir Ronald

A. Fisher (1890–1962). He also majored in mathematics at Cambridge and

studied the theory of errors, statistical mechanics, and quantum theory.28

By the age of 22, he published his first paper in statistics introducing the

method of maximum likelihood, and three years later he wrote another

paper deriving the exact sampling distribution of the Pearson correlation

coefficient. He was also interested in applying mathematics to biological

problems. Beginning in 1919, he spent many years at Rothamsted

Experimental Station and collaborated with other researchers. He deve-

loped statistical methods for design and analysis of experiments, which

were collected in his books Statistical Methods for Research Workers29 and
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The Design of Experiments .30 He proposed three main principles — the

essentiality of replication and randomization, and the possibility of reducing

errors by appropriate organization of the experiment.

Fisher’s major contribution to science was using randomization to do

experiments so that the variation in the data could be accounted for

in the statistical analysis, and the bias of treatment assignment could

be eliminated. Greenwood characterized Fisher’s ideas as “epoch-making”

in an article published in 1948, the year before Greenwood’s death. For

Fisher, statistical analysis and experimental design were only two aspects

of the same whole, and they comprised all the logical requirements of the

complete process of adding to natural knowledge by experimentation.30 In

other words, in order to draw inference, statisticians had to be involved

in the design stage of experiments. Fisher, when addressing the Indian

Statistical Congress in 1938, said, “To call in the statistician after the

experiment is done may be no more than asking him to perform a post-

mortem examination: he may be able to say what the experiment died of”.

In addition to the new developments in statistical theory brought about

by Fisher’s work, changes within the organization of the MRC also facili-

tated the emergence of the modern clinical trial. Sir Austin Bradford Hill

(1897–1991), one of Greenwood’s proteges, was the prime motivator behind

these Medical Research Council trials. He learned statistical methods from

Pearson at University College and in 1933 became Reader in Epidemiology

and Vital Statistics at the London School of Hygiene and Tropical Medicine,

where Greenwood became the first professor of Epidemiology and Public

Health in 1927. In 1937 the editors of The Lancet, recognizing the neces-

sity of explaining statistical techniques to physicians, asked Hill to write a

series of articles on the proper use of statistics in medicine. These articles

were later published in book form as Principles of Medical Statistics.31

Upon Greenwood’s retirement in 1945, Hill took his place both as honorary

director of MRC’s Statistical Research Unit and as professor of medical

statistics at the University of London.32

8. First Randomized Controlled Clinical Trial

The British Medical Research Council in 1946 began the first clinical trial

with a properly randomized control group trial on the use of streptomycin in

the treatment of pulmonary tuberculosis. This trial was remarkable for the

degree of care exercised in its planning, execution and reporting. The trial

involved patient accrual from several centers, and patients were randomized
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to two treatments — either streptomycin plus bed-rest, or bed-rest alone.

Evaluation of patient X-ray films was made independently by two radio-

logists and a clinician. This blinded and replicated evaluation of a difficult

disease end-point added considerably to the final agreed patient evalua-

tion. Both patient survival and radiological improvement were significantly

better on streptomycin.33

Hill’s work set the trend for future clinical trials where both the insight

of physicians and the statistical design of professional statisticians were

combined. The convergence of these two separate disciplines constituted

the sine qua non for the emergence of the probabilistically informed clinical

trials. The Laplacian vision of the determination of medical therapy on the

basis of the calculus of probability had finally found fulfillment.

Hill, a non-physician, acknowledged that the medical profession was

responsible for curing the sick and preventing disease, but he empha-

sized that experimental medicine had the third responsibility of advancing

human knowledge, and the statistically guided therapeutic trial was a useful

way to discharge that responsibility. Unlike earlier advocates of statistical

application in medicine, Hill’s work became a rallying cry for supporters of

therapeutic reform on both sides of Atlantic. Among many factors that con-

tributed to this groundswell of support, one was the proliferation of new and

potent industrially produced drugs in the postwar era. Supporters argued

that randomized controlled clinical trials would permit the doctors to select

the good treatment and prevent undue enthusiasm for newer treatments.

To those critics who believed in the uniqueness of the individual,

whether patient or doctor, LJ. Witts, Nuffield Professor of Clinical Medicine

of Oxford University, said in a conference in 1959, that neither patients

nor doctors were as unique as they might have wanted to believe. Witts

conceded that there was a conflict of loyalties between the research for truth

and the treatment of the individual. However, he pointed out that similar

conflict existed between the teaching of clinical students and the treat-

ment of the patient.34 At the same conference, Sir George Pickering, Regius

Professor of Medicine at Oxford, praised the randomized controlled clinical

trials and declared that, in contrast, clinical experience was unplanned and

haphazard, and physicians were victims of the freaks of chance.35

Americans were not slow in following the British lead in applying

statistics to controlled clinical trials. Americans carried out the largest

and most expensive medical experiment in human history. The trial was

done in 1954 to assess the effectiveness of the Salk vaccine as a protection

against paralysis or death from poliomyelitis. Close to two million children
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participated, and the immediate direct cost was over 5 million dollars. The

reason for such a large trial was that the annual incidence rate of polio was

about 1 per 2000. In order to show that vaccine could improve upon this

small incidence, a huge trial was needed. Originally, there was some resis-

tance to the randomization, but finally about one quarter of the participants

did get randomized. This randomized placebo controlled double-blind trial

finally established the effectiveness of the Salk vaccine.36

9. Government Regulation and Statistics

Later in the early 1960s, the drug Thalidomide caused an outbreak of

infantile deformity. The US FDA subsequently discovered that over two and

a half million tablets had been distributed to 1,267 doctors who had pre-

scribed the drugs to 19,822 patients, including 3,760 women of childbearing

age. This evidence raised the question whether the “professional judge-

ment” of the medical community could still be trusted. The outcry from

the public led the US Congress to pass the Kefauver–Harris Bill, known

as the Drug Amendments of 1962 and signed by President Kennedy on

October 10, 1962. This law fundamentally altered the character of research

both for the drug industry and for academic medicine. It transformed the

FDA into the final arbiter of what constituted successful achievement in

the realm of medical therapeutics. The FDA institutionalized clinical trials

as the standard method for determining drug efficacy. By the late 1960s the

double-blind methodology had become mandatory for FDA approval in the

US, and the procedure had become standard in most of the other Western

countries by the late 1970s.

The application of statistics in medicine has scientific authority and is

seen as rising above individual opinions and possessing “objectivity” and

“truth.” The emergence of the randomized controlled clinical trials could

be seen as a special case of a more general trend — the belief that “quantifi-

cation is science.” This also coincided with the change of definition about

statistics as a discipline. In a book written by Stanford professors Chernoff

and Moses in 1959, they said, “Years ago a statistician might have claimed

that statistics deals with the processing of data. Today’s statistician will

be more likely to say that statistics is concerned with decision making in

the face of uncertainty.”37

Through the work of Hill, the father of the modern clinical trial,

statistical methods slowly were adapted in medical research. The reason

that clinical trials gained legitimacy was because that public at large
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realized that the decisions of the medical profession had to be regu-

lated. Only when the issue of “medical decision making” was removed

from the confines of professional medical expertise into the open arena of

political debate could the statistical methods gain such wide acceptance.

This ascendancy of the clinical trial method reflected the close connection

between procedural objectivity and democratic political culture.

Above is the evolutionary history of statistical thinking in medicine.

Medical research is much more than therapeutic research, but all medical

research must lead to improvement of therapeutics or prevention. From this

history one can see how the application of numerical methods in medicine

has been debated throughout the past two hundred years. It shows that it

took a long time for good concepts and procedures to prevail in science. The

debates described could be applicable to the current problems about ther-

apeutic research in alternative and complimentary medicine. Only through

learning from past experience non-orthodox medicine can be modernized

quickly.

10. Epilogue

Early landmarks in clinical investigation anticipated the current

methodology.38 For example, James Lind (1716–1794) in 1753 planned

a comparative trial of the most promising treatment for scurvy. How-

ever, most pre-twentieth century medical experimenters had no appreci-

ation of the scientific method. Trial usually had no concurrent control,

and the claims were totally subjective and extravagant. The publication

by Benjamin Rush (1745–1813) in 1794 about the success of treatment of

yellow fever by bleeding was one example.

Statistics was very influential in the development of population genetics.

Johann Gregor Mendel (1822–1884), a monk in the Augustinian order,

studied botany and mathematics at the University of Vienna. He carried out

experiments on peas to establish the three laws of genetics — uniformity,

segregation and independence. After Darwin advanced the theory of evo-

lution, there was a great debate between the evolutionists (biometricians)

and those believing in the fixation of species (Mendelians). Pearson in his

series of papers, Contributions to the Mathematical Theory of Evolution,

I to XVI, gave mathematical form to the problems of genetics and evolu-

tion. However, he held the view of continuous change and never accepted

Mendelism.39
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After reading Pearson’s papers while a student at Cambridge, RA Fisher

made major contributions to the field of genetics, especially he synthesized

and reconciled the fixed inheritance theory of Mendel and the gradual

evolution theory of Darwin.40 He was considered as one of three founders

of the population genetics, together with Sewall Wright and JBS Haldane,

and he occupied an endowed chair of genetics at Cambridge University.

Fisher’s major contributions were the theoretical foundation of statistics

including estimation and the testing of hypotheses, exact distributions of

various statistics, and statistical models of natural phenomena.41

As mentioned in the debates between the numerical methods school

and the physiological school, physiological measurement data were collected

using precise instruments during the later half of the nineteenth cen-

tury in conjunction with the creation of research universities. Statistical

methods were developed to analyze the data coming from the laboratories.

Later, the controversy between the biometrical school and the bacterio-

logists/immunologists in the laboratory led to the further developments of

correct statistical methods to analyze laboratory data.

Before the development of modern epidemiology, John Graunt (1620–

1674) started to collect data on mortality, derived the life table based on

survival, and thus created the discipline of demographic statistics. William

Farr (1807–1883) further improved the method of the life table and created

the best official vital statistics system in the world for the Great Britain.38

In 1848, John Snow (1813–1858) carried out the first detailed investi-

gation of the cholera epidemic of London. Development of the discipline

of bacteriology was associated with the investigation of epidemics due to

infectious agents. Mathematics and statistics were used in modeling and

analysis of infectious epidemic data. Modern statistical methods were de-

veloped to investigate the epidemics of non-infectious diseases in the last

half of the 20th century. Epidemiological research has become another field

of statistical application. It has merged with statistical survey methods to

carry out surveillance and disease monitoring, and it is called population

science, in contrast to clinical and laboratory sciences.

In every field of medical research, statistical thinking and methods are

used to provide insight to the data and to verify the hypotheses. The

generation of new data and new hypotheses also propel developments of

new statistical methodology. In the twentieth century, modern statistics as

created by Pearson and Fisher has made a huge impact on the advancement

of human knowledge, and its application to medicine richly demonstrates

the importance of statistics.
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1. Introduction

In a rapidly changing world of advancing technology, it is very important

to evaluate the relative accuracies of different diagnostic tests for both

quality of care and cost containment. For example, transrectal ultrasound

imaging costs $150 to $400 per examination and conventional body coil

magnetic resonance imaging (MRI) costs $700 to $1200 per examination.

Both MRI and ultrasound could be used to detect advanced stage prostate

cancer. Rifkin et al.1 have shown that the accuracy of transrectal ultrasound

imaging in detecting advanced stage prostate cancer was not statistically

different from that of conventional body coil MRI imaging. Thus, choos-

ing ultrasound over MRI could save $300 to $1050 without compromising

quality of care.

To evaluate the accuracy of a diagnostic test, we need to determine

the disease status for each patient (present or absent) independent of the

patient’s test result. The procedure that establishes the patient’s disease

status is referred to as a gold standard. The gold standard may be based

on surgery, autopsy, or clinical assessments. However, some patients who

underwent the test might not have had their condition status verified by

the gold standard. Usually the patients who did not have their condi-

tion status verified are not a random sample but rather are a selected

group. For example, if the gold standard is based on invasive surgery,

then patients with negative test results are less likely to receive the gold

21
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standard evaluation than patients with positive test results. Although this

approach may be sensible and cost-effective in clinical practice, when it

occurs in studies designed to evaluate the accuracy of diagnostic tests, the

estimated accuracy of the tests may be biased. This type of bias is called

verification bias.2,3 For example, in a study of the accuracy of the lactose

breath hydrogen test in the diagnosis of enteropathy in children, patients

with negative test results had rarely undergone jejunal biopsy, the gold

standard.4 Therefore, the estimated sensitivity and specificity based on the

verified cases are subject to verification bias.

Selective disease verification can lead to serious bias in estimating the

accuracy of a diagnostic test. To illustrate how verification bias operates

and affects the estimated accuracy of a test, we consider a hypothetical

example where we want to estimate the sensitivity of a certain stress

radiographic procedure in the diagnosis of coronary artery disease.5 We

use angiography as the gold standard for coronary artery disease. Assume

the actual sensitivity of the radiographic procedure (which we need to

estimate) is 80%. Thus, 20% of all diseased patients will have false-negative

test results. Suppose 500 patients with coronary artery disease undergo

the stress test; 400 respond positively and 100 respond negatively. Since

angiography is a risky and expensive procedure, instead of verifying all

tested patients by angiography, only 75% of patients with a positive test

undergo angiography, and 10% of patients with a negative test undergo

angiography. Thus, among 400 patients who tested positive, 300 have

angiography, and among 100 who tested negative, only 10 have angiography.

Analysis using only those patients who have angiography would lead to the

mistaken conclusion that the sensitivity of the stress test is 97% (300/310),

a gross overestimation of the true sensitivity. Similarly, we can show an

estimator of specificity using only verified cases can also be biased.

The magnitude of verification bias depends on the association between

selection for verification and the test result. The stronger the association

is, the larger the bias. For example, Drum and Christacopoulos6 studied

the accuracy of hepatic scintigraph to detect liver disease. The liver di-

sease verification procedure was either liver biopsy, exploratory laparotomy,

or autopsy. In their study, they performed 650 scans (429 positive and

221 negative). Among the 429 patients with positive test results, 61%

received the disease verification procedure, and of the 221 patients with

negative test results, only 37% received the disease verification procedure.

Using only disease verified cases, Drum and Christacopoulos reported that

the hepatic scintigraph had a sensitivity of 90% and a specificity of 63%.
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However, using Begg and Greenes’s verification bias correction procedure

(to be discussed in more detail in Sec. 2.2)2 on all tested patients, the

corrected sensitivity and specificity are 84% and 74%, respectively. Thus,

the reported sensitivity in Drum and Christacopoulos’s paper is inflated by

6%. A more extreme example is found in a study by Marshall et al.8 Their

study assessed the accuracy of diaphanography in detecting breast cancer.

A total of 833 patients were tested for breast cancer using diaphanography

(67 positive and 766 negative results). The verification procedure on breast

cancer was biopsy. The proportion receiving the disease verification proce-

dure was 55% for test positive patients and 7% for test negative patients.

Using only verified cases, Marshall et al.8 reported a sensitivity of 79%

for diaphanography in detecting breast cancer. Using Begg and Greenes’

correction procedure, the estimated sensitivity becomes 28%. Thus, the

reported sensitivity in the paper is grossly inflated. Therefore, ignoring

verification bias could grossly overestimate the accuracy of a test, and result

in the misuse of a test, leading to possible mismanagement of patient care.

Although verification bias can distort the estimated accuracy of a di-

agnostic test, many published studies on the accuracy of diagnostic tests

fail to recognize verification bias. For example, Greenes and Begg9 reviewed

145 studies published between 1976 and 1980 and found that at least 26%

of the articles had verification bias, but failed to recognize it; Bates et al.10

reviewed 54 pediatric studies and found more than one third had veri-

fication bias; and Philbrick et al.11 reviewed 33 studies on the accuracy

of exercise tests for coronary disease and found that 31 might have had

verification bias. Finally Reid et al.41 looked at 112 studies published in

NEJM, JAMA, BJM and Lancet between 1978 and 1993 and found 54% had

verification bias.

Since it is often unethical or impractical to verify all study patients,

retrospective adjustments are needed to provide correct inferences about

the accuracy of tests. Assuming a gold standard exists, in this chapter,

we review available statistical methods that may be used to correct for

verification bias in evaluating the accuracy of diagnostic tests. In Sec. 2, we

describe bias-correction methods for making inferences about the accuracy

of a single diagnostic test when its response is binary, and in Sec. 3, we

discuss bias-correction methods for comparing the relative accuracy of two

correlated binary tests. In Sec. 4, we discuss bias-correction methods for

making inferences about the accuracy of a single diagnostic test when its

response is ordinal, and in Sec. 5, we present bias-correction methods for

comparing the relative accuracy of two ordinal-scale diagnostic tests. We
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start each section by presenting an overview of the methods, then follow

this with a more detailed discussion.

2. A Single Binary Test

2.1. An overview

When the response of a test is binary, its accuracy is usually measured by

sensitivity and specificity or positive and negative predictive values. The

sensitivity measures how good the test is at providing a positive result

in diseased patients, and the specificity measures how good the test is

at ruling out non-diseased patients. While sensitivity and specificity are

intrinsic properties of a diagnostic test, positive and negative predictive

values represent the accuracy of a diagnostic test when it is applied to

a particular patient.12 Several approaches have been developed to make

inferences on the accuracy of a single binary test in the presence of verifi-

cation bias.2,7,13 Begg and Greenes2 developed a bias-correction procedure

for estimating sensitivity and specificity under the conditional independence

assumption, which requires that selection for verification does not depend

on the true disease status directly. Zhou7 extended their method to allow

a general model for verification process and derived the maximum likeli-

hood estimators for sensitivity and specificity of a diagnostic test and their

corresponding variances.

Even though the estimated sensitivity and specificity may be biased

using only verified cases, Zhou13 showed that under the conditional inde-

pendence assumption, the naive estimators of predictive values, based on

only verified cases, are unbiased. However, If the conditional independence

assumption does not hold, Zhou showed that the naive estimators are still

biased and derived the ML estimators under a model for the verification

process.

2.2. Estimation of a single test

To develop a bias-correction procedure for estimating sensitivity and speci-

ficity, we define the random variables, V , T , and D, to describe the verifi-

cation indicator, the value of the diagnostic test result and the true disease

status of a patient, respectively. Let V = 1 indicate a verified patient and

V = 0 a non-verified patient; let T = 1 indicate a positive test result and

T = 0 a negative test result; and let D = 1 indicate a diseased patient,

and D = 0 non-diseased. Furthermore, we assume that the probability of
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Table 1. Cross-classification of test results by disease status and verification status
X = xi.

Diagnostic results

T = 1 T = 0

Verified D = 1 s1i s0i

D = 0 r1i r0i

Unverified u1i u0i

Total n1i n0i

verifying a patient may be influenced by not only the test results but also

the discrete covariates X, which have I different covariate patterns. Let xi

denote the ith covariate pattern of observed covariates, where i = 1, . . . , I .

Also, assume that X is a random sample from a discrete space (x1, . . . ,xI
)

with probabilities ξ = (ξ1, . . . , ξI
). The observed data with verification bias

may be displayed as in Table 1. Under the assumption that

k1i
=

P (V = 1 | D = 1, T = 1,X = xi)

P (V = 1 | D = 0, T = 1,X = xi)
and

k0i
=

P (V = 1 | D = 1, T = 0,X = xi)

P (V = 1 | D = 0, T = 0,X = xi)

are known, Zhou7 showed that the maximum likelihood (ML) estimators

for sensitivity and specificity are

ˆsens =

∑

I

i=1
( ˆsens

i
)p̂

i
n

i
/n

∑

I

i=1
p̂

i
n

i
/n

and

ˆspec =

∑

I

i=1
( ˆspec

i

)(1− p̂
i
)n

i
/n

∑

I

i=1
(1− p̂

i
)n

i
/n

,

respectively, where

ˆsens
i
=

s1i
n1i

/(s1i
+ k1i

r1i
)

s1i
n1i

/(s1i
+ k1i

r1i
) + s0i

n0i
/(s0i

+ k0i
r0i

)
,

ˆspec
i

=
k0i

r0i
n0i

/(s0i
+ k0i

r0i
)

k1i
r1i

n1i
/(s1i

+ k1i
r1i

) + k0i
r0i

n0i
/(s0i

+ k0i
r0i

)
,

which are the ML estimators for sensitivity and specificity of the test in the

subpopulation with X = xi, respectively,

p̂
i
=

n1i

n
i

s1i

s1i
+ k1i

r1i

+
n0i

n
i

s0i

s0i
+ k0i

r0i

,
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Table 2. Hepatic scintigraph data.

Diagnostic results

T = 1 T = 0

V = 1 D = 1 231 27

D = 0 32 54

V = 0 166 140

Total 429 221

n
i

= n1i
+ n0i

, and n =
∑

I

i=1
n

i
.7 The corresponding variances may be

computed from the inverse of the Fisher information matrix. If k1i
= k0i

= 1

for i = 1, . . . , I , the conditional independence assumption holds, and our

ML estimators reduce to the ones given by Begg and Greenes.2

2.3. An hepatic scintigraph example

Hepatic scintigraph is an imaging scan used in detecting liver disease. Drum

and Christacopoulos6 conducted an experiment to determine the sensitivity

and specificity of the hepatic scintigraph in detecting liver disease. There

were 650 patients who participated in the study. Of the 429 patients who

had positive hepatic scintigraph results, 263 (61%) were referred to undergo

a disease verification procedure, which is liver pathology. Of the 221 pa-

tients with negative hepatic scintigraph results, only 81 (37%) were referred

to undergo the disease verification procedure. The data are presented in

Table 2. If only patients with verified condition statuses are used in the

calculation, the biased estimate of sensitivity is 0.90 with a 95% confidence

interval of (0.86, 0.93); and the biased estimate of specificity is 0.63 with

the 95% confidence interval of (0.53, 0.73). If the probability of verifying

a patient depends only on the test results of the hepatic imaging scan,

the verification process is MAR. Using the correction method described

in Proposition 1, the estimated sensitivity is 0.84 with a 95% confidence

interval of (0.79, 0.88), and the estimated specificity is 0.74 with a 95%

confidence interval of (0.66, 0.81).

3. Comparison of Two Correlated Binary Tests

3.1. An overview

To compare the relative accuracies of two binary tests, several approaches

have been developed to correct for verification bias.14–16 Schartzkin et al.14

considered the comparison of sensitivities and specificities of two tests in
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an extreme case of verification bias where only those patients who tested

positive on either test proceeded to have their true disease status verified,

and they found that McNemar’s test could still be used for such a

comparison. Baker15 proposed a parametric maximum likelihood proce-

dure for estimating sensitivities and specificities of multiple tests, and

Zhou16 provided a nonparametric ML approach for comparing the relative

accuracies of two correlated binary tests. While both Baker’s method

and Zhou’s method treat the problem of verification bias as a special

type of missing-data and use likelihood-based approaches for missing-data

to correct for verification bias, Baker’s approach primarily focused on

estimation of sensitivities and specificities of multiple tests, and Zhou’s

approach focused on hypothesis testing for the equality of sensitivities

or specificities of two diagnostic tests. Although Baker’s approach al-

lows the disease verification process to depend on the disease status,

its validity still depends on the assumption that one can correctly

model the disease verification process by logistic regression using the

test results and the disease status. While the validity of Zhou’s ap-

proach relies on the assumption that the disease verification process

depends on only the test results and other observed covariates, but not

on the disease status, its validity does not require modeling the diseased

verification process. However, his approach assumes that the effects of

covariates on disease follow a logistic regression model. Baker implemented

his approach by first starting with an EM algorithm and then switching to

the Newton–Raphson algorithm after a few iterations,15 and Zhou imple-

mented his method using the Newton–Raphson algorithm. The advantage

of Zhou’s approach is that the computation may be done in an existing

software, such as SAS;17 and the advantage of Baker’s approach is that it

may be less sensitive to starting values, but its disadvantage is that it needs

a special program to carry out its computation.

3.2. The ML approach

In this subsection, we discuss Zhou’s approach18 for comparing the relative

accuracies of two correlated binary tests. Let T1 and T2 be binary test

results of two diagnostic tests. Let the definitions of random variables D,

V , X be the same as those in Sec. 2.2. Then, the observed data may be

summarized as in Table 3. To derive the bias-correction procedure, we need

additional notation. Define

θ
ijl

= P (D = 1 | T1 = j, T2 = l,X = xi) , and

η
ijl

= P (T1 = j, T2 = l | X = xi) .
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Table 3. Cross-classification of test results by disease status and verification status with
X = xi.

T1 = 1 T1 = 0

T2 = 1 T2 = 0 T2 = 1 T2 = 0

V = 1 D = 1 si11 si10 si01 si00

D = 0 ri11 ri10 ri01 ri00

V = 0 ui11 ui10 ui01 ui00

Total ni11 ni10 ni01 ni00

Because the number of free parameters could grow uncontrollably as

the number of covariates grows, we need to model the joint probability

P (T1, T2, D | X). We model P (D | T1, T2,X) by a logistic regression model

and P (T1, T2 | X) by a multinomial logit model.19 Specifically, these models

are defined by the following equations:

P (D = 1 | T1, T2,X = x
i
) =

exp(β0 + β1T1 + β2T2 + β

′
3xi

)

1 + exp(β0 + β1T1 + β2T2 + β

′
3
x

i
)

and

P (T1 = j, T2 = l | X = x
i
) =

exp(α0jl
+ α

′
1jl

x
i
)

∑1

h1,h2=0
exp(α0h1h2

+ α

′
1h1h2

x
i
)

,

for j, l = 0, 1, where α011 = 0 and α111 = 0. Let

β = (β0, β1, β2, β
′
3)

′
, α = (α000, α001, α010, α

′
100, α

′
101, α

′
110)

′
,

ξ
i
= P (X = x

i
), ξ = (ξ1, . . . , ξI−1). Let s

ijl
, r

ijl
and u

ijl
be the numbers of

subjects with (V = 1, D = 1, T1 = j, T2 = l), (V = 1, D = 0, T1 = j, T2 = l),

and (V = 0, T1 = j, T2 = l), respectively. Then, the log-likelihood function

based on the observed data is

l(α, β, ξ) =

I

∑

i=1

1
∑

j,l=0

{n
ijl

log η
ijl

+ s
ijl

log θ
ijl

+ r
ijl

log(1− θ
ijl

)}

+

I

∑

i=1

n
i
log ξ

i
, (1)

where n
i

=
∑

1

j,l=0
n

ijl
, and ξ

I
= 1 − ξ1 − · · · − ξ

I−1. After obtaining

ML estimates of α, β, and ξ by maximizing Eq. (1) with respect to these
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parameters, we can estimate the sensitivities of the two tests, π1 and π2,

by the following formulas:

π̂1 =

(

I

∑

i=1

1
∑

l=0

θ̂
i1l

η̂
i1l

ξ̂
i

)/

p̂ and π̂2 =

(

I

∑

i=1

1
∑

j=0

θ̂
ij1η̂ij1 ξ̂i

)/

p̂ ,

respectively, and their specificities, ν1 and ν2, by

ν̂1 =

(

I

∑

i=1

1
∑

l=0

(1− θ̂
i0l

)η̂
i0l

ξ̂
i

)/

(1− p̂) and

ν̂2 =

(

I

∑

i=1

1
∑

j=0

(1− θ̂
ij0)η̂ij0 ξ̂i

)/

(1− p̂) ,

where

p̂ =

I

∑

i=1

1
∑

j,l=0

θ̂
ijl

η̂
ijl

ξ̂
i
.

We may use the delta method to estimate the corresponding covariance

matrix of π̂1 and π̂2 and that of ν̂1 and ν̂2.

4. A Single Ordinal-Scale Test

4.1. An overview

When the response of a diagnostic test is ordinal, there is more than one

way to define a positive test result. Hence, the use of one pair of sensitivity

and specificity values confounded with the chosen confidence threshold for

a positive result. To overcome this limitation, a receiver operating characte-

ristic (ROC) curve was proposed to present the accuracy of an ordinal-scale

test.20,21 An ROC curve is a plot of 1-specificity versus sensitivity as one

varies the confidence threshold from the most liberal to the most conser-

vative views on the presence of disease, and it shows the trade-off between

sensitivity and specificity of a diagnostic test that can arise when one uses

different confidence thresholds.22 For estimating a single ROC curve, several

bias-correction methods have been proposed.18,23–26 Gray et al.23 proposed

a parametric maximum likelihood (ML) approach for estimating an ROC

curve, adjusting for verification bias, under the conditional independence

assumption that the selection probability of verification depends only on

the test results. Their approach has three limitations: (1) it cannot be ap-

plied to the situation where some observed covariates (e.g. sex or age) may
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influence the decision to verify a patient and/or affect the ROC curve itself;

(2) the validity of the approach relies on the normality assumption of the

latent decision variables; and (3) computation of the ML estimates requires

a modified iterative scoring algorithm. Hunink et al.24 proposed an ad-hoc

method for estimating an ROC curve adjusting for the effects of covariates

on the decision to verify and on the ROC curve. However, their approach

does not necessarily provide maximum likelihood estimates nor consistent

variance estimates, as shown by Rodenberg.26 Rodenberg and Zhou25,26

proposed a likelihood based approach for estimating an ROC curve when

some observed covariates affect both the verification process and the test’s

accuracy. Their approach first modeled effects of covariates on the accuracy

of a test by an ordinal regression model, then treated the verification bias

problem as a missing-data problem, and finally used the EM algorithm27 to

compute the ML estimates under the MAR assumption for the verification

process. To overcome the second and third limitations of the Gray et al.’s

approach, Zhou18 proposed a non-parametric maximum likelihood approach

to correct for verification bias in estimating the area under an ROC curve.

The main idea behind this approach was to treat the verification bias

problem as a missing data problem. Under the missing data framework,

he first derived an explicit expression for a ML estimator of the ROC curve

area without the normality assumption. Then, he presented two approaches

for estimating the corresponding variance. The first approach was based on

the observed Fisher information,28 called the information method, and the

second approach was based on the jackknife method.29 A simulation study

suggests that the estimator obtained using the jackknife method outper-

forms the estimator obtained by the information method. The proposed

approach does not require an iterative algorithm to compute the ML esti-

mates, nor the normality assumption of the latent decision variable. The

proposed approach can also apply to the setting whether some observed

discrete covariates of a patient might influence the decision to verify the

patient. However, this approach can only apply to the area under the ROC

curve, not the ROC curve itself.

4.2. Estimation of a single ROC curve without covariates

Let T be the ordinal-scale test results, and the definitions of random vari-

ables D and V are the same as those in Sec. 2. Then, the observed data may

be summarized as in Table 4. The rating data above may be considered as

a categorization of an unobserved latent random variable T

∗, representing
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Table 4. Cross-classification of an ordinal-scale test by disease status and verification
indicator.

Diagnostic results

T = 1 · · · T = K

Verified D = 1 z11 · · · zK1

D = 0 z10 · · · zK0

Unverified u1 · · · uK

Total n1 · · · nK

degree of suspicion on the presence of disease for a patient. By postulat-

ing a relationship between the observed T and the unobserved T

∗ and a

parametric distribution for T

∗, one can build a parametric model for the

ROC curve of a diagnostic test. Several ROC models have been proposed in

the literature.30–33 The most commonly used binormal model is proposed

by Dorfman and Alf,30 and this model can be summarized in the following

result.

Result 1: Assume that K − 1 cut-off points, θ1, . . . , θK−1, exist such that

for each patient, if θ
k−1 < T

∗ ≤ θ
k
, T = k, where k = 1, . . . , K, θ0 = −∞,

and θ
K

= ∞. Further assume that given that a patient is diseased, T

∗ is

normally distributed with mean µ1 and variance σ

2
1 , and that given that

a patient is non-diseased, T

∗ is normally distributed with mean µ0 and

variance σ

2

0 . Under these assumptions, the ROC curve of the test is a plot

of 1− Φ(t) versus 1− Φ(bt− a), where Φ(.) is the cumulative distribution

function of the standard normal random variable, a = (µ1 − µ0)/σ1, and

b = σ0/σ1.

Hence, under the binormal model, an ROC curve is determined by two

parameters, a and b, which may be estimated using the maximum likelihood

method. To write down the likelihood function, one first defines the para-

meters for the observed data: p
d

= P (D = d) and π
kd

= P (T = k | D = d),

and then one may write π
kd

as functions of the parameters of an ROC

curve:

π
k0 = Φ(θ′

k−1)− Φ(θ′
k

) and π
k1 = Φ(bθ′

k−1 − a)− Φ(bθ′
k

− a) ,

where θ

′
k

= (θ
k
−µ0)/σ0, k = 1, . . . , K. Notice that the probability of having

T = k and D = d for a verified patient is p
d
π

kd
and that the probability

of having T=k for an unverified patient is
∑

1

d=0
p

d
π

kd
, a mixture of two
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distributions. Hence, under the MAR assumption that P (V = 0 | T, D) =

P (V = 0 | T ), the log-likelihood for the observed data may be written as

K

∑

k=1

1
∑

d=0

z
kd

log p
d
π

kd
+

K

∑

k=1

u
k
log(p1πk1 + p0πk0) .

Gray et al.23 employed a modified scoring algorithm to maximize this log-

likelihood function with respect to a, b, and θ

′
k

to obtain their ML estimates

and the corresponding variance estimates.

4.3. Estimation of ROC curves with covariates

Let X be the vector of observed covariates that may affect the verification

process and the accuracy of the test. Assume that X can be cross-classified

into I distinct combinations, and xi represents the values of the covariates

for the ith combination. The observed data with X = xi form a contingency

table, displayed in Table 5.

Using the Rodenberg and Zhou’s approach,25,26 we model the effects of

the covariates X = xi on the distribution of the response of a diagnostic

test by ordinal regression with a probit link34,35:

∑

j≤k

π
jdi

= Φ

(

θ
k
− (α

D
d + α

′
X

xi)

exp(β
D

d + β

′
X

xi)

)

, for k = 1, . . . , K − 1 ,

where π
jdi

= P (T = j | D = d,X = xi), and θ
k
’s are cut-off points of a

latent continuous variable T

∗, defined in Proposition 1. Denote α =

(α
D

, α
X

), β = (β
D

, β
X

), and θ = (θ1, . . . , θK−1). To emphasize the de-

pendence of π
jdi

on α, β, and θ, we write π
jdi

= π
jdi

(α, β, θ). Hence, under

the MAR assumption, that P (V = 0 | D, T, X) = P (V = 0 | T, X), the

Table 5. Observed data for the verification bias problem when X = xi.

Verification Disease Diagnostic Test Result T :
Status V : Status D: 1 2 · · · K

1 z11i z21i · · · zK1i

0 z10i z20i · · · zK0i

missing u1i u2i · · · uKi

n1i n2i · · · nKi



May 30, 2003 16:19 WSPC/Advanced Medical Statistics chap02

Evaluation of Diagnostic Test’s Accuracy in the Presence of Verification Bias 33

log-likelihood, based on the observed data, may be written as

l =
K

∑

k=1

1
∑

d=0

I

∑

i=1

z
kdi

log(p
di

π
kdi

(γ, α, θ))

+

K

∑

k=1

I

∑

i=1

u
ki

log(p1i
π

k1i
(γ, α, θ) + p0i

π
k0i

(γ, α, θ)) , (2)

where p
di

= P (D = d | X = xi), the prevalence rate of disease specific to

the subgroup with X = xi. The log-likelihood, based on the observed data,

has a complicated form, involving mixture distributions.

Let w
kdi

be the number of unverified patients with T = k and X = xi

whose disease status is d(D = d). Because of selective verification, one

does not observe w
kdi

, but instead one observes u
ki

= w
k0i

+ w
k1i

. If

all subjects had been verified, we would have observed w
kdi

, and a much

simpler complete-data log-likelihood could be written as

I

∑

i=1

K

∑

k=1

1
∑

d=0

{z
kdi

+ w
kdi
} log(p

di
)

+

I

∑

i=1

K

∑

k=1

1
∑

d=0

{z
kdi

+ w
kdi
} log(π

kdi
(α, β, θ)) .

These two separate sums suggest that p
di

and π
kdi

can be maximized sepa-

rately. They also suggest the use of the EM algorithm with a maximization

step for an ordinal regression model of π
kdi

(α, β, θ) with w
kdi

assumed

known, which can be done fusing an existing computer program PLUM

developed by McCullagh.34 Here, the expectation step finds new estimates

of w
kdi

given the current values of α, β, θ, and p, α

(m), β

(m), θ

(m), and

p

(m), using

u
ki

p

(m)

di

π
kdi

(α(m)
, β

(m)
, θ

(m))
∑

1

d=0
p

(m)

di

π
kdi

(α(m)
, β

(m)
, θ

(m))
.

This iterative process is continued until the relative change in successive

ML estimates is small. The convergent values are the ML estimates of

the parameters. Their asymptotic variance-covariance matrix is given by

the inverse of the expected information matrix, defined by Eq. (2).
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4.4. Estimation of the area under an ROC curve

If one is interested in the area under the ROC curve, a simple bias-correction

procedure is available.18 Define

φ1ki
= P (T = k | X = xi) , and φ2ki

= P (D = 1 | T = k,X = xi) ,

The log-likelihood, defined in (2), may be re-written as

I

∑

i=1

K

∑

k=1

n
i
log(φ1ki

) +
I

∑

i=1

K

∑

k=1

(z
k1i

log(φ2ki
) + z

k0i
log(1− φ2ki

)) .

Maximizing the above log-likelihood yields the following ML estimators for

φ1 and φ2:

φ̂1ki
=

n
ki

n
i

and φ̂2ki
=

z
k1i

z
k1i

+ z
k0i

,

where n
i
=
∑

K

k=1
n

ki
.

Notice that the area under an ROC curve A is a function of φ and ξ

and can be written as

A =

∑

K−1

k=1

∑

K

j=k+1

∑

I

i=1
(1− φ2ki

)φ1ki
ξ
i

∑

I

i=1
φ2ji

φ1ji
ξ
i

+ 1

2

∑

K

k=1

∑

I

i=1
(1− φ2ki

)φ1ki
ξ
i

∑

I

i=1
φ2ki

φ1ki
ξ
i

∑

K

k=1

∑

I

i=1
(1− φ2ki

)φ1ki
ξ
i

∑

K

j=1

∑

I

i=1
φ2ji

φ1ji
ξ
i

Substituting unknown parameters in the equation above by their ML esti-

mates gives the following ML estimator for A:

A =

∑

K−1

k=1

∑

K

j=k+1

∑

I

i=1
(1− φ̂2ki

)φ̂1ki
ξ̂
i

∑

I

i=1
φ̂2ji

φ̂1ji
ξ̂
i

+ 1

2

∑

K

k=1

∑

I

i=1
(1− φ̂2ki

)φ̂1ki
ξ̂
i

∑

I

i=1
φ̂2ki

φ̂1ki
ξ̂
i

∑

K

k=1

∑

I

i=1
(1− φ̂2ki

)φ̂1ki
ξ̂
i

∑

K

j=1

∑

I

i=1
φ̂2ji

φ̂1ji
ξ̂
i

,

where ξ̂
i
= n

i
/n.

The corresponding variance estimator can be obtained by either the

jackknife method or the information method.18

4.5. A real example with fever of uncertain origin

Gray et al.23 reported data from a study on the accuracy of computed

tomography in differentiating focal from nonfocal sources of sepsis among

patients with fever of uncertain origin. In this study only some patients were

verified, depending on their CT results. Hence, this study had verification

bias. Table 6 displays the data.
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Table 6. Observed Data.

T = 1 T = 2 T = 3 T = 4 T = 5

V = 1 D = 1 7 7 2 3 37

D = 0 8 0 1 1 4

V = 0 40 11 3 5 12

Total 55 18 6 9 53
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Fig. 1. ROC curves and empirical (FPF, TPF) estimates for dementia screening test
by site and age group under the best model.

If we use only the veri�ed cases,the estimated empirical and smooth
ROC curves are displayed in Figure 2. The area under the smooth ROC
curve is 0.75 with the standard deviation of 0.108.

If we assumethat the probabilit y of veri�cation depends only on the
result of CT, using all cases,the ML estimatesof a and b are 1.80and 1.75,
respectively. We display the corrected empirical and smooth ROC curves
in Fig. 2. The area under the corrected smooth ROC curve is 0.81 with
standard deviation of 0.07.
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Fig. 2. Corrected and uncorrected ROC curves.

5. Comparison of Two Correlated Ordinal-Scale Tests

5.1. An overview

To estimate ROC curves of multiple tests, Toledano36 adapted the idea of

the weighted generalized estimation equations (GEE)37 to correct for ver-

ification bias under the MAR assumption for the verification process. The

proposed approach first modeled the verification process and then estimated

the probability of verifying a patient given the patient’s observed covariates,

and finally, weighted verified data inversely to this estimated probability of

verification. One advantage of this approach is that it permits estimation

of ROC curves when some observed covariates affect the accuracy of a

test and the verification process without modeling the joint probability of

diagnostic test results. Two disadvantages of the approach may be: (1) its

validity relies on correct modeling of the verification process; and (2) it may

not be as efficient as a likelihood-based approach because it discards the

unverified cases and weights the verified cases inversely to the probability

of having verification.38 For comparing two correlated ROC curve areas,
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Zhou39 extended his previous approach18 to two correlated tests. The pro-

posed approach first derived explicit nonparametric ML estimators for the

areas under the ROC curves of two correlated tests and their corresponding

variance-covariance matrix when the verification process depends on only

the test results. If some categorical covariates affect the verification process,

the proposed approach incorporated these covariates into the estimates

of the areas by using both a logistic regression and a multinomial regres-

sion models. One strength of the proposed approach is that it does not

require one to model the verification process under the MAR assumption,

and its weakness is that it can only be used to estimate the areas under

ROC curves, but not ROC curves themselves.

5.2. A weighted GEE approach for ROC curves

Let T1 and T2 be the responses of two diagnostic tests of a patient, ranging

from 1 to K1 and from 1 to K2, respectively. Let the definitions of random

variables D, V , and X be the same as those in Sec. 2.2. Then, the observed

data with X = xi form a contingency table and are displayed in Table 7.

Let T
lj

be the result of the lth test on jth patient and Y
ljk

be a cumulative

indicator of T
lj
. That is, Y

ljk
= 1 if T

lj
≤ k and 0 otherwise. Let µ

jlkdi
be

the conditional expected value of Y
ljk

given D
j

= d and X = xi (µ
jlkdi

=

E(Y
ljk
| D

j
= d,X = xi)). One may model effects of covariates X = xi on

µ
jlkdi

by ordinal regression with a probit link:

Φ−1(µ
ljkdi

) =
θ

lk
− α

Dl
d− α

′
Xl

xi

exp(β
Dl

d + β

′
Xl

xi)
.

Let B be the vector of all unknown parameters, including α
Dl

, α
Xl

, β
Dl

,

and β
Xl

. Using Toledano’s approach36, one estimates B using a two-stage

procedure. First, given the test results and the observed covariates X
j
, the

Table 7. Cross-classification of ordinal-scale tests by disease and verification indicators
when X = xi.

T1 = 1 . . . T1 = K1

T2 = 1 . . . T2 = K2 . . . T2 = 1 . . . T2 = K2

V = 1 D = 1 z111i . . . z1K21i . . . zK11i . . . zK1K21i

D = 0 z110i . . . z1K20i . . . zK110i . . . zK1K20i

V = 0 u11 . . . u1K2
. . . uK11 . . . uK1K2

Total n11 . . . n1K2
. . . nK11 . . . nK1K2
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probability of verifying a patient is modeled by a logistic regression model:

log
P (V

j
= 1 | T1j

, T2j
,Xj = xi)

P (V
j

= 0 | T1j
, T2j

,Xj = xi)
= ω

′(T1j
, T2j

,x′
i)
′
.

The unknown parameters ω may be estimated by the method of generalized

estimating equation (GEE)40. Denote ω̂ to be the resulting estimates of ω,

and denote the probability of verifying the jth patient by

ν
j

= P (V
j

= 1 | T1j
, T2j

, Xj = xi) .

Then, the following weighted generalized estimating equation is used to

estimate B:

n

∑

j=1

(

(

V
j

ν
j

∂µ
j

∂B
Σ

j
(η)−1(Y

j
− µj)

)

∣

∣

∣

∣

∣

ω = ω̂, η = η̂

)

= 0 , (3)

where the notation (. |ω = ω̂, η = η̂) denotes a function of ω and η

evaluated at ω̂ and η̂; Y
j

= (Y1j1, . . . , Y1j(K1−1), Y2j1, . . . , Y2j(K2−1))
′;

µ
j

= (µ1j1, . . . , µ1j(K1−1), µ2j1, . . . , µ2j(K2−1))
′; Σ

j
(η) = cov(Y

j
) is an

assumed covariance matrix of Y
j
; and η̂ is a consistent estimator of η.

Toledano and Gatsonis42 have discussed several ways of choosing the co-

variance matrix Σ
j
(η), and Toledano36 has shown that the solution B̂ to the

weighted GEE (3) is a consistent estimator of B and has an asymptotically

normal distribution.

5.3. A likelihood-based approach for ROC areas

If one is interested in comparing the areas under the ROC curves, a simpler

approach than the weighted GEE approach is available.39 To derive this

approach, one needs a different notation. For the observed data given as in

Table 7, the following parameters are defined:

φ2ijl
= P (D = 1 | T1 = j, T2 = l, X = xi) ,

φ1ijl
= P (T1 = j, T2 = l | X = xi) , and ξ

i
= P (X = xi) .

Since the problem of verification bias may be considered as a missing-data

problem, the likelihood approach for missing data is used to estimate φ1ijl
,

φ2ijl
, and ξ

i
. Assume that the missing-data mechanism is MAR, that is,

P (V = 0 | T1, T2, D, X = xi) = P (V = 0 | T1, T2, X = xi) .
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Then, the contribution of a verified patient to the likelihood is P (T1,

T2, D,X) = P (D | T1, T2,X)P (T1, T2 | X)P (X), and the likelihood contri-

bution of an unverified case is P (T1, T2,X) = P (T1, T2 | X)P (X). Further-

more, one may model effects of T1, T2, and X on D by a logistic regression

model:

φ2ijl
=

exp(β1j
+ β2l

+ β

′
3xi)

1 + exp(β1j
+ β2l

+ β

′
3
xi)

, (4)

where β1K1
= 0 and β2K2

= 0, and effects of X on T1 and T2 by a multino-

mial logit model,

φ1ijl
= P (T1 = j, T2 = l | X = xi) =

exp(α′
jl

xi)
∑

K1

h1=1

∑

K2

h2=1
exp(α′

h1h2
xi)

, (5)

where α
K1K2

= 0. Denote β = (β11, . . . , β1(K1−1), β21, . . . , β2(K2−1), β
′
3),

α = (α11, . . . , αK1(K2−1))
′, ξ

i
= P (X = xi), ξ = (ξ1, . . . , ξI−1), and n =

∑

I

i=1
n

i
.

To emphasize the dependence of φ1ijl
on α and the dependence of φ2ijl

on β, one may write φ1ijl
= φ1ijl

(α) and φ2ijl
= φ2ijl

(β). Under the MAR

assumption, a valid log-likelihood function is

l(α, β, ξ) =

I

∑

i=1

K1
∑

j=1

K2
∑

l=1

n
ijl

log
exp(α′

jl

xi)
∑

K

h1,h2=1
exp(α′

h1h2
xi)

+

I

∑

i=1

n
i
log ξ

i

+

I

∑

i=1

K1
∑

j=1

K2
∑

l=1

s
ijl

log
exp(β1j

+ β2l
+ β

′
3
xi)

1 + exp(β1j
+ β2l

+ β

′
3
xi)

+ r
ijl

log
1

1 + exp(β1j
+ β2l

+ β

′
3
xi)

, (6)

where n
ijl

= s
ijl

+ r
ijl

+ u
ijl

and ξ
I

= 1− ξ1 − · · · − ξ
I−1.

Let

l1(α) =

I

∑

i=1

K1
∑

j=1

K2
∑

l=1

n
ijl

log
exp(α′

jl

xi)
∑

K

h1,h2=1
exp(α′

h1h2
xi)

,

l2(β) =

I

∑

i=1

K1
∑

j=1

K2
∑

l=1

s
ijl

log
exp(β1j

+ β2l
+ β

′
3
xi)

1 + exp(β1j
+ β2l

+ β

′
3
xi)

+ r
ijl

log
1

1 + exp(β1j
+ β2l

+ β

′
3
xi)

,
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and

l3(ξ) =

I

∑

i=1

n
i
log ξ

i
.

Then, l(α, β, ξ) may be written as the sum of l1(α), l2(β), and l3(ξ). Here,

l1(α), l2(β), and l3(ξ) may be considered as the log likelihood function of

all cases modeled by the multinomial logit model defined by Eq. (5), the

log likelihood function of verified cases modeled by the logistic regression

model defined by Eq. (4), and the log likelihood function for a multinomial

distribution based on all cases, respectively. Since the parameters α, β,

and ξ are distinct, their ML estimators, α̂, β̂, and ξ̂, may be obtained

by maximizing l1, l2, and l3 with respect to α, β, and ξ, separately. The

observed Fisher information for (α, β, ξ) is

diag(I1(α), I2(β), I3(ξ)) (7)

where I1, I2, and I3 are the observed Fisher information matrices on the

log-likelihood functions l1(α), l2(β), and l3(ξ), respectively.

Maximizing l1(α) with respect to α and l2(β) with respect to β yields

ML estimators α̂ and β̂, respectively. Since ξ
I

= 1−· · ·− ξ
I−1, maximizing

l3(ξ) with respect to ξ
i

yields ML estimators of ξ
i
:

ξ̂
i
=

n
i

n

,

i = 1, . . . , I − 1.

Note that γ = P (D = 1) =
∑

I

i=1

∑

K1

j=1

∑

K2

l=1
φ2ijl

φ1ijl
ξ
i

and that one

may write the area under the ROC curve of a diagnostic test A
i
as

A
i
=

1

γ(1− γ)





Ki−1
∑

j=1

φ

∗
i1(j)

Ki
∑

l=j+1

φ

∗
i2(l) +

1

2

Ki
∑

j=1

φ

∗
1i

(j)φ∗
2i

(j)





,

where

φ

∗
11(j) =

I

∑

i=1

K2
∑

k=1

(1− φ2ijk
)φ1ijk

ξ
i
, φ

∗
12(j) =

I

∑

i=1

K2
∑

k=1

φ2ijk
φ1ijk

ξ
i
,

φ

∗
21

(j) =
I

∑

i=1

K1
∑

k=1

(1− φ2ikj
)φ1ikj

ξ
i
, φ

∗
22

(j) =
I

∑

i=1

K1
∑

k=1

φ2ikj
φ1ikj

ξ
i
.

The delta method may be used to obtain an estimate of the covariance

matrix for Â1 and Â2. Assuming the normality of Â1 − Â2, one can

then perform the hypothesis tests and construct confidence intervals about

A1 −A2.
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5.4. Availability of computer software

For analysis of ROC data, several computer programs have been developed

for carrying out computations of the bias-correction methods discussed in

Secs. 4 and 5. Gray et al.23 developed a program called ROCBIAS to es-

timate the ROC curve of a single test when the probability of verifying

a patient depends on only the test results. Rodenberg and Zhou26 de-

veloped a program called EMPLUM to estimate ROC curves when the

probability of verifying a patient depends not only on the test results but

also on other observed covariates. Toledano36 developed special software

written in Fortran to implement the weighted GEE approach for ana-

lyzing correlated ROC curves in the presence of verification bias. Zhou

and Higgs43 implemented the likelihood-based approach for comparing the

areas under the ROC curves in SAS,17 which can be down-loaded from

http://www.biostat.iupui.edu/~zhou.

6. Discussion

Statistical methods in diagnostic medicine have recently received a lot of

attention.45 In this chapter we have discussed the problem of verification

bias in evaluating the accuracy of diagnostic tests and some available bias-

correction methods. The problem of verification bias is just one of many

problems encountered in diagnostic medicine. For a completely treatment

on statistical methods in diagnostic medicine, we refer readers to textbook

by Zhou et al.44
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1. Introduction

Most classical statistical methods require independent observations. The

issue here is not independence of multiple variables, rather of the samples.

There are many cases of dependent in medical research when requirement

of independence cannot be hold, i.e. observations are correlated.

The existence of such correlation is not a coincident, but due to the

design of the experiments. In some cases, this type of correlation can

be eliminated by suitable procedure without losing any information. The

simplest case is paired design where the observations within the same paired

is correlated. For example, to investigate a new drug’s effects on hyper-

tension, a 2-by-2 crossover design can be used to measure the diastolic

pressure before and after treatment for each subject. Although the pres-

sures across subjects are independent, the observations of the same subject

are correlated.

Unfortunately, we could not eliminate intra-unit correlations in most

cases by traditional statistical methods. For example, in a toxicological

study, 32 pregnant rats were randomly allocated into test and control

groups. Rats in control group were fed with regular food, while rats in test

group were fed with combinations of regular food and suspected teratogen.

The proportion of malformation of pups of two groups was compared after

rat delivery. In this study, the pregnant rats are independent with each

other, but genetic factors, antepartum internal womb environments and

45
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metabolism conditions of teratogen have effects on the rat pups. Thus, the

rat pups cannot be treated as independent observations because siblings are

more likely to encounter the similar proportion of malformation than pups

from different litters. The litter effect must be taken into account. Special

procedure must be used to deal with this type of data.

The intra-unit correlation or intra-class correlation is a measure

of similarity (or non-independence) among individuals that share some

characteristics. The intra-unit correlation means that observations in

the same unit are not dependent. There are overlaps between the informa-

tion they present. It is inappropriate to ignore the intra-unit correlation.

For example, in a clinical trail, many variables, i.e. vital signs, physiological

index, effects and side effects, should be observed successively in different

time for each subject during the trial period to show the efficacy and

safety of the tested drug. Each subject should be observed several times.

We refer to this type of study as repeated measurement study. There

are two classical ways to deal with this sort of data. One is, to test the

significance of the difference between the test group and the control group

on each occasion respectively including test for the homogeneity of two

groups before treatment and to compare the difference of changes (such

as absolutely increase or decrease, relatively increase or decrease, etc.)

between the two groups at each time. The alternative is to take k obser-

vations of each one of n subjects as one response variable, (the sample

size will be nk) to fit a model (or generalized linear model) in which

time is an explanatory variable. The former one will have low statistical

power because it treats the observations of each occasion independently.

The latter considers the correlations between the treatment effect and

time. However, it ignores the intra-subject correlation of the observations

and takes the data as independent data. Thus, it will increase the type

I error which may result in the approval of the inefficiency drug to

the market.

The set of observations taken from the same subject tend to be cor-

related. They provide rather less information than the same number

independent observations taken from different subjects. The larger the

intra-unit correlation is, the less information will be provided. Therefore, it

will increase the type I error if we use nk observations to fit general linear

model.

The statistical methods for dependent data are described and illus-

trated in this chapter. The methods cover estimation of intra-correlation

coefficient, hypotheses test, estimation of sample size, etc.
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Table 1. Clotting time (min) of serum from 8 volunteers, treated by 4 methods.

subject
Treatment

A B C D

1 8.4 9.4 9.8 12.2
2 12.8 15.2 12.9 14.4
3 9.6 9.1 11.2 9.8
4 9.8 8.8 9.9 12.0
5 8.4 8.2 8.5 8.5
6 8.6 9.9 9.8 10.9
7 8.9 9.0 9.2 10.4
8 7.9 8.1 8.2 10.0

2. Examples of Dependent Data

Dependent data is omnipresent in medical researches, such as, repeated

measurement data, longitudinal data, data of cross-over design, data of

multicenter clinical trial, cluster sampling survey data, and infective dis-

ease, inherited disease, etc. They share the same property, which is the

dependence or intra-unit correlation of observations. We refer to this type

of data as dependent data. In this section, we will illustrate some types of

examples for dependent data, and discuss their common and distinguishing

features.

2.1. Example 1. Randomized block design

To compare the effects on the clotting time of serum of four treatments,

8 volunteers were recruited. Four samples of serum from each subject were

assigned to the four treatments in a random order. The results of the

experiment were presented in Table 1.

The property of the data shown in Table 1 is that the observations of the

same block are correlated, while the observations from different blocks are

independent. Thus, the effects of 4 treatments of 4 serums from one person

are correlated. That is to say the data from block design are dependent.

Observations in the same block in split-plot design and in split-split-plot

design have the same property.

2.2. Example 2. Cluster sampling1

A simple random sample of 30 households was drawn from a census taken

in 1947. The question here is whether they had consulted a doctor in the

last 12 months. Data are shown below. The denominator is the number of
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persons in a household, and the nominator is the number of persons who

saw a doctor.

5/5, 0/5, 2/3, 3/3, 0/2, 0/3, 0/3, 0/3, 0/4, 0/4, 0/3, 0/2, 0/7, 4/4, 1/3 ,

2/5, 0/4, 0/4, 1/3, 3/3, 2/4, 0/3, 0/3, 0/1, 2/2, 2/4, 0/3, 2/4, 0/2, 1/4

The property of this data is that the members of the same family

tend to be similar, while persons from different families are assumed to

be independent. Our purpose is to estimate the proportion of people who

consulted a doctor, and to measure the similarity of the members in the

same family. Similar results would be obtained for any characteristic in

which the members of the same family trend to act in the same way.

2.3. Example 3. Toxicological study2

In a toxicological study, 32 pregnant rats were randomly allocated into

2 groups: test group and control group. Rats in control group were fed with

regular food, while rats in test group were fed with combination of regular

food with suspected teratogen. The proportions of malformation of pups of

two groups were compared after delivery. The results are shown as follows:

Control group 13/13 12/12 9/9 8/8 8/8 12/13 11/12 9/10 9/10 8/9
11/13 4/5 5/7 7/10 7/10 9/9

Test group 12/12 11/11 10/10 9/9 10/11 9/10 9/10 8/9 8/9 4/5
7/9 4/7 5/10 3/6 3/10 0/7

The denominator is the number of offspring in a litter, and the nomi-

nator is the number of offsprings that are malformation in the litter.

In this study, the pregnant rats are independent to each other, but

genetic factors, antepartum internal womb environments and metabolism

conditions of teratogen have effects on the rat pups. The rat pups cannot

be treated as independent observations because siblings are more alike than

pups from different litters. Data in Example 2 have similar property. Similar

property would be obtained from genetics studies in which the members of

the same family tend to be similar.

2.4. Example 4. Crossover design

For studying the bioequivalence of domestic and imported rosiglita-

zone maleate tablets (RMT), 24 volunteers were recruited in a 4 × 4

crossover study. Four sequence groups are formed by the randomized
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Table 2. Results of 4 × 4 cross-over trial for testing bioequivalence of domestic and imported rosiglitazone maleate tablets.

Id sequence
Stage 1 Stage 2 Stage 3 Stage 4

AUC Cmax T50 AUC Cmax T50 AUC Cmax T50 AUC Cmax T50

1 DCAB 884.27 204.63 3.47 905.09 222.94 3.86 2330.77 455.14 5.50 1936.98 395.55 4.35
2 CBDA 919.50 178.27 3.92 2201.98 346.89 4.58 855.89 205.31 3.79 1939.36 327.12 4.01
3 ADBC 1738.12 326.72 3.95 901.70 130.61 4.56 1889.72 375.37 4.08 870.93 158.99 4.09
4 BACD 2000.29 382.25 3.51 2350.58 479.88 3.83 952.86 187.72 3.68 955.46 202.02 3.69
5 CBDA 823.39 158.72 3.86 1864.97 329.66 3.65 710.06 133.87 3.22 1372.77 309.07 2.99
6 ADBC 2102.11 360.38 4.47 946.33 155.29 4.68 2005.84 339.67 3.53 934.45 176.23 3.72
7 DCAB 907.86 170.88 3.95 991.65 197.54 4.06 2139.65 369.21 3.98 2408.84 368.93 4.62
8 BACD 2139.72 366.84 3.80 2012.09 411.87 3.99 1134.23 200.43 3.94 924.12 223.98 3.70
9 DCAB 787.80 163.07 2.73 905.52 172.22 3.23 1966.42 362.11 3.77 1640.15 331.95 3.15

10 BACD 1785.35 347.46 3.93 1934.66 373.82 4.38 892.89 163.78 3.78 826.27 151.87 3.78
11 ADBC 2031.55 320.43 3.39 975.70 165.38 3.56 1893.99 313.81 3.48 788.06 128.56 3.23
12 BACD 1524.61 381.50 3.12 2525.23 439.42 4.35 952.05 177.75 4.07 940.57 187.22 3.58
13 ADBC 2013.54 314.76 4.99 1005.49 168.16 4.39 2322.68 406.54 4.98 946.92 152.94 4.73
14 DCAB 990.04 163.73 4.63 1118.63 177.61 4.82 2300.18 334.58 4.51 2197.79 293.69 4.72
15 CBDA 839.94 136.99 4.02 1956.45 374.10 3.97 611.43 132.20 2.63 1707.48 273.61 4.03
16 CBDA 1159.85 167.43 4.57 2760.90 349.34 5.59 1007.45 178.00 4.59 2477.37 327.36 5.88
17 DCAB 1032.22 182.99 4.01 1039.21 173.00 3.96 2440.50 380.79 4.53 1860.15 353.41 3.77
18 BACD 1782.62 376.58 3.64 1917.01 426.42 3.44 1048.27 179.42 4.04 882.46 149.33 3.23
19 CBDA 852.84 150.20 3.87 2256.02 284.50 4.04 982.67 157.35 4.19 1924.09 360.50 3.96
20 ADBC 2178.77 436.64 4.09 1273.04 186.33 4.58 2074.44 296.02 4.08 1009.09 190.86 4.57
21 ADBC 2529.23 449.49 4.58 1365.57 190.35 5.21 1868.99 412.40 4.15 1064.39 208.41 4.95
22 CBDA 989.89 167.33 3.85 1936.16 334.66 4.03 904.53 175.76 4.10 2029.20 420.12 4.24
23 BACD 1579.55 328.00 3.72 1756.96 284.65 3.69 949.38 188.22 4.11 951.75 201.15 4.12
24 DCAB 889.20 186.69 3.95 757.79 196.20 3.10 1813.93 441.25 3.57 1523.54 327.47 3.33
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Latin square below

ADBC

BACD

CBDA

DCAB

Where A, B, C, D are imported RMT 2 mg, domestic RMT 2 mg, imported

RMT 4 mg and domestic 4 mg, respectively.

Twenty-four volunteers were randomly allocated in 4 treatment groups

with 6 in each sequence. Each subject received different treatment on

different cycles. To minimize carryover effects, a 7-day wash-out period

between the two treatment occasions was made. Plasma concentration of

rosiglitazone maleate was detected within 24 hours after orally taking RMT.

Data in Table 2 is the area under curve (AUC), maximum concentration

(Cmax) and time to half maximum concentration (T50). The aim is to test

whether there is difference between domestic and imported RMT.

This is a four-by-four crossover design with 3 variables. In this data set,

the observations in 4 periods and the variables (AUC, Cmax and T50) are

correlated.

2.5. Example 5. Repeated measurement, linear regression

In a multicenter, randomized, double-blind, three doses (high, middle, and

low = placebo) controlled clinical study, the researchers evaluated the

efficacy and safety of urokinase (UK) in the treatment of acute cerebral

infarctions within 6 hours from the onset of stroke. One interesting variable

is the European stroke scale (ESS). Data are shown in Table 3.

Repeated measurement design, also known as within-subject design, is

a quite common design in medical researches. The feature of this type of

data set is that individuals are measured repeatedly through time. We are

interested in both treatment and temporal effects. Figure 1 displays the data

graphically. Each line connect the repeated observations at different times

of a subject. This simple graph reveals apparent and important patterns.

First, all of 30 subjects are getting better within 8 weeks as ESS is becoming

larger. Second, patients with larger ESS at the beginning of the period tend

to remain larger throughout. This phenomenon is called “tracking.”

There are two ways to deal with this type of data by classical methods.

First, we estimate the average of ESS for each week and fit a regression

model of the means of ESS over time. In fact, we aggregate the data.
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Table 3. ESS of 30 acute cerebral infarctions.

Id treat Age
weeks

0 1 2 3 4 5 6 7 8

1 0 27 107 106 106 108 108 112 112 112 112
2 0 21 107 106 106 106 106 112 112 114 116
3 0 21 100 100 100 106 109 108 114 116 116
4 0 36 107 106 106 107 106 111 112 117 109
5 0 17 110 111 112 112 113 113 113 116 116
6 0 22 105 108 108 106 108 108 108 109 110
7 0 29 102 101 104 100 94 106 106 105 106
8 0 15 97 97 97 99 99 99 101 101 103
9 0 21 108 108 108 110 116 116 120 128 120

10 0 27 108 108 108 114 116 118 118 124 128
11 1 34 98 98 102 121 120 124 124 132 140
12 1 37 100 98 114 118 126 126 134 138 138
13 1 31 104 123 127 129 130 130 136 140 140
14 1 28 108 120 115 119 134 126 126 127 140
15 1 32 106 108 108 108 112 112 112 114 116
16 1 18 103 102 102 104 114 114 116 128 143
17 1 15 101 103 104 108 113 113 118 122 126
18 1 31 91 90 92 93 89 95 102 105 108
19 1 39 94 94 96 99 116 124 135 138 145
20 1 34 104 104 105 105 122 128 131 129 138
21 2 36 107 111 112 127 127 128 138 141 141
22 2 45 109 114 120 130 131 132 139 142 143
23 2 40 103 103 108 112 116 118 123 125 135
24 2 44 110 114 120 124 133 135 142 144 144
25 2 22 95 103 115 113 119 122 126 134 136
26 2 25 92 102 110 108 116 116 116 122 127
27 2 32 98 106 112 112 120 124 126 136 141
28 2 38 106 121 127 126 128 130 132 138 140
29 2 22 102 112 110 119 119 123 125 133 142
30 2 19 109 109 124 127 128 132 133 144 147

As a result, it increases the correlation and causes a spurious association

between ESS and time. Second, we fit a regression model for all the data on

time. These two models give the same regression coefficients but different

standard errors. Both of them ignore the intra-subject correlation.

2.6. Example 6. Pharmacokinetics study, repeated

measurements, nonlinear regression

A single oral dose Ciclosporin A Capsule was given to 10 healthy volunteers.

Plasma concentration (ng/ml) was detected after medication. The results

are shown in Table 4.
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Fig. 1. ESS over time of 30 acute cerebral infarctions for three groups.
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Table 4. Palsma concentrations of Ciclosporin A Capsule after medication of
10 volunteers.

Subject
Time (hour)

0.5 1 2 3 4 5 6 8 12 16

1 343.3 783.6 443.1 426.8 267.0 155.5 125.0 98.3 75.2 23.8

2 86.6 501.1 817.9 542.7 273.9 226.4 195.7 114.0 79.9 26.6

3 256.1 534.8 486.8 420.1 370.6 316.7 250.6 192.6 124.5 75.9

4 300.2 849.7 846.0 521.1 373.2 269.4 258.1 182.7 93.0 68.0

5 344.6 826.4 631.0 485.0 389.7 257.7 204.7 172.4 124.5 44.2

6 230.0 780.7 912.3 551.2 299.8 219.3 148.7 75.1 55.9 27.6

7 116.5 943.4 848.2 747.3 410.4 345.5 171.4 129.5 63.0 17.5

8 66.7 239.2 814.6 526.9 426.6 213.5 152.5 118.5 73.1 38.1

9 67.7 789.1 551.6 520.2 463.0 295.7 191.8 154.4 108.4 32.5

10 216.2 599.9 1099.5 562.9 413.9 297.5 233.2 146.6 94.8 38.7
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Fig  1  ESS over time of 30 acute cerebral infarctions for three groups
Repeated measurement design, also known as within-subject design, is a quite common design

in medical researches. The feature of this type of data set is that individuals are measured
repeatedly through time. We are interested in both treatment and temporal effects. Figure 1
displays the data graphically. Each line connect the repeated observations at different times of a
subject. This simple graph reveals apparent and important patterns. First, all of 30 subjects are
getting better within 8 weeks as ESS is becoming larger. Second, patients with larger ESS at the
beginning of the period tend to remain larger throughout. This phenomenon is called ′tracking.′

There are two ways to deal with this type of data by classical methods. First, we estimate the
average of ESS for each week and fit a regression model of the means of ESS over time. In fact,
we aggregate the data. As a result, it increases the correlation and causes a spurious association
between ESS and time. Second, we fit a regression model for all the data on time. These two
models give the same regression coefficients but different standard errors. Both of them ignore the
intra-subject correlation.

Example 6 (pharmacokinetics study, repeated measurements, nonlinear regression) A single
oral dose Ciclosporin A Capsule was given to 10 healthy volunteers. Plasma concentration (ng/ml)
was detected after medication. The results are shown in Table 4.

Table 4   Palsma concentrations of Ciclosporin A Capsule after medication of 10 volunteers
Time(hour)Subject 0.5 1 2 3 4 5 6 8 12 16

1 343.3 783.6 443.1 426.8 267.0 155.5 125.0 98.3 75.2 23.8
2 86.6 501.1 817.9 542.7 273.9 226.4 195.7 114.0 79.9 26.6
3 256.1 534.8 486.8 420.1 370.6 316.7 250.6 192.6 124.5 75.9
4 300.2 849.7 846.0 521.1 373.2 269.4 258.1 182.7 93.0 68.0
5 344.6 826.4 631.0 485.0 389.7 257.7 204.7 172.4 124.5 44.2
6 230.0 780.7 912.3 551.2 299.8 219.3 148.7 75.1 55.9 27.6
7 116.5 943.4 848.2 747.3 410.4 345.5 171.4 129.5 63.0 17.5
8 66.7 239.2 814.6 526.9 426.6 213.5 152.5 118.5 73.1 38.1
9 67.7 789.1 551.6 520.2 463.0 295.7 191.8 154.4 108.4 32.5
10 216.2 599.9 1099.5 562.9 413.9 297.5 233.2 146.6 94.8 38.7 
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Fig. 2. Plasma concentration-time curve of Ciclosporin A capsule after a single oral
dose in 10 volunteers.

This is an example of repeated measurement with nonlinear trend, which

are distinct from Example 5.

In experimental or pharmacokinetical study, the sample size is relatively

small and the period is usually short. Dropout seldom occurs. Furthermore

both times of repeated measure and time intervals are similar to each other.

However, it is not the case in clinical trial. The observed period is usually

long. Compliance varies among patients and dropouts are routine. Last, but

not least, the times and time intervals are different among patients.
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2.7. Example 7. Mmulti-center clinical study, ranked data

To investigate the effect of nerve growth factor (NGF) for subjects of extra-

neuritis caused by chemical products, an random, double blind, placebo

controlled clinical trial was developed.

One hundred two subjects were random allocated into treatment and

placebo groups. The effectiveness was observed in 8 consecutive weeks for

102 subjects. The results are shown in Table 5, in which Id represents

Table 5. Effects of 102 subjects of extra-neuritis caused by chemical products.

Id cnt Trt com sex age base x1 x2 x3 x4 x5 x6 x7 x8

1 1 T A 0 21 13 1 2 2 2 2 2 2 3
2 1 P A 0 27 12 1 2 2 2 2 2 2 2
3 1 T A 0 27 13 1 2 2 2 2 2 2 2
4 1 P B 0 21 13 1 2 2 2 2 2 2 2
5 1 T B 0 34 7 0 1 1 2 2 2 2 2
6 1 T B 0 45 13 1 2 2 2 2 2 2 3
7 1 T B 0 37 13 1 2 2 2 2 2 2
8 1 P A 0 21 13 1 2 2 2 2 2 2 2
9 1 T A 0 31 14 1 2 2 2 3 3 3 3

10 1 T B 0 23 14 2 2 2 2 3 3 3 3
11 1 T A 0 22 13 1 2 2 2 2 2 2 2
12 1 P B 1 28 14 2 2 2 2 2 2 2 2
13 2 P A 1 24 15 2 2 2 2 3 3 m m
14 2 T A 0 28 13 2 2 2 2 3 3 3 m
15 2 T B 0 29 14 2 2 2 2 3 3 m m
16 2 T A 0 21 10 1 2 2 2 3 3 3 3
17 2 P B 0 31 15 2 2 2 2 m m m 3
18 2 T B 1 25 10 1 1 1 1 2 2 3 3
19 2 P A 0 29 8 0 1 1 1 2 2 2 1
20 2 T B 0 20 10 1 1 2 2 2 3 3 3
21 2 T A 0 32 13 1 2 2 2 2 2 2 2
22 3 T A 0 18 14 2 2 2 2 3 3 3 3
23 3 T A 0 31 6 0 0 0 1 1 1 1 1
24 3 T A 0 39 10 1 1 1 2 2 2 2 3
25 3 T B 0 34 9 1 1 1 1 1 2 2 2
26 4 P A 0 15 12 1 1 1 1 2 2 2 2
27 5 P B 0 36 7 1 1 1 1 1 1 1 1
28 5 T B 0 37 5 1 1 1 1 1 1 1 2
29 6 T A 1 15 1 0 0 0 0 0 0 1 1
30 6 T A 1 16 1 0 0 0 0 1 1 1 1
31 6 T B 0 15 11 1 2 2 2 2 2 2 3
32 6 P B 1 16 8 1 1 1 1 1 1 1 1
33 6 P A 1 17 13 1 2 2 2 2 2 2 2
34 7 T B 0 29 13 1 2 2 2 2 2 2 3
35 7 P B 0 19 15 2 2 2 2 3 3 3 3
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Table 5. Continued.

Id cnt Trt com sex age base x1 x2 x3 x4 x5 x6 x7 x8

36 7 T B 0 29 13 1 2 2 2 2 2 2 2
37 7 P A 0 29 13 2 2 2 2 m m m m
38 8 T B 0 17 13 1 2 2 2 2 1 2 1
39 8 P A 0 18 13 1 2 2 2 2 2 2 2
40 8 T B 0 17 12 2 2 2 2 2 2 3 3
41 8 T A 0 18 11 1 2 2 2 2 2 2 2
42 0 P B 0 45 7 0 1 2 2 2 2 2 2
43 9 T A 0 30 9 0 0 1 1 1 1 2 2
44 9 P A 0 43 12 1 2 2 2 2 2 2 2
45 9 T A 0 36 14 2 2 2 2 3 2 2 2
46 9 T B 0 45 14 2 2 2 2 3 3 3 3
47 9 P B 0 32 14 2 2 2 2 3 3 3 3
48 9 T A 0 40 11 1 1 2 2 2 2 2 2
49 1 P A 0 36 13 1 2 2 2 2 2 2 2
50 1 T A 0 44 13 1 2 2 2 2 3 3 3
51 10 P B 0 35 13 1 2 2 2 2 2 2 2
52 10 T B 0 38 13 1 2 2 2 2 2 2 2
53 10 T A 0 33 13 1 2 2 2 2 3 3 3
54 10 T B 0 41 13 1 2 2 2 2 2 2 3
55 11 T A 0 22 13 2 2 2 2 2 3 m m
56 11 P B 0 22 14 1 1 1 1 2 2 2 2
57 11 T B 0 28 8 1 1 1 1 1 2 2 2
58 11 P A 0 31 14 2 2 2 2 3 3 3 3
59 11 T A 0 37 15 2 2 2 2 3 3 3 3
60 11 T B 0 21 14 2 2 2 2 2 3 3 3
61 11 P B 1 24 12 1 2 2 2 2 2 2 2
62 11 T B 0 25 7 1 1 1 2 2 2 2 2
63 11 T A 0 32 12 1 1 2 2 2 2 2 2
64 11 T A 0 21 15 2 2 2 2 3 3 3 3
65 11 P A 0 20 13 2 2 2 2 3 3 3 3
66 11 T B 1 30 14 2 2 2 2 3 m m m
67 11 T A 1 38 13 1 2 2 2 2 3 3 3
68 11 T A 0 19 16 2 2 2 2 3 3 3 3
69 11 T B 0 21 14 2 2 2 2 2 3 3 3
70 11 P B 0 25 11 1 m 2 2 m m m m
71 11 T B 1 22 15 2 2 2 2 m 3 m 3
72 11 P A 1 23 10 1 1 1 1 1 1 m m

73 11 T A 0 21 14 2 2 2 2 3 3 3 3
74 11 T A 0 26 14 2 m 2 m 3 m 3 m
75 11 T B 0 20 15 2 2 2 2 3 3 3 3
76 11 P B 0 18 13 2 2 2 m m m m m
77 11 P A 1 23 8 1 1 1 1 1 1 1 2
78 11 T B 0 24 15 m 2 m 2 m 3 m 3
79 11 P B 0 26 10 1 1 1 1 1 2 2 m
80 11 T A 0 20 15 2 2 2 2 3 3 3 3
81 11 P A 0 18 13 2 2 m m m m m m
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Table 5. Continued.

Id cnt Trt com sex age base x1 x2 x3 x4 x5 x6 x7 x8

82 11 T B 0 22 14 2 2 2 2 m m 3 m
83 11 T B 0 25 15 2 2 2 2 3 3 3 3
84 11 T A 0 19 15 2 2 2 2 3 3 3 3
85 11 T B 0 20 15 2 2 2 2 3 3 m m
86 11 T A 0 29 15 2 2 2 2 3 3 m m
87 11 P A 0 25 8 m m 1 m m 1 m m
88 11 T A 0 24 15 2 2 2 m m 3 m m
89 11 P B 0 21 11 m 1 1 m m m m m
90 11 T B 0 19 15 2 2 2 2 3 3 3 m
91 11 T A 0 21 15 2 2 2 2 3 3 3 m
92 11 T B 0 22 14 2 2 2 2 3 3 3 m
93 11 T A 0 20 15 2 2 2 2 3 3 3 3
94 11 P A 0 29 4 0 0 0 0 1 1 1 1
95 11 T B 0 19 14 2 2 2 2 3 3 3 3
96 11 P B 0 28 12 1 2 m 2 3 2 2 m
97 11 P B 0 21 8 1 1 1 1 1 1 m m
98 11 T B 0 30 15 2 2 2 2 3 3 3 3
99 11 T B 1 27 15 2 2 2 2 3 3 3 3

100 12 P A 0 25 7 0 1 1 1 1 2 1 2
101 12 T B 0 35 7 1 1 1 1 1 2 2 2
102 12 T A 0 33 8 1 1 1 1 2 2 2 2

identification of subjects; Cnt represents the center; Trt represents groups

(Trt = P for placebo, Trt = T for NGF); Com represents companies; Base

represents the MDNS base level before treatment; and x1–x8 are effects

at time from 1 to 8 weeks after treatment. Here, x = 0 stands for invalid

or worse effect of treatment on the subject, 1 for improved, 2 for notable

improved, 4 for recovery, and m for missing.

Except for the intra-subject correlation, the intra-center correlation of

the subjects in the same hospital should be considered for this type of data.

2.8. Example 8. Repeated measurement, count data3

In order to understand whether the progabide reduces the rate of epileptic

seizures, 59 patients of epileptics were recruited in a clinical trial. For each

patient, the number of epileptic seizures was recorded during a baseline

period of 8 weeks. Patients were then randomized to treatment with the

anti-epileptic drug progabide, or placebo. In addition, all of the patients

were treated with standard chemotherapy. The number of seizures was then

recoded in 4 consecutive two-weeks for each epileptic.

Where, treatment variable is group (0 = placebo, 1 = progabide). What

is different from Examples 5 and 7 is that the response variable is the seizure
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counts in unit time (two-week). Poisson regression would be used here for

count data.

In this study, only recurrence episodes were included, not first episode.

The reason of not including the first episode was that the factors asso-

ciated with recurrence of a disease are usually different from those with that

disease. For example, in a model of development of breast cancer, we should

not include women who already had breast cancer, because family history

and late childbearing have the strongest association with development of

breast cancer, whereas stage of disease, hormone receptors, and histological

grade are the strongest risk factors for recurrence of breast cancer.

For those diseases for which it is sensible to speak of a second distinct

episode, the risk factors for a second episode may be similar to the risk

factors for a first episode. Hooton and colleagues were interested in studying

urinary track infections in young women.4 With urinary track infections,

patients can have a second (or third, etc.) episode after a “crude” first

episode. Repeated episodes in the same person are not independent obser-

vations because the causes of urinary track infections are likely to be more

similar in repeated episodes in the same person than in separate episodes in

different people. Therefore, Hooton and colleagues included repeat episodes

in their analysis, which increased the power of their study.

2.9. Other examples

Clinical researchers in the fields of ophthalmology, orthopedics, and den-

tistry have a distinct advantage over cardiologists, neurologists, and hepa-

tologists. That is while humans have only one heart, one brain, and one

liver, we have two eyes, thirty-two teeth or so, and most of our joints in

duplicates. In those fields with duplicate organs, it is possible to follow (or

assess) a single subject and have multiple observations. For the cases with

outcomes that are observed more than once in a single subject, you must

use special methods to deal with outcomes that can occur in more than one

body part in the same person.

In a study of complications after breast implantation most women had

bilateral implants.5 Some had multiple implants in the same breast. The

investigators therefore performed follow-up of each breast implant until a

complication occurred, the implant was removed, or the end of follow-up

occurred. The survival times of the implants for the same woman are

dependent.

In a study of the relationship of vitamin D to development of osteoar-

thritis of knees, the investigators used the fact that their participants had
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Table 6. Four successive two-week seizure counts for each 59 patients of epileptics.

ID y1 y2 y3 Y4 treat baseline Age ID y1 y2 y3 y4 treat baseline Age

1 5 3 3 3 0 11 31 31 0 4 3 0 1 19 20
2 3 5 3 3 0 11 30 32 3 6 1 3 1 10 20
3 2 4 0 5 0 6 25 33 2 6 7 4 1 19 18
4 4 4 1 4 0 8 36 34 4 3 1 3 1 24 24
5 7 18 9 21 0 66 22 35 22 17 19 16 1 31 30
6 5 2 8 7 0 27 29 36 5 4 7 4 1 14 35
7 6 4 0 2 0 12 31 37 2 4 0 4 1 11 57
8 40 20 23 12 0 52 42 38 3 7 7 7 1 67 20
9 5 6 6 5 0 23 37 39 4 18 72 5 1 41 22

10 14 13 6 0 0 10 28 40 2 1 1 0 1 7 28
11 26 12 6 22 0 52 36 41 0 2 4 0 1 22 23
12 12 6 8 5 0 33 24 42 5 4 0 3 1 13 40
13 4 4 6 2 0 18 23 43 11 14 25 15 1 46 43
14 7 9 12 14 0 42 36 44 10 5 3 8 1 36 21
15 16 24 10 9 0 87 26 45 19 7 6 7 1 38 35
16 11 0 0 5 0 50 26 46 1 1 2 4 1 7 25
17 0 0 3 3 0 18 28 47 6 10 8 8 1 36 26
18 37 29 28 29 0 111 31 48 2 1 0 0 1 11 25
19 3 5 2 5 0 18 32 49 102 65 72 63 1 151 22
20 3 0 6 7 0 20 21 50 4 3 2 4 1 22 32
21 3 4 3 4 0 12 29 51 8 6 5 7 1 42 25
22 3 4 3 4 0 9 21 52 1 3 1 5 1 32 35
23 2 3 3 5 0 17 32 53 18 11 28 13 1 56 21
24 8 12 2 8 0 28 25 54 6 3 4 0 1 24 41
25 18 24 76 25 0 55 30 55 3 5 4 3 1 16 32
26 2 1 2 1 0 9 40 56 1 23 19 8 1 22 26
27 3 1 4 2 0 10 19 57 2 3 0 1 1 25 21
28 13 15 13 12 0 47 22 58 0 0 0 0 1 13 36
29 11 14 9 8 1 76 18 59 1 4 3 2 1 12 37
30 8 17 9 4 1 38 32

two knees to their advantage.6 Although the Framingham’s study consists

of over 5000 subjects, only 556 participants had X-rays of their knees and

assessments of their vitamin D intake and serum levels. Therefore, they did

this by looking at both knees to maximize their statistical power.

3. Common Structures of Intra-unit Correlation for

Dependent Data

The feature of dependent data is that the variance-covariance matrix of

response variable is not diagonal but block diagonal.

Because the dependent data do not meet the independent requirement

that is essential in classical statistical methods, special methods are needed
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to deal with it. For example, random effects models and/or mixed effects

models are used for repeated measurement or longitudinal data and meta-

analysis is used for multicenter clinical trial.3 Many systematic researches

have been achieved in the field. In this section, we try to demonstrate

the connotations of dependent data, how to judge the type of the data

set, to construct reasonable covariance structure or intra-unit correlations

structure, draw valid scientific inferences for the data set. In this section,

we focus on the common structures of intra-unit correlation of dependent

data.7

3.1. A simple case

We first consider the simplest case of a paired design. In this paired design,

the subjects are independent, while two observations on the same subjects

are correlated. If we assume the correlations of two observations of subjects

are equal, say ρ, then the correlation matrix of 2m observations from m

subjects could be

R
Y

=













R 0 · · · 0

0 R · · · 0

...
...

. . .
...

0 0 · · · R













(1)

where,

R
Y

=

[

1 ρ

ρ 1

]

(2)

where 0 is 0 matrix with all elements being 0, R
Y

is block diagonal matrix

with R in diagonal.

For random block trial, we have a treatments and b blocks. While

individuals from different blocks are independent, those from the same block

tend to be similar and correlated. Because the individuals in the same block

are in the same status, so we can assume that there is a positive correla-

tion, ρ, between any two individuals from the same block. The intra-block

correlation matrix is defined as

R2 =















1 ρ · · · ρ

ρ 1 · · · ρ

...
...

. . .
...

ρ ρ

... 1















(3)
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a× b observations form a correlation matrix which has the same structure

as R
Y

in (1). Matrices in diagonal block of R
Y

have the same structure as

R2. It is obviously that R1 is a special case of R2.

Now let’s consider some types of correlation structure of longitudinal

studies. The defining characteristic of a longitudinal study is that

individuals are measured repeatedly through time in a follow-up study.

Correlation structures vary from data set. The commonly used correlation

matrices are equal correlation, neighbor correlation, autocorrelation and

unstructured correlation, etc.

3.1.1. Equal correlation

It is similar to R2, We also refer to equal correlation as exchangeable or

compound symmetry.

3.1.2. Neighbor correlation

Neighbor correlation is that only two closed observations are correlated,

others are independent. For 5 times repeated measurement, the correlation

matrix is given by

R3 =

















1 ρ1 0 0 0

ρ1 1 ρ2 0 0

0 ρ2 1 ρ3 0

0 0 ρ3 1 ρ4

0 0 0 ρ4 0

















. (4)

When the correlations of two closed observations are equal, the correla-

tion is refered to as stationary 1-dependence), otherwise, nonstationary

1-dependence. Stationary 2-dependence has the structure as follows

R4 =

















1 ρ ρ 0 0

ρ 1 ρ ρ 0

ρ ρ 1 ρ ρ

0 ρ ρ 1 ρ

0 0 ρ ρ 1

















. (5)

It is not difficult to extend to stationary k-dependence. Obviously, sta-

tionary correlation is a special case of nonstationary, and exchangeable

correlation is a special case of stationary.
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3.1.3. Autocorrelation

Autocorrelation means that correlation depends on the spacing of two

measurements. The correlation between a pair of measurements on the same

subject decays towards 0 as the time separation between the measurements

increases. If the correlation of two observations next to each other is ρ,

the correlation of two separated observations is ρ’s power of number of the

observations separated. For 5 times repeated measurements, the correlation

matrix is given by

R5 =

















1 ρ ρ

2
ρ

3
ρ

4

ρ 1 ρ ρ

2
ρ

3

ρ

2
ρ 1 ρ ρ

2

ρ

3
ρ

2
ρ 1 ρ

ρ

4
ρ

3
ρ

2
ρ 1

















. (6)

We refer to (6) as the first order autocorrelation or the first order au-

toregressive process. A natural extension of (6) is given by (7), R6, the

correlation is inversed to the time interval or spacing of two measurements.

R6 =

















1 ρ

t2−t1
ρ

t3−t1
ρ

t4−t1
ρ

t5−t1

ρ

t2−t1 1 ρ

t3−t2
ρ

t4−t2
ρ

t5−t2

ρ

t3−t1
ρ

t3−t2 1 ρ

t4−t3
ρ

t5−t3

ρ

t4−t1
ρ

t4−t2
ρ

t4−t3 1 ρ

t5−t4

ρ

t5−t1
ρ

t5−t2
ρ

t5−t3
ρ

t5−t4 1

















. (7)

3.1.4. Unstructured or general structure

In this case elements on nondiagonal of block matrix R are unequal.

3.1.5. Independent, zero correlation

Elements on nondiagonal of block matrix R are 0.

The relationships of the matrices mentioned above are as follow

independent ⊂ exchangeable ⊂ autocorrelation ⊂ stationary

⊂ nonstationary ⊂ unstructured

where A ⊂ B means A is a special case of B.
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3.2. Complicated cases

In random cluster sample study, individuals in the same cluster (household,

class in school, group in enterprise, etc.) tend to act in a similar way on

healthy attitude, eating habit, and so on, and share the same environment,

etc. If family is the unit in cluster sampling, genetic factor should be con-

sidered because the observations measured on the members from the same

family are correlated. For example, in a cluster sampling, a simple random

sample of 54 households was drawn.8 The blood pressure observations of

209 subjects were detected. Let Y
ij

represent a response variable, systolic

pressure, for member j (j = 1, 2, . . . , n
i
) in household i (i = 1, 2, . . . , 54).

Where j = 1 stands for father, 2 for mother, 3 and more for children.

Generally speaking, if the interesting variable is affected by genetic

factor or other family factors, the correlation between parents is lower than

the correlations between father and children, mother and children, and

children themselves. In this case, a special but common correlation struc-

ture could be defined as (for example, 4 persons in a family with parents

and two children)

Y
i1 Y

i2 Y
i3 Y

i4

Y
i1

Y
i2

Y
i3

Y
i4











1 r1 r2 r2

r1 1 r3 r3

r2 r3 1 r4

r2 r3 r4 1











father

mother

child 1

child 2

. (8)

In fact, the correlation structure matrix of 4 members (parents and two

children) in one family in the example mentioned above is










1.0000 0.2056 0.4212 0.4212

0.2056 1.0000 0.4292 0.4292

0.4212 0.4292 1.0000 0.5622

0.4212 0.4292 0.5622 1.0000











.

For stratified cluster sampling and other data with hierarchical struc-

ture, the same strategy could be used to construct the intra-cluster corre-

lation matrices.

In the crossover design, each subject is randomized to a sequence of

two or more treatments and hence acts as his own control for treatment

comparisons. In the simplest paired 2 × 2 crossover design, two subjects

are paired, the first subject in the same paired receives either of two treat-

ments in randomized order in two successive treatment periods which often
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separated by a washout period, while the other received two treatments in

adverse order to the first one in two successive treatment periods. There

are 3 possible correlations in this type of data: (1) correlation between two

observations of the same subject in two periods; (2) correlation between

two subjects in the same paired in the same period; and (3) correlation

between two subjects in the same paired in different periods. The correla-

tion structure, therefore, could be defined as:

Subject 1 Subjects 2

Period 1 Period 2 Period 1 Period 2

Subject 1
Period 1 1 r1 r2 r3

Period 2 r1 1 r3 r2

Subject 2
Period 1 r2 r3 1 r1

Period 2 r3 r2 r1 1

.

In multicenter clinical trial, although the protocol and standard ope-

rating procedures are implemented similarly at all centers, the level and

opinions of doctors and nurses, equipments, and medical conditions, etc.,

vary from the centers. This is so-called center-effects. Subjects in the same

center are correlated. The repeated observations through time from the

same subjects are also correlated. This is hierarchical structure data. If

subjects from different centers are independent, the intra-center correlation

structure could be defined as (3 visits for each subject):

Subject 1 Subject 2 · · · Subject n

t1 t2 t3 t1 t2 t3 · · · t1 t2 t3

t1 1 r1 r1 r2 r2 r2 r2 r2 r2

Subject 1 t2 r1 1 r1 r2 r2 r2 · · · r2 r2 r2

t3 r1 r1 1 r2 r2 r2 · · · r2 r2 r2

t1 r2 r1 r2 r2 1 r1 r2 r2 r2

Subject 2 t2 r2 r2 r2 1 r1 r1 · · · r2 r2 r2

t3 r2 r2 r2 r1 r1 1 r2 r2 r2

· · · · · · · · · · · ·

t1 r2 r2 r2 r2 r2 r2 1 r1 r1

Subject n t2 r2 r2 r2 r2 r2 r2 · · · r1 1 r1

t3 r2 r2 r2 r2 r2 r2 r1 r1 1

.

Although, for a real data set, the correlation structure could be defined

and selected by statistical methods, the author suggests that the biological
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and medical backgrounds should be considered to get a reasonable and

acceptable correlation matrix structure.

4. ANOVA Methods and Its Limitation

4.1. Parameter estimations for dependent data

4.1.1. Estimation of means

If there are n observations of variable X , denoted by x1, x2, x3, . . . , xn
with

mean X̄ and variance σ

2. We assume the data are dependent.

(1) x
i

is correlated with x
j

with a correlate coefficient ρ

If x
i

is correlated with x
j

with a correlation coefficient ρ (ρ is assumed to

be larger than 0 without losing general), thus the variance of X̄ was

var(X̄) =
1

n

2
cov(x1 + x2 + · · ·+ x

n
, x1 + x2 + · · ·+ x

n
)

=
1

n

2
[nσ

2 + n(n− 1)ρσ

2]

=
σ

2

n

[1 + (n− 1)ρ] . (9)

Formula (9) shows that standard error of mean is larger when the data

are dependent than the case when the data are independent. Moreover,

it is in proportion to correlation. In this case, the confidence interval of

population mean is as follows

X̄ ± t
n−1,ν

σ

√
n

√

1 + (n− 1)ρ . (10)

It is wider than that when the data are independent. When intra-unit corre-

lation is 0, the confidence interval given by (10) is similar to the confidence

interval when data are independent.

(2) x
i

is correlated with x
j

with autocorrelation

If x
i

is correlated with x
j

with autocorrelation

cov(x
i
, x

j
) = σ

2
ρ

|i−j|
. (11)

The variance of

var(X̄) =
1

n

2
[n + 2(n− 1)ρ + 2(n− 2)ρ2 + · · ·+ 2ρ

n−1]σ2
. (12)
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(3) Correlation between x
i

and x
j

is unstructured

If the correlation between x
i

and x
j

is unstructured

cov(x
i
, x

j
) = bρ

ij
σ

2c
n×n

. (13)

The variance of X̄ is

var(X̄) =
1

n

2





n + 2





∑

i6=j

ρ
ij









σ

2
. (14)

Thus, the standard error of mean in this case when the data are de-

pendent is larger than the one when the data are independent from each

other. The standard error is in proportion to the correlation as well. The

confidence interval is wider than that of independent data.

4.1.2. Estimation of rate

The independent binary data should generally be handled by the methods

based on binominal distribution. Let incidence rate be π and its variance

be π(1− π), then the standard error is
√

π(1− π)/n.

If the data are correlated with each other, the variance and the standard

error of rate increase. For example, in Example 2, the total incident

rate is π = 30/104 = 0.2885, the variance is 0.00197 and 95% CI is

0.2038–0.3855 if we apply the methods based on binominal distribution.

And its 95% CI is 0.2014–0.3756 if we apply the methods based on

normal approximation.

However, the actual variance of the incident rate in each family is

0.00520, much larger than that given by the pure binominal distribution.

This is because that the incidence, “visiting doctors in the last year”, has a

family aggregation. As a result, we underestimated the variance of depen-

dent incidences by applying methods based on binomial distribution.

The classic way of handling dichotomous data is firstly coding the in-

cidence that happens as 1, otherwise, as 0, and then applying Eq. (9) to

the data. When it comes to a dichotomous data with equal correlation, the

standard error of rate is

σ
π

=

√

π(1− π)

n

[1 + (n− 1)ρ] . (15)

Others can be handled in similar ways.
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4.2. ANOVA with random effect

We begin with the repeated one-way testing designs, of which the block

design is the simplest case. We may assume that there are a treatments

and b blocks. The model of ANOVA can be represented as

y
ij

= µ + τ
j
+ e

ij
. (16)

In the equation below, µ is the population’s mean, τ
j

is the effect of the

jth treatment (j = 1, 2, . . . , a), e
ij

is the total residual error of observations

receiving the jth treatment in the ith block.

When we apply a randomized block design, the units in the same block

may have good homogeneity, while units in different blocks may have many

differences. This is the characteristic of block design that makes the observa-

tions in every block to be homoplasy, which is called intra-block correlation.

For this moment, the error term e
ij

may be denoted as

e
ij

= ν
i
+ u

ij
. (17)

ν
i
is the residual error of the ith block (i = 1, . . . , b), u

ij
is the residual error

of observations receiving the jth treatment in the ith block. Therefore, the

ANOVA model of block design should be

y
ij

= µ + τ
j
+ ν

i
+ u

ij
. (18)

In most cases, the treatment factors of a block design are fixed effects,

while blocks are random effects. Namely, τ
j

is fixed effect, µ
j

is the mean

of observations in the jth level, and ν
i
is random effects with

τ
j

= µ
j
− µ , Στ

j
= 0

ν
i
= µ

i
− µ , Σν

i
= 0 , (19)

var(ν
i
) = σ

2
2 , and cov(ν

i
, ν

i
′) = 0, i 6= i

′
,

where µ
i
is the mean of the ith block. u

ij
is the random effect, and

u
ij

= y
ij
− µ− τ

j
− ν

i
, Σu

ij
= 0 ,

var(u
ij

) = σ

2
1 , and cov(u

ij
, u

i

′
j

′ ) = 0, j 6= j

′ (20)

cov(u
ij

, ν
k
) = 0 for all i, j, k .

In this way, the variance of y
ij

is

var(y
ij

) = σ

2

2 + σ

2

1 , (21)
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the covariance is

cov(y
ij

, y
ij

′ ) = cov(ν
i
+ u

ij
, ν

i
+ u

ij
′ ) = σ

2

2
, j 6= j

′
,

and others are 0.

Expressed by matrix, the variance and covariance of y
ij

is

cov(e
ij

) = σ

2













R 0 · · · 0

0 R · · · 0

...
...

. . .
...

0 0 · · · R













ab×ab

. (22)

Here, σ

2 = σ

2

1
+ σ

2

2
,

R =













1 ρ · · · ρ

ρ 1 · · · ρ

...
...

. . .
...

ρ ρ · · · 1













a×a

. (23)

The intra-unit correlation coefficient is

ρ =
σ

2

2

σ

2
1

+ σ

2
2

. (24)

Based on the idea of ANOVA, it is obvious that

E(MStreatment) = b

a

∑

i=1

τ

2

1
/(a− 1) + σ

2

1
,

E(MSblock) = bσ

2

2
+ σ

2

1
,

E(MSresidual) = σ

2

1 . (25)

And the variance component σ

2
1 and σ

2
2 are

σ

2

1
= E(MSresidual) ,

σ

2

2
=

MSblock −MSresidual

b

. (26)

If we substitute σ

2

1 and σ

2

2 in Eq. (24) by equations above, the intra-

correlation coefficient is

ρ =
MSblock −MSresidual

MSblock + (b− 1)MSresidual

. (27)
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Table 7. ANOVA of the serum coagulation time of four methods.

Source SS DF MS F P

Total 105.7787 31 3.4122
Between Groups 13.0163 3 4.3388 6.62 0.0025
In Groups 92.7624 28 3.3129
Between Block 78.9888 7 11.2841 17.20 0.0000
Residual 13.7738 21 0.6559

If every block has a different size (e.g. missing values), the intra-unit

correlation of randomized block design data can be denoted as

ρ =
MSblock −MSresidual

MSblock + (m0 − 1)MSresidual

, (28)

where

m0 = m̄−

∑

(m
i
− m̄)2

(a− 1)
∑

m
i

. (29)

4.3. Example 9. Analysis of randomized block design data

The analysis of Example 1. We begin with the ANOVA Table 7.9

The variance component σ

2
1 and σ

2
2 are

σ

2

0
= MSresidual = 0.6559 ,

σ

2

1 =
MSblock −MSresidual

b

=
11.2841− 0.6559

4
= 2.6571 .

And the intra-correlation coefficient is

r =
σ

2

1

σ

2
0

+ σ

2
1

=
2.6571

0.6599 + 2.6571
= 0.8020 .

Though ANOVA of correlated data is similar to that of traditional

randomized block design in process and result, ANOVA of correlated data

not only answers the question, “whether there is a difference between

treatment groups”, on which that of traditional randomized block design

emphasizes, but also puts more emphasis on the further decomposition of

variance and affords the intra-unit correlation. Thus, its model is more

precise with richer information.

4.4. Example 10. 4 × 4 cross-over design

The analysis of log AUC data in Example 4. For this moment, the fixed

effects that we should take into consideration is 4 treatments, A, B, C, D,
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Table 8. ANOVA of log AUC.

Source SS DF MS F P

Total 15.67277346 95
ID(sequence) 0.96107428 20 0.04805371 4.71 < 0.0001
Sequence 0.06927165 3 0.02309055 2.26 0.0892
Period 0.13519601 3 0.04506534 4.42 0.0068
Treat 13.83396718 3 4.61132239 452.05 < 0.0001
Residual 0.67326434 66 0.01020097

4 different periods and 4 different sequences. The 4 observations of the same

subject are correlated.

And,

σ

2

0 = MSResidual = 0.01020097 ,

σ

2

1 =
MS

ID(Sequence)−MSResidual

b

=
0.04805371− 0.01020097

4

= 0.009463185 .

Accordingly,

ρ =
MS

ID(Sequence)−MSResidual

MS
ID(Sequence) + (b− 1)MSResidual

=
0.04805371− 0.01020097

0.04805371 + (4− 1)× 0.01020097
= 0.4812 .

4.5. The condition of using ANOVA

The ANOVA is limited to fairly balanced designs where there are tidy

partitions of the total sum of squares. The model should be fairly simple

so that a suitable covariance structure (symmetry) for the observations can

be produced. For example, if t = 4 in repeated measurement data, the

covariance matrix should be










σ11 σ12 σ13 σ14

σ21 σ22 σ23 σ24

σ31 σ32 σ33 σ34

σ41 σ42 σ43 σ44











.

So the symmetry means

(1) σ
ii

= σ
jj

= σ

2,

(2) σ
ij

= ρσ

2, i 6= j.
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In other wards, symmetry means equal variance and equal intra-unit

correlation.

When the data are not symmetry, the ANOVA would increase type I

error. In 1958, Greenhouse and Geisse suggested a correction coefficient

ε =
t

2(σ̄
ii
− σ̄

..
)2

(t− 1)(
∑

σ

2

ij

+ t

2
σ̄

2
..

− 2t

∑

σ̄

2

i

)
(30)

where t represents the times of repeated measurement, σ̄
ii

is the aver-

age of variances in diagonal of covariance matrix, σ̄
..

is the average of all

elements in covariance matrix, and σ̄
i
is the average of elements in ith row

of covariance matrix.

Greenhouse and Geisse have shown that, 1/(t− 1) ≤ ε ≤ 1. If ε is not

equal to 1, a modified F = MSTreatment/MSResidual would not follow F

distribution with degree of freedom νTreatment and νResidual but follow F

distribution with degree of freedom ενTreatment and ενResidual. Because of

the cutting down of degree of freedom, the modified F test is conservative.

For the data in Example 1, the variance-covariance matrix is











2.40286

3.23143 5.26411

2.13857 3.00518 2.29125

2.13143 3.41536 2.02036 3.29357











.

Greenhouse–Geisser’s ε = 0.7996. Thus, the degree of freedoms

νTreatment = 0.7996× 3 = 2.4 ,

νResidual = 0.7996× 21 = 16.8 ,

then F = 6.62, P = 0.0056, larger than P = 0.0025.

In 1970, Huynh and Feldt have proved that when ε = 1, the F test is

valid. If covariance matrix is symmetry, then ε = 1 or otherwise ε < 1.

On the other hand, ε = 1 does not necessary implies the covariance being

symmetry. The exception is for 2× 2 covariance matrix for twice repeated

measurements, ε always equal to 1 even if the variances are unequal.

We should select a suitable method for dependent data according to the

feature of the data set. Unfortunately, the suitable systematic methods

for all types of dependent data have not been developed. Only several

methods for special data set can be used now. For instance, the mixed

models are employed for repeated measurements or data from randomized

block design, crossover design, and some special procedures for longitudinal
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data, etc. The multilevel models analysis7 would be used if the structure

of variance-covariance matrix is block diagonal. For general structure of

variance-covariance matrix, which is not block diagonal, generalized least

square procedure with Newton–Raphson iterations may be useful. Further

research is needed.

5. GEE for Dependent Data

Generalized estimating equations (GEE) was put forward by Liang Zeger10

which is an extension of generalized linear models that provides a unified

and flexible approach to analysis of data from a longitudinal study. Of

particular relevance when the repeated measurements are binary variables

or counts, and a number of time dependent covariates are also measured

(Qiguang Chen,11 Lingping Xiong et al.12). GEE plays an important rule

in modeling the possible correlations among the repeated observations for

a given subject.13

5.1. Introduction of GEE

The key ideas are presented in terms of repeated measurements with

the simplest dependent structure. Let y
ij

be the observation of jth mea-

surement of the ith unit, where i = 1, 2, . . . , n and j = 1, 2, . . . , m
i
.

X
ij

= (x1ij
, x2ij

, . . . , x
pij

) represents the explanatory variables. The obser-

vations from the same unit are likely to be correlated, but the observations

from different units are assumed in general to be independent.

If the marginal distribution of response variable y
ij

is one of exponen-

tial family, then, by the theory of generalized linear models, the density

functions would be

f(y
ij

) = exp[{y
ij

µ
ij
− a(µ

ij
) + b(y

ij
)}φ] , (31)

where φ is known as dispersion parameter or additional scale, µ
ij

= h(η
ij

),

η
ij

= X
ij

β. It can be proved that E(y
ij

) = a

′(µ
ij

), var(y
ij

= a

′′(µ
ij

)/φ.

For random effects model, we have
{

ŷ
ij

= µ
ij

g(µ
ij

) = β0 + β1x1ij
+ · · ·+ β

p
x

pij

, (32)

where g(·) = h

−1(·) as a link function. If there is correlation between the

repeated observations, the correlation between n
i
observations in unit i can

be described by working correlation matrix R
i
(α). The times of repeated



May 30, 2003 16:46 WSPC/Advanced Medical Statistics chap03

72 F. Chen

measurement on subjects are different from each other, so the ranks of

correlation matrices are also different from each other. R
i
(α) depends

on unknown parameter α, to which we refer as correlate parameter. For

instance, for R2 in (3)

ρ
st

=

{

1 if s = t ,

α if s 6= t .

(33)

for R4 in (5)

ρ
st

=











1 if s = t ,

α if 0 < |s− t| ≤ 2 ,

0 if |s− t| > 2 .

(34)

for R5 in (6)

ρ
st

=

{

1 if s = t ,

α

|s−t| if s 6= t .

(35)

then the variance-covariance matrix of y
i

= (y
i1, yi2, . . . , yimi

)′ has the

form

V
i
= A

1/2

i

R(α)A
1/2

i

/φ , (36)

where A
i

is diagonal matrix with the elements h(µ
ij

) = ν
ij

φ in diagonal,

which are the function of the variance ν and the mean µ of y. Liang and

Zeger10 defined the GEE as
n

∑

i=1

D
′
i

V
−1

i

E
i
= 0 , (37)

where D
i
= ∂µ

i

∂β
, E

i
= y

i

− µ
i

, and µ
i

= (µ
i1, µi2, . . . , µimi

)′.

5.2. Parameters estimations of GEE

There are three types of parameters in GEE, covariate coefficients β, the

scale parameter φ, the correlation parameter α. But φ and α are functions of

β. We can get the estimation of β only if φ and α are known. Consequently,

the estimation procedure of GEE is iterative.

The initial value of β will be the estimations from generalized linear

model under the assumption that the observations are independent of one

another, say β
i

.

The crude residuals of the model is

e
ij

= y
ij
− µ

ij
= y

ij
− g

−1(β0 + β1x1ij
+ · · ·+ β

p
x

pij
) . (38)
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The Pearson residuals are

r
ij

=
ŷ

ij
− µ

ij

√
ν

ij

. (39)

Thus

φ̂ =

n

∑

i=1

mi
∑

j=1

r
ij

/(N − p) . (40)

The intra-unit correlation can be estimated from the current Pearson

residuals. For exchangeable correlation, we have

α̂ =
n

∑

i=1

[

∑

mi

j=1

∑

mi

l=1
r
ij

r
il
−

∑

mi

j=1
r

2

ij

m
i
(m

i
− 1)

] / [

n

∑

i=1

∑

mi

j=1
r

2

ij

m
i

]

. (41)

For first order autocorrelation

α̂ =

n

∑

i=1

∑

mi−1

j=1
r
ij

r
ij+1

m
i
− 1

/ [

n

∑

i=1

∑

mi

j=1
r

2

ij

m
i

]

. (42)

For stationary k-dependence

α̂=
n

∑

i=1

[

∑

mi

j=1
r

2

ij

m
i

,

∑

mi−1

j=1
r
ij

r
ij+1

m
i
− 1

,. . . ,

∑

mi−k

j=1
r
ij

r
i,j+k

m
i
− k

]/[

n

∑

i=1

∑

mi

j=1
r

2

ij

m
i

]

,

(43)

where the first element of α is 1 and the elements after k-order are 0.

At a given iteration, the scale parameter φ and correlation parameters α

can be estimated from the current Pearson residuals. Given the estimated of

φ and α, we can calculate an updated estimate of β by iteratively reweighed

least squares (IRLS). These two steps are iterated until the procedure

convergence.

5.3. Analysis of examples

5.3.1. Example 11. Analyses of the data in Example 1

The random effect model is

y
ij

= β0 + β2g2ij
+ β3g3ij

+ β4g4ij
+ e

ij
,

where g1, g2, g3 and g4 are dummy variables of treatment groups. The

correlations between the observations of different treatments for the same

subjects are assumed equal. Results are shown in Table 9.

Intra-subject correlation ρ = 0.8020. We obtain the same results as in

Example 9.
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Table 9. Estimated results of data in Example 1 by GEE.

Variables Coefficient SE Z P

g2 0.4125 0.378783 1.09 0.276
g3 0.6375 0.378783 1.68 0.092
g4 1.7250 0.378783 4.55 0.000

Constant 9.3000 0.601958 15.45 0.000

Table 10. The results of fitting two GEE models for data in Example 3.

Logistic Probit

Coefficient Std. Z P Coefficient Std. Z P

Group −1.0144 0.4985 −2.03 0.042 −0.5611 0.2702 −2.08 0.038

Constant 2.1484 0.4039 5.32 0.000 1.2564 0.2086 6.02 0.000

5.3.2. Example 12. Analysis of data in Example 3

We fit both logistic regression model and probit model as follows

y
ij

=
e

α+β treat

1 + e

α+β treat
+ e

ij
,

y
ij

= Φ−1(α + β treat) + e
ij

,

where the subscripts of treat are omitted. Table 10 shows the results.

Two intra-litter correlation coefficients are estimated based on logistic

model and probit model and they are all equal to 0.1556.

5.3.3. Example 13. Analysis of data in Example 8

Example 8 has count data, with successive two-week seizure counts for each

of 59 epileptics. Poisson regression model will be used. In contrast to the

examples mentioned above, beside treatment effects, the covariables, such

as age, ln(base), and time effects, should also be considered. The mixed

effect Poisson regression model for the data is

ln(λ) = α + β1 treat + β2 time + β3 age + β4 ln(base) .

For repeated measurement data, the intra-subject correlation structure

may be exchangeable or first order auto-correlation.

For exchangeable structure, intra-subject correlation estimated from

GEEs is 0.7690, and deviance = 3551.0. For autocorrelate structure the

intra-subject correlation is 0.7990t, where t is time interval between two

observations (1 unit of t is 2 weeks) and deviance = 3554.79.



May 30, 2003 16:46 WSPC/Advanced Medical Statistics chap03

Statistical Methods for Dependent Data 75

Table 11. GEE estimators for data in Example 8.

Parameter Coefficient SE Z P

Constant −1.7760 0.3692 −4.81 < 0.0001

Treat −0.2938 0.1445 −2.03 0.0420

Time −0.0443 0.0353 −1.26 0.2092

Age 0.0231 0.0067 3.46 0.0005

ln(base) 0.9817 0.0796 12.33 < 0.0001

The working matrix of autocorrelation structure is

1.0000 0.4533 0.2055 0.0931

0.4533 1.0000 0.4533 0.2055

0.2055 0.4533 1.0000 0.4533

0.0931 0.2055 0.4533 1.0000

The numbers of parameter of two models are equal. Therefore, the smaller

the deviance is, the better the model will be. According to this, we conclude

that exchangeable structure is suitable for the data. Estimated results are

shown in Table 11.

The results show that the two-week seizure counts for those in test

group are significantly smaller than those in placebo group. The counts are

related to age and the baseline. No evidence shows that the counts change

over time.

GEE can cope with data with missing values. For the numerical data in

a paired design or randomized block design, the paired t-test and ANOVA

require the data are balanced without missing, while the GEE does not.

Furthermore, when the times of measurement are not common to all the

experimental units, or when the numbers of the unit in clusters are not

the same, the use of GEE will still be applicable. Liang9 has proved that

if there are not too many missing values and missing is random, the GEE

estimation is robust.

GEE obtains the estimation of covariance matrix V or working cor-

relation matrix R by using simple regression or “moment” procedures

based upon functions of the actual calculated raw residuals. Theoretically,

the structure of working correlation matrix can be specified arbitrarily.

However, GEE focuses on modeling the fixed effects rather than exploring

the structure of the random component of the model. It does not consider

the case where the explanatory variables have an influence on covariance of

response variable.
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6. Multilevel Models for Dependent Data

Many kinds of dependent data collected in medical and biological sciences

have a hierarchical or clustered structure. We refer to a hierarchy as

consisting of units grouped at different levels. For example, in a clustered

sampling survey where the sampling units are families, offsprings may be

the level 1 units in a 2-level structure where the level 2 units are the

families. Repeated measurements are the level 1 units in a 2-level struc-

ture where the level 2 units are the individuals. Repeated measurements

are the level 1 unit in a 3-level structure where the level 3 units are the

hospitals and level 2 units are the patients. The existence of such data

hierarchies is created by experimental design. Low levels are nested in the

high levels.

6.1. Introduction of multilevel model

Multilevel model was put forward by Harver Goldstein14 for the data with

hierarchical or clustered structure. The key ideals are to estimate vari-

ances on each level and to address how the explanatory variables affect the

variances. The multilevel model, therefore, enables data analysis to obtain

statistically efficient estimations of regression coefficients, and provides cor-

rect standard errors, confidence intervals and significance tests by using the

clustering information.

We discuss a simple 2-level model, without lose of generalizibility, of one

explanatory variable x1.

y
ij

= β0j
+ β

ij
x1 + ε

ij
(44)

i stands for level 1 units, j for level 2 units. i = 1, . . . , n
j
; j = 1, . . . , m,

where, β0j
and β1j

are random variables with

β0j
= β0 + u0j

, β1j
= β1 + u

ij
,

where β0 and β1 are fixed parameters, u0j
, u1j

are random variables in

level 2 with parameters

E(u0j
) = E(u1j

) = 0

var(u0j
) = σ

2

u0
, var(u1j

) = σ

2

u1
, cov(u0j

, u1j
) = σ

u01 .

ε
ij

are random variables in level 1 with parameter

E(ε1j
) = 0 , var(ε

ij
) = σ

2

0
.

We also assume that cov(ε
ij

, u0j
) = cov(ε

ij
, u1j

) = 0.



May 30, 2003 16:46 WSPC/Advanced Medical Statistics chap03

Statistical Methods for Dependent Data 77

We can now write the level 2 model in the form

y
ij

= β0 + β1x + (u0j
+ u1j

x + ε
ij

) . (45)

The model consists of a fixed part and a random part. In contrast to a

general mixed effect model (for example, variance component model, mixed

linear model, GEE), explanatory variables can be included in random part

of multilevel model with random coefficients u1j
. The multilevel model,

therefore, is also refered to as random coefficient model.

The covariance matrices is block diagonal

V =















V
n1

V
n2

. . .

V
nm















. (46)

If no covariate is included in the random part of the model, σ

2
u1 = 0

and the model reduces to a general mixed effects model with

V
ni

= cov(y
ij
|Xβ) =















σ

2

u0
+ σ

2

0
σ

2

u0
· · · σ

2

u0

σ

2
u0 σ

2
u0 + σ

2
0 · · · σ

2
u0

...
... · · ·

...

σ

2
u0 σ

2
u0 · · · σ

2
u0 + σ

2
0















ni×ni

.

(47)

Equation (47) can be denoted as σ

2

u0
J (ni)

+σ

2

0
I(ni)

. Where, J (n) is n×1

vector with all elements 1, I (n) is n dimension unit matrix with all elements

in diagonal 1, others 0. Then the intra-unit correlation can be estimated by

ρ =
cov(u0j

+ ε
i1j

+ u0j
+ ε

i2j
)

√

var(u0j
+ ε

i1j
) · var(u0j

+ ε
i2j

)
=

σ

2

u0

σ

2

u0
+ σ

2

0

. (48)

If covariate was considered, σ

2

u1 6= 0 and

V
ni

= (σ2

u0 + 2σ
u01x + σ

2

u1x
2)J (ni)

+ σ

2

0I(ni)
. (49)

The intra-unit correlation can be estimated by

ρ =
σ

2

u0
+ 2σ

u01x + σ

2

u1
x

2

σ

2
u0

+ 2σ
u01x + σ

2
u1

x

2 + σ

2
0

. (50)

It is thus clear that intra-unit correlation has relation to the explanatory

variables.
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6.2. Estimation of parameters of multilevel model

Parameters in multilevel model can be estimated by iterative generalized

least squares (IGLS)14 or Restricted Iterative Generalized Least Squares

(RIGLS).15

Let cov(Y |Xβ) = V , if V is known, then according to the generalized

least square estimation

β̂ = (XT
V

−1
X)−1

X
T

V
−1

Y , cov(β̂) = (XT
V

−1
X)−1

. (51)

But in fact, V is usually unknown and expressed by random coefficients.

For known β we form the residuals of y
ij

Ỹ = {ỹ
ij
} = {y

ij
−X

ij
β} . (52)

If we form the cross-product matrix Ỹ Ỹ
T

) we see that the expected value

of this is simply V . From the equation

vec(Ỹ Ỹ
T

) = vec(V ) + R , (53)

we estimate parameters σ

2

u0
, σ

2

u1
, σ

u01 and σ

2

0
by means of generalized least

squares where vec(·) is the vector operator.

The estimation procedure is iterative. We would usually start from

“reasonable” estimates of the fixed parameters β. Typically these will be

those from an initial OLS estimation. From these we form the “raw” resi-

duals (52), estimate random coefficients; and obtain an improved estimator

of V ; then return to (51) to obtain new estimates of the fixed effects β;

and so on. Alternate between the random and fixed parameters estimation

until the procedure convergence.

The IGLS procedure produces biased estimates in general and this can

be important in small samples. Goldstein15 shows how a simple modifi-

cation leads to restricted iterative generalized least squares (RIGLS) by

substituting V −X(XT
V

−1
X)XT for its corresponding term V in (53)

to produce an unbiased estimate.

For multilevel generalized linear model, in order to work with a linea-

rized model, we will use Taylor expansion. There are two produces to treat

high-level residuals when forming Taylor expansion. One is to add current

residuals to the linear component of the nonlinear function and the an-

other does not add. The former is predictive quasi-likelihood (PQL), while

the latter is marginal quasi-likelihood (MQL). In many applications, MQL

procedure tends to underestimate the values of both the fixed and random

parameters, especially where n
ij

is small. So Goldstein14 suggested that

PQL be used in fitting generalized model rather than MQL. In addition, he
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Table 12. MLn estimation for data in Example 1.

Variable Coefficient SE Z P

g2 0.4125 0.4049 1.0188 0.3083

g3 0.6375 0.4049 1.5745 0.1154

g4 1.7250 0.4049 4.2603 0.0000

Constant 9.3000 0.6435

also pointed out that greater accuracy is to be expected if the second-order

approximation is used rather than first-order based upon the first term in

the Taylor expansion.16

6.3. Example 14. Analysis of data in Example 1

This is the simplest case with 4 units in level 1 in a 2-level structure where

the level 2 units are the subjects. The model has the form as

y
ij

= β0 + β2g2ij
+ β3g3ij

+ β4g4ij
+ u0j

+ e
ij

.

To obtain IGLS estimation of the parameters, we use software MLn.17

The results are shown in Table 12. The estimation of variance in level 1 is

σ

2

0 = 0.6559, in level 2 σ

2

u0
= 2.6571, with standard error SE[σ2

0 ] = 0.1893,

SE[σ2

u0
] = 1.411, respectively.

Then

ρ =
σ

2

u0

σ

2

u0
+ σ

2

0

=
2.6571

2.6571 + 0.6559
= 0.8020 .

This results are similar to those from ANOVA and GEE.

6.4. Example 15. Analysis of data in Example 7

This is a 3-level model. Subjects are level 2 units clustered within centers

that are level 3 units. Repeated measurements from the same subject are

level 1 units nested within level 2 unit. The results are shown in Table 13.

The multilevel model decomposes the variance into 3 levels. 0.1156 for

level 1, 0.3151 for level 2 and 0.1190 for level 3. Thus, intra-subject corre-

lation can be estimated as

σ

2

u0
+ σ

2

ν0

σ

2

0
+ σ

2

u0
+ σ

2

ν0

=
0.3151 + 0.1190

0.1156 + 0.3151 + 0.1190
= 0.7897 .

And, intra-center correlation can be estimated as

σ

2

ν0

σ

2

0
+ σ

2

u0
+ σ

2

ν0

=
0.1190

0.1156 + 0.3151 + 0.1190
= 0.2165 .
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Table 13. MLn estimation of data in Example 7.

Coefficient SE

Fixed effect CONS 1.7230 0.2545

TREAT 0.3273 0.1135

COMP 0.0384 0.0900

AGE −0.0090 0.0076

SEX −0.2285 0.1483

TIME 0.1616 0.0056

Random effect Level 3 σ
2

ν0
0.1190 0.0657

Level 2 σ2

u0
0.3151 0.0859

Level 1 σ2

0
0.1156 0.0065

Theoretically, multilevel model can fit for arbitrary levels. The most

powerful software MLwin could fit models up to 7 levels. It is sufficient

in practice.

6.5. Multilevel logistic regression

Multilevel model can be expanded to the case where the error term in the

model is non-normal distribution.18 In the rest of this section we will focus

on the multilevel models with binomial distribution, or Poisson distribution.

To make matters concrete, consider the data in Example 3. Let y
ij

be

an observation of ith pup from jth pregnant rat. If the pup is normal then

y
ij

= 0, else y
ij

= 1. Let f
ij

be fixed part of the model, and r
j

be the

random part, and π
ij

be the expected value of the response for the ijth

level 1 unit. A 2-level logistic regression model would have the form

y
ij

= π
ij

+ ε
ij

=
exp(f

ij
+ r

j
)

1 + exp(f
ij

+ r
j
)

+ ε
ij

(54)

f
ij

= α + β1x1ij
+ · · ·+ β

p
x

pij
,

ε
ij

= e
ij

√

π
ij

(1− π
ij

) .

In general, ε
ij

follows a binomial distribution, but sometimes it is extra-

binomial. The variance of ε
ij

can be written in the form of σ

2

0
π

ij
(1− π

ij
).

Here, σ

2

0
is refered to as extra-binomial variance (or over dispersion). When

σ

2

0
= 1, it is purely binomial. We will assume σ

2

0
= 1, and r

j
∼ N(0, σ

2

0
) in

this section.

Let r
ij

be the Pearson residual of the model

r
ij

=
y

ij
− πr

ij

√

π
ij

(1− π
ij

)/n
ij

. (55)
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Table 14. Results of fitting 3 2-level models for data in Example 3.

Parameter
Models

Logit Probit C log-log

α 1.127(0.3380) 0.6933(0.1929) 0.3463(0.1686)

β 1.028(0.5099) 0.5655(0.2824) 0.4692(0.2383)

σ
2

1
1.212(0.5061) 0.3822(0.1578) 0.2779(0.1131)

σ
2

0
1 1 1

intra-unit correlation ρ 0.1731 0.1734 0.1739

−2 ln(L) 210.686 211.610 213.084

Then the intra-unit correlation can be defined as

ρ =

m

∑

j=1

[

∑

nj

i=1

∑

nj

k=1
r
ij

r
kj
−

∑

nj

i=1
r

2

ij

n
j
(n

j
− 1)

] /





m

∑

j=1

∑

nj

i=1
r

2

ij

n
j





. (56)

In contrast to GEE, 2-level logistic model decompose the residuals into

each level. The residuals in the level 1 are linear to the response, while the

residues in level 2 are nonlinear.

The 2-level logistic model for Example 3 can be written as

y
ij

=
exp(α + βGroup + r

j
)

1 + exp(α + βGroup + r
j
)

+ e
ij

√

π
ij

(1− π
ij

)

where the subscripts of Group are omitted. The results are shown in

Table 14.

6.6. Multilevel Probit model and complementary

log-log model

The expected proportion π
ij

in (55) is modeled using a logit link func-

tion. If we use probit link function, a 2-level probit model would have the

form

y
ij

= π
ij

+ ε
ij

= Φ(f
ij

+ r
j
) + ε

ij
. (57)

If we use complementary log-log link function, then a 2-level complementary

log-log model would have the form

y
ij

= π
ij

+ ε
ij

= 1− exp{− exp(f
ij

+ r
j
)}+ ε

ij
. (58)

Other notations are similar to a level 2 logistic model in (54).
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6.7. Example 16

We fitted 2-level logistic, probit, and complementary log-log models for data

in Example 3 respectively. The results are shown in Table 14.

The results show that the intra-unit correlations estimated from 3

models are quite similar.

6.8. Multilevel Poisson regression model

For count data multilevel Poisson regression model would be fitted. For a

2-level model, it can be written as

y
ij

= m
ij

+ ε
ij

= exp(f
ij

+ r
j
) + ε

ij
,

f
ij

= α + β1x1ij
+ · · ·+ β

p
x

pij
. (59)

We usually assume that ε
ij

follows a Poisson distribution with

var(y
ij
|m

ij
) = m

ij
. But sometimes it is extra-Poisson with conditional

variance of var(y
ij
|m

ij
) = m

ij
+ km

2

ij

. When k > 0, it is negative bi-

nomial distribution. When k = 0, it is purely Poisson. Here we keep

k = 0, r
j
∼ N(0, σ

2

1
).

Let r
ij

be Pearson residuals of the model as follow:

r
ij

=
y

ij
− µ

ij

√
µ

ij

. (60)

The definition of intra-unit correlation is similar to (55).

6.9. Example 17. Fitting a 2-level Poisson regression model

for data in Example 8

The response is two-week seizure counts for epileptics and is a count data.

The Poisson model is sufficed here. The results are shown in Table 15.

The results show that the counts are correlated with age and time. No

significance can be detected in test group and placebo group. But it is

Table 15. Estimated results of random effect model for Example 8.

Parameter Coefficient SE Z P

Treat −0.07606 0.27020 −0.28150 0.7783
Trial 0.19900 0.05859 3.39648 0.0007
Time −0.05743 0.02026 −2.83465 0.0046
Age −0.01685 0.01788 −0.94239 0.3460
Constant 1.88100 0.55440
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significantly different between the counts before and after medication. The

intra-subject correlation estimated from the model is 0.7776.

6.10. Multilevel logistic models for multiple

response categories

In this section we extend the multilevel logistic model for binomial response

to the cases of multiple categories and ordinal categories. When the response

is multiple categories without order, a multilevel polytomous logistic model

will be fitted. And when the response is ordinal, a multilevel ordinal logistic

model will be fitted.

For example, let’s consider a 2-level model with one explanatory

variable. The response is now multiple with k categories. A multilevel poly-

tomous logistic model can be defined as

π

(s)

ij

=
exp(β0 + β1x

(s)

1ij

+ u

(s)

0j

)

1 + exp(β0 + β1x
(s)

1ij

+ u

(s)

0j

)
+ ε

ij
, (61)

s = 1, 2, . . . , k. Under the standard assumption that the observed response

proportions follow a multinomial distribution, the level 2 covariance matrix

has the form

n

−1

ij

















π

(1)

ij

(1− π

(1)

ij

) · · ·

−π

(1)

ij

π

(2)

ij

π

(2)

ij

(1− π

(2)

ij

)

...
...

. . .

−π

(1)

ij

π

(k)

ij

−π

(2)

ij

π

(k)

ij

· · · π

(k)

ij

(1− π

(k)

ij

)

















. (62)

If k categories are ordered, we should base our model upon the cumula-

tive response probabilities rather than the responses probabilities for each

category. The multilevel ordinal logistic model can be defined as

γ

(s)

ij

=
exp(β0 + β1x

(s)

1ij

+ u

(s)

0j

)

1 + exp(β0 + β1x
(s)

1ij

+ u

(s)

0j

)
, (63)

where γ

(s)

ij

is cumulative probability for s = 1, 2, . . . , k. If we assume

an underlying multinomial distribution for the category probabilities, the

cumulative proportions have a covariance matrix given by π

(r)

ij

(1−π

(s)

ij

)/n
ij

,

(r < s).



May 30, 2003 16:46 WSPC/Advanced Medical Statistics chap03

84 F. Chen

Table 16. The results of a 3-level cumulative logistic model for data in Example 7.

Parameter Estimation SE

Fixed parameters

Y1 −1.482 0.8162
Y2 0.9309 0.8089
Y3 4.299 0.8284
Comp −0.03902 0.2977
Treat −1.187 0.3245
Sex 0.5575 0.4685
Age 0.03687 0.02515
Time −0.5268 0.03924

Random parameters

Level 3 1.001 0.5818
Level 2 1.586 0.3197
Level 1 1 0

6.11. Example 18. Analysis of data in Example 7

The effectiveness variable in Example 7 is an ordinal response, with 0 stands

for invalid or worse effects of treatment on the subject, 1 for improved, 2

for notable improved, and 3 for recovery. A multilevel ordinal logistic model

with cumulative odds was fitted. The results are shown in Table 16.

Where, the centers are level 3 units, the subjects are level 2 units and

repeated observations are level 1 units.

6.12. Relationship between intra-unit correlation and

explanatory variable

The key idea of multilevel model is to express the variance in each level by

explanatory variables. In many applications, mean squared error is related

to some explanatory variables. As a result, the intra-unit correlations are

related to them, too. This issue would be resolved by adding the explanatory

variables to the random part of multilevel models.

6.13. Example 19. Analysis of the data in Example 5

The data show that the variance of ESS is changing over time. Let G1 and

G2 be the dummy variables of groups. We fit a 2-level model for the data in

which the time variable is added into random part at level 1 of the model.

The results are shown in Table 17.

The results show that in the middle dose group (treat = 1) and the

high dose group (treat = 2), the intra-subject correlation is 0.7956, which
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Table 17. The results of fitting a 2-level model for data in Example 5.

Parameter Estimate SE

Fixed Cons 98.19 4.175
Time 1.283 0.1285
Age 0.18 0.1531
G1 −8.356 3.23
G2 −2.972 3.255
G1∗Time 2.778 0.2771
G2∗Time 2.977 0.1902

Random
Level 2 Cons/Cons 38.59 10.48
Level 1 Cons/Cons 9.914 1.44
Level 1 G1∗Time/Cons 3.195 0.7093
Level 1 G2∗Time/Cons 0.195 0.2165

is independent on time. But in the low dose (placebo) group (treat = 0),

the intra-subject correlation coefficient depends upon time. The correlation

of observations at T ime1 and T ime2 would be estimated by

38.59
√

(38.59 + 9.914 + 3.195× T ime1)(38.59 + 9.914 + 3.195× T ime2)
.

6.14. Multivariate multilevel models

So far, we have only considered a single response variable. In many

applications, we wish simultaneously to model several responses functions

of explanatory variables. In Example 4, AUC, Cmax and T50 will be con-

sidered together as responses to test the bioequivalence of domestic and

imported rosiglitazone maleate tablets (RMT). This goal could be achieved

by fitting a multivariate multilevel model.

For the sake of convenience, we consider the multivariate multilevel

model with two response, the logarithmic values of AUC (also denoted

AUC) and Cmax, and treat the subject as a subject-level unit and 4 treat-

ment effects (observations repeated measured on subjects) as period-level

units which are clustered in subject-level. Besides intra-subject correlation,

other properties of this model should be considered: observations of AUC

are correlated between different periods of trial, and so do Cmax; and AUC

and Cmax are correlated either in the same period or in different periods.

The results shown that: the intra-subject correlation of AUC is

0.008301/(0.008301+ 0.011595) = 0.4172 .
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Table 18. The results fitting multivariate multilevel model for data in Example 4.

Intra-subject
Parameters Coefficient SE correlation

Fixed effects Cons AUC 6.82577 0.02661

Cons Cmax 5.13547 0.02550

Treat AUC 0.03252 0.02198

Treat Cmax 0.03563 0.02099

Drug AUC 0.75844 0.02198

Drug Cmax 0.73093 0.02099

Random effects

Subject level Cons AUC/Cons AUC 0.008301 0.003274 1

Cons Cmax/Cons AUC 0.003883 0.002426 0.486

Cons Cmax/Cons Cmax 0.007678 0.003017 1

Period level Cons AUC/Cons AUC 0.011595 0.001936 1

Cons Cmax/Cons AUC 0.003444 0.001369 0.311

Cons Cmax/Cons Cmax 0.010572 0.001765 1

The intra-subject correlations of Cmax is

0.007678/(0.007678+ 0.010572) = 0.4207 .

The Pearson correlation of AUC and Cmax is 0.311 in level 1, and 0.486 in

level 2.

7. Sampling Distribution and Confidence Interval of

Intra-unit Correlation

7.1. Confidence interval of intra-unit correlation

The intra-unit correlation coefficient estimated by a generalized estimation

equation or a multilevel model is a point estimation. But we did not estimate

its estimation errors and had little ideas of its sampling distribution. The

bootstrap may be applied to estimate the CI of intra-unit correlation.19

Bootstrap is a data-based simulation method for statistical inference,

which can be used to study the variability of estimated characteristics of

the probability distribution of a set of observations, and provide confidence

intervals for parameters and hypothesis test in situations where these are

difficult or impossible to derive closed form formulas. The basic idea of

the procedure involves sampling with replacement to produce random

samples of size n from original data, each of these is known as a bootstrap

sample and each provides an estimate θ(b) of the interesting parameter,

θ. Repeating the process a large number of times, say B = 500 or more,
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provides the required information on the variability of the estimator. For

example, the type of distribution, standard error of the bootstrap esti-

mates. An approximate 95% confidence interval can be derived from mean

±1.96 SD if the bootstrap estimates are normally distributed, and from the

2.5% and 97.5% quartiles of the replicate values if the bootstrap estimates

is not normally distributed. The confidence interval derived from bootstrap

sampling is known as bootstrap confidence interval.

If the population distribution is known, bootstrap samples can be

randomly samped not from the original data, but from the population

distribution. The former produce is known as non-parametric bootstrap,

and the latter as parametric bootstrap.

Research shows that there are two particularities in applying the boot-

strap estimation to data of dependent design.20 First, it is not proper

to adopt a parametric estimation because of the difficulty in making a

judgment to the distribution of the data. So we suggest adopting a non-

parametric estimation. Second, it is not proper to apply a random sample

directly to observations because of the non-independence of observations.

So we suggest that we sample high level units. And if some high level unit

is sampled, all the observations in this unit will be sampled. As examples,

data of Example 2 should be sampled by family; data of Example 3 should

be sampled by litter; and data of Examples 1, 4 and 5 should be sampled

by patient.

The estimator of intra-family correlation of Example 2 is 0.5674. If

we sample the data on families, make 500 resamplings, and estimated

by GEE, then the non-parametric 95% CI of intra-family correlation is

0.2875–0.8874. If we sample the data of Example 8 on patients and make

the same analysis, we estimated the non-parametric 95% CI of correlation

0.5219–0.8874. Both of the two bootstrap sampling distributions of intra-

unit correlation are skew. Because both of the two CIs do not include 0,

we may accept that the intra-subject correlations exist.

7.2. The sampling distribution of intra-unit correlation

To estimate the type and characteristic of distribution of intra-unit cor-

relation, we use the Monte Carlo method. One thousand simulations were

generated from specific population with known ρ and corresponding as-

sumed parameters. For each set of simulated data, we fit a 2-level model,

estimate σ

2

0 , σ

2

e

, and then the intra-unit correlation. We then investigate

the distribution of intra-unit correlation based on 1000 estimators of ρ.
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We may assume that there are m individuals (two-level unit) and each

individual have k repeatedly measured values (one-level unit), then we have

n = m× k observations. In order to investigate the effect of units of level 1

and units of level 2 on the intra-unit correlation when overall sample size

of observations are the same, we design the grids are (k, m) = (4, 10),

(4, 20), (4, 30), . . . , (4, 100) and (k, m) = (8, 5), (8, 10), (8, 15), . . . ,

(8, 50) respectively, and the intra-unit correlation coefficients is 0.1–0.9

respectively.

Without losing generality, in analog investigation, we do not take fixed

but random effect into account, because the intra-unit correlation is re-

lated only to random effect. Furthermore, we assume that the intra-unit

correlation structure is exchangeable.

Now we may consider two situations. One is the simplest situation

y
ij

= µ
j
+ e

ij
. (64)

Only one random effect is considered both in levels 1 and level 2. Then

the variance of y is σ

2

0 + σ

2

e

; The variance-covariance matrix of y is V =

diag(R, R, . . . , R). If k is 4,

R =













σ

2
0 + σ

2
e

σ

2

0 σ

2

0 + σ

2

e

σ

2

0
σ

2

0
σ

2

0
+ σ

2

e

σ

2

0
σ

2

0
σ

2

0
σ

2

0
+ σ

2

e













, (65)

the intra-unit correlation can be calculated by Eq. (48).

Another situation is more complex

y
ij

= µ
j
+ ν

j
x

ij
+ e

ij
. (66)

Level 1 has two random effect terms: one is random error. Another random

effect term is related to independent variable, namely the variance of y,

σ

2

0
+σ

2

1
(x

ij
)2 +σ

2
e

, and is affected by explanatory variable. Let x
ij

= j− 1,

the variance-covariance matrix of y is V = diag(R, R, . . . , R), when k = 4,

R =













σ

2

0
+ σ

2

e

σ

2

0
σ

2

0
+ σ

2

1
+ σ

2

e

σ

2
0 σ

2
0 σ

2
0 + 4σ

2
1 + σ

2
e

σ

2
0 σ

2
0 σ

2
0 σ

2
0 + 9σ

2
1 + σ

2
e













.

(67)
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We may calculate intra-unit correlation by Eq. (48) after deducting the

effect of explanatory variable to y.

The parameters of the model can be estimated by the Restricted Iter-

ative Generalized Least Square (RIGLS) method. The simulation study is

made by using specialized multilevel model software MLn.17

Table 19 lists the simulated results of six models. Models A–D are gene-

rated based on Eq. (64), and their amounts of units of levels 1 and 2 are

model A with (k, m) = (4, 10), model B with (k, m) = (8, 5), model C with

(k, m) = (4, 100), model D with (k, m) = (8, 50), respectively. The overall

sample size of model A is equal to that of model B, while the overall sample

size of model C is equal to that of model D. Models E and F are generated

based on Eq. (66), and their amounts of units are respectively model E with

(k, m) = (4, 100) and model F with (k, m) = (8, 50).

The result shows that the type of distribution is related to the value

of intra-unit correlation. And the distribution of intra-unit correlation of

these models indicates that when ρ = 0.5, its distribution is symmetrical

and resembles the normal distribution; when ρ > 0.5, its distribution

is positively skew; and when ρ < 0.5, negatively skew, just as Fig. 3

shows.

In one model, the estimated error is larger when ρ approaches 0.5, and

becomes smaller gradually as ρ approaches 0.1 or 0.9.

The mean intra-unit correlation coefficients of model C is closer to the

theoretical value than that of model A, and its standard error is smaller.

Similarly, the mean intra-unit correlation coefficient of model D is closer to

theoretical value than that of model B, and its standard error is also smaller.

Therefore, the larger the sample size, the better the effect of estimation.

In comparisons of model A with B, model C with D and model E with

F respectively, for which each pair has the same sample size, the estimation

of model B is not as good as A, model D not as good as C and model F

not as good as E except that ρ = 0.1 or 0.2. This is because the amount of

two-level units is small while that of one-level units is large. In fact, because

of the presence of intra-unit correlation, the amount of information is over-

lapped. As an example, the amount of information obtained by measuring

k times repeatedly to the same individual is smaller than that obtained by

measuring once to k individuals.

If we compare model E with C and model F with D respectively, their

overall sample sizes, the amount of one-level units and two-level units are

equal respectively. But models E and F have larger estimated error because

the variance terms of models E and F are more complex.
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Table 19. 500 simulated results of intra-unit correlation of 6 populations.

Theoretical Model A Model B Model C Model D Model E Model F

values k = 4, m = 10 k = 8,m = 5 k = 4, m = 100 k = 8, m = 50 k = 4, m = 100 k = 8,m = 50

0.1 0.1235 ± 0.1279 0.1057 ± 0.1146 0.0980 ± 0.0471 0.0965 ± 0.0411 0.1150 ± 0.0933 0.1121 ± 0.1178

0.2 0.2017 ± 0.1485 0.1786 ± 0.1467 0.1987 ± 0.0540 0.1981 ± 0.0522 0.2019 ± 0.1067 0.2075 ± 0.1450

0.3 0.2855 ± 0.1633 0.2666 ± 0.1722 0.3026 ± 0.0534 0.2988 ± 0.0572 0.2978 ± 0.1081 0.2963 ± 0.1635

0.4 0.3787 ± 0.1725 0.3428 ± 0.1884 0.3973 ± 0.0560 0.3936 ± 0.0616 0.3995 ± 0.1123 0.3934 ± 0.1599

0.5 0.4595 ± 0.1749 0.4288 ± 0.2054 0.4971 ± 0.0534 0.4942 ± 0.0609 0.4995 ± 0.1078 0.4981 ± 0.1563

0.6 0.5635 ± 0.1608 0.5207 ± 0.2042 0.5964 ± 0.0463 0.5931 ± 0.0570 0.5965 ± 0.1018 0.5920 ± 0.1507

0.7 0.6663 ± 0.1379 0.6232 ± 0.1928 0.6967 ± 0.0389 0.6947 ± 0.0481 0.6974 ± 0.0957 0.6891 ± 0.1435

0.8 0.7647 ± 0.1146 0.7278 ± 0.1702 0.7974 ± 0.0287 0.7935 ± 0.0375 0.7986 ± 0.0865 0.8042 ± 0.1211

0.9 0.8786 ± 0.0734 0.8492 ± 0.1216 0.8985 ± 0.0153 0.8965 ± 0.0213 0.8912 ± 0.0727 0.8891 ± 0.0957
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Fig. 3. Sampling distibution of the intra-unit correlations base on model C.

The statistical simulation shows that the estimator of ρ is little smaller

than the theoretical value. But the larger the sample size is, the closer

the estimator is to its theoretical value. And when given the same overall

sample size, the larger the amount of level 2 units is (the smaller the amount

of corresponding level 1 unit is), the closer the estimated value is to the

theoretical value.

If ρ is close to 0.5, the sampling distribution of intra-unit correlation is

approximately normal distribution. As ρ approaches 0, or approaches 1, the

sampling error is becoming smaller and smaller. When ρ is close to 0, the

distribution is positively skew. And when ρ is close to 1, the distribution is

negatively skew.

Theoretically, as Goldstein (1998) pointed out, the estimators obtained

by IGLS is biased, while that obtained by RIGLS is unbiased. But the si-

mulated results show that estimators of ρ obtained by RIGLS are somewhat

smaller than the theoretical values. And the smaller the sample size is, the

further the estimated value is away from its theoretical value. When given

the same overall sample size, the smaller the amount of level 2 unit is (the

larger the amount of corresponding level 1 unit is, of course), the further

the estimated value is biased.

The sampling error of intra-unit correlation is also related to the amount

of units of every level. When given the same overall sample size, the larger
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the amount of level 2 units (the smaller the amount of corresponding level

1 unit is), the smaller the estimated error. The sampling error is also

related to how complex the variance of responding variable is: the larger

the variance, the larger the sampling error.

This section focuses only on the situation when responding variable is

numeric, that is to say that data should be distributed normally. Further

investigation is needed, especially with regard to skew distributions, such

as binominal and Poisson distributions.

8. Sample Size and the Cost-effect of Dependent Test

This section will take the repeated measurement (sampling) as an exam-

ple to discuss sample size and power of hypothesis testing and cost-effect

for dependent data. Because of the overlap of information, the dependent

data tells us less than independent data given the same sample size, which

leads to a low power. And the larger the relationship in groups is, the less

information the data offers and the lower the power shows.

8.1. Sample size and power of test

Let Y
ijg

represent the jth observation of the ith subject in the gth group

(i = 1, . . . , m, j = 1, . . . , k; g = 0, 1). We also assume the individuals are

independent to each other, and the intra-subject correlations are equal. If

the type I error is α and the power is 1− β, the sample size of each group

can be estimated by the equation below:

m = [1 + (k − 1)ρ]
σ

2(Z
α

+ Z
β
)2

kδ

2
. (68)

Where δ is the difference of effects of the two groups (g = 0 and g = 1).

It is oblivious that the number of observations m needed in this design is

smaller, while the overall number of observations n = mk is larger than

those of the independent design. And when ρ = 0, it is equal to the sample

size of independent design.

The table below is the result of a simulated experiment on the power

of a group of repeated measurements. The intra-unit correlation is 0, 0.1,

0.2, . . . , 0.9, respectively; the sample size m and the times of repeated

measures k are (50, 4), (100, 2), (20, 4), (40, 2), respectively; And δ are

0, 0.2, 0.4, 0.6, 0.8, 1.0, respectively. All designs were balanced. Based on

each grid, 1000 simulations were generated by using the MLn package.17

For each set of simulated data, we fit a multilevel model. The power is then
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estimated by the proportion of times of the rejections of null hypothesis in

1000 simulations.

The results corresponding to δ = 0 is type I error, while that to ρ = 0

is the power of the independent data. From the Table 20, we can con-

clude that the power decreases as the intra-unit correlation within group

increases. And unless δ is large enough, the extent of the decrease is large.

For example, when the repeated times are the same, the power of the design

with m = 50, k = 4 and ρ = 0.9 is only half of that with n = 200 and ρ = 0.

When the repeated times are equal, the power has a tendency to increase

as m increases; And when n = mk are equal, the power of the design with

twice measured is larger than that with 4 repeated times.

Table 20. Power of repeated measurement (times of the rejection to null hypothesis in
1000 simulations).

m = 50, k = 4 m = 100, k = 2

δ δ

ρ 0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

0 44 234 789 984 1000 1000 54 272 781 989 1000 1000
0.1 55 232 689 961 998 1000 43 268 757 986 999 1000
0.2 68 220 598 915 995 999 55 279 709 979 999 1000
0.3 57 169 557 854 975 999 52 226 692 963 999 1000

0.4 60 181 474 820 961 998 57 233 661 957 996 1000
0.5 56 157 447 756 936 990 43 205 645 942 999 999
0.6 66 143 393 718 931 983 62 119 600 916 989 1000
0.7 56 138 357 692 889 971 54 208 593 902 992 1000
0.8 62 151 331 647 860 970 62 190 564 883 981 999
0.9 58 117 342 595 829 952 58 168 519 875 988 1000

m = 20, k = 4 m = 40, k = 2

δ δ

ρ 0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

0 59 133 384 746 927 992 36 139 412 759 932 997
0.1 56 125 336 631 870 967 44 143 380 708 916 993
0.2 63 119 302 573 812 939 62 141 375 678 890 928
0.3 80 108 279 488 744 891 69 140 356 634 887 974
0.4 58 106 258 464 682 849 61 129 344 592 859 967
0.5 65 110 228 440 626 805 53 113 296 612 825 959
0.6 69 109 175 372 535 767 57 130 318 577 787 950
0.7 71 94 194 361 546 731 48 103 301 524 780 927
0.8 59 102 193 333 492 696 61 109 288 528 759 908
0.9 69 103 179 313 490 692 69 101 263 490 729 898
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8.2. Cost-effect analysis

The estimations of design efficiency and sample size are important conside-

rations during the experiment design. Researchers always have to balance

among design efficiency, sample size and cost-benefit before making a deci-

sion. For example, a physiological experiment uses several rats’ liver cells.

Researchers may sample only once (single sample test, independent) or

several times (repeated sample test, dependent) on each rat. The latter

needs fewer rats than the former, which means the latter costs less. But

data from the latter are dependent while those of the former are indepen-

dent. So, the problem researchers confront is that the test should not only

cost litter, but also achieve enough power of test.

When we discussed the estimation of sample size in the last section,

we did not consider the cost. But the funds are limited in practice. So it

is related to cost-benefit problems. On one hand, given restricted funds

(the cost is constant), we should consider whether to select single sample

or repeated sample to make the effect as large as possible (the variance is

minimum). On the other hand, when the benefit is constant (the variance

is restricted), we should consider whether to sample independently or

repeatedly to make the cost the least.

8.2.1. When the cost is constant, how to evaluate

the benefits of independently sampling design and

repeated sampling design?

In a repeated sampling design, individual is independent with each other.

We can assume the average elemental cost of each individual is C1, the

average direct cost of sampling once to each individual is C2, the variation

among individualities and repeated sample measures is σ2, and the intra-

subject correlation of samples from the same subject is ρ.

Let the overall cost be C, the individual numbers (or pairs) needed for

repeated sampling design is m, and the times of repeated sample to each

individual is k, then

C = m(C1 + kC2) . (69)

It is not difficult to find:

var(Ȳ ) =
σ

2

mk

[1 + (k + 1)ρ] . (70)

When the restricted overall cost is C, to make var(Ȳ ) as little as possible

(equivalent to making the power as large as possible), the optimal number
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of individuals m and the times of repeated sample k to each subject are the

solutions of conditional minimum of function (70) restricted by Eq. (69).

Let f(m, k) = σ

2[1 + (k − 1)ρ]/(mk) + λ(mC1 + kmC2 − C), then














∂f(m, k)

∂k

=
−σ

2(1− ρ)

mk

2
+ λmC2 = 0

∂f(m, k)

∂m

=
−σ

2[1 + (k − 1)ρ]

mk

2
+ λ(C1 + kC2) = 0 .

(71)

That is






















m =

√

σ

2
ρ

λC1

k =

√

(1− ρ)C1

ρC2

.

(72)

Substituting m and k in (72) for their corresponding terms in (69), because

C is a specific value, the optimal number of individuals is

m =
C

√
C1ρ[
√

C1ρ−
√

C2(1− ρ)]

C1[C1ρ− C2(1− ρ)]
. (73)

So the minimum variance is

var(Ȳ ) = σ

2(
√

ρC1 +
√

(1− ρ)C2)
2
/C . (74)

If the sample size of independent sampling design is N , the overall cost and

sample error are C = NC1 and var(Ȳ ) = σ

2
/N respectively.

And if the restricted overall cost is C, to make var(Ȳ ) as little as possible

(make the power as large as possible), the optimal number of subjects m is

the solution of conditional minimum of function var(Ȳ ) = σ

2
/N restricted

by equation C = NC1.

Let g(N) = σ

2
/N + λNC1, then

N = C/C1 . (75)

And the minimum variance of independent sample is

var(Ȳ ) = σ

2
C1/C . (76)

So given restricted overall funds C, whether to sample independently or

repeatedly depends on the value of sample error, which means to work out

when Eqs. (76) and (74) will have minimum values, when

ρ <

(

C1 − C2

C1 + C2

)2

. (77)
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The repeated sample design can result in a minimum sample error (the

power is the largest and the effect is better). Otherwise, it would be better

to choose independent sampling design.

8.2.2. When the benefit is constant, how to compare the cost

of independent sample with that of repeated sample?

We should follow the method in the last section to make the overall cost C

as little as possible when var(Ȳ ) = V is constant.

The optimal individual number of repeated sampling design m and the

optimal sample times of each subject k can be worked out by the equations

below, respectively:


















m =
σ

2
√

C1ρ[
√

C1ρ +
√

C2(1− ρ)]

C1V

,

k =

√

C1(1− ρ)

C2ρ

.

(78)

The minimum overall cost of repeated sampling design is

C = m(C1 + kC2) = σ

2[
√

C1ρ +
√

C2(1− ρ)]2/V , (79)

The optimal individual number of independent sampling design is

N = σ

2
/V . (80)

And the minimum overall cost of independent sample is

C = NC1 = σ

2
C1/V . (81)

So under the condition of restricted sample error (the same benefit),

should we select the independent sampling design or the repeated sampling

design? This depends on the overall cost of the sample. We should compare

when Eqs. (79) and (82) will have their minimum values. And only if the

intra-subject correlation ρ meets the need of Eq. (77) can repeated sampling

design make the sample cost as little as possible. Otherwise we’d better use

an independent sampling design.

8.3. Example 20. The cost benefit problems of rat’s

test data

Physiology Laboratory, Nantong Medical College, had finished a test that

needed four rats. Four sets of single spleen T cells turbid liquid were pre-

pared for each rat by normal methods. Then researcher mixed ConA with
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each liquid and measured OD. From pre-experiments or experiences, they

estimated that

σ

2 = 0.00054844 and ρ = 0.52895 .

Then if we restricted sampling overall cost C or sample error var(Ȳ ),

should we select an independently sampling design or a repeated sampling

design? This is related to the average elemental cost of each rat C1, the

average direct cost of repeated sampling once to each rat C2 and the intra-

subject coefficient of repeated measurement. We assume that each rat costs

C1 = 20 yuan, each portion (1 ml) of medium and 0.1 ml calf serum costs

C2 = 0.12 yuan. Because

ρ = 0.52895 <

(

C1 − C2

C1 + C2

)2

=

(

20− 0.12

20 + 0.12

)2

= 0.97629 ,

this case meets the need of Eq. (77). Thus, it is wise to do repeated sampling

instead of an independent sampling. From Eq. (72), we known that the

repeated sampling times of each rat k is 13.

If the restricted overall cost C = 110 yuan, the repeated sampling design

needs 5 rats and the minimum sampling error is var(Ȳ ) = 0.000062 from

Eqs. (73) and (74).

If the restricted sampling error is var(Ȳ ) = 0.000052, the repeated

sampling design needs m = 6 rats and the minimum sampling cost is

C = 130 yuan from Eqs. (78) and (82).

In this section we focus on the power of the repeated sample design

in one group, the estimation of sample size and some problems about

cost-effect. The principles of analysis can also be applied to repeated

measurement data of grouped design and longitudinal data, etc.

When estimating the power and sample size of the repeated sampling,

we should take full advantages of the prior information to specify the values

of variation among individuals and repeated samples, the value of intra-

subject correlation coefficient and the values of acceptable error because of

the affection these values have on the estimation of sample size. If there is

not enough prior information, it is better to obtain it through pilot studies.

And the importance of types I and II errors should be determined according

to damages caused by the respectively wrong decisions.

There are two other design methods similar to repeated sampling design.

One of them is the multiple repeated measures, which can improve the

precision of measurements, and reflect whether the measured results have

stability, namely reliablity. And the degree of reliability can be represented
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by constructed validity. The intra-subject correlation among repeated

measures of these data is always low and always has nothing to do with the

covariates. The another one is the regular or irregular follow-up in a longi-

tudinal study, such as the follow up studies of kid’s growth and development

and the metabolism of some kind of drug, etc., in which we are interested

in the occurring, developing, or law of variation of an event. The intra-

subject correlation of these data is always related with the interval of the

follow up. However, repeated sampling is sampling from the same subject.

These samples always have a low intra-subject correlation and are related to

some covariates. Though in several literatures they are all refered to as re-

peated measurement and have similar methods of processing and analyzing,

they have their own particular emphases. So the structures of covariances

matrix of response variables are different. But to applied researchers, more

emphases should be laid on the distinctions of different designs.
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1. Introduction

Quality control, quality assurance, and quality improvement in medical

studies are active and large topics. From 1995–2000, there were more than

40,000 articles in MEDLINE database that had key words of at least one of

these three terms. Quality has many connotations. The term “total quality

management” (TQM) is given to an approach that related to the daily func-

tioning of medical practices or medical research processes. All participated

personnel and operational aspects are involved. Quality control is a very

limited function that “controls” the product, primarily by testing, while

quality assurance regulates the systems and methods for “assuring” the

quality of the product.1

Every aspect of medical practice and research requires quality control

and quality assurance. Although the statistical principles presented here

can apply to other fields such as laboratory medicine, etc. this chapter is

limited to quality control and quality assurance specifically in radiology.

There are several reasons for this focus. First, this is the field in which

the authors have the most experience. Second, radiology evaluation relies

on radiological equipment, whether X-ray, ultrasound, CT, or MRI ma-

chines. As with all machinery, products of different manufacturers vary in

quality. Over time, machine may draft and age can affect performance.

Furthermore, precision errors are always to be expected in any radiological

equipments or technique; even when the same patient is scanned under

identical conditions the results will be different. Last but not least, many

101
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radiological assessments are based on the experience of reader and are

relatively subjective. It is common to have different readers to give different

interpretations of the same image. Therefore, many factors will affect

the results of radiological assessments. The statistical principles discussed

here can resolve the conflicts among results from different devices and

improve interpretation of the results.

Radiology has been used to help decisions in disease diagnosis and

management of patients. Its use as tools for population screening and for

drug development is increasing. The newly developed response evaluation

criteria in solid tumors (RECIST) uses changes in unidimensional CT

measurement of tumor lesions to define the treatment response rates.2

Osteoporosis is defined by bone mineral density (BMD) measured by dual

X-ray absorptiometry (DXA) scans3 and osteoporosis prevention drugs are

assessed according to their effect on BMD.4 In fact, medical imaging has

been used as surrogate endpoint or biomarkers in many therapeutic and

diagnostic clinical trials, and radiologists are increasingly involved in these

clinical trials.

Good Clinical Practice (GCP) is an international quality standard for

the design, conduct, recording, and reporting of clinical trials with human

subjects. GCP guidelines not only provide a framework for protecting the

rights of participating patients or volunteers, they also set standards to

safeguard the integrity of data that are used to evaluate treatment effi-

cacy and submitted to regulatory agencies.5 In radiology, GCP includes

training documents and standard operating procedures, imaging device

quality control, image acquisition protocols, software validation, record

keeping, and reporting, etc.6 Obviously, this is not only a statistical process.

Successful quality control and quality assurance require good leadership

from department chairs or principal investigators and, importantly, a

team of multi-disciplinary experts. The expert team should always include

a statistician. Statisticians are important in planning quality control,

including determining appropriate sampling to avoid bias in selecting test

samples, calculating the sample sizes, analyzing results to identify defi-

ciencies, planning the processing control charts for monitoring machine per-

formance, reassessing the results of quality improvement, and in reporting

data and study results.

There are many aspects of quality control and quality assurance

that are not directly related to statistics.7–9 This chapter presents some

statistical tools used in radiological or osteoporosis research based on

the experience of the authors. It is beyond the scope of this book to
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present a complete picture of quality control and quality assurance for all

radiological studies.

This chapter is organized into 5 sections. In the next section, we intro-

duce definitions of different measurement errors for continuous radiological

results and different ways to evaluate these errors. In Sec. 3, we present

applications of process control-charts to monitoring measurement errors

over time. In Sec. 4, we review the statistics of measurement agreement. In

Sec. 5, we discuss the calibration problem.

2. Measurement Errors

Radiological techniques are used to measure physical or mechanical proper-

ties that relate to disease status or progression. We use statistical techniques

or procedures to transform our observations of a variable of interest into a

particular category or number. This is the measurement process. For a cate-

gorical variable, we try to assign a subject into a particular, unambiguous

category, as in the assessment of treatment response of solid tumors2 or

evaluation of spine fracture severity.10 In other cases, we derive a numerical

value that reflects the underlying physical quantity, such as tumor volume,

bone mineral content or density, etc.

Measurement errors describe the limits of a quantitative or qualita-

tive assessment of a disease using a particular technique or procedure.

Measurement errors have many sources. This section focuses on 2 types

of measurement errors — precision and accuracy — and their applica-

tions to the diagnosis of osteoporosis and monitoring changes in bone

status. The implications of precision on monitoring changes are emphasized,

including the concepts of standardized precision, longitudinal sensitivity,

and their applications to patient measurements and quality assurance,

i.e. the monitoring of machine performance.

2.1. Measurement errors in radiological instruments

Many sources of errors can affect the measurement and cause varying

results, even when they are from the same region of interest in the same

subject. Some of these variations can be controlled to minimize their impact.

Some of the error sources are — in part — uncontrollable. Controllable

variations are called fixed factors. Our interests, however, are usually on

the uncontrollable random variations.

Errors of measurement are the differences between observed values

recorded under identical conditions and a fixed true value. In osteoporosis
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studies, we always assume there are true quantities for densitometry

parameters for each measured subject, even though we don’t always know

their values. Measurement errors should be random in nature and can be

attributed to two different sources: accuracy errors and precision errors.11

2.1.1. Accuracy errors

Accuracy errors here are used as equivalent to the term bias. They

reflect the degree to which the measured results deviate from the true

values. To evaluate accuracy errors, we need to know the true values of

the measured parameters. It is not always possible, however, to measure

the accuracy errors because sometimes the true values of the measured

parameters cannot be verified. For example, quantitative ultrasound (QUS)

bone measurements are affected by a number of quantitative and qualita-

tive factors, and there is no single correlate for any QUS measurement.

Therefore, we cannot define a single accuracy error for QUS.12

For clinical applications only the part of the accuracy error that varies

from patient to patient in an unknown fashion is relevant. The other part,

i.e. the one that is constant, can be averaged across subjects e.g. the

average underestimation of bone density due to the average fat content

of bone marrow in Quantitative Computed Tomography (QCT), can be

ignored. There are two reasons: First, for diagnostic uses, the reference

data will be affected by the same error so the difference between healthy and

diseased subjects is constant. Second, the error is present at both baseline

and follow-up measurements, and does not contribute to measured changes.

Therefore, when discussing the impact of accuracy errors only that part of

the error that changes from patient to patient in an unknown and uncon-

trollable fashion is of interest.13 For this reason, small accuracy errors are of

little clinical significance provided they remain constant.14 In general they

are more relevant to diagnosis and risk assessment than to monitoring.

2.1.2. Precision errors

They reflect the reproducibility of the technique. They measure the ability

of a method to reproducibly measure a parameter for the purpose of

reliably monitoring changes in bone status over time. Precision errors

can be further separated into short-term and long-term precision errors.

Short-term precision errors characterize the reproducibility of a technique

and are useful for describing the limitations of measuring changes in skeletal

status. If they are large they may affect the diagnostic sensitivity of a
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technique. Long-term precision errors are used to evaluate instrument

stability. Because long-term precision errors include additional sources of

random variation attributable to small drifts in instrumental calibration,

variations in patient characteristics, and other technical changes related

to time, they provide a better measure of a technique’s ability to monitor

parameter changes than the short-term precision errors do. For patient

measurements, estimates of long-term precision usually also include true

longitudinal variability of skeletal status. For both of these reasons long-

term precision errors normally are larger than short-term errors. While

precision errors are easy to define, there are many ways to describe them

depending on the purpose at hand, and there is no universal consensus on

which definition is most appropriate.

Mathematically, let θ be the theoretical true value in which we are

interested, and let X be the observed value. The difference of ξ = X − θ

is the measurement error. Furthermore, if X follows a normal distribution

Good Accuracy and Precision
Good for Diagnosis and Monitoring

Good Accuracy and Poor Precision
Unacceptable for Monitoring

Poor Accuracy and Precision
Unacceptable for Diagnosis and Monitoring

Poor Accuracy and Good Precision
Acceptable for Monitoring

Figure 1. Precision and Accuracy

Fig. 1. Precision and accuracy.
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N(µ, σ

2), the accuracy error is µ − θ and precision error is σ. Here, θ is

considered a gold standard.

Figure 1 illustrates the differences between precision and accuracy

errors. If an archer consistently hits the target board close to the bull’s-

eye, but with the arrows spread out around it, it is good accuracy but poor

precision. If the archer consistently hits the board far off the bull’s-eye,

but with all of the arrows in approximately the same location, it is poor

accuracy but good precision.

2.2. Absolute precision errors

Although there are many different ways to describe precision errors, they

can be classified as absolute or relative. For the following descriptions of

precision errors, we introduce some notations. Let X
i,j

be the quantita-

tive results (such as BMD) of the jth measurement for the ith individual,

i = 1, . . . , m and j = 1, . . . , n
i
. Because individual subjects have different

underlying true values due to biological variation, it is necessary to mea-

sure individual subjects repeatedly to evaluate precision errors. We use n
i

to denote the total number of measurements for the ith individual. The

standard deviation (SD) of bone densitometry parameters from an indi-

vidual subject i as a measure of short-term reproducibility is defined as the

average distance of individual X
i,j

to the mean value for that subject, X̄
i
.

Mathematically, it is the sample standard deviation:

SD
i
=

√

√

√

√

ni
∑

j=1

(X
i,j
− X̄

i
)2/(n

i
− 1) . (1)

Individual precision may vary. To estimate the reproducibility of a

parameter in clinical use, we need to measure a representative set of

individuals and combine their individual precision errors using the root-

mean-square average of individual SD values (RMS SD) or in other

words, within the mean squared errors in Analysis of Variance terms.

Mathematically,

RMS SD =

√

∑

m

i=1

∑

ni

j=1
(X

i,j
− X̄

i
)2

∑

m

i=1
(n

i
− 1)

=

√

∑

m

i=1
(n

i
− 1)SD2

j

∑

m

i=1
(n

i
− 1)

, (2)

where m is the number of subjects measured for precision evaluation.

When each subject has the same number of measurements, the RMS

SD =
√

∑

m

i=1
SD2

i

/m.
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With long-term precision, the underlying parameter can change for

individual subjects over time. Therefore, instead of measuring the dis-

tance from the observed individual values to the mean of the individual

subject, we use the distances from the observed individual values to the

expected value of the parameter at the time of measurement. In many

situations we assume that the change of the parameter over time is linear

for mathematical convenience. Thus, we can fit a regression line for observed

individual measurements over time, i.e. X̂
i,j

= â
i
+ b̂

i
t
i,j

with t
i,j

as the

time of the jth measurement for the ith subject. The variation around the

regression line is the standard error of the estimate (SEE):

SEE
i
=

√

∑

ni

j=1
(X

i,j
− X̂

i,j
)2

n
i
− 2

. (3)

In this case, SEE rather than SD should be taken as the estimate of the

long-term precision error for an individual subject. For precision errors of a

group of subjects, we use the root-mean-square SEE (RMS SEE) to evaluate

the long-term precision error for clinical use.

RMS SEE
i
=

√

∑

m

i=1
(n

i
− 2)SEE

i

∑

m

i=1
(n

i
− 2)

. (4)

The confidence intervals of RMS SD and RMS SEE can be derived

using transformation of a Chi-squared distribution. The generic formula of

(1− α) • 100% confidence interval is

(
√

df

χ

2

1−α

2
,df

·Absolute Precision,

√

df

χ

2
α

2
,df

·Absolute Precision

)

. (5)

Thus, for short-term precision, df =
∑

m

i=1
(n

i
− 1) and the absolute

precision error is RMS SD. For long-term precision, df =
∑

m

i=1
(n

i
− 2)

and the absolute precision error is RMS SEE. The values of χ

2

1−α

2
,df

and χ

2
α

2
,df

can be obtained from most software and tables from statistics

text books.

The absolute precision error depends on the unit of measurement. While

it gives important information on measurement errors, it is inadequate for

comparing precision errors across several techniques or measurements. For

diagnosis or for monitoring longitudinal changes, we are usually more inte-

rested in the relative precision of a technique than in the absolute minimum

measurement errors.
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2.3. Relative short-term precision errors

2.3.1. Short-term coefficient of variation

The most commonly used measure of relative precision error is the coeffi-

cient of variation (CV), defined as the ratio of the standard deviation to the

mean measurement. It is usually given on a percentage basis. CV is unit

free and therefore can be used with different techniques and instruments.

CV has a long history as a measure of reproducibility. It was first pro-

posed by Karl Pearson in 1895 to measure the variability of a distribution.

The distribution of CV is complicated. The simplest case is one individual

with repeated measurements. Assuming that X
i,j

obtained from the ith

individual are independent identical samples from a normal distribution

N(µ
i
, σ

2

i

), the density functions for CV
i
is15:

fCVi
(x; n

i
, λ

i
)

=



























e

−niλ
2

i
/2

√
π Γ(ni−1

2
)

∞
∑

k=0

(
√

2n
i
λ

i
)k

k!
Γ

(

n
i
+ k

2

)

x

ni−2

(1 + x

2)
ni+k

2

, x ≥ 0 ,

e

−niλ
2

i
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π Γ(ni−1

2
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∞
∑
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(−
√

2n
i
λ
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k!
Γ

(
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i
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2

)

|x|ni−2

(1 + x

2)
ni+k

2

, x < 0 ,

(6)

with λ
i
= σ

i
/µ

i
. Asymptotically, the variance of CV

i
is λ

i

√

1

n

( 1

2
+ λ

2

i

).16

This individual CV is only meaningful if the subject has multiple mea-

surements. When all individuals in a study have only one measurement, a

population CV can be defined similarly to the ratio of population standard

deviation and population mean. Such a CV is no longer related solely to

measurement errors but to a combination of measurement errors and popu-

lation variations. Feltz and Miller17 gave an asymptotic χ

2-test (DAD test)

to compare the CV from k-populations. Fung and Tsang18 compared the

DAD test with the likelihood ratio test (LRT), and the squared ranks test

(SRT) in a simulation study. They concluded that the DAD test is a very

good test for CVs from k-populations of normal distributions, although it

is not robust, for a symmetric distribution with heavy tails. The LRT does

not control type I errors correctly, although it is very powerful. The SRT

is slightly liberal, but rather robust. In radiological studies, the population

CV is rarely of interest, and it will not be discussed in detail here.

An alternative CV for non-normal distributions is the non-parametric

CV, defined as the ratio of inter-quartile range over the median of

the population.19 The confidence interval and hypothesis testing for the
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non-parametric CV can be derived using bootstrap or jackknife resampling

techniques.20,21

In radiology, we are more interested measurement errors in a random

effects model. Here, we assume that

X
i,j

= θ
i
+ e

i,j
, (7)

where θ
i

is the unobserved true (expected) value for the ith subject that

follows a N(µ, τ

2), and e
i,j

are independent measurement errors that follow

N(0, σ

2). As in Sec. 2.2, the RMS SD in (2) is the best estimate of σ. Thus,

for short-term precision, CV is defined as

CV = 100×
RMS SD

X̄

% , (8)

Where X̄ is the mean of X
i,j

. This is also called within-batch CV in

laboratory medicine.22 The distribution of this short-term precision is much

more complicated because means of subjects θ
i
’s also follow a normal

distribution. Quan and Shih23 derived the asymptotic sample variances for

short-term CVs. The derivation requires two assumptions: (1) the number

of repeated measurements of a patient n
i

will not be more than a posi-

tive number C; (2) the proportion of subjects with n
i

= l converges to a

constant 0 ≤ p
l
≤ 1, as m → ∞. Under these two concditions, the asymp-

totic standard deviation of moment estimator of short term CV defined in

formula (8) is
√

σ

2

µ

4

(
∑

m

i=1
n

i
)σ2 + (

∑

m

i=1
n

2

i

)τ2

(
∑

m

i=1
n

i
)2

+
σ

2

2µ

2
∑

m

i=1
(n

i
− 1)

, (9)

for m → ∞. The sample variation when X
i,j

’s follow log-normal distribu-

tion can also be found in Quan and Shih.23

It is often useful to compare the CVs of different techniques, or of the

same techniques at different research centers. When comparing the same

technique at different centers, the measured subjects in different centers

are independent so it is appropriate to use the DAD test similar to Feltz

and Miller.17 When comparing the CVs of different techniques, however, it

is preferable to apply the techniques to the same set of subjects to control

for confounding factors. This resulted correlated estimated CV and testing

can be complicated. A two-step bootstrap algorithm can be used to compare

two or more CVs:

Step 1. Draw m random samples with replacement from the study

subjects.
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Step 2. For each selected subject (possibly selected multiple times but

treating each measurement as an independent sample) in Step 1,

draw n
i

random samples with replacement from his/her corre-

sponding measurements.

Step 3. Calculate the difference of the two CV’s based on data in Step 2.

Step 4. Repeat Steps 1 to 3 many times (1,000–2,000 times).

Step 5. Calculate the 95% bootstrap confidence intervals of the differ-

ences. If the 95% bootstrap confidence interval excludes 0, the

null hypothesis that the two CVs are equal is rejected.

2.3.2. Alternative forms of short-term coefficient of variation

Intuitively, the larger the CV, the larger the precision errors and the poorer

the technique’s ability to monitor changes. However, this is not always true.

To use CV, the value 0 of a measurement should have some physical mean-

ing. For example, 0 bone mineral content and density have clear physical

meanings. On the other hand, 0 value in speed of sound (SOS) in quan-

titative ultrasound has no physical meaning — the lower limit for speed

of sound in water is around 1500 m/s. When the value 0 has no physical

meaning, the origin of the parameters can be moved up or down so that

CV has no physical meaning. Secondly, using CV to characterize the pre-

cision error of a technique implies that the precision error is proportional

to the quantity of measurements. This is not true for many bone densito-

metry measurements. Normally, we see that the lower the bone density, the

higher the relative precision errors (actually, even the absolute precision

error increases with decreasing BMD). Thus, CV is not always a robust

parameter for evaluating precision, at least for bone densitometry in osteo-

porosis research. Third, the mean value of the measured quantity, in many

cases, is not the primary interest. We are more interested in discriminating

between patients and normal controls, monitoring changes in bone status,

or evaluating treatment responses, and CV is inadequate for these pur-

poses. A major limitation of CV is that it does not take into account the

impact of the technique’s responsiveness to changes caused by disease or

disease progression. When a technique has a very low precision error (i.e. a

very “good” precision) but an even lower responsiveness (e.g. differences

between healthy and diseased subjects or changes as a result of disease

progression or treatment) it will not have a good longitudinal sensitivity to

detect changes caused by disease over short time periods. Therefore, several

approaches to adjust for differences in responsiveness have been proposed.
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Miller et al.24 proposed a standardized coefficient of variation (SCV)

as the ratio of absolute precision over the range (5th to 95th percentiles)

of parameters. The range can be obtained from manufacturer’s normative

data or from the observed study subjects when the sample size is large

enough and sampling procedures are appropriate. Mathematically,

SCV =
Absolute Precision

Range
• 100%

=
Absolute Precision

95% tile− 5% tile

• 100% . (10)

Alternatively, Blake et al.25 proposed using the population standard

deviations as the measure for the range of the measure. Thus, the precision

error is measured by the ratio of standard deviation of measurement errors

over measured population standard deviation (including both measurement

errors and population variations), which we call it SCV2. SCV2 relates to

the attenuation parameter in the measurement error models26 that mea-

sures the bias caused by measurement errors in linear and non-linear re-

gression analysis. Because the width of the 90th percentile range in SCV is

about 3.3 times the population standard deviation, SCV is approximately

a third of SCV2.

Machado et al.27 proposed a similar standardized precision measure-

ment by replacing the range in the above formula with the differences in

mean values of parameters for diseased and normal subjects, which we call

SCV3. It is important to note that all these standardized CVs are also

unit free.

In osteoporosis research, the population range or standard deviations of

BMD change across different age groups. To adjust for the age effects on

precision errors, Langton28 proposed a precision parameter, ZSD. A ZSD is

the standard deviation of an individual’s Z-scores, z
i,j

’s, a transformation of

the observed measurement X
i,j

’s. This Z-score is different from Z-statistics

in statistical literature. Here, Z-score is defined as z
i,j

=
Xi,j−µ(agei)

σ(agei)
where

µ(age
i
) and σ(age

i
) are the BMD mean and standard deviation of the age

group for the ith subject. Therefore, a Z-score is the number of population

standard deviations by which a subject’s value varies from the population

age-matched mean. It is unit free. A RMS ZSD will be a measurement for

a technique.

The standard deviation of z
i,j

is ZSD
i
=

SDi(Xi,j )

σ(agei)
× 100%. Thus, ZSD

i

for the ith subject is actually an age matched SCV2. A RMS ZSD is a RMS

average of individual SCV2’S.
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The SCV proposed by Miller et al.24 is an important step in recognizing

the limitations of a traditional CV. SCV often provides different information

than CV. For example, PA spine BMD measured by a DXA scanner such

as the Hologic QDR-1000 has a higher short term CV (1%) than speed of

sound (SOS) (0.3%) measured by quantitative ultrasound machines like the

Hologic Sahara. However, defining the SCV as the ratio of RMS SD over

the young adult population SD gives the opposite result: the SCV of PA

spine BMD is 8% and SOS is 20%.25 Rather than using the population

standard deviation, ZSD uses the age specific population standard devia-

tion. ZSD has advantages when the population variance varies for different

age groups, and the purpose of the technique is to determine the differences

of individual subjects from their corresponding age group means.

An important limitation of SCV and SCV2 is their dependence on the

normative data. In most cases, normative data from different equipment

manufacturers are not comparable. Different manufacturers have different

normative data based on different selection criteria. The procedures for

collecting data may not always follow appropriate statistical sampling

procedures and thus may not represent the true population distribution

of the parameters. Comparing two SCVs based on two different norma-

tive data sets can be like comparing apples to oranges. Many precision

studies have small sample sizes and subjects are recruited from conve-

nient samples. The study sample may not be compatible with normative

populations. These logistic difficulties severely limit the scientific validity

of SCVs.

Statistical properties and hypothesis testing procedures for all the SCVs

are complicated and have not been fully studied. In all these cases, the

bootstrap method can be applied to resolve the real application needs.

2.3.3. Sample size for short-term precision studies

When planning for a short-term precision study, there are always trade-offs

between the number of study subjects and the number of measurements. In

most cases, we plan to have the same number of measurements n for all the

m study subjects. Sample size calculations can be based on the width of

the confidence intervals or on the null hypothesis. In both cases, one should

have some idea of the ratio between population standard deviation τ and

population mean µ.

For a given n, the asymptotic (1 − α) • 100% confidence width for

estimated CV λ is
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2z1−α/2

λ

√
m

√

λ

2

n

+
τ

2

µ

2
+

1

2(n− 1)
. (11)

This is obtained by rearranging formula (9). A similar argument for the

sample size to test the hypothesis H0 : λ = λ0 versus H1 : λ 6= λ0 is

given as

m =

(

z1−α/2λ0

√

λ

2

0

n

+
τ

2

0

µ

2

0

+ 1

2(n−1)
+ z1−β

λ1

√

λ

2

1

n

+
τ

2

1

µ

2

1

+ 1

2(n−1)

)2

(λ1 − λ0)2
. (12)

Here, α and β are the types I and II errors; λ1 is the alternative CV; and τ
i

and µ
i
are population standard deviation and means under the null (i = 0)

and alternative (i = 1) hypotheses.

Equation (12) shows that the sample size m decreases as number of

measurements n increases. In practice, recruiting subjects is more difficult

and costly than repeating measurements. However, many factors can influ-

ence precision errors and selecting a small number of patients can either

over- or under-state the true precision of the technique in clinical use. For

example, measuring only healthy young women to evaluate DXA scanner

precision will give smaller precision errors and will overstate the preci-

sion of the scanner. Measuring only elderly osteoporotic women will give

larger precision errors and will understate the precision of the scanner.

Some balance of confounding factors for precision errors must be achieved

to represent the clinical population to which the machine or technique will

be applied.11 Within the given cost constraints, one should try to reach as

many subjects as possible.

2.4. Relative long-term precision errors and sensitivity of

monitoring changes

Short-term precision is useful for evaluating the utility of a diagnostic

technique. The smaller the precision error, the easier to separate diseased

and normal subjects. This is particularly true for standardized precision

errors. They cannot, however, describe the ability of a technique to monitor

changes.

2.4.1. Longitudinal CV

Like the limitation of short-term absolute precision errors, RMS SEE de-

pends on the measurement unit and is not appropriate to compare across
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techniques. Correspondingly, we can define a longitudinal CV as

CV = 100×
RMS SE

X̄

%E

. (13)

If we assume that the changes of measurements for individual subjects over

time follows a linear model, that is

X
i,j

= a
i
+ b

i
t
i,j

+ e
i,j

, (14)

with t
i,j

the measurement time for the jth measurement of the ith subject,

the longitudinal CV is

CV =

√

∑

m

i=1

∑

ni

j=1
(X

i,j
− â

i
− b̂

i
t
i,j

)2/
∑

m

i=1
(n

i
− 2)

∑

m

i=1
X̄

i
/m

. (15)

Here, â
i
and b̂

i
are the estimated intercept and slop and X̄

i
is the average

for the ith subject. Derivation of asymptotic standard deviations of Eq. (15)

has not yet been reported in the literature.

Although, it is inexplicitly, the longitudinal CV depends on the length of

time that the measurement performed. If the length of time and frequency

of measurements are different for the same technique and same subjects,

the CV may be different. This is because that X̄
i

∼= a+bt̄
i
, which is not the

case for the absolute precision. Therefore, to compare the same technique

on different machines, the absolute longitudinal precision in RMS SEE is

more appropriate. When comparing different techniques, the measurement

times should be identical. The best plan is to measure the same subjects at

the same time. Otherwise, their longitudinal CVs will not be comparable.

2.4.2. The least significant change

For clinical decision making it is important to know the minimum mag-

nitude of measured change that is not caused by measurement errors.

The least significant change (LSC) is defined as 2.8 times the longitudinal

absolute precision,29 i.e.

LSC = 2.8×RMS SEE . (16)

More specifically, if we observe a change of a subject more than LSC, we

will have 95% confidence that the change is beyond measurement errors.

The derivation of the LSC is based on the following argument. Let

X1 and X2 be two successive measurements of a subject. If there is no

change in the two measurements, the difference between them is the result
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of longitudinal measurement errors. If we assume the longitudinal measure-

ment variation is σ, as estimated by RMS SEE in Eq. (4), Pr(|X1 −X2| >

z1−α/2

√
2σ) = α. The least significant change is also called the “biologically

significant change” in laboratory medicine.22

The longitudinal precision error must be used to evaluate the LSC rather

than the short-term precision error, which is normally smaller than the

longitudinal precision error.

The significance level of 5% has no clinical meaning. Therefore, there

is no need to insist on 95% confidence when evaluating the LSC. To treat

patients early, before the disease progresses, lower confidence levels can be

chosen. Another parameter trend assessment margin (TAM) was proposed

as 1.8×RMS SEE, which was calculated as corresponding to an 80% con-

fidence level.30 The LSC and TAM can also be approximately calculated in

percentages based on longitudinal CV’s.

2.4.3. Follow-up time interval

Radiological variables are often used as monitoring tools for individual

patients. To assess the sensitivity of a technique for monitoring patients,

Gluer30 introduced the concept of “monitoring time interval” (MTI). The

MTI for assessment of disease progression or treatment response is an es-

timate of the time period after which a patient will have a 50% chance of

showing changes that exceed the LSC. Thus,

MTI = LSC/Median Changes Per-Annual . (17)

The changes here can be caused by age, disease progression or treatment

efficacy depending on the purpose of the study. The change also should

be consistent with the units of the LSC. That is, if LSC is expressed as

absolute precision, the change should be expressed as absolute changes. If

the LSC is expressed as a percentage, a percentage change should be used.

It is important to note that the unit of MTI is a year.

Similarly to TAM, Gluer30 also suggested the “trend assessment inter-

val” (TAI) an estimate of the follow-up time after which a subject will have

50% chance of changes exceeding TAM.

The determination of appropriate monitoring time intervals always

represents a tradeoff between frequent visits with patient discomfort and

additional costs, and fewer visits with the risk of substantial disease progress

in the interval. MTI requires the usual 95% confidence level, which means

the corresponding monitoring time interval would be almost double the
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TAM. This shows that MTI and TAI, as applications of longitudinal preci-

sion, when defined in this fashion, have a direct and very intuitive meaning

closely related to recommended monitoring time intervals. However, one

should note that there is no single MTI (TAI) for each technique. They will

differ substantially depending on the expected response of the patients. For

their purpose, this is not a disadvantage, since it directly reflects that the

frequency of follow-up measurements will depend on the type of patient

examined. In osteoporosis clinics, for example, fast bone losers should have

MTIs shorter than average postmenopausal women.

2.5. Examples of applications of precision errors

In this subsection, we give some examples of calculating absolute and

relative precision as described in the previous subsections.

2.5.1. Example 1

The short-term precision errors of two quantitative ultrasound scanners

for osteoporosis from two different manufacturers were compared. Twenty

Table 1. SOS (m/sec) at calcaneus of 20 volunteers.

Subject Manufacturer 1 Manufacturer 2

ID Measure 1 Measure 2 Measure 1 Measure 2

1 1499 1505 1579 1586
2 1487 1488 1594 1590
3 1471 1465 1543 1556
4 1468 1467 1536 1545
5 1501 1504 1587 1588
6 1516 1517 1618 1605
7 1490 1491 1580 1587
8 1569 1565 1670 1683
9 1534 1543 1641 1641

10 1464 1468 1547 1558
11 1509 1510 1591 1593
12 1567 1541 1621 1647
13 1514 1509 1605 1625
14 1539 1540 1619 1614
15 1540 1537 1632 1648
16 1532 1535 1616 1617
17 1544 1531 1629 1636
18 1578 1574 1637 1644
19 1484 1482 1574 1576
20 1518 1522 1606 1610
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Table 2. Short-term precisions and related parameters.

Manufacturer
Statistics (and equation number)

RMS SD (2) CV (8) SD for CV (9) SCV (10) SCV2

1 5.30 0.35% 0.06% 5.33% 16.28%

2 7.59 0.47% 0.07% 8.29% 21.62%

healthy elderly volunteers participated in the study. Speed of sound (SOS)

at the calcaneus was measured twice on the same day for each subject. The

data is given in Table 1.

Therefore, we have m = 20 and n1 = · · · = n20 = 2. The results are

summarized in the following Table 2.

SCV2 was defined in Sec. 2.3.2, immediately after Eq. (10). We did

not calculate SCV3 and ZSD here because SCV3 requires information from

individual disease status and ZSD requires manufacturer’s normative data,

and neither were available. It is worth-noting that classical CV for SOS

is very low compared to BMD measured by DXA (CV range from 1% to

6%). However, this does not mean that SOS is more precise in clinical

use. The clinically useful range of SOS does not begin with zero and, in

fact, zero is not defined here. That is why SCV and SCV2 are more mean-

ingful in this example. The reported SCV2 for BMD measured by DXA

ranged from 8% to 11%,25 far less than SOS on a quantitative ultrasound

scanner.

2.5.2. Example 2

Five normal volunteers participated in a longitudinal quality evaluation

study for two new quantitative ultrasound (QUS) devices from different

manufacturers with in one year. Table 3 lists their SOS measurements.

Table 4 displays the longitudinal precision. Although not all subjects

demonstrated linear changes over time — Subject 3 in particular had

some non-linear changes in Machine 1 — we applied only linear trends

to all individuals. Also, as pointed out in Example 1, CV is not an appro-

priate measurement for SOS in QUS. CV is included in Table 4 only for

demonstration.

Thus, although Machine 2 has higher precision errors, it is more sensitive

to changes in age and may be a better choice for longitudinal follow-up. Of

course, the sample size in this study is too small to reliably determine the

monitoring time intervals.
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Table 3. Longitudinal QC data for 5 normal volunteers.

SOS (m/sec) SOS (m/sec)

Subject Date Machine 1 Machine 2 Subject Date Machine 1 Machine 2

1 09/21/97 1554 1636 3 05/07/98 1588 1698

1 10/04/97 1563 1642 3 06/01/98 1586 1717

1 11/05/97 1546 1634 3 07/24/98 1587 1708

1 11/18/97 1554 1635 3 09/23/98 1588 1708

1 12/29/97 1560 1656 4 09/22/97 1598 1709

1 01/09/98 1551 1626 4 10/04/97 1595 1694

1 02/04/98 1556 1648 4 10/29/97 1601 1698

1 02/24/98 1548 1642 4 11/17/97 1585 1677

1 03/22/98 1552 1658 4 12/12/97 1590 1696

1 04/11/98 1562 1665 4 12/28/97 1608 1720

1 05/07/98 1544 1637 4 01/25/98 1593 1691

1 07/11/98 1548 1653 4 02/20/98 1595 1692

1 08/13/98 1567 1672 4 03/11/98 1586 1688

1 08/26/98 1563 1658 4 03/23/98 1593 1718

1 09/21/98 1554 1646 4 04/24/98 1594 1722

2 09/22/97 1560 1654 4 06/13/98 1602 1727

2 10/05/97 1565 1660 4 06/26/98 1600 1733

2 11/06/97 1563 1643 4 07/27/98 1598 1708

2 11/19/97 1562 1652 4 08/09/98 1591 1719

2 12/22/97 1558 1663 4 09/21/98 1594 1714

2 01/04/98 1572 1680 5 09/22/97 1591 1664

2 02/05/98 1567 1674 5 11/14/97 1586 1678

2 02/19/98 1566 1667 5 12/17/97 1587 1677

2 03/23/98 1568 1677 5 12/29/97 1605 1703

2 04/12/98 1572 1663 5 02/01/98 1587 1682

2 05/08/98 1569 1661 5 02/15/98 1586 1681

2 07/12/98 1573 1650 5 03/20/98 1588 1688

2 09/21/98 1576 1695 5 04/02/98 1594 1693

3 09/22/97 1579 1654 5 05/05/98 1594 1682

3 11/17/97 1575 1666 5 05/19/98 1593 1684

3 12/15/97 1576 1667 5 06/27/98 1594 1695

3 01/13/98 1571 1669 5 07/11/98 1596 1677

3 01/29/98 1573 1670 5 08/13/98 1594 1675

3 03/03/98 1579 1676 5 08/26/98 1596 1701

3 03/27/98 1580 1690 5 09/21/98 1594 1689
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Table 4. Longitudinal precision for 2 QUS machines.

Machine 1 Machine 2

Subject d.f SEE Mean CV SEE Mean CV

1 13 7.11 1555 0.46% 10.87 1647 0.66%

2 11 3.25 1567 0.21% 12.74 1665 0.77%

3 9 4.07 1580 0.26% 8.17 1684 0.49%

4 14 6.14 1595 0.39% 13.67 1707 0.80%

5 13 4.91 1592 0.31% 10.00 1685 0.59%

Total 60 5.43 1578 0.34% 11.49 1678 0.69%

LSC (m/sec) 15.21 32.18

MTI (yr) 2.5 1.3

3. Statistical Process Control Charts

In Sec. 2, we introduced the concept of measurement errors and the

statistics to evaluate them. Precision errors are usually evaluated when-

ever new techniques or new devices are developed. Precision errors are

also evaluated immediately after a device is installed in clinical sites to

assure that the equipment is performing according to the manufacturer’s

specifications at baseline. Precision errors also are always assessed before

the beginning of clinical trials or longitudinal studies.7,31 Although the

manufacturer’s service personnel can set up the device so that precision

errors are within appropriate limits at baseline, it is very important to

monitor the equipment to assure that imprecision remains within acceptable

limits. Despite the remarkable accuracy and reproducibility of radiological

equipment, measurements can still vary because of changes in equipment,

software upgrades, machine recalibration, X-ray source decay, hardware

aging and/or failure, or operator errors.

In an ideal setting, a well maintained equipment produce values that

are randomly spread around a reference value. A change point is defined

as the point in time at which the measured values start to deviate from

the reference value. To evaluate measurement stability and identify change

points, radiologists develop phantoms that simulate human measurements

but, unlike humans, do not change over time.7,32,33 Variations in phantom

measurements should reflect variations in human measurements. Phantoms

are measured regularly to detect one or more of the following events: (1) The

mean values before and after the change point are statistically significantly

different; (2) The standard deviations of measurements before and after the
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Table 5. AP spine BMD of a hologic phantom in a QC study (13 March 1989 to 15
May 1989).

i Date BMD (Xi) µ0 σ(= µ × 0.5%)

41 03/13/89 1.039 1.033 0.00517

42 03/15/89 1.039 1.033 0.00517

43 03/21/89 1.029 1.033 0.00517

44 03/22/89 1.036 1.033 0.00517

45 03/23/89 1.030 1.033 0.00517

46 03/27/89 1.033 1.033 0.00517

47 03/28/89 1.036 1.033 0.00517

48 03/29/89 1.038 1.033 0.00517

49 03/30/89 1.036 1.033 0.00517

50 04/03/89 1.033 1.033 0.00517

51 04/04/89 1.036 1.033 0.00517

52 04/05/89 1.034 1.033 0.00517

53 04/06/89 1.029 1.033 0.00517

54 04/07/89 1.033 1.033 0.00517

55 04/10/89 1.037 1.033 0.00517

56 04/14/89 1.042 1.033 0.00517

57 04/17/89 1.044 1.033 0.00517

58 04/18/89 1.041 1.033 0.00517

59 04/19/89 1.040 1.033 0.00517

60 04/20/89 1.036 1.033 0.00517

61 04/28/89 1.039 1.033 0.00517

62 05/01/89 1.035 1.033 0.00517

63 05/02/89 1.047 1.033 0.00517

64 05/03/89 1.028 1.033 0.00517

65 05/04/89 1.035 1.033 0.00517

66 05/05/89 1.038 1.033 0.00517

67 05/09/89 1.031 1.033 0.00517

68 05/10/89 1.041 1.033 0.00517

69 05/12/89 1.043 1.033 0.00517

70 05/15/89 1.034 1.033 0.00517

change point are statistically significantly different; (3) The measurements

after the change point show a gradual but significant departure from the

reference value.

In Table 5, we introduce our third example, which is roughly two months

of quality control data from a DXA scanner. In this example, a Hologic

spine phantom was scanned about three times a week. The purpose of the

study was to monitor the stability of the DXA scanner. If the scanner is

functioning acceptably, the coefficient of variation should be less than 0.5%
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in the total AP spine BMD values. (Information on this data set can be

found in Lu et al.34). In Table 5, i is an indicator of the observation number;

date is the date the scan was performed; BMD is the ith measurement; µ0

is the reference value based on historical QC data; and σ is the standard

deviation based on 0.5% CV. We will use this data to illustrate statistical

process control charts.

Statistical process control (SPC) is a powerful collection of problem

solving tools for achieving process stability and improving capacity

through reduction of variability.35 There are several statistical methods for

identifying change points. One is to visually check the retrospective data

to determine the change points and then to verify these changes by a t-test

for means and an F -test for variances. An alternative is to use statistical

process control charts.34,36 In this section, we introduce these methods and

provide examples of their application in monitoring BMD measured by

DXA scanners in osteoporosis studies.

3.1. Visual inspection

Potential change points in the data can be determined after careful visual

inspection. This can be done by plotting longitudinal phantom data over

time and using visual judgment to identify the potential change points

created by drifts or sudden jumps. Statistical tests, such as the t-test, can

be used to confirm the significance of the changes. It is important to note

that there can be multiple potential change points observed for a given

period of time. Careful control for type one errors for repeated tests is

recommended for the t-tests.

Only experienced medical physicists or radiologists should perform

periodic visual inspections. The role of primary evaluator should always be

taken by the same individual to avoid subjective variations. The selection

of the change points is based on the scatter plot in the most recent data.

Once a change point has been identified, its cause should be investigated

to determine if the change is machine related.

Visual inspection is not recommended because its efficiency depends on

the experience of the reviewer and may not be reproducible.

3.2. Shewhart control chart

A Shewhart chart is a graphic display of a quality that has been measured

over time. The chart contains a central horizontal line that represents the

mean reference value. Three horizontal lines above and three below the
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central line indicate 1, 2, and 3 standard deviations from the reference

value. By plotting the observed quality control measurements on the chart,

we can determine if the machine is operating within acceptable limits.

The reference values can be derived from theoretical values for the

phantom, or from the first 25 observations measured at baseline. The refer-

ence value changes whenever the Shewhart chart indicates an out of control

signal and the machine is recalibrated. The new reference value will then

be the mean of the first 25 observations after recalibration. The number of

observations needed to calculate the reference value may vary; the number

25 was chosen based on practical experience to balance the stability of the

reference value with the length of time needed to establish it.

The standard deviation varies among individual devices, and manu-

facturers should be selected accordingly. For example, in one osteoporosis

study, we sometimes use the BMD of a Hologic phantom to monitor DXA

scanner performance. We usually assume the coefficient of variation for

Hologic machines to be 0.5% and Lunar to be 0.6%, based on reported

data on long-term phantom precision.37 Therefore, the standard deviation

for the scanner was calculated as 0.005 and 0.006 times the reference value

for Hologic and Lunar machines respectively.

The original Shewhart chart will signal that there is a problem if

the observed measurement is more than 3 standard deviations from the

reference value. Although intuitive and easy to apply, the chart is not very

sensitive to small but significant changes.35 Therefore, a set of sensitizing

tests for assignable causes has been developed to improve the sensitivity of

Shewhart charts. Eight of the tests are available in the statistical software

package SAS.38 The tests are listed in Table 6.

Table 6. Definition of tests for assignable causes for Shewhart charts.

Tests Pattern Description

1 One point is more than 3 standard deviation from the central line.

2 Nine points in a row on one side of the central line.

3 Six points in a row steadily increasing or steadily decreasing.

4 Fourteen points in a row alternating up and down.

5 Two out of 3 points in a row more than 2 standard deviation from the

central line.

6 Four out of 5 points in a row more than 1 standard deviation from the

central line.

7 Fifteen points in a row all within 1 standard deviation from the central

line on either or both sides of the line.

8 Eight points in a row all beyond 1 standard deviation from the central

line on either or both sides of the line.
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Figure 2. Shewhart Chart for QC Data in Example 3

Scan Date

Fig. 2. Shewhart chart for QC data in Example 3.

The sensitizing rules can be used in toto or in part depending on the

underlying processes of interest. For example, for quality control of DXA

machines, we used four tests — 1, 2, 5 and 6.34 Once a change point has

been identified by any one of the tests, the manufacturer’s repair service

should be called to examine the causes and to recalibrate the machine.

We then use the next 25 observations to generate new reference values and

apply the tests to the subsequent data according to the new reference value.

Figure 2 shows the application of a Shewhart chart for Example 3. In

this chart, the dots are the observed BMD. The six lines are the control

limits 1, 2 and 3 standard deviations away from the central reference line.

There is a problem with Test 2 from April 10, 1989.

The sensitizing rules increase the sensitivity of the Shewhart chart, but

also increase the number of clinically insignificant alarms, which is not

desirable. To overcome this problem, a threshold based on the magnitude

of the mean shift can also be implemented. For example, we can select

ten consecutive scans from after the possible change point identified on

the Shewhart chart, and then calculate their mean values. If the mean

differs by more than one standard deviation (which equals 0.5% times the

reference value, in our example) from the reference value, the change point

is confirmed as a true change point. Otherwise, the signal from the Shewhart
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chart is ignored and the reference value is unchanged. This approach filters

out small and clinically insignificant changes. However, the true difference

must be more than one standard deviation for this approach to be effective,

and this approach can delay the recognition of true change points.

3.3. Moving average chart

An alternative method is to determine the means and standard deviations

of 25 consecutive measurements and then plot them over time. Control

limits can be based on the assumption of a constant coefficient of variation

during the process (0.5% times the reference mean) and a type one error rate

comparable to the original Shewhart method (0.27%).35 More specifically,

we use X
i
, for i = 1, 2, . . . , n, the measured QC values of n longitudinal

phantom scans from a machine. We define the moving average mean and

standard deviation based on 25 scans as:

M
i
=

i

∑

j=i−24

X
j

/

25 , i = 25, 26, . . . , n (18)

as the moving average of 25 scans to the date when the ith scan was col-

lected, and

S
i
=

√

√

√

√

i

∑

j=i−24

(X
j
−M

i
)2

/

24 , i = 25, 26, . . . , n (19)

as the moving standard deviation of the 25 scans to the date when the ith

scan was collected. Note that the first moving average can only be calculated

after the first 25 scans have been collected.

Now if we assume that X
i
’s independently follow a normal distribu-

tion N(µ, σ

2), it can be shown that the M
i
’s follow a normal distribution

N(µ, σ

2
/25) and 24 S

2

i

/σ

2’s follow a chi-square distribution with 24 degrees

of freedom denoted by χ

2

24
. However, note that both M

i
’s and 24 S

2

i

/σ

2’s are

not independent samples from the normal distribution and the chi-square

distribution, respectively, for different i’s.

Let µ0 be the reference mean. If the machine is operating correctly,

we should accept the null hypothesis, H0 : µ = µ0. If the machine is not

operating correctly, we will accept the alternative hypothesis, H1 : µ 6=

µ0. We select a type one error level of 0.0027 to be comparable to the

original Shewhart method. We will reject the null hypothesis if |M
i
−µ0| >

z1−α/2
σ

5
= 0.5991σ. Thus, the control limits for the moving average are

±59.91% of the standard deviation from the reference mean.
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We assumed that the CV for the machine is constant. Therefore, if

it is functioning correctly, we can derive the standard deviation as equal

to the reference mean times the CV. To check whether the precision of

the machine is acceptable, we will test the null hypothesis, H0 : σ = σ0,

versus the alternative that H1 : σ > σ0. With the same level of type

one error rate as the mean difference, we will reject the null hypothesis

if 24 S

2

i

/σ

2
0 > χ

2
24,1−α

, or equivalently, if S
i

> 1.41σ0. Thus, the control

limit of the moving standard deviation is 1.41 times the standard deviation.

Note that there is only an upper limit for the moving standard deviation

chart, as we are interested only in the increase in the standard deviation. In

other words, we are looking for quality control but not quality improvement.

Once the moving average moves out of the control limit, the value of the

moving average at that point is used as the new reference value for scans

performed after that date.

The number of scans used to calculate the moving average will affect

performance of the method. Twenty-five scans were selected based on power

analysis, so that the moving average chart has less than a 0.27% chance of

a false alarm and a 98% chance of detecting an increase in the mean of one

standard deviation. Also, the moving standard deviation chart has a 98%

chance of picking up a 100% increase in the standard deviation.34 Twenty-

five scans is also a typical month’s worth of quality control measurements.

3.4. CUSUM chart

CUSUM chart is short for Cumulative Sum Chart. In applications, we re-

commend a version of CUSUM known as Tabular CUSUM35 because it can

be presented with or without graphs. Mathematically, we define an upper

one-sided tabular CUSUM S
H

(i) and a lower one-sided tabular CUSUM

S
L
(i) for the ith QC measurement as the following:

S
H

(i) = max

[

0,

X
i
− µ0

σ

− k + S
H

(i− 1)

]

, (20)

S
L
(i) = max

[

0,

µ0 −X
i

σ

− k + S
L
(i− 1)

]

. (21)

Here, µ0 is the reference mean, σ is the standard deviation, and k is a

parameter to filter out insignificant variations and is usually set at 0.5. The

initial values of S
H

(0) and S
L
(0) are 0. The chart sends an alarm message

if S
L
(i) or S

H
(i) is greater than 5. In other words, when the standardized

BMD value deviates more than k from zero, the cumulative upper bounded
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sum increases by the amount of deviations above k. On the other hand, if

the deviation is less than k, the cumulative sum will be reduced accordingly.

When the cumulative sum is less than zero, we ignore the past data and

set the cumulative sum as zero. However, a cumulative sum greater than 5

is a strong indication of a deviation from the reference mean in the data.

CUSUM also estimates when the change occurred and the magnitude

of the change. We use the estimated magnitude of change to establish the

new reference values.

Table 7 demonstrates the application of CUSUM chart to Example 3.

In this table, S
H

(i) and S
L
(i) are defined in Eqs. (20) and (21), and

we selected k = 0.5 to detect a mean change of one standard deviation.35

Along with the sequences S
H

(i) and S
L
(i), sequences N

H
(i) and N

L
(i)

denote the number of scans since the last positive observation of S
H

(i)

and S
L
(i), respectively. For example, from records one to four, the S

H
(i)’s

were positive, so that N
H

(i) goes from 41 to 44. However, S
H

(45) was zero.

Therefore, the corresponding N
H

(45) = 0. A similar rule applies for N
L
(i).

As explained, the initial reference value was obtained from the mean

of the first 25 observations. However, once S
H

(i) or S
L
(i) exceeded 5, we

concluded that the scanner was malfunctioning. For example, on April 20,

1989, S
H

(60) > 5, suggesting that the BMD values were too high. We

estimate that this event could have started on April 10, 1989, by noting the

last date when N
H

(i) = 1. Therefore, the investigation of assignable causes

should focus around that time. The magnitude of change from the reference

value can be estimated as σ[k + S
H

(i)/N
H

(i)], which equals the average

difference.35

Once we know the machine is malfunctioning, we will establish new

reference values. If the manufacturer was involved in correcting the machine,

the new mean should be established by the first 25 observations after the

correction. However, if there is no intervention by the manufacturer or, as

in our case, when performing retrospective data analysis, the new reference

value can be estimated by µ0 +σ[k +S
H

(i)/N
H

(i)], if the new BMD values

are greater than the reference value, or by µ0 − σ[k + S
H

(i)/N
H

(i)] when

the new BMD values are smaller than the reference value. This results in a

new µ0 after the 60th scan of 1.040 mg/cm2.

Graphical presentation of the CUSUM chart was shown in Fig. 3. In

some senses, it is easier to review the Table 7 than the chart for identifying

change points.

A separate CUSUM chart can be constructed for a one-sided change

in variance. The one-sided variance chart was constructed according
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Table 7. CUSUM table (from 13 March 1989 to 15 May 1989).

i Date Xi µ0 σ
Xi−µ0

σ
− 0.5 SH(i) NH(i) µ0−Xi

σ
− 0.5 SL(i) NL(i)

(0.5%µ0
)

41 03/13/89 1.039 1.033 0.00517 0.65 0.65 1 −1.65 0.00 0

42 03/15/89 1.039 1.033 0.00517 0.65 1.29 2 −1.65 0.00 0

43 03/21/89 1.029 1.033 0.00517 −1.29 0.00 3 0.29 0.29 1

44 03/22/89 1.036 1.033 0.00517 0.07 0.07 4 −1.07 0.00 0

45 03/23/89 1.030 1.033 0.00517 −1.10 0.00 0 0.10 0.10 1

46 03/27/89 1.033 1.033 0.00517 −0.52 0.00 0 −0.48 0.00 0

47 03/28/89 1.036 1.033 0.00517 0.07 0.07 1 −1.07 0.00 0

48 03/29/89 1.038 1.033 0.00517 0.45 0.52 2 −1.45 0.00 0

49 03/30/89 1.036 1.033 0.00517 0.07 0.58 3 −1.07 0.00 0

50 04/03/89 1.033 1.033 0.00517 −0.52 0.07 4 −0.48 0.00 0

51 04/04/89 1.036 1.033 0.00517 0.07 0.13 5 −1.07 0.00 0

52 04/05/89 1.034 1.033 0.00517 −0.32 0.00 0 −0.68 0.00 0

53 04/06/89 1.029 1.033 0.00517 −1.29 0.00 0 0.29 0.29 1

54 04/07/89 1.033 1.033 0.00517 −0.52 0.00 0 −0.48 0.00 0

55 04/10/89 1.037 1.033 0.00517 0.26 0.26 1 −1.26 0.00 0

56 04/14/89 1.042 1.033 0.00517 1.23 1.49 2 −2.23 0.00 0

57 04/17/89 1.044 1.033 0.00517 1.61 3.10 3 −2.61 0.00 0

58 04/18/89 1.041 1.033 0.00517 1.03 4.13 4 −2.03 0.00 0

59 04/19/89 1.040 1.033 0.00517 0.84 4.97 5 −1.84 0.00 0

60 04/20/89 1.036 1.033 0.00517 0.07 5.04 6 −1.08 0.00 0
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Table 7. Continued.

i Date Xi µ0 σ
Xi−µ0

σ
− 0.5 SH(i) NH(i) µ0−Xi

σ
− 0.5 SL(i) NL(i)

(0.5%µ0
)

61 04/28/89 1.039 1.040 0.00520 −0.69 0.00 0 −0.31 0.00 0

62 05/01/89 1.035 1.040 0.00520 −1.46 0.00 0 0.46 0.46 1

63 05/02/89 1.047 1.040 0.00520 0.85 0.85 1 −1.85 0.00 0

64 05/03/89 1.028 1.040 0.00520 −2.81 0.00 0 1.81 1.81 1

65 05/04/89 1.035 1.040 0.00520 −1.46 0.00 0 0.46 2.27 2

66 05/05/89 1.038 1.040 0.00520 −0.88 0.00 0 −0.12 2.15 3

67 05/09/89 1.031 1.040 0.00520 −2.23 0.00 0 1.23 3.38 4

68 05/10/89 1.041 1.040 0.00520 −0.31 0.00 0 −0.69 2.69 5

69 05/12/89 1.043 1.040 0.00520 0.08 0.08 1 −1.08 1.62 6

70 05/15/89 1.034 1.040 0.00520 −1.65 0.00 0 0.65 2.27 7
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Scan Date

03/13/1989 03/27/1989 04/10/1989 04/24/1989 05/08/1989

QC BMD

µ
µ+0.5σ

µ−0.5σ

SH(di)

SL(di)

0

0

5

5

Figure 3. CUSUM Chart for QC Data in Example 3

Fig. 3. CUSM chart for QC data in Example 3.

to Ryan.39 In this approach, the observed difference of two successive

scans X
i
− X

i−1 was transformed to Z
i

= {|[(X
i
− X

i−1)/
√

2σ

2|1/2 −

0.82218}/0.34914, which approximately follows a standard normal distri-

bution N(0, 1). For the variance chart, we selected k = 0.75 to reduce the

number of alarms due to single outliers. When an alarm for a change in

variance is identified, we will investigate the causes of the alarm and may

need to recalibrate the machine.

Table 8 is a variance chart for Example 3. The table has calculated

values of Z
i
. Since Z

i
follows a standard normal distribution, the upper

side CUSUM for variance is S
H

(i) = max[0, Z
i
− 0.75 + S

H
(i − 1)],

which is given in the eighth column. As before, N
H

(i) indicates when a

positive cumulative sum occurs and is useful for finding the assignable

causes. The graphic presentation is similar to Fig. 3 and is not presented

here.

The general procedure for deriving the algebraic boundaries of the

CUSUM chart is given in Montgomery35 and Rice39 and theoretical com-

parisons of Shewhart and CUSUM can be found in both books.

The V-mask chart is another form of CUSUM chart and is essentially

the same as the Tabular CUSUM.35,40
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Table 8. CUSUM table for change of variance for Example 3.

i Date Xi Xi − Xi−1 σ(0.5%µ0
) Zi Zi − 0.75 SH(i) NH(i)

55 04/10/89 1.037 0.004 0.00517 −0.24 −0.99 0.000 0

56 04/14/89 1.042 0.005 0.00517 0.01 −0.74 0.000 0

57 04/17/89 1.044 0.002 0.00517 −0.86 −1.61 0.000 0

58 04/18/89 1.041 −0.003 0.00517 −0.52 −1.27 0.000 0

59 04/19/89 1.040 −0.001 0.00517 −1.30 −2.05 0.000 0

60 04/20/89 1.036 −0.004 0.00517 −0.24 −0.99 0.000 0

61 04/28/89 1.039 0.003 0.00520 −0.52 −1.27 0.000 0

62 05/01/89 1.035 −0.004 0.00520 −0.24 −0.99 0.000 0

63 05/02/89 1.047 0.012 0.00520 1.30 0.55 0.554 1

64 05/03/89 1.028 −0.019 0.00520 2.25 1.50 2.053 2

65 05/04/89 1.035 0.007 0.00520 0.44 −0.31 1.742 3

66 05/05/89 1.038 0.003 0.00520 −0.53 −1.28 0.467 4

67 05/09/89 1.031 −0.007 0.00520 0.44 −0.31 0.156 5

68 05/10/89 1.041 0.010 0.00520 0.99 0.24 0.391 6

69 05/12/89 1.043 0.002 0.00520 −0.86 −1.61 0.000 0

70 05/15/89 1.034 −0.009 0.00520 0.81 0.06 0.060 1

3.5. Comparison of statistical process control charts in

osteoporosis studies

Lu et al.34 compared several statistical process control procedures and their

applications to monitoring DXA scanners based on daily scans of a Hologic

spine phantom. The comparisons were based on their results on longitudinal

quality control data from 5 clinical trial sites as well as simulation studies.

They concluded that visual inspection is relatively subjective and depends

on the operator’s experience and alertness. The regular Shewhart chart with

sensitizing rules has a high false alarm rate. The Shewhart chart with sensi-

tizing rules and an additional filter of clinically insignificant mean changes

has the lowest false alarm rate but relatively low sensitivity. This method

does not require a lot of statistics and can be easily applied to clinical

study sites. The CUSUM approach has the best combination of sensitivity,

specificity, and identification of the time and magnitude of change. It is

recommended for use in quality control centers in clinical trials, especially if

patient data must be recalculated to adjust for change points.41 Combining

a moving average chart and a moving standard deviation chart comes closest

to the performance of the CUSUM method as a quality control procedure

for monitoring DXA scanner performance.
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3.6. Other charts

In all the above procedures, we assumed that there is no autocorrelation

between consecutive measurements. This is rarely true for longitudinal

quality control for radiological equipment. The effects of such an assumption

on the use of statistical process control charts and their decision structures

are rather debatable. At one extreme, Wheeler42 argues that the usual

control limits are contaminated “only when the autocorrelation becomes

excessive (say 0.80 or larger).” He concludes that “one need not be overly

concerned about the effects of autocorrelation upon the control chart.” Our

personal experience with Shewhart or CUSUM charts and DXA quality

control has been positive. This does not preclude autocorrelation from being

a problem for other applications. Johnson and Bagshaw43 concluded that

the problem is potentially quite serious. Strike suggested “clever use” of

CUSUMs in laboratory medicine, such as process control for assays.22

Statistical approaches for dealing with autocorrelation are to construct

process charts based on residuals after removing the autocorrelation or the

use of an exponentially weighted moving-average (EWMA) control chart.35

EWMA is a flexible approach to statistical process control applications.

When applied to uncorrelated data, it is a good alternative to the CUSUM

chart. Applied to autocorrelated data, it can be adapted to form a control

chart that eliminates the excessive false alarm problem associated with

traditional control charts. Details of EWMA can be found in most books

on quality control.35,39

While all the statistical process control charts presented here are for

univariate continuous measurements, there are other types of charts for

proportions and rates,44,45 and other quality control and improvement

techniques from multivariate approaches.35,46

4. Assessment of Agreement

In quality control for clinical trials, we must always assess the agree-

ment of measurements. For example, during a longitudinal osteoporosis

trial, a study site might upgrade its DXA machine. Because the change of

BMD from baseline is the key measurement, we must be certain that the

BMD values measured by the old and new machines are equivalent or in

agreement. Also in clinical trials that require a radiologist’s assessment of

outcomes, we must be certain that readings from different radiologists are

the same, and that readings at the beginning and the end of the study are

similar. All these require assessment of agreement.
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After a DXA scanner upgrade, multiple phantoms scans should be per-

formed, and if possible, a group of volunteers should be scanned on both

the old and new devices. If human data is available, it can be used data to

assess the agreement rather than phantom data. We hope the volunteers

present a range of BMD wide enough to cover the spectrum of clinical

uses. Before upgrading a machine that is being used in a clinical trial, the

site must first inform the trial sponsors and quality assurance centers for

their approval and must rely on manufacturers to assure proper installation

and calibration. The site must maintain proper documentation for machine

upgrades.

Assessment of inter-reader agreement among radiologists in a clinical

trial and intra-reader longitudinal consistency during a trial, normally re-

quires group training before the trial starts. A database of representative

images is assembled into a database. Potential readers for the study read the

images together and discuss the grading criteria. Only trained radiologists

can be readers. The group training should be documented. After training,

inter-reader agreement should be assessed. If the agreement does not satisfy

the requirements of the sponsors or protocols, the readers will be re-trained

and a new set of test cases used to test for agreement. The trial cannot

start until reader agreement reaches the pre-specified requirements. During

the trial, the radiologists are required to re-read the test sets periodically to

assess the agreement of their current readings with their baseline readings.

This is necessary to assure longitudinal consistency. All tests for reader

agreement should be documented and archived for auditing purposes.

Evaluation of agreement is also important for other purposes, such as

validation of diagnostic methods or radiological devices. In these cases, a

gold standard will be selected and validation is performed to assure the new

measurements agree with the gold standard.

4.1. Association versus agreement

The concepts of agreement and association are related but different. Agree-

ment means interchangeability of two measurements. In other words, a pa-

tient’s BMD should be the same whether measured on an old DXA scanner

or a new one; and the spine fracture grade of a vertebra should be the same

regardless by whom or when it is read. An association, on the other hand,

suggests that two machines or two readers tend to agree in the same di-

rections. In other words, for two patients with different BMD values, both

DXA machines will find the same lower and higher BMD subjects but their

BMD measurements can be different.
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The best example of the difference between agreement and association

is the correlation coefficient of two continuous variables.47,48 A correlation

coefficient can apply to any two continuous variables regardless of their

scales, such as height and weight. Even if there is a high association between

height and weight, they are not interchangeable because they measure com-

pletely different things. Even when X and Y are two continuous variables

that measure the same physical properties in the same units, an associa-

tion still cannot indicate agreement. In fact, cor(X, Y ) = cor(a + bX, Y ).

Thus, the correlation is invariant for a shift of mean or a change of scale.

Further, the estimation of the correlation depends on the range of the true

quantity in the sample: the wider the range, the higher the correlation coef-

ficient. Also, the null hypothesis in testing for a correlation coefficient is the

more independent of two variables, which is not relevant to the agreement.

Therefore, the use of correlation to assess agreement is inappropriate. On

the other hand, a high correlation of two continuous variables in the same

scale suggests that it is possible to calibrate variables so that they agree

with each other.

4.2. Assessment of agreement of two continuous variables

As discussed above, only when two variables measure the same physical

property using the same units can they be assessed for agreement. Let

Y1 and Y2 be such continuous variables that follow normal distributions

N(µ
Y1

, σ

2

Y1
) and N(µ

Y2
, σ

2

Y2
). They are measured from the same subjects.

The correlation coefficient between Y1 and Y2 is ρ. Let D = Y1 − Y2 and

A = (Y1+Y2)/2. We want to perform a regression analysis of D = α+βA+ε.

We are interested in α = β = 0.47

It is easy to verify that

β = cov(D, A)/σ

2

A

= 0.5(σ2

Y1
− σ

2

Y2
)/(σ2

Y1
− σ

2

Y2
+ 2ρσ

Y1
σ

Y2
) , (22)

and

α = (µ
Y1
− µ

Y2
)−

µ
Y1

+ µ
Y2

2
β . (23)

Therefore, α = β = 0 implies that µ
Y1

= µ
Y2

and σ
Y1

= σ
Y2

, i.e., the two

measurements have the same distribution parameters.

Bland and Altman47 further suggested plotting the difference D against

average A and calculating the standard deviation of D (σ
D

). With 95%

confidence, the differences between paired data are between ±2σ
D

. If this

σ
D

is less than or equal to the precision errors of Y1 and Y2, then these two
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measurements are exchangeable and therefore, equivalent. Also, if σ
D

/Ā×

100% is less than the CVs for Y1 and Y2, they should be equivalent. Here

we use a bar to denote sample means.

Noting that both D and A are random variables, Bartko49 proposed a

bivariate confidence ellipse for the Bland-Altman plot. The equation of the

95% ellipse is

(A− Ā)2/σ

2

A

− 2r(A− Ā)(D − D̄)2/σ
A
σ

D
+ (D − D̄)2/σ

2

D

= q
χ

2 (0.95, 2)(1− r

2) . (24)

Here, q
χ

2(0.95, 2) = 5.991 is the 95% quantile of the χ

2-distribution with

2 degrees of freedom and r is the sample correlation coefficient of D and A.

The hypothesis α = β = 0 can be tested using the Bradley-Blackwood

procedure.50 The test statistic is

F = (n− 2)

(

∑

n

i=1
D

2

i

−
∑

n

i=1
(D

i
− α̂− β̂A

i
)2
)

(

2
∑

n

i=1
(D

i
− α̂− β̂A

i
)2
) ∼ F (2, n− 2) , (25)

which simultaneously tests for the zero intercept and slope.

Table 9 shows a dataset of AP Spine BMD (mg/cm2) from 10 normal

volunteers measured on three different DXA scanners. We are interested in

the equivalence of Scanner 1 and the other two scanners.

As shown in Table 9, we can accept the null hypothesis that there is

no difference in means and standard deviations between Scanners 1 and

2 by the Bradley-Blackwood test. There is, however, a significant differ-

ence between Scanners 1 and 3. Further examination of the data shows

that Scanners 1 and 2 have different standard deviations. Using Bland and

Altman’s method, we can plot the comparison of Scanners 1 versus 2 and

Scanners 1 versus 3 (Fig. 4). The dashed line shows that the 95% confi-

dence interval is the most important measurement of these figures. Even

though there is a significant non-zero intercept or slope in the Bland-Altman

regression, we may still be able to treat the two measurements as inter-

changeable if the variation of differences is less than the in vivo short-term

precision error. The 95% confidence ellipse of a Bland-Altman plot is useful

for indicating the differences between sample variances.

A bivariate normal distribution has 5 parameters: two means, two

standard deviations, and a correlation coefficient. The Bland-Altman

regression compares four of the five parameters. We can have two normal

random variables with the same mean and standard deviation but a nega-

tive correlation coefficient, such as Y and −Y , when mean Y is 0. Thus, the
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Table 9. AP spine BMD of 10 patients by three DXA scanners.

Observed BMD Data Comparison Scanners 1 and 2 Comparison Scanners 1 and 3

Subject Scanner 1 Scanner 2 Scanner 3 D1 A1 D2 A2

1 1.342 1.328 1.352 0.014 1.335 −0.010 1.347

2 1.303 1.312 1.317 −0.009 1.308 −0.014 1.310

3 1.093 1.100 1.078 −0.007 1.096 0.015 1.085

4 1.092 1.116 1.087 −0.024 1.104 0.005 1.089

5 1.215 1.215 1.216 0.000 1.215 −0.001 1.216

6 1.155 1.157 1.137 −0.002 1.156 0.018 1.146

7 1.125 1.117 1.097 0.008 1.121 0.028 1.111

8 1.434 1.437 1.447 −0.003 1.436 −0.013 1.441

9 1.230 1.225 1.231 0.005 1.228 −0.001 1.231

10 1.326 1.324 1.313 0.002 1.325 0.013 1.320

σD 0.0104 0.0141

Bradley-Blackwood Test F 0.6733 5.3645

p-value 0.5367 0.0333
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The dashed lines are the 95% confidence intervals for the differences between two
Scanners. The ellipses are the 95% bivariate confidence ellipses

Figure 4. Examples of Bland-Altman Plots for Equivalence of Three Scanners

Fig. 4. Examples of Bland-Altman plots for equivalence of 3 scanners. The dashed lines
are the 95% confidence intervals for the differences between two Scanners. The ellipses
are the 95% bivariate confidence ellipses.

Bland-Altman regression alone is inadequate for evaluating agreement. We

still need to examine the correlation coefficient between the two measure-

ments, in addition to the Bland-Altman regression. Only a high correlation

with a zero intercept and slope in the Bland-Altman regression can suggest

that the two measurements are equivalent.
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4.3. Intraclass correlation coefficient

An alternative measurement for agreement is the intraclass correlation

coefficient (ICC),51 which is simply the percentage of between readers/

techniques variance in the total variance of the sum of between and

within reader/technique variations. More specifically, we assume that Y
ij

=

µ+p
i
+r

j
+(pr)

ij
+ε

ij
, with i representing the ith individual (i = 1, . . . , N)

and j representing the jth reader/devices (j = 1, . . . , K). Here, Y
ij

is the

observation of the ith individual measured by jth reader/scanner/machine;

µ is the overall effect common to all observations; p
i
is the random patient

effect; r
j

is the random reader/device effect; (pr)
ij

is the interaction be-

tween patient and reader/device; and ε
ij

is the measurement error. Here,

we assume that p
i
and r

j
are independent and follow normal distributions

N(0, σ

2

P

) and N(0, σ

2

R

), respectively, and ε
ij

is independent of p
i

and r
j

and follows N(0, σ

2
e

). Without duplicate observations, the interaction term

(pr)
ij

cannot be separated from measurement error and can be dropped.

An intraclass correlation coefficient is defined as

ICC =
σ

2

P

σ

2

P

+ σ

2

R

+ σ

2
e

. (26)

Thus, a high ICC means less difference between two readers as well as less

measurement error. Lee et al. suggested a cut-off value of 0.75 beyond which

the readers or measurement devices are considered to be in agreement.51

The ICC can be estimated based on the output of an ANOVA table of

the two-way mixed model as the following.

ρICC =
N(MSB−MSE)

N MSB + K MSR + (KN −K −N)MSE
. (27)

Here, MSB, MSR, and MSE are the mean squared between subject, between

reader/device, and error respectively.

Fleiss and Shrout52 derived an approximate formula for the confidence

interval of ρICC. Let F
U

and F
L

be the upper and lower 100(1 − α/2)%

percentiles, respectively from F distribution with degrees of freedom (N−1)

and v, where

v =
(K − 1)(N − 1){KρICCMSR/MSE + N [1 + (K − 1)ρICC]−KρICC}

2

(N − 1)K2
ρ

2

ICC
MSR2

/MSE2+ {N [1 + (K − 1)ρICC]−KρICC}2
.

(28)
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Table 10. ANOVA Tables and ICC for Data in Example 4.

Agreement for Scanners 1 and 2 Scanners 1 and 3 All 3 Scanners

Source d.f MS d.f MS d.f MS

Between-subject 9 MSB = σ2

2
+ Kσ2

P
= 0.02660 9 MSB = 0.02992 9 MSB = 0.04278

Between-scanner 1 MSR = σ
2

2
+ Nσ

2

R
= 0.00001 1 MSR = 0.00008 2 MSR = 0.00008

Residual 9 MSE = σ
2

2
= 0.00005 9 MSE = 0.00010 18 MSE = 0.00010

Total 19 19 29

v 9.3622 9.9615 19.9237

ICC and 95% C.I. 0.9963 (0.9865, 0.9991) 0.9935 (0.9755, 0.9983) 0.9931 (0.9807, 0.9981)
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The approximate upper and lower bounds, ρ
U

and ρ
L
, respectively, for the

100(1− α)% confidence bounds of ρICC are given as following.

ρ
U

=
N(MSB− F

L
MSE)

F
L
[K MSR + (NK − L−N)MSE] + N MSB

(29)

and

ρ
L

=
N(MSB− F

U
MSE)

F
U

[K MSR + (NK − L−N)MSE] + N MSB
. (30)

Table 10 shows ANOVA tables for comparison of scanners in Example 4,

and the corresponding intraclass correlation coefficients.

It is clear from this example that ICC is less sensitive to agreement

between two scanners. The ICC for Scanners 1 and 3 is much higher but

the Bland-Altman regression shows significant disagreement. Bland and

Altman53 list other deficiencies of ICC for evaluation of agreement, includ-

ing its dependence on sample variations. On the other hand, it is easier

to use ICC to evaluate agreement among three or more readers or devices.

Bartko49 developed an altered version of ICC, which is simplified and has

an exact formula for confidence intervals.

4.4. Kappa statistics for agreement of categorical variables

Like continuous measurements, agreement between two categorical vari-

ables is only meaningful when the two categorical variables have the same

biological or physical meanings. Agreement of categorical variables is most

commonly applied to qualitative evaluations of health or disease status by

two readers or by the same reader at two different sessions, which are re-

ferred as inter-reader and intra-reader agreement respectively. In clinical

studies using qualitative assessments by multiple readers, we hope that

all readers will produce consistent readings, and that their assessments

will remain consistent during the study period. Thus, periodic review of

inter- and intra-reader agreement should be a part of quality control of

clinical trials. If the readers do disagree with each other, re-training is

necessary.

The simplest way to display categorical variables of two readers is a

2 × 2 table, displayed in Table 11. Here, X1 and X2 are results from

two readers, with 0 indicating healthy and 1 indicating diseased, and P
ij

representing the probability of the event. There are many ways to mea-

sure the agreement of two readers. The probability of agreement, i.e.,

P (X1 = X2) = P00 + P11 is the most direct measurement. Analysis of the
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Table 11. Joint distribution of outcomes of two binary variables.

X2

Health (X2 = 0) Diseased (X2 = 1) Total

X1 Health (X1 = 0) P00 P01 P0+

Diseased (X1 = 1) P10 P11 P1+

Total P+0 P+1 1

probability of agreement is just like analysis of binary probability. Sample

size calculations for reader agreement based on duplicated readings were

presented by Freedman, Parmar, and Baker.54

The drawback of the probability of agreement is a positive chance of

agreement even when the two readers are independent. As a result, Cohen

proposed the use of Kappa statistics,55 which offer a means of correcting

measurement of agreement, defined as the following.

κ =
P00 + P11 − P0+P+0 − P1+P+1

1− P0+P+0 − P1+P+1

=
P

O
− P

E

1− P
E

. (31)

Here, P
O

= P00 + P11 is the observed probability of agreement and P
E

=

P0+P+0 + P1+P+1 is the probability of agreement due to changes when X1

and X2 are independent. κ can reach 100% if there is perfect agreement and

can be as low as −P
E

/(1−P
E

), when X1 and X2 are completely different.

If we use n
ij

to denote the observed number of subjects in each category

of Table 11, the maximum likelihood estimates for P
ij

, P
i+ and P+j

are

p̂
ij

= n
ij

/n, p̂+j
= n

i+/n and p̂+j
= n+j

/n, respectively, with n as the

total number of subjects. Through algebra operations, we can estimate κ

by substituting the maximum likelihood estimates of the probabilities into

Eq. (31).

κ̂ =
2(n00n11 − n01n10)

n0+n+1 + n+0n1+

. (32)

There are several methods for calculating the sample variations for MLE

estimates in Eq. (32). Using the delta method, Fleiss et al.56 derived a large

sample variance of the estimator.

var(κ̂) =
1

n(1− P0+P+1 − P1+P1+)2

×

{

1
∑

i=0

P
ii
[1− 2(P

i+ + P+i
)(1− κ)]
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+ (1− κ)2
1
∑

i=0

1
∑

j=0

P
ij

(P+i
+ P

j+)2

− [κ− (P0+P+0 + P1+P+1)(1− κ)]2

}

. (33)

Alternatively, Kraemer57 and Fleiss and Davies58 proposed the use of

jackknife technique to calculate the variance of the estimated κ. Let κ̂
ij

be the MLE of κ when one observation in the (i, j)th cell is excluded, and

J
ij

(κ̂) = nκ̂− (n− 1)κ̂
ij

. The jackknife estimator of κ is given by

κ̂
J

=

1
∑

i=0

1
∑

j=0

n
ij

J
ij

(κ̂)/n , (34)

which should be a less biased estimator than κ̂. The jackknife variance can

be estimated by

var(κ̂
J
) =

1
∑

i=0

1
∑

j=0

n
ij

[J
ij

(κ̂)− κ̂
J
]2/[n(n− 1)] . (35)

Conditioned on marginal distributions of the 2 × 2 table in Table 11,

Garner59 proposed the following simpler formula:

var(κ̂) =
4

n

2(1− p̂0+p̂+0 − p̂1+p̂+1)2(
∑

1

i=0

∑

1

j=0
1/(n

ij
+ 1))

. (36)

Although all these formulas are asymptotically equivalent, there are still

differences when using them for small samples. A simulation study60 com-

pared the different estimates for κ̂ and gave guidance in methods to estimate

and construct confidence intervals for Cohen’s κ̂ for small samples as indi-

cated in Table 12. In this table, the “(” and “)” indicate the open-ends of an

interval and “[” and “]” the closed ends of an interval. Landis and Koch61

provided guidelines for interpreting kappa values as the level of agreement

among readers. Prevalence was defined as (2n11 + n10 + n01)/(2n).62 The

last column indicates the preferred equations for estimating the sample

variance.

The use of Kappa statistics in quality control and quality assurance is

mainly for estimation rather than hypothesis testing. We want to ensure

that the inter-reader agreement is above an acceptable pre-specified level

before we start the study. We also want to be certain that the longitudinal

intra-reader Kappa statistics are beyond that given level. However, the

subject of Kappa applications is very broad and goes far beyond quality
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Table 12. Guidance in selecting a method for constructing confidence intervals for
Cohen’s κ̂.60

Kappa (κ̂) Agreement61 Prevalence62 Sample Size Equations

[0, 0.2) Slight (0.1, 0.9) n ≥ 20 (33)

[0.2, 0.4) Fair [0.1, 0.9] n ≥ 20 (33) or (35)

[0.4, 0.6) Moderate (0.2, 0.8) 20 ≤ n < 40 (36)

(0, 0.2] or [0.8, 1) n ≥ 40 (35)

[0.6, 1) Substantial to (0.1, 0.9) n ≥ 20 (36)

almost perfect

assurance. The extensive literature on Kappa statistics includes agreement

for ordinal or multinomial data;63–66 for case-control studies;67 for multiple

readers or correlated samples;68–70 and for using logistic regression models

to adjust for the effects of covariates on Kappa statistics.71 These topics are

far beyond the scope of this chapter; interested readers should investigate

the literature.

4.5. Log-linear models for agreement of categorical

variables

Log-linear models can express agreement in terms of components, such as

chance agreement and beyond-chance agreement. They can also display

patterns of agreement among several observers, or compare patterns of

agreement when subjects are stratified by values of a covariate.72 The later

is particularly useful for quality improvement to identify factors that have

an affect on reader agreement.

Let {m
ij

= nP
ij
} denote expected frequencies for ratings (i, j) of

n subjects by two observers A and B. Chance agreement, or statistical

independence of the ratings, has log-linear model representation

log m
ij

= µ + λ

A

i

+ λ

B

j

. (37)

An extension of this independent model is the quasi-independent model73

log m
ij

= µ + λ

A

i

+ λ

B

j

+ δ
i
I(i=j) , (38)

where the indicator I(i=j) equals 1 when i = j and 0 otherwise. Constrains

on the model parameters are
∑

i

λ

A

i

=
∑

j

λ

B

j

= 0. Conditional on disagree-

ment by the observers, the rating by A is statistically independent of rating

by B. When δ
i
> 0, more agreements regarding outcome i occur than would

be expected by chance. The model is easy to fit by most statistical software.
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When we assume a constant δ
i
= δ, a Kappa-like index of chance-corrected

agreement74 is

κ
A

= (P00 + P11)(1− e

−δ) = (P00 + P11)(1− 1
√

OR) . (39)

Graham extended above model to allow binary covariates.75 Let X be

the binary covariate with value 0 and 1. Let {m
ijk

= nP
ij

(X = k)} be the

frequencies of observing (i, j) by readers A and B when covariate X equals

k. The extended model is

log m
ijk

= µ+λ

A

i

+λ

B

j

+λ

X

k

+λ

AX

ik

+λ

BX

jk

+δ

AB

I(i=j) +δ

ABX

k

I(i=j) . (40)

Here, terms with single superscripts and subscripts correspond to main

effects. Terms with double superscripts and subscripts represent partial

associations between the superscripted variables, controlling for the variable

omitted from the superscript. As with other log-linear models, we impose

the constraints of zero sums on the main effects and partial associations,

respectively. In this model, δ

AB represents the overall agreement between

two readers and δ

ABX

k

represents the additional chance corrected agreement

associated with covariate X when X = k. A model constraint is zero sum

of δ

ABX

k

. This model readily extends to multiple covariate situations, and

estimates can be obtained using the SAS CATMOD procedure.

In model (40), δ

ABX

k

is an interpretation of the estimates of the ave-

rage of the two conditional agreement log odds ratios, log[(m
iik

/m
jik

)/

(m
ii0/m

ji0)] and log[(m
jjk

/m
ijk

)/(m
jj0/m

ij0)], for any pair of distinct cat-

egories i and j. In his paper,75 Graham applied this model to a study of

the effects of age, sex, and proxy type on agreement between the primary

and proxy respondents regarding the primary respondent’s participation in

vigorous leisure time activity.

4.6. Latent class models

In a latent class analysis of observer agreement, it is assumed that the

ratings of observers appear related because they are, in fact, related to some

latent classification of items that explains all associations in the observed

agreement table. For example, we can assume that there are three types of

subjects in the study population: those that all readers classify as positive

or negative, and those inconclusive subjects that are rated as positives or

negatives by chance by each reader.76 Let K be the prevalence of those

“agreements beyond chance” and p be the probability of conclusive items

belonging to the positive category. Let π be the probability of positively
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Table 13. Probability in a 2 × 2 table with latent classification model.

Rater A Rater B

Positive Negative Total

Positive Kp + (1 − K)π2 (1 − K)(1 − π)π Kp + (1 − K)π

Negative (1 − K)(1 − π
)
π K(1 − p) + (1 − K)(1 − π)2 K(1 − p) + (1 − K)(1 − π)

Total Kp + (1 − K)π K(1 − p) + (1 − K)(1 − π) 1

rating for inconclusive subjects. With the assumption of independent rating

by the two readers for inconclusive subjects, the following Table 13 gives

the probability distribution of the 2× 2 table.

Thus, if p = π, K is the Cohen’s Kappa statistics. If p/(1 − p) =

π

2
/(1− π)2, K equals Aickin’s Kappa in Eq. (39).

Latent classification models have many uses.76 Baker, Freedman, and

Parmar77 proposed a model with duplicate observations that allows a

separation of intra- and inter-reader agreement simultaneously for binary

measures.

5. Clibration and Standardization

The most important mission of quality assurance is to prevent measurement

errors from exceeding a pre-specified level. For this purpose, we evaluate

the performance of instruments to ensure that their precision and accuracy

are acceptable for clinical diagnosis or clinical monitoring. Once we have

chosen the particular devices or methods to measure study parameters, we

want to be sure that they are equivalent to each other. During the study,

we use the quality process control charts to monitor whether the instru-

ments are still providing the required precision and/or whether the readers

are giving consistent readings. With each step, we may still find disagree-

ments between instruments or readers. Once we have chosen one of them as

the reference standard, the process of assigning values for other instruments

or readers to correct their differences from the reference standard is called

calibration.

In the example of multi-center studies, we normally choose the coor-

dinating center as the reference standard. Thus, any site/machine that

produces readings or measurements that are different from the reference

standards will be calibrated. This is called cross-calibration in the literature

on quality control of clinical trials.41 Although mathematically any site can

be chosen as the reference standard, in practice, selection of a reference
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standard should take into consideration the qualifications and quality

control history of the selected site. Sometimes, multiple reference stan-

dards are needed. For example, in a clinical trial of osteoporosis that uses

DXA scanners from different manufacturers, one option is to select reference

standards for each manufacturer and then calibrate devices at the other

study sites to the corresponding reference standards. The next step of

calibration is to standardize among the reference standards.

Calibration can also occur for a single radiological machine. In the longi-

tudinal quality control process mentioned in Sec. 3, a radiological machine

was compared to a standard defined by a phantom. We normally look for

the mean and variance changes in reference to the baseline value. One may

also be interested in scale differences, i.e. changes in measurement unit. For

DXA scanners, phantoms with different linear scaled densities can be used

to serve as reference standard and calibration of a scanner may be needed

if there are clinically significant deviations from that standard.

5.1. Calibration of measurements to a standard

To calibrate radiological equipment to the chosen standard, we need to

measure the standard. One method is to measure phantoms with known

theoretical measurement values.32 Another method is to measure a set of

phantoms or a group of sampled subjects to examine the differences between

the reference standard device and all other study instruments, referred as

cross-calibration in multi-center clinical trials.7 In all cases, we observe

pairs of data (X
i
, Y

i
) with X

i
representing the reference standard and Y

i

representing measurement of the instrument to be calibrated.

The practical question is how to assign a correct X (standard value)

based on measurement Y . A näıve solution is to perform a (linear or non-

linear) regression of X
i
on Y

i
and use that regression model to correct future

readings of Y . This solution may be adequate, but it has statistical flaws.

When we choose the standard, we assume that the standard should

be accurate, that is its measurement error can be ignored. Thus, the

measurement error should be associated only with Y not X . A proper

linear relationship should be Y = α + βX + ε, with α and β as regression

parameters and ε as the random measurement error for Y . These regression

parameters α and β are also referred as constant bias and relative (scale)

bias.

Maximum likelihood estimates of regression parameters, denoted as α̂

and β̂, and their covariance matrix as well as model RMSE are easily
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available by many statistical software packages. Based on these estimates,

for a given observation of y, we can calibrate it to the standard by

x̂ = (y − α̂)/β̂.

The predicted value x̂ is a biased estimate of true value x except when

x = X̄.

E(x̂|y) = x + [S2

e

(x − X̄)]/S
XX

β̂

2) . (41)

Here, S
e

is the RMSE of the regression line and X̄ and S
XX

are the

sample mean and sample variance of X
i
’s used to derive calibrations. This

is because x̂ is estimated by ratio of correlated normal variables. In most

cases, such bias can be ignored for large ˆ
beta. More specifically, when

g = (t2
n−2,0.05S

2

e

)/(S
XX

β̂

2) < 0.05 . (42)

When g > 0.2, we are not able to calibrate Y to the standard X with

acceptable accuracy.22 Details of the 95% confidence interval of calibrated

x̂ as well as simultaneous tolerance interval for it can be found in the same

reference.

When we allow measurement errors for standard X , we are dealing with

the calibration problem as a regression with measurement errors, and the

regression and calibration problems are equivalent mathematically. Rear-

rangement of the linear regression gives the following relationship between

X and Y :

X = γ0 + γ1Y + δ . (43)

The difference between this calibration model and regular regression

model is that Y is a random variable with Y = U +ε. This regression is not

always identifiable unless under certain conditions.78 When we assume that

the measurement error ε and underlying true U are independent and ε has

mean zero and a known variance σ

2
ε

(such as estimated through repeated

measurements), the calibration formula is

x̂ = µ
X

+ γ̂1σ
2

Y

/(σ2

Y

−σ

2

ε

)(y−µ
Y

) = µ
X

+ γ̂1(σ
2

U

−σ

2

ε

)/σ

2

U

(y−µ
Y

) . (44)

Here, γ̂1 is the least squared estimate of slope based on observed Y with

measurement errors.

5.2. Comparative calibrations and latent structure models

Barnett79 first considered a model to assess “the relative calibration and

relative accuracies of a set of p instruments, each designed to measure the

same characteristic, on a common group of individuals.” It is common for
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several manufacturers to produce similar machines that measure the same

physical properties. For various reasons, these machines will not produce

identical measurements for the same subjects. Converting measurements

from different manufacturers is important for clinical studies to reduce

machine introduced variations improving study efficiency and facilitating

comparisons among different studies.

For the ith subject, let a vector Y

⇀

i
= (Y1i

, Y2i
, . . . , Y

pi
)T to denote the

measurements by p instruments for the subject. Here, superscript T repre-

sents “transpose.” Statistically, we assume that Y

⇀

i
measures the underlying

unobservable quantity X
i

from an unknown normal distribution N(µ, σ

2

0
).

The relationship between Y

⇀

i
and X

i
is that

Y

⇀

i
= a

⇀ + b

⇀

X
i
+ ε

i

⇀ (45)

with unknown regression parameters a

⇀ and a

⇀, and ε
i

⇀ as a p-dimensional

random measurement errors following N(0
⇀

, Σ).

The difference between this model and the regular calibration model

is that X
i

can be observed in a regular problem, while X
i

is unknown in

comparative calibration problems.80

The number of sufficient statistics based on observations of Y

⇀

i
is p means

and p(p + 1)/2 covariance matrix. The number of unknown parameters are

2 for distribution of X , 2p for regression coefficients, and p(p + 1)/2 for

the covariance matrix for measurement errors. Thus, for p < 3, compara-

tive calibration is unidentifiable. Even for p ≥ 3, we still need additional

assumptions to make the model identifiable.

Barnett79 assumed a1 = 0 and b1 = 1, and the covariant matrix of

measurement errors Σ as a diagonal matrix. He used moment estimates to

obtain MLE for the modal parameters. Other authors have studied similar

problems,81–84 The following EM algorithm is a shorter form of a more

extended model by Lu et al.85

Like Barnett, we assume that Σ is a diagonal matrix. When we do

not observe X
i
, the log-likelihood of our model is pretty complicated. The

log-likelihood function of observations Y

⇀

i
is

C −
p

2

n

∑

i=1

log(|b
⇀

b

⇀

T

σ

2

0 + Σ|]

−
1

2

n

∑

i=1

(Y
⇀

i
− a

⇀− b

⇀

µ0)
T (b

⇀

b

⇀

T

σ

2

0 + Σ)−1(Y
⇀

i
− a

⇀− b

⇀

µ0) . (46)

To make the model identifiable, we also impose linear constrains on regres-

sion parameters as l

⇀

T

a

⇀ = c1 and l

⇀

T

b

⇀

= c2. When l

⇀

= (1, 0, . . . , 0)T
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and c1 = c2 = 0, the model is similar to Barnett.79 When l

⇀

= (1, 1, 1)T ,

c1 = 0 and c2 = 2.912, the model is similar to Lu et al.84 While the log-

likelihood function is complicated, the likelihood function for known X
i

is

rather simple:

C −
p

2
log(|Σ|)−

1

2
log σ

2

0
−

1

2
(Y
⇀

i
− a

⇀− b

⇀

X
i
)T

×Σ−1(Y
⇀

i
− a

⇀− b

⇀

X
i
)−

(X
i
− µ0)

2

2σ

2

0

. (47)

Thus, we can treat X
i
as missing data and use the EM algorithm to derive

the MLE of model parameters. The EM algorithm has the following steps:

Step 0. Set the initial values of the model parameters a

⇀

, b

⇀

, Σ, µ0 and σ

2

0
.

Step 1. E-Step: Calculate the conditional expectation of the sufficient

statistics for the complete likelihood function. They are

V = var(X
i
|Y

⇀

i
, a

⇀

, b

⇀

, Σ, µ0, σ
2
0) = (b

⇀

T Σ−1
b

⇀

+ 1/σ

2
0)

−1
, (48)

E(X
i
|Y

⇀

i
, a

⇀

, b

⇀

, Σ, µ0, σ
2

0
) = µ0 + V b

⇀

T Σ−1(Y
⇀

i
− a

⇀− b

⇀

µ0) . (49)

Step 2. M-Step: Calculate the MLEs by replacing the conditional sufficient

statistics into the following MLE formulas.

ˆ
b

⇀

=
S

Y,X
− (λ1X̄ + λ

2)Σ−1
l

⇀

S
XX

, (50)

â

⇀ = Y

⇀

−
ˆ
b

⇀

X̄ − λ1Σ l

⇀

, (51)

Σ̂ =
1

n

n

∑

i=1

diag[(Y
⇀

i
− â

⇀−
ˆ
b

⇀

X
i
)(Y

⇀

i
− â

⇀−
ˆ
b

⇀

X
i
)T ] , (52)

µ̂0 = X̄ , (53)

σ̂

2

0
=

n

∑

i=1

(X
i
− µ̂0)

2
/n . (54)

Here, Y

⇀

and X̄ are the sample means for Y

⇀

i
and X

i
, respec-

tively; S
Y,X

= 1

n

∑

n

i=1
(X

i
− X̄) (Y

⇀

i
− Y

⇀

); and λ1 and λ2 are

the Lagrange-coefficients for conditional maximization with λ1 =

(l
⇀

Y

⇀

− c1 − c2X̄)/ l

⇀

T Σ l

⇀

and λ2 = [ l
⇀

T

S
Y,X

+ l

⇀

T

Y

⇀

X̄ − (c1 +

c2)X̄ − c2SX,X
]/ l

⇀

T Σ l

⇀

.

Step 3. Check the convergence of the unconditional log-likelihood function

and decide to stop or go back to Step 1.
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Based on the MLE, we can calibrate the unobserved underlying X

based on measures from any one instrument by inverse linear calibration.

Moreover, this model allows us to calibrate measures from instruments k

to l by the following formula:

Ŷ
i,l

= a
l
+ b

l
(Y

i,k
− a

k
)/b

k
. (55)

Here, subscript i indicates the ith subject and k, l indicate the instruments;

a
k
, a

l
, b

k
, and b

l
are the kth and lth components in the vectors a

⇀ and b

⇀

,

respectively.

A much simpler model is for p = 3, where the closed forms of MLEs

can be derived and asymptotic covariance of the MLEs can be obtained

explicitly.84 This model has been used for standardization of bone mineral

densities measured by three different manufacturers.84,86,87

5.3. Least square approach for comparative calibrations

Alternatively, we define Y

⇀′

i

= Y

⇀

i
− Y

⇀

and X

⇀

i
= G Y

⇀′

i

+ k. Here, k is a real

number and G is a p× p diagonal matrix, G = diag(g
j
) with g

j
≥ 0. If X

⇀

i

is the standard references for instruments, there should be no differences

between any pairs of its components. Let H be a p× p matrix

H =

















1 −1 0 · · · 0 0

0 1 −1 · · · 0 0

· · · · · · · · · · · · · · · · · ·

0 0 0 · · · 1 −1

−1 0 0 · · · 0 1

















.

Hui et al.88 proposed to find g
j
’s that minimize the differences between

components in vector X

⇀

i

88:

min

n

∑

i=1

X

⇀

T

i

H

T

HX

⇀

i
= min

n

∑

i=1

(Y
⇀

1 − Y

⇀

)T

G

T

H

T

HG(Y
⇀

i
− Y

⇀

) (56)

under constrains
∑

p

j=1
g

2

j

= p. Because of the quadratic constrains, the

solution for minimization Eq. (56) is not in a closed form. Symbolic pro-

gramming languages, such as Maple, can be used to calculate the numeric

solutions.

Like the latent structure models in the previous subsection, this model

needs two constraints in order to make the model identifiable. The constant

parameter k can be determined by a linear constraint as demonstrated in

Hui et al.88
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After we derive the solutions for g
j
’s, we can use the following formula

to calibrate values between instruments:

Y
i,j

= Ȳ
.,j

+ g
k
/g

j
(Y

i,k
− Ȳ

.,k
) . (57)

For p = 3, the calibration conversion formulas between instruments

are the same for the least square approach [Eq. (57)] and latent structure

model [Eq. (55)] if and only if the measurement errors of instruments in

latent structure model σ

2

j

are equal.84

6. Conclusions

Radiological instrument quality is important for both clinical diagnosis of

disease and clinical monitoring of patient changes. Quality assurance and

quality improvement need efforts of people who involve in the processes

of manufacturing, maintaining, and operating the equipment as well as

statisticians who involved in assessing the quality, monitoring the changes

in quality and identifying areas for quality improvement. In this chapter,

we have introduced some statistical concepts and methods that are com-

monly used in quality assurance of radiology studies. There are many other

materials and considerations that could not be covered because of the limi-

tation of the space. The methods discussed in this chapter have applications

beyond radiological studies and are relevant to most clinical studies. Quality

assurance and quality control is rather a practice than a theoretical discus-

sion. Successful quality assurance can have visible and immediate effects.

Statisticians should actively participate in quality assurance. While it is

important for clinicians and biomedical researchers to realize the impor-

tance of statistics in their quality control and quality assurance practice, it

is also important for biostatisticians to understand the subject issues and

communicate effectively statistical principles to scientists from different

backgrounds. The collaborations between statisticians and biomedical

researchers in other fields will not only benefit clinical researches but also

lead to new challenges for research and development of new statistical

methods.
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1. Introduction

Over the past decades, as pressures to control health care spending have

accelerated, the term “cost-effectiveness” has become increasingly into

common parlance. It is widely used by groups as disparate as the govern-

ment, the congress, the business community, managed-care organizations,

the pharmaceutical industry and the press.

The central purpose of cost-effectiveness analysis (CEA) is to compare

the relative value of different interventions in creating better health and/or

longer life. The results of such evaluations are typically summarized in a

cost-effectiveness ratio, where the denominator reflects the gain in health

from a candidate intervention (measured, for example, in term of years of

life gained, premature birth averted, sight years gained, symptom-free days

gained) and the numerator reflects the cost of obtaining the health gain.

A cost-effectiveness analysis provides information that can help decision

makers sort through alternatives and decide which one best serves their

programmatic and financial needs. Decision maker may be federal, state

or local. They may be in the private sector or the public sector. They

may control dollars or they may run programs. CEA provides a framework

within which decision makers may pose a range of questions.

Cost-effectiveness analyses furnish information that can be useful in a

variety of settings. For example, a managed-care organization might wish

to know the cost per low- birthweight birth averted as a consequence of a

prenatal outreach program. Or it might wish to take the question further
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and ask the cost of this program per year of life saved for its enrolled

population. Or, recognizing that programs that avert premature births may

not primarily save lives but rather avert disability over the lifetime of an

individual, it might want to know the cost of this intervention for each

quality-adjusted life year (QALY) gained. This latter question is addressed

by a particular type of CEA, some times termed “cost utility analysis,”

where adjustments for the value assigned to health-related quality of life

are built into the calculation.

As another example, a pharmaceutical manufacturer might wish to use

CEA in pricing and marketing a new cholesterol-lowering drug. It might ask

the question. How much does our medication cost per year of life gained

compare to a similar product manufactured by a different company? Or,

if the clinical trials show clinically insignificant changes in cholesterol level

between the two products but significantly decreased side effects associated

with the new drug, a drug purchaser or payer might wish then to calculate

the cost per quality-adjusted life year (QALY) gained in using the new

drug. An industry investigator might decide to extend the considerations

of the analysis and explore the cost per year of life or QALY gained when

comparing pharmaceutical treatment with surgical treatment for coronary

disease.

Or, an analysis of a state health department might wish to explore

different strategies for control of blood lead levels in the population. It might

choose to assess the cost-effectiveness of screening all children, compared

to screening only those thought to be at particular risk for elevated lead

levels by reason of housing or environment surrounding.

1.1. Worked examples

1.1.1. Bypass angioplasty revascularization investigation

Percutaneous transluminal coronary angioplastry was introduced in 1977

as a less invasive alternative to coronary-artery bypass surgery. Several

randomized clinical trials of angioplasty and bypass surgery have compared

the clinical outcomes of these procedures. The Bypass Angioplasty Revascu-

larization Investigation (BARI) was a large trial of angioplasty and bypass

surgery in US, which collected five years of follow-up data.

Mark A. Hlatky et al.8 conducted a study on a total 934 of the 1829

patients enrolled in the randomized BARI. Detailed data on quality of

life were collected annually, and economic data were collected quarterly.

They compared quality of life, employment, and medical care costs during
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five year of follow-up among patients treated with angioplasty or bypass

surgery. They found that on average, functional status, which was assessed

by scores on the Duke Activity Status Index, was improved more with

bypass surgery than with angioplasty in the first three years (p < 0.05),

whereas in other respects the quality of life was equivalent with either

method of revascularization. Patient in the angioplasty group returned to

work five weeks sooner than did patients in the surgery group (p < 0.001).

The cost of angioplasty was initially $11,234 lower than that of bypass

surgery (a 35% saving, p < 0.001), but higher subsequent costs for hos-

pitalization and medication reduced the saving to $2,644 at five years (a

5% savings, p = 0.047). The five-year cost of angioplasty was significantly

lower than that of surgery among patients with two-vessel disease ($52,930

versus $58,498, P < 0.05), but not among patients with three-vessel disease.

After five years of follow-up, surgery had an overall cost-effectiveness ratio

of $26,177 per year of life added, but unacceptable ratios of $100,000 or more

per year of life added could not be excluded (P = 0.13). Surgery appeared

particularly cost effective in treating patients with diabetes because of their

significantly improved survival.

1.1.2. Treatment of high blood cholesterol

In 1985, in response to the first evidence from a randomized controlled trial

that reducing cholesterol reduces the risk of death from heart disease,10

the US National Institutes of Health created the National Cholesterol

Education Program (NCEP). Three years later the NCEP published guide-

lines for the management of high blood cholesterol which recommended

that all adults have their cholesterol checked at least every 5 years and

that those with high levels (240 mg/dl) or higher), or borderline-high

levels (200–239 mg/dl) plus other risk factors, be tested further. It was

suggested that those whose low-density lipoproteins (LDL) levels were also

high should be treated by changes in diet or with cholesterol-lowering

drugs.11 It has been estimated that more than one-third of the adult

population requires dietary change and/or drugs when judged by these

criteria.15

Cost-effectiveness analyses done in the wake of the 1988 guideline

focused on the management of high blood cholesterol once detected. Both

lovastatin, a frequently prescribed drug, and dietary counseling were shown

to vary widely in cost-effectiveness depending on age and other risk factors

for heart disease.
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One study examined the use of lovastatin for people initially free of heart

disease and for those who had already suffered a heart attack.7 The authors

found that, for healthy people, saving a year of life in much more costly

among those with cholesterol as their only risk factor than it is for those with

several risk factors, even when cholesterol is very high; the cost ranged up to

$330,000 for men aged 35–44 with no other risk factor and up to $1.5 million

for women in the same category. The cost was considerably lower for people

with other risk factors, reflecting the widely accepted assumption that risk

factors interact to make the adverse effects of any one greater when others

are present. Lovastatin treatment was still more costly per life year gained

for people with levels in the range 250–299 mg/dl.

By contrast, the study found that it is potentially very cost-effective to

treat people with elevated cholesterol who have had heart attacks. Costs

per life year gained are relatively low and for some, such as men aged 35–44,

drug treatment might save money as well as extended life. Another study

found similar results for a program of intensive diet therapy modeled after

the one in the Multiple Risk Factor Intervention Trial (MRFIT).18 For

example, diet therapy costs more than $500,000 per year life for 20-year-

old men with initial cholesterol of 240 mg/dl and no other risk factors. For

men with several risk factors, the cost per life year gained in much lower.

These results suggest that management of high cholesterol in people

without heart disease is often very costly per life year saved. Since they show

that treatment of people whose blood cholesterol levels are not far above

240 mg/dl can be extremely costly, they suggest that the same would be

true for people with levels in the borderline-high range, although the studies

did not analyze this group. Taken together, cost-effectiveness results sug-

gest that resources might better be concentrated on those with very high

cholesterol levels and/or other risk factors for heart disease (and on those

in whom heart disease is already present). Revised guidelines, published by

NCEP in 1993,12 were somewhat more modest in their aims, in response to

studies like these as well to ongoing debate over whether reducing choles-

terol lengthens life in those without heart disease.

If NCEP’s 1988 guidelines were followed to the letter, it would cost,

depending on the effectiveness of diet in reducing blood cholesterol levels,

$20 billion to $27 billion to provide lovastatin at dose of 20 mg per day, and

$47 billion to $67 billion to provide a higher, more effective, dose of 80 mg

per day.6 The saving from a more selective strategy would be substantial,

freeing resources to be applied elsewhere. The CEA results suggest that
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more selective treatment strategies could be designed that would lose little

in health benefits.

2. Foundations of Cost-Effectiveness Analysis

2.1. What is cost-effectiveness analysis?

Cost-effectiveness analysis is a method designed to assess the comparative

impacts of expenditures on different health interventions. As Weinstein and

Stason19 state, it is based on the premise that “for any given level of re-

sources available, society · · · wishes to maximize the total aggregate health

benefits conferred.” For example, we might wish to know whether spend-

ing a certain amount of money on a public campaign to stop smoking will

have greater or lesser effect on health than spending the same amount on

colorectal screening. Cost-effectiveness analysis can be in decision making

at different levels, such as societal level and organizational level.

2.2. The cost-effectiveness ratio

The central measure used in CEA is the cost-effectiveness ratio. Implicit

in the cost-effectiveness ratio is a comparison between alternatives. One

alternative is the intervention under study, while the other is a suitably

chosen alternative — “usual care,” another intervention, or no interven-

tion. The cost-effectiveness ratio for comparing the two alternatives at the

population level can be the ratio of expected costs to expected effect (CER),

E(c)/E(e), and ratio of incremental expected costs to incremental expected

effects (ICER), (E(c
i
)−E(c

j
))/(E(e

i
)−E(e

j
) or ∆E(c)/∆E(e).

The ratio ∆E(c)/∆E(e) is essentially the incremental price of obtaining

a unit health effect (such as dollars per year, or per quality-adjusted year,

of life expectancy) from given health intervention when compared with an

alternative.

The following situations can arise:

∆E(c) < 0, ∆E(e) > 0; dominance; to accept the given intervention;

∆E(c) > 0, ∆E(e) < 0; dominance; to reject the given intervention;

∆E(c) > 0, ∆E(e) > 0; trade-off; consider magnitude of ratio of difference

in costs to difference in effectiveness;

∆E(c) < 0, ∆E(e) < 0; trade-off; consider magnitude of ratio of difference

in costs to difference in effectiveness.

The expected ratio of cost to effect, E(c/e), can be investigated at

patient level.
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2.3. The effectiveness

The effectiveness is the extent to which medical interventions achieve health

improvements in real practice settings.

2.3.1. Individual and social well-being

By describing CEA as a tool for improving general welfare, it can be placed

squarely within the context of welfare economics. The effectiveness mea-

sures could be quantified in term of utility, such as quality-adjusted life

years (QALY); and in term of health status measures, such as the number

of symptom-free days.

2.3.2. A metric of health effect: Quality-adjusted life years

It may appear that CEA cannot even be used to compare interventions

whose effects on health are qualitatively different, such as prevention of

coronary artery disease and treatment of arthritis. However, such a compa-

rison is possible if the measure of effectiveness is general enough to capture

all of the important health dimensions of the effects of the interventions.

Using the quality-adjusted life year (QALY) as the unit of effectiveness

approaches this ideal within the framework of CEA, thus expanding con-

siderably the range of application of CEA. The QALY is a measure of health

outcome which assign to each period of time a weight, ranging from 0 to 1,

corresponding to the quality of life during that period, where a weight of

1 corresponds to perfect health and a weight of 0 corresponds to a health

state judged equivalent to death. The number of quality-adjusted life years,

then, represents the number of healthy years of life that valued equivalently

to the actual health outcome.

2.3.3. How to obtain evidence on effectiveness?

The foundation for economic evaluation is valid data on the effectiveness

of the intervention being evaluated relative to some alternative.

The true cost and effectiveness of an intervention usually are not

known but estimated. The source of estimates may be direct measurement

(sampling) or indirect (non-sampling) methods such as expert opinion and

published literature. There could be two types of data; sampled data where

the sampling variance may or may not be known, and non-sampled data

such as discount rate for which do not have sampling variation, although
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the true value of the parameter may be uncertain. These data can be

used in various combinations in two models of analysis: stochastic analysis

where inferences are drawn using standard statistical methods based on

sampling variation, and deterministic analysis where inferences are drawn

from point estimates of variables but interpretation is conditional upon the

range of uncertainty from sensitivity analysis. The appropriateness of

methods for analyzing uncertainty in costs or effects will depend upon the

mix of sampled and non-sampled data. Cost-effectiveness analysis can be

wholly deterministic, partially stochastic or wholly stochastic.

2.3.4. Deterministic cost-effectiveness analysis

This is used where cost and effect variables are analyzed as point esti-

mates. Sampling variation may not be available because of the source of

the data (e.g. secondary data) or the variable may not have been sampled

(e.g. choice of discount rate, expert opinion). Deterministic CEA models

arise frequently in the early assessment of a new medical technology, where

only limited data are available but some analysis is required for policy

setting. For example, in their analysis of the implantable defibrillator.

Kupperman et al.9 constructed a cost-effectiveness model where effect data

were taken from reports of patient series in the literature as point esti-

mates of survival probabilities and cost data were derived from a Medicare

claims database and expert opinion. Given these data was not possible to

present cost and effect differences with 95% confidence intervals, therefore

a deterministic point estimate of cost-effectiveness was subject to detailed

sensitivity analysis to explore the impact of uncertainty. Therefore a point

estimate based on expert opinion of resource use was used as a proxy for

variables that could be sampled in the future as part of a prospective study.

2.3.5. Partially stochastic cost-effectiveness analysis

This is used where effectiveness has been estimated from clinical trial(s)

and can be expressed as a mean effect size with an associated variance, but

analysis of costs is deterministic because data are non sampled. This combi-

nation is common in decision analytic models of economic appraisal. Some

studies with such data report confidence intervals for cost-effectiveness

where only variation in effects has been analyzed. For example a study

in ulcer maintenance theory presented 95% confidence intervals around

expected one-year therapy costs including relapse management. But no

primary data had been collected to determine variation between patients in
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costs of managing relapse. The source of variation for the confidence interval

was only the surrounding the estimated incidence of relapse on treatment

and control.

2.3.6. Wholly stochastic cost-effectiveness analysis

This is used where both costs and effects are determined from data sampled

from the same patients in a study. Although our discussion focused on the

randomized controlled trials (RCT) these data might also be measured by

non-experiment-design. If cost and effect data are sampled and variances

are available then formal statistical tests can be performed on observed

differences in costs (treatment-control) or effects.

Randomized controlled trials (RCT) are one valuable source of evidence

on effectiveness, used either as single studies or combined in a meta-anlysis.

There are two general ways in which RCT data can be incorporated into

economic evaluation: (i) combining RCT effectiveness data retrospectively

with cost data from secondary non-trial sources into a decision analysis

model; or (ii) collecting effectiveness and cost data on the same patients

prospectively as part of an RCT.

The growing interest in trial-based prospective cost-effective studies has

raised some interesting statistical questions of study design and analysis.

Given the traditional use of non-sampled secondary data (e.g. published

literature, insurance claims databases, expert opinion) in cost-effectiveness

models the convention for analyzing uncertainty in results has been to

use sensitivity analysis, where the robustness of results is explored over

a range of what if alternative values for uncertain variables. This analytical

approach is marked contrast to the conventional analysis of RCT effec-

tiveness data where standard principle s of statistical inference are used

to construct tests of hypotheses and estimate intervention effect sizes, and

where uncertainty is quantified by a confidence interval which has precise

meaning in terms of probability.

2.4. Sensitivity analysis and beyond

Before considering the adaptation of stochastic methods for economic

evaluation, it is necessary to review the limitation of sensitivity analysis.

This method is widely recommended for assessing problems of data un-

certainty in economic appraisals of health care programs and allied evalua-

tive techniques such as clinical decision analysis. The purpose is to examine

the robustness of an estimated result over a range of alternative values for
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uncertain parameters. Weinstein and Stason (1977) describe the method

in the following way: “The most uncertain features and assumptions. . . are

varied one at a time over a wide range of possible values. If the basic con-

clusions do not change when a particular feature or assumption is varied,

confidence in the conclusions is increased.”

Whereas the traditional CEA model utilize sensitivity analysis, the

mean-variance data on costs and effects from a prospective trial presents

the opportunity to analyze cost-effectiveness using conventional inferential

statistical methods.13 The statistical approach in CEA have been discussed

by many literatures.

3. Statistical Approach

3.1. Costs and effects as point estimates

The deterministic analysis of effectiveness is a comparison of point esti-

mates. If we consider a treatment that is both more costly and more effective

than control, then a useful way to represent incremental cost-effectiveness

is illustrated in Fig. 1. In this diagram, the x axis represents the difference

in effects between the experimental and control therapy (∆e) and the y axis

the difference in cost between experimental and control (∆c). The slope of

the line extending from origin (the control) through our study point esti-

mate, ∆e, ∆c, represents the incremental cost-effectiveness of the treatment

relative to control. Clearly, the steeper the slope of the line ∆c/∆e the

7

of making a Type 1 (false-positive) error about a difference existing, this level conventionally being set
to 5%.

Figure 1. Cost-effectiveness quasi-confidence interval: deterministic analysis of cost differences and
stochastic analysis of effectiveness differences.

  A problem with hypothesis testing as a form of stochastic analysis is that an overemphasis  tends to be
placed on the statistical significance The advantages of the confidence interval is twofold. First it
permits hypothesis  testing as described above because if a 95% confidence interval for a difference
includes zero, then the treatment groups are not significantly different at 5% level. Second, in addition to
statistical significance, the confidence intervals yields information on the magnitude of the observed
difference (quantitative significance or clinical importance). The relationship between these two
parameters is important because a difference can be highly statistically significantly but of no clinical
importance, for example, a small difference (say, 0.25 mm/Hg) with p<0.0001. Furthermore, the concept
of a minimum clinically important difference δ to be detected is central to the design of a clinical
experiment and determination of sample size.
 A familiar two-tailed confidence interval for the treatment-effect size would be
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Fig. 1. Cost-effectiveness quasi-confidence interval: Deterministic analysis of cost dif-
ferences and stochastic analysis of effectiveness differences.
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greater is the additional cost at which additional units of effectiveness are

gained by treatment relative to control, and the less attractive treatment

becomes. In the absence of any data on sampling variation for costs or effects

(point a) some form of sensitivity analysis would be useful to determine

plausible ranges that may contain the true cost-effectiveness ratio.

3.2. Sampled effectiveness and non-sampled costs

In the analysis of sampled effect data (with sample variation) the null

hypothesis is usually that there is no difference may come between ex-

perimental and control therapy. This is tested against either a one tailed

alternative (usually that the experimental treatment more effective) or a

two tailed alternative (that the experimental treatment is more or less

effective than control). For a continuos clinical variable such as blood pres-

sure we assume, by convention, that the ratio of the difference in sample

means (ē
T
− ē

C
), where the subscript T stands for the treatment group and

subscript C stands for the control group, to the pooled standard error of

the difference follows some known probability distribution such as Z or t.

Critical values of the test statistics are determined by the analyst’s judge-

ment about the acceptable risk of making a Type 1 (false-positive) error

about a difference existing, this level conventionally being set to 5%.

A problem with hypothesis testing as a form of stochastic analysis is

that an overemphasis tends to be placed on the statistical significance. The

advantages of the confidence interval is two-fold. First it permits hypothesis

testing as described above because if a 95% confidence interval for a differ-

ence includes zero, then the treatment groups are not significantly different

at 5% level. Second, in addition to statistical significance, the confidence

intervals yields information on the magnitude of the observed difference

(quantitative significance or clinical importance). The relationship between

these two parameters is important because a difference can be highly sta-

tistically significantly but of no clinical importance, for example, a small

difference (say, 0.25 mm/Hg) with p < 0.0001. Furthermore, the concept of

a minimum clinically important difference δ to be detected is central to the

design of a clinical experiment and determination of sample size.

A familiar two-tailed confidence interval for the treatment-effect size

would be

(ē
T
− ē

C
)± t(nT +nC−2,1−α/2)

√

S

2

eT

n
T

+
S

2

eC

n
C

(1)

where S

2

eT

and S

2

eC

are the sample estimates of variances.



May 31, 2003 15:54 WSPC/Advanced Medical Statistics chap05

Cost-Effectiveness Analysis and Evidence-Based Medicine 167

A confidence interval around (the mean effect size) has been drawn in

Fig. 1. Given the confidence interval around ∆ē, one approach to trans-

lating this into variation around the cost-effectiveness ratio is by creating

an interval bounded by the ratio of cost difference to the lower bound of

the effect interval (∆
c
/∆ē

L) and the ratio of the cost difference to the ef-

fect upper bound of the effect interval (∆
c
/∆ē

U ). These upper and lower

bounds for the cost-effectiveness ratio might be termed a quasi-confidence

interval, because they are only based upon knowledge of sampling variation

associated with the measurement of the denominator (effects). This reason-

ing can be applied analogously to a situation where we had stochastic costs

but deterministic effects.

3.3. Sampled effectiveness and sampled costs

As we did in previous sections, we assumed that effects were measured from

a trial and could be expressed as a confidence interval. However, we also

assumed that resource use was measured to enable patient-specific costs to

be estimated from j resources (j = 1, . . . , J) in quantity Q
j

at unit price

P
j
, then the costs for individual i can be expressed c

i
=

∑

J

j=1
P

j
Q

j
.

Summing over i patients (i = 1, . . . , n
T
) in the treatment group, mean

cost per patient can be expressed as c̄
i

= 1

nT

∑

nT

i=1
c
i

with estimated

variance

s

2

EcT

=
1

n
T
(n

T
− 1)

nT
∑

i=1

(c
i
− c̄

T
)2 . (2)

Therefore the difference between the mean cost associated with treatment

and control can be expresses as a confidence interval:

(c̄
T
− c̄

C
)± t(nT +nC−2,1−α/2)

√

S

2

cT

n
T

+
S

2

cC

n
C

. (3)

In this situation the incremental cost-effectiveness ratio is a ratio of two

random variables, both of which can be expressed as a confidence interval

(around a difference in means). If we initially assume zero covariance be-

tween costs and effects then one can conceptualize this ratio in the form of

a two-dimensional confidence plane.

3.4. Joint distribution of cost and effects

It is assumed that in an RCT (or observational study in which valid

inference can made) there are J interventions where n
j

patients receive
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intervention j, j = 1, 2, . . . , J . Costs and effects are viewed as vector ran-

dom variables c
j

and e
j
− c

ij
representing the costs incurred and e

ij
the

effects achieved by patient i on intervention j, i = 1, 2, . . . , n
j
, during a

specified period. The joint probability distribution function of costs and

effects on a patient level is modeled by the function F
j
(c, e; z). A vector

of patient covariate, z, such as diagnosis, gender and age, is introduced to

cover the situation in which the cost-effect relationship of a intervention is

expected to vary for different subgroups. It is assumed that (c
ij

(z), e
ij

(z))

are independently and identically distributed over the patients with covari-

ates z receiving intervention j. The marginal distributions of F , which are

the univariate distribution of cost and distribution of effect, are each as-

sociated with parameters such as expected cost E(c), and expected effect,

E(e).

The expected cost and effect, (E(c), E(e)) could be estimated by the

sample means of c and e, that is, (c̄, ē) and the covariance matrix of (c̄, ē)

could be presented as:

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
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where σ

_

c
and σ

_

e
are the estimated variances for cost and effect respectively

and ρ̂ is the estimated correlation coefficient between cost and effect.

The difference in expected cost and effect between two treatments/

interventions, (∆E(c), ∆E(e)) could be estimated by the sample means

of c and e, that is, (c̄, ē) and the covariance matrix of (∆c̄, ∆ē) could be

expressed as:










σ

_2

ci

n
i

+
σ

_2

cj

n
j

ρ

_

σ

_

ci
σ

_

ei

n
i

+
ρ

j
σ

_

cj
σ

_

ej

n
j

ρ

_

i
σ

_

ci
σ

_

ei

n
i

+
ρ

j
σ

_

cj
σ

_

e

n
j

σ

_2

ei

n
i

+
σ

_2

ej

n
j











. (5)

4. Statistical Inferences on Cost-Effectiveness Measures

4.1. Parametric approaches to estimating the C-E ratio

confidence interval

4.1.1. The confidence box approach

A number of commentators advocated the cost-effectiveness plane (CE

plane) for presenting the results of economic evaluation and for aiding
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policy decision. O’Brien and colleagues13 showed how the CE plane could

be used to present the confidence limits for the estimate of incremental

cost-effectiveness under the assumption of zero covariance between costs

and effects. The difference in effect between two interventions is shown on

the horizontal axis with mean effect difference ∆ē and upper and lower con-

fidence limits for the effect difference (∆ē

U

, ∆ē

L). Similarly, the difference

in cost between two interventions is shown on the vertical axis with mean

cost difference ∆c̄ and upper and lower confidence limits for the effect dif-

ference (∆c̄

U

, ∆c̄

L). These “I” bars intersect at point (∆ē, ∆c̄), hence the

ray that connects this point of intersection to the origin has a slope equal to

the value of the ICER. Under the assumption described above, the center of

the two confidence intervals intuitively can be thought of as the maximum

likelihood of the two-dimensional probability density function. O’Brien and

colleagues argue that combining the limits of the confidence intervals for

costs and effects separately gives natural best and worst case limits on the

ratio; that is, the upper limit of the cost difference over the lower limit of

the effect difference (∆c̄

U

/∆c̄

L) gives the highest values of the ratio (worst

case) and the lower limit of costs divided by the upper limit of effects

(∆ē

L

/∆ē

U ) gives the lowest (best) value of the ratio. Thus, in Fig. 1, the

slope of the line from the origin through point a is a worst-case scenario

for the incremental cost-effectiveness ratio based upon the upper 95% CI

of the cost estimate and the lower 95% CI of the effect estimate. By similar

reasoning, the line through point c is the best-case scenario. In contrast to

Fig. 1, the slice of “pie” bounded from the origin by the best and worst

cases scenarios has increased in size reflecting increased uncertainty about

where the true cost-effectiveness ratio lies in this region.

There are two problems with this line of reasoning. The first is that the

depiction of the two-dimensional confidence plane as being box-shaped is

misleading. If costs and effects varied independently then the conditional

probability of being at the lower 95% CI of both simultaneously would be

less than 0.05. In principle we might expect such a bivariate probability

density function to be elliptical in shape with lines of equi-probability

central point-estimate (the maximum likelihood) much like an ordnance

survey map of a mountain with height contours. Figure 3 illustrates how

this general concept applies to the current problem. The second problem is

the implicit assumption that costs and effects vary independently (i.e. have

zero covariance). In principle we would expect covariance between costs and

effects, and therefore we cannot assume that the numerator and denomi-

nator in the ratio are independent. This means that the bounds for the cost-

effectiveness ratio depicted in Fig. 2 are still only a quasi-confidence interval
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Figure 2.  Confidence limits on the cost-effectiveness plane and the ‘confidence box’ approach to
estimating confidence limits for the ICER
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The challenge is whether a method exists for estimating the sampling distribution for the ratio of two
random variables which may have non-zero covariance.
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because we have not taken account of all sampling variation. The challenge

is whether a method exists for estimating the sampling distribution for the

ratio of two random variables which may have nonzero covariance.

4.1.2. The Taylor series approximation

The Taylor approximation shows that where y is a function of two random

variables x1 and x2, the variance of y can be expressed in term of the partial

derivatives of y with respect to x1 and x2, weighted by the variances and
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covariance of x1 and x2. The Taylor series formula is

var(y) ≈

(

∂y

∂x1

)2

var(x1) +

(

∂y

∂x2

)2

var(x2)

+ 2

(

∂y

∂x1

) (

∂y

∂x2

)

cov(x1, x2) . (6)

For the ICER ∆E(c)/∆E(e), using the sample estimates of the means and

variance, the variance of the ratio estimator can be given as follows:

var(R̂) ≈
1

∆ē

2
var(∆c̄) +

∆c̄

2

∆ē

4
var(∆ē)− 2

∆c̄

∆ē

3
cov(∆c̄, ∆ē) . (7)

Since the variance of difference in mean is equal to the sum of two sampling

variances for those means, then we can simplify

var(∆c̄) =
σ̂

2

c1

n1

+
σ̂

2

c2

n2

, var(∆ē) =
σ̂

2

e2

n1

+
σ̂

2

e2

n2

, (8)

and the covariance term can also be simplified

cov(∆c̄, ∆ē) =
cov_ (c1, e1)

n1

+
cov_ (c2, e2)

n2

=
ρ̂1σ̂c1σ̂e1

n1

+
ρ̂2σ̂c2σ̂e2

n2

. (9)

Combining these elements gives our expression for the variance of ratio
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
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. (10)

Factoring R̂

2 = ∆c̄

2
/∆ē

2 from the right-hand side simplifies (7) to

var(R̂) ≈ R̂

2[(cv(∆c̄))2 + (cv(∆ē))2 − 2 ρ

_

cv(∆c̄)cv(∆ē)] , (11)

where cv(x) is the coefficient of variation for the random variable x

and defined as cv(x) =
√

var(x)/x̄, and ρ
xy

is the correlation coef-

ficient between two random variables x and y and defined as ρ
xy

=

cov(x, y)/
√

var(x)var(y). The properties of this variance are intuitively

appealing: the cost-effectiveness variance will increase with a greater differ-

ence in costs or effects, with a greater population mean costs between groups

and with greater negative correlation between costs and effects. Conversely

the ratio variance will decrease with greater sample size, with a greater
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difference in population mean effects between groups and a greater positive

correlation between costs and effects.

The accuracy of the approximation in the equation above depends upon

the random variables, ∆c̄ and ∆ē, having small coefficients of variation.

The coefficient of variation for each random variable is (Z
α/2 + Z

β
)−1,

where the two-sided level test α of significance has 1 − β power against

the true difference. For even a 50% power against the true difference the

coefficient of variation would be (1.96)−1 = 0.51; small enough to ensure

reasonable accuracy. The accuracy of the approximation begins to fail as

the difference between treatments, with respect to cost or effect, approaches

zero so that the power falls well below 50%.

Similarly, for the ratio E(c)/E(e), we have

var(R̂) ≈
1

ē

2
var(c̄) +
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2

ē

4
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3
cov(c̄, ē) , (12)
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var(R̂) ≈ R̂

2[(cv(c))2 + (cv(e))2 − 2 ρ

_

cv(c)cv(e)] . (14)

Employing standard parametric assumptions gives the confidence

interval as
(

R̂− z
α/2

√

var(R̂), R̂ + z
α/2

√

var(R̂)

)

. (15)

Knowledge of the variance of R would also enable some tests of hypo-

theses. For example, suppose we specified some a priori upper threshold

for the cost-effectiveness ratio, Rmax, which was the maximum cost per

unit effect that we would be willing to pay for this new treatment. Hence

Rmax would be the maximum acceptable slope of the cost-effectiveness

line through the origin in Fig. 2. We might set up a one-tailed test of

the hypothesis that the true ratio, R, was less than this maximum. Thus,

we have a null hypothesis, H0 : R = Rmax which is to be tested against an

alternative H
A

: R < Rmax and using our variance we might construct a

test statistic of the general form:

Z = R

_

−Rmax

√

var(R
_

) .

In illustrating the possible use of var(R
_

) in estimation and hypothesis

testing we have assumed that the distribution for R

_

will be statistically

well-behaved such that some parametric distribution (e.g. normal) might
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be used in the large sample case. Although this is ultimately an empirical

issue it seems a questionable assumption. For example, the distribution of

a ratio of two differences may not be unimodal. While a non-parametric

analogue of the approach might be developed using rank-order statistics a

more practical alternative might be to generate an empirical distribution

for R

_

by non-parametric bootstrapping.

4.1.3. Fieller’s method

An alternative method of calculating confidence intervals around ratios has

been described by Fieller.5

The advantage of Filler’s method over the Taylor series expansion is that

it takes into account the skew of the ratio estimator. The method assumes

that the numerator and denominator of the ratio follow a joint normal

distribution such that (in the case of the ICER) ∆c̄ − R∆ē is normally

distributed. Hence, dividing through by the standard deviation equation

follows the standard normal distribution:

∆c̄−R∆ē

√

{var(∆c̄) + R

2 var(∆ē)− 2R cov(∆c̄, ∆ē)}
∼ N(0, 1) . (16)

Setting this expression equal to z
α/2 and rearranging gives the following

quadratic equation in R:

R

_

[1− z

2

α/2
(cv(∆ē))2]− 2R R̂[1− z

2

α/2
ρcv(∆ē)cv(∆c̄)]

+ R̂

2[1− z

2

α/2
cv(∆c̄)] = 0 , (17)

R̂

[

1− z

2

α/2
ρcv(∆c̄)cv(∆ē)

1− z

2

α/2
[cv(∆ē)]2

]

± z

2

α/2
R̂











√

[cv(∆c̄)]2 + [cv(∆ē)2]− 2ρcv(∆c̄)cv(∆ē)

− z

2

α/2
{[cv(∆c̄)]2[cv(∆ē)2]− ρ

2[cv(∆c̄)]2[cv(∆ē)]2}

1− z

2

α/2
[cv(∆ē)]2











.

(18)

Similarly, for the ratio E(c)/E(e), we have

c̄−Rē

√

{var(c̄) + R

2 var(ē)− 2R cov(c̄, ē)}
∼ N(0, 1) , (19)
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R

_

[1− z

2

α/2
(cv(ē))2]− 2R R̂[1− z

2

α/2
ρcv(ē)cv(c̄)] + R̂

2[1− z

2

α/2
cv(c̄)] ,

(20)

R̂

[

1− z

2

α/2
ρcv(c̄)cv(ē)

1− z

2

α/2
[cv(ē)]2

]

± z

2

α/2
R̂











√

[cv(c̄)]2 + [cv(ē)2]− 2ρcv(c̄)cv(ē)

− z

2

α/2
{[cv(c̄)]2[cv(ē)2]− ρ

2[cv(c̄)]2[cv(ē)]2}

1− z

2

α/2
[cv(ē)]2











. (21)

Siegel et al.16 proposed that τ = c̄ − Rē is normally distributed with

mean Eτ = 0 and var(τ) = (var(c)−2R cov(c, e)+R

2 var(e))/n. Let F1,n−1

denote the 95th percentile of an F distribution with 1 and (n− 1) degrees

of freedom. The probability that

τ

2
/(var_ (c)− 2R cov_ (c, e) + R

2 var_ (e)) < F1,n−1(n− 1)−1

is 0.05 since the random variable of the left side of the inequality is dis-

tributed as an F distribution with 1 and (n− 1) degree of freedom. Multi-

plying both sides by the denominator and subtracting the right hand side

from both sides of the inequality yields

(c̄2 − F1,n−1(n− 1)−1 var_ (c))− 2R(c̄ē− F1,n−1(n− 1)−1 cov_ (c, e))

+ R

2(ē2 − F1,n−1(n− 1)−1 var_ (e)) ≤ 0 . (22)

The set of values of R satisfying this inequality is a 95% confidence interval

for the ratio E(c)/E(e).

4.1.4. Confidence interval for the expected cost to effect ratio E(c/e)

Under an assumption of asymptotic normality, the expected value of the

ratio E(c/e) does not exist because ratios of normal random variables follow

the Cauchy distribution. Therefore, in this case neither an estimator nor a

confidence interval makes sense. The approximate distribution function of

the random variable c/e, F (y) = P (c/e < yσ
e
/σ

c
) is given by

Φ((wE(e)/σ
e
−E(e)/σ

c
)(w2 − 2ρw + 1)−1/2) (23)

where Φ(·) is the cumulative normal distribution with mean 0 and variance

1. Here, w = yσ
e
/σ

c
where σ

e
and σ

c
are the population standard deviations

of e and c respectively and ρ is the correlation between them. The median of
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this distribution is E(c)/E(e). Thus, the ratio of expected costs to expected

effects is the median of the distribution of the distribution of the patient

level ratio of costs to effects. A 95% confidence interval for the median of

this distribution may be obtained by applying the method based on Fieller’s

theorem.

For some data, rather than assuming that the distribution of F is multi-

variate normal, it may be more appropriate to assume that the distribution

has a form for which E(c/e) does exist. For example, under an assumption

of asymptotic normality of the ratio, the sample mean of c/e and sample

variance of the ratio σ

_2

c/e

can be used to form a 95% confidence interval for

the mean cost-weight ratio as follows:

c/e + t
n−1 σ

_

c/e

√
n , (24)

where n is the number of patients.

4.2. Bootstrap approaches to estimating the C-E ratio

The bootstrap approach for the simple one sample case is straightforward.

Suppose a particular population has a real but unobserved probability

distribution F from which a random sample x of n observations is taken,

and the statistic of interest s(x) is calculated the concern of inferential

statistics is to make statements about the population parameter θ based

on the sample drawn from that population. In the “bootstrap world,”

the observed random sample x is treated as the empirical estimate of F

by weighting observation in x by the probability 1/n. Successive random

samples of size n are then draw from x with replacement to give the boot-

strap samples (re-sample from the original sample). The statistic of interest

is calculated for each of these samples and these bootstrap replicates of the

original statistic make up the empirical estimate of the sampling distribu-

tion for that statistic. This estimated sampling distribution can be used in

a variety of ways to construct confidence intervals.

In principle, the bootstrap estimate of the ICER sampling distribution

can be obtained in very similar way to that of the simple one sample case.

How ever, since the ICER is estimated on the basis of four estimators

from two samples care must be taken to bootstrap each sample appropri-

ately. For data structures which are more complicated than a one sample

structure. Efron and Tibshirani4 advocate that the bootstrap mechanism

for the observed data mirror the mechanism by which those original data

were obtained. In the case of the ICER, where data on resource use and
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outcome exists for two groups of patients of size n
i
and n

j
receiving treat-

ments/interventions T
i

and T
j
, respectively this will involve a three-stage

process:

(1) Sample with replacement n
i
cost/effect pair from the sample of patients

who received treatment T
i
and calculate the bootstrap estimates c̄

∗
i

and

ē

∗
i

for the bootstrap sample.

(2) Sample with replacement n
j
cost/effect pair from the sample of patients

who received treatment T
j

and calculate the bootstrap estimates c̄

∗
j

and

ē

∗
j

for the bootstrap sample.

(3) Calculate the bootstrap replicate of the ICER given by the equation

R

∗ =
c̄

∗
i

− c̄

∗
j

ē

∗
i

− ē

∗
j

=
∆c̄

∗

∆ē

∗
. (25)

Repeating this three-stage process many times gives a vector of boot-

strap estimates, which is an empirical estimate of the sampling distribution

of the ICER statistic.

Once the sampling distribution of the ICER has been estimated in this

way, several approaches exit to estimate confidence limits using the boot-

strap estimate of the sampling.

4.2.1. Normal approximation

One method for confidence interval estimation is to take the bootstrap

estimate of standard error, given by

δ̂

∗ =

√

√

√

√

{

1

B − 1

B

∑

b=1

(R̄∗ − R̄

∗b)2

}

, (26)

(where B is the total number of bootstrap replications) and assume that the

sampling distribution is normal. The resulting 100(1−α) per cent confidence

interval is

(R̂− z
α/2δ̂

∗
, R̂ + z

α/2δ̂
∗) . (27)

4.2.2. Percentile

The percentile method avoids the problem by making direct use of the

empirical sampling distribution. The 100(α/2) and 100(1−α/2) percentile

values of the bootstrap sampling distribution estimate are used as the upper

and lower confidence limits for the ICER. The attraction of this method



May 31, 2003 15:54 WSPC/Advanced Medical Statistics chap05

Cost-Effectiveness Analysis and Evidence-Based Medicine 177

is its simplicity and its avoidance of the assumption of normality for the

ICER. However, skewed estimation can cause trouble for the percentile

method. In particular, in this context, the percentile method assumes that

the bootstrap replicates of the ICER are unbiased, whereas it is known that

ratio estimators are biased and that bootstrap replicates will magnify the

bias of the sample estimate.17

4.2.3. Bias-corrected and accelerated

Efron3 suggests a modification of the percentile method, which seeks to

adjust for the bias and skew of the sampling distribution. This is the

bias-corrected and accelerated (BCa) percentile method, which involves

algebraic adjustments to the percentiles selected to serve as the confidence

interval end points. The adjusted percentiles are given by

α1 = Φ

(

ẑ +
ẑ + z

α/2

1− â(ẑ + z
α/2)

)

,

α2 = Φ

(

ẑ +
ẑ + z(1−α/2)

1− â(ẑ + z(1−α/2))

)

,

(28)

where Φ(·) is the standard normal cumulative distribution function and z
α

is

the 100α percentile point of standard normal distribution. Two adjustments

to the percentiles are incorporated into Eq. (28): ẑ adjusts the sampling

distribution for the bias of the estimator, while â adjusts for the skew of

the sampling distribution. Setting â = 0 yields the adjustment for bias

on the percentile chosen to serve as end points, and is equivalent to the

bias-corrected method advocated by Chaudhary and Stearns1:

α1 = Φ(2ẑ + z
α/2) ,

α2 = Φ(2ẑ + z(1−α/2)) .

(29)

The bias correction, ẑ, is given by ẑ = Φ−1(Q) where Q is the proportion

of bootstrap replicates which are less than the sample estimate, R̂. There-

fore, if the bootstrap sampling distribution has median R̂, Q = 0.5 which

gives ẑ = 0 and (in the absence of a skew adjustment) the percentiles from

Eq. (29) correspond to those from the straightforward percentile method.

However, where the sampling distribution is not centered on R̂ a correc-

tion is made for this bias. Notice that the nonlinear relationship between

the z-score and its probability results in the percentile end points being

shifted at unequal rates. It is also worth nothing that the bias correction

adjustment of BCa method, while not employing distributional assumptions
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concerning the distribution of the ICER itself, does make use of parametric

assumptions concerning the distribution of the observed bias. This reliance

on parametric assumptions has been cited as a potential weakness of the

BCa method (29).

The acceleration constant adjusts for the skew of the sampling distri-

bution. Efron and Tibshirani4 suggest using a jack-knife estimate for α̂:

α̂

∗∗ =

∑

n

i=1
(R̄∗∗ − R̂

∗∗
i

)3

6[
∑

n

i=1
(R̄∗∗ − R̂

∗∗
i

)2]3/2
, (30)

where R̂

∗∗
i

is the jack-knife replicate of the ICER with the ith observation

removed, R̄

∗∗ =
∑

R̂

∗∗
i

/n for i = 1 to n and n = n
t
+ n

c
. In terms of the

adjustments to the percentiles given in Eq. (28). In the absence of a bias

correction adjustment, the skew adjustment is given by

α1 = Φ

(

z
α/2

1− âz
α/2

)

,

α2 = Φ

(

z(1−α/2)

1− âz(1−α/2)

)

.

(31)

Equation (30) shows that if the sampling distribution is symmetric, â = 0

and Eq. (31) shows that no adjustment to the percentile interval end points

is made.

4.2.4. Parametric bootstrap

Efron and Tibshirani4 outline a simulation-based method of confidence

interval estimation that they refer to as a parametric bootstrap approach.

Notice that from the definition of ICER, the difference in cost on the

numerator and the difference in effects on the denominator of the ICER

are both simply the difference between two normally distributed. The

parametric bootstrap approach involves using this property of the distri-

bution of the numerator and denominator in combination with the observe

means, variance and covariance to estimate the parameters of the sampling

distribution of the cost and effect differences. Sampling from each of these

two distributions, while allowing for the estimated covariance between

them, gives an estimate of the ICER. Repeating this process many times

generates an empirical estimate of the sampling distribution of the ICER.

The 100(α/2) and 100(1−α/2) percentiles of this estimated distribution are

used as estimstes for the upper and lower limits of the confidence interval,

as with the percentile method.
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5. Testing Difference Among the Populations

5.1. Under assumption of normality of distribution

5.1.1. Testing on ICER

Let R0 be a specified value of the incremental cost-effectiveness ratio

(ICER) R. It may be viewed as the maximum amount society is willing

to pay to gain one unit of effectiveness by adopting the test intervention

over the reference. We consider three tests of hypotheses on R:

(a) H0 : R = R0 verse H
A

: R 6= R0;

(b) H0 : R ≥ R0 verse H
A

: R < R0;

(c) H0 : ∆E(e) ≥ 0 or R ≥ R0 verse H
A

: ∆E(e) > 0 and R < R0.

In (b), rejection of the null hypothesis might be interpreted to mean that

the test intervention is cost-effective, in the sense that the data supports

a CER below the stipulated maximum R0. Its two-tailed version, (a) tests

whether the data are consistent with a specified value R0 of the ICER. In

(c), we test the joint hypothesis on effectiveness and cost effectiveness. If

the null hypothesis is tenable, the test intervention is either not effective

or not cost-effective. If the alternative is true, then the test intervention is

both effective and cost-effective, relative to the referent intervention. The

covariance matrix of (∆c̄, ∆ē)′, Σ could be represented as follows

Σ =

[

σ

_2

c

ρ

_

σ

_

c
σ

_

e

ρ

_

σ

_

c
σ

_

σ

_2

e

]

=











σ

_2

c0

n
i

+
σ

_2

c1

n
j

ρ

_

i
σ

_

ci
σ

_

ei

n
i

+
ρ

_

j
σ

_

cj
σ

_

ej

n
j

ρ

_

i
σ

_

ci
σ

_

ei

n
i

+
ρ

_

j
σ

_

cj
σ

_

ei

n
j

σ

_2

ei

n
i

+
σ

_2

e1

n
j











.

(32)

Test of H0 : R = R0 verse H
A

: R 6= R0.

We formulate our test in terms of the estimated net cost ∆c̄−R0∆ē. Under

H0, the statistic

T = (∆c̄−R0∆ē)/{var(∆c̄−R0∆ē)}1/2

or

T = (∆c̄−R0∆ē)/{var(∆c̄) + R

2

0 var(∆ē)− 2R

2

0 cov(∆c̄, ∆ē)}1/2

has an approximate standard normal distribution. The test rejects H0 if

|T | > z(1−α/2) where z(1−α/2) is the 100(1−α/2) percentile of the standard

normal distribution.
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Figure 4. Regions for one-sided test of effectiveness and cost-effectiveness. Region 1: test intervention both
effective and cost-effective. Region 2: referent intervention effective and cost-effective.

Testing on CER (cost-effectiveness ratio)
If the cost-weight bivariate distributions are normal with mean vectors (E(ci) , E(ei))  and common
covariance matrix, the multivariate analysis of variance, MANOVA, can be used to test the hypothesis
that the vectors of  cost-efficiency measures are identical. If the MANOVA finds the means of the
distributions of the populations to be equal and the c-e measure is a function of the means, e.g.,
E(ci)/E(ei), then it may be concluded that the c-e measures don’t differ.
   A likelihood ratio test  could  be employed to test the hypothesis  H0 : E(ci) /E(ei)=R0 for all i, that is,
E(ci)- R0 E(ei)=0.
   An asymptotic α-level two sided test of H0 may be obtained by first using likelihood theory for normal
variables for testing the linear hypothesis that all ratios are equal to a specific value, say, R0. The desired
likelihood ratio test is found by maximizing the previous likelihood over all possible values of R0.

        Let ni denote the number of bivariate observations of cost and effect for treatment i and let ∑= inn .
The available data consists of the bivariate observations (cij, eij),  i=1,2,…,I, j=1,2,…,ni. Let

nccs ii j ij /)( 2
11 −= ∑ ∑ , nees ii j ij /)( 2

22 −= ∑ ∑ , and neeccs iijii j ij /))((12 −−= ∑ ∑ . Here, sij are
the elements of the pooled covariance matrix, S. The hypothesis E(ci)/E(ei)=R0 is equivalent to the
hypothesis E(ci)- R0E(ei)=0 for all i. For a specific R0 the classical test of the latter linear hypothesis is
based on the Wilks’ statistic, W(R0). The likelihood ratio statistic for the same linear hypothesis is given
by 2/

00 )()( nRWR =Λ . Maximizing  )( 0RΛ  over all possible values of  R0 yields the desired likelihood
ratio test. The test rejects H0  at the  R0  level if

Region 1

Region 2

c∆

e∆

Fig. 4. Regions for one-sided test of effectiveness and cost-effectiveness. Region 1: test
intervention both effective and cost-effective. Region 2: referent intervention effective and
cost-effection.

Test of H0 : R ≥ R0 verse H
A

: R < R0

We would reject H0 : R ≥ R0 if ∆c̄ − R0∆ē < −z(1−α/2){var(∆c̄) +

R

2

0
var(∆ē)− 2R

2

0
cov(∆c̄, ∆ē)}1/2

Test of H0 : ∆E(e) ≤ 0 or R ≥ R0 verse H
A

: ∆E(e) > 0 and R < R0.

In Fig. 4, the lower shaded region (region 1) in the C E plane is where

H
A

holds. The complementary shaded region (region 2) in the second and

third quadrants is where the referent intervention is both effective and cost-

effective. Our one-sided test impose asymmetry between the test and the

referent interventions, and region 1 is the appropriate rejection region for

our test.

Based on our previous discussion, an appropriate test would reject H0

if ∆ē > c1 and (∆c̄ − R0∆ē) < c2 where the constant c1 > 0 and c2 < 0

need to be specified. The size of the test is

α = sup P [∆ē > c1, (∆c̄−R0∆ē) < c2] ,

where the supremum is taken over all (∆ē, ∆c̄) consistent with H0. By nor-

malization, we may express this in terms of the bivariate normal (Z1, Z2),

with zero means, unit variances and correlation −ρ

∗. Then

α = sup P

[

Z1 <

−(c1 −∆ē)
√

var(∆ē)
,

z2 <

c2 − (∆c̄−R0∆ē)

{var(∆c̄) + R

2

0
var(∆ē)− 2R

2

0
cov(∆c̄, ∆ē)}1/2

]
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= max

{

P

[

Z1 <

−c1
√

{var(∆ē)

]

,

P

[

Z2 <

c2

{var(∆c̄) + R

2

0
var(∆ē)− 2R

2

0
cov(∆c̄, ∆ē)}1/2

]

}

. (33)

One solution to (33) is

c1 = σ1z1−α
,

c2 = −{var(∆c̄) + R

2

0
var(∆ē)− 2R

2

0
cov(∆c̄, ∆ē)}1/2

z1−α
. (34)

5.1.2. Testing on CER (cost-effectiveness ratio)

If the cost-weight bivariate distributions are normal with mean vectors

(E(c
i
), E(e

i
)) and common covariance matrix, the multivariate analysis

of variance, MANOVA, can be used to test the hypothesis that the vectors of

cost-efficiency measures are identical. If the MANOVA finds the means of

the distributions of the populations to be equal and the c− e measure is a

function of the means, e.g. E(c
i
)/E(e

i
), then it may be concluded that the

c− e measures do not differ.

A likelihood ratio test could be employed to test the hypothesis H0 :

E(c
i
)/E(e

i
) = R0 for all i, that is, E(c

i
)−R0E(e

i
) = 0.

An asymptotic α-level two sided test of H0 may be obtained by first

using likelihood theory for normal variables for testing the linear hypothesis

that all ratios are equal to a specific value, say, R0. The desired likelihood

ratio test is found by maximizing the previous likelihood over all possible

values of R0.

Let n
i
denote the number of bivariate observations of cost and effect for

treatment i and let n = Σn
i
. The available data consists of the bivariate

observations (c
ij

, e
ij

), i = 1, 2, . . . , I, j = 1, 2, . . . , n
i
. Let s11 = Σ

i
Σ

j
(c

ij
−

c̄
i
)2/n, s22 = Σ

i
Σ

j
(e

ij
− ē

i
)2/n, and s12 = Σ

i
Σ

j
(c

ij
− c̄

i
)(e

ij
− ē

i
)/n. Here,

s
ij

are the elements of the pooled covariance matrix, S. The hypothesis

E(c
i
)/E(e

i
) = R0 is equivalent to the hypothesis E(c

i
) − R0E(e

i
) = 0 for

all i. For a specific R0 the classical test of the latter linear hypothesis is

based on the Wilks’ statistic, W (R0). The likelihood ratio statistic for the

same linear hypothesis is given by Λ(R0) = W (R0)
n/2. Maximizing Λ(R0)

over all possible values of R0 yields the desired likelihood ratio test. The

test rejects H0 at the R0 level if

−n lnχmax < χ

2

1−α

(I − 1) . (35)
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Here χ

2

1−α

(I − 1) is the upper 1 − α percentage points of the chi-square

distribution with I − 1 degrees of freedom and χmax is the large of the two

solutions of the following quadratic equation: ax

2 + bx + c = 0 where

a = Σ
i
Σ

j
c

2

ij

∗ Σ
i
Σ

j
e

2

ij

− (Σ
i
Σ

j
c
ij

e
ij

)2 ,

b = [Σ
i
Σ

j
c

2

ij

∗ Σ
i
(Σ

j
e

2

ij

− n
i
ē

2

i

) + Σ
i
Σ

j
e

2

ij

∗ Σ
i
(Σ

j
c

2

ij

− n
i
c̄

2

i

)

− 2(Σ
i
Σ

j
c
ij

e
ij

) ∗ (Σ
i
(Σ

j
c
ij

e
ij
− n

i
c̄
i
ē

i
)] ,

c = Σ
i
(Σ

j
c

2

ij

− n
i
c̄

2

i

) ∗ Σ
i
(Σ

j
e

2

ij

− n
i
ē

2

i

)− (Σ
i
(Σ

j
c
ij

e
ij
− n

i
c̄
i
ē

i
)2 .

5.2. Without assumption of normality of distribution

The distribution of c/e is often skewed. The lifetime models can be widely

applied to investigate the distributions of c/e and the difference in c/e

between populations. A cost-effectiveness distribution function, or c − e

distribution function, could be defined as:

S(c
e
) = Pr(c/e > c

e
) . (36)

The parametric, semi-parametric and non-parametric methods are able

to deal with the data, whose distributions do not meet the assumption of

normality and with censored data.

The Weibull, gamma and log-normal distributions could be applied to

estimate the c − e distribution function and the difference in c/e between

different populations.

The non-parametric approach, such as Kaplan–Meier method could be

applied to estimate the c − e function. The non-parametric tests such as

Wilcoxon and logrank test can be used to test the equality of the different

groups.

6. Power and Sample Size Assessment for Tests of

Hypotheses on Cost-Effetiveness Ratios

6.1. Test of H0 : R = R0 verse HA : R 6= R0

The power (= 1− β) of this test at the alternative H
A

: R = R
A
( 6= R0) is

given by

P [|∆c̄− R̄0∆ē| < z1−α/2{var(∆c̄) + R

2

0
var(∆ē)

− 2R

2

0 cov(∆c̄, ∆ē)}1/2|H
A
] = β . (37)
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Under H
A
, E(∆c̄− R̄0∆ē) = δ(R

A
−R0), with δ(6= 0) denoting the true

incremental effectiveness. Assuming the covariance matrix of (∆c̄, ∆ē)′, Σ,

is known, Eq. (37) yields

P [−z1−α/2 − δ(R
A
−R0){var(∆c̄) + R

2

0 var(∆ē)

− 2R

2

0
cov(∆c̄, ∆ē}−1/2

< Z < z1−α/2

− δ(R
A
−R0){var(∆c̄) + R

2

0
var(∆ē)

− 2R

2

0 cov(∆c̄, ∆ē}−1/2] = β , (38)

where Z is standard normal and n
A

= kn0. Depending on the sign of

δ(R
A
− R0), the absolute magnitude of one of the limits on Z is usually

large. In either case, we will get, approximately .

|δ(R
A
−R0)|

= (z1−α/2 + z1−β
){var(∆c̄) + R

2

0 var(∆ē)− 2R

2

0 cov(∆c̄, ∆ē)}1/2
.

(39)

Routing algebraic steps gives

var(∆c̄) + R

2

0
var(∆ē)− 2R

2

0
cov(∆c̄, ∆ē) = σ

_2

c

(1− ρ

_2)(1 + v0) ,

where v0 = {R0(σ
_

e
/σ

_

c
) − ρ

_}2/(1 − ρ

_2). Supposing n1 = kn0, where n0

and n1 are the number of patients in the test intervention and referent

intervention respectively, we have

n0 =
(σ_2

c0
+ k

−1
σ

_2

c1
)(z1−α/2 + z1−β

)2(1− ρ

_2)(1 + v0)

δ

2(R
A
−R0)2

(40)

Under the same design set-up, the sample size n0b
in the referent inter-

vention needed to guarantee power of 1− β to detect a difference δ in the

test of H01 : ∆ē = 0 is given by

n0b
= δ

−2(σ_2

e0
+ k

−1
σ

_2

e1
)(z1−α/2 + z1−β

)2 .

Therefore,

n0/n0b
=

(σ_2

c0 + k

−1
σ

_2

c1)(1− ρ

_2)(1 + v0)

(σ_2

e0
+ k

−1
σ

_2

e1
)(R

A
−R0)2

. (41)

The parameter v0 is a function of ρ

∗ between ∆ē and (∆c̄− R̄0∆ē). In fact,

ρ

∗ = −{R0(σ
_

e
/σ

_

c
)− ρ

_}/
√

(1− v

2)(1 +−v0) .
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Therefore, |ρ∗| = {v0/(1 + v0)}
2. It will be very large if ρ

∗ is close to one

and, consequently, the sample sizes in (40) and (41) will also be large. The

correlation between the incremental cost and the incremental effectiveness

is related through (32) to ρ

_ the individual correlations ρ

_

0, ρ
_

1 between cost

and benefit in the two interventions. As is usually the case, R0 ≥ 0 and

both (40) and (41) are monotonically decreasing in ρ

_ leading to a smaller

sample size n0 and relative size n0/n0b
with increasing value of ρ

_. Finally,

these sample size formulae are dependent on both the hypothesized CER

R0 and the difference R
A
−R0.

6.2. Test of H0 : R ≥ R0 verse HA : R < R0

Analogous sample size calculations yield the following formula, which

replaces (40):

n0 =
(σ2

c0
+ k

−1
σ

2

c1
)(z1−α

+ z1−β
)2(1− ρ

2)(1 + v0)

δ

2(R
A
−R0)2

. (42)

For the one-sided test H01 : ∆E(e) = 0, with regard to their effective-

ness and, therefore, should be compared on their costs. The ratio n0/n0b

compares the sample size requirement of the test H0 : R = R0 with that

for H01 : ∆ē = 0, with the latter powered to detect the difference δ.

6.3. Test of H0 : ∆E(e) ≤ 0 or R ≥ R0 verse

HA : ∆E(e) > 0 and R < R0

With the solution (34), the power (1−β) of the test can be computed from

the bivariate normal distribution of (Z1, Z2) and is given by

1− β = P

[

Z1 < −z1−α
+

δ

σ1

, Z2 < −z1−α

+
δ|R−R0|

{var(∆c̄) + R

2

0
var(∆ē)− 2R

2

0
cov(∆c̄, ∆ē)}−1/2

]

, (43)

where δ > 0 is the incremental effectiveness and R(< R0) is the true cost-

effectiveness ratio. This parallels the power considerations leading to (39)

for the test of cost-effectiveness only. The choice of c1 and c2 in (33) is

optimal in order to gain maximal power for a given sample size and alter-

native. An implicit expression for the sample size n0 corresponding to ( ) can

be derived by making the substitutions σ

2

e

= (σ2

e0+k

−1
σ

2

c1)/n0, σ

2

e

= (σ2

c0+

k

−1
σ

2

c1)/n0 and var(∆c̄)+R

2

0 var(∆ē)−2R

2

0 cov(∆c̄, ∆ē) = σ

2

c

(1−ρ)(1+v0).
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Note that the previous expression for n0 in (42) is a lower bond for the

sample size requirements for testing H0 : ∆E(e) ≤ 0 or R ≥ R0.

6.4. Numerical computations

In some special cases, simplification of (40)–(43) are possible. Suppose the

costs (c0, c1) and benefit measures (e0, e1) in the two interventions have

the same variance σ

_2

c0
= σ

_2

c1
(= σ

_2

c

), σ

_2

e0
= σ

_2

e1
(= σ

_2

e

), respectively. Then,

assuming equal allocation to the two interventions (k = 1), we have ρ

_ =

(ρ_0 + ρ

_

1)/2 and the sample size n0, n0b
in (40) and (41) reduce to

n0 =
2σ

_2

e

(z1−α/2 + z1−β
)2(R2

0
+ (σ_

c
/σ

_

e
)2 − 2ρ

_

R0(σ
_

c
/σ

_

e
))

δ

2(R
A
−R0)2

,

n0b
= δ

−22σ

_2

e

(z1−α/2 + z1−β
)2 .

(44)

From (42), for one-sided testing, z1−α/2 must be replaced by z1−α
. The

effect size δ/σ
ε

is the difference in effectiveness in units of standard

deviation (SD). For the joint hypothesis test of H0 : ∆E(e) ≤ 0 or R ≥ R0,

the power and sample size expression (43) becomes

1− β = P

[

Z1 < −z1−α
+

√

n0

2

δ

σ

_

e

, Z2 < −z1−α

+

√

n0

2

δ

σ

_

e

|R −R0|

{R2

0
+ (σ_

c
/σ

_

e
)2 − 2ρ

_

R0(σ
_

c
/σ

_

e
)}−1/2

]

. (45)

The sample size requirement for this joint test to ensure power (1− β)

would be greater than the sample size needed for the one-sided test for

effectiveness alone. For fixed n0, the factor

ζ =
R

2

0
+ (σ_

c
/σ

_

e
)2 − 2ρR0(σ

_

c
/σ

_

e
)}−1/2

|R−R0|

would drive the power, with power decreasing with increasing ζ. This factor

is the square-root of the sample size ratio n0/n0b
in (41). Note that if

|σ_
c
/σ

_

e
−R0| > |R0 −R|, irrespective of the value ρ

_ we always have ζ > 1.

Therefore, (45) should be used to calculate power of the joint test given a

sample size that might be available for testing effectiveness. On the other

hand, (44) is suitable for assessing the sample size needed to establish cost-

effective. It should be noted that the right-hand side of (45) is dependent

on ρ

_ through the correlation first decrease Z1 and Z2. In practice, we are

likely to have R0 > σ

_

c
/σ

_

e
, in which case this correlation ρ

_ first decreases
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with and then increase after the value ρ

_ = (R0σe
/σ

c
)−1, therefore, in this

circumstance, a strong positive correlation between cost and effectiveness

would suggest a smaller sample size requirement for (45) to hold given β.

7. Examples

7.1. Example 1

We use summary data from Sacristan et al.14 on a trial comparing two

pharmacological agents in this example. Data on 150 patients using the

test drug yield a mean cost of $200,000 (SD = $78,400). Health benefit

measured in QALYs is 8 (SD = 2.1) corresponding values on 150 patients

using the standard drug are $80,000 (SD = $27,343) for mean cost, and

5 QALYs (SD = 2.0) for mean health benefit. These values yield the fol-

lowing estimates: ∆ē = 3, ∆c̄ = $120, 000 and from (32) σ

_

e
= 0.237 and

σ

_

c
= 6779. In the absence of a reported value for the correlation between

cost and effectiveness, we consider values ρ

_

0 = ρ

_

1 = 0.7. From (32), we

see that with zero correlations, the incremental cost and incremental effec-

tiveness are uncorrelated (ρ = 0). For ρ

_

0 = ρ

_

1 = 0.7, we get ρ

_ = 0.638

approximately.

7.1.1. Hypothesis testing for the CER

Suppose the hypothesized CER was R0 = $50, 000/QALY. From the test of

H0 : R = R0 verse H
A

: R 6= R0 section, the two-sided test of H0 : R = R0

based on the statistic T = (∆c̄−R0∆ē)/{var(∆c̄−R0∆ē)}1/2 has a p-value

of 0.03 if ρ

_

0 = 0 and approximately 0.001 if ρ

_

0 = 0.7. It can be shown that

the p-values decrease with increasing values of ρ

_

0.

7.1.2. Determining statistical power

What power does this test have to detect an alternative CER, R0 =

$40, 000/QALY? We compute the power from (39) assuming an incremental

effectiveness of 3 QALYs. If ρ

_

0 = 0 the power is about 59% and increases

to 94% if ρ

_

0 = 0.7. A lower power may be acceptable in studies of cost-

effectiveness.

7.1.3. Testing the joint hypothesis on effectiveness and

cost-effectiveness

The power function of this one-sided test is given in (43). To test for sig-

nificance of the difference in effectiveness (i.e. H01 : ∆E(e) = 0), we would
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reject if |∆ē/σ

_

e
| > z1−α/2. In this example, the difference δ being highly

significant makes the right-hand side of (43) essentially

P

[

Z2 < −z1−α
+

δ|R−R0|

{var(∆c̄) + R

2

0
var(∆ē)− 2R

2

0
cov(∆c̄, ∆ē)}−1/2

]

.

The power at δ = 3 and R = $40, 000 is about 0.71 for these data.

7.2. Example 2

Consider the simplifications leading to (44) and (45). To ensure a power

of 80% to detect an effect size δ/σ

_

e
= 0.5 with a two-sided test of

H01 : ∆E(e) = 0 with α = 0.05, we get n0b
= 63. Suppose the hypothe-

sized ICER is R0 = $80, 000/QALY and the relative SD σ

_

c
/σ

_

e
= 5, 000

($/QALY). Correlation between the cost and effectiveness measures is likely

to be positive. Let ρ

_ = 0.7 and assume a known effect size δ/σ

_

e
= 0.5.

The sample size n0 needed to detect an ICER of $50,000/QALY or less

with 80% power requires n0 ≥ 6.51n0b
. For two-sided testing, this yields

n0 ≥ 410. The sensitivity of ρ(> 0) to this relative sample size is small. A

zero correlation increase this ratio to 7.1.

Now consider testing the joint hypothesis H0 : ∆E(e) ≤ 0 or R ≥ R0

under the same constraints. Suppose we want 80% power to detect an effect

size 0.5 and an ICER of $50,000/QALY. Using (45), we will get n0 = 323

when ρ

_ = 0.7. Note that the joint hypothesis is formulated as one-sided.

In comparison, a one-sided test for effectiveness would need approximately

50 subjects per arm to detect an effect size of 0.5 with 80% power. As noted

after (45), the power is driven by the probability involving Z2 because ζ > 1

in this case.

7.3. Example 3

Sample size requirements for testing H0 : ∆E(e) ≤ 0 or R ≥ R are given in

Table 1 for some values of R0 and effective sizes δ/σ

_

e
. The test is designed

with α = 0.05 and 80% power at R = $30, 000/QALY. We use (45) with

ρ

_ = 0.7 and σ

_

c
/σ

_

e
= 5, 000 ($/QALY).

The last column of Table 1 gives the sample size requirement to ensure

80% power in the two-sided test of effectiveness alone. For example, to de-

tect an effect size of 0.4 and a ICER of $30,000/QALY, when the maximum

acceptable level is $50,000/QALY, we require a sample size of 421 for the

test and referent groups. In comparison, for testing H01 : ∆E(e) = 0, only

99 subjects are required to detect an effect size of 0.4.
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Table 1. Sample size requirements for testing effectiveness and cost-effectiveness.

Effective size
Maximum ICER R0 ($1000/QALY) Effectiveness alone

40 45 50 55 60

0.3 1848 1060 748 586 490 175

0.4 1040 596 421 330 276 99

0.5 666 382 269 211 177 63

0.6 462 265 187 147 123 44

Because of the relatively large sample size needed to test the joint hypo-

thesis of cost-effectiveness and effectiveness, in practice power could be

calculated from (10) using the sample size that is needed to demonstrate

a difference in effectiveness between two treatments. For example, with

175 subjects per arm, we have 80% power to detect an effect size of 0.3.

with this sample size, ρ

_ = 0.7 and R0 = $50, 000/QALY we will have 64%

power to detect a ICER of $30,000/QALY at an effect size of 0.5 at an

effect size of 0.3, the power is only 33%.

8. Modeling for Cost-Effectiveness Analysis

Cost-effectiveness analysis require estimation of the health effects and

resource costs associated with an intervention and with the alternatives

to which it will be compared. Modeling is frequently necessary since few

studies provide information over sufficiently long periods or for all relevant

costs, effects and population groups.

Cost-effectiveness analysis helps inform different types of decisions

about health interventions. To begin, it can inform the decision to use an

intervention at all by showing whether it is cost-effective enough compared

to alternatives. More often decisions concern hoe to use the intervention.

Should screening for hypertension be done every year, every two years, or

every five years? If hypertension is diagnosed, and non-drug therapies are

unsuccessful, which drugs should be used? Should folic acid supplementa-

tion be accomplished through diet, vitamin supplements, or fortification of

cereal grains? If fortification, how many mg of folic acid per 100 grams of

cereal grain product? Should every patient who presents at the emergency.

A model creates the framework for cost-effectiveness analysis. To serve

its purpose, and enable decision makers to explore the implications of vari-

ation in the intervention, the condition, and the population, it must allow

not only for substantial variation in those factors.
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8.1. Validating effectiveness estimates

Accuracy is essential for a model. Eddy2 described four levels of validation.

First, the structure of the model should make sense to experts. Second, the

model should reproduce the outcomes observed in the studies used to esti-

mate its parameters. Third, the models predictions could be compared with

results from studies not used in its construction. Fourth, the model could be

used to predict outcomes for a new program and the predictions compared

with the outcomes when the program is implemented. The first and second

steps are essential. For the third step, randomized clinical trials (RCTs)

offer a challenging, but potentially persuasive, test of a models accuracy.

While trials are usually the benchmark, the model may be accurate on

specific points.

It is reasonable to expect a good model to match the results of trials

available at the time of its construction, but not to expect it to predict the

results of future trials. Models can and should accurately reflect the state

of knowledge at the time they are created.

When is a model going too far beyond the data? The medical and public

health practice are the best guides. Models can appropriately be used to

analyze any circumstances in which the intervention is already being ap-

plied, or in which it is being seriously considered for application. If it is

appropriate to use the intervention in the real world, on real people, it is

an appropriate to analyze the implications of that use of a model.

8.2. Modeling costs

Eddys suggestions described above should be considered for the cost

estimate as well. Modelers need to pay attention to ensuring that the

pathway of events described by a model represents costs as well as it does

effects.

In part, the failure to validate cost estimates reflects the failure to take

cost data as seriously as effectiveness data. A basic requirement for accurate

predictions, often overlooked, is that both costs and effects should apply to

the same population and the same circumstances. Further, data on resource

use and cost need to be associated with the same care and subjected to

the same sorts of consistency checks as effectiveness data — comparing one

source with another, relating differences in costs to characteristics thought

to be associated with those differences and so on.

In addition, the range of variation that could usefully be modeled is as

wide for costs as for effects. An iterventions effectiveness differs across the
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country because populations differ in incidence of the condition, risk factors

and co-morbidities. Costs differ across the country because of differences

in wages and other costs, in practice patterns and in suitable production

technologies. While one purpose of sensitivity analyses is to determine which

parameters have a major influences on cost-effectiveness, it would also be

useful to explore sets of assumptions that describe, as accurately as the

data allow, circumstances in another part of the country or another delivery

system.

The US panel on cost-effectiveness in Health and Medicine has urged

the use of micro-costing for costing events important to an analysis. Micro-

costing could yield a better understanding of the factors that underlie

resource use and costs for various conditions, analogous to the under-

standing of effectiveness built up from epidemiological and clinical research.

That understanding might reveal alternatives for making interventions more

cost-effective by changing the way they are delivered, not just by targeting

them to population subgroup.

Models should be flexible enough to permit exploration of a range of

production possibilities and cost levels for an intervention. Analysts could

then examine plausible differences in costs and production technologies. It

would be useful to evaluate combinations of values that occur in the real

world: conditions in Michigan verse those in San Francisco, conditions in

an inner city, a suburb, or a rural area.

8.3. Modeling form

Models are built from estimates of risk — the probability that a condition

will progress to the next stage, that a test is accurate, that a treatment will

be effective. In medical research, the familiar and convenient mathematical

forms for fitting risk relationships are the logistic and, more recently hazard

models. Both forms incorporate an assumption that the risk relationship

is multiplicative, and thus that the size of the risk reduction caused by

changing one risk factor differs for different levels of the other risk factors.

This assumption implies, for example, that the reduction in risk caused

by lowering systolic blood pressure from 160 mmHg to 140 mmHg will

be larger in people who also smoke, even though they continue to smoke,

than in people whose only risk factor is high blood pressure. Similarly,

the reduction in risk from smoking cessation will be greater in people

who are hypertensive, even if their blood pressure is unchanged, than in

non-smokers.
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In turn, this implies that it will be more cost-effective to apply an in-

tervention to people with several risk factors, not because the programme

achieves economies by treating several riskm factors, but because interven-

tion against a single risk factor is more effective in these people. The point

is clear in an analysis by Taylor et al.18 Of a dietary programme to lower

serum cholesterol modeled after the one employed in MRFIT. Effectiveness

was estimated using logistic coefficients reported from the Framingham

study. Results were presented separately for low-risk men, whose only risk

factors for heart disease were their gender and cholesterol level, and for

high-risk men, who also smoked and had high blood pressure and low HDL

levels. Although the cost of the intervention was the same, cost per life-

year was approximately ten times higher for low-risk men because of the

multiplicative assumption incorporated in the logistic form.

Logistic and hazard models play an important role in some of the situ-

ations for which models are particularly useful — examining differences in

effectiveness and cost-effectiveness among subgroups. When analysts model

the implications of targeting an intervention to subgroups, or extrapolate to

explore its application to less-studied groups, they need to be aware of the

implications of the conventional forms. Modelers cannot supply the data

to resolve this issue, but they can draw attention to it by showing how

estimates change when addictive and multiplicative forms are used. The

ultimate goal is to ensure that estimated differences among subgroups are

not an artifact of a convenient statistical model.
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1. The Concept of QOL and its Components

What is quality of life? There is no universally agreed definition. Quality

of life (QOL) not only means different things to different people, but it

also varies according to a person’s current situation. When a person falls

sick he thinks QOL is good health, when he is poor, QOL is wealth. To

a town planner, for example, QOL might represent access to green space

and other facilities. In the context of clinical trials we are rarely interested

in QOL in such a broad sense, but are concerned only with evaluating

those aspects that are affected by disease or treatment of disease. This may

sometimes be extended to include indirect consequences of disease such as

unemployment or financial difficulties. To distinguish between QOL in its

more general sense and the requirements of clinical medicine and clinical

trials, the term “health-related quality of life” (HRQOL) is frequently used

in order to remove ambiguity.

There are a number of reasons for developing a quality of life assessment

tool. The main reason is undoubtedly that in recent years there has been a

broadening of focus of the measurement of health beyond traditional health

indicators such as mortality and morbidity.1 Indeed, the measurement of

health may now includes assessment of the impact of disease and impair-

ment on daily activities and behaviour,2 perceived health measures3 and

disability/functional status measures.4 These measures, whilst beginning

to provide an indication of the impact of disease, do not access quality of

195
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life per se, which has been aptly described as “the missing measurement

in health”.5 The increasingly mechanistic model of medicine, concerned

only with the eradication of disease and symptoms, reinforces the need

for the introduction of a humanistic element into health care. Health care

is essentially a humanistic transaction in which the patient’s well-being is

the primary aim. By calling for QOL assessment in health care, attention

is focused on this aspect of health, and resulting interventions will pay

increased attention to the problem.

There still has not been a single, clear, universally accepted definition of

HR-QOL. What domains should be included in QOL? There are five major

domains of QOL which are generally referred to by most authors. These

domains are physical status and functional abilities, psychological status

and well being, social interactions, economic and/or vocational status and

factors, and religious and/or spiritual status.

The World Health Organization (WHO) has developed an international

quality of life assessment instrument (WHOQOL) which allows an enquiry

into an individual’s perception of own position in life in the context of

the culture and value systems in which they live, and in relation to their

goals, expectations, standards and concerns. The WHOQOL measures qual-

ity of life related to health and health care. It has been developed in the

framework of a collaborative project involving numerous centres in differ-

ent cultural settings.6 QOL is defined by WHO as “individuals’ perceptions

of their position in life in the context of the culture and value systems in

which they live and in relation to their goals, expectations, standards and

concerns”. It is a broad ranging concept incorporating in a complex way the

persons’ physical health, psychological state, level of independence, social

relationships, personal beliefs and their relationships to salient features of

the environment.

This definition reflects the view that quality of life refers to a subjective

evaluation, which is embedded in a cultural, social and environmental

context. As such, quality of life cannot be equated simply with the terms

“health status”, “life style”, “life satisfaction”, “mental state” or “well-

being”. Because the WHOQOL focuses upon respondents’ “perceived”

quality of life, it is not expected to provide a means of measuring in

any detailed fashion symptoms, diseases or conditions, nor disability as

objectively judged, but rather the perceived effects of disease and health

interventions on the individual’s quality of life. The WHOQOL is, there-

fore, an assessment of a multi-dimensional concept incorporating the

individual’s perception of health status, psycho-social status and other

aspects of life.
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It is anticipated that the WHOQOL assessment will be used in broad-

ranging ways. It will be of considerable use in clinical trials, in establishing

baseline scores in a range of areas, and looking at changes in quality of life

over the course of interventions. It is expected that the WHOQOL assess-

ment will also be of value where disease prognosis is likely to involve only

partial recovery or remission, and where treatment may be more palliative

than curative.

For epidemiological research, the WHOQOL assessments will allow

detailed quality of life data to be gathered on a particular population,

facilitating the understanding of diseases, and the development of treatment

methods. The international epidemiological studies that would be enabled

by instruments such as the WHOQOL-100 and the WHOQOL-BREF will

make it possible to carry out multi-center quality of life research, and to

compare results obtained in different centers. Such research has important

benefits, permitting questions to be addressed which would not be possible

in single site studies. For example, a comparative study in two or more

countries on the relationship between health care delivery and quality of life

requires an assessment yielding cross-culturally comparable scores. Some-

times accumulation of cases in quality of life studies, particularly when

studying less frequent disorders, is helped by gathering data in several

settings. Multi-center collaborative studies can also provide simultaneous

multiple replications of a finding, adding considerably to the confidence

with which findings can be accepted.

In clinical practice the WHOQOL assessments will assist clinicians in

making judgements about the areas in which a patient is most affected

by disease, and in making treatment decisions. In some developing coun-

tries, where resources for health care may be limited, treatments aimed at

improving quality of life through palliation, for example, can be both effec-

tive and inexpensive. Together with other measures, the WHOQOL-BREF

will enable health professionals to assess changes in quality of life over the

course of treatment.

It is anticipated that in the future the WHOQOL will prove useful

in health policy research and will make up an important aspect of the

routine auditing of health and social services. Because the instrument was

developed cross-culturally, health care providers, administrators and legis-

lators who require a valid QOL instrument for use can be confident that

data yielded by work involving the WHOQOL assessment will be genuinely

sensitive to their setting.

A large number of instruments have been developed for QOL assess-

ment and we can divide them into two categories: generic instruments and
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disease-specific instruments.7 Generic instruments are intended for general

use, irrespective of the illness or condition of the patient. These generic

questionnaires may often be applicable to healthy people too. Some of

the earliest ones were developed initially with population surveys in mind,

although they were later applied in clinical trial settings.

There are many instruments that measure physical impairment, dis-

ability or handicap. Although commonly described as QOL scales, these

instruments are better called measures of health status because they focus

on physical symptoms. They emphasize the measurement of general health,

and make the implicit assumption that poorer health indicates poorer

QOL. One weakness about this form of assessment is that different patients

may react differently to similar levels of impairment. Many of the earlier

questionnaires such as the Sickness Impact Profile (SIP)2 and the Notting-

ham Health Profile (NHP)8 to some degree adopt this approach. Few of the

earlier instruments had scales that examined the subjective non-physical

aspects of QOL, such as emotional, social and existential issues. Newer

instruments such as the Medical Outcomes Study 36-Item Short Form

(SF-36),9 however, emphasize these subjective aspects strongly, and also

commonly include one or more questions that explicitly enquire about

overall QOL. More recently, some brief instruments that place even less

emphasis upon physical functioning have been developed. Two such instru-

ments are the EuroQol,10 which is intended to be suitable for use with

cost-utility analysis, and the SEIQol,11 which allows patients to choose

those aspects of QOL that they consider most important to themselves.

Generic instruments, intended to cover a wide range of conditions, have

the advantage that scores from patients with various diseases may be com-

pared against each other and against the general population. On the other

hand, these instruments fail to focus on the issues of particular concern

to patient with disease, and may often lack the sensitivity required to de-

tect differences that arise as a consequence of treatment policies that are

compared in clinical trials. This has led to the development of disease-

specific questionnaires, for example, the EORTC QLQ-C30 (European

Organization for Research and Treatment of Cancer QLQ-C30).12

2. Methods of Developing QOL Measurements

The development of a new QOL instrument requires a considerable amount

of detailed work, demanding patience, time and resources. Some evidence

of this can be seen from the series of publications that are associated with
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such QOL instruments as the SF-36, the FACT and the EORTC QLQ-C30.

These and similar instruments have initial publications detailing aspects of

their general design issues, followed by reports of numerous validation and

field-testing studies.

Many aspects of psychometric validation depend upon collecting and

analysing data from samples of patients or others. However, the statisti-

cal and psychometric techniques can only confirm that the scale is valid in

so far as it performs in the manner that is expected. These quantitative

techniques rely on the assumption that the scale has been carefully and

sensibly designed in the first place. To that end, the scale development pro-

cess should follow a specific sequence of stages, and details of the methods

and the results of each stage should be documented thoroughly. Reference

to this documentation will, in due course, provide much of the justification

for content validity. It will also provide the foundation for the hypothetical

models concerning the relationships between the items on the questionnaire

and the postulated domains of QOL, which are then explored as construct

validity.

Next, we will discuss the steps in instrument development in detail.

2.1. Specifying measurement goals

Before embarking on the development of any new instrument, the investi-

gator should define exactly what the instrument is to measure. This initial

definition will help the investigator design appropriate development and

testing protocols and will enable other users of the instrument to identify

its applicability to their own patients and studies. This process will include

specification of the objectives in measuring QOL, a working definition of

what is meant by “quality of life”, identification of the intended groups

of respondents, and proposals as to the aspects or main dimensions of

QOL that are to be assessed. The investigator should consider at least

the following criteria.

2.1.1. Patient population

As in a clinical trial, there should be clear inclusion and exclusion criteria

that identify the precise clinical diagnosis and basic patient characteristics.

A detailed definition might include age, literacy level, language ability, and

presence of other illness that might have impact on QOL. An investigator

may be thinking of a particular study in which the instrument is to be used,

but constructing an instrument for too specific a population or function may
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limit its subsequent use. One can usually choose a patient population that

is narrow enough to allow focus on important impairments in that disease

or function but board enough to be valid for use in other studies.

2.1.2. Primary purpose

The investigator needs to decide whether the primary purpose of the in-

strument is going to be evaluative, discriminative, or predictive. Although

some instruments may be capable of all three functions, it is difficult to

achieve maximum efficiency in all three.

2.1.3. Patient function

In most disease-specific instruments, investigators want to include all areas

of dysfunction associated with that disease (physical, emotional, social,

occupational). However, there are some instruments that are designed to

focus on a particular function (e.g. emotional function, pain, sexual func-

tion) within a broader patient population. The investigator should decide

whether all or only specific functions are to be included.

2.1.4. Other considerations

The investigator should also decide on the format of the instrument. Will

it be interviewer and/or self-administered? Does it need to be suitable

for telephone/postal interviews? Approximately how many items will the

instrument contain?

Once a working definition of quality of life and study protocol are deve-

loped, a further phase of work involved operationalizing the broad domains

and individual facets of quality of life. Consultants and principal investi-

gators should draft a provisional list of domains and constituent facets of

quality of life. Each facet definition should consist of a conceptual definition,

a description of various dimensions along which a rating can be made for

that facet, and a listing of some example situations or conditions that might

significantly affect that facet at various levels of intensity. Once facets of

QOL are drafted, a series of focus groups should be held with patients, well

persons and health professionals to consider the facet definitions drafted by

health professionals and QOL researchers. On the basis of the focus group

data, a revised set of facet or domain definitions are compiled to guide

subsequent item generation.
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2.2. Item generation

The first task in instrument development is to generate a pool of all

potential relevant items. For this pool, the investigator will later select items

for inclusion in the final questionnaire. The most frequently used methods

of item generation include unstructured interviews with patients who have

insight into their condition, patient focus group discussions, a review of the

disease-specific literature, discussions with health care professionals who

work closely with the patients, and a review of generic QOL instruments.

A question-writing panel should be assembled. The question-writing

panel should consist of the principle investigator, the main focus group

moderator, at least one person with good interviewing skills and experi-

ence, and a lay person, preferably someone who participates in one of the

lay focus groups, to ensure that questions are framed in a way that is easy

to understand.

2.3. Item reduction: Reducing items on the basis

of their frequency and importance

Having generated a large item pool, the investigator must select the items

that will be most suitable for the final instrument. QOL instruments usually

measure health status from the patients’ perspective and so it is appropriate

that patients themselves identify the items that are most important to

them. Investigators should ensure that the patients selected represent the

full spectrum of those identified in the patient population. It is important

to ensure that all of the subgroups are adequately represented.

One approach to item reduction is to ask patients to identify those

items that they have experienced as a result of their illness. For each posi-

tively identified item, they rate the importance using a 5-point Likert type

scale (“extremely important” to “not important”). Results are expressed

as frequency (the proportion of patients experiencing a particular item),

importance (the mean importance score attached to each item), and the

impact, which is the product of frequency and importance.

Very occasionally, there are items that have absolutely no potential

of changing over time either as a result of an intervention or though the

natural course of the disease. If one is developing an evaluative instrument,

one may consider excluding such unresponsive items because they will only

add to the measurement noise and the time taken to complete the question-

naire. However, if such an item is considered very important by patients
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and therefore potentially a future target for therapy, exclusion because of

apparent unresponsiveness to current therapies may be unwise.

A comprehensive set of items will inevitably include some redundan-

cies. How does one decide whether to include them? One approach is to test

whether the items are highly correlated. If Spearman rank order correlations

are high one could consider omitting one of the items. This strategy is par-

ticularly appropriate for a discriminative instrument, for highly correlated

items will, when taken together, give little information in terms of distin-

guishing between those with mild and severe quality of life impairment. It

is somewhat riskier for evaluative instruments; just because items correlate

with one another at the item reduction phase does not guarantee that they

will change in parallel when measured serially over time.

Investigators can select the sample size for the item reduction process

by deciding how precise they want their estimates of the impact of an item

on the population. The widest confidence interval around a proportion (the

frequency with which patients identify items) occurs when the proportion

is 50%; any other value will yield a narrower confidence interval. If one

recruits 25 subjects, and an item is identified by 50% of the population,

the true prevalence of that item is somewhere between approximately 30%

and 70%. If one recruit 50 subjects, the 95% CI around a proportion of 0.5

will be approximately from 0.36 to 0.64. For 100 subjects, the confidence

interval will be from 0.4 to 0.6. It is recommended that researchers recruit

at least 100 subjects for this part of the questionnaire development process.

There are some statistical methods we can use to determine which items

should be included in the instrument. Factor analysis, cluster analysis,

multiple regression, and discriminant analysis are methods often used.

2.4. Questionnaire formatting

2.4.1. Selection of response options

Response options refer to the categories or scales that are available for

responding to the questionnaire items. For example, one can ask whether

the subject has difficulty climbing stairs; two response options, yes and no,

are available. If the questionnaire asks about the degree of difficulty, a wide

variety of response options are available.

An evaluative instrument must be responsive to important changes even

if they are small. To ensure and enhance this measurement property, inves-

tigators usually choose scales with a number of options, such as a 7-point

scale where responses may range from 1 = no impairment to 7 = total

impairment, or a continuous scale such as a 10-cm Visual Analogue Scale
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(VAS). The 7-point Likert scale is often preferred, because although both

yield similar data, the Likert scale has practical advantages over the VAS,

being both easier to administer and easier to interpret.

Likert scale and VAS can be used as discriminative and predictive

instruments, and are likely to yield optimal measurement properties.

However, Likert scale and VAS are more complex than a simple yes/no

response and they are very difficult to use for telephone interviews. In

health surveys, investigators requiring only satisfactory discriminative or

predictive measurement properties of their instrument may choose a simple

response option format.

2.4.2. Time specification

A second feature of presentation is time specification: patients should be

asked how they feeling over a well-defined period of time. Two weeks is

the time frame used by most instruments on the basis of the intuitive

impression that patients can accurately recall. Time specification can be

modified according to the study, and other investigators may have different

impressions of the limits of their population’s memory.

When a new questionnaire is developed, it is necessary to test its

psychometric properties including validity, reliability, responsiveness and

sensitivity. Validation of instruments is the process of determining whether

there are grounds for believing that the instrument measures what it intends

to measure, and that it is useful for its intended purpose. Reliability

concerns the random variability associated with measurements. Ideally,

patients whose QOL status has not changed should make very similar, or

repeatable, responses each time they are assessed. If there is considerable

random variability over time, the measurements are unreliable. Sensitivity is

the ability of measurement to detect differences between patients or groups

of patients. Sensitivity is important in clinical trials since a measurement

is of little use if it cannot detect the differences in QOL that may exist

between the randomised groups. We will discuss these properties in detail

in Sec. 6.

3. Linguistic Validation of QOL Instrument

3.1. Introduction

Most health status measures and psychological tests are used only in the

setting in which they were originally developed. Some are translated into

other languages and used without making any adaptations, and yet this is
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necessary to ensure their usefulness in another culture or language. A very

small number of instruments are produced in equivalent version in different

languages, before assessing the instruments’ validity and reliability that are

prerequisites for the use of instrument in a new culture.

WHO has accrued considerable experience in translating health mea-

surements. This has facilitated the development of a translation methodo-

logy which has significant advantages over the forward-translation and

the translation-back-translation methodologies. We call this procedure

“linguistic validation”. The steps outlined below describe a sequence which

has been used successfully in a number of studies. It is clear that varia-

tions of the method may well be necessary, and indeed desirable, in certain

situations.

The aim of linguistic validation of a QOL questionnaire is to maintain, as

far as possible, conceptual, semantic and technical equivalence between the

target language and source language versions of the instrument. Conceptual

equivalence refers to the same concepts underlying the questions in an

instrument in both source and target languages. Semantic equivalence refers

to the same denotative and connotative elements of words. Denotation

refers to that which is implied by the word, and connotation refers to the

emotional meaning of the word. That is to say, what the words indicate or

are a sign for (denotation) or what is implied by the words in addition to

their emotional meaning (connotation). Technical equivalence refers to two

separate but overlapping issues: first, the equivalence of technical features of

language and their relationship to the socio-cultural context; and secondly,

the feasibility of the nature and mode of questioning of the instrument in

both source and target culture.

The linguistic validation of a QOL questionnaire is a complex process

which requires the recruitment of professional teams who are familiar with

this type of work. The linguistic validation of a questionnaire is not a literal

translation of the original questionnaire, but the production of a translation

which is conceptually equivalent to the original, and culturally acceptable

in the country in which the translation will be used.

In order to work towards an acceptable translation of an instrument in

a given language the following points should be adhered to:

– The translation methodology should be adhered to and the different

phases of the process should be summarised in a report

– The translated version of a questionnaire — obtained if possible in colla-

boration with its developer — should be recognised as the official version
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in the country concerned. This will avoid the proliferation of “pirate”

versions and will help to facilitate the access to translations

– Ideally, a linguistic validation of a QOL questionnaire should be comple-

mented by a psychometric validation of the questionnaire.

3.2. Methodology

The original language in which the questionnaire was developed is called

source language. The language into which the questionnaire is translated

is called target language.

After the recruitment of a QOL specialist in each country concerned,

and having explained the concepts of a linguistic validation in detail, a QOL

instrument is then ideally translated according to Table 1.

Thus, in summary, the linguistic validation of a QOL questionnaire

comprises 7 steps shown in the first column of Table 1.

The questionnaire should always be considered as a whole (i.e. the

response choice could influence the translation of the items and vice verse).

It cannot be assumed that a questionnaire, however, extensively tested

in the originating country, will be valid and reliable once it has been trans-

lated. No instrument for the assessment of psychological states of subjective

Table 1. Methodology for linguistic validation of a QOL questionnaire.

Steps Source Questionnaire

1. “Forward” translation forward version A1
by two independent translators and forward version A2

2. Reconciliation meeting between
the 2 “forward” translators and forward version B
the local project manager

3. “Backward translation” by 1
backward translation

independent translator

4. Comparison of the source
questionnaire with the forward version C
“backward” translation by the
local team

5. Cognitive debriefing forward version D

6. International harmonisation (if
the original is translated into final version
more than 1 language)

7. Report
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perceptions is culture-free. In each instance the validity and other metric

characteristics of the instrument must be assessed in the country of ap-

plication. Important components of psychometric testing in cross-cultural

quality of life studies include reliability, validity, responsiveness, and effect

size interpretation.

4. Design Issues Relating to QOL Study

4.1. Study objectives

Clear study goals are prerequisites to developing appropriate design and

analysis strategies that answer clinically relevant questions. Overly general

objectives, such as “describe the QOL of. . .” do not adequately address

aspects of study such as the comparison of the two treatment arms, whether

the comparisons are limited to the period of therapy or extend across time

within a treatment group. Without a focused objective, unnecessary as-

sessments are often included in protocol designs. This increases problems

of multiple comparisons and missing data, and increases the possibility that

critical assessments will be omitted.

4.2. QOL instruments

QOL assessments should ideally be brief, using an uncomplicated and least

complicated instrument or combination of instruments that adequately

address primary research questions. Adding scales/instruments in order

to obtain less relevant data will increase both the multiple comparisons

problem and the likelihood that data will be incomplete. This will in

turn potentially compromise the ability of the trial to achieve the primary

objectives of the study.

4.3. Timing of assessments

The timing of QOL assessments must also be specified to achieve the goals

of the study. Baseline measures that precede therapy allow for assessment of

treatment-related changes within an individual. Depending on the goals of

the study, it is also important to have a sufficiently long period of follow-up

after therapy to allow for assessment of the long-term treatment effect and

potential late sequelae. In the phase 3 treatment comparison setting, it

is critical that QOL should be assessed regardless of treatment and dis-

ease status. Patients who have changes in status or who have discontinued
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treatment should still take part in QOL assessment, as the biggest differ-

ences in QOL may be in these patients. Without these measurements it

will be difficult to derive summary measures and impossible to make unbi-

ased comparisons of the effects of different therapeutic regimens on QOL.

Procedures for obtaining assessments for patients who have changed status

or discontinued therapy should be explicitly stated in protocols.

The timing of assessments should be chosen to minimize missing data. It

is generally recommended that the frequency of assessments be minimized

for ease of patient and staff burden. However, in some cases more frequent

administration linked to the clinical routine (e.g. at the beginning of every

treatment cycle) may result in more complete data because the pattern of

assessment is established as part of the clinical routine.

4.4. Sample size and power

The sample size and power to detect meaningful differences for primary

QOL hypotheses is critical to any study in which QOL is an important end

point. In addition to the usual estimates of variation and correlations, the

sensitivity of the QOL instrument to detect clinically significant changes is

the most useful information that can be provided during the validation of a

QOL instrument. Specific estimates of the changes in subscales and global

scales related to clinical status give the statistician and the clinician a clear

and familiar reference point for defining differences that clinically relevant.

This is critical for insuring an adequate sample size for the study. It should

be noted that because end points may involve repeated measurements at

different times and/or combinations of subscales, both test-retest correla-

tions and among-subscale correlations are useful and should be reported for

validated instruments.

If the sample size requirements for the QOL component are substan-

tially less than for the entire study, an unbiased strategy for selection of

a subset of patients in which QOL will be assessed should be identified.

For example, the first 500 patients enrolled in the study might be included

in the QOL substudy. This may have an additional advantage in studies

with a long duration of QOL follow-up. This strategy is being used in

the design of an Eastern Cooperative Oncology Group (ECOG) study, in

which patient entry is expected to take 5 years, an additional follow-up of

2.5 years is planned for the survival end point, and the desired duration

of QOL assessment is 5 years. By limiting the patients in which QOL is

assessed to those enrolled in the first 2.5 years, the QOL study is expected
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to be complete at the same time as the final analysis of the primary survival

end points.

5. Characteristics of QOL Data and Statistical Issues

5.1. Primary statistical issues14

5.1.1. Multiple comparisons

Analysis of QOL data differs from the analysis of other clinical end points

data. There are often a large number of measures resulting from both

multiple dimensions of QOL (multiple instruments and/or subscales) and

repeated assessments over time. Univariate tests for each subscale and time

point can seriously inflate the type I error rate (false positive) for the

overall trial such that the investigator is unable to distinguish between

the true and false positive differences. Furthermore, it is often impossible to

determine the number of tests performed at the end of analysis and adjust

post hoc. Methods that allow summarization of multiple outcome both

simplify the interpretation of the results and often improve the statistical

power to detect clinically relevant differences, especially when small but

consistent differences in QOL occur over time or across multiple domains.

On the other hand, significant differences at a particular time or within a

particular domain may be blurred by aggregation.

5.1.2. Missing data

Missing data refers to missing items in scales and missed and/or mistimed

assessments. If the assessment was not completed for reasons that there

are unrelated to the patient’s QOL, the data are classified as “missing at

random”. Examples might be staff forgetting to administer the assessment,

a missed appointment due to inclement weather, or the patient having

moved out of the area. Data that are missing because the patient had

not been on-study long enough to reach the assessment time point (i.e. the

data are censored or incomplete) are also considered missing at random.

Assessments may be mistimed if they are actually given but the exact timing

does not correspond to the planned schedule of assessments for reasons

unrelated to the patients’ QOL. While these types of missing/mistimed

data make analyses more complex and may reduce the power to detect

differences, the estimates of QOL are unbiased even if they are based only

on the observed QOL assessments.
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Non-randomly missing or informatively censored data present re-

searchers with a much more difficult problem. One example of this type

of missing data is that due to death, disease progression, or toxicity

where the QOL would generally be poorer in the patients who were not

observed than in those who were observed. In the chronic disease setting,

this relationship between QOL and missing data might manifest itself as

study dropout due to lack of relief, presence of side effects, or, conversely,

improvement in the condition. The difficulty occurs because analyses that

inappropriately assume the data are randomly missing will result in biased

estimates of QOL reflecting only the more limited population of patients

who were assessed rather than the entire sample of population under study.

One possibility is to limit the analysis, and thereby the inference, to patients

with complete data. In most cases, however, this strategy is not acceptable

to achieve the goal of comparing QOL assessment for all patients. Unless

careful prospective documentation of the reasons for missing assessments

is available in a clinical trial, it is generally impossible to know definitively

whether the reason for the missing assessment is related to the patient’s

condition and/or to their QOL.

In scales based on multiple items, missing information results in a serious

missing data problem. If only 0.1% of items are randomly missing for a 50-

item instrument, 18% of the subjects will have one or more items missing

over four assessments. If the rate is 0.5%, then only 37% of subjects will

have complete data. Deletion of the entire case when there are missing

items results in loss of power and potential bias if subjects with poorer

QOL are more or less likely to skip an item. Individuals with a high level

of non-response (> 50%) should be dealt with on a case-by-case basis.

Imputing missing items for an individual who has answered most questions

would, in general, be preferable to deletion of the entire case or observation,

although the method used for such imputing must be carefully considered.

A simple method based solely on the patient’s own data would use the

mean of all non-missing items for the entire scale or the specific subscale.

Methods based on other patients would include the mean of that item

in individuals who had responded. Another method utilizing data from

other participants is based on the high correlation of items within a scale

or subscale and utilizes information about the individual’s tendency for

particular items to be scored higher or lower relative to other items. The

procedure here is to regress the missing item on the non-missing items using

data from individuals with complete data, and to then predict the value of



May 31, 2003 16:0 WSPC/Advanced Medical Statistics chap06

210 J. Fang & Y. Hao

the missing items using the information gained from the items that the

individual has completed.

5.1.3. Integration of QOL and survival data

In clinical trials with significant disease-related mortality there is need to

integrate survival with QOL. This was identified by the participants in the

1990 NCI QOL workshop who “acknowledged that the use of QOL data in

clinical decision-making will not routinely occur until a larger body of QOL

data is available and models for integrating medical and QOL information

are available”. In studies where both QOL (or toxicity) and clinical end

points indicate the superiority of one treatment over another, the choice of

the best treatment is clear. Similarly, if either QOL or the efficacy outcome

demonstrates a benefit and there is no significant difference in the other,

the choice of treatment is straightforward. The dilemma occurs when there

is a conflict between the QOL and efficacy outcomes. This is often the

case when there is significant toxicity associated with the more effective

treatment.

5.2. Statistical methods used to analyse QOL data

5.2.1. Univariate methods

One approach to the reporting of QOL data has been descriptive univari-

ate statistics such as means and proportions at each specific point in time.

These descriptive statistics may be accompanied by simple parametric or

nonparametric tests such as t-tests or Wilcoxon tests. While these methods

are easy to implement and often used, they do not address any of the three

previously identified issues. One recommended solution to the multiple com-

parisons problem is to limit the number of a priori end points in the design

of the trial to three or less. The analyses of the remaining scales and/or time

points can be presented descriptively or graphically. While theoretically

improving the overall type I error rate for the study, in practice investigators

are reluctant to ignore the remaining data and may receive requests from

reviewers to provide results from secondary analyses with the corresponding

significance level.

An alternative method of addressing the multiple comparisons problem

is to apply a Bonferroni correction, which adjusts the test statistics on k

end points so that the overall type I error is preserved for the smallest p

value. The procedure is to accept as statistically significant only those tests
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with p value that are less than α/k where α is the overall type I error

usually set equal to 0.05.

5.2.2. Multivariate methods

Multivariate analysis techniques include approaches such as repeated mea-

sures analysis of variance (ANOVA) or multivariate ANOVA (MANOVA).

These techniques require complete data, which limits their use in settings

where there is a low risk of mortality and very high compliance with QOL

assessment. If the data are not complete, the inferences are restricted to a

very select and generally non-representative group of patients. Multivariate

statistics such as Hotelling’s T are frequently used to control for type I error.

These statistics, however, answer global questions such as “are any of the

dimensions of QOL different?” or “are there differences in QOL at any

point in time?” without considering whether the differences are in consis-

tent directions. In general, the multivariate test statistics are not sensitive

to differences in the same direction across the multiple end points.

The requirement for complete data can be relaxed by using repeated

measures or mixed effects model with structured covariance. These methods

assume that the data are missing for reasons unrelated to the patients

QOL, such as staff forgetting to administer the assessment for example.

If the missing assessment can reasonably be assumed to be missing at

random, a likelihood-based analysis approach, such as mixed-effects models

or EM (Estimation-Maximization) algorithm for repeated measures models,

incorporates all patients with at least one assessment in the analysis.

This approach has the additional advantages of estimation of within- and

between-subject variation, inclusion of time varying variables, and of being

able to test for significant changes over time.

Other methods often used to determine the risk factors related to

QOL include multiple regression, stepwise discriminant analysis, canonical

correlation, and Logistic regression.

5.2.3. Other methods

5.2.3.1. Quality-Adjusted Life Years (QALY)

An intuitive method of incorporating QOL and time would be to adjust

life years by down-weighting time spent in periods of poor QOL. However,

what would seem to be a simple idea has many methodological challenges.

The first of these challenges is the determination of weights. Torrance14
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describes several techniques for eliciting weights for states of health includ-

ing direct ratings, time trade-offs, and standard gambles. In addition to

the difficulties of administering some of these techniques in clinical trials,

weights elicited by the different techniques or from different respondents

may not result in equivalent measures. The choice of anchor points and

content validity may mean that weights that are appropriate in one set-

ting may be inappropriate in another. The other methodological difficulty

occurs in trials with censored data. Although it might seem appropriate to

undertake a standard survival analysis of individual quality-adjusted sur-

vival times, the usual product limit estimator of the survival function is

biased because censoring is related by the future outcome. For example,

if two groups have the same censoring time due to death, the group with

the poorer QOL will be censored earlier on the QALY scale. This latter

problem can be addressed by estimating the average time spent in each

health state and then computing a weighted average of the time as is done

in the Q-TwiST approach.

5.2.3.2. Q-TwiST

The objective of the Q-TwiST method is to evaluate therapies based on

both quantity and quality of life. Q-TwiST stands for Quality-adjusted

Time Without Symptoms of disease and Toxicity of treatment. It is based

on the concept of quality-adjusted life years (QALYs) and represents a

utility-based approach to QOL assessment in clinical trials. The starting

point is to define QOL-oriented clinical health states, one of which repre-

sents relatively good health with minimal symptoms of disease or treatment

associated toxicity (TWiST). Patients will progress through or skip these

clinical health states, but will not back-track. The next step is to partition

the area under the overall Kaplan–Meier survival curve and calculate the

average time a patient spends in each clinical health state. The final step is

to compare the treatment regimens using weighted sums of the mean dura-

tion of each health state, where the weights are utility based. If these utility

weights are unknown, as is generally the case treatment comparisons can

be made using sensitivity analyses, also called threshold utility analyses.

5.2.3.3. Markov and Semi-Markov Models

Markov and Semi-Markov models have been used to compare treatments

based on estimates of the time spent in different health states and the

probabilities of transitions between these states. The relevant health states
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must be identified and then each is weighted to reflect the relative value of a

health state compared to perfect health. The treatments are then compared

in terms of the total quality-adjusted time, the weighted sum of the health

state durations. In general, to calculate the transition probabilities an

underlying model must be assumed. The most commonly used model is the

Markov chain, which assumes that the transitions from one QOL state to

another are independent and continuous and only depend on the previous

state. This requires that the assessments are made at time points inde-

pendent of the patients’ treatment schedule or health state. Discrete-time

transient semi-Markov processes are used to model the health state transi-

tion probabilities corresponding to prolonged life, while a simple recurrent

Markov process is used to derive the QOL state transition probabilities. In a

semi-Markov process, the state changes from an embedded Markov chain

and the times spent in different health states are mutually independent,

and depend only on the adjoining states.

5.3. Conclusions

We have identified three characteristics of QOL studies that present

challenges for analysis and interpretation. The first is the occurrence of

random and non-random missing data. The analysis of random missing

data is generally well documented with sufficient advice and guidelines for

both practical and theoretical issues. In contrast, development of methods

for analysis of non-random missing data is in its infancy, and we now require

an enhanced knowledge and understanding to determine which methods are

most practical and appropriate.

The second issue addressed is the multivariate nature of QOL studies.

Not only is QOL a multi-dimensional concept measured by multiple scales,

but most studies are longitudinal. Separate analyses of each domain at

multiple time points may make it difficult to communicate the results in

a manner that is meaningful for clinicians and patients. Summary measures

may reduce the multi-dimensionality of the problem but may not make the

interpretation much easier. The issue of weights that vary by technique and

study also adds to the complexity of interpretation. In general, it would be

advisable to perform the analyses using various assumptions to verify that

the results are not sensitive to small changes in the assumptions.

The third issue addressed is the integration of survival data with QOL

measures. This can be addressed from either the perspective of QOL or

from the perspective of time. From a research perspective both approaches
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can be informative; however, currently time is the dimension that both

clinicians and statisticians are most familiar with. Finally, interpretation

of clinical trials may not always be helpful in guiding individual patient

decisions. In theory, individual patients could utilize the threshold utility

analysis of Q-TWiST, but this may require extensive patient education.

There are a number of statistical methodologies that can be employed

in the analysis of QOL data, each of which is based on specific assumptions,

yields a different summary measure, and thus emphasizes different aspects

of QOL. When there is more than one analysis strategy that best anticipates

the above issues should be considered. Analyses should be clearly and con-

cisely reportable so that the relevant differences can be readily understood

by those who will use the results.

6. The Validation Process: Psychometric Testing

The question of most concern relating to psychometrics is whether a mea-

sures both reliable and valid. Measurement is the process by which a concept

is linked to one or more latent variables, and these are linked to observed

variables. The concept can vary from one that is highly abstract, such as

QOL, or intelligence, to one that is more concrete, such as age, sex, or race.

One or more latent variables may be needed to represent the concept. The

observed variables can be responses to questionnaire items, census figures,

or any other observable characteristics.

The first step of the measurement process is to give the concept a theo-

retical definition. A theoretical definition explains in as simple and precise

terms as possible the meaning of a concept. The second step is to identify

the dimensions and latent variables that will represent it. The next step,

of forming measures, depends on the theoretical definition. This is some-

times referred to as the operational definition. The operational definition

describes the procedures to follow to form measures of the latent variables

that represent a concept. In some situations the latent variables are op-

erationalized as the responses to questionnaire items. The fourth step is

construct the measurement model. A measurement model specifies a struc-

tural model connecting latent variables to one or more measures or observed

variables. A simple measurement model for the latent variables influence

on the two measures is

x1 = λ11ξ + δ1 ,

x2 = λ21ξ + δ2 .

(1)

where ξ represents the latent variable, x1 and x2 are its indicator. δ1 and

δ2 are errors of measurement with expected values of zero and uncorrelated
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with ξ and with each other. All variables are in deviation form so that

intercepts terms do not enter the equations.

In sum, the four steps in measurement are to give meaning, identify

dimensions and latent variables, to form measures, and to specify a model.

The theoretical definition assigns meaning to a term and the concept as-

sociated with it. On the basis of this definition, we can know a concept’s

dimensions. Each dimension is represented by one latent variable. Guided by

theoretical definitions, we form measures, and hopefully two or more mea-

sures will be formed per latent variable. Finally, we formulate the structural

relation between indicators and latent variables in the measurement model.

Two important properties of measures are their validity and reliability.

6.1. Validity

Validity15 is concerned with whether a variable measures what it is sup-

posed to measure. For instance, does an IQ test measure intelligence? Does

the WHOQOL-100 measure people’s quality of life? These are questions of

validity. They can never be answered with absolute certainty. Although we

can never prove validity, we can develop strong support for it. Traditionally,

psychologists have distinguished four types of validity: content validity,

criterion validity, construct validity, and convergent and discriminant vali-

dity. Each attempts to show whether a measure corresponds to a con-

cept, though their means of doing so differ. Content validity is largely a

“conceptual test”, whereas the other three types are empirically rooted. If

a measure truly corresponds to a concept, we would expect that all four

types of validity would be satisfied. Unfortunately, it is possible that a valid

measure will fail one or more of these tests or that an invalid measure will

pass some of them.

6.1.1. Content validity

Content validity is a qualitative type of validity where the domain of a

concept is made clear and the analyst judges whether the measures fully

represent the domain. To the extent that they do, content validity is met.

A key question is, how do we know a concept’s domain? For the answer we

must return to the first step in the measurement process. That is, to know

the domain of a concept, we need a theoretical definition that explains the

meaning of a concept. Ideally, the theoretical definition should reflect the

meanings associated with a term in prior research so that a general rather

an idiosyncratic domain results. In addition the theoretical definition should

make clear the dimensions of a concept.
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Does it matter if our measures lack content validity? In general, the

answer is yes. Just as a nonrepresentative sample of people can lead to mis-

taken inferences to the population, a nonrepersentative sample of measures

can distort our understanding of a concept.

The major limitation of content validity stems from its dependence

on the theoretical definition. For most concepts in the social sciences, no

consensus exists on theoretical definitions. The domain of content is am-

biguous. In this situation the burden falls on researchers not only to provide

a theoretical definition accepted by their peers but also to select indicators

that fully cover its domain and dimensions. In sum, content validity is a

qualitative means of ensuring that indicators tap the meaning of a concept

as defined by the analyst.

6.1.2. Criterion validity

Criterion validity is the degree of correspondence between a measure and

a criterion variable, usually measured by their correlation. To assess crite-

rion validity, we need an objective reliable standard measure with which to

compare our measure. Suppose that in a survey we ask each employee in a

corporation to report his or her salary. If we had access to the actual salary

records, we could assess the validity of the survey measure by correlating

the two. In this case employee records represent an ideal, or nearly ideal,

standard of comparison.

The absolute value of the correlation between a measure and a criterion

sometimes is referred to as the validity coefficient. Does this correlation of

a measure and a criterion reveal the validity of a measure? If we represent

the measure as x1 and the criterion as c1, the validity coefficient may be

represent as ρ
x1c1

. A simple model of the relation between x1 and c1, and

the latent variable ξ1 that they measure appears in the following equations:

x1 = λ11ξ1 + δ1 ,

c1 = λ21ξ1 + δ2 ,

(2)

where δ1 and δ2 are uncorrelated with each other and with ξ1, E(δ1) =

E(δ2) = 0.

ρ
x1c1

=
λ11λ21φ11

[var(x1) var(c1)]1/2
. (3)

As Eq. (3) reveals, the magnitude of ρ
x1c1

depends on factors other than

the “closeness” of x1 and ξ1. This is made clearer if we standardize x1, c1,
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and ξ1 to variances of one. In this case :

ρ
x1c1

= λ11λ21 ,

Corr(x1, ξ1) = λ11 ,

Corr(c1, ξ1) = λ21 .

(4)

The validity coefficient, ρ
x1c1

, is affected not only by ρ
x1ξ1

(= λ11) but

also by ρ
c1ξ1

(= λ21). Even if the correlation of x1 with ξ1 stays at 0.5 the

validity coefficient would be 0.45, 0.35, or 0.25 if the correlation of c1 and

ξ1, is 0.9, 0.7, or 0.5. Thus, even with one change in x1’s association with ξ1,

we obtain different values of validity, depending on the criterion’s relation

to ξ1.

In sum, criterion validity as measured by ρ
x1c1

, the validity coefficient,

has several undesirable characteristics as a means to assess validity. It is

not only influenced by the degree of random measurement error variance in

x1 but also by the error in the criterion. Furthermore different criteria lead

to different “validity coefficient” for the same measure, leaving uncertainty

as to which is an accurate reading of a measure’s validity. Finally, for many

measures no criterion is available.

6.1.3. Construct validity

Construct validity is a third type of validity. Many concepts within the

social science are difficult to defined and formulated, and so content validity

is difficult to apply. As mentioned earlier, appropriate criteria for some

measures often do not exist. This prevents the computation of criterion

validity coefficients. In these common situations construct validity is used

instead.

Construct validity assesses whether a measure relates to other observed

variables in a way that is consistent with theoretically derived predictions.

Hypotheses may suggest positive, negative, or no significant associations

between constructs. If we examine the relation between a measure of one

construct to other observed variables indicating other constructs, we expect

their empirical association to parallel the theoretically specified associa-

tions. To the extent that they do, construct validity exists.

The major steps in the process begin with postulating theoretical re-

lations between constructs. Then the associations between measures of

the constructs or concepts are estimated. Based on these associations, the

measures, the constructs, and the postulated associations are re-examined.
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1
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2
ξξξξ

x1

δ1 δ2

λ11 λ22

x2

Fig. 1. Two constructs with one measure each.

Some of the difficulties with construct validity can be illustrated with

a structural equation approach. As a simple example, consider Fig. 1.

Assuming two constructs, ξ1 and ξ2. Each has one measure represented

as x1 and x2. As usual δ1 and δ2 are random errors of measurement with

expected values of 0, uncorrelated with each other and with ξ1 and ξ2. Sup-

pose that the construct validity of x1 is of interest. We hypothesize that

the two constructs (ξ1 and ξ2) are positively correlated (φ12 > 0). To test

construct validity, we would compute the correlation between x1 and x2.

ρ
x1x2

= (ρ
x1x1

ρ
x2x2

)1/2
ρ

ξ1ξ2
, (5)

where ρ
xixi

is the reliability of x
i
. It is the squared correlation between

x
i

and ξ
i
. The correlation of the two observed variables depends not only

on the correlation of x1 and ξ1 but also on the correlation between the

constructs ξ1 and ξ2 and the correlation of x1 and x2. Because of this, the

interpretation of construct vability based on ρ
x1x2

is seriously complicated.

For instance, if the correlation between ξ1 and ξ2 is relatively large and that

x1 has very high reliability but x2 has low reliability. This would reduce

ρ
x1x2

, raising doubts about the construct validity of x1.

In practical work, people usually use exploratory factor analysis or

confirmatory factor analysis to test for construct validity. Confirmatory

factor analysis is preferable than exploratory factor analysis, because its

principle is similar to the definition of construct validity.
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6.1.4. Convergent and discriminant validity

Convergent validity is another important aspect of construct validity, which

is intended to show that for example, a postulated dimension of QOL

correlates appreciably with all other dimensions that theory suggests should

be related to it. That is, we may believe that some dimensions of QOL

are related, and we therefore expect the observed measurements to be

correlated. For example, one might anticipate that patients with severe pain

are likely to be depressed, and that there should be a correlation between

pain scores and depression ratings within group.

Many of the dimensions of QOL are interrelated. Very ill patients tend

to suffer from a variety of symptoms, and have high scores on a wide range

of psychological dimensions. As many dimensions of QOL are correlated

with each other, assessment of convergent validity consists of predicting

the strongest and weakest correlations, and confirming that subsequent ob-

served values conform to the predictions. Analysis involves calculating all

pairwise correlation coefficients between scores for different QOL scales.

Discriminant validity, or divergent validity, recognises that some dimen-

sions of QOL are anticipated to be relatively unrelated, and that their

correlations should be low. Convergent and discriminant validity represent

the two extremes in a continuum of associations between dimensions of

QOL. One problem when assessing discriminant validity (and to a lesser

extent, convergent validity) is that two dimensions may correlate spuri-

ously because of some third, possibly unrecognised, construct that links

the two together. For example, if two dimensions are both affected by age,

an apparent correlation can be introduced solely though the differing ages of

the respondents. Another extraneous source of correlation could be that of

social desirability, where patients may report a higher QOL on many dimen-

sions simply to please staff or relative. When specific independent variables

are suspected of introducing spurious correlations, the statistical technique

of “partial correlation” should be used. This is a method of estimating the

correlation between two variables, or dimensions of QOL, whilst holding

other “nuisance” variables constant. In practice, there are usually many

extraneous variables that contribute a little to the spurious correlations

obtained.

Convergent validity and discriminant validity are commonly assessed

across instruments. For convergent validity to exist, those scales from each

instrument that are intended to measure similar constructs should have

higher correlations with each other than with scales that measure unrelated

constructs.
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Table 2. Template for the multitrait-multimethod (MTMM) correlation matrix.

Emotional function Social function Role function

Instrument 1 2 1 2 1 2

Emotional 1 R

function 2 C R

Social 1 D R

function 2 D C R

Role 1 D D R

function 2 D D C R

The multitrait-multimethod (MTMM) correlation matrix is a method

for examining convergent and discriminant validity. The general principle of

this technique is that two or more methods, such as different instruments,

are each used to assess the same traits, for example QOL aspects, items or

subscales as estimated by the different methods. Various layouts are used

for MTMM matrices, the most common being shown in Table 2.

In Table 2, the two instruments are methods, while the functioning

scales are traits. Cells marked C show the correlations of the scores when

different instruments are used to assess the same trait. Convergent validity

is determined by the C cells. If the correlations in these cells are high, say

above 0.7, this suggests that both instruments may be measuring the same

thing. If the two instruments were developed independently of each other,

this would support the inference that the traits are defined in a consistent

and presumably meaningful manner.

Similarly, the D cells show the scale-to-scale correlations for each instru-

ment, and these assess discriminant validity. Lower correlation are usually

expected in these cells, because otherwise scales purporting to measure

different aspects of QOL are in fact more strongly related than suppos-

edly similar scales from different instruments. The main diagonal cells,

marked R, can be used to show reliability coefficients, as described later.

These can be either Cronbach’s α for internal reliability or, if repeated

QOL assessments are conducted on patients whose condition is stable,

test-retest correlations. Since repeated values of the same trait measured

twice by the same method will usually be more similar than values of

the same trait measured by different instruments, the R cells containing

test-retest repeatability scores should usually contain the most significant

correlations.

One common variation on the theme of MTMM matrices is to carry

out the patient assessments on two different occasions. The upper-right
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triangle of Table 2 can be used to display the correlations at time 1, and

the correlations at time 2 can be shown the lower-left triangle that we have

been describing above. The diagonal cells dividing the two triangles, marked

R, should then show the test-retest repeatability correlations.

6.1.5. Alternatives to classical validity measures

Thus far we have reviewed four common types of validity: content, crite-

rion, construct, and convergent and discriminant validity. Content validity

is largely a theoretical approach to validation. Criterion validity is largely

an empirical means of validating. Construct validity and convergent-

discriminant validity are both theoretical and empirical. They are theo-

retical in the sense that theory suggests which constructs should correlate

and which should not. The empirical aspect concerns the correlations of

observed measures. The empirical aspect concerns the correlations between

measures, although there are a number of limitations associated with this.

One problem is that they rely on correlations rather than structural coeffi-

cients to test validity. Criterion validity examines the correlation between

the criterion and the observed measure. Construct validity and convergent-

discriminant validity are based on the correlation between measures of the

same and different constructs. These correlations may have little to do with

the validity of a measure. A second problem with these empirical tests is

that they use only observed measures, rather than incorporating the latent

variables into the analysis. The implicit assumption is that the correlation

between two observed variables mirrors an association involving latent vari-

ables, so it is implicitly assumed that the correlation of the criterion and

the measure adequately approximates the correlation between the latent

variable and the measure. In construct and convergent-discriminant validi-

ties the correlation of observed measures is a proxy for the correlation of

the latent constructs. But in fact, it can be a poor proxy under a number

of conditions.

To overcome these limitations, Bollen15 proposed an alternative def-

inition that based on a structural equation approach. In his definition,

the validity of a measure x
i

of ξ
j

is the magnitude of the direct struc-

tural relation between ξ
j

and x
i
. Therefore, for a measure to be valid, the

latent and observed variable must have a direct link. Using this approach, a

natural question is how to measure validity based on it? There is probably

no one ideal measure of validity, but several correspond to this theoretical

definition.
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6.1.5.1. Unstandardized Validity Coefficient (λ)

One important gauge of validity, the direct structural relation between an

and x
i

and ξ
j
, is λ

ij
the unstandardized coefficient linking them. For in-

stance,

x1 = λ11ξ1 + δ1 , (6)

where λ11 is the unstandardized coefficient, it provides the expected change

in x1 for a one-unit change in ξ1. The λ
ij

coefficients are in the Λ
x

and Λ
y

matrices.

As in multiple regression x
i

may have a number of explanatory variables.

Consider the following measurement model:

x1 = λ11ξ1 + λ12ξ2 + λ13ξ3 + δ1 . (7)

The validity of x1 with respect to ξ1 is indicated by λ11. The λ11 coeffi-

cient is interpreted as the expected change in x1 for one-unit change in ξ1,

holding constant ξ2 and ξ3. In addition the validity of x1 with respect to ξ2

and ξ3 can be gauged by λ12 and λ13 respectively. Thus the unstandardized

validity coefficient λ
ij

is appropriate for measures that depend on one or

more latent variables.

The unstandardized validity coefficient λ
ij

is also useful for compar-

ing samples from different populations. For example, the same observed

variable may be measured in samples of males and females, samples from

two different countries, or samples of some other groups. A comparison

of validity could be made by comparing the corresponding λ̂
ij

coefficients

in the separate samples. They represent a better measure of the structural

relation of the variables, and are less influenced by differences in population

variances.

One disadvantage in comparing the unstandardized validity coefficients

of measures that depend on the same latent variable is that the observed

variables may be measured on very different scales. Direct comparison of

the magnitude of λ’s to determine the relative validity of measures generally

is not appropriate.

6.1.5.2. The Standardized Validity Coefficient, λ

s

The standardized validity coefficient λ

s is defined as

λ

s

ij

= λ
ij

[

φ
jj

var(x
i
)

]1/2

, (8)

where φ
jj

is the variance of latent variable ξ
j
.
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Unlike λ
ij

, λ

s

ij

is one means to compare the relative influence of ξ
j

on

several x
i

variables. For example, if x1 and x2 depend on ξ
j

and λ

s

1j

is 0.8

and λ

s

2j

is 0.1, this would indicate that x1 is more responsive to ξ
j

than is x2

in standard deviation units. In addition, if x
i
depends on two or more latent

variables the relative influence of the latent variables can be compared. The

standardized λ

s

ij

is less useful than λ
ij

in comparing different populations

because it is greatly influenced by the varying standard deviations of the

variables in different populations.

6.1.5.3. Unique Validity Variance, U
xiξj

The unique validity variance measures that part of explained variance in x
i

that is uniquely attributable to ξ
j
. The formular for U

xiξj
is

U
xiξj

= R

2

xi
−R

2

xi(ξj)
, (9)

where R

2
xi

is the squared multiple correlation coefficient or proportion of

variance in x
i
explained by all variables in a model that have a direct effect

on x
i

(excluding error terms) and R

2

xi(ξj)
is the proportion of explained

variance in x
i

by all variables with a direct effect on x
i

excluding ξ
j
.

U
xiξj

always varies between zero and one. If only ξ
j

has a direct effect

on x
i
, U

xiξj
equals the squared correlation between ξ

j
and ξ

i
. U

xiξj
is more

general than ρ

2

xiξj
since it allows the observed variable to depend on more

than one latent variable and it is zero if ξ
j

has no direct effect on x
i
.

If multiple correlated latent variables underlie x
i
, U

xiξj
will generally not

equal ρ

2

xiξj
unless the latent variables are uncorrelated.

6.2. Reliability

Reliability is the consistency of measurement. It is not the same as validity

since we can have consistent but invalid measures. To illustrate reliability,

suppose that I wish to measure your level of education. I narrowly define

education as completed years of formal schooling. I operationalize it by

asking:“ How many completed years of formal schooling have you had?”

Next, I record your answer. If I had the ability to erase your memory of

the question and the response you gave, I could repeat the same question

and again, record your answer. Repeating this process an infinite number

of times, I could determine the consistency of your response to the same

question. The reliability of this education measure is the consistency in

your response over the infinite trials. The greater the fluctuation across

your answers, the lower the reliability of the measure.
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It is possible to have a very reliable measure that is not valid. For ex-

ample, repeatedly weighing yourself on a bathroom scale may provide a

reliable measure of your weight but the scale is not valid if it always gives

a weight that is 5 kg too light. A more extreme example would be obtain-

ing a measure of intelligence by asking individuals their shoes size. This

may provide a very reliable measure, but it lacks validity as an intelligence

measure. Thus the distinction between reliability and validity is a very

important one.

Much of the social science literature on reliability originates in classical

measurement theory from psychology. A fundamental equation of the

theory is

x
i
= τ

i
+ e

i
, (10)

where x
i

is the ith observed variable (or “test” score), e
i
is the error term

and τ
i

is the true score that underlies x
i
. It is assumed that cov(τ

i
, e

i
) is

zero and that E(e
i
) = 0. According to classical test theory, the errors of

measurement for different items are uncorrelated. The correlation between

two measures results from the association of their true scores. Thus the

true scores are the systematic components that lead to the association of

observed variables.

Parallel, τ -equivalent, and congeneric measures are the three major

types of observed variables in test theory. They can be defined using two

measures x
i

and x
j

as shown in the example below:

x
i
= α

i
τ
i
+ e

i
,

x
j

= α
j
τ
j
+ e

j
.

(11)

The e
i
and e

j
are uncorrelated. Assume that the true scores are the same.

If α
i
= α

j
= 1, var(e

i
) = var(e

j
), then x

i
and x

j
are parallel measures. If

α
i

= α
j

= 1, var(e
i
) 6= var(e

j
), the measures are τ -equivalent. Finally, if

α
i
6= α

j
, var(e

i
) 6= var(e

j
), then the measures are congeneric. Congeneric

measures are the most general of the three types.

The reliability of a measure ρ
xixi

is defined as

ρ
xixi

=
α

2

i

var(τ
i
)

var(x
i
)

. (12)

For τ -equivalent or parallel measures, this simplifies to

ρ
xixi

=
var(τ

i
)

var(x
i
)

. (13)
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Reliability is the ratio of true score’s variance to the observed variable’s

variance. It is equals to the squared correlation of the observed variable and

the true score:

ρ

2

xiτi
=

[cov(x
i
, τ

i
)]2

var(x
i
) var(τ

i
)

=
α

2

i

[var(τ
i
)]2

var(x
i
) var(τ

i
)

=
α

2

i

var(τ
i
)

var(x
i
)

= ρ
xixi

. (14)

Thus, ρ
xixi

can be interpreted as the variance of x
i
that is explained by τ

i

with the remaining variance due to error.

A number of methods have been proposed for estimating the reliability

of measures. Here will review the four most common: test-retest, alternative

forms, split-halves, and Cronbach’s α.

6.2.1. Test-retest method

The test-retest method is based on administering the same measure for

the same observations at two points in time. The equations for the two

measures are

x
t
= α

t
τ
t
+ e

t
,

x
t+1 = α

t+1τt+1 + e
t+1 , (15)

where t and t + 1 are subscripts representing the first and second time

periods for the x, α, τ and e. Here it is assumed that E(e
t
) = E(e

t+1) = 0,

that the true scores (τ
t
, τ

t+1) are uncorrelated with errors (e
t
, e

t+1), and

that the errors are uncorrelated. In addition this method assumes that

x
t
, x

t+1 are parallel measures and that the true scores are equal.

The reliability estimate is the correlation of x
t
and x

t+1. Using the definition

of the correlation between two variables and covariance algebra leads to

ρ
xtxt+1

=
cov(x

t
, x

t+1)

[var(x
t
) var(x

t+1)]1/2
=

var(τ
t
)

var(x
t
)

= ρ
xtxt

. (16)

In fact, the correlation of any two parallel measures equals their reliability

since all parallel measures have identical reliability.
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Despite the intuitive appeal of the test-retest reliability technique, it

has several limitations. First, it assumes perfect stability of the true score.

In many cases the true score may change over time so that this assumption

is not reasonable. If lack of equivalence of true scores is the only violated

assumption, then ρ
xtxt+1

is less than the reliability. Secondly, memory ef-

fects are sometimes present. People’s memories of response during the first

interview can influence their response in a second interview. They may have

the tendency to give the same responses.

In short, the test-retest method of estimating reliability has the advan-

tage of simplicity, but it is dependent on assumptions that are unrealistic

in practice.

6.2.2. Alternative forms

Another method for estimating reliability is that of alternative forms. This

is similar to the test-retest method, except that different measures instead

of the same measure are collected at t and t + 1. The equations for the two

measures are

x1 = τ
t
+ e

t
,

x2 = τ
t+1 + e

t+1 .

(17)

The x1 variable is a measure of τ at time t, x2 is a different measure at

t+1, and x1 and x2 are parallel measures. Like the test-retest method it is

assumed that τ
t
equal τ

t+1, that the expected value of e
t
and e

t+1 are zero,

and that the errors are uncorrelated with each other and with τ
t

and τ
t+1.

With these assumptions the correlation between x1 and x2(ρx1,x2
) equals

the reliability of both measures.

The alternative form does have two advantages. One is that compared

to the test-retest, the alternative form measures are less susceptible to

memory effects since time t and t + 1 have different scales. Second, the

errors of measurement for one indicator are less likely to correlate with a

new measure at the second time period. Compared to test-retest, correlated

errors of measurement are less likely to happen. Although the alternative

forms estimate of reliability overcomes some of the limitations of the test-

retest approach, several unrealistic assumptions remain there. For example,

it is assumed that τ
t

is still equal to τ
t+1. The assumption that the error

variances are equal is less likely since x1 and x2 are different measures, that

are administered at different time points.
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6.2.3. Split-halves

A third means to estimate reliability is with split-halves. The split-halves

method assumes that a number of items are available to measure τ . Half of

these items are combined to form a new measure, say, x1, and the other half

to form x2. Note that in contrast to the test-retest and alternative form, x1

and x2 are measures of τ in the same time period. It is still assumed that

E(e1) = E(e2) = 0, cov(e1, e2) = 0, cov(τ1, e1) = cov(τ1, e2) = 0, and that

x1 and x2 are parallel measures. The equations for x1 and x2 are

x1 = τ1 + e1 ,

x2 = τ1 + e2 .

(18)

The correlation of x1 and x2 equals to

ρ
x1x2

=
cov(x1, x2)

[var(x1) var(x2)]

1/2

=
var(τ1)

var(x1)
= ρ

x1x1
= ρ

x2x2
. (19)

In many cases the unweighted sum of two halves forms a composite to

measure τ1 so that the reliability of x1 +x2 may be determined. As demon-

strated earlier, in general the squared correlation of τ1 with observed score

represents the reliability of a measure. Employing this notion, the squared

correlation of τ1 with x1 + x2 is

ρ

2

τ1(x1+x2)
=

[cov(τ1, x1 + x2)]
2

var(τ1) var(x1 + x2)

=
4[var(τ1)]

2

var(τ1)[(var(x1) + var(x2) + 2cov(x1, x2)]

=
2var(τ1)/var(x1)

var(τ1)/var(x1) + var(x1)/var(x1)

=
2ρ

x1x1

1 + ρ
x1x1

. (20)

This formula is well known as the Spearman-Brown Prophey formula

for gauging the reliability of a full test based on split-halves.

The split-halves test has several aspects more desirable than the test-

retest and alternative forms methods. For one, the split-halves method does

not assume perfect stability of τ since τ is only gauged in one time period.

Secondly, the memory effects that can occur if the same item is asked at

two points in time do not operate with this approach. Third, the correlated

errors of measurement that are likely in test-retest approaches are less likely

for split-halves. A practical advantage is that split-halves are often cheaper

and more easily obtained than overtime data.
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One disadvantage is that the split-halves must be parallel measures.

Often we cannot know whether the variance of the measurement errors are

equal, or whether α1 and α2 are equal to one. Another drawback is the

way that the halves are allocated is somewhat arbitrary. There are many

possible ways of dividing a set of items in half, and each split could lead to

a different reliability estimate.

6.2.4. Cronbach’s α coefficient

Cronbach’s α coefficient overcomes some of the disadvantages of the split-

halves method. The Coefficient α is the most popular reliability coefficient

in social science research. It measures the reliability of a simple sum of

τ -equivalent or parallel measures. For α, the observed variables x1, x2,

. . . , x
q

are summed. The x

′
i

s should be scored so that they are all positively

or all negatively related to τ1. I will call this index H so that
∑

q

i=1
x

i
= H .

The squared correlation of τ1 and H or the reliability of H is

ρ

2

τ1H

=
[cov(τ1, H)]2

var(τ1) var(H)

=
[cov(τ1, x1 + x2 + · · ·+ x

q
)]2

var(τ1) var(H)

=
[cov(τ1, qτ1 +

∑

q

i=1
e

i
)]2

var(τ1) var(H)

=
[q var(τ1)]

2

var(τ1) var(H)

=
q

2 var(τ1)

var(H)

= ρHH . (21)

This equation provides a general formula for the reliability of the un-

weighted sum of q τ -equivalent or parallel measures. As the next equation

shows, this can be manipulated so that it appears as the typical formula

for Cronbach’s α:

ρHH =
q

2 var(τ1)

var(H)

=
q(q − 1)q var(τ1)

(q − 1) var(H)
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=

(

q

q − 1

)(

q

2 var(τ1)− q var(τ1)

var(H)

)

=

(

q

q − 1

)(

q

2 var(τ1) +
∑

q

i=1
var(e

i
)− q var(τ1)−

∑

q

i=1
var(e

i
)

var(H)

)

=

(

q

q − 1

)(

var(H)− [q var(τ1) +
∑

q

i=1
var(e

i
)]

var(H)

)

=

(

q

q − 1

)(

1−

∑

q

i−1
var(x

i
)

var(H)

)

. (22)

With these features the advantages of α over the other reliability mea-

sures should be evident. There are no assumptions needed for the stability

of τ1. The measures need not be parallel. The possibility of memory effects

are remote since measures for only one time period are applied. There is

no problem in selecting splits of items for testing since all measures can

be treated individually. In addition, computation of α is relatively easy.

However, two drawbacks to α are that it underestimates reliability for

congeneric measures, and it is not suited to work with single indicators.

Measurement is a broad topic in social science research. This section

emphasized the issues of measurement most relevant to a structural

equations approach to measurement models. Most basic is the need to

begin with a clear definition of the concepts to be measured. Without

such a definition, we have little hope of identifying dimensions and latent

variables. Validity and reliability are two basic characteristics of measures.

Validity refers to the direct correspondence between a measure and a con-

cept. Reliability refers to the consistency of a measure, regardless of whether

it is valid. Many researchers have proposed empirical techniques to estimate

validity and reliability. These often are based on correlation coefficients and

restrictive assumptions about the properties of measures. Several alterna-

tive means have been shown here, that are more general than the traditional

procedures, and they also fit well into a structural equations approach to

measurement.
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The best possible synthesis of available information is essential for

medical researchers, health policy-makers, clinicians and other decision

makers. With the explosion of information in the literature, literally

hundreds of studies may exist on the same topics, and the designs,

participants, outcomes, sample sizes, and interventions among these

studies may differ. How can information derived from those studies be

combined to arrive at a general conclusion? During the past 20 years,

meta-analysis, a statistical procedure for systematically combining and

analyzing the results of previous research, has been applied with increas-

ing frequency to health-related contexts, especially in the fields of clinical

trials.
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1. Introduction

1.1. Definition

The term “meta-analysis” was coined by psychologist Glass in 1976.1 The

prefix “meta” has several related meanings, including the ideas of occur-

ring after something else, of transcending, or of being more comprehensive

than the precursor. Glass’ first definition of meta-analysis is the statistical

analysis of a large collection of analyses results from individual studies

for the purpose of integrating the findings. A useful definition was given

by Huque: “. . .the term ‘meta-analysis”’ refers to a statistical analysis

which combines or integrates the results of several independent clinical

trials, considered by the analyst to be ‘combinable’.2” Similar synonyms

of meta-analysis include “overview”, “quantitative review”, “quantitative

synthesis”, and “pooling”. But these alternative terms may be less specific

or less poignant, and were not accepted broadly.

More recently, Evidence-Base Medicine (EBM) has been greatly deve-

loped. EBM, systematic review, and meta-analysis get widely used terms

in medical journals. Systematic review denotes any type of review that has

been prepared using strategies to avoid bias and that which includes a mate-

rial and methods section. Systematic review may or may not include formal

meta-analysis. The Cochrane Collaboration aims to prepare, maintain, and

disseminate comprehensive and systematic reviews of the effects of health

care. Systematic reviews provided by Cochrane Collaboration are regarded

as the best evidence for practicing EBM.3 Nowadays, meta-analysis is not

limited to a statistical approach, and defined as a systematic approach

to identifying, appraising, synthesizing, and (if appropriate) combining

the results of relevant studies to arrive at conclusions about the body of

research.4

1.2. Historical notes

The origins of pooling the results may be traced to statistician Karl Pearson

in 1904, who was the first researcher to report the use of formal techniques

to combine data from different samples. The first article which quantita-

tively synthesized the previous research in medicine, The Powerful Placebo,

and written by Beecher, was published in 1955.5 As a formal statistical

technique to combine data from studies for the same topic, meta-analysis

began to be applied to social sciences in the mid-1970s, particularly in

educational and psychological research.
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Widespread use of meta-analysis in medicine quickly followed its

popularization in the social sciences, and mainly focused the research on

the randomized clinical trials. In the late 1980s, there has been a rapid

growth in interest and use of the method. At that time, descriptions of

the method of meta-analysis and guidelines for its application appeared

almost simultaneously in many general influential medical journals, such

as the New England Journal of Medicine, Lancet, and Annals of Internal

Medicine. Meta-analysis has been adopted by MEDLINE as a Medical

Subject Heading (MeSH) term in 1989 and as a sort of Publication

Type (PT) in 1993. Meta-analysis of observational studies has also been

advocated.

Meta-analysis is now commonplace in a wide range of medical research

contexts. Concurrent with the increased number of articles using meta-

analysis in the last decade, there have been numerous articles relating to

statistical issues or concerns. Many methods have been proposed and used,

from crude “vote counting” of studies showing significant or non-significant

results, through method for combination of effect size estimates based on

fixed or random-effects models, to general linear mixed models and Bayesian

methods. Meta-analysis has established itself as an influential branch of

biostatistics.

With the sharp increasing use of meta-analysis, several unresolved

issues concerning meta-analysis still remain. Incomplete or un-standardized

reporting of results, and combing “apples and oranges and the occasional

lemon” — failure to make allowance for varying nature and quality of the

studies reviewed.6 Therefore, both the uncritical synthesis of data from

observational studies and the unconsidered synthesis of disparate results

from randomized controlled trials can threaten to damage the validity

and reliability of conclusions of meta-analysis. Other stubborn problems

involved in meta-analysis may be biases, especially publication bias, and

heterogeneity across studies.

1.3. Objectives of meta-analysis

Traditionally, research synthesis was done in a fairly simple way. The classic

narrative reviews have several disadvantages that meta-analysis appear to

overcome. The traditional review is a subjective method of summarizing

research data and therefore prone to bias and error. Without guidance by

formal rules, a narrative review expresses the personal opinions of their
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authors and depends heavily on the perspicacity and personal experience

of the reviewer. Selective inclusion of studies that support the reviewer’s

view is common. On the other hand, a narrative review tends to present a

series of effect measures in the narrative in most situations, and reviewers

potential to ignore the factors that greatly influence the results of primary

study, such as research design, sample size, and effect size. Meta-analysis

provides a logical framework to research a review: Similar measures

from comparable studies are listed systematically and the available effect

measures are combined where possible.

For example, in 1982, use of thrombolytic agents after acute myocardial

infarction was controversial. Table 1 presents the data of eight randomized

clinical trials at that time, which examined the effects of a loading dose of

at least 250,000 international units of intravenous streptokinase on morta-

lity given a short time after an acute myocardial infarction had occurred.

As shown in Table 1, two trials showed a higher risk of mortality in treated

patients, with both 95% confidence intervals covering one, which means

no statistical significance; five showed a lower risk, with four of those 95%

confidence intervals covering one; and one showed same mortality rate in

the treated and the control patients. The trials were all fairly small, and

the difference in mortality between treated and controlled patients was

Table 1. Results of randomized trials of effect on mortality of intravenous streptokinase
following acute myocardial infarction published before 1982.

N Deaths/Total Mortality (%) Estimated relative

Included Study Treated Control Treated Control Risk and its 95% CI

Avery (1969) 20/83 15/84 24.1 17.9 1.35(0.74–2.45)

European Working 69/373 94/357 18.5 26.3 0.70(0.53–0.92)
Party (1971)

Heikinheimo (1971) 22/219 17/207 10.0 8.2 1.22(0.67–2.24)

Dioguardia (1973) 19/164 18/157 11.6 11.5 1.01(0.55–1.85)

Breddin (1973) 13/102 29/104 12.7 27.9 0.46(0.26–0.81)

Bett (1973) 21/264 23/253 8.0 9.1 0.88(0.50–1.54)

Aber (1979) 43/302 44/293 14.2 15.0 0.95(0.64–1.40)

UCSG for 18/156 30/159 11.5 18.9 0.61(0.36–1.04)
Streptokinase
in AMI(1979)∗

Summary relative risk 0.80(0.68–0.95)

∗European Cooperative Study Group for Streptokinase in acute myocardial infarction.
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statistically significant in only one trial. These studies were interpreted

as inconclusive about the benefit of early treatment with intravenous

streptokinase.

In a meta-analysis based on these trials, Stampfer estimated the relative

risk of mortality in patients treated with intravenous streptokinase to be

0.80 with 95% confidence limits of 0.68 and 0.95, and draw the conclu-

sion that streptokinase reduces the mortality following acute myocardial

infarction.7 The findings were published in the famous medical journal,

New England Journal of Medicine, and were not accepted by clinician due

to poor understanding of meta-analysis in early 1980s. Until 1986, a large

clinical trial of intravenous streptokinase after acute myocardial infarc-

tion involving thousands of patients (GISSI 1985) confirmed the conclu-

sion based on the meta-analysis, and streptokinase got to be widely used

in clinical practice.

The objectives of meta-analysis are:

1.3.1. To increase statistical power

Meta-analysis effectively provides a gain in statistical power for average

estimates. In clinical trials, meta-analysis offers an opportunity to observe

more events of interest in the groups followed, when incidence or mortality

is rare, and combined estimates are likely to be more precise. In some

cases, a single study often cannot detect or exclude a modest, albeit clinical

relevant, difference in the effects of two treatments with great confidence.

For example, suppose a drug could reduce the risk of death from myocardial

infarction by 10%, to detect such an effect with 90% confidence (that is, with

a type II error of no more than 10%) over 10,000 patients in each treatment

group would be needed. However, such large samples were difficult to recruit

in a single study. Clearly, if data from more than one study are available

and can be combined, the “sample size” and, thus, power increase, and

relatively small effects can be detected or excluded with confidence.

1.3.2. To improve estimate of effect size

Meta-analysis has historically been useful in summarizing prior research

based on randomized trials when individual studies are too small to yield

a valid conclusion. Results from studies may disagree as to the magnitude

of effects or, of more concern, as to the direction of effects. By integrat-

ing the actual evidence, meta-analysis allows a more objective appraisal,

which can help to resolve uncertainties when the original researches, classic
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reviews, and editorial comments disagree. As an effective tool for quantita-

tive synthesis, meta-analysis may resolve issues relating to inconsistent or

conflicting results from studies, provide the pooled estimate of effect size

with a more precise confidence interval, and draw an explicit conclusion.

1.3.3. To assess the disagreement and generalizability of study results

Studies for the same topic may use different eligibility criteria for partic-

ipants, different definitions of disease, different methods of measuring or

defining exposure, or different variations of treatment. It means there is

heterogeneity between studies. When heterogeneity is large enough to be

detected by a statistical test, it is important to explore its source. Meta-

analysis also systematically assesses the biases and confounding in primary

studies.

On the other hand, meta-analysis can contribute to considerations about

the generalizability of study results. The findings of a particular study may

be valid only for a specific population of patients with the same characteris-

tics as those investigated in the trial. If many trials are available for different

groups of patients, and show similar results, it can be concluded that the

effect of the intervention under study has some generality. Furthermore,

meta-analysis is also superior to individual trials when answering

questions about whether an overall study result varies among subgroups

— for example, among men and women, older and younger patients, or

subjects with different degrees of severity of disease. These questions can

be addressed in the analysis and often lead to insights beyond what is

provided by the calculation of a single combined effect estimate.

1.3.4. To answer new questions that were not previously posed in the

individual studies

Meta-analysis includes the epidemiological exploration and evaluation of

results, new ideas (hypotheses) that were not posed in the individual studies

can thus be developed and tested for further research and further original

studies.

1.4. The main steps involved in a meta-analysis

Meta-analysis should be viewed as an observational study of the evi-

dence. The steps involved are similar to any other research undertaking:
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Formulation of the problem to be addressed, collection and analysis of the

data, and reporting of the results.

1.4.1. Formulating the problem

It is as important to carefully plan a study that involve in a meta-analysis

as to carefully plan a clinical trial, a cross-sectional survey, and a case-

control or a cohort study. Documentation of all aspects of study design and

conduct of the study is a crucial and often overlooked step in carrying out

the meta-analysis.

As with any research, a meta-analysis begins with a well-formulated

question and design. Meta-analysis can, in general, be motivated by a

number of factors. It can be conducted in an effort to resolve conflict-

ing evidence, to answer the questions where the answer is uncertain or to

explain variations in practice.

A well-formulated question is essential for determining the structure of

a meta-analysis. Specifically, it will guide much of the meta-analysis process

including strategies for locating and selecting studies or data, for critically

appraising their relevance and validity, and for analyzing variation among

their results.

There are several key components to a well-formulated question. A

clearly defined question should specify the types of people (participants),

types of interventions or exposures, types of outcomes that are of interest,

and types of study design. In general the more precise one is in defining

components, the more focused the meta-analysis.

The first step in planning the study is to define the problem. The

problem definition is a general statement of the main questions that the

study addresses. For examples, does the thrombolytic therapy lower the risk

of death for patients with acute myocardial infarction? A meta-analysis for

randomized clinical trials. Does the passive smoking increase the risk of

lung cancer for women? A meta-analysis for case-control studies. These

two topics are well-formulated questions that contain the main elements

for a meta-analysis.

Once the problem is defined, developing a detail study protocol is

essential. A protocol is the blueprint for conduct of the meta-analysis.

The protocol should clearly state the objectives, the background, the

hypotheses to be tested, the subgroups of interest, the proposed methods

and criteria for identifying and selecting relevant studies, and extracting
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and analyzing information. The statement of objectives should be concise

and specific.

1.4.2. Searching the relevant information

A comprehensive, unbiased information search is one of the critical differ-

ences between a meta-analysis and a traditional review.

Systematic procedures for literature searching should be described in

protocol in detail. Ideally, all of the relevant information, including the

published literature, unpublished literature, uncompleted research reports,

and work in progress, would be searched and identified in meta-analysis. In

practice, the meta-analyst begins with searches of regular medical databases

of published literature. Developing a search strategy is very important,

which means to present the exact search terms and the search algorithm

for each computer databases. Sometimes restrictions are necessary, such as

language, study objects, publication year, or publication types, and it is

easy to carry out in computer database search.

Skipping over important documents available in databases in search-

ing process may affect the validity and reliability for the results of meta-

analysis. The ability of a search algorithm to identify all of the pertinent

literature can be improved by consultation with a professional librarian

or an expert searcher. Two useful concepts in information retrieval can be

used to describe the success of the search process: Sensitivity and precision.

Sensitivity of a search is its ability to identify all of the relevant material.

Precision (which is the positive predictive value of the search) is the amount

of relevant material among the materials retrieved by the search. The overall

strategy for searching is to maximize sensitivity and precision. But with the

increase of the recall, the precision may be reduced. For meta-analysis, a

higher percent sensitivity may be more important than precision.

MEDLINE is the most powerful bibliographic database that is the

primary source of information on publication in the biomedical literature.

It contains information on publications in over 3,500 and covers the period

from 1966 to the present. MEDLINE provides more than 10 search entries

and is very friendly to users. The use of MeSH (Medical Subject Headings)

terms allows searches of MEDLINE to be focused and specific, which

gives higher sensitivity and precision. Free access to MEDLINE through

the Internet (www.ncbi.nlm.nih.gov/PubMed) greatly enhances the abil-

ity to conduct searches. Other broadly used biomedical databases include

EMBASE, SCI (Web of Science), Cochrane Library, and specific databases,

such as CANCERLINE, TOXLINE, etc.
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The citations or abstracts in databases are browsed in search process,

and those obviously unrelated to the topic are eliminated. The full-text

of the remaining articles is then collected. These articles are read quickly,

and those clearly irrelevant ones are excluded. The remaining publications

are then systematically reviewed to determine whether they are eligible

for the meta-analysis based on predetermined criteria for eligibility. The

reference lists of the articles that contain useful information are searched

for more references, then the new publications retrieved, and the process is

repeated, until all potentially articles on the topic are identified.

Medical information is also presented in professional website, especially

in the medical journal’s website, and some of them also provide free full-

text. Handsearching is often used. Scanning new information in key journals

in the area of interest is an important supplement.

Furthermore, “fugitive” literatures, such as proceedings of conferences,

dissertations and master’s theses, books chapters, and government reports,

are not included in MEDLINE and most other databases. To ignore these

material have the potential to cause bias in the meta-analysis. One of

the effective ways to obtain the information about publications in the

fugitive literature is to consult experts.

Unpublished studies are the ultimate example of fugitive literature. The

existence of large numbers of unpublished studies may cause publication

bias, which will be discussed in detail in the final section in this chapter.

1.4.3. Selecting the studies eligible for inclusion

Studies are chosen for meta-analysis on the basis of inclusion and exclusion

criteria. Inclusion criteria are ideally delineated at the stage of the deve-

lopment of the meta-analysis protocol, and should depend on the specific

objectives of the analysis. The process of determining whether studies are

eligible for inclusion in the meta-analysis should be systematic and rigorous.

Each article must be assessed to see whether the inclusion criteria for

the meta-analysis are met. To ensure reproducibility and minimize bias

in selecting studies, the following six aspects should be addressed in almost

all meta-analyses.

1.4.3.1. Study Population

What types of people should be included in meta-analysis? This involves

deciding whether one is interested in a specific population group deter-

mined on the basis of factors such as age, sex, educational status, or
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presence of a particular condition such as the severity of disease and types

of disease.

For example, in a meta-analysis of the effects of estrogen replacement

therapy on the risk of breast cancer, the inclusion criteria for study po-

pulation is limited to the women who experienced the natural menopause or

who underwent premenopausal hysterectomy, with or without bilateral

oophorectomy. The studies that included subjects with a previous history

of breast cancer are excluded.

1.4.3.2. Study Design

In clinical trials, the effect of non-randomized controlled study is often

overestimated compared with that of randomized study. The treat effect of

single blind design may be different from that of double blind design, even

though other aspects of the studies are the same. When both randomized

and nonrandomized studies are available for a topic, estimates of effect

size should be made separately for the randomized and the nonrandomized

studies.

In observational studies, the results of case-control study and cohort

study may be discrepant for identical problem due to the effects of

confounding factors, the influence of biases, or both. The results of meta-

analysis need to be reported respectively, according to the study design.

1.4.3.3. Intervention or Exposures

One of the key components about eligibility for a meta-analysis is to specify

the intervention or exposure that is of interest, and what types of control

groups that are acceptable also need to be defined. In other words, how

similar intervention (exposure) should be to use them in the same analysis,

such as studies with different doses of the same drug in clinical trials,

and studies with the different intensity of exposures in observational data.

For example, a meta-analysis of low-dose aspirin for the prevention of

pregnancy-induced hypertensive disease included the studies in which the

intervention is aspirin in doses of less than 325 mg/day.

1.4.3.4. Outcomes

Researchers on primary studies often report more than one outcome, and

may report the same outcome using different measures. When defining

eligibility criteria for the meta-analysis, eligibility based on the similarity
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of the outcome will enhance the homogeneity of the studies. Generally,

the end-points that are comparable, quantitative and reflecting the final

outcomes are appropriate to be chosen for meta-analysis. For example,

the chief endpoints, which included in the meta-analysis of randomized

trials of angiotensin-converting enzyme (ACE) inhibitors on mortality

and morbidity in patients with congestive heart failure (CHF), are total

and cause-specific mortality (i.e. progressive heart failure, myocardial in-

farction, and sudden or presumed arrhythmic death) and hospitalization

for CHF.

1.4.3.5. Inclusive dates of publication and English-language

publication

Meta-analysis should be as up-to-date as possible, the cutoff date for

identification of eligible studies should be specified in the report of the

meta-analysis. The inclusive date of publication should be chosen based on

consideration of the likelihood of finding important and useful information

during the period that is chosen, but not simply on convenience, such as

availability of MEDLINE.

A meta-analysis solely based on English-language publications has been

shown to have the potential to cause bias. It is not valid to conduct a meta-

analysis to rely only on the publications and reports that are easily found

and understood.

1.4.3.6. Restriction on sample size or length of follow-up

Most of classical the statistical methods for meta-analysis are based on

asymptotic. Normal under moderately large samples. The precision of

small studies may tend to be overestimated. To avoid the problem of

weighting small studies inappropriately in the meta-analysis, it is reason-

able to make sample size an eligibility criteria for the meta-analysis. Small

studies are excluded.

Sometimes, the length of follow-up may influence the likelihood of ob-

serving a true association in clinical trials. For observational studies, there

are many situations where exposure would not affect the risk of disease

until after a latent period. To avoid these problems, the length of follow-up

could be a criterion for eligibility for the meta-analysis.

An alternative to making study size or length of follow-up an eligibility

criterion is to estimate effect with and without small studies or with and

without studies with short follow-up or low-dose exposure.
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For example, in a meta-analysis of the efficacy of screening mammo-

graphy, one of the inclusion criteria is, the length of follow-up is least 5 years

and with minimum of 10 breast cancer mortality cases in each eligible study.

Generally, highly restrictive eligibility criteria tend to give meta-analysis

greater validity. But the criteria may be so restrictive and require so much

homogeneity as to limit the eligible studies to only one or two studies,

which is conflicted with one of the goals of meta-analysis as a method to

increase statistical power. However, less restrictive criteria may lead to the

accusation that the meta-analysis “mixes apples and oranges”.

1.4.4. Abstracting the data

The process of abstraction of information for meta-analysis from eligible

studies should be reliable, valid, and free of bias. In order to enhance

the reliability of data collection, a standardized form should be developed

to record the information. The key components of a data collect form

generally include study characteristic with methods, participants, interven-

tions, outcome measures and results.

To avoid the selection bias, the abstraction of information should be

done by two abstractors separately, and experts should be consulted for

disagreement. Furthermore, the abstractors should be blinded to the infor-

mation of the authors, the journals, and the funding sources. It is believed

that these factors possibly influence the judgment of the abstractor.

1.4.5. Assessing study quality

It is important to systematically complete critical appraisal of all included

studies, which primarily focus on the validity of studies. If the quality of

original study is poor, the results of meta-analysis will be less reliable and

valid.

The validity of a study is the extent to which its design and conduct

are likely to prevent systematic errors, or bias. Generally, there are four

sources of systematic errors in clinical trials: Selection bias, performance

bias, attrition bias and detection bias. The randomization process, the

measurement of patient compliance, the blinding of patients and observers,

the statistical analyses, and the handling of withdrawals in each primary

study should be examined. For non-experimental studies, control for con-

founding, measurement of exposure and completeness of follow-up are all

the main factors that need to be greatly considered in the process of study

quality assessment.



June 23, 2003 10:40 WSPC/Advanced Medical Statistics chap07

Meta-Analysis 245

Because quality assessment is a subjective process, it may potential

cause error and bias. There is not a “gold standard” for study quality

appraise yet. So, the reliability of the quality rating scales in published

meta-analysis is often not formally evaluated.

1.4.6. Statistical analysis

The process of quantitative combining the data is the key step for meta-

analysis, which is distinguish from the traditional narrative review. The

main procedures involved in the statistical analysis are: Defining the

outcome; homogeneity test for the effect size; model choice (fixed-effects

model or random-effects model); pooled estimate of effect size (point

estimate and confidence interval estimate); hypothesis test for overall effect

size and graphic display of the results.

1.4.7. Sensitivity analysis

The goal of sensitivity analysis in meta-analysis is to assess the robustness of

conclusion when different assumptions are made in conducting the analysis.

Sensitivity analysis is usually conducted to examine the change of the

pooled estimate of effect size, when both fixed- and random-effects model

are used. Sensitivity analysis is also often done including and excluding

certain studies, which are controversial, have large effects and thus domi-

nate the analysis, or cannot be determined to meet the eligibility criteria

but whose exclusion may be problematic. When there is more than one

estimate of effect size available from a study, sensitivity analysis can be

performed using one estimate and then the other.

For example, Egger did a sensitivity analysis in the meta-analysis of

β-blockade in secondary prevention after myocardial infarction.8 Firstly,

the overall effect was calculated by different statistical model, the results

showed that the overall effect estimates are virtually identical and that

confidence intervals are only slightly wider with random-effects model.

Secondly, methodological quality was assessed in terms of how patients

were allocated to treatment or control groups, how outcome was assessed,

and how the data were analyzed. The results showed that the three low

quality studies presented more benefit than high quality trials. Exclusion

of these three studies, however, leaves the overall effect and the confidence

intervals practically unchanged. Third, when stratifying the analysis by

study size, the results showed the trials with smallest sample sizes have

the largest effect. However, exclusion of such studies has little effect on the
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overall estimate. Thus, sensitivity analysis showed that the results from this

meta-analysis were robust.

1.4.8. Discussion of results

As with any medical article, the last step in meta-analysis is discussion.

• Investigating and explaining the source of heterogeneity are critically

important component of meta-analysis, when there is “statistically

significant” heterogeneity across studies. Heterogeneity is easier to be

observed in observational studies due to the diversity in their designs,

the methods for collecting data, definitions of endpoints, and the degree

of control for bias and confounding. Indeed, there are no statistical

methods that can deal with the bias and confounding in the original

studies. Meta-regression model and mixed model may adjust somewhat

of heterogeneity by controlling the confounding, but it still cannot explain

the source of heterogeneity. Sensitivity analysis and subgroup are useful

for exploring the heterogeneity. It may not be appropriate with great

difference.

• Subgroup analysis is necessary when treatment effect vary according to

patient-level covariance or trial-level characteristics. For example, the

effect of a given treatment is unlikely to be identical across different

group of participant — for example, young people versus elderly people,

those with mild disease versus with severe disease. A relationship between

the underlying risk of patient and treatment effect may crucially affects

decisions about which patients should be treated from a cost-effectiveness

perspective: Patient at high risk with a small proportionate treatment

benefit may be preferentially treated compared to low risk patients with

a larger proportionate treatment benefit. Sometimes the treatment effect

may be in the opposite direction for patients at low and high risk. Meta-

analysis thus offers a sounder basis for subgroup analysis. But meta-

analytic subgroup analyses are prone to bias and need to be interpreted

with caution. Ideally, if individual patient data in each eligible study can

be obtained, a standardized subgroup analysis can be performed.

• Meta-analysis is essentially viewed as an observational study. Bias can

occur at multiple steps in the process of meta-analysis. Bias may seriously

influence the validity and reliability of meta-analysis, and more attention

needs to be paid to detect and assess of the bias.

• When reporting the conclusion, we should summarized the key finding,

interpret the results in light of the total of available evidence, and suggest
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a future research agenda. But for meta-analysis of observational studies,

generalization of the conclusions must be explained in caution, because

bias and confounding may distort the findings as we have shown above.

For example, the hypothesis from ecological analyses that higher intake

of saturated fat could increase the risk of breast cancer generated much

observational research often with contradictory results. A comprehensive

meta-analysis showed an association from case-control but not from co-

hort studies (odds ratio was 1.36 from case-control studies versus relative

rate 0.95 from cohort study), and this discrepancy was also shown in

two separate large collaborative meta-analyses of case-control and cohort

studies. The most likely explanation for this situation is that biases in

the recall of dietary items and in the selection of study participants have

produced a spurious association in the case-control comparisons.9

2. Statistical Methods in Meta-Analysis

2.1. Definition of the study outcome

The primary studies included in the meta-analysis may report several

different end points. Often the meta-analyst has little control over the

choice of the study outcome, and it is very important to select pooled

statistic that is comparable across all studies. In some situations this task

will be impossible. Here, three classes of outcome measures are discussed:

Measures based on discrete outcome data, that may generally be thought

of as odds ratios, relative risks, or risk differences; those based on con-

tinuous data, such as mean difference, and standardized mean difference;

and a miscellaneous set of outcome measures that may be based on test

statistics.10

2.1.1. Odds ratios, relative risks and risk differences

Suppose there are K studies for binary discrete measurements included in

the meta-analysis, whose data are in the form of 2× 2 tables (see Table 2).

Let i index study, in a typical one, clinical trials, let 1 denote treatment

group, and 2 control group. We denote a
i
, b

i
, c

i
, and d

i
as the number

of observations in each of the cells defined by the treatment and outcome

table, with n1i
subjects in the treatment group and n2i

in the control group.

p1i
and p2i

, are the proportions of having the characteristic under study,

such as death, relapse or some other kind of failure. In an epidemiological

case-control study, the two groups would be the cases and controls and
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Table 2. Arrangement of data for 2 × 2 table.

Treated (Exposed) Not Treated (Not Exposed) Total

Death (Case) ai bi n1i

Survival (Control) ci di n2i

Total m1i m2i Ti

Table 3. Parameter estimation for three binary measurements.

Parameter Estimator Standard Error

Risk Difference D = P1 − P1 di = p̂1i − p̂2i sdi =

(

p1i(1 − p1i)

n1i

+
p2i(1 − p2i)

n2i

) 1

2

Relative Risk R = P1/P2 r = p̂1i/p̂2i SLog(ri) =

(

(1 − p1i)

n1ip1i

+
(1 − p2i)

n2ip2i

) 1

2

Odds Ratio Ω =
P1/(1 − P1)

P2/(1 − P2)
ωI =

p̂1i/(1 − p̂1i)

p̂2i/(1 − p̂2i)
sLog(ωi) =

(

1

a
+

1

b
+

1

c
+

1

d

) 1

2
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the characteristic under study would be exposed to the hypothesized risk

factor.

Table 3 gives the formula of parameter inferences in three potential

study summary statistics: The ratio of the odds for the treated group to the

odds for the control group (odds ratio, OR), the ratio of two probabilities

(relative risk, RR), and the difference between two probabilities (risk dif-

ference, RD). OR and RR are typically analyzed on logarithmic scale with

normal distribution approximation, and the confidence intervals for OR and

RR are also computed on the logarithmic scale, then transformed back to

the original scale. In practice, OR is widely used as an outcome measure

for its convenient mathematical properties, which allow for easily combin-

ing data and testing the significance of the overall effect. The OR will be

close to the RR, if the end point occurs relatively infrequently, such as less

than 20%. RD or absolute risk reduction is easy to interpret and defined

for boundary values (proportions of 0 or 1), and is approximately normally

distributed for the modest sample sizes. RD reflects both the underlying

risk without treatment and the risk reduction associated with treatment.

Taking the reciprocal of the RD gives the “number needed to treat” (the

number of patients needed to be treated to prevent one event), which is

very useful in making a decision in clinical practice.

2.1.2. Means differences and standardized means differences

When the primary studies report means as outcome measure on a conti-

nuous scale, there are two situations to be considered. First, all of the

eligible studies use the same measure of effect, and mean difference may be

used as summary measure to estimate pooled effect in the meta-analysis.

Suppose the n1i
and n2i

are the sample sizes, x1i
and x2i

are the means, for

treatment and control group, respectively. Y
i

= X̄1i
− X̄2i

, with standard

error, s
i
, calculated as with

s

2

i

= s

2

pi

(

1

n1i

+
1

n2i

)

with s

2

pi

=
(n1i
− 1)s2

1i

+ (n2i
− 1)s2

2i

n1i
+ n2i

− 2
,

where s

2

1i

and s

2

2i

are the treatment and control group variance, respectively,

of the ith study.

Second, all of the eligible studies address the same question, but the

measure of effect is made using different instruments and thus different

scales. When there is no direct measure common to all the studies, it may be

feasible to transform the study-specific summary to a standardized (scale-

free) statistic denoted as effect size. One common estimator of effect size is
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the standardized mean difference, which is calculated as the difference of

means divided by the variability of the measures. If

Y

1

ij

∼ N(µ1
, σ

2) , j = 1, 2, . . . , n1i
,

Y

2

ij

∼ N(µ2
, σ

2) , j = 1, 2, . . . , n2i
,

then the standardized means difference is defined as

δ =
µ

1 − µ

2

σ

,

which denotes the gain (or loss) as the fraction of the measurements. The

estimator of δ, Hedge’s g, is defined as

h
i
=

Ȳ

1

i

− Ȳ

2

i

s
p

.

Such standardization leads to a unitless effect measure. The results from

the original studies, where “success” is measured in different ways, can be

standardized to unitless measures and then pooled. The estimated variance

of h
i
is

var(h
i
) =

(

1

n1i

+
1

n2i

)

+
h

2

i

2(n1i
+ n2i

)
.

2.1.3. Other measures

When the summary data from the primary studies consist of test statistics,

then it is sometimes possible to recover the estimated effect size if the

appropriate pieces of information are also reported. For example, if the z-

statistics is reported, the estimated standardized mean difference may be

calculated as

δ̂ = z

√

(

1

n1i

+
1

n2i

)

.

2.2. Model choice

In meta-analysis, pooled effects and confidence intervals are usually

obtained by using appropriate parametric statistical models. Just like

ANOVA, analysis the sources of variation may be critical for the model

used in meta-analysis.11,12

There are at least two sources of variation to consider before combining

summary statistics across studies. One is the inner- or within-study varia-

tion, which is derived from sampling error. Sampling error may vary with
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studies. In general, the sampling error may be relatively small for studies

with large sample sizes, which means high degrees of precision and large

weight would be given. The other is the inter- or between-study varia-

tion. The fixed-effects (FE) model assumes each study is measuring the

same underlying parameter and there is no inter-study variation, in other

words, the population from which the given studies were drawn comprises

studies exactly like those in the sample, the only source of variation in

the observations is due to within-study sampling. By contrast, the random

effects (RE) model assumes each study is associated with a different but

related parameter, which means the population believed to produce the

sampled set of studies is a population of studies not exactly alike. For the RE

model, each study’s observed effect results from sampling variation about a

random effect measure, which itself is “drawn” from a distribution of effect

measures.

2.2.1. Fixed-effects model

A fixed-effects model assumes that each observed study effect, Y
i
(i =

1, 2, . . . , K), is a realization of a population of independent studies with

common parameters. Let θ be the parameter of interest, which quantifies

the average treatment effect. Assume that Y
i

is such that E(Y
i
) = θ and

let s

2

i

= var(Y
i
) be the estimate of variance of the effect in the ith study.

For moderately large study sizes, each Y
i
should be asymptotically normal

distributed (by the central limit theorem) and approximately unbiased.

Thus,

Y
i

indep

∼ N(θ, s2

i

) (1)

and s

2

i

is assumed known.

2.2.2. Random-effects model

The random-effects model framework postulates that each observed study

effect, Y
i
, is a draw from a normal distribution with a study-specific mean,

θ
i
, and variance, s

2

i

. θ
i
is interpreted as the “true effect” in study i. Further-

more, θ
i

is assumed to be a draw from some hyper-distributions of effects

with mean θ and variance τ

2. θ is the true underlying effect of interest,

represent the average treatment effect, and τ

2 is the inter-study variance,

or heterogeneity parameter. Thus,

Y
i
|θ

i
, s

2

i

indep

∼ N(θ
i
, s

2

i

) , (2)



June 23, 2003 10:40 WSPC/Advanced Medical Statistics chap07

252 X. Zhou et al.

θ
i
|θ, τ

2 indep

∼ N(θ, τ2) . (3)

Random-effects model “borrow strength” across studies when estimat-

ing study-specific effects, θ
i
, as well as the population effect θ. RE model of

(2) and (3) is refer to “hierarchic” model. This structure will be particularly

useful in the development of the Bayesian paradigm.

2.3. Statistical inference

A test of homogeneity should be done before any further analysis. If

no significant inter-study variation is found, a fixed-effects approach

is adopted. Otherwise, the meta-analyst either adopts a random-effects

approach or identifies study characteristics that stratify the studies into

subsets with homogeneous effects. The test of heterogeneity is described

next and followed by a description of inference for fixed-effects and random-

effects models. Maximum likelihood, and restricted maximum likelihood

methods are given for both types of models.

2.3.1. Test of homogeneity

The investigation of homogeneity is a crucial part of the meta-analysis. The

fixed effects model assumes that the K study-specific summary statistics

share a common mean θ. A statistical test for the homogeneity of study

means is equivalent to testing

H0 : θ = θ1 = θ2 = · · · = θ
K

,

H1 : At least two θ
i
s different .

The test statistic

Q
w

=

k

∑

i

W
i
(Y

i
− θ̂)2 (4)

will asymptotically follow χ

2

k−1
under H0 for large sample sizes. The overall

treatment effect θ, is estimated as a weighted average, that is

θ̂ =
∑

W
i
Y

i

/

∑

W
i

and W
i
= 1/s

2

i

.

If Q
w

is greater than the 100(1−α) percentile of the χ

2 distribution, the

hypothesis of equal means, H0, would be rejected at the 100(1−α) level. If

H0 is rejected, the meta-analyst may conclude that the study means arose

from two or more distinct populations and proceed by either attempting to

identify covariates that stratify studies into the homogeneous populations
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or adopting a random-effects model. If H0 cannot be rejected, it would be

concluded that the K studies share a common mean, θ.

Tests of homogeneity have low power against the alternative var(θ
i
) > 0.

Note that not rejecting H0 is equivalent to asserting that the between-

study variation is small. The results of simulation by Hardy show that the

power of homogeneity test depends on the number of included studies,

the total information (i.e. total weight or inverse variance) available

and the distributions among the different studies.13 In practice, if the

studies are homogeneous, then the choice between the fixed- and random-

effects model is not important, as the models will yield similar results. The

use of the random-effects model is not considered to be a defensible solu-

tion to the problem of heterogeneity. The random-effects model is generally

“conservative”. That is, in most situations, use of the random-effects model

will lead to wider confidence inference and a low chance to call a difference

“statistically significant”.

2.3.2. Parameter estimation

For fixed-effects model, when s

2

i

is assumed known, log(L(θ|y, s

2)) ∝
∑

i

(

(Yi−θ)
2

s

2

i

)

, which leads to the maximum likelihood estimator (MLE)

θ̂MLE =

∑

k

i=1
W

i
Y

i

∑

k

i=1
W

i

with W
i
=

1

s

2

i

. (5)

Standard inferences about θ are available using the fact that

θ̂MLE ∼ N





θ

(

∑

i

w
i

)−1




.

For random-effects model, if τ

2 is known, the MLE of θ is given by

θ̂(τ)MLE =

∑

k

i=1
w

i
(τ)Y

i

∑

k

i=1
w

i
(τ)

with W
i
(τ) =

1

s

2

i

+ τ

2
. (6)

However, in the more realistic case of unknown τ

2, restricted maximum

likelihood (RMLE) can be employed as a method for estimating variance

components in a general linear model. Using the marginal distribution for

y, the log-likelihood to be maximized is

log(L(θ, τ2|s2
y) ∝

∑

i

{

log(s2

i

+ τ

2) +
(Y

i
− θ̂

R
)2

s

2

i

+ τ

2

}

+ log
(

∑

(s2

i

+ τ

2)−1

)

.
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The REML of τ

2 is the solution of

τ

2

R

=

∑

i

w

2

i

(τ̂ )
(

k

k−1
(Y

i
− θ̂

R
)2 − s

2

i

)

∑

i

w

2

i

(τ̂ )
.

The estimator for the population mean is then calculated as

θ̂
R

=

∑

k

i

w
i
(τ̂

R
)Y

i

∑

k

i

w
i
(τ̂

R
)

, w
i
(τ̂

R
) =

1

s

2

i

+ τ̂

2

R

,

and inferences are made using θ̂
R
∼ N(θ, (

∑

i

w
i
(τ̂

R
))−1).

By equating the homogeneity test, Q
w
, to its corresponding expected

value, DerSimonian and Laird proposed a non-iterative (method of

moments) estimator of τ

2 as

τ

2 = max







0,

Q− (k − 1)
∑

w
i
−

∑

w

2

i
∑

wi







.

This leads to

θ̂
DL

=

∑

i

w
i
(τ̂

DL
)Y

i

∑

i

w
i
(τ̂

Dl
)

with w
i
(τ̂

Dl
) =

1

s

2

i

+ τ̂

2

DL

.

θ̂
DL

is also denoted Cochran’s semi-weighted estimator of θ and can be

easily programmed using most software packages.

A third estimator of τ

2 and θ is to adopt a fully Bayesian approach,

which reflect the uncertainty in the estimates of hyperparameters.

2.4. Classical approaches for meta-analysis

Many methods of meta-analysis have been proposed. Here we focus on the

classic approaches based on two kinds of measures, discrete outcome and

continuous outcome.

2.4.1. Measures based on a discrete outcome

For measures based on discrete outcome, we primary discuss the methods

involve the data in the form of 2×2 table, which is widely used in the meta-

analysis of clinical trials, cohort studies and case-control studies. Suppose

the arrangement of data and table notation is still as shown in Table 2.
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2.4.2. Mantel-Haenszel method

The Mantel-Haenzel method is a well-known approach for pooling data

across strata. Since each study included in meta-analysis could be regarded

as a stratum, Mantel-Haenzel method is appropriate for analyzing data for

a meta-analysis. The method is based on the assumption of fixed-effects

model, and the pooled measure is expressed as a combination of stratum-

specific measures. Mantel-Haenzel method can be used when the measure

of effect is a ratio measure, typically an odds ratio.14 In meta-analysis, the

pooled estimate using Mantel-Haenzel method is the weighted average of

the maximum-likelihood estimate of the odds ratios in each study, using

the inverse of study level variances as weights.

The odds ratio for the ith study OR
i
= aidi

bici

.

The weight for the ith study w
i
= bici

Ti

.

The pooled estimate of odds ratio is

OR
MH

=

∑

(w
i
OR

i
)

∑

w
i

=

∑

(a
i
d

i
/T

i
)

∑

(b
i
c
i
/T

i
)

. (7)

The variance of the OR
MH

is equal to

var(OR
MH

) =

∑

F

2
∑

R

2
+

∑

G

2
∑

R

∑

S

+

∑

H

2
∑

S

2
,

with

F =
a

i
d

i
(a

i
+ d

i
)

T

2

i

,

G =
a

i
d

i
(b

i
+ c

i
) + b

i
c
i
(a

i
+ d

i
)

T

2

i

,

H =
b
i
c
i
(b

i
+ c

i
)

T

2

i

,

R =
a

i
d

i

T
i

, S =
b
i
c
i

T
i

.

The 95% confidence interval for pooled odds ratio is equal to

exp
(

ln OR
MH
± 1.96

√

var(OR
MH

)
)

. (8)

The Q statistics for homogeneity test is given by

Q =
∑

w
i
(ln OR

MH
− ln OR

i
)2

=
∑

w
i
[ln(OR

i
)]2 −

[
∑

w
i

ln(OR
i
)]2

∑

w
i

. (9)
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Under the null hypothesis of homogeneity, Q has an approximate χ

2

k−1

distribution.

The test based on Mantel-Haenszel χ

2 has optimal statistical properties,

being the uniformly most powerful test. But application of the method

requires that data to complete a 2×2 table of outcome by treatment groups

for each study are available.

2.4.1.2. Peto method

The Peto method is a modification of Mantel-Haenszel method. It is based

on the fixed-effects model and the effect measure of interest is odds ratio.15

Peto method uses a score statistics and Fisher information statistics from

conditional likelihood for study-specific effects to estimate pooled effects.

The computation involved in Peto method is relatively simple compared to

Mantel-Haenszel method. Peto method has been extensively used, especially

in clinical trials.

Let O
i

and E
i

be the observed and expected number of events in the

treatment group for ith study, respectively, where E
i
= n1im1i

Ti

.

The pooled estimate of odds ratio is equal to

OR
p

= exp

(∑

(O
i
−E

i
)

∑

V
i

)

, (10)

where V
i
= n1im1in2im2i

T

2

i
(Ti−1)

is the variance of the difference O
i
−E

i
.

The 95% confidence interval for pooled odds ratio is

exp

(

ln OR
p
±

1.96
√
∑

V
i

)

= exp

(

∑

(O
i
−E

i
)± 1.96

√
∑

V
i

∑

V
i

)

. (11)

The homogeneity test, Q, is given by

Q =
∑ (O

i
−E

i
)2

V
i

−
(
∑

(O
i
−E

i
))2

∑

V
i

. (12)

Under the null hypothesis of homogeneity, Q has an approximate χ

2

k−1

distribution.

Although Peto method is widely used, it has been demonstrated to be

potentially biased when the true common odds ratio is far from unity or

when there are large unbalances between the numbers of death and survival

or exposed and non-exposed. In this situation, Mantel-Haenszel may be

preferred.

Example 1. Table 4 shows data from seven randomized clinical trials of the

effect of aspirin in preventing death after myocardial infarction16 The Peto
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method is used to estimate a summary odds ratio and its 95% confidence

interval for these data is as follows:

Table 4. Data form seven randomized trials of the effectiveness of aspirin after myocar-
dial infarction and the results of meta-analysis (Peto method).

Aspirin Placebo

Study No. No. No. No. Ei Oi − Ei Vi ORi (Oi − Ei)2/vi

Deaths patient death Patient

1 49 615 67 624 5i.6 −8.6 26.3 0.720 2.8

2 44 758 64 771 53.5 −9.5 25.1 0.681 3.6

3 102 832 126 850 112.8 −10.4 49.3 0.803 2.4

4 32 317 38 309 35.4 −3.4 15.5 0.801 0.7

5 85 810 52 406 91.3 −6.3 27.1 0.798 1.5

6 246 2267 219 2257 233.0 13.0 104.3 1.133 1.6

7 1570 8587 1720 8600 1643.8 −73.8 665.1 0.895 8.2

Total −99.4 912.7 20.8

Source: Fleiss and Gross.16

2.4.1.2.1. Homogeneity test

Calculate E
i
, V

i
, O

i
− E

i
, and (O

i
− E

i
)2/V

i
, and the results are show in

Table 4.

Q =
∑ (O

i
−E

i
)2

V
i

−
(
∑

(O
i
−E

i
))2

∑

V
i

= 20.8−
(−99.4)2

912.7
= 10.1 .

Here, df = 6, χ

2

(0.05,6)
= 12.6 > 10.1, P > 0.05, the null hypothesis of

homogeneous odds ratio would not be rejected at 5 percent level, so that

the fixed-effects model may be appropriate to be adopted for pooling the

odds ratio.

2.4.1.2.2. Calculate the pooled estimate of odds ratio and

its 95% confidence interval

OR
p

= exp

(∑

(O
i
−E

i
)

∑

V
i

)

= exp

(

−99.4

912.7

)

= 0.09

exp

(

∑

(O
i
−E

i
)± 1.96

√
∑

V
i

∑

V
i

)

= exp

(

−99.4± 1.96
√

912.7

912.7

)

= (0.84, 0.96) .
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2.4.1.2.3. Graphical presentation of the results

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1 2 3 4 5 6 7 pooled
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95
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Fig. 1. The odds ratios of seven studies and their 95% confidence interval, and pooled
odds ratio and its 95% confidence interval.

2.4.1.3. Fleiss method

When data to complete a 2×2 table is not available, the Peto method could

not be adopted unless those studies are excluded. Sometimes the individual

study may report the proportions having the characteristic under study,

the Fleiss method can be used as alternative the Peto method based on

fixed-effect model. For a clinical trial or cohort study, let p1i
and p2i

be the

mortality rate or incidence rate for treated (exposed) and control group,

respectively. For a case-control study, let p1i
and p2i

be the exposure rate

for case and control group, respectively. Fleiss draws the formula of pooling

the log odds ratio when p1i
and p2i

are given in the included study in

meta-analysis.16

The effect for ith study, denoted by y
i
, is the logarithm of the odds

ratio:

y
i
= ln(OR

i
) = ln(p1i

(1− p2i
)/p2i

(1− p1i
)) .

The variance and weight of y
i

are given by

var(y
i
) =

1

n1i
p1i

(1− p1i
)

+
1

n2i
p2i

(1− p2i
)

, w
i
=

1

var(y
i
)

.

The pooled estimate of odds ratio is equal to

OR
F

= exp(ȳ) = exp
(

∑

w
i
y

i

/

∑

w
i

)

. (13)
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The 95% confidence interval for summary odds ratio is given by

exp

(

ȳ ± 1.96

/

√

∑

w
i

)

. (14)

The Q statistic for homogeneity test is

Q =
∑

w
i
(y

i
− ȳ)2 =

∑

w
i
y

2

i

−
(
∑

w
i
y

i
)2

∑

w
i

. (15)

Example 1 (continued). The Fleiss method is used to estimate a pooled

odds ratio and its 95% confidence interval for data in Example 1 in Table 5.

First, calculate the observed effect y
i
= ln(OR

i
), variance v

i
weight w

i

and w
i
y

i
, w

i
y

2

i

for each individual study, results shown in Table 5.

The Q statistic for homogeneity test is

Q =
∑

w
i
(y

i
− ȳ)2 =

∑

w
i
y

2

i

−
(
∑

w
i
y

i
)2

∑

w
i

= 20.7849−
(−99.1391)2

910.559
= 10.8 .

df = 6, χ

2

(0.05,6)
= 12.6 > 10.1, P > 0.05, H0 would not be rejected, so

the fixed-effects model may be appropriate.

Then the pooled estimate of odds ratio is equal to

OR
F

= exp

(

∑

w
i
y

i

/

∑

w
i

)

= exp(−99.1391/910.559) = exp(−0.1089) = 0.90 .

Table 5. Results of meta-analysis for the effectiveness of aspirin after myocardial
infarction (Fleiss method).

Study yi = ln(ORi) wi = 1/vi wiyi wiy
2

i

1 −0.3285 25.710 −8.4457 2.7744

2 −0.3842 24.291 −9.3326 3.5856

3 −0.2194 48.801 −10.7069 2.3491

4 −0.2194 15.440 −3.3875 0.7432

5 −0.2332 28.409 −6.6250 1.5449

6 0.1249 103.985 12.9877 1.6222

7 −0.1109 663.923 −73.6291 8.1655

Total 910.559 −99.1391 20.7849
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The 95% confidence interval for pooled odds ratio is given by

exp

(

ȳ ± 1.96

/

√

∑

w
i

)

= exp(−0.1089± 1.96/

√
910.559)

= (0.84, 0.96) .

Note that, results of Fleiss method are the same as those of Peto method.

If complete 2× 2 tables are available for all included studies, Peto method

is simpler than Fleiss method, but the latter can be used for those only

proportions reported.

2.4.1.4. General variance-based method

When the effect size is measured as a rate difference, the general variance-

based method would be applied to estimation of the pooled rate difference.

The general variance-based method also used to estimate the pooled risk

ratio, rate ratio and odds ratio.12 The general variance-based method is

also based on fixed-effect model.

2.4.1.4.1. Effect size is measured as a rate difference

The rate different for ith study is RD
i
= ai

n1i

− ci

n2i

.

The variance and weight of rate difference are var(RD
i
) = n1in2i

m1im2iTi

,

w
i
= 1/var(RD

i
).

The pooled estimate of rate difference is

RD
GV

=

∑

(w
i
RD

i
)

∑

w
i

. (16)

The 95% confidence interval of pooled estimate of rate difference is

equal to

RD
GV
± 1.96

/

√

∑

w
i
. (17)

2.4.1.4.2. Effect size is measured as an incidence density ratio

or as a risk ratio

The relative risk for ith study is RR
i
= ai

n1i

/

ci

n2i

.

The variance and weight of relative risk are var(RR
i
) = n2iTi

m1im2in1i

, w
i
=

1/var(RR
i
).

The pooled estimate of relative risk is

RR
GV

= exp

(∑

(w
i
ln(RR

i
))

∑

w
i

)

. (18)
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The 95% confidence interval of pooled estimate of relative risk is

equal to

exp

(

ln(RR
GV

)± 1.96

/

√

∑

w
i

)

. (19)

When each study in meta-analysis just presents the relative risk and

its 95% confidence interval, whereas a complete 2× 2 table is unavailable,

general variance-based method also could be applied to estimate the pooled

effect using Eqs. (18) and (19). The formula for estimating variance from

the 95% confidence interval is

var(RR
i
) =

(

ln(RR
i
/RR

l
)

1.96

)2

=

(

ln(RR
u
/RR

i
)

1.96

)2

, (20)

where RR
u

and RR
l
are the upper and lower bound of the 95% confidence

interval for ith study.

2.4.1.4.3. Effect size is measured as odds ratio

The pooled estimate of odds ratio is

OR
GV

= exp

(∑

(w
i

ln(OR
i
))

∑

w
i

)

. (21)

The 95% confidence interval of pooled estimate of odds ratio is equal to

exp

(

ln(OR
GV

)± 1.96

/

√

∑

w
i

)

, (22)

where

w
i
= [var(ln(OR)

i
)]−1 =

(

1

a
i

+
1

b
i

+
1

c
i

+
1

d
i

)−1

. (23)

Note that when pooling the effect, relative risk and odds ratio should

be transform to logarithmic scale in order to be approximately normally

distributed, whereas the rate difference could be computed directly.

2.4.1.5. DerSimonian-Laird method

The approaches we previously described are all based on the fixed-effect

model. When the studies included in meta-analysis lack of homogeneity,

the random-effects model may be appropriate to combine the effect size.

Formulas of applying the DerSimonian-Laird method summarizing studies

in the case where effects are measured as odds ratios are given as follows17:

OR
DL

= exp

(∑

w

∗
i

ln(OR
i
)

∑

w

∗
i

)

. (24)
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The 95% confidence interval of pooled estimate of odds ratio is equal to

exp

(

ln OR
D

L± 1.96

/

√

∑

w

∗
i

)

, (25)

where w

∗
i

is the weighting factor for the ith study, is estimated as

w

∗
i

=
1

D + (1/w
i
)

. (26)

D is derived from the homogeneity test statistic, Q, in Eq. (4). As

described previously about the moment estimate of inter-study variance τ

2

in model choice and homogeneity test, we have

D =
Q− (K − 1)

∑

w
i

(
∑

w
i
)2 −

∑

w

2

i

and D = 0 if Q < k − 1 , (27)

where k is the number of included studies.

Example 1 (continued). In the example of meta-analysis of seven clinical

trials in which aspirin was used to prevent the death after myocardial in-

farction, we have calculated the pooled effect sized using the approaches

based on fixed-effects model. The results of homogeneity test is, Q = 10.8,

and df = 6, χ

2

(0.05,6)
= 12.6 > 10.8, P > 0.05, the null hypothesis was

not rejected. In order to evaluate the dependence of the conclusions of the

analysis on the model assumption, now we calculate the pooled effect using

random-effects model.

D =
Q− (k − 1)

∑

w
i

(
∑

w
i
)2 −

∑

w

2

i

=
10.1− (7− 1)× 910.559

910.559− 456284.69
= 0.00977 .

Each w

∗
i

for individual study is calculated using Eq. (26), results shown

in Table 6.

Table 6. Results of meta-analysis for the effectiveness of aspirin after myocardial
infarction (DerSimonian-Laird method).

Study yi = ln(ORi) wi w2

i
w∗

i
w∗

i
yi

1 −0.3285 25.710 661.004 20.54 −6.747

2 −0.3842 24.291 590.053 19.63 −7.542

3 −0.2194 48.801 2381.538 33.04 −7.219

4 −0.2194 15.440 238.394 13.42 −2.944

5 −0.2332 28.409 807.071 22.24 −5.186

6 0.1249 103.985 10812.880 51.58 −6.442

7 −0.1109 663.923 440793.750 88.68 −9.835

Total 910.559 456284.69 249.13 −33.061
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The pooled estimate of odds ratio and its 95% confidence interval are

OR
DL

= exp

(∑

w

∗
i

ln(OR
i
)

∑

w

∗
i

)

= exp

(

−33.061

249.13

)

= exp(−0.1327) = 0.88 ,

exp

(

ln OR
DL
± 1.96

/

√

∑

w

∗
i

)

= exp(−0.1327± 1.96/

√
249.13) = (0.77, 0.99) .

Now, if we compare the results of fixed-effects and random-effects model,

the pooled point estimate of odds ratio, 0.88 and 0.90, respectively, is

almost the same. The length of the 95% confidence interval based on

random-effects model is 0.22 (0.99–0.77), which is greater than that based

on fixed-effects model, 0.12 (0.96–0.84). So the result of random-effects

model is potentially more conservative. But the two methods yield the

same conclusion, that is, in general, aspirin make the risk of death after

myocardial infarction decrease by nearly 10%.

2.4.3. Measures based on a continuous scale

When the effect size in the studies included in a meta-analysis is measured

on a continuous scale, we primarily focus on the estimates of pooled mean

difference and standardized mean difference.10,12

Suppose the n1i
and n2i

are the sample sizes, x1i
and x2i

are the means,

of treatment and control group, respectively. The mean difference y
i

=

x̄1i
− x̄2i

, with standard error, s
i
, calculated as

s

2

i

= s

2

pi

(

1

n1i

+
1

n2i

)

, where s

2

pi

=
(n1i
− 1)s2

1i

+ (n2i
− 1)s2

2i

n1i
+ n2i

− 2
.

2.4.2.1. Fixed-Effect model

2.4.2.1.1. Effect size is measured on the same scale

The pooled measure of size effect (mean difference) is y
s

=
∑

wiyi
∑

wi

, where

w
i
= 1

s

2

i

.

The Q statistic for homogeneity test is given by

Q =
∑

w
i
(y

s
− y

i
)2 =

∑

w
i
y

2

i

−
(
∑

w
i
y

i
)2

∑

w
i

.
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The 95% confidence interval of summary measure of effect size is y
s
±

1.96/

√
∑

w
i
.

Example 2. Table 7 presents data about the change in Kurtzke Disability

Status Scale at two years in four randomized trials of the effect of aza-

thioprine treatment in multiple sclerosis. The summary estimate of mean

difference is given as follows:

Table 7. A meta-analysis for Change in Kurzke Disability Status Scale at two years in
four randomized trials of the effect of azathioprine treatment in multiple sclerosis.

Study
Treated Control

yi y
2

i
s
2

i
wI wiyi wiy

2

i

x1i s1i n1i x2i s2i n2i

1 0.30 1.26 162 0.42 1.28 175 −0.12 0.0144 0.019 52.632 −6.316 0.758

2 0.17 0.90 15 0.83 0.98 20 −0.66 0.4356 0.105 9.524 −6.286 4.149

3 0.20 1.10 30 0.45 1.12 32 −0.25 0.0625 0.080 12.500 −3.125 0.781

4 0.17 1.38 27 0.42 1.36 25 −0.25 0.0289 0.145 6.897 −1.724 0.431

Total 0.5414 81.553 −7.451 6.119

Source: Yudkin et al. (1991). Lancet 338: 1051–1055 and Petitti.12

2.4.2.1.1.1. Homogeneity test

Q =
∑

w
i
y

2

i

−
(
∑

w
i
y

i
)2)

∑

w
i

= 6.119−
(−17.451)2

81.553
= 2.385 .

Here, df = 3, χ

2

(0.05,3)
= 7.28 > 2.385, p > 0.05 therefore, the null

hypothesis that the studies are homogeneous is not rejected, and it is ap-

propriate to use fixed-effects model to estimate the pooled weight mean.

2.4.2.1.1.2. Calculating the pooled effect size and its 95% confidence

interval

y
s

=

∑

w
i
y

i

∑

w
i

=
−17.451

81.553
= −0.197 ,

y
s
± 1.96

/

√

∑

w
i
= −0.197± (1.96/

√
81.553) = (−0.414, 0.02) .

The results of meta-analysis suggest, the pooled mean difference of the

Kutzke Disability Scale for the effect of azathioprine treatment in multiple

sclerosis is −0.197, but the results are statistically non-significant (95%

confidence interval covers zero). Based on these results, we still cannot

draw the conclusion that azathioprine is beneficial for multiple sclerosis.
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2.4.2.1.2. Effect size is measured on different scale

When studies used different scales to measure effect, the standardized mean

difference is calculated as the estimate of effect size. Let

d
i
=

x̄1i
− x̄2i

s
pi

,

then the pooled estimate of effect size is

d
s

=

∑

w
i
d

i

∑

w
i

, (28)

where w
i

is the weight assigned to each study. This weighted estimator of

the effect size was shown by Hedges to be asymptotically efficient when

sample sizes in the two groups are both greater than 10 and the effect

sizes are less than 1.5.18 When the sample sizes are about equal in the two

groups and both greater than 10, the weight of each study can be estimated

as follows:

w
i
=

2N
i

8 + d

2

i

. (29)

The 95% confidence interval for the pooled estimate of effect size is

d
s
± 1.96/

√
w

i
. (30)

The Q statistic for homogeneity test is given by

Q =
∑

w
i
(d

s
− d

i
)2 =

∑

w
i
d

2

i

−
(
∑

w
i
d

i
)2

(
∑

w
i
)

. (31)

2.4.2.2. Random-effects model

If H0 of homogeneity is rejected, which means that the between-study

variance is relatively large, a random-effect model should be used.

The calculation of effect size is the same, that is, d
i
= x̄1i−x̄2i

spi

.

The pooled estimate of effect size and variance are

d̄ =

∑

w
i
d

i

∑

w
i

,

s

2

d

=

∑

w
i
(d

i
− d̄)2

∑

w
i

=

∑

w
i
d

2

i

∑

w
i

− d̄

2
, (32)

where, w
i
= N

i
= n1i

+ n2i
.

The random-effect model assumes d
i
= δ

i
+ e

i
, with

δ̄ = d̄ , ē = 0 and s

2

i

=
4k

∑

w
i

(

1 +
d̄

2

8

)

. (33)
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(1) If s

2

d

> s

2

e

, s

2

δ

= s

2

d

−s

2

e

, and the 95% confidence interval of pooled effect

size is

d̄± 1.96s
δ
. (34)

(2) If s

2

d

≤ s

2

e

, s

2

δ

= 0, and random-effects model is actually fixed-effect

model, that is

d
i
= δ + e

i
.

The standard error for d̄ is

s
d̄

=
s

e

√
k

. (35)

Then the 95% confidence interval of pooled effect size is

d̄± 1.96s
d̄

. (36)

In random-effect model, the statistic for homogeneity test is given by

x

2 =
ks

2

d

s

2
e

. (37)

Under the null hypothesis of homogeneity, the statistic follows an

approximate x

2

k−1
distribution.

Table 8. Data from meta-analysis of the effect of aminophylline treatment in severe
acute asthma.

Study Ni(wi) spi di widi wid
2

i

1 20 0.76 −0.43 −8.6 3.698

2 50 320.00 −0.04 −2.00 0.08

3 48 0.65 −0.84 −40.32 33.869

4 24 0.42 −1.67 −40.08 66.934

5 29 0.22 −1.03 −29.87 30.766

6 20 17.00 −2.41 −48.2 116.162

7 23 0.62 −0.08 −1.84 0.147

8 13 110.00 0.26 3.38 0.879

9 23 2.10 2.93 67.39 197.453

10 51 6.30 0.51 26.01 13.265

11 61 0.50 0.72 43.92 31.622

12 66 0.67 0.03 1.98 0.059

13 40 0.58 −0.02 −0.8 0.016

·· 468 −29.03 494.95

Source: Littenberg (1988). JAMA. 259: 1678–1684 Petitti.12
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Example 3. Table 8 presents data from a meta-analysis of the effect of

aminophylline in severe acute asthma. The 13 studies included in the meta-

analysis reported different measures on pulmonary function. A standardized

mean difference should be used as common metric. The pooled estimate of

effect size and 95% confidence interval are calculated as follows:

2.4.2.2.1. Homogeneity test

s

2

d

=

∑

w
i
(d

i
− d̄)2

∑

w
i

=

∑

w
i
d

2

i

∑

w
i

−

(∑

w
i
d

i

∑

w
i

)2

=
494.95

468
−

(−29.03)2

4682
= 1.054 ,

d̄ =

∑

w
i
d

i

∑

w
i

=
−29.03

468
− 0.062 ,

s

2
e

=
4k

∑

w
i

(

1 +
d̄

2

8

)

=
4× 13

468

[

1 +
(−0.062)2

8

]

= 0.111 ,

x

2 =
ks

2

d

s

2
e

=
13× (1.054)2

0.111
= 130.107 .

df = 12, x

2

(0.05,12)
= 21.03, p < 0.05, the null hypothesis of homogeneity

is rejected, which means between-study variance is relatively large, and

random-effects model should be adopted.

2.4.2.2.2. Calculating the summary effect size and

its 95% confidence interval

s

2

δ

= s

2

d

− s

2
e

= 1.054− 0.111 = 0.94 ,

d̄ =

∑

w
i
d

i

∑

w
i

=
−29.03

468
= −0.062 ,

d̄± 1.96s
δ

= −0.062± (1.96×
√

0.94) = (−1.962, 1.838) .

The results of meta-analysis suggest that the effect of aminophylline

treatment in severe acute asthma is statistically non-significant (95% con-

fidence interval covers zero). In fact, the heterogeneity between studies is

greatly large in the example, the smallest effect size is −0.02, whereas the
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largest is 2.93. It is necessary to explore the source of heterogeneity be-

fore meta-analysis, and assess the source of biases and confounding. If the

combinability of studies is poor, meta-analysis should be abandoned. The

process above is just a typical example for computation.

3. Bayesian Methods in Random-Effects Models for

Meta-analysis

The methods discussed above are basically frequentist procedures. There

have been considerable discussions in the literature on the relative merits

of fixed- and random-effects model. In practice, when combining the effect,

the choice between fixed- and random-effects models is determined by the

results of statistical tests of homogeneity (Q statistic). But the power of

statistical tests of homogeneity is low. The results of random-effects model

may be more “conservative”, which leads to somewhat wider confidence

intervals than the fixed-effects model. Little is known about the approach

describing the random effects quantitatively. The appropriate treatment

for small studies and extreme results included in meta-analysis is still unre-

solved in classic methods. Furthermore, the uncertainty of the parameters,

such as the pooled effect size and variance, is not taken into account to use

current approaches for meta-analysis.

Bayesian methods for meta-analysis give several options to deal with

these problems and have been well-developed in the past decades. Under

the Bayesian framework for random-effect model in meta-analysis, the pa-

rameter is an unknown random variable that has a specific distribution.

The posterior distribution of parameter is derived from prior distribution

and sample information available.

DuMouchel gave a fully Bayesian analysis of the hierarchical model with

a complete conjugate prior structure.19 Carlin developed and implements a

fully Bayesian approach to meta-analysis for 2× 2 tables, in which uncer-

tainty about effects in comparable studies is represented by an exchangeable

prior distribution.20

A Bayesian analysis requires integration of each of the conditional pos-

terior distributions. Unfortunately, such integration cannot be performed

in closed form in most situations. Approximate solution can be obtained

through asymptotic or numerical techniques. With the great progress in

Bayesian computational tools, especially the rapid development of Markov

Chain Monte Carlo (MCMC) method, it is effective to deal with the pro-

blems that could not be resolved by classical meta-analysis method. Gibbs
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sampling is a recently developed simulation tool for Bayesian inferences, ob-

taining the simulated joint posterior distribution from the full conditional

distributions of parameters.21,22

In this section, the Bayesian approaches are introduced, especially the

hierarchical model under a full Bayesian framework and the Gibbs sampling

in random-effects model for meta-analysis.

3.1. Bayesian meta-analysis for DuMouchel’s model

Supporse there are K individual studies included in the meta-analysis, and

the effect for each study is Y1, Y2, . . . , YK
. The random-effects model is

Y
i
= µ

i
+ ε

i
, ε

i
∼ N(0, σ

2

i

) ,

µ
i
= µ + e

i
, e

i
∼ N(0, τ

2) ,

with {ε
i
, i = 1, . . . , K} and {e

i
, i = 1, . . . , K} are independent. Let Y =

(Y1, . . . , YK
)′, 1 = (1, . . . , 1)′, m = (µ1, . . . , µk

)′, ε = (ε1, . . . , εk
)′, e =

(e1, . . . , ek
)′, Σ = diag(σ2

1
, . . . , σ

2

k

) and I the K×K identity matrix, then the

random-effect model in matrix form as Y |m ∼ N(m,

∑

), m ∼ N(1µ, τ

2
I).

Under the full Bayesian framework, we have the model

Y |m , σ

2 ∼ N(m, σ

2
C) ,

σ

2 ∼ x

2(df
σ
) ,

m|µ , τ

2 ∼ N(1µ, τ

2
H) ,

µ|τ2 ∼ N(0, D →∞) ,

τ

−2 ∼ x

2(df
τ
) .

Here, σ

2
, τ

2 and µ are hyperparameters, and C and H are assumed as

known K × K covariance matrices with unknown scale factor σ

2 and τ

2,

respectively. The degrees of freedom df
σ

and df
τ

for inverse-χ2 prior distri-

butions allow incorporation of how incorporation of how well known C and

H are, respectively. The prior distribution for µ is the standard diffused

and independent of τ

2. In fact, as noted by DuMouchel, these particular

prior distributions are chosen for convenience, so that the posterior distri-

bution of m given Y is a mixture of multivariate student-t distribution, each

with degrees of freedom df
σ

+ df
τ

+ K − 1. For computational convenience,

however, he suggests using a multivariate normal approximation to the

posterior, which can then be completely described through the posterior

mean and covariance matrices.
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Reparameterize the variance parameters as φ, let φ = τ

2
/σ

2,

W (φ) = (φH + C)−1
,

β(Y, φ) = [1′W (φ)1]−11′W (φ)Y ,

S(Y, φ) = [Y − 1β(Y, φ)]′W (φ)[Y − 1β(Y, φ)] ,

γ(Y, φ) =
df

τ
+ df

σ
/φ + S(Y, φ)

df
σ

+ df
τ

+ K − 3
.

The posterior estimate E(µ|Y ) of µ is then given by integrating what

is essentially the weighted least squares estimator of µ over the posterior

density of φ, f(φ|Y )

E(µ|Y ) =

∫

E(µ|φ, Y )f(φ|Y )dφ .

Similarly,

var(µ|Y ) =

∫

{γ(Y, φ)[1′W (φ)1]−1 + [β(Y, φ)− E(µ|Y )]

× [β(Y, φ)−E(µ|Y )]′}f(φ|Y )dφ .

The approximate 95% credible interval for µ using E(µ|Y ) and var(µ|Y )

and the normal distribution, will be

E(µ|Y )± 1.96
√

var(µ|Y ) .

Posterior mean of σ

2 are obtained using

E(σ2|Y ) =

∫

γ(Y, φ)f(φ|Y )dφ .

3.2. Bayesian meta-analysis for Carlin’s model

Carlin adopts a Bayesian approach to meta-analysis for 2 × 2 tables, in

which an exchangeable prior distribution is used. A hierarchical normal

model assumes that

Y
i
|µ

i
, σ

2

i

∼ N(µ
i
, σ

2

i

) , (38)

µ
i
|µ , τ

2 ∼ N(µ, τ

2) , (39)

where σ
i

represents the corresponding estimated standard error, which is

assumed known without error. µ
i

is interpreted as the “true effect” in ith

study, which has an exchangeable normal prior, and also it means effects

are independently and identically distributed conditional on the values of
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unknown hyperparameters µ and τ

2. Here, τ

2 is between-study variance.

Assume the prior distributions of µ and τ

2 are non-informative or locally

uniform prior. Under the framework of Bayesian, the posterior distributions

of quantities of interest, conditional on the variance hyperparameter, have

closed form solutions. Let B
i
= τ

2
/(τ2 + σ

2

i

), then we have

µ̂ = E(µ|Y, τ

2) =

∑

B
i
Y

i

∑

B
i

, (40)

var(µ|Y, τ

2) =
τ

2

∑

B
i

. (41)

The posterior mean and variance for the individuals µ
i
, conditional on

both µ and τ

2, for each i, are

E(µ
i
|Y, µ, τ

2) = B
i
Y

i
+ (1−B

i
)µ , (42)

var(µ
i
|Y, µ, τ

2) = B
i
σ

2

i

. (43)

Note that, B
i

is usually referred to as the shrinkage factor for the ith

study. The larger the inter-study variation, τ

2, is the smaller the shrinkage

B
i

of the observed study effects. Because 0 ≤ B
i
≤ 1, the mean is com-

promised between the average treatment effect µ and the observed study

summary statistics, Y
i
. When σ

2

i

= 0, shrinkage is maximized to B
i
= 1 so

that µ1 = µ2 = · · · = µ
k

= µ and the random-effects model reduces to the

fixed-effects model.

Integrating Eqs. (42) and (43) over the posterior distribution of µ

conditional on τ

2 we have

E(µ
i
|Y, τ

2) =

∫

E(µ
i
|Y, µ, τ

2)f(µ|Y, τ

2)dµ

= B
i
Y

i
+ (1−B

i
)µ̂2

τ

, (44)

var(µ
i
|Y, τ

2) = B
i
σ

2

i

+ (1−B
i
)2

τ

2

∑

B
i

. (45)

The marginal likelihood function

f(Y |τ2) =

(

IIB
i

(τ2)k−1
∑

B
i

)1/2

exp

{

−
1

2τ

2

[

∑

B
i
Y

2

i

−
(
∑

B
i
Y

i
)2

∑

B
i

]}

can be obtained by integrating µ out of the full likelihood. The posterior

density for τ

2 is then

f(τ2|Y ) = f(Y |τ2)f(τ2) ,

where f(τ2) is the prior density of τ

2. Carlin used Monte Carlo procedure

to compute posterior density of estimates of interest, τ

2, τ and µ
i
.
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3.3. Gibbs sampling in random-effects model for

meta-analysis

Gibbs sampling is a procedure for numerical integration of complex func-

tions that has come from its origins in statistical mechanics, through image

processing into modern statistics. It is based on a simple, although compu-

tationally demanding, idea. All unknown quantities are given some initial

values. The technique then involves successively sampling from the condi-

tional distribution of each variable in turn, given the current value of all

the other variables. These “full conditional” distributions are often of fairly

standard form. It can be shown that under broad conditions eventually one

will be sampling from the correct posterior distributions of the unknown

parameters. Recently, there are many literatures on this topic, both on

methodology and applications.

The key feature of Gibbs sampling is, given a joint posterior density

P(θ|X), K univariate full conditional densities (the distribution of each

individual component of θ conditional on known values of the data X and

all other components) can be written down in close form.

Now we derive the full conditional distributions for parameters in Gibbs

sampling based on random-effects model for meta-analysis. Consider the

typical Bayesian hierarchical model as previouly described in Eqs. (38) and

(39), that is

Level I : Y
i
|µ

i
, σ

2

i

∼ N(µ
i
, σ

2

i

) ,

Level II : µ
i
|µ, τ

2 ∼ N(µ, τ

2) ,

Level III : µ|(a, b) ∼ N(a, b) , τ

2|(c, d) ∼ IG(c, d) .

For computationally convenient, the prior distributions for hyper-

parameters µ and τ

2 are generally normal distribution and inverse Gamma

distribution, respectively. Under the full Bayesian framework, all full con-

ditional distributions are easily estimated using Gibbs sampling. Samples

from the marginal posterior distributions of interest are simulated using the

following full conditional distributions:

µ
i
|Y1, . . . Yk

, µ
j
6= i, µ ,

τ

2

µ

∼ N

(

Y
i

(

τ

2

σ

2

i

+ τ

2

)

+ µ

(

σ

2

i

σ

2

i

+ τ

2

)

,

σ

2

i

τ

2

σ

2

i

+ τ

2

)

. (46)

µ|Y1, . . . , Yk
, . . . , µ

k
,

τ

2 ∼ N

(

K

∑

i=1

µ
i

(

Kb

τ

2 + Kb

)

+ a

(

τ

2

τ

2 + Kb

)

,

τ

2

τ

2 + Kb

)

, (47)
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τ

2|Y1, . . . , Yk
, µ1, . . . , µk

,

µ ∼ IG

(

1

2
K + c,

1

2

K

∑

i=1

(µ
i
− µ)2 + d

)

. (48)

The processes involved in Gibbs sampling are: (i) µ
i
, µ, and τ

2 are given

some initial values; (ii) Gibbs sampling values are obtained in turn, from

the conditional distributions in Eqs. (46), (47) and (48); (iii) update the

Gibbs sampling values successively for t iterations. For each run a “burn-

in” of m iterations is followed by a further t-m iterations during which the

posterior marginal density of parameters, µ
i
, µ, and τ

2 are computed; (iv)

check the convergence of Gibbs sampling.

Note that, given the prior and conditional distribution, Gibbs sampling

is easy to be carried out. When deriving the full conditional distributions,

the prior and likelihood are conjugate in the model we discussed above. In

some situations, it may be reasonable to assume that the prior of µ and τ

2

are non-informative prior, and the form of full conditional distribution is

simpler.

WinBUGS is a program that carries out Bayesian inference for complex

statistical analysis via MCMC simulation technique.23 Using WinBUGS

software, Gibbs sampling is easily implemented for many common models

and distributions. The WinBUGS language allows the model to be speci-

fied by way of construction of a directed graphical model. The summary

statistics for the variable, which calculate from the posterior distributions

of parameters of interest, are given in the output. The software also pro-

duce the plots of the kernel density estimate, dynamic trace for sampling,

and autocorrelation function for parameters.

3.4. An example of Gibbs sampling for meta-analysis

Table 9 gives the results of 16 case-control studies about the role of hepa-

titis B virus (HBV) infection, hepatitis C virus (HCV) infection, and dual

infection in the patients with primary hepatocellular carcinoma (PHC) in

Chinese.

The classic approaches for meta-analysis are not suitable for estimating

quantitatively the risk of HBV, HCV and dual infection for PHC. As shown

in Table 9, extreme values (zero) are observed for dual infection in the

control groups in several studies, due to the quite low population-based

dual infection rate. Classic approaches could not deal with the extreme

values unless 0.5 is used to substitute zero or the studies containing zero
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Table 9. The data of 16 case-control studies for HBV, HCV and dual infection in PHC.

Statue of HBV, HCV Infection

Non- HBV Infection HCV Infection Dual Infection

Study Infection ca/co OR10 Y10 ca/co OR01
Y

01 var(Y01) ca/co OR11 Y11 Total

No. ca/co var(Y10) var(Y11) ca/co

1 42/198 77/40 9.08 2.21 0.07 6/8 3.54 1.26 0.32 15/1 70.71 4.26 1.10 140/247

2 33/101 102/10 31.22 3.44 0.15 3/3 3.06 1.12 0.71 14/1 42.85 3.76 1.11 152/115

3 34/81 43/8 12.81 2.55 0.19 4/3 3.18 1.16 0.63 11/0∗ 52.41 3.96 2.13 92/92

4 20/70 49/16 10.72 2.37 0.15 0/1∗ 1.75 0.56 3.06 8/0∗ 56.00 4.03 2.19 77/87

5 21/36 28/24 2.00 0.69 0.15 8/10 1.37 0.32 0.30 14/1 24.00 3.18 1.15 71/71

6 20/62 64/31 6.40 1.86 0.11 7/7 3.10 1.13 0.35 9/0∗ 55.80 4.02 2.18 100/100

7 9/75 50/21 19.84 2.99 0.19 11/3 30.56 3.42 0.55 30/1 250.00 5.52 1.16 100/100

8 35/122 53/20 9.24 2.22 0.11 3/1 10.46 2.35 1.37 5/1 17.43 2.86 1.24 96/144

9 9/123 51/14 49.79 3.91 0.21 4/2 27.33 3.31 0.87 6/1 82.00 4.41 1.29 70/140

10 22/278 232/73 40.16 3.69 0.07 49/8 77.40 4.35 0.19 58/2 366.45 5.90 0.57 361/361

11 5/57 87/45 22.04 3.09 0.25 6/3 22.80 3.13 0.72 11/4 31.35 3.45 0.56 109/109

12 7/109 45/16 43.79 3.78 0.24 3/1 46.71 3.84 1.49 9/2 70.07 4.25 0.76 61/128

13 11/179 80/26 50.07 3.91 0.15 3/1 48.82 3.89 1.43 10/2 81.36 4.40 0.70 104/208

14 13/105 79/105 6.08 1.80 0.11 3/4 6.06 1.80 0.67 15/6 20.19 3.01 0.32 110/220

15 15/120 100/27 29.63 3.39 0.12 23/2 92.00 4.52 0.62 12/1 96.00 4.56 1.16 150/150

16 10/138 23/10 31.74 3.46 0.25 4/4 13.80 2.62 0.61 1/0∗ 27.60 3.32 3.11 38/152

Source: Zhou Xuyu (1999). Postgraduate Dissertation of Sun Yat-Sen University of Medical Science.

ca: Case; co: Control.
∗: The data of the included study contain extreme value, zero.
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are excluded, and it may potentially lead to biasness. Furthermore, classic

approaches neglect the uncertainly of the parameter of interest, especially

the parameter for inter-study variance. The Bayesian approach based on

random-effects model is flexible. Here, Gibbs sampling is adopted via the

WinBUGS software to obtain pooled estimate of parameters by directly

fitting three logistic models using the data available in 16 studies.

Arrangement of data and table notation for each individual study is

shown in Table 10.

Table 10. Arrangement of data and table notation for 16 case-control studies.

Non Infection HBV Infection HCV Infection Dual Infection Total

Case ai ci ei gi mi

Control bi di fi hi ni

For each individual study, the odds ratio (OR), logarithm of OR, and

variance for logarithm of OR, are given using following formula (here 00 de-

note non-infection, 10 denote HBV infection, 01 denote HCV infection, and

11 denote dual infection). The results are also shown in Table 9.

OR
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Three logistic models are introduced for HBV, HCV, and dual infection.

Take HBV infection for example. Let r

00

i

and r

10

i

denote the number of

infection in the control and case group in ith study, arising from n

00

i

and

n

10

i

subjects which are assumed to have probability of p

00

i

and p

10

i

of HBV

infection, respectively. β

10

i

is defined as

β

10

i

= logit(p10

i

)− logit(p00

i

) = ln

(

p

10

i

1− p

10

i

)

− ln

(

p

00

i

1− p

00

i

)

.

β

10

i

is the true effect for ith individual study, that is, posterior mean of Y

10

i

.

The prior distribution of β

10

i

is N(µ10
, (σ10

µ

)2). µ

10 is the pooled effect size

of interest, and (τ10)2 is the variance of inter-study. Thus, the full model

can be written as

HBV infection HCV infection Dual infection

r

00

i

∼ B(p00

i

, n

00

i

) r

00

i
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i
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OR10 µ10 τ10

Σ µβ10[i]

n10[i] p10[i]

r10[i]

α[i]

n00[i] p00[i]

r00[i]

for (i IN 1:Num)

Fig. 2. Directed graphic model for HBV infection in WinBUGS.
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∼ N(µ10
, (τ10)2) β

01

i

∼ N(µ01
, (τ01)2) β
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i

∼ N(µ11
, (τ11)2) .

Still take HBV infection for example. The prior distribution of hy-

perparameters µ

10 and (τ10)2 are “non-informative”, µ

10 ∼ N(0.0, 106),

(σ10

µ

)2 ∼ IG(10−3
, 10−3). The prior of parameter α

10

i

are also “non-

informative”, α

10

i

∼ N(0, 10−5).

In the WinBUGS, we can describe above models intuitively by the way

of construction of directed graphical models, in which nodes in the graph

represent the data and parameters of the model (See Fig. 2).

From the conditional independence conditions expressed in the graph,

the joint distribution takes the form (ignoring n

00

i

, n

10

i

, and using the fact

that p

00

i

, p

10

i

can be expressed in terms of α
i
, β

10

i

)

p(r00
, r

10
, µ

10
, τ

10
, β, α) ∝ Π

i
[p(r00

i

|α
i
, β

10

i

)p(r01

i

|α
i
, β

10

i

)

× p(α
i
)p(β00

i

|µ10
, τ

10)p(µ10)p(τ10) .

First 5000 iterations were used as a “burn in” in order to reduce the

effect of initial value of parameters. Then running another 20,000 iterations

and the summary statistics of posterior distribution for parameters were

estimated. The main results of Gibbs sampling were seen in Table 11, which

contains the means, standard deviations, and 95% confidence intervals from
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Table 11. The results of Gibbs sampling for HBV, HCV and dual infection.

Status of Infection Parameter Mean SD 95%CI

HBV Infection µ
10 2.862 0.250 2.371–3.360

OR10 18.050 4.668 10.710–28.800

τ10 0.892 0.209 0.565–1.380

HCV Infection µ
01 2.489 0.410 1.663–3.297

OR
01 13.110 5.712 5.276–27.020

τ01 1.344 0.359 0.785–2.191

Dual Infection µ11 4.489 0.308 3.901–5.120

OR
11 93.540 31.530 49.440–167.300

µ11 0.487 0.366 0.033–1.320

�� 1 � 93.54� 3�.53� 49.44� ∼�67.3��

τ11 �.487 �.366 �.�33 ∼�.32�

The t�ace, ke�nel dens�ty and a�t�c���elat��n pl�ts ��� s���a�y e��ects, µ10 , µ01 , µ11 , �n
W�nBUGS we�e p�esented �n F�g��e 3, 4 and 5. The dyna��c t�aces sh�wed that the G�bbs
sa�pl�ng tends t� balance, the pl�ts �� ke�nel dens�ty est��ate a�e s���th, and the a�t�c���elat��n
�� sa�pl�ng �s l�w.

F�g��e 3 The t�ace �� G�bbs sa�pl�ng ��� pa�a�ete�s µ10 �µ01 �µ11

F�g��e 4 The ke�nel dens�ty �� G�bbs sa�pl�ng ��� pa�a�ete�s µ10 �µ01 �µ11

F�g��e 5 The a�t�c���elat��n �� G�bbs sa�pl�ng ��� pa�a�ete�s µ10 �µ01 �µ11

F�� c��pa��s�n, the class�cal De�S���n�an-La��d �and��-e��ects ��del �s �sed t� est��ate
the p��led e��ect. F�� th�se st�d�es �n wh�ch the n��be� �� d�al �n�ect��n �n c�nt��l g���p �s ze��,
�.5 �s s�bst�t�ted �n ��de� t� calc�late the �� . Res�lts a�e sh�wn �n Table �2.

Table �2 The �es�lts �� �eta-analys�s �s�ng De�S���n�an-La��d �eth�d

Pa�a�ete� HBV �n�ect��n HCV �n�ect��n D�al �n�ect��n

µ 2.8�5 2.423 4.�26

95%C� 2.359~3.27� �.639~3.2�8 3.553~4.5��

τ2 �.7�� �.8�6 �

The �es�lts �n table �� and �2 sh�w that, ��� HBV, HCV �n�ect��n, p��nt est��at��ns and 95%
c�n��dence �nte�vals �� s���a�y e��ects ��� pa�a�ete�s µ10 and µ01 ���� G�bbs sa�pl�ng and
�and��-e��ect ��del a�e s���la�. B�t ��� d�al �n�ect��n, the n��be� �� d�al �n�ect��n �n c�nt��l
g���p �s q��te s�all �n ��st �� �6 case-c�nt��l st�d�es, and ���� �� the� even c�nta�n ze��. The

Fig. 3. The trace of Gibbs sampling for parameters µ10, µ01 , µ11.
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τ�� ����� ����� ����� ∼�����
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Fig. 4. The kernel density of Gibbs sampling for parameters µ
10, µ

01, µ
11 .
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Fig. 5. The autocorrelation of Gibbs sampling for parameters µ
10 , µ

01 , µ
11.

the posterior distribution of parameters, µ

10, τ

2 and OR. WinBUGS also

gives the posterior distributions of “true effect” for each study, β

10

i

, β

01

i

and β

11

i

.

The trace, kernel density and autocorrelation plots for summary effects,

µ

10, µ

01, µ

11, in WinBUGS were presented in Figs. 3–5. The dynamic traces
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Table 12. The results of meta-analysis using DerSimonian-Laird method.

Parameter HBV Infection HCV Infection Dual Infection

µ 2.815 2.423 4.026

95%CI 2.359 ∼ 3.270 1.639 ∼ 3.208 3.553 ∼ 4.500

τ2 0.711 1.816 0

showed that the Gibbs sampling tends to balance, the plots of kernel density

estimate are smooth, and the autocorrelation of sampling is low.

For comparison, the classical DerSimonian-Laird random-effects model

is used to estimate the pooled effect. For those studies in which the number

of dual infection in control group is zero, 0.5 is substituted in order to

calculate the OR. Results are shown in Table 12.

The results in Table 11 and 12 show that, for HBV, HCV infection, point

estimations and 95% confidence intervals of summary effects for parameters

µ

10 and µ

01 from Gibbs sampling and classical method are similar. But

for dual infection, the number of dual infection in control group is quite

small in most of 16 case-control studies, and four of them even contain

zero. The pooled estimation of µ

11 is 4.489 (95%CI is 3.901–5.120) via

Gibbs sampling, and µ

11 is 4.026 (95%CI is 3.553–4.500) using classical

method, so the difference is relatively large. Moreover, the pooled estimation

of between-study variance, (σ11
µ

)2, is zero, when using DerSimonian-Larid

method, which means the between-study variance could not be identified

for dual infection and result in bias obviously.

In fact, when the data in meta-analysis contain many extreme values,

the pooled estimation of true effect and variance is unreliable using classic

methods, which are basically based on approximately normalization with

large samples.

Gibbs sampling, almost the standard tool for Bayesian method, can be

flexibly deal with a large of complex models that the classical approaches

may difficult handle. The key of Gibbs sampling is to obtain the joint poste-

rior distribution from the full conditional distributions of parameters using

MCMC method, given the prior distribution and likelihood function. When

the full conditional distribution is not given in a close form, Metropolis-

Hastings method may be adopted.

Gibbs sampling can be effectively implemented using WinBUGS soft-

ware, as demonstrated in the example. Furthermore, one can quite easily

adjust for specific covariance that may influence the treatment effect by
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fitting a new model under full Bayesian framework in WinBUGS. For the

choice of prior distribution, student-t distribution as a population prior may

be reasonable and proper in some situations.

4. Meta-analysis of Diagnostic Tests

Studies of the diagnostic accuracy of a test conducted at different centers

often produce estimates of the sensitivity and specificity of a test that vary

greatly. These differences may be due to random sampling variation and

differences in the cutoff points of diagnostic test. In order to get summary

results of diagnostic tests for different centers, meta-analysis of diagnostic

tests is necessary.

The steps in conducting a meta-analysis of diagnostic tests are as

follows:

(i) Determine the objective and scope of meta-analysis

In order to get the diagnostic accuracy, we must determine the test of

interest, the disease of interest and reference standard by which it is

measured, and the clinical question and context.

(ii) Retrieve the relevant literatures and judge the validity of the literatures

Extract and sort data of primary studies, and assess the eligibility and

the quality of retrieved studies for inclusion in the analysis by two

or more reader. Analyze the situations that come from different pri-

mary studies and get differences of diagnostic accuracy. The situations

include as follows: If the reference standard is acceptable as a good re-

presentation of the true presence or absence of the disease of interest;

if between the test and the reference standard are read independently

each other; whether verification by the reference standard is done for

all patients who had the test or a stratified random sample of them; if

the design of primary studies is correct; how much the cutoff point is;

whether the prevalence of population who accept the test is similar to

etc.24–26 The first author should consider the results from all readers

overall.

(iii) Estimation of a summary diagnostic accuracy of a test

There are several statistical methods to calculate a summary diag-

nostic accuracy of a test. In this section, we will introduce summary

receiver operating characteristic (SROC for short). In the last part of

this section, we will introduce briefly the other methods to calculate a

summary diagnostic accuracy of a test.
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specificity separately results in the summary characteristics that do not belong to the test.
The mathematical reason for this difficulty is because of the non-linear relationship between

sensitivity and specificity. Any transformation that reasonably related 1-specificity in a linear form
to sensitivity will help to simplify the meta-analysis of diagnostic tests. One of these approaches is
the SROC.

 Figure 6 Mean sensitivity and specificity cannot summarize results of diagnostic test in meta analysis

7.4.1 SROC analysis
In order to evaluate the diagnostic accuracy of a test, at first we must be aware of the true presence
or absence of the disease of interest. The standard which identifies an individual as disease (case)
or non-disease (control) is the reference standard or golden standard. Golden standards which are
used in medical research include biopsy, autopsy, surgery exploration, follow-up and so on.
Although a golden standard need not be perfect, it should be more credible than the diagnostic test
of interest and it should be independent with the diagnostic test. For the individuals which are
determined case or control by golden standard, the results which are determined by a diagnostic
test are labeled as positive or negative respectively. The data can be presented as the form of
fourfold table. Among them there are two true results, that is, case is diagnosed as positive (true
positive, TP) and control is diagnosed as negative (true negative, TN); There are two false results,
that is, case is diagnosed as negative (false negative, FN ) and control is diagnosed as positive
(false positive, FP ) (see Table 14).

Table 14     a diagnostic test results for 2×2 table

The true positive rate (TPR), i.e. sensitivity, is the probability that a test result is positive in
patients with disease of interest, namely:

)( caaTPR +=                           (49)

)()1( cacTPR +=−  is called false negative rate.
The false positive rate (FPR) which equals to (1-specificity), is the probability that a test

result is positive in patients without the disease of interest, namely:
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Fig. 6. Mean sensitivity and specificity cannot summarize results of diagnostic test in
meta analysis.

While the goal of meta-analysis for diagnostic tests and the correspond-

ing protocol development are similar in principals to the meta-analysis for

clinical trials mentioned earlier, there are some specific issues. First, the

performance of a diagnostic test is determined by the sensitivity and the

specificity. Meta-analysis for diagnostic tests has two simultaneous end-

points. Secondly, because of the need to balance both sensitivity and

specificity, the usual meta-analysis for rates, such as weighted average

of sensitivity and specificity separately will miss the essential non-linear

relationship between sensitivity and specificity. Figure 6 illustrates why

the average sensitivity and specificity will not work for meta-analysis of

a diagnostic test. Here, the six points are the observed means for sensi-

tivity and specificity from six studies. The solid line is the corresponding

ROC curve. When we take the average of sensitivity and specificity with-

out considering their inter-relationship, we have the average point in “+”,

which is not on the ROC curve.27–30 This figure demonstrated that using

traditional meta-analysis on sensitivity and specificity separately results in

the summary characteristics that do not belong to the test.
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The mathematical reason for this difficulty is because of the non-linear

relationship between sensitivity and specificity. Any transformation that

reasonably related 1-specificity in a linear form to sensitivity will help to

simplify the meta-analysis of diagnostic tests. One of these approaches is

the SROC.

4.1. SROC analysis

In order to evaluate the diagnostic accuracy of a test, at first we must be

aware of the true presence or absence of the disease of interest. The standard

which identifies an individual as disease (case) or non-disease (control) is

the reference standard or golden standard. Golden standards which are used

in medical research include biopsy, autopsy, surgery exploration, follow-up

and so on. Although a golden standard need not be perfect, it should be

more credible than the diagnostic test of interest and it should be inde-

pendent with the diagnostic test. For the individuals which are determined

case or control by golden standard, the results which are determined by a

diagnostic test are labeled as positive or negative respectively. The data can

be presented as the form of fourfold table. Among them there are two true

results, that is, case is diagnosed as positive (true positive, TP) and control

is diagnosed as negative (true negative, TN). There are two false results,

that is, case is diagnosed as negative (false negative, FN ) and control is

diagnosed as positive (false positive, FP) (see Table 13).

The true positive rate (TPR), i.e. sensitivity, is the probability that a

test result is positive in patients with disease of interest, namely:

TPR = a/(a + c) , (49)

(1− TPR) = c/(a + c) is called false negative rate.

The false positive rate (FPR) which equals to (1-specificity), is the

probability that a test result is positive in patients without the disease of

Table 13. A diagnostic test results for 2 × 2 table.

Test Results
Golden Standard

Total
Case Control

Positive a(TP) b(FP) a + b

Negative c(FN) d(TN) c + d

Total a + c b + d a + b + c + d = N
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interest, namely:

FPR = b/(b + d) , (50)

(1− FPR) = d/(b + d) is true negative rate or specificity.

4.1.1. SROC linear regression model

For TPR and FPR, we use logit translation, namely:

logit(TPR) = ln[TPR/(1− TPR)] , (51)

logit(FPR) = ln[FPR/(1− FPR)] , (52)

let

D = logit(TPR)− logit(EPR) , (53)

S = logit(TPR) + logit(FPR) . (54)

Through the formula (53), we can get:

D = ln
TPR/(1− TPR)

FPR/(1− FPR)

= ln
true positive rate× false negative rate

false positive rate× true negative rate
= ln OR . (55)

Through the formula (54), we can get:

S = ln
TPR× FPR

(1− TPR)(1− FPR)

=
true positive rate× false positive rate

true negative rate× false negative rate
. (56)

Let D be dependent variable and S be independent variable. In order

to make SROC curve into a linear in (S, D) plane, we establish an SROC

linear regression model as:

D̂ = A + B × S , (57)

where D is a log odds ratio [see formula (55)], representing the odds of a

positive test result among people with the disease relative to the odds of a

positive test result among people without the disease. D value can reflect

the distinguishing ability of a diagnostic test. S is a measure of threshold

for classifying a test as positive, which has a value of 0 when a sensitivity

equals specificity [see formula (56)]. It becomes positive, i.e. S > 0, when
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a threshold is used that increases sensitivity (and decreases specificity)

and becomes negative, i.e. S > 0, when a threshold is used that decreases

sensitivity (and increases specificity). A is the intercept of the linear model

and a log odds ratio when sensitivity equals specificity (S = 0). B is the

regression coefficient and examines the extent to which the odds ratio

(D) is dependent on the threshold (S) used. If the regression coefficient

(B) is near zero and not statistically significant, test accuracy for each

primary study can be summarized by a common odds ratio given by the

intercept A.

4.1.2. Solving the parameter of SROC linear regression model

Unweighted least squares linear regression, weighted least squares linear

regression, and robust method can be used to solve the parameters of SROC

linear regression model (57).

4.1.2.1. Conventional least squares methods

This method can be introduced in a general statistical textbook. The

parameter A and B are solved by making minimum of the square sum of

the difference between observed value and fitted value (i.e. residual). The

disadvantage of the method is not paying more attention to larger study, it

does not consider the sample size of primary studies.

4.1.2.2. Weighted least squares method

In order to give more weight to studies of larger sample size, weighted least

squares method can be used, weighting each observation using the reciprocal

of the variance of log odds ratio (ln OR). The parameter A and B are solved

by making minimum of the square sum of weighted residual. Let a, b, c,

and d be the number of true positive, false positive, false negative, and true

negative respectively (see Table 13). The weight can be calculated by

W = [var(D)]−1 = (1/a + 1/b + 1/c + 1/d)−1
. (58)

To deal with the 0 of denominator, if a cell of cross-classification of test

and golden standard value is 0 among a, b, c, d, we add 0.5 to each cell of

the primary study. The observation values of the study become (a + 0.5),

(b + 0.5), (c + 0.5), and (d + 0.5).

Weighted method is inappropriate if one assumes that individual pri-

mary studies are all measuring the same underlying test accuracy. So,



June 23, 2003 10:40 WSPC/Advanced Medical Statistics chap07

284 X. Zhou et al.

Moses, Shapiro and Littenberg suggested a robust modeling technique of

SROC in 1993.25

4.1.2.3. Robust method

D plotted against S, coordinate points (S, D) of primary studies are plotted.

According to the value of S value, we order the scatters (S, D) pairs and

divide the points into 3 approximately equal groups. The total of studies

divide 3 and round it, we can get the number of scatter points for left or

right side. For example, 10 scatter points are divided, left or right side is

round (10/3) = 3 respectively. Find the medians of S and D among the

left and right side respectively and label them. Link the labeled scatter point

into a line. The slope of the line is regression coefficient B. The intercept

A is derived by positioning the line so that half of the points lie above and

half below it. Let (S1, D1) and (S2, D2) represent two points which are on

the line and far from each other (for example, the two median points of S

and D among left or right side respectively). Using the follow formula, we

can calculate the regression parameters A and B.

A =
D1S2 −D2S1

S2 − S1

, B =
D2 −D1

S2 − S1

. (59)

Solveing the parameter of SROC curve using robust method see Fig. 7.

This figure is plotted using the S and D in Table 14. The regression coeffi-

cient of the line is 0.0011. The line parallel approximately the abscissa.
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Fig. 7. Solving the parameter of SROC curve using robust.
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Table 14. The data of Pap test from 59 primary studies.

Studies TP FP FN TN Sensitivity 1-specificity Weight

i a b c d TPR FPR W D S

1 8 3 23 84 0.258 0.034 1.947 2.276 −4.388

2 31 3 43 14 0.419 0.176 2.173 1.213 −1.868

3 70 12 121 25 0.66 0.324 6.855 0.187 −1.281

4 65 10 6 6 0.915 0.625 2.229 1.872 2.893

5 20 3 19 4 0.513 0.429 1.458 0.339 −0.236

6 35 92 20 156 0.636 0.371 10.433 1.088 0.032

7 39 8 111 270 0.260 0.029 6.122 2.473 −4.565

8 567 117 140 157 0.802 0.427 41.976 1.693 1.105

9 25 37 11 18 0.694 0.673 4.684 0.100 1.542

10 38 28 17 37 0.691 0.431 6.762 1.083 0.526

11 45 35 15 48 0.750 0.422 7.231 1.414 0.783

12 71 87 10 306 0.877 0.221 7.761 3.218 0.702

13 4.5 0.5 36.5 5.5 0.110 0.083 0.411 0.305 −4.491

14 2 2 3 21 0.400 0.087 0.724 1.946 −2.757

15 5 9 3 182 0.625 0.047 1.539 3.518 −2.496

16 38 21 7 62 0.844 0.253 4.293 2.774 0.609

17 4 2 16 31 0.200 0.061 1.184 1.355 −4.127

18 87 13 12 9 0.879 0.591 3.535 1.613 2.349

19 15 3 65 15 0.188 0.167 2.074 0.143 −3.076

20 41 1 61 29 0.402 0.033 0.930 2.970 −3.765

21 76 12 11 12 0.874 0.500 3.694 1.933 1.933

22 10 4 48 174 0.172 0.022 2.655 2.204 −5.341

23 28 11 28 77 0.500 0.125 5.704 1.946 −1.946

24 3.5 0.5 5.5 1.5 0.389 0.250 0.319 0.647 −1.551

25 79 26 13 182 0.859 0.125 7.489 3.750 −0.141

26 61 20 27 35 0.693 0.364 7.576 1.375 0.255

27 62 20 16 49 0.795 0.290 6.710 2.251 0.458

28 284 31 68 68 0.807 0.313 15.340 2.215 0.644

29 66 25 20 44 0.767 0.362 7.820 1.759 0.629

30 40 43 12 47 0.769 0.478 6.542 1.293 1.115

31 11 1 1 2 0.917 0.333 0.386 3.091 1.705

32 23 50 10 44 0.697 0.532 5.370 0.705 0.961

33 65 13 42 13 0.607 0.500 5.180 0.437 0.437

34 1269 928 264 1084 0.828 0.461 152.068 1.725 1.415

35 223 22 74 83 0.751 0.210 13.245 2.431 −0.225

36 154 30 20 237 0.885 0.112 10.633 4.108 −0.026

37 6 2 12 81 0.333 0.024 1.312 3.008 −4.394

38 7 4 3 4 0.700 0.500 1.024 0.847 0.847

39 12 5 11 60 0.522 0.077 2.558 2.572 −2.398

40 348 41 212 103 0.621 0.285 23.987 1.417 −0.426
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Table 14. Continued.

Studies TP FP FN TN Sensitivity 1-specificity Weight

i a b c d TPR FPR W D S

41 8 4 11 34 0.421 0.105 2.019 1.822 −2.459

42 12.5 2.5 6.5 0.5 0.658 0.833 0.380 −0.956 2.263

43 95 9 2 1 0.979 0.900 0.617 1.664 6.058

44 40 18 20 19 0.667 0.486 5.459 0.747 0.639

45 71 13 20 18 0.780 0.419 5.087 1.592 0.942

46 1204 186 455 241 0.726 0.436 79.655 1.232 0.714

47 6 20 51 27 0.105 0.426 3.659 −1.840 −2.440

48 35 9 12 12 0.745 0.429 3.264 1.358 0.783

49 10 31 5 32 0.667 0.492 2.751 0.725 0.661

50 3 5 3 15 0.500 0.250 1.071 1.099 −1.099

51 118 40 44 183 0.728 0.179 16.216 2.507 −0.534

52 13 3 82 17 0.137 0.150 2.078 −0.107 −3.576

53 38 14 13 62 0.745 0.184 5.241 2.561 −0.415

54 14 25 67 291 0.173 0.079 7.705 0.889 −4.020

55 12 14 6 12 0.667 0.538 2.471 0.539 0.847

56 238 52 2 16 0.992 0.765 1.707 3.600 5.958

57 111 44 20 39 0.847 0.530 9.313 1.593 1.834

58 491 165 250 701 0.663 0.191 73.944 2.122 −0.772

59 48 16 38 31 0.558 0.340 7.047 0.895 −0.428

4.1.3. Establishing SROC curve regression model

Both regression parameters A and B are solved using above methods. We

can establish SROC curve regression model as follow:

TPR =

[

1 + e

−A/(1−B)

(

1− FPR

FPR

)(1+B)/(1−B)
]−1

, (60)

where TPR represents true positive rate and FPR represents false positive

rate.

For a general ROC analysis, the area under ROC cure is taken as the

diagnostic accuracy of a test. For SROC analysis, we can take TPR

∗ as

the diagnostic accuracy of a test. TPR

∗ is the sensitivity taken by SROC

curve of Eq. (60) and line equation

TPR + FPR = 1 . (61)

It reflects the extent to which SROC curve approach the top left corner.

The larger the value of TPR

∗ is, the higher the diagnostic accuracy of a

test is. TPR+FPR = 1 is a line through both the top left corner (1, 0) and
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the bottom right corner (0, 1). For the line, sensitivity equals specificity,

namely S = 0.

Using S = 0 and formula (54), we have

S = logit(TPR) + logit(FPR) = 0

or

logit FPR = −logit TPR . (62)

Substituting formula (62) into formula (53), we have

D = logit(TPR)− logit(FPR) = 2 logit(TPR) = A + B · S = A ,

and

logit(TPR) = A/2 , (63)

and

TPR = (1 + e

−A/2)−1
. (64)

In order not to be confused with general TPR, we take the diagnostic

accuracy of a test of SROC curve as

TPR

∗ = (1 + e

−A/2)−1
.

Its standard error can be calculated by

SE(TPR

∗) =
SE(Â)

8[cosh(A/4)]2
, (65)

where SE(Â) is the standard error of the intercept A of linear regression

model. Cosh(.) is the hyperbolic cosine function.

To compare the diagnostic accuracy between 2 independent groups, if

the numbers of the primary studies is large enough (more than 10), we can

use Z statistic, namely

Z =
TPR

∗
1
− TPR

∗
2

√

SE

2(TPR

∗
1
) + SE

2(TPR

∗
2
)

, (66)

where Z is a quantile from the standard normal distribution. Both TPR

∗
1

and TPR

∗
2 are the diagnostic accuracy of compared SROC curves. Either

SE(TPR

∗
1) or SE(TPR

∗
2) is the standard error of TPR

∗
1 or TPR

∗
2,

respectively.
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If the regression coefficient of a SROC curve has B = 0, for the FPR

of each primary study, the confidence interval of the TPR can be taken as:
(

[

1 + e

−AL

(

1− FPR

FPR

)]−1

,

[

1 + e

−AU

(

1− FPR

FPR

)]−1
)

, (67)

where A
L

and A
U

are the lower and upper confidence interval of the

intercept A respectively.

4.1.4. Analysis using an example

The Pap test involves the collection, preparation, and examination of ex-

foliated cervical cells. It is quick, noninvasive, and relatively inexpensive.

These properties make the test appealing for cervical precancer. Currently

some doctors use it as a screening test and as a follow-up test for women.

Because the accuracy of the test is affected by a doctor understanding the

natural history of cervical cancer, morbidity of cervical cancer, the number

of sampling of cell, the diagnostic accuracy of test has been reported wide

variation. The value of the sensitivity and the specificity ranges from 11%

to 99% and from 14% to 97% respectively. The method of SROC analysis

is illustrated using the data of 59 primary studies reported by Fahey, Irwig

and Macaskill.26

Example 5. In the Data of Fahey, Irwigand and Macaskil, the number

of true positive (TP, a), false positive (FP, b), false negative (FN, c),

true negative (TN, d) is not presented, but the number of with disease, the

number of without disease, sensitivity, (1-specificity) were given. For the

method need them, according to the known data we calculate a, b, c, d

(see Table 14). Because there were 0s in b of 13th and 24th and d of 42nd

of primary studies, to avoid 0 of denominator, 0.5 was added to a, b, c, d

of the 3 studies (see Table 14).

In the 1st study, the weight was calculated using formula (58),

W1 =

(

1

8
+

1

3
+

1

23
+

1

84

)−1

= 1.947 .

The true positive rate is calculated by formula (49), i.e. TPR = 8/(8+23) =

0.2581. The false positive rate is calculated by formula (50), i.e. FPR =

3/(3 + 84) = 0.0345. D and S are calculated by formula (55) and (56) re-

spectively, i.e. D = ln 0.2581(1−0.0345)

0.0345(1−0.2581)
= 2.276, S = ln 0.2581×0.0345

(1−0.2581)(1−0.0345)
=

−4.388 and so on.
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Using above weight, the weighted least square linear regression model

is established taking D as dependent variable, S as independent variable.

The residual standard deviation of the weighted model is 2.430. Intercept

is A = 1.720 and its standard error is SE(A) = 0.100. The result of t test is

t = 17.227 and P = 0.001. Using A ± t0.05,58SE(A), the 95% confidence

interval of A is 1.520–1.920. The results suggest that the difference between

A and 0 has statistical significance under 0.05 test level.

The regression coefficient is B = −0.015 and its standard error is

SE(B) = 0.070. The result of t test is t = −0.215, P = 0.830. The results

suggest that the difference between B and 0 has no statistical significance

under 0.05 test level.

The odds ratio is exp(A) = exp(1.720) = 5.585. It suggests the odds of

positive test in abnormal group is larger than in the normal group.

According to formula (64) and (65), we can get the diagnostic accuracy

of the test TPR

∗ = 0.703 is and its standard error is SE(TPR

∗) = 0.010.

The general least square linear regression model is established taking D

as dependent variable and S as independent variable. The residual standard

deviation of the model is 1.1144. Intercept is A = 1.590 and its standard

error is SE(A) = 0.151. The result of t test is t = 10.522 and P = 0.001.

Using A ± t0.05,58SE(A), the 95% confidence interval of A is 1.288–1.892.

The results suggest that the difference between A and 0 has statistical

significance under 0.05 test level.

Regression coefficient is B = −0.020 and its standard error is SE(B) =

0.063. The result of t test is t = 0.319, P = 0.751. The results suggest that

the difference between B and 0 has no statistical significance under 0.05

test level.

The odds ratio is exp(A) = exp(1.590) = 4.904. It suggests the odds of

positive test in abnormal group is larger than in the normal group.

According to formula (64) and (65), we can get the diagnostic accuracy

of the test is TPR

∗ = 0.689 and its standard error is SE(TPR

∗) = 0.016.

D plotted against S, coordinate points (S, D) of 59 primary studies are

plotted. According to the value of S value, we order the scatters (S, D) pairs

and divide the points by 3 approximately equal groups. The 59 studies were

divided into 3 groups. The number of scatter points for left or right side is

round (59/3) = 20. The medians of S and D among left side are (S1, D1) =

(−2.916, 1.588) and among right side are (S2, D2) = (1.265, 1.593). The

intercept A and regression coefficient B are A = 1.5914 and B = 0.0011

respectively obtained by formula (59). So, the linear regression model is

D̂ = 1.5914 + 0.0011S .
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To make half the points lie above and half below the line, we need to

move the line up and down. In this situation, the regression parameter is

0.0011 constantly and the intercept A is derived by positioning the line. In

fact, this equals that the number of positive sign equals negative sign of

residual which is from the difference between observed value and predicted

value. Through changed the A value many times, we got the line which

scatter points lie above equals below approximately and the intercept is

A = 1.5914, the odds ratio is exp(A) = exp(1.5914) = 4.9106, and the

diagnostic accuracy is TPR

∗ = 0.6891.

The results obtained from the weighted linear regression, general linear

regression, robust regression are presented in Table 15.

Table 15. The diagnostic accuracy and related result from 3 methods.

Methods A SE(A) 95%CL B SE(B) 95%CL TPR

∗

SE Odds

(TPR

∗
) Ratio

Weighted 1.720 0.100 1.520 ∼ 1.920 −0.015 0.070 −0.155 ∼ 0.125 0.703 0.010 5.585

Unweighted 1.590 0.151 1.288 ∼ 1.892 0.020 0.063 −1.241 ∼ 1.281 0.689 0.016 4.904

Robust 1.591 – – 0.001 – – 0.689 – 4.911

Substituting A, B of 3 methods into formula (60), we obtained the

SROC curves of weighted, unweighted and robust method respectively.

They are as follows:

TPRweighted =

[

1 + e

−1.694

(

1− FPR

FPR

)0.970
]−1

,

TPRunweighted =

[

1 + e

−1.623

(

1− FPR

FPR

)1.041
]−1

,

TPRrobust =

[

1 + e

−1.593

(

1− FPR

FPR

)1.002
]−1

.

To obtain the smooth SROC curve, let FPR from 0.002 to 0.998 (can

also setup other value) and increase in arithmetic series 0.002. According to

the above SROC curve equations TPR is calculated. 499 SROC coordinate

points were obtained. Using the above coordinate points obtained and point

(0, 0), (1, 1) we can plot the smooth SROC curve. Figure 8 presents smooth

SROC curve and SROC coordinate points of the 59 primary studies from

Table 14.
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Fig. 8. SROC curves of 3 methods and the scatter points of 59 primary studies.

From Fig. 8, it is suggested that the area under curve of weighted

method is larger. Of unweightd method and of robust method are simi-

lar. These results are consistent with the diagnostic accuracy TPR

∗ and

odds ratio in Table 15.

If the association between weighted and unweighted method is ignored

and assuming TPR

∗ obtained by 2 methods is approximately normal

distribution. The formula (66) can be used to test the difference between

2 TPR

∗ s. The result of test is Z = 0.7132, P = 0.4757 for two-side test.

This suggests that the TPR

∗ difference between weighted and unweighted

method have not statistical significance.

4.1.5. The SAS code of solving SROC curves parameter

SAS code 1. SROC analysis of weighted, unweighted and robust method.31

Number SAS Code

01 OPTIONS LS=76 PS=MAX NODATE;

02 %LET N=59; /*the number of primary studies N= ***********/

03 %LET A ROB=1.5914; /* changed robust intercept A ROB= ***********/

04 DATA SROC; RETAIN I 0;
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SAS code 1. (Continued).

Number SAS Code

05 INPUT TP FN FP TN@@;

06 I+1; N RL=ROUND(&N/3);

07 W=1/ (1/TP+1/FN+1/FP+1/TN); TPR=TP/(TP+FN);FPR=FP/(FP+TN);

08 D=LOG(TPR/(1-TPR))-LOG(FPR/(1-FPR));

09 S=LOG(TPR/(1-TPR))+LOG(FPR/(1-FPR));

10 CARDS;

11 8 23 3 84 76 11 12 12 8 11 4 34

12 31 43 3 14 10 48 4 174 12.5 6.5 2.5 0.5

13 70 121 12 25 28 28 11 77 95 2 9 1

14 65 6 10 6 3.5 5.5 0.5 1.5 40 20 18 19

15 20 19 3 4 79 13 26 182 71 20 13 18

16 35 20 92 156 61 27 20 35 1204 455 186 241

17 39 111 8 270 62 16 20 49 6 51 20 27

18 567 140 117 157 284 68 31 68 35 12 9 12

19 25 11 37 18 66 20 25 44 10 5 31 32

20 38 17 28 37 40 12 43 47 3 3 5 15

21 45 15 35 48 11 1 1 2 118 44 40 183

22 71 10 87 306 23 10 50 44 13 82 3 17

23 4.5 36.5 0.5 5.5 65 42 13 13 38 13 14 62

24 2 3 2 21 1269 264 928 1084 14 67 25 291

25 5 3 9 182 223 74 22 83 12 6 14 12

26 38 7 21 62 154 20 30 237 238 2 52 16

27 4 16 2 31 6 12 2 81 111 20 44 39

28 87 12 13 9 7 3 4 4 491 250 165 701

29 15 65 3 15 12 11 5 60 48 38 16 31

30 41 61 1 29 348 212 41 103

31 ;

32 TITLE ′to calculate sensitivity, 1-specificity, weight, D, S using

33 TP,FN,FP,TN ′ ;

34 PROC PRINT;RUN;

35 TITLE ′weighted regression model?W=1/(VAR(LN(OR)))′;

36 PROC REG DATA=SROC OUTEST=W OUTSEB SIMPLE;

37 MODEL D=S; WEIGHT W;

38 DATA W1; SET W;

39 PROC TRANSPOSE DATA=W PREFIX=AW OUT=WW;

40 DATA XX1; SET WW; OR SROC=EXP(AW1);

41 A L=AW1-AW2*TINV(1-0.05/2,&N-1); A U=AW1+AW2*TINV(1-0.05/2,&N-1);

42 TPR S W=1/(1+EXP(-AW1/2)); SE TPR W=AW2/(8*(COSH(AW1/4))**2);

43 IF NAME ^=′INTERCEP′ THEN DO; A L=.; A U=.;

44 OR SROC=.; TPR S W=.; SE TPR W=.; END;

45 DATA XXX1; SET XX1; IF NAME ^=′INTERCEP′ THEN DELETE; PROC PRINT;

46 PROC REG DATA=SROC OUTEST=NW OUTSEB SIMPLE;

47 MODEL D=S;

48 TITLE ′******unweighted general linear regression model *********′;

49 DATA NW1; SET NW;

50 PROC TRANSPOSE DATA=NW PREFIX=A OUT=WW;
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SAS code 1. (Continued).

Number SAS Code

51 DATA XX2 ; SET WW; OR SROC=EXP(A1);

52 A L=A1-A2*TINV(1-0.05/2,&N-1);A U=A1+A2*TINV(1-0.05/2,&N-1);

53 TPR STAR=1/(1+EXP(-A1/2)); SE TPR=A2/(8*(COSH(A1/4))**2);

54 IF NAME ^=′INTERCEP′ THEN DO; A L=.; A U=.;

55 OR SROC=.; TPR STAR=.; SE TPR=.; END;

56 DATA XXX2; SET XX2;IF NAME ^=′INTERCEP′ THEN DELETE; PROC PRINT;

57 DATA XXX; MERGE XXX1 XXX2;

58 KEEP TPR S W TPR STAR SE TPR W SE TPR Z SROC P SROC;

59 Z SROC=(TPR S W-TPR STAR)/(SE TPR W**2+SE TPR**2)**0.5;

60 P SROC=2*(1-PROBNORM(Z SROC)); PROC PRINT;

61 TITLE ′compare the TPR STAR between unweighted and weighted regression

62 model ′;

63 DATA SROCS; SET SROC;PROC SORT; BY S;

64 DATA BS1; KEEP II S D; SET SROCS;

65 II+1; IF II>N RL THEN DELETE ;

66 PROC UNIVARIATE DATA=BS1 NOPRINT; VAR S; OUTPUT OUT=A1 MEDIAN=S1;

67 PROC UNIVARIATE DATA=BS1 NOPRINT; VAR D; OUTPUT OUT=A2 MEDIAN=D1;

68 DATA BS2; KEEP II S D; SET SROCS;

69 II+1; IF II<=&N-N RL THEN DELETE ;

70 PROC UNIVARIATE DATA=BS2 NOPRINT; VAR S; OUTPUT OUT=A3 MEDIAN=S2;

71 PROC UNIVARIATE DATA=BS2 NOPRINT; VAR D; OUTPUT OUT=A4 MEDIAN=D2;

72 DATA AA; MERGE A1 A2 A3 A4;

73 A ROBUST=(D1*S2- D2*S1)/(S2-S1); B ROBUST=(D2-D1)/(S2-S1);

74 OR ROB=EXP(&A ROB); TPR ROB=1/(1+EXP(-&A ROB/2)); PROC PRINT;

75 TITLE ′*****ROBUST REGRESSION METHOD*******************′;

76 DATA AAA; KEEP B ROBUST A ROBUST; SET AA;

77 DO J=1 TO &N; B ROBUST=B ROBUST; A ROBUST=A ROBUST; OUTPUT;END;

78 DATA AAAA; KEEP A ROBUST B ROBUST COUNT0-COUNT2;

79 MERGE SROC AAA;

80 Y HAT=&A ROB+B ROBUST*S;

81 SIGN=D-Y HAT;

82 IF SIGN>0 THEN COUNT1+1; IF SIGN=0 THEN COUNT0+1;

IF SIGN<0 THEN COUNT2+1;

83 TITLE ′COUNT1 and COUNT2 are the number of scatter lie above or below

respectively, COUNT0 is the number of scatter on the line′;

PROC PRINT; RUN;

SAS code 1 can solve the regression parameter A and B of SROC curve

in S, D plane using the above weighted method, unweighted method, and

robust method. The common odds ratio and TPR

∗ which reflect the diag-

nostic accuracy of the test are also calculated using the parameters obtained

above.

For similar data in Table 14, you need to change the number of primary

studies n in 02nd row of SAS code 1, and the number of true positive (TP),
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false negative (FN), false positive (FP), true negative (TN) from 11th to

30th row.

To obtain exactly the intercept of robust regression, according to the

request of precision of intercept of robust regression (e.g. decimal digits),

the value of 3rd row after “A ROB=” must be changed again and again

after running the SAS code. After each running, the number of scatter

points lies above line (COUNT1) and lies below line (COUNT2) must be

observed. If COUNT1 = COUNT2, running SAS is end, the intercept A is

the intercept of robust regression.

The file of SROC is obtained using the row from 04th to 33rd which

include the value of variables of TP, FN, FP, TN, sensitivity, 1-specificity,

weight, D and S. The parameter and related value of weighted regression

model are obtained through the rows from 34th to 44th. The parameter and

related value of unweighted regression model are obtained through the rows

from 45th to 55th. The result comparing the diagnostic accuracy TPR

∗ s

between weighted and unweighted methods is gained through the rows from

56th to 60th. The parameter and related value are obtained through the

rows from 61st to 83rd.

4.1.6. Other practical issues of SROC analysis

TPR

∗ in ROC analysis is often an important summary statistics for

meta-analysis. While it is useful, it may not always relevant clinically. For

example, if all previous studies had false positive rates less than 20%, while

the false positive rate of TPR

∗ is in 30%, TPR

∗ becomes irrelevant because

it is out of the clinical range of practical uses. In such a case, a backward

translation of mean D and mean S into ROC curve can provide a more

informative summary statistics. This summary point is simply expressed as

TPR =
exp{(S̄ + D̄)/2}

1 + exp{(S̄ + D̄)/2}

and

FPR =
exp{(S̄ − D̄)/2}

1 + exp{(S̄ − D̄)/2}
,

which is always on the SROC curve. Another relevant alternative summary

statistics for SROC is the area under the curve (AUC). Like we use AUC of a

ROC curve to compare diagnostic tests, the AUC of SROC does not depend

on the selected threshold that TPR

∗ used. It is particularly useful when

two SROC curves cross to each other. More useful is the conditional AUC
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when the upper limit of false positive rates is given. For example, we are

only interested in the performances of diagnostic tests when its specificity

is above 85%. This corresponds to the AUC of SROC in the section of FPR

being less than 15%.

One advantage of SROC is to relate non-linear relationship between

TPR and FPR to linear regression S and D. While formula (66) compares

two TPR

∗ points as an approach to compare two diagnostic tests, it did not

take advantage of linear relationship between S and D fully. Alternatives in-

clude the use of analysis of covariance in the regression step of S and D. By

adding an additional covariate X to indicate different diagnostic modalities,

linear modal theory can be used to test statistical significance of different

modalities. In addition, we can add other covariates, such as the year of

publication and the design of the studies, into the linear model to assess

the effects of other uncontrollable factors on the diagnostic utilities. When

meta-analysis includes multi-modality studies, i.e. among studies that one

patient being evaluated by several diagnostic techniques, a random-effects

model of individual study can be built into the linear model to control for

correlated results reported in these papers. Several examples of using these

generalized linear models can be found in literature.

In meta-analysis, if each individual accepts several diagnostic tests, in

order to dispel the correlation among several diagnostic tests, the random-

effect model can be established. Some researchers suggest using generalized

linear model to control the correlation.32–34

4.2. Other methods of estimating log odds ratio of

diagnostic test

Both Mantel-Haenszel method and exact-based logit method35 can be used

to calculate the log odds ratio of diagnostic test.

4.2.1. Mantel-Haenszel method

Assume there are h primary studies of diagnostic test and the symbol a
i
,

b
i
, c

i
, d

i
, and n

i
represent true positive, false positive, false negative, true

negative and the total number from ith study (i = 1, 2, . . . , h) respectively.

Adjusted odds ratios of Mantel-Haenszel method OR
MH

is expressed as:

OR
MH

=
h

∑

i=1

(

a
i
d

i

n
i

)

/

h

∑

i=1

(

b
i
c
i

n
i

)

. (68)
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Using the formula

X

2

MH

=

h

∑

i=1

(

a
i
d

i
− b

i
c
i

n
i

)2
/

h

∑

i=1

(

(a
i
+ b

i
)(c

i
+ d

i
)(a

i
+ c

i
)(b

i
+ d

i
)

(n
i
− 1)n2

i

)

(69)

performs the test of statistical significance. 100(1−α)% confidence interval

of the adjusted odds ratios of Mantel-Haenszel OR
MH

is
(

OR

1−U1−α/2/

√
X

2

MH

MH

, OR

1+U1−α/2/

√
X

2

MH

MH

)

. (70)

U1−α/2 is a quantile from the standard normal distribution under test level

α, U1−α/2 of 95% confidence interval is U1−α/2 = 1.96.

4.2.2. Exact-based logit confidence interval

The method was proposed by Woof in 1955, so it was named Woof method.

The odds ratio OR
L

can be expressed as:

OR
L

= exp

[(

h

∑

i=1

(w
i

ln OR
i
)

)/

h

∑

i=1

w
i

]

. (71)

The 100(1− α)% confidence interval is




OR
L

exp



−U1−α/2

/

√

√

√

√

h

∑

i=1

w
i





, OR
L

exp





U1−α/2

/

√

√

√

√

h

∑

i=1

w
i









,

(72)

where OR
i

is the odds ratio of ith study

w
i
= var(ln OR

L
))−1 = (1/a

i
+ 1/b

i
+ 1/c

i
+ 1/d

i
)−1

.

If there are 0 in any cell of a study, each cell of the study is added a small

value, e.g. 0.5.

To test if the odds ratio of the primary studies is homogeneity, the

Breslow-Day test of homogeneity can be used. The Breslow-Day statistic is

expressed as:

Q
BD

=

h

∑

i=1

[a
i
−E(a

i
|OR

MH
)]2/var(a

i
|OR

MH
) , (73)

where E and var represent expected value and variance respectively.

Statistic Q
BD

is an approximate chi-squared statistic with freedom degree

df = h− 1.
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SAS code 2. Calculated odds ratio using Mantel-Haenszel method and logit method.

Number SAS Code

1 DATA C; SET SROC;

2 A=1 ; B=1; F=TP;OUTPUT; A=1 ; B=2; F=FN;OUTPUT;

3 A=2 ; B=1; F=FP;OUTPUT; A=2 ; B=2; F=TN;OUTPUT;

4 TITLE ′CRUDE ODDS RATIO′;

5 PROC FREQ DATA=C ; WEIGHT F;

6 TABLES A*B/ALL RISKDIFF RELRISK NOPRINT;

7 TITLE ′MANTEL-HAENSZEL ODDS RATIO and LOGIT ODDS

8 RATIO′;

9 PROC FREQ DATA=C ; WEIGHT F;

9 TABLES I*A*B/ALL RISKDIFF RELRISK NOPRINT ;RUN;

4.2.3. An example

Use the file of SROC (data see Example 5) of the SAS code 1 from 01st to

31st and the SAS code 2, the odds ratio of the diagnostic test is estimated

by Mantel-Haenszel method and Exact-based logit method. In the SAS

code 2, the code of row from 1 to 3 is used to transform the SROC file

into the required data format. The code of row from 5 to 6 are used to

calculate the crude odds ratio. The code of row from 8 to 9 is used to

calculate the adjusted odds ratios of Mantel-Haenszel method and odds

ratio of exact-based logit method.

The FREQ procedure in the rows from 4 to 6 calculates the sum-

mary Mantel-Haenszel statistics of 59 studies. The results are χ

2

MH

=

2829.032, df = 1, P ≤ 0.001. The crude odds ratio of Mantel-Haenszel

method is 5.542, and 95% confidence interval is (5.203, 5.903). The

crude odds ratio of logit method is 5.542, and 95% confidence interval is

(5.193, 5.915).

The FREQ procedure in the rows from 7 to 9 calculates the summary

Mantel-Haenszel statistics of 59 studies. The results are χ

2

MH

= 2231.929,

df = 1, P ≤ 0.001. The adjusted odds ratio of Mantel-Haenszel method is

OR
MH

= 5.573, and 95% confidence interval is (5.189, 5.984). The adjusted

odds ratio of logit method is OR
L

= 5.557, 95% confidence interval is

(5.137, 6.010).

These results are similar to the odds ratio of weighted regression model.

Breslow-Day test of homogeneity is performed for the data. We have Q
BD

=

394.286, df = 58, P ≤ 0.001. These suggest the difference among 59 primary

studies have statistical significance.

The above results of analysis suggest that the diagnostic accuracy of

Pap test is similar with those obtained by several methods. TPR

∗ is about
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0.7, The odds ratio of positive diagnostic result is about 5. These suggest

that the test plays an important role in cervical precancer, but these results

suggest that the diagnostic accuracy of the test is not high.

The methods above assumed that the golden standard is perfect. If the

golden standard is imperfect, the diagnostic accuracy of the test must be

adjusted. Walter et al. proposed the method estimating the SROC curves

of test with imperfect reference standards in 1999.29

Although someone proposed the meta-analysis method of diagnostic test

using the area under curve (AUC), how to use both AUC and the data of

sensitivity and specificity need to be studied further.

5. Meta-analysis for Linkage Studies

Recently, linkage studies are rapidly becoming numerous. At the same time,

conflicting claims of linkage also sprout in genome wide scans. Serious

discussion has begun regarding how to control false positives or spurious

linkages. Meta-analysis can quantitatively synthesize results from multiple

independent studies into a pooled measure of the overall effect of genetic

linkage. But because there may exist too many differences between linkage

studies, such as different ascertainment of pedigrees, different disease defini-

tion, different genetic markers or different statistical techniques, a common

effect size is difficult to be found and extracted. And so the general meta-

analysis methods are difficult to be applied directly. We here introduce some

meta-analysis methods that are appropriate for linkage studies.

5.1. Meta-Analysis of P Values

5.1.1. Statistical method

Assume that there are m independent studies assessing linkage of a disease

or trait to a maker. Let P
i
denote the P value associated with the ith study

(i = 1, 2, . . . , n), then n independent P values can be combined into a single

test of significance.

X

2 = −2
n

∑

i=1

ln(P
i
) . (74)

If the null hypothesis is true, i.e. if there are no genes underlying the trait

near the marker locus, this quantity has a χ

2 distribution with two degrees

of freedom as proposed by Fisher in 1954. Alternatively, a weight may be
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assigned to each individual study indicating its importance. Assigning a

weight v
i
to the ith study, and form the product

P
w

= P

v1

1
P

v2

2
· · ·P vn

n

. (75)

The validity of the omnibus null hypothesis is tested using the cu-

mulative distribution of P
w
, Prob(P

w
≤ q) =

∑

n

k=1
(q1/vk )/a

k
, where

a
k

= Πn

i=1,i6=k

(v
k
−v

i
)/v

k
. A simple choice for the weight is v

k
= 1

nk

/

∑

i

1

ni

,

where n
i
is the number of sib-pairs used in the ith study (in sib-pair tests).36

One may assign a different level of importance to each individual study

based on the presumption that some designs are more powerful than others.

For example, if 1000 random sib-pairs are needed for a power of 80%, and

the same power could be achieved by using 40 ED sib-pairs or 200 affected

sib-pairs, then all three studies would have equal weights for importance,

although their sample size are considerably different.

If all studies we want to summarize have identical genotyped markers

and same linkage analysis method being used, then one can apply Fisher‘s

method to combine P value directly. Since in gene mapping studies, genetic

markers are used only as references to infer the location of the putative

disease gene at the chromosome or infer whether a disease gene is lo-

cated at a specific region of the genome, different studies may use different

genetic markers, although their objectives are same. Moreover, they may

use different linkage analysis method. If we want to synthesize this kind of

studies, we must firstly extract a single P value for the region from each

study. We will take the summarization of 4 practical studies concerning

linkage of BMI with markers in the human OB gene region as an example

illustrate some techniques in the following paragraph.

5.1.2. The extraction of P value

(i) For study with a single marker, no correction needs to be applied. For

example, Borecki et al.37 used only one marker in the area of the human

OB gene. This one marker was KELL, located at 7q33. Four hundred pairs

of sibling pairs were included and the Haseman-Elston procedure was used

to yield a p value of 4.8× 10−6. It could be used directly.

(ii) If a separate P value for each of several markers is reported in a chromo-

some region, we could convert each P value to a corresponding (standard

normal) Z-score by means of the inverse standard normal distribution

function Z = Φ−1(1 − P ). The correlation between any two of them is

equal to the correlation of corresponding IBD status between them. For
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example, the correlation between Z
i

and Z
j

is r
ij

= (1 − 2θ
ij

)2, where

θ denotes recombination fraction. θ
ij

can be determined according to the

distance between ith and jth markers. One centimorgan (cM) or 1 million

base pairs (bp) is approximately equal to θ of 0.01. We could use statistic

S
k

=
∑

k

i=1
Z

i
to summarize the information of all markers, the variance of

the sum is the sum of variances plus twice the sum of the covariances for

all component, that is var(S
k
) = k + 2

∑

i<j

r
ij

. So statistic T = Sk√
var(Sk)

distributed as standard normal, and it can be used to derive a single P

value for the study.

Example 6. Clement et al.38 evaluated linkage to BMI dichotomized as

“greater than 35” or “less than or equal to 35” with 8 markers ranging from

D7S651 to D7S509 using sib-pair method. A part of results are displayed

in Table 16.

Table 16. Proportion of alleles IBD in OB markers for concordant (obese-obese)
sib-pairs.

Marker n π̄ t P P ∗ Zi = Φ−1(1 − P ∗

i
)

D7S651 66 0.57 1.98 0.03 0.025970 1.943627

D7S692 59 0.52 0.68 NS 0.249605 0.675734

D7S677 46 0.49 −0.29 NS 0.386574 0.288260

D7S680 57 0.59 2.47 0.008 0.008292 2.395791

D7S514 53 0.59 2.44 0.009 0.009066 2.362904

D7S530 65 0.59 2.96 0.002 0.002155 2.854504

D7S640 57 0.55 0.99 NS 0.163216 0.981324

D7S509 56 0.54 1.01 NS 0.158459 1.00081

Total 12.50295

P is the P value reported in the original literature.

P ∗ is the P value recovered according to t value and degree of freedom

(n − 1).

The distances (cM) between every two adjacent markers in Table 16 are

13, 3, 7, 0, 2, 5, 5 respectively. We can get
∑

i<j

r
ij

= 16.3756, var(S
k
) =

8 + 2 × 16.3756 = 40.7512. The calculation of Z
i

is showed in Table 16.

Statistic T can be calculated as

T =
S

k

√

var(S
k
)

=
12.50295
√

40.7515
= 1.958585 , P = 0.0251 .

(iii) If a single P value was provided from a multipoint procedure, then

Lander-Kruglyak correction could be applied to get a corrected P value,
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P

∗ = 1− exp(−µ(T )) , (76)

where µ(T ) = [C + 2ρ GT

2]α(T ); T = Φ−1(1 − P ) is a standard normal

Z-score corresponding to cumulative probability 1−P ; C is the number of

chromosome; G is the genome length measured in Morgans; α(T ) = P is

the pointwise significance; ρ is the crossing over rate between the genotypes

being compared.

Example 7. Duggirala et al.39 examined the linkage of BMI to markers

spanning a 211 cM (D7S531 to D7S483) using a multipoint procedure, and

resulted in a combined P value of 0.003.

In this example, C = 1(one chromosome used for the study), ρ = 2 (for

sib-pair tests), α(T ) = 0.003, T = Φ−1(1− 0.003) = 2.747765,

µ(T ) = (1 + 2× 2× 2.11× 2.7477652)× 0.003 = 0.194171 ,

P

∗ = 0.1765 .

(iv) Sometimes researchers may use multiple cutoff points or multiple

criteria to define the affected or unaffected in one study. If the analysis

methods they have used are one-side sib-pair tests, the process of extracting

a single P value is similar to that of (ii). Notice that here the multiple

criteria of classification are concerned but not the multiple markers. The

estimation of correlation is different, for example, the correlation between

Z
i
and Z

j
is calculated as r

ij
=
√

min(ni,nj)

max(ni,nj)
, where n

i
, n

j
are the number

of sib-pairs having been used in ith and jth classification respectively.

Example 8. Reed et al.40 examined linkage of BMI to 8 markers con-

tained in and surrounding the interval D7S1873 through D7S1875 using

two methods (sib-pair analysis and TDT). Three cutoff points were used

to define obese and linkage analysis has been performed respectively. The

main results are displayed in Table 17 and 18.

If a study used a two-side TDT (Table 18), we could convert the chi-

squares to Z-scores by taking their square root, just like the column 6 in

Table 18. The correlation among the Z’s can again be estimated as the

square root of the proportion of subjects in a subset divided by the number

of subjects in the larger set, For example, the estimated correlation between

the Z-score in subjects with a BMI ≥ 40 and the Z-score for subjects with

a BMI ≥ 30 is
√

70/121 = 0.761. If there are m Z-scores, then statistic

Q = ZR

−1
Z

′ has a chi-square distribution with the degree of freedom equal
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Table 17. Mean proportion of the OB gene haplotypes (D7S1873-D7S1875) identical
by descent for obese-obese sib-pairs.

Obese Cutoff Pairs(n) Proportion of IBD t P Zi = Φ−1(1 − P ∗

i
)

≥ 30 213 0.51 ± 0.33 0.24 0.4038 0.243524

≥ 35 135 0.50 ± 0.35 0.03 0.4333 0.167979

≥ 40 59 0.60 ± 0.33 2.28 0.0132 2.220277

Total 2.63178

Proportion of IBD is expressed as mean±SD.

Table 18. Transmission disequilibrium of a haplotype (D7S504-D7S1875) flanking the
OB locus.

BMI of Sibling
1–5 Transmitted/

%Transmitted χ2

1
P Zi =

√

χ2

1Not Transmitted

≥ 30 71/50 58.7 3.64 0.056 1.907878

≥ 35 60/39 60.6 4.45 0.035 2.109502

≥ 40 46/24 65.7 6.91 0.009 2.628688

to m−1. Where Z = (Z1, Z2, . . . , Zm) and R is the correlation matrix. With

the data in Table 18, we get Z = (1.907878 2.109502 2.628688)

Q = ZR

−1
Z

′ = Z







1 0.904530 0.760600

0.904530 1 0.84875

0.760600 0.840875 1






Z

′ = 6.944753

P = 0.0310.

In Example 8, Reed combined the marker information into haplotypes

and conducted their analysis by looking at sharing of haplotypes rather

than alleles. This aspect of their analysis simplifies the extraction of a

single P value since significance is assessed only for IBD sharing at the

single haplotype rather than at each individual locus, so the P values need

not be corrected with Lander-Kruglyak method. With the data in Table 2,

we get
∑

i<j

r
ij

= 1.983509, var(S
k
) = 3 + 2 × 1.983509 = 6.967017. The

calculation of Z
i
are displayed in column 6 of Table 17. Then the statistic

T =
S

k

√

var(S
k
)

=
2.63178
√

6.967017
= 0.997071 , P = 0.1594 .

(v) If a study has performed more than one test with the same data, just like

Example 3, we still have two p values after combination, one from sib-pair
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test and one from TDT. If the correlation between these two tests could be

determined, then one could combine these into a single P value. However,

it is not immediately apparent about how to estimate this correlation.

Allison et al. (1998) propose several alternatives41: First, one could, on

some a priori grounds of preference, choose one test over another. For ex-

ample, one might argue that because all of the other studies are using a

sib-pair approach rather than TDT it would be more appropriate to com-

bine sib-pair data rather than the TDT data and be consistent with the

others. Second, one could multiply the lowest P value by two (the number

of test) as a form of Bonferroni correction. However, this is overly conser-

vative because it does not take the correlation between the two tests into

account. Third, one could estimate the correlation via simulation. Fourth,

one could conduct the overall meta-analysis with the results of each test.

The results of meta-analysis for the above four studies are displayed in

the last row of 4th and 5th columns in Table 4. When using Reed et al.40

sib-pair test result, the overall P = 4.9047× 10−6 (d.f. = 8); when using

TDT result, the overall P = 1.1999 × 10−6 (d.f = 8). Besides these, we

have conducted sensitivity analysis also in this example, the sensitivity

analysis means that each study result was removed from the analysis, and

the chi-square statistic with 6 d.f. (from the remaining study results) was

computed. The corresponding P values are given in first 5 rows of 4th and

5th columns in Table 19. This table shows that Borecki et al.37 study has

a great influence to the overall P value. But even excluding this study,

the remaining results still provide a significant value (P < 0.05). So this

study suggests that there is evidence for linkage of BMI to somewhere in

the OB region. Note that this meta-analysis is only an example, we have

not collected all of possible literatures.

Table 19. The results of overall meta-analysis and sensitivity analysis.

Reference P Value χ2 (P Value)a χ2 (P Value)b

Borecki et al. (1994)37 4.8 × 10−6 14.51(0.0244) 17.79(6.7893 × 10−3)

Clement et al. (1996)38 0.0251 31.64(1.9165 × 10−5) 34.91(4.4856 × 10−6)

Dugirala et al. (1996)39 0.1765 35.54(3.3919 × 10−6) 38.81(7.7944 × 10−7)

Reed et al. (1996)40 Sibpair 0.1594 35.33(3.7152 × 10−6)

TDT 0.0310 35.33(3.7152 × 10−6)

Overall 39.01(4.90 × 10−6) 42.28(1.20 × 10−6)

a: Using Reed et al.40 sib-pair test result.

b: Using Reed et al.90 TDT result.
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5.2. The Meta-analysis for Genome Search

The Genome Search Meta-analysis method (GSMA) uses a non-parametric

ranking procedure to identify genetic regions that show consistently

increased sharing statistics or lod scores among several genome screens.42,43

This method splits the whole chromosomes into bins of approximately equal

length and ranks these bins according to the lod scores, Z-statistics or P

values with the most significant result having the highest rank within each

genome screen. Then the ranks for each bin are summed across screens. For

any bin, the null hypothesis is that no susceptibility loci exist within the

bin, and the ranks are assigned randomly. For m studies and n bins, the

probability that the sum of ranks (X
i
) is equal to a value R is given by

P

(

m

∑

i=1

X
i
= R

)

=



























0 R < m

1

n

m

d

∑

k=0

(−1)k

(

R− kn− 1

m− 1

)

×

(

m

k

)

m ≤ R ≤ mn

0 R > mn ,

(77)

where d is the integer part of (R −m)/n. From this distribution, we can

calculate the probability that a summed rank of R or greater within a bin

under the null hypothesis.

The choice of bin width has several constraints: The bin width must

be appropriate for all chromosomes, with at least two bins on the smallest

chromosome, and at least one marker should be genotyped within each bin.

To ensure the independence of lod score or P value for adjacent markers,

Wise et al. proposed to use 30 cM as the width of each bin.

Since some literatures may report only the most significant results, the

information for some bins is lost. This will not bias the results of the GSMA,

provided a strict lod score or P value cut-off has been used and all chromo-

somes have been genotyped. If ranks can be assigned to the top bins, the

remaining bins could be given equal ranks of (120 − x + 1)/2. If different

genome search contributes differently to the meta-analysis, a weight may be

assigned to each screen, such as log(N), where N is the number of pedigrees

or sib pairs in each study. Although the above probability distribution for

the summed ranks under null hypothesis will no longer hold, the P -value

can be generated through simulation of the weighted ranks.
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5.3. Conclusion

The major forte of Fisher’s combining P value method are its simplicity

in calculation and its flexibility in pooling results from studies which may

examine slightly different hypotheses or use different outcome measures.

However, it also has many drawbacks, sometimes its result is difficult to

explain because only one highly significant P value from a single study

may determine the significance of the Fisher test statistic; it cannot be

used to make inferences about the average effect size or the consistency of

results across studies. But in practice, published results from heterogeneous

studies are likely to report P values only. When nothing else is available,

combining P values can provide an overall assessment of linkage.

GSMA allows systematic integration of data from several genome

screens. The major strength of the GSMA is its application to a diver-

sity of study designs, it is not restricted by different phenotype definitions,

family structures, markers, or analysis methods across studies. Wise

et al.42,43 have applied this method to four genome screens in multiple

sclerosis and across 11 screens from autoimmune disorders, which showed

that the GSMA is a valuable data exploration tool to obtain an overview

of the genome search results within and across disease phenotypes.

To ensure the quality of meta-analysis, the pre-analysis process is very

important, we must set strict literature inclusion standard according to

professional knowledge, and collect literatures through multiple ways to

reduce as much publication bias as we can.

6. Bias in Meta-Analysis

6.1. Source of bias

Meta-analysis should be viewed as an observational study of the evidence.

In epidemiology, bias may be defined as any trend in the collection, anal-

ysis, interpretation, publication or review of data that can lead to con-

clusions that are systematically different from the truth. Bias often cause

conflicting results of meta-analysis and threaten its internal validity and

reliability. In each step of meta-analysis, like locating and selecting studies

for inclusion in meta-analysis, or extracting accurate study data, bias may

be introduced. As noted by Felson, there are at least three types of bias

involved in meta-analysis: Sampling bias, selection bias and within study

bias.44
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6.1.1. Sampling bias

The validity of a meta-analysis depends on complete sampling of all the

studies performed on a particular topic. Any incomplete sampling is poten-

tial to bias. Sampling bias arise when retrieving the relevant studies, which

consists of:

(1) Studies with significant results are more likely to get published than

studies without significant results, leading to publication bias.

(2) In the process of retrieving published studies using computerized

database, indexing bias and search bias may occurr. The former is

defined as biased indexing of published studies, which means index-

ing error or indexing variability. Indexing bias is not under the meta-

analysts control. Search bias is another type of sampling bias due to

inadequate or incomplete search. Index bias or search bias can lead to

failure to capture all indexed studies in a database.

(3) Relying heavily on references published in other articles or in review of

literature may cause reference bias or citation bias into a meta-analysis.

(4) Multiple publications bias occurs when studies whose results are pub-

lished in a series of articles are more likely to be sampled than those

published only once. Multiple publications bias can induce meta-analyst

confusion when the publications do not have the same first author or

when one publication does not refer to the prior one. Multiply used

subjects bias can occur when the same subjects are reported in two

separate studies when they actually a part of only one study.

(5) The included studies in meta-analysis based exclusively on reports in

English may leads to English language bias.

In practice, to reduce or avoid sampling bias require that the meta-

analyst embarking on a database search chooses appropriate index terms

and conducts the search with a systematic strategy.

6.1.2. Selection bias

Selection bias occurs when eligible studies are chosen in a meta-analysis,

according to the criteria of inclusion and exclusion. In this process, two

types of bias may be introduced, one is inclusion criteria bias, and the

other is selector bias. If the inclusion criteria is developed by an investi-

gator familiar with the area under study, the criteria can be influenced by

knowledge of the results of the set of potential studies, and this would cause

bias. Inclusion criteria bias is difficult to avoid since a good knowledge of
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a topic is a prerequisite to develop an inclusion criteria. In selector bias,

inclusion criteria have been set, although they may not be so specific as

to dictate which studies are included or excluded from the meta-analysis.

This leaves the meta-analyst selector free to choose studies, a choice which

is susceptible to bias.

Selection bias of studies is probably the central reason for discrepant re-

sults in meta-analyses. For example, in 1992, two meta-analyses published

in BMJ (British Medical Journal) and Lancet, respectively. Both compared

low molecular weight heparins and standard heparin in the prevention of

thrombosis after surgery, but the conclusions were widely divergent.45,46

One concluded that “low molecular weight heparins seem to have a higher

benefit to risk ratio than unfractionated heparin in preventing periopera-

tive thrombosis”, whereas the other considered that “there is at present no

convincing evidence that in general surgery patients low molecular weight

heparins, compared with standard heparin, general a clinically important

improvement in the benefit to risk ratio”. Egger pointed out that the

conflicting results of two meta-analyses were mainly related to the selec-

tion of studies.47 Nurmohamed et al.46 based their analysis on a subgroup

of trials that they considered possess the highest methodological strength,

while Leizorovicz et al.45 included all trials in their analysis. Many other

elements, for example, language restrictions or use of unpublished material

— could contribute to conflicting conclusions.

Criteria for including studies in a meta-analysis may be influenced

by knowledge of the results of the set of potential studies and lead to

inclusion bias.

One important way to avoid selection bias is to create extremely spe-

cific and clear study inclusion criteria, so that the selector has little chance

to inject bias into the selection decision. Blind method is also suggested

to limit selector bias. The most common is to blind the methods and re-

sults of studies to make it hard for the meta-analyst selector to determine

the inclusion of a study through results. In this method, there are often

two selectors who work independently. Any disagreement in study selection

is solved by a joint meeting or by a third selector. This process certainly

decreases the chance of selector bias, but it does not eliminate it.

Another way of handling the selection bias is to include all studies that

meet basic entry criteria then perform sensitivity analyses with regard to

the different possible entry criteria. Any conclusions from a meta-analysis

that are highly sensitive to altering the entry criteria should be treated

with caution.
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6.1.3. Within study biases

After studies are selected for a meta-analysis, data should be accurately

extracted from the study. There are several opportunities for bias, the most

likely bias is extractor bias, which can create systematically biased results.

There may be considerable inter- and intra-observer variability in extracting

data from studies. To minimize extractor bias, an extraction sheet should

lay out specific rules for data extraction with clarity.

Meta-analyst bias may affect the scoring of studies for quality. If study

results are weighted for quality in the analysis, a bias in scoring study

quality may have a real impact in meta-analysis results. Giving rigid rules

on how to measure the quality of trials may help lessen observer variability

and mitigate bias.

The primary study paper included in the meta-analysis itself may not

accurately report the study’s result. For example, the study has several out-

comes which were measured, but the only results reported are those which

reach statistical significance, and this can introduce a reporting bias. Unfor-

tunately, the prevalence of reporting bias is unknown, but it is a widespread

problem which could serve to substantially bias meta-analysis results.

6.2. Publication bias

Publication bias is usually used to refer to the greater likelihood of

research with statistically significant results to be submitted and published

compared with non-significant and null results. More generally, publica-

tion bias is the systematic error in a statistical inference by conditioning

on the achievement of publication status. Publication bias occurs because

published studies are not representative of all studies that have ever been

done.

6.2.1. The causes and consequence of publication bias

Publication bias has long been recognized and much discussed. Publica-

tion bias can originate from three sources: The authors, the sponsors of

the study, and the editor or reviewers of the journal to which the paper is

submitted. First, authors may be less likely submit papers if the results are

not significant. Second, the editors of the journal may favor publication of

positive results. Finally, the sponsor may play an important role in gener-

ating publication bias, especially if it is a pharmaceutical company funded

study. The implication is that the pharmaceutical industry discourages the
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publication of studies which have negative findings. In addition, multicenter

studies are more likely to be published than studies from a single center.

Existence of a bias in favor of publication of statistically significant

results is well documented. Easterbrook et al.48 carried out a retrospec-

tive study of 285 research projects that had been approved by the Central

Oxford Research Ethics Committee between 1984 and 1987. They found

154 studies had statistically significant results and 131 did not. Of the

154 studies with statistically significant results, 60.4% had been published,

whereas only 34.4% of the studies that did not have statistically significant

results had been published. Using logistic regression and adjusting for rele-

vant covariates, they found that studies with statistically significant results

were more likely to have been published and/or presented than those with

non-significant results (OR = 3.56, 95%CI 1.82–6.99).48

Publication bias may seriously distort the findings of a meta-analysis,

and certainly threaten the validity and reliability of results. For example, in

a meta-analysis about the effect of an alkylating agent alone comparing with

combination chemotherapy on survival in patients with advanced ovarian

cancer, Simer found that the conclusion based on the published studies is

different from that based on studies registered in the International Cancer

Research Data Bank. The pooled results from published trials showed

significant efficacy, while data from prospectively registered trials (both

published and unpublished) showed no significant advantage of combina-

tion chemotherapy over single agent treatment.49

6.2.2. Methods of detecting and correcting for publication bias

Although searching for relevant unpublished studies is important and

may sometimes alleviate publication bias, identifying such studies may be

difficult. Hence we need methods to assess the magnitude of publication

bias in a meta-analysis, based on the data in the available studies. In fact,

various methods have been devised to attempt to detect and correct pub-

lication bias, but none of the available methods is entirely satisfactory for

dealing with this problem. Here, commonly used methods are described as

following.

6.2.2.1. Funnel Plot

Funnel Plot, or, funnel graph, is the frequently used method for detecting

the publication bias. The basic idea is that if the point estimates from in-

dividual studies are plotted against the inverse of the variances, or another
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studies are more likely to be published than studies from a single center.
Existence of a bias in favor of publication of statistically significant results is well

documented. Easterbrook et al carried out a retrospective study of 285 research projects that had
been approved by the Central Oxford Research Ethics Committee between 1984 and 1987. They
found 154 studies had statistically significant results and 131 did not. Of the 154 studies with
statistically significant results, 60.4% had been published, whereas only 34.4% of the studies that
did not have statistically significant results had been published. Using logistic regression and
adjusting for relevant covariates, they found that studies with statistically significant results were
more likely to have been published and/or presented than those with non-significant results
(OR=3.56, 95%CI 1.82-6.99)[48].

Publication bias may seriously distort the findings of a meta-analysis, and certainly threaten
the validity and reliability of results. For example, in a meta-analysis about the effect of an
alkylating agent alone comparing with combination chemotherapy on survival in patients with
advanced ovarian cancer, Simer found that the conclusion based on the published studies is
different from that based on studies registered in the International Cancer Research Data Bank.
The pooled results from published trials showed significant efficacy, while data from
prospectively registered trials (both published and unpublished) showed no significant advantage
of combination chemotherapy over single agent treatment[49].
6.2.2 Methods of detecting and correcting for publication bias
Although searching for relevant unpublished studies is important and may sometimes alleviate
publication bias, identifying such studies may be difficult. Hence we need methods to assess the
magnitude of publication bias in a meta-analysis, based on the data in the available studies. In fact,
various methods have been devised to attempt to detect and correct publication bias, but none of
the available methods is entirely satisfactory for dealing with this problem. Here, commonly used
methods are described as following.

Funnel Plot
Funnel Plot, or, funnel graph, is the frequently used method for detecting the publication bias. The
basic idea is that if the point estimates from individual studies are plotted against the inverse of the
variances, or another surrogate for sample size, the points visualized together should produce a
funnel shape, so they are scattered around the true value of the point estimate with the scattering
narrowing as the standard errors decrease[50]. That is, in such a plot, the effect size of studies is
plotted against study sample size. If there is no publication bias, the plot would resemble an
inverted funnel with a wide dispersion of results among studies of small size and a narrower range
of study results for large studies. If the plot shows an asymmetrical and skewed shape, publication
bias may present. This usually takes the form of a gap in the wide part of the funnel, which
indicates the absence of small studies showing no benefit or harm. Figure 9 demonstrates two
funnel plots based on simulated data. The left plot displays the simulated summaries for all the
studies, which means absence of publication bias. The right plot displays the simulated summaries
for studies that are statistically significant at the 0.05 level, which suggests the presence of
publication bias.

Figure 9  Two funnel plots based on simulated data. The left plot displays absence of publication, and the
right displays the presence of publication bias.Fig. 9. Two funnel plots based on simulated data. The left plot displays absence of

publication, and the right displays the presence of publication bias.
Source: Normand10 Stat. Med. 18: 339.

surrogate for sample size, the points visualized together should produce

a funnel shape, so they are scattered around the true value of the point

estimate with the scattering narrowing as the standard errors decrease.50

That is, in such a plot, the effect size of studies is plotted against study sam-

ple size. If there is no publication bias, the plot would resemble an inverted

funnel with a wide dispersion of results among studies of small size and

a narrower range of study results for large studies. If the plot shows an

asymmetrical and skewed shape, publication bias may present. This usu-

ally takes the form of a gap in the wide part of the funnel, which indicates

the absence of small studies showing no benefit or harm. Figure 9 demon-

strates two funnel plots based on simulated data. The left plot displays the

simulated summaries for all the studies, which means absence of publica-

tion bias. The right plot displays the simulated summaries for studies that

are statistically significant at the 0.05 level, which suggests the presence of

publication bias.

In fact, the funnel plot is a graphical test for any type of bias that is

associated with sample size. The publication bias and sampling bias are

more likely to affect smaller studies than large trials and may thus lead to

funnel plot asymmetry. Another source of asymmetry arises from differences

in the methodological quality. Smaller studies are, on average, conducted

and analyzed with less methodological rigor than larger studies, and trials

of lower quality tend to show larger effects. Other factor, such as hetero-
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geneity in treatment effect between low and high risk groups can also lead

to asymmetry in the funnel plot.

The major advantage of funnel plot is that it is easy to be performed

which only requires published data. But the method is practically limited to

meta-analysis with large enough numbers of studies to allow one to visualize

(as opposed to fantasize) a funnel shape to the data. The symmetry of

funnel plot is defined informally. So, if the number of studies included in a

meta-analysis is small, it is difficult to detect the symmetry of funnel plot

through visual examination.

6.2.2.2. Egger’s linear regression method51

Egger proposed a linear regression model to measure funnel plot asymmetry.

It is a formal test for asymmetry in funnel plot. The standard deviate y
i
,

(y
i
= t

i
/s

i
, t

i
is the effect size, s

i
is standard error for study i) is regressed

on precision x
i
(x

i
= 1/s

i
), then the significance of intercept differing from

zero (at α < 0.1) is tested. That is, y
i
= a + bx

i
. The points from a homo-

geneous set of trials, not distorted by publication bias (or other bias), will

thus scatter about a line that runs through the origin at standard normal

deviate zero (a = 0), with the slope b indicating the size and direction of

effect. This situation corresponds to a symmetry funnel plot [Fig. 10(a)].

If it is asymmetric, with smaller studies showing effects that differ system-

atically from larger studies, the regression line will not pass through the

origin [Fig. 10(b)]. The intercept a provides a measure of asymmetry — the

larger it deviate from zero the more the asymmetric.
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(a) no publication bias (b) publication bias

Fig. 10. Example of the Egger’s regression method using a simulated meta-analysis.
Source: Macaskill (2001). Stat. Med. 20: 644.
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Egger examined whether the regression method predicts discordance of

results when meta-analyses were compared to large trials.51 They found in

the eight pairs of meta-analysis and large trial, there were four concordant

and four discordant pairs. In all case discordant cases, meta-analyses show

larger effects. Funnel plot asymmetry was present in three out of four dis-

cordant pair but none of concordant pairs. They also found, in 14 (38%)

journal meta-analysis (from four famous medical journals) and 5 (13%)

Cochrane reviews, funnel plot asymmetry indicating that there was bias.

But the statistical properties of Egger’s linear regression method are not

described, and the test may itself be biased. This method violates the usual

assumptions of simple linear regression. There is measurement error in the

independent variable because the standard errors were estimated from the

observed data, and is therefore subject to sampling error. This results in a

biased estimate of the regression slope.

6.2.2.3. Begg’s rank correlation test52

Begg’s method uses Kendall’s tau to test for correlation between the stan-

dardized treatment effect t

∗
i

, and the variance of the treatment effect (v
i
),

where

t

∗
i

= (t
i
− t̄)/

√

v

∗
i

,

t̄ =
∑

(t
j
/v

j
)
/

∑

(1/v
j
) and v

∗
i

= v
i
− 1
/

∑

(1/v
j
) .

Alternatively, the test can be based on the correlation between t

∗
i

and

the sample size for each study (n
i
). Treatment effects are standardized

to obtain a set of estimates that can be assumed to be independent and

identically distributed under the null hypothesis of no publication bias.

The rank correlation test has been described as a direct statistical

analogue of the funnel plot. But the power of the test varies along with

the unknown characteristics in meta-analysis. Even though the result is not

significant, publication bias cannot be ruled out in small meta-analyses.

6.2.2.4. Fail-safe number53

Rosenthal’s “fail-safe number” (N
FS

), is the number of unpublished null

studies needed to remove the significance from the finding of a meta-

analysis. The method involves computing the standardized normal deviate

Z, associated with each published study and then calculating a combined

deviate Z
s
. The values of N

FS
required to bring the new overall P -value to
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any desired level can then be calculated, an implausibly high value being

regarded as evidence against the file-drawer hypothesis (publication bias).

It has been suggested that N
FS

should be presented for all meta-analyses,

as an aid in the assessment of the degree of confidence that can be placed

in the results.

However, plausibility of existence of certain number of unpublished

studies is judged subjectively. Furthermore, this method assumes published

and unpublished studies are of similar sizes. Even in similar sized studies,

this method will be misleading if the average effect of unpublished studies

is in opposite direction to published studies.54

Besides the methods describes above, another kind of methods pur-

sues truncated sampling model to deal with publication bias, where it

is assumed that statistically non-significant results do not get published.

Hedges developed a model of the selection process involving a step func-

tion relating the P -value to the probability of selection in the context of

a random-effects model. The model permits the estimation of a weight

function representing selection along with the means and variances of ef-

fects. Dear and Begg’s semi-parametric method is quite similar to that of

Hedgess model, in which the selection publication is modeled also using a

weight function on two-sided P -value scale.55 The difference is that Hedge’s

pre-specifying the region of the P -value scale within which the weight

function is assumed to be constant. Gleser proposed two general models

that revisit Rosenthal’s attempts to explore the number of unpublished

studies and introduce several frequentist methods for interval estimates.56

These methods take advantage of the fact that under the null hypothesis of

interest, P -values from experiments testing this H0 have a common known

distribution which is independent of each experiment’s design, sample size,

and concomitant variables. But these methods are not widely accepted and

are not recommended.

Recently, source augmentation method has been developed for detect-

ing and correcting the publication bias. Givens used a Bayesian model to

augment observed data by simulating the outcomes for missing studies,

thereby creating a “complete” data for meta-analysis.57 The author de-

scribed how the random-effects model may be extended to account for

publication bias, assuming that in addition to the n observed studies there

are further m studies that are not observed. The number m and relative

risks found from these studies are unknown and must be estimated, and

uncertainties about these estimates are reflected in the final meta-analysis

inference by treating them as parameters in a Bayesian analysis.
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In fact, none of the available methods is entirely satisfactory for deal-

ing with the publication bias so far. Thus, we should consider other

ways to avoid publication bias. First, results of large studies most closely

approximate the average results of all studies, whether published or

unpublished. Furthermore, large studies, even with null results, are almost

always published. Therefore, the meta-analyst can test the pooled results

of studies to see if they approach the overall pooled result. Second, a

meta-analyst can also attempt to obtain data from unpublished studies,

an endeavor recommended. Nonetheless, finding those studies can be very

difficult. Finally, one important solution to publication bias may be the

establishment a clinical trial registries, a movement to register all initiated

studies has begun among those in clinical trials field but not yet among

those conducting observational studies.
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1. Introduction

In an era of rapid advances in molecular biology and genetics, medical

research at all levels (from basic science, to translational research and to

clinical research) produces a wealth of data at an amazing speed. These

data themselves are useless unless they are converted into information and

knowledge. What distinguishes Statistics as a scientific discipline is that

it aims to make inference about the unknown population from analyzing

the sample data. A key concept that is constant in statistical theory and

practice is that of variability. It is inherent in our daily lives, our data

and in statistical estimates derived from the data. Because every person

is different, a wonderful drug or therapy may only work for some but not

all patients. Our blood pressures vary all the time. It can be influenced

by when and how they are taken, whether you are worried or anxious

about it, or you are in good health or not, and some other unknown factors

(the random variation). Random variation is the unexplained variation, the

noise part. In fact, controlling variability due to different possible factors is

the subject of statistical experimental design. As we cannot possibly control

all factors, the random variation is always there. Statistical methods provide

justifications to how many subjects (how large a sample) will be needed to

separate noise from trend, and statistical estimate of variability quantifies

the uncertainty in biomedical findings. This knowledge can be further used

to tailor treatment strategy for patients.

319
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Clearly, describing the data and understanding the variability ties

closely to the experimental design and biomedical process the data arises

from and also the study design (the deliberate process of generating data for

scientific investigation). Understanding the biological and medical process

is essential to understanding and making sense of the data. Thus, methods

and tools to describe and model the variability in a succinct way allow us

to easily convey information in the data. The key is to understand the vari-

ability underlining the data. Common data analytical techniques are now

well summarized.1,7 The focus of this chapter is to introduce some more

advanced methods for best describing and understanding variability.

2. Methods for Describing Data

The first step towards understanding data and making any inference is to

understand what type of data we are dealing with since different types

of data require different statistical methods for analysis. This is a fact

sometimes easily overlooked by non-statisticians. We shall first review some

common types of data in biomedical research with special emphasis on those

not often discussed about in textbooks but appears increasingly often in

medical research. We shall also point out the methods that ought to be

used to analyze them.

2.1. Types of data

Although the data in biomedical research often is complex, they do fall into

several common categories. Understanding them will guide us to choose the

right methods for summarizing and analyzing the data. The type of data

determines what methods will be used for analyzing the data and making

inference. In addition to reviewing the basic types of data,1 we shall describe

other types of data that occur increasingly common in modern biomedical

research.

2.1.1. Categorical data

When a patient or her conditions are classified into different categories,

those observations would give rise to categorical data (or sometimes called

dichotomous or attribute data). The simplest examples are the two-category

(yes/no observations) such as if a patient has responded to cancer therapy

or whether the patient is smoker or nonsmoker or whether the patient

has colon cancer or not. This type of data is sometimes under the name
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of binary data or 0–1 data. Data of three or more categories include blood

types (A, B, AB, O), combined categories such as female and male leukemia

and non-leukemia patients. Since there is no apparent order among these

categories (blood types, gender/disease classifications), this type of data

is also called nominal data. They can be analyzed with methods for con-

tingency tables or a generalized linear model. Another type of categorical

data include the classification of smokers (total none, occasional, heavy),

the stages of breast cancer (I, II, II, IV), the degree of improvement af-

ter therapy (none, moderate, great, full), and the degree of pain (minimal,

moderate, severe, unbearable) as subjectively assessed. Here, there is an

apparent order among all the categories, these data are called ordinal data.

However, just like in nominal data, arithmetic does not make sense in ordi-

nal data although some of them may appear to be numeric, e.g. it is hard

to say unbearable pain is twice as bad as severe pain.

One case such distinction may become obscure is the score data where

scores are assigned to certain outcomes that does indicate an equal incre-

ment from one point to one point higher.

2.1.2. Continuous data

Continuous data arise when some form of measurements is taken, e.g. body

weight and temperature, blood pressures and most of blood chemistry test

(bilirubin, hemoglobin, cholesterol etc.). Oftentimes, these observations or

its transformation (e.g. its logrithm) are considered normally distributed.

Statistical methods and models for analyzing continuous data are most

comprehensively developed. However, the accuracy of these measurements,

knowledge about the reliability of these measurements is important to make

valid inference.4 Especially, it should be noted that when these observations

are used as independent variables in the analysis, an errors-in-variable (or

measurement error) model may be necessary.2

2.1.3. Ratios

Ratio data arise when we take ratio of two variables. For example, ejection

fraction, an important cardiac function index, is the ratio of the differ-

ence between end systolic and diastolic volumes to end systolic volume,

cardiac output, the percent change in renal function (e.g. ,the glomerular

filtration rate) from certain baseline. More recently, the microarray gene

expression ratio has become a focus of many cutting-edge medical research.

The microarray technology has allowed fast large scale (up to thousands
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of genes) analysis of gene expression. In these experiments, the ratios of

gene expression from one color (red) signal to that another color (green)

signal are expressed as spot for each gene. Then, the analysis of these gene

expression ratios must take into account how the ratio is derived and an

appropriate corresponding (in fact, Gamma) distribution should be used

for analysis.3,10 The influence and importance of measurement error are

usually not well addressed in elementary textbook. Recent methodological

research has further extended the measurement error models in generalized

linear models and survival models.2

2.1.4. Continuous proportional data

This is really a subtype of ratio data when the ratio is a percentage between

0 and 1. It includes data such as the percentage of decrease in renal functions

at different follow-up times from the baseline, and percentage of change

from pre-treatment to post-treatment in terms of certain physiological vari-

ables or some molecutar or genetic targets. Statistical methods to directly

model the means of the proportional responses have just emerged12,13 using

the simplex distribution of Barndorff-Nielsen and Jorgensen.6 The simplex

distribution takes into account the fact that such responses are percentages

restricted between 0 and 1 and may as well have large dispersion. It has

been discovered recently that there may well be large dispersion in this kind

of data.

2.1.5. Repeated measures

In medical studies, subjects are often followed overtime either in natural

history study of certain disease or therapeutic studies, or measurements

or observations are obtained within certain experimental units or clusters

(e.g. eyes or limbs of an individual). These observations are called repeated

measures data, or if they are obtained over different times from the same

individual, they are sometimes call longitudinal data. This kind of design is

often necessary in order to assess how patients do overtime. For example, we

may be interested how certain physiological variables (glomerular filtration

rate) or genetic variables (for instance, telomere length) change over time,

or whether certain events (e.g. ear infection) occur overtime.

The key issue here is that the within patient or with cluster correlation

needs to be accounted for one in the experimental design and data analysis.

For example, children who have ear infection in one of their ears may be

more likely to have infection in their other ears. Thus, 10 patients with each
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patient having 10 repeated measures do not the same power as 100 patients

alone.

Depending on the type of response variable of interest, we may have

repeated continuous data or categorical data or ordinal data. Different

statistical models need to be used to analyze differnent kind of repeated

measures data although the method is now unified with generalized linear

models (GLIM). For repeated ordinal data, you may have to use models

outside of GLIM, for example, the proportional odds model.11,14

2.1.6. Censored and truncated data

When we are not able to measure a variable precisely and only know that

an observation is beyond some threshold, we call the observation censored.

The most common censored data in biomedical research is the survival data,

broadly defined, data of time to the occurrence of certain event, e.g. Epstein-

Barr infection, or the death of a patient. This is perhaps one of the most

common types of data in medical research, since we often want to know if

a new drug regiment or a surgical or a medical procedure can save more

lives than does a conventional treatment. Special techniques are needed

in the analysis of survival data for several reasons. First survival data is

generally not symmetrically distributed so not normally distributed, it is

more satisfactory to use an alternative distribution in the model. Secondly,

at the time of analysis, the survival endpoint (either it be death or remission

of cancer) of some patients have not been observed yet, and the survival

status may never be known since some patients may be lost to follow up.

2.2. Variability

Variability is one of the fundamentally important concepts that underlie

all statistics theory and methods. As the world is full of uncertainty, it is

fortunate to have statistics to study uncertainty scientifically and statisti-

cians are also fortunate for uncertainty. Often a biologically active agent

only has 5% chance to make to the clinic due to the variability experi-

ment and mostly in human. Variability makes statistics and statisticians

indispensable in medical research. So related another essential concept is

to the probability distribution that is used to describe and analyze data.

Often we assume that the observations are from certain distribution that

is known except for some unknown parameters. The most prominent dis-

tribution is the normal distribution, which is fundamentally important in

statistics because the central limit theorem suggests that most common
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statistics be asymptotically normally distributed. Methods that do not as-

sume parametric form is called nonparametric methods. The advantage of a

parametric model is its simplicity and efficiency. Sometimes an intermediate

(semi-parametric) approach is taken in that characteristics of main interest

are assumed of a parametric model. So far parametric and semi-parametric

methods are the most commonly used methods in medical research.

2.3. Basic techniques

The most common techniques for data description are mean and standard

deviation, which is often associated with parametric description of the data.

Normal distributions are completely specified by its mean and standard

deviation. The mean is a measure of the central location and standard

deviation is a measure of variability. Because of the importance of normal

distribution based theory in statistical inference, these two numbers have

special meaning. However, if the distribution of the variable under study

is not normal, then they do not necessarily give good inferential values.

Sometimes the variability may beyond what the assumed distribution can

describe (the so-called over-dispersion).

Another commonly used statistics to describe data is the five number

summary statistics, which are the minimum, maximum and 75%, 50% (the

median) and 25% percentiles. Together with the mean and standard de-

viation, the five-number summary statistics give a good summary about

the distribution of the data. For example, if the distribution is symmetric,

then the mean and median should be equal. If the mean is greater than the

median, the distribution is skewed to the right; and if the mean is less than

the median, the distribution is skewed to the left.

2.3.1. Example 1 (Phase I Clinical Trials and Pharmacokinetics

Studies of Topotecan in Solid Tumors)

Topotecan is a new molecular target based anti-cancer agent. It is a semi-

synthetic water-soluble derivative of camptothecin whose anti-tumor effect

is mediated by inhibiting topoisomerase activity by binding to the DNA

topoisomerase I complex. This drug has shown promising anti-tumor acti-

vity in preclinical and clinical studies of adult and pediatric solid tumors.5,15

The goal of the study is to determine if variability in topotecan lactone

systemic exposure can be reduced by a dose adjustment strategy in a

phase I clinical trial using pharmacokinetics (PK) guided dose escalation.

Intravenous topotecan were given to 15 children with relapsed solid over
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30 minutes 5 days a week for 2 consecutive weeks. Doses were individualized

based on the patient’s topotecan systemic clearance to maintain a single

day plasma topotecan lactone area under the plasma concentration-time

curve (AUC) of 150±30 ng/ml∗hr (Cohort #1 for the first 8 patients)

or 100±20 ng/ml∗hr (Cohort #2 for 9 patients) where two patients who

had been in Cohort 1 were moved to Cohort 2 due to excessive toxicities.

In fact, the AUC target was lowered to 100 ± 20 ng/ml∗hr in general for

toxicity concerns. Plasma samples were collected before at 0.25, 0.5, 1, 3,

and 6 hours after completion of the topotecan infusion, which give one PK

study using a two-compartment model. For each cycle of treatment at each

dosage, PK studies were planned to be done on day 1, 3, 6, 8, 10.

2.4. Graphic methods

Indeed sometimes a picture is worth thousand words. Graphic methods

are commonly used in statistics and medical research to depict the data

and illustrate the methods. For example, the five numbers are commonly

 9

 

 

To describe the distribution and variability of the data, histogram and some version of smoothing 

technique is often used. A spline smoothing estimator, a nonparametric estimate of the density, 

provides a better description of the probability density of the distribution. With modern statistical 

software, it is very easy to generate such estimate and overlay on the histogram. Figure 2 gives the 

histograms for the AUCs from the 8 patients in Cohort 1 in Example 1. In the fixed group, the 36 

AUCs were calculated alternatively using a fixed dose of 4 mg/m2 divided by the patient’s 

topotecan lactone clearance, and in the targeted group, the 8 PK studies from the first dose of the 

first cycle and one PK study from the second dose of the first cycle of one patient were excluded, 

so there were 27 PK studies from the eight  patients whose AUCs were adjusted to the target AUC 

range by varying 
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Fig. 1. Comparison of cycle 1 AUC: Days 1 and 3.
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plotted as the box-and-whisker plot,1 where the central line represents the

median, the box represents the 25% and 75% percentiles (or the lower to

higher quartiles), and the whiskers are the minimum and the maximum.

To see the distribution and variability of AUC, which measures patient’s

systemic exposure to the drug, Fig. 1 gives box-and-whisker plots for AUC

at days 1 and 3 for the 15 patients. As shown, the AUC is not symmetric

and after dose given on day 1, AUC is skewed to the right, but at day 3,

AUC becomes more symmetric, which partly represents the effect due to

drug dose targeting based on pharmacokinetics.

To describe the distribution and variability of the data, histogram and

some version of smoothing technique is often used. A spline smoothing esti-

mator, a nonparametric estimate of the density, provides a better descrip-

tion of the probability density of the distribution. With modern statistical

software, it is very easy to generate such estimate and overlay on the his-

togram. Figure 2 gives the histograms for the AUCs from the eight patients

in Cohort 1 in Example 1. In the fixed group, the 36 AUCs were calculated

alternatively using a fixed dose of 4 mg/m2 divided by the patient’s topote-

can lactone clearance, and in the targeted group, the 8 PK studies from the

first dose of the first cycle and one PK study from the second dose of the

10
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Figure 2. Fixed and Targeted AUC 150
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3. Describing data via adjusting for factors with a model

As alluded to early, effective description of the data depends on the design. Sometimes

summarizing the data may not be so straightforward because of the complicated design under

which the data are produced, e.g., dependence of the observations and missing values. A

straightforward mean and standard deviation may be misleading. In Example 1, because patients

have multiple cycles of chemotherapy and PK studies were performed at multiple doses  and some

patients missed some PKs, this gives rise to an unbalanced repeated measures data structure. We

used a mixed-effects model to estimate the PK parameters and compare those whose AUCs fall into

the targeted ranges and those whose AUCs were not. The summary statistics (such as the means

Fig. 2. Fixed and targeted AUC 150.
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first cycle of one patient were excluded, so there were 27 PK studies from

the eight patients whose AUCs were adjusted to the target AUC range by

varying doses.

3. Describing Data via Adjusting for Factors with a Model

As alluded to early, effective description of the data depends on the design.

Sometimes summarizing the data may not be so straightforward because

of the complicated design under which the data are produced, e.g. depen-

dence of the observations and missing values. A straightforward mean and

standard deviation may be misleading. In Example 1, because patients have

multiple cycles of chemotherapy and PK studies were performed at multiple

doses and some patients missed some PKs, this gives rise to an unbalanced

repeated measures data structure. We used a mixed-effects model to es-

timate the PK parameters and compare those whose AUCs fall into the

targeted ranges and those whose AUCs were not. The summary statistics

(such as the means and standard deviations) will need to account for within

patient correlation. Table 1 gives both the estimates that accounted for such

correlation and those that did not for comparison purpose. As shown in this

table, the summary statistics using all the data based on the model may be

different from a straightforward calculation and the ones that accounted for

the within patient correlation should be considered for making inference.

More elaborate estimates based on models are often needed in order

to avoid bias. Several other examples can be found in Meyers et al.8 and

Nelson et al.9 where a mixed effects spline model was used to estimate the

Table 1. Mean and standard deviation estimates according to dose adjustment require-
ments derived from a mixed effect model.

Estimated mean (SD)

PK Parameter Adjusted Unadjusted p-value

Vc 31.67 (2.51) 30.90 (2.10) 0.76

Kel 1.28 (0.12) 1.21 (0.11) 0.30

Kcp 0.90 (0.13) 0.83 (0.13) 0.59

Kpc 0.68 (0.06) 0.68 (0.04) 0.54

Alpha 2.51 (0.27) 2.36 (0.25) 0.51

T1/2 alpha 0.34 (0.04) 0.37(0.03) 0.44

Beta 0.34 (0.02) 0.33(0.02) 0.44

T1/2 beta 2.28 (0.19) 2.34 (0.19) 0.58

CL 33.88 (1.62) 32.14 (1.30) 0.20

Vdss 66.13 (3.78) 64.55 (3.11) 0.55
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mean glomerular filtration rate for diabetic patients at different stages of

their lives and the associated standard errors.

4. Over-Dispersion Issues

The term over-dispersion refers to the phenomenon that the observed vari-

ability (the variance) is more than the nominal variability (variance) under

a presumed model. Statistically speaking, over-dispersion depicts that the

mean-variance relationship of the assumed distribution is not correct.

Although it is generally recognized that over-dispersion occurs in discrete

data models under the binary and Poisson distribution assumptions. It also

occurs in continuous proportional data shown recently in Song and Tan.12

The existence of over-dispersion is noticed a long time ago in statistics.

Fisher noticed a lot of data in practice is over-dispersed in 1951. Several

natural questions arise such as what is the consequence of ignoring over-

dispersion in the analysis and what are the appropriate techniques to detect

and model the dispersion. In this section, we shall discuss thee questions in

several distributions including the more familiar binary and Poisson data

and the recent developments on proportional data.

4.1. Binomial data

Binary outcome, e.g. success/failure of therapy, response to a cancer drug,

etc. is one of the most common outcomes in medical research. Generically,

let the success probability be p and the binary (0–1) outcome of each of

the n binary sequences (e.g. n cells, n mice, and perhaps n patients). Then

the binomial outcome is Y =
∑

n

i=1
Y

i
. Over-dispersion arises when the

empirical variance is greater than the binary variance np(1 − p), which

is a function of the mean p. In this case, the distribution is completed

determined by the mean parameter p. Then the variance of the binomial is

n

∑

i=1

var(Y
i
) + 2

n

∑

i<j

cov(Y
i
, Y

j
) = np(1− p) + 2

n

∑

i<j

cov(Y
i
, Y

j
) .

Therefore, when the binary sequences are not independent of each

other, namely, cov(Y
i
, Y

j
) is not zero, over-dispersion would occur. The

consequence would depend on how much the over-dispersion is. Generally,

over-dispersion can not be ignored.

Testing if over-dispersion presents can be obtained through generalized

linear models. With recent development in generalized linear mixed effects
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model and Bayesian hierarchical model, over-dispersion can be accounted

for directly in the modeling process.

4.2. Poisson data

Similar to binomial data, Poisson distribution is determined by its mean

parameter. Since Poisson model belongs to the generalized linear model,

similar test statistics and modeling methods can be used in testing and

modeling over-dispersion.

4.3. Continuous proportional data

The continuous proportional data have not been talked about much is the

continuous proportional data and the directional data. The continuous pro-

portional data arise when the response of interest is a percentage between 0

and 1, for instance, the percentage of decrease in renal functions at different

follow-up times from the baseline, or the percentage of decrease in blood

pressures from the baseline. The usual practice has been just to treat them

as normal distribution. However, as shown in Song and Tan12 the variabi-

lity in the response percentage is far beyond what the normal distribution

can describe. In fact, although when the dispersion parameter is small, the

dispersion models are approximately normal,6 real world data are often

with large dispersion as studied by Fisher in 1953. Here the normal model

is usually not appropriate since if two variables are normally distributed,

an assumption which is often considered plausible, the ratio of the two is

generally not.

4.3.1. Example 2 (A prospective ophthalmalogy study on the use of

intraocular gas in retinal repair surgeries8)

The outcome variable of the study was the percentage of gas left in the

eye. The gas was injected into the eye before surgery for a total of

31 patients. The patients were then followed three to eight (average of

5) times over a three-month period. The volume of the gas in the eye at the

follow-up times was recorded as a percentage of the initial gas volume in

that eye. An important issue was to estimate the kinetics of the disappear-

ance of the gas (e.g. decay rate of the gas). Clearly the response variable

here is confined between 0 and 1. Although, for instance, a logit transfor-

mation results in a transformed response in, linear regression models with

nonlinear transformed responses are often difficult to interpret. Particularly
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the serial correlation structure of the nonlinear transformed responses can

not be easily converted to that of the original responses. Our goal was to

be able to model the dependence of mean gas decay on certain covariates

directly. A common practice has been to assume that the response variable

is normally distributed and ignore the fact that the responses are percent-

ages confined between 0 and 1. However, as shown later, the variability in

the response percentage is far beyond what the normal distribution can

describe. In fact, although when the dispersion parameter is small, the

dispersion models are approximately normal,6 real world data are often

with large dispersion.

A moment estimator of the dispersion parameter σ

2 may be obtained

by using he fact that the expected value of d(Y ; µ) = σ

2 Therefore,

σ̂

2 =
1

∑

m

i=1
n

i
− p

n

∑

i=1

ni
∑

j=1

d(y
ij

, µ̂
ij

) ,

which is a consistent estimator of σ

2 as m tends to infinity provided that

µ̂
ij

’s are consistent.

In Example 2, the estimate of dispersion parameter σ

2 = 14.2. The

p-value based on a χ

2 distribution with 2 degree of freedom is 0.0008,

suggesting that the dispersion parameter is significantly greater than 0,

that is, significantly greater than the dispersion of a normal distribution.

Thus, the gas volume is not normally distributed at all. In fact, graphically,

the simplex density function with this large dispersion parameter indicates

the density has a dominant mass between 0.8 and 1, which is consistent with

the feature of the data, that is, over 40% of observations are in this range.

Therefore, indeed, the dispersion is needed to analyze this kind of data.
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Appendix

The density of a simplex distribution,6 with mean (location parameter)

µ ∈ (0, 1) and dispersion parameter σ

2
> 0,is given by

p(y; µ, σ

2) = [2πσ

2{y(1− y)}3]1/2 exp{−d(y; µ/(2σ

2)} , y ∈ (0, 1) ,
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where

d(y; µ) =
(y − µ)2

y(1− y)µ2(1− µ)2
.

The advantage of using this distribution is that the simplex distribution is

a dispersion model,6 where the response has density function of the form

a(y; σ2) exp{−d(y; µ)/(2σ

2)} , y ∈ (0, 1) .

The density for this dispersion model seems analytically similar to that of a

normal distribution (see Jorgensen,6 for details) and it also includes a large

class of distributions confined in (0, 1), ranging from highly skewed to very

flat distributions (see, e.g. Fig. 1.7 of Jorgensen6).

The dispersion model is more general than the familiar generalized linear

model based on exponential family of distributions.
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1. Introduction to Time Series Analysis

When we try to observe dynamic variables x1, x2, x3, . . . , xi
, . . . in a medical

research, these variables can be regarded as a stochastic process, since there

are a considerable number of adventitious factors that may have effects

on the data themselves with uncertainty. For example, the vital readings

obtained from a monitor and from prevalence or mortality rates of some

diseases in a particular region across time. The series of these observed

values is called a time series. In Fig. 1, a time series of the number of outpa-

tient visits in the Second Affiliated Hospital of Shanxi Medical University

from January 1980 to December 1999 is shown. Generally speaking, the

observed results of a series may not be expressed by a deterministic func-

tion; they can be treated as a realization of a stochastic process due to the

influence of random factors. Let {x
t
} denote the stochastic process with

x1, x2, x3, . . . , xi
, . . .. Here t does not necessarily represent time; it may be

the index of a space, temperature or vector.

Any observed result at a particular time is determined by many influ-

ential factors. Because of the interaction of these factors, the analysis of

time series becomes quite complicated. The frequently encountered factors

are the mode of trend, seasonality, periodicity or irregularity. In order to

333
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1. Introduction to time series analysis
When we try to observe dynamic variables �� ,,,,, 321 ixxxx  in a medical research,
these variables can be regarded as a stochastic process, since there are a considerable
number of adventitious factors that may have effects on the data themselves with
uncertainty. For example, the vital readings obtained from a monitor and from
prevalence or mortality rates of some diseases in a particular region across time. The
series of these observed values is called a time series. In Figure 1, a time series of the
number of outpatient visits in the Second Affiliated Hospital of Shanxi Medical
University from January 1980 to December 1999 is shown. Generally speaking, the
observed results of a series may not be expressed by a deterministic function; they can
be treated as a realization of a stochastic process due to the influence of random
factors. Let{ }tx  denote the stochastic process with �� ,,,,, 321 ixxxx . Here t does not
necessarily represent time; it may be the index of a space, temperature or vector.

Figure1 The number of outpatient visits in the Second Affiliated Hospital
of Shanxi Medical University in 1980 ~ 1999

Any observed result at a particular time is determined by many influential factors.
Because of the interaction of these factors, the analysis of time series becomes quite
complicated. The frequently encountered factors are the mode of trend, seasonality,
periodicity or irregularity. In order to effectively apply the time series models, all
these factors above must be taken into considerations.

Statistical predictions are usually based on previous and present information. The
prediction derived from statistical models can guide our future decisions, avoid
unnecessary mistakes and minimize the loss.

Many phenomena, not only in nature, but also in life sciences are of statistical
relationship. It is feasible in theory to treat those observed dynamic results as a time
series with special properties[1].
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Fig. 1. The number of outpatient visits in the Second Affiliated Hospital of Shanxi
Medical University in 1980–1999.

effectively apply the time series models, all these factors above must be

taken into considerations.

Statistical predictions are usually based on previous and present in-

formation. The prediction derived from statistical models can guide our

future decisions, avoid unnecessary mistakes and minimize the loss. Many

phenomena, not only in nature, but also in life sciences are of statistical

relationship. It is feasible in theory to treat those observed dynamic results

as a time series with special properties.1

Statistical predictions can be divided into qualitative and quantitative

areas. The necessary assumption is that the dynamics in trend, speed, etc.,

will be of relatively persistent in a long period of time. As they are changing

almost all the time to some extent, the assumption becomes really fragile.

The accumulation of changes in quantity may lead to a leap of quality; as

a result, the relationship before and after the leap may be quite different.

The prediction in quality is possible anyway. It is often true that more

abundant collection of data can provide more reliable predictions. Thus, it

is necessary to collect data as much and precise as possible.

If there are causal relationships among the variables, to establishment of

these relationships using statistical models will make the prediction possi-

ble. However, neither finding the causal relationship nor collecting sufficient

data to construct the model is simple.
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Hannan2 gave a detailed discussion on time series theory and the spec-

tral analytical methodology. There are many strategies to calculate p — the

order of autocorrelation and q — the order of moving average and relatively

satisfied results may be found only when q = 0. Box and Jenkins summa-

rized and presented some experiential principles from their experience to

determine p and q in 1970.2 Some more strategies have been reported after

that, but they are generally based on exploratory trials.

In a series of reports given by S. M. Pandit and Wu, all stationary

processes can be expressed as ARMA(n, n−1), a simple mathematical form

that we will explain in details later. Even if a stationary process is not in

this simple format, it can still be approximated by an ARMA(n, n−1) with

acceptable accuracy.3 Furthermore, many practically observed series can be

represented by ARMA(2, 1). The fitness of ARMA(n, n− 1) to time series

can be performed easily and effectively, even when the series comes from

a ARIMA(p, d, q) or a ARMA(n,m) (here, m 6= n), two more complicated

versions that will be discussed later. This shows it is unnecessary to worry

that a time series may have a very complicated form in modeling and makes

us confident that ARMA models can satisfactorily fit with common time

series.

The linear trend is sometimes caused by unduly small intervals of

sampling and this is called pseudo-trend. The solution is to use a smaller

interval (when the observation cannot be done in a longer period) or

to extend observation for longer period (when the intervals cannot be

shortened). If neither the intervals nor the period can be changed, we need

be aware of those tendencies, especially when the special explanation is

difficult to be drawn.

The lag-free difference and seasonal difference are both helpful to change

a nonstationary series to become a stationary one. Modeling is based on

the attributes of autocorrelation function and periodograms or even the

attributes of the original data itself. When data show a trend or season-

ality, the autocorrelation will not attenuate rapidly and the corresponding

periodograms tend to be distorted. In this situation, the lag-free and sea-

sonal difference may make the identification of ARMA model less difficult.

One useful strategy is that when there is any modulus of roots equal to 1 in

the equation of model, differential operation is introduced into the equation

in order to make full use of the provided information in time series.

One of the essential characteristics of time series is the correlation be-

tween observations, which is a basis for further analysis.2 The procedure

of analysis is generally divided into the followings: (1) model selection and
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parameter estimation; (2) adaptability of the model; (3) prediction. The

commonly used models are ARIMA models, exponential average, linear or

multiple regression, growth curve, Markov chain and gray model.

Our past research experience focuses less in frequency domain but more

in time domain. The effective prediction is also needed when missing obser-

vations exist. The observations in practice can be regarded as a realization

of a stochastic process. As it is a sample from the whole process, the pe-

riodicity needs to be examined via a hypothesis test. Nonlinear analysis of

time series has been popular recently in time series and nonlinear theory is

needed to identify the model.4

1.1. Models for time series analysis

Time series analysis has been applied in economy, meteorology, geology,

hydrology, military and other different fields of science successfully. Medical

statisticians are also trying to utilize it in medical research.

The much-concerned research is not only on the essential conditions for

applications of particular forms of models, but also on ideal fitness and

prediction of those models. There are two types of seasonality — definite

and indefinite. The definite seasonality means that the fitted model in-

cludes a term, which is the summation of periodic function and stationary

noise. The indefinite seasonality means that the correlation between obser-

vations is significant with periodic intervals. For the definite seasonality,

the difference will make the fitting and predicting difficult. For the indefi-

nite seasonality, the difference is a necessary procedure for stationary. The

research given by Bell and Hillmer5 shows that the business per month

may change because of the difference in numbers of Sundays in different

months. Easter in western countries and Spring Festival in China may be

located in different month according to the Gregorian calendar, and this

also leads to the variation of business in that month. The effectiveness of

the model may be improved when the above-mentioned situation is con-

sidered for monthly-based observations. The emendatory form of ARIMA

model is Z
t
=

∑7

i=1
β

i
T

it
+αH(τ, t)+ θ(B)

φ(B)δ(B)
α

t
. The first and the second

terms in the right hand of the equation are correspondent with Sundays

and Easters.

Multivariate time series analysis is another point of much interest.6

It can be summarized into two aspects7: (1) to determine the mode of

correlation, such as circumstance, causation, or feedback; (2) to improve

precision of predictions. When the predicted variable contains some
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information from other external variables, the prediction will become more

effective if these variables are included in the model. Tiao and Box2 have

pointed out the significance of spectral analysis: (1) to detect the correla-

tion (lags may exist) in time series; (2) to be helpful to the explanation of

the model. Chan and Wallis8 put forward reformed vector autoregression

model to prove the interactions between variables and to simplify the model

(the explanation of interactions is coincident with professional knowledge

although the variance of residuals increases). Ahn9 discussed the low order

components of scalar quantity after the first difference so as to improve the

estimation of parameters in the model.

The parameters in time series models may be treated as time-varying

sometimes and this has been verified by some practical experience. Stock10

studied the elements λ in V
t

= τv
t

= (λ/T )v
t
, which is the change of pa-

rameter. He has deduced the asymptotic unbiased estimator for the median

of λ. Conditional heterogeneity appears as the change of variation situation

along with time. Engle summarized this seminar paper in 198211 and pre-

sented ARCH model. The research on this topic followed with much interest

from then on, especially in economic areas.12,13 Many researchers have at-

tempted to use semi-parametric or nonlinear nonparametric methods to fit

the time series and the goodness of fit has been discussed a lot.14–16

It is known that ARIMA models have short-term effects. For long-term

effects, autoregressive fractionally integrated moving average (ARFIMA)

models are needed.17,18 The models can be expressed as ϕ(B)(1−B)δ

Z
t
=

θ(B)ε
t
, in which we have (1 − B)δ =

∑∞

j=0
C

j
(δ)Bj , where δ ∈ (−1, 0.5).

As a matter of fact, with the term δ the observations in the infinite past

may also have effects on the present value. ARFIMA is an example of

long-memory time series model.

ARIMA model can be regarded as a transformation from original data

into white noise. The residuals after modeling are the estimation of error

and they are asymptotic to the error when the original series are long

enough. The statistic Q = n

∑

m

k=1
r̂

2

k

is constructed and it is asymptotically

of a χ2 with degree of freedom ν = m − p − q when the series belongs to

ARMA(p, q).19 McLeod and Li20 found that the variance of Q tends to be

smaller and the precision of evaluation to the goodness of fit is improved

coinstantaneously when the sample size becomes larger. Ljung and Box21

presented that Q still can be used as the measurement of goodness of fit even

though the errors ε
t

may not be normal distribution. The statistics S1 =

T

−1
λ

∗′
V

∗−1
λ

∗ and S2 = T

−1
λ

∗′(V ∗+G1G
′
1
)−1

λ

∗ have been constructed by

Poskitt and Tremayne22 in doing diagnostic test to the model. The studies
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on noise have involved the nonlinearity and chaos theory. This makes the

dimensions of the dynamic system to be fractions.23

1.1.1. The memory in time series

In statistical point of view, the dynamic characteristic appears as the corre-

lation between the present events and the historical events. The correlation

function is used to portray the characteristic in time series.

In the view of systems theory, memory means dynamic characteristic,

with which the subsequent outputs are influenced by the present input. The

system has dynamic characteristic of first order when any particular obser-

vation only effects the next observation following it. Similarly, the system

has dynamic characteristic of n order when any particular observation can

effect the next n observations after it. For example, a patient takes analgesic

drug at the time of T ; it can be regarded as an input to the system at T .

When the drug reacts only at the next observing time, as it may be

illustrated as Fig. 2, we say the metabolism system is of the first order.

It shows that after taking drug at T the situation of the observation next

to it becomes very well, but becomes worse after that point. When the

drug is effective during the next four observing points although becomes

less effective gradually in this period (Fig. 3), this is called the fourth order

system.

When the input does not only influence the present output (by the

intensity of ϕ0) but also the next output (by the intensity of ϕ1), the model

               T ���T �����T ��

Fig. 2. The effectiveness of an analgesic drug (memory of 1st order).

T      T+1      T+2       T+3       T+4      T+5

Fig. 3. The effectiveness of an analgesic drug (memory of 4th order).
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can be denoted as X
t
= ϕ0Wt

+ ϕ1Wt−1. The generalized form is

X
t
= ϕ0Wt

+ ϕ1Wt−1 + ϕ2Wt−2 + · · · ,

Where ϕ
j
(j = 0, 1, 2 · · · ) are the influential intensity of W

t−j
to X

t
and ϕ

is called memory function. As a matter of fact, the memorial characteristic

is the basis for us to establish models for the system and predict the future

situation.

1.1.2. The collection of data

Observing and recording the output from the system with given intervals

is called sampling. The sampling intervals are often denoted by ∆. The

sampled observation after kth intervals is denoted asX
k
. It is the discretized

results X(t0 + k∆) from X(t). Sometimes a time series may be the values

of accumulated results. For example, the numbers of births in a month in

a region or the daily urine output from a patient can form a time series.

As time series can be viewed as the output from a dynamic system, the

systems theory can be used to analyze the dynamic structure and evolu-

tive relationship. However, the discretized results may lose the information

between t0 + (i − 1)∆ and t0 + i∆. The shorter the interval ∆ is, the less

information is lost. At the same time, we get more observations and may

waste our resource without much additional useful information. To choose

proper interval lengths to sample the underlying dynamic system is also a

critical procedure for the researchers.

1.1.3. The pre-treatment of time series

Just like any other statistical tools, time series analysis deserves careful

treatment. It is not recommended to model the time series blindly without

careful check and pre-treatment.

Take the time series of the natural growth rates of Chinese population

for a simple example. The growth rates are the ratios of the changed num-

bers and the average population size in a given period. In the consideration

of population management, the length of the period is usually the calendar

year from January 1 to December 31.

The definition of the variable should keep consistent. Although Hong

Kong has returned back to China in 1997, considering of the consistency,

“Chinese population” still means the population in the Mainland China

after that year. Another consideration is to the calculation method for the
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annual average population. For example, we can use half of the sum of the

population at the beginning and the population at the end of the year, i.e.

the mid year population

=
population at the beginning + population at the end

2
.

1.1.4. Missing values and the interpolation

During sampling of observations, missing values may occur due to malfunc-

tion of instruments, mal-operation to the instrument or the unexpected

observing conditions. They may also occur when trying to subdivide the

sampling intervals.

When such missing values exist, the time series is corrupt. The fragmen-

tary series is hard to be analyzed with commonly used time series models.

However, it may not be possible to repeat the history values. An easy

remedy is to interpolate the observations according to the tendency of the

series. On the other hand, the models that are effective to the series of

unequal intervals are beneficial in such situation.

1.1.5. Stationary process

The stationary process is a process2 that has steady statistic characteristics.

When the following equation holds to any continuous t1, t2, . . . , tn and any

given ε,

F
n
(x1, x2, . . . , xn

; t1, t2, . . . , tn) = F
n
(x1, x2, . . . , xn

; t1 + ε, . . . , t
n

+ ε)

where F
n
(x1, x2, . . . , xn

; t1, t2, . . . , tn) is the distribution function of x1,

x2, . . . , xn
at time t1, t2, . . . , tn for any n. Then {X

t
} is called a strict

stationary process.

As the distribution function describes the statistical characteristics per-

fectly, the above equation means that all statistical characteristics will not

change along with time. It is so called strongly stationary process. It seems

that these characteristics may be used to establish a principle to judge

whether a process is stationary. Unfortunately, this will be difficult for

practical use. Stationarity of the process indicates the environment and

main influential factors retain relatively stable along the period of time.

For example, when manufacturing drugs, the output can be regarded as

a stationary process as the raw material, the functions of product line,

proficiency of workers are the same.
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A better workable stationarity of the time series is the weak stationary

defined as followings24:

{

E[X
t
] = a ∀ t ∈ T

E[X
t+τ
− a][X

t
− a] = R(τ) ∀ t, t+ τ ∈ T .

Here, R(τ) is the covariance function of X
t
, which is independent of t.

1.1.6. Test for stationarity25

As we have mentioned in Sec. 1.1.5, we now discuss the stationarity in two

forms — weak and strong stationarity. In practice, we may consider not

only the statistics but also dynamic system characteristics. One useful way

is to check the absolute value of the latent roots λ s. If there is a |λ| > 1,

that indicates that stationarity is not tenable.2

A trend may be random or deterministic. The deterministic trend has

a consistent influence and makes the series non-stationary.2 However, the

system can still be treated as stationary when the trend drifts randomly.

(1) Plot We can examine the periodic trend by the plot of X
t

changing

along with t to check the stationarity. The series can be treated as stationary

if there is no evidence of periodicity. This strategy is easy to understand

and perform. However, the performer needs plenty of experience and the

results may be different from each other.

(2) Autocorrelation and partial autocorrelation The autocorrelation

and partial autocorrelation of a standardized time series (Ex(t) = 0) are

either tailed or cut off. If the two functions belong to neither of the above

situations, the series may be nonstationary. For example, autocorrelation

decreasing gradually (periodically or not) indicates that a particular trend

or periodicity may exist.

(3) Eigenvalue Fitting the series with a model and then calculate the

eigenvalues of the eigenfunction corresponded with the model. If all the

eigenvalues satisfy |λ| < 1, the series is stationary. Otherwise, it is

nonstationary.

(4) Parameters Autocorrelations can be used to define the stationarity.

We can check the model of time series and calculate the autocorrelations.

The following array can be obtained, where ϕ0 = −1. The parameters in

the first row are autocorrelations, in the second row are autocorrelations
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row parameters

1 ϕ0 ϕ1 ϕ2 · · · ϕn

2 ϕn ϕn−1 ϕn−2 · · · ϕ0

3 a0 a1 a2 · · · an−1

4 an−1 an−2 an−3 · · · a0

5 b0 b1 b2 · · · bn−2

6 bn−2 bn−3 bn−4 · · · b0

.

..
.
..

.

..
.
.. · · ·

.

..

2n − 3 l0 l1 l2

ordered inversely, in the third row are

a
i
=

∣

∣

∣

∣

∣

ϕ0 ϕ
n−i

ϕ
n

ϕ
i

∣

∣

∣

∣

∣

= ϕ0ϕi
− ϕ

n
ϕ

n−i
, i = 0, 1, 2, . . . , n− 1 .

In the determinant a
i
, the first column is the elements located in the first

two rows and the first column of the table, the second column is the elements

located in the first two rows and the ith column. In the fourth row are the

same elements as in the third row but ordered inverse-wise. In the fifth row

are,

b
i
=

∣

∣

∣

∣

∣

a0 a
n−1−i

a
n−1 a

i

∣

∣

∣

∣

∣

= a0ai
− a

n−1an−1−i
, i = 0, 1, 2, . . . , n− 2 .

The elements in the sixth row are same as those in the fifth row but ordered

inverse-wise. The other rows are calculated in the similar way. Only three

elements are left in the (2n − 3)th row. The series is stationary when the

following three conditions are satisfied.










































ϕ1 + ϕ2 + ϕ3 + · · ·+ ϕ
n
< 1

−ϕ1 + ϕ2 − ϕ3 + · · ·+ (−1)n

ϕ
n
< 1

|ϕ
n
| < |ϕ0| , |a

n−1| < |a0|

|b
n−2| < |b0|

· · ·

|l2| < |l0| .

(5) Inverse order test25 Inverse order test is a method to detect special

tends of mean or variance. The procedure is as follows.

• Cut the series into M parts and calculate their means or variances and

the results are analyzed.
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• Count the numbers of inversed orders. An inversed order is defined as

that, there is a value in the series greater than value that situated for-

merly, y
j
> y

i
(j > i). The number of inversed orders of y

i
is denoted as

A
i
. The total number of inverse orders is A =

∑

M−1

i=1
A

i
.

• Construct a statistic for hypothesis test. The expectation and variance

of the test statistics under the null hypothesis of no trend are as the

followings:

E(A) =
1

4
M(M − 1) (1)

D(A) =
M(2M2 + 3M − 5)

72
. (2)

Here M is the length of the series y
i
. We then establish a statistic Z,

Z =
[A+ 1

2
−E(A)]

√

D(A)
(3)

which distributes asymptotically as N(0, 1). The original series x
i

is sta-

tionary when |Z| < 1.96 under the significant level α = 0.05. Otherwise, x
i

is nonstationary.

The series x
i
contains an increasing trend when A is large and contains

a decreasing trend when A is small.

The hypothesis test mentioned here is effective to those monotonic

trends. As to those complicated trends, other strategies are needed.

(6) Hypothesis test based on number of runs25 Assume that the mean

of {X
t
} is X̄ and we transform the original series into a series of signs. Those

values equal or greater than X̄ are changed to be “+” and the rest to be

“−”. A piece of the new series composed of continuous and same signs is

called a run. For the series X
t
,

5 6 6 9 5 6 4 8 3 8

the mean is X̄ = 6 and the new series is,

− + + + − + − + − +

there are 8 runs in it.

The basic logic of run test is that the observations take values randomly

around the mean if the time series is stationary. If there are too few numbers

of run, the observations continuously get values higher or lower than the

mean, which indicates the existence of some monotonic trends or periodic

fluctuations. If there are numerous numbers of run, some nonrandom factors
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may also exist. For example, if there are n − 1 runs in a time series with

sample size n, it indicates that the observations are correlated negatively

with the first order.

Let N1 be the number of “+”s and N2 be the number of “−”s in the

transformed series and the total number of runs be r. To a random series,

we have

E(r) =
2N1N2

N

+ 1 ,

D(r) =
2N1N2(2N1N2 −N)

N

2(N − 1)
.

When both N1 and N2 are bigger than 15, the statistic Z = r−E(r)√
D(r)

is

distributed asymptotically as N(0, 1).

Under the significance level α, if r
L
< r < r

U
(r

L
= E(r) − 1.96

√

D(r)

and r
U

= E(r) + 1.96
√

D(r)) or when |Z| < 1.96 holds, the series is sta-

tionary. Otherwise, the series is nonstationary.

1.2. Inverse autocorrelation and its application in the

identification of ARMA models

Two important considerations to fit ARMA models are the goodness of fit

and abstention of parameters. Let’s assume that {x
t
} is a stationary time

series in which mean and auto-covariance both satisfy the weak stationary

conditions. The following is well known to us: If autocorrelation r(k) or

auto-covariance γ(k) is quite close to zero (i.e. cut off) after k = q and

partial autocorrelation p(k) decreased gradually (i.e. tailed down), {x
t
} is

often an MA(q) series. On the other hand, if partial autocorrelation p(k)

cut off at k = p and autocorrelation r(k) tailed down, {x
t
} is often a AR(p)

series. If both autocorrelation r(k) and partial autocorrelation p(k) tails

down, then {x
t
} is often an ARMA(p, q) series. When we try to establish

a proper model for time series, we wish a parsimonious model without too

much lack of fitness and nor over fitness may happen. Inverse autocorre-

lation is helpful for us to find a relatively optimal model as it may show

much structural information of the series.

1.2.1. Definition

We denote the spectral density of {x
t
} as S(f), auto-covariance of

as {x
t
}γ(k) autocorrelation of {x

t
} as r(k) and k the number of lag
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(k = 0, 1, . . .). We have,

γ(k) =

∫

1

0

e

2π ikf

S(f)df ,

r(k) = γ(k)/γ(0) .

Let Si(f) = 1/S(f) and 1/S(f) is integrable, then inverse autocorrelation

is defined as

γ
i
(k) =

∫ 1

0

e

2π ikf

Si(f)df (4)

ri(k) = γi(k)/γi(0) . (5)

Here, ri(k) can be comprehended as the autocorrelation of a time series

corresponded to a spectral density Si(f).

1.2.2. Some characteristics of ri(k)

(1) When {x
t
} fits an AR(p) model,

x
t
+ α1xt−1 + α2xt−2 + · · ·+ α

p
x

t−p
+ µ

t
= ε

t

we have

ri(k) 6= 0 k ≤ p

ri(k) = 0 k > p

If {x
t
} fits an MA(q) model, the ri(k) tends to tail down gradually.

(2) The inverse autocorrelation ri(k) can be used together with r(k) to

estimate the parameters in an ARMA(p, q) model. Assume that {x
t
} is a

series satisfying ARMA(p, q) model x
t
+

∑

p

j=i

α
j
x

t−j
+µ = ε

t
+

∑

q

j=1
β

j
ε

t−j

and we have the following difference equations:

r(k) + α1r(k − 1) + · · ·+ α
p
r(k − p) = 0 k > q

ri(k) + β1ri(k − 1) + · · ·+ β
q
ri(k − q) = 0 k > p

When r(k)’s and ri(k)’s are substituted with r̂(k)’s and r̂i(k)’s respectively.

The estimations of α
j
’s and β

j
’s are obtained by solving the above simul-

taneous linear equations. The least squares solution may be used when k is

large enough.

(3) If any parameters in an ARMA model equal to zero and the number

of necessary estimators are fewer than (p+ q + 2), the model changes into
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an ARMA with sparse coefficients.

x
t
+ α

i1xt−i1 + α
i2xt−i2 + · · ·+ α

ip
x

t−ip
+ µ

= ε
t
+ β

j1εt−j1 + β
j2εt−j2 + · · ·+ β

jq
ε

t−jq
, where ip ≥ p, jq ≥ q .

These kinds of models commonly happen in seasonal time series. It is diffi-

cult to judge the formation of the suitable model with only the information

from autocorrelation and partial autocorrelation. Fortunately, if the α
k
’s

are zero, the corresponding r̂i(k)’s are approximately zero. This will be

helpful for us to find a model with abstentious parameters and simplify the

calculation of parameter estimation.

1.2.3. Estimation of r̂i(k)

Assume that {x
t
} belongs to a model with pth order autocorrelation. Any

invertible ARMA series can be changed into an AR series with a higher

order (possibly infinite).26 σ̂2 and α̂
j
(j = 1, 2, . . . , p) are estimates to σ

2

and α
j

according to the information in the original series. ri(k)’s can be

estimated by,

r̂i(k, p) =

∑

p−k

j=0
α̂

j
α̂

j+k

∑

p

j=0
α̂

2

j

, where
α̂0 = 1 ,

k = 1, 2, . . . , p .

The α̂
j
’s can be solved by Yule-Walker’s Eq. (7) or Durbin’s recurrence

formulas.2

In practice, the order p is unknown at the beginning. When {x
t
} is a

pure AR process, p can be estimated by partial autocorrelation; When {x
t
}

is not a pure AR process, then inspect the r̂i(k, p)’s with different p. At the

place where p stops to fluctuate, the corresponding p is a suitable order.

r̂i(k) can also be estimated by periodogram.2

1.2.4. The use of r̂i(k)

The procedure to find suitable order of ARMA(p, q) is usually based on try

and error.2 In practice, p is the value where the residual variance begins

to be stable. If p is too small, the estimation of r̂i(k; p) is more likely to

be biased. If p is too big, the standard error is large. A good strategy is

to calculate a series of r̂i(k; p) with different p. After the proper p, r̂i(k; p)

tends stable.

With larger p and q, the ARMA(p, q) model may fit the data better.

However, larger order may lead to the increase of the estimation errors of



June 23, 2003 11:24 WSPC/Advanced Medical Statistics chap09

Time Series Analysis and its Applications in Medical Sciences 347

the parameters. Take AR(p) model for example. When α
p+1 = α

p+2 =

· · · = α
p̂

= 0, the real model AR(p) becomes a specific form of AR(p̂) when

p̂ > p. The precision of parameter estimation declines because of the extra

estimation for α
p+1, αp+2, . . . , αp̂

.

With the information provided by r̂i(k), the fitted model has a more

solid foundation. Especially to sparse coefficient models and seasonal au-

tocorrelation models, the effectiveness of the estimation will be improved

considerably. Some other principles such as FPE, AIC and BIC are also

commonly applied in model selection.27 No matter which principle is used,

the diagnostic tests on the residuals are necessary. If the residuals can pass

the tests of randomness, the model is an acceptable one. Otherwise, more

investigations are needed to find an effective model.

2. Predictions in Time Series

A condition for time series prediction is that the series can be summa-

rized with a set of parameters and they are consistent after the observing

time. The research by Box and Tiao28 showed that the predictive errors

will increase when the model fails to describe the series. Assume that the

prediction residuals are a1, a2, . . . , am
, the variance of noise is σ̂2 and then

the statistic Q̂ = σ̂

−2
∑

m

l=1
a

2
1 belongs to a F distribution with degree of

freedom m and (n− p), where p is the number of parameters in the model.

When Q̂ is larger than the critical value, we conclude that the model is lack

of fit.

When the original assumptions of the time series are changed and the

model fails to describe the time series, under the new conditions, we say

a structural break happens in the dynamic system. It is reported that29

we can decrease or offset the changes in the conditions with innovation of

intercept or difference of series. Structural breaks are ubiquitous caused by

known or unknown reasons. Granger and his colleagues have provided some

suggestions30 for model construction: If the structural breaks is expected,

the different models to the separate periods should be assigned correspond-

ingly. If it is unexpected, the preparation for dealing with the breaks should

also be considered before hand.

How to perform prediction after the breaks? Clements and Hendry31

have done some research on structural breaks. They conclude that an ideal

goodness of fit may not necessarily lead to a satisfactory predictions; a

definite change (e.g. the unification of the Western and Eastern Germany)

may not produce an item in the commonly used forecasting model. A
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precipitate innovation to the intercept may improve the predictive precision.

When structural breaks happen, the first thing for the researcher to do is

to find it as soon as possible. Then it is necessary to update the model

effectively. They both deny that nonlinear models have obvious signifi-

cance to economic data although the nonlinear theory has been developed

extensively.

The subjective prediction based on experience and the objective pre-

diction based on statistical modeling are both important in practice.32

With the development of computing power, objective prediction has moved

forward greatly. However, the performance of the prediction is based on as-

sumptions and the application is also constrained. For the objective method,

the assumptions are relatively weak and easy to apply. Many special topics

are available in the literature like how to detect and analyze the trend in

time series, the skills for dealing with seasonality, the flexibility in time

series, the way to treat noises in time series data, the effectiveness corre-

sponded with the length of historical values, how to choose a proper lead

time in prediction, the feedback effects in time series and how to present

results with an essential form.

Bewley33 has discussed how to combine these two aspects with the

examples of diffusion models and vector autoregressive models. Ten items

of principle is summarized for performing statistical predictions.

Seasonality is an important ingredient in time series analysis. Seasonal

difference and X-11 method for ARIMA series are used to detect particular

periodicity or other deterministic elements.27 The following model is needed

to describe the situation where some periodic elements exist.

x
t
=

S

∑

s=1

v
s
D

s,1 +

S

∑

s=1

φ
s,1 +

S

∑

s=1

φ
s,1Ds,t

x
t−1 + · · ·+

S

∑

s=1

φ
s,p
D

s,t
x

t−p
+ µ

t
,

where D
s,t

(s = 1, 2, . . . , S) are dummy variables. When t is in the sth sea-

son, D
s,t

= 1. Otherwise, D
s,t

= 0. This model above is called univariate

periodic time series model, which makes the prediction more effective.34

However, any inadequate seasonal adjustments will distort the character-

istics of the series in trend, periodicity and non-linearity.35 As to the unit

root test, it tends to accept the null hypothesis and lead to the abuse of

difference.36,37

Wallis and Whitley38 reviewed the predictive errors occurred in eco-

nomic prediction in England from 1984 to 1988. They found that the theo-

retical characteristics and practical efficiency are quite different. Innovation

is needed to supply necessary information to the model for prediction. If the



June 23, 2003 11:24 WSPC/Advanced Medical Statistics chap09

Time Series Analysis and its Applications in Medical Sciences 349

conditions of the original series have changed considerably, the prediction

errors will certainly increase. It is also reported that39 trend may appear

as the autocorrelation with lower orders, introducing into the model with

an autocorrelation item instead of a trend item will lead to the increase of

residuals. Welch suggested40 that the correlation between closely-located

values not be taken seriously into account but the shift of mean be paid

more attention. In one word, there is no such model that can substitute the

others. The predictive efficiency is correlated with special conditions and

the ideal model is only locally optimal.41

The time series analysis has used achievements in other disciplines.

The prediction with ARMA model has borrowed the principle from sys-

tem theory to process a signal with a filter, which has a particular

form of transfer function.42 The state transfer function and the mea-

surement function are x
r

= Fx
t−1 + Gε

t−1 and y = H

′
x

t
+ ε

t
, where

G = (φ1 − θ1, φ2 − θ2, . . . , φr
− θ

r
)′, H = (1, 0, . . . , 0)′. We have,

F =

























φ1 1 0 · · · 0 0

φ2 0 1 0 0

...
...

. . .
...

...

φ
r−2 0 0 · · · 1 0

φ
r−1 0 0 · · · 0 1

φ
r

0 0 · · · 0 0

























, F
θ

=

























θ1 1 0 · · · 0 0

θ2 0 1 0 0

...
...

. . .
...

...

θ
r−2 0 0 · · · 1 0

θ
r−1 0 0 · · · 0 1

θ
r

0 0 · 0 0

























,

and we can get the state transfer function as,

P
t+1,t

= F
θ

{

P
t,t−1 − Pt,t−1H

−1
∑

t

H

′
P

t,t−1

}

F

′
θ

.

Swanson43 tried to fit economic time series with several other models.

His results showed that flexible specification models and less flexible fixed

specification linear models both tend to capture the shifting trend easily,

especially when the lead time is longer than 1. When the strategy for model

selection has changed, the model may become less optimal and special cost

functions are needed for the evaluation of the models.

The prediction precision is one important consideration for model selec-

tion. The selection principles can be separated into the aggregate selection

rule and the individual selection rule. The former one is to select a uni-

form model for all variables and the later one is to select different models

for all variables respectively. Shah44 managed to apply individual selection
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rule combined with discriminate analysis. The result is that the individual

selection based on the scores of discriminate analysis is better than any

aggregate selections.

The disputes on the efficiency of established models are concentrated on

whether the mathematical models can summarize the causal or contextual

relations hidden in the time series. Lim and O’Connor45 have investigated

this issue. Their conclusion is that the effectiveness of prediction is not

improved if the information is not reliable. Otherwise, it will be better

than so called optimal model by the proceeding selection. However, some

researchers46 still engage themselves to obtain an optimal model that may

summarize the causal and contextual relation. The innovation to predictive

values is neglected.

2.1. ARIMA model and its application to the prediction of

medical supplies in a hospital

The sufficient supply of medical consumed material in polyclinics should be

provided to serve for the diagnostic and treatment activity. The prediction

is needed in order to avoid conflict between supply and demand.26

2.1.1. The method for prediction

The medical material demanded in a hospital is influenced by many factors,

which are difficult to be modeled with. However, the observed time series

of the consumed material can be treated as one realization of stochastic

process.27

The theoretical and practical researches on quantitative prediction have

been attracted more and more attention. The strategies such as moving

average, trend fitting, exponential move, seasonal trend model, Markov

chain, gray models and ARIMA models are all widely used.

2.1.2. ARIMA model

The ARMA(p, q) model was put forward synthetically by Box and Jenk-

ins in 19702 and is also called the Box-Jenkins model. The model can be

expressed as the following,

y
t
= ϕ1yt−1 + ϕ2yt−2 + · · ·+ ϕ

p
y

t−p
+ a

t
− θ1at−1

− θ2at−2 − · · · − θq
a

t−q
(6)
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where ϕ1, ϕ2, . . . , ϕp
and θ1, θ2, . . . , θq

are the coefficients of autoregression

and moving average. It can be simplified as ϕ(B)y
t
= θ(B)a

t
, where

ϕ(B) = 1− ϕ1B − ϕ2B
2 − · · · − ϕ

p
B

p

θ(B) = 1− θ1B − θ2B
2 − · · · − θ

q
B

q

and

By
t
= y

t−1 .

B is called the back shift operator. If the dth difference transform can

make a nonstationary time series change into ARMA(p, q),2 the model is

an ARIMA(p, d, q) model.

2.1.3. Identification of the model

Autocorrelation, inverse autocorrelation and partial autocorrelation are

three main resources for us to select models for a stationary time series.27

We have mentioned some principles about this at the beginning part in

Sec. 1.2. For those nonstationary series, using ARIMA(p, d, q) models may

be applicable. ARIMA(p, d, q)(P,D,Q)s models are useful to the series that

contains seasonality.27 The effectiveness of fitting is evaluated by analysis

of residuals. When the residuals are accepted as white noise, the model fits

the time series well.

2.1.4. Estimation of parameters and diagnostic test

The sample autocorrelation r
k

is the correlation of the time series with the

same series with a lag of k defined as

r
k

=

∑

n−k

t=1
(x

t
− x̄)(x

t−k
− x̄)

∑

n

t=1
(x

t
− x̄)2

.

By the relations of sample autocorrelations with the coefficients ϕ
k

and

θ
k
, the estimation of the coefficients in the model can be realized using

Yule-Walker equations.26

To the pth ordered autoregression process AR(p)x
t
= φ1xt−1 + φ2xt−2

+ · · · + φ
p
x

t−p
+ a

t
, we have the following simultaneous equations which



June 23, 2003 11:24 WSPC/Advanced Medical Statistics chap09

352 J. Zhang, Y. Zheng & D. Lai

are called Yule-Walker equations.


























ρ1 = φ1 + φ2ρ1 + · · ·+ φ
p
ρ

p−1 ,

ρ2 = φ1ρ1 + φ2 + · · ·+ φ
p
ρ

p−1 ,

...

ρ
p

= φ1ρp−1 + φ2ρp−2 + · · ·+ φ
p
,

(7)

where ρ
k

= cov(x
t
, x

t−k
). The estimated results of autoregression coeffi-

cients from (7) are called Yule-Walker estimators. Let

φ =















φ1

φ2

...

φ
p















, ρ
p

=















ρ1

ρ2

...

ρ
p















, P
p

=















1 ρ1 ρ2 · · · ρ
p−1

ρ1 1 ρ1 · · · ρ
p−2

...
...

... · · ·
...

ρ
p−1 ρ

p−2 ρ
p−3 · · · 1















. (8)

Using the sample autocorrelations we have ρ̂
p

= P̂
p
φ̂. The Eqs. (7) can be

denoted as φ = P

−1
p

ρ
p
, where

φ̂ =















φ̂1

φ̂2

...

φ̂
p















, P̂
p

= [r] , p̂ =















ρ1

ρ2

...

ρ
p















.

When p = 2, we can estimate φ1 and φ2 with the following formulas:

φ̂1 =
r1(1− r2)

1− r2
1

,

φ̂2 =
r2 − r

2

1

1− r2
1

The relationship between partial autocorrelations φ
ki

and autocorrelations

ρ is2

ρ
j

= φ
k1ρj−1 +φ

k2ρj−2 + · · ·+φ
k(k−1)ρj−k+1 +φ

kk
ρ

j−k
, j = 1, 2, . . . , k ,

where not all the φ
kj

’s are zero.














1 ρ1 ρ2 · · · ρ
k−1

ρ1 1 ρ1 · · · ρ
k−2

...
...

... · · ·
...

ρ
k−1 ρ

k−2 ρ
k−3 · · · 1












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










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φ
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


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
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








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ρ1

ρ2

...

ρ
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











, (9)
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i.e.

P
k
φ

k
= ρ

k
.

The solutions of the equations can be deduced when k = 1, 2, 3, . . .

φ11 = ρ1 , φ22 =

∣

∣

∣

∣

∣

1 ρ1

ρ1 ρ2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 ρ1

ρ1 1

∣

∣

∣

∣

∣

=
ρ2 − ρ

2

1

1− ρ2

1

,

φ33 =

∣

∣

∣

∣

∣

∣

∣

1 ρ1 ρ1

ρ1 1 ρ2

ρ2 ρ1 ρ3

∣

∣

∣

∣

∣

∣

∣

÷

∣

∣

∣

∣

∣

∣

∣

1 ρ1 ρ2

ρ1 1 ρ1

ρ2 ρ1 1

∣

∣

∣

∣

∣

∣

∣

· · · .

This is how we get partial autocorrelation φ
kk
.

The hypothesis test for the validity of the model includes at least the

followings:

• Stationarity and invertibility. This is to make sure that all the roots

in ϕ(B) = 0 and θ(B) = 0 are within the unit circle.

• The hypothesis test on residuals. When all the absolute values of the

sample autocorrelations of the residual series are smaller than 1.96/
√
n,

the series are regarded as being fitted well enough. Another method is

to use the statistic Q = n

∑

m

k=1
r

2

k

, where Q is asymptotically χ2

(k−p−q)

distribution. Here p and q are the orders of autoregression and moving

average, while n = N − d, N is the length of the series and d is the order

of difference.

• The hypothesis test to overfitting. All the redundant parameters are

supposed to be excluded from the model although we need to increase

the orders so as to reduce the sum of squared residuals.2

2.1.5. Prediction

With the model ϕ(B)y
t
= θ(B)a

t
, we can get

y
t
= ϕ

−1(B)θ(B)a
t
=

∞
∑

k=0

ψ
k
a

t−k

and

y
t+l

= ψ0at+l
+ ψ1at+l−1 + · · ·+ ψ

l−1at+1 +

∞
∑

j=0

ψ
l+j
a

t−j
.
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The predicted value with the lead time l is

ŷ
t
(l) =

∞
∑

j=0

ψ

∗
l+j

a
t−j

.

The weight coefficients ψ∗
l+j

’s can be calculated by the principle of least

squared predicted values. The estimator of the predicted value is ŷ
y
(l) =

∑∞

j=0
ψ

l+j
a

t−j
. The variance is E[a

t
(l)]2 = (ψ2

0
+ψ

2

1
+ · · ·+ψ

2

l−1
)σ2

a

.

2 Here

σ̂

2
a

=
∑

n

t=1
a

2

t

n−p−q

is the variance of the white noise. The 95% confidence interval

of the prediction is

ŷ
t
(l)± 1.96



1 +

l−1
∑

j=1

ψ̂

2

j





1/2

σ̂
a
.

2.1.6. An example

In the management of medical material (take X-ray film for example), de-

mand exceeds supply and supply exceeds demand are both the situations

that hospital wants to avoid. It is beneficial for hospital and patients to

forecast the demand of X-ray film.

In this section, we present an example on predicting the seasonal de-

mand of X-ray film in the Second Affiliated Hospital of Shanxi Medical

University using the information of seasonal demand from 1987 to 1997.

After transformation of Box-Cox with λ = 0.192, ARIMA model is used

and the resulting model is ARIMA(0, 1, 1)(0, 1, 1)s.27 The predicted values

in the first and the second season are 212.01 and 274.61. The relative errors

are −5.77% and −10.55%, respectively.

2.2. The efficiency of prediction

One of the purposes of modeling a time series is for predicting the future.

The prediction variance increases along with the increase of the lead time l.

The prediction precision declines gradually as l increases. If the prediction

needs be performed with a high value l, it is suggested combine the ARIMA

model with other techniques.47

2.2.1. Prediction errors and the confidence interval of prediction

The prediction error with lead time one can be defined as e
t−1(1) = x

t
−

x̂
t−1(1) = a

t
. At the time t − 1, x

t
is a random variable, so is the error.
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The error is e
t−1(1) ∼ NID(0, σ2

a

). The conditional distribution of the

observations for an AR(1) model is2

(x
t
|x

t−1) ∼ NID(φ1xt−1, σ
2

a

) .

The confidence interval of the prediction with confident level 95% is

x̂
t−1(1)± 1.96σ

a
, or φ1xt−1 ± 1.96σ

a
.

2.2.2. Correlation between prediction errors

The prediction errors from a fitted time series model are correlated. Take an

AR(1) model for example, the errors e
t
(2) = a

t+2 + φ1at+1 and e
t+1(2) =

a
t+3 +φ1at+2 are not independent. In fact, the covariance between them is,

Cov[e
t
(2), e

t+1(2)] = E(a
t+2 + φ1at+1)(at+3 + φ1at+2) = φ1σ

2

a

,

and the correlation can be expressed as

Cov[e
t
(2), e

t+1(2)] =
Cov[e

t
(2), e

t+1(2)]

{Var[e
t
(2)]Var[e

t+1(2)]}1/2
=

φ1σ
2

a

(1 + φ

2
1
)σ2

a

=
φ1

1 + φ

2
1

.

The prediction error to a ARMA(p, q) with lead time l is

e
t
(l) = a

t+l
+G1at+l−1 + · · ·+G

l−1at+1 ,

where G is called Green function. For the prediction errors e
t
(l) and e

t+j
(l),

we have covariance and correlation function as the following:

Cov[e
t
(l), e

t+j
(l)] = E[(a

t+l
+G1at+l−1 + · · ·+G

l−1at+1) .

(a
t+l−j

+G1at+l−j−1 + · · ·+G
l−1at+j+1)]

= σ

2

a

(G
j
+G1Gj+1 +G2Gj+2 + · · ·+G

l−j−1Gl−1) (j < l)

= 0 (j ≥ l) .

Cov[e
t
(l), e

t+j
(l)] =

G
j
+G1Gj+1 +G2Gj+2 + · · ·+G

l−j−1Gl−1

1 +G

2

1
+G

2

2
+ · · ·+G

2

l−1

(j < 1)

= 0 (j ≥ l) .
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2.2.3. Improve the prediction precision by indicator series

Indicator series is helpful for the improvement of prediction although an

ARMA model may fit a stationary time series with any needed precision

theoretically.2 However, take one or more correlated series into consi-

deration for the model, the prediction efficiency may not be necessarily

ameliorated.

For a given time series, the important foundations to establish the model

are dynamic characteristic, memory or correlation. One may not be able to

take into account all of the characteristics and that will lead to disappointed

results. In this situation, the indicator series may provide help for modeling

in some aspects. Firstly, indictor may supply some necessary supplemen-

tary information to the series especially when the prediction series is short.

Another situation is that, the probability structure is changing along the

time and the indicator may be useful to model the change.48 Scientific

knowledge in the subject area is needed to decide whether an indicator

series should be included into the model or not.

2.3. Combined predictions

Combined predictions are the methods with which to perform prediction

with the combination of several kinds of models so as to improve the pre-

diction efficiency. As long as the combination is properly organized, the aim

could be reached effectively.49 All the combined models have some rational

components in it and this is the foundation to expect the improvement of

efficiency by combination of models.

2.3.1. Unequal weights

As the efficiency of a model may change at different segments of the time

series, unequal weights are more reasonable comparing with the constant

ones. If a model is poor at all segments, the model should be excluded. If

a model is perfect all the time, it should be maintained as the only desired

model. Combination becomes meaningless under these two situations. The

unequal weights are coincided with the characters of the models.49

Comparing the combined predictions with unequal weights
∑

n

i=1
w

i
(t)

ŷ
i
(t) to those with constant weights

∑

n

i=1
w

i
ŷ

i
(t), we can construct objec-

tive functions for the purpose of minimizing the sum of squared errors. It

sounds reasonable for the combined predictions with unequal weights to
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reflect the dynamic correlation between observations and this makes the

predictions with unequal weights adapt to more types of time series.

2.3.2. Optimization of the weights

If a vector of weights K
n

can minimize the sum of squared errors, then

K
n

is called the optimized weights vector. Many Chinese statisticians have

done a lot concerning optimized combination. Tang et al.50 has paid much

attention on how to optimize the weights.

Although we have optimized values for the unequal weights, it is diffi-

cult to calculate them. According to the definition of optimized combined

prediction, the vector of optimal weights is an n-dimension column vector,

in which only one element is 1 and other elements equal to 0. The location

of 1 is uncertain. Most of the time the vector cannot be solved out since it

is difficult for any single strategy of combination to summarize the proper-

ties of all kinds of methods. Under different circumstances, we may have to

apply different combination to conform prediction precision.

3. Spectral Analysis

3.1. Considerations on seasonality (periodicity,

circadian rhythm) in time series

Seasonality (periodicity) is a commonly observed phenomenon in time series

and it is an important basis for us to establish models. In the frequency

domain, seasonality can be identified by “the peaks in a periodogram

located at certain particular frequencies”. In the time domain, it shows

as the regular cycles caused by seasonal factors (for example the climate,

religious festivals, etc.). The features include external variables that cannot

be controlled by artificial means but may be predicable to some extent.

The consideration on seasonality is more significant in long-term predic-

tions than in short-term predictions in some cases.51 Fisher and Wallis

indicated some main factors, such as external variables, residual innova-

tion, some dynamic characteristics of the series and the annual projects,

are the direct causations to seasonality.52 The adjustments on these causa-

tions may counteract the influence of seasonality. In one medical research

on the relations of mood with sunshine and temperature, many patients

are detected to be influenced by these two factors after the seasonality has

been taken into account.
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Albertson and Avlen53 compared the effects of different models when

using seasonality. Their results showed that goodness of fit and prediction

can be improved considerably if seasonality was modeled. The periodic au-

toregressive model is only good in short-term predictions. However, ARIMA

models with dummy variables work fine in many situations. It is suggested

introduce terms with bigger lags so as to capture the property with longer

intervals of periodicity.2

US Census Bureau developed the X-11 model to process time series

including periodicity of month or season.27 The original series is denoted

as a summation model or multiplication model. Take multiplication model

(O
t
= S

t
C

t
D

t
I
t
) for example, C

t
is the term of trend, which also includes

other long-term. S
t
is the change that happens within a year and the value

of S
t

is constant or shift slowly in every year. The item D
t

corresponds to

trade date, which may locate at different positions in the calendar. The ir-

regularity is denoted by I
t
that is the residuals left and cannot be explained

by S
t
, C

t
and D

t
. C

t
and O

t
are at a similar quantitative scale. The three

other terms may have values near 1.0 (or in the percentage form, 100.0).

Eliminating the seasonal component will be helpful to reveal the difference

between two months or two seasons. The adjusted series may show more

clearly the importance of trend. In general, the application of this strategy

has improved the effectiveness of seasonal adjustment.54–56

Hillmer and Tiao have discussed the seasonality in ARIMA models.57

Let Z
t

= S
t

+ T
t

+ N
t

be the summation-formed model, where S
t
, T

t

and N
t

are seasonality, trend and random noise respectively. Assume that

these three components belong to an ARIMA model themselves, φ
s
(B)S

t
=

η
s
(B)b

t
, φ

T
(B)T

t
= η

T
(B)C

t
and φ

N
(B)N

t
= η

N
(B)d

t
. As to Z

t
, we have

ϕ(B)Z
t
= θ(B)a

t
. Here the highest order in φ

s
(B), φ

T
(B) and φ

N
(B) is the

same as the order of ϕ(B), θ(B) and σ

2

a

can be obtained by the following

equation:

θ(B)θ(F )σ2
a

ϕ(B)ϕ(F )
=
η

s
(B)η

s
(F )σ2

b

φ
s
(B)φ

s
(F )

+
η

T
(B)η

T
(F )σ2

c

φ
T
(B)φ

T
(F )

+
η

N
(B)η

N
(F )σ2

d

φ
N

(B)φ
N

(F )
.

The research of Burridge and Wallis58 has showed that seasonality

adjustment and Kalman filter may reserve and prolong the information

about the difference of variances in all the seasons.59 They have deduced

out the calculation of variances for season-adjusted data. For predictions to

seasonal series, Chen60 studied the robustness of different models with the

Monte Carlo method. Under the parsimonious principle, he found that Holt-

Winters method (a model with consideration of trend and seasonality) and
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ARIMA models are good enough in terms of robustness to most seasonal

influences. If parsimony is not concerned, ARIMA models, classical regres-

sion models and structural component models are not robust. One of the

hottest research areas in time series is to decompose trend and seasonality

from the series. Smoothness Priors-State Space Model is put forward by

Kitagawa and Gersch61 to portray information on these two aspects. They

used the statistic Q to measure the goodness of fit and the focus of attention

was on residuals. The selection principles (e.g. AIC) focus on the abilities

of the models.

3.2. The basic concepts on spectral analysis

The spectral analysis on stationary models is to infer the distribution func-

tions according to the observed series, such as the estimation or hypothesis

test to spectral density or characteristic peaks in the periodogram. The

spectrum of stationary series is a description of its statistical characteris-

tics. As to multiple time series, principal component analysis and canonical

correlation can be used for detecting frequency components in the series.

Window functions are needed to improve the characteristics of the esti-

mation. The spectral density function f̂(ω) is called the estimation with a

spectral window.24

The squared amplitude I
i

in the periodogram corresponds with the

variance that the ith component contributes to the total variance.

G(r) = I(r)/
∑

M

i=1
I
i

is constructed to determine whether the rth biggest

component is of statistical significance.49

The autocorrelation function in time domain and the spectrum in fre-

quency domain are equivalent mathematically. They both are important

foundation in time series modeling.

3.3. The application to time series

It is well known that a beam of sunlight can be decomposed into red, orange,

yellow, green, blue and violet colors. A particular color is corresponding

to a wave with particular frequency. The similar situations exist in time

series. The vibrations in time series can be decomposed into sine (or co-

sine) waves with different frequencies and amplitudes. Studying the spectral

characteristics in medical time series is helpful for revealing the nonrandom

information that conceals in the series and benefits the effectiveness of

fitting.49
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3.3.1. Time domain and frequency domain

Time series {x
t
} can be regarded as the observed result of a dependent

variable while the corresponding independent variable is time. Some func-

tions such as autocorrelation, partial autocorrelation can be constructed in

time domain in order to describe the series.24 The analysis that only uses

the functions whose corresponding dependent is time is called the analysis

in time domain. With Fourier transformation, the dependent variable

turns into frequency and the related analysis is performed in frequency

domain.

For the stationary time series {x
t
},

ϕ(B)x
t
= θ(B)a

t

where
ϕ(B) = 1− ϕ1B − · · · − ϕp

B

p

,

θ(B) = 1− θ1B − · · · − θq
B

q

,

we have the spectral density function as the following:

SARMA(f) = σ

2

a

∣

∣

∣

∣

1−
∑

q

K=1
θ

K
e

−i2πKf

1−
∑

p

K=1
ϕ

K
e

−i2πKf

∣

∣

∣

∣

2 (

−
1

2
≤ f ≤

1

2

)

, (10)

3.3.2. White noise

For white noise, the spectral density is s
a
(f) =

∑∞

K=−∞ r
K
e

−i2πKf = σ

2
a

.

The density function becomes a constant just like white light contains all

kinds of light with equal amplitudes.

If a time series fits a model very well, the residuals will be white noise

series. The goodness of fit becomes a hypothesis test on residuals.

The hypothesis test on white noise is to judge whether all the autocor-

relations ρ
K

(a) = 0(K 6= 0) in time domain. While in frequency domain, it

is the test to judge whether s
a
(f) is a constant.24

H0 : {a
t
}, t = 1, 2, . . . , N is white noise.

When N is large enough, the M components (M is an integer, M ≤ N

4
)

are
√
Nρ̂1(a),

√
Nρ̂2(a), . . . ,

√
Nρ̂M(a)

distribute as N(0, 1) approximately under the null hypothesis of H0. The

test on the independency of {a
t
} becomes the test on whether the M

estimates are distributed as N(0, 1) asymptotically. The statistic Q =
∑

(
√
Nρ̂

j
(a))2 = N

∑

M

j=1
ρ̂

2

j

(a) is a X

2 distribution with freedom of

(M − p − q). When we have Q ≤ χ

2

α(M−p−q)
, we say the model is well

fitted.2
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3.4. Spectral analysis for outpatient flow

Spectral analysis has become an important skill in data process and

systematic analysis in engineering and other related fields, especially after

Cooley and Tukey introduced Fast Fourier Transform (FFT) in 1965 and

the availability of the computing power. Here an example in hospital

management is given to illustrate the application.

3.4.1. Transformation from time domain to frequency domain

With Fourier transformation, a time series can be transformed from time

domain to frequency domain.24

X(ω) =

∫

+∞

−∞

x(t)e−iωt
dt . (11)

The inverse transformation can also be fulfilled with the following:

x(t) =
1

2π

∫

+∞

−∞

X(ω)eiωt

dω , (12)

which is called inverse Fourier transformation.

When the observations are obtained at discrete time, the definition of

Fourier transformation is,

X
k

=
1

N

N−1
∑

t=0

x
t
e

−i2πk/N

, k = 0, 1, 2, . . . (13)

X
k

is called the finite discrete Fourier transformation (DFT) and can be

abbreviated as X
k

= DFT[x
t
]. The inverse discrete Fourier transformation

is,

x
t
=

N−1
∑

k=0

X
k
e

i2πk/N

. (14)

Assume that the discrete series {x
s
}, s = 0, 1, 2, . . . , N − 1 is sample

from the continuous procedure x(t) in [−T

2
,

T

2
] with equal intervals. Here

N is the sample size, T is the length of sampling time and ∆ = T/N is

the length of interval for sampling. Fourier transformed form of x
s

and x(t)

have the relation as the following:

X(ω) = lim
∆→0

lim
T→∞

TK
k
.
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3.4.2. Spectral density function and its estimation

For the time series {x
t
} = 0, 1, 2, . . . , N − 1 with sample size N , the power

spectral function can be defined as24

P
N

=
1

N

N−1
∑

t=0

x

2

t

.

When X
k

is the Fourier transformation of x
t
, the following can be

proved:

P
N

=

N−1
∑

k=0

|X
k
|2 .

The spectral function

S

∗
x

(k) = T |X
k
|2 , (15)

S

∗
x

(k) = T ·DET

[

1

N

N−1
∑

t=0

x
t
· x

t+τ

]

= T ·DET[C
τ
] . (16)

The spectral function is an important statistical description of a stationary

process. The estimation of spectral density function is based on the infor-

mation from the observed values. Spectral windows are used to construct

consistent estimate of the special density function of the time series.62,63

3.4.3. An example

The outpatient attendances with respiratory, gastrointestinal and cardio-

vascular diseases in the second affiliated hospital of Shanxi Medical Uni-

versity from May 1989 to December 1998 are studied. Bartlett Window is

used to smooth the periodogram.

The spectral analysis was done with SAS6.12 software. The statistic of

Kolmogorov-Smirnov is larger than a

√

1/(m− 1) = 1.36
√

1/(116− 1) =

0.1268 (m is the sample size). The hypothesis, that the original series is a

white noise, is rejected.

The characteristics of Figs. 4 and 5 are similar. There are two peaks at

4 months and 12 months, respectively, although the heights are different.

These two peaks correspond with two periodic components in the series and

we have one more obvious peak at 24 months in respiratory patient flow. In

these series, the peaks at 12 and 24 months are related to the annual periodi-

city corresponding to physiological regularities of human being, pathogenic

microorganism and other pathogenic factors. In spring, pollen in the air is
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Fig. 4. Periodogram of the outpatient attendance of gastrointestinal disease in the
second affiliated hospital of Shanxi Medical University.
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Fig. 5. Periodogram of the outpatient attendance of respiratory disease in the second
affiliated hospital of Shanxi Medical University.

high; in autumn, artemisia plants are prosperous; in winter, the temperature

is very low. These three important pathogenic factors cause outbreak in

the interval of 4 months and they leads to the peak at four months in the

periodogram. As to the periodogram for gastrointestinal patient flow there

is a peak at four months. At the end of summer and beginning of autumn
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Fig. 6. Periodogram of the outpatient attendance of cardiovascular disease in the second
affiliated hospital of Shanxi Medical University.

we have a high prevalence rate on enteritis because of much more raw food

and cold drink. During the shifting time from winter to spring and from fall

to winter, the prevalence rates of gastritis and gastric ulcer diseases turn to

be high (further pathology explanation is needed). The three events above

have nearly the interval of four months.

In the periodogram of cardiovascular patient attendance, there is a

12-months peak corresponding to seasonality. This may be caused by

physiological regularities of human being and other pathogenic factors. The

characteristics of periodograms corresponding to different factors are quite

different.

3.5. The identification of potential periodicity

in time series

It is important to identify potential periodicity in time series analysis in

frequency domain.

3.5.1. The mathematic model to describe the periodic components

A time series {x
t
} that consists periodicity can be described as the following

x
t
=

k

∑

i=1

(a
i
cos 2πf

i
t+ b

i
sin 2πf

i
t) + ε

t
. (17)
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The estimations of â
i
, b̂

i
, i = 1, 2, . . . , k may be obtained by the least

squared method. Set some particular frequencies f1, f2, . . . and construct

the model as (17). Take frequency f1 for example, the estimations of â1

and b̂1 will make â2

1
+ b̂

2

1
significantly larger than zero if f1 locates near

to a potential frequency. Otherwise, we say that they are not significantly

different from zero and the corresponding frequency may not exist.

3.5.2. Hypothesis test for the peaks in the periodogram

Not all the peaks located in a periodogram are significantly different from

zero. It is true that we may find some peaks in the periodogram even though

the corresponding time domain series is a white noise due to the variability

of the estimate. Hypothesis test is needed to statistically test the peaks

that are caused by nonrandom variation.

The hypothesis test intends to test the amplitude c
i
=

√

a

2

i

+ b

2

i

.

H0 : c
i
= 0 , i = 1, 2, . . . , k .

Let s = [N

2
], I

j
is the periodogram ordinate. The statistic for hypothesis

test is constructed as

g =
max1≤j≤s

(I
j
)

∑

s

j=1
I
j

, (18)

which is called a Fisher statistic. Under the assumption of H0 Fisher proved

that the distribution of g is,

P [g > Z] = s(1− Z)s−1 −
s(s− 1)

2
(1− 2Z)s−1

+ · · ·+ (−1)s

s!

a!(s− a)!
(1− aZ)s−1

. (19)

Here, a is the maximum integer less than 1/Z.

Fisher test deals with only the highest peak in the periodogram.

Whittle24 popularized it to the second highest peak. Let I
j1 is the first

highest peak, I
j2 is the second highest peak and the corresponding statistic

is

g2 =
I
j2

(
∑

s

j=1
I
j
)− I

j1

.

The distribution of g2 above is similar with that of (19). If the hypothesis

test to I
j2 is significant, we continue to test the next highest peak until all

the significant peaks are detected.
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3.5.3. The cleavage of a peak

A single peak may split into several nearly located peaks when the Fourier

frequencies 2πf
i

do not contain the non-Fourier frequency of the cyclic

mechanism of the time series. It can be proved that periodogram is an

unbiased estimation of power spectrum. However, it is not a consistent

estimator of the spectral density function.

4. Nonlinear Model

4.1. Threshold autoregressive model

This model is brought forward by Tong64 in 1978. The general formation

is,

X
t
= ϕ

(j)

0
+

Pj
∑

i=1

ϕ

(j)

i

X
t−i

+ ε

(j)

t

,

while r
j−1 ≤ Xt−d

≤ r
j

j = 1, 2, . . . , k . (20)

The set of r
i
’s (−∞ = r0 < r1 < · · · < r

k
= ∞, r

j
, j = 1, 2, . . . , k − 1) are

called threshold values, d is called the parameter of delay. {ε
(j)

t

} is a white

noise series that has a variance of σ2

j

. {ε
(j)

t

} and {ε
(j

′
)

t

} are independent to

each other when j 6= j

′.

The Eq. (20) shows that the threshold values divide the axis (−∞,∞)

into k intervals. In every intervals, X
t

is expressed by an autoregressive

model with the order of p
j
. Actually, the model is composed of k au-

toregressive models with different orders. It can be denoted as SETAR

(d, k, p1, . . . , pk
).

The most commonly used threshold autoregressive model is SETAR

(d, 2, p1, . . . , pk
). This model can be expressed as,

X
t
=







ϕ

(1)

0
+ ϕ

(1)

1
+ · · ·+ ϕ

(1)

p1
X

t−p1
+ ε

(1)

t

X
t−d
≤ r1 ,

ϕ

(2)

0
+ ϕ

(2)

1
+ · · ·+ ϕ

(2)

p2
X

t−p2
+ ε

(2)

t

X
t−d

> r1 .

(21)

In medical research, the thresholds can be determined by professional

knowledge. For example, in a relatively fixed population, the prevalence

rate of tuberculosis is correlated with the average antibody level r1. For the

cases of the prevalence higher or lower than the critical value, the dynamics

of prevalence are quite different. In this situation, a threshold autoregres-

sion model is applicable and the average antibody level r1 is used as the

threshold.
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4.2. Bilinear model

This model is raised in economic field.65 For example, the output in the tth

year is x
t

and it is used as the input of the next year. The rate of recovery

y
t

is an MA (1) model

y
t
=
x

t
− x

t−1

x
t−1

= ε
t
+ θε

t−1 ,

The output of this year is,

x
t
= x

t−1 + ε
t
x

t−1 + θε
t−1xt−1 ,

which is called a bilinear model.

A generalized form of it is

x
t
=

p

∑

i=1

ϕ
i
x

t−i
+

q

∑

i=0

θ
i
ε

t−i
+

Q

∑

k=0

P

∑

l=1

β
kl
ε

t−k
x

t−l
.

Here, {ε
t
} is a white noise series. ε

t
and ε

s
are dependent random variables,

with means are zero and variance is σ2
s

. (p, q, P,Q) are the orders of the

model.

This model is a linear function of x
t

when ε
t

is given and is a linear

function of ε
t

when x
t

is given. That is why it is called a bilinear model.

4.3. Exponential autoregressive model

It was put forward by Ozaki.65 The generalized form of this model is,

x
t
=

p

∑

i=1

(ϕ
i
+ ψ

i
e

−rx

2

t−1)x
t−i

+ ε
t
.

Here, ϕ
i
, ψ

i
, r > 0 are all constants and {ε

t
} is a white noise series.

This model is used to describe some medical time series where the am-

plitudes are closely correlated.

4.4. State dependent model

This model was raised by Priestley65 in 1980. The generalized form is,

x
t
= µ(x

t−1) +

p

∑

j=1

ϕ
j
(x

t−1)xt−j
+

q

∑

i=1

θ
i
(x

t−1)εt−i
+ ε

t
,
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where x
t−1 = (ε

t−q
, . . . , ε

t−1, xt−p
, . . . , x

t−l
)τ and the model can be

denoted as SDM(p, q).

SDM(p, q) is a widely used model.

(1) It becomes an ARMA(p, q) when µ(x
t−1), ϕj

(x
t−1) and θ

i
(x

t−1) are

dependent on x
t−1.

(2) When θ
i
(x

t−1) ≡ 0(i = 1, 2, . . . , q), x
t−d
∈ R(i), we have ϕ

j
(x

t−1) =

ϕ

(i)

j

, µ(x
t−1) = µ

(i), j = 1, 2, . . . , p. R(i) = (r
i−1, ri], i = 1, 2, . . . , l,−∞ =

r0 < r1 < · · · < r
l−1 < r

l
=∞. In this situation, the SDM(p, q) becomes a

threshold autoregressive model.

x
t
= µ

(i) +

p

∑

j=1

ϕ

(j)

j

x
t−j

+ ε

(j)

t

, while x
t−d
∈ R(i)

i = 1, 2, . . . , l .

(3) When θ
i
(x

t−1) = 0(i = 1, 2, . . . , q), µ(x
t−1) = 0, ϕ

j
(x

t−1) =

ϕ
j

+ ψ
j
e

−rx

2

t−1(j = 1, 2, . . . , p), the SDM(p, q) becomes an exponential

autoregressive model.

(4) When µ(x
t−1), ϕj

(x−1)(j = 1, 2, . . . , p) are constants and θ
i
(x

t−1) =

ψ
j
+

∑

p

k=1
β

jk
x

t−k
, j = 1, 2, . . . ,max(q,Q). Here p and Q are both positive

integers. When q < Q, θ
j

= 0; when q > Q, β
jk

= 0, j = 1, 2, . . . ,max(q,Q).

SDM(p, q) becomes to be a bilinear model.

5. Multivariable ARMA Model

To those complicated medical phenomena, multivariable time series analysis

is useful.65

5.1. The concept

Let X
t
= (X1t

, X2t
, . . . , X

kt
)τ is a k-dimension stationary time series with

mean zero (to every X
it
, i = 1, 2, . . . , k). X

t
satisfies,

X
t
− ϕ1Xt−1 − · · · − ϕp

X
t−p

= ε
t
− θ1εt−1 − · · · − θq

ε
t−p

(22)

Here, ϕ
i
(i = 1, 2, . . . , p), θ

j
(j = 1, 2, . . . , q) are all k × k matrix. ϕ

p
6= 0,

θ
q
6= 0, ε

t
= (ε1t

, ε2t
, . . . , ε

kt
)τ is k-dimension white noise series. That is,

Eε
t
= 0, Eε

t
ε

τ

s

=

{

S , when t = s

0 , when t 6= s .

Here S is a k × k positive definite matrix. Eε
t
X

τ

t−j

= 0, j = 1, 2, . . . .
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The polynomial of operator B is also a k × k matrix.

ϕ(B) = I − ϕ1B − ϕ2B
2 − · · · − ϕ

p
B

p

θ(B) = I − θ1B − θ2B
2 − · · · − θ

q
B

q

.

Here, I is a k× k unit matrix. When all the roots of det(ϕ) = 0 are located

in the unit circle, the series is stationary. When all the roots of det(θ) = 0

are located in the unit circle, the series is invertible. The original series is

called an ARMA(p, q) series. It is well known that any ARMA(p, q) series

can be approximated by an AR(p) model.

5.2. The Yule-Walker estimation of the parameters

Assume that stationary {X
t
} is an AR(p) series with mean 0,

X
t
− ϕ1Xt−1 − · · · − ϕp

X
t−p

= ε
t
, t = 1, 2, . . . , n . (23)

X

τ

t−h

is multiplied at the both sides of the equation. After the expectation

is performed, we have

γ0 =

P

∑

i,j=1

ϕ
j
γ

i−j
ϕ

τ

i

+ S ,

γ
h

=

P

∑

j=1

ϕ
j
γ

h−j
, h = 1, 2, . . . . (24)

Here γ
h
, h = 1, 2, . . . are all positive definite matrixes. Let h = 1, 2, . . . , p.

Because of γ−h
= γ

τ

h

, we have the linear equations as the following:













γ

τ

1

γ

τ

2

· · ·

γ

τ

p













=













γ0 γ1 · · · γ
p−1

γ

τ

1
γ0 · · · γ

p−2

· · · · · ·

γ

τ

p−1 γ

τ

p−2 · · · γ0

























ϕ

τ

1

ϕ

τ

2

· · ·

ϕ

τ

p













. (25)

The estimation can be obtained when we substitute γ
h

above with γ̂
h
.

As to the γ̂
h
’s they can be derived by the following formula

γ̂
h

=

n

∑

t=h+1

x
t
x

τ

t−h

/n . (26)
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Let

Γ̂
p

=













γ̂0 γ̂1 · · · γ̂
p−1

γ̂

τ

1 γ̂0 · · · γ̂
p−2

· · · · · ·

γ̂

τ

p−1
γ̂

τ

p−2
· · · γ̂0













, ξ̂
p

=













γ̂

τ

1

γ̂

τ

2

· · ·

γ̂

τ

p













, Φ
p

=













ϕ̂

τ

1

ϕ̂

τ

2

· · ·

ϕ̂

τ

p













(27)

be the estimation of (25) can be fulfilled by

Φ̂
p

= Γ̂−1

p

ξ
p
, (28)

which is called Yule-Walker estimation (or moment estimation).

In practice, we can use least square estimation, recursive algorithm to

estimate the parameters.65

5.3. Predictions and errors

Assume that the AR(p) model is denoted as

X
t
− ϕ

p1Xt−1 − · · · − ϕpp
X

t−p
= ε

t
.

The prediction with the lead of one is X̂
t−1(1), that is

X̂
t−1(1) = ϕ

p1Xt−1 + ϕ
p2Xt−2 + · · ·+ ϕ

pp
X

t−p
,

and the prediction error is X̃ = X
t
− X̂

t−1(1) = e
t
. The variance matrix of

the prediction is EX̃
t
X̃

τ

t

= Ee
t
e

τ

t

= S
p

If the parameters are estimated by

ϕ̂
p1, ϕ̂p2, . . . , ϕ̂pp

, the prediction with lead of one is x̂
t−1(1) = ϕ̂

p1Xt−1 +

ϕ̂
p2Xt−2+ · · ·+ϕ̂

pp
X

t−p
. The variance of the prediction errorD

p
= EX̂

t
X̂

τ

t

can be obtained from

D̂
p

=

(

1 +
kp

n

) (

1−
kp

n

)−1





γ0 −

p

∑

j=1

ϕ̂
pj
γ̂

τ

j





. (29)

6. Some Supplementary Topics

The research on time series has been driven by applications. There are many

new development: (1) from linearity to nonlinearity; (2) apply the time

series theory to the unbalanced models and establish dynamic unbalanced

models to perform prediction; (3) combine Bayes theory with time series

analysis to detect the changing point in dynamic data.
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6.1. Nonlinear time series model

6.1.1. The smooth state transform model65

X
t+1 = α

τ

1Wt
+ ϕ(rτ

W
t
)(ατ

2Wt
) + ε

t
.

ϕ(·) is a monotonous limited function on (0, 1), rτ

W
t

is the transforming

variable, which is applied to fulfill the transform between two states.

The model above can be expressed as the following,

{

state 1 : X
t+1 = α

τ

1Wt
+ ε

t
, r

τ

W
t
= 0 and ϕ(0) = 0

state 2 : X
t+1 = (ατ

1
+ α

τ

2
)W

t
+ ε

t
, r

τ

W
t
= 1 and ϕ(0) = 1 .

6.1.2. The model with time variable parameters

X
t+1 = α

t
W

t
+ ε

t
. (30)

Here, α
t

is a parameter that change across time and it is not a function of

W
t−j

(j 6= 0). For example α
t
= ϕα

t−1 +a
t
, while a

t
is white noise and unit

roots exist.

α
t

can be regarded as a marginal cost parameters. Time variable

parameters can be estimated by Kalman algorithm.65

6.1.3. Projective pursuing model

X
t+1 = α

τ

W
t
+

q

∑

j=1

r
j
ϕ

j
(βτ

j

W
j
+ θ

j
) + ε

t+1 . (31)

Here, ϕ
j
(·) is a smooth function and the estimation is performed first to

those given values.

6.1.4. The system of neural network

X
t+1 = α

τ

W
t
+

q

∑

j=1

r
j
ϕ(Bτ

j

W
t
+ θ

j
) + ε

t+1 . (32)

Here, ϕ(·) is a monotonic limited function e.g. ϕ(z) = (1 + exp(−z))−1
.

The models (31) and (32) are both a kind of weighted projecting pro-

cesses, which can be used in complicated medical time series. Even to

outliers from the regular scatters, these models work fine.
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6.1.5. Product model65

X
t+1 = α

τ

W
t
+X

t−j
ε

t−k
+ Y

i,t−j
ε

t−k
.

Here W
t

contains the lagged X and lagged Y . The product item will lead

to nonlinearity.

6.1.6. Flexible Fourier model 65

X
t+1 = α

τ

W
t
+

q

∑

j=1

r
j
cos(βτ

j

W
t
+ θ

j
) + ε

t+1 .

The estimation to the parameters is relatively complicated. Some par-

ticular transformations are needed to produce a linear or nonlinear model.

Then, the estimation will be meliorated.

6.2. Vector autoregression model (VAR)

Sims65 put forward this model, as he doesn’t deem the assumption is helpful

that some variables be treated as external variables, nor the assumption

that some parameters equal to zero reasonable.

Sims suggested that the same numbers of variables are needed in the

structural equations in order to find all the possible interaction. The main

difference of the classical viewpoints and Sims’s idea is that whether a

variable can be defined as a internal or external one.

Generally speaking, a VAR model has the following shortcomings: The

model will depend on the transformation of data and the series is assumed to

be stationary; there is a gap between the theory and practice; the simplified

multinomial should be orthogonalized when it is used to prediction. As no

feedback relation is included in the model, the influence with a delay cannot

be described.

6.3. Bayesian theory in medical time series prediction

To the ordinary linear model Y = XB + U , all frequentist’s methods

are based on an assumption that all the estimated parameters are fixed.

Unfortunately, it seems that this assumption does not hold all the time. In

the view of Bayesian theory, the parameters B’s are random. The posterior

distribution is determined by prior knowledge. The change of model struc-

ture is detected and the theoretical hypothesis is tested. The most special

point in Bayesian methods is that prior knowledge is used in prediction.
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In recent years, a new idea is to apply time series theories into Bayesian

models to predict the change points in the dynamic data with prior

information.65

6.4. Unbalanced time series model

This model was used to predict the economy situation in Poland by

Bowditch65 in 1987. Because of the confinement from the unbalanced theory

and the modeling skills, the application of this method keeps at a logjam.

However, it is always a possible topic in economic prediction.

Some researchers begin to combine time series theory with unbalanced

model and a new direction is formed.65 This direction is paid much attention

as it can explain the complex medical time series very well under some

particular situation.
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Medical images are two-dimensional stochastic signals. There are many

common issues of stochastic signals such as noise removal, signal restora-

tion, signal sampling, etc. There are also many special issues which are

relevant to high dimensional signals only, such as segmentation, cluster-

ing, etc. This chapter discusses issues of medical imaging. In particular,

we will discuss the application of statistical methods in this area.

1. Introduction

Medical imaging is a fast growing area with the richest source of informa-

tion and variety of modalities such as Magnetic Resonance Imaging (MRI),

X-ray Transmission Imaging (X-ray), Computerised Tomography (CT),

ultrasound images (both 2D and 3D), Positron Emission Tomography

(PET), Single-Photon Computed Tomography (SPECT), Magnetic Source

Imaging (MSI), Electrical Source Imaging (ESI), X-ray Mammography

(MG), Orthopantomograms (OPG), and many others.

MRI is one of the most powerful non-invasive techniques in diagnostic

clinical medicine and biomedical research. The technique is an application

of nuclear magnetic resonance (NMR), a well-known analytical method of

chemistry, physics and molecular structural biology. MRI is primarily used

as a technique for producing anatomical images, but MRI also gives infor-

mation on the physical-chemical state of tissues, flow diffusion and motion

information. Magnetic Resonance Spectroscopy (MRS) gives chemical/

composition information. MRI has revolutionised imaging of the brain,

spine and the musculoskeletal system. Superb soft tissue contrast and

379
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spatial resolution have made MRI the investigation of choice in many

neurologic and orthopaedic diseases.

X-rays are generated by the interaction of accelerated electrons with a

target material (usually tungsten). X-rays are deflected and absorbed to

different degrees by the various tissues and bones in the patient’s body.

The amount of absorption depends on the tissue composition. For example,

dense bone matter will absorb many more X-rays than soft tissues, such

as muscle, fat and blood. The amount of deflection depends on the density

of electrons in the tissues. Tissues with high electron densities cause more

X-ray scattering than those of lower density. Thus, since less photons reach

the X-ray film after encountering bone or metal rather than tissue, the

X-ray will look brighter for bone or metal.

CT became generally available in the mid 1970s and is considered one

of the major technological advances of medical science. X-ray CT gives

anatomical information on the positions of air, soft tissues, and bone.

Three-dimensional imaging is achieved by rotating an X-ray emitter around

the patient, and measuring the intensity of transmitted rays from different

angles.

Ultrasound, as currently practiced in medicine, is a real-time tomo-

graphic imaging modality. Not only does it produce real-time tomograms

of the position of reflecting surfaces (internal organs and structures), but

it can be used to produce real-time images of tissue and blood motion.

The history of PET can be traced to the early 1950s, when workers in

Boston first realized the medical imaging possibilities of a particular class

of radioactive isotopes. Whereas most radioactive isotopes decay by release

of a gamma ray and electrons, some decay by the release of a positron.

A positron can be thought of as a positive electron. Widespread interest

and an acceleration in PET technology was stimulated by development of

reconstruction algorithms associated with X-ray CT and improvements in

nuclear detector technologies. By the mid-1980s, PET had become a tool

for medical diagnosis, for dynamic studies of human metabolism and for

studies of brain activation.

PET has a million fold sensitivity advantage over other techniques used

to study regional metabolism and neuroreceptor activity in the brain and

other body tissues. In contrast, magnetic resonance has exquisite resolu-

tion for anatomic studies and for flow or angiographic studies. In addition,

magnetic resonance spectroscopy has the unique attribute of evaluating

chemical composition of tissue but in the millimolar range rather than the

nanomolar range. Since the nanomolar range is the concentration range of
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most receptor proteins in the body, positron emission tomography is ideal

for this type of imaging. The major clinical applications of PET have been

in cancer detection of the brain, breast, heart, lung and colorectal tumors.

Another application is the evaluation of coronary artery disease by imaging

the metabolism of heart muscle.

SPECT, like PET, acquires information on the concentration of radionu-

clides introduced to the patients body. SPECT dates from the early 1960s,

when the idea of emission traverse section tomography was introduced by

D. E. Kuhl and R. Q. Edwards prior to either PET, X-ray CT, or MRI.

Iron currents arising in the neurons of the heart and the brain produce

magnetic fields outside the body. These fields can be measured by arrays

of SQUID (Superconducting QUantum Interference Device), detectors that

are placed on or near the head or chest. The recording of magnetic fields of

the head is known as MagnetoEncephaloGraphy (MEG) while that of the

heart is called MagnetoCardioGraphy (MCG). Magnetic Source Imaging

(MSI) is the general term for the reconstruction of current sources in the

heart or brain from the measurements of external magnetic fields.

Electrical source imaging (ESI) is an emerging technique for reconstruct-

ing electrical activity in the brain or heart from electric potentials measured

on the scalp or torso. Standard ElectroEncephaloGraphic (EEG), Electro-

CardioGraphic (ECG) and VectorCardioGraphic (VCG) techniques are lim-

ited in their ability to provide information on regional electrical activity or

localize bioelectrical events within the brain and heart. Noninvasive ESI

of the brain requires simultaneous electric potential recordings from 20 or

more electrodes for the brain and 100 to 250 torso electrode sites to map

the body surface potential from the heart.

X-ray mammography (MG) is an effective method to diagnose the breast

cancer. A low dose X-ray screening mammograms are performed on a

woman’s breasts with no symptoms to detect breast cancer at an early

stage. The practice can perform diagnostic mammography. Breast needle

localisation prior to surgery can be performed to provide location informa-

tion and fine tissue information.

Orthopantomograms (OPG) and lateral cephalograms are the latest

techniques for dental or orthodontic assessment.

Medical images are 2D stochastic signals. There are many common

issues of stochastic signals such as noise removal, signal restoration, signal

sampling, etc. There are also many special issues which are relevant to

high dimensional signals only, such as segmentation, clustering, etc. We

will discuss issues of medical imaging. In particular, we will discuss the
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image sampling and compression in Sec .2, filtering in Sec .3, segmentation

in Sec .4 and registration in Sec .5. Finally, there is a conclusion.

2. Sampling and Compression Using Statistical Features

of Images

Computer-based advanced medical imaging techniques such as Positron

Emission Tomography (PET) have been playing a crucial and expanding

role in modern medical research and diagnosis. However, these powerful

techniques have being accompanied by the growing size of image data sets

as well. For example, a routine dynamic PET study using the CTI 951

scanner usually acquires 31 cross-sectional image planes of 128× 128 pixels

each, at 20 to 30 time points. It results a 4D data set containing up

to 11 million data points with approximately 22 Mbytes storage space.

As the resolution of current PET imaging improves, the large volume of

related data will further increase. It has therefore, prompted significant

recent interest in developing efficient image compression techniques which

can contribute to the current expansion in medical digitalization, image

database management and telemedicine.

Taking advantage of domain specific physiological kinetic knowledge

related to dynamic PET images and physiological tracer kinetic modeling,

this paper presents a novel knowledge-based near-lossless data compression

algorithm for dynamic PET images. The proposed compression algorithm

consists of three stages: (a) compression in the temporal domain using

optimal image sampling schedule design; (b) compression in the spatial

domain through cluster analysis; and (c) index image compression using

standard still image compression techniques. In this section, clinical human

brain PET studies using the [18F ] 2-fluoro-deoxy-glucose (FDG) tracer are

presented to illustrate the proposed compression algorithm. The technique

can be easily applied to other PET studies with different tracers. The

conventional22 and proposed techniques are implemented on clinical dy-

namic PET images. Empirical results are given to illustrate the compression

performance and the image quality.

2.1. Tracer kinetic modeling and functional imaging

Tracer kinetic techniques with PET are widely applied to extract valuable

information from dynamic processes in the body. This information is usu-

ally defined in terms of a mathematical model u(t|p), where t = 1, 2, . . . , T

and p are the model parameters. The parameters describe the delivery,
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transport and biochemical transformation of the tracer. The driving

function for the model is the plasma blood input function, which is often

obtained from blood sampling.22 Measurements acquired by PET define

the tissue time activity curve (TAC), or output function, denoted z
i
(t),

where t = 1, 2, . . . , T are discrete sampling times of the measurements,

and i = 1, 2, . . . , I corresponds to the ith pixel in the imaging region.

The purpose of dynamic PET image analysis is to obtain tracer TACs

and parameter estimates for each pixel in the imaging region. These para-

meters can then be used to define physiological parameters, such as the

local cerebral metabolic rate of glucose (LCMRGlc).

The conventional method uses the complete set of acquired PET pro-

jection data. Through the parameter estimation on a pixel-by-pixel basis

using certain rapid estimation algorithms,16,22,36 functional images can be

generated. In this section, the Patlak method35,36 was used to generate the

LCMRGlc functional images for the purpose of comparing the estimation

accuracy of the original and compressed data.

2.2. Sampling and compression in temporal and

spatial domains

The sampling and compression scheme using statistical features of tracer

kinetics consists of three stages.6

2.2.1. Stage 1 : Compression in the temporal domain using

optimal image sampling schedule

In dynamic PET studies, the reliability of temporal frames is directly

influenced by the sampling schedules and duration used to acquire the

data. The longer the duration and greater the radio-activity counts, the

more reliable the temporal frames. However, in order to obtain quantita-

tive information from the dynamic processes, a certain number of temporal

frames are required. Recently, it has been shown that the minimum number

of temporal frames required is equal to the number of model parameters to

be estimated.26 Based on this, an algorithm that automatically determines

optimal image sampling schedule (OISS) and maximizes the information

content of the acquired PET data was developed.26 The algorithm utilizes

the accumulated/integral PET measurements.

In the design of OISS, a new objective function based on the Fisher

Information Matrix,10 was proposed to limit the loss of dynamic informa-

tion. This objective function was used to discriminate between different
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experimental protocols and sampling schedules. OISS can be directly ap-

plied to acquisition of PET projection data. This reduces the number of

temporal frames obtained and therefore, reduces data storage. Furthermore,

as fewer temporal frames are reconstructed the computational burden posed

by image reconstruction is reduced. Details of this algorithm can be found

in Li et al.26

2.2.2. Stage 2 : Compression in the spatial domain through

cluster analysis

The prior knowledge has the form of tracer kinetic model to a time series of

PET tracer uptake measurements. From the model, using cluster analysis,

the image-wide TACs can be extracted and further classified into a certain

numbers of TAC groups which corresponding to different tissue regions,

according to the similarity of their kinetics.

Cluster analysis aims at grouping and classifying image-wide TACs,

z
i
(t) (where i = 1, 2, . . . , I), into C

j
cluster groups (where j = 1, 2, . . . , J

and J � I) by measuring the magnitude of natural association (similarity

characteristics). It is expected that TACs with high degrees of natural as-

sociation will belong to different groups.8 It should be noted that each

TAC must be assigned uniquely to a cluster group. In this paper, a

hierarchical-agglomerative clustering algorithm based on the Euclidean

distance measurement was used to classify the clinical dynamic PET image

data.

Using the results of cluster analysis, an index table containing the mean

TAC within each cluster and an indexed image can be formed. The indexed

image represents a mapping from the cluster to its respective pixel TAC

locations. This image together with the index table forms the basis of the

compressed temporal/spatial data. With PET, the number of distinguish-

able clustering groups may generally not exceed 64. This means that an

8-bit indexed image is sufficient to represent the cluster mapping.

2.2.3. Stage 3 : Index image compression

A lossless compression scheme is considered in this paper for further reduc-

tion of the indexed image. The PNG (Portable Network Graphics)11 format

was used to compress and store the indexed image obtained from cluster

analysis. The coding technique presently defined and implemented for PNG

is based on deflate/inflate compression with a 32-Kb sliding window. The

PNG format was chosen over other lossless image compression file formats
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shows a set of temporal frames for the 15th plane from one patient study. Due to the lower tracer concentration in
the first few frames, these images were scaled to be visible.
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Figure 1. Compression results

(a)  A set of 22 temporal-frame images (scaled) for the 15th plane from one patient study. (b) Results of the proposed

compression method in temporal domain: 5 temporal-frame images (scaled), obtained from 1(a).

3.  Noise Reduction Using Statistical Anisotropic Diffusion

Diffusion processes have been widely used in quantum physics, material science, fluid dynamics, nuclear science,
medicine and chemical physics. Perona and Malik [1987; 1990] introduced it to image processing and proposed a
multi-scale smoothing and edge detection scheme.  It has the good property of eliminating noise while preserving
high frequency components, namely edges [Alvarez & Mazorra 1994].

Diffusion is an iterative process.  The degree of diffusion depends on the threshold of diffusion, i.e. the contrast
cut-off.  A contrast above the threshold will be enhanced during the diffusion process and that below the threshold
will be smoothed out.  The selection of the threshold is vital to the filtering process.  However, the threshold varies
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due to its portability, flexibility and being legally unencumbered. Details

on the PNG format can be found in Crocker.11

Human dynamic FDG-PET brain studies were performed using an

eight-ring, fifteen-slice PET scanner (GE/Scanditronix PC4096-15WB).

This scanner contains 4096 detectors and achieves axial and trans-axial

resolutions of 6.5-mm full width at half maximum (FWHM) at the center

of the field of view. Between 200 and 400 mBq (approximately 0.5 mg) of

FDG was injected intravenously and arterial blood sampling commenced

immediately thereafter. The blood samples (each 2–3 ml) were taken at

8× 0.25 minute intervals for the first 2 minutes, then at 2.5, 3, 3.5, 7, 10,

15, 20, 30, 60, 90 and 120 minutes. These samples were immediately placed

on ice and the plasma was subsequently separated for the determination of

plasma FDG and “cold” glucose concentration. Figure 1(a) shows a set of

temporal frames for the 15th plane from one patient study. Due to the lower

tracer concentration in the first few frames, these images were scaled to be

visible.

3. Noise Reduction Using Statistical Anisotropic Diffusion

Diffusion processes have been widely used in quantum physics, material

science, fluid dynamics, nuclear science, medicine and chemical physics.

Perona and Malik38,39 introduced it to image processing and proposed a

multi-scale smoothing and edge detection scheme. It has the good property

of eliminating noise while preserving high frequency components, namely

edges.2

Diffusion is an iterative process. The degree of diffusion depends on

the threshold of diffusion, i.e. the contrast cut-off. A contrast above

the threshold will be enhanced during the diffusion process and that

below the threshold will be smoothed out. The selection of the thresh-

old is vital to the filtering process. However, the threshold varies from

image to image. The problem compounds with the contrast variation from

region to region and with intensity distortion of the same region in an

image. It is thus desirable to have an adaptive criterion for selecting

a threshold.

The threshold in a diffusion process is closely correlated with the con-

trast of the edges in an image. Selecting the threshold is a process of

analysing local contrast. In low contrast images, especially when noise

is present and the signal-noise ratio (SNR) is low, the contrast between

regions is not significant and will be very difficult to pick up. The diffi-

culty lies in the noise presence, unknown distribution of a stochastic signal,



June 4, 2003 11:39 WSPC/Advanced Medical Statistics chap10

Applications of Statistical Methods in Medical Imaging 387

and unknown combination of multiple interferences. In most of these cases,

the histogram of the region shows a single peak. Many automatic thresh-

old selection mechanisms require a bi-peak histogram such as Tsai and

Chen46 and Bhandari et al.5 A bi-peak or multi-peak histogram may not

exist in many cases. Luijendijk29 proposed an automatic threshold selection

using two histograms based on the count of 4-connected regions. Tseng and

Huang47 proposed to select the threshold using edge information, i.e. the

intensity along edge intervals. Nagawa and Rosenfeld33 fitted the histogram

with two Gaussian functions, and Cho et al.7 applied bias correction fac-

tors. Glaseby18 combined them with an amendment using iteration. The

assumption of Gaussian distribution is weak and correction does not make

up this vital defect. Furthermore, iteration makes the computation very

expensive.

Another difficulty is due to intensity distortion. The applicability of

histogram analysis is based on the assumption that all image pixels which

have a similar grey level correspond to one object or region of interest in

the image. However, this assumption is not always true for most images.

Rodriguez and Mitchell41 used an adaptive thresholding method that

extracts the background in two phases. The first step uses a global thresh-

old to extract the structure of the regions and the second step refines the

segmentation. Parker34 used a local threshold to grow a region after find-

ing a seed pixel in an object. Spann and Horne44 grow regions from low

resolution to high resolution in a quadtree structure. The adaptive scheme

is a proper way to combat the distortion of intensity. However, the above

mentioned methods have a try-and-error nature and do not have a solid

theoretical foundation.

This section describes an adaptive diffusion scheme by applying the

Central Limit Theorem. Regression is used to separate the distribution of

the major object in a local window from other objects in a single-peak

histogram. The separation will help to automatically determine the thresh-

old. We have applied the algorithm to X-ray angiogram (XRA) images to

extract brain arteries. The algorithm works well for single-peak distribu-

tions where there are no valleys in the histograms. It has also been used

for filtering microscope images of kidneys where there are multiple visual

objects and the contrast between objects is very low. The scheme shows

that a fully automatic filtering process can be achieved. It works well with

images which have texture patterns and are contaminated with noise while

the distribution of noise is unknown. These kinds of images have posed a

significant problem for traditional filtering schemes such as wavelet based

de-noising.13
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3.1. Non-linear anisotropic diffusion

Low-pass filters have been used to remove noise. Most filters are isotropic.

Isotropic filtering tends to smear the corners and loses the accuracy of edges.

To examine the problem carefully, we notice that the gradient along an edge

is not isotropic. It has the highest value perpendicular to the edge and is

dilated along the edge. It is therefore proper to increase the smoothing

function parallel to the edge and stop the smoothing perpendicular to the

edge. Non-linear anisotropic diffusion provides such a function. It takes the

form

∂

∂t

I(x, y, t) = div(g(∇I)∇I) , (1)

where I(x, y, t) is the signal and g(∇I) is a dilation function of gradients.

There are two frequently used dilation functions:

g1(x, y, t) =
1

1 + ∇I(x,y,t)

k

, (2)

g2(x, y, t) = exp

{

−

(

∇I(x, y, t)

k

)2
}

. (3)

Calculation of diffusive filtering can be performed by a difference operation

∂

∂t

I(x, y, t) = div[g(x, y, t) ∗ ∇I(x, y, t)]

=
∂

∂t

[

g(x, y, t) ∗
∂

∂x

I(x, y, t)

]

+
∂

∂y

[

g(x, y, t) ∗
∂

∂y

I(x, y, t)

]

= g(x+ 1, y, t)[I(x+ 1, y, t)− I(x, y, t)]

+ g(x, y, t)[I(x− 1, y, t)− I(x, y, t)]

+ g(x, y + 1, t)[I(x, y,+1, t)− I(x, y, t)]

+ g(x, y, t)[I(x, y,−1, t)− I(x, y, t)]

= Φ′
e

+ Φ′
w

+ Φ′
s

+ Φ′
n

. (4)

Diffusion encourages intra-region smoothing in preference to smoothing

across boundaries. The basis of this method is to suppress smoothing at

boundaries by selecting locally adaptive diffusion strengths. The parameter

κ plays an important role in diffusion. If the κ value is set to too high

the filter will act as a smoothing filter, diffusing across the edge boundary;

while if κ is too low, small dilation will result in many iterations. At some κ
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values, an extra edge will be introduced between the region of high intensity

and region of low intensity. Therefore, the vital question in our design is

the selection of κ.

3.2. Selection of the cut-off contrast

Images requiring processing often have very low contrast with many inten-

sity layers. Determining an appropriate threshold for such images is difficult.

Figure 2 shows an XRA image of the brain artery (a) and its histogram (b)

which is a single peak histogram. The selection of a threshold value from

such a histogram is ambiguous and not viable by trial and error. We have

developed a region-based method to dynamically select a threshold using

regression.
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3.2.1  Selecting the threshold by regression and likelihood classification

Our scheme is based on the Central Limit Theorem.  It is difficult to segment brain arteries from the background
because of the low contrast and an overwhelming proportion of the background.  We do not know the histogram
distribution of the background.  However, from the Central Limit Theorem we know that if x1, x2, ..., xn are

independent, identically distributed random variables with expectation µ and finite variance σ2, then y = ∑
=
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 is

asymptotically normal (µ,σ2) when n is large enough [Ross 1987].  Regression using a Gaussian distribution can
separate the background histogram from the foreground histogram, as shown in Figure 3, where shaded area shows
the background histogram and the darker area is the foreground histogram.  After separating the histogram, it is
easy to select a threshold for image segmentation and to analyse foreground objects.

(a)

Page 9

3.2  Selection of the cut-off contrast

Images requiring processing often have very low contrast with many intensity layers.  Determining an appropriate
threshold for such images is difficult.  Figure 2 shows an XRA image of the brain artery (a) and its histogram (b)
which is a single peak histogram.  The selection of a threshold value from such a histogram is ambiguous and not
viable by trial and error.  We have developed a region-based method to dynamically select a threshold using
regression.

 (a)   (b)

Figure 2. Histogram analysis on background.

(a) an XRA image; (b) its histogram.

3.2.1  Selecting the threshold by regression and likelihood classification

Our scheme is based on the Central Limit Theorem.  It is difficult to segment brain arteries from the background
because of the low contrast and an overwhelming proportion of the background.  We do not know the histogram
distribution of the background.  However, from the Central Limit Theorem we know that if x1, x2, ..., xn are

independent, identically distributed random variables with expectation µ and finite variance σ2, then y = ∑
=

n

i
ix

n 1

1
 is

asymptotically normal (µ,σ2) when n is large enough [Ross 1987].  Regression using a Gaussian distribution can
separate the background histogram from the foreground histogram, as shown in Figure 3, where shaded area shows
the background histogram and the darker area is the foreground histogram.  After separating the histogram, it is
easy to select a threshold for image segmentation and to analyse foreground objects.

(b)

Fig. 2. Histogram analysis on background. (a) An XRA image; (b) Its histogram.



June 4, 2003 11:39 WSPC/Advanced Medical Statistics chap10

390 J. S. Jin

Page 10

Figure 3. Segmenting histogram using Gaussian regression.

The sampling data for regression is obtained from partial histogram.  We calculate the mean value of the histogram
and take the half with less variance.  Then we find the modal of that half histogram.  The sampling data, hi, i ∈  S,
is on the same side with the modal against the mean value.  The regression is obtained by
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However, when the number of background pixels is not large enough, it is improper to use the Gaussian
distribution in regression.  Figure 4 shows another XRA image (a) and its histogram (b).  Figure 4 (c) is the
histogram after regression using Gaussian distribution over the background.  It does not show a valley between two
peaks as we expect, which means there is no clear separation.  In this situation, we apply the Rayleigh distribution
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Fig. 3. Segmenting histogram using Gaussian regression.

3.2.1. Selecting the threshold by regression and

likelihood classification

Our scheme is based on the Central Limit Theorem. It is difficult to segment

brain arteries from the background because of the low contrast and an over-

whelming proportion of the background. We do not know the histogram dis-

tribution of the background. However, from the Central Limit Theorem we

know that if x1, x2, . . . , xn are independent, identically distributed random

variables with expectation µ and finite variance σ2, then y = 1

n

∑

n

i=1
x
i

is

asymptotically normal (µ, σ2) when n is large enough.42 Regression using

a Gaussian distribution can separate the background histogram from the

foreground histogram, as shown in Fig. 3, where shaded area shows the

background histogram and the darker area is the foreground histogram.

After separating the histogram, it is easy to select a threshold for image

segmentation and to analyse foreground objects.

The sampling data for regression is obtained from partial histogram.

We calculate the mean value of the histogram and take the half with less

variance. Then we find the modal of that half histogram. The sampling

data, h
i
, i ∈ S, is on the same side with the modal against the mean value.

The regression is obtained by


















µ = max
i∈s

(h
i
)

σ =

√

2
∑

i∈s

(h
i
− µ)2 .

However, when the number of background pixels is not large enough, it

is improper to use the Gaussian distribution in regression. Figure 4 shows

another XRA image (a) and its histogram (b). Figure 4(c) is the histogram
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Figure 4. Segmentation using regressions. (a) the original image; (b) its histogram; (c) Gaussian regression does

not show clear separation; (d) Rayleigh regression shows a clear separation.

3.2.2  Extracting a cut-off contrast

The diffusion process is critically depended on the κ value in functions (3-2) and (3-3).  The parameter κ can be
associated with the contrast.  The following discussion on extracting κ will be based on diffusion function (3-2) but

it can be easily converted to function (3-3) by dividing κ by 2 .  Although we can obtain a proper estimation of
the distribution of one visual object in the image, eg, background in XRA images, we do not have information on
other objects, eg, vessels in XRA images.  It is very difficult to estimate the average contrast between two objects.
We use likelihood classification [Tou & Gonzalez 1972] to separate pixels from two objects after we separate the
background histogram from the foreground histogram.  These two histograms are used as the probability
distributions of two clusters in likelihood classification.  We calculate κ value from the following

{ } 

















∇= ∑

∈∈

lN

Pp
lp

l
NyxIl ),(max

255..0
κ

where Nl is the pixel number with gray level l, and P is a set of neighbouring pixel pairs whose two pixels belong to
different clusters.  This calculation can be restricted to a local region.  If two neighbour pixels belong to two
clusters, we accumulate their difference into a difference histogram.  The contrast can be extracted from the modal
of differences within a local region.
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background histogram from the foreground histogram.  These two histograms are used as the probability
distributions of two clusters in likelihood classification.  We calculate κ value from the following
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where Nl is the pixel number with gray level l, and P is a set of neighbouring pixel pairs whose two pixels belong to
different clusters.  This calculation can be restricted to a local region.  If two neighbour pixels belong to two
clusters, we accumulate their difference into a difference histogram.  The contrast can be extracted from the modal
of differences within a local region.

(d)

Fig. 4. Segmentation using regressions. (a) The original image; (b) Its histogram;
(c) Gaussian regression does not show clear separation; (d) Rayleigh regression shows a
clear separation.

after regression using Gaussian distribution over the background. It does

not show a valley between two peaks as we expect, which means there is

no clear separation. In this situation, we apply the Rayleigh distribution

in regression. Probability theory states that when n is not large enough,

x = x̄
n

satisfies Rayleigh distribution:

f(x) =











x

µ

2
e

x
2

2µ2
x ≥ 0

0 x < 0 .

The Rayleigh regression is obtained by



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
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)
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√

4− π

2
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2
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3.2.2. Extracting a cut-off contrast

The diffusion process is critically depended on the κ value in functions (2)

and (3). The parameter κ can be associated with the contrast. The following



June 4, 2003 11:39 WSPC/Advanced Medical Statistics chap10

392 J. S. Jin

discussion on extracting κ will be based on diffusion function (2) but it can

be easily converted to function (3) by dividing κ by
√

2. Although we can

obtain a proper estimation of the distribution of one visual object in the

image, e.g. background in XRA images, we do not have information on

other objects, e.g. vessels in XRA images. It is very difficult to estimate the

average contrast between two objects. We use likelihood classification45

to separate pixels from two objects after we separate the background

histogram from the foreground histogram. These two histograms are used

as the probability distributions of two clusters in likelihood classification.

We calculate κ value from the following

κ =







l

∣

∣

∣

∣

∣

max
l∈{0..255}





Nl
∑

P∈p

∇
p
I(x, y)/N

l











,

where N
l
is the pixel number with gray level l, and P is a set of neighboring

pixel pairs whose two pixels belong to different clusters. This calculation can

be restricted to a local region. If two neighbor pixels belong to two clusters,

we accumulate their difference into a difference histogram. The contrast can

be extracted from the modal of differences within a local region.

4. Medical Imaging Segmentation

Segmentation is the process in which an image is divided into constituent

objects or parts. It is often the first and most vital step in an image analysis

task. Effective segmentation can usually dictate eventual success of the

analysis. For this reason, many segmentation techniques have been deve-

loped by researchers worldwide.19 Segmentation of intensity images usually

involves four main approaches, namely thresholding, boundary detection,

region-based and hybrid methods.

Thresholding techniques43 are based on the postulate that all pixel

whose value lie within a certain range belongs to one class. Such meth-

ods neglect all of the spatial information of the image and do not cope well

with noise or blurring at boundaries.

Boundary-based methods are sometimes called edge-detection,12 be-

cause they assume that pixel values change rapidly at the boundary be-

tween two regions. The basic method is to apply a gradient filter to the

image. High values of this filter provide candidates for region boundaries,

which must then be modified to produce closed curves representing the

boundaries between regions.

Region-based segmentation algorithms postulate that neighbouring

pixels within the same region have similar intensity values, of which the
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split-and-merge21 technique based on homogeneity criterion is probably the

most well know. It includes seeded region growing32 and unseeded region

growing.

Hybrid methods combine one or more of the above-mentioned criteria.

This class includes the morphological watershed32 segmentation, variable-

order surface fitting4 and active contour24 methods.

This section presents two methods among which statistical features are

used in segmentation.

4.1. Probilistical segmentation using

expectation-maximization

Intensity-based classification of MR images has proven problematic, even

when advanced techniques are used. Intra-scan and inter-scan intensity

inhomogeneities are a common source of difficulty. While reported methods

have had some success in correcting intra-scan inhomogeneities, such

methods require supervision for the individual scan. This section describes

a new method called adaptive segmentation that uses knowledge of tissue

intensity properties and intensity inhomogeneities to correct and segment

MR images. Use of the EM algorithm leads to a method that allows for more

accurate segmentation of tissue types as well as better visualization of MRI

data, that has proven to be effective in a study that includes more than 1000

brain scans. Implementation and results are described for segmenting the

brain in the following types of images: axial (dual-echo spin-echo), coronal

(3DFT gradient-echo T1-weighted) all using a conventional head coil; and

a sagittal section acquired using a surface coil. The accuracy of adaptive

segmentation was found to be comparable with manual segmentation, and

closer to manual segmentation than supervised multi-variate classification

while segmenting gray and white matter.

Advanced applications that use the morphologic contents of MRI

frequently require segmentation of the imaged volume into tissue types.

Such tissue segmentation is often achieved by applying statistical classifica-

tion methods to the signal intensities25,49 in conjunction with morphological

image processing operations.9,17

Conventional intensity-based classification of MR images has proven

problematic, however, even when advanced techniques such as non-

parametric, multi-channel methods are used. Intra-scan intensity inho-

mogeneities due to RF coils or acquisition sequences (e.g. susceptibility

artifacts in gradient echo images) are a common source of difficulty.

Although MRI images may appear visually uniform, such intra-scan
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inhomogeneities often disturb intensity-based segmentation methods. In

the ideal case, differentiation between white and gray matter in the brain

should be easy since these tissue types exhibit distinct signal intensities.

In practice, spatial intensity inhomogeneities are often of sufficient magni-

tude to cause the distributions of signal intensities associated with these

tissue classes to overlap significantly. In addition, the operating conditions

and status of the MR equipment frequently affect the observed intensities,

causing significant inter-scan intensity inhomogeneities that often

necessitate manual training on a per-scan basis.

Intra- and inter-scan MRI intensity inhomogeneities is modeled with a

spatially-varying factor called the gain field that multiplies the intensity

data. The application of a logarithmic transformation to the intensities

allows the artifact to be modeled as an additive bias field. If the gain field

is known, then it is relatively easy to estimate tissue class by applying

a conventional intensity-based segmenter to the corrected data. Similarly,

if the tissue classes are known, then it is straightforward to estimate the

gain field by comparing predicted intensities and observed intensities. It

may be problematic, however, to determine either the gain or the tissue

type without knowledge of the other. It will be shown that it is possible

to estimate both using an iterative algorithm (that converges in five to ten

iterations, typically).

A Bayesian approach is used to estimating the bias field that represents

the gain artifact in log-transformed MR intensity data. First, a logarithmic

transformation of the intensity data is computed as follows:

Y
i
= g(X

i
) = (ln([X

i
]1), ln([X

i
]2), . . . , ln([X

i
]
m

))T , (5)

where X
i

is the observed MRI signal intensity at the ith voxel, and m is

the dimension of the MRI signal.

Similar to other statistical approaches to intensity-based segmentation

of MRI,9,17 the distribution for observed values is modeled as a normal

distribution (with the incorporation of an explicit bias field):

p(Y
i
|Γ
i
, β
i
) = G

ψΓi
(Y
i
− µ(Γ

i
)− (β

i
) , (6)

where

G
ψΓi

(x) = (2π)−
m

2 |ψΓi
|−

1

2 exp

(

−
1

2
x

T

ψ

−1

Γi
x

)

is the m-dimensional Gaussian distribution with variance ψΓi
and where

Y
i

is the observed log-transformed intensities at the ith voxel;



June 4, 2003 11:39 WSPC/Advanced Medical Statistics chap10

Applications of Statistical Methods in Medical Imaging 395

Γ
i
is the tissue class at the ith voxel;

µ(x) is the mean intensity for tissue class x;

ψ
x

is the covariance matrix for tissue class x;

β
i
is bias field at the ith voxel.

Here, Y
i
, µ(x), and β

i
are represented by m-dimensional column vectors,

while ψ
x

is represented by an m×m matrix. Note that the bias field has a

separate value for each component of the log-intensity signal at each voxel.

In words, (6) states that the probability of observing a particular image

intensity, given knowledge of the tissue class and the bias field is given by

a Gaussian distribution centered at the biased mean intensity for the class.

A stationary prior (before the image data is seen) probability distribu-

tion on tissue class is used, it is denoted as p(Γ
i
).

If this probability is uniform over tissue classes, our method devolves

to a maximum-likelihood approach to the tissue classification component.

A spatially-varying prior probability density on brain tissue class has been

studies.23 Such a model might profitably be used within this framework.

The entire bias field is denoted by β = (β0, β1, . . . , βn−1)
T , where n is

the number of voxels of data. The bias field is modeled by a n-dimensional

zero mean Gaussian prior probability density. This model allows us to cap-

ture the smoothness that is apparent in these inhomogeneities:

p(β) = G
ψβ

(β) , (7)

where

G
ψβ

(β) = (2π)−
n

2 |ψ
βi
|−

1

2 exp

(

−
1

2
x

T

ψ

−1

βi
x

)

is the n-dimensional Gaussian distribution. The n × n covariance matrix

for the entire bias field is denoted ψ
β
. Although ψ

β
will be too large to

manipulate directly in practice, tractable estimators can result when ψ
β

is

chosen so that it is banded.

It is assumed that the bias field and the tissue classes are statisti-

cally independent, this follows if the intensity inhomogeneities originate

in the equipment. Using the definition of conditional probability the joint

probability on intensity and tissue class can be obtained as follows:

p(Y
i
,Γ

I
|β
i
) = p(Y

i
|Γ
i
, β
i
)p(Γ

i
) , (8)

and we may obtain the conditional probability of intensity alone by

computing a marginal over tissue class:

p(Y
i
|β
i
) =

∑

Γi

p(Y
i
,Γ

i
|β
i
) =

∑

Γi

p(Y
i
|Γ
i
, β
i
)p(Γ

i
) . (9)
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This expression may be written more compactly as




∑

j

W
ij

[ψ−1

j

(Y
i
− µ

j
− β

i
)]
k

+

∂

∂[βi]k
p(β)

p(β)





β=β̂

= 0 ∀ i, κ (10)

with the following definition of W
ij

, (which are called the weights),

W
ij
≡
bp(Γ

i
)G

ψΓi
(Y
i
− µ(Γ

i
)− β

i
cΓi=tissuee-class-j

∑

Γi
p(Γ

i
)G

ψΓi
(Y
i
− µ(Γ

i
)− β

i
)

. (11)

where subscripts i and j refer to voxel index and tissue class respectively,

and defining

µ
j
≡ µ(tissue-class-j)

as the mean intensity of tissue class j. The mean residual is defined as

R̄
i
≡

∑

j

W
ij
ψ

−1

j

(Y
i
− µ

j
) , (12)

and the mean inverse covariance is

ψ

−1
ik

≡







∑

j

W
ij
ψ

−1

j

if j = κ

0 otherwise .
(13)

The result of the statistical modeling in this section has been to formu-

late the problem of estimating the bias field as a non-linear optimization

problem embodied in

R̄− ψ−1
β̂ − ψ−1

β

β̂ = 0

or

β̂ ≡ (ψ−1 + ψ

−1

β

)−1
R̄ . (14)

This optimization depends on the mean residual of observed intensities and

the mean intensity of each tissue class, and on the mean covariance of the

tissue class intensities and the covariance of the bias field.

The expectation-maximization (EM) algorithm is used to obtain bias

field estimates from the non-linear estimator of (10). The EM algorithm

iteratively alternates evaluations of the expressions appearing in models

(11) and (14),

W
ij
←
bp(Γ

i
)G

ψΓi
(Y
i
− µ(Γ

i
)− β

i
)cΓi=tissue-class-j

∑

Γi
P (Γ

i
)G

ψΓi
(Y
i
− µ(Γ

i
)− β

i
)

, (15)

β̂ ← (ψ−1 + ψ

−1

β

)−1
R̄ . (16)
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( ) R
1

11ˆ −
−− +← βψψβ (4-12)

In other words, (4-11) is used to estimate the weights given an estimated bias field, then (4-12) is used to estimate
the bias, given estimates of the weights.

The adaptive segmentation can be applied to spin-echo and gradient-echo images. Examples are shown for the
coronal (3DFT gradient-echo T1-weighted) images. All of the MR images shown in this section were obtained
using a General Electric Signa 1.5 Tesla clinical MR imager [General Electric Medical Systems, Milwaukee, WI].
An anisotropic diffusion filter described in Section 3 was used as a pre-processing step to reduce noise.

Figure 5(a) shows the input image, a slice from a coronal 3DFT gradient-echo T1-weighted acquisition. The brain
tissue ROI was generated manually. Figure 5(b) shows the final bias field estimate. The largest value of the input
data was 85, while the difference between the largest and smallest values of the bias correction was about 10.
Figure 5(c) shows the segmentation resulting from adaptive segmentation.

Note the significant improvement in the right temporal area. In the initial segmentation the white matter is
completely absent in the binarization.

  

(a)                                                (b)                                                   (c)

Figure 5. Segmentation using expectation-maximization.

(a) original MRI brain slide; (b) bias field estimation; (c) segmentation result

4.2  Unseeded region growing

Unseeded region growing is similar to seeded region growing except that no explicit seed selection is necessary:
the seeds can be generated by the segmentation procedure automatically. Therefore, this method can achieve fully
automatic segmentation with the added benefit of robustness from being a region-based segmentation.

(a) (b) (c)

Fig. 5. Segmentation using expectation-maximization. (a) Original MRI brain slide;
(b) Bias fied estimation; (c) Segmentation result.

In other words, model (15) is used to estimate the weights given an es-

timated bias field, then model (16) is used to estimate the bias, given

estimates of the weights.

The adaptive segmentation can be applied to spin-echo and gradient-

echo images. Examples are shown for the coronal (3DFT gradient-echo

T1-weighted) images. All of the MR images shown in this section were

obtained using a General Electric Signa 1.5 Tesla clinical MR imager

[General Electric Medical Systems, Milwaukee, WI]. An anisotropic dif-

fusion filter described in Sec. 3 was used as a pre-processing step to reduce

noise.

Figure 5(a) shows the input image, a slice from a coronal 3DFT

gradient-echo T1-weighted acquisition. The brain tissue ROI was generated

manually. Figure 5(b) shows the final bias field estimate. The largest value

of the input data was 85, while the difference between the largest and

smallest values of the bias correction was about 10. Figure 5(c) shows the

segmentation resulting from adaptive segmentation.

Note the significant improvement in the right temporal area. In the ini-

tial segmentation the white matter is completely absent in the binarization.

4.2. Unseeded region growing

Unseeded region growing is similar to seeded region growing except that

no explicit seed selection is necessary: the seeds can be generated by the

segmentation procedure automatically. Therefore, this method can achieve

fully automatic segmentation with the added benefit of robustness from

being a region-based segmentation.
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Formally, the segmentation process initializes with region A1 containing

a single image pixel, and the running state of the segmentation process

consist of a set of identified regions, A1, A2, . . . , An. Let T be the set of all

unallocated pixels which borders at least one of these regions

T =

{

x /∈

n

⋃

i=1

A
i
∧ ∃k : N(x ∩ A

k
) 6=©6

}

,

Page 17

Formally, the segmentation process initializes with region A1 containing a single image pixel, and the running state
of the segmentation process consist of a set of identified regions, A1, A2, …, An. Let T be the set of all unallocated
pixels which borders at least one of these regions
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where N(x) are immediate neighbouring pixels of point x. Further, we define a difference measure

( ) ( ) [ ])(, ygmeanxgAx
iAyi ∈−=δ

where g(x) denotes the image value at point x, and i is an index of the region such that N(x) intersect Ai.

The growing process involves selecting a point z ∈  T and region Aj where j ∈  [1, n] such that
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=

If δ(z, Aj) is less than the predefined threshold t, then the pixel is added to Aj. Otherwise, we must choose the most
substantially similar region A such that

( ){ }kA Ax
k

,minarg δ=A

If δ(z, A) < t, we can assign the pixel to A. If neither of these two conditions above apply, then it is apparent that
the pixel is significantly different from all the regions found so far, so a new region, An+1 would be identified and
initialized with pint z. In all three cases, the statistic of the assigned region must be updated once the pixel has been
added to the region.

The URG segmentation procedure is inherently iterative, and the above process is repeated until all pixels have
been allocated to a region. To ensure correct behavior with respect to the homogeneity criterion, the region growing
operation requires the determination of the “best” pixel each time a region statistic is changed. The details of
implementation can be found in Lin et al [2000]. The segmentation results can be seen in Figure 6.

   (a)

(a)
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   (b)

    (c)

Figure 6. Segmenation using unseeded region growing.

(a) noisy image (σ=10.0); (b) X-ray angiogram; (c) ultrasound heart image

5.  Improving Confidence Intervals of Image Registration Using 3-D Monte Carlo Simulations

Clinical diagnosis and treatment usually require registration of images with multiple modalities.  Most of the
medical image registration methods [Van den Elsen et al. 1993; Maurer & Fitzpatrick 1993; Maintz & Viergever
1998] minimize or maximize values of certain cost functions to achieve the global optimized match. These
functions are usually the sum of squares of the distances between certain homogenous features in the two image
sets to be registered. The sum of distances between homogenous point pairs of the two image sets [Evans et al.
1989], distances between skin surfaces of CT, MR and PET images of the head in the “head-hat” method [Pelizzari
et al. 1989], the absolute difference between pixel values of PET image and pixel values of image simulated by MR
image [Lin et al. 1994], and the ratio between pixel values and their means in the same tissue class [Ardekani et al.
1995; Woods et al. 1993] are examples of these cost functions. However, most of these cost functions do not
directly reflect the distance between the actual and estimated positions of targets, i.e., the target registration error
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Figure 6. Segmenation using unseeded region growing.

(a) noisy image (σ=10.0); (b) X-ray angiogram; (c) ultrasound heart image

5.  Improving Confidence Intervals of Image Registration Using 3-D Monte Carlo Simulations

Clinical diagnosis and treatment usually require registration of images with multiple modalities.  Most of the
medical image registration methods [Van den Elsen et al. 1993; Maurer & Fitzpatrick 1993; Maintz & Viergever
1998] minimize or maximize values of certain cost functions to achieve the global optimized match. These
functions are usually the sum of squares of the distances between certain homogenous features in the two image
sets to be registered. The sum of distances between homogenous point pairs of the two image sets [Evans et al.
1989], distances between skin surfaces of CT, MR and PET images of the head in the “head-hat” method [Pelizzari
et al. 1989], the absolute difference between pixel values of PET image and pixel values of image simulated by MR
image [Lin et al. 1994], and the ratio between pixel values and their means in the same tissue class [Ardekani et al.
1995; Woods et al. 1993] are examples of these cost functions. However, most of these cost functions do not
directly reflect the distance between the actual and estimated positions of targets, i.e., the target registration error

(c)

Fig. 6. Segmenation using unseeded region growing. (a) Noisy image (σ = 10.0);
(b) X-ray angiogram; (c) Ultrasound heart image.
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where N(x) are immediate neighboring pixels of point x. Further, we define

a difference measure

δ(x,A
i
) = |g(x)-mean

y∈Ai
[g(y)]| ,

where g(x) denotes the image value at point x, and i is an index of the

region such that N(x) intersect A
i
.

The growing process involves selecting a point z ∈ T and region A
j

where j ∈ [1, n] such that

δ(x,A
i
) = min

x∈T,κ∈[1,n]

{δ(x,A
i
)} .

If δ(z, A
j
) is less than the predefined threshold t, then the pixel is added

to A
j
. Otherwise, we must choose the most substantially similar region A

such that

A = arg min
Ak

{δ(x,A
k
)} .

If δ(z,A) < t, we can assign the pixel to A. If neither of these two conditions

above apply, then it is apparent that the pixel is significantly different from

all the regions found so far, so a new region, A
n+1 would be identified and

initialized with pint z. In all three cases, the statistic of the assigned region

must be updated once the pixel has been added to the region.

The URG segmentation procedure is inherently iterative, and the above

process is repeated until all pixels have been allocated to a region. To

ensure correct behavior with respect to the homogeneity criterion, the

region growing operation requires the determination of the “best” pixel

each time a region statistic is changed. The details of implementation can

be found in Lin et al.28 The segmentation results can be seen in Fig .6.

5. Improving Confidence Intervals of Image Registration

Using 3-D Monte Carlo Simulations

Clinical diagnosis and treatment usually require registration of images with

multiple modalities. Most of the medical image registration methods30,31,48

minimize or maximize values of certain cost functions to achieve the global

optimized match. These functions are usually the sum of squares of the

distances between certain homogenous features in the two image sets to be

registered. The sum of distances between homogenous point pairs of the two

image sets,15 distances between skin surfaces of CT, MR and PET images

of the head in the “head-hat” method,37 the absolute difference between

pixel values of PET image and pixel values of image simulated by MR
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image,28 and the ratio between pixel values and their means in the same

tissue class3,51 are examples of these cost functions. However, most of these

cost functions do not directly reflect the distance between the actual and

estimated positions of targets, i.e. the target registration error (TRE). Most

medical applications demand accuracy and precision assessment methods

to justify their results. Internal consistency measures were used by

Woods et al.51 to place limits on registration accuracy for MRI data.

Almost all other registration accuracy assessment methods fall into two

broad categories: qualitative evaluations by visual inspection and quan-

titative evaluation by reference to results from a gold standard registra-

tion method. The former methods require special expertise and extensive

experience, while the latter methods require an extremely accurate gold

standard that cannot be easily achieved. Different methods may not always

be comparable to each other under identical criteria.

Using the terminology of nonlinear regression analysis,14 we can refer the

problem of image registration as a nonlinear least sum of squares estimation

of the transformation parameters that result in the optimal fitting of one

set of image (function) to the other set of image (data). For least square

estimation methods, the cost function could be assumed to be linear around

the neighborhood of the current parameter values. So that we can calculate

the confidence intervals or regions using the following equation14:

(θ − θ0)
∑

(f ′) ≤ (σ2(n− 1))F (p, n− p, 1− α) , (17)

where F is a chosen F -test value of the corresponding confidence level,

σ

2 is the residual sum of squares (registration cost function) value at the

location of the estimated parameters, and
∑

(f ′) represents the sum of the

derivatives of the reference model image to the transformation parameters.

θ and θ0 are the parameters corresponding to the confidence level and the

optimal parameters found by the registration procedure, respectively.

Since all the data points involved in the calculation of (17) should be

statistical independent to each other, and the data points in the images are

correlated, the number of points in the image could not be used directly as n

and the effective number of independent data points needs to be estimated.

To determine the effective number of independent data points involved

in the estimation of confidence intervals, we first used one Monte Carlo

simulation study based on normal conditions. The same number n selected

according to this simulation results was found to be consistent for both the

95% and 90% confidence levels. We have further investigated the validity

of the selected number n in various simulated conditions in other parts of

the study.
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Monte Carlo studies to simulate 2D PET images and subsequent regis-

trations of the simulated images were conducted. The resulted distributions

of the estimated transformation parameters were used to assess the consis-

tency of 90%, 95% and 99% confidence intervals with the distributions in

the parameter space. 2D grey matter and white matter sinograms of the

segmented 2D Hoffman brain phantom20 were combined with the grey-to-

white ratios of 2:1, 3:1 and 4:1 before reconstruction to see whether the

discrepancies of the ratios in two images can affect the confidence intervals.

Then, filtered back-projection reconstruction programs with various filters

(i.e. Hanning, Ramp, Butter-worth, Ham, Parzen and Shepp-Logan filters)

were employed to reconstruct images of size 128 × 128. Various amounts

of spatial displacements (i.e. rotations of 0.3, 0.8, 1.2 and 3.3 degrees, and

translations of 0.16, 0.8, 1.6 and 2.4 mm) were introduced. Various levels

of Poisson noise (i.e. total counts of 5 × 105, 1 × 106 and 2 × 106) were

simulated. A Gaussian smoothing filter with a FWHM of 5 mm is applied

to both sets of images before registration. The Powell’s algorithm40 was

selected as the optimization procedure.

In the cases of extreme noise conditions and large contrast discrepancies,

the residual sum of squares (RSS ) consists of two parts: the systematic error

and the error due to statistical noise:

RSS = RSSsystem +RSSnoise . (18)

The systematic error is contributed by the innate difference between the two

images, inappropriate registration method, precision error of the program,

etc. Such errors are independent of the initial displacements and noise. The

second part of the residual sum of squares is due to statistical noise. If the

systematic error is relatively large compared to the noise term, i.e. for cases

with very low noise levels and high grey-to-white ratio discrepancies, the

estimated residual sum of squares needs to be adjusted for systematic error.

Since the systematic component in RSS is much less sensitive to spa-

tial smoothing than the other component in Eq. (18), it can be estimated

by applying smoothing filters to both sets of images with relatively large

FWHMs when the parameters are found. By removing the systematic com-

ponent, the result RSS provides an estimation of the noise component in

Eq. (18).

The calculated confidence intervals based on statistical regression are

consistent with the simulation results for sample distributions of the trans-

formation parameters of image co-registration. Varying the amount of dis-

placement, reconstruction processes, noise levels, or tracer distributions

have little impacts on the validity of the calculated confidence intervals.
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After adjusted for systematic errors in the estimated residual sum of

squares, confidence intervals can be calculated accurately even for very

noisy conditions and with large distribution discrepancies between the

two sets of images. Since multi-modality registration can be viewed as

mono-modality registration of one image set with another simulated from

the other image modality, this method is also expected to be applicable

to multi-modality registration. Hence, visual inspection and validations by

experts are not necessary for assessing the precision of the registration

results. The results indicate the use of statistical confidence intervals has

a potential to provide an automatic and objective assessment of individual

image registration.

6. Conclusion

We have attempted a brief summary of the applications of statistical

methods in image processing in general and medical imaging in parti-

cular. The issues cover image sampling, compression, filtering, segmentation

and registration. Methods have been discussed in theory and illustrated in

empirical results. Statistical methods are powerful tools in many signal

processing applications. We hope this summary will provide an insight for

the further use of statistical methods in image processing.
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1. Introduction

Pharmacology1 as the science dealing with interactions between living

systems and molecules, especially chemicals introduced from outside the

system. This broad definition includes clinical pharmacology, whose objec-

tive is to prevent, diagnose and treat diseases with drugs, and the patho-

genesis of diseases due to chemicals in the environment. A drug is defined

in1 as a small molecule that, when introduced into the body, alters the

body’s function. The component of a cell or organism that interacts with

a drug and initiates the chain of biochemical events leading to the drug’s

therapeutic and toxic effects is called a receptor. The receptor concept has

become the central focus of investigation of pharmacodynamics — the study

of drug effects and their mechanisms of action. The relation between the

dose of a drug and its clinically observed effects can be quite complex.

In carefully controlled in vitro systems, however, the relation between the

concentration of a drug at the site(s) of action and its effects can often be

described by relatively simple mathematical models.

409
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How a drug dose produces its effects involves not only pharmaco-

dynamics but also pharmacokinetics. The latter is concerned with the

concentration-time curve that is associated with the following “history”

of a single adminstration of a drug:

(i) absorption phase of the drug into the body — transfer of the drug from

its site of administration (via oral, or inhalational, or intravenous, or

other route) into the bloodstream,

(ii) distribution phase — distribution of the drug to different compart-

ments of the body, including receptor binding sites in the target tissue,

and resulting in rapid decline in plasma concentration,

(iii) elimination phase — excretion of chemically unchanged drug or elim-

ination via metabolism that converts the drug into one or more

metabolites (e.g. at the liver).

Section 2 presents an overview of the basic principles, models and statis-

tical methods in pharmacokinetics and pharmacodynamics. An active area

of research in the field is pharmacometrics and Sec. 2 also gives some recent

trends in this area. Particular attention will be directed to population phar-

macokinetics and its interactions with several branches of modern statistics,

including nonlinear mixed effects models, hierarchical and empirical Bayes

methods, and generalized linear mixed effects models.

Section 2 also discusses the role of pharmacokinetic and pharmaco-

dynamic studies in drug development. Specifically they are used to

determine the dosage regimen of the drug (i.e. how much and how often it

should be taken). These studies are initially performed in vitro and then

on animals to come up with rough guesses of a region of dosage regimens in

which clinical studies on human subjects are to be performed. The in vitro

and animal studies are called pre-clinical and precede the clinical studies

that are classified as Phase I studies (on healthy volunteers) and Phases II

and III clinical trials (on patients).

Other statistical applications in pharmacology and pre-clinical studies

include bioequivalence and bioavailability (treated in Sec. 3), assay deve-

lopment and validation (summarized in Sec. 4), drug discovery (reviewed

in Sec. 5) and toxicology (treated in Chapter 13).

2. Pharmacokinetics and Pharmacodynamics

Drug administration can be divided into two phases, a pharmacokinetic

(PK) phase in which the kinetics of drug absorption, distribution, and
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elimination translate into drug concentration-time relationships in the

body, and a pharmacodynamic (PD) phase in which the drug concentration

at the site(s) of action leads to the response/effects produced. Knowledge

of both phases is important for the design of a dosage regimen to achieve

the therapeutic objective. Since both the desired response and toxicity

of the drug are functions of the drug concentration at the site(s) of action,

the therapeutic objective can be achieved only when the drug concentra-

tion lies within a “therapeutic window,” outside which the therapy is either

ineffective or has unacceptable toxicity. Drug concentrations, however, can

rarely be measured directly at the sites of action and are typically measured

at the plasma, which is a more accessible site. An optimal dosage regimen

can therefore be defined as one that maintains the plasma concentration of

a drug within the therapeutic window. This can be achieved for many drugs

by giving an initial dose to yield a plasma concentration within the thera-

peutic window and then maintaining the concentration within this window

by periodic doses to replace the drug lost over time.

2.1. PK/PD models

Many PK and PD models have been developed in clinical pharmacology.

The monographs1–5 give a comprehensive introduction to these models and

their applications. The PK models can be roughly classified as “mecha-

nistic” or “empirical,” while mechanistic models can be classified as “physio-

logic” or “compartmental.” In physiologic models, the body is viewed in

physiologic terms, making use of a priori knowledge of physiology, anatomy

and biochemistry. Although the tissues or organs differ from one another,

they share many qualitative features. As an illustrative example, consider

how anatomy affects elimination. First “clearance” CL is defined as the

rate of elimination divided by the concentration of the drug. If the organs

of elimination are in parallel, then CL is the sum of the CL
i

over the

elimination organs i. On the other hand, if the organs of elimination are

in series (working sequentially one after another), then CL is proportional

to 1 − Π(1 − E
i
), where E

i
is the extraction ratio of the drug at organ i.

In particular, since the gut-liver system is in series for portal circulation

whereas the portal and arterial systems into the liver are in parallel, it

follows that

CL = Q
H
{f

HP
[1− (1−Egut)(1−Eliver)] + (1− f

HP
)Egut} , (1)

where f
HP

is the fraction of total hepatic blood flow Q
H

that enters the

liver via the hepatic portal vein.
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In compartmental models, the body is viewed in terms of kinetic

compartments between which the drug distributes and from which elimina-

tion occurs. The kinetics is often described by a linear system of ordinary

differential equations, which have explicit solutions involving exponential

functions. On the other hand, the rate constants of a compartmental model

may be functions of the concentration of the drug itself or another metabo-

lite/interacting drug, leading to a system of nonlinear differential equations

that have to be solved numerically. Empirical PK models are typically

poly-exponential models of the form Σα
i
e

−λit. It is well known that differ-

ent compartmental models may imply the same poly-exponential models,

leading to identifiability difficulties with compartmental models in empirical

work.7,8

A basic goal of PD models is to describe and quantify the steady-state

relationship of drug concentration (C) at an effector site to the drug effect

(E). The simplest PD model for one drug is the so-called “Emax model”

defined by

E = emaxC/(C + c50) , (2)

where emax is the maximum effect that the drug can produce and c50 is

the concentration that yields 50% of emax. Note that this equation is the

same as the Langmuir model in thermodynamics or the Michaelis–Mantern

model in enzyme kinetics, in which the equilibrium state of ligand binding

reactions is given by

B = νF/(α+ F ) , (3)

where B and F are the concentrations of the bound and free ligand, respec-

tively, ν is the capacity of the binding site and 1/α is the affinity constant.

In fact, assuming that E is proportional to B, Eq. (2) follows from Eq. (3).

A variant of Eq. (2) to incorporate the baseline effect e0 is

E = e0 + emaxC/(C + c50) . (4)

When the effect decreases response, e0 = emax and Eq. (4) has the form

E = e0 − e0C/(C + c50) = e0c50/(C + c50) .

A convenient surrogate for the drug concentration at an effector site, which

is difficult to measure directly, is dose (D). In empirical work, the Emax

model is often reformulated as

E = e0 + emaxD/(D + ED50) . (5)
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A more general form of Eq. (2) is

E = bX/(X + a) . (6)

For b = emax, a = 1 and X = (C/c50)
γ with γ > 0, Eq. (6) is called the

“Sigmoid-Emax model.” While the special case γ = 1 of such models re-

duces to Eq. (2), the inclusion of γ gives an additional adjustable parameter

in fitting the model from data.

A general Emax model for two drugs, with concentrations C and C

∗,

incorporating both competitive and noncompetitive interactions is of the

form

E = emax

{

(C/c50) + α(C∗
/c

∗
50) + β(C/c50)(C

∗
/c

∗
50)

1 + (C/c50) + (C∗
/c

∗
50

) + δ(C/c50)(C∗
/c

∗
50

)

}

, (7)

where 0 ≤ α ≤ 1, 0 ≤ δ ≤ 1, and β ≥ 0 with β = 0 if δ = 0. In particular,

for δ = 1 and β = 1 + α, the right hand side of Eq. (7) can be written

as a sum of (C/c50)/{1 + (C/c50)} and α(C∗
/c

∗
50)/{1 + (C∗

/c

∗
50)}, yielding

additive effects of the two drugs. The case β = δ = 0 gives a “competitive

interaction model,” which can be written as a linear combination of two

terms of the form in Eq. (6) with b = emax and (X, a) = (C/c50, 1+C∗
/c

∗
50)

or (C∗
/c

∗
50
, 1 + C/c50). The case β > δ > 0 shows synergism between the

two drugs, while δ > max(β, 0) shows antagonism. In particular, the case

β = 0 and δ = 1 gives a “non-competitive antagonism model,” which can

be written as a linear combination of two terms of the form in Eq. (6) with

b = emax and

(X, a) = (C/c50, 1 + C

∗
/c

∗
50

+ CC

∗
/c50c

∗
50

) or

(C∗
/c

∗
50
, 1 + C/c50 + CC

∗
/c50c

∗
50

) .

Non-competitive antagonism can be explained by using receptor theory as

follows. A drug interacts with two sites, one of which activates a receptor

which may still interact with a second drug to form another non-activated

receptor.

2.2. PK parameters and their nonparametric estimates

Several physiologic (e.g. maturation of organs in infants) and pathologic

(e.g. kidney failure, heart failure) processes require dosage adjustments in

individual patients to modify specific PK parameters. Two basic parameters

in this connection are clearance (a measure of the ability of the body

to eliminate the drug) and volume of distribution (a measure of the

apparent space in the body available to contain the drug).
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Drug clearance principles are similar to clearance concepts in renal

physiology, in which creatinine or urea clearance is defined as the rate of

elimination of the compound in the urine relative to the plasma concentra-

tion. Thus clearance CL of a drug is the rate of elimination by all routes

relative to the concentration C of the drug in a biologic fluid:

CL = Rate of elimination/C . (8)

The commonly used biologic fluid in Eq. (8) is plasma, for which CL is,

strictly speaking, “plasma clearance.” When C is C
b

(blood concentration)

or C
u

(unbound or free drug concentration), then Eq. (8) gives “blood

clearance” or “clearance based on unbound drug concentration,” respec-

tively. In healthy subjects, the clearance of amikacin is 91 ml/min, with 98%

of the drug excreted in the urine unchanged. This means that the kidney is

able to remove this drug from approximately 89 ml of plasma per minute.

Propranolol is cleared at the rate of 840 ml/min, almost exclusively by the

liver. This means that the liver is able to remove this drug from 840 ml of

plasma per minute. For most drugs, clearance is constant over the plasma

or blood concentration range in clinical settings, so the rate of elimination

of the drug is proportional to its concentration C, in view of Eq. (8).

Clearance is perhaps the most important PK parameter to be considered

in defining a rational drug dosage regimen. In most cases, the clinician

would like to maintain steady-state drug concentrations C
ss

within a known

therapeutic window. Steady state will be achieved when the dosing rate

(rate of active drug entering the systemic circulation) equals the rate of

drug elimination. Therefore,

Dosing rate = CL× C
ss
. (9)

The two major sites of drug elimination are the kidneys and the liver.

Clearance of unchanged drug in the urine represents renal clearance. Within

the liver, drug elimination occurs via biotransformation of the drug to

one or more metabolites, or excretion of unchanged drug into the bile,

or both. When no other organs are involved in elimination of the drug,

CL = CLrenal + CLliver since the liver and kidneys work in parallel. The

rate of elimination of a drug by a single organ can be defined in terms of

the blood flow entering and exiting from the organ and the concentration of

drug in the blood. The rate of presentation of the drug to the organ is the

product of blood flow (Q) and entering drug concentration (C
i
), while the

rate of exit of drug from the organ is the product of blood flow and exiting
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drug concentration (C
o
). The difference between these rates at steady state

is the rate of drug elimination:

Rate of elimination = Q× C
i
−Q× C

o
. (10)

Dividing Eq. (10) by the concentration C
i

of the drug entering the organ

yields

CLorgan =
Q× C

i
−Q× C

o

C
i

= Q×
C

i
− C

o

C
i

. (11)

The expression (C
i
−C

o
)/C

i
is called the extraction ratio (ER) of the drug.

Bioavailability is the fraction of unchanged drug reaching the systemic

circulation after its administration by any route. For an intravenous dose of

the drug, bioavailability is 1. For a drug administered orally, bioavailability

may be less than 1 since the drug may be incompletely absorbed, or metabo-

lized in the gut, the portal blood or the liver prior to entry into the systemic

circulation. If a drug is metabolized in the liver or excreted in bile, some of

the active drug absorbed from the gastrointestinal tract will be inactivated

by hepatic processes before the drug can reach the general circulation and

be distributed to its sites of action. If the metabolizing or biliary excreting

capacity of the liver is great, the so-called “first-pass effect” on the extent

of availability will be substantial. The systemic bioavailability (F ) of a drug

that is completely absorbed and eliminated only by metabolism in the liver

is given by

F = 1− ER , (12)

where ER = CLliver/Qliver is the hypatic extraction ratio.

The AUC (area under the plasma or blood concentration-time curve)

is a commonly used measure of the extent of absorption or availability of

the drug absorbed in the body. It is usually calculated using the trapezoidal

rule based on the blood or plasma concentrations obtained at various blood

sampling times. Yeh and Kwan8 considered spline and Lagrange interpola-

tion schemes in lieu of the linear interpolation implied by the trapezoidal

rule and compared these methods. Let C0, C1, . . . , Ck
be the plasma or

blood concentrations obtained at times 0, t1, . . . , tk, respectively. The AUC

from time 0 to t
k
, denoted by AUC0,tk

, can be obtained via the trapezoidal

rule as

AUC0,tk
=

k

∑

i=1

(t
i
− t

i−1)(Ci
+ C

i−1)/2 . (13)
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Typically t
k

should be chosen so that C
k

does not fall below the so-called

“limit of quantitation” (LOQ) that will be defined in Sec. 4. In principle,

the AUC should be calculated from 0 to∞ (not just to the time of the last

blood sample), and the portion of the remaining area from t
k

to ∞ can be

large. An estimate of AUC (= AUC0,∞) is

AUC = AUC0,tk
+ C

k
e

−λtk
/λ , (14)

where λ, called the elimination rate constant, is estimated from the elimina-

tion phase of the graph of log-concentration versus time by linear regression,

assuming that it is linear so that λ corresponds to the slope of the fitted

regression line; (see Ref. 2, Chapter 3 and Appendix A). The United States

Food and Drug Administration (FDA) regulations require that sampling

be continued through at least 3 half-lives of the active drug ingredient,

measured in blood or urine, so that the remaining area beyond time t
k

is

only a small proportion of AUC0,tk
.

The AUC also provides a simple relationship between the volume of

distribution and dose. The volume of distribution (V ) is defined as

V = Amount of drug in body/C , (15)

where C is the concentration of the drug in blood or plasma, depending

on the fluid measured. It reflects the apparent space available in both the

general circulation and the tissue of distribution. It does not represent a

real volume but should be regarded as the size of the pool of blood fluids

that would be required if the drug were distributed equally throughout all

parts of the body. From mass balance and steady state considerations, V is

related to clearance via CL = λV , where λ is the elimination rate constant

in Eq. (14). Moreover, F ×Dose = CL×AUC (= total amount eliminated),

where F is the systematic bioavailability in Eq. (12).2 Hence,

V = CL/λ = (F ×Dose)/(λ×AUC) . (16)

Besides CL, V , and AUC (measuring bioavailability), another PK vari-

able, called the elimination half-life and denoted by t1/2, has to be

considered when designing drug dosage regimens. It is given by

t1/2 = (`n2)/λ = 0.693 V/CL (17)

and corresponds to the time taken for the concentration to drop to half of its

initial level, assuming a one-compartment model for the drug’s elimination

phase in the body, as is usually done in designing drug dosage regimens.

In view of Eq. (17), t1/2 can be estimated by (`n2)/λ̂, where λ̂ is an

estimate of the elimination rate constant described after Eq. (14). When
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F = 1, we can estimate CL by ̂CL = Dose/AUC. Without assuming F to be

1, we have to replace Dose above by F̂ ×Dose, where F̂ is an estimate of F .

Once CL has been estimated, we can estimate V by ̂CL/λ̂. To estimate F ,

we need additional data following an intravenous dose D∗, yielding AUC∗

and whose F ∗ can be assumed to be 1. Then F can be estimated from the

original (extravascular) dose D and AUC by

F̂ = min

{

AUC/D

AUC∗
/D

∗
, 1

}

.

The above PK parameters are considered in a single dose trial. In

practice, drugs are most commonly prescribed to be taken at fixed and

equal time intervals, each of width τ . The maximum, minimum, and average

concentration of the drug in steady state, denoted by C
ss,max, Css,min

and C
ss,av

, respectively, are considered in conjunction with the steady-

state volume of distribution and AUC during a dosing interval in steady

state. See Chapter 7 of Rowland and Tozer,2 which also shows how to

develop a dosage regimen from knowledge of these PK parameters and the

therapeutic window of a drug. Data obtained on multiple dosing can be

used to estimate the PK parameters of a drug as follows. The most useful

information derived from a multiple dosing study is the ratio of clearance

to availability. It is obtained from

CL

F

=
(Dose/τ)

C
ss,av

, (18)

where C
ss,av

is determined from the area under the plasma concentration-

time curve within a dosing interval at steady state divided by τ . Occa-

sionally, the drug is given as a multiple intravenous regimen, in which

case the ratio (Dose/τ)/C
ss,av

is simply clearance, since F = 1. The

accuracy of the clearance estimate depends on the number of plasma con-

centrations measured in the dosing interval and on the ratio of τ/t1/2.

The estimate can be improved by using several dosing intervals in steady

state. Equation (18) is also useful for determining the relative availa-

bility of a drug administered extravascularly, between two treatments

(e.g. dosage forms) A and B. Assuming that clearance remains unchanged,

we have

Relative availability =
(C

ss,av
)
B

(C
ss,av

)
A

·
(Dose/τ)

A

(Dose/τ)
B

. (19)
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2.3. Parametric and population PK/PD models

The nonparametric estimates of PK parameters described above assume

that the blood (or urine) samples are collected frequently through at least

3 half-lives of the active ingredient, so that the curve between successive

times t
k

and t
k+1 is well approximated by the line joining its values at

these two points. When the experiment does not meet such conditions, the

nonparametric estimates of AUC, CL and t1/2 become unreliable and there

are no satisfactory ways to evaluate the bias and standard error of such

estimate. In this case it is preferable to use a parametric approach, based

on the commonly used one-compartment model

y
j

=
Dk

a

V (k
a
− k

e
)
(e−ketj − e−katj ) + ε

j
, 1 ≤ j ≤ n , (20)

in which y
j

is the concentration at time t
j

after the administration of a

single oral dose D. Here V , k
a
, k

e
are the volume of distribution, absorption

rate constant and elimination rate constant, respectively. Note that model

(20) has the form of a bi-exponential model α1e
−λ1t+α2e

−λ2t with α1 = α2.

Lai7 gives a review of the literature on fitting the poly-exponential

regression model y
j

= β +
∑

k

k=1
α

k
e

−λktj + ε
j
, in which the errors ε

j
are

assumed to be independent with zero means and

(i) var(ε
j
) = σ

2 (constant variance error models), or

(ii) var(ε
j
) = f

2

θ

(t
j
)σ2 (constant coefficient of variation error models), or

(iii) var(ε
j
) = f

θ
(t

j
)σ2 (Poisson-type error models),

where θ = (λ1, . . . , λk
;α1, . . . , αk

, β) and f
θ
(t) = β +

∑

α
k
e

−λkt. We can

estimate θ by weighted least squares, i.e. by minimizing

S(θ) =

n

∑

j=1

w
j
[y

j
− f

θ
(t

j
)]2 . (21)

For fixed λ1, . . . , λk
, f

θ
(t) is linear in the parameters β, α1, . . . , αk

and

standard formulas in multiple linear regression can be used to find least

squares estimates of the linear parameters β, α1, . . . , αk
. This reduces the

problem of minimizing S(θ) to that of minimizing

S

∗(λ1, . . . , λk
) = min

β,α1,...,αk

S(θ) .

In the case of the Poisson-type or constant coefficient of variation error

model, the weights w
j

also involve the unknown parameter θ and can be

determined at each iteration from the previous iterate. It is shown in Lai7

that S∗ not only provides a relatively stable numerical algorithm for finding
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the least squares estimates but also sheds light on the range of models

that are compatible with the data. Depending on the experimental design,

S

∗ can be very flat over a broad region containing the minimum or can

decrease steeply to the minimum. It is also shown in Lai7 that although

the parameter vector θ may be poorly estimated because S∗ is relatively

flat, the function f
θ
(·) is typically well estimated by weighted least squares.

Therefore derived parameters like AUC can still be well estimated from

the estimated f

θ̂

even though θ̂ does not estimate θ well because of the

experimental design.

Parametric modeling also facilitates the evaluation of standard errors

and construction of confidence intervals. For the Emax model (2), which

can be rewritten as E/C = aE + b with a = −1/c50 and b = emax/c50,

Scatchard9 proposed to estimate a and b by linear regression of the observed

E/C on C. This simple method is usually adequate for point estimation

because of the large signal-to-noise ratio in the measurements. It is, how-

ever, unsatisfactory for constructing confidence intervals of the unknown

parameters, as has been noted in the ligand-binding literature related to

the mathematically equivalent model (3). Lai and Zhang10 give a review

of the literature and propose a new approach using nonlinear least squares

and bootstrap methods to construct confidence regions for the parameters.

The numerical studies reported in Lai and Zhang10 show that these confi-

dence regions are markedly different from the elliptical confidence regions

based on asymptotic normal approximations.

So far we have considered estimation of the PK/PD parameters of a

subject from the data in a study on the subject. In many PK/PD studies,

however, data are collected from a number of subjects, some of whom may

have intensive blood sampling while others only have sparse data. A primary

objective of these studies is to study the PK/PD characteristics of the en-

tire population, such as how they vary with certain covariates. This requires

embedding the individual parametric PK/PD models in a population

model. For example, the y
j

in model (20) are now replaced by y
ij

, where i

denotes the subject number. Since the dose, volume of distribution, absorp-

tion and elimination rate constants may vary from subject to subject, we

also have to replace D,V, k
a
, k

e
, n by D

i
, V

i
, k

ai
, k

ei
and n

i
in model (20).

Let θ
i

be the vector consisting of the logarithms of the PK parameters

V
i
, k

ai
, k

ei
. The unknown θ

i
may vary with certain covariates, such as

the subject’s age and body weight. How can the individual subjects’

data be used to analyze such relationships for the target population, of

which the subjects can be regarded as a sample? We shall show that
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nonlinear mixed effects modeling provides a valuable tool to address this

problem.

Returning to the PD model (2), the variable C refers to concentration

at an effector (tissue) site. It is usually impossible to measure C directly,

so some surrogate for C has to be used, as in model (5). On the other

hand, if one has a kinetic model for C, then it can be used to impute the

value of C from the blood/urine measurements. Chapter 9 of Davidian and

Giltinan11 illustrates how population PK/PD models can be synthesized

for such tasks.

2.4. Nonlinear mixed effects models

The preceding population PK/PD models are special cases of nonlinear

mixed effects models (NONMEM) of the form

y
ij

= f
i
(t

ij
, θ

i
) + ε

ij
, θ

i
= g(x

i
, β) + b

i
(1 ≤ j ≤ n

i
, 1 ≤ i ≤ K) , (22)

in which θ
i

is a 1× r vector of the ith subject’s parameters whose regres-

sion function on the subject’s observed covariate x
i

is given by g(x
i
, β)

with 1× s parameter vector β, which is the “fixed effect” to be estimated.

The “random effects” b
i
in model (22) are assumed to be independent and

identically distributed, having common distribution G with mean 0. The

ith subject’s response y
ij

at t
ij

has mean f
i
(t

ij
, θ

i
), in which f

i
is a known

function. Given θ
i
, the random errors ε

ij
are assumed to be normal with

mean 0 and standard deviation σw(θ
i
), in which w is a given function and

σ is an unknown parameter. The regression function g relates θ
i

to the

ith subject’s physiologic characteristics that constitute the covariate vector

x
i

in model (22). The first equation of (22) is often called the individual

measurement model and the second equation the population structure

model. The population distribution G is usually assumed to be normal

with mean 0 and covariance matrix Σ so that β, σ, Σ can be estimated

by maximum likelihood. However, unlike linear mixed effects models in

which the normal assumption on G yields closed-form expressions of the

likelihood, the normality of G in nonlinear mixed effects models leads to

computationally intensive likelihoods that involveK integrals. A commonly

used approach, as adopted in the software package NONMEM12 or the nlme

procedure in S-Plus, is to develop iterative schemes based on first-order

approximations of f
i
(t

ij
, g(x

i
, β) + b

i
) in model (22) so that the normal

assumption on G can be used to reduce the problem to that of a linear

Gaussian mixed effects model at each iterative step.
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Unless otherwise stated, we shall assume throughout the sequel that the

random errors ε
ij

in model (22) have common variance σ2 (so w(θ) ≡ 1).

The likelihood function L(β, σ,Σ) is proportional to

|Σ|−K/2

K

∏

i=1

∫

Rr

σ

−ni

× exp

{

−
1

2σ2

ni
∑

j=1

[y
ij
− f

i
(t

ij
, g(x

i
, β) + b

i
)]2 −

1

2
b
i
Σ−1

b

T

i

}

db
i
,

(23)

where |Σ| denotes the determinant of Σ. For the case of more general

w(θ
i
), simply replace σ in model (23) by σw(g(x

i
, β) + b

i
). Computing

the maximum likelihood estimate of (β, σ,Σ) via numerical integration and

nonlinear optimization becomes difficult for large K. Letting η = (σ,Σ),

Lindstrom and Bates13 proposed the following iterative procedure that

involves successive linear approximations to f
i
(t

ij
, g(x

i
, β)+ b). At the mth

iteration, the Lindstrom–Bates procedure consists of a pseudo-data step

and a linear mixed effects (LME) step.

(a) The pseudo-data step: Given the current estimate η̂(m) of η, compute

β̂

(m) = β̂(η̂(m)) and b̂
(m)

i

= b̂
i
(η̂(m)), 1 ≤ i ≤ K, that jointly minimize

K

∑

i=1

{(σ̂(m))−2
S

i
(b, β) + b

i
(Σ̂(m))−1

b

T

i

/2} , where

S
i
(β, b) =

ni
∑

j=1

[y
ij
− f

i
(t

ij
, g(x

i
, β) + b)]2

/

2 . (24)

This can be carried out by modifying a standard nonlinear least squares

routine; see Sec. 6.1 of Lindstrom and Bates.13 Define the s×n
i
, r×n

i
and

1× n
i
matrices

X

(m)

i

=

(

∂f
i

∂β

(t
ij
, g(x

i
, β) + b̂

(m)

i

)|
β=β̂

(m)

)

1≤j≤ni

,

Z

(m)

i

=

(

∂f
i

∂b
i

(t
ij
, g(x

i
, β̂

(m)) + b
i
)|

bi=b̂

(m)

i

)

1≤j≤ni

,

Y

(m)

i

= (y
ij
− f

i
(t

ij
, g(x

i
, β̂

(m)) + b

(m)

i

))1≤j≤ni
+ β̂

(m)
X

(m)

i

+ b̂

(m)

i

Z

(m)

i

.
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(b) The LME step: Linear approximation to f
i
(t

ij
, g(x

i
, β)+ b

i
) around

(β̂(m)
, b̂

(m)

i

leads to the linear mixed effects model

Y

(m)

i

= βX

(m)

i

+ b
i
Z

(m)

i

+ (ε
i1, . . . , εini

) . (25)

The integrals in expression (23) for the likelihood function of the linear

mixed effects model (25), instead of model (22), have closed-form expres-

sions, yielding maximum likelihood estimates of the form

β̂ =

(

K

∑

i=1

Y

(m)

i

V

−1

i,m

X

(m)T

i

)(

K

∑

i=1

X

(m)

i

V

−1

i,m

X

(m)T

i

)−1

, (26)

where V
i,m

= Z

(m)T

i

Σ̂Z
(m)

i

+ σ̂

2
I
ni

and η̂ = (σ̂, Σ̂) is computed via the

Newton–Raphson algorithm to maximize the likelihood; see Sec. 6.2 of

Lindstrom and Bates13 where a restricted maximum likelihood (REML)

variant of the procedure is also given.

Several alternatives to the linearization approach have been proposed

in the literature. One is Monte Carlo integration, whose accuracy and

computational complexity depend critically on how and how many samples

are drawn. Importance sampling and periodic updating of the impor-

tance weights during iterative maximization of the likelihood have been

proposed.14–16 Another alternative, proposed by Pinheiro and Bates,17 is

to use an adaptive version of Gaussian quadrature based on ideas similar to

importance sampling in Monte Carlo integration. A third approach is to use

MCEM (Monte Carlo EM) in which the E-step of the usual EM algorithm

is replaced by an empirical estimate based on a random sample generated

from the conditional distribution.15

Instead of applying Monte Carlo methods to compute the integrals in the

likelihood function to be maximized in the maximum likelihood approach,

it seems more direct to apply Markov Chain Monte Carlo (MCMC) to

evaluate the posterior distribution of (β, σ,Σ) when a prior distribution on

these parameters is assumed. MCMC enables one to generate a sequence

of random samples whose limiting distribution is the target distribution

(in this case the posterior distribution of (β, σ,Σ)) and thereby avoids the

calculation of normalizing constants and the numerical integration asso-

ciated with any probability statements of interest. The most popular

MCMC method used in the mixed effects model framework is the Gibbs

sampler. This is because the (hierarchical) Bayes model allows a natural

grouping of the vector of all unknown or unobserved parameters into
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subvectors β, σ, Σ and (θ
i
, i = 1, . . . , n), where drawing samples for

each component is much easier than drawing samples for the whole vector.

Successful usage of Gibbs sampler for NONMEM in population PK studies

has been reported in Refs. 11, 18–22. The relative efficiencies of different

MCMC procedures have been investigated by Bennett et al .23 and Shih.24

In addition to considerations in choosing transition functions, there are

other practical issues one has to deal with when implementing MCMC, such

as the number of chains to run, the length of burn-in sequences, and how

to monitor convergence. These are no general answers to these questions

and they often need to be addressed empirically by numerical experiments;

see Chapter 26.

The normality assumption on the population distribution G has been

weakened by Davidian and Gallant,25 who assume that G has a density

function of the form of a product of a multivariate normal N(0,Σ) density

function and the square of a polynomial of degree p, which was intro-

duced in another context and called the “smooth nonparametric” (SNP)

model by Gallant and Nychka.26 The coefficients of the polynomial and

the components of the matrix Σ can be estimated by maximum likelihood,

while the degree p of the polynomial can be chosen via standard model

selection criteria like BIC, AIC or the Hannan-Quinn criterion. Magder

and Zeger27 proposed an alternative method that uses mixtures of normals,

while Fattinger et al .28 modeled each component of b
i
as a data-dependent

monotone spline transformation of the corresponding component of a

multivariate normal vector. All these methods require considerably more

intensive computation to maximize the likelihood function than the case of

normal G assumed before.

Since the normality assumption on G only provides numerically

tractable maximum likelihood estimates after various approximations and

since attempts to relax that assumption have led to even more computa-

tionally intensive procedures, a natural alternative is to try estimating G

nonparametrically (by a distribution with finite support, with the number

of support points depending on the sample size). However, even for the

simple case n
i
≡ n and f

i
(t

ij
, θ

i
) = θ

i
with known β and σ, it is difficult

to estimate G well since the optimal rate of convergence of the estimate to

G is very slow when G has a smooth density function, as pointed out by

Carroll and Hall29 and Fan.30 When G has fixed support, Chen31 showed

that the optimal convergence rate is K−1/2 if the number of support points

is known but decreases to K−1/4 otherwise as K → ∞. Lindsay32 showed
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that the nonparametric maximum likelihood estimate Ĝ of G is unique

and discrete, with no more than K support points, and Mallet33 made use

of this and other properties of Ĝ to develop an algorithm to compute Ĝ.

The situation becomes considerably worse when σ and β are unknown and

f
i
(t

ij
, θ

i
) is nonlinear in θ

i
, for which little is known about the performance

of nonparametric estimates and it is also difficult to compute Ĝ.

One way to ensure that β and σ can be well estimated is to require the

dataset to contain a subset from subjects whose θ
i

can be well estimated.

This idea was introduced in the work of Ibragimov and Has’minskii34 who

consider estimation of (α,G) from independent random variables y1, . . . , yJ

such that the conditional density function of y
i
given θ

i
has the parametric

form f
α
(·|θ

i
), in the presence of another “direct” sample θ1, . . . , θI

from

G. Let K = I + J . They show that under certain regularity conditions,

a variant of the nonparametric maximum likelihood estimate that is

initialized at a
√
n-consistent estimate of (α,G) is asymptotically efficient.

Their model of the data {θ1, . . . , θI
; y1, . . . , yJ

} is commonly called the

Ibragimov-Has’minskii (IH) model. We shall relax the model assump-

tions and extend them to our setting, providing what will be called an

“Ibragimov-Has’minskii (IH) environment.”

In an IH environment, there are I (≤ K) subjects whose θ
i

can be

well estimated by the nonlinear least squares estimate θ̃
i
based on (y

ij
, t

ij
),

1 ≤ j ≤ n
i
. Without loss of generality we can assume that these are the

first I subjects. We can determine from the data the standard error of each

component of θ̃
i

using the asymptotic formulas in nonlinear regression.35

The ith study is deemed “good” if all components of θ̃
i

have reasonably

small standard errors relative to their absolute values. A consistent estimate

of σ2 is given by

σ̃

2 =

I

∑

i=1

ni
∑

j=1

(w(θ̃
i
))−2(y

ij
− f

i
(t

ij
, θ̃

i
))2

/

I

∑

i=1

(n
i
− r) . (27)

Such IH environments arise in most population PK studies, which use

combined data from several Phases I, II and III trials. The subjects in

Phase I trials are usually healthy volunteers or patients with the intent-to-

treat disease, from whom intensive blood sampling is conducted, and thus

provide natural candidates for good studies.

Lai and Shih36 developed the following iterative scheme to compute the

MLE of (β, σ,G) in an IH environment. First note that in the case w(θ) ≡ 1

the likelihood function is proportional to
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L(β, σ,G) =

K

∏

i=1

σ

−ni

M

∑

m=1

α
m

× exp

{

−
1

2σ2

ni
∑

j=1

[y
ij
− f

i
(t

ij
, g(x

i
, β) + ζ

m
)]2

}

(28)

when G has a finite support {ζ1, . . . , ζM} and puts mass α
m

at ζ
m

. For the

case of more general w(θ
i
), simply replace σ in model (28) by σw(g(w

i
, β)+

ζ
m

). The initial estimate (β̂(0)
, σ̂

(0)
, Ĝ

(0)) is obtained as follows: Let σ̂(0) =

σ̃ and β̂

(0) be the least squares estimate β̂(0) which minimizes
∑

I

i=1
(˜θ

i
−

g(x
i
, β))T (˜θ

i
− g(x

i
, β)). Let ˜b

i
= ˜

θ
i
− g(x

i
, β̂

(0)), 1 ≤ i ≤ I , denote the

residuals, and let ̂b
i
= ˜

b
i
− (
∑

I

j=1
˜

b
j
)/I be the centered residuals. Let Ĝ(0)

be the distribution putting weight 1/I at each centered residual. (β̂, σ̂, Ĝ)

is computed via an iterative procedure in which the following two steps are

used to compute (β̂(k)
, σ̂

(k)
, Ĝ

(k)) from (β̂(k−1)
, σ̂

(k−1)
, Ĝ

(k−1)); see Ref. 36

where a termination criterion and numerical examples are given.

Step 1. Suppose Ĝ(k−1) puts mass α
j

at ζ
j

(j = 1, . . . ,M
k−1). Find the

maximizer (β̂(k)
, σ̂

(k)) of L(β, σ, Ĝ(k−1)).

Step 2. Use Mallet’s algorithm33 to maximize L(β̂(k)
, σ̂

(k)
, G) over the set

of distributions G with no more than K support points.

2.5. Empirical Bayes methods for individualization

and diagnostics

We now consider the prediction problem of estimating a function h(θ) of the

unobservable parameter θ for a new subject with covariate x and from whom

some data have been collected. For example, in population PK studies, it

is believed that efficacy and toxicity of a drug are directly related to the

drug concentrations at the target site, which are generally not available

but for which blood concentrations are often good surrogates; therefore

the criteria for designing the dosing regimen for a specific subject often

involve functions of individual concentrations, or equivalently, functions

of the individual parameter θ. The subject’s data are often too sparse to

provide an adequate estimate θ̂ of θ so that h(θ̂) can be used to estimate

h(θ). If β, σ and G are known, then a natural estimate of h(θ) in the mixed

effects model is the posterior mean E
β,σ

2
,G

[h(θ) | subject’s data]. Without

assuming β, σ2 and G to be known, the empirical Bayes approach in Ref. 36
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replaces them by their estimates β̂, σ̂2, Ĝ from the K studies so that h(θ)

is estimated by

̂

h(θ) = E

β̂,σ̂
2
,Ĝ

[h(θ) | subject’s data] . (29)

This idea of borrowing information from other subjects is in fact

one of the main motivations for building population structure models.

In particular, because of ethical and practical reasons, intensive blood

sampling is often not feasible for clinical patients, for whom this individua-

lization of dosing regimen can be obtained by combining the patient’s

sparse data and characteristics (as measured by x) with the large database

for the population model. See also Berzuini38 for an example of medical

monitoring.

Empirical Bayes ideas can also be used to derive diagnostics for the

regression model (22). If the individual parameters θ
i

were observed, the

residuals r
i

= θ
i
− g(x

i
, β̂) would provide approximations for the un-

observable i.i.d. random variables b
i
. Therefore substantial deviation of

these residuals from i.i.d. patterns would suggest inadequacies and pos-

sible improvements of the assumed regression model. Since the θ
i

are

not observed, we propose to replace them by the empirical Bayes esti-

mate E

β̂,σ̂

2
,Ĝ

(θ
i
| y

i1, . . . , yini
, t

i
, x

i
), leading to the following generalized

residuals in the sense of Cox and Snell39:

r̂
i
= E

(β̂,σ̂

2
,Ĝ)

(θ
i
| y

i1, . . . , yini
, t

i
, x

i
)− g(x

i
, β̂) , i = 1, . . . ,K . (30)

The r̂
i

can be interpreted as estimates of the independent zero-mean ran-

dom variables r
i
= E(β,σ

2
,G)(θi

| y
i1, . . . , yini

, t
i
, x

i
)− g(x

i
, β).

Instead of using the posterior mean in Eq. (30), it is popular in

population PK studies to use the posterior mode

ŝ
i
= argmax

bi

p

(β̂,σ̂

2
,Ĝ)

(b
i
| y

i1, . . . , yini
, t

i
, w

i
) (31)

to form the residuals ŝ
i
− g(x

i
, β̂), where p(β,σ

2
,G) denotes the posterior

density in the Bayesian model with given β, σ2 and G. This was first sug-

gested by Maitre et al.40 in connection with linearization methods under

the assumption of normality for the population distribution, but is also

used as a general strategy in the semiparametric models of Davidian and

Gallant25 and the hierarchical Bayesian models of Wakefield and Racine-

Poon.44 For linear Gaussian mixed effects models, the mean and the mode

of the conditional distribution of θ
i

given y
i1, . . . , yini

coincide since the

conditional distribution is Gaussian, so the theoretical justification for
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the r
i

via an empirical Bayes point of view applies also to the s
i
. In the

case of nonlinear mixed effects models, the posterior mean and mode no

longer coincide, and r̂
i
is usually easier to compute and more robust. In the

above empirical Bayes approach, we have replaced (β, σ2
, G) in the pos-

terior mean E
β,σ

2
,G

[h(θ) | subject’s data] by an estimate (β̂, σ̂2
, Ĝ). This

estimate (β̂, σ̂2
, Ĝ) can be either parametric, as in Lindstrom and Bates,13

or nonparametric, as given above.

We next list some examples of using empirical Bayes/hierarchical

Bayes/posterior mode estimates in NONMEM to quantify covariate effects

on PK parameters in the literature:

(a) Population PK analysis of felbamate in epileptic patients42: Apparent

clearance of felbamate was found to decrease with age for children (age

≤ 12) and to stay relatively constant beyond 13 years of age. There were

1–17 blood samples per subject. This study, undertaken by Zhu and

his collaborators at Schering-Plough Research Institute and Wallace

Laboratories, led to the FDA approval of the labeling of felbamate for

its prescription to children.

(b) Population PK analysis of quindine in hospitalized patients treated for

atrial fibrillation over ventricular arrhythmias19,25,43: The effects of di-

chotomized creatinine clearance, body weight and α1-acid glucoprotein

concentration on clearance were analyzed from a study consisting of

1–11 blood samples per subject.

(c) Population PK analysis of phenobarbital in neonates11,25,44: The effects

of birth weight and 5-minute Apgar score on clearance and volume were

analyzed from a study with sparse PK data in each subject (having only

1–6 concentration measurements).

Model validation methodology for population PK analysis is still in its

infancy. One commonly used approach is to use m-fold cross-validation or

bootstrap to estimate the prediction errors based on a fitted model. Here

the prediction error may be associated with prediction of concentrations

or prediction of PK parameters (that can be estimated nonparametri-

cally only from subjects with intensive measurements). Given the compu-

tational complexity associated with fitting nonlinear mixed effects models,

m-fold cross-validation (with m ≤ 20) appears to be more feasible than the

bootstrap (for which the FDA recommends using at least 200 bootstrap

samples).
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2.6. The Lindstrom Bates algorithm and related

statistical methods

Vonesh45 proposed an alternative to the Lindstrom–Bates algorithm (con-

sisting of the pseudo-data and LME steps described in Sec. 2.4) by applying,

for fixed β and η, Laplace’s asymptotic formula
∫

Rr

e

l(b)
db ∼ (2π)r/2| − l̈(b̂)|−1/2

e

l(b̂) (32)

to each integral in expression (23), where l̈ denotes the Hessian matrix

of second partial derivatives of l and b̂ maximizes l(b). Earlier, Wolfinger46

derived the pseudo-data step of the Lindstrom–Bates algorithm by applying

for fixed η Laplace’s asymptotic formula to the multiple integral

∫

· · ·

∫

exp

{

K

∑

i=1

l
i
(b

i
;β)

}

dβdb1db2 · · · dbK , (33)

and then used a Gauss–Newton approximation of −l̈ to derive the REML

version of the LME step. Laplace’s asymptotic formula has also been used

by Breslow and Clayton47 and Lee and Nelder48 to derive their estimators in

generalized linear mixed models (GLMM) and hierarchical generalized linear

models (HGLM), respectively. The HGLM involves independent random

vectors (y
i
, x

T

i

, z

T

i

) such that the conditional density function of y
i
given a

1 ×K vector of random effects b has the GLM (generalized linear model)

form

f(y|b, z
i
, x

i
) = c(y, φ) exp{(θ

i
y − ψ(θ

i
))/a(φ)} , (34)

in which φ is a dispersion parameter, θ
i

is the canonical parameter such

that E(y|b, z
i
, x

i
) = g(βx

i
+ bz

i
) and g is the inverse of a monotone link

function. Letting f
α

be the density function of b with unknown parameter

α, Lee and Nelder48 define the hierarchical likelihood (h-likelihood) by

h(b, β, φ, α) = log f
α
(b) +

n

∑

i=1

log f(y
i
|b, z

i
, x

i
) . (35)

They propose to estimate β, φ, α by an iterative procedure whose mth

iteration consists of the following two steps:

(i) Given the current estimate (φ̂(m)
, α̂

(m)) of (φ, α), compute the maxi-

mizer (b̂(m)
, β̂

(m)) of h(b, β, φ̂(m)
, α̂

(m)) by solving the score equations

∂h/∂β = 0 and ∂h/∂b = 0.



June 4, 2003 12:19 WSPC/Advanced Medical Statistics chap11

Statistics in Pharmacology and Pre-Clinical Studies 429

(ii) Given the current estimate (b̂(m)
, β̂

(m)) of (b, β), maximize the adjusted

profile h-likelihood h
A
(φ, α) = h(b̂(m)

, β̂

(m)
, φ, α) + (log |2πφH−1|)/2

with

H =

(

∂

2
h/∂β

2
∂

2
h/∂β∂b

∂

2
h/∂b∂β ∂

2
h/∂b

2

)
∣

∣

∣

∣

∣

(b,β)=(b̂(m)
,β̂

(m))

,

by solving the score equations ∂h
A
/∂φ = 0 and ∂h

A
/∂α = 0.

For the special case of normal f
α

with mean 0 and covariance matrix

Σ(α), the HGLM reduces to the GLMM considered by Breslow and

Clayton47 who make use of the normality assumption to come up with an

explicit expression for Laplace’s approximation to the likelihood function
∫

e

h(b,β,φ,α)
db, yielding an algorithm similar to that of Lindstrom and Bates

for NONMEM. The Lee-Nelder procedure above is somewhat different

and is motivated by generalizing Henderson’s49 joint likelihood for linear

models with normal random effects. It can be derived by applying Lapalce’s

approximation to
∫∫

e

h(b,β,φ,α)
dbdβ, analogous to integral (33).

Let β0 and σ0 denote the true values of β and σ. A sufficient condition

for the validity of Laplace’s asymptotic formula (32) is that l(b) = Nλ(b),

where N → ∞ and λ is a fixed smooth function with a unique maximum.

The integral for the ith subject in model(23) has the form
∫

Rr

exp{l
i
(b|β, σ,Σ)}db , where

l
i
(b|β, σ,Σ) = −S

i
(b, β)/σ2 − bΣ−1

b

T

/2− n
i
logσ , (36)

in which S
i

is computed via Eq. (24) from n
i

observations (y
ij
, t

ij
), 1 ≤

j ≤ n
i
. If these observations are sufficiently informative about the ith

subject’s parameter vector θ
i
= g(x

i
, β0) + b

i
, then for (β, σ) near (β0, σ0),

S
i
(b, β) becomes peaked around b

i
and can be approximated by a quadratic

function in a neighborhood of the maximizer b̂
i
= b̂

i
(β, σ,Σ) of l

i
(b|β, σ,Σ).

Laplace’s asymptotic formula basically replaces l
i

in integral (36) by the

approximating quadratic function of b as λmin(−l̈
i
(b̂

i
|β, σ,Σ))→∞, where

λmin(·) denotes the minimum eigenvalue of a symmetric matrix.

When the ith subject has sparse data (y
ij
, t

ij
), S

i
(b, β) is no longer

peaked around b̂
i
and Laplace’s asymptotic formula may be a poor approx-

imation to integral (36). A better way to compute integral (36) in this case

is to use Monte Carlo, expressing integral (36) as the expectation

EΣ{exp(−S
i
(b, β)/σ2)} , (37)
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where EΣ denotes expectation under the probability measure for which b

is a normal random vector with mean 0 and covariance matrix Σ. Lai and

Shih37 proposed the following hybrid method for evaluating model (36).

Take c > 10 and let V
i
= −l̈(b̂

i
|β, σ,Σ).

(i) If λmin(V
i
) < c, evaluate integral (36) by Monte Carlo approximation

to expression (37):

B

−1

B

∑

j=1

exp{−S
i
(b

ij
, β)/σ2} ,

where b
ij

, j = 1, . . . , B, are independent samples from the N(0,Σ)

distribution.

(ii) If λmin(V
i
) ≥ c, evaluate integral (36) by its Laplace approximation

(2π)r/2|V
i
|−1/2 exp{l

i
(b̂

i
|β, σ,Σ)} .

By performing simple diagnostics on the appropriateness of using

Laplace’s asymptotic formula to evaluate the integral in expression (23)

for the ith subject, the hybrid approach preserves the computational sim-

plicity of Laplace’s method when it can be used and switches to the Monte

Carlo method when Laplace’s method fails. In practice, the actual popula-

tion distribution G of the random effects b
i

may differ substantially from

the assumed normal distribution with unknown covariance matrix, which

at best can only be regarded as an approximation to G. If the ith subject

has only sparse data so that S
i
(b, β) is relatively flat in b, then applying the

Monte Carlo approach to the subject is tantamount to choosing a certain

random distribution G
i
, which is the empirical distribution of a sample of

size B from a normal distribution, to approximate G. Since the assumed

normal distribution is itself also an approximation to G, there is no need

for a “high resolution” in the random distribution used to approximate the

normal distribution, so using 50 ≤ B ≤ 200 samples in the Monte Carlo

method should be able to provide enough statistical detail so that the re-

sultant estimator of (β, σ,Σ) still has a low computational cost comparable

to that of the Lindstrom–Bates estimator. On the other hand, if the ith

subject has enough data so that S
i
(b, β) is peaked around b̂

i
for β near β0,

the Monte Carlo approach becomes unreliable unless B is sufficiently large

and importance sampling is needed to generate the B samples from a distri-

bution that is peaked around b̂
i
, so Laplace’s method gives a much better

approximation to (36) in this case. Thus the Monte Carlo and Laplace’s

methods complement each other in the hybrid approach, which uses either
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N(0,Σ) or the empirical distribution of a sample of size B from N(0,Σ)

as the approximation G
i
(·|Σ) to the unknown (and possibly non-normal)

mixing distribution G. Using this hybrid approach to compute expression

(23) approximately, Lai and Shih37 make use of numerical differentiation

and iterative optimization schemes such as conjugate gradient and quasi-

Newton methods50 to maximize this approximation to expression (23),

providing the estimator (β̂, σ̂, Σ̂) of (β, σ,Σ). Good starting values in this

iterative scheme to compute (β̂, σ̂, Σ̂) can be obtained by running several

steps of the Lindstrom–Bates nlme procedure.

Lai and Shih37 also develop an asymptotic theory of the hybrid esti-

mator (β̂, σ̂) as the number K of subjects becomes infinite. This theory

does not require all subjects to have sufficient data to estimate their θ
i

consistently, nor does it require the actual G to be normal. Under the as-

sumption that a sufficiently large subset of the subjects have good studies

in the sense that their λmin(V
i
) exceeds the threshold c for applicability of

Laplace’s approximation to evaluate integral (36) and some additional re-

gularity conditions, (β̂, σ̂) is shown to converge with probability 1 to (β0, σ0)

as K →∞. Let n = n1 + · · ·+ n
K

. It is also shown in Lai and Shih37 that
√
n(β̂

n
− β0, σ̂n

− σ0) has a limiting normal distribution as K →∞ under

these and some other conditions. Moreover, this hybrid estimator and its

asymptotic theory have been extended in Lai and Shih37 to the HGLM of

Lee and Nelder48 and the GLMM of Breslow and Clayton.47

3. Bioavailability and Bioequivalence

Generic drug products (manufactured by other companies that are not

the innovator) have become increasingly popular since the 1960s. For the

approval of a generic drug product, the FDA usually does not require a

regular new drug application (NDA) submission to demonstrate the efficacy

and safety of the product. Instead, it requires the generic drug company to

submit bioavailability (BA) information on the generic drug and to provide

evidence of its bioequivalence (BE) to the standard (or reference) drug in an

“abbreviated new drug application” (ANDA), following certain regulations

that became effective in 1977 and are codified in 21 CFR 320, in which BA

is defined as “the rate and extent to which the active ingredient or active

moiety is absorbed from a drug product and becomes available at the site

of action.” In Sec. 2.2 we have discussed how the PK data of a drug can

be used to measure its BA. This section focuses on BE and the statistical

methods in BE studies.
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Two drug products are said to be bioequivalent if they contain either

identical amounts of the same active ingredient (i.e. are “pharmaceutical

equivalents”) or an identical therapeutic moiety and if their rates and

extents of absorption are not significantly different when administered

at the same dose under similar experimental conditions. BE studies are

conducted not only for ANDAs of generic drugs but also for formulation

change of an approved drug. For example, clinical trials for the NDA of a

drug usually use the drug produced in a laboratory setting. After approval,

commercial batches produced from manufacturing plants have to be demon-

strated to be bioequivalent to the clinical trial batches. Moreover, there may

also be changes from tablet to capsule formulations so that BE studies are

needed.

BE studies typically use healthy normal subjects and do not involve

Phases II and III trials. A pilot study using a small number (e.g. 6) of sub-

jects can be carried out in advance to assess inter-subject and intra-subject

variabilities, sample size, time intervals to collect blood or urine samples

and to provide other information. Instead of the commonly used randomized

designs in Phases II and III studies, in which each subject is randomly

assigned to one and only one formulation of a drug (parallel designs),

BE studies typically use the crossover design, which is a modified ran-

domized block design in which each block (consisting of a subject or a

group of subjects) receives more than one formulation of a drug at dif-

ferent time periods. Crossover designs have the following advantages in

BE studies:

(a) Each subject serves as his/her own control, allowing a within-subject

comparison between formulations.

(b) Inter-subject variability is removed from the comparison between

formulations.

(c) With proper randomization of subjects to the sequence of formulation

administrations, a crossover design can provide the best unbiased esti-

mates of the differences (or ratios) between formulations. On the other

hand, care must be taken to address the “carry-over” effects in crossover

designs. In BE studies, the “washout” period, which is defined as the

rest period between two treatment periods for the effect of the preceding

treatment period to taper off, must be long enough so that the carry-

over effect from one treatment period to the next is negligible. There is

an extensive literature on crossover designs for clinical trials,51–57 and

for BE studies.58
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Although parallel designs are infrequently used in BE studies since

crossover designs usually provide much better ways of identifying and

removing the inter-subject variability from the comparison between formu-

lations based on a sample of typically 18–24 subjects, there are situations in

which a parallel design is preferable to a crossover design, e.g. when (i) the

inter-subject variability is relatively small compared to the intra-subject

variability, or (ii) the drug has long elimination half-life so that the long

washout period in a crossover design prolongs the study and increases the

chance of drop-out of the subjects, or (iii) the cost of increasing the number

of subjects is smaller than that of adding an additional treatment period,

or (iv) extensive blood collection is not feasible from the subjects.

Suppose there are two formulations, one of which is a test formulation

(T) and the other a reference (or standard) formulation (R) of a drug.

For a standard 2 × 2 crossover design, each subject is randomly assigned

to either the first sequence RT or the second sequence TR at two dosing

periods. A subject assigned RT receives R at the first dosing period and T

at the second period. The dosing periods are separated by a washout period

of sufficient length to rule out carry-over effects. More generally, an m× n

crossover design involvesm sequences of formulations that are administered

at n time periods. Examples are the 2×4 crossover design consisting of the

two sequences TRTR and RTRT, and Balaam’s 4 × 2 crossover design51

consisting of the four sequences TT, RR, RT and TR.

A widely used statistical model to perform inference in these designs is

the linear mixed effects model

y
ijk

= µ+ a
j
+ η

ik
+ b

jk
+ c

j−1,k
+ ε

ijk
, (38)

where i refers to the subject number, j the period number and k the

sequence number. Here µ is the overall mean, a
j

is the fixed effect of the

jth period (with Σa
j

= 0), η
ik

is the random effect (assumed to be normal

with mean 0) of the ith subject in the kth sequence, b
jk

is the fixed effect

of the formulation in the jth period of the kth sequence, and ε
ijk

is the

within-subject random error which is assumed to be normal with mean 0.

In particular, for a standard 2× 2 crossover design, b
jk

is the fixed effect of

R (resp. T) if j = k (resp. j 6= k). Note that model (38) assumes first-order

(i.e. one-period) carry-over effects: c
j−1,k

represents the (fixed) residual

effect carried over from period j − 1 to period j in the kth sequence. For

two-period designs, carry-over effects can only occur in the second period.

It is also assumed that the η
ik

and ε
ijk

are independent with var(η
ik

) = σ

2

η

and var(ε
ijk

) = σ

2

ε

. Standard ANOVA techniques can be used to construct
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unbiased estimates and confidence intervals of linear contrasts of the

fixed effects, while the variance parameters σ2

η

and σ

2

ε

can be estimated

by the method of moments or restricted maximum likelihood.38,39 The y
ijk

in model (38) is typically some transformation of the observed response

(e.g. logarithm of the AUC) to make it approximately normal. Note that

the logarithmic transformation converts multiplicative effects into additive

effects, as assumed in model (38).

Although model (38) leads to standard F -tests of equality between

the formulations T and R, it has been recognized since the 1970s

that testing the usual hypothesis of equality is inappropriate for BE,

whose purpose is to verify that the two formulations have no “biolog-

ically significant” differences.60,61 One way to address this difficulty is

to change the null hypothesis of equality (versus the alternative hy-

pothesis of inequality) into a null hypothesis of the form H0 : θ ≤

θ1 or θ ≥ θ2, with an interval alternative hypothesis H1 : θ1 <

θ < θ2, where θ is the parameter of interest and the interval (θ1, θ2)

is a biological indifference zone. Schuirmann62,63 and Anderson and

Hauck64 have developed test procedures for what is now called aver-

age bioequivalence. Instead of relying on hypothesis testing, Westlake61

proposed the following confidence interval procedure to assess average

bioequivalence. Let µ
T
(µ

R
) denote the mean response of a subject receiving

treatment T(R) in model (38). If a (1− 2α)× 100% confidence interval for

µ
T
−µ

R
is within the acceptance limits as recommended by the regulatory

agency, then accept the test formulation T as bioequivalent to the reference

formulation R.

Average bioequivalence only compares the means of the marginal

distributions of the PK parameters of interest, such as AUC or Cmax,

associated with the two formulations. Under normality assumptions, the

equivalence between distributions is characterized by the equivalence of

their means and variances. Population bioequivalence therefore also com-

pares the variances of the two formulations. The intra-subject variability,

particularly associated with switching from one formulation to another,

leads to another criterion in assessing BE, called individual bioequivalence.

To explain the underlying motivation, suppose a patient switches from R

to T that has a much higher intra-subject variability than R. This may

push the AUC of the patient outside the established therapeutic window

of R. Consequently, population BE does not guarantee that the two formu-

lations are exchangeable and therapeutically equivalent and individual BE

is needed.
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To see what is involved in assessing these three criteria of BE, assume

for simplicity that there are no carry-over effects and no period-sequence

interactions so that (38) can be reduced to a form that involves T and R

more directly as

y
iδν

= µ
δ
+ α

iδ
+ ε

iδν
, (39)

where i is the subject number, δ = T or R, ν denotes the number of times

that δ appears in a sequence and therefore 1 ≤ ν ≤ n
δ

(= largest number of

times that δ appears in the available sequences). The ε
iδν

are independent

normal with mean 0, variance σ2

ε

and are independent of the random effects

(α
iT
, α

iR
) that are independent and have a bivariate normal distribution

with var(α
iT

) = v
T
, var(α

iR
) = v

R
and var(α

iT
− α

iR
) = σ

2

D

. According

to the 1999 FDA Guidance on Bioequivalence, average BE is established if

the 90% confidence limits for eµT
/e

µR are 4/5 and 5/4, or equivalently, if

±`n(1.25) are the 90% confidence limits for µ
T
− µ

R
. Note that the total

variance of the T formulation is σ2

T

= σ

2
ε

+ v
T
, while that of the R formula-

tion is σ2

R

= σ

2

ε

+ v
R
. Population BE is established if the 95% upper confi-

dence bound for {(µ
T
−µ

R
)2+(σ2

T

−σ2

R

)}/σ2

R

falls below the FDA specified

limit of {(`n1.25)2 + 0.02}/(0.2)2 = 1.745. Individual BE is established if

the 95% upper confidence bound for {(µ
T
− µ

R
)2 + σ

2

D

}/σ2

ε

falls below

another FDA specified limit. These upper confidence bounds can be

obtained by appealing to the central limit theorem and using the delta

method to compute the asymptotic standard errors. Alternatively, boot-

strap methods can be used to compute the confidence bounds and confi-

dence intervals; see in particular Chapter 25 of Efron and Tibshirani65 and

Sec. 4.5.3 of Chow and Liu.58 The inclusion of population BE and individual

BE besides average BE by the FDA in its guidelines for the pharmaceu-

tical industry reflects its concerns about prescribability and switchability

of generic drug products. Prescribability means that when a physician pre-

scribes a generic drug product to a patient for the first time, they should

both be assured that the drug product yields safety and efficacy results

comparable to that of the reference product in the patient population.

Switchability means that when a physician switches a reference product

to a generic product for a patient, they should both be assured that the

generic product will yield comparable safety and efficacy results for the

same individual.

Nonparametric and Bayesian approaches to BE have also been deve-

loped in the literature.58 There are intriguing theoretical problems con-

cerning BE in statistical decision theory.66 Crossover designs and average

BE for more than two formulations have also been studied.58
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4. Assay Development and Validation

The availability of reliable assays is central to determining the drug con-

centrations in blood, urine, etc., in PK studies. When a pharmaceutical

compound is discovered, it is necessary to develop an assay method to

measure the substance levels in plasma, serum, etc. The substance that

is being measured is called an analyte, and the objective is to determine

the analyte’s potency, which refers to its content or activity (e.g. number of

particles, gravitometric mass, percent of impurity). There are three types of

assays that are commonly used in the pharmaceutical industry: (i) chemical

assays such as HPLC (high performance liquid chromatographs), (ii) immu-

noassays (e.g. radioimmunoassays, enzyme-linked immunosorbent assays),

(iii) biological assays (measuring the analyte’s potency relative to some

standard drug in terms of the magnitudes of their effects on responses from

living subjects).

For the development of an assay method of a pharmaceutical compound,

the FDA requires that the assay method meet the established specifications,

for which instrument calibration is essential. A common approach to cali-

bration is to have a number of known standard concentration preparations

put through the instrument to obtain the corresponding responses. Fitting

an appropriate statistical model to the data yields an estimated calibration

curve, called the standard curve. Simple linear regression of the response

on the standard is perhaps the most widely used statistical model. The

standard curve is used to determine the unknown potency.67

Validation of an assay method is the process by which it is estab-

lished, in laboratory studies, that the performance characteristics of the

method indeed meets the specified criteria. As specified in Chow and

Liu,67 these criteria include (i) accuracy (no systematic error in the assay

method), (ii) precision (measurement error of the method), (iii) limit of

detection/quantitation (LOD/LOQ, which is the lowest concentration of

analyte in a sample that can be detected/determined with acceptable pre-

cision under the specified experimental conditions), (iv) range (reliable

range of the method), (v) linearity (whether the assay generates results

that are directly proportional to the concentration of analyte within a given

range), (vi) specificity (whether the assay measures the analyte and no other

substance in the specimen), (vii) ruggedness (degree of reproducibility of

assay results under a variety of normal test conditions, such as different la-

boratories, assay temperatures, days). Commonly used statistical methods

for assay validation include:
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(a) regression analysis (particularly with respect to accuracy, linearity and

LOD/LOQ),

(b) analysis of variance (particularly with respect to ruggedness); see

Chapter 3 of Chow and Liu.67

Lin68 introduces a concordance correlation coefficient to evaluate repro-

ducibility and ruggedness, while Chapter 10 of Davidian and Giltinan11

applies nonlinear mixed effects models to the analysis of assay data.

5. Drug Discovery

As pointed out in the preceding section, assay development is an impor-

tant facet in the drug discovery process. Another important facet is of a

biological nature and involves the identification of a biological target or

pathway. In recent years, advances in bioinformatics and genomics have

provided new tools and opportunities in this direction. Besides applica-

tions to assay development and bioinformatics, statistical methods are also

useful in screening compounds for clinically active drugs, and in searching

for novel, active compounds.

A pharmaceutical company typically has a large inventory of com-

pounds, of which an unknown small proportion is truly active. Dunnett69

developed a model that takes into account the costs and benefits of any

screening procedure to derive an optimal procedure; see also the subsequent

work of Bergman and Gittins70 in this direction. Colton71 and King72 consi-

dered multistage screening procedures, while Redman and King73 proposed

group screening that uses balanced and partially balanced incomplete

block designs to increase the rate of compound screening without reducing

necessary replication.

Numerical topology is the assignment of numerical values to topolo-

gically invariant features of molecules. There is an isomorphism between

two-dimensional molecular diagrams and connected graphs; the edges and

vertices of the graphs correspond to bonds and atoms of molecules, yielding

numerical representation of compounds or parts of compounds. With this

representation, search for active compounds involves a very large set of

graphs. Moreover, there may also be a large number of potential chemical

modifications at different sites that one may want to experiment with. Ex-

perimental design techniques are particularly useful for such problems.74,75
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1. Pharmaceutical Research and Development

In the process of research and development of a pharmaceutical entity,

statistics are necessarily applied at various critical stages of the process to

meet regulatory requirements for the effectiveness, safety, identity, strength,

quality, purity, stability, and reproducibility of the pharmaceutical entity

under investigation. A pharmaceutical entity could be a drug product, a

biological product, a medical device, or a combination of a drug product, a

biological product and a medical device. The critical stages of the process of

pharmaceutical research and development include pre-IND (Investigational

New Drug Application), IND, NDA (New Drug Application) and post-

NDA. The role of statistics at these critical stages is briefly described below.

At the very early stage of pre-IND, pharmaceutical scientists may

have to screen thousands of potential compounds in order to identify a

few promising compounds. An appropriate use of statistics with efficient

screening and/or optimal designs will assist pharmaceutical scientists to

cost effectively identify the promising compounds within a relatively short

period of time. As indicated by the United States Food and Drug Admini-

stration (FDA), an IND should contain information regarding chemistry,

443
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manufacturing, and controls (CMC) of the drug substance and drug product

to ensure the identity, strength, quality, and purity of the investigational

drug. In addition, the sponsors are required to provide adequate information

regarding pharmacological studies for absorption, distribution, metabolism,

and excretion (ADME) and acute, subacute, and chronic toxicological

studies and reproductive tests in various animal species to support that

the investigational drug is reasonably safe to be evaluated in clinical trials

in humans. At this stage, statistics are usually applied to (i) validate a

developed analytical method, (ii) establish drug expiration dating period

through stability studies, and (iii) assess toxicity through animal studies.

Statistics are required to meet standards of accuracy and reliability.

Before the drug can be approved, the FDA requires that substantial

evidence of the effectiveness and safety of the drug be provided in the

Technical Section of Statistics of an NDA submission. Since the validity

of statistical inference regarding the effectiveness and safety of the drug

is always a concern, it is suggested that a careful review be performed to

ensure an accurate and reliable assessment of the drug product. In addi-

tion, in order to have a fair assessment of the efficacy and safety of the

investigational drug, the FDA also establishes advisory committees, each

consisting of clinical experts, pharmacological experts, statistical experts,

and one advocate (not employed by the FDA) in designated drug classes

and specialties, to provide a second but independent review of the submis-

sion. The responsibility of the statistical expert is not only to ensure that

a valid design is used but also to evaluate whether statistical methods used

are appropriate for addressing the scientific and medical questions regarding

the effectiveness and safety of the drug.

After the drug is approved, the FDA also requires that the drug product

be tested for its identity, strength, quality, purity, and stability before it can

be released for use. For this purpose, the current Good Manufacturing Prac-

tice (cGMP) is necessarily implemented to (i) validate the manufacturing

process, (ii) monitor the performance of the manufacturing process, and (iii)

provide quality assurance of the final product. At each stage of the manufac-

turing process, the FDA requires that sampling plans, acceptance criteria,

and valid statistical analyses be performed for the intended tests such as po-

tency, content uniformity, and dissolution.69 For each test, sampling plan,

acceptance criteria, and valid statistical analysis are crucial for determi-

ning whether the drug product pass the test based on the results from a

representative sample.
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In this chapter, we will not only introduce some key statistical con-

cepts commonly encountered in pharmaceutical research and development,

but also provide a comprehensive review of some important topics such as

assay validation, stability design and analysis, individual bioequivalence,

statistical principles for good clinical practice, and statistics in diagnostic

imaging. Detailed information regarding the application of statistics at

various critical stages during the process of pharmaceutical research and

development can be found in Chow.9

2. Key Statistical Concepts

Key statistical concepts in the design and analysis of studies that are

commonly conducted at various stages of pharmaceutical research and

development are described below.

2.1. Bias and variability

For approval of a drug product, regulatory agencies usually require that the

results of the studies conducted at various stages of drug research and deve-

lopment must be accurate and reliable to provide a valid and fair assessment

of the treatment effect. The accuracy and reliability are usually referred

to as the closeness and the degree of the closeness of the results to the

true value (i.e. true treatment effect). Any deviation from the true value is

considered a bias, which may be due to selection, observation, and statistical

procedures. Pharmaceutical scientists should make any attempts to avoid

bias whenever possible to ensure that the collected data are accurate. The

reliability of a study is an assessment of the precision of the study, which

measures the degree of the closeness of the results to the true value. The

reliability reflects the ability to repeat or reproduce similar outcomes in

the targeted population. The higher precision a study is, the more likely the

results would be reproducible. The precision of a study can be characterized

by the variability incurred during the conduct of the study.

In practice, since studies are usually planned, designed, executed,

analyzed, and reported by a team consisting of pharmaceutical scientists

from different disciplines, bias and variability inevitably occurs. It is then

suggested that possible sources of bias and variability be identified at the

planning stage of the study not only to reduce the bias but also to minimize

the variability.
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2.2. Type I error, significance level, and power

In statistical analysis, two different kinds of mistakes are commonly en-

countered when performing hypotheses testing. As an example, consider

the example of pharmaceutical application. Suppose that a pharmaceutical

company is interested in demonstrating that a newly developed drug is

efficacious. The null hypothesis is often chosen as that the drug is in-

efficacious vs. the alternative hypothesis of that the drug is efficacious.

The objective is to reject the null hypothesis and conclude the alternative

hypothesis that the drug is efficacious. Under the null hypothesis, a type

I error is made if we conclude that the drug is efficacious when in fact it

is not. This error is also known as consumer’s risk. The acceptable level of

probability of committing type I error is known as the significance level.

If the probability of observing type I error based on the data is less than

the significance level, we conclude that a statistically significant result is

observed. The probability of observing type I error is usually referred to as

p-value of the test. Similarly, a type II error is committed if we conclude

that the drug is inefficacious when in fact it is. This error is referred to

as the producer’s risk. The power is defined as the probability of correctly

concluding that the drug is efficacious when in fact it is. For assessment

of drug effectiveness and safety, a sufficient sample size is often selected

to have a desired power with a pre-specified significance level. The pur-

pose is to control both type I error (significance level) and type II error

(power).

2.3. Confounding and interaction

In pharmaceutical research and development, there are many sources of

variation, which have impact on the evaluation of the treatment. If these

variations are not identified and properly controlled, then they may be

mixed up with the treatment effect for which the studies are intended to

demonstrate. In this case, the treatment effect is confounded with the effects

due to these variations. Statistical interaction is to investigate whether the

joint contribution of two or more factors is the same as the sum of the

contributions from each factor when considered alone. If an interaction

between factors exists, an overall assessment cannot be made. In practice,

it is suggested that possible confounding factors be identified and properly

controlled at the planning stage of the studies. When significant interac-

tions among factors are observed, subgroup analyses may be necessary for

a careful evaluation of the treatment effect.
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2.4. Randomization

Statistical inference on a parameter of interest of a population under study

is usually derived under the probability structure of the parameter. The

probability structure depends upon the randomization method employed

in sampling. The failure of the randomization will have a negative impact

on the validity of the probability structure. Consequently, the validity,

accuracy, and reliability of the resulting statistical inference of the pa-

rameter are questionable. Therefore, it is suggested that randomization be

performed using appropriate randomization method under a valid randomi-

zation model according the study design to ensure the validity, accuracy,

and reliability of the derived statistical inference. Details regarding various

randomization models and methods that are commonly employed in clinical

research can be found in Chow and Liu.12

2.5. Sample size determination/justification

One of the major objectives of most studies during drug research and deve-

lopment is to determine whether the drug is effective and safe. During

the planning stage of a study, the following questions are of particular

interest to the pharmaceutical scientists: (i) how many subjects are needed

in order to have a desired power for detecting a meaningful difference,

(ii) what is the trade off if only a small number of subjects are available for

the study due to limited budget and/or some scientific considerations. To

address these questions, a statistical evaluation for sample size determina-

tion/justification is often employed. Sample size determination is usually

referred to the calculation of sample size for some desired statistical proper-

ties such as power or precision, while sample size justification is to provide

statistical justification for a selected sample size, which is often a small

number.

For a given study, sample size can be determined/justified based on

some criteria on type I error (a desired precision) or type II error (a desired

power). The disadvantage for sample size determination/justification based

on the criteria of precision is that it may have a small chance of detecting a

true difference. As a result, sample size determination/justification based on

the criteria of power becomes the most commonly used method. Sample size

is selected to have a desired power for detection of a meaningful difference

at a pre-specified level of significance.

In practice, however, it is not uncommon to observe discrepancies

among study objective (hypotheses), study design, statistical analysis (test
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statistic) and sample size calculation. These inconsistencies often result in

(i) wrong test for right hypotheses, (ii) right test for wrong hypotheses,

(iii) wrong test for wrong hypotheses, or (iv) right test for right hypotheses

with insufficient power. Therefore, before the sample size can be deter-

mined, it is suggested that the following be carefully considered; (i) the

study objective or the hypotheses of interest be clearly stated, (ii) a valid

design with appropriate statistical tests be used, and (iii) sample size be

determined based on the test for the hypotheses of interest.

Note that procedures for sample size calculation based on a pre-study

power analysis for comparing means, proportions, time-to-event data, and

variabilities can be found in Chow, Shao and Wang.21

2.6. Statistical difference and scientific difference

A statistical difference is defined as a difference that is unlikely to occur by

chance alone, while a scientific difference is referred to as a difference that

is considered to be of scientific importance. A statistical difference is also

referred to as a statistically significant difference. The difference between

the concepts of statistical difference and scientific difference is that sta-

tistical difference involves chance (probability), while scientific difference

does not. When we claim there is a statistical difference, the difference is

reproducible with a high probability.

When conducting a study, basically, there are four possible outcomes.

The result may show that (i) the difference is both statistically and

scientifically significant, (ii) there is a statistically significant difference

yet the difference is not scientifically significant, (iii) the difference is of

scientifically significant yet it is not statistically significant, and (iv) the

difference is neither statistically significant nor scientifically significant.

If the difference is both statistically and scientifically significant or it is

neither statistically or scientifically significant, then there is no confusion.

However, in many cases, a statistically significant difference does not agree

with the scientifically significant difference. This inconsistence has created

confusion/arguments among pharmaceutical scientists and biostatisticians.

The inconsistence may be due to large variability and/or insufficient sample

size.

2.7. One-sided test versus two-sided test

For evaluation of drug product, the null hypothesis of interest is often the

one of no difference. The alternative hypothesis is usually the one that there
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is a difference. Statistical test for this setting is called a two-sided test. In

some cases, the pharmaceutical scientist may test the null hypothesis of no

difference against the alternative hypothesis that the drug is superior to

the placebo. Statistical test for this setting is known as one-sided test.

For a given study, if a two-sided test is employed at the significance level

of 5%, then the level of proof required is one out of 40. In other words, at

the 5% level of significance, there is 2.5% chance (or one out of 40) that we

may reject the null hypothesis of no difference in the positive direction and

conclude the drug is effective at one side. On the other hand, if a one-sided

test is used, the level of proof required is one out of 20. It turns out that one-

sided test allows more ineffective drugs to be approved because of chance

as compared to the two-sided test. It should be noted that when testing

at the 5% level of significance with 80% power, the sample size required

increases by 27% for a two-sided test as compared to a one-sided test. As

a result, there is a substantial cost saving if a one-sided test is used.

However, there is no universal agreement among the regulatory,

academia, and the pharmaceutical industry as to whether a one-sided test or

a two-sided test should be used. The FDA tends to oppose the use of a one-

sided test though several pharmaceutical companies on the Drug Efficacy

Study Implementation (DESI) drugs at the Administrative Hearing have

challenged this position. Dubey26 pointed out that several viewpoints that

favor the use of one-sided test were discussed in an administrative hearing.

These points indicated that one-sided test is appropriate in the following

situations of (i) where there is truly only concern with outcomes in one tail

and (ii) where it is completely inconceivable that the results could go in the

opposite direction.

2.8. Good Statistics Practice

Good Statistics Practice (GSP) is defined as a set of statistical principles

for the best pharmaceutical practices in design and analysis of studies con-

ducted at various stages of drug research and development.8 The purpose

of GSP is not only to minimize bias but also to minimize variability that

may occur before, during, and after the conduct of the studies. More

importantly, GSP provides a valid and fair assessment of the drug product

under study. The concept of GSP can be seen in many guidelines and

guidance that issued by the FDA and the International Conference on

Harmonization (ICH) at various stages of drug research and develop-

ment. These guidelines and guidances include Good Laboratory Practice
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(GLP), Good Clinical Practice (GCP), current Good Manufacturing Prac-

tice (cGMP), and Good Regulatory Practice (GRP). Another example of

GSP is the guideline on Statistical Principles in Clinical Trials recently

issued by the ICH.42 As a result, GSP can not only provide accuracy and

reliability of the results derived from the studies but also assure the validity

and integrity of the studies.

The implementation of GSP in pharmaceutical research and develop-

ment is a teamwork, which requires mutual communication, confidence,

respect, and cooperation between statistician, pharmaceutical scientists

in the related areas, and regulatory agents. The implementation of GSP

involves some key factors that have an impact on the success of GSP.

These factors include (i) regulatory requirements for statistics, (ii) the

dissemination of the concept of statistics, (iii) an appropriate use of statis-

tics, (iv) an effective communication and flexibility, (v) statistical training.

These factors are briefly described below.

In the pharmaceutical development and approval process, regulatory

requirements for statistics are the key to the implementation of GSP. They

not only enforce the use of statistics but also establish standards for sta-

tistical evaluation of the drug products under investigation. An unbiased

statistical evaluation helps pharmaceutical scientists and regulatory agents

in determining (i) whether the drug product has the claimed effectiveness

and safety for the intended disease, and (ii) whether the drug product

possesses good drug characteristics such as the proper identity, strength,

quality, purity, and stability.

In addition to regulatory requirements, it is always helpful to dis-

seminate the concept of statistical principles described above whenever

possible. It is important for pharmaceutical scientists and regulatory agents

to recognize that (i) a valid statistical inference is necessary to provide a

fair assessment with certain assurance regarding the uncertainty of the drug

product under investigation, (ii) an invalid design and analysis may result

in a misleading or wrong conclusion about the drug product, (iii) a larger

sample size is often required to increase statistical power and precision of

the studies. The dissemination of the concept of statistics is critical to estab-

lish the pharmaceutical scientists and regulatory agents’ brief in statistics

for scientific excellence.

One of the commonly encountered problems in drug research and

development is the misuse or sometimes the abuse of statistics in some

studies. The misuse or abuse of statistics is critical which may result in

either having the right question with the wrong answer or having the right
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answer for the wrong question. For example, for a given study, suppose

that a right set of hypotheses (the right question) is established to reflect

the study objective. A misused statistical test may provide a misleading or

wrong answer to the right question. On the other hand, in many clinical

trials, point hypotheses for equality (the wrong question) are often wrongly

used for establishment of equivalency. In this case, we have right answer (for

equality) for the wrong question. As a result, it is recommended that ap-

propriate statistical methods be chosen to reflect the design, which should

be able to address the scientific or medical questions regarding the intended

study objectives for implementation of GSP.

Communication and flexibility are important factors to the success

of GSP. Inefficient communication between statisticians and pharmaceu-

tical scientists or regulatory agents may result in a misunderstanding of

the intended study objectives and consequently an invalid design and/or

inappropriate statistical methods. Thus, effective communications among

statisticians, pharmaceutical scientists and regulatory agents is essential

for the implementation of GSP. In addition, in many studies, the assump-

tion of a statistical design or model may not be met due to the nature

of drug product under investigation, experimental environment, and/or

other causes related/unrelated to the studies. In this case, the traditional

approach of doing everything by the book does not help. In practice, since

the concerns from a pharmaceutical scientist or the regulatory agent may

translate into a constraint for a valid statistical design and appropriate

statistical analysis, it is suggested that a flexible and yet innovative solution

be developed under the constraints for the implementation of GSP.

Since regulatory requirements for the drug development and approval

process vary from drug to drug and country to country, various designs

and/or statistical methods are often required for a valid assessment of a

drug product. Therefore, it is suggested that statistical continued/advanced

education and training programs be routinely held for both statisticians and

non-statisticians including pharmaceutical scientists and regulatory agents.

The purpose of such continued/advanced education and/or training pro-

gram is threefold. First, it enhances communications within the statistical

community. Statisticians can certainly benefit from such a training and/or

educational program by acquiring more practical experience and knowledge.

In addition, it provides the opportunity to share/exchange information,

ideas and/or concepts regarding drug development between professional so-

cieties. Finally, it identifies critical practical and/or regulatory issues that

are commonly encountered in drug development and regulatory approval
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process. A panel discussion from different disciplines may result in some

consensus to resolve the issues, which helps in establishing standards of

statistical principles for implementation of GSP.

3. Pharmaceutical Validation

3.1. Assay validation

When a new pharmaceutical compound is discovered, the FDA requires

that an analytical method or test procedure for determination of the active

ingredients of the compound be developed and validated before it can

be applied to animal and/or human subjects. The cGMP requires that

test methods, which are used for assessing compliance of pharmaceutical

products with established specifications, must meet proper standards of

accuracy and reliability. The USP/NF defines the validation of analytical

methods as the process by which it is established, in laboratory studies,

that performance characteristics of the methods meet the requirement for

the intended analytical application.

The analytical application may be referred to as a drug potency which

is usually based on gas chromatography (GC) or high performance liquid

chromatography (HPLC) for potency and stability studies, immunoassays

such as radioimmunoassay (RIA) for the in vitro activity of an antibody

or antigen, or a biological assay for the in vivo activity such as median

effective dose (ED50). The performance characteristics include accuracy,

precision, limit of detection (LOD), limit of quantitation (LOQ), selectivity

(or specificity), linearity, range, and ruggedness, which are useful measures

for assessment of accuracy and reliability of the assay results. Among these

performance characteristics, accuracy, precision, and ruggedness are con-

sidered the primary parameters for the validation of an analytical method.

For the validation of an analytical method, whether the analytical

method can generate true values is often of great concern. To address

this question, one may measure how close the assay result obtained by

the analytical method is to the true value. This performance characteristic

is referred to as the accuracy of the assay result. In practice, one may

consider the analytical method to be validated in terms of accuracy if the

mean value is within ±15% of the actual value, except at LOQ, where it

should not deviate by more than 20%.60 In addition, the precision, which is

defined as the degree of agreement among individual assay results when the

assay method is applied repeatedly to multiple sampling of a homogenous

sample can be measured based on measurement error of the assay. Similarly,
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Shah et al.60 indicated that one may claim that the analytical method is

validated if the precision around the mean value does not exceed a 15%

coefficient of variation (CV), except for LOQ, where it should not exceed

20% CV.

In many cases, different analysts and different laboratories under

different operating circumstances such as different instruments, different

lots of reagents, different elapse time, or different assay temperatures may

perform a specific analytical method. Assay ruggedness is often used to

assess the influence of uncontrollable factors or the degree of reproducibility

on assay performance. One may conclude that the analytical method is

validated in terms of reproducibility if its assay ruggedness is within 15%

of the mean value.

Accuracy is typically assessed using multiple testing by linear regres-

sion. Precision can be assessed by testing the null hypothesis that the

variability is less than an acceptable limit. Typical approaches for assessing

assay ruggedness include the one-way nested random effects model and the

two-way crossed-classification mixed model. For the assessment of assay

ruggedness, it should be noted, however, that the classical analysis of

variance method may produce negative estimates for the variance compo-

nents and that the sum of best estimates of variance components may not

be the best estimate of the total variability. In these situations, methods

proposed by Chow and Shao14 and Chow and Tse23 are useful. In practice,

the validation of an analytical method can be carried out by the following

steps: First, it is important to develop a prospective protocol which clearly

states the validation design, sampling procedure, acceptance criteria for

the performance characteristics to be evaluated, and how the validation is

to be carried out. Second, collect the data and document the experiment,

including any violations from the protocol that may occur. The data should

be audited to assure their quality. The collected data are then analyzed

based on appropriate statistical methods. Appropriate statistical methods

are referred to as those methods, which can reflect the validation design

and meet the study objective. Finally, draw a conclusion regarding whether

the analytical method is validated based on the statistical inference drawn

about the accuracy, precision, and ruggedness of the assay results.

3.2. Process validation

The objective of the validation of a manufacturing process is to ensure

that the manufacturing process does what it purports to do. A validated
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process assures that the final product has a high probability of meeting the

standards for identity, strength, quality, purity, and stability of the drug

product. A manufacturing process is a continuous process, which usually

involves a number of critical stages. For example, for the manufacturing

of tablets, the process may include initial blending, mill, primary blending,

final blending, compression, and coating stages. At each critical stage, some

problems may occur. For example, the ingredients may not be uniformly

mixed at the primary blending stage; the segregation may occur at the

final blending stage, and the weight of tablets may not be suitably con-

trolled during the compression stage. In practice, therefore, it is important

to evaluate the performance of the manufacturing at each critical stage

by testing in process and/or processed materials for potency, dosage

uniformity, dissolution, and disintegration according to sampling plans and

acceptance criteria stated in the USP/NF. These tests are usually referred

to as the USP tests. For sampling plans of USP tests, the USP/NF requires

that representative samples be drawn from the container.

A manufacturing process is considered to pass the USP/NF tests if

each critical stage of the manufacturing process and the final product meet

the required USP/NF specifications for the identity, strength, quality, and

purity of the drug product. A manufacturing process is considered validated

if at least three validation batches (or lots) pass all required USP/NF tests.

Since manufacturing procedures vary from drug product to drug product

and/or from site to site during the development of a validation protocol

of manufacturing process, it is important to discuss the issues such as (i)

critical stages, (ii) equipment to be used at each critical stage, (iii) possible

problems, (iv) USP tests to be performed, (v) sampling plans, (vi) test-

ing plans, (vii) acceptance criteria, (viii) pertinent information, (ix) test

or specification to be used as reference, and (x) validation summary with

project scientists to acquire a good understanding of the manufacturing

process.

Process validation usually refers to as the establishment of documented

evidence that a process does what it purports to do. Basically, there are

four different types of manufacturing process validations in the pharma-

ceutical industry: prospective, concurrent, retrospective, and re-validation.

Prospective validation establishes documented evidence that a process does

what it purports to do based on a preplanned protocol. Prospective valida-

tion is usually performed in the situations where (i) historical data are not

available or sufficient and in-process and end-product testing data are not

adequate, (ii) new equipment or components are used, (iii) a new product
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is reformulated from an existing product, or there are significant modifica-

tions or changes in the manufacturing process, and (iv) the manufacturing

process is transferred from development laboratory to full-scale production.

Retrospective validation provides documented evidence based on review

and analysis of historical information, which is useful when there is a stable

process with a larger historical database. One of the objectives of the retro-

spective validation is to support the confidence of the process. Concurrent

validation evaluates the process based on information generated during

actual implementation of the process. In some situations where (i) a step of

the process is modified, (ii) the product is made infrequently, and (iii) a new

raw material must be introduced, a concurrent validation is recommended.

In practice, a well-established manufacturing process may need to be revali-

dated when there are changes in critical components (e.g. raw materials),

changes/replacement of equipment, changes in facility/plant (e.g. location

or size), and a significant increase and/or decrease in batch size.

For a validated process, there is no guarantee that if the test is performed

again it will have a high probability of meeting the specification. Thus, it

is of interest to conduct some in-house acceptance limits (specifications),

which guarantee that future batches produced by the process will pass the

USP test with a high probability. A common approach to process validation

is to obtain a single sample and test the attributes of interest to see whether

the USP/NF specifications are met. Bergum4 proposed constructing accep-

tance limits that guarantee that future samples from a batch will meet a

given product specification a given percentage of times. The idea is to con-

sider a multiple stage test. If the criteria for the first stage are met, the

test is passed. If the criteria for the first stage are not met, then additional

stages of testing are done. If the criteria at any stages are met, the test

is passed. Acceptance limits for a validation sample are them constructed

based on sample mean and standard deviation of the test results to assure

that a future sample will have at least a certain chance of passing a multiple

stage test. More details can be found in Chow and Liu.10

4. Stability Studies

4.1. Drug shelf-life

For every drug product in the marketplace, the FDA requires that an

expiration dating period (or shelf-life) must be indicated on the imme-

diate container label. The shelf-life is defined as the time interval at which

the characteristics of a drug product (e.g. strength) will remain within
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the approved specifications after manufacture. Along this line, Shao and

Chow63 studied several statistical procedures for estimation of drug shelf-

life. Before a shelf-life of a drug product can be granted by the FDA,

the manufacturers (drug companies) need to demonstrate that the aver-

age drug characteristics can meet the approved specifications during the

claimed shelf-life period through a stability study.

For determination of the shelf life of a drug product, both the FDA

stability guideline and the stability guideline issued by the ICH requires that

a long term stability study be conducted to characterize the degradation of

the drug product over a time period under appropriate storage conditions.

Both the FDA and ICH stability guidelines suggest that stability testing

be performed at 3-month intervals during the first year, 6-month intervals

during the second year, and annually thereafter. The degradation curve can

then be used to establish an expiration dating period or shelf life applicable

to all future batches of the drug product.

For a single batch, the FDA stability guideline indicates that an accept-

able approach for drug products that are expected to decrease with time is

to determine the time at which the 95% one-sided lower confidence bound

for the mean degradation curve intersects the acceptable lower product

specification limit, e.g. as specified in the USP/NF.29

4.2. Statistical model

Consider the case where the drug characteristic is expected to decrease with

time. The other case can be treated similarly. Assume that drug charac-

teristic decreases over time linearly (i.e. the degradation curve is a straight

line). In this case, the slope of the straight line is considered as the rate

of stability loss of the product. Let X
j

be the jth sampling (testing) time

point (i.e. 0 months, 3 months, etc.) and Y
ij

be the corresponding testing

result of the ith batch (j = l, . . . , n; i = l, . . . , k). Then

Y
ij

= α
i
+ β

i
X

j
+ e

ij
(1)

where e
ij

are assumed to be independent and identically distributed (i.i.d.)

random errors with mean 0 and variance σ

2

e

. The total number of observa-

tions is N = kn. The α
i

(intercepts) and β
i

(slopes) vary randomly from

batch to batch. It is assumed that α
i
(i = l, . . . , k) are i.i.d. with mean a and

variance σ

2
a

, and that β
i
(i = l, . . . , k) are i.i.d. with mean b and variance

σ

2

b

. The e
ij

, α
i
, and β

i
are mutually independent.

If σ

2

a

= 0 (i.e. α
i

are equal), then the above model has a common

intercept. Similarly, if σ

2

b

= 0 (i.e. β
i

are equal), then the above model has



June 23, 2003 14:2 WSPC/Advanced Medical Statistics chap12

Statistics in Biopharmaceutical Research 457

a common slope. If both σ

2

a

= 0 and σ

2

b

= 0, then there is no batch-to-batch

variation and the above model reduces to a simple linear regression. Under

the above model, Chow and Shao15 proposed several statistical tests for

batch-to-batch variation.

4.3. Statistical methods

4.3.1. Fixed batches approach

If there is no batch-to-batch variation, a commonly used method for fitting

the above model is the ordinary least squares (OLS) and a 95% lower

confidence bound for E(Y ) = a + bξ, the expected drug characteristic at

time ξ, can be obtained as

â + b̂ξ − t0.95S(ξ) ,

where â and b̂ are the OLS estimators of a and b, respectively, t0.95 is the

one-sided 95th percentile of the t distribution with N−2 degrees of freedom,

and

S

2(ξ) = MSE

{

1

N

+
(ξ − X̄)2

k

∑

n

j=1
(X

j
− X̄)2

}

,

where

X̄ =
1

n

n

∑

j=1

X
j

and

MSE =
1

N − 2

k

∑

i=1

n

∑

j=1

(Y
ij
− â− b̂X

j
)2 .

The estimated shelf-life can be obtained by solving the following equation

η = â + b̂ξ − t0.95S(ξ) ,

where η is a given approved lower specification limit.

When there is a batch-to-batch variation (i.e. there are different inter-

cepts and different slopes), the FDA recommends the minimum approach

be used for estimation of the shelf-life of a drug product. The minimum ap-

proach considers the minimum of the estimated shelf-lives of the individual

batches. The minimum approach, however, has received considerable criti-

cisms because it lacks of statistical justification. As an alternative, Ruberg

and Hsu58 proposed an approach using the concept of multiple comparisons
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to derive some criteria for pooling batches with the worst batch. The idea

is to pool the batches that have slopes similar to the worst degradation rate

with respect to a pre-determined similarity (equivalence) limit.

4.3.2. Random batches approach

As indicated in the FDA guideline, the batches used in long-term stabi-

lity studies for establishment of drug shelf-life should constitute a random

sample from the population of future production batches. In addition, all

estimated shelf-lives should be applicable to all future batches. As a result,

statistical methods based on random effects model seem more appropriate.

In recent years, several methods for determination of drug shelf-life with

random batches have been considered.7,15,16,49,61 Under the assumption

that batch is a random variable, stability data can be described by a linear

regression model with random coefficients. Consider the following model

Y
ij

= X

′
ij

β
i
+ e

ij
,

where Y
ij

is the jth assay result (percent of label claim) for the ith batch,

X
ij

is a pxl vector of the jth value of the regressor for the ith batch and X

′
ij

is its transpose, β
i

is a pxl vector of random effects for the ith batch, and

e
ij

is the random error in observing Y
ij

. Note that X

′
ij

β
i
is the mean drug

characteristic for the ith batch at X
ij

(conditional on β
i
). The primary

assumptions for the model are similar to those for model (1). Since X
ij

is

usually chosen to be x
j

for all i, where x
j

is a pxl vector of nonrandom

covariate which could be of the form (1, t
j
, t

j
w

j
)′ or (1, t

j
, w

j
, t

j
w

j
)′, where

t
j

is the jth time point and w
j

is the jth value of qxl vector of nonrandom

covariate (e.g. package type and dosage strength). Denote x
j

= x(t
j
, w

j
),

where x(t, w) is a known function of t and w. If there is no batch-to-batch

variation, the average drug characteristic at time t is x(t)′b and the true

shelf-life is equal to

t̄
true

= inf{t : x(t)′b ≤ η} ,

which is an unknown but nonrandom quantity. The shelf-life is then given by

t̄ = inf{t : L(t) ≤ η} ,

where

L(t) = x(t)′b̂− t
α,nk−p

[

x(t)′(X ′
X)−1

x(t)

k(nk − p)
SSR

]1/2

,
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in where SSR is the usual sum of squared residuals from the ordinary least

squares regression.

When there is batch-to-batch variation, t
true

is random since β
i
is ran-

dom. Chow and Shao16 and Shao and Chow61 proposed considering an

(1 − α) × 100% lower confidence bound of the εth quantile of t
true

as the

labeled shelf-life, where ε is a given small positive constant. That is,

P{t
label
≤ t

ε
} ≥ 1− α ,

where t
ε

satisfies

P{t
true
≤ t

ε
} = ε .

It follows that

t
ε

= inf{t : x(t)′b− η = z
ε
σ(t)} ,

where z
ε

= Φ−1(1 − ε) and σ(t) is the standard deviation of x(t)′β
i
. As a

result, the shelf-life is given by

t̄ = inf{t : x(t)′b̄ ≤ η̄(t)} ,

where

η̄(t) = η + c
κ
(ε, α)z

ε

√

v(t) ,

c
κ
(ε, α) =

1
√

kz
ε

t

α,K−1,

√
kzε

,

v(t) =
1

k − 1
x(t)′(X ′

X)−1
X

′
SX(X ′

X)−1
x(t) .

Note that t

α,K−1,

√
kzε

is the αth upper quantile of the noncentral t distri-

bution with (k − 1) degrees of freedom and noncentrality parameter
√

kz
ε
.

4.4. Two-phase shelf-life estimation

Unlike most drug products, some drug products are required to be stored at

several temperatures such as −20◦C, 5◦C and 25◦C (room temperature) in

order to maintain stability until use.47 The drug products of this kind are

usually referred to as frozen drug products. Unlike the usual drug products,

a typical shelf life statement for frozen drug products usually consists of

multiple phases with different storage temperatures. For example, a com-

monly adopted shelf life statement for frozen products could be either

(i) 24 months at −20◦C followed by 2 weeks at 5◦C or two days at 25◦C or

(ii) 24 months at −20◦C followed by 2 weeks at 5◦C and one days at 25◦C.
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As a result, the drug shelf life is determined based on a two-phase stability

study. The first phase stability study is to determine drug shelf-life under

frozen storage condition such as −20◦C, while the second phase stability

study is to estimate drug shelf-life under refrigerated or ambient conditions.

A first phase stability study is usually referred to as a frozen study and a

second phase stability study is known as a thawed study.

Since the stability study of a frozen drug product consists of frozen and

thawed studies, the determination of the shelf-life involves a two-phase lin-

ear regression. The frozen study is usually conducted similar to a regular

long term stability study except the drug is stored at frozen condition. In

other words, stability testing will be normally conducted at 3-month inter-

vals during the first year, 6-month intervals during the second year, and

annually thereafter. Stability testing for the thawed study is conducted fol-

lowed by the stability testing for the frozen study, which may be performed

at 2-day intervals up to two weeks. It should be noted that the stability at

the second phase (i.e. thawed study) might depend upon the stability at

the first phase (i.e. frozen study). In other words, an estimated shelf-life

from the thawed study followed stability testing at 3-month of the frozen

study may be longer than that obtained from the thawed study followed

the frozen study at 6-month. For simplicity, Mellon47 suggested that stabil-

ity from the frozen study and the thawed study be analyzed separately to

obtain a combined shelf life for the drug product. As an alternative, Shao

and Chow62 consider the following method for determination of drug shelf

lives for the two phases based on a similar concept proposed before.16,61

For the first phase shelf-life, we have stability data

Y
ik

= α + βt
i
+ ε

ik
,

where i = 1, . . . , I ≥ 2 (typically t
i

= 0, 3, 6, 9, 12, 18 months), k =

1, . . . , K
i
≥ 1, α and β are unknown parameters, and ε

ik,
’s are i.i.d. random

errors with mean 0 and variance σ

2
1 > 0. The total number of data for the

first phase is n1 =
∑

i

K
i
(= IK if K

i
= K for all i).

At time t
i
, K

ij
> I second phase stability data are collected at time

intervals t
ij

, j = 1, . . . , J ≥ 2. The total number of data for the second

phase is n2 =
∑

i

∑

j

K
ij

(= IJK if K
ij

= K for all i and j). Data from

two phases are independent. Typically, t
ij

= t
i
+s

j
, where s

j
= 1, 2, 3 days,

etc.

Let α(t) and β(t) be the intercept and slope of the second phase degrada-

tion line at time t. Since the degradation lines for the two phases intersect,

α(t) = α + βt .
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Then, at time t
i
, i = 1, . . . , I , we have stability data

Y
ijk

= α + βt
i
+ β(t

i
)s

j
+ e

ijk
,

where β(t) is an unknown function of t and e
ijk

’s are i.i.d. random errors

with mean 0 and variance σ

2

2i

> 0.

We assume that β(t) is a polynomial in t. Typically,

β(t) = β0 Common slope model ,

β(t) = β0 + β1t Linear trend model ,

or

β(t) = β0 + β1t + β2t
2 Quadratic trend model .

In general,

β(t) =

H

∑

h=0

β
h
t

h

,

where β
h
’s are unknown parameters and H + 1 <

∑

j

K
ij

for all i, and

H < I .

4.4.1. First phase shelf-life

The first phase shelf-life can be determined based on the first phase data

{Y
ik
} as the time point at which the lower product specification limit inter-

sects the 95% lower confidence bound of the mean degradation curve.29,40

Let α̂ and β̂ be the least squares estimators of α and β, based on the first

phase data, and let

L(t) = α̂ + β̂t− t
.05;n1−2

√

v(t)

be the 95% lower confidence bound for α + βt, where t
.05;n1−2 is the upper

0.05 quantile of the t-distribution with (n1 − 2) degrees of freedom,

v(t) = σ̂

2

1

[

nt

2 − (2
∑

i,k

t
i
)t +

∑

i,k

t

2

i

n

∑

i,k

t

2

i

− (
∑

i,k

t
i
)2

]

,

and

σ̂

2

1
=

1

n1 − 2

∑

i,k

(Y
ik
− σ̂ − β̂t

i
)2
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is the usual error variance estimator based on residuals. Suppose that the

lower limit for the drug characteristic is η (we assume that α+βt decreases

as t qincreases). Then the first phase shelf-life is the first solution of L(t) =

η, i.e.

t̂ = inf{t : L(t) ≤ η} .

Note that the first phase shelf-life is constructed so that

P{t̂ ≤ the true first phase shelf-life} = 95%

assuming that e
ik

’s are normally distributed. Without the normality

assumption, result approximately holds for large n1.

4.4.2. The case of equal second phase slopes

To introduce the idea, we first consider the simple case where the slopes

of the second phase degradation lines are the same. When β(t) ≡ β0, the

common slope β0 can be estimated by the least squares estimator based on

the second phase data:

β̂0 =

∑

i,j,k

(s
j
− s̄)Y

ijk

∑

i,j,k

(s
j
− s̄)2

,

where s
j

is the second phase time intervals and s̄ is the average of s
j
’s. The

variance of β̂0 is

V (β̄0) =
σ

2
2

∑

i,j,k

(s
j
− s̄)2

,

which can be estimated by

V̂ (β̂0) =
σ̂

2

2
∑

i,j,k

(s
j
− s̄)2

,

where

σ̂

2

2 =
1

n2 − I(H + 2)

∑

i,j,k

(Y
ijk
− (σ̂ + β̂t

i
)− β̂0sj

)2 .

For fixed t and s, let

v(t, s) = v(t) + V̂ (β̂0)s
2

and

L(t, s) = σ̂ + β̂t + β̂0s− t
.95;n1+n2−2−I(H+2)

√

v(t, s) .
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For any fixed t less than the first phase true shelf-life, i.e. t satisfying α +

βt > η, the second phase shelf-life can be estimated as

ŝ(t) = inf{s ≥ 0 : L(t, s) ≤ η}

(if L(t, s) < η for all s, then ŝ(t) = 0). That is, if the drug product is taken

out of the first phase storage condition at time t, then the estimated second

phase shelf-life is ŝ(t).

The justification for ŝ(t) is that for any t satisfying α + βt > η,

P{ŝ(t) ≤ the true second phase shelf-life} = 95%

assuming that e
ik

’s and e
ijk

’s are normally distributed. Without the nor-

mality assumption, the above result approximately holds for large n1,

and n2.

In practice the time at which the drug product is taken out of the

first phase storage condition is unknown. In such a case we may apply

the following method to assess the second phase shelf-life. Select a set of

time intervals t
l

< t̂, l = 1, . . . , L, and construct a table (or a figure) for

(t
l
, ŝ(t

l
)), l = 1, . . . , L. If a drug product is taken out of the first phase

storage condition at time t
o

which is between t
l

and t
l+1, then its second

phase shelf-life is ŝ(t
l+1).

However, a single shelf-life label may be required. We propose the

following method.

4.4.3. Determination of a single two-phase shelf-life label

In most cases, L(t̂, s) is less than η for all s, i.e. ŝ(t̂) = 0. Hence, we propose

to select a t̂1 < t̂ such that ŝ(t̂) > 0 and use t̂1 + ŝ(t̂1) as the two phase

shelf-life label. The justification for this two-phase shelf-life label is:

1. If the drug product is stored under the first phase storage condition until

time t̂1, then

P{t̂1 ≤ the true first phase shelf-life} ≥ 95% ,

since t̂1 < t̂.

2. If the drug product is taken out of the first phase storage condition at

time t̂1 < t̂, then its estimated second phase shelf-life is ŝ(t̂), and

P{ŝ(t̂1) ≤ the true second phase shelf-life at time t0}

≥ P{ŝ(t̂0) ≤ the true second phase shelf-life at time t0}

≥ 95%
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However, this two-phase shelf-life label is very conservative if t0 is much

less than t̂1.

A general rule of choosing t̂1 is that t̂1 should be close to t̂ while ŝ(t̂) is

reasonably large. For example, if the units of the first and second phase shelf

lives are month and day, respectively, and if t̂ = 24.5, then we can choose

t̂1 = 24; if t̂ = 24, then we choose t̂1 = 23. A table on (t
l
, ŝ(t

l
)), l = 1, . . . , L,

will be useful for the selection of t̂1.

4.4.4. The general case of unequal second phase slopes

In general, the slope of the second phase degradation line varies with time.

Let Ȳ
i
be the average of Y

ijk
’s with a fixed i, Z

ijk
= Y

ijk
− Ȳ

i
, and X

hij
=

(s
j
− s̄)th

i

. Then the least squares estimator of (β0, . . . , βH
) denoted by

(β̂0, . . . , β̂H
), is the least squares estimator of the following linear regression

model:

Z
ijk

=

H

∑

h=0

β
h
X

hij
+ error .

Let

β̂(t) =

H

∑

h=0

β̂
h
t

h

and

V̂ (β̂(t)) = σ̂

2

21
′(X′X)−11 ,

where 1′ = (1, t, t

2 · · · tH), X is the design matrix and

σ̂

2

2 =
1

n2 − (H + 2)

∑

i,j,k

(

Z
ijk
−

H

∑

h=0

β̂
h
X

hij

)2

.

The second phase shelf-life and the two-phase shelf-life label can be deter-

mined in the same way as described in the previous section with

L(t, s) = α̂ + β̂t + β̂(t)s− t
.05;n1+n2−(H+4)

√

v(t, s)

and

v(t, s) = v(t) + V̂ (β̂(t))s2
.
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For the proposed method for two-phase shelf-life estimation, assume that

the assay variabilities are the same across different phases. Detailed in-

formation regarding two-phase shelf-life estimation can be found.17,62 In

practice, the assay variability may vary from phase to phase. In this case, the

proposed method is necessarily modified for determination of the expiration

dating period of the drug product.

In practice, it is of interest to determine the allocation of sample size at

each phase. For a fixed total of sample size, it is of interest to examine the

relative efficiency for estimation of shelf lives using either more sampling

time points in the first phase and less sampling time points in the second

phase or less sampling time points in the first phase and more sampling

time points in the second phase. The allocation of sampling time points

at each phase then becomes an interesting research topic for two-phase

shelf-life estimation. In addition, since the degradation at the second phase

is highly correlated with the degradation at the first phase, it may be of

interest to examine such correlation for future design planning.

4.5. Practical issues

4.5.1. Matrixing and bracketing designs

For a new drug product, stability studies are necessarily conducted not

only to characterize the degradation of the compound over time but also to

determine the expiration dating period (shelf-life). The estimated shelf-life

should be applicable for all strengths and packages of the drug product.

However, accelerated stability testing is required for 6 months and long-

term stability testing is required for the length of shelf-life. The cost of

the stability studies could be substantial. As a result, it is of interest to

adopt a design where only a fraction of the total number of samples are

tested but at the same still maintain the validity, accuracy and precision

of the estimated shelf-life. For this consideration, matrixing and bracketing

designs have become increasingly popular in drug research and development

for stability. As indicated in the ICH stability guideline, bracketing design

is defined as the design of a stability schedule so that at any time point only

the samples on the extremes, for example, of container size and/or dosage

strengths, are tested.41 Matrix design is a design where only a fraction of

the total number of samples is tested at any specified sampling point.41,51

The matrixing design and bracketing design were evaluated by Pong and

Raghavarao.54
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Lin43 indicated that a matrixing design might be applicable to strength

if there is no change in proportion of active ingredients, container size, and

immediate sampling time points. The application of a matrixing design to

situations such as closure systems, orientation of container during storage,

packaging form, manufacturing process, and batch size should be evaluated

carefully. It is discouraged to apply a matrixing design to sampling times at

two endpoints (i.e. the initial and the last) and at any time points beyond

the desired expiration date. If the drug product is sensitive to temperature,

humidity, and light, the matrixing design should be avoided.

4.5.2. Bias and interval estimation of shelf-life

As indicated in the FDA stability guideline, the estimated shelf-life of a

drug shelf-life can be obtained at the time point at which the 95% one-

sided lower confidence limit for the mean degradation curve intersects the

acceptable lower specification limit. In practice, it is of interest to study the

biasedness of the estimated shelf-life. If the bias is positive, the estimated

shelf-life overestimates the true shelf-life. On the other hand, if there is a

downward bias, the estimated shelf-life is said to underestimate the true

shelf-life. In the interest of the safety of the drug product, the FDA might

prefer a conservative approach, which is to underestimate rather than over-

estimate the true shelf-life. Sun et al.66 studied distribution properties of

the estimated shelf-life16,61 for both cases with and without batch-to-batch

variation. The result indicate that when there is no batch-to-batch variation

(i.e. σ

2
a

= σ

2

b

= 0), there is a downward bias which is given by

t
α
σ

e

b

2

[

b

2

n

+
(bX̂ + a− η)2
∑

n

j=1
(X

j
− X̄)2

]1/2

,

where t
α
, is the (1−α)th quantile of the t distribution with (k−1) degrees

of freedom.

4.5.3. Shelf-life estimation with multiple active components

For the study of drug stability, the FDA guideline requires that all drug

characteristics be evaluated. In most drug products, we obtain an estimated

drug shelf-life based primarily on the study of the stability of the strength of

the active ingredient. However, some drug products may contain more than

one active ingredient. For example, Premarin (conjugated estrogens, USP)

contains three active ingredients: estrone, equilin, and 17a-dihydroequilin.



June 23, 2003 14:2 WSPC/Advanced Medical Statistics chap12

Statistics in Biopharmaceutical Research 467

The specification limits for each component are different. To ensure identity,

strength, quality, and purity, it is suggested that each component be evalu-

ated separately for determination of drug shelf-life. In this case, although a

similar concept can be applied, the method suggested in the FDA stability

guideline is necessarily modified. It should be noted that the assay values

observed from each component might not add up to a fixed total, which

is due to the possible assay variability for each component. The modified

model should be able to account for these sources of variation. Pong and

Raghavarao55 proposed a statistical method for estimation of drug shelf-life

for drug products with two components. The distributions of shelf-life for

two components were evaluated by Pong and Raghavarao56 under different

designs.

4.5.4. Stability analysis with discrete responses

For solid oral dosage forms such as tablets and capsules, the FDA stability

guideline indicates that following characteristics should be studied in sta-

bility studies: (i) Tablets — appearance, friability, hardness, color, odor,

moisture, strength, and dissolution, and (ii) capsules — strength, moisture,

color, appearance, shape brittleness and dissolution. Some of these charac-

teristics are measured based on discrete rating scale. As a result, the usual

methods for stability analysis may not be appropriate. Chow and Shao18

proposed some statistical methods for estimation of drug shelf-life based

on discrete responses following the concept as described in the FDA sta-

bility guideline. However, it may be of interest to consider a mixture of a

continuous response variable (e.g. strength) and a discrete response vari-

able (e.g. color or hardness) for estimation of drug shelf-life. This requires

further research.

5. Bioequivalence and Bioavailability

In pharmaceutical research and development, in vivo bioequivalence testing

is usually considered a surrogate for assessment of clinical efficacy and

safety. This is based on the so-called Fundamental Bioequivalence Assump-

tion that when two formulations of the same drug product or two drug

products (e.g. a brand-name drug and its generic copy) are equivalent

in the rate and extent of drug absorption, it is assumed that they will

reach the same therapeutic effect or they are therapeutically equivalent.13

Pharmacokinetic (PK) responses such as area under the blood or plasma

concentration-time curve (AUC) and maximum concentration (Cmax,) are
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usually considered to assess the rate and extent of drug absorption. The

current regulation of the FDA requires that the evidence of bioequivalence

in average bioavailabilities in terms of some primary PK responses such as

AUC and Cmax, between the two formulations of the same drug product

or the two drug products be provided.28,31 This type of bioequivalence is

usually referred to as average bioequivalence (ABE). Under current ABE

criterion, however, it is not clear whether we are able to demonstrate that

the absorption profiles of a brand-name drug and its generic copies are

similar; consequently, it is not clear whether the brand name drug and its

generic copies will have the same therapeutic effect in terms of efficacy and

safety and hence can be used interchangeably.

In medical community, as more generic drug products become avail-

able in the marketplace, it is of great concern whether a number of

generic drug products of the same brand-name drug can be used safely

and interchangeably. Basically drug interchangeability can be classified as

drug prescribability or drug switchability. Drug prescribability is defined

as the physician’s choice for prescribing an appropriate drug product for

his/her new patients between a brand-name drug product and a number of

generic drug products of the brand-name drug product, which have been

shown to be bioequivalent to the brand-name drug product. The underlying

assumption of drug prescribability is that the brand-name drug product and

its generic copies can be used interchangeably in terms of the efficacy and

safety of the drug product. Under current practice, the FDA only requires

evidence of equivalence in average bioavailabilities be provided, the bioe-

quivalence assessment does not take into account equivalence in variability

of bioavailability. A relatively large intrasubject variability of a test drug

product (e.g. a generic drug product) as compared to that of the refer-

ence drug product (e.g. its brand-name drug product) may present a safety

concern. To overcome this disadvantage, in addition to providing evidence

of ABE, it is recommended that bioequivalence in variability of bioavaila-

bilities between drug products be established. This type of bioequivalence is

called population bioequivalence (PBE). In practice, although PBE is often

considered for assessment of drug prescribability, it does not fully address

drug switchability due to possible existence of the subject-by-formulation

interaction.

Drug switchability is related to the switch from a drug product (e.g. a

brand-name drug product) to an alternative drug product (e.g. a generic

copy of the brand-name drug product) within the same subject whose con-

centration of the drug product has been titrated to a steady, efficacious, and

safe level. As a result, drug switchability is considered more critical than
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drug prescribability in the study of drug interchangeability for patients

who have been on medication for a while. To assure drug switchability, it is

recommended that bioequivalence be assessed within individual subjects.

This type of bioequivalence is known as individual bioequivalence (IBE).

The concept of IBE has attracted FDA’s attention since introduced by

Anderson and Hauck,1 which has led to a significant change in regulator

consideration for assessment of bioequivalence.32 In what follows, we will

focus on the review of guidance on Statistical Approaches to Establishing

Bioequivalence, which was recently issued by the FDA.32

5.1. Limitations of average bioequivalence

Under current FDA regulation, two formulations of the same drug or two

drug products are said to be bioequivalent if the ratio of means of the

primary PK responses such as AUC and Cmax between the two formulations

of the same drug or the two drug products is within (80%, 125%) with 90%

assurance.28,31 A generic drug product can serve as the substitute of its

brand-name drug product if it has been shown to be bioequivalent to the

brand-name drug. The FDA, however, does not indicate that a generic drug

can be substituted by another generic drug even though both of the generic

drugs have been shown to be bioequivalent to the same brand-name drug.

Bioequivalence among generic copies of the same brand-name drug is not

required. As more generic drugs become available in the marketplace, it is

very likely that a patient may switch from one generic drug to another.

Therefore, an interesting question to the physicians and the patients is

whether the brand-name drug and its generic copies can be used safely and

interchangeably.

Chen6 pointed out that current ABE approach for bioequivalence as-

sessment has limitations for addressing drug interchangeability especially

for drug switchability. These limitations include (i) ABE focuses only

on the comparison of population average between the test and reference

drug products, (ii) ABE does not provide independent estimated of the

intrasubject variances of the drug products under study, and (iii) ABE

ignores the subject-by-formulation interaction, which may have an impact

on drug switchability. As a result, Chen6 suggested that current regulation

of ABE be switched to the approach of PBE and IBE to overcome these

disadvantages.

Chow and Liu11 proposed to perform a meta-analysis for an overview of

ABE. The proposed meta-analysis provides an assessment of bioequivalence

among generic copies of a brand-name drug that can be used as a tool to
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monitoring the performance of the approved generic copies of the brand-

name drug. In addition, it provides more accurate estimates of intersubject

and intrasubject variabilities of the drug product.

5.2. Drug interchangeability

As indicated earlier, drug interchangeability can be classified as drug pre-

scribability or drug switchability. It is recommended that PBE and IBE

be used to assess drug prescribability and drug switchability, respectively.

More specifically, the FDA guidance recommends that PBE be applied to

new formulations, additional strength, or new dosage forms in NDAS, while

IBE should be considered for ANDA (abbreviated new drug application) or

AADA (abbreviated antibiotic drug application) for generic drugs. In what

follows, we will only focus on the concept, decision rule, and statistical

method of IBE for assessment of drug interchangeability.

5.2.1. Individual bioequivalence

The individual bioequivalence is motivated by the 75/75 rule which claims

bioequivalence if at least 75% of individual subject ratios (i.e. relative in-

dividual bioavailability of the generic drug product to the innovator drug

product) are within (75%, 125%) limits. Along this line, Anderson and

Hauck1 first proposed the concept of testing for individual equivalence

ratios (TIER). The idea is to test individual bioequivalence based on the

dichotomization of continuous PK metrics by calculating the p value for at

least the observed number of subjects who fall within bioequivalence limits

with the minimum proportion of the population in which the two drug

products must be equivalent in order to claim individual bioequivalence.

It should be noted that no universal definition of IBE exists which is uni-

formly accepted by researchers from the regulatory agency, the academia

and the pharmaceutical industry. For example, IBE may be established

based on the comparison between distributions within each subject or it

could be based on the distribution of the difference or ratio within each

subject.45 In addition to average bioavailability and variability of bioavai-

lability, we may also consider assessment for the variability due to the

subject by formulation interaction. In this case, IBE can be assessed by

means of a union-intersection test approach, which concludes IBE if and

only if all of the hypotheses are rejected at a pre-specified level of signifi-

cance. Most current methods for assessment of IBE, however, are derived

from the distribution of either difference or ratio within each subject. Under
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this setting, IBE can be classified as probability-based and moment-based

according to different criteria for bioequivalence.1,27,39,59,64

To address drug switchability, the FDA proposed the following aggre-

gated, scaled moment based one-sided criterion:

IBC =
(µ

T
− µ

R
)2 + σ

2

D

+ (σ2
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− σ

2
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)

max(σ2
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I
,
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2
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2
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are the within subject variances for the test drug

product and the reference drug product, respectively, σ
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D

is the variance

due to subject-by-formulation interaction, σ

2
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adjusted to control the probability of passing IBE, θ
I

and is the bioequiv-

alence limit. The FDA 2001 guidance suggests that θ
I

be chosen as follows
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where ε
I

is the variance allowance factor which can be adjusted for control

sample size. As indicated in the FDA 2001 guidance, ε
I

may be fixed be-

tween 0.04 and 0.05. For the determination of σ

2
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, the FDA 2001 guidance

recommends the use of individual difference ratio (IDR), which is defined as
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)

2σ

2

WR

]1/2

=

[

IBC

2
+ 2

]1/2

.

Therefore, assuming that the maximum allowable IDR is 1.25, substitu-

tion of (ln 1.25)2/σ

2

W0
for IBC without adjustment of the variance term

approximately yields σ
W0 = 0.2.

The FDA 2001 guidance suggests that a mixed effects model in conjunc-

tion with the restricted maximum likelihood (REML) method be used to

estimate variance components of σ

2

D

, σ

2

Wt

and σ

2

WR

. An intuitive statistical

test can then be obtained by simply replacing the unknown parameters with

their corresponding estimates. However, exact statistical properties of the

resultant test are unknown. The FDA 2001 guidance recommends that the

small sample method proposed by Hyslop et al.38 be used to obtain the con-

fidence interval or confidence bound of the test. If the upper 95% confidence

bound is less than θ
I
, we conclude IBE.
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5.3. A review of the FDA guidance on

population/individual bioequivalence

As indicated earlier, the FDA 2001 guidance on Statistical Approaches to

Establishing Bioequivalence is intended to address drug interchangeability.

As a result, the guidance for assessment of PBE and IBE has a significant

impact on pharmaceutical research and development. In what follows, we

provide a comprehensive review of the FDA 2001 guidance on population

and individual bioequivalence from both scientific/statistical and practical

points of view. Without loss of generality, we will only focus on IBE.

5.3.1. Aggregated criteria vs. disaggregated criteria

The FDA 2001 guidance recommends aggregated criteria as described

earlier for assessment of IBE. The IBE criterion takes into account for

average of bioavailability, variability of bioavailability, and the variability

due to subject-by-formulation interaction. Under the proposed aggregated

criteria, however, it is not clear whether IBE criterion is superior to

ABE criterion for assessment of drug interchangeability. In other words,

it is not clear whether or not IBE implies ABE under aggregate criteria.

Hence, the question of particular interest to pharmaceutical scientists is

that whether the proposed aggregated criterion can really address drug

interchangeability?

Liu and Chow45 suggested disaggregated criteria be implemented for

assessment of drug interchangeability. The concept of disaggregated criteria

for assessment of IBE is described below. In addition to ABE, we may

consider the following hypotheses testing for equivalence in variability of

bioavailabilities, and variability due to subject-by-formulation interaction:

H0 : σ

2

WT

/σ

2

WR

≥ ∆
v

vs. H
a

: σ

2

WT

/σ

2

WR

< ∆
v

and

H0 : σ

2

D

≥ ∆
s

vs. H
a

: σ

2

D

< ∆
s

where ∆
v

is bioequivalence limit for the ratio of intrasubject variabilities

and ∆
s

is an acceptable limit for variability due to subject-by-formulation

interaction. We conclude IBE if both 100(1− α)% upper confidence limit

for σ

2

WT

/σ

2

WR

is less than ∆
v

and 100(1− α)% upper confidence limit for
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σ

2

D

is less than ∆
s
. Under the above disaggregated criteria, it is clear that

IBE implies ABE.

In practice, it is of interest to examine the relative merits and disadvan-

tages between the FDA recommended aggregated criteria and the disaggre-

gated criteria described above for assessment of drug interchangeability. In

addition, it is also of interest to compare the aggregated and disaggregated

criteria of IBE with the current ABE criterion in terms of the consistencies

and inconsistencies in concluding bioequivalence for regulatory approval.

5.3.2. Masking effect

The goal for evaluation of bioequivalence is to assess the similarity of the

distributions of the PK metrics obtained either from the population or from

individuals in the population. However, under the aggregated criteria, dif-

ferent combinations of values for the components of the aggregated criterion

can yield the same value. In other words, bioequivalence can be reached by

two totally different distributions of PK metrics. This is another artifact

of the aggregated criteria. For example, at the 1996 Advisory Committee

meeting, it was reported that the data sets from the FDA’s files showed

that a 14% increase in the average (ABE only allow 80% to 125%) is offset

by a 48% decrease in the variability and the test passes IBE but fails ABE.

5.3.3. Power and sample size determination

For the proposed aggregated criterion, it is desirable to have sufficient sta-

tistical power to declare IBE if the value of the aggregated criterion is small.

On the other hand, we would not want to declare IBE if the value is large. In

other words, a desirable property for assessment of bioequivalence is that

the power function of the statistical procedure is a monotone decreasing

function. However, since different combinations of values of the components

in the aggregated criteria may reach the same value, the power function

for any statistical procedure based on the proposed aggregated criteria is

not a monotone decreasing function. The experience for implementing the

aggregated criteria in regulatory approval of generic drugs is lacking.

Another major concern is how the proposed criteria for IBE will affect

the sample size determination based on power analysis. Unlike ABE, there

exists no closed form for the power function of the proposed statistical

procedure for IBE. As a result, the sample size may be determined through

a Monte Carlo simulation study. Chow and Shao17 provided formulas (based
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on normal approximation) for sample size calculation for assessment of PBE

and IBE under a 2× 4 replicated crossover design. Sample sizes calculated

from the formulas were shown to be consistent with those obtained from

simulation studies.

5.3.4. Two-stage test procedure

To apply the proposed criteria for assessment of IBE, the FDA 2001

guidance suggests the constant scale be used if the observed estimator of

σ
TR

or σ
WR

is smaller than σ
T0 or σ

W0. However, statistically, the observed

estimator of σ
TR

or σ
WR

being smaller than σ
T0 or σ

W0 does not mean

that σ
TR

or σ
WR

is smaller than σ
T0 or σ

W0. A test on the null hypothesis

that σ
TR

or σ
WR

is smaller than σ
T0 or σ

W0 is necessarily performed. As

a result, the proposed statistical procedure for assessment of IBE becomes

a two-stage test procedure. It is then recommended that the overall type I

error rate and the calculation of power be adjusted accordingly.

5.3.5. Study design

The FDA 2001 guidance recommends a 2×4 replicated designs, i.e. (TRTR,

RTRT) be used for assessment of IBE without any scientific and/or statis-

tical justification. As an alternative to the 2×4 replicated design, the FDA

2001 guidance indicates that a 2× 3 replicated crossover design, i.e. (TRT,

RTR) may be considered. Several questions are raised. First, it is not clear

whether the two replicated crossover designs the optimal design (in terms

of power) among all 2×4 and 2×3 replicated crossover designs with respect

to the aggregated criterion? Second, it is not clear what is the relative effi-

ciency of the two designs if the total number of observations is fixed. Third,

it is not clear how these two designs compare to other 2 × 4 and 2 × 3

replicated designs such as (TRRT, RTTR) and (TTRR, RRTT) designs

and (TRR, RTT) and (TTR, RRT) designs. Finally, it may be of interest

to study the relative merits and disadvantages of these two designs as com-

pared to other designs such as Latin square designs and four sequence and

four period designs.

Other issues regarding the proposed replicated designs include (i) it will

take longer time to complete, (ii) subject’s compliance may be a concern,

(iii) it is likely to have a higher dropout rate and missing values especially

in 2 × 4 designs, and (iv) there are little literature on statistical methods

dealing with dropouts and missing values in a replicated crossover design

setting.
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Note that the FDA 2001 guidance provides detailed statistical pro-

cedures for assessment of PBE and IBE under the recommended 2 × 4

replicated design. However, no details regarding statistical procedures for

assessment of PBE and IBE under the alternative 2×3 replicated design are

given. Detailed statistical procedures for assessment of PBE and IBE are

available.19,20 In addition, Chow and Shao17 pointed out that the statistical

procedure for assessment of PBE under the recommended 2× 4 replicated

design as described in the FDA 2001 guidance was inappropriate due to the

violation of the primary assumption of independence.

5.4. Outlier detection

The procedure suggested for detection of outliers is not appropriate for

the standard 2 × 2, the 2 × 3 or the 2 × 4 replicated crossover designs

because the observed PK metrics from the same subject are correlated. For

a valid statistical assessment, the procedures proposed by Chow and Tse22

and Liu and Weng46 should be used. These proposed statistical procedures

for outlier detection in bioequivalence studies were derived under crossover

designs, which incorporate the correlations within the same subject. The

FDA 2001 guidance provides little or no discussion regarding the treatment

of identified outliers.

6. Statistical Principles for Good Clinical Practice

For approval of a drug product, the FDA requires that substantial evidence

of the effectiveness and safety of the drug product be provided through the

conduct of two adequate and well-controlled clinical studies. To assist the

sponsors in preparation of final clinical reports for regulatory submission

and review, the FDA developed guidelines for the format and content of a

clinical report in 1988. In addition, in 1994, the Committee for Proprietary

Medicinal Products (CPMP) Working Party on Efficacy on Medicinal

Products of the European Community issued a similar guideline entitled

A Note for Guidance on Biostatistical Methodology in Clinical Trials in

Applications for Marketing Authorizations for Medicinal Products. At the

same time, the ICH also signed off on the step 4 final draft of the Structure

and Content of Clinical Study Reports and recommended its adoption to

the three regulatory authorities of the United States, European Community,

and Japan. The ICH guidelines require that some critical statistical issues

be addressed in the final clinical report. These critical issues include base-

line comparability, adjustments for covariates, dropouts or missing values,
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interim analyses and data monitoring, multicenter studies, multiplicity,

efficacy subsets, active control trials, and subgroup analyses, which are

briefly described below (see also, Pong and Chow.53).

6.1. Baseline comparability

Baseline measurements are those collected during the baseline periods as

defined in the protocol. Baseline usually refers to at randomization and prior

to treatment. Sometimes, measurements obtained at screening are used as

baselines. Basically, the objectives for analysis of baseline data are three-

fold. First, the analysis of baseline data is to provide a description of patient

characteristics of the targeted population to which statistical inference is

made. In addition, the analysis of baseline data provided useful information

regarding whether the patients enrolled in the study are a representative

sample of the targeted population according to the inclusion and exclusion

criteria of the trial. Second, since baseline data measure the initial patient

disease status, they can serve as reference values for the assessment of the

primary efficacy and safety clinical endpoints evaluated after the admini-

stration of the treatment. Finally, the comparability between treatment

groups can be assessed based on baseline data to determine potential co-

variates for statistical evaluations of treatment effects. The ICH guideline

requires that baseline data on demographic variables such as age, gender,

or race and some disease factors such as specific entry criteria, duration,

stage and severity of disease and other clinical classifications and subgroups

in common usage or of known prognostic significance be collected and

presented.

The commonly employed statistical tests for baseline comparability are

Cochran-Mantel-Henzsel test for categorical data and analysis of variance

for continuous variables. Preliminary investigation of baseline comparabi-

lity helps identifying possible confounding and interaction effects between

treatment and baseline characteristics.

6.2. Adjustments for covariates

For assessment of the efficacy and safety of a drug product, it is not un-

common that the primary clinical endpoints are affected by some factors

(or covariates) such as demographic variables, patient characteristics,

concomitant medications, and medical history. If these covariates are known

to have an impact on the clinical outcomes, one may consider stratified

randomization. In practice, however, one may collect information on some

covariates, which may influential and yet unknown at the planning stage
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of the trial. In this case, if patients are randomly assigned to receive

treatments, the estimated treatment effect is asymptotically free of the acci-

dental bias induced by these covariates. If the covariate were balanced, then

the difference in simple treatment averages would be an unbiased estimate

for the treatment effect. On the other hand, if the covariate is not balanced,

then the difference in simple average between treatment groups will be bi-

ased for estimation of the treatment effect. In this case, it is suggested that

the covariates be included in the statistical model such as an analysis of

variance (or covariance) model for an unbiased estimate of the treatment

effect. In the case where covariates are balanced between the treatment

groups, it is still necessary to adjust for covariates for clinical endpoints in

order to obtain valid inference of the treatment effect if the covariates are

statistically significantly correlated with the clinical endpoints.

The ICH guidelines require that selection of and adjustments for

demographic or baseline measurements, concomitant therapy, or any other

covariate or prognostic factor should be explained. In addition, methods

of adjustments, results of analyses, and supportive information should be

included in the detailed documentation of statistical methods.

6.3. Dropouts or missing values

In clinical research, there are many possible causes for the occurrence of

dropouts and missing values. These possible causes include the duration

of the study, the nature of the disease, the efficacy and adverse effects

of the drug under study, intercurrent illness, accidents, patient refusal or

moving, or other administrative reasons. The ICH guidelines suggest that

the reasons for the dropouts, the time to dropout, and the proportion of

dropouts among treatment groups be analyzed to examine the effects of

dropouts for evaluation of the efficacy and safety of the study drug. Little

and Rubin44 classified missing values into three different types based on the

possible causes. If the causes of missing values are independent of the ob-

served responses, then the missing values are said to be completely random.

On the other hand, if the causes of missing values are dependent on the

observed responses but are independent of the scheduled but unobserved

responses, then missing values are said to be random. The missing values

are said to be informative if the causes of missing values are dependent

upon the scheduled but unobserved measurements.

If missing mechanism is either completely random or random, then

statistical inference derived from the likelihood approaches based on

patients who complete the study is still valid. However, the inference is
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not as efficient as it supposes to be. If the missing values were informative,

then the inference based on the completers would be biased. As a result, it

is suggested that despite the difficulty, the possible effects of dropouts and

missing values on magnitude and direction of bias be expressed as fully as

possible.

6.4. Interim analysis and data monitoring

Interim analysis and data monitoring are commonly employed for clinical

trials in treatment of life-threatening disease or severely debilitating illness

with long-term follow-up and endpoints such as mortality or irreversible

morbidity. Interim analyses based on the data monitoring can be clas-

sified into formal interim analysis and administrative analysis. The aim

of a formal interim analysis is to determine whether a decision for early

termination can be reached before the planned study completion due to

compelling evidence of beneficial effectiveness or harmful side effects. The

administrative interim analysis is usually carried out without any intentions

of early termination because of the results of the interim analysis results.

Since interim analyses, either formally or informally, can introduce bias

and/or increase type I error, the ICH guidelines require that all interim

analyses, formal or informal, pre-planned or ad hoc, by any study partici-

pant, sponsor staff member, or data monitoring group should be described

in full, even if the treatment groups were not identified. Data monitoring

without code-breaking should also be described, even if this kind of moni-

toring is considered to cause no increase in type I error.

6.5. Multicenter studies

A multicenter trial is often conducted to expedite the patient recruitment

process. The objective of the analysis of clinical data from a multicenter

trial is two-fold. It is not only to investigate whether a consistent treatment

effect can be observed across centers but also to provide an estimate of

the overall treatment effect. A set of four conditions under which evidence

from a single multicenter trial would provide sufficient statistical evidence

of efficacy is proposed.50

Although all of the centers in multicenter trials follow the same protocol,

many practical issues are likely to occur. For example, some centers may

be too small for a reliable interpretation of the results, while some centers

may be too big which dominate the results. In addition, there may be a

significant treatment-by-center interaction. As a result, a statistical test
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for homogeneity across centers is necessarily performed for detection of

possible quantitative or qualitative treatment-by-center interaction. Gail

and Simon34 indicated that the existence of a quantitative interaction

between treatment and center dose not invalidate the analysis by pooling

data across centers. However, if a qualitative interaction between treat-

ment and center is observed, an overall or average summary statistic may

be misleading and hence considered inadequate. In this case, treatment

effect should be carefully evaluated by center.

6.6. Multiplicity

In clinical trials, multiplicity may occur depending upon the objective of

the intended trial, the nature of the design, and statistical analysis. The

causes of multiplicity are mainly due to the formulation of statistical hy-

potheses and the experiment-wise false positive rates in subsequent analyses

of the data. The ICH guidelines require that the overall type I error rate be

adjusted to reflect multiplicity. Basically, multiplicity in clinical trials can

be classified as repeated interim analyses, multiple comparisons, multiple

endpoints, and subgroup analyses.

In the interest of an overall type I error rate, the commonly employed

approach is probably the application of the Bonferroni technique. The

concept of Bonferroni’s technique is to adjust p values for control of

experiment-wise type I error rate for pairwise comparisons. Bonferroni’s

method does not require that the structure of the correlation among com-

parisons be specified. In addition, it allows an unequal number of patients

in each treatment group. Bonferroni’s method works well when the num-

ber of treatment groups is small. When the number of treatment groups

increases, however, Bonferroni’s adjustment for p values becomes very con-

servative and may lack adequate power for the alternative in which most

or all efficacy endpoints are improved. In this situation, as an alternative,

one may consider a modified procedure proposed by Hochberg (1988).37

Hochberg’s procedure is shown to be more powerful because it only re-

quires one p value smaller than α to declare one statistically significant

comparison.

6.7. Efficacy subsets

In clinical trials, despite the fact that there is a thoughtful study proto-

col, deviation from the protocol may be encountered during the course of

the trial. In addition, it is very likely that patients will withdraw from the
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study prematurely before the completion of the trial due to various reasons.

Patients who complete the study might miss some scheduled visits. As

a result, which patients should be included in the analysis for a valid

and unbiased assessment of the efficacy and safety of the treatment is a

legitimate question to ask.

To provide a fair and unbiased assessment of the treatment effect, the

ICH guideline suggests that the primary analysis for the demonstration of

the efficacy and safety of the drug product should be conducted based on

the intention-to-treat sample. In addition to the intention-to-treat sample,

some subsets of the intention-to-treat sample may be constructed for effi-

cacy analysis. These subsets are usually referred to efficacy subsets. These

efficacy subsets include (i) patients with any efficacy observations or with

a certain minimum number of observations, (ii) patients who complete the

study, (iii) patients with an observation during a particular time window,

and (iv) patients with a specified degree of compliance. The ICH guidelines

require that efficacy subsets be analyzed to examine the effects of dropping

patients with available data from analyses because of poor compliance,

missed visits, ineligibility, or any other reasons. Any substantial differences

resulting from the analyses of the intention-to-treat sample and the efficacy

subsets should be the subject of explicit discussion.

6.8. Active control trials

An active control trial is often considered an alternative to placebo control

study for evaluation of the effectiveness and safety of a test drug with

very ill patients or patients with severe or life-threatening diseases based

on ethical considerations. The primary objective of an active control trial

could be to establish the efficacy of the test drug, to show that the test

drug is equivalent to an active control agent, or to demonstrate that the

test drug is superior to the active control agent. Pledger and Hall52 pointed

out that active control trials offer no direct evidence of effectiveness of the

test drug. The only trial that will yield direct evidence of effectiveness of

the test drug is a placebo-controlled trial, which compares the test drug

with a placebo. Temple68 indicated that if we cannot be very certain that

the active control agent in a study would have beaten a placebo group, the

fundamental assumption of the active control study cannot be made and

that design must be considered inappropriate.

ICH guidelines indicated that if an active control study is intended to

show equivalence between the test drug and an active control, the analysis



June 23, 2003 14:2 WSPC/Advanced Medical Statistics chap12

Statistics in Biopharmaceutical Research 481

should show the confidence interval for the comparison between the two

agents for critical endpoints and the relation of that interval to the pre-

specified degree of inferiority that would be consider unacceptable.

7. Statistics in Diagnostic Imaging

The techniques for evaluation of the performance of diagnostic medical

products are very different from therapeutic pharmaceuticals and non-

diagnostic devices. However, medical imaging drugs are generally governed

by the same regulations as other drug and biological products. Because of

the medical imaging drugs have special characteristics that do not reflect

from other drug and biological products. The purpose of this section will

focus on the different considerations for designs in diagnostic studies.

7.1. Introduction

Medical imaging drug products are drugs used with medical imaging

methods (such as radiography, computed tomography [CT], ultrasono-

graphy [US], and magnetic resonance imaging [MRI]) to provide infor-

mation on anatomy, physiology and pathology. The term “images” can

be used as films, likenesses or other renderings of the body, body parts,

organ systems, body functions, or tissues. For example, an image of the

heart obtained with a diagnostic radiopharmaceutical or ultrasound con-

trast agent may in some cases refer to a set of images acquired from different

views of the heart. Similarly, an image obtained with an MRI contrast agent

may refer to a set of images acquired with different pulse sequences and

interpluse delay times. In other words, medical imaging uses advanced tech-

nology to “see” the structure and function of the living body. The intentions

of a medical imaging drug have two-fold: (i) delineate nonanatomic struc-

tures such as tumors or abscesses (ii) detect disease or pathology within an

anatomic structure. Therefore, the indications for medical imaging drugs

Table 1. Most common used contrast drug products in combination with medical
imaging devices.

Modality Contrast Drug Products

X-Ray and CT Iodine agents (photon scattering)

MRI Gadolinium, dysprosium, helium

Ultrasound Liposomes, microbubbles

Suspensions Nuclear Tc-99rn, TI-201, indium, samarium
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may fall within the following general categories. However, they need not be

mutually exclusive:

a. Structure delineation — normal or abnormal;

b. Functional, physiological, or biochemical assessment;

c. Disease or pathology detection or assessment;

d. Diagnostic or therapeutic patient management.

The details of drug regulations are shown in the draft guidance to INDs,

NDAs, biologics license applications (BLAs), ANDAs, and supplements to

NDAs or BLAs for the medical imaging drug and biological products. This

guidance was issued by FDA for industry entitled Development Medical

Imaging Drugs and Biologics.30 Usually, images are created from compute-

rized acquisition of digital signals. The medical imaging drugs can be clas-

sified into contrast drug products and diagnostic radiopharmaceuticals.

7.1.1. Contrast drug product

Contrast drug products are used to increase the relative difference of signal

intensities and to provide the additional information in combination with an

imaging device beyond by the device alone. In other words, imaging with

the contrast drug product should add value when compared to imaging

without the contrast drug product.

7.1.2. Diagnostic radiopharmaceuticals

Radiopharmaceuticals are used for a wide variety of diagnostic, monitoring,

and therapeutic purposes. Diagnostic Radiopharmaceuticals are used to

image or otherwise identify an internal structure or disease process. In other

words, diagnostic Radiopharmaceuticals are radioactive drugs that contain

a radioactive nuclide that may be linked to a legend and carrier. These

products are used in planar imaging, single photon emission computed to-

mography (SPECT), positron emission tomography (PET), or with other

radiation detection probes.

7.2. Design of blinded-reader studies

In order to demonstrate efficacy of a medical imaging drug, readers who are

both independent and blinded should perform evaluation of images. These

independent, blinded image evaluations are intended to limit possible bias

that could be introduced into the images evaluation by non-independent

or unblinded readers. This evaluation is conducted in controlled setting
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with minimal clinical information provided to the reader. The definitions

of “independent” and “blinded” are defined next.

The independent readers are defined as those who have not participated

studies and who are not affiliated with the sponsor or with institutions at

which the studies were conducted. The meaning of blinding differs from

the common way the term used in therapeutic clinical trials. Blinding in

this sense is a critical aspect of clinical trials of medical imaging agents.

“Blinded readers” are those who are unaware (1) of treatment identity used

to obtain a given image and (2) of patient-specific clinical information or

study protocol. For example, blinded readers should not have the knowledge

about which images were obtained prior to drug administration and which

were obtained after drug administration, although this may be apparent

upon viewing the images. In addition, blinded readers should not know

the patients’ final diagnoses and may have limited or no knowledge of the

results of other diagnostic tests that were performed on the patients. In

some cases, blinded readers should not be familiar with the inclusion and

exclusion criteria for patient selection that were specified in the protocol.

7.2.1. Assessing reader agreement

As indicated in the draft guidance,30 at least two independent, blinded

readers (and preferably three or more) are recommended for each study

that is intended to demonstrate efficacy. The purpose is to provide a better

basis for the findings in the studies. Therefore, the determination of inter-

reader agreement and variability is the typical design issue to blinded read

studies.

According to the guidance, the consistency among readers should be

measured quantitatively. The most commonly used statistical test to assess

the inter-reader agreement is the κ (kappa) statistic. The Cohen’s kappa

coefficient,24 is a measure of inter-reader agreement in terms of count data.

For a 2× 2 table,

κ =
P0 − P

e

1− P
e

,

where

P0 =
∑

i

pii = proportion of observed agreement

P
e

=
∑

i,j

pi.p.j = proportion of expected agreement
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It assumes that two response variables are two independent ratings of the n

subjects. It should be noted that the kappa coefficient equals +1 when there

is complete agreement of the readers. When the observed agreement exceeds

chance agreement, kappa is positive. Also, the magnitude of kappa statistics

reflects the strength of agreement. In a very unusual practice, kappa could

be negative when the observed agreement is less than chance agreement.

The total range of kappa is between −1 and 1. The asymptotic variance

of simple kappa coefficient can be estimated by the following, according to

Fleiss et al.33:

var(κ) =
A + B + C

(1− P
e
)2
n

,

where

A =
∑

i

pii[1− (pi. + p.j)(1− κ̂)]2 ,

B = (1− κ̂)2
∑

i6=j

∑

i,j

pij(pi. + p.j)2 ,

C = [κ̂− P
e
(1− κ̂)]2 .

For measuring the inter-reader agreement in continuous data, Snedecor and

Cochran proposed the intra-class correlation.65

7.3. Diagnostic accuracy

To determine how well a diagnostic imaging agent can distinguish disease

subjects and non-diseased subjects, the outcome may often be classified into

one of the four groups depending on (i) whether disease is present and (ii)

the results of the diagnostic test of interest (positive or negative). The terms

“positive” and “negative” concern some particular disease status, which

must be specified clearly. The categories can be defined in any meaningful

way to the problem. For example, patients could be classified as having one

or more tumors (positive) or no tumor (negative), malignant (positive) or

benign/no tumor (negative).

It should be noted that the disease is often determined with a “truth”

standard or “gold” standard. A “truth” standard or “gold” standard is an

independent method of measuring the same variable being measured by the

investigational drug that is known or believed to give the truth state of a

patient or true value of a measurement. In other words, “truth” standards

are used to demonstrate that the results obtained with the medical imaging
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Table 2. The typical outcome table (2 × 2) in the evaluation of a diagnostic test.

Disease Status

Present Absent

Diagnostic Positive a(TP) b(FP)

Test Negative c(FN) d(TN)

drug are valid and reliable. For example, for a MRI contrast agent intended

to visualize the number of lesions in liver or determine whether a mass

is malignant, the truth standard might include results from the pathology

or long-term clinical outcomes. In diagnostic imaging studies, “truth” or

“gold” standard are usually called as standard of reference (SOR). Possible

choices of SOR in an imaging trail are:

a. Histopathology;

b. Therapeutic response;

c. Clinical outcome;

d. Another valid imaging procedure (validated against a valid gold

standard);

e. Autopsy.

TP, FP, FN, TN represent the true positive, false positive, false negative,

and true negative, respectively. After completing a well-defined classifica-

tion based on the disease status and diagnostic test of interest, the efficacy

of imaging agent can be expressed as the diagnostic performance of the

agent.

The simplest measure of diagnostic decision is the fraction of cases for

which the physician is correct, which is often called “accuracy”. In other

words, the accuracy is defined as the proportion of cases, considering both

positive and negative test results, for which the test results are correct. It

also can be expressed in mathematics as following:

Accuracy =
a + d

a + b + c + d

.

However, accuracy is of limited usefulness as an index of diagnostic per-

formance because two diagnostic modalities can yield equal accuracies but

perform differently with respect to the types of decisions. Also, it can be

affected by the disease prevalence strongly. Due to the limitation of the

accuracy index, the sensitivity and specificity are used in the evaluation

scheme.
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Sensitivity =
Number of TP decisions

Number of actually positive cases
=

a

a + c

Specificity =
Number of TN decisions

Number of actually negative cases
=

d

b + d

In effect, sensitivity and specificity represents two kinds of accuracy: the

first is for actually positive cases and the second is for actually neg-

ative cases. However, very often a single pair of sensitivity and speci-

ficity measurements may provide a possibly misleading and even hazardous

oversimplification of accuracy.70 This is how the ROC (Receiver Operating

Characteristic) curve comes into picture and is introduced in Sec. 7.4.1. It

should be noted that the method for evaluating and comparing sensitivity

and specificity for diagnostic tests is based on:

Assumption 1: Diagnostic tests are independent given the disease status;

Assumption 2: The gold standard is error free.

These two assumptions are not always valid. Several statistical methods

have been considered.2,3,57

7.4. Statistical analysis

Most of the imaging trials are designed to provide dichotomous or ordered

categorical outcomes. Therefore, the statistical tests for proportions and

rates are commonly used, and the methods based on ranks are often

applied to ordinal data. The analyses based on odds ratios and the Mantel-

Haenszel procedures are useful for data analysis. In addition, the use of

model-based techniques, such as logistic regression models for binomial

data, proportional odds models for ordinal data, and log-linear models for

normal outcome variables are usually applied.

The diagnostic validity can be assessed in many ways. For example,

the pre- and post-images can be compared to the gold standard, and the

sensitivity and specificity of the pre-image compared to the post-image.

Similarly, the same approaches can be used for two different active agents.

The common methods used to test for differences in diagnosis are the Mc-

Nemar test and Stuart-Maxwell test. The confidence intervals for sensitivity

and specificity, and other measures can be also provided in the analysis.

Recently, the Receiver Operating Characteristic (ROC) analyses are

becoming increasing important. Not only because it is recommended in

the FDA draft guidance,30 but also its advantage over more traditional

measures of diagnostic performance.48
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7.4.1. Receiver operating characteristic (ROC) analyses

In the use of most diagnostic test, test data do not necessarily fall into one

of two obviously defined categories. Imaging studies usually require some

confidence threshold be established in the mind of the decision maker. For

example, if an image suggests the possibility of disease, how strong the

suspicion is in order for the image to be called positive? Therefore, the

decision maker chooses between positive and negative diagnosis by compar-

ing his/her confidence concerning with an arbitrary confidence threshold.

Figure 1 is an example of the model that underlies ROC analysis. The bell-

shaped curves represent the probability density distributions of a decision

maker’s confidence in a positive diagnosis that arise from actually positive

patients and actually negative patients.

The true positive fraction (TPF) is represented by the area under the

left-hand distribution to the threshold. Similarly, the false positive fraction

(FPF) is represented by the area under the left-hand distribution to the

threshold. These imply that the sensitivity and specificity vary inversely

as the confidence threshold is changed. In other words, TPF and FPF will

increase or decrease together as the confidence threshold is changed.

If we change the decision threshold several times, we will obtain several

different pairs of TPF and FPF. These pairs can be plotted as points on

a graph, such as that in Fig. 2. This curve is called the ROC curve for

5
8

Fig. 1. Model of ROC Analysis.
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5
9

Fig. 2. Typical ROC Curve.

diagnostic test. Then, we may conclude that better performance is indicated

by an ROC curve that is higher to the left in the ROC space.

A practical technique for generating response data that can be used to

plot a ROC curve is called the rating method. This method requires the

decision maker select a value from a continuous scale, such as definitely

negative, probably negative, questionable, probabyly positive or definitely

positive.

The advantages of the ROC curves are it is simple and graphical. Also,

it is independent of prevalence and it provides a direct visual comparison

between tests on a common scale. However, the drawbacks of the ROC

curves are the decision thresholds and the numbers of subjects are usually

not displayed on the graph. In addition, the appropriate software may not

be widely available.

The ROC curve provides more information than just a single sensitivity

and specificity pair to describe the accuracy of a diagnostic test. The curve

depicts sensitivity and specificity levels over the entire range of decision

thresholds. However, it would be helpful if the performance of a diagnostic

test could be assessed by a single number. One such measurement that

can be derived from the ROC curve is the area under the curve (AUC).

If a diagnostic test that discriminates almost perfect, then its ROC curve

passes near the upper left corner. This makes an AUC approaching 1. On

the other hand, if the curve of a test that discriminates almost randomly,

then the curve would lie near the 45 degree diagonal line. This would turn

an AUC close to 0.5. The AUC range is between 0.5 and 1.
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The AUC is calculated by summing the area of the trapezoids formed

between the graph and the horizontal axis. This nonparametric method

of calculation makes no assumptions regarding the underlying distribu-

tions of the diseased and non-diseased status. The meaning of AUC has

been proved mathematically to be the probability that a random pair of

positive/diseased and negative/non-diseased individuals would be identified

correctly by the diagnostic test.35 Also, it had been shown that the statis-

tical properties of the Mann-Whitney-Wilcoxon statistics could be used to

predict the statistical properties of AUC.36 For comparing corrected ROC

curves, Delong et al.25 suggested a nonparametric approach for comparing

the AUCs. For the parametric approach, Swets and Pickett67 proposed a

more exact method using the maximum likelihood estimation to estimate

the AUC and its standard error. A comparison of nonparametric and bino-

mial parametric areas can be found in Center and Schwartz.5
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Toxicology is the study of the adverse effects of chemical substances

on biological systems. Toxicological research is typically directed toward

providing scientific information for the hazard potential of drugs and

chemicals used by humans. Human epidemiology and animal toxicology

are two major sources of scientific information for evaluation of toxic

chemicals or drugs. Epidemiological studies, which attempt to associate

disease or other adverse outcomes with an exposure, have the advantage

of directly measuring an effect in humans at exposure conditions. Main

limitations on the epidemiological studies are the lack of comprehensive

data associated with unintentional or complex exposures, such as quan-

tifying the actual dose concentration and no safety data for new drug or

chemical products. Safety evaluation of the use of drug and chemicals

are primarily based on animal studies in which animals are considered

as surrogates for humans. In Vitro mutagenicity studies and structure-

activity relationships may be used to support the interpretation of the

information from the animal or human studies. In this chapter, we focus

on two major toxicological studies: long-term carcinogenicity testing and

reproductive testing.

Statistical analyses of various endpoints have been of two aspects:

qualitative testing and quantitative estimation for risk assessment. The

qualitative testing is to determine if the chemical cause an adverse health

effect (if there is a statistically significant difference between treated and

control groups. Statistical analysis discussed in this section focuses on

the qualitative testing with respect to carcinogenic and reproductive

endpoints. Statistical modeling for quantitative risk estimation is given

in Chapter 11.

495
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1. Animal Carcinogenicity Experiments

Long-term rodent bioassays have been the government’s primary means

of screening chemicals to assess carcinogenic potential to human risk. The

United States Food and Drug Administration (FDA) and other countries

require that new drugs and certain medical devices must be approved for

safety and effectiveness for their intended use before being marketed. As a

part of the drug approval process, the FDA requires that the sponsor submit

the results of a rodent tumorigenicity bioassay to assess the carcinogenic

potential of a drug for chronic use of humans. In the last 25 years the

National Toxicology Program (NTP) has conducted about 500 long-term

animal carcinogenesis bioassays for safety assessment of environmental com-

pounds, and Food and Drug Administration (FDA) has reviewed hundreds

of such studies of pharmaceuticals conducted by drug companies. Data

from these studies have been a major database for safety assessment of

compounds in the environment and industry.

A standard carcinogenic study is conducted in both sexes of two rodent

species, typically rats and mice. A carcinogenicity experiment consists of a

control and several dose groups. The maximum tolerated dose (MTD) has

been used as the high-dose level. The MTD is defined as the dose that causes

no more than a 10% body weight decrement, as compared to the appropriate

control groups. The MTD is often estimated from the results of subchronic

studies (generally three months of duration). Typically, dosage is measured

in mg/kg body weight per day. The number of dose groups and allocation

of animals among the dose groups depend on the objective of the study.

A typical NTP carcinogenicity experiment consists of a control and three

dose levels (0, 1/4 NTD, 1/2 MTD, MTD) with 50 animals per group.

Animals are assigned randomly to dose groups or cages. As an example,

consider a situation of 200 animals to be assigned to four groups of 50 with

four animals from the same group caged together. Thus, 52 cages are used

for the 200 animals. Each animal, first, is given to a number according to

their order of presentation. A random number sequence of 52 cages numbers

each with 4 replicates is, then, generated for placing animals in cages. For

example, a sequence may be

Animal number 1 2 3 4 5 6 7 8 9 10 ..

Random cage number 42 7 8 13 9 11 18 7 22 38 ..

The animal #1 would be placed in cage #42, and animal #2 in cage #7, and

so on. After randomization of the animals to cages (and into experimental
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dose groups), the cage position may need to be rotated during the course

of the experiment in order to balance the environmental effects.

The animals are given the test substance for a major portion of their

lifespan. The test substance may be given in the diet or administered by

other routes, such as inhalation, skin paints, or oral gavage. The experiment

is terminated according to a predetermined stopping time, for example,

78–104 weeks for mice and 104 weeks for rats. Animal body weights and

food consumption are measured weekly, the weeks of death of animals

are recorded. Animals which die or are sacrificed are necropsied. Tissues

taken from different organs and sites are examined microscopically for the

presence of tumors for an evidence of carcinogenic effects.

One main objective of a long-term carcinogenicity experiment is to

compare control and dose groups of animals with respect to tumor deve-

lopment. Statistical analysis of tumor responses includes the comparisons

between dosed and control groups as well as a test for dose-related trend

for each tumor site/organ. A typical experiment investigates approximate

20–50 tumor sites routinely. Because a large number of statistical tests are

performed, the chance of false positive findings could increase. For example,

the false positive rate is about 0.64 (≈ 1− (1−0.05)20) for tests of 20 inde-

pendent tumor types (sites/organs) all at the 0.05 significance level. For a

particular tumor type, the primary response variable (endpoint) for compa-

rison is the incidence of first tumors. One factor that affects the performance

of methods is the animal survival time. A high degree of animal mortality

will cause a significant censoring of the tumor response. Comparisons should

be adjusted for the survival time because the crude incidence rate can be

biased by the differential mortality (across groups). Another complication

is that most tumor types are occult and therefore detectable only after

the animal has died; that is, the time to the (first) tumor onset is not di-

rectly observable. This section will describe the commonly used statistical

procedures for the analysis of animal tumor response data.

1.1. Time-to-tumor model

Kodell and Nelson1 presented a tumor-death model which uses survival/

sacrifice data to describe the sequence of events comprised by histological

appearance of a tumor followed by death from that tumor. Three random

variables can be used to describe the model:

X : The potential time to tumor onset, transition time from the normal

state (N) to the tumor-bearing state (T).
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T : The potential time from tumor onset to death, transition time from

tumor state (T) to the death from the tumor state (D
T
).

Z: The potential time until death from a competing cause, transition time

from the normal state (N) or the tumor state (D
T
) to the death from

competing risk (D
NT

).

Sacrificed animals are considered to be dead from a competing risk.

The three random variables X, T, Z completely determined the fate of each

animal. The two random variables Y and Z are the survival time of an

animal, where Y = X + T is the potential time until death from tumor.

Note that X is not observable for the occult tumors.

A survival-adjusted method, that has been widely accepted, is to require

that pathologists assign a “context of observation” (cause-of-death) to each

tumor.2 Tumors can be classified as “incidental”, “fatal”, and “mortality-

independent (or observable)”. Tumors that do not alter an animal’s risk

of death and are observed only as the result of a death from an unrelated

cause are classified as an incidental context. Tumors that affect mortality

by either directly causing death or indirectly increasing the risk of death

are classified as a fatal context. Tumors, such as skin tumors, whose de-

tection occurs at times other than when the animal dies are classified as a

mortality-independent (or observable) context. It should be noted that the

validity of context of observation is under the assumption: tumor-bearing

and tumor-free animals of the same age have identical hazard functions for

death unrelated to tumor.

In the context of observation, one of the four events will be observed on

each animal:

A. Appearance of a visible tumor (mortality-independent context, X is

observable).

B. Animal died from the tumor of interest (fatal context, Y < Z).

C. Animal had a tumor and died from competing cause (incidental context,

X ≤ Z < Y ).

D. Animal did not have a tumor and died from a competing cause (Z ≤ X).

Let t1, t2, . . . , tm be the distinct times at which the above events are ob-

served, and a
k
, b

k
, c

k
, and d

k
, k = 1, . . . , m, are the number of events of A,

B, C, and D at time t
k
, respectively. Define the tumor resistance (survival)

functions for X and Y as S
X

(t) = Pr(X ≥ t), and S
Y

(t) = Pr(Y ≥ t). Let

f
X

(t) and f
Y

(t) be the density function of X and Y , respectively. For the

tumors observed in a mortality-independent context, the likelihood function
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is given as

L
a

=
∏

f
X

(t
k
)ak

S
X

(t
k
)dk

.

The likelihood function for the tumors observed in a fatal context is

L
b

=
∏

f
Y

(t
k
)bk

S
Y

(t
k
)dk

.

The likelihood functions L
a

and L
b

are essentially the same. The likelihood

function for the tumors observed in an incidental context is

L
c

=
∏

[1− S
X

(t
k
)]ck

S
X

(t
k
)dk

.

In the general case, when a tumor is observed in a fatal cases for some

animals and is also observed in an incidental context for other animals, the

likelihood function is

L
d

=
∏

[f
Y

(t
k
)]bk [S

Y
(t

k
)− S

X
(t

k
)]ck [S

X
(t

k
)]dk

.

Kodell et al.3 showed that

S
Y

(t)− S
X

(t) = [1−Q(t)]S
Y

(t) ,

where Q(t) = S
X

(t)/S
Y

(t) is the conditional probability of tumor onset

after time t, given tumor-free survival through time t. It follows that

L
d

=
∏

[f
Y

(t
k
)]bk [S

Y
(t

k
)]ck+dk [1−Q(t

k
)]ck

Q(t
k
)dk

.

That is, L
d

can be expressed as the product of the two likelihood functions

L

b

d

=
∏

[f
Y

(t
k
)]bk [S

Y
(t

k
)]ck+dk

,

and

L

c

d

=
∏

[1−Q(t
k
)]ck

Q(t
k
)dk

.

The L

b

d

and L

c

d

represent the contributions of the fatal and incidental

tumors, respectively.

1.2. Estimation

An important first step in the evaluation of animal carcinogenicity data is

to estimate the animal survival curve for the assessment of any effects of

exposure to the test compound on mortality. The survival curve for each

dose group is calculated by the Kaplan-Meier method.4 In this calculation,

the weeks of death for animals killed accidentally or sacrificed are considered

as censored observations.5 For a given group, suppose that the death time

of the animals are observed at t
k
, k = 1, . . . , m. Let n

k
denote the number
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of animals that died at or after t
k

(the number of animals at risk), and x
k

denote the number of deaths (out of n
k
). The Kaplan-Meier estimate of the

conditional probability of survival beyond t
k

given survival beyond t(k−1)

is (n
k
− x

k
)/n

k
. The estimated survival function is

Ŝ(t) =
∏

tk≤t

n
k
− x

k

n
k

, t
k
≤ t < t(k+1) .

The variance of the Ŝ(t) is calculated by Greenwood’s formula

V [Ŝ(t)] = Ŝ

2(t)
∑

tk≤t

x
k

n
k
(n

k
− x

k
)
t
k
≤ t ≤ t(k+1) .

The estimation of the tumor survival functions S
X

(t) and S
Y

(t) depends

on the context of observation. When all tumors are observed in a mortality-

independent context or fatal context, the Kaplan-Meier method can be

used to estimate the tumor survival function. The calculation is the same

as estimating animal survival function. But, the n
k

represents the number

of animals at risk (have not developed a tumor), and x
k

is the number of

tumor observed (or death caused by the tumor).

For the tumors observed in an incidental context, these tumors are only

discovered at necropsy, either after sacrifice or after has died from the cause

unrelated to the presence of tumor. Let the experiment period be parti-

tioned into J sub-interval such that (t
j−1, tj ], j = 1, . . . , J , where t0 = 0

and t
J

denotes the time at which the terminal sacrifice is scheduled. Let

c
j

and d
j

denote the number of animals that died in the jth time interval

for which the tumor is present or absent, respectively. The total number of

deaths in the jth time interval is (c
j

+ d
j
). Hoel and Walburg6 proposed

the tumor prevalence estimate as

R̂(t) =
c
j

c
j
+ d

j

, t(j−1) < t ≤ t
j
.

The prevalence method requires to partition the experimental period

into several time intervals. The following three partitions have been used in

practice: (1) (0, 50], (51, 80], (81, 104], interim sacrifice (if any), and

terminal sacrifice; (2) (0, 52], (53, 78], (79, 92], (93, 104], interim sacrifice

(if any), and terminal sacrifice; and (3) the Peto ad hoc interval determined

by the tumor prevalence data based on the assumption of non-decreasing

prevalence function.2 The maximum likelihood estimate of R(t) is estimated

by the “pooling adjacent violators” method.

For the tumors observed in both incidental and fatal contexts, the maxi-

mum likelihood estimate of S
X

(t) can be obtained by estimating S
Y

(t) and
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Q(t) separately, provided that Q(t) is monotonically nonincreasing. Conse-

quently, the S
Y

(t) and Q(t) are estimated by the Kaplan-Meier estimator

and Hoel-Walburg estimator described above. The estimate of tumor onset

distribution3 is

Ŝ
X

(t) =





∏

tk≤t

n
k
− b

k

n
k





(

c
j

c
j
+ d

j

)

, t
j
− 1 ≤ t < t

j
.

The variance and the variance of Ŝ
X

(t) is obtained using a first-order Taylor

series,

var[Ŝ
X

(t)] ' [Ŝ
X

(t)]2





∑

tk≤t

x
k

n
k
(n

k
− x

k
)

+
c
j

(c
j
+ d

j
)d

j





.

1.3. Testing

First, consider testing for difference in animal survival functions, or differ-

ence in the incidence of tumors observed in a mortality-independent context

or fatal context. The logrank test or the death-rate method2 is the most

widely used procedure for testing the age-specific differences among groups.

Consider a carcinogenicity experiment with g groups (d1, . . . , dg
).

Taking all dose groups together as one, suppose that the death times are

observed at t
k
, a time point at which tumors are found in any group,

k = 1, . . . , m. Let n
ik

denote the number of animals in the ith group that

died at or after t
ik

(at risk), and x
ik

denote the number of deaths (out of

n
ik

). Animal death-tumor data at time t
k

can be summarized in a 2 × g

table as

Summary of animal tumor-death data at tk .

Dose d1 d2 · · · dg Total

# With Tumors x1k x2k · · · xgk x.k

# At Risk n1k n2k · · · ngk n.k

The expected number of tumors in the ith group at time t
k

is e
ik

= x
.k

f
ik

,

where f
ik

= n
ik

/n
.k

, i = 1, . . . , g. Thus, the observed and expected numbers

of tumors in the ith group over the entire experiment are O
i

=
∑

m

k=1
x

ik

and E
i
=
∑

m

k=1
e

ik
, respectively. Define

D
i
= O

i
−E

i
=

m

∑

k=1

(x
ik
− e

ik
)
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and

V
rs

=
m

∑

k=1

x
.k

(n
.k
− x

.k
)f

rk
(δ

rs
− f

sk
)

n
.k
− 1

where δ
rs

is defined as 1 if r = s and 0 otherwise. Let Da = (D1, . . . , Dg
)′

and V a be the g × g matrix with the (r, s) entry V
rs

. Then

X
a

= D
′
aV

−
a Da

can serve as a test for heterogeneity among the g groups, where V
−

a is

a generalized inverse of V a. Under the null hypothesis, X
H

is asymptoti-

cally distributed as χ

2 distribution with g − 1 degrees of freedom. Also, a

dose-related trend test can be considered by using

Z
a

= l
′
Da/

√

l
′
V al ,

where l = (d1, . . . , dg
)′.

For the tumors observed in an incidental context, the Mantel and

Haenszel7 test or the prevalence method2 can be used for comparing the

prevalence rates among groups. The prevalence method used is very similar

to the death-rate method, except that each interval defines the tumor-death

time as described in the estimation. The vector of the differences of observed

and expected values Db is calculated the same way as described for the fatal

tumors, and the corresponding covariance matrix V
b

is computed. The χ

2

test statistics for heterogeneity and trend can be calculated similarly.

For the tumors observed in both fatal and incidental and contexts, the

data for the fatal tumors and for the incidental tumors are analyzed sepa-

rately by the death-rate and prevalence methods, respectively. The test for

the difference in the time of tumor onset is based on the pooled vector

D = Da + Db, with covariance matrix V = V a + V b.
2 The test statistic

for heterogeneity is given by

X = (Da + Db)
′(V a + V

−
b (Da + Db)) .

The trend test is given by

Z = l
′(Da + Db)/

√

l
′(V a + V b)l .

The choice of time intervals for calculating the incidental tumor com-

ponent of the test of Peto et al.2 is an important consideration. The use

of the ad hoc time intervals can be problematic.8 Moreover, the procedures

described above for the analysis of occult tumor all require the information

of tumor lethality or cause of death. Some argue that the determination
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whether a tumor causes an animal’s death is a rather complicate and sub-

jective process. It is often difficult for a pathologist to classify accurately

and objectively a tumor type as straight causing or not causing animal’s

death. Furthermore, the validity of context of observation relies on the as-

sumption that tumor-bearing and tumor-free animals of the same age have

identical hazard functions for death unrelated to tumor. Chen and Moore9

showed the Peto test performs poorly when there is a large reduction in

survival times in the dosed groups.

1.4. Other methods

Dinse and Lagakos10 proposed a logistic regression model as an alternative

prevalence test for the incidental tumors,

exp(µ + τt + θd
i
)/[1 + exp(µ + τt + θd

i
)] . (1)

They derived the likelihood score test of θ = 0. The logistic regression

analysis assumes that tumor prevalence is a smooth function of ages and

it does not require the choice of time intervals. In addition, the logistic

regression model can easily incorporate other covariates, and the software

is ready available. The logistic regression has been adopted by the NTP as

a standard analysis for dose-related trend test.

Bailer and Portier11 proposed an alternative survival-adjusted approach

that do not require the cause of death information. The approach modifies

the Cochran-Armitage test to account for the survival times of those an-

imals that die prior to study termination without tumor presence. The

Bailer and Portier approach, has been referred to as the Poly-κ test, can be

used to replace the Peto’s procedure when the cause of death information

is not available.

Let y
ij

be a binary response indicating presence or absence of a tumor

type of the jth animal in the ith group who dies at time t
ij

, i = 1, . . . , g,

j = 1, . . . , n
i
. If all animals survive during the whole experiment period,

the probability of developing a tumor for a animal in the ith group, say, µ
i

can be modelled by the linear-logistic model

logit(µ
i
) = α + βd

i
.

Let T denote the length of the experiment and t
ij

denote the death time of

the ijth animal. Bailer and Portier11 defined a weight equal to 1 if a tumor

is present at death, and a weight equal to δ
ij

= (t
ij

/T )κ if the animal

dies without tumor presence. The parameter δ
ij

reflects a less-than-whole
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animal contribution, and κ depends on the tumor type/site. The Poly-κ

trend test for the null hypothesis H0 : β = 0 against H1 : β > 0, is given as

z =

∑

i

y
i.
d

i
− p

′
..

∑

i

n

′
i.

d
i

p

′
..

(1− p

′
..

)[
∑

i

n

′
i.

d

2

i

− (
∑

i

n

′
i.

d
i
)2/
∑

i

n

′
i.

]

where y
j.

=
∑

j

y
i.
, n

′
ik

=
∑

j

δ
ij

, and p

′
..

=
∑

ij

y
ij

/

∑

ij

δ
ij

. Under the null

hypothesis, z is asymptotically standard normally distributed. Bieler and

Williams12 proposed a modification to account for the random variation

due to δ
ijk

.

z =

∑

i

a
i
p

′
i.

d
i
− (
∑

i

a
i
d

i
)(
∑

i

a
i
p

′
i.

)/
∑

i

a
i

{C[
∑

i

a
i
d

2

i

− (
∑

i

a
i
d

i
)2/
∑

i

a
i
]}1/2

,

where C =
∑

ij

(r
ij
− r̄

i
)2/(N − g), a

i
= (n′

i

)2/n
i
, p

′
i.

= y
i.
/n

′
i

, r
ij

= y
ij
−

p

′
..

δ
ij

, r̄
i

=
∑

j

r
ij

/n
i
, n

′
i

=
∑

j

δ
ij

, p

′
..

=
∑

i

y
i.
/

∑

i

n

′
i

, y
i.

=
∑

j

y
ij

, and

n
i
is the total number of animals in the ith group, and N

k
=
∑

i

n
i
. Under

the null hypothesis, z
k

is asymptotically standard normally distributed. The

values for κ are between 1 to 6 from the examination of the NTP historical

data.11 Recently, the NTP has adopted the modified Poly-3 test (κ = 3)

as a standard test for trend and compares the results against the Poly-1.5

and Poly-6 tests.

1.5. Example

Stallard and Whitehead13 presented the results of a carcinogenicity experi-

ment with four dose groups in male mice. The control, low, medium groups

contained 60 animals and the high dose group contained 59 animals. The

experiment lasted for 105 weeks. The tumor data are shown in Table 1.

Since the data contained mixture of fatal and incidental tumors, the Peto

cause-of-death test was used. The fatal tumors and incidental tumors were

analyzed separately by the logrank test and the prevalence method, respec-

tively. The vector for the difference between the observed and expected

numbers of tumors is D
a

= (1.4976,−6.7991, 7.1938, 12.4952) for the fatal

tumor and is D
b

= (−0.1489,−8.0581,−8.8191, 17.0532) for the incidental

tumor with the variance-covariance matrices

V
a

=













6.4575 −2.7921 −2.2296 −1.4358

−2.7921 6.2768 −2.1184 −1.3663

−2.2296 −2.1184 5.4485 −1.1005

−1.4358 −1.3663 −1.1005 3.9026












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Table 1. Tumor data from a carcinogencity experiment presented by Stallard and
Whitehead.13

Dose Deaths without Tumors Deaths with Tumors
(frequency in parentheses) (frequency in parentheses)

Control 15, 62, 90, 92, 96, 97, 101, 56, 65, 66, 76, 77, 80, 81, 86∗, 87, 89,

105(22) 93, 95, 97, 98(2), 103, 104, 105∗(14)

Low 24, 27, 53, 64, 68, 47, 82, 83, 94, 63, 75, 78, 84, 85, 95, 96, 97, 98, 101,

96, 97, 99, 102, 105∗(6) 102(2),

103, 104, 105(27)

Medium 5, 7, 39, 65, 70, 75, 76, 80, 82, 83, 47, 52, 65, 69, 70, 88, 91, 95, 99, 100,

87, 91(2), 92, 96(2), 97, 98(2), 99, 104, 105∗(3)

100(2), 102, 105(23)

High 16, 18, 49, 55, 59, 77, 85(2), 105 57∗, 60, 66, 70(2), 74(2), 76, 78, 83(2),

84(3), 85, 88, 89, 92, 93(2), 94, 95∗,

95, 96, 97, 98∗, 98(2), 99, 100, 101,

102∗, 102, 103, 104, 105∗(15)

and

V
b

=













7.8714 −2.8425 −2.9518 −2.0772

−2.8425 8.7858 −3.4885 −2.4549

−2.9518 −3.4885 8.9895 −2.5493

−2.0772 −2.4549 −2.5493 7.0813













,

respectively. Hence, the pooled vector for the fatal and incidental tumors

combined is D = (1.3487,−14.8842,−16.0130, 29.5484) with the variance-

covariance matrix

V =













14.3289 −5.6346 −5.1814 −3.5130

−5.6346 15.0626 −5.6069 −3.8212

−5.1814 −5.6069 14.4380 −3.6498

−3.5130 −3.8212 −3.6498 10.9839













.

The χ

2
3 test statistic for heterogeneity among the 4 groups is X

H
= 88.42

and the Z statistic for dose-response trend is Z = 4.599, where the dose

metric is l = (0, 1, 2, 3). Both the heterogeneity test and trend test show

statistically significant. The z-score from the Poly-3 test is 4.4328.

1.6. Exact trend tests for incidental tumors

In animal carcinogenicity bioassay experiments, the number of animals

developing certain tumor types of interest is often small. The methods
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described previously use the asymptotic normal approximation. In general,

the mortality patterns, number of intervals used in the partition, and

numbers and patterns of tumor occurrence in each interval can have effects

on the accuracy of an asymptotic test. When the total number of tumor

occurrences is small, the normal approximation may not be reliable.14 The

exact permutation test is recommended. The following will describe an

exact permutation trend test for tumors observed in an incidental context.

The test is a generalization of the Fisher’s exact test to the 2 × g table.

The tumors observed in a mortality-independent or fatal context can be

tested in a similar way. However, Fairweather et al.15 discussed limitations

of applying exact methods to fatal tumors.

The data for the tumors observed in the jth interval can be summarized

as

Summary of animal prevalence data at interval (t(j−1) , tj ].

Dose d1 d2 · · · dg Total

# with Tumors r1j r2j · · · rgj r.j

# deaths n1j n2j · · · ngj n.j

where n
ij

, here, is the total number of animals from the ith group that died

in the jth time interval, r
ij

is the number of animals (out of n
ij

) found to

have the tumor of interest, and r
.j

and n
.j

are the row marginal totals

which are fixed for all j = 1, . . . , J .

Conditional on r
.j

and n
.j
, under the null hypothesis of no difference

among groups, the conditional distribution of (r1j
, r2j

, . . . , r
gj

) is the mul-

tivariate hypergeometric distribution

P (r1j
, r2j

, . . . , r
gj

) =

(

n1j

r1j

)(

n2j

r2j

)

· · ·
(

n
gj

r
gj

)

(

n
.j

r
.j

)

.

Assuming independence among the J tables, the joint probability of

(r11, . . . , r21, . . . , rgJ
) for a random permutation outcome is

P (r11, . . . , r21, . . . , rgJ
) =

J

∏

j=1

P (r1j
, r2j

, . . . , r
gj

) .

The trend score associated with (r1j
, r2j

, . . . , r
gj

) in the j-interval is

defined by

S
j

=

g

∑

i=1

d
i
r
ij

.
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The probability distribution for the trend score statistic S
j

is

P (S
j

= s
j
) =

∑

Ωj

P (r1j
, r2j

, . . . , r
gj

) ,

where Ω
i

consists of all possible permutations of r
ij

such that
∑

g

i=1
r
ij

=

r
.j

and
∑

g

i=1
d

i
r
ij

= s
j
. The trend score associated with a random

permutation (r11, . . . , r21, . . . , rgJ
) is

S =
J

∑

j=1

S
j

=
J

∑

j=1

g

∑

i=1

d
i
r
ij

.

The probability distribution for the trend score S is

P (S = s) =
∑

Ω

P (S1 = s1) · · ·P (S2 = s2) · · ·P (S
J

= s
J
) ,

where Ω consists of all possible permutations (r11, . . . , r21, . . . , rgJ
) such

that
∑

J

j=1
s

j
= s. Let s

∗ denote the trend score associated with the

observed outcome. The exact one-tailed p-value for a positive trend is

p-value =
∑

s≥s

∗

P (S = s) .

Note that when k = 1 and g = 2, this procedure becomes the Fisher

exact test.

Traditionally, the definition of the p-value of an exact test is the cu-

mulative sum of the probability of the observed outcome and the proba-

bilities of all more extreme outcomes. The trend p-value described above

is the sum of the probabilities of all permutations whose trend scores are

greater than or equal to the trend score of the observed outcome s

∗. Thus,

every permutation with a trend score equal to s

∗ is included in the p-value

computation irrespective of the magnitude of its probability of occurrence.

Chen et al.16 argued that those permutations whose probabilities are greater

(less extreme) than the probability of the observed outcome should not be

included. A less conservative exact p-value is

p-value =
∑

s>s
∗

P (S = s) +
∑

ω

P (S1 = s1) · P (S2 = s2) · · ·P (S
J

= s
J
) ,

where ω consists of all permutations such that
∑

k

j=1
s

j
= s

∗ and

P (r11, . . . , r21, . . . , rgJ
) ≤ P

∗, and P

∗ denotes the probability of the

observed outcome.

The lung adenoma data observed in female mice from a two-year feeding

study of phenylephrine hydrochloride conducted by the National Toxicology
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Table 2. The incidence of lung adenoma in female mice in the two-year feeding study
of phenylephrine.

Weeks 0 ppm 1250 ppm 2500 ppm Total

0–52 r1j 0 0 0 0

n1j 1 0 3 4

53–78 r2j 0 0 0 0

n2j 1 3 3 7

79–92 r3j 1 0 0 1

n3j 9 5 2 16

93–104 r4j 0 3 5 8

n4j 39 42 42 123

Table 3. Computations of the p-value for the exact trend test.

79–92 93–104 Combined

Pattern S3 P3 Pattern S4 P4 S3 + S4 Prob.

> 16, 250 0.01987

1, 0, 0 0 0.5625 1, 1, 6 16,250 0.008343 16,250 0.00469

0 0.5625 0, 3, 5 16,250 0.009482 16,250 0.00533

0, 1, 0 1250 0.3125 2, 0, 6 15,000 0.003774 16,250 0.00118

1250 0.3125 0, 4, 4 15,000 0.012165 16,250 0.00380

1250 0.3125 2, 0, 6 15,000 0.027736 16,250 0.00867

0, 0, 1 2500 0.1250 0, 5, 3 13,750 0.009482 16,250 0.00118

2500 0.1250 2, 1, 5 13,750 0.025707 16,250 0.00321

2500 0.1250 1, 3, 4 13,750 0.048660 16,250 0.00608

Program (NTP, 1987) is analyzed for illustration. This experiment con-

tained a control and two dose groups, 1250 and 2500 ppm. In the analysis of

tumor incidence data, NTP generally groups the animals into the following

four time intervals to adjust for intercurrent mortality: 0–52, 53–78, 79–92,

93–104 weeks. Table 2 shows the number of lung adenomas and the number

of deaths occurring in the four time intervals.

The computations of the p-value for the exact trend test are shown in

Table 3.

Each row in the table corresponds to a permutation for which the score is

16,250 from the sum of Columns S3 and S4. The exact p-value (= 0.0540) is

the sum of the probabilities of the right most column, and the exact p-value

(= 0.0393) by the Chen et al.16 is obtained by excluding two probability

values 0.00867 and 0.00608 as they are greater than 0.00533, the probability
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of the data observed. The MH asymptotic trend test gives a p-value of

0.0347. For a significance level of 5%, the Chen et al.16 adjustment would

indicate a statistically significant result, in agreement with the MH trend

test.

1.7. Discussion

A typical carcinogenicity experiment examines approximately 20–50 tumor

types/sites, statistical tests often perform for 10–30 types/sites routinely.

Performing several tests without appropriately accounting for the multipli-

city effect can inflate the overall Type I error rate or familywise error rate

(FWE). Statistical Methods for the analysis of multiple tumor types/sites

have been proposed by several authors.17–20 Haseman21 presented a rule

rejecting a hypothesis for a rare tumor (spontaneous rate at most 0.01) when

p ≤ 0.05 and for a common tumor (spontaneous rate greater than 0.01)

with p ≤ 0.01. The Center for Drug Evaluation and Research (CDER) of

FDA has adopted the “Haseman rule” in comparing tumor incidence rates

between the control and dose groups in its evaluation of tumorigenicity

studies of new drugs, and has recently recommended a new rejection rule

for a positive dose-related trend test with p ≤ 0.025 for rare rumors and

p ≤ 0.005 for common tumors.22

Interpreting results of carcinogenicity experiments is a complex process,

and there are risks of both false negative and false positive results. The

relatively small number of animals used, and the low tumor incidence rates

can cause carcinogenicity of a compound not to be detected (i.e. a false

negative error is committed). Because of the large number of comparisons

involved, there is also a great potential or finding statistically significant

positive trends or differences in some tumor types that are due to chance

alone (i.e. a false positive error is committed). The inflated false-positive

rate can invalidate the use of animal carcinogenicity data. Controlling both

false positive and false negative rates should be the central issue in the

statistical analysis of animal carcinogenicity experiments from the safety

assessment viewpoint.

2. Reproductive Studies

Reproductive studies are conducted to assess reproductive risk to mature

adults and to the developing individual from the exposure to drugs and

environmental compounds. Adverse reproductive and developmental effects

include effects on male and female fecundity, spontaneous abortion, infant
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and child death, congenital malformations, growth retardation, and mental

retardation. Three segments of study are required in preclinical animal test-

ing for each new drug depending on how women might be exposed to the

drug.23 These are referred to as Segment I (fertility and general repro-

ductive performance), Segment II (developmental effects), and Segment III

(prenatal and postnatal evaluations).

The Segment I study is aimed at providing an overall evaluation of the

effects of drugs on fertility in both sexes, the course of gestation, early

and late stages of the development of the embryo and fetus, and postnatal

development. The studies may be conducted by treating animals of only one

sex and mating with untreated animals of the opposite sex, or by treating

both male and female animals. Segment II is primarily aimed at detecting

teratogenic effects. The drug is given to the pregnant females during the

period of organogenesis, e.g. days 6–15 for rats and mice, and days 6–18

for rabbits. The offspring are removed one or two days before term, and

corpora lutea, resorption sites, and live and dead fetuses are examined.

Fetuses are weighed and examined for anomalies. Segment III is aimed at

the evaluation the effects of drugs on the late stages of gestation and on

parturition and lactation. The drug is given to pregnant females in the

final one-third of gestation and continued throughout lactation to weaning,

e.g. gestation day 15 to postnatal day 21 for rats or mice. The effects on

duration of gestation is determined. Pup birth and developmental data

including litter size, weight, and postnatal growth and mortality, along

with impaired maternal behavior are recorded and measured.

Mice, rats, and rabbits are the most commonly used species for re-

productive and developmental studies. The experimental design is very

similar to the carcinogenicity experiment consisting an untreated control

and three dose groups. The US regulatory guidelines generally recommend

about 20 pregnant rodents and 15 nonrodent animals per dosage group.

The ICH guideline recommends 16 to 20 pregnant animals per group. All

adult animals are necropsied at terminal sacrifice.24,25

Regulatory requirements specify that a wide range of endpoints must

be measured, recorded, and analyzed. The endpoints can be divided into

two categories: parental and embryonic/fetal endpoints. Since the test com-

pound is administered to the adult animal, the effect of the test compound

occurs in the female that receives the compound, or that is mated to a male

that receives the compound, the treatment affects the fetuses indirectly

via the dam. The fetal responses from the same dam are expected to be

more alike than responses from different dams. This phenomenon is referred
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to as the “litter effect”. In the analysis of embryonic/fetal endpoints, the

experimental unit should be the entire litter rather than an individual fetus.

Failure to account for the intra-litter correlations by using each fetus as the

experimental unit will inflate the Type I error and will reduce the validity of

the test. The classical approach to the analysis of reproductive data is based

on the litter mean. However, this approach does account for differences in

litter sizes. An alternative approach is to model the fetal endpoints in a

litter as correlated outcomes (clustered data). These two approaches will

described in this section. Statistical methods described will be according to

three measures, continuous, binary, and count.

2.1. Per-litter based analysis

Consider a typical experiment of g groups, a control and g− 1 dose groups.

Assume that the ith group contains m
i

female animals. Let y
ijk

be the

response from a fetus out of n
ij

examined or tested for a particular deve-

lopmental outcome, 1 ≤ i ≤ g, 1 ≤ j ≤ m
i
, and 1 ≤ k ≤ n

ij
. Note

that y
ijk

may be an indicator variable representing the presence or absence

of a particular malformation type or a continuous variable representing

a fetal weight or postnatal performance measurement. Depending on the

endpoint of interest, n
ij

may represent the number of viable fetuses, number

of implants, or number of measurements. The litter-based analysis is based

on the per-litter response y
ij

=
∑

k

y
ijk

/n
ij

. For a continuous response,

y
ij

will represent the mean fetus response; for a discrete variable, it will

represent the sum of the fetal responses. The y
ij

can be viewed and analyzed

as a maternal endpoint.

2.1.1. Continuous data

Continuous data such as body weights, organ weights, or behavioral mea-

surements conducted on offspring following birth are measured on a con-

tinuous scale. The continuous endpoints are measured either at the litter

level in an adult animal (e.g. maternal body weights) y
ij

, or at the indivi-

dual fetus level (fetal body weights) y
ijk

. Analysis of variance (ANOVA) is

the most commonly used procedure for the analysis of continuous data.25

The ANOVA method assumes that data are independently and normally

distributed with homogeneous variance. Transformations such as the loga-

rithmic, square-root and arc-sine are often applied to satisfy the normality

assumption and stabilize the variance. A simple one-way ANOVA analysis

is the comparison of maternal endpoints among groups. Developmental
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endpoints are analyzed similarly but in terms of the average within each

litter as described.26 Nonparametric methods are used when the assump-

tion of normality fails. The nonparametric analysis is initiated by ranking

all observations of the combined groups. The repeated measures ANOVA

is often used for the analysis of postnatal behavioral data.27

2.1.2. Binary data

Binary endpoints can also be measured either at the parent level, such

as success or failure of pregnancy, or at the individual fetal level, such as

presence or absence of a particular malformation type. Statistical methods

for the analysis of the prenatal and fetal responses are different. Asymptotic

chi-square test is often used for the analysis of prenatal binary endpoints

for comparing the incidence rates among several groups.28 The Cochran-

Armitage test is used to test for trend.29,30 The Fisher exact test is the best

known permutation test for comparing two groups. General computational

algorithms and software to perform all possible permutations are given

by Mehta et al.31 The general approach to the analysis of fetal binary

endpoints is to consider the proportion per-litter such as the proportion of

live fetuses with a certain type of malformation. Typically, the proportions

are transformed by an arc-sine transformation, and then the parametric

ANOVA methods are used. The litter-based approach does not use the

data effectively since it does not account for the litter size. For example,

one out of two is treated as the same as five out of ten.

2.1.3. Count Data

A number of primary reproductive endpoints are measured in counts. In a

dominant lethal assay, male mice are treated with a suspect mutagen, and

then are mated with females. The numbers of corpora lutea, implantations,

lives, and dead conceptuses are counted to assess reproductive effects of

the test compound. Count data are often normalized by the square root

transformation, the transformed data are then analyzed as continuous data

using the parametric ANOVA methods. Count data can also be analyzed

by nonparemetric methods.

2.1.4. Example

A study of the effects of maternal exposure to diethylhexyl phthalate

(DEHP) in rats is presented as an example. Table 4 contains a summary of
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Table 4. Reproductive parameters after exposure of pregnant Fisher 344 rats to diethylhexyl phahalate in the feed on getational
days 0–20.

Diethylhexyl phahalate % in feed

Endpoint 0.0 0.5 1.0 1.5 2.0

No. pregnant dams 24 23 22 24 25

Maternal wgt gd 0 173.60 (3.25) 175.37 (3.37) 172.42 (3.12) 171.77 (2.80) 173.33 (2.95)

Maternal wgt gd 20 248.30 (3.64)a 246.00 (2.90) 232.73 (3.25)∗ 217.76 (3.25)∗ 184.15 (4.28)∗

Maternal wgt gain 74.69 (1.71)a 70.63 (2.48) 60.31 (1.44)∗ 45.99 (1.78)∗ 10.82 (3.00)∗

Gravid uterine wgt 49.79 (1.39)a 44.83 (2.49) 46.81 (1.31) 43.86 (0.96) 19.08 (3.71)∗

Maternal liver wgt 9.75 (0.12)a 11.72 (0.17)∗ 12.06 (0.17)∗ 12.21 (0.19)∗ 11.11 (0.15)∗

Corpora lutea 10.91 (0.33) 10.96 (0.22) 11.18 (0.30) 11.17 (0.18) 10.52 (0.61)

Implantation sites 10.92 (0.31) 9.83 (0.54) 10.59 (0.24) 10.58 (0.22) 10.40 (0.41)

% viable 10.46 (0.32)a 9.39 (0.53) 10.05 (0.26) 10.08 (0.25) 8.00 (0.70)∗

% male 53.56 (3.65) 45.77 (4.51) 46.39 (3.31) 54.44 (3.00) 50.66 (6.10)

% malformation 1.27 (0.71)a 0.00 (0.00) 1.92 (1.11) 3.13 (1.06) 2.87 (1.64)

Fetal weight 3.022 (0.029)a 3.143 (0.035)∗ 2.852 (0.053)∗ 2.557 (0.034)∗ 2.266 (0.041)∗

aSignificance in linear trend
∗Significantly different from control
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the analysis for selected endpoints. For the detailed design and analysis the

reader is referred to Tyl et al.32 As described the ANOVA was used for the

analysis of continuous endpoints and per-litter proportion data. Prior to

analysis, the arc-sine square root transformation was performed to all

maternal or per-litter proportion data. When a significant (p < 0.05) dose

effect occurred, Duncan’s multiple range test was used for pairwise compa-

risons between control and each dose group. A test of linear dose-response

trend was performed using contrast tests. A one-sided test was used for

pairwise comparisons except for the maternal and fetal body weights and

percentage of males per litter.

2.2. Likelihood and quasi-likelihood/

generalized-estimating-equations approaches

As discussed, the fetal responses with a litter are not independent. The

proper experimental unit in the analysis should be the litter with the

fetal responses representing multiple observations from a single experi-

mental unit. The likelihood-based and generalized estimating equations (or

quasi-likelihood) are the two commonly used approaches to modeling the

correlated data.

2.2.1. Modeling continuous data

A general approach to modeling fetal data can be carried out in terms of

a mixed-effects model. Dempster et al.33 proposed a normal mixed-effects

model with two levels of variance, in which litter effect is modeled by a

nested random factor and dose by a fixed factor. The response y
ijk

in a

litter is expressed as a mixed effects model with two sources of variations:

the between litter γ
ij

and within litter variations e
ijk

,

y
ijk

= µ
ij

+ γ
ij

+ e
ijk

.

The random components γ
ij

and e
ijk

are independently normally dis-

tributed with E(γ
ij

) = 0, var(γ
ij

) = σ

2

a

, and E(e
ijk

) = 0, var(e
ijk

) = σ

2.

Thus, the mean and variance of y
ijk

are E(y
ijk

) = µ
i

and var(y
ijk

) =

σ

2
a

+ σ

2. The intra-litter correlation between y
ijk

and y
ijk

′ , for k 6= k

′ is

φ = σ

2
a

/(σ2 + σ

2
a

). The mean parameter µ
ij

is often modeled as a linear

function of dose µ
ij

= β0 + β1d for trend test (H
o

: β1 = 0).

Computation techniques for the maximum likelihood estimation of the

parameters of linear mixed effects models have been proposed by many

authors.34–36 The estimates can be obtained using the PROC MIXED
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procedure of SAS.37 Alternatively, the generalized estimating equations

(GEE) approach38 can be used to estimate the fixed effects parameters β.

Under the normal model, the likelihood-based and GEE approaches

have the same estimating equations for the mean parameters, but unlike

the likelihood approach, the GEE uses the method of moments to estimate

the variance component parameters.

2.2.2. Modeling binary data

Let y
ijk

denote the presence or absence of a response. Assume that the

mean and variance of y
ijk

are E(y
ijk

) = µ
i
, and var(y

ijk
) = µ

i
(1 − µ

i
)

and the correlation is corr(y
ijk

, y
ijk

′ ) = φ
i
, where k, k

′ = 1, . . . , n
ij

, and

k 6= k

′. The parameter µ
i

is the probability of a developmental effect of

the ith group, and φ
i

is the intra-litter correlation coefficient. The binary

responses y
ij1, . . . , yijnij

within each litter are assumed exchangeable, that

is, if {k1, . . . , kl
} is a subset of {1, . . . , n

ij
}, then

Pr(y
ij1 = 1, . . . , y

ijl
= 1) = Pr(y

ijk1
= 1, . . . , y

ijk
l

= 1) ,

for all l = 1, . . . , n
ij

.

Let y
ij

= (y
ij1 + · · · + y

ijnij
), then the mean and variance of y

ij
are

E(y
ij
|n

ij
) = n

ij
µ

i
and var(y

ij
|n

ij
) = n

ij
µ

i
(1−µ

i
)[φ

i
(n

ij
−1)+1]. The intra-

litter correlation coefficient generally is positive (φ
i
> 0). Thus, the variance

n
ij

µ
i
(1−µ

i
)[φ

i
(n

ij
− 1) + 1] is greater than the nominal binomial variance

n
ij

µ
i
(1−µ

i
). The distribution of y

ij
is known as an extra-binomial variate.

Note that if φ
i
= 0, then all y

ijk
’s are independent binary random variables

and y
ij

is a binomial,

P (y
ij

) =

(

n
ij

y
ij

)

µ

yij

ij

(1− µ
ij

)nij−yij
.

In a binomial or extra-binomial model, the mean function is often modeled

by a logit function, logit(µ
i
|z

ij
) = β

′
z

ij
. The dose response model for trend

test is given by

µ
i
=

exp(β0 + β1di
)

1 + exp(β0 + β1di
)

.

The beta-binomial model is the commonly known distribution used for

modeling the extra-binomial variation data.39 The beta-binomial model

assumes that responses within the same litter occur according to a binomial
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distribution and the probability of responses is assumed to vary among

litters according to a beta distribution:

P (y
ij

) =

(

n
ij

y
ij

)

B(a
i
+ y

ij
, b

i
+ n

ij
− y

ij
)

B(a
i
, b

i
)

where B(a
i
, b

i
) = Γ(a

i
)Γ(b

i
)/Γ(a

i
+ b

i
), where Γ(·) is the gamma function,

a
i

> 0, and b
i

> 0. Under the reparameterization µ
i

= a
i
/(a

i
+ b

i
) and

φ
i
= (a

i
+b

i
+1)−1, the parameters µ

i
and φ

i
are, respectively, the mean and

the intra-litter correlation parameters in the ith group. That is, the mean of

y
ij

is E(y
ij

) = n
ij

µ
i
, and the intra-litter correlation is corr(y

ijk
, y

ijk
′ ) = φ

i
.

The variance of y
ij

is var(y
ij

) = [φ
i
(n

ij
−1)+1][n

ij
µ

i
(1−µ

i
)]. When φ

i
= 0,

then y
ij

becomes a binomial variable. The parameters can be estimated by

the maximum likelihood method. The likelihood ratio or Wald test is often

used to test for the significance of parameters. An advantage of the use

of the likelihood-based beta-binomial model is that parameters β as well

as the intra-litter correlations φ’s can be tested directly. One problem with

the beta-binomial model is the bias and instability of the MLE’s of β as

discussed by Williams.40 Williams41 proposed using the quasi-likelihood

method as an alternative approach to the beta-binomial model.

In the quasi-likelihood approach, only assumptions on the mean and

variance are required: E(y
ij
|n

ij
) = n

ij
µ

i
and var(y

ij
|n

ij
) = n

ij
µ

i
(1 − µ

i
)

[φ(n
ij
−1)+1]. Note that in the quasi-likelihood estimation, the intra-litter

correlations typically are modeled as constant across groups. The coeffi-

cients of the β’s can be obtained by solving the quasi-likelihood estimating

(score) equations:

S(β
l
) =

g

∑

i=1

mi
∑

j=1

z
ijl

y
ij
− n

ij
µ

i

[1 + (n
ij
− 1)φ]

= 0 , l = 1, . . . , 2 .

The intra-litter correlation coefficient is calculated by equating with the

mean of Pearson chi-square statistics, i.e.

φ =
1

N − 2

g

∑

i=1

mi
∑

j=1

(y
ij
− n

ij
µ

i
)2

n
ij

µ
i
(1− µ

i
)[φ−1 + (n

ij
− 1)]

,

where N =
∑

g

i

∑

mi

j

n
ij

. The parameters β’s and φ are estimated by solving

S(β
k
) = 0 and φ alternatively until convergence. The Wald test is often used

to test for the significance of β’s.
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2.2.3. Modeling count data

Count data are generally modeled by a Poisson distribution. Let n
ij

be

an observed count from the jth animal in the ith group 1 < i < g and

1 < j < m
i
. If n

ij
has the Poisson distribution

p(n
ij

) =
µ

nij

i

e

−µi

n
ij

!
, n

ij
= 0, 1, 2, . . . ,

the mean and variance of n
ij

are E(n
ij

) = var(n
ij

) = µ
i
. In the

Poisson model, the mean function is often modeled by a log-linear func-

tion, log(µ
i
|z

ij
) = z

ij
β. The dose-response model for trend test is µ

i
=

exp(β0 + β1di
).

A common complication in the analysis of count data is that the ob-

served variation often exceeds or falls behind the variation that is predicted

from a Poisson model. The classical approach is to assume that the mean

of the Poisson has a gamma distribution which leads to a negative binomial

(gamma-Poisson) distribution for the observed data,

p(n
ij

) =
Γ(n

ij
+ φ

−1

i

)

Γ(n
ij

+ 1)Γ(φ−1

i

)

(

φ
i
µ

i

1 + φ
i
µ

i

)

nij
(

1

1 + φ
i
µ

i

)
1

φi

where φ
i

> 0. The maximum likelihood estimation of the negative bino-

mial model was described in details by Lawless.42 The significance of the

parameters can be tested using either the likelihood ratio test or Wald test.

Like the beta-binomial model, the negative binomial model can be applied

to testing for the extra-Poisson variation.

A limitation of the parametric approach is in its restriction on φ ≥ 0.

In applications, for example, the number of litter implant or the number

of corpora lutea may exhibit a sub-Poisson variation. The quasi-likelihood

approach43 provides a method to model sub-Poisson variation data. The

quasi-likelihood approach assumes the mean and variance of count data

are of a negative binomial form, E(n
ij

) = µ
i

and var(n
ij

) = µ
i
(1 + φ

i
µ

i
).

The coefficients of the β’s can be obtained by solving the score equations

S(β
l
) =

g

∑

i=1

mi
∑

j=1

z
ijl

n
ij
− µ

i

µ
i
+ φµ

2

i

= 0 .

The parameter φ is calculated by equating with the mean of Pearson

chi-square statistics,

φ =
1

N − 2

g

∑

i=1

mi
∑

j=1

(n
ij
− µ

i
)2

µ
i
φ

−1 + µ

2

i

,
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where N =
∑

g

i

∑

mi

j

n
ij

. The parameters β’s and φ are estimated by

solving S(β
k
) = 0 and φ alternatively until convergence. Quasi-likelihood

approaches to estimating and testing the mean of various mixed Poisson

models are given by Chen and Ahn.44 Examples of analyses of fetal response

toxicity data using the likelihood and the quasi-likelihood/GEE approaches

are given in Chen.45

2.3. Multiple developmental outcomes

The standard approach for assessment of developmental risks of a com-

pound has been based on the analysis of each developmental endpoint

separately. It has been suggested that the developmental toxicity out-

comes (i.e. death/resorption, malformation, growth retardation, etc.) may

represent different degrees of responses to a toxic insult and occur in a

dose-related manner.45,46 These developmental outcomes are likely to be

correlated. Therefore, a joint analysis of multiple developmental outcomes

can have some advantages: it can increase the power of detecting effects if

the multiple outcomes are manifestations of some common biological effects,

and it allows investigations of associations among the multiple outcomes

if they are the results of different biological mechanisms. Various multi-

variate models have been developed for simultaneous analysis of multiple

endpoints.47–50

References

1. Kodell, R. L. and Nelson, C. J. (1980). An illness-death model for the study

of the carcinogenic process using survival/sacrifice data. Biometrics 36: 267.

2. Peto, R., Pike, M. C., Day, N. E. et al. (1980). Guidelines for simple sensitive

significance tests for carcinogenic effects in long-term animals experiments.

In Long-term and Short-term Screening Assays for Carcinogens: A Critical

Appraisal, Annex to Supplement 2. Lyon, International Agency for Research

on Cancer, 311.

3. Kodell, R. L., Shaw, G. W. and Johnson, A. M. (1982). Nonparametric joint

estimators for disease resistance and survival functions in survival/sacrifice

experiments. Biometrics 38: 43.

4. Kaplan, E. L. and Meier, P. (1982). Nonparametric estimation from incom-

plete observation. Journal of the American Statistical Association 53: 457.

Experiments. Biometrics 38: 43.

5. Gart, J. J., Krewski, D., Lee, P. N. et al. (1986). Statistical methods in cancer

research, The Design and Analysis of Long-Term Animal Experiments, Vol. 3,

Lyon, International Agency for Research on Cancer.

6. Hoel, D. and Walburg, H. (1972). Statistical analysis of survival experiments.

Journal of National Cancer Institute 49: 361.



June 4, 2003 13:37 WSPC/Advanced Medical Statistics chap13

Statistics in Toxicology 519

7. Mantel, N. and Haenszel, W. (1959). Statistical aspects of the analysis of

data from retrospective studies of disease. Journal of the National Cancer

Institute 22: 719.

8. Kodell, R. L., Chen, J. J. and Moore, G. E. (1994). Comparing distributions

for time to onset of disease in animal tumorigenicity experiments. Commu-

nications in Statistics — Theory and Methods 23: 959.

9. Chen, J. J. and Moore, G. E. (1994). Impact of surviving time on tests for

carcinogenicity. Communications in Statistics — Theory and Methods 23:

1375.

10. Dinse, G. E. and Lagakos, S. W. (1983). Regression analysis of tumor

prevalence data. Applied Statistics 32: 236.

11. Bailer, A. J. and Portier, C. J. (1988). Effects of treatment-induced mortality

and tumor-induced mortality on tests for carcinogenicity in small samples.

Biometrics 44: 417.

12. Bieler, G. S. and Williams, R. L. (1993). Ratio estimates, the delta methods,

and quantal response tests for increased carcinogenicity. Biometrics 49: 793.

13. Stallard, N. and Whitehead, A. (1999). Modified Weibull multi-state models

for the analysis of animal carcinogenicity data. Environmental and Ecological

Statistics 6: xx.

14. Chen, J. J. and Gaylor, D. W. (1986). The upper percentiles of the distribu-

tion of the logrank statistics for small numbers of tumors. Communications

in Statistics — Theory and Methods 15: 991.

15. Fairweather, W. R., Bhattacharyya, P. P., Ceuppens, G. et al. (1998). Bio-

statistical methodology in carcinogenicity studies. Drug Information Journal

32: 401.

16. Chen, J. J., Kodell, R. L. and Pearce, B. A. (1997). Significance levels

of randomization trend tests in the event of rare occurrences. Biometrical

Journal 39: 327.

17. Heyse, J. F. and Rom, D. (1980). Adjusting for multiplicity of statistical tests

in the analysis of carcinogenicity studies. Biometrical Journal 30: 883.

18. Westfall, P. H. and Young, S. S. (1989). p-value adjustment for multiple tests

in multivariate binomial models. Journal of American Statistical Association

84: 780.

19. Chen, J. J. (1996). Global tests for analysis of multiple tumor data from

animal carcinogenicity experiments. Statistics in Medicine 15: 1217.

20. Chen, J. J., Lin, K. K., Huque, M. et al. (2000). Weighted p-value adjustments

for animal carcinogenicity. Trend Test Biometrics 56.

21. Haseman, J. K., Huff, J. and Boorman, G. A. (1984). Use of historical

control data in carcinogenicity studies in rodents. Toxicology and Pathology

12: 126.

22. Lin, K. K. and Rahman, M. A. (1998). Overall false positive rates in tests

for linear trend in tumor incidence in animal carcinogenicity studies in new

drugs. Journal of Biopharmaceutical Statistics 8: 1.

23. US Food and Drug Administration. (1996) International Conference on

Homonisation. Guideline on Detection of Reproduction for Medicinal

Products, FDA, Rockvill, MD.



June 4, 2003 13:37 WSPC/Advanced Medical Statistics chap13

520 J. J. Chen

24. Christian, M. S. and Hoberman, A. M. (1996). Perspectives on the US,

EEC, and Japanese developmental toxicity testing guidelines. In Handbook

of Developmental Toxicology, ed. R. D. Hood, CRC Press, NY, 551.

25. Tyl, R. W. and Marr, M. C. (1996). Developmental toxicity testing —

methodology. In Handbook of Developmental Toxicology, ed. R. D. Hood,

CRC Press, NY, 175.

26. Healy, M. J. R. (1972). Animal litters as experimental units. Applied Statistics

21: 155.

27. Karpinski, K. F. (1991). In Statistics in Toxicology, eds. D. Krewski and

C. Frankin, Gordon and Breach Science, NY, 393.

28. Agresti, A. (1990). Categorical Data Analysis, John Wiley and Sons, NY.

29. Cochran, W. G. (1954). Some methods for strengthening the common χ

2

tests. Biometrics 10: 417.

30. Armitage, P. (1955). Tests for linear trends in proportions and frequencies.

Biometrics 11: 375.

31. Mehta, C. R., Patel, N. R. and Senchaudhuri, P. (1992). Journal of Compu-

tation and Graph Statistics 1: 21.

32. Tyl, R. W., Price, C. J., Marr, M. C. et al. (1983). Teratologic Evaluation of

Diethylhexyl Phthalate in Fisher 344 Rats, Research Triangle Park, NC.

33. Dempster, A. P., Selwyn, M. R., Patel, C. M. et al. (1984). Statistical

and computational aspects of mixed model analysis. Applied Statistics

33: 203.

34. Harville, D. A. (1977). Maximum likelihood approaches to variance compo-

nent estimation and to related problems. Journal of the American Statistical

Association 72: 320.

35. Laird, M. M. and Ware, J. H. (1982). Random-effects models for longitudinal

data. Biometrics 38: 963.

36. Lindstrom, M. J. and Bates, D. M. (1988). Newton-Raphson and EM algo-

rithms for linear mixed-effects models for repeated measures data. Journal

of the American Statistical Association 83: 1014.

37. SAS Institute Inc. (1994). Getting Started with PROC MIXED. SAS Institute

Inc., Cary, NC.

38. Liang, K. Y. and Zeger, S. L. (1986). Longitudinal data analysis using

generalized linear models. Biometrika 73: 13.

39. Williams, D. A. (1975). The analysis of binary responses from toxicological

experiments involving reproduction and teratogenicity. Biometrics 31: 949.

40. Williams, D. A. (1988). Estimation bias using beta-binomial distribution in

teratology. Biometrics 44: 305.

41. Williams, D. A. (1982). Extra-binomial variation in logistic linear models.

Applied Statistics 31: 144.

42. Lawless, J. F. (1987). Negative binomial and mixed Poisson regression. The

Canadian Journal of Statistics 15: 209.

43. Breslow, N. E. (1984). Extra-Poisson variation in log-linear model. Applied

Statistics 33: 38.

44. Chen, J. J. and Ahn, H. (1996). Fitting mixed Poisson regression models

using quasi-likelihood methods. Biometrical Journal 38: 81.



June 4, 2003 13:37 WSPC/Advanced Medical Statistics chap13

Statistics in Toxicology 521

45. Chen, J. J. (1998). Analysis of reproductive and developmental studies.

In Design and Analysis of Animal Studies in Pharmaceutical Development,

eds. S. C. Chow and J. P. Liu, Marcel Dekker, NY, 309.

46. Kimmel, C. A. and Gaylor, D. W. (1988). Issues in qualitative and quanti-

tative risk analysis for developmental toxicology. Risk Analysis 8: 15.

47. Chen, J. J. and Gaylor, D. W. (1992). Correlations of developmental end-

points observed after 2, 4, 5-trichlorophenoxyacetic acid exposure in mice.

Teratology 45: 241.

48. Lefkopoulou, M., Moore, D. and Ryan, L. M. (1989). The analysis of multiple

correlated binary outcomes: Application to rodent teratology experiments.

Journal of the American Statistical Association 84: 810.

49. Chen, J. J., Kodell, R. L., Howe, R. B. et al. (1991). Analysis of trino-

mial responses from reproductive and developmental toxicity experiments.

Biometrics 47: 1049.

50. Catalano, P. J. and Ryan, L. M. (1992). Bivariate latent variable models for

clustered discrete and continuous outcomes. Journal of American Statistical

Association 87: 651.

About the Author

James Chen is Senior Mathematical Statistician in the Division of Bio-

metry and Risk Assessment at the National Center for Toxicological

Research, US Food and Drug Administration. He received his BS degree

from Taiwan Tsing-Hua University, M.A. degree from University of Pitts-

burgh, and PhD from Iowa State University. Dr. Chen is a Fellow of the

American Statistical Association. He has over 100 scientific publications

in peer-reviewed journals and numerous invited subject review articles.

Dr. Chen has served on the FDA, EPA, and interagency committees and

workshop that directed at developing scientific and regulatory issues and

guidelines, and has provided consultations to FDA, and EPA scientists

on the statistical analysis of toxicological data and on risk assessment

procedures.



This page intentionally left blank



June 23, 2003 14:5 WSPC/Advanced Medical Statistics chap14

CHAPTER 14

SOME STATISTICAL ISSUES OF RELEVANCE

TO CONFIRMATORY TRIALS

GEORGE Y. H. CHI∗, KUN JIN and GANG CHEN†

Division of Biometrics I, US Food and Drug Administration,

HFD-710 W0C2, Room 2033 1451 Rockville Pike Rockville, MD 20852, USA

Tel: 301-827-1515; ∗chig@cder.fda.gov

LU CUI‡

Division of Biometrics and Data Management, Aventis Pharceuticals, Inc.

1. Introduction

1.1. Overview of drug development

From its initial discovery to final marketing, a new drug in the United States

has to go through various stages of development. Typically, preclinical

animal studies are needed to determine the toxicity and carcinogenicity

potential of a new compound. If these studies offer no suggestion of toxi-

city and evidence of carcinogenicity, then small studies on human volunteers

are conducted in Phase 1 to determine the metabolism and pharmacologic

actions of the drug in humans, dose dependent side effects, and if possible

evidence of effectiveness. The information collected will permit the design

of well-controlled, scientifically valid studies in Phase 2. The clinical studies

in Phase 2 are conducted to evaluate the effectiveness of the drug for a par-

ticular indication or indications in patients with the disease or condition

under study and to determine the common short term side effects and risks

associated with the drug. In addition, for serious diseases such as cancer, a

drug may be approved conditionally based on acceptable surrogate efficacy

†The reviews expressed in this chapter are those of the authors and not necessarily those
of the Food and Drug Administration.
‡The contribution by this author was made while he was still with the Division.
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endpoints in Phase 2. The information gathered in these early phases is

used to guide the drug sponsor in the planning of Phase 3 clinical trials.

Phase 3 studies are expanded controlled and uncontrolled studies carried

out to obtain additional effectiveness and safety information that is needed

to evaluate the benefit-risk relationship of the drug and to provide adequate

basis for physician labeling [21 CFR Sec. 312.20].

One of the critical requirements for pre-marketing approval of a new

drug in the United States is the demonstration of the effectiveness of the

drug through Phase 3 clinical trials. The United States Code of Federal

Regulations [21 CFR Sec. 314.126(a)] requires that to establish the effi-

cacy of a new drug, the sponsor must produce reports of adequate and

well-controlled clinical trials that demonstrate its effectiveness. Generally,

the evidence of effectiveness is based on at least two adequate and well-

controlled studies. Some of the characteristics of an adequate and well-

controlled study are described in the regulation [21 CFR Sec. 314.126(b)].

Another critical requirement for pre-marketing approval of a new drug is

safety. The safety of the drug is evaluated on the basis of the entire database

obtained from all three phases of drug development prior to approval, and

continues to be evaluated through Phase 4 clinical trials, if required as a

condition for approval. To be approved, the drug sponsor must demonstrate

that there is sufficient information to show that the drug is safe for use under

the conditions prescribed, recommended, or suggested in its proposed label-

ing. Once approved, the safety of the new drug continues to be monitored

through post-marketing adverse reaction reports.

A drug that is not yet approved for marketing may be used for treatment

in patients with a serious or immediately life-threatening disease condition

and for whom no comparable or satisfactory alternative drug or other the-

rapy is available. The regulations allow such treatment to be carried out

under a special protocol or treatment IND [21 CFR Secs. 312.34, 312.83].

For treating serious or life-threatening illnesses, certain new drug pro-

ducts may qualify under accelerated approval [21 CFR Sec. 314,500].

For treating a serious or life-threatening illness, a new drug that has

demonstrated, based on adequate and well-controlled trials, an effect on

a surrogate endpoint, or on some clinical benefits other than survival or

irreversible morbidity, may be approved for marketing. The drug should

provide meaningful therapeutic benefit to patients over existing treatments.

For example, it may be effective in treating patients who are unrespon-

sive to available therapy, or it may improve patient response over available

therapy. The surrogate endpoint should have been reasonably validated
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through epidemiologic, therapeutic, patho-physiologic, or other evidence as

predictive of clinical benefit.

Accelerated approval is granted under the condition that the drug

sponsor will conduct further study to verify and describe its clinical benefit

in relation to the surrogate endpoint, or the ultimate clinical outcome of

primary interest.

Some publications14,61,71 including the US Code of Federal Regulations

[21 CFR Secs. 321–314 (2001)], and the US Food and Drug Administration

International Conference on Harmonization of Technical Requirements for

Registration of Pharmaceuticals for Human Use (ICH), E1–E10 docu-

ments (1998–1999), provide a good overview and source of reference for

the entire drug development procss and the United States drug regulatory

requirements.

This chapter focuses primarily on some concepts, principles and issues

related to establishing the evidence of drug efficacy in a confirmatory trial.

The discussion of selected topics on certain aspects of the design, conduct

and analysis of a clinical trial generally revolves around two fundamental

statistical principles that are particularly critical to a confirmatory trial.

1.2. Confirmatory trial

In drug development, a confirmatory trial is a clinical trial that is prospec-

tively designed to provide the primary source of evidence necessary to

support the efficacy claim of the drug under investigation. The evidence

expected of a confirmatory trial must be compelling, especially for morta-

lity or serious morbidity trials where ethical consideration often precludes

the possibility of conducting a second trial. This will also be critical for

future active control trials where the current drug may be used as the

control. The strength of evidence is measured among other things by the

overall quality of the trial, internal and external consistency of the trial

results. The internal and external consistencies of the trial results are the

outcomes of the trial, whereas the overall quality of the trial is to a large

extent under the control of the experimenter. The overall quality of a trial

should be evaluated with respect to the following aspects of the study. These

aspects should include the appropriateness of the design, acceptability of

the study conduct, quality of the data collected, adequacy of the power,

maintenance of the probability of the overall type I error, control of bias

and confounding, proper method of analysis, and correct interpretation of

trial results.
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The accepted standard for the design of a confirmatory trial includes

proper randomization, desired level of blinding, absence of confounding and

choice of an appropriate control. In addition, other fundamental statistical

principles should be closely adhered to in a confirmatory trial. These prin-

ciples include minimization of the potential for bias and control of the

probability of the overall type I error at the desired α-level. These two

principles are essential to a Phases 2 or 3 confirmatory trial. A confirma-

tory trial should have assay sensitivity, that is, the capability of showing a

difference when the study treatment is effective, a concept defined in the

ICH-E10 (1999) document on the choice of control.

1.3. Two fundamental statistical principles of clinical trials

Minimization of the potential for bias and control of the probability of the

overall type I error, or the probability of making a false positive conclusion,

are two fundamental statistical principles that are central to the quality of

a trial. Both principles are intimately related to the design, conduct and

analysis of the trial, and the final interpretation of the trial results. Devia-

tion from these two principles has the potential of weakening the strength

of evidence, rendering the trial results uninterpretable, or sometimes, even

invalidating the entire trial results. Proper attention to these two princi-

ples throughout the trial from design and conduct to the final analysis and

interpretation will strengthen the evidence and improve the likelihood of

success of a trial.

Minimizing the potential for bias will be discussed first in the next

section. In Sec. 3, the control of the probability of the overall type I error

will be discussed through issues and problems related to multiple testing.

Clinical decision rule will be introduced as an intuitive and natural way of

handling the multiple testing problems. The concept of decision structure

for a clinical trial incorporates the clinical, statistical and regulatory per-

spectives on the issue of multiplicity. In Sec. 4, interim analysis and design

modification will be discussed through the framework of decision structure.

The problems and issues related to the important topic of active control

non-inferiority trial of current interest will be discussed in the last section

from the perspective of validity of inference and interpretation.

2. Minimizing the Potential for Bias

In a clinical trial, bias refers to the consequence of any design, property

of the study treatment or characteristics of the disease, intentional or
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unintentional conduct, and decision that results in a systematic exag-

geration of the treatment difference either in favor or against the study

treatment in a show-difference trial. It also refers to the consequence of a

systematic dampening of treatment difference in favor of the study treat-

ment in an active control non-superiority (non-inferiority or equivalence)

trial. Bias affects the estimate of the true treatment effect and may lead to

drawing incorrect conclusion regarding the overall effect of the study treat-

ment. This is important for instance in an active control non-superiority

trial where it is crucial to obtain an unbiased estimate of the effect of the

active control.

2.1. Potential sources for bias in a clinical trial

There are many potential sources for bias in a randomized controlled

clinical trial. These sources include confounding, operational bias during

trial execution, evaluation bias in outcome measurement, structural bias in

the trial design, and statistical bias in the method of analysis. In any given

situation, bias could come from one or more or even a combination of these

sources. Some of these are discussed below.

2.1.1. Confounding

The primary objective of a clinical trial is to demonstrate that the study

treatment is effective as expected. Therefore, the trial must allow the

experimenter to attribute any observed effect to the study treatment, and

to the study treatment alone by ruling out all other potential explanations.

Confounding occurs when one cannot attribute the entire observed treat-

ment difference to the study treatment. The consequence of confounding

here is bias, a bias that may be for or against the study treatment. A

common source of confounding is an imbalance between the treatment

arms in some important baseline covariates or prognostic factors that

may have direct influence on the clinical outcomes of interest. A standard

technique for avoiding confounding is randomization. Randomization may

provide some assurance that the treatment arms are relatively balanced

with respect to all known or unknown factors that may affect a patient’s

response to the treatment. Randomization, if carried out properly, can

minimize the chances for such imbalances to occur at baseline.

Confounding may occur simply due to failure of the randomization

to achieve necessary balance at baseline between the treatment and

the control relative to some important and relevant known or unknown
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demographic or prognostic factors. When there are imbalances in known

baseline covariates or prognostic factors, then one will be less assured about

absence of imbalances in important but unknown factors. This type of

imbalance can often occur when the sample size is modest or when the

randomization scheme is flawed. It is important for a confirmatory trial

to have proper randomization and to stratify relative to some of the most

important factors to avoid such problems and concerns.

However, even proper randomization may not be able to protect against

bias resulting from differential treatment of the experimental and the

control arms. Such differential treatment of the two arms may occur through

operational bias introduced as a result of unblinding, through inherent

structural bias as to be illustrated by the example on duodenal ulcer preven-

tion trial in Sec. 2.1.4, or through statistical bias in the method of analysis.

2.1.2. Operational bias

If a randomized controlled trial is open label, that is, if there is no blind-

ing, then operational bias can easily be introduced. For instance, in a study

of a new treatment for headache, the investigator may consciously or un-

consciously allow subjects on study treatment to have concurrent use of

aspirins. This type of conduct can introduce bias into the trial favoring

the study treatment. Evaluation bias can also easily find its way into

such trial. For example, if the evaluation involves adjudication of certain

event, then the adjudicator may assess the event differently depending upon

whether the subject is on study treatment or control.

For certain clinical trials, it is simply impossible to maintain blinding

at all. In trials comparing different surgical procedures, it is frequently not

possible to have blinding. In some oncology trials, it may not be possible

to maintain blinding because the trials may involve comparing treatments

with different toxicity profiles and delivery systems, e.g. pill vs. intravenous

injection.

In some randomized trials, even though the trials may be blinded, they

can still potentially become partially unblinded. For example, it is known

that β-blocks, a class of drugs for treating certain heart diseases, can lower

heart rate significantly. The mean heart rate of patients treated with β-

blockers can be about 12 beats/minute lower than that of patients given

placebo. Thus, knowing the specific properties of the study treatment, one

can correctly guess the patient treatment assignment with a high likelihood

of success, resulting in some degree of unblinding.
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2.1.2.1. Levels of blinding

Blinding is one of the basic techniques used to control the potential intro-

duction of bias in a randomized controlled trial. It is generally recommended

to maintain a level of blinding permissible by the study.

When the individual patients are blinded to their own treatment assign-

ments, the trial is called single blind. The blinding is generally achieved

by giving patients medications that are identical in appearance but may

contain either the study treatment, the active comparator, or an inactive

ingredient (placebo) depending upon the type of design.

When the investigators, evaluators, raters, or anyone who can influence

the course of the trial, are also blinded to the patient treatment assignments

during the entire course of the experiment, the trial is called double blind.

In a double-blind trial, provisions are made so that the investigators will

be able to break the blind in individual patient during an emergency, or

when it is determined that the risk to the patient requires specific cares

to be taken by the clinician to protect the patient’s safety. In a double

blind trial, all study personnel are blinded to the patient treatment codes

and should have no knowledge of or access to the results of any interim

treatment comparative analysis.

2.1.2.2. Minimizing the likelihood of unblinding

In a blinded trial, how easy is it for the individual patient to unblind his/her

own treatment? Can the study treatment and the control be easily distin-

guished through appearance, taste, shape, size, route of administration,

regimen, frequency of administration, and side effects? Special blinding

techniques may be needed in a trial in order to minimize the likelihood

that the individual patient will be able to unblind his/her own treatment

codes. Of course, the investigator and other trial personnel should be in-

structed not to provide any information to the patient that may help the

patient to unblind his/her own treatment code.

How easy is it for the investigator, evaluator, or rater to have access

to the patient treatment codes or to unblind the patient treatment as-

signments? Can the investigator unblind or partially unblind the patient

treatment assignments through patient’s reported side effects, laboratory,

physiological, and clinical parameters? For example, for the congestive heart

failure trial involving exercise tolerance test, measures need to be taken to

ensure that the administrator who conducts the treadmill test has no ac-

cess to patient treatment experiences and baseline information so that the
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likelihood of unblinding the patient treatment assignments can be mini-

mized. Or in a trial that requires event adjudication, the adjudicator should

not have access to information that may help reveal the patient treatment

assignments. However, for the investigator, available blinding techniques

may be more limited because the investigator has access to all of the pa-

tient data. The attention here should be more on reducing the impact of

potential bias in the event of unblinding by the investigator.

How easy is it for the trial personnel to have access to treatment codes,

to perform treatment comparative analysis, or to receive treatment com-

parative analysis results? How easy is it for the trial personnel to make

changes to the trial, e.g. patient enrollment criteria, addition or deletion

of centers, increasing sample size, changing endpoints, etc. For example, if

there is an independent Data Monitoring Committee involved, then how

easy is it for the trial personnel to have access to treatment comparative

analysis results through members of the Data Monitoring Committee? If

the treatment comparative analysis is actually done by the trial personnel,

then what safeguard is there to protect the integrity of the trial from

changes done to the trial based on knowledge of the interim analysis results?

Here, the only available tool to minimize unblinding is to establish a sound

clinical trial infrastructure, clear designation of roles and responsibilities,

and strict standard operating procedures governing the interaction, commu-

nication and dissemination of results among various operating units. These

operating units include units within the trial organization such as the safety

monitoring group, the data management group, the data analysis group,

and the custodian of patient treatment codes. They also include units

outside the sponsor’s organization such as outside consultants, Contract

Research Organization, and Data Monitoring Committee, if there is one.

When interim analysis is planned, the standard operating procedures should

address some issues including the following. Who is doing the interim

analysis? How the interim analysis is being carried out? To whom the

results should be reported? Who can have access to the results of the interim

analysis? How confidentiality of the results can be maintained? For guidance

on these issues, one may refer to the Guidance on the Establishment and

Operation of Clinical Trial Data Monitoring Committees (2001).

These questions and issues regarding blinding and how to avoid or

minimize the potential opportunity for unblinding should be discussed and

addressed at the design stage of a confirmatory trial. Appropriate blinding

techniques tailored to each trial by taking into consideration the trial design,

special properties of the study treatment, and characteristics of the disease
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should be described in the study protocol. Trial infrastructure and standard

operating procedures should be designed in relation to these considerations.

2.1.2.3. Assessing and reducing the impact of unblinding

Of course, the mere occurrence of unblinding will not necessarily result in

bias. It is the subsequent conduct on the part of some study personnel

intentionally trying to influence or change the outcome either in favor or

against the study treatment that results in bias. Thus, in addition to mini-

mize the likelihood of unblinding, one should also consider reducing the

severity and impact of potential bias introduced in the event of unblinding.

Generally, the severity and impact of bias introduced subsequent to

unblinding depends on the level at which the unblinding occurs, the ease

with which the patient response can be altered, the quanitfiability of the

bias, and the magnitude of the bias relative to the overall study treatment

effect size.

When some individual patients are unblinded to their own treatment

assignments, then these patients may introduce biases into their own indi-

vidual responses. These biases introduced by the individual patients may

not be consistently in the same direction, nor systematic. So the net effect

of all the biases may be much less severe. The impact of the bias depends

upon the number of individual patients involved and the magnitude of the

net bias relative to the overall study population size and the overall treat-

ment effect size. Occasionally, biases introduced by one or two patients may

change the overall conclusion. However, in most cases, these individual

biases may not be easily quantified. Various strategies may be taken at

the analysis stage to examine the impact of these biases when known.

Such strategies may range from excluding some or all of these affected

patients from the analysis to imputing conservative values for these patients’

responses.

When unblinding occurs at the investigator level, then the potential bias

introduced will affect the outcomes from the particular investigator site or

center. Such bias tends to be more severe because within each center, the

bias introduced tends to be more systematic and consistent, and affects the

entire outcome from that particular center. In a trial with only a few centers,

or when the centers involved account for a significant proportion of the

total patients, the result can be devastating. If such biases are known and

quantifiable, then appropriate measures may be taken to account for them

at the analysis stage. Otherwise, available analysis strategies for examining
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the impact of such biases may be limited only to dropping the affected

centers from the analysis. In such event, randomization stratified within

center may become an important issue.

Finally, when unblinding occurs at the study level, treatment compa-

risons may be made based on the entire available data. Knowledge of

such treatment comparative analysis can lead to subtle changes in patient

demographics, addition or deletion of sites, and sometimes even to early

trial termination. This type of changes made to the trial may result in

bias favoring the study treatment. The impact of this kind of bias may be

quite significant because such changes are based on the interim treatment

comparative data. The consequences of such bias may include declaring an

ineffective study treatment to be effective, prescribing the study treatment

for a more general patient population than warranted, and incorrect label-

ing of the study treatment. It may be difficult to detect this kind of bias as

a result of unblinding at the study level, and even when detected, it may

be difficult to assess its impact. When unblinding occurs at the study level,

the entire study results may be voided.

The potential impact of unblinding may also depend upon the type of

efficacy endpoints involved. There are generally two types of endpoints, the

objective and the subjective. In general, for subjective endpoints such as

scores based on investigator or patient evaluation, concerns for potential

unblinding are understandable. In such cases, an investigator or patient

can easily assign certain scores, or components of the scores, in a manner

that is favoring the study treatment. Subjective endpoints arise frequently

in clinical trials. For objective endpoints, the outcomes are less vulnerable

to such alterations. However, some forms of operational bias can still be

introduced. For example, in many clinical trials, besides the study treatment

and the control, concomitant use of other effective drugs are allowed for

all patients. In such cases, differential usage of concomitant medications

between the study treatment and the control may potentially lead to bias.

Objective endpoints also may vary in degree of objectivity. For objective

endpoints such as mortality or serious morbidity, it is difficult for anyone

to alter their outcomes. For some other objective endpoints, operational

bias can still be introduced. For example, in congestive heart failure trials,

exercise tolerance test is often used to measure a patient’s symptomatic

improvement. In such trials, patients are asked to walk on treadmill. The ad-

ministrator of the treadmill test would ask patients to walk until exhaustion.

The total walking time will be recorded. Here the exercise tolerance test is

an objective endpoint, but it may be affected by how hard the administrator
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pushes the patient to exhaustion. If the administrator is unblinded or

partially unblinded to the patient treatment assignments, then differential

handling of patients depending upon their treatment assignments will intro-

duce operational bias. So in such cases, the administrator should not have

access to the patient data and the investigator should not communicate to

the patient his/her treatment assignment and treatment information.

It is clear that for a confirmatory trial, one should require double

blinding. In addition, measures for minimizing the likelihood of unblinding

and steps for reducing the impact of bias in the event of unblinding should

be described clearly in the protocol. These efforts should include a sound

infrastructure for the trial, clear designation of roles and responsibilities,

and strict standard operating procedures that are tailored for the trial

at hand and that take into account the type of design and specific trial

requirements.

2.1.3. Structural bias

In a controlled clinical trial, even randomization and blinding may not

fully protect against structural bias resulting from flaws in the design.

Design flaws can occur, and not infrequently. Thus, one should be on guard

against such structural bias. When it occurs, it has the potential to invali-

date the results of the entire trial. There is usually no satisfactory remedy

for structural bias as illustrated in Examples 1 and 2.

Example 1. In the late 1970s and early 1980s, it is customary for duo-

denal ulcer prevention trials to consider a double-blind placebo-controlled

design with patients whose duodenal ulcers were recently healed on acute

treatment randomized to either the same treatment at half the dose or

placebo. Patients were scheduled at regular intervals for endoscopic ex-

amination to determine the presence or absence of duodenal ulcers. The

intervals are usually of 3-, 4- or 6-months duration, and the entire trial

usually lasts 12 months. At the request of the physician, patients could also

be endoscoped upon presentation of symptoms such as pain. Patients found

to have recurrent duodenal ulcers were discontinued from the study; the

remaining patients continued in the trial until symptomatic recurrence, the

next scheduled endoscopy, or the end of the trial. So these trials met the ba-

sic requirements of being randomized, double blind and placebo-controlled.

What is the problem? For H2-receptor antagonists such as ranitidine and

cimetidine, it was generally recognized that they provide symptom relief and

promote healing of duodenal ulcers in short term acute treatment trials.
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In the prevention trial, patients with symptomatic recurrent ulcers are

discontinued from the trials. Therefore, if the test drug merely relieves

symptoms without actually preventing recurrences, then simply by the

present design, more symptomatic recurrences would be observed among

patients on placebo. To further compound the problem, regular endoscopies

are scheduled 3, 4 or 6 months apart. It is also known that relatively short

time, 4–8 weeks, is required for duodenal ulcers to heal either with or with-

out treatment in an acute trial. Thus it is entirely possible that during

the intervals between successive endoscopies, symptomatic ulcers may have

recurred among patients who remain in the trial, healed before the next

scheduled endoscopy, and hence escaped detection. It is clear that there is

a bias favoring the H2-receptor antagonist as a result of the properties

of the drug and the design. These and related issues were extensively

discussed at a FDA Gastrointestinal Advisory Committee meeting.52 A

renowned gastroenterologist at the time questioned whether duodenal ulcers

could recur under maintenance treatment. However, it was demonstrated

in a subsequent trial that duodenal ulcers could recur under maintenance

treatment.8,46,62 A more detailed discussion of this example and the related

design issues can be found in Chi,10 and Elashoff et al.18 This interesting

example illustrates a combination of design flaws, evaluation bias due to

the analgesic property of the H2-blockers, and the spontaneous healing of

duodenal ulcers over time.

2.1.4. Statistical bias

A randomized controlled trial that is blinded and has no design flaw can

still have statistical bias introduced at the final analysis stage. Statistical

bias can arise as a result of the method of analysis, the manner in which

patients or data are excluded from the data set, or the manner in which

missing data are being handled. This kind of statistical bias can sometimes

be fairly subtle.

An important principle in the analysis of clinical trial data is the so-

called intent-to-treat principle,20,28,47 see ICH-E9 (1999). The intent-to-

treat principle simply espouses the view that the primary analysis should be

performed on the outcome measures from all of the randomized patients.

When there is no other source of bias, such as design flaw, then the intent-

to-treat analysis should provide an unbiased estimate of the treatment effect

when there are no patient exclusions and no missing data. When the out-

come measures are not available from all of the randomized patients, then
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efficacy subset analysis is likely to provide biased estimate of the treat-

ment effect. Little and Rubin53 and Little54 defined three types of missing

data mechanisms, missing completely at random (MCAR), missing at

random (MAR) and informative missingness. There are various statistical

models proposed to handle clinical trial data with these types of missing

mechanisms. However, missing data mechanisms in clinical trials are diffi-

cult to verify whether they are MCAR, MAR or informative missingness.

Generally, clinicians and biostatisticians in the field believe that most

missing data mechanisms in clinical trials are likely to be informative miss-

ingness for which statistical approaches are less well developed. One impu-

tation method that has often been used is the so-called Last Observation

Carried Forward (LOCF) analysis where the last available observation is

substituted for all the subsequent missing observations. The LOCF analysis

implicitly assumes that the last observation is an unbiased representation

of what the missing observation would have been had the patient been

followed, which is also an unverifiable assumption. Various issues related to

the LOCF analysis are discussed.6,28,47,59,66,103

The handling of missing data is a difficult problem, and the best strategy

is to adhere to the intent-to-treat principle by minimizing the likelihood of

missing data. The ICH E-8 Guidance on General Considerations for Clinical

Trials (1997) recommends that the study protocol should specify procedures

for the follow-up of patients who stop treatment prematurely. Furthermore,

the ICH E-9 Guidance on Statistical Principles for Clinical Trials (1998)

states that compliance with the intent-to-treat principle requires complete

follow-up of all randomized patients for the primary outcome measures.

For a confirmatory trial, procedures for such complete follow-up of all

randomized patients should be carefully spelled out in the protocol and

diligently carried out during the trial. The intent-to-treat principle should

be followed with robustness or sensitivity analyses performed if needed.

The following example illustrates an interesting case of structural bias

combined with analysis bias in a study for a serious progressive disease.

Example 2. In this example, the investigational new drug is manufactured

only in limited quantity; hence only a small percent of the patients can be

given the new drug. The study protocol has an unusual design. After a

patient satisfies some eligibility criteria, he/she enters a pool and becomes

eligible for random selection for the study treatment according to the fixed

percentage. If a patient is selected, then the study treatment will be given.

On the other hand, if a patient is not selected at a given pool of eligible,



June 23, 2003 14:5 WSPC/Advanced Medical Statistics chap14

536 G. Y. H. Chi et al.

then that patient remains unselected until the next selection. If that patient

dies before the next selection, then he/she will be counted as an event in the

unselected group. Otherwise, at the next selection, this patient enters the

pool along with the newly eligible. Again patients in this second pool will

have the same probability of being selected for the study treatment. This

process continues with selections conducted about every month for over a

year. Generally, for the selected patients, there is a delay of about three

months between the time of selection and the actual time of administration

of the study treatment. There is a one-year follow-up. The primary endpoint

of interest is mortality. The length of survival of a patient is measured from

the time of first eligibility to subsequent death, lost-to-follow-up, or to the

end of the study. The comparison of the survival experience between the

selected group and the unselected group from all ten selections is evaluated

by the log-rank test statistic.

There are two kinds of bias in this example. The first kind is a structural

bias, and the second is an analysis bias. The structural bias can be seen

as follows. The definition of selected and unselected groups are outcome

(survival) dependent. This is because a patient who was not selected in any

given selection could still be selected in a subsequent selection provided

that that patient was able to survive till that selection. A patient who was

not selected and died before a selection would automatically remain in the

unselected group. This design would enrich the selected group with patients

that have better survival experience up to the time of selection, and enrich

the unselected group with patients who died before a selection.

There is also a bias in the survival analysis. If a patient who is selected

after a given selection, then his/her survival time is measured from the time

of first eligibility to either death, lost-to-follow-up, or end of the study.

But for such patient, the time from first eligibility to the time of selec-

tion is actually not under the study treatment. In fact, in general, there

is an additional delay of about three months before the study treatment

is actually given to a selected patient. Thus a large proportion of his/her

survival experience would not be under the study treatment, but would be

attributed to the study treatment. Such bias favors the study treatment.

However, it is not advisable to consider the survival time as measured from

the time of selection or the actual time the selected patient is given the

study treatment, because the selected group and the unselected group are

outcome dependent and hence there is no valid randomization.

As it turns out, in this example, a majority of the patients were

considered for eligibility in the second selection. To maintain randomization
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and to minimize bias, it was recommended that patients from the second

selection be considered for analysis. Thus, the selected patients consist of

those who were selected in the second selection, and the unselected patients

consist of those who were not selected at the second selection. Now, for these

unselected patients, some of them were actually selected at a subsequent

selection. So, in the survival analysis, the survival time for the unselected

patients are measured from the time of first eligibility to either death, lost-

to-follow-up, or censored at time of subsequent selection, actual time of

study treatment administration, or the end of the study.

2.2. Some measures to minimize potential bias

In view of the various potential sources of bias in a clinical trial, it is im-

portant for a confirmatory trial to consider adopting appropriate measures

at the design stage to minimize the impact of potential biases.

Randomization is the standard technique used in clinical trials to achieve

balance in both known and unknown important baseline covariates, prog-

nostic and demographic factors between the treatment arm and the control.

It is important to use proper randomization scheme that will not lead to

unblinding to achieve the necessary balance.

Operational bias is difficult to control. Blinding is the most important

technique for controlling operational bias. A confirmatory trial should be

blinded at the study level. If necessary, special blinding techniques should

be considered at the individual patient level and the investigator level. The

aim is to minimize the likelihood of unblinding by the individual patients,

the investigators, evaluators or raters, or the study personnel and to mini-

mize its impact in the event of actual unblinding. In order to minimize the

impact of bias due to unblinding, randomization should be centralized and

stratified within each center, provided that the randomization procedure

itself does not lead to potential unblinding. All blinding techniques should

be clearly documented, described, standardized and operationalized. At the

study level, the only blinding technique that can be implemented is through

proper infrastructure, clear delineation of roles and responsibilities, and

strict standard operating procedures. For instance, it should be made clear

who has custody of the patient treatment codes, circumstances under which

the patient treatment codes can be accessed, the parties that may have the

authority to access them, and the proper procedure for such accession.

These considerations should also include outside consultants, contract

research organizations, and data monitoring committees. This is especially
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critical when the trial involves planned interim analyses and a data monitor-

ing committee. When there is a data monitoring committee, there should be

standard operating procedures that define the responsibility and the proper

span of authority of this committee, and govern the conduct and com-

munication between the trial sponsor and the committee, whether the

committee is independent or not. For example, when a data monitoring

committee requests the interim results from the trial sponsor, who in the

sponsor’s organization is doing the interim analysis, and how can the interim

analysis results be kept confidential from the sponsor’s study personnel?

When the independent Data Monitoring Committee (DMC) recom-

mends to the trial sponsor that the study be terminated early, certainly

the trial sponsor should be provided with the interim analysis results and

the reason for the recommendation. The sponsor’s study personnel that

receive such recommendation and the interim analysis results would have

the interim comparative results. Thus the sponsor’s study personnel would

now have access to the comparative interim results. If the sponsor decides

to continue the trial, then there is a potential opportunity for operational

bias to be introduced by the study personnel at this point. How can one

prevent such potential opportunity for operational bias to be introduced?

The recent FDA draft document on the Establishment and Operation of

Clinical Trial Data Monitoring Committee (2001) provides some relevant

guidance on these issues.

To avoid structural bias, properties of the study treatment, type of

treatment administration, the nature of the disease, the objective of the trial

and other pertinent information should be well understood to insure that

the design of the trial is not flawed.

To reduce the problem with missing data, it is recommended that a

confirmatory trial should attempt complete follow-up on all missing primary

response data from dropouts or others, and better documentation of reasons

for dropping out and missing primary response data. This will minimize the

impact of bias and may provide the basis for determining the proper method

of handling the missing data.

To properly assess the strength of evidence in a trial, one needs to know

whether the blind has been broken. If the blind has been broken, what is

the extent of unblinding? Whether and how such information was used to

bias the trial outcome? Whether the bias can be quantified? What analysis

strategies can be applied to examine the impact of the bias, and whether

the trial can still provide the strength of evidence sought, if at all? These

are important issues to be addressed in a confirmatory trial.
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3. Inflation of the Overall Type I Error Rate

The second fundamental statistical principles in clinical trial is to control

the overall probability of type I error, i.e. the probability of declaring the

study treatment to be effective when it is not, at a desired significance level

of α. In a given experiment, this probability can frequently be inflated in

various ways. For example, when the test statistic for the null hypothesis

involves a nuisance parameter that is estimated from the data, then this may

inflate this probability. This section discusses some frequently encountered

situations in which this probability can be inflated.

3.1. Multiple testing

Multiple testing surfaces frequently in clinical trials. It manifests itself in

various forms. It often appears in multiple comparisons, repeated testing,

multiple endpoints, multiple indications, and subgroup analyses, or combi-

nations thereof. The basic problem with multiple testing in a clinical drug

trial is that it increases the probability of the overall type I error, i.e. the

probability of declaring the drug or certain dose of the drug to be effective

for the desired treatment indication when in fact it is not. This inflation

can be illustrated as follows in the context of multiple comparisons.

3.2. Multiple comparisons

In clinical drug trials, it is often of interest to design a parallel placebo-

controlled study with multiple treatments, or multiple doses of a test drug.

The primary objective of such a trial is to demonstrate that one or more of

the treatments, or doses of the drug works, and a secondary objective is to

compare different treatments, or to characterize the drug’s dose response

relationship. For such a study, how should one most efficiently evaluate the

effect of the treatments or the effect of the drug? How should the primary

hypothesis or hypotheses be defined? And how should the test or tests be

carried out?

For purposes of discussion, consider N treatments or doses of a drug

and a placebo. Let µ
i
, i = 0, 1, 2, . . . , N represent the mean changes from

baselines for placebo and the N treatments or doses of the drug respectively.

Let H
o123···N : ∆µ1 = ∆µ2 = · · · = ∆µ

N
= 0 represents the global null

hypothesis. Let H
oi

: ∆µ
i

= 0, i = 1, 2, . . . , N denote the individual null

hypotheses of no difference between the ith-treatment or the ith-dose of

the drug and placebo. Let us suppose that we have suitable test statistics
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to test each one of these individual null hypotheses, H
oi

: ∆µ
i

= 0, i =

1, 2, . . . , N , and let p
oi

, i = 1, 2, . . . , N denote the p-values associated with

the corresponding tests. Now can we reject an individual null hypothesis,

H
oi

: ∆µ
i

= 0, if the p-value p
oi

< α? The answer is not necessarily so,

because by testing the individual null hypothesis H
oi

at the same α level

does not control the probability of the overall type I error, the probability

of rejecting at least one individual null hypothesis when the global null

hypothesis is true, at the α level. This probability will be inflated as a result

of the multiple testing. The inflation of the overall type I error rate can be

seen as follows. If there are N individual and independent comparisons with

each individual comparisons done at a nominal significance level of α
i
, then

The probability of the overall type I error

= P (Reject H
o123···N |Ho123···N )

= P (Reject at lease one H
oi

: ∆µ
i
= 0|H

o123···N )

= 1− P (Fail to reject all H
oi

: ∆µ
i
= 0|H

o123···N )

= 1−ΠP (Fail to reject H
oi

: ∆µ
i
= 0|H

oi
), assuming independence

≥ 1−Π(1− α
i
) . (1)

If the individual comparisons are made at the same significance level of

α
i
= α, then from Eq. (1), it follows that under independence assumption,

The probability of the overall type I error > 1− (1− α)N

> α . (2)

The following values illustrate the increase in the probability of the overall

type I error rate as a result of an increase in the number of comparisons

each performed at α = 0.05 level. The probability of the overall type I error

= 0.05, 0.098, 0.143, 0.226, 0.401

corresponding to N = 1, 2, 3, 5 and 10 comparisons, respectively.

From these values, Eq. (1), and inequality (2), it is clear that in order for

the probability of the overall type I error to be controlled at a given α level,

it is necessary to test the individual null hypothesis H
oi

at a significance

level α
i
< α, i = 1, 2, . . . , N , in such a way that the probability of the overall

type I error does not exceed α. Various multiple comparison procedures have

been proposed to accomplish this.
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3.2.1. Some p-value based multiple comparisons procedures

The most commonly used multiple comparison procedures are those that

can be described as p-value based procedures, so-named because these

procedures are all defined in terms of the individual p-values, p
oi

. These

general procedures include the simple Bonferroni procedure, the Holm’s35

sequential rejective procedure, the Hochberg33 procedure, the Hommel37

procedure, and the more general Simes procedure. Except for the Simes

procedure, most of these procedures are not powerful when the number of

comparisons increases. However, they control the probability of the overall

type I error at the desired α level, and they have enjoyed great popularity

due to their relative simplicity. For a more detailed discussion of these

and related procedures, the reader is referred to Hochberg and Tamhane,34

Samuel-Cahn,81 Chi,11 and Sarkar.83

These p-value based procedures are all inferences based on the individual

p-values, p
o(i), i = 1, 2, . . . , N , associated with the individual null hypothe-

ses, H
o(i), i = 1, 2, . . . , N . These p-value based procedures adjust the indi-

vidual α
i

in such a manner that the probability of the overall type I error

is controlled at the desired α level. If these p-value based procedures reject

any one of the individual null hypotheses at the α
i

level, then the global

null hypothesis, H
o123···N : ∆µ1 = ∆µ2 = ∆µ3 = · · · = ∆µ

N
= 0, will be

rejected for sure, where ∆µ
i
is the difference between the ith-treatment or

the ith-dose of the test drug and placebo. These p-value based procedures

are sometimes also referred to as the step-up procedures. They generally

do not make use of the correlation that may exist between the various test

statistics and tend to be conservative. Furthermore, it should be noted that

most of the p-value procedures implicitly treat all comparisons as of equal

importance.

3.2.2. The closure principle and the step-down procedures

In contrast, a test that rejects the global null hypothesis, H
o123···N , at a

significance level of α permits one to conclude that overall the drug is

superior to placebo. However, the rejection of this global null hypothesis

does not shed any light as to which specific treatment(s) or dose(s) actually

works. Certainly, if the test fails to reject the global null hypothesis, then

one can only conclude that the study fails to detect a difference among

various treatments and placebo, or among different doses of the drug and

placebo.
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The US regulations [21 CFR Sec. 314.50(d)(5)(v)] also require that evi-

dence be provided to support the dosage and administration section of the

labeling, including support for the dosage and dose interval recommended.

Thus, when a test rejects the global null hypothesis, it is also of interest

to know which one or more of these treatments or doses of the drug is

actually superior to placebo. Can one then simply use the p-values, p
o(i),

obtained from the individual comparisons of H
o(i) : ∆µ

i
= 0, i = 1, 2, . . . , N

and compare each at the same nominal significance level say, α, and then

conclude that that treatment or dose is or is not superior to placebo? The

answer is no, not in general, because suppose that the true state of nature

is as follows:

∆µ1 = ∆µ2 = · · · = ∆µ
N−1 = 0 and ∆µ

N
6= 0 . (3)

Now suppose the global null is rejected, and then one tests each of the indi-

vidual null hypothesis, H
o(i), i = 1, 2, . . . , N at the α level. It follows from

the series of equations in (1) that the probability of rejecting at least one of

the individual null hypotheses, H
o(i), i = 1, 2, . . . , N − 1 assuming indepen-

dence, is > 1− (1− α)N−1
> α given the true state of nature according to

Eq. (3). Thus, the probability is greater than α that one will erroneously

reject one of the individual null hypotheses, H
o(i), i = 1, 2, . . . , N − 1, and

conclude that one of the first (N − 1) treatments or doses is effective.

Equation (3) is only one possible true state of nature. The following lists

out all the remaining true states of nature.

Level 0 : ∆µ1 = ∆µ2 = · · · = ∆µ
N

= 0

Level 1 : ∆µ1 = ∆µ2 = · · · = ∆µ
i−1 = ∆µ

i+1 = · · · = ∆µ
N

= 0 ,

∆µ
i
6= 0, i = 1, 2, . . . , N

Level 2 : ∆µ1 = ∆µ2 = · · · = ∆µ
i−1 = ∆µ

i+1 = · · · = ∆µ
j−1 =

∆µ
j+1 = · · ·∆µ

N
= 0, ∆µ

i
6= 0, ∆µ

j
6= 0, i = 1, 2, . . . ,

N − 1, all j > i .

· · · · ·

Level N − 1 : ∆µ
i
= 0, i = 1, 2, . . . , N, and ∆µ

j
6= 0, all j 6= i .

Since the above argument is also applicable to all the other possible true

states of nature, it follows that controlling the probability of the type I

error associated with the global null hypothesis, H
o123···N , at the α level,

and the probability of the type I error associated with the individual null

hypotheses H
o(i), i = 1, 2, . . . , N each at the α level, is not sufficient to
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protect the probability of the overall type I error at the α level. That is, in

this case, the probability of erroneously rejecting one of the individual null

hypotheses when it is true will be greater than α. In other words, simply

because an individual p-value p
o(i) < α it does not imply that one can reject

the corresponding individual null hypothesis H
o(i), even when the global

null hypothesis has been rejected. However, there are some classical mul-

tiple comparisons procedures within the framework of analysis of variance

that permit such conclusions. For example, the Scheffé test, the Dunnett

procedure, and the Tukey procedure. An interesting example of a global test

within the context of a multi-factorial combination drug trial is discussed

in Hung, Chi and Lipicky.38

This suggests that perhaps one should consider controlling the proba-

bility of the type I error associated with all the possible true states of

nature. The closure principle proposed60 to a general class of closed testing

procedure is a step-down procedure that begins with testing the global null

hypothesis (corresponding to the state of nature in Level 0) at the α level.

If this test fails to reject the global null hypothesis, then the procedure

stops. If this test rejects the global null hypothesis, then the procedure

steps down to test each of the partial null hypotheses at the next lower

level (corresponding to the states of nature in Level 1) at the same α level.

The procedure stops when none of the partial null hypotheses is rejected.

When one or more of the partial null hypotheses are rejected, then the

procedure steps down to the next lower level (corresponding to the states

of nature in Level 2). It tests each of the partial null hypotheses that imply

the previously rejected partial null hypotheses at the α level (A hypothesis

H1 implies another hypothesis H2, if the rejection of H1 implies the rejection

of H2). The process either stops at some level for failing to reject any of

the implying partial null hypotheses at that level, or continues to the last

level (corresponding to the true states of nature in Level N − 1) and tests

each of the implying individual null hypotheses at α level.

The closed testing procedure guarantees that the probability of the

overall type I error will be maintained at the α level. However, it does

not guarantee that in a given application, it will necessarily be able to con-

tinue to the last level of testing all the implying individual null hypotheses.

Even when it does reach the last level, it may fail to reject any of the

implying individual null hypotheses. In other words, the closed testing pro-

cedure may fail to identify any treatment or dose that is superior to the

control. A closed testing procedure may be able to can take advantage of

the correlation between the various test statistics. This feature makes the
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closed testing procedure somewhat more attractive when one is confronted

with multiple endpoints which is the next multiplicity issue to be discussed.

Again it should be noted that the closed testing procedure also implicitly

treats all comparisons as of equal importance.

3.3. Multiple endpoints

In medicine, a disease is characterized by multiple clinical endpoints that

may be correlated. These clinical endpoints may describe the stage and

severity of the disease, and the signs and symptoms associated with the

disease, etc. Some clinical endpoints provide direct information regarding

the state of the disease; they are capable of revealing whether the dis-

ease has been modified, such as healing of ulcer as determined by endo-

scopic examination. Some clinical endpoints provide indirect information

regarding the state of the disease; these clinical endpoints include signs and

symptoms known to be associated with the disease. In a disease where death

is a potential outcome, mortality or survival is considered as a very special

and unique clinical endpoint; it is an objective endpoint, and due to its

seriousness, it supersedes all other endpoints in importance. On the other

end of the spectrum are the so-called surrogate endpoints or surrogate

markers, or biomarkers. They are endpoints, usually not clinical in nature,

but may be associated or correlated with the clinical endpoints of interests.

The effect of a drug may manifest itself in a number of endpoints, and

each endpoint may provide a measure of drug effect. From a regulatory

perspective (The 1962 Amendment to the 1938 Food, Drug and Cosmetic

Act requires drug to show clinical benefit in adequate and well-controlled

studies), only endpoints that can provide a measure of relevant clinical

benefits that may lead to potential efficacy claims are of interests. This

requirement essentially restricts the endpoints to clinical endpoints. But

clinical endpoints have varying importance and reliability, and not every

clinical endpoint has the potential of leading to an efficacy claim. In a few

special instances, surrogate endpoints have been used directly to support

drug efficacy claim, as in blood pressure for hypertension trials and CD4

counts in AIDS trials. In some disease areas, due to the lack of good or

available treatments, a surrogate endpoint may be used to support drug

efficacy claim conditional on subsequent demonstration of meaningful and

real clinical benefit under the accelerated approval program (See Mathieu61

and 21 CFR Sec. 314.500 Subpart H, 2001).

Therefore, in the design of a clinical drug trial, the investigator should

first determine what constitutes a clinical benefit and how best to measure
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it. The ICH-E9 Guideline (1998) calls for the designation of a single clini-

cal endpoint as the “primary endpoint”. The effect of the drug will then be

measured relative to this “primary endpoint”. This recommendation may

be reasonable when there is only one clinically relevant endpoint for the

disease under study, or when there is only one clinical endpoint that is of

primary interest. Often in practice, this recommendation is followed be-

cause the investigator is not willing to make the necessary adjustment for

multiplicity testing or to consider applying a closed testing procedure that

would preserve the probability of the overall type I error at α. In either

case, the investigator usually would designate one among several endpoints

as the “primary endpoint”, and the remaining endpoints as “secondary end-

points”. Such practice often leaves ambiguity as to what to do with those

“secondary endpoints” that may lead to the efficacy claim themselves. This

often leads to difficult situations and undesirable consequences as illustrated

by the following scenario.

After a trial fails to reject the null hypothesis defined by the designated

“primary endpoint” at the significance level α, the investigator then turns

to the “secondary endpoints”. Often, some of the observed p-values for these

endpoints show “apparent significance”, i.e. with p-values less than α. The

question is whether one can claim that the trial has demonstrated that

the drug is effective based on those “secondary endpoints” that show

“apparent significance”. This type of situation often results in controversy,

particularly when the “secondary endpoint” turns out to be mortality or

some serious irreversible morbidity endpoints. For an interesting recent

discussion of such an example, one may refer to the articles by Fisher21,22

and Moyé.63–65 See also Chi10 for the SOLVD prevention trial.

From a statistical and regulatory standpoint, when the primary

hypothesis fails to be rejected at the significance level α, then the trial

has failed to provide the expected strength of evidence for the efficacy of

the drug. Additional testing of hypotheses can only result in an inflation of

the probability of the overall type I error over and beyond α. The probabi-

lity of the overall type I error can be controlled only if all desired hypotheses

to be tested have been pre-specified with a proper allocation of α. A recent

proposal by Moyé64,65 and related commentaries16,70 considers testing the

secondary hypotheses at some significance level α∗ between 0.05 and 0.10

to accommodate the so called “surprise finding”. This proposal is clearly

inflating the overall type I error rate beyond the desired level of α = 0.05

and is not desirable from this perspective.

In our view, for a confirmatory trial, one should maintain the funda-

mental principle of controlling the probability of the overall type I error at
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the desired level α. Thus, designating only one of several clinical endpoints

as “primary” may not necessarily be the best option.

3.3.1. Current clinical trial practice

When there are multiple clinical endpoints, each of which can lead to the

same efficacy claim, the current practice usually considers one of two general

approaches. The first approach is to designate all clinical endpoints that can

lead to the same claim as “co-primary endpoints”. Appropriate hypotheses

are then defined in terms of these endpoints. A method for testing these

hypotheses that accounts for multiple testing can then be applied. The

second approach is a conditional or sequential approach. One designates

only one “primary endpoint” to be tested at the significance level of α

as recommended in the ICH-E9 Guidance document. The remaining end-

points are then designated as “secondary endpoints”. If the primary null

hypothesis fails to be rejected, then no efficacy claim can be made. When

the primary null hypothesis is rejected, then the efficacy claim is made.

Additionally, those “secondary endpoints” that are closely correlated with

the “primary endpoint” can be tested at the nominal significance level of α;

but these tests will not lead to additional efficacy claims, but are meant to

provide additional information to describe the efficacy finding based on the

“primary endpoint”. For those “secondary endpoints” that are not closely

related to the “primary endpoint”, they may be tested at an overall nominal

significance level of α appropriately adjusted for multiplicity. Those “se-

condary endpoints” that reach nominal significance after adjustment may

be described in the labeling of the drug.

In the above two approaches, to adjust for multiple “co-primary end-

points” or to adjust for multiple “secondary endpoints” after rejection of

the primary null hypothesis, one may consider various multiplicity adjust-

ment procedures such as the p-valued based procedures and the closed

testing procedures that were discussed in Secs. 3.2.1 and 3.2.2. These proce-

dures may be applied here if one assumes that the “co-primary endpoints”

are of equal importance and have equal likelihood of demonstrating the

proposed efficacy claim, or that the “secondary endpoints” are of equal

clinical relevance and importance in terms of allowing their appearance

in the labeling of the drug. A few examples of multiple testing has been

discussed by many authors.2,17,27,51,67,69,76,80,82,87,88,105,106

The p-value based procedures and the closed testing procedures are

only formal statistical procedures and they lack the proper clinical and
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regulatory perspectives. They are being applied as if all the endpoints are of

equal importance and have equal likelihood of achieving the desired efficacy

claim. However, in most practical situations, such assumption is not appro-

priate. The fact is that most of the times, these clinical endpoints have

varying or differential clinical relevance and importance, and different like-

lihood of demonstrating the efficacy claim. Furthermore, from a clinical

and regulatory perspective, some of these endpoints may be used together

rather than individually in a more complex way in assessing the drug effect.

The proper approach, in our view, is to define a priori a decision set and a

clinical decision rule for assessing the drug efficacy claim. A decision set

is simply a set of clinical endpoints and a clinical decision rule is simply a

decision tree consisting of several decision paths or branches. Each decision

path is defined by one or more of the endpoints from the decision set and it

may lead to the desired efficacy claim. The null hypothesis at each decision

path is tested by a test statistic that reflects this decision path. If the null

hypothesis at each decision path is being rejected at certain significance

level α
i
, then the trial would have demonstrated efficacy. The significance

levels α
i

are allocated across the various decision paths in a manner that

will maintain the overall probability of type I error. A clinical decision rule

should have proper statistical support structure to provide valid statistical

inference. The concept of clinical decision rule is more formally discussed

and illustrated by examples in the next section.13,42

3.4. Clinical decision rules

It is important to understand that in current clinical trial practice, the term,

“primary endpoint”, is used to identify a clinical endpoint that is being

used in a trial for demonstrating the efficacy of the study treatment. It is

an endpoint that has the burden of providing the primary evidence for the

desired efficacy claim. When there are more than one “primary endpoint”,

then they are “co-primary” relative to one another. The “secondary

endpoints” and “tertiary endpoints” do not have such a role. But the

mere fact that a clinical endpoint is placed in the category of “secondary

endpoint” does not imply that it has lesser clinical importance or lacks the

ability to independently provide the evidence for an efficacy claim. This is

one reason why controversies frequently arise in clinical trials as in the case

of carvedilol discussed earlier.

A clinical decision rule is a natural and meaningful way of assessing drug

efficacy. It reflects the clinical and regulatory perspectives in handling the
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multiple testing issue. How a clinical decision rule is defined actually varies

from disease to disease. It depends on the current state of clinical knowl-

edge about the disease, and the degree of acceptability of the endpoints

considered. In order to define clinical decision rule in a clear and clinically

meaningful way, some general definitions of clinical endpoints are needed.

3.4.1. A hierarchical definition of clinical endpoints

The following hierarchical definitions of clinical endpoints are proposed with

a regulatory perspective.

Definition 1. A clinical endpoint is a clinical variable which either

directly or indirectly reflects the condition of an underlying disease.

For example, death, disease progression, tumor size, pain intensity,

signs/symptoms, hospitalization are clinical endpoints.

Definition 2. A clinical endpoint is a primary endpoint if it satisfies the

following conditions:

• It can provide a measure of clinical benefit realized in the patient that is

acceptable by the clinicians in the field as a meaningful measure of the

drug effect for the disease under treatment.

• It is an endpoint such that a positive finding in this endpoint may result

in an efficacy claim.

Examples of primary endpoints are time to death, time to disease progres-

sion, tumor response, diastolic blood pressure, presence or absence of ulcer.

Definition 3. A primary endpoint is a principal primary endpoint if a

positive finding in this endpoint alone is sufficient to result in the efficacy

claim.

Principal primary endpoints are usually endpoints that are objective

and can directly demonstrate that the underlying disease has been mo-

dified. For example, mortality, absence of ulcers, and objective measures

of disease progression. The regulatory perspective here is that a positive

finding on a principal primary endpoint alone is sufficient for proof of

efficacy. For many diseases, there may not be a principal primary endpoint.

In general, the choice for principal primary endpoint may be limited.

Definition 4. A primary endpoint is a co-primary endpoint if a positive

finding in this endpoint is sufficient to result in an efficacy claim, provided

other primary endpoints considered do not show an inconsistent effect.
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Co-primary endpoints are endpoints that may be more subjective in

nature, less well defined, or may provide only indirect measure of the

condition of the underlying disease such as signs and symptoms. The regu-

latory perspective here is that a positive finding on a co-primary endpoint

alone is sufficient for proof of efficacy only if other primary endpoints

considered do not show an inconsistent effect.

Some examples of co-primary endpoints include all cause hospitali-

zation, cause specific hospitalization, time to disease progression, tumor

response, disease related signs/symptoms, etc. From a clinical perspective,

co-primary endpoints are not as important as principal primary endpoints

because they may not be as objective, or as well defined, and may not pro-

vide direct measures of disease modification. On the other hand, improve-

ment as measured by a co-primary endpoint may support a claim provided

other primary endpoints considered do not show contradictory findings.

It is important to point out that by our definitions, both principal

primary endpoints and co-primary endpoints are primary endpoints. Their

nature can not be changed simply because they are placed in the “secondary

endpoint” category, a common term used in current practice.

Definition 5. A clinical endpoint is secondary if it satisfies the following

conditions:

• It is a clinical endpoint that provides a measure of clinical benefit rea-

lized in the patient that is acceptable by the clinicians in the field as a

meaningful measure of the drug effect for the disease under treatment.

• It is an endpoint such that a positive finding in this endpoint alone is

not sufficient to result in the drug’s efficacy claim.

It should be pointed out that secondary endpoint as we define here has a

different meaning than that used in current practice. In current practice,

“secondary endpoints” may include both primary and secondary endpoints

as we define above.

It should be noted that according to our definition, a positive finding

in a secondary endpoint alone could not result in an efficacy claim. How-

ever, positive findings in several secondary endpoints may together provide

sufficient evidence to support a claim. This is illustrated in Example 6.

Evidence from secondary endpoints may or may not be needed to support

the evidence provided by a primary endpoint.

There are several reasons for the above hierarchical definition of clinical

endpoints. The first reason is that in each disease, there are usually multiple

relevant clinical endpoints of varying importance. Secondly, efficacy
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assessment depends on the nature of the clinical endpoints and the rele-

vance of the clinical benefits that are measured by these clinical endpoints

to the indication sought. Thirdly, the hierarchical nature of these endpoints

would become important in defining the clinical decision rule, to be defined

below, which essentially operationalizes these endpoints in the assessment

of efficacy.

Definition 6. A decision set relative to a disease is a set of relevant

endpoints determined by the clinicians that will be used to assess the ef-

fectiveness of the treatment for the disease in a clinical trial. A decision

set may contain principal primary endpoints, co-primary endpoints, and

secondary endpoints.

Ideally, the decision set for a disease should be determined by the con-

sensus of the medical experts in the field. However, for diseases that are

not well understood, consensus may be hard to come by. But it is exactly

in this kind of disease where multiple endpoints become a difficult issue.

This is because, the experts themselves may not know exactly which clinical

endpoints are most relevant and important, and they often may not even

agree.

A decision set may consist of principal primary, co-primary, and sec-

ondary endpoints, and it may even contain surrogate endpoints. A decision

set may change over time as better understanding of a disease may modify

the way efficacy should be assessed. It usually should not contain too many

endpoints. It should contain sufficient number of endpoints to allow all

potentially acceptable ways of assessing efficacy of the drug.

The hierarchical nature of the endpoints is operationalized in a clinical

decision rule.

Definition 7. A clinical decision rule is simply a decision tree defined

relative to a decision set for the purpose of assessing the effectiveness of a

drug in treating a given disease. Each decision path or branch is defined

in terms of one or more endpoints from the decision set. In each path, a

decision is made based on the outcomes of all endpoints involved.

It is important to realize that the clinical decision rule as defined here

simply represents the clinical and regulatory way of expressing how evidence

of efficacy of the drug can be assessed based on the endpoints in a decision

set. It is independent of any statistical considerations. It simply reflects the

various alternative hypotheses of interest. For instance, no consideration is

given to how the hypotheses are defined, control of the probability of the

overall type I error, etc.
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Therefore, a clinical decision rule should have a proper statistical

support structure. A proper statistical support structure should include

appropriate null and alternative hypotheses reflecting the entire clinical

decision rule. It should have proper test statistic at each decision point,

appropriate allocation of α to each decision point so as to maintain the

probability of the overall type I error for the clinical decision rule at α, and

sufficient sample size or power for the entire clinical decision rule.

Definition 8. A decision structure is a clinical decision rule with a

proper statistical support structure.

A decision structure requires proper allocation of α among the various

decision paths of a clinical decision rule. If one wishes to allocate all the

α to one particular decision path, then this can easily be accommodated

by defining all the other decision paths as sub-paths of this particular de-

cision path, or simply defines the clinical decision rule with only this path.

The sub-paths will be tested only when the primary decision path has

demonstrated the efficacy of the drug.

Decision structure generalizes the concept of “primary endpoints” and

“secondary endpoints” used in current practice by decision paths, and

sub-paths in a conditional decision path of a clinical decision rule.

The earlier discussion of labeling consideration for “secondary end-

points” can also be transferred to the present decision structure framework

by considering clinical decision rule with sequential or conditional paths

that allow secondary outcomes based on sub-paths to enter the labeling of

the drug.

Ideally, for a given disease, the clinical decision rule should be based

on a consensus of the clinical experts in the field. For example, the Food

and Drug Administration has advisory committees for various disease areas.

The members of the advisory committees include medical experts in various

diseases. These advisory committees often discuss issues regarding proper

choices of endpoints. The consensus regarding decision set and clinical deci-

sion rule in a given disease may be reached among the corresponding com-

mittee members. For some diseases, there may be general consensus; but

for many other diseases, there may be no agreement. This is especially true

in disease areas where the state of knowledge is still evolving. For such

diseases, the clinical trial sponsor and the regulatory agency to which the

submission will be submitted should reach agreement on the decision set

and the clinical decision rule that are acceptable to both parties prior to

commencement of the trial. It is the responsibility of the statistician to

provide proper statistical support structure for the clinical decision rule.
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In a clinical trial with only a single primary endpoint, T1, the decision

structure is simple. Its statistical support structure includes the simple null

hypothesis, its alternative, and an appropriate test statistic all defined in

terms of this primary endpoint. The sample size and power are calculated

accordingly. It can be expressed by the symbolic notation (T1 > 0) which is

to be interpreted as follows. The new treatment will be declared as superior

to the control, if the test statistic rejects the null hypothesis of no difference

between the new treatment and control at the significance level of α, and

if the difference is favoring the new treatment.

Many trials lack a well-defined clinical decision rule. Among those that

do, many do not have proper statistical supports struture as illustrated by

the following two examples.

Example 3. In a recent study of the drug carvedilol for the treatment

of congestive heart failure, there was an “unexpected” mortality finding

(observed p-value < 0.001).16 However, in this study, mortality was not

even stated in the protocol as an endpoint. There was a lengthy debate as

to whether carvedilol has demonstrated a mortality benefit in this trial. If

it were accepted as a positive demonstration of a mortality benefit, then

this would imply that the final decision rule has been altered from the one

originally proposed in the protocol. This would certainly lead to an increase

in the probability of the overall type I error. This example illustrates a trial

with a decision rule that is not exhaustive, in the sense that the decision

set is not complete, since mortality is not in the decision set. In addition,

the post-hoc attempt to alter the clinical decision rule is without proper

statistical support.

Example 4. According to its label, VASOTEC is indicated “for stable

asymptomatic left ventricular dysfunction: it decreases the rate of develop-

ment of overt heart failure and decreases the incidence of hospitalization for

heart failure”.73 This claim is essentially based on the SOLVD Prevention

Trial. The SOLVD Prevention Trial has all cause mortality as the only

primary endpoint, and hospitalization for CHF, development of CHF, and

incidence of MI as three, among several, secondary endpoints. The trial

results show that mortality is not significant (p = 0.60), but hospitalization

for CHF (p < 0.002) and development for CHF (p < 0.002), and incidence

of MI (p < 0.024) show nominally significant p-values. So VASOTEC was

approved for the above indication based on the “apparent” significance of

the “secondary endpoints”, hospitalization for CHF and development of

CHF. This time, the decision rule used to assess the efficacy of the drug is
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again altered from the one declared in the protocol. It leaves unanswered

the potential inflation in the probability of the overall type I error.

These two examples describe clinical trials with multiple primary end-

points where the decision rules are not complete and lack proper statistical

support structures. They led to post-hoc attempts to alter the decision

rules by attaching “statistical significance” to findings in endpoints that

are selected in a retrospective manner. A clinical decision rule should in

principle and in practice exhaust all possible ways of assessing the efficacy

of the drug.

The following example illustrates a clinical decision rule that is

exhaustive.

Example 5. In a clinical trial, the decision set consists of three co-primary

endpoints, {T1, T2, T3} without a principal primary endpoint. The clinical

decision rule is (T1 > 0, or T2 > 0, or T3 > 0). That is, the new drug would

have demonstrated efficacy if it can be shown to be superior to placebo in

any one of the three co-primary endpoints and no inconsistent trend in the

other co-primary endpoints. This clinical decision rule considers all three

co-primary endpoints as of equal importance and to have equal likelihood

of demonstrating drug efficacy, and hence the application of either a p-value

based procedure or a closed testing procedure would be appropriate.

The following example illustrates a different situation where the primary

endpoints have varying importance.

Example 6. In a clinical trial, the decision set consists of three primary

endpoints, {T1, T2, T3}, where T1 is a principal primary endpoint, T2 and

T3 are two co-primary endpoints. The clinical decision rule is defined as

(T1 > 0 at α1 or T2 > 0 at α2 or T3 > 0 at α3), where α1, α2 and α3 are

chosen to preserve the probability of the overall type I error at α.

This clinical decision rule is different from the preceding example in that

one specifies a different allocation of α among the three separate hypotheses.

So a closed testing procedure or a p-value based procedure may not be

directly applicable. The trial sponsor usually determines the α allocation.

In addition, the drug efficacy is established if the principal primary endpoint

T1 can be shown to be positive regardless of the outcomes of the other two

co-primary endpoints. For example, one may think of T1 as mortality.

The following example shows that even if individual secondary endpoint

may not support an efficacy claim, several secondary endpoints together

may be sufficient to support an efficacy claim.
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Example 7. In a study of Alzheimer patients, T1 = Alzheimer’s Disease

Assessment Scale — Cognitive Subscale, and T2 = Clinician’s Interview

Based Impression of Change, are two secondary endpoints. The clinical

decision rule is (T1 > 0 at α = 0.05 and T2 > 0 at α = 0.05).

The decision to use a combination of two different types of outcome

measurements to evaluate the efficacy of anti-dementia drugs was made

with the support of a number of experts working in the field of demen-

tia at FDA’s Anti-dementia Assessment Symposium in 1989. This deci-

sion rule was recently reaffirmed by the expert panel of the Peripheral

and Central Nervous System Drugs Advisory Committee in meetings on

issues concerning mild cognitive impairment and cardiovascular dementia.

The Alzheimer’s Disease Assessment Scale — Cognitive Subscale, a per-

formance based assessment instrument, ensures that the effect of the drug

is on the “core” phenomena of dementia. The Clinician’s Interview Based

Impression of Change, a global assessment, ensures that the effect of the

drug is clinically meaningful.

It has been argued that the clinical decision rule in the above example

is too conservative because the probability of the overall type I error is

less than 0.05. This argument is valid only if both T1 and T2 are primary

endpoints. The reason why this should not be considered as conservative

is because both T1 and T2 are secondary endpoints, and by our definition

either one alone is not sufficient to support a claim. This is one important

reason why a hierarchical definition for the various clinical endpoints is pro-

posed. The next example illustrates the importance of hierarchy in clinical

decision rule.

Example 8. In a clinical trial, the decision set {T1, T2} consists of a prin-

cipal primary endpoint T1, and a co-primary endpoint, T2. The clinical

decision rule is (T1 > 0 at α1) or (T2 > 0 at α2|T1 ≮ 0 at α1), where α1 and

α2 are chosen to preserve the probability of the overall type I error at α.

This example illustrates the difference between a principal primary end-

point and a co-primary endpoint as follows. The new drug can claim efficacy

if it is significantly better than placebo relative to the principal primary

endpoint T1 at a significance level of α1. On the other hand, the new drug

can also claim efficacy if it is superior to placebo relative to the co-primary

endpoint T2 at a significance level of α2, provided it is not worse than

placebo relative to the principal primary endpoint T1 at the significance

level of α1. The condition (T1 ≮ 0 at α1) may need further elaboration

in each case. This same condition is implicit in the preceding examples.

However, in current practice, this condition is usually not clearly mentioned.
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The next example illustrates a clinical decision rule without proper

statistical structures.

Example 9. In an epilepsy trial, the decision set consists of three clinical

endpoints, {A, B, C}, where A is a primary endpoint and B and C are

secondary endpoints. The clinical decision rule adopted is that either (A > 0

at α) or (B > 0 at α and C > 0 at α). Let ∆
A
, ∆

B
and ∆

C
denote the

parameters corresponding to the endpoints A, B and C respectively.

This decision rule reflects the following complex null and alternative

hypotheses:

H
oc

: ∆
A

= 0 and (∆
B

= 0 or ∆
C

= 0) ,

H
ac

: ∆
A
6= 0 or (∆

B
6= 0 or ∆

C
6= 0) .

The sponsor proposes to test instead the restricted null hypothesis,

H
or

: ∆
A

= 0 and ∆
B

= 0 and ∆
C

= 0 ,

for no treatment effect. Note that H
oc

consists of two axes, (∆
A

= 0 and

∆
B

= 0) and (∆
A

= 0 and ∆
C

= 0), while H
or

consists of only the origin.

It is shown by Jin and Chi42 that the probability of the overall type I error

for the proposed clinical decision rule under H
oc

should be

α
C

= sup
(∆A,∆B ,∆C)0Hoc

P(∆A,∆B,∆C){|ZA
| > c

A
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B
| > c

B
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C
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A
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A
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C
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C
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where Z
A
, Z

B
, and Z

C
are the corresponding test statistics.

The probability of the overall type I error corresponding to the restricted

null hypothesis is

α
r
= sup

(∆A,∆B,∆C)0Hor

P(∆A,∆B,∆C){|ZA
| > c

A
or (|Z

B
| > c

B
and |Z

C
| > c

C
)} .

It is easy to see that

α
C
≥ α

r
,

with strict inequality holds true in general.

Therefore, if the rejection region, or critical values c
A
, c

B
and c

C
, are de-

fined to preserve α
r

at the desired level, say, α = 0.05, then the probability

of the overall type I error, α
C

will be inflated beyond α = 0.05. Therefore,

the p-value calculated with the restricted null hypothesis is smaller than

that calculated with the complete null hypothesis.
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This example illustrates that it is necessary to clearly specify the sta-

tistical support structure for a complex clinical decision rule. Otherwise, it

can easily weaken the strength of evidence or compromise the validity of

the statistical inference, for example, through an improper calculation of

the p-value.

As noted earlier, clinical decision rule is defined relative to multiple

endpoints. However, one can easily extend the concept to include other effi-

cacy assessment schemes involving multiple comparisons, repeated testing,

multiple indication etc. Furthermore, it is critical that a clinical decision

rule should have a proper statistical support structure. A confirmatory trial

should have a well-defined decision structure.

The p-value based procedures and the closed testing procedures pre-

viously discussed are formal statistical procedures developed for testing

hypotheses in a multiple testing situation. As pointed out earlier, these

procedures do not make reference to any clinical or regulatory consider-

ations. For example, no distinction is made with respect to the nature,

meaning and relative importance of the clinical endpoints, and no attempt

is made to take into consideration any regulatory perspective on how these

endpoints should be used in assessing efficacy. They essentially assume that

all multiple endpoints or multiple comparisons are of equal importance for

purpose of efficacy assessment. Therefore, in any given clinical situation,

a direct application of these procedures to assess the efficacy of a new

treatment without proper clinical and regulatory considerations may be

quite inappropriate. The following two examples illustrate this problem.

Example 10. In a trial seeking an indication for treatment of transient

insomnia, data on latency to persistent sleep (LPS) are collected at night

at baseline and on four post-baseline nights. The trial sponsor proposes

that the drug would have demonstrated efficacy if it can show superiority

to placebo at any one of the four nights relative to LPS. Since there are

multiple testing, the sponsor proposes to use a p-valued based procedure.

From a purely statistical perspective, this proposal is acceptable. But this

kind of decision rule lacks clinical perspective and is not appropriate for

this indication. The reason is that according to this decision rule, the drug

could be approved for the treatment of transient insomnia if the trial shows

that the drug is superior to placebo at any one of the four nights. Thus, a

possible winning scenario is for the drug to show superiority on any one

of the nights except the first night. Unfortunately, this kind of outcome

can not support the desired indication, because it is expected that a drug
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for treating transient insomnia should show effect on the first night. The

treatment effects on the subsequent nights are used mainly for assess-

ing its tolerance profile, i.e. whether the drug effect diminishes over time.

Clinically, showing an effect on the first night is a necessary condition for

approval. Therefore, the application of any p-valued based procedure or

closed testing procedure would not be appropriate. One possible approach

is to apply a conditional testing procedure: starting with the first night,

test LPS with a significance level of α, and continue testing for the subse-

quent night as long as the current night shows a treatment effect significant

at the same α level.

In developing statistical methodology for handling multiple endpoints

in clinical trials, one should also be mindful of the interpretability of the

results. Clinical interpretation of the results of statistical analysis of mul-

tiple endpoints often presents formidable challenge to both statisticians

and clinicians. An interesting way of reducing the problem with multiple

endpoints is to define in some manner a composite endpoint, an index or

a global statistic. The following examples show different ways composite

endpoint can arise and the problem of interpretation that may accompany

such composite endpoints.

The handling of mortality data in some central nervous system drug

trials provides a good illustration.

Example 11. In trials treating acute stroke or ALS, some patients in either

drug or placebo group die during the trials. The primary endpoints in these

trials are often some neurological scores, such as NIH Stroke Scale, Modi-

fied Rankin Scale, Barthel Index, Glasgow Outcome Scale in stroke trials, or

Appel score and vital capacity measurement in ALS trials. All these scores,

except for the Modified Rankin Scale, do not include death as a part of

the measurement. To analyze the complex data consisting of neurological

scores and death, a composite endpoint is sometimes proposed as a way to

compare treatment effect. To illustrate a difficulty in interpretation of the

results of such composite endpoint, consider the following proposal. The

proposed method will rank the deaths from the earliest to the last, then

rank the patients who are alive according to their neurological scores with

the worst ranked next to the rank of the last death. The new ranking scores

will then be used in an ordinary ANOVA analysis. The results from such an

analysis will be difficult to implement in a regulatory setting, particularly

the meaning of the assigned rank scores for death and neurological func-

tioning measures will be hard to interpret. For example, the ranks for the
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last death and the worst neurological score only differ by one. These two

very different clinical outcomes are essentially treated as the same outcome

in the analysis. The comment is not meant to criticize the statistical merits

of the composite endpoint analysis, but merely to point out a problem in

interpreting the results based on this kind of composite endpoint. Any other

global test statistics will likely face similar difficulty since it is attempting

to evaluate drug effect by using a single measure to summarize two very

different outcomes.

Example 12. The objective of this stroke trial is to demonstrate whether a

24-hour continuous infusion of a new drug combined with t-PA when t-PA

treatment is initiated within three hours of stroke onset offers superior

outcome at day 90 than t-PA treatment alone. The primary endpoints con-

sist of the NIH Stroke Scale, the Barthel Index, Modified Rankin Scale

and the Glasgow Outcome Scale. The proposed analysis is a modification

of the Wald-like global test statistic used in Tilley et al.93 If the global

test statistic demonstrates a “significant” difference, then the individual

component scores will be examined. The problem with this global test

statistic is that it can show a “significant” difference even when the in-

dividual component scores may show inconsistent results. For example, one

possible scenario could be that the Barthel Index shows “significance”, but

all the other three scores show a negative trend. Now, there is no adjust-

ment made for multiple testing after the global test shows “significance”. A

closed testing procedure should be applied in order to maintain the proba-

bility of the overall type I error. This same issue existed in Tilley et al.93

However, the t-PA trial was fortunate to have a highly effective treatment

so that all individual component scores showed significant and consistent

findings so that the application of a closed testing procedure would produce

similar conclusion. But in the current proposed trial, such consistent and

significant outcomes in the individual component scores may be unlikely,

in view of all the recent failed stroke trials.

In clinical drug trials, resolutions of subtle issues like the ones discussed

above require a close interaction between the clinicians and the statisti-

cians. Any attempt to develop a statistical methodology without careful

consideration of the interpretive issue is hazardous.

From all of the preceding examples, it becomes very clear that one

should try to avoid the following types of problems. The first type of

problem is that of asserting drug efficacy claim based on clinical deci-

sion rule that is not pre-specified, but defined retrospectively. This practice
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inflates the probability of the overall type I error rate. The second type

of problem refers to clinical decision rules that do not provide the kind of

evidence appropriate for the indication sought and the strength of evidence

needed. The third type of problem is a clinical decision rule that lacks

proper statistical support structure. The fourth type of problem is the use

of a statistical procedure inappropriate for a given multiple testing situa-

tion. Finally, one should avoid defining composite endpoints or global test

that would render the result of the analysis difficult to interpret or clinically

unacceptable.

The following general procedure for defining a decision structure should

be prospectively described in the study protocol for each trial, especially a

confirmatory trial.

For the disease under study, define clearly the indication desired. Un-

derstand clearly the efficacy criteria needed for the new treatment to satisfy

in order to get this indication. Based on the criteria, identify a decision set

of clinically relevant endpoints. These endpoints may be called principal

primary, co-primary and secondary as defined earlier. These definitions in-

clude a hierarchical order based on their clinical importance, objectivity,

etc. and are defined from both clinical and regulatory perspectives. From

this decision set, one should define the clinical decision rule for assessing the

efficacy of the drug. The clinical decision rule is a decision tree consisting of

most if not all decision branches or paths that can lead to a drug’s efficacy

claim. Each decision branch or path is defined in terms of one or more

endpoints from the decision set. Some decision branches or paths may be

sequential or conditional, thus forming sub-branches or sub-paths. At each

decision point, decision will be made based on the outcome of the endpoints

used in that particular decision path or branch. Then, one should provide

the necessary and appropriate statistical support structure for this clinical

decision rule. In defining a decision structure, one should also consider the

level and strength of the evidence required of the study.

The statistical support structure should include:

• The appropriate hypotheses to be tested; the hypotheses include the

proper null and alternative hypotheses reflecting the clinical decision

rule. Unlike a simple null hypothesis that usually consists of a single

parameter zero, the null hypothesis for a complex clinical decision rule

is a region in a multidimensional parameter space. Failure to clarify this

null hypothesis region could jeopardize the final statistical analysis, and

weaken the strength of evidence or even invalidate the trial results.
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• The appropriate test statistic to be used at each decision branch or path,

and the associated statistical analysis plan.

• The desired allocation of α across the decision branches or paths so that

the probability of the overall type I error is preserved at the desired α

level.

• Sufficient sample size and an optimal overall power relative to the entire

clinical decision rule.

So far, the discussion of clinical decision rule is focused on a given time

point in the trial, usually at the end of the trial. In the next section, we shall

discuss clinical decision rule over some indices typically time or information

fraction.

4. Interim Analysis and Sequential Clinical Decision Rule

In the 1970s, clinical trial investigators began to question on ethical grounds

whether a trial, with mortality or serious irreversible morbidity as the pri-

mary outcomes of interest, should be continued to its intended end when

interim analysis based on accumulating data shows that the treatment is

effective. In those early days, interim analyses were routinely done by the

investigators without any regard to issues of multiple testing and its con-

sequent inflation in the probability of the overall type I error. So in this

kind of trials, the decision rule, which is usually defined in terms of one

primary endpoint such as mortality, is repeatedly tested at various times

in the course of the trial. The problem at that time is that there was no

appropriate statistical support structure for the decision process. The desire

for stopping the trial early for efficacy has been the driving force behind

the development of group sequential procedures in the subsequent decades.

A group sequential procedure is a statistical procedure that provides

for a series of test statistics based on the accumulating data. The simple

null hypothesis is tested by these statistics. An early termination rule is

implemented through a stopping boundary defined by the critical values or

in terms of an increasing sequence of nominal significance levels for each

test. This boundary is defined so that the probability of the overall type I

error will be maintained at a desired α-level for a two-sided test.

Group sequential procedures that allow for interim analyses and early

termination had been proposed by many authors.23,68,74,75,94,108 These

group sequential procedures are used for a type of analysis customarily

referred to as formal interim analysis, and they are usually implemented

for mortality and irreversible morbidity trials.
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A group sequential procedure with formal interim analyses is an example

of a sequential clinical decision rule.

Definition 8. A sequential clinical decision rule is a clinical decision

rule, repeatedly applied over some indices typically time or information

fraction.

A sequential decision structure is a sequential clinical decision rule

with a proper statistical support structure.

Note: alternatively, one can define each decision (path) that can result

in an efficacy assessment as a clinical decision rule, and then consider

a family of such clinical decision rules along with its statistical support

structure.

The group sequential procedures referred to above that allow for interim

analyses and early termination are simple sequential decision structures.

They are simple because the clinical decision rule at each time point in-

volves one and the same primary endpoint such as mortality or a composite

endpoint consisting of several types of event endpoints.

In a trial with a sequential clinical decision rule, the decision rule itself

can be more complex when multiple endpoints and/or multiple doses are

involved. Proper statistical support structure is needed for these more

complex sequential clinical decision rules.

4.1. Interim analysis and design modifications

The principal components of a confirmatory trial include the target patient

population, the study design, the decision structure which includes a deci-

sion set of key clinical endpoints, a clinical decision rule with its statistical

support structure for assessing efficacy, and possibly an interim analysis

plan, etc. There is always an interest on the part of the trial sponsor to

make changes to the trial based on interim treatment comparative analysis

of accumulating data prior to the intended end of the trial. These changes

may involve changes in the patient population, in the decision structure

including the clinical decision rule, the test statistics, the interim analysis

plan, and the sample size. For instance, after an interim analysis, it may

be of interest to drop one or more treatment arms, to change or drop one

or more endpoints, or in a group sequential trial, to change the interim

analysis schedule, to change the stopping boundary, the α-spending func-

tion, or to increase the sample size. Since such proposed changes are based

on the interim treatment comparative analysis, they may introduce serious

bias into the study and inflate the probability of the overall type I error.
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Cui et al.15 showed that in a group sequential trial, sample size re-

estimation based on observed interim treatment difference can inflate the

probability of the overall type I error, essentially because the sample size es-

timate is interim outcome dependent. A methodology was developed based

on weighted test statistics that would permit sample size re-estimation at

any one of the pre-scheduled interim analysis times without inflating the

probability of the overall type I error. The methodology is quite flexible and

allows one to retain the original stopping boundary. Other design modifica-

tion schemes with or without sample size re-estimation are currently being

investigated.

Except for changes in the characteristics of the patients yet to be

enrolled, one may view most of these design modification strategies as

modifications of certain aspects of the decision structure. For example,

these modifications may involve deleting one or more decision branches or

paths, changing the test statistic at a decision point, re-allocating the α’s

and re-estimating the sample size. How such modifications impact on the

validity of the statistical inference needs to be investigated. For instance,

in a group sequential trial with an interim analysis plan, if such modifi-

cation affects the underlying Brownian motion process, then one needs to

be able to develop valid statistical test procedure in the absence of, say,

the property of independent increments. Generally, one should pre-specify

the desired modifications, and describe how decisions to modify or not to

modify the decision structure are made conditional on the interim outcome

data. Finally, one should ascertain that the modified decision structure can

still permit valid and meaningful interpretation of the study results.

4.2. Adaptive two-stage designs

Design modification of a clinical trial can also be prospectively built into

a two- or multi-stage randomized trial. In a two-stage design, modifica-

tions may be considered at the end of the first stage. Bauer and Köhne3

considered the problem of sample size re-estimation at the end of the first

stage. The two-stage combination test is based on Fisher’s product test

and the assumption that the samples from the two stages are independent.

Proschan and Hunsberger77 generalized the method of Bauer and Köhne

through the concept of conditional error function. Liu and Chi56 further

considered allowance for stopping at the end of the first stage for futility,

and the problem of defining a unique overall p-value by propos-

ing the use of a class of generalized conditional error functions. All
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three papers assumed independence of the samples from the two

stages.5,105 A general theory of adaptive two- or multi-stage design

that would permit modifications other than sample size re-estimation,

and for dependent samples have recently been considered.4,5,57 Again

as in the case of group sequential trials, it would be of inter-

est to develop a general theory of adaptive two- or multi-stage

design that would permit modification of the decision structure for the

general case with dependent samples. Such theory should be developed

within the framework of pre-specification of the desired modifications and

how the decision to modify or not to modify the decision structure is

based on the interim outcome data. In addition, the distributions of the

adapted statistics should be derived, and the overall probability of type

I error should be maintained. Furthermore, the uniqueness of the overall

p-value should be demonstrated to confirm the validity of the statistical

inference. Such theory would be extremely important as it forms the basis

for various practical applications in clinical drug trials as discussed.49 For

example, the adaptive two-stage design would be a natural framework for

combining a traditional Phase 2 study with a Phase 3 study, or for acceler-

ated approval of potentially life-saving drugs in diseases that do not have

available treatment.4

4.3. Interim analysis and data safety monitoring committee

Most mortality or serious irreversible morbidity trials have formal planned

interim analysis and stopping rules. There is also an independent Data

Safety and Monitoring Committee (DMC). The primary responsibility of a

DMC is to recommend to the trial sponsor early termination of the trial for

either efficacy or safety reason. The requirement of being independent is to

maintain the integrity of the trial. It also frequently happens that the DMC

also makes recommendation for changes to the design and conduct of the

trial. This kind of recommendations often raises concern. The following are

a few important points to consider for a DMC. For general guidance, one

may refer to the FDA’s pending Guidance on the Establishment and Opera-

tion of Clinical Trial Data Monitoring Committees101 and Data Monitoring

Committees in Clinical Trials.112

• The trial protocol should have the prior approval of the DMC. The DMC

cannot arbitrarily modify the protocol design. Even though DMC may

be independent, its independence refers to the lack of direct interest in

the outcome of the trial. It does not imply that the DMC can recommend
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design modifications arbitrarily. Any design modification recommended

by the DMC also has the potential for inflation in the probability of the

overall type I error. This is because the proposed modification by the

DMC is likely to be based on the interim treatment comparative data.

The guideline should clearly define the span of authority of the DMC.

• The DMC should have standard operating procedures governing its

conduct. It has obligation and responsibility to maintain confidentiality

of the interim outcome of the trial. It should not communicate the in-

terim results to anyone outside the DMC, unless for purpose of early

termination according to the pre-specified termination rule or for safety

reason.

• There should be clear standard operating procedures governing the

communication between the trial sponsor and the DMC. There should

be clear guidelines regarding the documentation of minutes of meetings,

decisions reached, and written communications.

The ability to make design modifications is obviously very attractive.

However, one should be mindful of the real potential for bias to be intro-

duced as a result of access to the interim unblinded treatment comparative

data. As previously noted, if the characteristics of the patients enrolled

subsequent to an interim analysis have changed, then this may seriously

bias the outcome, unless the drug label can accurately describe the patient

population for whom the drug may be prescribed. It is desirable to have an

independent third party that is responsible for conducting interim analysis

either in a group sequential trial setting or a two- or multi-stage design trial.

There should be clear and sound guidelines and standard operating proce-

dures governing the role, responsibility and conduct of the independent

third party.

In general, any desired design modification or change should be pre-

specified at the design stage. Furthermore, one should describe how deci-

sions on modifications are made conditional on the interim outcome data,

the distribution of the adapted test statistic, and the overall p-value for

assessing the significance of the trial finding. The proposal should also

include methods for addressing any adverse impacts such modification or

change may introduce, such as, bias, changes in patient population, infla-

tion in the probability of the overall type I error, and proof of the validity of

the statistical inference based on the adapted test statistic. Generally, the

clinical decision rule should be as complete as possible. The design modifi-

cation, other than sample size adjustment, should be restricted to deletion
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of decision branches or paths. The addition of new decision branches or

paths should be discouraged.

4.4. Two-stage design in a randomized trial and

accelerated approval

Accelerated approval of potentially life saving drugs in diseases that do not

have available treatment may be done through an accepted surrogate (or

surrogates) whose validity has been established. Validity of the surrogate

means it is likely to predict clinical benefit of primary interest. The idea

of accelerated approval is to first conditionally approve the use of the drug

based on a positive outcome on the surrogate endpoint, and then subse-

quently confirm its effectiveness through the clinical endpoints of primary

interests.

FDA’s Oncology Initiatives96 recognize that the predictive value of

partial responses may still be a matter of discussion for all types of cancer.

But for refractory malignant disease or for diseases that have no adequate

alternative, clear evidence of anti-tumor activity is a reasonable basis for

approving the drug. In these cases, studies confirming a clinical benefit may

appropriately be completed after the conditional approval.

So in essence, the Oncology Initiative has gone a step further in permit-

ting a surrogate to be used in certain situations even though the surrogate

has not been fully validated. One may refer to the example of gemtuzumab

ozogamicin in relapsed acute myeloid leukemia as discussed in Bross et al.9

It is for this reason that a two-stage design may be well suited for acce-

lerated approval. The drug may be tested at the end of the first stage for

conditional approval based on the surrogate, and then confirmed at the end

of the second stage by the primary clinical endpoints.

A two-stage design in a randomized trial offers the following advantages.

First, it places the evaluation of the surrogate and the clinical outcomes of

primary interest in the same trial, and hence would be able to provide some

checks on the validity of the surrogate in relation to the clinical benefit of

interest.

Secondly, a more appropriate way for conditional approval is to first

identify a decision set of clinical endpoints of primary interest that will be

used at the end of the second stage to evaluate the efficacy of the drug.

Appropriate allocation of α should be considered for multiple endpoints,

including the surrogate as well as interim analysis at the end of the first

stage, in order to maintain the probability of the overall type I error at
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α. At the end of the first stage, the efficacy will be evaluated relative to

the surrogate endpoint as well as all the clinical endpoints in the decision

set. If it fails to demonstrate efficacy relative to the surrogate and all the

clinical endpoints, then the trial stops and the drug fails to gain accelerated

approval. If any of the clinical endpoints in the decision set demonstrates

efficacy, then the trial can be terminated at the end of the first stage.

Otherwise, if the test demonstrates efficacy relative to the surrogate only,

then one proceeds to calculate the conditional power of showing a positive

outcome at the end of the second stage given the current interim outcomes

for each of the clinical endpoint in the decision set. If the conditional powers

show that the likelihood of such an outcome is very low for all the clinical

endpoints, and a sample size increase would be unacceptably large, then

the accelerated approval probably should be withheld. Thus, accelerated

approval should be granted if at least one such conditional power is suffi-

ciently high, or if sample size can be increased so that at least one clinical

endpoint will have sufficient conditional power to suggest a positive out-

come at the end of the second stage. If the trial continues to the second

stage and the final results show that there is no clinical benefit, then the

drug may need to be withdrawn from the market.

5. Active Control Trials

The recent fifth revision of the World Medical Association Helsinki Dec-

laration (2000) has generated a great deal of discussion19,92,102 and a re-

newed interest in active control trials. Historically, for trials with mortality

or serious morbidity outcome, delaying or withholding available treatments

would increase the mortality or irreversible morbidity outcome, the use of a

placebo is considered unethical. Thus, active control comparative trials have

been proposed.24,25 An active control superiority trial allows for a direct

comparison of a new study treatment against a standard therapy or stan-

dard of care. It establishes the efficacy of a new study treatment by demon-

strating that the new treatment is superior to the active control.49,50,90 For

example, in oncology for cancers that have standard therapies, a new study

treatment must be compared to and show superiority to a standard ther-

apy in two randomized controlled clinical trials. Unless the new treatment

represents a new advance in the treatment of the disease, it would generally

be more difficult to show that the new treatment is better than an effective

active control. Thus, it is not surprising to find that when a new treatment

fails to show superiority to the active control, the sponsor or investigator
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would attempt to assert that the new treatment is either equivalent to, or

no worse than the active control. But it is well known that failing to reject

the null hypothesis of equality between the new treatment and the active

control does not imply that they are equivalent.25,91 As White107 aptly puts

it, “the lack of evidence of a difference can not be interpreted as evidence

of a lack of difference”.

It has been suggested by various authors7,39 that if the intention is

to show that the new intervention is equivalent or non-inferior to the

active control, then one needs to define the null hypothesis and the cor-

responding alternative hypothesis appropriately. More specifically, the al-

ternative hypothesis should reflect the hypothesis of interest, namely that

of equivalence, or non-inferiority. To do that, these authors suggested that

a certain equivalence or non-inferiority margin should be pre-specified in

the hypothesis. For example, in bioequivalence studies, an equivalence mar-

gin is generally set at ±20% of the control effect. In many active control

non-inferiority trials, an arbitrary fixed threshold is pre-specified — for

example, a threshold of 1.25 for the hazard ratio of the study treatment

relative to the active-control. If the upper limit of the 95% CI for the study

treatment effect relative to the active control lies beneath this threshold,

then non-inferiority is inferred.

The major concern with using an arbitrary fixed threshold is that it

is unrelated to the active control effect defined as the difference between

the control response and the non-existing placebo response. When the active

control effect is relatively small, this may lead to a loss of all of the active

control effect plus more (or a loss of too great a percent of the active control

effect). In other words, if the demonstration of non-inferiority is based on

an arbitrary fixed margin, the new treatment may be approved even though

it may be less efficacious than a placebo.

Having recognized this problem, it has been proposed that the margin

should be set at half the lower limit of the 95% confidence interval for

the estimate of the active control effect to ensure that the new drug is

better than placebo. A similar approach was used by the FDA Center for

Biologics Evaluation and Research in a thrombolytic trial where instead of

95%, they used 90% confidence interval. The null hypothesis of sufficient

inferiority will be rejected if the upper limit of the 95% confidence interval

for the hazard ratio of the new treatment relative to the active control is

below this cutoff. This method has also been called the “two-95% confidence

intervals approach”. While this fixed cutoff is not arbitrary and is linked

to an estimate of the control effect, it has been criticized as being too



June 23, 2003 14:5 WSPC/Advanced Medical Statistics chap14

568 G. Y. H. Chi et al.

conservative because it compares two “statistically worst” cases. Success is

when the new treatment demonstrates a retention of at least 50% of the

statistically worst active control effect.

Various authors30,31,36,44,79,86 have proposed not to directly pre-specify

a fixed margin, but rather define simply the percent of the control effect one

wishes to retain. Non-inferiority is then demonstrated by the new treatment,

if it can be shown that the new treatment retains at least the desired percent

of the active control effect. The active control effect may be estimated

from non-concurrent placebo or standard control studies using mixed effects

model.

5.1. Retention of certain percent of active control effect

hypothesis for a non-inferiority trial

Let T , C and P denote the treatment, the control and the placebo respec-

tively. The hypothesis for a non-inferiority trial can be formulated in the

following two different ways.

1) If one specifies an arbitrary fixed margin, say δ = 20%, then the

hypothesis can be formulated as follows:

H
o

: T − C ≤ −δ vs. H
a

: T − C > −δ .

A fixed margin may be appropriate if one believes the effect can only be

attributed to the treatment. For example, in cancer trials, tumor shrinkage

may be attributed only to the treatment. Otherwise, the use of an arbitrary

fixed margin is highly questionable since the active control effect is not

accounted for in the margin. Particularly, if an active control effect size is

relatively small, using an arbitrary fixed margin may lead to the approval

of a study treatment that is actually inferior to the placebo.

2) If the objective of a non-inferiority trial is to demonstrate that the

new treatment retains a certain percent of the active control effect, then

the null and alternative hypotheses can be written as follow:

H
o

: (T − P1)/(C1 − P1) ≤ π vs. H
a

: (T − P1)/C1 − P1) > π (4)

or

H
o

: ((T − C1)− (C1 − P1))/(C1 − P1) ≤ π − 1 vs.

H
a

: ((T − C1)− (C1 − P1))/(C1 − P1) > π − 1
(5)

where π is the percent retention desired, C1 represents the current active

control, P1 the current placebo if placebo were to be present, and (C1−P1)

is the current active control effect assumes to be positive.
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The hypotheses in (5) can be written as

H
o

: (T − C1) ≤ −(1− π)(C1 − P1) vs.

H
a

: (T − C1) > −(1− π)(C1 − P1) .

(6)

Now since in the current trial, there is no placebo, the active control effect

on the right side of the hypotheses cannot be estimated from current active

control trial. The assessment of the assumption of C1 − P1 > 0 is based on

non-concurrent, randomized, placebo controlled trials. If there are adequate

and well-controlled non-concurrent placebo or standard control studies that

can provide consistent estimates of the active control effect and if the cur-

rent active control study is as similar as possible to these non-concurrent

studies in terms of design, patient populations and therapeutic settings,

then perhaps the assumption that the current control effect (C1 − P1) is a

certain fraction, θ, of the historical active control effect, (C0 −P0), may be

considered reasonable. That is, (C1 − P1) = θ(C0 − P0), with 0 ≤ θ ≤ 1.

Under this assumption, (6) can be written as,

H
o

: (T − C1) ≤ −(1− π)θ(C0 − P0) vs.

H
a

: (T − C1) > −(1− π)θ(C0 − P0) .

(7)

The right side in the hypotheses can be viewed as the margin. For example,

by setting π = 1/2, then the margin is defined as a 50% preservation of the

active control effect, θ(C0 − P0). By setting π = 0, the non-inferiority trial

becomes a superiority over “placebo” trial, where “placebo” is represented

by C1 − θ(C0 − P0). By setting π = 1, the non-inferiority trial becomes an

active control superiority trial.

Test statistic defined in terms of the estimate of (T −C1) from the cur-

rent active control trial and the estimate of (C0−P0) from non-concurrent

placebo or standard control trials can be used to test the null hypothesis

in (7). Holmgren (1999) derived a test statistic involving relative risks.

Rothmann et al.79 derived a test statistic involving hazard ratios from mor-

tality trials, and derived some important properties of the corresponding

test statistic. In each case, the hypotheses in (4)–(7) need to be rewritten to

reflect the corresponding efficacy measure. Rothmann et al.79 showed that

the two-95% confidence intervals approach is conservative in the sense that

it controls the probability of the type I error associated with hypotheses (7)

at the 0.003 level when using survival endpoint. It was further shown that

if one controls the probability of the type I error for the one-sided test at

the 0.025 level, then a unique γ% confidence interval for the active control

estimate can be derived. The use of a test statistic for a retention of certain
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percent of the active control effect is conditionally equivalent to an asym-

metric two-confidence interval approach. The asymmetric two-confidence

interval approach is analogous to the two-95% confidence intervals ap-

proach, except by replacing the 95% confidence interval for the active

control effect estimate by the shorter γ% confidence interval. It follows from

this that the use of point estimate for the active control effect always inflates

the probability of the type I error. The shorter confidence interval would

lead to a higher threshold or margin. A detailed discussion of the general

methodology and issues related to the design, analysis and interpretation

of such active control non-inferiority trials is given in Rothmann et al.79

Implicit in the formulation of the hypotheses in (4), and its modification

in (7) are the following fundamental assumptions:

First, there are adequate non-concurrent placebo or standard control

trials that consistently demonstrated the active control effect over various

patient populations studied. Such consistency provided the necessary con-

fidence regarding the existence of the active control effect in the current

patient population and clinical trial setting. The false positive rate of the

assessment of the control effect should be taken into the consideration of

the current non-inferiority trial. In many cases, active control non-inferiority

trial would probably not be possible to do.

Second, it is assumed that the active control effect exists in the cur-

rent active control trial. Even though there are non-concurrent placebo or

standard control trials on the basis of which the active control effect is

estimated, it does not follow that in the current active control trial, the

active control effect necessarily exists. This is because many causes may

lead to this. For example, the patient samples in the non-concurrent trials

and the patient sample in the current trial may not be representative of the

same patient population. Take an extreme case. Suppose that the active

control works mainly in female patients. So suppose in the non-concurrent

trials, the patient samples are mostly females, while the patient sample in

the current trial is mainly males. Thus, in the patient sample in the current

trial, the active control will not show much of an effect.

Third, it is assumed that the active control effect in the current active

control trial is a certain fraction, θ, of the active control effect determined

in the non-concurrent placebo or standard control trials. This assumption

requires information that may or may not be available that would permit

its determination. Rothmann et al.79 show that the method is applicable

if one knows what this fraction, θ, is. In fact, because the patient samples

in the non-concurrent studies and the patient sample in the current study

may not be representative of the same patient population, one generally



June 23, 2003 14:5 WSPC/Advanced Medical Statistics chap14

Some Statistical Issues of Relevance to Confirmatory Trials 571

cannot assume that the active control effect is constant between the non-

concurrent studies and the current study. Hence, some kind of adjustment

factor θ may be needed. In other circumstances, such adjustment may

also be necessary. For example, if the standard of care has improved over

time, then the active control effect will be somewhat reduced. Similarly, in

anti-infective area, if the bacteria have become resistant to the current

antibiotics, then the active control effect will be reduced. Allowing the use

of new and effective concomitant medications also reduces the active con-

trol effect. A more subtle situation is when the non-concurrent placebo or

standard control studies were stopped early based on the interim analyses

results. It is known that estimates of the active control effects may be

biased upward based on interim results.109,110 Proper adjustment is needed

for such active control effect estimates.55

It should be noted that the hypothesis in (4), which is appropriate only if

the assumption C1−P1 > 0 holds, reflects the following clinical philosophy.

If a new treatment can offer some additional clinical benefits, e.g. a better

toxicity profile or ease of administration, then this new treatment may

still be beneficial even when some efficacy is lost as compared to the ac-

tive control. From this perspective, then one objective of an active control

non-inferiority trial is to rule out all differences of “clinical importance”

between the new treatment and the active control. This would permit one

to conclude that the new treatment is effective even though one has not

established that it is non-inferior to the active control. In such trials, the

term “active control non-inferiority trial” is a misnomer because the trial

objective is not to show non-inferiority of the new treatment to the active

control, but that the new treatment is simply effective. To show the new

treatment is non-inferior or equivalent to the active control, one will need to

specify a much more stringent criteria than that in (4), that is one should

demand a retention much greater than 50% of the active control effect,

perhaps at least 85% based on preliminary research results.

For active control non-inferiority trial, the problem regarding bias to-

wards no difference is a crucial issue because the null hypothesis would be

easier to be rejected when there is bias towards no difference. This kind

of bias can be introduced without having to unblind the treatment codes.

When the primary efficacy endpoint is mortality or irreversible morbidity

event, then perhaps such bias would be of less concern.

Example 13. In clinical trials involving colorectal cancer, it is considered

unethical to use placebo. In a recent study of xeloda for the treatment of

colorectal cancer, the objective is to demonstrate that the new treatment
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is effective in an active control trial. Since xeloda has better side effects

profile and ease of administration. The clinicians felt that a retention by

xeloda of at least 50% of the active control effect represents an acceptable

level of efficacy in view of its better side effects profile and ease of admini-

stration. There are a number of non-concurrent standard control studies

involving the active control. These studies demonstrated fairly consistent

active control effect. Based on the data from these non-concurrent studies,

estimates for the log hazard ratio of the active control effect and its

standard error are 0.234 and 0.075 respectively. This is equivalent to a

hazard ratio estimate of 1.264 with a 95% confidence interval, (1.091, 1.464).

For a 50% retention in the active control effect, the largest estimate of

the active control effect that is allowed with type I error controlled at

0.025 is 1.228 which corresponds to the lower limit of a 30% confidence

interval. Thus, 50% retention of this active control effect produces a cutoff

of 1.114. The clinicians believe that the active control effect should not have

diminished over time. Thus, in this analysis, θ = 1. The current active

control trial produces a hazard ratio estimate of 0.92 with a 97.5% con-

fidence interval upper limit of 1.09 that is below the cutoff of 1.114 (For

comparison, the original protocol proposed to consider a fixed cutoff of

1.20). Thus, this trial demonstrates that it rules out a loss of more than

50% of the active control effect. In fact, the new treatment is likely to

retain at least 61% of the active control effect. The conclusion that one

may draw from this trial is that the new treatment is effective. It retains

at least 61% of the active control effect. However, one cannot claim that

this new treatment is non-inferior to the active control. For such a claim,

one would require that the new treatment should retain at least a certain

percent of the active control effect that is much greater than 50% specified

here. But for such a trial, the sample size required to maintain reasonable

power would become prohibitively large.

This example illustrates that clinical decision rule is sometimes fairly

subtle. It is not simply a matter of defining a set of primary and secondary

endpoints, desired comparisons among several treatment arms, and an allo-

cation of α. It involves a deeper understanding of what kind of evidence will

be presented when the trial is finished, whether the evidence is appropriate

for the indication sought, and whether the evidence would be sufficient for

approval.

In summary, if for ethical reason, one has to use an active control, then

an active control superiority trial can always be done. The problem is that
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it may not be easy to demonstrate that the new treatment is superior to

the active control, unless the active control happens to be ineffective in the

current study. But in the latter case, if one were to claim that the new drug

is superior to the active control, then it would be misleading. Thus, even

in an active control superiority trial, perhaps one can only conclude that

the new treatment is effective, unless one is certain that the active control

is effective in the current trial.

On the other hand, due to all the critical assumptions needed in doing

an active control non-inferiority trial, most of the times, such trials may

not be possible and are not recommended because these assumptions are

not verifiable. One of the basic concerns is that the active control may not

work in the current patient population or trial setting. When this is true,

then the assumption that the active control is effective would inflate the

type I error rate. Another concern is that one may end up demonstrating a

drug that is actually inferior to a placebo through such a trial. Therefore,

such trials may be contemplated if there are other studies or information

that can help to alleviate these concerns which can not be verified within

the active control trial itself. Even then, the issue regarding bias towards

no difference should be properly addressed.

In the actual design of an active control non-inferiority trial, the active

control effect, the proportion of control effect to be preserved, the control

of the probability of the type I error should be properly determined in light

of the objective. One should also pay attention to issues such as multiplicity

testing, interim analysis and design modification. These issues may take on

a different complexity due to the special nature of an active control non-

inferiority trial. Proper standard operating procedures should be designed

to minimize the introduction of bias towards no difference.
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1. Introduction

Recent advances in molecular genetics have provided opportunities for

genetic studies of complex human traits. Many human diseases such as

cystic fibrosis, insulin dependent diabetes mellitus, hypertension, and

schizophrenia, are considered as having some genetic component. Locating

the genes that affect susceptibilities to these diseases is important in un-

derstanding the etiology of the diseases and may result in better treatment.

In this chapter, we give an overview of segregation and linkage analysis of

genetic data. We start with an introduction of basic genetic concepts and

relevant terminology.

1.1. Genetic terminology

Each individual has 23 pairs of chromosomes. One of the 23 pairs is formed

by two sex chromosomes, X and Y . Every woman carries XX chromosomes

and every man carries XY . The other 22 pairs are called autosomal chro-

mosomes. We focus on autosomal chromosomes in this chapter. The human

genome can be imagined as two parallel straight lines. A given location in

the genome (like a segment or point on the straight line) is called a locus.

583
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The different forms of genetic variants are termed as alleles. In molecular

genetics or biology, the term, gene, is used to refer to both an allele or a

locus. Alleles are often denoted by letters or numbers, such as A, a, B,

b, 1, 2, 3, etc. The proportion of a specific allele at a given locus in the

population is called the allele frequency or allele probability. For example,

p = P (A) = 0.3, implies that 30% of alleles at a given locus are “A.” The

allele frequency can be estimated from genetic data. At any given locus,

each individual has two alleles, such as AA, Aa, or aa. The pair of alleles

at a locus is referred to as the genotype. The order of the two alleles in

the genotype is not relevant. Thus, “Aa” and “aA” are considered to be

the same genotype. If an individual has two identical alleles (e.g. AA or

aa) at a given locus, then the individual is said to be homozygous at that

locus. If the two alleles are different (e.g. Aa), then the individual is said

to be heterozygous at that locus. Usually, the determination of the geno-

type of an individual at a given locus requires laboratory work. However,

some of characteristics are readily observable, such as an individual’s eye

color and height. An observable characteristic is called the phenotype. The

relationship between the genotype and the phenotype is not necessarily

one to one. It is possible that several different genotypes correspond to one

phenotype. If genotype AA and genotype Aa both have the same phenotype

(characteristic), but different from that of genotype aa, then allele A is said

to be dominant to allele a, or allele a is said to be recessive to allele A.

In this case, the phenotype or characteristic corresponding to AA is called

dominant, and the phenotype corresponding to aa is called recessive. If the

phenotype associated with the genotype Aa is different from those of both

AA and aa, then alleles A and a are said to be codominant. For example,

there are three alleles, A, B, and O, at the blood group locus. Genotypes

AA and AO have the same phenotype, blood type A, and genotypes BB

and BO have the same phenotype, blood type B. Hence, allele A is do-

minant to allele O, and allele B is also dominant to allele O. The genotype

OO has a recessive phenotype, blood type O, and the genotype AB has a

codominant phenotype, blood type AB.

When we consider more than one locus simultaneously, the alleles (at

different loci) received by an individual from one parent are called a

haplotype. A pair of haplotypes is a multilocus genotype. Suppose that

there are two loci, locus one with two alleles A and a, and locus two with two

alleles B and b. Figure 1 presents a hypothetical family with two parents

and a son and a daughter in which the son received haplotype ab from

the mother and haplotype Ab from the father, and the daughter received
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Mother Father

Son

a

b

a

b

A

B

a

b

Daughter

A

B

a

b

A

b

a

b

Fig. 1.

haplotypes AB from the father and ab from the mother. The squares and

circles in Fig. 1 indicate males and females, respectively. Notice that there

is a vertical bar between the two haplotypes for some individuals in Fig. 1.

The bar notation represents a phase known genotype. That is, alleles on

the same side of the bar are from the same parent, or equivalently the

maternal and paternal origin for each allele is known. The haplotype that

the son received from the father is Ab which is different from the two original

haplotypes of the father, AB and ab. Therefore, the alleles at the two loci

have been recombined during the process of transmitting from the father

to the son. This phenomenon is referred to as crossing-over. Only an odd

number of cross-overs between two loci are observable. The probability of

an odd number of cross-overs between two loci is called the recombination

fraction, denoted by θ.

An individual receives one of the two alleles from the genotype of each

parent with equal probability. Suppose the genotype of a parent is Aa, then

the above principle implies that P{→ A|Aa} = P{→ a|Aa} = 1

2
, where

{→ A|Aa} denotes the event that a parent transmits allele A to the off-

spring given that the parent has genotype Aa. This is frequently referred to

as Mendel’s first law or the principle of independent segregation. If the loci

of a two-locus genotype are on different chromosomes, then the transmission

of the alleles at one locus is independent of the transmission of the alleles

at the other locus. For example, suppose a parent has genotype AaBb
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(two-locus genotype), and the two loci are on the different chromosomes,

then

P{→ AB|AaBb} = P{→ A|Aa} × P{→ B|Bb} =
1

4
,

P{→ Ab|AaBb} = P{→ A|Aa} × P{→ b|Bb} =
1

4
,

P{→ aB|AaBb} = P{→ a|Aa} × P{→ B|Bb} =
1

4
,

P{→ ab|AaBb} = P{→ a|Aa} × P{→ b|Bb} =
1

4
.

This principle of independent assortment is often called Mendel’s second

law.

1.2. The Hardy Weinberg equilibrium

Random mating is defined as: any female is equally likely to mate with

any male. That is, the probability of the mating type is the product of the

probabilities of the genotypes of the female and male mates, for example,

P{AA×Aa} = P (AA)P (Aa). Notation AA×Aa indicates the mating type

resulting from an AA individual mating with an Aa individual.

Next, we consider a locus with two alleles, A and a. Assume that the

allele frequencies (or probabilities) for the two alleles are

P (A) = p , P (a) = q ,

where p+q = 1. A population is said to be in equilibrium if the proportions

(or probabilities) of the three genotypes of the current generation in the

population are

P (AA) = p

2
, P (Aa) = 2pq , P (aa) = q

2
. (1)

Under random mating, the allele and genotype probabilities for next

generation are the same as the current generation, i.e.

P (A) = p , P (a) = q ,

and

P (AA) = p

2
, P (Aa) = 2pq , P (aa) = q

2
.

The genotypic and allelic probabilities stay the same from generation to

generation for an equilibrium population. This is known as the Hardy–

Weinberg law.19,67



June 4, 2003 15:16 WSPC/Advanced Medical Statistics chap15

Statistics in Genetics 587

If the genotypic probabilities of the current generation do not satisfy

condition (1), then equilibrium will be reached after one generation of

random mating.68 For details of the derivation of the Hardy–Weinberg

law, readers are referred to an excellent book on population genetics by

C. C. Li.29

1.3. Linkage and linkage equilibrium

From Mendel’s second law, if two genetic loci are on different chromosomes,

then the transmission of alleles (segregation) at one locus is independent of

that at the other locus; there, the recombination fraction is θ = 1

2
. If the two

genetic loci are close together, the alleles that are paternal (or maternal)

in origin tend to transmit together (cosegregation) to an offspring. This

phenomenon is known as linkage. The closer the two loci are, the smaller

the probability for crossing over; thus, the recombination fraction for the

two linked loci is smaller than 1

2
.

Next, we consider two genetic loci in more detail. Suppose that the first

locus has two alleles, A and a; and the second locus has two alleles, B and

b. The respective allele probabilities are

P (A) = p , P (a) = q , P (B) = u , P (b) = v ,

where p + q = 1 and u + v = 1. There are nine two-locus joint genotypes.

Under the assumptions of random mating and no linkage (θ = 1

2
), if the

genotypic probabilities are:

AABB AABb AAbb AaBB AaBb Aabb aaBB aaBb aabb

p2u2 2p2uv p2v2 2pqu2 4pquv 2pqv2 q2u2 2q2uv q2v2

then, the genotypic probabilities of the next generation will be the same

as the current generation. Hence, if each locus is in equilibrium separately

in a population; and the two loci are not linked, then the two loci are

jointly in equilibrium. For a population not in equilibrium jointly, the joint

equilibrium will not be reached after a single generation of random mating.

The joint equilibrium is approached as the number of generations n→∞.

The speed of approaching joint equilibrium depends on the recombination

fraction, θ (see the following Eq. (3)).

If alleles at two loci are in random association (independent), the two

loci are said to be in a state of linkage equilibrium. To illustrate this concept,

consider two diallelic loci with alleles A and a for locus one, and alleles B
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and b for locus two. If these loci are in a state of linkage equilibrium, then

the haplotype probabilities satisfy:

P (AB) = P (A)P (B) , P (Ab) = P (A)P (b) ,

P (aB) = P (a)P (B) , P (ab) = P (a)P (b) .

(2)

Under linkage equilibrium, the joint probabilities of each two locus

haplotype are equal to the products of the corresponding single-locus allele

probabilities. If alleles at two loci are not in random association (depen-

dent), this situation is referred to as allelic association or linkage disequi-

librium. For two diallelic loci, under linkage disequilibrium, we have

δ = P (AB)− P (A)P (B) 6= 0 ,

where δ is the departure from equilibrium; it is the linkage disequilibrium

parameter. It can be shown that

P (AB) = P (A)P (B) + δ , P (Ab) = P (A)P (b)− δ ,

P (aB) = P (a)P (B)− δ , P (ab) = P (a)P (b) + δ .

If linkage disequilibrium exists (δ 6= 0) initially for a population, under

random mating, then the linkage disequilibrium parameter will approach

zero as the number of generations, n→∞. Specifically, let δ0 be the initial

disequilibrium parameter and θ be the recombination fraction between two

loci, then after n generations,

δ
n

= (1− θ)n

δ0 , (3)

where δ
n

is the linkage disequilibrium parameter of the nth generation.

The linkage disequilibrium will decrease quickly over generations when the

linkage is weak, i.e. the recombination fraction θ is large (close to 1

2
). If

the two loci are unliked, θ = 1

2
and equilibrium is reached very quickly; if

the two loci are tightly linked, θ ' 0, and disequilibrium will continue for

many generations. This is the basis for fine mapping using disequilibrium.

Therefore, a large linkage disequilibrium is often considered to be evidence

of linkage (small θ).

For readers who would like to know more about linkage and popula-

tion genetics in general, they are referred to the books by Li29 and Hartl

and Clark.20 Most books on statistical methods in genetics provide an

introductory chapter on basic genetic concepts and terminology.13,27,40,54

The book by Watson et al.65 gives a comprehensive description of the mole-

cular biology of genes. Olson et al.38 wrote a tutorial on genetic mapping

of complex traits. For fundamentals of genetic epidemiology, readers are

referred to Khoury et al.23 and Thompson.64
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2. Segregation Analysis

Mendel proposed that two factors (alleles) segregate from one another in

the process of forming gamates (sperm or ovum) that constitute the genetic

makeup of the next generation. The Mendelian segregation ratio is the

conditional probability of the genotype in the offspring given the mating

type, for example,

P{aa|Aa×Aa} =
1

4
.

These ratios are fixed under the Mendelian inheritance model. Hence, one

task of segregation analysis is to test whether or not the observed pheno-

type data among the offspring is consistent with Mendelian inheritance. In

general, segregation analysis tests models of inheritance with family data.

2.1. Estimating allele probability (Gene frequency)

Suppose that a random sample of individuals is selected to observe the

phenotypes at a given autosomal locus. If all alleles are codominant, one

can estimate the frequency of an allele at the locus by counting the number

of alleles in the sample and then dividing by the total number of genes

(alleles) in the sample. There are twice as many alleles as individuals

because each individual has two alleles at a given locus. Consider a given

locus which has two codominant alleles A and a. Suppose that a random

sample of n individuals is ascertained to study the locus, with n
AA

, n
Aa

, n
aa

corresponding to the counts of the three genotypes, AA, Aa, aa respectively

(n
AA

+ n
Aa

+ n
aa

= n). Then frequency p
A

of allele A is estimated by

p̂
A

=
2n

AA
+ n

Aa

2n

.

Likewise

p̂
a

=
2n

aa
+ n

Aa

2n

,

with p̂
A

+ p̂
a

= 1. The variances of the estimated allele frequencies are

var(p̂
A
) =

2np
A
(1− p

A
)

(2n)2
=

p
A
(1− p

A
)

2n

, var(p̂
a
) =

p
a
(1− p

a
)

2n

.

Example: The human MN blood type locus is a codominant locus with

two alleles M and N. Li29 cites the results of L. Ride (1935; cf. Haldance,

1938) on MN blood type data. More than one thousand Chinese residents

in Hong Kong were tested for the MN blood type. The following results

were obtained:



June 4, 2003 15:16 WSPC/Advanced Medical Statistics chap15

590 Z. Li & M. Xie

Blood Types MM MN NN Total

Numbers 342 500 187 1029

p̂
M

=
2× 342 + 500

2× 1029
=

1184

2058
= 0.5753 .

Suppose that a given locus has k codominant alleles with n
i

alleles of

type i in a random sample of n individuals, where n1 + n2 + · · ·+ n
k

= 2n.

Then, the allele frequency p
i
of allele type i is estimated by

p̂
i
=

n
i

2n

.

It is easy to see that the allele counts (n1, n2, . . . , nk
) has a multinomial

distribution with parameters (p1, p2, . . . , pk
). Thus,

E(p̂
i
) = p

i
, var(p̂

i
) =

p
i
(1− p

i
)

2n

, cov(p̂
i
, p̂

j
) = −

p
i
p

j

2n

, for i 6= j .

In fact, p̂
i
is a maximum likelihood estimate of p

i
. Both maximum likelihood

estimates (MLE) and likelihood ratio tests play very important roles in

genetic analysis.

Consider a locus with two alleles A and a. If allele A is dominant,

then the genotype AA and Aa each have the same phenotype. Let n
A

be the number of individuals with either genotype AA or Aa, and let n
a

be the number of individuals with genotype aa, where n
A

+ n
a

= n. Under

the random mating assumption and by Hardy–Weinberg equilibrium, the

probability of the recessive genotype equals the squared probability of allele

a, i.e. P (aa) = p

2
a

. Therefore

p̂

2
a

=
n

a

n

, and p̂
a

=

√

n
a

n

.

Note n
a

has a binomial distribution with parameter p

2

a

. Hence, p̂

2

a

is the

MLE for p

2

a

. By the invariance principle of MLE, p̂
a

is the MLE for p
a
. By

using the δ-method47 and the fact that

var(p̂2
a

) =
p

2

a

(1− p

2

a

)

n

,

we could derive

var(p̂
a
) =

1− p

2

a

4n

.

For a dominant locus with more than two alleles, such as the ABO blood

locus, estimating allele frequencies is a little more complex. The EM algo-

rithm can be used to obtain the MLEs of the allele frequencies.9,27,32,39,56
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2.2. Testing Hardy Weinberg equilibrium

Hardy–Weinberg equilibrium is commonly assumed in genetic analyses. The

validity of this assumption can be tested by the Pearson χ

2 test:

χ

2 =
∑ (O −E)2

E

.

For a two allele codominant locus, under Hardy–Weinberg equilibrium (H0),

the expected numbers of individuals with various genotypes in a random

sample of n individuals are

AA Aa aa

np2

A
2npApa np2

a

Let n
AA

, n
Aa

, n
aa

be the observed numbers of individuals with genotypes

AA, Aa, aa, respectively. Then,

p̂
A

=
2n

AA
+ n

Aa

2n

, p̂
a

=
2n

aa
+ n

Aa

2n

.

The expected numbers of the individuals with various genotypes can be

estimated by:

Ê
AA

= np̂

2

A

, Ê
Aa

= 2np̂
A
p̂

a
, Ê

aa
= np̂

2

a

.

The one degree of freedom Pearson χ

2 statistic is

χ

2 =
(n

AA
− Ê

AA
)2

Ê
AA

+
(n

Aa
− Ê

Aa
)2

Ê
Aa

+
(n

aa
− Ê

aa
)2

Ê
aa

.

Reject the null hypothesis (H0) that the population is in Hardy–Weinberg

equilibrium when the χ

2 value is large, larger than χ

2
1−α

(1), where α is the

level of significance.

Example: The following data were obtained from a hypertension ge-

netic study. A random sample of 197 individuals were genotyped for the

angiotensin-converting enzyme (ACE) locus with

AA Aa aa

26 93 78

From this data set, we have

p̂
A

= 0.3680 , p̂
a

= 0.6320 , Ê
AA

= 197× (0.3680)2 = 26.68 ,

Ê
Aa

= 2× 197× 0.3680× 0.6320 = 91.63 ,

Ê
aa

= 197× (0.6320)2 = 78.69 ,
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and

χ

2 =
(26− 26.68)2

26.68
+

(93− 91.63)2

91.63
+

(78− 78.69)2

78.69
= 0.0439 .

This test fails to reject the null hypothesis that the population is in Hardy–

Weinberg equilibrium at the significance level α = 0.05, since χ

2

0.95(1) =

3.841.

2.3. Segregation analysis of dominant loci

One method to show the genetic basis of single locus inheritance of a given

disease is to demonstrate the Mendelian segregation ratio. Consider a rare

dominant two allele disease locus with allele A and a. Assume that the

allele A causes the disease with frequency P (A) = p ' 0. The individuals

with genotypes AA and Aa will have the disease, while individuals with

genotype aa will be unaffected. The observable phenotypes are affected or

unaffected. The Mendelian segregation ratios for six mating types under

random mating are presented in Table 1.

Table 1. Mendelian segregation ratios for 6 mating types under random mating.

Genotype Phenotype

Mating P(Mating) AA Aa aa Affected Unaffected

AA × AA p4 1 0 0 1 0

AA × Aa 4p3q
1

2

1

2
0 1 0

AA × aa 2p2q2 0 1 0 1 0

Aa × Aa 4p2q2
1

4

1

2

1

4

3

4

1

4

Aa × aa 4pq3 0
1

2

1

2

1

2

1

2

aa × aa q4 0 0 1 0 1

Among the five possible mating types which produce affected offspring, the

mating type Aa × aa is the most likely to occur according to the above

probabilities of mating types and the fact that p = P (A) ' 0.

The most informative ascertainment procedure or sampling scheme is

to select families with one affected parent and another unaffected parent.

The mating of such families is commonly assumed to be Aa× aa. Let τ =

P{Aa|Aa× aa} ' P{Affected|Aa× aa} be the Mendelian ratio parameter,

and let X be the random variable for the number of affected offspring for
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an ascertained family. Then, X has a binomial distribution with probability

function

L(r|τ) = P{X = r} =

(

n

r

)

τ

r(1− τ)n−r

, (4)

where n is the number of offspring. It is worth noting that the genotypes of

the offspring are conditionally independent given the parental mating type.

To demonstrate the Mendelian segregation ratio, we test H0 : τ = 1

2
.

2.4. Approximated χ
2 test

Suppose that k families with parental mating type Aa×aa were ascertained,

and each family has r
i

affected offspring among a total of n
i

offspring

(n1 + n2 + · · ·+ n
k

= n). Let X = X1 + X2 + · · ·+ X
k
, then

E(X
i
) = n

i
τ , var(X

i
) = n

i
τ(1−τ) , E(X) = nτ , var(X) = nτ(1−τ).

By the central limit theorem, we have

X − nτ

√

nτ(1− τ)

D

→ N(0, 1) .

Hence,

(X − nτ)2

nτ(1− τ)

D

→ χ

2

1 ,

where
D

→ denotes covergence in distribution. Under H0 : τ = 1

2
, we calculate

the test statistic

χ

2 =
(
∑

k

i=1
r
i
− n

2
)2

n

4

.

Reject H0 when χ

2 is large.

2.5. Likelihood ratio test

With the above family data structure and formula (4), the likelihood

function of τ is

L(τ |r1, . . . , rk
) =

k

∏

i=1

L(τ |r
i
) =

[

k

∏

i=1

(

n
i

r
i

)]

τ

r(1− τ)n−r

,

where r =
∑

k

i=1
r
i
. The MLE of τ is τ̂ = r

n

. The likelihood ratio statistic is

χ

2 =
L(τ̂ )

L( 1

2
)

.
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2.6. Segregation analysis of recessive loci

Consider a rare recessive two allele disease locus. For an individual to be

affected, the genotype of the individual has to be aa. There are three mating

types, Aa×Aa, Aa×aa, aa×aa, which could produce affected offspring. Let

P (A) = p and P (a) = q = 1−p. Then, it can be shown that the conditional

probabilities of mating types, given that one offspring is affected, are:

P{Aa× Aa|Affected} = p

2
,

P{Aa× aa|Affected} = 2pq ,

P{aa× aa|Affected} = q

2
.

Since the disease is rare recessive, i.e. P (a) = q ' 0, then Aa × Aa is

the most likely mating type given that one child is affected. Therefore, the

ascertainment procedure for a rare recessive disease is to select families with

at least one affected child and then assume the mating type is Aa×Aa for

analysis. The Mendelian segregation ratio for mating type Aa×Aa with a

recessive disease is

τ = P{aa|Aa×Aa} =
1

4
.

We can estimate and test the segregation ratio τ .

It is possible that some families with at least one affected child are not

included in the study sample due to chance. Fisher15 in his classical paper

recognized the need for correcting for the incomplete selection in segregation

analysis and proposed methods to take the ascertainment procedure into

account in the analysis. When families are selected on the basis of having at

least one affected offspring, the affected individuals initially identified are

called probands. It is possible that one ascertained family has more than

one proband. The probability that an affected individual is a proband is

called the ascertainment probability, and it is denoted by

π = P{Proband|Affected} .

The probability that a family, with r affected offspring, is not ascertained is

P{Not Ascertained|r Affected} = (1− π)r

.

Therefore, the probability that a family with r affected offspring is ascer-

tained is

P{Ascertained|r Affected} = 1− (1− π)r

.
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If the ascertainment probability is one, i.e. π = 1, then all families with

at least one affected offspring are ascertained. This situation is referred to

as complete ascertainment. The situation where π < 1 is referred to as in-

complete ascertainment. When the ascertainment probability is very small,

that is, π ' 0, then 1− (1− π)r ' rπ, and the phrase single ascertainment

is used. Thus, for the single ascertainment procedure, the probability that

an affected family is ascertained is proportional to the number of affected

offspring. Under the single ascertainment procedure, almost all ascertained

families have a single proband.

2.7. Segregation analysis with complete ascertainment

Under the complete ascertainment procedure, the number of affected off-

spring for each ascertained family has a truncated binomial distribution15

with the likelihood function

L(τ |r
i
, s

i
) =

( s
i

r
i

)τri(1− τ)si−ri

1− (1− τ)si

, r
i
= 1, . . . , s

i
, i = 1, . . . , n , (5)

where τ = P{aa|Aa × Aa} is the Mendelian segregation ratio, s
i

is the

number of offspring for the ith family, r
i
is the number of affected offspring,

and n is the number of families. The goal of segregation analysis is to

estimate and test the Mendelian segregation ratio τ .

Assume that all ascertained families have the same number of offspring,

s
i
= s for all i. Let a

r
be the number of families with r affected offspring

(r = 1, 2, . . . , s) and n
s

be the total number of ascertained families, then
∑

s

r=1
a

r
= n

s
, and

∑

s

r=1
ra

r
= A is the total number of affected offspring.

From (5), the likelihood function based on n
s

ascertained families is

L(τ) =

ns
∏

i=1

L(τ |r
i
, s

i
) =

s

∏

r=1







( s

r

)τr(1− τ)s−r

1− (1− τ)s







ar

.

The maximum likelihood estimate for τ is the solution of the score equation
∂L(τ)

∂τ

= 0, which is equivalent to

sτ

1− (1− τ)s

=
A

n
s

= r̄ . (6)

There is no closed form solution to Eq. (6). The solution can be obtained

by interative algorithms such as the: Newton–Raphson, Fisher scoring, and
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EM algorithms. The Fisher information for τ is

I(τ) = E

(

−
∂

2
L(τ)

∂τ

2

)

=
sn

s

1− (1− τ)s

{

1− (1− τ

s − sτ(1− τ)s−1

τ(1− τ)[1− (1− τ)s]

}

.

The variance of the MLE τ̂ can be estimated by 1

I(τ̂)
.

2.8. Segregation analysis with incomplete ascertainment

In order for an individual selected at random, from families with parental

mating type Aa×Aa, to become a proband, the individual has to be affected

and ascertained. Thus,

P{Proband} = P{Affected and Selected}

= P{Selected|Affected}P{Affected} = πτ ,

where π is the ascertainment probability, and τ is the Mendelian segregation

ratio. A family is considered to be segregating if the family has at least

one affected offspring. The probability that a family with s offspring is a

segregating family and not ascertained is (1− πτ)s. Thus, the probability

that a family with s offspring is ascertained is 1− (1− πτ)s. Let B be the

random variable denoting the number of probands in a family. Then, the

fact that a family is ascertained is equivalent to B > 0 with P (B > 0) =

1 − (1 − πτ)s. The likelihood function for an ascertained family with r

affected offspring with sibship size s is36

L(π, τ) = P{X = r|B > 0; s, π, τ}

=
[1− (1− π)r]( s

r

)τr(1− τ)s−r

1− (1− πτ)s

. (7)

This likelihood function can be used to estimate and test ascertainment

probability, π, and the Mendelian segregation ratio, τ . Since the analysis

takes the ascertainment procedure into account, it is often referred to as an

ascertainment bias corrected analysis.

There are two special cases to the likelihood function (7). When the

ascertainment probability π = 1, that is, complete ascertainment, the like-

lihood function (7) reduces to (5). If the ascertainment probability is very

small, i.e. single ascertainment (π ' 0), then

(1− π)r ' 1− rπ , (1− πτ)s ' 1− sπτ ,
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and the likelihood function (7) is approximately

L(π, τ) = P{X = r|B > 0; s, π, τ} =

(

s− 1

r − 1

)

τ

r−1(1− τ)s−r

.

In the case when the exact number of probands for each ascertained

family is known, the likelihood function is given by

L(π, τ) = P{X = r, B = b|B > 0; s, π, τ}

=

(

r

b

)

π

b(1− π)r−b

(

s

r

)

τ

r(1− τ)s−r

1− (1− πτ)s

.

In addition to the likelihood based inference for ascertainment pro-

bability and the Mendelian segregation ratio for a recessive locus under

incomplete ascertainment, there are two other simple methods: the proband

method and the singles method.

The proband method was initiated by Weinberg and described in detail

by Fisher.15 Suppose that n segregating families are ascertained and s
i
, r

i
, b

i

are the sibship size, the number of affected offspring, and the number of

probands for the ith family, respectively. The segregation ratio and the

ascertainment probability are estimated by the proband method as

τ̂ =

∑

n

i=1
b
i
(r

i
− 1)

∑

n

i=1
b
i
(s

i
− 1)

and π̂ =

∑

n

i=1
b
i
(b

i
− 1)

∑

n

i=1
b
i
(r

i
− 1)

.

If a proband is the only proband within an ascertained family, such a

proband is referred to as a single. Let d be the number of singles in a

sample of ascertained families. The segregation ratio and the ascertainment

probability are estimated by the singles methods as

τ̂ =

∑

n

i=1
r
i
− d

∑

n

i=1
s

i
− d

and π̂ =

∑

n

i=1
b
i
− d

∑

n

i=1
r
i
− d

.

The segregation analysis methods described above are for qualitative

traits (i.e. affected or unaffected). Methods for segregation analysis of

quantitative traits for single-locus and polygenic control were developed

by Morton and MacLean.37 This “mixed model” method is based on a like-

lihood approach. Several programs implemented the “mixed model,” such

as Pedigree Analysis Package (PAP),22 SEGPATH,44 and POINTER.26

Bonney5 developed a family of regressive models for segregation analysis of

quantitative traits that allowed simultaneous adjustment for covariates and

estimation of the parameters of Mendelian models. These models were im-

plemented in the Statistical Analysis for Genetic Epidemiology (S.A.G.E.)
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computer program.11 Terwilliger and Ott63 provided a list of computer

programs for genetic analysis.

3. Linkage Analysis

Linkage analysis investigates whether or not two loci are physically located

near one another on the same chromosome. Alleles from two linked loci

(physically close) tend to segregate together, that is, they are passed from

parent to child as a single unit. This phenomenon deviates from Mendel’s

second law of independent assortment. Linkage analysis is one of the

methods used to localize disease traits in the human genome. Evidence of

linkage between a known marker system and a putative gene for a disease

is considered to be the highest level of statistical evidence that the disease

is due to a genetic mechanism. Linkage analysis localizes a gene solely on

the basis of its location, without regard to its biochemical function. This

approach is called “positional cloning.”

Alleles cosegregating due to linkage between two loci in one family may

be different from alleles in another family. The cosegregating phenomenon

due to linkage is only observable within families. Therefore, family data or

data from biologically related subjects are necessary for detecting linkage.

However, cosegregating caused by allelic association (linkage disequilib-

rium) can be detected by general population studies. Allelic association

is a property of alleles, while linkage is a property of loci. They are two

different but related concepts.

The measurement for linkage between two loci is the recombination

fraction, θ. The closer the two loci, the less likely that a cross-over will

occur between them and the smaller the recombination fraction, θ. Two

extreme cases are: (1) θ = 1

2
, the two loci are far apart and segregate

independently (Mendel’s second law of independent assortment); (2) θ = 0,

the two loci are identical and actually are one locus. The range of the

recombination fraction is 0 ≤ θ ≤ 1

2
. Through map functions,17,25,34,47

the recombination fraction, θ, between the two loci can be translated to

the genetic distance between the two loci. Genetic distance is correlated

with physical distance, but they are different. Linkage analysis estimates

and tests the recombination fraction, θ. There are two types of statistical

methods for linkage analysis: model-based and model free.

3.1. The LOD score method

The LOD (log-odds) score method is based on the maximum likelihood

ratio test. Haldane and Smith18 used the maximum likelihood approach to
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linkage analysis. The LOD score method was widely used after Morton35

published tables of log-odds (or LOD) scores that could be used in the

analysis of family data. The LOD score method is considered to be a model-

based procedure. Usually, the mode of inheritance, the number of alleles,

and the penetrances of each genotype are assumed to be known for the LOD

score method. The only unknown parameter is the recombination fraction θ.

The conditional probability of observing the corresponding phenotype, say

affection status, given the specified genotype, is referred to as penetrance.

Ott41 described the LOD score method in detail.

Assume that the likelihood function for a given family is L(θ), and θ̂ is

the maximum likelihood estimate of θ. The LOD score for testing H0 : θ = 1

2

vs. θ <

1

2
is

Z(θ̂) = log10

L(θ̂)

L(θ = 1

2
)

.

Traditionally, reject H0 and claim linkage if Z(θ̂) > 3.35 The p-value corre-

sponds to Z(θ̂) > 3 is less than 10−4.

3.1.1. Example of phase known data

Figure 2 depicts a three generation hypothetical family with a binary

phenotype (affected or unaffected) and marker genotype data for each

individual. The dark symbols indicate that a subject is affected with an

autosomal rare dominant disorder. We further assume that the disease locus

has two alleles D and d with full penetrance. Hence, the penetrances are

P{Affected|DD} = P{Affected|Dd} = 1 , P{Affected|dd} = 0 .

From the phenotype and marker locus genotype data in Fig. 2, the

joint genotype (i.e. two locus genotype) of marker and trait loci and phase

information can be inferred and are given in Fig. 3. Both grandmother and

mother are homozygous with genotype dd at the disease locus because they

are normal. Since the grandfather is affected, his genotype at the disease

locus is either DD or Dd. It is reasonable to assume that his genotype is

Dd since the disease is rare. This assumption has no impact on the linkage

analysis because the grandparental genotypes are only used to determine

the phase of the father. There are two possible phases for the grandfather

and either one of them will give rise to the same phase for the father.

The father is affected, so he must have at least one D allele. He must also

receive one d allele from his mother. Therefore, the genotype of the father

is Dd at the disease locus. The fact that the father received a haplotype
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dm from his mother determines his phase. Hence, his genotype is dm/DM

as shown in Fig. 3. Since the mother is double homozygous, each of the five

children must receive a haplotype dm from her. The two locus genotypes

and phases for the five children are inferred from the parental information

and shown in Fig. 3. The mother is not informative for recombination.

The father produced one recombinant gamate and four non-recombinant

gamates. The likelihood function is

L(θ) = θ

r(1− θ)N−r = θ(1− θ)4 ,

where r is the number of recombinants, and N is the number of gamates.

The maximum likelihood estimate of θ is θ̂ = r

N

= 0.2, and the LOD score



June 4, 2003 15:16 WSPC/Advanced Medical Statistics chap15

Statistics in Genetics 601

is

Z(θ̂) = log10

L(θ̂)

L(θ = 0.5)
= log10

0.20× 0.84

0.55
= 0.4185 .

The evidence is not strong enough to support linkage.

3.1.2. Example of phase unknown data

Suppose that the grandparents are missing in Figs. 2 and 3. Then, the

phase of the father cannot be determined with certainty. With the given

genotype, the father’s genotype could have two possible phases, dm/DM

(phase I) (Fig. 4) and dM/Dm (phase II) (Fig. 5). Under the phase

dm/DM , there are one recombinant and four non-recombinants. There

are one non-recombinant and four recombinants under the phase dM/Dm.

Each of these two phases has equally likely probability ( 1

2
) of being correct.

The likelihood function becomes:

L(θ) = P{Data}

= P{Data|Phase I}P{Phase I}+ P{Data|Phase II}P{Phase II}

=
1

2
θ(1− θ)4 +

1

2
θ

4(1− θ) .

The MLE for θ no longer has a closed form solution in this case. Many

numerical procedures can be employed to obtain the MLE, θ̂. Using the

LINKAGE program,28 we find θ = 0.21 (approximately), with LOD score

Z(θ̂) = 0.1249. Terwilliger and Ott63 provided detailed descriptions and

guidance about the LINKAGE program.

If the data consists of more than one family, then the joint likelihood

function is the product of the likelihood functions of each family under the
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assumption that the families are independent of each other. The LOD score

linkage analysis can be carried out similarly.

3.2. The affected sib pair (ASP) method

Sib pair linkage studies are commonly used for the investigation of genetic

components involved in complex traits because a sib pair is the simplest

family unit and easy to ascertain. Penrose42,43 initiated the method based

on the idea that sib pairs with similar phenotypes should have an excess

of allele sharing while sib pairs with dissimilar phenotypes should have a

deficit of allele sharing. The method was further developed to give rise

to the affected sib pair method (ASP). The ASP method ascertains sib

pairs where both sibs are affected. Hence, they should have an excess of

allele sharing. One measurement of allele sharing is the number of alleles

shared identical-by-descent (IBD). Two alleles that were transmitted from

a common ancestor are referred to as being IBD. For example, suppose that

the parental mating type is Aa×aa and the genotypes of both sibs are Aa,

then allele “A” of the sib pair is IBD, but allele “a” of the sib pair may or

may not be IBD.

Let I be a random variable denoting the number of alleles shared IBD

by a sib pair. It can be shown that the distribution of I for a sib pair is:

P{I = 0} =
1

4
, P{I = 1} =

1

2
, P{I = 2} =

1

4
.

Hence,

E(I) = 1 , var(I) =
1

2
.

The conditional distribution of I , given the disease status of the

members of a pair, provides the theoretical basis for the ASP method. It
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was derived by Suarez et al.61 under the one locus with two alleles assump-

tion. Risch48 generalized these results to other relatives and to multilocus

models based on the recurrence risks of the disease. We introduce some

notation and concepts before we describe the ASP methods.

Assume that there are two alleles, T and t, at the trait locus with

probabilities P{T} = p and P{t} = q. Let Y be a binary random variable

indicating whether or not an individual is affected by a given disorder, i.e.

Y =

{

1 , Affected

0 , Unaffected .

The three penetrances are denoted as

f1 = P{Y = 1|TT} = P{Affected|TT} ,

f2 = P{Y = 1|T t} ,

f3 = P{Y = 1|tt} .

The prevalence rate of the disorder in the population is derived under the

Hardy–Weinberg equilibrium as

K
P

= P{Y = 1} = P{Y = 1|TT}P{TT}+ P{Y = 1|T t}P{T t}

+ P{Y = 1|tt}P{tt} = p

2
f1 + 2pqf2 + q

2
f3 .

The genetic variance for the binary trait is

V
G

= var(E(Y |G)) = V
A

+ V
D

,

where G is a random variable representing the three genotypes, V
A

=

2pq[p(f2 − f1) + q(f3 − f2)]
2 is the additive variance, and V

D
= p

2
q

2(f1 −

2f2 + f3)
2 is the dominance variance. The additive model corresponds to

f2 = f1+f3

2
; the dominance model corresponds to f2 = f1; and the recessive

model corresponds to f2 = f3.

Let I
M

be the number of alleles shared IBD at the marker locus, X

be the random variable denoting the number of affected sibs in a sib pair,

and θ be the recombination fraction between the trait and marker loci.

Suarez et al.61 derived the distribution P{I
M

= j|X = k}, j = 0, 1, 2, k =

0, 1, 2, which is given in Table 2.

Given a set of parameters (K
P
, V

A
, V

D
, θ), the deviation of the condi-

tional distribution of I
M

given X = 2, under the alternative hypothesis of

linkage, from the expected distribution ( 1

4
,

1

2
,

1

4
), under the null hypothesis

of no linkage, is the largest among the three cases (X = 2, X = 1, X = 0).
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Table 2. Distribution P{IM = j|X = k} by Suarez et al.61

j = 2 j = 1 j = 0

k = 2
1

4
+

(Ψ −

1

2
)VA + (Ψ2

−

1

4
)VD

d2

1

2
−

2(Ψ2
− Ψ + 1

4
)VD

d2

1

4
−

(Ψ −

1

2
)VA + (2Ψ − Ψ2

−

3

4
)VD

d2

k = 1
1

4
−

(2Ψ − 1)VA + (2Ψ2
−

1

2
)VD

d1

1

2
+

2(2Ψ2
− 2Ψ + 1

2
)VD

d1

1

4
+

(2Ψ − 1)VA + (4Ψ − 2Ψ2
−

3

2
)VD

d1

k = 0
1

4
+

(Ψ −

1

2
)VA + (Ψ2

−

1

4
)VD

d0

1

2
−

2(Ψ2
− Ψ + 1

4
)VD

d0

1

4
−

(Ψ −

1

2
)VA + (2Ψ − Ψ2

−

3

4
)VD

d0

where d2 = 4(K2

P
+ VA/2 + VD/4), d1 = 4(2KP − VA − VD/2 − 2K2

P
), d0 = 4(1 − 2KP + K2

P
+ VA/2 + VD/4),

and Ψ = θ2 + (1 − θ)2.
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Hence, the ASP design will provide more information for detecting link-

age. There are many test statistics for detecting linkage based on the ASP

design. The most popular one is the “mean test.” It is defined as

T =
(n2 + 1

2
n1)−

n

2
√

n

8

,

where n is the total number of affected sib pairs, n2 is the number of affected

sib pairs with I
M

= 2, and n1 is the number of affected sib pairs with

I
M

= 1. Under the null hypothesis of no linkage, T has an asymptotically

standard normal distribution. The power and sample size calculations can

be carried out with given values of (K
P
, V

A
, V

D
, θ) by using the formulas

in the above table. The power of the mean test has been investigated by

Knapp et al.,24 Suarez and Eerdewegh,62 and Blackwelder and Elston.3 It

performs adequately under various conditions.

Risch48 formulated the ASP method based on recurrence risk. Recur-

rence risk of a sib pair is defined as the conditional probability that one sib

is affected given that the other sib is affected, i.e. K
R

= P{Y2 = 1|Y1 = 1},

where Y1 and Y2 are random variables indicating affection status of the

two sibs. The recurrence risk ratio of a sib pair is the ratio of the sibling

recurrence risk relative to the population prevalence rate, i.e. λ
S

= KR

KP

.

Similarly, the recurrence risk ratio between parent and offspring can be

defined by replacing the sibling recurrence risk with the parent-offspring

recurrence risk, denoted by λ
O

. The conditional distribution of I
M

given

that two sibs are affected is trinomial with probabilities:

z0 =
1

4
−

1

4λ
S

(2Ψ− 1)[(λ
S
− 1) + 2(1−Ψ)(λ

S
− λ

O
] ,

z1 =
1

2
−

1

2λ
S

(2Ψ− 1)2(λ
S
− λ

O
) ,

z2 =
1

4
+

1

4λ
S

(2Ψ− 1)[(λ
S
− 1) + 2Ψ(λ

S
− λ

O
)] ,

where z
i

= P{I
M

= i|Two sibs affected} and Ψ = θ

2 + (1 − θ)2. This

parameterization is different from that of Suarez et al.61 The mean test

statistic for H0 : θ = 1

2
vs. H1 : θ <

1

2
is the same as before. The only

difference is that the power and sample size calculations are in terms of

the parameters (λ
S
, λ

O
, θ). A likelihood ratio test can be performed based

on the trinomial distribution with parameters (λ
S
, λ

O
, θ). The affected sib

pair method has been generalized to affected relative pairs48 and to affected

relative-sets or affected-pedigree-member (APM) methods.66
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3.3. The Haseman Elston procedure

The LOD score and ASP methods described above handle the linkage anal-

ysis of qualitative traits. However, many complex traits are quantitative,

i.e. those measured on a continuous scale, instead of a discrete scale. Having

a complex disease is often determined by applying a threshold to a quan-

titative measurement, such as hypertension defined by blood pressure or

obesity defined by body mass index. However, it is important to develop

statistical methods to study linkage between a marker locus and a locus

underlying a quantitative trait.

Let x1j
and x2j

denote the continuous trait values for two sibs in a sib

pair, respectively. We assume the trait values have the following structure:

x1j
= µ + g1j

+ e1j
,

x2j
= µ + g2j

+ e2j
,

where µ is the overall mean, g1j
and g2j

represent genetic contributions to

the trait values, and e1j
and e2j

are residuals.

We consider a single locus with two alleles A1 and A2. The allele frequen-

cies of A1 and A2 are p and q = 1− p, respectively. The mean trait values

of individuals, with the three possible genotypes, are defined as follows:

A2A2 A2A1 A1A1

−a d a

Then, the additive genetic variance is σ

2

a

= 2pq[a + (q − p)d]2, and the

dominance variance is σ

2

d

= (2pqd)2. The total genetic variance is the sum

of the additive and dominance genetic variances, that is, σ

2

g

= σ

2

a

+ σ

2

d

. Let

σ

2

e

= E(e1j
− e2j

)2 be the residual variance for each genotype and ρ be

the residual correlation coefficient between the two sibs. Throughout this

section, we assume that there is no dominance, i.e. σ

2

d

= 0.

Haseman and Elston21 showed that the expectation of the squared differ-

ence in the observed trait values of a sib pair, conditional on the proportion

of alleles shared IBD at the trait locus, satisfies the regression equation

E(y
j
|π

j
) = σ

2

e

+ 2σ

2

g

− 2σ

2

g

π
j

= β0 + β1πj
, (8)

where y
j

= (x1j
− x2j

)2, β0 = σ

2
e

+ 2σ

2
g

and β1 = −2σ

2
g

.

With the candidate gene approach, we collect sib pair data as (y1,

π1), . . . , (yn
, π

n
) and perform regression analysis to obtain estimates σ̂

2

e
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and σ̂

2

g

. Then, the estimate of heritability is obtained from:

H =
σ

2

g

σ

2
e

+ σ

2
g

by substituting σ̂

2
e

and σ̂

2
g

. Such an approach has been extended to multiple

trait loci with multiple alleles.60

When the proportion of alleles shared IBD at the marker locus, π
jm

,

instead of trait locus, is available, the regression equation becomes21

E(y
j
|π

jm
) = σ

2

e

+ 2σ

2

g

Ψ− 2(1− 2θ)2σ2

g

π
jm

= γ0 + γ1πjm
, (9)

where y
j

= (x1j
− x2j

)2, γ0 = σ

2
e

+ 2σ

2
g

Ψ, Ψ = θ

2 + (1− θ)2, γ1 = −2(1−

2θ)2σ2
g

, and θ is the recombination fraction between the trait and marker

loci. Recall that θ ∈ [0,

1

2
], and π

jm
, the proportion of marker alleles shared

IBD for the jth sib pair, assumes values 0,

1

2
, 1. The proportion of marker

alleles shared IBD is often estimated. The regression equation in terms of

the estimated proportion π̂
jm

becomes

E(y
j
|π̂

jm
) = γ0 + γ1π̂jm

, (10)

where γ0 and γ1 are the same as those in (9), and π̂
jm

takes values i

4
, i = 0,

1, 2, 3, 4.21 Notice that, γ1 = 0 implies θ = 1

2
when σ

2
g

> 0. The least squares

estimate γ̂1 is obtained from sib pair genetic data (y1, π̂1m
), . . . , (y

n
, π̂

nm
)

by performing regression analysis based on formula (10). The least squares

estimate γ̂1 can be used to test H0 : θ = 1

2
(No linkage) vs. H1 : θ <

1

2

(Linkage). A significantly negative γ̂1 indicates θ <

1

2
. Hence, reject H0 if

γ̂1 is less than the appropriate C < 0 at a level α test.

3.4. The ED and EC sib pair design

Haseman–Elston21 model is based on randomly sampled sib pairs. Certain

sampling schemes that select sib pairs based on their trait values have

greater power.3,6,10,49 Risch and Zhang49 concluded that three types of sib

pairs, selected on the basis of trait values, provide the most power to detect

linkage for a quantitative trait locus (QTL): (1) extremely discordant (ED)

sib pairs where one has a high and the other a low trait value; (2) extremely

concordant (EC) for high trait values; (3) extremely concordant for low trait

values.49,50,69,70 They investigated the power of these three sib pair designs

under different genetic models and concluded that the extremely discordant

sib pair design has the greatest power. Hence their recommendation is that

the extremely discordant sib pair design be used for linkage studies of QTLs



June 4, 2003 15:16 WSPC/Advanced Medical Statistics chap15

608 Z. Li & M. Xie

in humans. Eaves and Meyer10 also obtained the power of ED sibpairs by

simulation.

Suppose that N ED sib pairs are selected for genotyping in a linkage

study. Let n0, n1, n2 be the number of sib pairs with IBD = 0, 1, 2,

respectively. If the marker locus is linked to the trait locus, more ED sib

pairs should have IBD = 0 due to the selection process. Hence, if n0 is sig-

nificantly larger than n2, then linkage is indicated. Under H0 (no linkage)

(n0, n1, n2) has a trinomial distribution with parameters ( 1

4
,

1

2
,

1

4
). A test

statistic can be based on n0 − n2. We have

E
H0

(n0 − n2) = 0 , var
H0

(n0 − n2) =
N

2
,

where N = n0 + n1 + n2.

Define a test statistic

TED =
n0 − n2
√

N

2

.

This statistic has an asymptotically standard normal distribution. Reject

H0 and declare linkage when TED is large. Sample size and power formu-

las are given in Risch and Zhang.49 For the EC sib pair design, the test

statistic is

TEC =
n2 − n0
√

N

2

.

Several existing procedures that combine ED and EC sib pairs into

one test give each ED (EC) pair the same weight.16,30 Rao46 noticed that

these methods can be improved by exploiting the quantitative variability in

the tail distribution of the trait. Li and Gastwirth31 developed a test giving

greater weight to the more discordant (concordant) ED (EC) pairs.

3.5. The transmission/disequilibrium test (TDT)

Assume that there are two alleles, D1 and D2, at a disease locus, and two

marker alleles, M1 and M2, at a marker locus. Suppose that n affected chil-

dren are ascertained. From these families, there will be 4n parental marker

alleles, 2n of which are transmitted and 2n of which are not transmitted. If

the marker locus is in the neighborhood of the disease locus and the disease

allele is due to a recent mutation, then a specific marker allele associated

with the disease allele will have higher frequency among diseased individ-

uals compared to normal individuals. The imbalanced transmission of one

allele relative to the other suggests that linkage exists between the marker

and disease loci.
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Table 3. Numbers a, b, c, and d of the
transmitted and non-transmitted marker
alleles M1 and M2 among 2n parents of
n affected children.59

Transmitted Non-transmitted

allele allele

M1 M2 Total

M1 a b a + b

M2 c d c + d

Total a + c b + d 2n

Spielman et al.,59 summarizes the number of alleles transmitted and

not transmitted to the n affected children of the 2n parents, as presented

in Table 3.

Notice that entry b in the above 2 × 2 table represents the number of

parents who are M1M2 at the marker locus with one transmitted allele, M1,

and one non-transmitted allele, M2. Since each parent of an affected off-

spring contributes exactly one transmitted and one non-transmitted allele

in the above 2× 2 table, the transmission/disequilibrium test (TDT) pro-

posed by Spielman et al.57,59 is the McNemar test resulting from a matched

case-control design. The one degree of freedom χ

2 test statistic is

χ

2

TD

=
(b− c)2

b + c

.

The McNemar test is based on the standard normal approximation to a

binomial distribution.

The theoretical background for the TDT is given in Table 4, from

Curnow et al.7

In Table 4, m = P (M1) and p = P (D1) are the allele frequencies, θ is the

recombination fraction between the marker and trait loci, δ = P (M1D1)−

P (M1)P (D1) is the linkage disequilibrium (association) parameter, and

B =
p[p(f11 − f12) + (1− p)(f12 − f22)]

p

2
f11 + 2p(1− p)f12 + (1− p)2f22

,

where

f11 = P (Affected|D1D1) ,

f12 = P (Affected|D1D2) ,

f22 = P (Affected|D2D2)
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Table 4. Probabilities of combination of transmitted and non-
transmitted marker alleles M1 and M2 among 2n parents of n affected
children.7

Transmitted Non-transmitted

allele allele

M1 M2

M1 m
2 +

Bmδ

p
m(1 − m) +

B(1 − θ − m)δ

p

M2 m(1 − m) +
B(θ − m)δ

p
(1 − m)2 −

B(1 − m)δ

p

are the three penetrances, i.e. the probabilities that individuals with disease

genotype D1D1, D1D2, and D2D2 have the disease. The entry in the upper-

right of Table 4, m(1−m) + B(1−θ−m)δ

p

, is the conditional probability that

a parent with marker genotype M1M2 transmits allele M1 given that the

child is affected, that is

p12 = P{Parent = M1M2 →M1|Child Affected}

= m(1−m) +
B(1− θ −m)δ

p

.

Similarly, in the lower-left of Table 4,

p21 = P{Parent = M1M2 →M2|Child Affected}

= m(1−m) +
B(θ −m)δ

p

.

If δ 6= 0 (association), then H0 : θ = 1

2
is equivalent to H0 : p12 = p21.

Hence, the TDT is a joint test for linkage and association. The diagonal

terms in Table 4 are independent of the recombination fraction θ. That is,

as expected, homozygous parents have no information about linkage which

is the reason why the TDT statistic χ

2

TD

only involves b and c and not a

or d in Table 3.

The TDT is related to the concept of haplotype relative risk (HRR).14,40

The TDT has the advantage that it only requires parent and child

data from families with one affected child. It does not require multi-

ple sibs such as ASP. The disadvantage of the TDT is that it can de-

tect linkage only if association is present. The TDT has been general-

ized to multiallelic markers,2,51,55,57 to families without parental genotype

information,4,8,33,52,58 and to quantitative traits.1,45,53



June 4, 2003 15:16 WSPC/Advanced Medical Statistics chap15

Statistics in Genetics 611

4. Discussion

The statistical methods discussed in this chapter are only a small selection

from problems arsing from the molecular data that are becoming avail-

able to search for disease genes. The properties of currently used statis-

tical methods still need to be investigated, and new statistical methods

for genome-wide inference need to be developed. For an excellent review

on major contribution of statistics to genetics over the last century, and

current and future research problems, readers are referred to Elston and

Thompson.12
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67. Weinberg, W. (1908). Über den Nachweis der Vererbung beim Menschen.

Jahresh. Verein f. vaterl. Naturk. in Württemberg 64: 368–382.
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Human health protection against environmental exposure to chemical

hazards is of fundamental public health importance, and thus of inten-

sive research interests among industries, governments, and academics.

As the scientific basis of health protection, risk assessment employs a

wide range of statistical tools. Among them, dose-response modeling

plays a central role in assessing exposure-related health risk and de-

riving safety exposure levels for environmental regulation. This article

illustrates the use of dose-response modeling in risk assessment through

examples of carcinogenicity, developmental toxicity, and neurotoxicity.

Data from these examples include binary, clustered categorical, and

longitudinal measurements, and require careful consideration for effec-

tive and innovative use of statistical methods such as generalized esti-

mating equations and nonlinear mixed effects models. We also discuss the

problem of benchmark dose estimation and some open statistical issues

encountered in risk assessment. Whereas the examples and applications

are directly related to environmental health, the methods illustrated in

this article are widely applicable to many problems in medicine and

biological studies.

1. Introduction

There are sufficient scientific evidences that link chemical exposure to

various adverse health effects, including carcinogenicity, developmental

toxicity, mutangenicity, immunotoxicity and neurotoxicity.33 The United

States Environmental Protection Agency’s (US EPA) TSCA inventory

currently registers more than 65,000 chemical substances that are in active

use in the USA, and this number is increasing. However, only about 10% of

617
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these substances have been tested for carcinogenicity, and an even smaller

number have been tested for non-cancer effects. For example, it is estimated

that about 3% to 28% of all chemicals are neurotoxicants.33 A large number

of the more than 500 registered pesticide ingredients are estimated to

affect the nervous system of the targeted species to varying degrees. Of

the 588 chemicals listed by the American Conference of Governmental

Industrial Hygienists, 167 affected the nervous system or behavior at some

exposure level.1 It is further estimated that of the approximately 200 che-

micals to which one million or more workers are exposed in the USA, more

than one third may have adverse effects on the nervous system if suffi-

cient exposure occurs.2 Thus, there are increasing scientific and regulatory

interests in estimating the risk of exposure to chemicals of various toxic

potentials with regard to their overall impact on human health.

1.1. Health risk assessment

Health risk assessment is composed of some or all of the following com-

ponents: hazard identification; dose-response assessment; exposure assess-

ment; and risk characterization. Hazard identification involves the detection

of exposure-induced adverse health effects, with respect to dose, route,

timing and duration of exposure, through either case report or designed

human/animal studies. Dose-response analysis is typically done through

designed animal experiments because controlled exposure to humans is

generally not feasible. The purpose of dose-response assessment is to deter-

mine an exposure range in which exposure-induced risk is of a controllable

magnitude. This estimated range of exposure in turn provides a quantitative

base for risk characterization. The third component, exposure assessment, is

to identify exposed or potentially exposed population, describe its size and

composition, and present the types, magnitudes, frequencies, and duration

of the exposure. As an integration of hazard identification, dose-response

assessment and exposure assessment, a statement of the consequence of

exposure then comes as a result of risk characterization.

In the past decade or so, dose-response assessment in the context

of non-cancer risk assessment has largely focused on determining a no-

observed-adverse-effect-level (NOAEL) or lowest-observed-adverse-effect-

level (LOAEL), largely ignoring the shape of the underlying dose-response

relationship. A NOAEL is the highest experimental dose at which the

increase in adverse effects relative to the control group is not significant.

A LOAEL, on the other hand, is the lowest experimental dose at which
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there is a significant increase in risk. A reference dose (RfD) or reference

concentration (RfC) is then calculated by dividing a NOAEL, or a LOAEL

when a NOAEL is not determined, by uncertainty factors to account for

interspecies difference in response, different exposure routes and other study

variations.3 The RfD is an estimate, with uncertainty of an order of mag-

nitude, of a daily exposure to the human population that is likely to be

without appreciable risks of deleterious health effects during a lifetime.3 It

provides a quantitative basis for setting up regulatory levels of the chemical

under testing.

Since a NOAEL/LOAEL is limited to only the experimental doses,

its determination ignores the shape of the dose-response relationship, and

the risk associated with the NOAEL/LOAEL varies substantially between

experiments.12,21,24 Recognizing the inconsistency in the NOAEL/LOAEL

approach, the US EPA and several other international agencies have recom-

mended the benchmark dose method (BMD)12 as an alternative or sup-

plementary approach in risk assessment of developmental toxicity as well

as other non-cancer effects.4,39–41 It is expected that, through sound sta-

tistical methods, the BMD approach can overcome the weaknesses of the

NOAEL/LOAEL approach and provide a more consistent quantification

of risk.

1.2. Benchmark Doses

Befaore we describe the benchmark dose method, it helps to first discuss

measures of risk. Consider an outcome measure Y of health effects. As-

sume that in the absence of exposure, Y has a cumulative distribution

function F0(y) = Pr(Y < y). Chemical exposure at level d may cause

adverse effects to the exposed population, resulting in an altered distri-

bution F
d
(y) = Pr(Y < y|d) relative to that of the control population,

F0(y) = Pr(Y < y|d = 0). The alteration may occur in many ways, in-

cluding such common phenomenon as mean shifting and change in vari-

ance. Characterization of a dose-response relationship in risk is essentially

to characterize any alterations in the distribution as a function of expo-

sure. Statistically, the problem often reduces to identifying a quantity that

reflects the changes to F0(y). We can consider, for example, a set A of par-

ticular value of Y , and use the probability π(d = 0) = Pr(Y ∈ A|d = 0)

as a reference level for the changes in π(d) = Pr(Y ∈ A|d). Significant

changes from π(0) to π(d) signify a risk as well as a dose-response relation-

ship. However, the probability π(d) may not be a direct measure of risk
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since A is not necessarily a region of adverse values. Since this approach

assesses overall risk in terms of changes to the population, not necessar-

ily identifying adverse effects in individuals, we call it population-level risk

characterization.

Although the value of Y may not always lead to a definitive diagnosis of

adverse effects especially when Y is a continuous measure, special cases do

arise where A is a region of adversity on grounds of toxicological criteria.

These include the case of Y being a binary or dichotomized measure, so

that Y = 1 indicates the presence of adverse effects. As a result A =

{1}, and π(d) is a direct measure of risk. Under these circumstances, it

is feasible to assess adverse effects on an individual basis. We call this

approach individual-level risk characterization.

While the principle of population-level risk assessment is clear, the

possibility of distributional changes to the population is almost infinite.

Let us consider the special case of the location-scale family of distribu-

tions where F
d
(y) = F ((y−µ

d
)/σ

d
) with mean µ

d
and scale σ

d
. Obviously,

normal distributions are members of this family. For convenience, we make

µ0 = 0, and σ0 = 1 for the control distribution F (y). If toxic effects

are manifested as a mean shifting, and a shifting of c units is toxico-

logically or clinical meaningful, we can then choose A = {Y > c}. It

follows that π(0) = 1 − F (c), and π(d) = 1 − F ((c − µ
d
)/σ

d
). The case

of A = {Y < c} can be implemented analogously. Here, c can be a per-

centage of the control mean, variance, or data range. If toxic effects are

manifested as c units change of variance relative to the control variance,

we can choose A = {|Y | > c}. It follows that π(0) = 1 − F (c) + F (−c),

and π(d) = 1 − F (c/σ
d
) + F (−c/σ

d
). In the case of both a mean shifting

and variance change, A = {|Y | > c} remains applicable. If changes to

F0(y) are such that F
d
(y) is no longer in the same family, it is still possible

to quantify the changes using preferably non-parametric methods.5

Given the dose-response model π(d) = Pr(Y ∈ A|d), we can choose a

benchmark response (BMR) level γ, say 10%, and identify the correspond-

ing level of exposure, i.e. benchmark dose (BMD) that induces the specified

BMR. Specifically, the BMD can be defined by the multiplicative excess risk

π(BMD
γ
)− π(0)

1− π(0)
= γ (1)

or alternatively the additive excess risk,

π(BMD
γ
)− π(0) = γ . (2)

We then divide the BMD
γ

by certain safety factors to obtain a RfD.
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The estimation of BMDs involves a few steps. First, we determine a refe-

rence “risk” π(0) = Pr(A|d = 0) by characterizing the control distribution

with regard to certain aspects that are sensitive to potential changes caused

by exposure. Second, we use the reference probability π(d) = Pr(A|d) to

establish a dose-response relationship. Third, we estimate BMDs based on

the fitted dose-response models using Eqs. (1) or (2). Since BMD is a point

estimate, a lower confidence limit is often computed as a more conservative

measure. Gaylor et al.16 give a detailed account of procedures for comput-

ing BMDs with different types of data. While the procedures are clear in

principle, many technical challenges remain. Because of the complex na-

ture of data arising from environmental studies, it is important to employ

effective, and is challenging to develop innovative methods to handle statis-

tical issues in risk assessment. This article mainly illustrates dose-response

modeling using advanced statistical methods such as generalized estimat-

ing equations (GEEs) and mixed effects models. We discuss binary data for

cancer risk assessment in Sec. 2, clustered multinomial data of developmen-

tal toxicity in Sec. 3, and longitudinal data from neurobehavioral toxicity

screening studies in Sec. 4. We conclude with some open issues in Sec. 5.

2. Binary Data: Carcinogenicity

Binary outcome data indicate the presence or absence of adverse effects in

each individual. In cancer studies this means that subjects can be classi-

fied as having or not having a tumor in a target organ at some specified

time following exposure to a test substance. It is often assumed that the

effects observed in a subject is independent of that observed in others. This

assumption needs to be checked, and is not the case for example in re-

productive and developmental experiments where littermates may respond

more similarly than others from different litters. This situation is addressed

in Sec. 3.

Table 1 is a summary of adenoma/carcinoma incidence in liver from

an experiment on Japanese Medaka (Oryzias latipes) exposed to N-

nitrosodiethylamine (DEN), a known carcinogen. This dataset is the 4th

replication in a study reported by Brown-Patterson et al.6 The primary

purpose of this study is to test for non-linear dose-response relationships

below the 1% BMR level. This is an issue of important implications in reg-

ulatory policy. Currently, EPA’s testing protocol requires studies to include

a lowest dose level near the 1% BMR level. A linear dose-response relation-

ship is assumed from below the 1% BMR level, and linear extrapolation
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Table 1. Frequency of adenoma/carcinoma in the liver of medaka exposed to DEN.

Dose (ppm) 0 0.075 0.15 0.3 0.6 1.5 3.0

Cases 5 6 11 12 19 27 41

% 0.36 0.43 0.77 0.86 1.36 4.20 6.48

Sample Size 1387 1385 1427 1400 1393 643 633

Table 2. Fitted probit model for the incidence of adenoma/carcinoma.

Coefficient Estimate Std. Err. t-value

Intercept −2.632 0.072 −36.752

DEN 0.831 0.148 5.625

DEN2
−0.153 0.046 −3.333

towards 0 is used to derive a RfD at the 0.1% BMR level. (The terminology

extrapolation in risk assessment context excludes the control as an expo-

sure level.) As a result, extrapolation would lead to an over-estimation (or

under-estimation) of risk if the true dose-response is curved upwards (or

downwards).

From Table 1 we can see that the incidence of either adenoma or

carcinoma or both is elevated by exposure to DEN and the 1% BMR

is somewhere between 0.3 and 0.6 ppm. Since Medaka were housed in

water tanks in group during both exposure and growing-out periods, similar

living condition shared by Medaka in the same tank may result in clustering

effects, i.e. data dependence. We checked the full study data by comparing

the sample variance with the binomial variance, and did not find any indica-

tion of clustering. Therefore, we used a probit link function in conjunction

with a binomial distribution, within the framework of generalized linear

models,28 to model the mean response probability of an adenoma or car-

cinoma. This led to a probit dose-response model π(Xβ) = Φ(Xβ), where

Φ is the cumulative distribution function of the standard normal, X is a

set of covariates including dose, and possibly other covariates or interaction

terms, and β are a vector of the regression coefficients. A simple quadratic

model of dose was fit to the data, yielding the results given in Table 2. The

residual deviance for the model was 0.984 on 4 degrees of freedom, indicat-

ing a reasonable fit to the data. From this model, the 1% BMR level was

estimated to be about 0.396 ppm. While the quadratic term is statistically

significant, signaling some degree of non-linearity below the 1% BMR level,

it is the impact of the non-linearity on risk quantification that we were
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really interested in. To this end, we decided to estimate the curvature

|Φ′′|/(1 + (Φ′)2)3/2

of the dose-response curve, and then explored the relationship between the

curvature and risk.

To see the potential bias in risk estimation resulted from linear ex-

trapolation, we compared the risk based on the fitted model and that

based on linear extrapolation below the 1% BMR level. Assuming that

the spontaneous risk of the control population is 0.0042 as predicted from

the fitted model, the extrapolated risk was

π
lin

(d) = 0.0145ḋ + 0.0042 .

We plotted the relative bias (π
lin
−Φ)/Φ against the estimates of curvature

of the fitted model (Fig. 1). We can see that the largest bias is about

6.6% of the estimated risk, occurring at d = 0.17 ppm with curvature =

0.0212. At the 0.1% excessive risk level, the relative bias is about 5.5%,

and the curvature there is 0.0202. These are clear evidences of a significant

non-linearity in the true dose-response curve. However, the impact of non-

linearity on risk estimation is of a small magnitude. On the other hand,
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Figure 1. Risk Bias Due to Extrapolation and Curvature

Fig. 1. Risk bias due to extrapolation and curvature.
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even a small over- or under-estimation of risk may carry a high level of

sensitivity in public health policy. The consequence of a linear dose-response

assumption in policy-making remains the subject of further studies.

3. Clustered Multinomial Data: Developmental Toxicity

One of the most challenging and interesting aspects of reproductive and

developmental toxicological data is the complex multivariate outcomes

often encountered. This is the case because exposure to dangerous toxi-

cants can affect many different stages in the reproductive process, including

viability (sperm count, ovulation, etc.), fertilization and implantation. Once

implantation has occurred, exposure can result in early pregnancy loss,

malformations, lowered fetal weight or functional deficiency. Figure 2 shows

some aspects of the developmental process, and illustrates how exposure

may increase death rate, cause growth alterations such as lower fetal weight

or malformations. In the figure, π1(d) denotes the risk of death includ-

ing resorption and still birth, π2(d) the conditional risk of malformation

among live births, all through maternal exposure at dose level d. We will

focus on the multinomial outcomes of death and malformation only. A

number of authors have discussed this issue in the context of dose response

modeling.11,22,23,37,44

A second challenge is the clustering, i.e. the so-called litter effects or

the tendency for littermates (offspring) of the same mother to respond

similarly. In studies utilizing exposure to timed-pregnant animals over the

period of organogenesis, the exposure effects on in-utero development are

evaluated just before parturition would normally occur. Since the implants
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Fig. 2. Multivariate outcomes of developmental toxicity.
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(offspring) of the same mother are genetically related and share a similar

developmental environment, they are likely to respond to the toxic insult

similarly.

To fit dose-response models for clustered multinomial data, we first

adopt some notations. Consider an experiment in which pregnant dams are

randomized to a control or one of D dose groups at exposure levels d0 =

0, d1, . . . , dD
, respectively. Suppose the ith dose group has M

i
dams, and

the jth, (j = 1, . . . , M
i
) dam has n

ij
implants. Let y

ij
= (y1ij

, y2ij
)T denote

the number of dead implants and malformed fetuses in the (ij)th dam.

3.1. Generalized estimating equations

Following Zhu et al.44 and Krewski and Zhu,23 we use Weibull models

π1(d; α) = 1− exp(−(α0 + α1d
α2))

π2(d; β) = 1− exp(−(β0 + β1d
β2))

to describe the incidences of death and malformation, respectively. With

various values of the parameters θ = (αT

, β

T )T to be estimated from the

data, the Weibull models are flexible in describing the various dose-response

shapes observed in developmental toxicity studies, particularly a reversed

L-shape or S-shape.22 The models can mimic continuous threshold models

without explicit use of a threshold.38 The power parameters may be useful

in other models such as the logistic and probit models.

Maximum likelihood estimation can be used to simultaneously fit

dose-response models π1(d) and π2(d) in conjunction with a mixture of

multinomial distributions. The infinite mixture of Dirichlet-multinomial

distribution9,44 and a finite mixture of multinomial30 are perhaps the

most common examples, because mixture is a simple mechanism to cap-

ture extra-multinomial variation due to clustering. However, computational

complexity, uncertainty, and limitations about the distribution are disad-

vantages associated with ML estimation. Many favor alternative analyses

based on quasi-likelihood, or more generally, generalized estimating equa-

tions (GEEs).25 Ryan,37 Zhu et al.44 and Chen and Li11 used variations of

GEEs specifically in the modeling of death and malformation.

To estimate parameters θ using GEE, we need specification of only

the mean and variance of the data. A general expression of the mean and

variance functions for clustered multinomial data is

µ
ij

= E(Y
ij
|n

ij
) = n

ij
(π1(di

), (1− π1(di
))π2(di

))T

,
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and

V
ij

= (1 + (n
ij
− 1)ρ

i
)n

ij
(diag(µ

ij
)− µ

ij
µ

T

ij

) .

In the variance ρ
i
is the coefficient of intra-cluster correlation, and (n

ij
−1)ρ

i

is the variation component in excess of the multinomial variation. This

variance function appears to cover all exchangeable multinomial data.45

Now GEEs for θ take the following simple form:
∑

i,j

∂(n
ij

µ
ij

)

∂θ

T

V

−1

ij

(y
ij
− n

ij
µ

ij
) = 0 . (3)

To estimate the dispersion parameters ρ
i
, a separate set of equations is

required. The simplest example is the moment estimation given by
∑

i,j

∂E(q(Y
ij

))

∂ρ

T

W

−1

ij

(q(y
ij

)−Eq(Y
ij

)) = 0 , (4)

where q can be a quadratic function of y
ij

as well as θ, and W is chosen to

approximate the variance of q. We obtain estimates for θ and ρ by iteratively

solving the two sets of equations until convergence. An important addition

in the GEE method is that the mean parameters and their variances will

be estimated correctly even if the variance (V
ij

) is incorrectly specified.

This is achieved by the inclusion of an empirical variance “fix-up”. There

are still incentives to correctly specify the variance to improve statistical

efficiency.25

One approach to improving the efficiency of estimation is to consider

joint GEEs for θ and ρ. This can be done by forming an enlarged “data”

vector (yT

ij

, q

T

ij

)T , and use its covariance matrix to construct GEEs in the

form of Eq. (3). This approach is sometimes called GEE2. However, it

requires the specification of the 3rd and 4th moments for the data Y
ij

as well as iterative algorithms between estimates of θ and ρ because q
ij

are likely dependent upon θ. Still other variations of GEEs are available.

The extended GEEs18 rely on the idea of constructing an extended quasi-

likelihood by integrating the GEEs (3) and then differentiating the “like-

lihood” with respect to ρ to obtain the equations for ρ. If the extended

quasi-likelihood is somewhat similar to the true likelihood, the second set

of equations would be reasonably satisfactory.

In the current application we adopt the first approach, with q(y
ij

) =

y

2

ij

− E(Y 2

ij

) in Eq. (4). This approach is computationally simple, and

numerically equivalent to the GEE2 approach. We further impose a dis-

tinct intra-litter correlation ρ
i
for each dose group since it is common that

ρ
i
increases with dose level.22
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A simple alternative approach is proposed by Krewski and Zhu23 to

avoid direct estimation of the intra-litter correlation ρ
i
. The idea is to

transform the data by dividing the death and malformation frequencies y
ij

as well as the number of implants n
ij

of each dam by the so-called design

effects. The transformation effectively removes the over-dispersion compo-

nent (n
ij
− 1)ρ

i
from the data. As a result, we can use the mean and vari-

ance of a multinomial distribution to approximate that of the transformed

data. The design effects associated with each dose group is in essence the

“ratio” of the true variance to the variance of independent data. Denote the

outcomes of malformation, death, and normal birth by an index k = 1, 2, 3.

The design effect of each dose group can be estimated by

D̂
i
=

1

2

[

v̂
i1

µ̂
i1

+
v̂

i2

µ̂
i2

+
v̂

i3

µ̂
i3

]

(5)

where v̂
ik

(k = 1, 2, 3) are the sample variances divided by the average

number of implants and µ̂
ik

are the mean response rates in each dose group.

An added advantage to this transformation procedure is that the usual

Chi-squared goodness-of-fit test is applicable. Simulation studies reveals

that this transformation procedure is valid even for moderate number of

dams per dose group.17

3.2. Illustration

Data in Table 3 come from a study35 that investigated the developmental

effects of diethylene glycol dimenthyl ether (TGDM). The study included a

vehicle control group and 3 dosed groups, each with from 20 to 30 pregnant

rats. Measured outcomes included the number of implantation sites in each

dam and the incidence of resorptions and/or fetal deaths. Fetuses surviving

to sacrifice were weighed and evaluated for the presence of a variety of

different types of malformation. It is clear from Table 2 that both the death

and malformation incidences are elevated by increased exposure to TGDM.

The fitted death-malformation models are summarized in Table 4, where

the transformation method is labeled by TR. While the incidence of malfor-

mation is strongly dose-related, the dose-response relationship of prenatal

death is only marginally significant. Litter effects are apparent at the two

highest dose levels, as indicated by the estimated intra-litter correlations

as well as the design effects of 1.10, 0.69, 2.78, and 3.91 for the four dose

groups respectively. The transformation method yielded a model compara-

ble to that of GEEs, and a Pearson’s goodness-of-fit statistic with χ

2 = 2.15

and p-value = 0.34.
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Table 3. Summary data of TGDM study.

Dose Total
Deatha Malf’sb

(g/kg) Dams Impl’s No. (%) No. (%)

0.00 27 340 22 6.5 1 0.3

0.25 26 296 21 7.1 0 0.0

0.50 26 296 34 11.49 2 0.8

1.00 28 327 41 12.54 33 11.5

aIncluding dead or resorbed animals.
bNumber of live animals exhibiting any malformation.

Table 4. Parameter estimates (S.E.)a of joint dose-response models for death and mal-
formation in rats exposed to TGDM.

Model Coefficient Estimate Estimates (TR)

Prenatal Intercept (α0) 0.0617 0.0642

Death (0.0180) (0.0154)

Dose (α1) 0.0956 0.0793

(0.0563) (0.0481)

Power (α2) 1.2650 1.2140

(1.0584) (1.0932)

Fetal Intercept (β0) 0.0006 0.0009

Malformation (0.0009) (0.0016)

Dose (β1) 0.1209 0.1222

(0.0346) (0.0356)

Power (β2) 4.8157 2.0224

(2.0224) (1.9803)

Group 1 (ρ1) 0.1546

(0.0688)

Intralitter Group 2 (ρ2) −0.0369

(0.0315)

Correlation Group 3 (ρ3) 0.3288

(0.2829)

Group 4 (ρ4) 0.2846

(0.1021)

aS.E. = standard error.

We computed benchmark doses based on the risks of death (π1),

malformation (π2), and the overall risk

π(d) = Pr(death or malformation|d) = 1− (1− π1(d))(1− π2(d)) .

We used both the multiplicative risk (1) and additive excess risk (2). The

results are given in Table 5 along with their standard error (in parentheses)
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Table 5. Estimates (S.E.) of BMD05 (mg/kg/d) based on the joint Weibull models for
death and malformation.

Prenatal Death Malformation Multivariate

Additive 0.643 0.837 0.568

(0.343) (0.072) (0.212)

Multiplicative 0.611 0.837 0.548

(0.333) (0.072) (0.216)

aS.E. = standard error.

derived by the delta method. The 95% lower confidence limit (LBD) of

the BMD estimates can be approximated by LBD = BMD05 − 1.645× SE.

The results in Table 5 confirm that a BMD based on the multiplicative

risk is always smaller than that of the additive risk, although the differ-

ence becomes negligible when the spontaneous risk is small. Further, using

the multiplicative risk formula, the BMD is always below the smallest BMD

based separately on the univariate risk π1 or π2. The same needs not be

true for the additive risk.16

4. Longitudinal Data: Neurobehavioral Toxicity Screening

In addition to its primary role in psychological functions, the nervous

system controls most, if not all, other bodily processes. It is sensitive to

perturbation from various sources and has limited ability to regenerate.

There are evidences that even small anatomical, biochemical, or physio-

logical insults to the nervous system may result in adverse effects on human

health, transient or persistent.41 Many chemicals in active commercial use

may have, but are not tested for, neurotoxic potential. The US EPA has

strongly recommended that neurotoxicity be used as an endpoint in regu-

lating environmental toxicants. Neurotoxicity includes adverse effects in

behavior, neurochemistry, neurophysiology, and neuropathology. It can also

be evaluated based on neurological development and function in infants and

children following prenatal and perinatal exposure. Our focus here is on

neurobehavioral testing.

4.1. Neurobehavioral screening test

In a recent international study jointly sponsored by the Interna-

tional Program on Chemical Safety (IPCS) and US EPA,32 the use

of Functional Observational Battery (FOB)29 was validated and tested

for rapidly measuring neurobehavioral changes potentially caused by
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chemical exposure. The FOB consists of a number of measurements

that are grouped into several domains according to their neurolog-

ical function: Autonomic, Neuromuscular, Activity, Sensorimotor, Ex-

citability, and Physiology. Except for several measures in the do-

main of Neuromuscular as well as physiological measures, most mea-

sures are of observational nature, and criteria for adversities in

individuals are not easy to develop. Thus, we assess the collective beha-

vioral changes of the exposed group relative to that of a control group. If

rare behaviors in the control become more common in the exposed group,

there are indicators of adverse exposure effects. To unify all measures within

a domain, every single measure, regardless of being binary, continuous or

ordinal, is converted to a severity score. Under a 4-level Likert scale, “1” is

most common or least severe in the control group, and “4” the least common

or most severe. For instance, the measure of “ease of removal from cage”

comes with six categories: “very easy”, “easy”, “moderately difficult”, “rat

flinches”, “difficult”, and “very difficult”. If more than 50% of the control

group are either “very easy” or “easy” to remove, then “very easy” and

“easy” are converted to a “1”; Categories whose frequency is at least one

rank away from the mode of the control distribution is assigned a “4”.

Further details on converting continuous measures can be found in

MacDaniel and Moser.29 Variation of this type of schemes can also be deve-

loped and tested. The average of individual severity scores within the same

domain is a composite severity score for the domain, and is treated as a

continuous measure in analysis.

Table 6 gives a summary of composite severity score of the “excitability”

domain. The raw data are derived from an EPA study31 in which 8 rats

of the same strain and age, each from a different litter, were exposed

at one of the four dose levels (150, 500, 1500, 5000 mg/kg) to tetra-

chloroethylenl(PER), a common chlorinated solvent. In addition, there was

Table 6. Mean (S.E.) excitability scores of rats exposed to PER.

Dose (mg/kg) 0 150 500 1500 5000

0 H 1.7938 2.0413 1.9188 1.7525 1.8350

(0.0603) (0.1070) (0.2442) (0.0545) (0.0622)

4 H 1.6238 2.1650 1.9163 2.1650 2.5025

(0.1414) (0.1594) (0.4352) (0.3168) (0.1273)

24 H 1.2064 1.5000 1.7088 1.6250 2.3300

(0.0292) (0.2876) (0.6183) (0.6187) (0.0000)
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a control group. FOB screening was conducted on each subject at just

before dosing (time = 0), approximately 4, and 24 hours post exposure.

There were four deaths in the 5000 mg/kg dose group by 24 hour. The

composite severity score is the average of three individual measurements:

handling reactivity, arousal, and ease of removal.

Repeated measurements are common in neurotoxicity studies in order

to understand the often-transient effects of neurotoxicity. Traditionally,
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Fig. 3. Change of excitability in rats exposed to PER.
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ANOVA with repeated measures is employed. This is also the case in

the analysis of the composite severity scores of the FOB data.31 However,

ANOVA is designed for testing dose effects, not for dose-response modeling.

Further, dose-response modeling is a prerequisite to the BMD approach.

Data in Table 6 also showcase a typical situation in neurotoxicity study:

small sample size per dose group, several repeated measures over time, and

possible missing observations that often occur at higher dose levels or later

times due to mortality. In the presence of missing data, ANOVA fails to

utilize all available data because subjects with any missing data at some

time points would have been removed to satisfy the requirement of balanced

designs. This can be costly given an already-small sample per dose group in

most neurotoxicity studies. Although linear or non-linear regression models

may be used to model dose-response, they cannot differentiate distinct

behavior trajectory among individual subjects. Between-subject variation

often reflects important biological variation. Not only is it important to con-

trol to achieve better statistical power, it also sheds lights on identifying

special risk groups. In Fig. 3 the excitability score is plotted against time

for each subject, and the trajectories are grouped into separate panels by

dose level. The bar on the top of each panel indicates an order of increasing

dose, from left to right. The plot reveals some degree of between-subject
Figure 4. Excitability  of Rats Exposed to PER 

Fig. 4. Excitability of rats exposed to PER.
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variation. To see the average trajectory of behavioral change, we have a

3-dimensional plot in Fig. 4 using a spline smoother. The control group’s

excitability score remained stable, only decreasing slightly over time, due

perhaps to self-adjustment. As dose increased, however, there were slight

increases in excitability, peaking at around 5 hour after exposure and then

dropped somewhat by 24 hour. The trajectory of the 5000 mg/kg group was

quite different: the excitability score increased over time, and did not drop.

This indicates that there were sustained dose effects at excessively high

dose levels. It was not clear though whether the effects could be permanent

in nature. In summary, the fact that there were only a small number of

subjects, potentially sizable between-subject variation, and missing data

associated with some subjects points to the benefits of using mixed effects

models for data analysis.

4.2. Linear mixed effects models

Examination of Fig. 4 reveals some interesting patterns of the dose-time-

response of the excitability score. We found the following hybrid pharmo-

cokinetic model

f(φ(dose), t) =
φ1(dose) + φ2(dose)t

1 + e

φ3(dose)
t

φ4(dose)
(6)

quite flexible in describing the various dose-response shapes observed in

the FOB data. In this model, the dose effects are incorporated into the

parameters φ
i

as a function of dose. The simplest one is linear functions.

Further, individual subject is allowed to have distinct behavior trajectory

that is characterized by random coefficients associated with population pa-

rameters. After testing a number of options based on the actual data, we

choose the following parametrization:

φ1(d) = β10

φ2(d) = β20 + (β21 + b21i
)d

φ3(d) = β31d

φ4(d) = β40 .

Note that φ1 determines the initial (time = 0) excitability level that is not

influenced by dose because the first test was done before dosing. Therefore

we make φ1(d) = β10 a constant. Although we can jitter the intercept β10
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by random effects to characterize unexplained variation in initial excitabi-

lity among different subjects, the effects seem to be minimal in our actual

data analysis. The time-slope φ2 measures how excitability changes over

time, either naturally (β20), or under the influence of dosing (β21 + b21i
)

with individual variation b21i
. The downturn time-slope β31 is simply to

control for the non-monotone trend within some dose range. A constant

term is unnecessary because it amounts to a scale in conjunction with the

intercept term in φ1. Finally, a power parameter β40 is employed to in-

crease the flexibility of the dose-time-response shape. Although in principle

every population parameter can be jittered with random effects, the use

of random effects must be justified by actual data variation. Guidance for

model selection as well as use of random effects can be found in Pinheiro

and Bates.34

Before fitting the model (6), we briefly outline the methods of nonlinear

mixed effects models. The notation here follows largely that of Chapter 7

of Pinheiro and Bates,34 which emphasizes on the computational as-

pects and applications of mixed effects models. For theory and method,

see for example Davidian and Glicknan.14 Consider the following general

model,

Y
ij

= f(φ
i
, X

ij
) + ε

ij
, i = 1, . . . , M ; j = 1, . . . , n

i
(7)

where ε
i

= (ε
i1, εij

, . . . , ε
ini

)T is the error vector for the ith subject in

the sample of M ; X
ij

is the covariate vector for the ith subject at the

jth sampling time. The parameter vector φ
i

= A
i
β + B

i
b
i

has two com-

ponents: the first component β is population parameters and the second

component b
i

(q × 1 vector) represents random effects associated with the

ith subject. The matrices A
i

and B
i

are chosen with appropriate dimen-

sions to determine on an individual level how to incorporate the population

parameters and random effects into the model. In the present case, the

matrices would be the same for all individuals. More general formulations

can be developed to allow for time-varying coefficients.34 It is common to

assume for continuous data that ε
i
follow the N

ni
(0, σ

2Λ
i
(θ1)) distribution,

and are independent between different subjects. Various correlation options

may be incorporated into Λ
i
(θ1) through the parameter θ1. The random

effects b
i

are also conveniently assumed to follow the N
q
(0, σ

2Ω(θ2)) dis-

tribution. Although other distributions can be considered in principle,

computer software is mostly limited to normal distributions.

To fit a non-linear mixed effects model, maximum likelihood estimation

is often used via either the EM-algorithm15 or other numerical algorithms
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such as Newton-Raphson.27 Here we use Newton-Raphson algorithm imple-

mented in S-PLUS (Mathsoft, Seattle, Washington). Under the assumption

of normality, the marginal distribution of Y
i
= (Y

i1, . . . , Yini
)T is

p(y
i
|β, σ

2
, θ1, θ2) =

∫

p(y
i
|b

i
; β, σ

2
, θ1)p(b

i
; θ2)db

i

=
1

(2πσ

2)
ni+q

2 |Λ
i
|
1

2 |Ω|
1

2

×

∫

exp

{

−
(y

i
− f(φ

i
))T Λ−1

i

(y
i
− f(φ

i
)) + b

T

i

Ω−1
b
i

2σ

2

}

db
i
,

where f(φ
i
) = (f(φ

i
, X

i1)), . . . , f(φ
i
, X

ini
))T . Using a first order Taylor

series expansion about some initial estimates β̂

(t) and b̂

(t)

i

to approximate

the exponent of the integrand, we can obtain the following approximate

marginal log likelihood function

l(β, σ

2
, θ1, θ2; yi

) = −
n

i
+ q

2
log(σ2)

−
1

2

{

log |Σ
i
|+

1

σ

2
(w

(t)

i

− Z

(t)

1i

β)T Σ−1

i

(w
(t)

i

− Z

(t)

1i

β)

}

where w

(t)

i

= y
i
− f(β̂(t)

, b̂

(t)

i

) + Z

(t)

1i

β̂

(t) + Z

(t)

2i

b̂

(t)

i

, and

Z

(t)

1i

=
∂f

∂β

T

and Z

(t)

2i

=
∂f

∂b

T

i

are the derivative matrices evaluated at β̂

(t) and b̂

(t)

i

, and

Σ
i
(θ1, θ2) = Λ

i
(θ1) + Z

(t)

2i

Ω(θ2)(Z
(t)

2i

)T

.

Maximum likelihood estimates (θ̂
(t)

1
, θ̂

(t)

2
, σ̂

2(t)) are obtained from maxi-

mizing this approximate log-likelihood

max
θ1,θ2,σ

2

M

∑

i

l(β̂(t)
, σ

2
, θ1, θ2; yi

) . (8)

The estimate of the regression parameters β is then updated by a least

squares estimator

β̂

(t+1) =

{

M

∑

1

(Z
(t)

1i

)T (Σ
(t)

i

)−1
Z

(t)

1i

}−1 {

M

∑

1

(Z
(t)

1i

)T (Σ
(t)

i

)−1
w

(t)

i

}

. (9)
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The estimate of the random effects b
i

is updated also by a least squares

estimator based on

M

∑

i

{

(y
i
− f(β̂(t+1)

, b
i
))T Λ−1

i

(θ̂
(t)

1
)(y

i
− f(β̂(t+1)

, b
i
)) + b

T

i

Ω−1(θ̂
(t)

2
)b

i

}

.

Using a first order Taylor series approximation

f(β̂(t+1)
, b

i
, X

ij
) = f(β̂(t+1)

, b̂

(t)

i

, X
ij

) + Z

(t)

2i

(b
i
− b̂

(t)

i

) ,

we have the update

b̂

(t+1)

i

= {Ω−1 + Z

T

2i

Λ−1

i

Z2i
}−1

Z

T

2i

Λ−1

i

{

y
i
− f(β̂(t+1)

, b̂

(t)

i

) + Z2i
b̂

(t)

i

}

,

(10)

with all terms evaluated at the most recent parameter estimates. We

iteratively solve the three sets of Eqs. (8), (9) and (10) until convergence.

The maximization procedure outlined above relies heavily on the nor-

mality assumption for both the error terms and random effects. If the

random effects follow a non-normal distribution, explicit marginal like-

lihood is often not available, and the EM-algorithm would be used to

numerically approximate the marginal likelihood.

4.3. Illustration

The fitted mixed effects model (6) is summarized in Table 7, and the pre-

dicted dose-time-response surface is plotted in Fig. 5. The fitted model fits

the data well. A comparison of Fig. 5 with Fig. 4 reveals that the model

captures most of the trends observed in the raw data. The dose effects were

Table 7. Estimates of parameters in the excitability model.

Parameter Value S.E.a DF t-Value p-value

β10 1.8693 0.0763 72 24.51 < 0.0001

β20 2.2611 0.1723 72 13.12 < 0.0001

β21 −0.0003 0.0001 72 −4.29 0.0001

β31 −0.0003 0.0001 72 −3.40 0.0011

β40 1.1597 0.0320 72 36.30 < 0.0001

Ω(θ2) S.E. 7.72e-008

Λ(θ1) σ 0.4737

corr(i, j)b: (1, 2): 0.63 (1, 3): 0.14 (2, 3): 0.30

aS.E. = standard error.
bcorr(j, k) = corr(εij , εik).
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Figure 5. Fitted Model for the Excitability Score

Fig. 5. Fitted model for the excitability score.

highly significant, and varied with testing time (Table 7) with a peak ef-

fect occurring at around 4.5 hour. However, it was difficult to accurately

determine the true peak effect or peak effect time. The observed of peak

effects are most likely taken to give the peak effect time. Several options

were considered to include random effects in the model. Since using random

effects for both the intercept β10 and the time slope β20, or both β10 and

the time-dose slope β21 led to an almost perfect correlation between the two

random effects, both seemed an over-parameterization. Thus one random

effect appeared sufficient for this dataset. Under several criteria, including

likelihood ratio, information criterion and residual plots, the random effect

associated with the time-dose slope β21 was found to be most effective. The

standard error for b21i
was 7.72e

−8 (Table 7), a small number compared

with the estimate β̂21 = −3e

−4, indicating a small between-subjects vari-

ation. We had also considered several correlation structures for the error

terms, including that of complete independence, auto-regression with log

1, compound symmetric, and un-restricted. The unrestricted correlation

matrix Λ (Table 7) seemed most flexible.

4.4. Benchmark doses

In computing BMDs, we must take into consideration the fact that risk

depends not only on exposure level, but also on the time the screening test
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took place. It is crucial that risk is assessed before, not after, the peak

effect time. Mathematically, we can measure risk at any designated time,

estimate BMDs as a function of time to create a timed-profile, and then

search for the minimum BMD.

Since the excitability score is treated as a continuous measure, ab-

normality cannot be determined solely by a cutoff value, thus we adopt

the population-level assessment approach by comparing the proportions of

subjects whose score exceeds a given level between the exposed and con-

trolled groups. This cutoff level can be chosen to include α × 100% of the

subjects with the highest severity score in the control group. A significant

increase in the proportion of subjects exceeding this level in the exposed

group represents a risk because of the significant changes in the distribution

of excitability.

Conceptually, let π(0, t) = Pr(Y > c
t
|d = 0, t) = α be the proportion

of subjects in the control group whose severity score exceeds c
t

at testing

time t, and π(d, t) = Pr(Y > c
t
|d, t) be that for the exposed group. Note

again that π is not necessarily a risk, but merely a reference level for risk.

We compute BMD corresponding to a γ × 100% increase in multiplicative

excess risk (1). Under a normal distribution for the severity score Y ,

π(d, t) = 1− Φ

(

c
t
− f(d, t)

σ0

)

,

where Φ is the standard normal cumulative distribution and with a constant

standard deviation σ0 = 0.4737 pooled across all dose groups (Table 7).

Equation (1) simplifies to

Φ

(

c
t
− f(d, t)

σ0

)

= Φ

(

c
t
− f(0, t)

σ0

)

(1− γ) = (1− α)(1− γ) ,

and c
t

= f(0, t) + z1−α
σ0 with z1−α

being the 1 − α percentile of the

standard normal distribution. The preceding equation further simplifies to

f(BMD
t
, t) = f(0, t)− σ0(Φ

−1((1− α)(1− γ))− z1−α
) . (11)

Substituting for the parameters with their estimates and solving Eq. (11)

lead to the estimate of BMD
t

at chosen time t. In Fig. 6, we plotted the

estimated BMDs over time to illustrate the influences of the reference and

risk levels on BMDs with various choices of (α, γ): (0.05, 0.05), (0.05, 0.10),

(0.10, 0.05) and (0.10, 0.10). We can see from Fig. 6 that the higher the

reference level α is, the lower the risk detection limit is, hence the smaller

the BMD would be. On the other hand, the lower the tolerance risk level

γ is, the smaller the BMD would be because of increased sensitivity level
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Fig. 6. Time-profiled benchmark doses.

to risk. A careful examination of the timed-profile of BMD suggests that,

depending on the reference and risk levels, the minimum BMD is between

6.25 and 7 hour post exposure. This finding in turn suggests a sensitive

time window for screening.

5. Discussion

We have illustrated in this article several dose-response modeling tech-

niques with applications to health risk assessment, particularly BMD es-

timation. The examples used include binary, clustered multinomial and

repeated measurements. Although the basic concepts of modeling and risk

assessment are unambiguous, a number of technical issues warrant further

discussion.

Defining adversity based on continuous measures is often arbitrary. We

can circumvent this problem by assessing distributional changes to exposed

populations relative to a control group. The baseline probability is only

a reference, the changes to the baseline can be used as measures of risk.

Bosch, Wypij and Ryan5 proposed a non-parametric approach to estab-

lish the baseline reference for weight loss. Suppose Y
ij

denotes the observed

weight for the jth animal in the ith dose group (i = 0, . . . , D; j = 1, . . . , n
i
),
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with d0 = 0 being the control. If there is no dose effects, π(d
i
) = Pr(Y0h

>

Y
ij

) = 1/2 for all i, including in particular the case i = 0, i.e. π(0) = 1/2.

We construct a “new” response vector of length mn0, m =
∑

D

i=1
n

i
, rep-

resenting the comparisons between each control subject and each exposed

subject. That is, let

W = (W0111, W0112, . . . , W0hij
, . . . , W0n0DnD

)′ , W0hij
= I(Y0h

> Y
ij

) ,

where the indicator function W0hij
takes the value 1 if Y0h

> Y
ij

, and 0

otherwise. Since E(W0hij
) = π(d

i
), it is natural to estimate π(d) from a

binary regression model for W0hij
.

Developing generalized linear mixed effects models for ordinal data19,20

would be useful for the analysis of individual measure of FOB data.

There is one major technical challenge with regard to zero frequencies

in categories of less common behavior particularly with a small sample

size. Developing multivariate dose-response models is also interesting. For

example, Catalano and Ryan7 and Regan and Catalano36 studied joint

dose-response models with both binary (malformation) and continuous out-

comes (body weight) in developmental toxicity studies, using a bivariate

latent variable model. Attempts have also been made to further include

death in the multivariate dose-response model.8,10 Empirical evidences ar-

gue that multivariate models should result in improved precision for the

purpose of risk assessment, as compared with a univariate approach.22,37

This improved precision could arise in two ways: (1) a richer class of models

and better fit, and (2) more efficient estimators. It would be very useful to

explore good quality statistical techniques for evaluating goodness-of-fit of

dose response models when they are fit using methods such as GEEs.

Better techniques for calculating lower confidence limits based on either

likelihood or GEEs are needed. Given small to moderate sample size, the

conventional methods13,16 that use normal approximation to the estimated

dose-response or BMD may not be accurate. Statistical calibration methods

in conjunction with GEEs can be adopted and modified to estimate the

benchmark dose. Nonparametric techniques such as bootstrap43 should

be further explored in this context to have robust estimate of confidence

limits.
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1. Introduction

1.1. Infectious diseases

Infectious diseases are the illnesses caused by a specific infectious agent

or its toxic products. Most of the agents are microorganisms, like bacteria,

virus, parasites, etc. The transmission of the agent from an infected person,

animal, or reservoir to a susceptible host, results in the infectious diseases

of human, either directly or indirectly through an intermediate plant or

animal host, vector, or the inanimate environment. For example, influenza,

hepatitis, AIDS are caused by virus; dysentery, typhoid by bacteria; and

schistosomiasis, filariasis by parasites.1 Infectious diseases are also called

communicable diseases.

Infectious disease is a great threat to human beings in the past centuries.

In this new century, understanding and controlling the spread of infections is

still vitally important to public health. The challenging problems in studies

of infectious diseases include: (i) how to evaluate the epidemics of an in-

fectious disease in a population; (ii) how to understand the pathogenesis

of infections and transmissions; (iii) if intervention measures such as drugs

and therapies, and prevention measures such as education program and vac-

cines are developed, how to evaluate their effectiveness. Mathematics and

645
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statistics have played a central role in all these three aspects in the past

decades. To accurately evaluate and project the epidemics of an infectious

disease would help to determine the health care needs which is useful for

the public health department or government to prepare and allocate the

resources to fight the disease. It also signals a message on how serious a

particular infectious disease is and draws attentions from the public on the

dangerousness of the disease.

1.2. Mathematical and statistical challenges from

infectious diseases

The application of mathematical methods to infectious diseases dates back

to Daniel Bernoulli’s paper in 17602 in which he used a mathematical

model to evaluate the impact of smallpox on life expectancy. More ana-

lytical work has been done by Hamer3 and Ross,4 who tried to understand

the mechanisms of disease transmission in early of last century. Kermack

and McKendrick5 studied the mass action principle and threshold theorem

originally proposed by Hamer and Ross respectively. The well-known chain

binomial models of disease spread may be traced back to En’ko,6 and

a stochastic counterpart of chain binomial models was introduced by

Greenwood.7

Throughout the last century, theory and quantitative techniques have

been developed to study both the dynamics of disease within individuals

and the transmission of infections through populations. Mathematics and

statistics have played an important role in the studies of infectious diseases.

In particular, over the last two decades there has been a great deal of

work on HIV/AIDS. Both mathematics and statistics have played and will

continuously play an important roles in epidemic studies as well as inter-

vention and prevention studies of infectious diseases. A recent brief review

on these methods can be found in Farrington,8 Heesterbeek and Roberts,9

and Gani.10

1.3. Outline

Many mathematicians and statisticians have responded to the challenges

from infectious diseases in the past two centuries, and continue to make the

best efforts for meeting the new challenges in this new millennium.

In this chapter, first we will introduce the back-calculation method

for a projection of epidemics, proposed recently for estimating epidemics

of AIDS, followed by the introduction of models for natural history of
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infectious diseases. Deterministic and stochastic models as well as their

recent developments are presented in Sec. 2. In Sec. 3, we introduce viral

dynamic models which are heavily studied for understanding pathogenesis

of HIV, HBV, and HCV infection during the last decade. We briefly review

the mathematical and statistical methods for evaluation of intervention

and prevention measures in infectious diseases in Sec. 4. We conclude the

chapter with a brief summary.

2. Epidemic Models

2.1. Estimation and projection of epidemics

Back-calculation

Estimation and projection of epidemics, such as disease incidence and

prevalence, are very important for intervention and prevention of infec-

tious diseases. It is also critical for a government to make decisions and to

prepare public health needs. Back-calculation or back-projection method

has been paid tremendous attention in estimating and projecting AIDS

epidemics in the past 15 years. In this section, we briefly introduce the

back-calculation method and its applications.

Back-calculation is a method for estimating past infection rates of an

infectious disease by working backward from observed disease incidence

using knowledge of the incubation period between infection and disease.

Although it can be used to any infectious diseases in theory, it was first

proposed to study AIDS epidemics by Brookmeyer and Gail.11,12 It has

been widely used in AIDS epidemics.

The basic idea is to use the convolution equation of the expected cumu-

lative number of disease cases diagnosed by time t, A(t), the infection rate

g(s) at time s, and the incubation period distribution F (t), i.e.

A(t) =

∫

t

0

g(s) · F (t− s)ds . (1)

If the disease cases A(t) are known (may be obtained from case reports) and

the incubation period distribution F (t) can be estimated from epidemiolo-

gical studies, the infection rate g(s) then can be estimated by deconvolution

of Eq. (1). If the infection rate g(s) and incubation period distribution

F (t) are known, the disease cases can be estimated or projected using the

convolution Eq. (1).

We introduce the back-calculation using a discrete-time formulation

since it is more realistic. We assume that we have n non-overlapping time
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interval, (T
j−1, Tj

), j = 1, . . . , n; let Y
j

be the number of disease cases diag-

nosed in the jth interval; denote f
ij

as the probability of developing disease

in time interval j given infection in interval i, or f
ij

= F (T
j−i+1)−F (T

j−i
)

where F (T0) = 0; let g
i

denote the expected number of new infections

in time interval i (infection rate). The discrete-time statistical convolution

equation can be written as

E(Y
j
) =

j

∑

i=1

g
i
f

ij
, j = 1, . . . , n . (2)

Usually Y
j

is assumed to follow a Poisson distribution. A Poisson regression

analysis may be used to estimate parameters g
i

while we regard f
ij

as

known covariates. The generalized linear model algorithms in the standard

statistical packages such SAS or Splus can be used to fit the model. However,

a difficulty with this model is that the number of parameters equal to the

number of data points. This may result in unstable estimate of g
i
. To resolve

this problem, one may model g(s) parametrically or nonparametrically. The

parametric models include damped exponential model, log-logistic model,

logistic (prevalence) model, and piecewise constant step function model.

For nonparametric modeling methods, smoothing spline, kernel method,

and series-based splines can be used. More details can be found in the book

(Chapter 8) by Brookmeyer and Gail.13

If we model g
i

as a parametric function, say, g
i

= g(i, β), where β

is a vector of parameters, the maximum likelihood method may be used

to estimate the parameter vector β or the infection rate function g
i

=

g(i, β). Assume that Y
j

follows a nonhomogeneous Poisson process, the

log-likelihood function of Y
j

can be written as

L(Y |β) =

n

∑

j=1

[

Y
j
log

(

j

∑

i=1

g(i, β)f
ij

)

−

j

∑

i=1

g(i, β)f
ij
− log Y

j
!

]

. (3)

The maximum likelihood estimate of β is obtained by maximizing L(Y |β)

with respect of β using general numerical approaches such as the Newton-

Raphson method or EM algorithm.16 The variance of the estimate can be

obtained using Fisher information or bootstrap method. As long as the

infection rate function g(i, β) is estimated, the number of infections and

future disease cases can be estimated and projected.

The cumulative number of infections from time T0 to time T
k

can be

estimated by
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Ĝ(T
k
) =

∫

Tk

T0

g(s, β̂)ds (continuous time) (4)

=

k

∑

i=0

g(i, β̂) (discrete time) (5)

The variance of this estimate can be obtained by the delta method or by

bootstrap method. Also note that the infection prevalence is defined to be

the number of infected individuals who are alive. Thus, the estimate of

the infection prevalence is Ĝ(T
k
) −D(T

k
), where D(T

k
) is the cumulative

number of deaths during the same time interval.

The projection of disease incidence in a future time interval [T
l−1, Tl

) is

obtained by projecting forward the number of individuals infected prior to

the current time T
n
, i.e.

Â(T
l
)− Â(T

l−1)

=

∫

Tn

T0

g(s, β̂)[F (T
l
− s)− F (T

l−1 − s)]ds (continuous time) (6)

=

n

∑

i=0

g(i, β̂)f
il

(discrete time) . (7)

However, this estimate is a lower bound since it only considers the infected

individuals prior to time T
n
. To make an adjustment, the infections during

time T
n

and T
l
need to be considered, that is, the following term needs to

be added to the above projection,
∫

Tl

Tn

g(s, β)[F (T
l
− s)− F (T

l−1 − s)]ds

in continuous time or

l

∑

i=n

g(i, β)f
il

in discrete time. However, the future infection rate g(s, β) or g(i, β) is

unknown. A guess or extrapolation of current infection rate is usually used.

A brief introduction on back-calculation can be found in Bacchetti16 and

a detailed description can be found in Brookmeyer and Gail.13 Note that

the above methods for projection of disease incidence or infection preva-

lence should be used with caution. There are many sources of uncertainty
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in back-calculation methods. The first is the uncertainty in the incubation

period distribution. The estimate of the incubation period distribution may

be subject to errors and uncertainty of the designed epidemiological studies.

The sensitivity analysis is usually used to evaluate these uncertainties. More

details on the incubation period distribution can be found in the book

(Chapter 4) by Brookmeyer and Gail.13 The projection is also sensitive to

the assumption of infection rate models, especially for the unknown future

infection rates. Thus, the model of g(s) needs to be chosen with care.

Another problem is the reported disease incidence data. Different coun-

tries have different reporting systems for infectious diseases. Some of them

may not be reliable. Reporting delay or underreporting occurs frequently.

Some formal methods have been developed to account for the reporting

uncertainty, see Harris14 and Lawless and Sun.15 Also note that the ef-

fect of immigration and emigration from one community (country) to an-

other community (country) is not considered in above projection models.

In summary, the back-calculation method only provides a rough (a lower

bound) estimate or prediction for the disease incidence or infection

prevalence.

2.2. Model the natural history

The natural history of a disease is the evolution of a disease in the absence

of medical intervention. Today, however, most diseases are treated after

they are diagnosed. The term “clinical course” is usually used to describe

the natural history of a disease that has been affected by intervention. A

broader definition of the term “natural history” may also include clinical

course.

The endpoints of a natural history study may be dichotomous outcomes

(such as death, relapse of a tumor or acquisition of AIDS following HIV in-

fection, etc.), time-to-event (such as time to a clinical outcome occurs), or a

repeated biomarker (such as CD4+ cell counts or HIV RNA copies in AIDS

patients). To study the relationship between these endpoints and prognos-

tic factors, standard statistical methods may be used. For example, logistic

regression or tree-structured regression methods (see related chapter of this

book) may be used to study dichotomous outcome endpoints. These meth-

ods are pretty standard, we omit the details here. To study the survival

endpoints, a Kaplan-Meier curve or a product-limit estimator (life table) is

widely used to describe the natural history. The popular proportional haz-

ards model or Cox regression model can be used to study the relationship
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between the survival endpoints and prognostic factors. Since neither the

time of HIV infection nor the AIDS incidence can be observed exactly, the

doubly censored or interval censored data need to be considered in this case.

This problem motivated the development of new methods, see De Gruttola

and Lagakos,17 Kim et al.,18, Jewell et al.,19 Jewell20 and Sun.21 The de-

tailed survival analysis methods can be found in related chapter of this

book or other textbooks. For repeated measurement endpoints, statistical

methods for longitudinal data have been developed in the past two decades.

A good survey of these methods can be found in the book by Diggle et al.,22

and others. Modeling biomarkers of HIV/AIDS such as CD4+ cell counts

and HIV RNA copies (viral load) have been paid special attention in the

last decade. Many new models and methods have been developed. In the

following, we briefly introduce several new models and methods, but refer

the readers to the original papers for details. Standard longitudinal data

analysis methods can also be found in related chapter of this book.

In the early stage of HIV/AIDS research, CD4+ T cell count is the most

important biomarker to study natural history of HIV infection and evaluate

the treatment effects. Recently HIV RNA copies (viral load) became the

new focus in HIV/AIDS research. But the methodology in modeling CD4+

T cell counts can be adopted to model viral load with minor modifications.

De Gruttola, Lange and Dafni et al.23 proposed a linear mixed-effect

model with errors-in-variables to model CD4+ T cell trajectory, i.e.

y
i

= X
i
a + Z

i
β

i

+ ε
i
, i = 1, . . . , n , (8)

where design matrices X
i

and Z
i

are subject to measurement error since

they depend on observed time measurements, a is population parameter,

and β
i

is subject-specific random effects with an i.i.d. normal distribution

and is independent from ε
i
which also follows an i.i.d. normal distribution.

Taylor et al.24 considered a linear mixed-effect model with within-subject

covariance specified as an OU stochastic process, i.e.

y
i

= X
i
a + Z

i
β

i

+ W
i
+ ε

i
, i = 1, . . . , n , (9)

where W
i

is an OU process. They claimed that this model tracked CD4+

T cell data better compared to standard linear mixed-effect models.

To better track the nonlinearity of CD4+ T cells, some nonparametric

and semiparametric models have been proposed. For example, Zeger and

Diggle25 introduced a semiparametric model,

Y
ij

= x
ij

β + µ(t
ij

) + ε
i
(t

ij
) , (10)
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where x
ij

is a covariate matrix (prognostic factors) and µ(t
ij

) is an un-

known smooth function of t. They proposed a back-fitting algorithm to

fit the model, i.e. estimating β and fitting µ(t
ij

) (using kernel or other

nonparametric regression methods) iteratively. See Zeger and Diggle25 for

details.

Nonparametric mixed-effects models have been proposed to model

CD4+ T cell courses.26,27 The basic idea is to decompose a population

(cohort) of CD4+ T cell curves into two parts, a population effect and a

subject-specific random effect, y
i
(t) = f(t) + h

i
(t) + ε

i
(t), where f(t) and

h
i
(t) denote the population curve and the subject-specific random effect

curve respectively, and both of them are assumed to be smooth functions

of t. Cubic B-spline method was proposed to fit f(t) and h
i
(t). Let B(t) be

a vector of a cubic B-spline basis. Assume f(t) = αB(t) and h
i
(t) = γ

i
B(t),

then the CD4+ T cell model can be written as

y
i
(t) = αB(t) + γ

i
B(t) + ε

i
(t) . (11)

This is a standard linear mixed-effects model by treating B(t) as covari-

ates, and α and γ
i

as fixed and random effects respectively. The existing

statistical packages such as SAS procedure MIXED or Splus lme function

can be used to fit this model. Standard inference procedures for linear

mixed-effects models are also available. Similarly, Wang and Taylor28 also

proposed a piecewise cubic polynomial model for CD4+ T cell changes and

used the model to conduct inferences such as treatment comparisons.

Recently more flexible models such as functional linear models or

varying-coefficient models29–32 have been proposed. The model can be

written as

Y
i
(t

ij
) = X

T

i

(t
ij

)β(t
ij

) + e
i
(t

ij
) , (12)

where β(t
ij

) is a time-varying coefficient vector which is assumed to be a

smooth function of t. Fan and Zhang29,30 proposed a two-step procedure

to fit the model. That is, for fixed time t, fit a standard linear regression

model to obtain the raw estimates of β(t
ij

), and then smooth the raw

estimates using one of the existing smoothing techniques. Hoover et al. and

Wu et al.31,32 proposed smoothing spline and local polynomials methods.

Hierarchical Bayes models have been introduced by Lange et al.33 to

model CD4+ T cell counts. This model is similar to a mixed-effects model,

but in Bayes framework. De Gruttola and Tu34 and Tsiatis et al.35 also

proposed a method for jointly modeling survival endpoints and longitudi-

nal biomarkers. They modeled the longitudinal biomarkers (CD4+ T cell
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counts) as a linear mixed-effect model and model survival data using a

standard Cox model, and then construct a joint log-likelihood function of

these two models. Thus, the likelihood-based method can be applied to the

models.

Although above models are developed to model CD4+ T cell counts

in AIDS research, the methodology is generally applicable to other similar

repeatedly measured biomarker data for other infectious diseases. However,

in most countries, especially for developed countries such as United States,

patients with infectious diseases such as HIV/AIDS are mostly under active

treatments. How to model the natural history or clinical course of infectious

diseases under effective treatments is a great challenge, since the treatment

may affect the changes of biomarkers and disease progression dramatically.

Also note that there are many resources of biases and uncertainties in

natural history studies. For examples, sampling or selection bias in study

subject selection process, follow-up length bias due to study length limi-

tations and long latent period of some infectious diseases such as AIDS,

drop-out or missing data bias when the drop-out or missing pattern is not

random. Another problem is that the time zero of a natural history may

not be well-defined and exactly observed in a study, for instance, the ex-

act time of HIV infection is difficult to obtain for some cohorts. See more

discussions in Cnaan.36 In summary, a careful design of a natural history

study is necessary to eliminate or reduce these biases.

2.3. Deterministic models for epidemic transmission

A standard deterministic model for epidemic transmission is a compart-

mental model. For example, a general susceptible-infection-removal (SIR)

compartment model can be written as

Ṡ = µ− βSI − d
S
S , (13)

İ = βSI − rI − d
I
I , (14)

where S and I represent the proportions of susceptible and infectious sub-

jects in the population, and Ṡ and İ denote their derivatives respectively.

Parameter µ denotes the birth rate of susceptible subjects per time unit, β

represents the infection rate when S and I are randomly interacted (mixed).

Parameters d
S

and d
I

denote the death rates of susceptible and infectious

subjects, r denotes the recovered (removal) rate of infectious subjects. The

basic reproduction ratio is defined as

R0 = µβ/[d
S
(r + d

I
)] .
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R0 is an important summary measure of the infectiousness of a disease.

This is the mean number of secondary cases generated by a single infective

in a totally susceptible population. The higher the value of R0, the more

infectious the disease. If R0 ≤ 1, transmission of the infection cannot be

sustained and will eventually die out.

If the infection has a latent stage with a proportion of E (during this

stage, they are not infectious), a standard SEIR model is

Ṡ = µ− βSI − d
S
S , (15)

Ė = βSI − αE − d
E

E , (16)

İ = αE − rI − d
I
I , (17)

where α is the transmission rate from latent to infectious, and d
E

is the

death rate of latently-infected subjects. For some infectious diseases, we

may assume that d
S

= d
E

= d
I

= d, but this may not be true in general.

These compartment models are derived from a principal of mass action and

homogeneously mixing pattern.

The age of subjects is another important factor in the epidemics of

infectious diseases. The age-structured compartment model may be used to

account for age effects. Here is a simple example,

∂S

∂t

+
∂S

∂a

= µ− λS − d
S
S , (18)

∂I

∂t

+
∂I

∂a

= λS − rI − d
I
I , (19)

∂R

∂t

+
∂R

∂a

= rI − d
R
R , (20)

where a is the age of subjects, R is the proportion of recovered (removal)

of subjects in the population. Parameter λ is the so-called force of infection

(age-specific hazard rate of infection) which is a function of time t, and can

be defined by

λ(t) =

∫ ∞

0

k(a′)I(t, a′)da

′
,

where k(a′) is a kernel function. The partial differential equation system

(18)–(20) can be solved numerically with appropriate initial conditions.

Note that the above models are very general for infectious diseases. But

for a particular disease, these models may need to be modified to accom-

modate the special feature or characteristics of the disease. For example,

HIV-infected patients cannot be cured or recovered from infection with
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current treatments, instead they may progress to AIDS or death. Thus, in

the differential equation of infectious population (I), r is the rate of pro-

gression to AIDS. An additional equation of AIDS cases, Ȧ = rI − d
A
A,

may be added.

Hepatitis B virus (HBV) infection is another example of infectious

diseases with its transmission to be characterized by a model of five com-

partments. A community population can be divided into five compartments:

(1) susceptible S(a, t); (2) latent period (the time interval from infection to

development of infectiousness), L(a, t); (3) temporary HBV carriers, T (a, t);

(4) chronic HBV carriers C(a, t); and (5) immune I(a, t).37,38 Here “a” rep-

resents the age and “t” represents the length of follow-up. Among the five

stages, compartments 3 and 4 are infectious. In this model, birth rate is con-

sidered as a constant; age specific death rates are collected from death notifi-

cation systems. The immune status is assumed to be life-long and newborns

are assumed susceptible. For simplicity of modeling, the rare intrauterine

HBV infection,39,40 the short period of newborn maternal antibody and the

sex differences ignored. The model parameters are defined as the following:

λ(a, t) is the force of infection; α is the rate of transition from latent period

to temporary HBV viremia; β(a) is the risk of transient viremia progress-

ing to chronic HBV carriage; ε is the rate of transition from temporary

HBV viremia to immune per time unit; ν(a) is the rate of HBV clearance

in chronic HBV carriers; τ(a) is the mortality rate of HBV related dis-

eases; µ(a) is the age-specific mortality rate of non HBV related diseases;

V
c
(a, t) is the effectiveness of hepatitis B vaccine immunization. Then the

age-structured compartment model for HBV can be written as,

∂S(a, t)

∂a

+
∂S(a, t)

∂t

= [λ(a, t) + V
c
(a, t) + µ(a)]S(a, t) , (21)

∂L(a, t)

∂a

+
∂L(a, t)

∂t

= λ(a, t)S(a, t)− [α + µ(a)]L(a, t) , (22)

∂T (a, t)

∂a

+
∂T (a, t)

∂t

= αL(a, t)− [β(a) + ε + µ(a)]T (a, t) , (23)

∂C(a, t)

∂a

+
∂C(a, t)

∂t

= β(a)T (a, t)− [ν(a) + τ(a) + µ(a)]C(a, t) , (24)

∂I(a, t)

∂a

+
∂I(a, t)

∂t

= V
c
(a, t)S(a, t) + εT (a, t)

+ ν(a)C(a, t)− µ(a)I(a, t) . (25)
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After all the parameters were estimated from the data of epidemiological

studies,41–43 the probabilities or variables, S(a, t), L(a, t), T (a, t), C(a, t)

and I(a, t) at age a and time t in the model can be calculated by the

integral of the partial differential equations. These estimates can describe

the dynamics of HBV transmission in the population at the pre-vaccination

period or predict the trend with different vaccination coverage V
c
(a, t) in

the population. Detailed information about HBV modeling and parameter

estimation can be found in references.44,45

The deterministic models for other diseases such as Malaria and

Helminths can be found in Heesterbeek and Roberts.9 More details on de-

terministic compartment models can be found in the books by Bailey,46

Becker,47 Anderson and May48 and Daley and Gani.49

2.4. Stochastic models for epidemic transmission

2.4.1. Branching processes

In the cases in which it is reasonable to assume an unlimited pool of sus-

ceptibles, for instance during the initial stage of an epidemic, a branching

process can be used to model the spread of infection. Let Y0 denote an

initial number of infectives at generation 0. These Y0 individuals infect

Y1 individuals as the next generation. In turn, these Y1 individuals infect

Y2 individuals as the third generation, and so on. Let Z denote the number

of infections directly caused by one individual, which is a random variable

with a mean of µ, variance σ

2 and a probability density function of g(z).

Thus, for each i, Y
i
= Z1 + · · ·+ Z

Yi−1
, where Z

j
are independent variables

with density g(z).

Harris50 proposed a nonparametric maximum likelihood estimator for

µ:

µ̂ =

k

∑

i=1

Y
i

/

k

∑

i=1

Y
i−1 .

The properties of this estimator are discussed by Keiding.51 Becker52

suggested an alternative estimator:

µ̂ =

{

(Y
k
/Y0)

1/k if Y
k

> 0 ,

1 if Y
k

= 0 .

Note that the expected number of infections caused by one individual,

µ, plays the same role as the basic reproduction ratio (R0) in deterministic

models. It can be shown that if µ ≤ 1, the process will become extinct with
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probability one.50 Inferences for branching processes are usually conditional

on extinction and non-extinction. Heyde53 suggested a Bayesian approach

which allows the extinction (µ ≤ 1) and non-extinction (µ > 1) to be

treated without distinction. Becker47 gave several applications of branching

processes to smallpox epidemics.

2.4.2. Chain binomial models

The branching process is unsuitable for the epidemics within a small com-

munities such as households. In this context, chain binomial models are

more appropriate. The chain binomial model, or refer to the Reed-Frost

epidemic model was introduced by the biostatistician Lowell J. Reed and

the epidemiologist Wade Hampton Frost around 1930, as a teaching tool

at Johns Hopkins University. Although they did not publish their results

formally, their model was introduced in later publications.54,55

Consider a fixed number of community (such as household, sexual part-

ners, needle sharing group) with n individuals. At generation k there are

X
k

susceptibles exposed to Y
k

infectives. The distribution of the number

of infectives in the next generation, Y
k+1, conditional on X

k
and Y

k
, is

binomial:

Pr(Y
k+1 = z|X

k
= x, Y

k
= y) =

x!

z!(x− z)!
p

z

k

(1− p
k
)x−z

,

where p
k

is the probability that a susceptible of generation k will acquire

infection from one of the y
k

infectives. The parameter p
k

can be modeled

under different assumptions. One assumption due to Reed and Frost54 is

that contacts with infectives occur independently, so that

p
k

= 1− (1− π)yk
,

where π is the probability of infection for the contact with the infectives.

An alternative assumption, due to Greenwood,7 is that the probability of

infection does not depend on the number of infectives that the susceptible

is exposed to, then

p
k

=

{

π if y
k

> 1 ,

0 otherwise .

Under this assumption, it is usually called the Greenwood chain binomial

model. More complicated models for p
k

can be developed for complicated

transmission mechanisms such as HIV infection. Some other extensions to

the Reed-Frost model can be found in Longini and Koopman.56
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Inference for chain binomial models is usually based on likelihood meth-

ods. See Bailey,46 Becker,47 Longini and Koopman,56 Longini et al.57

and Saunders.58 A brief introduction can be found in Longini.59 For an

updated review, see Becker and Britton.60

2.4.3. Stochastic compartment models

The stochastic version of the SIR model (13) is useful to capture stochastic

features of epidemics in a small population or in the early stage of

the epidemics. Consider S(t) and I(t) as the number (rather than the

proportion) of susceptibles and infectives respectively. Then the transition

probabilities in a short time interval (t, t + δt) are

Pr[S(t + δt) = S(t)− 1; I(t + δt) = I(t) + 1] = βS(t)I(t)δt , (26)

Pr[S(t + δt) = S(t); I(t + δt) = I(t)− 1] = (r + d
I
)I(t)δt , (27)

Pr[S(t + δt) = S(t) + 1; I(t + δt) = I(t)] = µδt , (28)

Pr[S(t + δt) = S(t)− 1; I(t + δt) = I(t)] = d
S
S(t)δt . (29)

The solution of this stochastic systems is not straightforward. Monte Carlo

methods may be used to solve it.61–63

Tan and Hsu64 proposed a stochastic SEIR model (including a latent

stage of infection) for AIDS epidemics. Recently, Wu and Tan65 suggested

a multiple stage stochastic models (the chain multinomial model) for AIDS

epidemics in a homosexual population. Here we briefly introduce this model.

Let S(t), I
r
(t), and A(t) denote the numbers of susceptible people,

people at rth infection stage (r = 1, 2, . . . , k) and people on set of AIDS at

time t respectively. Then we are entertaining a (k +2)-dimensional discrete

stochastic process X(t) = [S(t), I1(t), I2(t), . . . , Ik
(t), A(t)]T , where [·]T

denote the transpose of a vector or matrix. To formulate the dynamic model

(the chain multinomial model) for this process, let α
S
(t) denote the condi-

tional probability of S → I1 given X(t) during [t, t + 1) and give the other

notations of the transition probabilities and numbers of various transitions

of the HIV epidemic in Table 1.

By using the chain multinomial model, we obtain the following

stochastic difference equations:

S(t + 1) = R
S
(t) + S(t)− F

S
(t)−D

S
(t) , (30)
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Table 1. Notation for transitions of the HIV epidemic in homosexual populations during
[t, t + 1).

Transition Transition probability Transition numbers

Immigration −→ S µS(t) RS(t)

Immigration −→ Ir µr(t) RIr
(t)

S −→ I1 αS(t) FS(t)

Ir −→ Ir+1, r = 1, 2, . . . , k − 1 αr(t) FIr
(t)

I1 −→ S β1(t) = 0 BI1
(t) = 0

Ir −→ Ir−1, r = 2, 3, . . . , k βr(t) BIr
(t)

A −→ Ik βk+1(t) = 0 BA(t) = 0

Ir −→ A, r = 1, 2, . . . , k ωr(t) AIr
(t)

S −→ Death dS(t) DS(t)

Ir −→ Death dr(t) DIr
(t)

A −→ Death dA(t) DA(t)

I
r
(t + 1) = R

Ir
(t) + F

Ir−1
(t) + B

Ir+1
(t) + I

r
(t)

− [F
Ir

(t) + B
Ir

+ A
Ir

(t) + D
Ir

(t)] , (31)

A(t + 1) =
k

∑

r=1

A
Ir

(t) + A(t) −D
A
(t) , (32)

where r = 1, 2, . . . , k, and F
I0

(t) = F
S
(t), F

Ik
(t) = 0. The distributional

properties of the quantities in the equations are listed as follows:

• R
S
(t) ∼ Binomial [S(t), µ

S
(t)], independent of F

S
(t) and D

S
(t).

• [F
S
(t), D

S
(t)]|X(t) ∼ Multinomial [S(t); α

S
(t), d

S
(t)].

• R
Ir

(t)|I
r
(t) ∼ Binomial [I

r
(t); µ

r
(t)], independent of F

Ir
(t), B

Ir
(t), A

Ir

(t) and D
Ir

(t).

• [F
I1

(t), A
I1

(t), D
I1

(t)]|X(t) ∼ Multinomial [I1(t); α1(t), ω1(t), d1(t)].

• [F
Ir

(t), B
Ir

(t), A
Ir

(t), D
Ir

(t)]|X(t) ∼ Multinomial [I
r
(t); α

r
(t), β

r
(t), ω

r

(t), d
r
(t)], for r = 2, . . . , k − 1.

• [B
Ik

(t), A
Ik

(t), D
Ik

(t)]|X(t) ∼ Multinomial [I
k
(t); β

k
(t), ω

k
(t), d

k
(t)].

• D
A
(t)|A(t) ∼ Binomial [A(t), d

A
(t)].

Equations (30)–(32) provide an avenue for computing the probability

distributions of X(t). Although the exact probability distributions of X(t)

are quite complicated, one may use these equations to derive equations

for the means, the variances and higher cumulants of X(t) as well as

other results. Wu and Tan65 also proposed using a state-space model to
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approximate the above stochastic model, and then Kalman filter can be

used for estimation and projections. See Wu and Tan65 for details.

3. Viral Dynamic Models

Recently a great attention has been paid for modeling interaction and

dynamics of virus and immune systems at cellular level within a host. It

brought up a breakthrough in studying pathogenesis of HIV, HBV and HCV

infections. In this section, we briefly introduce the basic models and their

extensions, and summarize the important results obtained by applying these

models to clinical data. Some statistical methods for parameter estimation

will be briefly introduced.

3.1. HIV dynamics

Modeling HIV dynamics within a host can be traced back to 1980s.66–68 In

the early stage of HIV modeling, the focus is to understand the mechanism

and pathogenesis of HIV infection and antiviral drug action using computer

simulations based on the developed models. When the simplified version

of the complicated simulation models were successfully applied to the cli-

nical data in the last several years,69–72 it has led to a new understanding

of the pathogenesis of HIV infection. Mathematical models and statistical

methods played an important role in this breakthrough. Here we briefly

introduce the models and the results.

In the seminar papers, Ho et al.69 and Wei et al.70 proposed simple

compartment models (one or two compartments) for their clinical data

of plasma HIV viral load (the number of RNA copies) in HIV-1-infected

patients treated with potent antiviral agents. In Ho et al.,69 a simple one-

compartment model, d

dt

V = P − cV , was proposed, where V denotes the

concentration of virus (measured by the number of HIV RNA copies per ml

plasma), P denotes the production rate of virus, and c denotes the clear-

ance rate of virus. If we assume that the antiviral treatment is perfect, or

P = 0 after initiation of a potent antiviral treatment, the solution to above

ordinary differential equation is V = V0e
−ct, where V0 is the initial viral

concentration. When we have repeated measurements of V on individual

patients, we can fit a nonlinear model, Y (t) = V0e
−ct+ε or a linear model in

a log scale, Y (t) = log(V0)− ct + ε, to obtain the parameter estimate of c.

The mean life-span or half-life of HIV can be estimated by 1/c and ln 2/c

respectively. Ho et al.69 applied this simple method to 20 HIV-infected

patients, and they obtained that the half-life of HIV (in fact, it is the
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half-life of productively infected cells) is 2.1 ± 0.4 days with a range of

1.3 to 3.3 days. Wei et al.70 obtained similar results. This estimated rapid

turnover rate of HIV virus (or infected cells) has important implications for

HIV therapy and pathogenesis. One of the implications is that the rapid

turnover of HIV may generate viral diversity and increase the opportu-

nities for viral escape from antiviral agents. This motivated the idea of

the therapy with combination of several antiviral agents (or so-called

“cocktail” therapy).

To refine the estimate of viral replication, Perelson et al.71 considered

a more complicated compartment model when HIV infected patients are

treated with more potent protease inhibitor (PI) antiviral agents. The mech-

anism of the PI drug antiviral action is to block the replication (generation)

of infectious virus. Under the assumption of perfect PI drug treatment, the

model can be written as

dT

∗

dt

= kV
I
T − δT

∗
,

dV
I

dt

= −cV
I
,

dV
NI

dt

= NδT

∗ − cV
NI

,

where T represents the concentration of uninfected CD4+ T cells; T

∗

denotes the concentration of productively infected T cells; V
I

denotes the

concentration of noninfectious virions; V
NI

denotes the concentration of

noninfectious virions; c denotes the clearance rate of virus; δ denotes the

clearance rate of infected cells; k is the infection rate. A closed-form solution

to above differential equations under the assumption of constant T (it is

reasonable at initial stage of infection) can be obtained:

V (t) = V
I
(t) + V

NI
(t) = V0 exp(−ct) +

cV0

c− δ

×

{

c

c− δ

[exp(−δt)− exp(−ct)]− δt exp(−ct)

}

.

When frequent repeated measurement data on V (t) are available, a non-

linear model, Y (t) = V (t) + ε, can be fitted to obtain the estimates of

important parameters such as clearance rate of virus (c) and infected cells

(δ). Perelson et al.71 applied this method to the data from 5 HIV infected

individuals, and obtained that the refined estimate of half-life of free HIV is

0.24± 0.06 days (about 6 hours in average) which is much more rapid than
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previous estimate in Ho et al.69 and Wei et al.70 The estimated half-life of

infected cells is 1.55± 0.57 days.

Furthermore, Perelson et al.72 developed a compartment model for the

observed biphasic viral load data. They speculated that the first phase

is due to viral replication from productively infected cells such as CD4+

T cells, and the second phase as latent or long-lived infected cells such

as macrophages or dendritic cells. Based on clinical data, Perelson et al.72

estimated that the half-life of short-lived productively infected cells is about

1.1±0.4 days, for long-lived infected cells is 14.1±7.5 days, and for latently

infected cells is 8.5±4.0 days. Using their model and the estimated results,

they predicted that it might need 2.3–3.1 years to eliminate the HIV virus

by the potent antiviral therapies, although later it was shown that this

estimate was too optimistic.

Wu and Ding73 recently proposed a unified approach for modeling ob-

served HIV dynamic data. First Wu and Ding73 proposed a comprehensive

mathematical model for HIV dynamics considering all the potential cell

and virus compartments: (1) uninfected target cells, such as T cells,

macrophages, lymphoid mononuclear cells (MNCs), and tissue langer-

hans cells, which are possible targets of HIV-1 infection; (2) mysterious

infected cells, cells other than T cells, such as tissue langerhans cells and

microglial cells whose behavior is not completely known so far; (3) long-lived

infected cells, such as macrophages, that are chronically infected and long-

lived; (4) latently infected cells, infected cells that contain the provirus but

are not producing virus immediately, and only start to produce virus when

activated; (5) productively infected cells, infected cells which are actively

producing virus; (6) infectious virus, virus that are functional and capable

of infecting target cells; (7) noninfectious virus, virus that are dysfunctional

and cannot infect target cells. We denote the concentration of the variety

of these cells and virus by T, T
m

, T
s
, T

l
, T

p
, V

I
, and V

NI
respectively.

Without the intervention of antiviral treatment, the uninfected target

cells may either decrease due to HIV infection or be in an equilibrium

state due to the balancing between the regeneration and proliferation of

uninfected target cells and HIV infection. Some uninfected target cells (T )

are infected by infectious virus (V
I
) and may become mysterious infected

cells (T
m

), long-lived infected cells (T
s
), latently infected cells (T

l
) or pro-

ductively infected cells (T
p
) with proportions of α

m
kV

I
, α

s
kV

I
, α

l
kV

I
, and

α
p
kV

I
respectively, where α

m
+ α

s
+ α

l
+ α

p
= 1. The latently infected T

cells may be stimulated to become productively infected cells with a rate of
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δ
l
. The infected cells, T

m
, T

s
and T

p
, are killed by HIV at the rates of δ

m
, δ

s

and δ
p

respectively after producing an average of N virions per cell during

their lifetimes. The infected cells, T
m

, T
s

and T
l
may also die at the rates

of µ
m

, µ
s

and µ
l
respectively without producing virus. We assume that the

proportion of noninfectious virus produced by infected cells is η without

the intervention of protease inhibitor (PI) antiviral drugs. The elimination

rates for infectious virus and noninfectious virus are assumed to be the

same, say c.

We assume that the antiviral therapy consists of one or more protease

inhibitor (PI) drugs and reverse transcriptase inhibitor (RTI) drugs. We

model the effect of RTI drugs by reducing the infection rate from k0 to

(1 − γ)k0, where 0 ≤ γ ≤ 1. Parameter γ reflects the RTI drug efficacy. If

γ = 0, the RTI drugs have no effect; if γ = 1, the RTI drugs are perfect

and completely block HIV infection. The PI drugs are assumed to be so

potent that the production of infectious virions is almost blocked except

for a small fraction. To account for some compartments where the PI drugs

cannot reach and some persistent virus that the PI drugs cannot completely

block the production, we consider an additional virus production term with

a constant (average) rate, P , in the model. If only a small fraction of per-

sistent virus can escape from the attack of PI drugs, it may be considered

as a Poisson process, and thus also be modeled by a constant production

in a deterministic model. Thus after initiation of combination treatment of

PI and RTI drugs, the HIV dynamic model can be written as,

d

dt

T
m

= (1− γ)α
m

k0TV
I
− δ

m
T

m
− µ

m
T

m
,

d

dt

T
s

= (1− γ)α
s
k0TV

I
− δ

s
T

s
− µ

s
T

s
,

d

dt

T
l
= (1− γ)α

l
k0TV

I
− δ

l
T

l
− µ

l
T

l
,

d

dt

T
p

= (1− γ)α
p
k0TV

I
+ δ

l
T

l
− δ

p
T

p
,

d

dt

V
I

= (1− η)P − cV
I
,

d

dt

V
NI

= ηP + Nδ
m

T
m

+ Nδ
s
T

s
+ Nδ

p
T

p
− cV

NI
.

(33)

where α
m

+ α
s

+ α
l
+ α

p
= 1. Under the assumption of constant T and

perfect treatments, then the system of Eq. (33) can be solved analytically

and the final solution for the total virus V = V
I

+ V
NI

has a form of (see
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Appendix in Wu and Ding73),

V (t) = P0 + P1e
−λ1t + P2e

−λ2t + P3e
−λ3t + P4e

−λ4t

+ (P5 + P6t)e
−λ5t + P7e

−λ6t + P8e
−λ7t

, (34)

where P
i
, i = 0, . . . , 8 are functions of model parameters and λ1 = δ

p
, λ2 =

δ
m

+ µ
m

, λ3 = δ
s

+ µ
s
, λ4 = δ

l
+ µ

l
, λ5 = c, λ6 = r, and λ7 = c + r.

At time t = 0, V (0) =
∑

i6=6
P

i
. Parameter P

i
represents the initial viral

production rate, and Parameter λ
i
represents the exponential decay rate of

virus due to the corresponding compartment. This model is too complicated

(too many parameters) to be used in practice. Wu and Ding73 suggested to

use simplified version of the model based on available data. For example,

if only the biphasic data are available, a bi-exponential model, V (t) =

P1e
−δpt +P2e

−λlt or a one-exponential plus a constant model, V (t) = P0 +

P1e
−δpt may be used.73 To fit the model with sparse individual data, Wu

et al.74 and Wu and Ding73 also proposed using nonlinear mixed-effect

model approach.75,76 The two-stage nonlinear mixed-effect model is briefly

introduced as follows.

Stage 1. Intra-patient variation in viral load measurement:

y
ij

= log(V (t
ij

, β
i

)) + e
ij

, e
i
|β

i

∼ (0, Ri(βi, ξ)) , (35)

where y
ij

is the log-transform of the total viral load measurement

for the ith patient and at the jth time point t
ij

, i = 1, . . . , m;

j = 1, . . . , n
i
. The log-transformation of raw data is used to

stabilize the variance (it is also more normally distributed). The

function V (t
ij

, β
i

) is a nonlinear function of treatment time t

which may be selected based on the available data and model

assumptions. See Wu and Ding73 for details.

Stage 2. Inter-patient variation:

β
i

= β + b
i
. (36)

Population parameters are β, and random effects are b
i
∼ (0, D).

More detailed inferences regarding the nonlinear mixed-effect model can be

found in the books by Davidian and Giltinan75 and Vonesh and Chinchilli.76

A comparison for viral dynamic model-fitting procedures can be found

in Ding and Wu.77 Application to more adult HIV-1 infected patients

and pediatric patients can be found in Wu et al.78 and Luzuriaga et al.79

Recently, Ding and Wu80 and others have suggested using viral dynamics

(decay rates) to evaluate the potency of antiviral therapies. Statistical
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methods has been proposed to implement this idea by Ding and Wu.81

Modeling drug resistance can be found in Nowak et al.82 and others. For a

good review of viral dynamic modeling and their extensions, see Perelson

and Nelson83 and Nowak and May.84

3.2. Hepatitis virus dynamics

Following the success of HIV dynamics modeling, similar studies have

been done for hepatitis B and C virus (HBV and HCV). For example,

Nowak et al.85 proposed a simple compartment model for HBV dynamics.

Let X , Y and V be uninfected cells, infected cells and free HBV virus

respectively, then a mathematical model for HBV dynamics is

Ẋ = λ− βXV − d
x
X , (37)

Ẏ = βXV − d
y
Y , (38)

V̇ = αY − d
v
V , (39)

where λ is the production rate of susceptible cells. Uninfected cells die at

a rate of d
x
X and become infected at rate βXV . Infected cells are pro-

duced at rate βXV and die at rate d
y
Y . Free virions are produced from

infected cells at rate αY and are removed at rate d
v
V . Nowak et al.85

assumed that the potent treatment (the reverse transcriptase inhibitor,

lamivudine) is perfect, i.e. α = β = 0. Thus, V (t) = V0 exp(−d
v
t) and

Y (t) = Y0 exp(−d
y
t). If the treatment is not perfect (more likely in reality),

a model for free virion is V (t) = V0[1−r+r exp(−d
v
t)], where r is an efficacy

parameter, which can be estimated from the viral load data. Nowak et al.85

fitted a clinical data to these models, and found that the half-life of HBV

free virions is about 1 day, the half-life of infected cells ranges from 10 to

100 days in different patients.

Many researchers have studied HCV dynamics using models similar to

HBV under the antiviral treatment with Interferon-α.86–90 The recent re-

port from Neumann90 showed that the half-life of HCV free virions was, on

average, 2.7 hours, the half-life of infected cells was 1.7 to 70 days.

All modeling techniques and statistical methods for HIV dynamics are

applicable to both HBV and HCV with minor modifications.

4. Intervention and Prevention

Intervention and prevention measures are critical to stop the epidemic

of infectious diseases. To evaluate the effectiveness of the intervention



June 23, 2003 16:6 WSPC/Advanced Medical Statistics chap17

666 H. Wu & S. Zhao

and prevention methods, clinical trials are usually conducted. Since other

chapters have addressed the general methods of clinical trials, here we only

emphasize some special features of clinical trials for infectious diseases, in

particular, AIDS clinical trials.

4.1. Medical intervention

The general design of clinical trials can be found in clinical trial

textbooks.91–94 One of the most important issues in clinical trials is the

selection of an endpoint which can be used to measure the effectiveness of

interventions such as medical treatments.

In general, an endpoint of a clinical trial should possess the following

properties: (i) relevant to the treatment effectiveness and easy to interpret;

(ii) clinically apparent and easy to diagnose (or measure); (iii) sensitive to

treatment differences. An earlier discussion on the choice of an endpoint

for AIDS clinical trials can be found in Amato and Lagakos.95 In the early

stage of AIDS clinical trials (before 1994), the time to progression to AIDS

or survival (time to death) was used. Since many different types of events or

symptoms were defined as AIDS, the endpoints of progression to AIDS are

often referred to as “combined endpoints”. After reviewing and comparing

the clinical data, Neaton et al.96 recommended that the survival, instead

of combined endpoints, be a preferred primary endpoint of antiviral trials.

However, due to long incubation period of AIDS, the trial requires a long-

term follow-up if the survival was used as the endpoint. Recently, surrogate

markers such as viral load (HIV RNA copies) or CD4+ cell counts have

been proposed and used as endpoints after validation of these markers (it is

out of scope of this chapter to discuss how to validate a surrogate marker,

see Prentice97 for details).

The commonly used primary endpoints in recent AIDS clinical trials are

viral load based endpoints which include: (i) the magnitude of reduction

in viral load (HIV-1 RNA level) from baseline to a prespecified primary

follow-up time (e.g. Week 24 or Week 48); (ii) the proportion of patients

having viral load below the limit of quantification of the assay being used

at the primary follow-up time; (iii) the durability based on the time-to-

virologic-failure (the time until plasma viral load becomes detectable again).

Marschner et al.98 studied the first endpoint, the magnitude of reduction in

viral load, and proposed statistical methods to deal with censored (below

detection limit) viral load measurements. They argued that the dichoto-

mous endpoint (the proportion of patients having viral load below the limit
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of detection) was more straightforward and less subject to bias than the

analysis of the magnitude of viral load reduction. Standard methods of

analysis for binary data would be appropriate. However, the dichotomous

endpoint may lead to a lower power to detect the treatment difference than

the endpoint of the actual magnitude of viral load change. By classifying

virologic responses as either successes or failures, information is lost

regarding the degree of virologic response. However, the endpoint based

on the magnitude of viral load change involves complicated censored data

problem due to the limit of detection of viral load assays, which may be

subject to bias, see Marschner et al.98 and Hughes.99

Gilbert et al.100 studied the time-to-virologic-failure endpoints. They

recommended the endpoint of time-to-virologic-failure from randomization

due to its advantages in flexibility and sample size. They argued that the

time-to-failure endpoint is generally more powerful than the binary end-

point, and it is flexible for evaluating covariate effects and for extending

the study by prolonging the follow-up period. Also the interpretation of

time-to-failure endpoint is more close to clinical practice than that of a

binary endpoint, since physicians monitor viral load levels in patients over

time for treatment managements.

Other endpoints such as the area under the curve (AUC) of viral load

change, time-to-below-detection in viral load, and viral dynamic parameters

(viral decay rates) were also suggested, but not widely used in large AIDS

clinical trials. For the comparison of some of these endpoints, see Weinberg

and Lagakos.101 To evaluate the short-term potency of antiviral therapies

using viral dynamic parameters, see Ding and Wu.80,81

Although the general clinical trial design methods can be used in

most AIDS clinical studies, some new issues have arised from the com-

plicated treatments for AIDS patients. See De Gruttola et al.102 and

Hughes99 for some discussions on the design issues in AIDS clinical trials.

Also note that the computer-assisted design techniques or clinical trial

simulations (CTS)103 may be useful for designing the complicated clinical

trials.

Successful medical interventions will result in the change of epidemic

patterns.104–106 How to evaluate the epidemic trends under medical inter-

ventions is challenging. In this regards, computer simulations based on the

epidemic models with considering treatment effects will be helpful.

Clinical studies on HBV and HCV are currently very active. HBV

patients are treated with antiviral agents such as lamivudine and

famciclovir,85 and HCV patients are treated with interferon (IFN) and
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ribavirin therapy.90 New anti-HBV and anti-HCV agents are under deve-

lopment, some of them are already in the stage of clinical trials. The

methods for studying anti-HIV medical interventions are generally

applicable to HBV and HCV.

4.2. Prevention

Preventive interventions are widely used to stop or reduce the epidemic of

infectious diseases. Prevention measures include “lifestyle” maneuvers such

as the change of social behavior to reduce the exposure risk to infectives,

and modifications of sexual behavior for sexually transmitted infectious dis-

eases via public education and advertisement. Another effective prevention

measure is to prevent the infectious diseases by vaccination. To evaluate

the effectiveness of these prevention measures is very challenging in terms

of designing and implementing a prevention study due to the high cost and

long-term follow-up.

4.2.1. Prevention trials

A prevention trial is different from standard randomized clinical trials. The

goal of prevention trials for infectious diseases is to evaluate the effective-

ness of prevention measures to protect individuals from infections. If the

infection rate in a community or population is low for a particular infec-

tious disease, a prevention trial generally needs a large sample size with

tens of thousands of subjects. If it takes time for the prevention measures

to start to work or for an individual to acquire the infection via exposure to

infectives, it may require long duration such as several years of follow-up to

evaluate the effectiveness of the prevention programs. Thus, the prevention

study is logistically challenging with high cost.

Traditionally an observation study, for example, a cohort or community

study, is employed to evaluate the prevention programs (historical control

may be used in this case). When prevention measures are taken in a cohort

or a community, the infection rate may be evaluated within a prespecified

time period, and then compare this rate with a historical infection rate in

this cohort or community. This kind of observational studies are subject

to several problems such as within-subject variations, measurement errors,

confounding factors, and adherence to prevention measures. For example,

to evaluate the promotion of condom use and education of safe sexual prac-

tices among homosexual men community to prevent HIV infection, not all

subjects in the study adhere to the condom use during the study, and their
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sexual behavior may change during the study period (within-subject vari-

ation). Also the epidemics of an infectious disease under the prevention

may confound with other factors. The causal inferences for epidemiologic

associations with corresponding preventive strategies are also subject to

measurement errors.

Ideally it is most effective and informative to conduct a randomized

and controlled prevention trial to evaluate prevention programs. This would

avoid the difficulties in observational studies. The study subjects may be

selected from a high risk community of an infectious disease to reduce the

sample size and the cost in a randomized prevention trial. For example,

homosexual men, IV drug users, or sexual workers are high risk communities

that are targeted for prevention from HIV infection. The design, conduct,

monitoring, and analysis for randomized prevention trials are similar to

standard therapeutic clinical trials. However, in some cases, it may not be

ethical and practical to conduct a randomized prevention trial. For example,

the needle sharing is a confirmed cause of HIV infection among IV drug

users and safe sex such as condom use may reduce the risk of sexually

transmitted infectious diseases, education or advertisement to the public

on these knowledge is a good prevention measure. However, it is not ethical

and practical to randomize high-risk subjects into the arm without accessing

the education or advertisement of needle sharing risk and safe sex. For more

discussion on prevention studies, see Prentice107 and Jacobs.108

4.2.2. Vaccine studies

Vaccine studies are designed to evaluate different effects of vaccination

during different stages of vaccine development. The major purpose of

vaccines is to protect the vaccinated person against infection or reduce

the severity or risk of disease progression after being infected. Successful

vaccination can reduce person-to-person transmission and change the

pattern of epidemics of an infectious disease within a population by reduc-

ing the infectiousness of an vaccinated person or by preventing individuals

from infection. Thus, vaccination is an important intervention tool to the

epidemics of infectious diseases and has great contributions to the public

health.

It is important to understand the biological background of a vaccine in

order to evaluate its efficacy. A vaccine is usually composed of an antigen

and an adjuvant. The antigen contains either a piece of or the whole infec-

tious agent in question and is the component of the vaccine that induces
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the immune response which is specific to the infectious agent. An adjuvant

may increase the immunogenicity of the antigen. Thus, active immuniza-

tion by vaccination does not prevent infection or disease, but the immune

responses induced by vaccination interfere with infection or disease. For

this reason, the efficacy of a vaccine also depends on the condition of the

host’s immune system. An important part of vaccine studies is evaluation of

immunogenicity of the vaccine which is the ability of the vaccine to produce

a measurable immune response in a host.

Three different types of population level effects of vaccination are iden-

tified. The indirect effects are the effects or benefits on those people

not receiving the vaccine in the targeted population. The total effects in

vaccinated individuals are the combination of the indirect effects with the

individual-level effects of vaccination. Overall public health effect of the

vaccination in the entire population of interest is a weighted average of

the indirect effects on the unvaccinated people and the total effects on the

vaccinated people. Vaccine studies can be used to evaluate the indirect,

total, or overall effects of vaccination in a population. Note that safety is

also an important aspect for evaluation of vaccines since vaccination can

cause side effects due to the induction of the immune system.

A general definition of vaccine efficacy is the percentage reduction in

the attack rate attributable to the vaccine, or

V E =
p

u
− p

v

p
u

= 1−
p

v

p
u

= 1− ρ ,

where p
u

and p
v

denote the risk of infection in unvaccinated and vaccinated

individuals respectively, and ρ = p
v
/p

u
is the relative risk of infection.

Alternatively, the vaccine efficacy can be defined as the relative hazard of

infection:

V E = 1−
λ

v

λ
u

,

where p
u

= 1−exp(−λ
u
t), p

v
= 1−exp(−λ

v
t). Vaccine efficacy can also be

defined based on the cumulative incidence rates (attack rates) at the end

of a study,

V E = 1−
C

v

C
u

,

where C
v
q and C

u
denote the cumulative incidence (infection) rates for

vaccinated and unvaccinated individuals. To define the vaccine efficacy for

infectiousness, we need to know the infection rate in exposures to vaccinated

individuals (r
v
) and unvaccinated individuals (r

u
), then,

V E = 1−
r
v

r
u

.
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These definitions are used to evaluate vaccine efficacy in vaccine clinical

trials and in the field. Vaccine efficacy can be estimated in a cohort study

or a clinical trial involving n
v

and n
u

individuals in vaccinated and un-

vaccinated cohorts or groups respectively. Assume that r
v

and r
u

are

the number of infection cases from vaccinated and unvaccinated cohorts,

respectively, during a prespecified follow-up period, then the vaccine efficacy

is estimated as

̂

V E = 1−
r
v
/n

v

r
u
/n

u

.

The vaccine efficacy can also be similarly estimated by a case-control study

using the case-control study methodology. The screening method may also

be used to estimate the vaccine efficacy in a population. Let θ denote the

proportion of infection cases from vaccinated individuals, and let π as the

proportion of the population vaccinated (known). The vaccine efficacy is

estimated by

̂

V E = 1−
θ

1− θ

1− π

π

.

In the screening method, the vaccination rate π is fixed and known, while

θ is estimated. To investigate covariate effects, the generalized linear model

such as logistic regression techniques can be used.

Vaccine development and studies can be divided into several phases.

Phase 0 is the candidate vaccine development. In this early phase of vac-

cine development, the focus is the search for antigen candidates. A broad

types of vaccine candidates may be investigated. Phase I is safety and

immunogenicity testing in animals. In this phase, a study is designed to

demonstrate the safety and immunogenicity of the vaccine candidate in

animals. The question of whether the vaccine candidate is safe or effec-

tive in animals is a primary interest in the study. Usually the sample size

of this kind of studies is small (only several animals involved). Thus the

exact statistics such as Fisher’s exact test are usually used for inferences

Phase II is safety and immunogenicity testing in humans. Since infectious

agents tend to be host-specific, and immune responses and the adverse reac-

tions to a vaccine candidate may be different between animals and humans,

safety and immunogenicity studies in humans are required before large-scale

trials. Phase II trials may also try to determine dose levels and vaccination

schedules. The sample size of Phase II vaccine trials can be very small or as

large as several hundreds. Experimental challenges with infectious agents

are usually not ethical in humans. The use of the immune response as a

surrogate for protective immunity is still questionable since the correlation
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between the measurable immune response and the actual protection against

infection or disease by the vaccine cannot be confirmed without investiga-

tion. Thus, it is a very difficult decision to move the vaccine study from

Phase II to a large scale Phase III field efficacy testing. In fact, a very

small proportion of vaccine candidates move to Phase III studies, although

sometimes a rare Phase IIb, a small field study, may be conducted.

The primary objective of Phase III field trials is to estimate the protec-

tive efficacy of vaccination, rather than to test whether there is an effect.

Usually a randomized and double-blinded trial is ideal for a Phase III

vaccine trial, but may be limited due to ethical or implemental problems.

Since the number of infection cases depends on the exposure to infection

and transmission rate (difficult to estimate), the sample size of Phase III

trials is usually difficult to determine. A liberal strategy may be taken.

Many vaccine trials have been inconclusive due to unpredicted transmis-

sion or exposure rate. If efficacy and safety of a vaccine is demonstrated

in Phase III trials, the vaccine may be licensed by the responsible agency.

However, the postlicensure Phase IV studies are still needed to evaluate:

(i) protective efficacy under normal usage; (ii) safety under normal usage;

(iii) duration of protection; and (iv) indirect and overall effects. Postlicen-

sure studies are usually nonrandomized observational studies (subject to

potential biases). Case-control studies are commonly used. Since Phase III

efficacy trials are often too small to detect rare adverse events of vaccina-

tion, much larger postlicensure studies are very useful in this case. Thus, the

design of a vaccine study depends on the scientific questions of interest and

the phase of vaccine development. The corresponding statistical methods

need to be selected for different studies.

The design of vaccine studies can be traced to early 19th century.109

More detailed discussions can be found in Smith and Morrow110 and

Farrington and Miller.111 Most materials of this section are taken from

Halloran112 and Farrington.8

4.2.3. Mathematical modeling and simulations

Prevention strategies or measures can be included in the deterministic or

stochastic epidemic models of infectious diseases introduced in Sec. 2 of this

chapter. Computer simulations may be used to evaluate or project how the

pattern of epidemics will be changed by effective prevention strategies. Here

we introduce an example of HBV infection with vaccine interventions.



June 23, 2003 16:6 WSPC/Advanced Medical Statistics chap17

Statistical Models and Methods in Infectious Diseases 673

Fig. 1.

The HBV model (21–25) introduced in Sec. 2 can be used to simu-

late the hepatitis B transmission dynamics before and after vaccination, so

we utilize the models to predict the long-term effectiveness of hepatitis B

immunization, and to describe the transmission dynamics of HBV in the

population. The HBV carriers in a vaccinated cohort will decrease sharply.

If all newborn babies can be immunized, the proportion of HBV carriage for

immunized children will decrease to a very low level (< 1%). Following up

the immunization program with 100% coverage, the transmission dynamics

of HBV carriers can be described by the model (21–25). The majority of

HBV carriers will shift gradually from children to the elderly. After the

vaccination program has been implemented for 70 years or more, the average

HBV carrier rate will decrease to a lower level (Fig. 1).

In order to evaluate the impact of the vaccination program on future

incidence rate of hepatitis B, we can also define two incidence ratios: an

acute hepatitis B and a chronic hepatitis B incidence ratio. Both of them

can be calculated based on the dynamics of HBV carriers, that is, as

a linear function of carrier proportion since vaccination implementation.

The incidence ratio of acute hepatitis B, R
a
(a1, a2 : t) is the number of

acute cases in the age range from a1 to a2 at time t divided by the corre-

sponding number of acute cases at t = 0, the baseline before vaccination.

Mathematically,

R
a
(a1, a2 : t) =

∫

a2

a1

T (a, t)da

/
∫

a2

a1

T (a, 0)da .
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Fig. 3. Ratios of chronic hepatitis B incidence following
the immunization program
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The range in the equation has been defined as a1 = 10 and a2 = 45, because

the peak of the incidence curve for acute hepatitis B was observed in the

age interval of 10 to 45 years old. The incidences in other age groups are

at very low levels. The R
a
(a1, a2 : t) at time t with different vaccination

coverage is shown in Fig. 2. It decreases steeply at the beginning of the

hepatitis B vaccination program. The higher the vaccination coverage, the

steeper the decrease of the ratio. The decrease slows down in a few years

after the start of the vaccination program.

The incidence ratio of chronic hepatitis B, R
c
(a1, a2 : t) is defined as

the number of chronic HBV carriers in the age range from a1 to a2, at time

t divided by the corresponding number of chronic HBV carriers at t = 0,
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the baseline before vaccination. Mathematically

R
c
(a1, a2 : t) =

∫

a2

a1

C(a, t)da

/
∫

a2

a1

C(a, 0)da .

In the equation, a1 = 25 and a2 = 70. Most of chronic liver diseases

were observed in adults of 25 years and older. The disease incidence in the

younger age group was negligible. The R
c
(a1, a2 : t), at time t with different

vaccination coverage, is shown in Fig. 3. It remains almost unchanged at

the beginning of the vaccination program, and drops rapidly after 25 years

of immunization. Again, the decrease in the ratio is closely related to the

vaccination coverage.

5. Summary

Infectious diseases are dangerous and threat the public health as a whole.

To evaluate and project the epidemics of an infectious disease is a

great challenge to biomathematicians and statisticians. Enormous efforts

have been made in the past century. In this chapter, we have briefly

reviewed the epidemic models and methods, especially for HIV and hepatitis

viruses, the two most active research areas. Mathematics and statistics

have contributed to understanding the pathogenesis of infectious diseases,

particularly to understanding the mechanisms of HIV, HBV, and HCV

infection in recent years via viral dynamics modeling. We have introduced

these models and statistical methods. Statistics always plays an important

role in evaluating interventions and preventions of any diseases via clinical

trials. Motivated by clinical studies, many advanced statistical methods

have been developed. For infectious diseases, statistics even plays more

critical role in evaluating medical interventions, prevention measures and

vaccine efficacy. Apparently, the study of HIV/AIDS has spurred the statis-

tical research in infectious diseases in the past two decades. Brief reviews on

statistical issues in HIV research can be found in an special issue of Journal

of Royal Statistical Society A (Vol. 161, Part 2, 1998). A good review on

the references can be found in Foulkes.113
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1. Introduction

Sample surveys have been widely used in everyday life and scientific re-

search, from our attitude towards a specific television program to major

economic indices. Sample surveys are broadly classified into two types —

descriptive and analytical. In a descriptive survey the objective is simply

to obtain information about large groups. For example, the total number

of men, women and children living in a certain geographic area may be the

objective of a descriptive survey. In an analytical survey, comparisons are

made between different subgroups of the population in order to ascertain

whether true differences exist among them and to verify hypotheses about

the reasons for these differences. Sample surveys in medical research fields

are mostly taken for analytical purposes. Early well-known surveys include

survey of the teeth of school children before and after fluoridation of wa-

ter, of the death rates and causes of death of people who smoke different

amount, and the huge study on the effectiveness of the Salk polio vaccine.

Recent surveys in the medical fields, still analytical in nature, can be

further divided into two categories. The first category is large scale surveys

with the intent to make inference on a large population. These surveys are

designed to derive reliable estimates on various health, nutrition, medical

expenditure, etc. on a national level. Examples of surveys of this nature

are the National Health and Nutrition Examination Survey (NHAINES),

Survey of Asset and Health Dynamics of the Oldest Old (AHEAD), Health

and Retirement Survey (HRS), National Long Term Care Survey, to name

685
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just a few. These surveys have elaborate sampling frames with oversampling

of certain subgroups and extensive questionnaire containing a vast amount

of information. They tend not to be disease specific, concerning instead

about national trends on the general health of the entire population. The

second category of medical surveys are community-based surveys, where

a geographically defined catchment area is first defined and the survey is

given to individuals selected from a sampling plan within this community

only. Community-based surveys are usually focused on a specific disease,

advantageous specifically on diseases that require extensive diagnosis,

such as dementia and Alzheimer’s disease. Community-based surveys offer

the advantages of extensiveness on studying specific disease, but may suffer

from limitations on the scope of populations they represent.

The basic steps and components of a survey are described in details

in classical sample survey books such as Cochran (1977) and Kish (1965).

We will review here some terminology central to the development in this

chapter.

Population: The aggregate from which the sample is chosen. The popu-

lation to be sampled (the sampled population) should coincide with the

population about which information is desired (the target population).

Sometimes, due to practical constraints, the sampled population is more

restricted than the target population. It should be noted that the conclu-

sion drawn from the samples under these situations should only apply to

the sampled population. The extent to which the conclusion from the sam-

pled population apply to the target population depends on many additional

information.

Sampling plan: The rule by which the samples are selected.

Sampling units: The parts the population is divided into and selection

rules are based upon. They must cover the entire population without any

overlap. Sometimes the choice of sampling units is obvious, as in a surveys

of hospitals where each hospital constitutes a sampling unit. In other situ-

ations, there may be many possible choices of sampling units. For example,

sampling of individuals in a city can be done by selecting the whole family,

or selecting individuals living in a whole city block. The decision on which

sampling unit to use is often based on an array of factors such as logistic,

economic and convenience.

Sampling frame: The list containing all sampling units so that random

selection from the population is accomplished by random sampling from
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the list. An ideal sampling frame should be complete containing every unit

in the population and without any duplicates. The legitimacy of a survey

often rests on how well the sampling frame is constructed to represent the

population.

Simple random sampling: A method of selecting n units out of N such

that every distinct sample has an equal chance of being drawn. Conventional

statistical inference and software all apply to simple random sampling.

Stratified random sampling: In stratified random sampling, the po-

pulation of N units is first divided into non-overlapping subpopulations of

N1, . . . , NS
units, respectively. These subpopulations are called strata. If a

simple random sampling is taken within each stratum, the whole procedure

is described as stratified random sampling. Stratification may produce a

gain in precision in the estimates of characteristics of the whole population

by creating relative homogeneity within each stratum.

Sample survey data differ from data collected from conventional obser-

vational studies in two fundamental ways. The first is that samples from

surveys are usually selected with unequal probability, which if ignored may

create a distorted picture of the target population. For example, if a health

survey oversamples elderly individuals, the simple frequencies on diseases

associated with increasing age are likely to overestimate disease rates in the

population. The second difference between survey data and conventional

studies is that survey data often present a natural clustering inherited from

the sampling design. For example, if all family members in a selected house-

hold are interviewed in a survey, the outcomes on social-economical scales,

behavior measures and attitudes are likely to be correlated.

A vast body of literature on methods of analyzing survey data exists,

see, for example, Skinner, Holt and Smith28 for review of earlier works in

the area. The most used approach for analyzing survey data is the so-called

pseudo-likelihood method where the score equation in a general likelihood

framework is modified by including appropriate sampling weights. Variance

estimation is achieved by taking the sample design into consideration

and by using Taylor series linearization. Software packages implementing

the pseudo-likelihood approach are also available, e.g. SUDAAN from the

Research Triangle Institute25 and WesVarPC from Westat.22

This chapter focuses on several special models used in analyzing survey

data from epidemiological studies. First, we discuss the use of special models

for estimating prevalence rate of a rare disease from community-based

surveys, followed by a discussion about the use of random effect models
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for small area estimation on both continuous and discrete outcomes. The

final section is devoted to capture recapture models in epidemiology.

2. Models for the Estimation of Disease Prevalence

Disease prevalence is the percentage of individuals with a disease at the

study time in a certain population. It describes the disease’s effect on the

population. Multi-phase samplings are often used in epidemiological studies

where a disease is rare and diagnosis of the disease is expensive or difficult.

The design has been used interchangeably with “multi-stage” sampling

by medical researchers without distinction from multi-phase sampling.

However, multi-stage sampling is a standard terminology from sampling

theory which usually implies that different sampling units are used at vari-

ous stages of sampling (for example, city blocks in the first stage, households

in the second stage, and individuals in the third stage). We therefore prefer

the term multi-phase sampling for the type of study where individuals are

the sampling units in all sampling selections.

Two-phase sampling is by far the most often used design of all multi-

phase studies. In the first phase of the study a large random sample from the

targete population is screened with less intensive and expensive screening

tests for the disease. Based on the results of the screening tests subjects are

stratified and randomly selected within each stratum for extensive clinical

evaluations at the second phase to determine disease status. The sampling

plan are usually designed to identify as many diseased subjects as possible

for risk factor studies and at the same time allow efficient estimation of

disease prevalence for the population. The two-phase sampling design has

been used to estimate the prevalence rates of Alzheimer’s disease,1 heart

disease4 and sexually transmitted disease.31

Data for our first example comes from the Indianapolis Study of Health

and Aging, an on-going longitudinal study of dementia in the elderly African

Americans age 65 and over living in Indianapolis, USA. Population-based

two-phase surveys were conducted to estimate the prevalence rate of demen-

tia in this population. At the first phase, 2212 individuals were randomly

selected from the community and administered screening tests aimed at

measuring their cognitive functions. Each individual received a cognitive

score which ranged from 0 to 33. Based on the screening scores the subjects

were grouped into three performance groups: good, intermediate and poor.

The initial sampling plan was to invite 100% of the subjects from the

poor performance group, 50% from the intermediate group, 5% from the
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good performance group of which 75% should come from those older than

75 years of age. However, due to refusal, death, severe sickness and other

reasons, the study had to sample more than the prespecified percentages

in all groups except the poor performance group to achieve the targeted

number of total clinical evaluations. The following table gives the number

of demented subjects diagnosed from each of the sampling stratum by age

group.

A weighting type estimator, also referred to as the direct standardization

approach, is often used to estimate disease prevalence from a multi-phase

sampling study. It assumes that subjects within each stratum are homoge-

neous and random sampling is used within each stratum. Suppose that in

the first phase of the study N individual subjects are sampled by simple

random sampling from the target population and information is collected

from all N subjects on a set of characteristics X . X can be a vector con-

taining several predictors, such as age, gender, screening scores, etc., that

relate to the disease of interest. The N subjects are then divided into S

strata, labeled as I1, . . . , IS
, based on the values of X . The total numbers of

subjects in the respective strata are denoted by N1, . . . , NS
. In the second

phase n
s

subjects are sampled from the N
s

subjects in the sth stratum

using stratified random sampling. Disease status is ascertained on the

selected n
s

subjects only. Let y
si

represents disease status on the ith subject

from the sth stratum, with y
si

= 1 denoting disease and y
si

= 0 for

non-disease. The probabilities for second phase sampling can be different

for subjects from different strata. However, subjects from the same stratum

are assumed to have equal probability of sampling.

The weighting type estimator of prevalence rate for a stratified random

sampling is:

p̂wt =
1

N

S

∑

s=1

ns
∑

i=1

N
s

n
s

y
si

=

S

∑

s=1

N
s

N

p̂
s
, (1)

where p̂
s

=
∑

ns

i=1

ysi

ns

is the average disease rate from the sth stratum. The

variance of the estimator is estimated by

var(p̂wt) =

S

∑

s=1

p̂
s
(1− p̂

s
)

N

2
s

N

2
n

s

. (2)

Problems in the weighting type estimation approach can occur in groups

with no affected individuals or no unaffected individuals (p̂
s

= 0 or p̂
s

= 1),

or groups where no individual is sampled (n
s

= 0). Prevalence estimate can

be very unstable with possible variance 0 or infinity.
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An alternative method of estimating disease prevalence from two-phase

surveys is the modeling type estimator. A model is assumed for the popu-

lation where the finite population is sampled from and smoothed estimates

from the model are used to estimate disease prevalence. The modeling type

estimator for binary data was first proposed by Roberts et al.26 and used

by Beckett et al.1 to estimate the prevalence of Alzheimer’s disease from

two-phase surveys. The modeling type estimator is preferred in situations

where the disease is rare and estimates from strata containing few or zero

events are desired.

Let X
si

be a set of covariates collected at the first phase. Therefore, X
si

is available for all N subjects. Let Prob(y
si

= 1) = p
si

. A logistic regression

model is assumed for the disease model:

log
p

si

1− p
si

= X
si

β , (3)

where β is a p×1 vector of parameter. If β is known, then the average of the

predicted probability of disease from the model is an unbiased estimator

of disease prevalence. In practice, one has to estimate β from the sample.

A psudo-maximum likelihood estimate β̂ is obtained using data from the

second phase and estimate of disease prevalence is then obtained using the

average predicted probabilities of disease on every subject in the population:

p̂model =
1

N

S

∑

s=1

Ns
∑

i=1

1

1 + e

−Xsiβ̂

. (4)

The estimated variance of the prevalence estimate is

var(p̂model) = W

′
QXV X

′
Q

′
W , (5)

where W is an N × 1 vector with elements equal to 1

N

, Q is an N × N

diagonal matrix with elements p̂
si

(1 − p̂
si

), X is the covariate matrix and

V is the estimated variance covariance matrix of the logistic regression

parameter β. Note that the above variance estimator assumes that X is

fixed. Variance estimators accounting for the variability in X for survey

data is given by Graubard and Korn.9

Prevalence estimates from the modeling approach can be more efficient

than the weighting type estimate if the logistic model fits the data well. The

weighting type estimates may mask trends in prevalence rates due to small

sample sizes in some groups. Lastly, the weighting type estimator requires

the assumption of missing completely at random while the modeling type

estimator is unaffected under the missing at random mechanism (using
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Table 1. Number of demented subjects diagnosed from the three sampling groups in
each age group. Data from the Indianapolis Study of Health and Aging.

Performance Number in Number Number with

Age Group Group Population Sampled Dementia

65–74 1 1133 27 0

2 77 34 0

3 97 63 10

75–84 1 523 58 1

2 69 35 5

3 112 75 31

85+ 1 127 14 0

2 21 10 0

3 53 37 18

Table 2. Estimated age-specific prevalence rates of dementia using the weighting
method and the modeling method. Data from Indianapolis Study of Health and Aging.

Weighting Modeling

Age Group Rate Std Err Rate Std Err

65–74 1.18 0.34 1.83 0.37

75–84 9.26 1.66 6.73 0.85

85+ 12.83 2.17 17.07 2.31

the definitions of Little and Rubin21), provided that covariates related to

missing data are incorporated in the model.7

We return now to the example data in Table 1. Prevalence estimates for

the three age groups are desired. Note in age groups 65–74 and 85+, the

first two sampling strata produced zero disease case, the weighting type

estimator is expected to underestimate the true prevalence in these two

age groups. Prevalence estimates for the three age groups using both the

weighting type approach and the modeling estimator along with standard

error estimates are included in Table 2.

It can be seen from Table 2 that the modeling type estimator yields

larger prevalence estimates for two age groups whiles the estimates for age

group 75–84 is smaller than the weighting type estimates. A simulation

study conducted by Beckett et al.1 demonstrated that the modeling type

estimator can increase the accuracy and efficiency of the rate estimates

substantially if the model fits the data well.
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In this section we are mainly concerned with estimating disease preva-

lence which is the mean of a binary variable. It should be noted that similar

approaches exist in survey theory to estimate the means of continuous

variables. For further details see the section on regression estimator in

Cochran.5

3. Random Effect Models for Small Area Estimation

The terms “small area” were initially used to denote a small geographical

area, such as a county, or a census division. They may also describe a

“small domain” which is a small subpopulation such as a specific age-sex-

race group of people within a large geographical area. Small area estimation

arises usually from secondary analysis of large survey data, where the survey

is designed to estimate the characteristics of a large domain. For example, in

a national hospital cost survey, the sample selection is designed to estimate

mean hospital cost with a desired precision at the national level. However,

it may also be of interest to use the survey to derive hospital cost estimates

by census region, or by state or county, possibly for the apportionment of

government funds, and in regional and city planning. Direct estimates by

region, state or county in this case based on only data from the small area

are likely to yield unacceptably large standard errors due to the unduly

small size of the sample in the area.

Suppose that the population is divided into k small areas, each contains

N
i

samples. n
i

out of N
i

units are sampled from the ith area. Y
ij

denote

the jth unit value in the ith small area. For convenience we let the first

n
i

units in Y
ij

be sampled, and the remaining N
i
− n

i
not sampled. In

addition, we assume auxiliary information X
ij

is available on every unit in

the population. Alternative models can also be formed when X
ij

is only

available on the area-specific level. See Ghosh and Rao8 for further details.

The focus of inference is to estimate the small area mean Ȳ
i.
.

A conceptualized example is described here without direct reference to

a specific survey or real data set. The example is in the context of a study

by Taylor et al.29 published in the New England Journal of Medicine. We

have modified the setting so that the sampling units are hospitals instead

of patients to make the inference straightforward. Taylor et al.29 pointed

out that it is important to study hospital cost and outcome and to investi-

gate any differences among various hospitals. Suppose a national survey on

hospital cost is conducted. The primary interest of the survey is to estimate

the average hospital cost for various primary diagnoses such as hip fracture,

stroke, coronary heart disease or congestive heart failure on the national
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level. Suppose we are also interested in using the survey data to provide

average hospital cost estimates for the counties within a region. Suppose

in addition, we have information on Medicare claim data for all hospitals

in the region in the same time period of the survey. Medicare is a federal

program that purchases inpatient services, primarily for persons 65 years

and older, from various types of hospital. It is reasonable to assume that

as the amount of Medicare claim increase, hospital cost is also likely to in-

crease. For this hypothetical example, we will assume that there is no major

systematic difference between the hospitals. In a real world situation, the

type (teaching or non-teaching), size (numbers of bed) and location (urban

or rural) of the hospital are all likely to affect hospital cost, as concluded

in the article by Taylor et al.29 A simulated data set for 114 hospitals in

16 small areas is generated using the equation:

y
ij

= −2.0 + 0.2x
ij

+ µ
i
+ e

ij
,

where µ
i
∼ N(0, 20), and e

ij
∼ N(0, 40). Thirty-eight hospitals are sampled

using simple random sampling. The sampled data is presented in Table 3.

Table 3. Data from a simple random sample drawn from a synthetic population
(n = 38, N = 114).

Area Area

No. Ni ni xij yij No. Ni ni xij yij

1 1 0 – – 9 27 10 86.54 12.51

2 6 1 169.99 38.19 101.55 15.27

3 4 2 6.16 7.43 10 5 2 61.34 11.56

30.09 10.42 102.77 17.62

4 1 0 – – 11 12 4 61.49 7.02

5 8 2 94.60 20.52 99.77 27.09

86.34 25.61 52.08 10.39

6 6 2 90.53 22.01 136.46 39.48

86.34 25.61 12 7 3 92.28 9.53

7 6 2 95.10 22.52 93.73 9.43

130.45 35.24 62.29 10.89

8 6 1 46.09 8.38 13 4 1 164.14 35.79

9 27 10 89.88 12.44 14 6 2 134.88 35.30

145.68 26.23 164.94 40.81

113.54 8.77 15 13 5 64.44 14.92

114.54 17.98 63.51 9.07

96.51 23.22 73.10 8.34

84.58 9.41 109.66 10.35

139.38 15.61 123.09 29.39

117.24 34.42 16 2 1 186.16 28.08
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For each county (small area), N
i

represents the total number of hospitals

in that county and n
i
is the number of hospitals sampled in the survey. x

ij

is the Medicare claim amount and y
ij

is the true hospital cost.

A problem immediately seen with this data set, present also in many

small area estimation situation, is that there are two counties without

sampled hospital so that direct estimates from samples from those counties

are not possible. Another problem is that some counties have a very small

numbers of hospital sampled. Hence direct estimates for these counties

may be unstable. We will describe three approaches commonly used for

estimation from small area.

A synthetic estimator is similar in spirit to the ratio estimator in sample

survey.5 The estimator uses the percentage of X̄i

X̄.

in the estimate ˆ̄
Y

.
of the

overall mean as the estimate of the total in the ith area, where X̄
i

=
1

Ni

∑

Ni

j=1
x

ij
, X̄

.
= 1

N

∑

k

i=1
X

i
, and ˆ̄

Y
.
= 1

n

∑

k

i=1

∑

ni

j=1
y

ij
. The synthetic

estimator of small area mean is given by:

ˆ̄
Y

i
(S) =

X̄
i

X̄
.

ˆ̄
Y , (6)

The bias of the synthetic estimator is given by:

E( ˆ̄
Y

i
(S))− Ȳ

i
= X̄

i

(

Ȳ
.

X̄
.

−
Ȳ

i

X̄
i

)

.

It can be seen that the bias is not zero unless Ȳ.

X̄.

= Ȳi

X̄i

. Under the

assumption that the sample average X̄
i

equals to the population average

X̄
.
, the synthetic estimator will only be unbiased if each small area mean

Ȳ
i

equals to the overall mean Ȳ
.
. Such an assumption can be very strong

and can produce biased estimates in situations when the assumption does

not hold.

In an effort to reduce or balance the bias of the synthetic estimator a

weighted estimator is proposed in the form of

ˆ̄
Y

i
(SD) = w

i

ˆ̄
Y1i

+ (1− w
i
) ˆ̄
Y2i

, (7)

where ˆ̄
Y1i

is the direct estimator from the selected samples, ˆ̄
Y2i

is an indirect

estimator and w
i

is a pre-determined weight (0 ≤ w
i
≤ 1). An optimal

weight may be obtained to minimize the mean squared error of ˆ̄
Y

i
(SD).

See Ghosh and Rao8 for further details on obtaining the optimal weight.

In practice a sample size dependent weight is chosen as w
i

= niN

nNi

, where

N and N
i
are the total number of units and number of units in each small

area in the population, respectively. n and n
i
are the total selected sample
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size and the selected sample size in each small area, respectively. Therefore,

the sample size dependent estimator can be written as:

ˆ̄
Y

i
(SD) =

{

ˆ̄
Y

i
, if w

i
≥ 1 ,

w
i

ˆ̄
Y

i
+ (1− w

i
) ˆ̄
Y

i
(S) , if w

i
< 1 ,

(8)

where ˆ̄
Y

i
(S) is the synthetic estimator.

In a random effect model approach the finite population containing N

units is itself assumed to be random samples from an infinite population,

the so-called superpopulation. The finite population is further assumed to

have the following distribution:

y
ij

= x
ij

β + ν
i
+ e

ij
, i = 1, . . . , k , j = 1, . . . , N

i
, (9)

where x
ij

is the value of the auxiliary variable, β is the parameter for the

auxiliary effect. ν
i

and e
ij

are two independent random variables with

E(ν
i
) = 0 , V (ν

i
) = σ

2

ν

, E(e
ij

) = 0 , V (e
ij

) = σ

2
.

In addition, normality of the two random variables is assumed.

Using matrix notations, and an asterisk for the nonsampled elements,

the above random effect model can be written as:
[

y
i

y∗
i

]

=

[

X
i

X∗
i

]

β + ν
i

[

1
i

1∗
i

]

+

[

e
i

e∗
i

]

, (10)

where y
i

= (y
i1, . . . , yini

)′ represents the sampled units, and y∗
i

=

(y
ini+1, . . . , yiNi

)′ the non-sampled ones. Other vectors in the equation are

similarly defined.

The difference between the random effect model for sampling survey and

the random effect models in classical statistics textbook is demonstrated

by Eq. (10). A component of the outcome variable is unobserved because it

is not sampled. Therefore, there are two steps in estimating the means of

small areas. The first step involves estimating the parameters in the model,

i.e. β, σ

2

ν

and σ

2, using the sampled data only. The second step uses the

parameter estimates to predict y∗
i

.

Three estimation approaches exist for parameter estimation from the

random effect model, namely, the best linear unbiased predictor approach

(BLUP), the empirical Bayes approach (EB) and the hierarchical Bayes

approach (HB). We will focus on the discussion of the BLUP and be brief

on the EB and HB approaches. Interested readers can find a rather thorough

review on all three approaches from Ghosh and Rao.8
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For the estimation of parameters from the random effect model using

sampled data only, we start with a more general mixed effect model:

y = Xβ + Zν + e , (11)

where

E(ν) = 0 , V (ν) = G , E(e) = 0 , V (e) = R ,

and ν and e are assumed to be independent of each other. Parameter

estimates for β and ν are obtained by solving the following equations

simultanenously:

X′R−1Xβ + X′R−1Zν = X′R−1
y

Z′R−1Xβ + (Z′R−1Z + G−1)ν = Z′R−1y , (12)

which can be expressed alternatively as:

β̂ = (X′V−1X)−1X′V−1y

ν̂ = GZV−1(y −Xβ̂) , (13)

where V = ZGZ′ + R.

With the variance-covariance matrices G and R known, it is proved

that β̂ derived above is the best linear unbiased estimator and ν̂ is the best

linear unbiased predictor in the measures of mean squared error.

In practice the variance-covariance matrices are unknown and have to

be estimated from the data. Estimation of the variance-covariance matrix

can be accomplished by using the restricted maximum likelihood (REML)

approach proposed by Patterson and Thompson.23 REML yields unbi-

ased estimates of the variance covariance parameters for balanced designs.

Technically, the optimality of the BLUP is lost when one uses estimated

variance covariance matrices. However, such an approach coincides with

the empirical Bayes approach with normal error assumption. Therefore,

the empirical BLUP (EBLUP) and EB lead to identical estimates.

In the HB approach, a prior distribution on the model parameters is

specified and the posterior distribution of the parameters of interest is then

obtained. Inferences are based on the posterior distribution; in particular,

a parameter of interest is estimated by its posterior mean and its precision

is measured by its posterior variance.

The EBLUP approach is implemented by various statistical software

packages. For example, SAS Proc MIXED derives parameter estimates and

prediction using the EBLUP method. To illustrate the various approaches
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Table 4. Small area estimates by the synthetic estimator (ŶSYN), the sample size de-
pendent estimator (ŶSD) and the empirical best linear unbiased predictor estimator
(ŶEBLUP).

Area No. Ni ni X̄i Ȳi ŶSYN ŶSD ŶEBLUP

1 1 0 137.70 32.68 26.93 26.93 28.41

2 6 1 106.18 24.12 20.76 29.48 22.53

3 4 2 23.38 4.64 4.57 8.92 6.67

4 1 0 45.64 4.12 8.93 8.93 8.97

5 8 2 102.08 21.08 19.96 22.05 20.77

6 6 2 77.96 22.53 15.25 23.81 18.21

7 6 2 125.81 28.36 24.60 28.88 28.28

8 6 1 79.80 13.50 15.61 11.99 16.00

9 27 10 104.06 17.33 20.35 17.59 17.60

10 5 2 84.57 13.41 16.54 14.59 16.33

11 12 4 93.84 19.43 18.35 20.99 21.03

12 7 3 85.55 15.12 16.73 9.95 13.85

13 4 1 120.90 23.79 23.64 32.75 25.33

14 6 2 177.58 38.00 34.73 38.06 39.77

15 13 5 94.96 12.92 18.57 14.41 17.31

16 2 1 123.30 21.01 24.11 28.08 22.59

Average relative error % 21.31 25.49 19.59

Average squared error: 13.46 16.98 7.10

on small area estimation discussed in this section we use the synthetic

population in Table 3. In Table 4 we compare the small area estimates of

means derived by the synthetic estimator (ŶSYN), the sample size dependent

estimator (ŶSD) and the empirical BLUP estimator (ŶEBLUP) to the true

small area mean (Ȳ
i
). Note that the true means are available to us because

the data is simulated. We also define two criteria for comparing the overall

performances of the estimators across all small areas.

Average relative error =
1

16

16
∑

i=1

|Ŷ
i
− Ȳ

i
|

Ȳ
i

,

Average squared error =
1

16

16
∑

i=1

(Ŷ
i
− Ȳ

i
)2 .

These two criteria provide measures on the overall bias and efficiency

of the various estimators. The EBLUP estimator is shown to perform the

best in having the smallest average relative error and the smallest average

squared error. The sample size dependent estimator failed to improve on
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the performance of the synthetic estimator, perhaps due to the use of a

non-optimal weight.

So far we have discussed methods for small area estimation appropriate

for a continuous outcome. Small area estimation for discrete outcomes such

counts and proportions are often desired as well. Random-effect models can

also be applied in these situations.

In the generalized linear model framework, the discrete outcome has its

first two moments specified as:

E(y
ij
|ν

i
) = h(x

ij
β + ν

i
) = µ

ij
, (14)

V (y
ij
|ν

i
) = a

i
ν(µ

ij
) , (15)

where ν
i

is assumed to be normally distributed with mean 0 and variance

covariance matrix D.

There are two steps involved in small area estimation from discrete

outcome, similar to the continuous variable case. In the first step we esti-

mate the model parameters using the sampled data only. The second step

involves prediction using the estimated model parameters and the auxiliary

values for the non-sampled units in the population.

Several estimation approaches exist for parameter estimation from the

generalized linear mixed model. The first approach is the full likelihood

approach which requires the specification of the distributions of the random

effects and often requires numerical integration of the likelihood function

over the distribution of the random effect variables. To overcome these

problem, Breslow and Clayton3 proposed the penalized quasi-likelihood

approach (PQL) where only the first two moments are specified and

parameter estimation can be achieved using iterative weighted least square

estimation. Raghunathan24 proposed a quasi-empirical Bayes method for

small area estimation on discreate outcomes.

We concentrate on a description of the PQL method, simply because it is

implemented in some statistical software packages. For a detailed derivation

of the PQL equations see Breslow and Clayton.3 The PQL method requires

iteratively solving the following equations:

β̂ = (X′V−1X)−1X′V−1Y ,

ν̂ = DV−1(Y −Xβ̂) , (16)

where V = W−1 + D, and W is a diagonal matrix with the elements:

w
ij

=
var(y

ij
|ν

i
)

g

′(µ
ij

)2
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and g(µ
ij

) = h

−1(x
ij

β + ν
i
), and

Y
ij

= x
ij

β + ν
i
+ (y

ij
− h(x

ij
β + ν

i
))g′(µ

ij
) .

In the context of the previous example on a hospital survey, suppose we

wish to estimate the average cancer-specific remission rate for each county.

Such rates can be used in part to assess the quality of a hospital. We

use the same setting as in the previous example and assume that the same

38 hospitals are randomly selected. A complete data set on all 114 hospitals

are generated using a two-stage model:

E(y
ij

) = m
ij

µ
ij

, log
µ

ij

1− µ
ij

= 0.2x
ij

+ ν
i
,

where ν
i
∼ N(0, 0.9).

The synthetic samples are presented in Table 5. We are interested in

estimating the average cancer remission rate for each county. In Table 6

we present the estimates of proportions obtained using the PQL method as

implemented in the SAS Glimmix macro.20 These estimates are compared

Table 5. Data from a simple random sample drawn from a synthetic population
(n = 38, N = 114).

Area Area

No. Ni ni xij × 100 mij yij No. Ni ni xij × 100 mij yij

1 1 0 – – – 9 27 10 86.54 64 19

2 6 1 169.99 37 1 101.55 9 1

3 4 2 6.16 24 9 10 5 2 61.34 126 26

30.09 3 1 102.77 10 2

4 1 0 – – – 11 12 4 61.49 3 1

5 8 2 94.60 52 26 99.77 57 24

129.93 47 16 52.08 17 9

6 6 2 90.53 24 15 136.46 5 3

86.34 22 13 12 7 3 92.28 1067 455

7 6 2 95.10 9 4 93.73 246 114

130.45 72 37 62.29 8 2

8 6 1 46.09 37 7 13 4 1 164.14 25 6

9 27 10 89.88 3 1 14 6 2 134.88 64 32

145.68 80 22 164.94 9 4

113.54 246 58 15 13 5 64.44 94 12

114.54 8 1 63.51 40 5

96.51 25 7 73.10 3 0

84.58 340 73 109.66 57 1

139.38 390 87 123.09 3 1

117.24 24 7 16 2 1 186.16 45 19
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Table 6. Small area estimates of proportions (in %) by raw proportion and by the PQL
method. Ȳi is the true population rate for each small area.

Area No. Ni ni X̄i × 100 Ȳi Ŷraw ŶPQL

1 1 0 137.70 30.00 33.55 35.43

2 6 1 106.18 44.30 51.35 48.88

3 4 2 23.38 37.66 37.04 36.70

4 1 0 45.64 40.38 33.55 35.28

5 8 2 102.08 36.93 42.42 41.97

6 6 2 77.96 68.47 60.87 57.74

7 6 2 125.81 47.39 50.62 49.50

8 6 1 79.80 18.16 18.92 21.80

9 27 10 104.06 23.15 23.21 23.28

10 5 2 84.57 21.70 20.59 21.41

11 12 4 93.84 45.78 45.12 44.41

12 7 3 85.55 42.98 43.22 43.17

13 4 1 120.90 20.60 24.00 26.54

14 6 2 177.58 43.70 49.32 48.26

15 13 5 94.96 11.45 9.64 10.85

16 2 1 123.30 42.29 42.22 41.26

Average relative error % 6.89 6.71

Average squared error: 0.0011 0.0013

to the direct estimates using data from each small area only. For coun-

ties without sampled hospitals, the overall mean is used as the estimate.

The average relative error and the average squared error are defined in the

same way as in the previous example and are included in the table. Although

the PQL estimates show smaller overall bias than the direct estimates, it

has a slightly larger average squared error than the direct estimates.

Raghunathan24 demonstrated the quasi-empirical Bayes method on a

data set to estimate county-specific mean number of hospital admission for

cancer chemotherapy. A Poisson model for count data was assumed.

We want to conclude this section by pointing out that the random effect

model approach we described here is a general approach in modeling sam-

pling data in that each small area mean is itself assumed to be random

variables following certain distributions. Parameter estimation is always

a concern because the estimates directly contribute to the prediction of

the non-sampled units. It may be noted that we might appear biased in

choosing to present in more details the techniques that are implemented in

computer software packages. The emphasis simply reflects the convenience

in deriving estimates for our example data. It does not, however, reflect
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the superity of performances of the estimation approaches we presented. In

fact many approaches for the discrete outcomes have yet to be compared

in a well designed simulation study. Therefore, the readers are adviced to

keep an open mind on estimation techniques when applying random effect

models themselves and when more results on comparing various estimation

methods are available.

4. Capture Recapture Models

The use of capture recapture models in epidemiology is generally different

from the sampling surveys we discussed so far in the previous two sections.

Capture recapture setting usually works with several sampling frames,

instead of just one in conventional surveys. Capture recapture model con-

centrates on matching individuals identified by different sources rather than

sampling selection from one sampling frame. However, capture recapture

model do share a common goal with some sample survey in that it also

focus on the estimation of the size of a population.

As an alternative to the community survey we introduced in Sec. 2,

capture recapture systems can be thought as multiple surveys on the same

population trying to estimate the same quantity. This is especially useful

when there does not exist one complete sampling frame from which a con-

ventional sample survey can be established to reliably estimate population

characteristics.

Capture recapture methods have a long history. They were first intro-

duced in the study of fish and wildlife populations before being adopted

for other populations. In animal studies, the animals being captured by

the first attempt will be marked and returned to wildlife. This allows

cross-classify the animals captured by various attempts. Hence the name

capture recapture. Various authors have argued against the use of capture

recapture model for human population on the bases that the various cap-

ture attempts of humans are usually not random.2,11 In epidemiological

studies hospital records, doctors’ medical files, medical prescription list are

examples of various sources to locate individuals with certain disease. Each

of these sources is incomplete by their true nature, and the problem is to

estimate those missing from all sources.

The simplest capture recapture model is the so called two-source model

used to estimate the unknown size of the population. The first sample

provides the individuals for marking and the second sample provide the

recapture.
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Table 7. Layout of a two source capture recapture setting.

Source B

Yes No

Source A Yes n11 n10

No n01 n00

We begin with two source model having sources A and B. Let n11,

n10, n01 and n00 be the numbers of individuals captured by both sources

(n11), by source A only (n10), by source B only (n01), and by neither source

(n00). Note that n00 is unobservable. By estimating n00, the number of cases

missing by both sources, we provide an estimate of the number of cases in

the population. The layout of a two source capture recapture setting is

illustrated in Table 7.

Four assumptions are implicitly made on capture recapture analysis:

(1) There is no change to the population during the investigation. Such a

population is usually called a closed population.

(2) Individuals can be matched from sources A to source B.

(3) In each source each individual has the same chance of being included

in the sample.

(4) The two sources are independent meaning a “Yes” from source A does

not affect the chance of a “Yes” from source B.

In epidemiological studies assumptions 1 and 2 can generally be assumed

true. However, assumptions 3 and 4 present the biggest problem and has

been the subject of debate since the application of capture recapture model

in epidemiological fields. Human subjects are known to be heterogeneous

with regard to being “caught” by a specific source. Methods to incorporate

covariate in the method is becoming available. Tilling and Sterne30 gave

the latest development including a review of previous work. Assumption 4

is invariably false and is perceived as the biggest weakness on the use of

capture recapture models in epidemiology. Humans are not fish where the

chance of being recaptured is truly independent of whether they have been

marked. For example, if certain doctors refer their patients to certain

hospitals, then hospital records and doctors’ records will not be two

independent sources. Fienberg6 approached the interdependence among

sources of capture using log-linear model framework. We will focus our

presentation using this approach.
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Depends on the ways of parametrization, a 2× 2 contingency table can

be represented by the following log-linear models:

log E(n11) = µ

log E(n01) = µ + µ
A

log E(n10) = µ + µ
B

log E(n00) = µ + µ
A

+ µ
B

+ µ
AB

. (17)

The parameters on the right hand side of the above equations represent

the logarithm of the number expected for each cell. Notice that there are

four parameters in the log-linear models but only three known quantities

to use for the estimation. One parameter is unestimatable. The customary

solution is to assume µ
AB

= 0 which is equivalent of assumption 4. Hence

n00 can be estimated by its expected value under the log-linear models:

n̂00 = e

µ̂+µ̂A+µ̂B = e

log n11+log
n10

n11
+log

n01

n11 =
n10n01

n11

. (18)

The estimate of the total sample size is:

N̂ = n11 + n10 + n01 + n̂00 = n11 + n10 + n01 +
n10n01

n11

. (19)

An example was taken from Bruno2 and modified for presentation here.

Four sources were used to identify known cases of diabetes among the

residents in the area of Casale Nonferrato in Northern Italy. Data are

presented in Table 8. Here, we illustrate the example with the first two

sources only.

Source A: A list of all patients with a previous diagnosis of insulin-

dependent diabetes mellitus (IDDM) or non-insulin dependent mellitus

(NIDDM), via diabetes clinic and/or family physicians.

Source B: A list of all patients discharged with a primary or secondary

diagnosis of diabetes in all public and private hospitals in the region.

Table 8. Capture recapture models with two sources.2

Source B

Yes No

Source A Yes 377 1417

No 115 n00
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Table 9. Parameter estimates from a two source log-linear model with the interaction
term set to zero.

Parameter Estimate Standard Error

µ 5.8201 0.0545

µA −1.0752 0.1082

µB 1.4362 0.0606

Using the log-linear approach described above, we fit a log-linear model

with the PROC GENMOD procedure in SAS with the log-link function.

Parameter estimates were displayed in Table 9.

The estimated number of cases missed by both cases is:

n̂00 = e

µ̂+µ̂A+µ̂B = 483.54 .

The total number of diabetes estimated from using both sources is 2353.

Notice in this example, source A identified 1754 cases of diabetes and source

B identified 452 cases, corresponding to 75% and 19% of the estimated

total cases by using both sources, respectively. Both sources are seen to be

relatively incomplete.

Note in the two source setting, dependency between the two sources can-

not be estimated without additional information. If external data is used to

estimate the dependency, µ
AB

in the above log-linear models, estimation

of n00 may be possible. If we define P(A), P(B) and P(A∩B) be the proba-

bility of captured by source A only, by source B only and by both sources,

respectively, we can define the dependence between the two sources to be

positive if P(A ∩ B) > P(A)∗P(B), negative if P(A ∩ B) < P(A)∗P(B). It

has been shown that positive dependence of sources tends to underestimate

the true population size and negative dependence tends to overestimate.

Extensions to modeling more than two sources are straightforward. In a

capture recapture model with k sources, it is customary to set the highest

interaction parameter of order k to be zero. We illustrate the cases of more

than two sources with a three-sources analysis.

Table 10. The layout of a three source (A, B and C) capture recapture model.

Source B

Yes No

Source C Source C

Yes No Yes No

Source A Yes n111 n110 n101 n100

No n011 n010 n001 n000
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The layout of a three-source capture recapture model is presented in

Table 10.

We use the saturated model to construct the log-linear models for the

three-source analysis.

log E(n111) = µ

log E(n110) = µ + µ
C

log E(n101) = µ + µ
B

log E(n011) = µ + µ
A

log E(n100) = µ + µ
B

+ µ
C

+ µ
BC

log E(n010) = µ + µ
A

+ µ
C

+ µ
AC

log E(n001) = µ + µ
A

+ µ
B

+ µ
AB

log E(n000) = µ + µ
A

+ µ
B

+ µ
C

+ µ
AB

+ µ
BC

+ µ
AC

+ µ
ABC

. (20)

Recall that there are 8 models, 8 parameters and 7 observations

(counts). Therefore, one parameter is unestimable. An untestable assump-

tion is made so that inference is possible: µ
ABC

= 0.

With more than two sources there is the possibility that a model with

fewer parameters will fit the model equally well as the saturated model with

7 parameters (µ
ABC

is set to 0). Statistically, the model with the fewest

number of parameters fitting the data is to be chosen to represent the data.

This leads us to the discussion of model selection criteria.

Three methods are commonly used for log-linear model selection: the G

2

deviance statistic which is a likelihood ratio statistic comparing a current

model to the saturated model, Akaike Information Criterion (AIC) and the

Bayesian Information Criterion (BIC).

For the three source model, the G

2 statistic can be expressed as:

G

2 = −2
∑

i,j,k

n
ijk

log
n

ijk

E(n
ijk

)
,

where E(n
ijk

) is the expected cell counts under the assumed alternative

model other than the saturated one. If a model represents the data, then

the difference in deviance between the considered model and the saturated

model for which G

2 = 0 has an approximate χ

2 distribution.

The Akaike’s Information Criterion is defined to be:

AIC = G

2 − 2 (d.f. of the model) .
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The Bayesian Information Criterion is defined as:

BIC = G

2 −
log N

2π

(d.f. of the model) ,

where N is the total number of observed cases. Both AIC and BIC take

the number of parameters in the model into consideration. The BIC also

considers sample size. Both criteria select the model with the lowest value

on the respective criterion.

A three-source example data from LaPorte et al.17 is modified here to

illustrate the issues in model selection. Capture recapture method was used

to identify the most accurate and efficient approaches to monitor adolescent

injuries. For our example, we consider the issue of accuracy only. We take

three sources from the article: 127 identified by student monthly recalls

at either 1 month or 4 months, 58 by medical excuses and 33 by daily

attendance records. Data is presented in Table 11.

A series of seven possible models were fit by using the SAS system

for log-linear model. Table 12 includes the values of three model selection

criteria: the G

2, AIC and BIC, and the estimated number of cases missed

by all three sources and the estimated total number of injuries from all

three sources.

Table 11. Injuries captured by three sources17 : A: student recall at either 1 or 4 month;
B: medical excuses; C: daily attendance records.

Medical Excuses

Yes No

Attendance Record Attendance Record

Yes No Yes No

Student Recall Yes 16 39 13 69

No 0 3 4 n000

Table 12. The values of G2, AIC and BIC for all seven models on the LaPorte data.17

Number Model G2 d.f. p-value AIC BIC n̂000 N̂

1 A, B, C 8.1222 3 0.0436 2.1222 2.8509 6 150

2 A, B, C, AB 4.8084 2 0.0903 0.8084 1.2942 15 159

3 A, B, C, AC 7.4284 2 0.0244 3.4284 3.9142 5 149

4 A, B, C, BC 6.3624 2 0.0415 2.3624 2.8482 7 151

5 A, B, C, AB, AC 3.3987 1 0.0652 1.3987 1.6416 * *

6 A, B, C, AB, BC 1.9983 1 0.1575 −0.0017 0.2412 21 165

7 A, B, C, BC, AC 5.8258 1 0.0158 3.8258 4.0687 5 149
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Using the G

2 statistic, three models (models 2, 5 and 6) are not rejected

at the 0.05 significance level which means that these models are not sig-

nificantly different from the saturated model. Model 5 failed to converge

in parameter estimates. The likelihood based statistic would have favored

model 2 because it is the simplest model not rejected by G

2. In fact, this

model was chosen by LaPorte et al.17 in the original paper. This model

predicts 15 cases missed by all three sources and total number of injuries

is estimated to be 159. However, both AIC and BIC identified model 6

as the optimal model. The number of cases missed by all sources is esti-

mated to be 21 using model 6 and the total number of cases is estimated to

be 165.

Notice that the G

2 method is based on large sample theory which

assumes that each cell count is reasonably large. When there are small or

zero cell counts as in this example, the validity of the test is questionable.

In the above example, we would favor the use of model 6 over that of model

2 based on this observation.

Notice also that the conclusion on the validity of each source is very

much dependent on which model one has chosen to represent the data. For

example, LaPorte et al.17 stated that student recall is the most accurate

source of identifying injury with an estimated accuracy of 86% (137/159)

using estimates derived from model 2. If the alternative model 6 is chosen,

the accuracy rate for student recall will be estimated to be 83% (137/165),

although it remains the most accurate of the three sources.

AIC and BIC base their decision on minimization. Therefore, uniqueness

of the selected model is generally satisfied. Simulation studies have been

conducted to compare AIC, BIC and several modified forms of the two

criteria.12 In general, the two criteria are quite comparable.

To conclude this chapter, we would like to reiterate the need for proper

statistical methods in analyzing complex survey data. Many large national

survey data are now accessible to the public for secondary data analysis

providing medical researchers unique opportunities to study relationship

and trend on the national level. However, great care must be exercised in

analytical methods if one is to draw proper conclusion. The intention of this

chapter is not on a exclusive coverage of general techniques on analyzing

sampling data. Instead our focus of this chapter is on “special models”

used for sampling data in the field of epidemiology. Readers are referred to

Cochran5 and Kish15 for the background knowledge on sampling theory, to

Skinner, Holt and Smith28 for more theoretical development on statistical

inference on sampling data. Examples of analysis of health survey data can
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be found in Leclerc et al.,19 Korn and Graubard,16 Graubard and Korn9

and LaVange et al.18
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1. Introduction

Accurate and timely estimates of disease occurrence over time or across

geographic area play an important role in disease monitoring and health

care planning. Traditional simple random sampling and other probabilistic

sampling schemes are not easily applicable to such situations or are pro-

hibitively expensive. Multiple surveillance systems are usually employed to

ascertain cases using different resources or efforts. Although some studies

manage to locate almost all patients, most epidemiological approaches

merging different lists and eliminating duplicate cases are likely to signifi-

cantly underestimate true occurrence rates.23,25 That is, the final merged

list misses those who are in the target population but were missed by all

lists. This chapter discusses the use of capture-recapture models to esti-

mate the number of missing cases under proper assumptions. We use three

real data sets to illustrate the use of the capture-recapture methodology to

correct for under-ascertainment of cases in epidemiological surveillance.

711
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1.1. Example 1. Data on hepatitis A Virus (HAV)

Chao et al.12 documented the details on a large outbreak of the HAV that

occurred in and around a college in northern Taiwan from April to July

1995. Cases of students in that college were ascertained by three sources:

(1) P-list: records based on a serum test taken by the Institute of Preven-

tive Medicine, Department of Health of Taiwan; 135 cases were identified.

(2) Q-list: local hospital records reported by the National Quarantine

Service; 122 cases were found. (3) E-list: records collected by epidemio-

logists; of which there were 126 cases. Merging the three lists by eliminating

duplicate records resulted in 271 ascertained cases.

The categorical data are shown in Table 1 where all ascertained cases

are classified according to their presence/absence in the three lists. Presence

or absence on any list is denoted by 1 and 0, respectively. For three lists,

we can use a sequence of three numbers (each is either 0 or 1) to denote

the record of each individual. For example, a record (001) describes an

individual on the third list only and a record (011) describes an individual

on the second and third lists but not on the first list. The three lists are

displayed in an order of P, Q and E; this ordering is arbitrary and any

legitimate inference procedure should be independent of the ordering of the

lists. Those patients who were missed by all lists have the record (000).

There are seven observable records and their counts over all ascertained

cases are denoted as Z001, Z010, Z011, Z100, Z101, Z110 and Z111. From

Table 1, there were 63 people listed in the E-list only, 55 people listed in

the Q-list only, and 18 people listed in both lists Q and E but not in the

P-list. Similarly, we can interpret the other records. In the P-list, there

were 135 cases, which means Z1++ = Z100 + Z101 + Z110 + Z111 = 135.

Table 1. Categorical data on hepatitis A virus.

Hepatitis A list

P Q E Data

0 0 0 Z000 =??

0 0 1 Z001 = 63

0 1 0 Z010 = 55

0 1 1 Z011 = 18

1 0 0 Z100 = 69

1 0 1 Z101 = 17

1 1 0 Z110 = 21

1 1 1 Z111 = 28
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Here, when we add over a sample, the subscript corresponding to that

sample is replaced by a “+” sign. Similar relationship holds for the other

two lists.

The number of different cases ascertained in at least one of the lists,

271 in this case, is the sum of all observable cell counts. Epidemiologists

suspected that the observed number of cases considerably undercounted the

true number of infected and an evaluation of the degree of undercount was

needed.12 The purpose was then to estimate the number of missed cases,

Z000, or equivalently, to estimate the number of total individuals who were

infected in the outbreak. This data set was analyzed in Chao et al.11 As

opposed to many real data sets, this one has the advantage of a known

true number of infected because a screen serological check for all students

was conducted after the three surveys. In this chapter, we therefore select

the HAV data set as an illustrative example to assess the relative merit of

various estimation methods.

1.2. Example 2. Data on Neurologic Illness

(Stratified by Diagnostic Group)

Bobo et al.4 reported a comprehensive surveillance system for acute neu-

rologic illness in children from August 1987 to July 1988 in two States

of USA. Three surveillance strategies were employed: (1) Hospital surveil-

lance system (H-list): Cases were identified based on hospitals discharge

records. (2) Provider surveillance system (P-list): Cases were reported by

pediatricians and neurologists. (3) Study staff surveillance system (S-list):

Cases collected by the staff members by visiting all participating facili-

ties and checking clinical records of potential cases. For this data set,

relevant covariates (auxiliary or explanatory variables) include geographic

location (Oregon or Washington), gender and primary diagnostic groups

(encephalopathies, infantile spasms, afebrile seizure and complex febrile

seizure). These four groups are referred to as stratum A, B, C and D for

convenience.

Bobo et al.4 found that substantial difference exists in case ascertain-

ment rates by diagnostic groups. The post-stratified data by diagnostic

groups are shown in Table 2. This covariate (group) is also referred to as a

post-stratifying or stratifying variable. The data structure for each group is

similar to that in Example 1. The collapsed data over the four groups are

shown in the last column. In the original data, there were 626 ascertained

cases. In Table 2 and our analysis in Sec. 5, we only consider 619 cases with
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Table 2. Categorical data on neurologic illness.

List Diagnostic Group (Stratum)

H P S A B C D Total

0 0 0 ? ? ? ? ?

0 0 1 11 7 131 103 252

0 1 0 2 1 38 4 45

0 1 1 6 5 31 20 62

1 0 0 6 1 37 26 70

1 0 1 7 2 62 44 115

1 1 0 1 1 14 11 27

1 1 1 2 4 31 11 48

known diagnostic groups. There were 260, 182 and 477 cases, respectively,

in H-list, P-list and S-list.

Despite the comprehensive surveillance systems, Bobo et al.4 concluded

that there were still some people who could not be identified. They per-

formed capture-recapture adjustment for the data within each stratum and

the collapsed data in order to obtain an accurate occurrence rate for various

sub-populations defined by the available covariates. Their results showed

that the ascertainment rate for the four groups were 82%, 94%, 69% and

91%, respectively. The rate was substantially low for the afebrile seizures.

1.3. Example 3. Drug Data (Stratified by the Length

of Time on Drug)

Wittes50 presented an ascertainment data set on patients receiving syn-

thetic penicillin called methicillin. Cases were identified by the following

four systems: (1) intravenous nurses (100 cases); (2) hospital floor nurses

(21 cases); (3) hospitals pharmacists (156 cases) and (4) medication sheets

(348 cases). We refer to these four lists as list 1, 2, 3 and 4, respectively.

A total of 428 cases were found. Wittes50 indicated that the length of

time a patient was given the drug was related to his/her probability of

being recorded. The original data consist of four strata for the time length

(1–3 days, 4–6 days, 7–10 days and 11+ days). We combine the last two

strata and the data are shown in Table 3. For each stratum, there are

15 observable presence/absence records and each can be expressed by a

sequence of four numbers.

Wittes50 found that an independent model (see Sec. 3 for explanation

of the model) in each stratum fitted well and obtained an estimate of 544
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Table 3. Categorical data on drug.

List Usage on Drug (stratum)

1 2 3 4 1–3 days 4–6 days 7+ days Total

0 0 0 0 ? ? ? ?

0 0 0 1 48 83 66 197

0 0 1 0 18 13 12 43

0 0 1 1 14 33 27 74

0 1 0 0 1 4 1 6

0 1 0 1 1 1 1 3

0 1 1 0 1 0 0 1

0 1 1 1 0 3 1 4

1 0 0 0 8 6 6 20

1 0 0 1 8 16 17 41

1 0 1 0 1 2 5 8

1 0 1 1 1 6 17 24

1 1 0 0 0 0 1 1

1 1 0 1 2 0 2 4

1 1 1 0 0 0 1 1

1 1 1 1 0 0 1 1

(s.e. 22.4) for the total number of patient receiving the drug. Dependence

was suspected between lists 3 and 4 because the records from the pharmacy

were duplicates of the medication sheets. To eliminate this possible depen-

dence, the lists 3 and 4 were combined to form only one list. Then based on

this combined list, list 1 and list 2, an estimate of 536 was obtained under

independence. Both models provide evidences that a non-negligible number

of patients were missed by all four identification sources.

One common goal for the above three examples is to find out under

what assumptions or models we can estimate the number of missing cases

and adjust for under-ascertainment considering the relevant covariate in

the analysis. This has analogues in the biological sciences: Estimating the

number of unseen animals in a closed population considering environmental

factors or individual covariates. Here, a closed population means that there

is no addition and loss so that the population size is a constant during the

study period. The estimation of population size is a classical problem and

has been extensively discussed in the literature.

Biologists have long realized that it is almost impossible to determine

the size of a population by counting every animal. Most animals cannot

be drawn like balls in an urn or numbers on a list, thus special types of

sampling schemes have been developed. Capture-recapture sampling has
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been widely used to adjust for undercount in the biological sciences. The

recapture information (i.e. source-overlap information or source intersec-

tion) collected by marking or tagging can be used to estimate the number

of missing under proper assumptions. Therefore, it is not necessary to count

every animal in order to obtain an accurate estimate of population size.

In contrast, epidemiologists have attempted to enumerate all relevant

cases to obtain the prevalence rates for various diseases. Cases in various

lists are usually merged and any duplicate cases are eliminated. The overlap

information is thus ignored. This typical approach assumes complete ascer-

tainment and does not correct or adjust for under-ascertainment. As Hook

and Regal23,25 indicated, most prevalence surveys merging several records

of lists are likely to miss some cases and thus be negatively biased. There

is relatively little literature in the health sciences on the assessment of the

completeness of these types of surveys or on the adjustment for under-

ascertainment. Therefore, as commented by LaPorte et al.,35 people know

more about the number of animals than the count of diseases. In a similar

way that ecologists and biologists count animals, we introduce with proper

modification in this chapter the use of capture-recapture models to count

human populations.

In Sec. 2, the background and motivation of the capture-recapture

technique and its adaptation for use in human populations are reviewed.

Section 3 summarizes the capture-recapture models when no covariates are

available. Section 4 presents stratified capture-recapture models including

covariates (or stratifying variable) effects. The analyses of the above three

data sets are shown in Sec. 5. Concluding remarks are discussed in Sec. 6.

2. Background and Motivation of Capture-Recapture

Capture-recapture sampling was originally developed for estimating demo-

graphic parameters of animal populations. In a typical animal capture-

recapture experiment, traps or nets are placed in the study area at several

times, often called capture occasions (or trapping samples). At the first

occasion, a number of animals are captured. A tag or mark with a unique

number or record is attached to each captured animal. These animals

are then released back into the population. At each subsequent occasion,

animals that are first-captures are similarly marked and the tag numbers

of re-captures are recorded. At the end of the experiment, a sequence of

samples is obtained and the complete capture history for each captured

animal is known.
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Why is marking or tagging necessary in animal studies? Clearly, many

animals look the same to humans and individuals cannot be identified by

sight. Marking or tagging is used to distinguish captured individuals so that

the recapture information (overlap information) by marking or tagging can

be used to estimate the number of missing animals in the experiment. Marks

include banding and tagging, paint brushing, toe clipping, ear clipping and

in some species individual animals can be identified. Intuitively, if the pro-

portion of newly captured animals in the later capture occasions is high, we

know that the population size is much higher than the number of distinct

captures. On the other hand, if there is a low proportion of newly captured

animals, then we are likely to have caught most of the animals and the

population size is close to the number of captured animals.

According to Seber,44 the original idea of two-sample capture-recapture

technique can be traced back to Laplace, who implemented it to estimate

the population size of France. The interesting history of Laplaces survey

conducted in 1802 was described in Cochran.13

The earliest applications to ecology include Petersens and Dahls work

on fish populations and Lincolns use of band returns to estimate waterfowl

in 1930. More sophisticated statistical theory and inference procedures have

been proposed since Darrochs17 paper, in which the mathematical frame-

work of this topic was founded. Seber,44–46, Pollock39 and Schwarz and

Seber43 provided comprehensive reviews on the methodologies and appli-

cations.

The capture-recapture technique has been applied to human popula-

tions under the term “multiple-record system”.20,32,33,47,50,52 The special

two-sample cases are often referred to as the “dual-system” or “dual-record

system”. For ascertainment data, if each list is regarded as a trapping sam-

ple and identification numbers, names and other characteristics are used

as tags or marks, then this framework is similar to a capture-recapture

setup for wildlife estimation. Comparisons of the applications to human

and animal populations are listed in Table 4.

The earliest references to the application of the capture-recapture

techniques to health science included the pioneering paper by Sekar and

Deming47 for two samples, Wittes and Sidel52 for three samples, Wittes50

for four samples, Wittes et al.51 and Fienberg20 for five samples. Hook

and Regal23 also suggested the use of capture-recapture models even for

apparently exhaustive surveys. In recent years, there has been growing

interest in the use of this technique in various disciplines. For example, an-

other important application area is software reliability.5 Hook and Regal,25
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Table 4. Comparison of capture-recapture applied to human and animal populations.

Human Populations Animal Populations

(Multiple-List System) (Capture-Recapture Sampling)

Similarities:

Lists, sources, records Trapping samples or occasions
Identification numbers and/or names Marks or tags
Ascertainment probability Capture probability

Differences:

Usually only 2 to 5 lists Any t number of samples or occasions (t ≥ 2)
No natural time ordering among lists Natural time ordering in samples or occasions
Different ascertainment methods Identical trapping methods

Some Shared Models Considered in this Chapter:

Log-linear models14,20,32,33

Sample coverage method10,11

Logistic regression models2,30,31,53

IWGDMF32,33 and Chao8 provided overviews of the applications of the

capture-recapture models specifically to epidemiological data. However,

some critical comments and concerns about the use of capture-recapture

models in analyzing ascertainment data have been expressed by several

authorsd.15,19,34,38,42 For some of the concerns, Chao et al.11 provided rel-

evant discussion from a statistical point of view.

As shown in Table 4, there are some principal differences between

wildlife and human applications. Researchers in wildlife and human popu-

lations have developed models and methodologies along separate lines. In

Table 4, we list the approaches that are applicable to both populations. We

will address those approaches in the next two sections after the introduction

of notational conventions.

Throughout this paper, we use the following notational conventions:

• The true unknown population size (i.e. the number of individuals in the

target population) is N and all individuals can be conceptually indexed

by 1, 2, . . . , N .

• There are t lists (samples, records, or sources) and they are indexed by

1, 2, . . . , t.

• There are M identified individuals, i.e. M equals to the sum of all

observable cell counts.

• Denote Z
s1,s2,...,st

as the number of individuals with record s1, s2, . . . , st
,

where s
j

= 0 denotes absence in list j and s
j

= 1 denotes presence in

list j.
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• Denote n
j
, j = 1, 2, . . . , t as the number of individuals identified in the

jth list.

• Denote P
ij

as the capture or ascertainment probability of the ith

individual in the jth list.

Basic assumptions are:

• All individuals act independently.

• Interpretation or definition for the characteristic of the target population

should be consistent for all data sources.

• Closure assumption: The size of the population is approximately a

constant during the study period.

• Ascertainable assumption: Any individual must have a positive proba-

bility to be ascertained by any source; any un-ascertainment is purely

due to small chance rather than impossibility. Remark: When a random

sample is feasible in a dual-system, some special types of structure zeros

are permitted; see Sec. 6.1 of Chao it et al.11

• For all sources, identification marks are correctly recorded and matched.

Traditional statistical approach further assumes that the samples are

independent. In animal studies, this traditional assumption is in terms

of an even more restrictive “equal-catchability” assumption, i.e. in each

fixed trapping sample all animals have the same capture probability.

(Equal catchability assumption implies independence among samples but

the reverse is not true; see Sec. 3.) Dependence or unequal catchabilities

may be caused by the following two sources:

(1) Local dependence (also called list dependence) within each indivi-

dual/stratum: Conditional on any individual, the presence/absence in

one source has a direct causal effect on this individual’s probability

of inclusion in other sources. In animal populations, local dependence

arises mainly from a behavioral response to capture due to identical

trapping method. Animals may become trap-happy, and have an in-

creased probability of subsequent capture, if baited traps are used

whereas they may become trap-shy, and have a decreased probability

of subsequent capture, if mist nets or ear clipping are used. Local de-

pendence within each individual/stratum may also arises for human

populations. For example, the probability of going to a hospital for

treatment for any individual depends on his/her result on the serum

test of the HAV, leading to dependence between the ascertainment of

the serum sample and that of the hospital sample.



June 23, 2003 16:10 WSPC/Advanced Medical Statistics chap19

720 A. Chao, H.-C. Yang & P. S. F. Yip

(2) Heterogeneity among individuals: Even if the two lists are independent

within an individual/stratum, the ascertainment of the two sources

may become dependent if the capture probabilities are heterogeneous

among individuals/strata. Hook and Regal24 presented an interesting

epidemiological example. For many populations, capture or ascertain-

ment probability may vary with age, gender, location, activity, diag-

nostic symptom, severity of illness or other individual characteristics.

For example, in animal populations, some females tend to be less likely

to be captured in all trapping occasions, leading to dependence among

samples. In human populations, severe cases are more ascertainable in

all lists than less severe cases, also leading to dependence.

These two types of dependencies are usually confounded and cannot

be easily disentangled in a data analysis. Lack of independence leads to

a bias (called “correlation bias”) for the usual estimator which assumes

independence. For example, in two-list cases, the widely used Petersen esti-

mator underestimates the true size if both samples are positively dependent.

Conversely, it overestimates for negatively dependent samples (see Sec. 3).

A similar conclusion holds for a general number of samples.

When only two lists are available, the data are insufficient for estimating

dependence unless additional covariates are available. All existing methods

unavoidably encounter this problem and adopt the independence assump-

tion. Therefore, when there are no available covariates, at least three lists

are required to model dependence between samples.

3. Models Without Covariates

For closed populations, the most commonly used models were proposed by

Pollock.37,39,49 This class of models considers time (or occasional) effect,

behavioral response to capture and heterogeneity among individuals. For

models incorporating behavioral response, which induces local dependence

among samples, the capture probability in a sample depends on whether

the animal was captured in the “previous” samples. Hence, the ordering of

the trapping samples is involved and estimators do depend on the ordering

of samples. Since there is usually no ordering among human lists or the

ordering may vary with individuals, such models with behavioral response

are rarely adopted in modeling local dependence for humans.

Heterogeneous model which allows different capture probabilities among

animals are potentially useful in health science. A commonly used estimator

for such a model is the jackknife estimator proposed by Burnham and
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Overton.6 To assure the jackknife work well, the number of trapping samples

should be at least five.37 Similar condition is also required for other estima-

tion procedure.11 However, only two to five human lists are usually avail-

able. Therefore, most ecological models have limited use in epidemiological

applications. Consequently, we only focus on another two approaches: log-

linear models and sample coverage approach.

3.1. Log-linear models

The log-linear models14,20 have been extensively used to handle depen-

dence among samples. Part of this approach is discussed in Chapter 13. The

methodology applied to human diseases was well covered in IWGDMF.32,33

In this approach, various log-linear models are fitted to the observed cells.

How well a model fits the data is assessed using the deviance statistic and a

model is usually selected based on the Akaikes information criterion (AIC).

The chosen model is then projected onto the unobserved cell by assuming

that there is no highest order interaction. The two types of dependencies can

be modeled by including some specific interactions or common interaction

in the models.

We use three lists for illustration. The log-linear approach models the

logarithm of the expected value of each observable category. Let I(A)

denote the usual indicator function, i.e. I(A) = 1 if A is true, 0 otherwise.

The most general model is

log E(Z
s1,s2,s3

) = u + u1I(s1 = 1) + u2I(s2 = 1) + u3I(s3 = 1)

+ u12I(s1 = s2 = 1) + u13I(s1 = s3 = 1)

+ u23I(s2 = s3 = 1) + u123I(s1 = s2 = s3 = 1) . (1)

That is, log E(Z000) = u, log E(Z100) = u + u1, log E(Z010) = u + u2,

log E(Z001) = u + u3, log E(Z110) = u + u1 + u2 + u12, log E(Z101) =

u + u1 + u3 + u13, log E(Z011) = u + u2 + u3 + u23 and log E(Z111) =

u + u1 + u2 + u3 + u12 + u13 + u23 + u123. This is a reparametrization of

the eight expected values.

For three-list data, we have seven observed categories, whereas there are

eight parameters. Therefore, a natural assumption is that there is no three-

list interaction term, i.e. u123 = 0. Intuitively, this means the complete

2× 2 table formed with respect to lists 2 and 3 for individuals in list 1 and

the incomplete 2× 2 table for individuals not in list 1 have the same odds

ratio. The sample odds ratio for the former table is Z111Z100/(Z110Z101)
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whereas the odds ratio for the latter table is Z011Z000/(Z010Z001). The

assumption of u123 = 0 allows the following extrapolation formula Ẑ000 =

Ẑ001Ẑ010Ẑ100Ẑ111/(Ẑ110Ẑ011Ẑ101), which expresses the estimated missing

cases as a function of the fitted values of other categories.

The independent model includes only main effects as given by

log E(Z
s1,s2,s3

) = u + u1I(s1 = 1) + u2I(s2 = 1) + u3I(s3 = 1), which is

denoted by model (1, 2, 3) as used in categorical data analysis. The interac-

tion terms are used to model dependence. If local list dependence arises in

samples 1 and 2, then the interaction term u12 is included, and the model

is denoted as model (12, 3) or 12/3. If local dependence also appears in

samples 1 and 3, then the two interactions u12 and u13 are needed. The

model is denoted as model (12, 13) or 12/13 and similarly for models (13,

2), (23, 1), (13, 23) and others.

The log-linear model can also be motivated by the Rasch41 model and

its generalizations which incorporate heterogeneity among individuals. The

Rasch model assumes logit(P
ij

) = α
i
+ τ

j
, where P

ij
denotes the capture

probability of the ith individual on the jth list, {α1, α2, . . . , αN
} repre-

sents heterogeneity effects among individuals and {τ1, τ2, . . . , τt
} denotes

the list effects. Since only dependence due to heterogeneity is considered

in the Rasch model, the capture probability for the ith individual in any

category can be determined by the product of {P
ij

, j = 1, 2, . . . , t}. A gene-

ralized Rasch model allows the heterogeneity effects {α1, α2, . . . , αN
} to be

different for two or more separate groups of samples.

It has been verified18,21 that the Rasch (generalized Rasch) model is

equivalent to a quasi-symmetric (partial quasi-symmetric) model with some

moment constraints. Except for the constraints, a quasi-symmetric model

for the three-list case with no second-order interaction, i.e. u123 = 0,

is equivalent to the model with first-order interactions identical; this is

denoted by (12 = 13 = 23) or simply H1 (which is called the first-order

heterogeneity by IWGDMF).32,33 Only one degree of freedom is used to

model heterogeneity. A partial quasi-symmetric model which assumes the

heterogeneity effects are identical only for the first and second lists, is equiv-

alent to the model with u13 = u23. This model is denoted as (13 = 23, 12).

Similarly, we have models (12 = 13, 23) and (12 = 23, 13) corresponding to

other two partial quasi-symmetric models. Therefore, the dependence due

to heterogeneity can be modeled by either a quasi-symmetric or a partial

quasi-symmetric model. When both types of dependencies occur, they are

inevitably confounded in the interaction or common interaction terms and

cannot be separated.
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The log-linear model can be similarly formulated when there are

more than three lists. The basic assumption for 4 lists is the third-order

interaction vanishes (i.e. u1234 = 0); that is, the 3-list interaction for

individuals in list 1 is the same as that for individuals not in list 1.

Local list dependence can be modeled by including the first-order inter-

action term (u12, u13, u14, u23, u24, u34) and/or the second-order interaction

(u123, u134, u124, u234). The Rasch model is equivalent to a model with the

first-order heterogeneity H1 (i.e. 12 = 13 = 14 = 23 = 24 = 34) and the

second-order heterogeneity H2 (i.e. 123 = 124 = 134 = 234), and thus de-

noted by (H1, H2). Two degrees of freedom are used to model heterogeneity.

If additional local dependencies also occur between lists 1 and 2, lists 1 and

3, and lists 2 and 4, then we add three more parameters u12, u13 and u24

to the model and the resulting model is denoted as (12/13/24, H1, H2).

Parallel formulations can be obtained for the general case of t lists; see

Lloyd36 for details. The reader is referred to Agresti,1 Coull and Agresti16

and Fienberg et al.21 for other related and useful models.

3.2. Sample coverage approach

This approach was proposed by Chao and Tsay10 for the three-list case.

The extension to a general case is presented in Tsay and Chao.48 Details

and relevant software are reviewed in Chao et al.11 The approach aims to

provide a measure to quantify the overlap information and also to propose

parameters to quantify source dependence.

Dependence is modeled by parameters called the “coefficient of covari-

ation” (CCV). To better understand the CCV parameters, we discuss the

dependence measure only for the heterogeneous case. Let the two sets of

probabilities, {P
ij

; i = 1, 2, . . . , N} and {P
ik

; i = 1, 2, . . . , N}, denote the

capture probabilities for N individuals in samples j and k, respectively. The

CCV of samples j and k for a fixed-effect approach is defined as

γ
jk

=
1

N

N

∑

i=1

(P
ij
− µ

j
)(P

ik
− µ

k
)

µ
j
µ

k

=
1

N

∑

N

i=1
P

ij
P

ik

µ
j
µ

k

= −1 , (2)

where µ
j

=
∑

N

i=1
P

ij
/N = E(n

j
)/N denotes the average probability of

being listed in the jth sample. The magnitude of γ
ij

measures the degree

of dependence between samples j and k. The two heterogeneous samples

are independent if and only if γ
ij

= 0, i.e. N

−1
∑

N

i=1
P

ij
P

ik
= µ

j
µ

k
which

means that the covariance between the two sets of probabilities is zero.

Thus if only one set of probabilities is homogeneous, then it suffices to

assure independence provided no local dependence exists.
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Two samples are positively (negatively) dependent if γ
jk

> 0 (γ
jk

< 0),

which is equivalent to N

−1
∑

N

i=1
P

ij
P

ik
> µ

j
µ

k
(N−1

∑

N

i=1
P

ij
P

ik
<

µ
j
µ

k
), i.e. the average probability of jointly being listed in the two sam-

ples is greater (less) than that in the independent case. The CCV can be

similarly defined for more than two sets of heterogeneous probabilities.

When there are only two lists, say, lists 1 and 2, the relative bias of Pe-

tersens estimator (bias divided by the estimate) is approximately −γ12.
10,47

This explains the direction of the correlation bias for Petersens estimator,

as stated in Sec. 2. Thus, the value of CCV also quantifies the correla-

tion bias. The CCV for the general cases with two types of dependencies

has been developed,10 but it will not be addressed here. We remark that

all CCVs in the general cases measure the mixed overall effect of the two

types of dependencies.

The sample coverage is used as a measure of overlap fraction of the

available lists. While the mathematical formula for the sample coverage

is complicated, its estimator is intuitively understandable. The estimated

sample coverage can be written as10

Ĉ = 1−
1

3

(

Z100

n1

+
Z010

n2

+
Z001

n3

)

=
1

3

[(

1−
Z100

n1

)

+

(

1−
Z010

n2

)

+

(

1−
Z001

n3

)]

,

which is the average (over three lists) of the fraction of cases found more

than once. Note that Z100, Z010 and Z001 are the numbers of individuals

listed only in one sample. Hence, this estimator is the complement of the

averaged fraction of singletons. Obviously, singletons cannot contain any

overlapping information. Define

D =
1

3
[(M − Z100) + (M − Z010) + (M − Z001)]

= M −
1

3
(Z100 + Z010 + Z001) .

Here (Z100 + Z010 + Z001)/3 represents the average of the non-overlapped

cases and recall that M denotes the total number of identified cases. Thus,

D can be interpreted as the average of the overlapped cases. The sample

coverage estimation procedures for the three-list case are summarized in

the following:
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(1) When the three sources are independent, a simple population size

estimator is derived as:

N̂0 = D/Ĉ . (3)

It can also be intuitively thought of as ratio of overlapped cases to

overlap fraction.

(2) When dependence exists and the overlap information is large enough

(how large it should be will be discussed further below), we take into

account the dependence by adjusting the above simple estimator N̂0

based on a function of two-sample CCVs. The resulting estimator has

the following explicit form:

N̂ =

[

Z+11 + Z1+1 + Z11+

3Ĉ

]

÷

{

1−
1

3Ĉ

[

(Z1+0Z+10)Z11+

n1n2

+
(Z10+ + Z+01)Z1+1

n1n3

+
(z0+1 + Z01+)Z+11

n2n3

]}

. (4)

(3) For relatively low sample coverage data, we feel the data do not contain

sufficient information to accurately estimate the population size. In this

case, the following “one-step” estimator N̂1 is suggested: (The estimator

is called “one-step” because it is obtained by one iterative step from

the above-mentioned adjustment formula.)

N̂1 =
D

Ĉ

+
1

3Ĉ

[(Z1+0 + Z+10)γ̂12 + (Z10+ + Z+01)γ̂13

+ (Z01+ + Z0+1)γ̂23] , (5)

where CCV estimates are

γ̂12 = N̂

′Z11+

n1n2

− 1 , γ̂13 = N̂

′Z1+1

n1n3

− 1 , γ̂23 = N̂

′Z+11

n2n3

− 1 , (6)

and

N̂

′ =
D

Ĉ

+
1

3Ĉ

[

(Z1+0 + Z+10)

(

D

Ĉ

·
Z11+

n1n2

− 1

)

+ (Z10+ + Z+01)

(

D

Ĉ

·
Z1+1

n1n3

− 1

)

+ (Z01+ + Z0+1)

(

D

Ĉ

·
Z+11

n2n3

− 1

)

]

.
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This one-step estimator can be regarded as a lower (upper) bound

for positively (negatively) dependent samples. Hook and Regal27 noted

that most data sets used in epidemiological applications tend to have

a net positive dependence. Thus, the one-step estimator is often used

as a lower bound.

The above three estimators (N̂0, N̂ , N̂1) will be simply referred to as

sample coverage estimators if there is no confusion with Ĉ . A bootstrap

resampling method10 was proposed to obtain estimated standard errors for

the above three estimators and to construct confidence intervals using a

log-transformation.7 A relatively low overlap fraction means that there are

many singletons. In this case, the undercount cannot be measured accu-

rately due to insufficient overlap. Consequently, a large standard error is

usually associated with the estimator N̂ in Eq. (4). How large should the

overlap information be? Chao et al.11 suggested that the estimated sample

coverage should be at least 55%. A practical data-dependent guideline can

be determined from the estimated bootstrap s.e. associated with the esti-

mator N̂ . If the estimated bootstrap standard error becomes unacceptable

(say, it exceeds one-third of the population size estimate), then only the

lower or upper bound in Eq. (5) is recommended.

The estimation procedure for the general t-sample case11 is parallel to

that for the 3-sample case as discussed above.

4. Models With Covariates

In animal populations, individuals covariates include age, gender, body

weight, wing length and others; environmental covariates include tem-

perature, rainfall, number of traps and others. For human populations,

relevant covariates are age, gender, race, geographic area, marital groups,

diagnostic group, time of onset, severity of diseases and many other explana-

tory variables. The covariate variables are also classified as either discrete

(categorical type) or continuous (numerical type).

As discussed earlier, traditional approach depends on a crucial as-

sumption of “equal-catchability”. Heterogeneity in capture probabilities

induces dependence among samples, which causes correlation bias in the

usual estimator. One approach to assessing heterogeneity is based on the

assumption that heterogeneity can be largely explained by some relevant

observable covariates. If covariate is discrete, Sekar and Deming47 were the

first to suggest post-stratification to reduce the bias due to heterogeneity.

That is, if the population can be divided into several homogeneous



June 23, 2003 16:10 WSPC/Advanced Medical Statistics chap19

The Use of Capture-Recapture Methodology 727

sub-populations defined by relevant covariates, then a stratified analysis

can be performed. That is, log-linear model or any other proper model is

fitted to the data for each stratum, then all estimates are combined to

obtain a final estimate.32,33,50

Pollock et al.40 were the first to use a logistic model to include con-

tinuous covariates in the analysis. In this approach, covariates are used to

model heterogeneous capture probabilities by a logistic regression. They

developed an estimation procedure based on the full likelihood. However,

the covariates for the un-captured animals are not observable. Therefore,

they had to make some assumptions about the covariates for the un-

captured animals. Huggins30,31 and Alho2 avoided this difficulty by using a

likelihood conditional on the captured animals so that the covariates of the

un-captured are not needed. After the coefficients of the logistic regression

are obtained, a Horvitz–Thompson type of estimator29 is then employed

to obtain an estimate of population size. Alho et al.3 applied this logistic

regression approach to the 1990 census and the Post-Enumeration Survey

of the United States. Yip et al.53 extended this logistic regression to allow

random removals in the experiments.

We now apply the logistic regression model to the data sets in Tables 2

and 3, in which there is only one stratifying variable. A unified model pro-

posed in Huggins30,31 and Yip et al.53 can incorporate effects for covariates,

capture occasions and behavioral response. If the times for the individuals

being recorded on the respective lists are known, then the behavioral re-

sponse effect for humans could be explored. Since such information for both

examples is not available, we only consider a model with stratum effect and

occasional effects. Assume that there are k strata. We need to construct

k − 1 dummy indicators to specify the effect of each stratum. That is, for

the ith individual define the dummy variable W
is

= I (the ith individual is

in the sth stratum), s = 1, 2, . . . , k − 1, a logistic regression model can be

expressed as

login(P
ij

) = log

(

P
ij

1− P
ij

)

= a + c
j
+ β1Wi1 + β2Wi2 + · · ·+ β

k−1Wi,k−1 . (7)

In this model, the parameters are

a: baseline intercept,

(c1, c2, . . . , ct−1): occasional or list effect, (c
t
= 0),

(β1, β2, . . . , βk−1): stratum effect, β2 denotes the effect of the sth stratum,
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s = 1, 2, . . . , k − 1. (The effect of the kth stratum is assumed to be 0.)

Under this model, the capture probability for each capture record and thus

the likelihood can be formulated. Then the maximum likelihood estimates

of the parameters a, (c1, c2, . . . , ct−1) and (β1, β2, . . . , βk−1) are searched

by numerical iteration. The population size is estimated by the Horvitz–

Thompson estimator. Huggins30,31 derived the variance of the resulting

estimator by an asymptotic variance formula.

Note that the logistic type model has an advantage that it can be used

to assess the effect of any type of covariate (both discrete and continuous).

However, it does not take account of any local dependence and hetero-

geneity is entirely explained by covariates. To incorporate possible local

dependence, a multivariate logistic model22 might be needed and will be a

worthwhile future research topic.

5. Analysis of Three Examples

5.1. Hepatitis A virus data (Three lists)

Table 5 shows the results for analyzing the HAV data. The first part of

the table presents Petersens estimate based on any pair of lists. Although

Petersens estimator is valid only under the restrictive independence as-

sumption, they are practically useful as a preliminary analysis. It has been

suggested21,23 that estimates based on any two lists can be used to detect

possible dependence. A substantially higher (lower) estimate signifies pos-

sible negative (positive) dependence for those two samples. For the HAV

data, Petersens estimates are in the range of 330 to 380. The narrow range

of these estimates would not indicate the possible direction of dependence

at this stage.

The second part of Table 5 includes the results for all possible log-

linear models fitted to the three-list data. The corresponding deviances and

estimates of the total number of infected are also shown. The independent

model produces an estimate of 388, which is close to the results for any

two samples. Except for the saturated model, all the log-linear models,

which consider local independence only and do not take into account

heterogeneity, i.e., models (PE, Q), (QE, P), (PQ, E), (PQ, QE), (PQ,

PE), and (QE, PE), do not fit the data well. All other models, which

take heterogeneity only into account (quasi-symmetric and partial quasi-

symmetric models) fit well. Those adequate models produce approximately

the same estimates of 1300 with an approximate estimated s.e. of 520. In
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Table 5. Analysis results for the HAV data.

Estimate of total

Model/Method Deviance d.f. AIC infected (s.e.)

Petersens estimates for pair of lists:

(P, Q) 0 0 336 (29)

(P, E) 0 0 378 (36)

(Q, E) 0 0 334 (30)

Log-linear models for three lists:

(P, Q, E) independent 24.36 3 69.8 388 (23)

(PE, Q) 24.25 2 71.6 393 (27)

(QE, P) 21.33 2 68.7 413 (31)

(PQ, E) 21.14 2 68.5 416 (33)

(PQ, QE) 13.20 1 62.6 527 (79)

(PQ, PE) 19.42 1 68.8 464 (61)

(QE, PE) 19.90 1 69.3 452 (54)

(PQ, QE, PE) 0 0 51.4 1313 (521)

Quasi-symmetric 0.96∗ 2 48.4 1313 (521)

(PQ = QE = PE)

Partial quasi-symmetric 0.03∗ 1 49.4 1309 (519)
(PQ = QE, PE)

Partial quasi-symmetric 0.86∗ 1 50.3 1306 (517)
(PQ = PE, QE)

Partial quasi-symmetric 0.55∗ 1 49.9 1325 (528)
(QE = PE, PQ)

Sample coverage approach

D Ĉ γ̂12 γ̂13 γ̂23 Estimate (s.e.)

N̂0: Eq. (3) 208.7 0.513 0.21 0.08 0.22 407 (28)

N̂ : Eq. (4) 208.7 0.513 1.89 1.57 1.91 971 (925)

N̂1: Eq. (5) 208.7 0.513 0.51 0.34 0.52 508 (40)

∗Deviance is not significant at the 5% level, which means a proper fit.

terms of AIC, the quasi-symmetric model is selected, but the relatively

large estimated s.e. shows that the data are actually insufficient to fit a

heterogeneous model.

The third part of Table 5 contains the sample coverage approach.

The sample coverage is estimated to be Ĉ = 51.3%, and the average of

the overlapped cases is equal to D = 208.67. If we ignore the possible

dependence between samples, an estimate based on (3) is N̂0 = D/Ĉ =

208.67/0.513 = 407, which is slightly higher than the estimate of 388 based
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on the independent log-linear model. The estimator given in Eq. (4) is

N̂ = 971, but a large estimated bootstrap s.e. (925) renders the estimate

useless. The estimated s.e. was calculated by using a bootstrap method

based on 1000 replications. We feel these data with a relatively low sample

coverage estimate of 51% do not contain enough information to correct for

undercount. The proposed one-step estimator in Eq. (5) is N̂1 = 508 with

an estimated s.e. of 40 using 1000 bootstrap replications. The same boot-

strap replications produce a 95% confidence interval of (442, 600) using

a log-transformation.7 We remark that the estimated s.e. and confidence

intervals might vary from trial to trial because replications vary in the

bootstrap procedures.

It follows from Eq. (6) that the CCV measures depend on the value of N .

The CCV estimates in Table 5 based on the three estimates of N show that

any two samples are positively dependent. As a result, the estimate N̂ = 508

can only serve as a lower bound. Also, the estimates assuming independence

based on two samples should have a negative bias. However, we cannot

distinguish which type of dependence (local dependence or heterogeneity)

is the main cause of the bias.

In December 1995, the National Quarantine Service of Taiwan con-

ducted a screen serum test for the HAV antibody for all students of the

college at which the outbreak of the HAV occurred.12 After suitable ad-

justments, they have concluded that the final figure of the number infected

was about 545. Thus this example presents a very valuable data set with

the advantage of a known true parameter. Our estimator N̂1 does provide a

satisfactory lower bound. This example shows the need for undercount

correction and also the usefulness of the capture-recapture method in

estimating the number of missing cases.

5.2. Stratified neurologic illness data (Three lists)

Various models have been fitted to the stratified neurologic illness data and

the results are shown in Table 6. Except for the first stratum, the Petersen

estimate based on the H-list and P-list is much lower than the other two

Petersens estimates. Thus positive dependence exists between the two lists.

This finding is further confirmed by the CCV estimates (not reported) in

the sample coverage approach.

If dependence is ignored, the pooled stratified estimate gives an estimate

of 762 (s.e. 21), which is identical to that obtained from an un-stratified

analysis. Also, the sample coverage estimate under independence for
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Table 6. Various estimates of the population size for neurologic illness data (Standard
error is in the parenthesis).

Diagnostic Group (Stratum)

Model/Method A B C D Stratified Un-stratified

Petersens estimate:

(H, P) 59 (16) 18 (3) 365 (34) 192 (24) 634 (45) 631 (46)

(H, S) 46 (7) 24 (3) 395 (19) 298 (21) 763 (29) 761 (29)

(P, S) 36 (5) 22 (2) 469 (34) 264 (23) 791 (41) 789 (41)

Log-linear models:

(H, P, S) Independent 43 (5) 22 (2) 429 (16) 268 (13) 762 (21) 762 (21)

(HP, S) 42 (4) 23 (2) 438 (19) 275 (15) 778 (25) 778 (24)

(HP, HS) 39 (4) 22 (2) 505 (44) 240 (12) 806 (46) 865 (76)

Quasi-symmetric 40 (6) 26 (8) 543 (82) 273 (30) 882 (88) 802 (41)

(HS = PS, HP) 43 (13) 23 (5) 533 (88) 242 (15) 841 (90) 808 (67)

Sample coverage:

N̂0: Eq. (3) 43 (5) 23 (2) 436 (17) 255 (10) 757 (21) 762 (21)

N̂ : Eq. (4) 42 (20) 24 (15) 524 (68) 218 (15) 808 (74) 812 (65)

N̂1: Eq. (5) 42 (7) 23 (3) 468 (29) 239 (16) 772 (34) 782 (32)

Logistic regression model:

Eq. (7) with covariate and list effects, Horvitz–Thompson estimate: 765 (s.e. 22)

un-stratified data (N̂0, in Eq. (3)) yields exactly the same result. An

analogous estimate of 765 (s.e. 22) is also obtained by a logistic regres-

sion model incorporating both covariate (stratifying variable) and the list

effects. However, the deviance statistic of the logistic regression model is

38.8 with 22 degrees of freedom (P -value = 0.015), indicating an inadequate

fit.

Since significantly positive dependence exists for the H-list and P-list,

Bobo et al.4 suggested fitting a log-linear model with the interaction term

HP, model (HP, S), to the total data, and obtained an estimate of 787. In

Table 6, both stratified and un-stratified estimates for model (HP, S) are

778. Note that we have excluded seven patients whose diagnostic groups are

unknown. This explains the slight difference between our result and that in

Bobo et al.4 Adding up these seven to our estimate, we then obtain a very

close result.

We also list the results for model (HP, HS), quasi-symmetric and a

partial-quasi-symmetric model in Table 6. For these three log-linear models,

there are substantial differences between the stratified and un-stratified
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results. In contrast, such differences for the three sample coverage estima-

tors are limited. Recall that the purpose of stratification is mainly to reduce

the dependence due to heterogeneity. The overall dependencies are consi-

dered and adjusted in the sample coverage estimators N̂ and N̂1. Therefore,

the closeness of the stratified and un-stratified results is expected. (As will

be seen in Sec. 5.3, post-stratification is not warranted because insufficient

overlap may arise in some strata, leading to an unstable stratified result.)

For this data set, the estimator N̂ that can take account of two types of

dependencies in each stratum has acceptable precision. Both stratified and

un-stratified estimates can be recommended since they result in similar

variation using 1000 bootstrap replications. The latter estimate is 812 with

an estimated bootstrap s.e. of 65, which yields a 95% confidence interval of

(720, 988). The former yields a slightly lower estimate of 808 with a higher

s.e. of 74, which implies a 95% confidence interval of (709, 1015).

5.3. Stratified drug data (Four lists)

Table 7 shows the analysis results for the drug data. Estimates based on

various models are presented for each stratum and for the collapsed data.

Except for the stratum of 4–6 days, the Petersen estimate based on the

lists 1 and 2 are lower than the others and thus positive dependence is

expected. The CCV estimate (unreported) for the total data reveals that

positive dependence also exists between the lists 1 and 3. Wittes50 suspected

that positive dependence may arise between list-3 and list-4, but the CCV

estimate only shows very weak dependence.

Wittes50 fitted an independent model to the data in each stratum and

obtained a pooled estimate of 544 (s.e. 22.4), which is slightly different

from our result under independence in Table 7 probably due to numerical

rounding errors. The un-stratified estimate under an independent model is

524 (s.e. 18). Wittes50 thus concluded that failure to account for stratifi-

cation in the analysis would have afforded the investigators a false sense of

precision.

Table 7 also presents the results for some other selected log-linear models

that fit well, i.e. models (1, 2, 34), (12, 13, 4), (H1, 12, 13, 4), (12, 13,

14), and the quasi-symmetric model. For the quasi-symmetric model, the

iterations failed to converge for two strata. Therefore, the stratified result

for the quasi-symmetric model is not obtainable. The iteration steps for the

un-stratified estimate did converge, but the s.e. is extremely large. It implies



June 23, 2003 16:10 WSPC/Advanced Medical Statistics chap19

The Use of Capture-Recapture Methodology 733

Table 7. Various estimates of the total number of patients for drug data (Standard
error is in the parenthesis).

Usage on Drugs (Stratum)

Model/Method 1–3 days 4–6 days 7+ days Stratified Un-stratified

Petersens estimate:

(1, 2) 50 (14) 278# (183) 80 (16) 408 (184) 300 (71)

(1, 3) 350 (112) 214 (49) 133 (15) 697 (123) 459 (54)

(1, 4) 135 (22) 194 (18) 178 (12) 507 (31) 497 (28)

(2, 3) 175 (49) 152 (42) 171 (47) 498 (80) 468 (112)

(2, 4) 123 (28) 284 (69) 211 (43) 618 (86) 609 (99)

(3, 4) 173 (27) 193 (12) 184 (11) 550 (32) 527 (25)

Log-linear models:

(1, 2, 3, 4) Independent 160 (19) 203 (11) 179 (7) 542 (23) 524 (18)

(1, 2, 34) 149 (21) 215 (20) 175 (8) 539 (30) 521 (24)

(12, 13, 4) 156 (18) 201 (11) 184 (9) 541 (23) 531 (20)

(H1, 12, 13, 4) 181 (73) 242 (58) 185 (17) 608 (95) 586 (62)

(12, 13, 14) 165 (25) 204 (13) 187 (12) 556 (31) 547 (26)

Quasi-symmetric (diverge) (diverge) 353 (322)(diverge) 1027 (815)

Sample coverage:

N̂0: Eq. (3) 151 (22) 226 (23) 178 (10) 555 (33) 541 (26)

N̂ : Eq. (4) 170 (575) 286 (63) 185 (26) 641 (579) 635 (93)

N̂1: Eq. (5) 157 (32) 247 (28) 182 (17) 586 (46) 579 (44)

Logistic regression model:

Eq. (7) with covariate and list effects, Horvitz–Thompson estimate: 539 (s.e. 21)

#Petersens estimate does not exist due to no overlapped cases; Chapmans estimator

is calculated instead (see Seber44; 59–60).

that a Rasch model which can reflect heterogeneity among individual

cannot be adopted.

The sample coverage estimator under independence gives an estimate

of 541 (s.e. 26), which is very close to the result obtained from a logistic

analysis. The logistic regression model in Eq. (7) provides a proper fit to the

data because the deviance is 39.81 with 39 degrees of freedom (P -value =

0.43). In the first stratum, the relatively large bootstrap s.e. of the estimator

N̂ indicates that data information cannot provide a reliable estimate and

thus only a reasonable lower bound can be obtained. Consequently, the

stratified estimate based on N̂ is not recommended for use. For the collapsed

data, the precision is acceptable, showing the pooled data are sufficient
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to incorporate both types of dependencies. We obtain an estimate of 635

with an estimated s.e. of 93 based on 1000 bootstrap replications. A 95%

confidence interval of the size can be constructed as (520, 895).

6. Remarks and Discussion

Capture-recapture models provide a potentially useful method for assess-

ing the extent of incomplete ascertainment in epidemiological studies but

there are assumptions and limitations to this approach. We have reviewed

three methods (log-linear models, sample coverage approach and logistic

regression analysis) and applied them to three data sets with/without

covariates. The three data analyses have demonstrated the usefulness of

the capture-recapture analysis.

Basic assumptions must be checked to validate the implementation of

the capture-recapture method. Hook and Regal26,28 presented 17 recom-

mendations for the use of the capture-recapture method in epidemiology.

We also urge the readers to check the assumptions listed in Sec. 2 before

capture-recapture analysis.

We have shown that for some data sets (e.g. the HAV data and the

first stratum of the drug data), insufficient overlap information usually

results in an imprecise estimate. This implies that a serious limitation of

the capture-recapture methods is that sufficiently high overlapping infor-

mation is required to produce reliable population size estimates and to

model dependence among samples. Coull and Agresti16 also indicated that

the likelihood functions under some models for sparse information might

become flat and the resulting estimates are likely to become unstable. In

such cases, we feel that a precise lower bound is of more practical use than

an imprecise point estimate.

Almost all methods discussed in this chapter require extensive numerical

iterations or calculations to obtain estimators and standard errors. There-

fore, user-friendly software is essential for applications. We have developed a

program CARE (for capture-recapture) containing two parts: CARE-1 and

CARE-2. CARE-1 is an S-PLUS program for analyzing epidemiological

data; CARE-2, written in C language, calculates various estimates for

ecological models. All estimates and standard errors given in Tables 5–7

were obtained by using CARE-1. A tutorial article11 demonstrated the

use of CARE-1. The reader is referred to Chao and Huggins9 for the

use of CARE-2 if ecological models are needed. The program CARE

is available and can be downloaded from the first authors website at

http://chao.stat.nthu.edu.tw/.
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It is an important way in chronic disease control to detect disease earlier

by mass screening. The purpose of screening is to detect disease in

an early stage, in an expectation of the better treatment effect, the

improvement of patients prognosis and the reduction of disability or

death. Mass screening may achieve its objective of early detection in

two approaches: one is to encourage patient to visit doctor when the

early sign and symptom of disease appears; second is to supply a regular

physical test and to detect disease in an asymptomatic stage.

1. Basic Concept of Mass Screening for Disease

American Commission on Chronic Illness gave a definition of screening in

19571: “The presumptive identification of unrecognized disease or defect by

the application of test, examine, or other procedures which can be applied

rapidly to sort out apparently well persons who probably have a disease

from those who probably do not. A screening test is not intention to be

diagnostic. Persons with positive or suspicious finding must be referred

to their physicians for diagnosis and necessary treatment.” This definition

emphasized on two points. Firstly, the potential disease states identified by

mass screening include two subgroups: one is the state in the high risk of

disease and another is the state of disease unrecognized by patients himself.

Person in first group may not be ill but he may have disease in a high

probability, such as the people with multiple intestinal polyps, oesophageal

epithelial dysplasia and mataplasia. People in second group have suffered

from the disease but have not recognized it, such as patients with small

liver cancer found by α-fetoprotein (AFP). Secondly, screening procedure

741
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itself does not diagnose illness. Those who test positive are sent on for

further evaluation by a subsequent diagnostic test or procedure to determine

whether they do have the disease.

In 1968, World Health Organization (WHO)2 suggest some governing

principles and pre-requisites of mass screening:

(1) Disease is a serous health problem. It means a high morbidity, mortality

and social burden.

(2) Early detection of disease may improve the prognosis, reduce proportion

of disability and death of patients. It means that there are the effective

treatments of early stage disease.

(3) The natural history of disease is well known and the screening test is

able to detect disease in preclinical phase.

(4) There is an effective screening test. It means that the test is sensitive,

specific, high predictive value and safe.

(5) The screening program is acceptable to population, simple and inex-

pensive, high compliance rate and low complication and pain.

(6) There is proper procedure of further diagnosis and follow-up.

Simply, the success of a screening program depends on how many

deaths saved. By the exact statistical statement, screening is effective if

the mortality rate of the disease in screened population is lower than

that of in unscreened population. It may exist by the difference of the

mortality rates or by the relative rates. The methods of statistical analysis

for screening data is similar to that for general epidemiological study. The

life-year savings of a disease is also a common index for screening assessment

and especially useful in the cost-effectiveness evaluation. Mass screening

does not only reduce the mortality rate of disease but sometimes also re-

duces the incidence rate and the medication cost of disease. However, the

quantitative assessment on this aspect of screening is much more difficult

than death reduction.

The cost must be considered in the assessment of screening. The direct

cost includes charges of screening test, further diagnostic procedure and

follow-up for positive result. The indirect cost includes expense of time

and work, management and organization of program, etc. The evaluation

of the cost on the psychological and biological impact of screening, such

as the anxiety for positive results, risk of complication, harm and pain

brought by screening test is much more complicate but must be taken into

consideration.

The assessment of screening is very complicate and difficult. The cur-

rent method of assessment for screening still needs to be improved. In the
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beginning, ones hope to compare the survival time of the cases detected

by screening and the cases diagnosed in clinic. If the survival time of the

cases detected by screening is longer than that of the cases diagnosed in

the clinical, the screening is said to be effective. However, this comparison

suffers may have many biases. Firstly, screening population is not a random

sample of general population. They may be different in some important de-

mographic characteristics from general population where the cases come,

such as occupation, life status and education, etc. Secondly, longer survival

time in the cases detected by screening may be caused by earlier diagnostic

time rather than the prolonged life. That is called as lead time bias.3 As

shown in Fig. 1, we suppose the survival time of patients are not changed

no matter it is detected by screening or diagnosed in clinic. The average

longer survival time may be due to the screening advances the diagnostic

time. The lead time in an uncontrolled clinical trial appears to increase

survival time although the natural history of the disease and the time of

death are unchanged, whereas, patients stay longer in disease phase and

suffer more from pain and anxiety. Finally, the probability that a dis-

ease will be detected by screening is directly proportional to the length

of its preclinical detectable phase, which is inversely related to its rate of

disease progression. Individuals with rapidly progressive disease — those

with short preclinical phases — are more likely to die than the average

longer and are less likely to be identified by screening. Therefore, long

survival time may not be the effect of screening nor the selective effects of

screening procedure on cases. That is called as length bias.4 The screening

tends to detect disease subsets with long preclinical phase, less aggressive

progression and perhaps better inherent prognosis.

As shown in Fig. 2, for Cases 1 and 2, the disease is less aggres-

sively progressive, detected by screening and predictable a better prognosis.

For Cases 3 and 4, disease progresses rapidly, missing the opportunity of

screening detection and a poor prognosis. In the comparison of survival

time of patients detected by screening and detected clinically, these biases

Fig. 1. Illustration of lead time bias.
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but must be considered.

The assessment of screening is very complicate and difficult. The current method of
assessment for screening still waits to be improved. In the beginning, ones hope to compare the
survival time of the cases detected by screening and the cases diagnosed in clinic. If the survival
time of the cases detected by screening is longer than that of the cases diagnosed in clinical, the
screening is approved effective. However, this comparison suffers from the interference of a
variety of biases. Firstly, screening population is not a random sample of general population. They
may be different in some important demographic characteristics from general population where
the cases come, such as occupation, life status and education, etc. Secondly, the longer survival
time in the cases detected by screening probably is because the ahead of the diagnostic time other
than the postponement of death time. That is called as lead time bias[3]. Shown in Fig. 1, supposed
the survival time of patients are not changed whether detected by screening or diagnosed in clinic,
the average longer survival time may be just because the screening advances the diagnostic time.
The lead time in an uncontrolled clinical trial appears to increase survival time but the natural
history of the disease and the time of death are unchanged, whereas, patients stay longer in disease
phase and suffer more from pain and anxiety. Finally, the probability that a disease will be
detected by screening is directly proportional to the length of its preclinical detectable phase
which is inversely related to its rate of disease progression. Individuals with rapidly progressive
disease---those with short preclinical phases--- are more likely than average to die of their disease
and are less likely to be identified by screening. Therefore, long survival time may not be the
effect of screening otherwise the selective effects of screening procedure on cases. That is called
as length bias[4]. The screening tends to detect disease subsets with long preclinical phase, less
aggressive progression and perhaps better inherent prognosis.

Fig. 1 Illustration of lead time bias

Fig. 2 Illustration of length bias

Shown in Fig. 2, for case 1 and case 2, the disease is less aggressively progressive, detected
by screening and predictable a better prognosis. For case 3 and case 4, disease progresses rapidly,
missing the opportunity of screening detection and a poor prognosis. In the comparison of survival
time of patients detected by screening and detected clinically, these biases must be adjusted. This
adjustment is very difficult, depends on the fully perception of natural history of the disease and
needs a very complex counting process.

Early diagnostic rate is one of indices for assessment of screening program in a pilot period.
However, this index only suggests that the screening might be effective but not proves it. If there
is no effective treatment for detected patients, early detection of disease won’t improve the
prognosis of patients and reduce the death or disability caused by disease. Only when is there the

time

onset diagnosisdetected die

survival time

lead time

diagnosis die

screen1 screen2 screen3

1

2

3

4

Fig. 2. Illustration of length bias.

must be adjusted. This adjustment is very difficult, depends on the fully

perception of natural history of the disease and needs a very complex

counting process.

Early diagnostic rate is one of indices for assessment in the pilot period

of a screening program. However, this index only suggests that the screening

may be effective but has not been proven. If there is no effective treatment

for detected patients, early detection of disease will not improve the prog-

nosis of patients and reduce the death or disability caused by disease. Only

when is there the effective treatment for disease in early stage and not for

later stage, the early detection of disease is of special meaning.

Obviously, the comparison of survival rates of patients detected by

screening and detected in clinic is not an ideal method of screening as-

sessment. Early diagnostic rate of disease is also not a good index and

only an indirect index. An ideal assessment of screening is to compare the

mortality rates of the disease and death rates in screening population and

control population in a randomized controlled population-based design. The

mortality rates of the disease and death rates are crucial in the assessment

of screening effects. The comparison of mortality rates is not interfered

by lead time bias and length bias. The results of the comparison reflect

the true effectiveness of screening. For example, in the Health Insurance

Plan (HIP)5 in New York, the women aged 40 to 64 who participated of

the plan are randomly separated into two groups, one group accept yearly

physical check and mammography, another group receive a routine medical

care service. Four repeat screening tests were given to first group in total.

In the first 5 years, the mortality rates of breast cancer in screening group

reduced about 40%. After 14 years follow-up, there is still a 20% of mor-

tality reduction of breast cancer (Table 1). The results from a randomized

control clinical trial of breast cancer screening in Sweden,6 also proved that

the screening of breast cancer may effectively reduces the deaths caused by

the disease (Table 2).
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Table 1. Cumulative deaths of breast cancer in screening population and control in
HIP.

Years from first screens Cases of Deaths from breast cancer according to

to diagnosis breast cancer follow-up years

5 years 7 years 10 years 14 years

5 years

Screening group 306 39 71 95 118

Control group 300 63 106 133 153

Difference of rates (%) 38.1 33.0 28.6 22.9

7 years

Screening group 425 39 81 123 165

Control group 443 63 124 174 212

Difference of rates (%) 38.1 34.7 29.3 22.2

10 years

Screening group 600 39 81 146 218

Control group 604 63 124 192 262

Difference of rates (%) 38.1 34.7 24.0 16.8

Table 2. The mortality analysis of breast cancer between screening population and
control.

Age Groups Deaths Screening population RR (95%CI)

40–49 Screen 28 19844 0.92(0.52–1.60)

Control 24 15604

50–59 Screen 45 23485 0.60(0.40–0.90)

Control 54 16805

60–69 Screen 52 23412 0.65(0.44–0.95)

Control 58 16269

70–74 Screen 35 10339 0.77(0.47–1.27)

Control 31 7307

Total Screen 160 77080 0.69(0.55–0.88)∗

Control 171 55985

∗Adjusting for age.

It is shown in Tables 1 and 2 that the methods of statistical analysis

are similar to those in the treatment of traditional epidemiological data.

Mantel-Haenszel stratified analysis was used to estimate the relative risks

and confidence interval of disease mortality. The methods of hypothesis

testing are also same.

If a randomized control clinical trial is not feasible, a population-based

cohort study is the next choice. For example, a study in England is to
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compare the mortality rates of the disease between the screening area

and the non-screening area. This kind of design requires a relative high

participation rate in screening population. It means a good compliance.

For comparison, the demographic characteristics of populations in different

areas need to be adjusted.

The randomized control clinical trial or other observational design only

evaluates a single screening scheme. The usage of them is limited because it

cannot estimate the extra effects of a screening scheme applied in different

population with different age distribution and different prevalence rates of

disease, or the extra effects of different screening schemes, such as different

frequency, different test. In practice, people cannot carry out a randomized

control clinical trial for every screening scheme to evaluate its effects. In this

situation, the mathematical model of natural history of disease based on the

current data from a RCT or other observational studies may complement

this limitation. The prevalence rate of disease on every screening and the

incidence rates in the screening interval are estimated based on a stochastic

model and the effects of different screening policies are evaluated.

The screening programs for a variety of diseases have been implemented

in many countries in the world. The practice proves that the mortality

rates of some diseases, such as breast cancer, cervical cancer, hypertension

and diabetes may be reduced by screening. The question is which one in

different screening test and different schemes detect disease earlier, with

higher efficacy and higher cost-effectiveness. Two important parameters

decide the effect of screening. One is the sensitivity of screening test.

Another is the distribution of sojourn time in preclinical detectable phase

(PCDP). A high sensitivity, or low false negative rate of screening test

means a strong power to detect disease. A long sojourn time of preclinical

detectable phase means more chance to be detected by screening and in an

early stage of disease. A short sojourn time of preclincial detectable phase

gives little chance to be detected by screening. That means that the propor-

tion of the cases detected by screening is low, the effect of screening is poor

and the screening may be not feasible. If the sojourn time of preclinical

detectable phase is long, the interval between screens may be designed

longer. When the distribution of preclinical detectable phase is known, the

lead time bias may be estimated for the assessment of screening. Therefore,

the core of analysis of screening data and optimization of screening schemes

is to estimate these two parameters.

We assume that the disease progresses in the manner shown in Fig. 3. An

individual enters the preclinical detectable phase of the disease, detectable
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Control 171 55985
*adjusting for age

It is shown in Table 1 and Table 2 that the methods of statistical analysis are similar to those
in the treatment of traditional epidemiological data. Mantel-Haenszel stratified analysis was used
to estimate the relative risks and confidence interval of disease mortality. The methods of
hypothesis testing are also same.

If a randomized control clinical trial is not feasible, a population-based cohort study is the
next choice. For example, a study in England is to compare the mortality rates of the disease
between the screening area and the non-screening area. This kind of design requires a relative high
participation rate in screening population. It means a good compliance. And in comparison, it
needs to adjust the demographic characteristics of populations in different areas.

The randomized control clinical trial or other observational design only evaluates a single
screening scheme. The usage of them is limited because it can’t estimate the extra effects of a
screening scheme applied in different population with different age distribution and different
prevalence rates of disease, or the extra effects of different screening schemes, such as different
frequency, different test. In practice, people can’t carry out a randomized control clinical trial for
every screening scheme to evaluate its effects. In this situation, the mathematical model of natural
history of disease based on the current data from a RCT or other observational studies may
complement this limit. The prevalence rate of disease on every screening and the incidence rates
in the screening interval are estimated based on a stochastic model and the effects of different
screening policies are evaluated.

The screening programs for a variety of diseases have been implemented in many countries
in the world. The practice proves that the mortality rates of some diseases, such as breast cancer,
cervical cancer, hypertension and diabetes may be reduced by screening. The question is which
one in different screening test and different schemes detect disease earlier, with higher efficacy
and higher cost-effectiveness. Two important parameters decide the effect of screening. One is the
sensitivity of screening test. Another is the distribution of sojourn time in preclinical detectable
phase (PCDP). A high sensitivity, or low false negative rate of screening test means a strong
power to detect disease. A long sojourn time of preclinical detectable phase means more chance to
be detected by screening and in an early stage of disease. A short sojourn time of preclincial
detectable phase gives little chance to be detected by screening. That means that the proportion of
the cases detected by screening is low, the effect of screening is poor and the screening may be not
feasible. If the sojourn time of preclinical detectable phase is long, the interval between screens
may be designed longer. When the distribution of preclinical detectable phase is known, the lead
time bias may be estimated for the assessment of screening. Therefore, the core of analysis of
screening data and optimization of screening schemes is to estimate these two parameters.

Fig. 3 Schema for the progression of a disease with the intervention of an early

no detectable
disease

asymptomatic
detectable disease

symptomatic
invasive disease

sojour tme

T0 T2 T1

screening test detects preclinical disease

delay time

Lead time

Fig. 3. Schema for the progression of a disease with the intervention of an early
detection.

by the screening modality in question, at time T0, and would begin to

manifest symptoms, i.e. the disease would become clinically apparent, at

time T1, if no intervention were to take place. For this individual, the

“sojourn time” is defined as T1 − T0. Suppose now that the individual

is screened at time T2(T0 < T2 < T1) and is diagnosed in the preclinical

state. For this individual, the “lead time”, the interval by which diagnosis

is brought forward, is defined as T1−T2. The probability that the screening

test correctly identifies an individual as being in the preclinical detectable

phase is termed the “sensitivity” of the test; the “false-negative rate” is one

minus the sensitivity.

2. One-stage Models of the Natural History of

Disease for Screening

The data from screening process consist of: (1) prevalent cases diagnosed

in preclinical detectable state during the screening; (2) incidence cases di-

agnosed clinically in the interval of two screenings or both before and after

screening. The purpose of natural history model of screening for a disease

is to express these prevalence and incidence rates in terms of the false-

negative rate and of the sojourn-time distribution. General model have

been developed7,8 to describe the effect of screening on the disease process

in order to identify those parameters which determine the expected benefit.

Estimation of parameters of interest is difficult with these general models

since the number of unknowns is large. Here firstly the simplified model

(NE Day and SD Walter)9 is introduced.
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In the absence of screening, the incidence of clinical disease at age t will

be denoted by I(t). For the screening modality in question, f(y) will denote

the probability density function of the length of the interval y during which

the disease is preclinical but detectable, i.e. the sojourn time. For simplicity,

we assume f(y) to be independent of t. The function J(t) will denote the

incidence of the preclinical state, i.e. the rate at which individuals enter

it. The “false-negative rate”, i.e. the probability that an individual in the

preclinical state is screened negative, will be denoted by β; thus 1 − β is

the “sensitivity”. We assume that β is independent of both the lead time

and the sojourn time.

The functions I(t) and J(t) are related through f(y) by the equation

I(t) =

∫

t

0

J(s)f(t− s)ds . (1)

Suppose that the population is screened at t1. Then for t > t1 the incidence

is made up of two components, individuals with short sojourn time who

entered the preclinical state after t1, and individuals with a longer sojourn

time falsely screened negative at t1. Thus, after one screen, the incidence,

I1(t) is given by

I1(t) = β

∫

t1

0

J(s)f(t− s)ds +

∫

t

t1

J(s)f(t− s)ds . (2)

Similarly, if screens occur at times t1, t2, . . . , tn, then the incidence I
n
(t)

after the nth screen is given by

I
n
(t) =

n

∑

i=0

β

n−i

∫

t1+1

t1

J(s)f(t− s)ds , (3)

where t0 = 0 and t
n

+ 1 = t. We make an assumption that J(t) is uniform

for an individual over the duration of the study. For cancer, the screening

interval usually is 1 or 2 years, in this interval the assumption of uniform

incidence rate of preclinical state may hold approximately.

I
n
(t) = J

n

∑

i=0

β

n−i

∫

t−t1

t−ti+1

f(y)dy . (4)

The prevalence, P1 observed at a first screen at time t1, is given by

P1 = (1− β)

∫

t1

0

J(s)

∫ ∞

t1−s

f(y)dyds . (5)

That is, for each time s < t1, those individuals entering the preclinical state

at time s will be prevalent cases at time t1 if their sojourn time is greater
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than t1−s. On reversing the order of integration and setting J(s) constant,

this expression becomes

P1 = (1− β)J

∫

t1

0

yf(y)dy +

∫ ∞

t1

f(y)dy (6)

If there are n previous screens, at times t1, . . . , tn. Summation over the n

intervals, gives the following expression for the total prevalence P
n

at the

nth screen at time t
n
:

P
n

= (1− β)J

n

∑

i=1

β

n−i

∫ ∞

tn−ti

min{y − (t
n
− t

i
), t

i
− t

i−1}f(y)dy . (7)

If the interval between screens is constant, i.e. if t
i+1 − t

i
= ∆, i =

1, 2, . . . , n− 1. Above expressions may be further simplified. For incidence

rates,

I
n
(t) = J

n−1
∑

i=0

β

n−i

∫

t−tn+(n−i)∆

t−tn+(n−i−1)∆

f(y)dy + Jβ

n

∫

t−tn

0

f(y)dy . (8)

For the prevalence rates,

P
n

= (1− β)J

n

∑

i=1

β

n−i

∫ ∞

(n−i)∆

min{y − (n− i)∆, ∆}f(y)dy . (9)

We consider first the idealized situation where a total population is

screened at regular intervals, each individual being screened with the same

inter-screening interval ∆. The constant incidence rates are assumed known

from a pre-existing disease registry. At the ith screen (i = 1, . . . , n) one

knows r
i
, the number of cases of preclinical disease found, and n

i
, the

number screened; and between screen i and screen i+1 one knows the total

c
i

of cases diagnosed outside screening from a total of y
i

person-years at

risk. The probability q
i

of a case developing between screen i and screen

i + 1 outside screening is given by

q
i
= 1− exp

{

−

∫

ti+1

ti

I
i
(y)dy

}

, (10)

Which can be well approximated by

q
i
=

∫

ti+1

ti

I
i
(t)dt .

The cases at screen i can be taken to have a Poisson distribution with

parameter n
i
P

i
and the cases emerging outside screening between screens i
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and i + 1 can be taken to have a Poisson distribution with parameter y
i
q
i
.

Then the likelihood function is

L =
n−1
∏

i=0

n
i
P

i

r
i
!

e

−niPi

n

∏

i=1

y
i
q
i

c
i
!

e

−yiqi
. (11)

Based on likelihood function, the maximum likelihood values of parameters

may be estimated.

Three different forms for f(y) may be considered: a step function with

arbitrary probabilities defined over short time intervals, a lognormal and

an exponential. Here, we only discuss the exponential distribution as an

example for the application since it not only gives simpler expressions for

the quantities of interest but also fits the data better.

2.1. Example

Breast cancer screening by the Health Insurance Plan of Greater New York

(the HIP study).5

The data we have used are summarized in Tables 3 and 4. There were

4 screens at yearly interval and the cases arising between screens were

identified. We use the data from the first 5 years of follow-up after the start

of screening.

We assume that the distribution of sojourn time of preclinical phase is

an exponential.

f(y) = λ exp(−λy) , y ≥ 0 .

With this assumption, for t > t
n
, the incidence rate of screening interval is

I
n
(t) = J − J exp(−λt){exp(λt

n
)

−
n−1
∑

i=1

β

n−i[exp(λt
i+1)− exp(λt

i
)]− β

n exp(λt
i
)} . (12)

Table 3. Prevalence rates of breast cancer in the first 5 years of the HIP study.

Years since No. of women No of prevalent breast cancer cases Prevalence
start of study screened

Observed Expected
(h)

0 20166 55 59.5 2.73

1 15936 32 25.8 2.01

2 13679 17 20.4 1.24

3 11971 23 17.7 1.92
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Table 4. Incidence rates of breast cancer in the first 5 years of the HIP study.

Years No of previous Women-months No of prevalent breast Annual
since start negative of follow-up cancer cases incidence

of study screens
Observed Expected

(h)

0–1 1 240277 13 14.9 0.65

1–2 1 81337 7 9.0 1.03

2–3 1 38370 1 5.3 0.31

3–4 1 30942 3 4.7 1.16

4–5 1 26701 5 4.3 2.25

1–2 2 190474 8 9.6 0.50

2–3 2 52934 5 5.5 1.13

3–4 2 19036 2 2.6 1.26

4–5 2 12626 4 1.9 3.80

2–3 3 163642 10 8.1 0.73

3–4 3 45964 5 4.7 1.31

4–5 3 13151 2 1.8 1.82

3–4 4 145118 10 7.0 0.84

4–5 4 89371 10 9.2 1.34

The q
j

are then given, for j = 1, . . . , n by the integrals of (12) from t
j

to t
j
+ 1, so

q
j

= J(t
j+1 − t

j
)− Jλ

−1[exp(−λt
j
)− exp(λt

j+1)]

×

{

exp(λt
j
)−

j−1
∑

i=1

β

j−i[exp(λt
i+1)− exp(λt

i
)]− β

j exp(λt1)

}

. (13)

If the screens are equally spaced, q
j

reduces to

q
j

= J∆− Jλ

−1[1− exp(−λ∆)]

×

{

1− [exp(λ∆) − 1]

j−1
∑

i=1

β

i exp(−iλ∆) + β

j exp[−(j − 1)λ∆]

}

. (14)

The expression for P
j
, from (9) reduces to

P
j

= (1− β)Jλ

−1

j

∑

i=1

β

j−1{exp[−λ(t
j
− t

i
)]− exp[−λ(t

j
− t

i−1)]} , (15)

which for equal spaced intervals becomes

P
j

= (1− β)Jλ

−1[1− exp(−λ∆)]

j−1
∑

i=0

β

i exp(−iλ∆) . (16)
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Since the example is a screening at an equal spaced interval, the expres-

sion (14) and (16) are used to develop the maximum likelihood function.

Then it is relatively straightforward to compute the log likelihood as a func-

tion of λ and β. The results are: β = 0.18, λ = 0.585. According to the

exponential distribution, the average sojourn time equals 1.71. Also shown

in Table 4 are the expected numbers of cases based on the best-fitting

exponential distribution, with an overall χ

2 goodness-of-fit test. The fit is

clearly good.

3. Two-Stage Models of the Natural History of

Disease for Screening

The models of natural history of the disease introduced before are based

on a progressive disease model. The progressive disease model assumes

individuals are in a healthy state until they enter the preclinical disease

state and all individuals in this state eventually emerge with clinical

symptoms if untreated. The key assumption of this model is that preclinical

disease, if left untreated, would ultimately surface clinically. This assump-

tion is true for a part of invasive diseases, such as breast cancer. When the

mammography may detect the malignant tumor in breast, the tumor must

progress until patient feels the symptom or sign and goes to visit physician.

Similar cases are the chest radiography for lung cancer and α-fetoprotein

(AFP) test for liver cancer. However, it is not always true for some of

other cancers or diseases. For example, the Pap smear for screening of

cervical cancer may detect the heavy epithelial dysplasia and mataplasia,

and carcinoma in situ; the gastroscopy for screening of stomach cancer

may detect the gastric mucous dysplasia and mataplasia; the enteroscopy

for screening of colon cancer may detect multiple intestinal polyps; etc.

These non-invasive lesions may progress to invasive disease but also may

persist or revert to normal automatically. However, once a lesion becomes

invasive, it almost never regresses without treatment and it is assumed all

invasive lesions arise from a preinvasive lesion. According to this situation,

R. Brookmeyer and NE Day10 suggested a two-stage model for the analysis

of cancer screening data. The two-stage model is illustrated schematically

in Fig. 4.

We define the random variable X to be the duration of time a progres-

sive lesion spends in the preclinical stage 1 and Y the duration of time a

progressive lesion spends in the preclinical stage 2. The cumulative distribu-

tion function of the joint sojourn times (X, Y ) is called F (x, y) with density
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used to develop the maximum likelihood function. Then it is relatively straightforward to compute
the log likelihood as a function of λ and β. The results are : β=0.18, λ=0.585. According to the
exponential distribution, the average sojourn time equals 1.71. Also shown in Table 1 are the
expected numbers of cases based on the best-fitting exponential distribution, with an overall χ2

goodness-of-fit test. The fit is clearly good.

20.3 Two-stage Models of the Natural History of Disease for Screening

The models of natural history of the disease introduced before are based on a progressive
disease model. The progressive disease model assumes individuals are in a healthy state until they
enter the preclinical disease state and all individuals in this state eventually emerge with clinical
symptoms if untreated. The key assumption of this model is that preclinical disease if left
untreated would ultimately surface clinically. This assumption is true for a part of invasive
diseases, such as breast cancer. When the mammography may detect the malignant tumor in
breast, the tumor must progress until patient feels the symptom or sign and goes to visit physician.
Similar cases are the chest radiography for lung cancer and α-fetoprotein (AFP) test for liver
cancer. However, it is not always true for some of other cancers or other diseases. For example,
the pap smear for screening of cervical cancer may detect the heavy epithelial dysplasia and
mataplasia, and carcinoma in situ; the gastroscopy for screening of stomach cancer may detect the
gastric mucous dysplasia and mataplasia; the enteroscopy for screening of colon cancer may
detect multiple intestinal polyps; etc. These non-invasive lesions may progress to invasive disease
but also may persist or revert to normal automatically. However, once a lesion becomes invasive,
it almost never regresses without treatment and it is assumed all invasive lesions arise from a
preinvasive lesion. According to this situation, R. Brookmeyer and NE Day[10] suggested a two-
stage model for the analysis of cancer screening data. The two-stage model is illustrated
schematically in Fig. 4.

Fig. 4 Schematic illustration of two stage model for preclinical period of disease

We define the random variable X to be the duration of time a progressive lesion spends in the
preclinical stage 1 and Y the duration of time a progressive lesion spends in the preclinical stage 2.
The cumulative distribution function of the joint sojourn times (X, Y) is called F(x,y) with density
f(x,y). Then the cumulative distribution function of the total preclinical duration (X+Y) of
progressive lesions is given by

∫ ∫ −=
t s

T dydsyysftF
0 0

),()( (17)

FT is the distribution function of the total preclinical duration for progressive lesions only.

20.3.1 The likelihood for the interval (clinical incident) cases

Suppose the hazard function of clinical disease in the absence of screening is given by i and a
steady state is assumed, before time t, the screening history of the jth individual in this risk set had
a history of nij previous negative screens at time Hij={tij1,tij2,…,tijni}, These times are given in
reverse chronological order so that tij1 refers to the time since the most recent screen and tijni refers
to the time of first screens. By convention, j=1,…, M1i refers to the cases. Then the hazard of
clinical disease at age t is given a screening history Hij is approximately

healthy clinical disease
progressprogress

regress

stage1 stage2

detectable preclinical phase of disease

Fig. 4. Schematic illustration of two stage model for preclinical period of disease.

f(x, y). Then the cumulative distribution function of the total preclinical

duration (X + Y ) of progressive lesions is given by

F
T
(t) =

∫

t

0

∫

s

0

f(s− y, y)dyds . (17)

F
T

is the distribution function of the total preclinical duration for progres-

sive lesions only.

3.1. The likelihood for the interval (clinical incident) cases

Suppose the hazard function of clinical disease in the absence of screening

is given by i and a steady state is assumed, before time t, the screening

history of the jth individual in this risk set had a history of n
ij

previous

negative screens at time H
ij

= {t
ij1, tij2, . . . , tijni

}. These times are given

in reverse chronological order so that t
ij1 refers to the time since the most

recent screen and t
ijni

refers to the time of first screens. By convention,

j = 1, . . . , M1i
refers to the cases. Then the hazard of clinical disease at age

t is given a screening history H
ij

is approximately I
ρ
(H

ij
; F

T
, β), where

ρ(H
ij

; F
T
, β) is the probability that an individual who is destined to be

clinically incident at age t in the absence of screening intervention, would

have tested negative at prior times H
ij

if the individual was in fact in the

screening program. Then, the conditional likelihood of that the screening

history H
i0 corresponds to the interval case and the other screening histories

among R
i
screening subjects is

L1i
=

ρ(H
i0; FT

, β)
∑

Ri

j=1
ρ(H

ij
; F

T
, β)

. (18)

It is shown that the constant I cancels out in (18). Suppose M1i
incident

cases are clinically diagnosed at age a
i

and there are an additional N1i

individuals at risk at a
i
; that is, in addition to the cases there are N1i

individual in the cohort still at risk of being diagnosed with clinical disease
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at age a
i
. Suppose the jth individual in this risk set had a history of n

ij

previous negative screens at time H
ij

, where R1i
= M1i

+ N1i
is the size

of the risk set. Then the partial likelihood contribution of incident cases at

age a
i
is

L1i
=

∏

M1i

j=1
ρ(H

ij
; F

T
, β)

∑

l

∏

j∈sl

ρ(H
ij

; F
T
, β)

, (19)

where S
l
is the subsets consisting of M2i

individuals from the R2i
screened

at age a
i
,

l = 1, 2, . . . ,

(

R1i

M1i

)

.

Suppose an interval case could have entered between the kth and (k− 1)th

most recent screen, and then the probability of falsely screened negative on

all k − 1 subsequent screens is

ρ(H
ij

; F
T
, β) =

nij+1
∑

k=1

β

k−1[F
T
(t

ijk
)− F

T
(t

ijk−1)] , (20)

with the conventions F
T
(t

ijnij+1) = 1, F
T
(t

ij0) = 0.

3.2. Likelihood for screen-detected stage 2 prevalent cases

The prevalence (probability) of stage 2 screen-detected disease at age t

conditional on a screening history H
ij

is

[(1− β)Iµ2]ρ(H
ij

; F
B2, β) , (21)

where µ2 =
∫

yf(x, y)dxdy is the mean duration in stage 2. The first factor

in brackets is the prevalence of screen-detected stage 2 disease unconditional

on any screening history. The second factor ρ(H
ij

; F
B2, β) is the probability

that an individual who is destined to be in stage 2 at age t in the absence

of screening intervention, would have tested negative at prior times H
ij

if the individual was in a screening program. F
B2 is the backward recur-

rence distribution function. The backward recurrence time is the amount of

time that a screen-detected lesion spent in the preclinical stage (stage 1

plus the time spent in stage 2 up to detection. The backward recurrence

density is

f
B2(t) =

∫

t

0

∫ ∞

t−x

f(x, y)dydx

µ2

. (22)
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This expression is derived by first noting the probability of being in stage 2

is I
µ2 and second, in order to have been in the preclinical phase for duration

t and currently in stage 2 one must be in stage 1 for duration x and stage

2 for at least t− x, 0 < x < t. It is defined F
B2(tijnij+1) = 1 and

F
B2(tijo

) = 0 .

L2i
=

ρ(H
i0; FB2, β)

∑

Ri

j=1
ρ(H

ij
; F

B2, β)
. (23)

Similarly, suppose M2i
screen-detected stage 2 cases are detected at age

a
i

and an additional N2i
individuals also are screened at age a

i
and are

negative. Then the partial likelihood contribution of the screen-detected

cases at a
i
is

L1i
=

∏

M1i

j=1
ρ(H

ij
; F

B2, β)
∑

l

∏

j∈sl

ρ(H
ij

; F
B2, β)

, (24)

where meaning of s
l

and l as same as before. If the screening times are

randomly assigned, that is, the R2i
individuals who are screened at age a

i

are a random sample of all individuals R1i
at risk at age a

i
. Suppose the

incident cases have C
l

strata and prevalent cases screen-detected have C2

strata, the partial likelihood is then the product of factors for the contri-

butions from incident cases and contributions from screen-detected cases.

L =

c1
∏

i=1

L1i

c2
∏

i=1

L2i
. (25)

3.3. The joint sojourn distribution of two stage model

3.3.1. The independent model

The simplest model assumes that the sojourn times for the two stages X

and Y are independent with cumulative distribution functions F1(x) and

F2(y) and densities f1(x) and f2(y), respectively. The distribution function

for the total sojourn time is

F
T
(t) =

∫

t

0

f1(x)F2(1− x)dx . (26)

The backward recurrence cumulative distribution function is

F
B2(t) =

1

µ2

∫

t

0

[1− F2(y)]F1(t− y)dy . (27)
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For the two-stage independent model, with exponential sojourn distri-

butions [F1(t) = 1− e

−λ1t, and F2(t) = 1− e

−λ2t], both the total sojourn

(F
T
) and backward recurrence (F

B2) cumulative distribution functions are

identical and given by

F
T
(t) = F

B2(t) =











1 +
λ2e

−λ1t − λ1e
−λ2t

λ1 − λ2

, λ1 6= λ2

1− e

−λt(1 + λt) , λ1 = λ2 = λ .

(28)

3.3.2. Limiting dependent models

For many diseases, the second stage (the preclinical invasive stage) is short

relative to the first (the noninvasive stage). It is useful to consider the

limiting behavior of F
T
(t) and F

B2(t) as µ2 → 0 with F1 fixed. These

limiting expressions could then be substituted into expression of likelihood.

For example, consider the complete positive dependent exponential model,

the relationship of X and Y may express as

Y = λ1X/λ2 ,

F
T
(t) = 1− e

−ut

,

F
B2(t) = 1−

[

e

−ut +
λ2

λ1

(e−ut − e

−λ1t)

]

,

(29)

where u = λ1λ2/(λ1 + λ2). Under this model the limiting backward recur-

rence distribution is

lim
µ2→0

F
B2(t) = 1− e

−λ1t(1 + λ1t) . (30)

For this limiting situation, F1(t) = 1− e

−λ1t is substituted into expression

(19) for total sojourn distribution while the cumulative distribution func-

tion in expression (30) is substituted into expression (24) for the backward

recurrence distribution.

Brookmeyer and Day applied the two-stage model to the analysis of

data from a case-control study. Data is from the case-control study of the

Northeast Scotland Cervical Cancer Screening Program.11 The program

was started in 1960 when women were asked to come for an initial Pap

smear. Records on all subsequent Pap tests were kept. The definition of

a positive Pap test is given in MacGregor et al.11 When a woman had

a positive Pap test she was biopsied and/or treated. Thus, the natural

history of the disease was interrupted at the time of the first positive Pap

test. A case-control study was conducted and consisted of 85 women who
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Table 5. Conditional likelihood analysis for independent (model 1) and limiting depen-
dent (model 2) two-stage exponential models.

Maximum likelihood estimates Model 1 Model 2

β 0.025 0.001

λ 0.003, 0.247∗ 0.013∗

Proportion with < 5 years total sojourn 0.18 0.55

Proportion with < 10 years total sojourn 0.33 0.70

Maximum log-likelihood −120.54 −119.35

∗In time units of months.

were diagnosed with invasive squanmous carcinoma of the cervix between

1968 and 1982. Of these 85 cases, 35 were clinically incident (interval cases)

and 50 were screen-detected with preclinical invasive disease (stage 2). Each

interval cases was matched by year of birth to five controls who were healthy

at the time of the cases diagnosis. Each stage 2 screen-detected case was

matched by year of birth to a control who screened negative within 6 months

of the date at which the case was screen-detected. The screening histories

of all cases and controls were ascertained; these histories consisted of the

number and timing of previous negative screens (prior to diagnosis date of

the case).

The two-stage model was fitted to the data and results showed in

Table 5.

The independent model gave two estimated values of λ, one is big and

one is small. The author thought the development of preclincial invasive

disease is very rapid so that he chose the big one as λ2. The maximized

log-likelihood was slightly higher with the dependent model and it suggest

the limiting dependent model is better. Both the independent and limiting

dependent analysis suggested a small false negative rate. However, there was

some discrepancy in the estimates of the sojourn distribution. As expected,

the value of λ is big in the limiting dependent model suggesting the shorter

sojourn duration than the independent model.

4. Multiple Stages Markov model for the Natural History

of Disease Screening

The two-stage model suggested by Brookmeyer and Day presented the

concept of regression of disease development in preclinical phase. It

describes the disease progression better and is of an important significance

in evaluation and prediction of effect of screening for the disease in the
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Fig. 5. Schematic illustration of state transition of disease screened.

different stages. But the two-stage model of Brookmeyer and Day does not

fully describe the transition of disease in different stages. The parameter

of the model may only use to estimate the total sojourn time in preclinical

phase. The structure of model and the parameter estimation are relative

complex. The history of a disease may look as a transition process of ones

discrete healthy status. For example, in a certain period, the healthy status

of an individual may transfer from healthy to potential illness, later may

transfer further to clinical disease. The transition of status may be single

direction or may also be double direction. Therefore, a stochastic process

model is very convenient and reasonable to describe the transition of disease

status and the sojourn time in each stage. If the future status only depends

on the current status and is independent to all status before, that is called

as the Markov property. We may use Markov process or Markov chain to

describe the disease progression when it is of this property.

We assume that the single stage model and two-stage model of natural

history of disease are illustrated in Fig. 5.

4.1. Time homogeneous Markov chain model

Duffy and Chen12 suggested to describe the natural history of the disease

for screening by the Markov process model. A Markov process with the

following instantaneous transition matrix:

0

1

2







−λ1 λ1 0

0 −λ2 λ2

0 0 0






.

Here 0 is the “no disease state”, 1 is “preclinical but detectable disease” and

2 is “clinical disease”. Implicit in this model is the assumption that diseases
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are “born” into the preclinical state with an exponential distribution of time

to birth with

P (Time to birth ≤ t) =

∫

t

0

λ1e
−λ1x

dx = 1− e

−λ1t

. (31)

Time remaining in the preclinical phase conditional on being in the phase

at time t = 0, is also assumed exponentially distributed with

P (Time to transition to clinical state ≤ t) =

∫

t

0

λ2e
−λ2x

dx

= 1− e

−λ2t

. (32)

Based on the solution of (dI-Q) to obtain the eigenvalues and eigenvectors,

the transition probabilities for time t may be obtained:

P (t) =













e

−λ1t

λ1(e
−λ2t − e

−λ1t)

(λ1 − λ2)
1 +

λ2e
−λ1t − λ1e

−λ2t

(λ1 − λ2)

0 e

−λ2t 1− e

−λ2t

0 0 1













. (33)

This can also readily obtained from the exponential distribution properties.

The transition probabilities in Eq. (33) are unconditional probabilities.

There are two complications, however, which necessitate the replacement of

some with conditional or compound probabilities. First, those found to be

free of disease or to have preclinical disease at first screen are not from an

entire cohort followed from birth; women with a previous and clinically con-

firmed disease were excluded from the trial. Thus the probabilities of being

free of disease and of having preclinical disease at the first screen should

be conditional on having no clinical disease between birth and first screen.

Also, the time of entering the clincial phase is known exactly. Their proba-

bilities should therefore be of becoming clinical at the time t
i
rather than at

some time between 0 and t
i
. For one individual, suppose we know that the

exact time the person becomees clinical is 5 years, for example. The proba-

bility of clinical disease at exactly five years is P (clinical at 5 years) = P (not

clinical up to 5−∆t years) ×P (become clinical in the interval (5−∆t, 5)).

Since the model does not allow the possibility of instantaneous transition

from no disease to clinical state, and since we wish to explicitly allow for the

probability of both rapid and slow progression through preclinical phase,

we use our limit of accuracy, in this case one month, and further approxi-

mate the correct probability as P (clinical at 5 years) = P (not clinical up

to 5−∆t years) P (become clinical in the interval (5−∆t, 5)).
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As 1 month = 0.08 years, approximately,

P = P00(ti − 0.08)P02(0.08) + P01(ti − 0.08)P12(0.08) .

Therefore, the probabilities of being free of disease at first and second

screen, P1 and P2, were calculated as

P1 =
e

λ1t

e

−λ1t + λ1(e−λ2t−e

−λ1t)

λ1−λ2

(34)

P2 = e

−λ1t

. (35)

The probabilities of having preclinical disease at first and second sceeen,

P3 and P4 and the probability of clinical disease at time t
i
(I = 1, 2, . . . , t)

are

P3 = 1− P1 ,

P4 =
λ1(e

λ2t − e

λ1t)

λ1 − λ2

(36)

P5i
= e

−λ1(ti−0.08)

(

1 +
λ2e

−λ10.08 − λ1e
−λ20.08

λ1 − λ2

)

+
λ1(e

−λ2(ti−0.08) − e

−λ1(ti−0.08))(1− e

−λ20.08)

λ1 − λ2

. (37)

The total likelihood function is

L =

n

∏

l−1

(P 1−δ

1
P

δ

3
)(P 1−δ

2
P

δ

4
)P5i

. (38)

δ is the index variable of screening results. If the result of screening test is

negative, δ = 0, otherwise, δ = 1. The solution of the likelihood function is

complicate, it must be iteratively maximized by a non-standard program.

For simplicity, Duffy and Chen equate observed numbers of different types

of observation to expected numbers and estimate the parameters by non-

linear least squares. Thus, the least squares approximations to maximum

likelihood estimates were obtained by a procedure similar to the method of

moments. Then the non-linear procedure (NLIN) in SAS13 may be used to

estimate the parameters.

4.1.1. Example

A randomized trial was conducted in women aged 40–74 in two counties,

Kopparberg and Ostergotland, in Sweden14 to assess the effect on breast
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Table 6. The estimated sojourn time in PCDP of breast cancer.

λ1 λ2 SE(λ2) Mean sojourn time 95%CI

0.0052 0.43 0.014 2.3 2.1 ∼ 2.5

cancer mortality of screening by single-view mammography. The data from

two screens were used in the example. The number of invited women at

first and second screens was 5410 and 4823. Among those subjects, only

4383 and 3494, respectively, were actually screened. Of those who attended

the second screen, 3347 had attended the first screen and 147 had not.

Therefore following are the transition histories:

(1) 4383 women were screened at the first screen and 52 cancers were

detected. There are 4331 (4383-52) women with transition history (72,

0-0), that is transition from no disease to no disease in 72 years (the

average age at baseline was 72).

(2) The 52 cases detected at first screen have transition history (72, 0-1).

(3) 3494 women attended the second screen and 35 cancers were detected,

all among the 3347 women who had attended the first screen. Thus

3312 (3347-35) have subsequent transition history (74.72, 0-0).

(4) The 35 cases detected at the second screen have subsequent history

(2.75, 0-1).

(5) The 147 women who missed the first screen but attended the second

screen have transition history (74.75, 0-0).

(6) There are 10 interval cancers between the first and second screens.

Thus, of the above 4331, there are 10 with subsequent transition history

(time to interval cancer, 0-2).

(7) There are 68 cases diagnosed clinically after the last screen, which is

either the first screen (10 cases) or second (58 cases), depending on

whether the subject attended the second screen. These have subsequent

history (time to surface to clinical stage, 0-2).

The results of analysis were showed in Table 6.

4.1.2. Estimation of sensitivity

Day shows that under the constant incidence assumption, in a time interval

T after a negative screen one would expect K new cases, where

K = J(1− s)

∫

T

0

(1− F (t)dt) + J

∫

T

0

F (t)dt . (39)
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J is the annual (constant) incidence rate, S is the sensitivity and F is the

comulative distribution function of the sojourn time. The first component

in the formula for K is the number of cases missed at the screen and the

second is the number of new cases “born” since the screen. This suggests

as a formula for an estimate of sensitivity

Ŝ ≈ 1−
1− K̂/J

1− 1

T

∫

T

0
f(t)dt

, (40)

where K is the observed number of new cases. Using the proposed three-

state Markov model, the corresponding expected number K of cases in time

T after a negative screen at time t
i
is

K = N(1− S)

∫

t1

0

λ1e
−λ1t

∫

t1+T−t

t1−t

λ2e
−λ2u

dudt

+ N

∫

t1+T

t1

λ1e
−λ1t

∫

t1+T−t

0

λ2e
−λ2u

dudt , (41)

where N is the number screened at time t1. After some integration and

algebra, this given an estimate of sensitivity

Ŝ = 1−
K̂(λ2 − λ1)/N − a

b

, (42)

where

a = (λ2 − λ1)e
−λ1t1(1− e

−λ1T )− λ1e
−λ2T

e

−λ1t1(e−(λ2−λ1)T − 1)

and

b = λ1(e
−λ1t1 − e

−λ2t1)(1− e

−λ2T ) .

Thus, the same data as in the Markov model are used to estimate sensitivity,

but in a second stage of estimation.

4.2. Non homogeneous Markov model with covariables

In the description of disease progression, the transition of disease states may

be interfered by a lot of important factors. For example, some risk factors

in living environment may decide the probability of transition from healthy

state to ill state. A stochastic model of transition of disease states in the

consideration of these factors will be benefit to identify the population with

high risk of disease. This population is more appropriate to implement of

screening program and is expected to get higher effectiveness. Another case
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is that the clinical disease characters decide the probability of transition

from preclinical state to clinical state. The inclusion of these variables may

strengthen the identification power of stochastic model for different types

of diseases and the precise of estimation for the sojourn time in preclinical

detectable phase. Therefore, the purpose of developing a stochastic model

describes the transition probability of healthy state of an individual not

only by populational transition but also by the consideration of individual

characters, such as age, gender, disease history, etc. To consider the in-

dividual variability, a regression combination of the variables of individual

characters may be used to describe the transition probability and it is called

as the non-homogeneous Markov model with covariables.

4.2.1. Non-homogeneous time discrete Markov chain model

J. Q. Fang and W. Q. Zhou15,16 suggested a parameterized non-

homogeneous Markov chain model in the analysis of screening data for

disease. They assumed that the disease process is like in Fig. 5. The state

space S = {0, 1, 2, 3}, The transition probability from state I to state j is

defined as

P
ij

(τ, t) = P{X(t) = j|X(τ) = i} . (43)

In general screening practice, the screens were given in a fix interval and the

time intervals may only differ in several days. This error may be neglected.

Then the time t may be assumed as a fix unit, such as year or month.

Among the Eq. (46), τ and t belong to screening time set T ≡ {ttt}. Based

on the professional knowledge, it is assumed that the state of individual

may just transfer one step in one interval. Suppose the one step transition

matrix during the time from t to t + I is

P (t) =













p00(t) p01(t) 0 0

p10(t) p11(t) p12(t) 0

o 0 p22(t) p23(t)

o 0 0 1













i, j = 0, 1, 2, 3 . (44)

Among expression (44)

P01(t) = α01 · /È(t) , P00(t) = 1− P01(t) ,

P10(t) = α10 · (1− θ(t)) , P12(t) = α12 · /È(t) ,

P22(t) = 1− P10(t)− P12(t) , (45)
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P23(t) = α23 · /È(t) , P22(t) = 1− P23(t) ,

θ(t) = 1− exp(−β

′
Z(t)) , β = (β1, β2, . . . , βp

)′ . (46)

Here the proportional factor α and vector β are the estimation parameters.

The transition matrix of m steps during the time from t to t + m is

A
m

(t) =

m−1
∏

k=0
t+k∈T

P (t + k) . (47)

Suppose there is only one step discriminant error in the state 0, 1, 2, 3,

s ∈ S, P{s + i|s} = 1− γ, here γ is the false negative rate. Therefore, the

discriminant vectors are

B(0) = (1− γ, γ, 0, 0)′ , B(1) = (0, 1− γ, γ, 0)′

B(2) = (0, 0, 1− γ, γ)′ , B(3) = (0, 0, 0, 1− γ)′ . (48)

The maximum likelihood function is

L =

N

∏

k=1

qk−1
∏

j=1

B

′(s
kj

)Am
kj

(t
kj

)B(s
k,j+1) . (49)

The hypothesis test of parameters may use the likelihood ratio test. The

statistic is

G = 2(ln L− ln L) . (50)

When the sample size is big enough and H0 is true, the statistic G follows

the chi-square distribution and the degree of freedom is the number of

estimating parameters.

4.2.2. Non-homogeneous time continuous Markov process model

J. Q. Fang and J. H. Mao15,16 suggested a time continuous Markov process

model. They assumed that the transition power from state i to state j is

λ
ij

(t) · dt = P{X(t + dt) = j|X(t) = i} = P
ij

(t, t + dt) ,

t ∈ [0,∞) , i, j ∈ S . (51)

They also assumed that the transition power of two stage model for disease

screening was related with p covariables. The model is
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

























λ01(t) = A0 + A1Z1(t) + · · ·+ A
p
Z

p
(t) ,

λ10(t) = B0 + B1Z1(t) + · · ·+ B
p
Z

p
(t) ,

λ12(t) = C0 + C1Z1(t) + · · ·+ C
p
Z

p
(t) ,

λ23(t) = D0 + D1Z1(t) + · · ·+ D
p
Z

p
(t) .

(52)

Among the expression (52) A
i
, C

i
, D

i
, (I = 1, 2, . . . , p) are the estimating

parameters. The one step transition probability and stay probability are

P00(τ, t) =

1,2
∑

i6=j

ρ
i
+ λ10 + λ12

ρ
i
− ρ

j

e

ρi(t−τ)
, P11(τ, t) =

1,2
∑

i6=j

ρ
i
+ λ01

ρ
i
− ρ

j

e

ρi(t−τ)
,

P01(τ, t) =

1,2
∑

i6=j

λ01

ρ
i
− ρ

j

e

ρi(t−τ)
, P10(τ, t) =

1,2
∑

t6=j

λ10

ρ
i
− ρ

j

e

ρi(t−τ)
,

P12(τ, t) =

1,2
∑

i6=j

ρ
i
+ λ01

ρ
i
− ρ

j

·
λ12

ρ
i
+ λ23

(eρi(t−τ) − e

−λ23(t−τ)) ,

P23(τ, t) = 1− e

−λ23(t−τ)
, P22(τ, t) = e

−λ23(t−τ)
. (53)

Among them, λ
ij
≡ λ

ij
(t), i→ j ∈ S and

ρ1 =
λ01 − λ10 − λ12 +

√

(λ10 + λ12 − λ01)2 + 4λ01λ10

2
,

ρ2 =
λ01 − λ10 − λ12 +

√

(λ10 + λ12 − λ01)2 + 4λ01λ10

2
.

The multiple step transition probability is

P02(τ, t) =

∫

t

τ

P01(τ, ξ) · P12(ξ, t)dξ ,

P03(τ, t) =

∫

t

τ

P02(τ, ξ) · P23(ξ, t)dξ ,

P13(τ, t) =

∫

t

τ

P12(τ, ξ) · P23(ξ, t)dξ . (54)

During the screening process, the total sample of screening population is

N and individual i is observed staying in state s ∈ S and with covariables

Z
j
(t) at screening time t

i
. Therefore, the likelihood model for parameter
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estimation is

L =
N

∏

i=1

mi−1
∏

k=1

P
s(tik)s(tik+1)(tik , t

ik+1) . (55)

The estimation of parameters may use the maximum likelihood method

and the hypothesis testing may use likelihood ratio test.

4.2.3. Example

The stochastic model of natural history of disease for nasopharyngeal carci-

noma (NPC) screening is used as the example to introduce the development

of non-homogeneous Markov model with covariables. The natural history

of NPC is showed in Fig. 6

Three states were assumed in the progress of NPC: health, PCDP of

NPC and clinical phase of NPC. When the individual transfers from health

to PCDP of NPC, gender, age, antibody level and variability characters of

Epstein Barr virus (EBV) are the covariables deciding the transition power.

According to the natural history of NPC, the transition probability matrix

of Markov chain is

P (i, j) =







p11 P12 0

0 p22 p23

0 0 1






i, j = 0, 1, 2, 3 ,

where 1 is state of health, 2 is state of PCDP of NPC and 3 is state of

clinical phase of NPC.

Since there is no reverse transition between the states, the p21 = 0,

p32 = 0 and p32 = 0. This assumption is reasonable for the progressive

diseases, such as malignant tumor. The state 3 is the absorbable state. It

is also assumed that the transition between states is no jump. That means

∫=
t

dtPPtP
τ

ξξξττ ),().,(),( 231213 " (54)

During the screening process, the total sample of screening population is N and individual i is
observed staying in state s∈S and with covariables Zj(t) at screening time ti. Therefore, the
likelihood model for parameter estimation is

∏∏
=

−

=
++

=
N

i

m

k
ikiktsts

i

ikik
ttPL

1

1

1
1)()( ),(

1
(55)

The estimation of parameters may use the maximum likelihood method and the hypothesis testing
may use likelihood ratio test.

Example

The stochastic model of natural history of disease for nasopharyngeal carcinoma (NPC)
screening is used as the example to introduce the development of non-homogeneous Markov
model with covariables. The natural history of NPC is showed in Fig. 6

Three states were assumed in the progress of NPC: health, PCDP of NPC and clinical phase
of NPC. When the individual transfers from health to PCDP of NPC, gender, age, antibody level
and variability characters of Epstein Barr virus (EBV) are the covariables deciding the transition
power. According to the natural history of NPC, the transition probability matrix of Markov chain
is

3,2,1,
100

0
0

),( 2322

1211

=















= jipp

pp

jip

1 is state of health, 2 is state of PCDP of NPC and 3 is state of clinical phase of NPC.

Since there is no reverse transition between the states, the p21=0, p32=0 and p32=0. This
assumption is reasonable for the progressive diseases, such as malignant tumor. The state 3 is the
absorbable state. It is also assumed that the transition between states is no jump. That means
p13=0. Suppose θ is the parameter of transition intension. The transition probabilities are

)()( 1212 ttP θα= | )(1)( 1211 tPtP −=
)()( 2323 ttP θα= | )(1)( 2322 tPtP −= (56)
)(1)( tXet β−−=θ (57)

{ } ∞≤β≤βββββ=β 0,,,, 43210

{ })(),(),(,)( 4321 txtxtxxtX =

Among them, X1 is gender (1=woman, 2=man) and does not change with time. X2 is age at
the time of screen. X3 is the titer of antibody of EBV(VCA/IgA), 1=negative, 2=1:5~1:10,
3=1:20~1:40, 4=1:80+. X4 is the characteristics of variation of VCA/IgA, 1=negative, 2=low level

Health Clinical

ProgressProgress

PDD

Age, gender, VCA/IgA and its variation

Fig. 6 Natural history Model of NPC
Fig. 6. Natural history model of NPC.
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p13 = 0. Suppose θ is the parameter of transition intension. The transition

probabilities are

P12(t) = α12θ(t) , P11(t) = 1− P12(t) ,

P23(t) = α23θ(t) , P22(t) = 1− P23(t) , (56)

θ(t) = 1− e

−βX(t)
, (57)

β = {β0, β1, β2, β3, β4} 0 ≤ β ≤ ∞ ,

X(t) = {x1, x2(t), x3(t), x4(t)} .

Among them, X1 is gender (1 = woman, 2 = man) and does not change

with time. X2 is age at the time of screen. X3 is the titer of antibody of

EBV(VCA/IgA), 1 = negative, 2 = 1:5 1:10, 3 = 1:20 1:40, 4 = 1:80+. X4

is the characteristics of variation of VCA/IgA, 1 = negative, 2 = low level

of positive antibody, 3 = persistent high level, 4 = increasing level, 5 =

both positive of VCA/IgA and EA/IgA. The age and level of antibody of

EBV are covariables with time.

It is assumed that the maximum times of transition during a fixed

screening interval is m. An individual stay in state i at the time t and

transfer to state j during a fixed interval (for example 1 year) m. The

matrix of m step transition probability is

A
m

(t) =
m−1
∏

k=0
t+k∈T

P (t + k) . (58)

In order to estimate the false negative rate, it is assumed that the one

step missing discriminant may happen only and suppose s ∈ S = 1, 2, 3.

P (state = s + 1|diagnosis = s) = γ · γ is the false negative rate and the

diagnostic vector is

B(1) = (1− γ, γ, 0) ,

B(2) = (0, 1− γ, γ) ,

B(3) = (0, 0, 1) .

Supposed N individuals are screened, individual k = 1, 2, . . . , N partici-

pates q
k

screens and then the likelihood function is

L =

N

∏

k=1

qk−1
∏

j=1

B

′(s
kj

)Am
kj

(t
kj

)B(s
k,j+1) . (59)
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Table 7. Estimated values of parameters in natural history model of NPC and hypo-
thesis test.

Parameters Values Likelihood test P value

α12 0.001908

α23 0.2051

β0 −0.4163

β1 (gender) 0.1651 10.7338 < 0.00005

β2 (age) 0.00002217 0.0194 > 0.9

β3 (VCA/IgA) 0.1553 34.2804 < 0.0001

β4 (variation of VCA/IgA) 0.1879 25.1728 < 0.0001

γ (false negative rate) 0.0002

M (Maxi. transitions) 2

A mass screening for nasopharyngeal carcinoma was carried out in

Guangzhou,17 where 2970 cases with positive results of test for VCA/IgA

and 3 cases of NPC were found. All the cases with positive VCA/IgA and

214 controls with negative VCA/IgA were followed up and 35 NPC were

found during a 7-year period. And 2988 cases with positive VCA/IgA and

34 cases of NPC were found in first screen in Zhongshan. All cases with

positive VCA/IgA and 2068 controls with negative VCA/IgA were followed

up and 40 cases of NPC were found during a 7-year period. Also, 1297 cases

with positive VCA/IgA and 13 cases of NPC were found in first screen in

Sihui; 19 cases of NPC were found during a 7-year follow-up for the cases

with positive VCA/IgA.

A Markov model with time dependent covariables was developed and

the results showed in Table 7.

5. The Simulation and Optimization of Screening Policy

Based on the parameters of natural history of disease and screening im-

plement, the disease process and the effects of screening intervention may

be simulated and the cost-effectiveness may be evaluated. There are two

purposes of analysis and assessment of screening data. One is to estimate

the parameters of screening, including the attendance rate, cost, the char-

acteristics of screening test (sensitivity and specificity) natural history of

disease (the sojourn time in preclinical detectable phase PCDP), the impact

of screening on the mortality and prevalence of disease, etc. Based on these

parameters, one may make a conclusion if the mass screening is efficacy.

Another thing is to choose an optimized screening policy. It means the

choice of population in eligible age group, frequency of screening and the
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interval between subsequent screening test, the combination of screening

test and sequential diagnostic procedures. An optimized screening policy

is expected to obtain the maximum health effects in the limited resource.

The choice of a screening policy should preferably be based on the balance

between expected health effects and costs. The development of natural his-

tory model of disease serves for first purpose and the simulation of disease

process and screening serves for second one. The fundament of simulation

for disease process is technique of Monte Carlo. Based on the known and

hypothetic parameters, a screening process for disease in a large population

is simulated by computer and the simulated effects of screening policy are

evaluated. A variety of screening policies are simulated repeatedly and the

optimized policy of screening are identified for the consideration of policy

decision-maker.

Knox18 first used the macro-simulation method to evaluate the health

effects of screening for cervical cancer in England. He assumed that the

duration of the interval between the point at which the disease first be-

comes detectable and the point at which it becomes incurable is a constant

(A). The duration of the interval between incurability and death is B. The

sensitivity of screening test is S. The interval between subsequent screens

is I . The disease incidence rates in different age groups are P . Now a mass

screening program was carried out starting in age B in a 100,000 popula-

tion. In the population, the disease onsets in a speed of P . It is assumed

that the disease is curable if it is detected by screening and the life may

be saved. The disease is incurable if it is diagnosed in the hospital and the

life lost is the mortality rate (D) of disease. If the main concern were to

save life year rather than lives, the life year lost (Y = De

0

x

taken from

the current life-table) and an another compromise is the weighted index

(Id = D

√
e

x
Y

−1), that is long survivals are not weighted in proportion

to their length. The health effects of different screening policy are demon-

strated in Fig. 7. The dash line is the original Id caused by the disease.

Each test, after an interval of B, produces a deep cut in the mortality,

proportional in depth to the sensitivity of the test. The cut persists for a

period A, and ends. Closely set tests involve some waste because of overlap,

but later tests cut by the same proportion into the cases missed by earlier

tests. The interval of first screen and second screen is wider than A so that

the Id returns to original line when the health effects of early detection of

screening on the disease mortality disappear. The interval of second screen

and third one is shorter than A, so that Id goes down again before it return

to original value. The sensitivity of screening test decides the depth of cut.
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Fig 5 Illustration of simulated effects of screening for disease

Knox simulated the cost-effectiveness of mass screening for cervical cancer in England by a
simplified macro-simulation model. It is showed in Figure 7 that the maximum health effects may
obtain when screening starts just before the steep increase of disease incidence rate and more
frequently screening in the age with high mortality rate of disease. It can be seen by simulation
that a very wide range of results can be obtained from different deployments of the same resource,
the range itself depending upon the natural history. For example, Knox assumed that the natural
history distribution centered upon a mean interval is six year for cervical cancer, a 5 year spacing
of tests beginning at age 35 gives something like 30 times the benefit of a one-year spacing
beginning at age 20 and ending at age 29. The health effects of different screening policies can be
roughly compared by macro-simulation model with relative simple calculation and the optimized
scheme can be suggested. However, the parameters in macro-simulation are only assumed as the
constants and the average disease process and the health effects of screening in an whole
population are simulated The variability of individuals is ignored. It is known that the sojourn time
of pre-clinical detectable phase is a variable with a certain distribution. The sensitivity and
specificity of screening test depends on the individual characteristics of disease. And the disease
process may change in different individuals. Therefore the macro-simulation can not consider the
variations between individuals and evaluate the cost-effectiveness of different screening policies
precisely.

Habbema (1984)[19] developed a micro-simulation model of screening process by the
assistance of computer. The disease process and the impact of screening intervention of every
individual in 100,000 population were simulated by the method of Monte Carlo. This simulation
model divided into two parts: the disease part and the screening part. The disease part generates a
large number of life histories. Together, the life histories constitute the target population that will
be screened in the screening part. The stochastic model underlying the simulation of the
population is specified by the input of the program. The input related to the population (e.g. the
life table), the epidemiology of the disease (e.g. age-specific incidence) and the disease process.
Important aspects of the disease process include disease states into which preclinical and clinical
disease is subdivided, the duration of preclinical disease, the probability that preclinical disease

B

Fig. 7. Illustration of simulated effects of screening for disease.

A high sensitivity means the cut is close to the horizontal axis and a good

health effect of screening. However, the expense of high sensitivity is a low

specificity and a high false positive rate when the power of screening test

is fixed. That means a increase of amount of following diagnostic work and

the total cost of screening.

Knox simulated the cost-effectiveness of mass screening for cervical

cancer in England by a simplified macro-simulation model. It is showed

in Fig. 7 that the maximum health effects may obtain when screening is

started just before the steep increase of disease incidence rate and more fre-

quently screening in the age with high mortality rate of disease. It can be

seen by simulation that a very wide range of results can be obtained from

different deployments of the same resource, the range itself depending upon

the natural history. For example, Knox assumed that the natural history

distribution centered upon a mean interval is 6-year for cervical cancer, a

5-year spacing of tests beginning at age 35 gives something like 30 times the

benefit of a one-year spacing beginning at age 20 and ending at age 29. The

health effects of different screening policies can be roughly compared by

macro-simulation model with relative simple calculation and the optimized

scheme can be suggested. However, the parameters in macro-simulation

are only assumed as the constants and the average disease process and
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the health effects of screening in an whole population are simulated the

variability of individuals is ignored. It is known that the sojourn time

of preclinical detectable phase is a variable with a certain distribution.

The sensitivity and specificity of screening test depends on the individual

characteristics of disease. And the disease process may change in different

individuals. Therefore the macro-simulation can not consider the variations

between individuals and evaluate the cost-effectiveness of different screening

policies precisely.

Habbema19 developed a micro-simulation model of screening process by

the assistance of computer. The disease process and the impact of screen-

ing intervention of every individual in 100,000 population were simulated

by the method of Monte Carlo. This simulation model divided into two

parts: the disease part and the screening part. The disease part generates

a large number of life histories. Together, the life histories constitute the

target population that will be screened in the screening part. The stochastic

model underlying the simulation of the population is specified by the input

of the program. The input related to the population (e.g. the life table),

the epidemiology of the disease (e.g. age-specific incidence) and the disease

process. Important aspects of the disease process include disease states into

which preclinical and clinical disease is subdivided, the duration of pre-

clinical disease, the probability that preclinical disease will regress spon-

taneously, etc. The output of disease part consists of the simulated life

histories. All types of epidemiological data are computed from the aggre-

gation of life histories: incidence of clinical disease, the prevalence of the

disease states, the mortality, and survival figures. The input of the screen-

ing part consists of assumptions on the screening process (properties of

the screening test, prognosis after early detection) and of a specification

of the screening policy. The output of screening part consists of the simu-

lated screening results (e.g. the number of cases detected, number of cases

missed, mortality among screen-detected cases) and of the simulated effects

of screening (e.g. the number of lives/life years saved, and the number of un-

necessarily treated persons). Habbema applied this model to the evaluation

of screening for breast cancer and colorectal cancer.

Here the structure of micro-simulation model is introduced by an

example of screening for nasopharyngeal carcinoma.20 The basic structure

of model for disease process and screening process of NPC is illustrated

in Fig. 8.

The main biomarker of NPC risk is the antibody level of Epstein Barr

virus (VCA/IgA). In order to simplify, the positive rate of VCA/IgA is

assumed as a constant, e.g. instantaneous transition rate λ. It is supposed
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Fig. 8. Structure of the disease model for NPC and stages used in model.

that the distribution of λ depended upon the time is an exponential distri-

bution and then the accumulated distribution probability at certain time

can be estimated, e.g. transition probability (P12). It is assumed that a

part of population wit positive VCA/IgA may become negative and the

transition probability is P21. It is reasonable that the progression of naso-

pharyngeal carcinoma is irreversible. Therefore, the preclinical cases should

progress to clinical without the intervention of medication. It means the in-

cidence of preclinical NPC is same as the incidence of clinical NPC. The

transition probabilities from normal population with negative VCA/IgA

to preclinical NPC are the incidence rates (I0i
) of NPC in different age

groups with negative VCA/IgA. The incidence rates among the popula-

tion with positive VCA/IgA are I1i
= I0i

× RR
EB

(the relative risk of

positive VCA/IgA). These are the instantaneous transition probabilities.

The transition probabilities (P13 and P23) can be estimated if the distri-

bution functions are assumed. If there is no intervention of screening, the

preclinical NPC cases enter the clinical phase according to the distribution

probability (P34) of sojourn time in preclinical detectable phase. And then

these cases will die according to survival rate (P45) of clinical cases of NPC.

All individuals may die from other cause in every stages depended upon the

age-specific mortality rates (P6). Finally, the death age of every individual

are simulated. That is the disease part of model without the intervention of

screening. The output of disease part includes the simulated life history of
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every individual and other disease index such as incidence rate, prevalence

rates in different disease stages, mortality rate, etc. The simulated results

are compared to the actual figures. Some adjustment of parameters should

be done to make simulation model close to realistic population.

In the screening part, the simulated population goes through the

screening intervention according to the different policies of screening. For

example, the population ise divided into the low and the high risk groups

according the level of VCA/IgA and are screened in different frequencies.

The early detected cases will be checked by further diagnostic procedure.

Therefore, the simulated population will enter these three states according

to the sensitivity and specificity of screening tests. The transition proba-

bility (S4) from screening detected NPC to death is estimated depended

upon the survival rate of preclinical NPC cases. In theory, S4 < P45. It

means that the early detection may save the life of NPC cases. The simu-

lated results of screening part are also the death age (d) of every individual.

The total effect of screening is the life year saving (Y =
∑

(D−d)). The total

cost (C) of screening can be estimated according to the simulated screen-

ing process including physical check, test of VCA/IgA, further diagnostic

procedure and the organization of screening program. The cost-effectiveness

index of screening is the average cost per life year saving = C/Y . The lower

the cost-effectiveness index, the more the total life year saving, the more

the health effect of screening is.

The simulated results of different screening schemes for NPC are listed

in Table 8. It is showed that the cost-effectiveness is the best when the

positive value of VCA/IgA sets on 1:20. A lower value increases the false

Table 8. Simulated effects of screening in different policies.

VCA/IgA VCA/IgA ≥ 1:5 VCA/IgA ≥ 1:20 VCA/IgA ≥ 1:80

(−) (+) Life year Cost per Life year Cost per Life year Cost per

saving life year saving life year saving life year

1 1 5848 7210.30 6212 6787.53 5620 7503.04

3 1 5716 3243.40 5227 3268.65 4603 3617.20

3 2 4606 3788.55 4562 3697.57 4547 3653.35

3 3 4025 3738.33 4171 3607.44 3696 4070.09

5 1 4921 2605.28 4542 2523.95 3759 2967.23

5 2 4376 2772.54 4051 2809.80 3340 3336.29

5 3 4100 2871.37 3758 3005.80 3208 3466.84

5 4 3804 3053.20 3697 3046.84 3343 3326.62

5 5 3591 2679.13 3282 2930.68 3239 2969.72
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positive rate and the cost for further diagnosis. A higher value increases

the missing rate and the cost-effectiveness index since the less life saving

obtains. The cost is the lowest and the total life year saving is median

when the interval between screens is every year for population with positive

VCA/IgA and every 5 years for population with negative VCA/IgA. That

may be considered as the optimized screening scheme for NPC.

From the results of simulation, it is showed that the cost-effectiveness

index of the poorest scheme is four times higher than that of the best one.

It cannot be overemphasized the importance of simulation study for the

assessment of screening.
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1. Introduction

More than 2000 years ago, Aristotle pointed out that the real scientific

knowledge was about causation. Since ancient times, exploration of causa-

tion has been the ultimate destination of almost all the scientific studies

including philosophy, social sciences and medical sciences. Causation and

association are two different and important concepts. Although causation

is more important than association in many scientific studies, most of

the statistical methods at present can only be suitable for associational

studies. Even if there is not causation between two factors, there may be

spurious association; on the other hand, causation may also appear spurious

independence. A lot of examples may explain spurious association. For

example, the watch times of Mr. John Doe 1 and Mr. John Doe 2 have very

strong association, but changing the watch time of Mr. John Doe 1 would

not affect that of Mr. John Doe 2. Freedman7 gave an example that the

reading ability of primary school students was related to sizes of their shoes,

but there was not causation between them apparently because changing

the shoes sizes would not change their reading ability. A few of statisti-

cians and medical researchers wondered whether causation should present

association. In fact, there are many examples of spurious independence.

We may imagine that exercising Taijiquan (shadow boxing) can build up

health, that is, doing Taijiquan has causal effects on health. However, people

who exercise Taijiquan may show little difference in health from, or even

worse than, those who do not exercise Taijiquan. That may be because

777
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people exercising Taijiquan were all in poor health and would be worse if

they had not exercised Tajiquan, and thus spurious independence appears.

Another example is that the life of uranium miners was as long as, or even

longer than, that of others who were not exposed to uranium mines. It

cannot be explain that exposure to uranium mines would not affect one’s

life. Perhaps uranium miners were selected from the stronger. If they had

not been exposed to uranium mines, they would have longer life. This is

called healthy worker effect.

In the history of statistical science, research on causal inference has not

received deserved emphasis and development. The early statistical theories

and methods of causal inference include contingency tables, path analysis

and structural equation models. Although association and causation are

the well-known different concepts, association obtained by statistical infer-

ence is not unusually misused to explain the relation between cause and

effect. In application studies, one often overlooks assumptions on causal

mechanisms and interprets parameters of association as those of causation.

Rubin35 proposed a causal effect model, which was similar to the counter-

factual philosophy of Lewis21 and was called the counterfactual model.

Pearl26 proposed concepts of causal diagram and external intervention

and established the method of diagram for causal inference that com-

bined knowledge about causal mechanisms with data from observational

studies. These causal models need various assumptions that cannot be

tested by using data from observational studies. The statistical theories

and methods are lack in causal inference and identification of confounders.

Causal inference is a complex problem involving statistics, philosophy and

related application areas and has been discussed by many authors in recent

years.7,14,33

2. Experimental Studies and Observational Studies

The difference between observation and experiments is that information

from observation seems to emerge by itself while that from experiments

is knowledge on the truth.1 Observation is a method for collecting facts

while experiment is a means for obtaining knowledge.1 The information

from an experiment has an essential distinction from that from observation.

Experiments try to explore information about causation, and observational

studies can get information only about association. Only under some con-

ditions or assumptions can they are equivalent. Holland17 pointed out

that it was impossible to make causal inference based on observational

studies without untestable assumptions. From philosophic views of the
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Popperian, an affirmation is not scientific if it is not empirically testable.

Randomized experiment is the best scientific method to assess causal effects.

However, randomized experiments or even experimental methods are pro-

hibited in many studies, and only observational studies can be conducted.

A well-known example is the epidemiological study on cancer and smoking.

When randomized experiments cannot be carried out, a case-reference study

attempts to seek a control group that is comparable to the treatment group.

Grace et al.13 gave the results of 51 studies on the portacaval shunt, in which

some are randomized experimental studies, some are controlled studies and

some are uncontrolled studies, as shown in Table 1, where 24 of 32 uncon-

trolled studies and 10 of 15 nonrandomized controlled studies were markedly

enthusiastic about the shunt, while all of 4 randomized controlled studies

showed that the surgery does not have effect. This shows that different

study methods may lead to completely different conclusions.8

In 1948 and 1949, Doll and Hill carried out a case-control study on lung

cancer and smoking in 20 hospitals in London and found significant asso-

ciation between smoking and lung cancer (see Table 2). Fisher pointed out

in 1957 that association from case-control studies could not be explained

simply as causal relation between smoking and lung cancer and this asso-

ciation might be explained by other two alternative theories: (1) Cancer

causes smoking; (2) Genes cause both cancer and smoking. He illustrated

the association between genes and smoking habit from data of twins. Up to

the present, epidemiologists have shown by various methods and data that

smoking is a risk factor of lung cancer: (1) Dose response relation: The

Table 1. 51 studies on the portacaval shunt.8,13

Degree of Enthusiasm

Design Marked Moderate None

No Controls 24 7 1

Controls, but not Randomized 10 3 2

Randomized Controlled 0 1 3

Table 2. The case-control study on lung cancer and smoking.

Male Female

Smoking No smoking Smoking No smoking Total

Lung Cancer 647 29 2 41 719

Controlled 622 27 28 32 709

P = 0.64 × 10−6 P = 0.025
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Table 3. Water source and death rate from cholera.8

No. of Houses Deaths from Cholera Rate per 10,000

SV Company 40,046 1,263 315

L Company 26,107 98 37

more one smokes, the bigger risk is; (2) The risk increases as the years of

smoking increases; (3) The risk decreases as the years of giving up smoking

increases.

Freedman7 reviewed Snows study on cholera. In 1855, Snow, a physician

in London, found that cholera was a kind of infectious disease through

drinking water. He developed a series of arguments to support his germ

theory about cholera. For example, cholera spread along the tracks of human

commerce. When a ship stopped at a port where cholera was prevailing,

sailors who contacted local residents would contract the disease. These could

show that cholera was an infectious disease and could not be explained by

miasma or bad air. In August and September 1854, cholera broke out in

London and the patients gathered mainly near water pumps of Broad Street

in Soho District. A number of groups in the district, fortunately, escaped

from cholera. One was a brewery, where the workers preferred ale to water

and it had a private pump. Another was a poor-house, which owned a water

pump. Snow could explain that most of patients in other areas also drank

water from the pump in Broad Street. For example, a female patient in

Hampstead had lived in Soho before and she liked the taste of the water of

Broad Street and routinely draw water from there. There were several water

supply companies in London in the 19th century. There was no difference

between the customers of the Southwark and Vauxhall (SV) Company and

the Lambeth (L) Company, which imitated an experiment of nature. The

water source of the SV Company contained polluted water while the L

Company drew relatively pure water. It was found that the mortality rate

from the SV Company was about 9 times the death rate for the L Company,

as shown in Table 3. Therefore, it was concluded that the water source was

the cause of cholera. Snows study shows that non-experimental study can

also be applied for causal inference.

3. Simpsons Paradox and Standardization

We first illustrate the paradox proposed by Simpson36 in 1951, which is

usually called Simpsons Paradox although many statisticians had noted it
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Table 4. A numerical example of smoking and lung cancer.

Case Control Total

Smoking 80 120 200

No Smoking 100 100 200

RR = 0.80, OR = 0.67, RD = −0.10

Table 5. Stratification with sex.

Male Female

Case Control Case Control

Smoking 35 15 45 105

No Smoking 90 60 10 40

RR1 = 1.17 RR2 = 1.50

OR1 = 1.56 OR2 = 1.71

RD1 = 0.10 RD2 = 0.10

before 1951. Suppose that we obtain observed data on smoking and lung

cancer given in Table 4, which may be regarded as the distribution from the

population. Thus the relative risk is RR = (80/200)/(100/200) = 0.80, the

odds ratio is OR = (80× 100)/(100× 120) = 0.67 and the risk difference is

RD = (80/200)−(100/200) = −0.10. From these measures, we can see that

the prevalent rate of cancer in the smoking population is lower than that

in the no smoking population, and thus smoking seems to be a preventive

factor.

Suppose that sex is also included in the observation, and data stratified

by sex are shown in Table 5. For male, the relative risk is RR1 = 1.17,

the odds ratio OR1 = 1.56 and the risk difference RD1 = 0.10. For female,

the relative risk is RR2 = 1.50, the odds ratio OR2 = 1.71 and the risk

difference RD2 = 0.10. Smoking appears to be a risk factor. It follows from

Tables 4 and 5 that smoking is harmful to both male and female, but is

good for human. This phenomenon is called Simpsons Paradox.

Suppose furthermore that the observation includes age, classified as two

levels: Age under 40 and above 40. The 2 × 2 × 2 × 2 contingency table

is shown in Table 6, where smoking seems to be again a preventive factor

across the strata of sex and age. This numerical example illustrates that

covariates should carefully considered in survey design and data analysis;

otherwise, a spurious association may be obtained.
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Table 6. Stratification with sex and age.

Age ≤ 40 > 40

Sex Male Female Male Female

Control Case Control Case Control Case Control Case Control

Smoking 5 5 40 50 30 10 5 55

No smoking 60 55 5 5 30 5 5 35

RR11 = 0.96 RR12 = 0.89 RR21 = 0.88 RR22 = 0.67

OR11 = 0.92 OR12 = 0.80 OR21 = 0.50 OR22 = 0.64

RD11 = −0.02 DR12 = −0.06 RD21 = −0.11 RD22 = −0.04

Table 7. Admission of graduate students at the University of California, Berkeley.

Admission Rejection Sum
Percentage of

Admission

Men 3738 4704 8442 44

Women 1494 2827 4321 35

Table 8. Stratification with major.

Major A B C D E F

No. of Male Applicants 825 560 325 417 191 373

Percentage of admission 62 63 37 33 28 6

No. of Female Applicants 108 25 593 375 393 341

Percentage of Admission 82 68 34 35 24 7

Sum of Applicants 933 585 918 792 584 714

Bickel et al.2 reanalyzed the data of the observation study on sex

discrimination in admissions of graduate students at the University of

California, Berkeley. The data on sex and admission are shown in Table 7.

The admission rate for the men was about 44% and that for the women

was about 35%, which appeared the existence of sex discrimination.

By looking at each major separately, however, it was found that there

did not exist sex discrimination in any major and, even if there existed, it

discriminated against the men. Data for the six largest majors are shown

in Table 8, where the candidates in the six majors covered over one-third

of all candidates in over 100 majors of the university. It can be seen that

the reason why the admission rate for the women was lower than that for

the men was that most of the women applied to the hard majors with lower

admission rates. In order to eliminate the influence of different distributions
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of the men and women in application to majors, we may select, for example,

the sums of each majors applicants in the last row of Table 8 as the standard

distribution of majors, and then we adjust the distributions of the men

and women in majors. The standardized admission rate for the men after

adjustment is

0.62 × 933 + 0.63 × 585 + 0.37 × 918 + 0.33 × 792 + 0.28 × 584 + 0.06 × 714

4526
= 0.39 ,

and the standardized admission rate for the women after adjustment is

0.82 × 933 + 0.68 × 585 + 0.34 × 918 + 0.35 × 792 + 0.24 × 584 + 0.07 × 714

4526
= 0.43 ,

It can be seen that the standardized admission rate for the women is

slightly higher than that for the men after eliminating the influence of

different distributions of majors.

4. Counterfactual Model for Causal Inference

Rubin35 proposed the counterfactual model for causal inference, which can

be traced back to Neyman.23 The basic idea is the potential outcomes. If

we could observe the responses of a unit under both exposed and unex-

posed to the treatment, we would assess the causal effect of the treatment

on the unit by the difference between the two responses. In epidemiological

and medical studies, however, every unit can be under only one exposure

status, exposed or unexposed. As the motto of Heraclitus: “You cant step

into the same river twice,” only one response can be observed and the

other cannot. Some untestable assumptions are necessary for causal in-

ference from observational studies. Thus, there are arguments about the

counterfactual model,5 but this property reflects a strength of the coun-

terfactual model.16 The counterfactual model is widely applied to causal

inference, which gives the most precise definition and description of causal

effects.

4.1. Causal effects

Definitions of causal effects at three different levels are introduced in this

section.18,35 Let E be a binary variable denoting treatment (or exposure)

E = e, denotes treated (or exposed) and E = ē denotes untreated (or

unexposed). Let D
e
(u) denote the response of unit u under treated E = e,

and D
ē
(u) denote the response under untreated E = ē.

Definition 4.1. The individual causal effect (ICE) of the unit u. For a

particular unit u and an interval of time from the exposure time t1 to the
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response time t2, the causal effect of the e versus ē treatment on the unit

u is defined as:

ICE(u) = D
e
(u)−D

ē
(u) .

Since any unit u can be under only one exposure status, it is impossible

to observe the both D
e
and D

ē
on the same unit, and thus it is impossible to

observe ICE(u). So this model is called the counterfactual model or the

potential model. If there exist two units u1 and u2 so that D
e
(u1) = D

e
(u2)

and D
ē
(u1) = D

ē
(u2), and if the units u1 and u2 receive different treat-

ments, then the individual causal effect ICE(u1) of the unit u1 can be

observed.

Definition 4.2. The average causal effect (ACE) over U . Suppose that

there are N units in the population U . The average causal effect (ACE)

over U is defined as the mean of individual causal effects of all units:

ACE =
1

N

∑

u∈U

ICE(u) = E(D
e
−D

ē
) .

The average causal effect denotes the difference between the response

average if all units had been exposed and that if all units had not been

exposed. Since every unit can be under only one exposure status, ACE is

also a potential quantity.

We define a covariate as a variable unaffected by treatment. For

example, a variable that occur before treatment is a covariate because it is

not affected by the treatment.

Definition 4.3. Let X be a discrete covariate. The population U is stra-

tified into K subpopulations by the covariate X = 1, . . . , K. The average

causal effect of the subpopulation X = k is defined as:

ACE
k

= E(D
e
−D

ē
|X = k) = P (D

e
= 1|X = k)− P (D

ē
= 1|X = k) .

ACE
k

denotes the difference between the average response if all units

in the subpopulation X = k had been exposed and that if all of the units

had not been exposed.

4.2. Randomized experiments

Randomized experiment is the most powerful method to assess average

causal effects. Randomization can balance the joint distribution of all known

confounders and all unknown confounders in the treated group and that in
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the control group. That is, randomization can eliminate not only the known

confounders but also the unknown confounders.

In a randomized experiment, treatment E is independent of any other

covariates, and particularly, E is independent of both D
e

and D
ē
, denoted

by E ⊥ (D
e
, D

ē
). Thus, we have E(D

i
|E = i) = E(D

i
) for i = e or ē,

where E(D
i
|E = i) denotes the expectation of the response D

i
in the group

E = i, which can be estimated by using the mean of responses of all units

in the group E = i. If units are randomly sampled from the population,

E(D
i
|E = i) is asymptotically equal to the average causal effect when all

units in the whole population receive the treatment E = i. For a randomized

experiment, we have

E(D
e
|E = e)−E(D

ē
|E = ē) = E(D

e
)−E(D

ē
) = E(D

e
−D

ē
) = ACE .

For a randomized experiment, we can obtain the following unbiased esti-

mate of ACE from sample means:

ÂCE = the average of all responses in the treated group

− the average of all responses in the control group

=
1

the number of units in the treated group

×
∑

u in the treated group

D
e
(u)

−
1

the number of units in the control group

×
∑

u in the control group

D
ē
(u) .

4.3. Ignorability and the propensity score

Rosenbaum and Rubin34 proposed the following assumption, called strong

ignorability. This assumption is widely applied in observational studies.

Definition 4.4. We say that a treatment assignment E is strongly ignorable

given a covariates X if

E ⊥ (D
e
, D

ē
)|X and 0 < P (E = e|X = x) < 1 .

If a treatment assignment is strongly ignorable, then we have, for i = e

and i = ē,

E(D
i
|E = i, X = x) = E(D

i
|X = x) .
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Therefore, the average causal effect in subpopulation X = x is

ACE
x

= E(D
e
|X = x)−E(D

ē
|X = x)

= E(D
e
|E = e, X = x)−E(D

ē
|E = ē, X = x) ,

where E(D
e
|E = e, X = x) and E(D

ē
|E = ē, X = x) can be estimated by

using observed data.

Theorem 4.1. Under the assumption of strong ignorability, the average

causal effect (ACE) in the whole population equals the expectation of

the average causal effects in subpopulations. When X is discrete, it can

be denoted as :

ACE = E(ACE
k
) =

∑

k

ACE
k
P (X = k)

=
∑

k

{[P (D
e

= 1|E = e, X = k)

−P (D
ē

= 1|E = ē, X = k)]P (X = k)} .

Under the assumption of strong ignorability, the average causal effect ACE

is identifiable and can be estimated from observed data.

In an observational study, if we can observe enough covariates X so

that the assumption of strong ignorability X holds, then we first stratify

the population by X , next compute the average causal effects in subpo-

pulations and finally obtain the average causal effect ACE with the above

weighted average. The assumption of strong ignorability is one of the

important assumptions for causal inference in observational studies.

Note that this assumption cannot be tested empirically. Thus we must

depend on knowledge and experience of experts in related disciplines for

judgment, or we develop experiments (for example, stratified randomiza-

tion) to ensure the assumption of strong ignorability. Stone39 discussed

various assumptions needed for causal inference.

When X is a continuous covariate or a discrete covariate with a lot of

levels, even if stratification could ensure the strong ignorability, it makes

each stratum sparseness and thus makes statistical inference inefficient.

One solution to this problem is to use the propensity score to stratify the

population as coarsely as possible so that units in each stratum can be as

more as possible.
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Definition 4.5. Let X be a continuous or discrete covariate. The propen-

sity score is defined as the conditional probability:

f(X) = P (E = 1|X) ,

where f(X) is a function of X .

Rosenbaum and Rubin34 presented the following result.

Theorem 4.2. If treatment assignment E is strongly ignorable given co-

variates X (i.e. E ⊥ (D
e
, D

ē
|X and 0 < P (E = e|X = x) < 1), then

treatment assignment E is also strongly ignorable given the propensity score

f(X) (i.e. E ⊥ (D
e
, D

ē
)|f(X) and 0 < P (E = e|f(x)) < 1).

Since the propensity score f(X) is a function of X , stratifying the

population by the propensity score f(X) is coarser than that by X . When

X is a continuous variable, we may apply a logistic regression model to the

propensity score.

5. Confounding and Confounders

Confounding is one of the most important concepts in observational studies.

Greenland et al.16 provided an overview on confounding. In epidemiological

studies, selection of a control (unexposed) group should ensure compara-

bility of the exposed group with the control group. The difference between

the response distributions in comparison groups is called confounding.

When there exists confounding, methods of control and adjustment for

confounders are usually used to reducing and remove confounding. There

is, however, inconsistency on definitions of confounding biases and con-

founders in the epidemiological literature. There are two main approaches

for assessing confounding and a confounder:

(1) Collapsibility-based criterion: A covariate is a confounder if a measure

of association across strata of the covariate is not equal to the marginal

measure.3,9

(2) Comparability-based criterion: A covariate is a confounder if adjusting

for the covariate reduces confounding.22

The formalized definitions of confounding and a confounder and the

relation between these two criteria have been discsussed by Geng et al.11,12

5.1. Collapsibility-based criterion

We say that a covariate is collapsible (or ignorable) if the measure of

association of interest remains unchanged after ignoring the covariate.
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When a covariate is not collapsible, ignoring it will confound causal effects

and give biased inference. Therefore, the covariate is called a confounder.

Suppose that there exists a sufficient set of covariates such that the mea-

sure of association is constant across the strata stratified by all covariates

in the set and the constant measure also equals to the marginal measure.

Then, ignoring these covariates in the set does not produce confounding,

and thus they are not confounders. For discussions on collapsibility, see

Kleinbaum et al.,19 Whittemore42 and Geng.9

Consider two binary random variables A and B which take value 0 or 1,

and a K-valued random variable C, which may consists of many covariates.

Let P
ijk

= P (A = i, B = j, C = k) denote the probability for the cell

(i, j, k) in a 2 × 2 × K contingency table. For the stratum C = k, the

relative risk is defined as:

RR
k

=
P (A = 1|B = 1, C = k)

P (A = 1|B = 0, C = k)
=

p1|1k

p1|0k

.

The risk difference is defined as:

RD
k

= P (A = 1|B = 1, C = k)− P (A = 1|B = 0, C = k) = p1|1k
− p1|0k

.

The odds ratio is defined as:

OR
k

=
P (A = 1, B = 1|C = k)P (A = 0, B = 0|C = k)

P (A = 1, B = 0|C = k)P (A = 0, B = 1|C = k)
=

p11|kp00|k

p10|kp01|k

.

If a measure of association (e.g. the relative risk) is constant across the

strata, for example RR1 = · · · = RR
k

= CRR, then we say that the

relative risk is homogenous, and CRR is called the common relative risk.

The common relative difference CRD and the common odds ratio COR

may be defined similarly. If the common measure of association equals the

marginal measure of association in the 2 × 2 marginal table obtained by

pooling the K strata, then the measure is said to be simply collapsible,

or simply called collapsible. For example, let OR+ = p11+p00+/(p11+p00+)

denote the odds ratio in the 2× 2 marginal table obtained by pooling the

K tables, where p
ij+ =

∑

k

p
ijk

. If OR1 = · · · = OR
K

= COR = OR+,

then the odds ratio is collapsible. When a measure is collapsibility, the

phenomenon of Simpsons paradox on that measure can be avoided and

statistical inference on the measure can be done in the marginal table.

If the common measure of association equals the measure of associa-

tion in the partially marginal table obtained by pooling any several tables,

then the measure is said to be strongly collapsible. Let ω be a subset of

{1, . . . , K} and pool the strata in ω to obtain a 2 × 2 partially marginal
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table, where the probability is sum of probabilities in corresponding cells

of these strata:

p
ijω

=
∑

k∈ω

p
ijk

.

In survey design and data analysis, we may consider based on collapsi-

bility, which covariates should be included and which may be ignored, and

we may determine if the data from different survey studies may be com-

bined for analysis. Collapsibility also provides a method for categorizing

covariates. Assume that the probability p
ijk

> 0 for every cell (i, j, k). We

shall show conditions of simple collapsibility and strong collapsibility for

measures of associations.

5.1.1. Conditions of collapsibility for relative risk

Geng9 discussed the collapsibility of relative risks. If relative risks in all the

strata are the same (i.e. RR1 = · · · = RR
K

), we say the relative risks are

homogenous. The marginal relative risk obtained by pooling all the strata

of C is defined as:

RR+ =
P (A = 1|B = 1)

P (A = 1|B = 0)
=

p1|1+

p1|0+

.

If the relative risk is homogenous across the strata, and also equals the

marginal relative risk (i.e. RR1 = · · · = RR
K

= RR+), then we say that

the relative risks are simply collapsible. Let ω ⊆ {1, . . . , K} be a subset

of levels of C. We define the relative risk of the partially marginal table

obtained by pooling all the strata in ω as:

RR
ω

=
P (A = 1|B = 1, C ∈ ω)

P (A = 1|B = 0, C ∈ ω)
=

p1|1ω

p1|0ω

.

If the relative risk keeps constant for any partially marginal table obtained

by pooling several arbitrary strata (i.e. RR
ω

= RR+ for any set ω ⊆

{1, . . . , K}), then we say that the relative risks are strongly collapsible.

Theorem 5.1. The relative risks are simply collapsible if one of the

following conditions holds :

(1) A is conditionally independent of C given B (written as A ⊥ C|B);

(2) B is marginally independent of C (written as B ⊥ C), and the relative

risks are homogenous (i.e. RR1 = · · · = RR
K

); and

(3) B is marginally independent of C (written as B ⊥ C), and B is condi-

tionally independent of C given A = 1 (written as B ⊥ C|A = 1).
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It can be proven that the above condition (2) is equivalent to (3).

Theorem 5.2. A necessary and sufficient condition for the relative risks

to be strongly collapsible (i.e. RR
ω

= RR+ for any ω ⊆ {1, . . . , K}) is :

(1) A is conditionally independent of C given B (written as A ⊥ C|B); or

(2) B is marginally independent of C (written as B ⊥ C), and the relative

risks are homogenous (i.e. RR1 = · · · = RR
K

).

We may explain the theorem as follows: If one of the conditions (1) and

(2) holds, then the relative risks are strongly collapsible; on the other hand,

if the relative risks are strongly collapsible, then one of the conditions (1)

and (2) must hold.

5.1.2. Conditions of collapsibility for risk differences

Similar to definitions of collapsibility for relative risks, we may define the

homogenous, simple collapsibility and strong collapsibility for risk diffe-

rences. The risk differences are homogenous if RD1 = · · · = RD
K

. The risk

difference in the marginal table obtained by pooling all the strata of C is

defined as:

RD+ = P (A = 1|B = 1)− P (A = 1|B = 0) = p1|1+ − p1|0+ .

We say that the risk differences are simply collapsible if RD1 = · · · =

RD
K

= RD+. Let ω ⊆ {1, . . . , K}. We define the risk difference of the

partially marginal table obtained by pooling all the strata in as:

RD
ω

= P (A = 1|B = 1, C ∈ ω)− P (A = 1|B = 0, C ∈ ω)

= p1|1ω
− p1|0ω

.

If RD
ω

= RD+ for any set ω ⊆ {1, . . . , K}, then the risk differences are

strongly collapsible.

Theorem 5.3. The risk differences are simply collapsible if one of the

following conditions holds :

(1) A is conditionally independent of C given B (written as A ⊥ C|B);

(2) B is marginally independent of C (written as B ⊥ C), and the risk

differences are homogenous (i.e. RD1 = · · · = RD
K

).

Theorem 5.4. A necessary and sufficient condition for the risk differences

to be strongly collapsible (i.e. RD
ω

= RD+ for any set ω ⊆ {1, . . . , K}) is :
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(1) A is conditionally independent of C given B (written as A ⊥ C|B), or

(2) B is marginally independent of C (written as B ⊥ C), and the risk

differences are homogenous (i.e. RD1 = · · · = RD
K

).

5.1.3. Conditions of collapsibility for odds ratios

The odds ratios are homogenous if OR1 = · · · = OR
K

. The odds ratio of

the marginal table obtained by pooling all the strata in C is defined as:

OR+ =
P (A = 1, B = 1)P (A = 0, B = 0)

P (A = 1, B = 0)P (A = 0, B = 1)
=

p11+p00+

p10+p01+

.

We say that the odds ratios are simply collapsible if OR1 = · · · = OR
K

=

OR+. Let ω ⊆ {1, . . . , K}. We define the odds ratio of the partially marginal

table obtained by pooling all the strata in ω as:

OR
ω

=
P (A = 1, B = 1|ω)P (A = 0, B = 0|ω)

P (A = 1, B = 0|ω)P (A = 0, B = 1|ω)
=

p11|ωp00|ω

p10|ωp01|ω

.

If OR
ω

= OR+ for any set ω ⊆ {1, . . .K}, then the odds ratios are strongly

collapsible.

Theorem 5.5. The odds ratios are simply collapsible if one of the following

conditions holds :

(1) A is conditionally independent of C given B (written as A ⊥ C|B);

(2) B is conditionally independent of C given A (written as B ⊥ C|A).

Theorem 5.6. A necessary and sufficient condition for the odds ratios to

be strongly collapsible (i.e. OR
ω

= OR+ for any set ω ⊆ {1, . . . , K}) is :

(1) A is conditionally independent of C given B (written as A ⊥ C); or

(2) B is conditionally independent of C given A (written as B ⊥ C|A).

If C contains sufficient covariates such that relative risks, risk differences

or odds ratios are measures of causal effects in each stratum C = k, then

ignoring C will not affect the value of the association measure and C is not

a confounder if the measure of association is collapsible over C. We usually

say that covariate C is a confounder when a measure of association is not

collapsible over C. Note that we may probably get different conclusions

when we use different measures of association. For example, risk differences

are collapsible while relative risks may be not. Therefore, whether or not

a covariate is a confounder may depend on what measure of association is

used.
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5.2. Comparability-based criterion

If the distribution of response (e.g. the probability of diseased) in the unex-

posed population (e.g. the population of non-smokers) would be the same

as that in the exposed population (e.g. the population of smokers) had all

individuals in the exposed population not been exposed (i.e. non-smoking),

and if the distribution of response in the exposed population would be

the same as that in the unexposed population had all individuals been

exposed, then the exposed population is said to be exchangeable with the

unexposed population. In this case, the difference between the response dis-

tribution in the exposed population and that in the unexposed population

equals the population-averaged causal effect. Therefore, we can estimate the

population-average causal effect with observed data from the exposed and

unexposed populations. If the exposed population is not exchangeable with

the unexposed population, but the exposed subpopulation is exchangeable

with the unexposed subpopulation defined by a covariate, then the covariate

is called as a confounder, i.e. confounding can be eliminated by stratifying

the population with this covariate. In this case, the subpopulation-average

causal effects may be identified and the population-average causal effect can

be obtained by adjusting the subpopulation-average causal effects with the

distribution of the confounder as weight. The comparability-based criterion

for confounders was presented by Miettinen and Cook22 (written as M and

C hereafter), and it was discussed further by many authors.11,12,15,43

It has been discussed above that the collapsibility-based criterion for

confounders depends on the selected measure of association. It is possible

that some measures are collapsible while others are not, and thus assessment

of a confounder depends on which measure is selected. The collapsibility-

based criterion is widely used in practical data analysis because this crite-

rion could be tested simply. However, some epidemiologists think that the

basic criteria for confounders should not depend on selection of measures. M

and C22 used many examples to induce the following comparability-based

criteria for confounders, which does not depend on selection of measures.

A confounder C must satisfy the following two conditions:

(1) C must be predictive of risk in the unexposed population, and

(2) C must have different distributions between the exposed and unexposed

populations.

Now, we use the counterfactual model to describe the comparability-

based criterion for detecting confounders. Epidemiological studies usually
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focus on causal effects in the exposed population rather than those in the

whole population. The average causal effect in the exposed population is

defined as:

ACE
e

= E[D
e
(u)−D

ē
(u)|E = e]

= P (D
e

= 1|E = e)− P (D
ē

= 1|E = e) ,

where P (D
ē

= 1|E = e) denotes the hypothetical probability of disease if

the individuals in the exposed population had not been exposed. In epide-

miological studies, one usually selects an unexposed reference population of

E = ē and uses the probability of disease P (D
ē

= 1|E = ē) in the unexposed

population to estimate the hypothetical probability P (D
ē

= 1|E = e).

Therefore, if the probability P (D
ē

= 1|E = ē) in the unexposed population

equals the hypothetical probability P (D
ē

= 1|E = e), then there does not

exist confounding, and we say that the exposed population is comparable

with the unexposed population.

Rosenbaum and Rubin34 proposed two important assumptions needed

for causal inference in observational studies, one of which is strong ignor-

ability: (D
e
, D

ē
) ⊥ E|C and the other is week ignorability: D

e
⊥ E|C

and D
ē
⊥ E|C. Wickramaratne and Holford43 gave a weaker assumption

for causal inference in epidemiological studies: D
ē
⊥ E|C, i.e. there is no

confounding in any subpopulation: for every k,

P (D
ē

= 1|E = e, C = k) = P (D
ē

= 1|E = ē, C = k) .

All of these assumptions are untestable with observed data. Wickramaratne

and Holford43 proved the comparability-based criteria of M and C under

their assumption, see the following theorem.

Theorem 5.7. Assume that D
ē
⊥ E|C. If one of the following conditions

holds :

(1) D
ē
⊥ C|E = ē, or

(2) E ⊥ C,

then the exposed population is comparable with the unexposed population,

i.e.

P (D
ē

= 1|E = e) = P (D
ē

= 1|E = ē) .

Condition (1) means that the covariate C is not predictive to D
ē

in the

unexposed population, and condition (2) means that the covariate C has

the same distribution in both exposed and unexposed populations. This just
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verifies M and Cs criteria. This theorem for judging confounding depends on

categorization of a covariate C. For example, one may get different conclu-

sions when a covariate, say age C, is categorized by every 10 years and every

20 years. Geng et al.12 proposed a concept of uniform non-confounding. If

for any set ω ⊆ {1, . . . , K},

P (D
ē

= 1|E = e, C ∈ ω) = P (D
ē

= 1|E = ē, C ∈ ω) .

i.e. there is no confounding in any coarse subpopulation, then we call

it uniform non-confounding. This means that no confounding occurs no

matter how to categorize the covariate C. For example, when C denotes

age, the exposed population always is comparable with the unexposed

population no matter how to stratify the population by age, every 10 years

or every 20 years.

Theorem 5.8. Assume that D
ē
⊥ E|C. A necessary and sufficient condi-

tion for uniform non-confounding is :

(1) D
ē
⊥ C|E = ē, or

(2) E ⊥ C.

This theorem shows that M and Cs criteria is a necessary and sufficient

condition for uniform non-confounding. But both Theorems 5.7 and 5.8

need the untestable assumption of ignorability D
ē
⊥ E|C.

5.3. Formal definitions and criteria for confounders

M and C22 derived inductively the criteria for confounders without the

assumption of ignorability. Greenland and Robins15 exemplified that the

comparability-based criteria of M and C is not a sufficient condition for a

confounder, but only a necessary condition. Thus, M and Cs criteria cannot

be used as a definition of confounders. The collapsibility-based criteria

neither are sufficient for confounders, which also depend on which mea-

sure of association is used and how to categorize a covariate. The common

qualitative definition of a confounder is that it is a risk covariate for dis-

ease, controlling for which can reduce bias for estimating causal effects.15,19

In this section, we discuss formal definitions of confounders without the

assumption of ignorability.11 Let C be a discrete covariate, which is not

affected by the exposure. The following common standarization in epidemio-

logy is used to estimate the hypothetical probability P∆(D
ē

= 1|E = e):

P∆(D
ē

= 1|E = e) =

K

∑

k=1

P (D
ē

= 1|E = ē, C = k)P (C = k|E = e) .
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Definition 5.1. C is said to be a confounder11 if

|P (D
ē

= 1|E = e)− P∆(D
ē

= 1|E = e)|

< |P (D
ē

= 1|E = e)− P (D
ē

= 1|E = ē)| .

The above definition of a confounder means that the standardized prob-

ability P∆(D
ē

= 1|E = e) obtained by adjusting for the confounder C is

closer to the hypothetical probability P (D
ē

= 1|E = e) than is the crude

probability P (D
ē

= 1|E = ē). Thus, we can adjust for the confounder C

to reduce confounding bias. The inequality in Definition 5.1, however, is

untestable with observed data since the hypothetical probability usually is

unknown. Thus, we need to introduce the concept of an irrelevant factor

for empirically detecting a confounder.

Definition 5.2. C is said to be an irrelevant factor if

P∆(D
ē

= 1|E = e) = P (D
ē

= 1|E = ē) .

From the definition, we can see that an irrelevant factor is not a con-

founder. Adjustment for an irrelevant factor cannot reduce confounding

bias. According to the above definition of a confounder, however, it is

possible that C1 is a confounder, C2 is a confounder but {C1, C2} as a

composite covariate is not a confounder. To avoid this counter-intuitive

property, we present the concept of an occasional confounder. The above

definitions also depend on the choice of categorization for the covariate C

under consideration. For example, age may be a confounder or irrelevant

factor when it is categorized by every 10 years of age, but it may not be

a confounder when categorized by every 20 years. We consider that the

definition of a confounder should not depend on the categorization of a

covariate and we give the following definition of an occasional confounder.

Definition 5.3. If there exists a partition p of the categories of C (i.e. p =

{ω1, . . . , ωM
}, where ω

k
6= φ, ω

i
∩ ω

j
= φ, ∪

k
ω

k
= {1, . . . , K}, M ≤ K)

such that

P (D
ē

= 1|E = e)− P
p
(D

ē
= 1|E = e)| < |P (D

ē
= 1|E = e)

−P (D
ē

= 1|E = ē)| ,

then C is said to be an occasional confounder, where P
p
(D

ē
= 1|E = e) is

the standardized probability based on the partition p:

P
p
(D

ē
= 1|E = e) =

M

∑

m=1

[P (D
ē

= 1|E = ē, C ∈ ω
m

)P (C ∈ ω
m
|E = e)] .
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Similarly, the inequality is also untestable, and the concept of a uniform

irrelevant factor is introduced below.

Definition 5.4. C is said to be a uniform irrelevant factor if, for any

possible partition p,

P
p
(D

ē
= 1|E = e) = P (D

ē
= 1|E = ē) .

From definitions, we can see that any confounder is also an occasional

confounder, but the reverse is not true. Definition 5.3 implies that C is an

occasional confounder if there exists a partition of C such that adjustment

for C with respect to the partition p can reduce confounding bias, but such

a partition cannot be recognized from observed data. If C is not an occa-

sional confounder, then confounding bias cannot be reduced by controlling

for C, no matter what categorization is chosen for C, or no matter how

the subpopulations are pooled together. If C is an occasional confounder,

then any covariate set containing C must also be an occasional confounder.

Definition 5.4 implies that C is a uniform irrelevant factor if there does not

exist any partition of C such that adjustment for it can reduce confounding

bias.

It can be shown from the formal definition of a confounder that the

collapsibility-based and comparability-based criteria for assessing a con-

founder are not contradictory, but mutually complementary. Combination

of these two criteria may eliminate more non-confounders from the set of

potential confounders.

Three necessary conditions for a covariate C to be a confounder are as

follows:

(A1) C 6⊥ E and D
ē
6⊥ C|E = ē;

(A2) the risk difference is not collapsible over C; and

(A3) the relative risk is not collapsible over C.

The condition (A1) is the comparability-based criteria of M and C, and

(A2) and (A3) are the collapsibility-based criteria. If C is a confounder,

then it must satisfy all of these three conditions (A1), (A2) and (A3).

Three necessary conditions for a covariate C to be an occasional con-

founder are:

(B1) C 6⊥ E and D
ē
6⊥ C|E = ē;

(B2) the risk difference is not strongly collapsible over C; and

(B3) the relative risk is not strongly collapsible over C.
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If C is an occasional confounder, then it must satisfy all of the three

conditions (B1), (B2) and (B3). It can be shown that condition (B1) implies

both conditions (B2) and (B3). Therefore, condition (B1) is the essential

necessary one for an occasional confounder. Condition (B1) is just the

comparability-based criterion of M and C, while (B2) and (B3) are the

strong collapsibility criteria, but not the simple collapsibility criteria.

5.4. Numerical examples of confounders

As mentioned above, the comparability-based criteria of M and C is only

a necessary condition and cannot be used as a definition, and Greenland

and Robins15 illustrated this. The collapsibility-based criteria are not suf-

ficient either. In the section, we use the individual effect model presented

by Greenland and Robins15 to illustrate necessity of these conditions and

why the criteria cannot define confounders.

Suppose that the response of every individual is determinate under any

exposure status. Then all individuals in the population may be classified

into the following four types:

Type 1. No effect (individual “doomed”): D
e

= D
ē

= 1 .

Type 2. Exposure causative (individual susceptible): D
e

= 1, D
ē

= 0 .

Type 3. Exposure preventive (individual susceptible): D
e

= 0, D
ē

= 1 .

Type 4. No effect (individual immune to disease): D
e

= D
ē

= 0 .

Example 5.1. Suppose there is no exposure effect, i.e. there are only

individuals of Types 1 and 4, and that the joint distribution of response,

exposure and a covariate is given in Table 9. We cannot know if an

individual is Types 1, 2, 3 or 4, but only know if he developed the disease.

It can be seen from Table 9 that neither RD nor RR are collapsible, and

thus we cannot assessing from the collapsibility-based criteria if C is a

confounder. On the other hand, it follows from Table 9 that C ⊥ E, and

thus we can judge from the comparability-based criteria that C is not a

confounder. Without stratifying and adjusting for C, we can obtain directly

from the crude marginal table that and RD = 0 and RR = 1, which

correctly evaluate no causal effect.

Example 5.2. Suppose that exposure has no causal effect, i.e. there are

only Types 1 and 4 individuals, and that the joint distribution is shown in

Table 10. It can be seen from Table 10 that both RD and RR are collapsible,
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Table 9. Hypothetical joint distribution: Non-confounder C that is not collapsible.

C = 1 C = 2 Crude (C ∈ {1, 2})

Type E = e E = ē E = e E = ē E = e E = ē

1(“doomed”) 15 5 40 50 55 55

4(“immune”) 85 95 60 50 145 145

Total 100 100 100 100 200 200

RD 0.10 −0.10 0.00

RR 3.00 0.80 1.00

Table 10. Hypothetical joint distribution: Non-confounder C that is collapsible.

C = 1 C = 2 C = 3 Crude (C ∈ {1, 2, 3})

Type E = e E = ē E = e E = ē E = e E = ē E = e E = ē

1(“doomed”) 95 95 5 5 75 25 175 125

4(“immune”) 5 5 95 95 75 25 175 125

Total 100 100 100 100 150 50 350 250

RD 0.00 0.00 0.00 0.00

RR 1.00 1.00 1.00 1.00

and thus we can judge from the collapsibility-based criteria that C is not a

confounder. On the other hand, it follows from Table 10 that C 6⊥ E and

D
ē
6⊥ C|E = ē, and thus we cannot decide from the comparability-based

criteria if C is a confounder. Without stratifying and adjustment for C,

we can obtain directly from the crude marginal table that RD = 0 and

RR = 1, which correctly assess no causal effect.

Example 5.3. Suppose exposure has no causal effect, i.e. there are only

Types 1 and 4 individuals, and that the joint distribution is given in

Table 11. It can be seen from Table 11 that RD is collapsible, but RR is

not. Therefore, we can judge from the collapsibility-based criteria that C is

not a confounder. On the other hand, it follows from Table 11 that C 6⊥ E

and D
ē
6⊥ C|E = ē, and thus we cannot decide from the comparability-

based criteria if C is a confounder. Stratifying and adjusting for C, we can

obtain that

P∆(D
ē

= 1|E = e) =
66

100
·
100

700
+

184

400
·
100

700
+

46

100
·
400

700
+

26

100
·
100

700
= 0.46 ,

which equals P∆(D
ē

= 1|E = ē) = 322

700
= 0.46 without stratifying or

adjusting for C. It shows that adjustment for C neither decreases nor

increases confounding biases, and C is an irrelevant factor.
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Table 11. Hypothetical joint distribution: Non-confounder C that is simply collapsible.

C = 1 C = 2 C = 3 C = 4 Crude (C ∈ ∆)

Type E = e E = ē E = e E = ē E = e E = ē E = e E = ē E = e E = ē

1(“doomed”) 60 66 40 184 160 46 20 26 280 322

1(“immune”) 40 34 60 216 240 54 80 74 420 378

Total 100 100 100 400 400 100 100 100 700 700

RD −0.06 −0.06 −0.06 −0.06 −0.06

RR 0.91 0.87 0.87 0.77 0.87

Table 12. p = {[1, 2], [3, 4]}, an occasional confounder C.

C ∈ [1, 2] C ∈ [3, 4]

Type E = e E = ē E = e E = ē

1(“doomed”) 100 250 180 72

4(“immune”) 100 250 320 128

Total 200 500 500 200

RD 0.00 0.00

RR 1.00 1.00

Let p = {{1, 2}, {3, 4}}. Table 12 represents the distribution of the

coarse subpopulations obtained by pooling levels 1 and 2 and pooling

levels 3 and 4 based on the partition p. It can be seen that the risk

difference RD is not strongly collapsible. The hypothetical probability

P (D
ē

= 1|E = e) is usually unknown, so we cannot decide if C is an

occasional confounder. Under the assumption of no causal effect, we have

P (D
ē

= 1|E = e) = P (D
ē

= 1|E = e) =
280

700
= 0.40 .

We can compute the standardized probability P
p
(D

ē
= 1|E = e) based on

the partition p as follows:

P
p
(D

ē
= 1|E = e) =

250

500
·

72

200
+

72

200
·
500

700
=

280

700
= 0.40 .

Since |P (D
ē

= 1|E = e)− P
p
(D

ē
= 1|E = e)| = 0 is less than |P (D

ē
=

1|E = e) − P (D
ē

= 1|E = ē)| = 0.06, C is an occasional confounder.

Confounding bias can be completely eliminated by controlling for C with

respect to the partition p. Furthermore, we can obtain the adjusted risk

difference |P (D
e

= 1|E = e) − P
p
(D

ē
= 1|E = e)| = 0 and the adjusted

relative risk |P (D
e

= 1|E = e)/P
p
(D

ē
= 1|E = e)| = 1, which correctly

assess no causal effect. However, this example by no means suggests that
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we should try to merge the levels of a covariate to correct confounding since

it is impossible in practice to determinate an occasional confounder based

on observed data.

6. Causal Diagrams

Graphical models have been widely applied for large complex

systems.4,6,20,42 Sprites, Glymour and Scheines38 and Pearl25–38 proposed

causal diagrams for causal inferences for observational studies. They

supposed first a completely constructed causal diagram. Pearl26 showed

several of sufficient conditions for no confounding, and he gave several rules

for identifying causal effects. Greenland et al. applied causal diagrams to

epidemiological research and provided a criterion for detecting multiple

confounders, which is more efficient than the traditional criterion. In many

practical cases, however, it is difficult to construct such a complete causal

diagram. Geng and Li10 discussed conditions of non-confounding without

a completely constructed causal diagram.

6.1. Definitions and notations

Let Γ denote a directed acyclic graph, X = {X1, . . . , Xn
} be a set of nodes,

where a node represent a discrete random variable. X
j

is called a parent

node of X
i
, or X

i
is a son of X

j
if there is a directed arrow from X

j
to X

i
.

Let pa
i
denote the set of parents of X

i
. In a diagram Γ, a path between X

i

and X
j

is a succession of arcs from X
i
to X

j
, regardless of their directions.

All nodes with an arrow pointing path X
i
from are called to be descendants

of X
i
.

Definition 6.1. Let C be a set of nodes in a diagram Γ. A path between

X
i

and X
j

is said to be connected if every node on the path satisfies the

following two conditions:

(1) if it has converging arrows along the path, then either it or one of its

descendants is in C; and

(2) if it does not have converging arrows along the path, then it is not in C.

Otherwise, the path is said to be blocked by C.

Definition 6.2. Let A, B and C be three disjoint subsets of nodes in a

diagram Γ. C is said to d-separate A from B, denoted d(A, B, C), if and

only if C blocks every path from any node in A to any node in B.



June 24, 2003 14:24 WSPC/Advanced Medical Statistics chap21

Causal Inference 801

X1

X3X4

X5

X2

Fig. 1. A directed acyclic graph.

There is a one-to-one correspondence between d-separation d(A, B, C)

and conditional independency A ⊥ B|C under the stability condition of

distribution.25 Thus, conditional independence between variables can be

read off from a diagram Γ by using the d-separation criterion.

Example 6.1. In Fig. 1, C = {X1} blocks the path X2 ← X1 → X3;

neither X4 nor X5 are in C, and thus C blocks the path X2 → X4 ← X3

too. Therefore, C = {X1} d-separates A = {X2} from B = {X3}, and thus

X2 ⊥ X3|X1.

If we let C

′ = {X1, X4}, then X4 is in C

′ and has converging arrows

along the path X2 → X4 ← X3. So C

′ does not d-separate A = {X2} from

B = {X3}, and X2 6⊥ X3|(X1, X4).

A graph model defined by Γ represents that X1, . . . , Xn
have a joint

probability distribution as follows:

P (x1, . . . xn
) =

n

∏

i=1

P (x
i
|pa

i
) ,

where P (x
i
|pa

i
) stands for the conditional probability of X

i
= x

i
given

Pa
i
= pa

i
. We assume that P (x1, . . . , xn

) > 0 for every x1, . . . , xn
.

Example 6.2. The directed graph in Fig. 1 describes the following joint

probability distribution:

P (x1, x2, x3, x4, x5) = P (x1)P (x2|x1)P (x3|x1)P (x4|x2, x3)P (x5|x4) .

Assume that a causal system can be represented by a directed acyclic

graph, where an arrow means the direction from cause to effect. The causal
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Pai

Fi

Xi
Xi

Pai

Γ Γ’

Fig. 2. External intervention Fi.

effect of X
i

on the whole system can be evaluated by an external inter-

vention to X
i
. Consider Fig. 2. An arrow F

i
→ X

i
in Γ represents the

external intervention to X
i
. F

i
is a new variable with value, set(x

i
) or idle,

where set(x
i
) stands for that F

i
forces X

i
to take on some value x

i
and

idle stands for no external intervention influences to X
i
. Γ′ represents the

diagram after the external intervention.

In the diagram Γ′ after the external intervention, the set of parent nodes

is augmented to Pa

′
i

= Pa
i
∪{f

i
}. The conditional distribution of X

i
given

Pa

′
i

is:

P

′(x
i
|pa

i
) =











p(x
i
|pa

i
) , if F

i
= idle ;

0 , if F
i
= set(x′

i

) and x
i
6= x

′
i

;

1 , if F
i
= set(x′

i

) and x
i
= x

′
i

.

The joint distribution after the intervention set(x′
i

) is given by

P
x

′

i
(x

i
, . . . , x

n
) = P

′(x1, . . . , xn
|F

i
= set(x′

i

)) .

P
x

′

i
(x

i
, . . . , x

n
) represents the joint distribution of X1, . . . , Xn

if X
i

of all

units in the target population had been forced to x

′
i

.

The transformation formula between the pre-intervention and the post-

intervention distributions is given by

P
x

′

i
(x

i
, . . . , x

n
) =











P
x

′

i
(x

i
, . . . , x

n
)

P (x
i
|pa

i
)

, if x
i
= x

′
i

;

0 , if x
i
6= x

′
i

.

Let X
j

and X
i
denote the response and treatment variables respectively,

and Ω
j

and Ω
i
their corresponding domains. The causal effect of X

i
on X

j

is defined as P
x

′

i
(x

j
), which means the post-intervention distribution of X

j

under the intervention to X
i
.

Given a causal diagram, we say that there is no confounding for the

causal effect of X
i

on X
j

if P
x

′

i
(x

j
), the post-intervention distribution of
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X
j

under the intervention X
i
= x

i
in the whole target population, is equal

to P (x
j
|x′

i

), the distribution of X
j

in the subpopulation X
i

= x

′
i

without

external intervention. The formal definition is given below.

Definition 6.3. No confounding. There is no confounding for the causal

effect of X
i
on X

j
if for every x

j
∈ Ω

j
and x

′
i

∈ Ω
i
,

P
x

′

i
(x

j
) = P (x

j
|x′

i

) .

No confounding implies that the causal effect P
x

′

i
(x

j
) can be evaluated

with the observed association measure P (x
j
|x′

i

). Therefore, we may define

the confounding bias as the difference between P
x

′

i
(x

j
) and P (x

j
|x′

i

). If

there is confounding in the population, but there is no confounding in

all the subpopulations stratified by some other variables, we call these

variables as confounders. Let C = {X
t1

, . . . , X
tk
} be a set of variables, Ω

tk

be the domain of X
tk

, and P
x

′

i
(x

j
|x

t1
, . . . , x

tk
) =

P

x′

i

(xj ,xt1
,...,xt

k
)

P

x′

i

(xt1
,...,xt

k
)

denotes

the conditional distribution under the external intervention X
i

= x
i
. It

means that the condition is taken after the intervention.

Given a causal diagram together with the corresponding joint distribu-

tion, we can infer the post-intervention distribution from the transformation

formula (1). Thus, we can estimate the causal effects of interventions. The

joint distribution, however, is usually unknown when some variables are

unobservable. Let X = X
O
∪ X

U
, where X

O
denotes the set of observed

variables and X
U

denotes the unobserved variables. The basic problem of

causal inference is to identify the causal effect of X
i
on X

j
, P

x

′

i
(x

j
), from the

distribution of observed variables, P (X
O

). The causal effect of X
i
on X

j
is

said to be identifiable if P
x

′

i
(x

j
) can be represented by P (X

O
). Pearl26

proposed a set of inference rules for identifying causal effects. No

confounding implies that the causal effect P
x

′

i
(x

j
) is identifiable.

The following properties can be obtained from the transformation

defined in formula (1):

(1) An intervention set(x
i
) can affect only the descendants of X

i
in Γ.

(2) P
x

′

i
(S|pa

i
) = P (S|x′

i

, pa
i
) holds for any set S of variables.

(3) X
j
⊥ pa

i
|X

i
is a sufficient condition for no confounding.

Property (1) implies that P
x

′

i
(S) = P (S) if S is not the descendants

of X
i
. Property (2) implies no confounding, which means that the causal

effect of X
i
on any set S of variables is equal to the conditional distribution

when the parents of X
i
are given. Spiegelhatter et al.37 gave an example to

show that the conditional independency in property (3) is not necessary for
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X3 X4

X1 X2

X5

E

D

Fig. 3. An example of the back-door criterion.

no confounding. Geng and Li10 proved that the conditional independency

(3) is a necessary and sufficient condition for uniform non-confounding.

6.2. The back-door and front-door criteria

In this section, we shall introduce two criteria, the back-door criterion and

the front-door criterion, proposed by Pearl.26

Definition 6.4. Back-door path. A path between X
i
and X

j
with an arrow

into X
i
is said to be a back-door path between X

i
and X

j
.

Definition 6.5. Back-door criterion. A set S of variables is said to satisfy

the back-door criterion if: (i) No node in S is a descendant of X
i
, and (ii) S

blocks every back-door path between X
i
and X

j
.

Example 6.3. Consider the causal effect of E on D in Fig. 3. The sets S1 =

{X3, X4} and S2 = {X4, X5} meet the back-door criterion, but S3 = {X4}

does not meet it because S3 does not block the back-door path between E

and D(E ← X3 ← X1 → X4 ← X2 → X5 → D).

Theorem 6.1. Two conditions of the back-door criterion are equivalent to

S ⊥ F
i

and X
j
⊥ F

i
|(X

i
, S) .

Theorem 6.2. If a set S of variables satisfies the back-door criterion,

we have

P
x

′

i
(x

j
) =

∑

s

P (x
j
|s, x′

i

)P (s) ,

for every x
j
∈ ω

j
and x

′ ∈ ω
i
.

It follows from Theorem 6.2 that the causal effect of X
i
on X

j
, P

x

′

i
(x

j
),

can be estimated from the joint distribution of observed variables if we find

a subset of variables S ⊆ X0 satisfying the back-door criterion.
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U

D
Z

E

Fig. 4. A diagram for the front-door criterion.

We cannot derive the causal effect P
x

′

j
(x

j
) from Theorem 6.2 if the set

S of observed variables does not satisfy the back-door conditions. Consider

the causal diagram in Fig. 4, where U denotes an unobserved variable, and

E, Z and D represent three observed variables respectively. Z is on a di-

rected path from E to D and blocks all directed paths from E to D (there

is only one directed path from E to D in Fig. 4). Following traditional

epidemiological theories, we cannot control or adjust for intermediate vari-

ables on the causal path to evaluate the causal effect of E on D. Now we

introduce the front-door criterion proposed by Pearl26 through the causal

diagram in Fig. 4.

It follows from Fig. 4 that the joint probability distribution of

(E, D, Z, U) is given by

P (e, d, z, u) = P (d|z, u)P (z|e)P (e|u)P (u) ,

and from the back-door criterion,

P
e
′(d) = P (d|set(e′)) =

∑

u

P (d|e′, u)P (u) ,

which is not directly identifiable because U is unobserved. We can obtain

two conditional independencies from Fig. 4: (1) D ⊥ E|(Z, U) and (2) Z ⊥

U |E, and we can show

P
e
′ (d) =

∑

z

[

P (z|e′)
∑

e

P (d|e, z)P (e)

]

.

Because the probabilities on the right side of Eq. (2) are all conditional

distributions, the causal effect P
e
′ (d) is identifiable when D, Z and E are

observed. This result is summarized in the following theorem, which is called

the front-door criterion.26

Theorem 6.3. Suppose that a set Z of variables satisfies the following

conditions relative to an ordered pair of variables (E, D) : (1) Z intercepts

all directed paths from E to D. (2) There is no unblocked back-door path



June 24, 2003 14:24 WSPC/Advanced Medical Statistics chap21

806 Z. Geng

between E and Z. (3) Every back-door path between Z and D is blocked by

E. Then the causal effect of E on D is identifiable and is given by Eq. (2).

Example 6.4. Pearl26 presented an example to illustrate the front-door

criterion. For the observational research of smoking and lung cancer, Fisher

once proposed a conjecture: There exists an unknown carcinogenic geno-

type related to smoking. If this is true, the genotype is an unobservable

confounder and the confounding biases could not be eliminated using

traditional standardization methods of epidemiology. If we observe an in-

termediate variable, tar deposit, on the causal path from smoking to lung

cancer, and the unobserved genotype does not have a causal path to the tar

deposit, then we can obtain a causal diagram as shown in Fig. 4, where E,

Z, U , and D represent, respectively, smoking, tar deposits, the carcinogenic

genotype and lung cancer. It follows from Theorem 6.3 that the causal effect

of smoking on lung cancer can be identified by the distribution of observed

variables.

6.3. Criterion for multiple confounders

If there is an association between exposure E and response D after removing

all causal effects of E on any factor, then the association cannot be a causal

effect of E on D and thus there must be confounders. We now introduce the

algorithm presented by Greenland et al.14 for checking confounders based

on the back-door criterion. Given a set of covariates, S = {S1, . . . , Sn
},

which does not contain descendants of E and D, we perform the following

steps:

(1) Delete all arrows emanating from E (i.e. remove all causal effects of E).

(2) For every node S
i
, draw undirected edges to connect every pair of nodes

that share a common child which is either in S or has a descendant in S.

(3) If the nodes in S block all paths from E to D in the new graph, then

the set S is sufficient for controlling confounding bias. Otherwise, S is

not sufficient.

Example 6.5. Consider the causal diagram in Fig. 5. Delete the arrow E →

D, and thus E has no effect on D. It follows from the diagram that there is

still an association between E and D. Therefore, there exists confounding

bias. When controlling for C, the unique back-door path from E to D is

blocked by C, and thus the confounding is completely eliminated. So, C is

a confounder.
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E D

C

Fig. 5. C is a confounder.

A

C

E D

B

Fig. 6. C is not a confounder.

Example 6.6. Consider the causal diagram in Fig. 6. Delete the arrow

E → D, thus E has no effect on D. The node C blocks the unique back-door

path E ← A→ C ← B → D. It follows from the new diagram obtained by

deleting E → D that E is independent of D and the association between

E and D in the original diagram is attributed to causation. Neither A,

B nor C is a confounder. However, if controlling for C, then A and B

must be connected by an undirected edge in the step 2, and thus the path

E ← A − B → D is not blocked. In the diagram obtained by deleting

E → D, E is not independent of D conditional on C, and the association

between E and D is not attributed to causation, that is, confounding bias

is introduced by controlling for C.

7. Causal Inference for Longitudinal Studies

Longitudinal study is one of the important methods in epidemiological and

medical research. Causal inference and criteria for confounders in longitu-

dinal studies have been discussed.30–32 In a longitudinal study, the same

unit is repeatedly observed during the follow-up period. Longitudinal obser-

vation includes treatment variables, covariates, intermediate variables and

response variables of interest in every time points, and it can provide more

information on causation.

In this section, we introduce notations and conceptions of causal infer-

ence in longitudinal studies proposed by Robins et al.32 Let m = 1, 2, . . . , M

denote the time points at which data are observed; let Y
m,i

and A
m,i

denote

the response and exposure of unit i at time m, respectively. Let X
i
denote

a vector of time-independent covariates of unit i, and L
m,i

denote a vector
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of time-independent covariates of unit i at time m. Suppose that Y
m,i

and

L
m,i

occur before A
m,i

at the each time m.

Based on the counterfactual model, let Y

(0)

m,i

denote the response of unit

i at m if the unit were not unexposed at any time during the follow-up

(i.e. continuous unexposed). Similarly, let Y

(1)

m,i

denote the response of the

unit i at m if the unit had been exposed continuously during the follow-up

(i.e. continuous exposed). If a unit i changes its exposure status during the

follow-up, its response at m is neither Y

(0)

m,i

nor Y

(1)

m,i

. Therefore, neither

Y

(0)

m,i

nor Y

(1)

m,i

can be observed for such units. Let Z̄
m

= (Z1, . . . , Zm
)

for m ≥ 1 and Z̄
m

= 0 for m ≤ 0. Assume that N series of data,

(Ȳ
(0)

M,i

, Ȳ

(1)

m,i

, Ȳ
M,i

, Ā
M,i

, L̄
M,i

, X
i
) for i = 1, . . . , N , are independently and

identically distributed. For the subpopulation X = x at the time m, define

expectation of responses for continuous unexposed and that for continuous

exposed respectively as

θ

(0)

m

(x) = E[Y (0)

m

|X = x] and θ

(1)

m

(x) = E[Y (1)

m

|X = x] .

The average causal effect of continuous exposed versus continuous unex-

posed is defined as

δ
m

(x) = θ

(1)

m

(x) − θ

(0)

m

(x) .

The average causal effect cannot be identified without any assumptions. An

assumption was proposed32 for sufficiently controlling confounding at every

time k, which is similar to Rosenbaum and Rubins34 the strongly ignorable

assumption for cross-section studies:

{(Y (0)

m

, T

(1)

m

); m = k + 1, k + 2, . . . , M} ⊥ A
k
|(Ā

k−1, Ȳk
, L̄

k
, X) (3)

for all k ≥ 1. This assumption means that the strongly ignorability holds

for all k, and it cannot be tested empirically.

If there are no time-dependent confounders, that is, the set L̄
k

in model

(3) is empty, then conditional probabilities of potential responses can be

identified as following:

P (Y (j)

m

= 1|Ȳ
(j)

m=1
= ȳ

m−1, X = x)

= P (Y
m

= 1|Ȳ
m−1 = ȳ

m−1, Ām−1 = j

[m−1]
, X = x) ,

where j

[m−1] is a vector with m − 1 elements all of which are equal to

j (i.e. j

[m−1] = (j, . . . , j)). Substituting the expression into the following

g-algorithm formula presented by Robins,28,29 the causal parameter θ

(j)

m
(x)
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can be identified by:

θ

(j)

m

(x) = P (Y (j)

m

= 1|X = x)

=
∑

ȳm−1

[P (Y (j)

m

= 1|Ȳ
(j)

m=1
= ȳ

m−1, X = x)

×

m−1
∏

k=1

P (Y
(j)

k

= y
k
|Ȳ

(j)

k−1
= ȳ

k−1, X = x)] .

Similarly, if there are time-dependent confounders, that is, the set L̄
k

in

model (3) is not empty, then the causal parameter θ

(j)

m
(x) can be identified

by the following expression:

θ

(j)

m

(x) = P (Y (j)

m

= 1|X = x)

=
∑

ȳm−1,l̄m−1

{

P (Y
m

= 1|Ȳ
m−1 = ȳ

m−1, L̄m−1 = l̄
m−1 ,

Ā
m−1 = j

[m−1]
, X = x)

m−1
∏

k=1

[P (Y
k

= y
k
|Ȳ

k−1 = y

−
k−1

,

L̄
k−1 = l̄

k−1, Āk−1 = j

[k−1]
, X = x)

×P (L
k

= l
k
|Ȳ

k
= ȳ

k
, L̄

k−1 = l̄
k−1, Āk−1 = j

[k−1]
, X = x)

}

,

where l
k

and l̄
k−1 consist of part elements of l̄

m−1. From the causal

parameter θ

(j)

m
(x), we can identify the average causal effect δ

m
(x) of

continuous exposed versus continuous unexposed for the subpopulation

X = x at any time m.
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1. Introduction

The primary response variables in many medical studies pertain to the time

to occurrence of a clinically important event, such as death, development or

progression of a disease, or occurrence of a clinically significant morbid event

such as a serious infection, stroke or major organ failure. A complexity that

frequently arises in studies having time-to-event outcome measures is that a

substantial fraction of the study subjects have not experienced the event

of interest at the time of data analysis. These subjects who provide this

incomplete information are referred to as being censored, or more precisely

right-censored, since it is only known that the true time-to-event for that

subject exceeds the duration of follow-up.

The complexities created by the presence of censored observations have

led to the development of a special field of statistical methodology. Because

the analysis of clinical trials data with time-to-death outcomes provided

the original motivation for this development, the field has become known

as survival analysis. This article provides an overview of the key ideas and

methods in survival analysis. After introducing some basic terminology,

we will discuss the estimation of the survival distribution, the comparison

of two survival distributions as well as regression models. We will focus

on non- and semi-parametric methods, which do not impose parametric

assumptions on the survival distribution.

815
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2. Basic Concepts

Let T denote the true time-to-event or failure time for a study subject

in a medical study. Primary interest usually lies in estimation and testing

regarding the distribution of T . This distribution can be characterized by

the survival function S(t) ≡ Pr(T > t). Because of censoring, it is more

convenient to deal with the hazard function, which is the instantaneous

probability of dying at time t given that the subject is alive just prior to

t. If T is continuous with density function f , then the hazard function is

defined by

λ(t) = lim
∆t↓0

Pr(t ≤ T < t + ∆t|T ≥ t)/∆t = f(t)/S(t) .

The function Λ(t) ≡
∫

t

0
λ(u)du is called the cumulative hazard function

for T , and it is easily shown that S(t) = e

−Λ(t) for a continuous survival

time T .

Let U denote the censoring time, that is, the time beyond which the

study subject cannot be observed. Then (T, U) are referred to as latent

data, while the observed data are denoted by (X, δ), where X = min(T, U),

δ = I(T ≤ U), and I(·) is the indicator function. The study subjects having

δ = 0 are referred to as having censored observations.

While the distribution function S(t) can be consistently estimated

when data are uncensored, neither λ(t) nor S(t) is identifiable or consis-

tently estimable if one only observes (X, δ).18,78 Observing (X, δ) rather

than T for all subjects only allows one to consistently estimate S

#(t) ≡

exp{−
∫

t

0
λ

#(u)du} for all t such that Pr(X > t) > 0, where

λ

#(t) = lim
∆t↓0

Pr(t ≤ T < t + ∆t|T ≥ t, U ≥ t)/∆t . (1)

We refer to λ

#(t) as the crude hazard and λ(t) as the net hazard.14 In

most survival analysis applications, a key assumption is made regarding

the equality of the crude hazard (that is estimable) and the net hazard

(that is of interest), i.e.

λ

#(t) = λ(t) for all t such that Pr(X > t) > 0 . (2)

A sufficient condition for the validity of assumption (2) is the independence

of T and U .

3. Estimation of the Survival Distribution

A fundamental problem in survival analysis is the estimation of the hazard

function λ(t) and the survival function S(t). Several parametric models are
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available, and the maximum likelihood approach can be used for estima-

tion of the parameters under the assumption of independent censoring. For

example, assuming a constant hazard function, i.e. λ(t) = λ for all t > 0,

one obtains the exponential distribution, where the maximum likelihood

estimator for λ is the number of observed events divided by the summation

of duration of follow-up over all subjects. Kalbfleisch and Prentice37 and

Lawless42 provided detailed discussion of parametric methods.
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Fig. 1. Kaplan–Meier estimates for the survival probabilities in the colon cancer study:
————: observation groups, - - - - - - - - : therapy groups.
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It is more desirable to estimate the failure time distribution without

parametric modelling. Nelson60 introduced a nonparametric estimator of

the cumulative hazard function Λ(t). This estimator is given by a step

function, with steps occurring at times of observed events and having

size D/Y , where D events occur among Y subjects at risk. Recognizing

the relationship between S(t) and Λ(t) through the differential equation,

−{dS(t)/dt}/S(t−) = λ(t), one motivates the relationship,

−{∆Ŝ(t)}/Ŝ(t−) = ∆Λ̂(t) ,

where one estimates Λ(t) using Nelson’s estimator and then recursively

solves for the estimator of S(t). The resulting estimator is that proposed

by Kaplan and Meier.38 It is a step function, with value reduced by the mul-

tiplicative factor {1− (D/Y )} at times of observed events. The asymptotic

properties of the Kaplan–Meier estimator have been studied by Breslow

and Crowley,9 Gill30 and Ying84 among others.

Figure 1 displays the Kaplan–Meier estimates for the survival probabi-

lities in a randomized clinial trial, which was designed to assess whether

a new therapy, levamisole plus fluorouracil, prolongs the survival time for

patients with Duke’s Stage C colon cancer.47 There are 315 and 304 patients

in the observation and therapy groups. By the end of the study, 155 patients

in the observation group and 108 patients in the therapy group had died.

The Kaplan–Meier estimates given in Fig. 1 show the average survival

experiences of the patients in the two groups over the entire follow-up

period. Clearly, the patients on the therapy tend to have higher survival

probabilities than the patients in the observation group.

4. Counting Process Theory

It is difficult to study the properties of the statistics used in survival

analysis, such as the Nelson and Kaplan–Meier estimators, by using stan-

dard statistical techniques because they are not sums of independent

random variables. Aalen1 introduced an elegant martingale-based approach

to survival analysis, where statistical methods can be cast within a unifying

counting process framework. This approach uses an integral representation

for censored data statistics that provides a simple unified form for esti-

mators, test statistics and regression methods. These martingale methods

allow one to obtain simple expressions for moments of complicated statis-

tics and asymptotic distributions for test statistics and estimators, and to

examine the operating characteristics of censored data regression methods.
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Detailed presentation of this approach has been provided in textbooks by

Fleming and Harrington27 and Andersen et al.4

In the counting process approach for analyzing data on time-to-a-single-

event, the data for the ith subject, (X
i
, δ

i
), is represented as {N

i
(t), Y

i
(t)}

(t > 0), where

N
i
(t) = I(X

i
≤ t, δ

i
= 1) , and Y

i
(t) = I(X

i
≥ t) . (3)

The right-continuous process N(t) is referred to as the counting process,

since it essentially counts the number of events observed up to and including

time t, while the left-continuous process Y (t) is referred to as the at-risk

process, indicating whether the subject is at risk at time t.

A simple yet important illustration of the counting process approach is

provided by examining the properties of the Nelson estimator Λ̂(t) of Λ(t).

The hazard integrated over the region in which one has data is

Λ∗(t) ≡

∫

t

0

I{Ȳ (u) > 0}λ(u)du ,

where Ȳ (t) =
∑

n

i=1
Y

i
(t), and n is the sample size. One can write

Λ̂(t)− Λ∗(t) =

n

∑

i=1

∫

t

0

H
i
(u)dM

i
(u) , (4)

where H
i
(t) ≡ I{Ȳ (t) > 0}/Ȳ (t) is a left-continuous process, and

M
i
(t) ≡ N

i
(t)−

∫

t

0

Y
i
(u)λ(u)du (5)

is the subject-specific martingale. The martingale M
i
in Eq. (5) represents

the difference over the interval (0, t] between the observed number and the

model-predicted number of events for the ith subject. The left-continuity

of the process H
i

and the martingale property for M
i

render the entire

expression in Eq. (4) to be a martingale transform. This structure directly

yields moments and large-sample properties. For example, since the mar-

tingale M
i

has expectation zero, it follows that the Nelson estimator Λ̂(t)

has expectation
∫

t

0
Pr{Ȳ (u) > 0}λ(u)du. This martingale-based approach

enables an elegant development of the small- and large-sample properties

of the Nelson and Kaplan–Meier estimators, as shown by Gill.29

5. Two-Sample Statistics

The primary objective of many clinical trials is to provide a reliable com-

parison of the efficacy and safety of two treatments, where efficacy often
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is assessed in terms of a time-to-event outcome measure. Similarly, many

epidemiologic studies are concerned with the comparisons of exposed and

unexposed groups in the time to disease occurrence. A variety of parametric

and nonparametric two-sample statistics have been proposed to compare

two survival distributions based on censored data. Parametric methods are

described by Kalbfleisch and Prentice37 and Lawless.42

The most popular nonparametric two-sample statistic is the so-called

logrank statistic, which was originally proposed by Mantel.55 The subjects

at risk at the time of an event are classified into a 2 × 2 table, according

to event status (yes versus no) and group membership. The numerator

of the logrank statistic is obtained by computing the observed and the

expected (conditioning on the margins of the 2×2 table) events in the first

group, and by summing the differences of these over all distinct event times.

Within each 2 × 2 table, the variance of the number of events in the first

group is obtained using the hypergeometric distribution. These are then

summed over all distinct event times to provide the variance estimator for

the logrank statistic. For the colon cancer study mentioned in Sec. 3, the

observed chi-squared value of the logrank statistic is 11.2, providing strong

evidence for the benefit of the therapy.

The logrank statistic has been extended to a broad class of weighted

logrank statistics. Any member of this class can be written as a weighted

sum of the “observed minus expected” events in Mantel’s 2 × 2 tables.

These statistics can be formulated as in Eq. (4). Using this structure,

Gill29 derived small- and large-sample properties for statistics of this wide

class. He developed criteria for consistency of these tests against ordered

hazards and stochastic ordering alternatives. He also provided asymptotic

distribution results, not only under the null hypothesis of equality of sur-

vival distributions, but also under contiguous alternatives, allowing him

to provide a characterization of the alternatives against which the tests are

efficient. Among these results was a proof that the logrank statistic provides

an efficient test under proportional hazards alternatives.

6. Regression Models

In medical studies designed to assess the effect of a treatment or exposure on

a time-to-event outcome, it is important to be able to explore or adjust for

the effect of an array of other covariates that may be associated with that

outcome. Hence, the information collected on each study subject (X, δ)

is expanded to be (X, δ,Z), where Z represents a p-vector of covariates.
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The covariates can be treatment indicators or exposure levels; demographic

variables, such as age, gender or race; laboratory measurements, such as

levels of bilirubin, blood pressure or viral load; histologic assessments based

on biopsy; or other descriptive measurements such as time from diag-

nosis of disease, type of disease, prior therapeutic exposures, or functional

status of the subject. In regression models, these covariates can take a

variety of functional forms, being dichotomous, ordered or continuous. The

continuous variables may be transformations of original measures, such as

the logarithm of bilirubin.

The linear regression model for survival time data takes the form

log T = β
′Z + ε , (6)

where β is a set of unknown regression parameters, and ε is an error variable

independent of Z. The logarithmic transformation is employed because T

is positive; other appropriate transformations of T may also be selected.

Exponentiation of Eq. (6) yields T = e

β′Z
T0, where T0 = e

ε. This expression

shows that the role of Z is to accelerate (or decelerate) the time to failure.

Thus, Eq. (6) is referred to as the accelerated failure time model.

Because of censoring, it is more convenient to model the survival

data through the hazard function. Let λ(t|Z) denote the hazard function

associated with Z, i.e.

λ(t|Z) = lim
∆t↓0

Pr(t ≤ T < t + ∆t|T ≥ t,Z)/∆t .

The proportional hazards model specifies that

λ(t|Z) = λ0(t)e
β′Z

, (7)

where λ0(t) is the so-called baseline hazard function, i.e. the hazard function

under Z = 0, and β is a set of unknown regression parameters. Under this

model, the covariates have multiplicative effects on the hazard function, and

the regression parameters are interpreted as the logarithms of the hazard

ratios or relative risks.

Equation (6) can be rewritten as

λ(t|Z) = λ0(te
−β′Z)e−β′Z

, (8)

where λ0(t) is the hazard function of T0. A comparison of Eq. (8) with

Eq. (7) reveals that the only overlap in the accelerated failure time and

proportional hazards models arises when λ0(t) is Weibull.37

In the regression setting, the independent censoring assumption given

by Eq. (2) is extended so that, conditional on Z, the crude and net hazard
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functions are equal. Survival models, such as Eqs. (6) and (6.2), are

referred to as parametric models if the distributional form of the failure

time, i.e. λ0(t), is specified, and as semiparametric models otherwise.

Analysis of parametric survival models has been discussed by Kalbfleisch

and Prentice,37 Lawless,42 Cox and Oakes,21 and Andersen et al.4 Due to

the complex nature of human diseases, it is difficult to specify the para-

metric form. Thus, semiparametric models are preferable to parametric

models in most medical applications.

7. Cox Proportional Hazards Model

Cox19,20 introduced an ingenious semiparametric approach to inference

based on the proportional hazards model. These methodologic results are

among the developments in the field of survival analysis that have had the

most profound impact on medical research.

By fitting the proportional hazards model in Eq. (7) with an unspe-

cified baseline hazard function λ0(t), Cox obtained a robust approach for

studying the influence of covariates on outcome. However, with an infinite-

dimensional nuisance function λ0(t), modifications to the classical likelihood

approach would be needed. Thus, Cox20 introduced the partial likelihood,

which is based on the data that does not carry information about λ0(t).

Specifically, one discards the times of observed events, and the number

of events at those times. Assuming that censoring is independent and is

uninformative for β (see Definition 4.3.1 of Fleming and Harrington27),

one also discards the censoring times and the identity of subjects associated

with the censored times. The partial likelihood is then based on, for all event

times, the identity of the subject(s) failing at each event time, given the

number failing and the identity of the subjects at risk at that time. It takes

the form

L(β) =
∏

i∈D

e

β′Z(i)

∑

j∈Ri
e

β′Zj

, (9)

where D is the set of indices of observed event times, Z(i) is the covariate

vector for the subject failing at the ith observed event time T

0

i

, and R
i

is

the set of subjects at risk at T

0

i

. The maximum partial likelihood estimator

β̂ is the value of β that maximizes L(β). Given β̂, the cumulative baseline

hazard function Λ0(t) ≡
∫

t

0
λ0(u)du is estimated by the Breslow estimator8:

Λ̂0(t) ≡
∑

i∈D;T
0

i
≤t

1
∑

j∈Ri
e

β̂
′

Zj

. (10)
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Table 1. Regression analysis of the Mayo primary biliary cirrhosis data.

Proportional Hazards Accelerated Failure Time

Parameter Est SE 95% conf int Est SE 95% conf int

Age 0.039 0.008 (0.024, 0.054) −0.026 0.004 (−0.035,−0.018)

log(Albumin) −2.533 0.648 (−3.803,−1.263) 1.656 0.368 (0.934, 2.378)

log(Bilirubin) 0.871 0.083 (0.709, 1.033) −0.585 0.046 (−0.674,−0.496)

Oedema 0.859 0.271 (0.328, 1.391) −0.734 0.178 (−1.083,−0.385)

log(Protime) 2.380 0.767 (0.877, 3.883) −1.944 0.462 (−2.850,−1.038)

Cox19,20 conjectured that L(β) shares the asymptotic properties of a full

likelihood. This conjecture was confirmed by a number of authors. The first

published proof was provided by Tsiatis.78 Andersen and Gill5 provided an

elegant asymptotic theory for β̂ and Λ̂0(t) by observing that the partial

likelihood score function can be formulated as a martingale transform, of

the form given in Eq. (4).

The left panel of Table 1 summarizes the results of the Cox regres-

sion analysis for the Mayo primary biliary cirrhosis data.27 The database

contains 418 patients who were referred to the Mayo Clinic. As of the date

of data listings, 161 patients had died. The Cox regression analysis not only

quantifies the effects of the five covariates on the risk of death but also al-

lows one to estimate the survival probabilities for patients associated with

specific covariate values.48

8. Multiplicative Intensity Model

In many medical studies, the outcome of primary interest extends beyond

the time of the first event to exploration of the rate of recurrent events over

time. These recurrent events, for example, may be repeated otitis media

infections in an infant, or repeated hospitalizations in an adult with a se-

rious disease. To analyze such data, Aalen2 introduced the multiplicative

intensity model as a generalization of the proportional hazards model. In

this model, the subject-specific martingale is

M(t) = N(t)−

∫

t

0

Y (u)λ0(u)eβ′Z(u)
du , (11)

where N and Y are of more general forms than given in Eq. (3). Specifically,

the counting process N(t) still reflects the number of events that have

occurred by time t, but now has range over all non-negative integers. The

at-risk process Y (t) can be any left-continuous process indicating, by 1
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versus 0, whether or not the subject is at risk at time t. In addition, the

covariate vector is allowed to be a stochastic process.

In the semiparametric setting where λ0(t) in Eq. (11) is unspecified, one

can use the partial likelihood principle to make inference about β and the

Breslow estimator to estimate Λ0(t), although now the set D in Eqs. (9)

and (10) may involve multiple event times from the same subject. The

corresponding large-sample theory was again provided by Andersen and

Gill.5

9. Regression Model Diagnostics

Extensive development of residuals has provided a wide variety of model

diagnostics that are useful for the Cox proportional hazards model as well as

for the broader multiplicative intensity model. For simplicity, we consider

the subject-specific martingale in Eq. (5) for the special case of the Cox

model given by Eq. (7). The corresponding martingale residual is

M̂
i
(t) ≡ N

i
(t)− Λ̂0(t ∧X

i
)eβ̂

′

Zi
,

where a∧ b = min(a, b). This residual, introduced by Barlow and Prentice6

and explored by Therneau et al.76 can be interpreted as the “observed”

minus “estimated model predicted” events for subject i over the interval

(0, t]. As t→∞, the martingale residual reduces to

M̂
i
≡ δ

i
− Λ̂0(Xi

)eβ̂
′

Zi
.

These residuals, symmetrized using the deviance transformation56 can be

used to detect outliers. The partial residuals, defined by

M̂
i
/{Λ̂0(Xi

)eβ̂
′

Zi}+ β̂
j
Z

ij
, i = 1, . . . , n ; j = 1, . . . , p ,

where Z
ij

and β̂
j

are the jth components of Z
i

and β̂, can be used to

suggest the proper functional form for covariates in the model.

A class of martingale-transform residuals can be obtained by replacing

M
i
(u) with M̂

i
(u) for each i in Eq. (4). Important members of this class

are the p “score residuals” for each subject. These residuals are defined by

L
ij
≡

∫ ∞

0

H
ij

(t)dM̂
i
(t) , i = 1, . . . , n ; j = 1, . . . , p ,

where H
ij

(t) is chosen such that
∑

i

L
ij

reduces to the jth component

of the partial likelihood score statistic. These p score residuals can be

used to assess the influence of each subject on the parameter estimates

β̂
j

(j = 1, . . . , p). They are also related to a class of residuals, proposed by
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Schoenfeld,74 that are useful for detecting departures from the proportional

hazards assumption.

Lin et al.52 studied the cumulative sums of martingale-based residuals

over covariates or event times. The distributions of these stochastic

processes under the assumed model can be approximated by zero-mean

Gaussian processes. Each observed process can then be compared, both

graphically and numerically, with a number of realizations from the ap-

proximate null distribution by computer simulation. These comparisons

enable one to determine objectively whether a seemingly abnormal residual

pattern reflects model misspecification or natural random variation. This

methodology can be used to assess the functional forms of covariates, the

proportional hazards assumption, as well as the overall fit of the model.

10. Alternatives to the Cox Model

Despite the great popularity and versatility of the Cox regression model,

there are reasons to explore alternative models. First, the proportional

hazards assumption may not be satisfied in some applications. Second,

alternative models characterize different aspects of the associations between

covariates and survival time. In this section, we describe briefly some

alternative semiparametric models.

In contrast to the proportional hazards model, the additive hazards

model specifies that covariates have additive rather than multiplicative

effects on the hazard function, i.e.

λ(t|Z) = λ0(t) + β
′
Z(t) . (12)

This model was discussed by Cox and Oakes,21 Thomas77 and Breslow and

Day.10 Using the counting-process martingale approach, Lin and Ying54

obtained closed-form estimators for the regression parameters β and the

cumulative baseline hazard function Λ0(t).

Semiparametric transformation models take the form

h(T ) = β
′Z + ε , (13)

where ε is a random error with a given distribution function F , and h is a

completely unspecified function. If F is the extreme value distribution, then

Eq. (13) is the proportional hazards model. If F is the standard logistic

function, then Eq. (13) is the proportional odds model, under which the

hazard ratio approaches unity as time increases. This class of models

was studied by Clayton and Cuzick17 and Dabrowska and Doksum,24
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and the proportional odds model was studied by Pettitt,68 Bennet7 and

Murphy et al.59 A significant breakthrough was made by Cheng et al.13

who provided simple and relatively efficient estimators of β for all mem-

bers of Eq. (13).

The semiparametric accelerated failure time model takes the same form

as Eq. (13), but with h specified, usually as h(T ) = log T , and ε unspecified.

Various methods of estimation for this model were proposed around 1980.

Specifically, Koul et al.39 suggested to include in the least-squares estimator

only the uncensored survival times, but to weigh them by the inversed pro-

babilities of being uncensored. The resulting estimator is highly inefficient,

especially in the presence of heavy censoring. However, the underlying idea

of weighting uncensored observations by their inversed probabilities of being

uncensored, to be referred to as the inverse probability of censoring weight-

ing (IPCW) technique, turns out to be extremely useful in many other

contexts. In fact, the Cheng et al.13 estimators were based on this idea.

A more efficient modification of the least-squares estimator was provided

by Buckley and James,11 which replaces the conditional expectations for

the censored survival times by their estimates based on the Kaplan–Meier

estimator of the residual lifetime distribution and which involves an iter-

ative estimation scheme analogous to the EM algorithm.25 Prentice,69 on

the other hand, showed how to adapt the rank estimation method for non-

censored data to the censored data setting. The asymptotic properties of

the Buckley–James and rank estimators were established in the early 1990’s

by Tsiatis,80 Ritov,72 Wei et al.83 Lai and Ying40,41 and Ying.85

Despite the theoretical advances, semiparametric methods for the acce-

lerated failure time model have not been widely used in medical applica-

tions due to the lack of simple and reliable numerical algorithms. Recently,

Jin et al.36 provided a practical method for implementing the rank

estimators. Using their method, we obtain the results for the accelerated

failure time regression of the primary biliary cirrhosis data shown in the

right panel of Table 1. These results are based on the log-rank estimating

function. Although the conclusions are not qualitatively different, the

analysis under the accelerated failure time model provides an alterative

and more direct interpretation of the effects of the covariates on the survival

time, as compared to the Cox regression analysis.

11. Multivariate Failure Time Data

Under the multiplicative intensity model described in Sec. 8, the risk of a

recurrent event for a subject is unaffected by earlier events that occurred to
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the subject unless time-dependent covariates that capture such dependence

are included explicitly in the model. In medical applications, the depen-

dence structures are complex and the forms of time-dependent covariates

are unknown. Furthermore, the inclusion of such time-dependent covariates

which are part of the response results in biased estimation of the overall

treatment effect in a randomized clinical trial. Thus, it would be desirable to

model the marginal distribution of the recurrent event times while leaving

the dependence structures unspecified.

It is particularly appealing to consider the cumulative mean function

µ(t) ≡ E{N∗(t)}, where N

∗(t) is the number of events that the subject

has actually experienced by time t (in the absence of censoring). This

function was first considered by Nelson61 and further studied by Lawless

and Nadeau.43 A number of authors44,51,65 studied the following regression

models for the cumulative mean function

E{N∗(t)|Z} = µ0(t)e
β′Z

, (14)

where µ0(t) is an arbitrary baseline mean function, and β is a set of

regression parameters. If N

∗(t) is a (non-homogeneous) Poisson process,

then Eq. (14) is equivalent to the intensity model determined by Eq. (11).

Although in general N

∗ is not a Poisson process, the maximum partial

likelihood estimator for β of Eq. (11) remains consistent and asymptotically

normal under Eq. (14). The covariance matrix, however, can no longer

be estimated by the inversed information matrix. A sandwich variance

estimator has to be used instead.

In the one-sample case, µ(t) can be consistently estimated by the Nelson

estimator. Under model (14), the baseline mean function µ0(t) can be con-

sistently estimated by the Breslow estimator, and the covariate-specific

mean function can be estimated in a similar fashion.51 It is particularly

informative to display the estimated mean functions for different treatment

arms and for specific covariate patterns.

In some medical studies, each subject can potentially experience more

than one type of event. Examples include the developments of physical

symptoms or diseases in several organ systems (e.g. stroke and cancer) or

in several members of the same organ system (e.g. eyes or teeth). Models

such as Eqs. (11) and (14) are not applicable since the multiple events

on the same subject are of different natures and in fact may not even be

ordered.

It is convenient to formulate the marginal distributions of the multiple

event times through the proportional hazards models while leaving the

dependence structures completely unspecified. Let K denote the number
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of potential events per subject. The hazard function for the kth event of

the ith subject is postulated to take the form

λ(t|Z
ki

) = λ
k0(t)e

β′Zki(t)
, k = 1, . . . , K ; i = 1, . . . , n , (15)

where Z
ki

is the covariate vector for the ith subject with respect to the kth

event, λ
k0 (k = 1, . . . , K) are arbitrary baseline hazard functions, and β is

a set of regression parameters. In some applications (e.g. an ophthalmologic

study involving the left and right eyes), it is natural to impose the restriction

that λ10 = · · · = λ
K0 wheareas in others (e.g. the setting of multiple

diseases) it is necessary to allow the λ
k0’s to be different.

If the event times were independent, then the partial likelihood could

be easily constructed for β of model (15). The resulting estimator turns

out to be consistent and asymptotically normal even if the event times

are correlated. However, a sandwich variance estimator is again needed to

account for the intra-class dependence. This approach was pioneered by

Wei et al.82 and further developed by Lee et al.,45 Liang et al.46 and Cai

and Prentice12 among others.

The marginal approach discussed above treats the dependence of related

event times as a nuisance. An alternative approach is to explicitly formulate

the nature of dependence by the so-called frailty. The term frailty was first

introduced by Vaupel et al.81 to illustrate the consequences of a lifetime

being generated from several sources of variation. The use of frailty in

bivariate survival time data was considered by Clayton.15 Frailty models

were studied extensively in the 1980s by Clayton and Cuzick,16 Hougaard34

and Oakes63 among others. The frailty-model analog of Eq. (15) specifies

that the hazard function for the kth event of the ith subject, given the

frailty ν
i
, takes the form

λ
ki

(t|Z
ki

; ν
i
) = ν

i
λ

k0(t)e
β′Zki(t)

, (16)

where ν
i

(i = 1, . . . , n) are independent random variables. Conditional on

ν
i
, the event times on the ith subject are assumed to be independent.

The parameter vector β has a population-average interpretation under

model (15) and a subject-specific interpretation under model (16). Models

(15) and (16) cannot hold simultaneously unless ν is a positive-stable vari-

able. It is very challenging, both theoretically and computationally, to deal

with frailty models such as (16). Major progress was made in the 1990s. In

the special case of gamma frailty models, maximum likelihood estimation

via the EM algorithm was studied by Nielsen et al.,62 Murphy,57,58

Andersen et al.3 and Parner64 among others.
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Nonparametric estimation for the multivariate survival function is a

fundamental problem in the analysis of multivariate failure time data. Using

the IPCW technique, Lin and Ying53 developed a simple estimator for the

special case where there is a common censoring time for all event times of

the same subject. Estimation in the general setting has been studied by

Dabrowska,23 Prentice and Cai,70 and van der Laan81 among others.

The occurrence of one event (e.g. death) may preclude the development

of another (e.g. relapse of cancer). In some applications, such as cause-

specific mortality studies, the subject can only experience one of several

potential events. This type of data is referred to as competing risks. The

simplest solution to this problem is to censor the event time of interest at

the time of the competing events, and then apply the standard survival

analysis methods such as the logrank test and Cox regression. The results

pertain to the so-called cause-specific hazard function, which is given by

Eq. (1) with U representing the time to the competing events.

An important limitation of the cause-specific hazard function is that the

associated S

#(t) is not a survival function unless the cause of interest is

independent of other risks and the other risks could be eliminated with-

out altering the distribution of the cause of interest. Thus, in general

the Kaplan–Meier estimator does not pertain to the survival function or

disease incidence. Special methods have been developed to estimate disease

incidence functions.26,31,66

12. Concluding Remarks

We have reviewed many areas of survival analysis in the previous sections.

All these methods require the assumption of independent censoring. As dis-

cussed in Sec. 2, the survival distribution is not identifiable in the presence

of dependent censoring. If one is willing to model certain aspects of the

dependent censoring mechanism, then it is possible make inference about

the survival distribution under dependent censoring.50,73

When the event of interest is asymptomatic, as is the case with cancer

progression or HIV infection, the event time cannot be measured exactly,

but is rather known to lie in an interval determined by two successive

examinations. The resulting data are said to be interval censored. Non- and

semi-parametric analysis of such data has been studied by Groeneboom and

Wellner,32 Huang,35 Lin et al.49 and Rabinowitz et al.71 among others.

The applications of survival analysis methods to medical studies have

been greatly facilitated by the developments of software packages. Standard
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methods such as the Kaplan–Meier estimator, weighted logrank tests, Cox

regression and parametric regression with (univariate) right-censored data

are now available in virtually all software packages. The multiplicative

intensity model and the sandwich variance estimators for models (14) and

(15) have been implemented in major packages, such as SAS, S-Plus and

STATA. However, most of the newer methods, such as those for the semi-

parametric analysis of models (6), (12) and (13), and those mentioned in

this section, are not available in software packages.

Further developments are anticipated in many areas of survival analysis.

For example, the Cheng et al.13 estimators for Eq. (13) require modelling

the censoring distribution, and it would be worthwhile to explore estimation

procedures which do not involve such modelling. In the area of multivariate

failure time data, efficient estimators for model (15) have yet to be iden-

tified, and further theoretical and numerical advances are warranted for

model (16). Considerable activities are also expected in the areas of depen-

dent censoring, interval censored data, causal inference, and joint modelling

of longitudinal and failure time data. Finally, further expansion of software

is anticipated.
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1. Introduction

1.1. Structures of longitudinal data

In biomedical and epidemiological studies, interests are often focused on

evaluating the effects of treatments, dosage, risk factors or other covari-

ates of interest on the outcomes of interest, such as disease progression and

change of health status of a population, over time. Because the changes of

outcome and covariates within each subject usually provide important in-

formation of scientific relevance, longitudinal samples that contain repeated

measurements of the chosen subjects over time are often more preferable

than the classical cross-sectional samples. In fact, by combining the char-

acteristics of random sampling and time series observations, the usefulness

of longitudinal samples goes far beyond biomedicine and epidemiology, and

their trace is often found in economics, psychology, sociology and many

other fields of natural and social sciences.

For a typical framework of longitudinal data, we define t to be a

real-valued variable of time, Y (t) a real-valued outcome and X(t) =

837



June 6, 2003 10:50 WSPC/Advanced Medical Statistics chap23

838 C. O. Wu & K. F. Yu

(X(0)(t), . . . , X(k)(t))T , k ≥ 1, a R

k+1-valued covariate vector at time t.

Depending on the choice of origin, the time variable t is not necessarily non-

negative. As part of the general methodology, interest of statistical analysis

with regression models is often focused on modeling and determining the

effects of (t, X(t)) on the population mean of Y (t). For n randomly selected

subjects, each repeatedly measured over time, the longitudinal sample of

(Y (t), t, X(t)) is denoted by {(Y
ij

, t
ij

, X
ij

) : i = 1, . . . , n, j = 1, . . . , n
i
},

where t
ij

is the jth measurement time of the ith subject, Y
ij

and X
ij

=

(X
(0)

ij

, . . . , X

(k)

ij

)T are the observed outcome and covariate vector, respec-

tively, of the ith subject at t
ij

and n
i
is the ith subject’s number of repeated

measurements. The total number of measurements is N =
∑

n

i=1
n

i
. In

contrast to the classical independent identically distributed (i.i.d.) samples,

the measurements within each subject are possibly correlated, although the

inter-subject measurements are independent. A longitudinal sample is said

to have a balanced design if all the subjects have their measurements made

at a common set of time points, i.e. n
i

= m for some m ≥ 1 and all

i = 1, . . . , n and t1j
= · · · = t

nj
for all j = 1, . . . , m. An unbalanced design

arises if the design time t
ij

are different per subject. In practice, unbalanced

designs may be caused by the presence of missing values in an otherwise

balanced design or by the random variations of the time design points.

In general, two routes could be used to obtain biomedical observations:

clinical trials and observational cohort studies. The main difference between

a clinical trial and an observational cohort study is at their designs. In a

clinical trial, the investigator has the power to determine, at least partially,

the selection of the participants and the design of the trial, such as the

treatment offered, the length of the trial and the time and methods of the

measurement process. An observational cohort studies, on the other hand,

is more complicated, because the risk factors, the treatments and the

measurement process now depend on the participants of the study and

are usually not controlled by the investigator. Consequently, it is possible

to observe balanced longitudinal data from clinical trials. But, for various

reasons that are out of the investigators’ control, most observational cohort

studies have unbalanced longitudinal designs.

1.2. Examples of longitudinal studies

The following two epidemiological examples illustrate some typical features

of longitudinal samples. Although these examples share some similarities,

such as both of them are cohort studies with unbalanced designs, they differ

in the numbers of repeated measurements and the design of their covariates.
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1.2.1. Alabama small-for-gestational-age (ASGA) study

This is a prospective study of risk factors and intrauterine growth

retardation involving 1475 women who had their fetal anthropometry mea-

surements made by ultrasound repeatedly during pregnancy. All the women

were scheduled to have their measurements made at approximately 17,

25, 31 and 36 weeks of gestation. Their actual visits, however, numbered

between 1 to 7 times per person, did not follow this schedule and were

scattered throughout 12 to 43 weeks of gestation. This results in an

unbalanced design in the sense that not all the subjects are measured

at the same design points. Associated covariates that may affect fetal de-

velopment include maternal behavioral factors, such as cigarette smoking,

alcohol consumption and drug abuse, and maternal anthropometric mea-

surements, such as pre-pregnancy weight, height and body mass index, and

placental development measured by placental thickness at different stages

of gestation. Some of these covariates, such as the maternal anthropometric

measurements are time-dependent. But, the others, such as maternal

behavioral factors, may be either time-dependent or time-invariant,

depending on how these variables are defined. The outcome variables of

fetal development, which, of course, are all time-dependent, include the fetal

abdominal circumference, biparietal diameter, femur length and other

ultrasound measurements. Figure 1 shows the observed fetal abdominal

circumferences (in cm) at their corresponding gestational age in weeks. To

see the trend of the individual repeated measurements, the line segments

indicate the measurement sequences for a number of randomly selected

subjects. Heuristically, we observe a linear upward trend on the growth of

fetal size. But, there has been no prior study which justifies the goodness

of a linear growth model for this population or any other statistical model

on the covariate effects on fetal growth. A statistical analysis should then

focus on two objectives: establishing an appropriate statistical model so

that the effects of these covariates on the outcome of interest can be clearly

interpreted; developing estimation and inference procedures to adequately

quantify the covariate effects based on the chosen statistical models.

1.2.2. HIV/CD4 depletion data

The data set is from Multicenter AIDS Cohort Study (MACS) 1984–1991,

which includes 400 homosexual men who were infected by the human

immunodeficiency virus (HIV) between 1984 and 1991. Because CD4

cells (T-helper lymphocytes) are vital for immune function, an important

component of the study is to evaluate the effects of risk factors, such as
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Fig. 1. Relationship between fetal abdominal circumference (in cm) and fetal gestation
(in weeks). Left Panel: individual measurement. Right Panel: sequences of measurements
for some randomly selected subjects.

cigarette smoking and drug use, and health status, such as CD4 cell levels

before the infection, on the post-infection depletion of CD4 percent (CD4

percent of lymphocyte cells). Although all the individuals were scheduled

to have their measurements made at semi-annual visits, the study has

an unbalanced design because the subjects’ actual visiting times did not

exactly follow the schedule and the HIV infections happened randomly

during the study. The numbers of repeated measurements range from 1 to

14 with a median of approximately 6. Compared with the previous example

of ASGA Study, this data set has a smaller number of subjects and a wider

range of repeated measurements. The covariates of interest in these data

also include both time-dependent and time-invariant variables. However,

as will be seen later in this chapter, these covariates have some important

differences, hence, should be treated differently, from those considered in

the ASGA Study. Further details of the design and medical importance of

the MACS data can be found in Kaslow et al.23
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1.3. Overview of regression models

1.3.1. Main objectives

Generally speaking, a proper longitudinal analysis should achieve at least

three objectives:

• The model under consideration must give an adequate description of the

scientific relevance of the data and be sufficiently simple and flexible to

be practically implemented. In biomedical and epidemiological studies,

we would prefer a model that gives a clear and meaningful biological

interpretation and also has a simple mathematical structure.

• The methodology must contain proper model diagnostic tools to evalu-

ate the validity of a statistical model for a given data set. Two impor-

tant diagnostic methods are confidence regions and tests of statistical

hypotheses.

• The methodology must have appropriate theoretical and practical

properties, and can adequately handle the possible intra-subject corre-

lations of the data. In practice, the intra-subject correlations are often

completely unknown and difficult to be adequately estimated, so that it

is generally preferred to use estimation and inference procedures that do

not depend on modeling the specific correlation structures.

1.3.2. Parametric models

Naturally, the most commonly used modeling approach is to use parametric

regression, such as the random and mixed effects linear models, the

generalized linear models and nonlinear models. The simplest case of these

models is the marginal linear model of the form

Y
ij

=

k

∑

l=0

β
l
X

(l)

ij

+ ε
i
(t

ij
) , (1)

where β0, . . . , βk
are constant linear coefficients describing the effects of the

corresponding covariates, ε
i
(t) are realizations of a mean zero stochastic

process ε(t) at t and X
ij

and ε
i
(t

ij
) are independent. Similar to all regres-

sion models where a constant intercept term is desired, we set X

(0) ≡ 1,

which produces a baseline coefficient β0, representing the mean value of

Y (t) when all the covariates X

(l)(t) are set to zero. A popular special case

of the error process is to take ε(t) to be a mean zero Gaussian stationary

process. Although (1) appears to be overly simplified for many practical
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situations, its generalizations lead to many useful models which form the

bulk of longitudinal analysis.

Estimation and inference methods based on parametric models, inclu-

ding the weighted least squares, the quasi-likelihoods and the generalized

estimating equations, have been extensively investigated in the literature.

The details can be found in some references.5,7,8,20,21,24,25,28,34,35,37,43 The

main advantage of parametric models is that they generally have simple

and intuitive interpretations. User friendly computer programs are already

available in most popular statistical software packages, such as SAS and S-

Plus. However, these models suffer the potential shortfall of model misspec-

ification, which may lead to erroneous conclusions. At least in exploratory

studies, it is necessary to relax some of the parametric restrictions.

1.3.3. Semiparametric models

A useful semiparametric model, investigated by Zeger and Diggle42 and

Moyeed and Diggle,26 is the partially linear model of the form

Y
ij

= β0(tij) +

k

∑

l=1

β
l
X

(l)

ij

+ ε
i
(t

ij
) , (2)

where β0(t) is an unknown smooth function of t, β
l
are unknown constants

and ε
i
(t) and X

ij
are defined in model (1). This model is more general

than the marginal linear model (1), because β0(t) is allowed to change

with t, rather than setting to be a constant over time. On the other hand,

by including the linear terms of X

(l)

ij

, Eq. (2) is also more general than

the nonparametric regression studied,2,14,15,30 which involves only (t
ij

, Y
ij

).

However, because model (2) describes the effects of X

(l)

ij

on Y
ij

through

constant linear coefficients, this model is still, to some degree, based on

mathematical convenience rather than scientific relevance. For example,

there is no reason to expect that the influences of maternal risk factors

on fetal development in the ASGA Study (Sec. 1.2.1) or the effects of

cigarette smoking and pre-infection CD4 level on the post-infection CD4

cell percent in the HIV/CD4 Depletion Data (Sec. 1.2.2) are linear and con-

stant throughout the study period. Thus, further generalization of model

(2) is needed in many situations.

1.3.4. Nonparametric models

Although it is possible in principle to model (Y
ij

, t
ij

, X
ij

) through a com-

pletely nonparametric high dimensional function, such approach is often
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impractical due to the well-known problem of “curse of dimensionality”.

Moreover, numerical results obtained from high dimensional nonparametric

fittings are often difficult to interpret. These problems motivate the consi-

deration of nonparametric models that have certain meaningful structures.

An important class of structural nonparametric regression models is the

varying-coefficient models of the form

Y
ij

= X

T

ij

β(t
ij

) + ε
i
(t

ij
) , (3)

where β(t) = (β0(t), . . . , βk
(t))T is a (k + 1)-vector of smooth functions of

t and ε
i
(t) and X

ij
are defined as in Eq. (1). Because Eq. (3) gives a linear

model between Y (t) and X(t) at each fixed t, the linear coefficients β
l
(t),

l = 0, . . . , k, can be interpreted the same way as in Eq. (1). Taking X

(0)

ij

≡ 1,

β0(t) represents the intercept at time t. On the other hand, because all

the linear coefficients may change with t, we may obtain different linear

models at different time points. Model (3) is a special case of the general

varying-coefficient models discussed by Hastie and Tibshirani.17

Methods of estimation and inferences based on this class of models

have been subjected to intense investigation recently in the literature. A

number of different smoothing methods for the estimation of β(t) have been

proposed. These include the ordinary least squares local polynomials, the

penalized least squares, the two-step and componentwise methods and the

basis approximation approaches. Targeted to specific types of longitudinal

designs, each of these methods has its own advantages and disadvantages

in practice. We will present in Secs. 4 and 5 an overview of the above esti-

mation and inference methods and demonstrate in Sec. 6 the applications

of these methods.

2. Linear mixed effects models

2.1. Models for covariate effects and correlations

Statistical models for longitudinal observations generally serve two

purposes: (i) describing the effects of the treatments and other factors on

the mean response profile; (ii) describing the differences in response profiles

between individuals. A model serving the first purpose is generally classified

as a marginal model or a population average model. A model serving the

second purpose is a random effects model or a subject specified model.43 A

mixed effects model then combines both the marginal and random effects.

In particular, a linear mixed effects model is obtained when the marginal

and random effects are additive and follow a linear relationship.
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It is convenient to describe the model through a matrix representation.

Let Y
i
= (Y

i1, . . . , Yini
)T be the [n

i
× 1] vector of the response for the ith

subject, t
i

= (t
i1, . . . , tini

)T be the subject’s time design points and X
i

be the corresponding [n
i
× (k + 1)] covariate matrix whose jth row, for

j = 1, . . . , n
i
, is (1, X

(1)

ij

, . . . , X

(k)

ij

). Assuming that the error term ε
i
(t) of

Eq. (1) is a mean zero Gaussian process with covariate matrix V
i
(t

i
), the

responses Y
i

are then independent Gaussian random vectors such that

Y
i
∼ N(X

i
β, V

i
(t

i
)) , (4)

where β = (β0, . . . , βk
)T with β

j
being defined in Eq. (1) and N(a,b)

denotes a multivariate normal distribution with mean vector a and covari-

ance matrix b. Note that, because model (4) represents the conditional

mean of Y
i
at X

i
through X

i
β, it is a marginal model.

The covariance structures of model (4) are usually influenced by three

factors: random effect, serial correlation and measurement error. The

random effects characterize the stochastic variations between subjects

within the population. In particular, we may view that, when the covariates

affect the response linearly, some of the linear coefficients may vary from

subject to subject. The serial correlations are the results of time-varying

associations between different measurements of the same subject. Such cor-

relations are typically positive in biomedical studies, and become weaker as

the time interval between the measurements increases. Finally, the measure-

ment errors, which are normally assumed to be independent both between

and within the subjects, are induced by the measurement process or random

variations within the subjects.

Suppose that, for each subject i, there is a [r × 1] vector of explana-

tory variables U
ij

measured at time t
ij

, which may or may not overlap

with the original covariate vector X
ij

. Using the additive decomposition of

random effects, serial correlations and measurement errors, ε
i
(t

ij
) can be

expressed as

ε
i
(t

ij
) = U

T

ij

b
i
+ W

i
(t

ij
) + Z

ij
, (5)

where b
i
is the [r× 1] random vector with multivariate normal distribution

N(0, D), D is a [r × r] covariance matrix with (p, q)th element d
pq

= d
qp

,

W
i
(t

ij
) for i = 1, . . . , n are independent copies of a mean zero Gaussian

process whose covariance at time points t
ij1

and t
ij2

is ρ
W

(t
ij1

, t
ij2

), and

Z
ij

for i = 1, . . . , n and j = 1, . . . , n
i
are independent identically distributed

random variables with N(0, τ

2) distribution. Writing δ
i
(t

ij
) = W

i
(t

ij
)+Z

ij
,

δ
i
= (δ

i
(t

i1), . . . , δi
(t

ini
))T and U

i
to be the [n

i
× r] matrix whose jth row
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is U

T

ij

, (4) and (5) reduce to the linear mixed effects model of Laird and

Ware24

Y
i
= X

i
β + U

i
b
i
+ δ

i
. (6)

The marginal effect β represents the influence of X
i

on the population

average of the response profile, while b
i

describes the variation of the ith

subject from the population conditioning on the given explanatory variable

U
i
. Thus, conditioning on X

i
and U

i
, model (6) implies that Y

i
for i =

1, . . . , n are independent Gaussian vectors such that

Y
i
∼ N(X

i
β, U

i
DU

T

i

+ P
i
+ τ

2
I
i
) , (7)

where P
i

is the [n
i
× n

i
] covariance matrix whose (j1, j2)th element is

ρ
W

(t
ij1

, t
ij2

) and I
i

is the [n
i
× n

i
] identity matrix.

A number of special cases can be derived for the variance-covariance

structure of model (5). The classical linear models for the independent cross-

sectional data (or the independent identically distributed data) is a special

case of model (7) where ε
i
(t

ij
) are only affected by the measurement errors

Z
ij

. When neither random effects nor measurement errors are present, the

error term is of pure serial correlation ε
i
(t

ij
) = W

i
(t

ij
). Moreover, if W

i
(t

ij
)

are from a mean zero stationary Gaussian process, the covariance of ε
i
(t

ij1
)

and ε
i
(t

ij2
), hence, Y

ij1
and Y

ij2
, can be specified by

Cov(ε
i
(t

ij1
), ε

i
(t

ij2
)) = σ

2
ρ(|t

ij1
− t

ij2
|) , (8)

where σ is a positive constant and ρ(·) is a continuous function. Useful

choices of ρ(·) include the exponential correlation ρ(s) = exp(−as) for

some constant a > 0 and the Gaussian correlation ρ(s) = exp(−as

2), among

others. When ε
i
(t

ij
) are affected by a mean zero stationary Gaussian process

and a mean zero Gaussian white noise (measurement error), the variance

of Y
ij

is σ

2
ρ(0) + τ

2, while the covariance of Y
ij1

and Y
ij2

, for j1 6= j2,

is σ

2
ρ(|t

ij1
− t

ij2
|), for some σ > 0, τ > 0 and continuous correlation

function ρ(·). When serial correlations are not present, the intra-subject

correlations are only induced by the random effects, so that P
i
is not present

in model (7).

2.2. Likelihood based estimation and inferences

2.2.1. Conditional maximum likelihood estimation

Suppose that the variance-covariance matrix V
i
(t

i
) of model (5) is de-

termined by a R

q-valued parameter vector α. Denote V
i
(t

i
; α) to be the
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variance-covariance matrix parametrized by α. The log-likelihood function

for model (4) is

L(β, α) = c +

n

∑

i=1

{

−
1

2
log |V

i
(t

i
; α)|

−
1

2
(Y

i
−X

i
β)T

V

−1

i

(t
i
; α)(Y

i
−X

i
β)

}

, (9)

where c =
∑

n

i=1
[(−n

i
/2) log(2π)]. For a given α, model (9) can be maxi-

mized by

β̂(α) =

[

n

∑

i=1

(XT

i

V

−1

i

(t
i
; α)X

i
)

]−1 [
n

∑

i=1

(XT

i

V

−1

i

(t
i
; α)Y

i
)

]

. (10)

It is easy to verify that, under model (4), β̂(α) is an unbiased estimator

of β. Direct calculation also shows that the covariance matrix of β̂(α) is

Cov[β̂(α)] =

[

n

∑

i=1

(XT

i

V

−1

i

(t
i
; α)X

i
)

]−1

×

[

n

∑

i=1

(XT

i

V

−1

i

(t
i
; α) Cov(Y

i
)V −1

i

(t
i
; α)X

i
)

]

×

[

n

∑

i=1

(XT

i

V

−1

i

(t
i
; α)X

i
)

]−1

=

[

n

∑

i=1

(XT

i

V

−1

i

(t
i
; α)X

i
)

]−1

. (11)

It is interesting to note that the second equality sign of model (11) does not

hold when the structure of the variance-covariance matrix is not correctly

specified. Further derivation using Eqs. (4)–(11) shows that β̂(α) has a

multivariate normal distribution,

β̂(α) ∼ N







β,

[

n

∑

i=1

(XT

i

V

−1

i

(t
i
; α)X

i
)

]−1






. (12)

When α is known, this result can be used to develop inference procedures,

such as confidence regions and test statistics, for β.
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2.2.2. Maximum likelihood estimation

When α is unknown, as in most practical situations, a consistent estimate

of α has to be used. An intuitive approach is to estimate β and α by maxi-

mizing (9) with respect to β and α simultaneously. Maximum likelihood

estimators (MLE) of this type can be computed by substituting (10) into

(9) and then maximizing (9) with respect to α. Denote the resulting ML

estimators by β̂
ML

and α̂
ML

. The asymptotic distributions of (β̂
ML

, α̂
ML

)

can be developed using the standard approaches in large sample theory.

Although (β̂
ML

, α̂
ML

) has some justifiable statistical properties, as for

most likelihood-based methods, it may not be desirable in practice. To

see why an alternative estimation method might be warranted in some

situations, we consider the simple linear regression with independent errors

and n1 = · · · = n
n

= m,

Y
i
∼N(X

i
β, σ

2
I
m

) , (13)

where I
m

is the [m ×m] identity matrix. The parameters involved in the

model are β and σ. Let β̂
ML

and σ̂
ML

be the MLEs of β and σ, respectively,

and RSS be the residual sum of squares defined by

RSS =

n

∑

i=1

(Y
i
−X

i
β̂

ML
)T (Y

i
−X

i
β̂

ML
) .

The MLE of σ

2 is σ̂

2

ML

= RSS/(nm). However, it is well-known that, for

any finite n and m, σ̂

2

ML

is a biased estimator of σ

2. On the other hand, a

slightly modified estimator σ̂

2

REML

= RSS/[nm − (k + 1)] is unbiased for

σ

2. Here, σ̂

2

REML

is the restricted maximum likelihood (REML) estimator

for the model (13).

2.2.3. Restricted maximum likelihood estimation

This class of estimators was introduced by Patterson and Thompson29 for

the purpose of estimating variance components in the linear models. The

main idea is to consider a linear transformation of the original response

variable so that the distribution of the transformed variable does not depend

on β. Let Y = (Y T

1 , . . . , Y

T

n

)T , X = (XT

1 , . . . , X

T

n

)T and V be the block-

diagonal matrix with V
i
(t

i
) on the ith main diagonal and zeros elsewhere.

Then, with V parameterized by α, model (4) is equivalent to

Y ∼ N(Xβ,V(α)) . (14)

The REML estimator of α, the variance component of (14), is obtained

by maximizing the likelihood function of Y∗ = A

T Y, where A is a [N ×
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(N −k−1)], N =
∑

n

i=1
n

i
, full rank matrix such that A

T X = 0. A specific

construction of A can be found in Diggle, Liang and Zeger.8 It follows

from (14) that Y∗ has a mean zero multivariate Gaussian distribution with

covariance matrix A

T V(α)A. Harville16 showed that the likelihood function

of Y∗ is proportional to

L

∗(α) =

∣

∣

∣

∣

∣

n

∑

i=1

X

T

i

X
i

∣

∣

∣

∣

∣

1/2
∣

∣

∣

∣

∣

n

∑

i=1

X

T

i

V

−1

i

(t
i
; α)X

i

∣

∣

∣

∣

∣

−1/2{
n

∏

i=1

|V
i
(t

i
; α)|−1/2

}

× exp

{

−
1

2

n

∑

i=1

(Y
i
−X

i
β̂(α))T

V

−1

i

(t
i
; α)(Y

i
−X

i
β̂(α))

}

. (15)

The REML estimator α̂
REML

of α maximizes (15). The REML estimator

β̂
REML

of β is obtained by substituting α of (10) with α̂
REML

. Because

(15) does not depend on the choice of A, the resulting estimators β̂
REML

and α̂
REML

are free of the specific linear transformations.

The log-likelihood of Y∗, log[L∗(α)], differs from the log-likelihood

L(β̂, α) only through a constant, which does not depend on α, and

−
1

2
log

∣

∣

∣

∣

∣

n

∑

i=1

X

T

i

V

−1

i

(t
i
; α)X

i

∣

∣

∣

∣

∣

,

which does not depend on β. Because both REML and ML methods are

based on the likelihood principle, they all have important theoretical pro-

perties such as consistency, asymptotic normality and asymptotic efficiency.

In practice, neither one is uniformly superior to the other for all the situa-

tions. Their numerical values are also computed from different algorithms.

For the ML method, the fixed effects and the variance components are

estimated simultaneously, while for the REML method, only the variance

components are estimated.

2.2.4. Inferences

The results established in the previous sections are useful to construct

inference procedures for β. We mention here only a few special cases. A

more complete account of inferential and diagnostic tools may be found in

Diggle,8 Zeger, Liang and Albert,43 Diggle, Liang and Zeger8 or Vonesh

and Chinchilli,35 among others.

Suppose that we have a consistent estimator α̂ of α, which may be either

the ML estimator α̂
ML

or the REML estimator α̂
REML

. Substituting α of

(12) with α̂, the distribution of β̂(α̂) can be approximated, at least when n



June 6, 2003 10:50 WSPC/Advanced Medical Statistics chap23

Regression Models for the Analysis of Longitudinal Data 849

is large, by

β̂(α̂) ∼ N(β, V̂ ) , (16)

where V̂ = [
∑

n

i=1
(XT

i

V

−1

i

(t
i
; α̂)X

i
)]−1. Suppose that C is a known [r ×

(k + 1)] matrix with full rank. It follows immediately from (16) that, when

n is sufficiently large, the distribution of Cβ̂(α̂) can be approximated by

Cβ̂(α̂) ∼N(Cβ, CV̂ C

T ) . (17)

Consequently, an approximate 100×(1−a)%, 0 < a < 1, confidence interval

for Cβ can be given by

Cβ̂(α̂)± Z1−a/2(CV̂ C

T )1/2
.

Taking C to be the (k + 1) row vector with 1 at its lth place and zero

elsewhere, an approximate 100× (1− a)% confidence interval for β
l
can be

given by

β̂
l
(α̂)± Z1−a/2

√

V̂
l
, (18)

where V̂
l
is the lth diagonal element of V̂ .

The approximation in (17) can also be used to construct test statistics

for linear statistical hypotheses. For example, suppose that we would like

to test the null hypothesis of Cβ = θ0 for a known vector θ0 against the

general alternative that Cβ 6= θ0. A natural test statistic would be

T̂ = [Cβ̂(α̂)− θ0]
T (CV̂ C

T )−1[Cβ̂(α̂)− θ0] , (19)

which has approximately a χ

2-distribution with r degrees of freedom,

denoted by χ

2
r

, under the null hypothesis. A level (100 × a)% test based

on T̂ then rejects the null hypothesis when T̂ > χ

2
r

(a) with χ

2
r

(a) being

the [100× (1− a)]th percentile of χ

2
r

. For the special case of testing β
l
= 0

versus β
l
6= 0, a simple procedure equivalent to (19) is to reject the null

hypothesis when

|β̂
l
(α̂)| > Z1−a/2

√

V̂
l
,

where Z1−a/2 and V̂
l
are defined in (18).

3. Partially Linear Models

As discussed in Sec. 1.3.3, this class of models has been studied by Zeger

and Diggle42 and Moyeed and Diggle26 as a means to generalize the
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marginal linear models. With further restrictions on the error process, (2) is

equivalent to

Y (t) = β0(t) +

k

∑

l=1

β
l
X

(l)(t) + ε(t) , (20)

where ε(t) is a mean zero stochastic process with variance σ

2 and correlation

function ρ(t), and X

(l)(t), l = 1, . . . , k, and ε(t) are independent. The errors

ε
i
(t

ij
) specified in (2) are then independent copies of ε(t). A useful way to

view ε
i
(t

ij
) is through the decomposition

ε
i
(t

ij
) = W

i
(t

ij
) + Z

ij
, (21)

where W
i
(t) are independent copies of a mean zero stationary process

W (t) with covariance function σ

2

W

ρ(t) and Z
ij

are independent identically

distributed measurement errors with mean zero and variance σ

2

Z

. The

covariance structure of the measurements Y
ij

for i = 1, . . . , n and j =

1, . . . , n
i
are

Cov(Y
i1j1

, Y
i2j2

) =











σ

2

Z

+ σ

2

W

, if i1 = i2 and j1 = j2 ,

σ

2

W

ρ(t
i1j1
− t

i2j2
) , if i1 = i2 and j1 6= j2 ,

0 , otherwise .

(22)

Although the above models can be classified as a special case of (3),

a class of the structural nonparametric models to be discussed in later

sections, their estimation methods are quite different, a fact owing to

the structural differences between these two classes of models. The rest

of this section focuses on an iteration procedure for the estimation of

β0(t), β1, . . . , βk
. Inferential and alternative estimation methods, which

constitute some major research activities in longitudinal analyses, are still

not well-understood and warrant considerable effort in further investigation.

3.1. Smoothing estimators for the mean response

Suppose for the moment that no covariate other than time is considered in

modeling the mean response. The model (20) then reduces to

Y (t) = β0(t) + ε(t) . (23)

Equivalently, with ε(t) defined in (20), β0(t) is the mean response of Y (t)

conditioning on time t; that is, β0(t) = E[Y (t)|t].

A natural approach for estimating β0(t) nonparametrically is to borrow

smoothing techniques from the classical independent identically distributed
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(i.i.d.) setting, while evaluating the statistical performances of the resulting

estimators by taking the influences of the intra-subject correlations into

account. A simple method is to use kernel smoothing, which amounts to

estimate β0(t) through a weighted average using the measurements obtained

within a neighborhood of t defined by a kernel function. Let K(u) be a con-

tinuous kernel function, usually a continuous probability density function,

defined on the real line, and h a positive bandwidth sequence which shrinks

to zero as n tends to infinity. A kernel estimator similar to the well-known

Nadaraya–Watson type kernel estimators in the i.i.d. setting is

β̂

K

0
(t) =

∑

n

i=1

∑

ni

j=1
{Y

ij
K[(t− t

ij
)/h]}

∑

n

i=1

∑

ni

j=1
K[(t− t

ij
)/h]

. (24)

Here, (24) uses uniform weight on each measurement, hence, makes no

distinction between the subjects that have unequal numbers of repeated

measurements. Thus subjects with more repeated measurements are used

more often than those with fewer repeated measurements. A general formu-

lation is to assign a specific weight to each subject and estimate β0(t) by

β̂

K

0 (t; w) =

∑

n

i=1

∑

ni

j=1
{Y

ij
w

i
K[(t− t

ij
)/h]}

∑

n

i=1

∑

ni

j=1
{w

i
K[(t− t

ij
)/h]}

, (25)

where the weights, w = (w1, . . . , wn
), satisfy w

i
≥ 0 for all i = 1, . . . , n

with strict inequality for some 1 ≤ i ≤ n. Clearly, (25) reduces to (24)

when w
i

= 1/N . An intuitive weight choice other than w
i

= 1/N is to

uniformly weight each subject, rather than each measurement, so that the

resulting kernel estimator is (25) with w
i
= 1/(nn

i
).

Other approaches for the estimation of (22) have also been

studied.2,14,15,27,31 We omit these methods here and refer to their original

articles for details. These methods, including (25) and the above alternative

approaches, are essentially based on the fundamental spirit of local smooth-

ing, hence, often lead to similar results in practice. This is in contrast to

the smoothing methods to be discussed in the next section, where, because

of the model complexity, different smoothing methods often produce very

different results.

A crucial step in obtaining an adequate kernel estimator for β0(t) is to

select an appropriate bandwidth h, while the choices of kernel functions are

relatively less important. For estimation methods other than kernel smooth-

ing, such as splines, this amounts to selecting an appropriate smoothing

parameter. Rice and Silverman31 suggested a simple cross-validation for

selecting a data-driven smoothing parameter which does not depend on
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the intra-subject correlation structures of the data. Applying their cross-

validation to the kernel estimator (25), we first define β̂

(−i,K)

0
(t; w) to be

the estimator computed using (25) and the remaining data after deleting

the entire set of repeated measurements of the ith subject. Predicting the

ith subject’s outcome at time t by β̂

(−i,K)

0
(t; w), the cross-validation score

of (25) is

CV(h) =

n

∑

i=1

ni
∑

j=1

{w
i
[Y

ij
− β̂

(−i,K)

0
(t

ij
; w)]2} . (26)

Suppose that (26) can be uniquely minimized. The “leave-one-subject-out”

cross-validated bandwidth h
cv

is the minimizer of (26). Heuristically, the

use of h
cv

can be justified because, by minimizing (26), it approximately

minimizes an average prediction error of (25). More details for the imple-

mentations and generalizations of this cross-validation will be discussed in

Sec. 4.7.

Direct calculation of (26) can often be time consuming, as the algorithm

repeats itself each time a new subject is deleted. Denote K
ij

= K[(t −

t
ij

)/h],

K

∗
ij

=
w

i
K[(t− t

ij
)/h]

∑

n

i=1

∑

ni

j=1
w

i
K[(t− t

ij
)/h]

and K

∗
i

=

ni
∑

j=1

K

∗
ij

for i = 1, . . . , n. A computationally simpler approach, also suggested by

Rice and Silverman,31 is to compute [Y
ij
− β̂

(−i,K)

0
(t

ij
; w)] using the follow-

ing expression:

Y
ij
− β̂

(−i,K)

0
(t

ij
; w) = Y

ij
−





β̂

K

0
(t

ij
; w)−

ni
∑

j=1

(Y
ij

K

∗
ij

)





(

1 +
K

∗
i

1−K

∗
i

)

= [Y
ij
− β̂

K

0 (t
ij

; w)] +

ni
∑

j=1

(Y
ij

K

∗
ij

)

−





β̂

K

0
(t

ij
; w)−

ni
∑

j=1

(Y
ij

K

∗
ij

)





(

K

∗
i

1−K

∗
i

)

= [Y
ij
− β̂

K

0 (t
ij

; w)] +

(

K

∗
i

1−K

∗
i

)

×

[

∑

ni

j=1
(Y

ij
K

∗
ij

)

K

∗
i

− β̂

K

0
(t

ij
; w)

]

. (27)
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The above expression, as currently stated, is specifically targeted to kernel

estimators defined in (25). When other smoothing methods, such as splines,

are used, we may not get an explicit expression as the right side of (27),

hence, direct calculation of (26) has to be carried out by deleting the

subjects one at a time.

Large sample inferences of β̂

K

0 (t; w) can be derived based on the

asymptotic expressions of its means and variances and its asymptotic

distributions. Because β̂

K

0 (t; w) is a linear statistic of Y
ij

, its means and

variances can be directly computed and, consequently, its asymptotic dis-

tributions can be easily established by checking the triangular array central

limit theorem after taking the intra-subject correlations into account; see,

for example, Wu, Chiang and Hoover39 and Wu and Chiang.38 Because

β̂

K

0
(t; w) is a special case of the kernel estimators of Sec. 4, details of

pointwise and simultaneous inferences for β0(t) are discussed in Sec. 5.1.

3.2. Estimation of covariate effects

With covariates other than time entered into the model, the estimation

of (β0(t), β1, . . . , βk
) can be proceeded by an iteration that combines

smoothing with parametric estimation techniques. Suppose that the error

terms ε
i
(t) of (21) have known variance-covariance matrices V

i
(t

i
) for

t
i

= (t
i1, . . . , tini

) and all i = 1, . . . , n. The iteration can be proceeded

as follows:

(a) Set β0(t) to zero and calculate an initial estimate of (β1, . . . , βk
)T using

(10), an expression also for the generalized least squares, with V
i
(t

i
; α)

replaced by V
i
(t

i
).

(b) Based on the current estimate (β̂1, . . . , β̂k
), calculate the residual r

ij
=

Y
ij
−
∑

k

l=1
β̂

l
X

(l)

ij

and compute the kernel estimator β̂

K

0
(t; w) of β0(t)

using (24) with Y
ij

replaced by r
ij

.

(c) Based on the current kernel estimator β̂

K

0
(t; w), calculate the residual

r
ij

= Y
ij
− β̂

K

0
(t

ij
; w) and update the estimate of (β1, . . . , βk

) using

(10) with (V
i
(t

i
; α), Y

ij
) replaced by (V

i
(t

i
), r

ij
).

(d) Repeat steps (b) and (c) until the estimates converge.

This algorithm is a special case of the more general backfitting algorithm

described in Hastie and Tibshirani.17

The assumption of having a known correlation structure is unrealistic

and can be relaxed. Although an incorrectly specified correlation struc-

ture may cost the efficiency of the estimators, it generally does not affect



June 6, 2003 10:50 WSPC/Advanced Medical Statistics chap23

854 C. O. Wu & K. F. Yu

the consistency. When the variance-covariance matrix is parametrized by a

parameter α and the error terms are from a mean zero Gaussian station-

ary process, the above iteration algorithm can be used in conjunction with

the likelihood and restricted likelihood methods of the previous section,

i.e. the generalized least squares estimators used in Steps (a) and (c) can

be replaced by the likelihood based estimators β̂
ML

or β̂(α̂
REML

). Further

computational details, statistical properties of the resulting estimators and

a modified estimation procedure can be found in Zeger and Diggle42 and

Moyeed and Diggle.26 Inferences based on the resulting estimators have

not been systematically investigated, hence, warrants substantial further

development.

4. Smoothing for Varying-Coefficient Models

We present in this section a series of different smoothing methods for

estimating the coefficient curves β(t) = (β0(t), . . . , βk
(t))T of (3). Inferences

based on smoothing estimators of β(t) will be discussed in Sec. 5.

4.1. Some useful expressions

In observational studies, the covariates are usually random as the subjects

are randomly chosen, although they could in principle be either random or

fixed. For generality, we assume throughout that X(t) is random and the

matrix E[X(t)XT (t)] ≡ E
XX

T (t) exist. With a proper change of the nota-

tion, our methods can be modified to accommodate the case of nonrandom

covariates. An equivalent expression of (3) is then

Y (t) = X

T (t)β(t) + ε(t) , (28)

where ε(t) is a mean zero stochastic process and ε(t) and X(t) are inde-

pendent. Suppose that E
XX

T (t) is invertible and its inverse is E

−1

XX

T (t). It

directly follows from (28) that β(t) uniquely minimizes the second moment

of ε(t) in the sense that

E{[Y (t)−X

T (t)β(t)]2} = inf
all b(·)

E{[Y (t)−X

T (t)b(t)]2} , (29)

and is given by

β(t) = E

−1

XX
T (t)E[X(t)Y (t)] . (30)
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When the covariates are time-invariant, we have X(t) ≡ X and E
XX

T (t) ≡

E
XX

T , so that Eq. (30) reduces to

β
r
(t) = E

[(

k

∑

l=0

e
rl

X

(l)

)

Y (t)

]

, (31)

where e
rl

is the element of E

−1

XX
T at the rth row and lth column.

4.2. Smoothing based on least squares

4.2.1. General formulation

Intuitively, (29) suggests that β(t) can be estimated by a method of local

least squares using the measurements observed within a neighborhood of t.

Assume that, for each l and some integer p ≥ 0, β
l
(t) is p times differentiable

and its pth derivative is continuous. Approximating β
l
(t

ij
) by a pth order

polynomial
∑

p

r=0
{b

lr
(t)(t

ij
− t)r} for all l = 0, . . . , k, a local polynomial

estimator of β(t) = (β0(t), . . . , βk
(t))T based on a kernel neighborhood

is b̂0(t) = (b̂00(t), . . . , b̂k0(t))
T , where {b̂

lr
(t); l = 0, . . . , k, r = 0, . . . , p}

minimizes

L
p
(t) =

n

∑

i=1

ni
∑

j=1

w
i

{

Y
ij
−

k

∑

l=0

[

X

(l)

ij

(

p

∑

r=0

b
lr

(t)(t
ij
− t)r

)]}2

×K

(

t
ij
− t

h

)

, (32)

where w
i
are the non-negative weights as in (25), K(·) is a kernel function,

usually chosen to be a probability density function, and h is a non-negative

bandwidth. As a by-product of (32), (r!)b̂
lr

(t) may be used to estimate the

rth derivative β

(r)

l

(t) of β
l
(t), r = 1, . . . , p.

4.2.2. Least squares kernel estimators

The simplest case of (32) is the ordinary least squares kernel estimator, also

known as the local constant fit, obtained by minimizing (32) with p = 0.

Using the matrix representation Y
i
= (Y

i1, . . . , Yini
)T ,

X
i
=











1 X

(1)

i1
· · · X

(k)

i1

...
...

...
...

1 X

(1)

ini
· · · X

(k)

ini











and K
i
(t) =









K
i1 · · · 0

...
...

...

0 · · · K
ini








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with K
ij

= K[(t
ij
− t)/h], if

∑

n

i=1
X

T

i

K
i
(t)X

i
is invertible, then (32) with

p = 0 can be uniquely minimized and its minimizer, the kernel estimator

of β(t), is given by

β̂

LSK(t) =

(

n

∑

i=1

w
i
X

T

i

K
i
(t)X

i

)−1(
n

∑

i=1

w
i
X

T

i

K
i
(t)Y

i

)

. (33)

When the model incorporates no covariate other than time, i.e. k = 0, (33)

reduces to a Nadaraya–Watson type kernel estimator of the conditional

expectation E[Y (t)|t]; for example, Härdle.12

4.2.3. Least squares local linear estimators

Although (33) has a simple mathematical expression, it often leads to

significant bias when t is at the boundary of its support. An automatic

procedure to reduce such boundary bias is to use higher order local poly-

nomial fits. But, a high order local polynomial fit can be impractical in

some applications because it usually requires large sample sizes and may

be computationally intensive. A practical approach that provides automatic

boundary bias adjustment is to use local linear fit that minimizes (32) with

p = 1. Denote

N
lr

=











∑

i,j

[w
i
X

(l)

ij

X

(r)

ij

K
ij

]
∑

i,j

[w
i
X

(l)

ij

X

(r)

ij

(t
ij
− t)K

ij
]

∑

i,j

[w
i
X

(l)

ij

X

(r)

ij

(t
ij
− t)K

ij
]
∑

i,j

[w
i
X

(l)

ij

X

(r)

ij

(t
ij
− t)2K

ij
]











,

N
r

= (N0r
, . . . ,N

kr
), N = (N T

0 , . . . ,N T

k

)T ,

M
r

=





∑

i,j

[w
i
X

(r)

ij

Y
ij

K
ij

],
∑

i,j

[w
i
X

(r)

ij

(t
ij
− t)Y

ij
K

ij
]





T

,

M = (MT

0
, . . . ,MT

k

)T , b
l
(t) = (b

l0(t), bl1(t))
T and b(t) = (b0(t), . . . , bk

(t)T

for r, l = 0, . . . , k. Setting the partial derivatives of L1(t) with respect to

b
lr

(t) to zero, the normal equation of (32) with p = 1 is

N b(t) =M . (34)

Suppose that the matrix N is invertible at t. The solution of (34) exists

and is uniquely given by b̂(t) = N−1M. The least squares local linear

estimator β̂

LSL

l

(t) of β
l
(t) is then

β̂

LSL

l

(t) = e

T

2l+1b̂(t) , (35)
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where e
q

is the [2(k +1)× 1] column vector with 1 at its qth place and zero

elsewhere. Explicit expressions for the general higher order least squares

local polynomial estimators can be similarly derived; see Hoover et al.18

We omit the details of these general higher order estimators, as a local

linear fitting is sufficiently satisfactory in almost all the biomedical studies

that have appeared in the literature.

4.2.4. Least squares with centered covariates

In some situations, some of the covariates used in (28) can not have values

at zero, so that the baseline coefficient curve β0(t) does not have a practical

interpretation. Strictly positive covariates appear naturally both in the

ASGA Study (Sec. 1.2.1), such as the mother’s placental thickness and

pre-pregnancy height, and the HIV/CD4 Depletion Data (Sec. 1.2.2), such

as the subject’s pre-infection CD4 level. A useful remedy when such a situa-

tion arises is to use a centered version of the covariates in the model, so that

the corresponding baseline coefficient can be interpreted as the conditional

mean of Y (t) when the centered covariates are set to zero.

Let X

(∗l)(t) = X

(l)(t)−E[X(l)(t)] be the centered version of X

(l)(t) and

X

(∗)(t) be the covariate vector with some or all of its components being

centered. An equivalent form of (28) is

Y (t) = (X(∗)(t))T

β

∗(t) + ε(t) , (36)

where β

∗(t) = (β∗
0
(t), β1(t), . . . , βk

(t))T . Note that β

∗
0
(t), the baseline co-

efficient curve of (36), represents the mean of Y (t), when X

(∗l)(t), rather

than X

(l)(t), for l = 1, . . . , k are set to zero. Other coefficient curves of (36)

can be interpreted the same way as those of (28).

The estimation of β

∗(t) can be obtained by first estimating the centered

covariates X

(∗l)

ij

of X

(l)

ij

and then minimizing (32) with X

(l)

ij

replaced

by X

(∗l)

ij

. If X

(l)(t) is a time-dependent covariate, then, using a kernel

smoothing, a centered version of X

(l)

ij

can be estimated by X

(∗l)

ij

= X

(l)

ij

−

µ̂
l
(t

ij
) with

µ̂
l
(t) =

∑

n

i=1

∑

ni

j=1
{w

i
X

(l)

ij

Γ
l
[(t− t

ij
)/γ

l
]}

∑

n

i=1

∑

ni

j=1
{w

i
Γ

l
[(t− t

ij
)/γ

l
]}

, (37)

where (Γ
l
(·), γ

l
) is a set of kernel and bandwidth. On the other hand, if

X

(l)(t) ≡ X

(l) is time-invariant, then X

(l)

ij

≡ X

(l)

i

for all j = 1, . . . , n
i
,

and X

(∗l)

i

can be taken as X

(l)

i

− X̄

(l), where X̄

(l) = n

−1
∑

n

i=1
X

(l)

i

is the
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weighted sample mean for X

(l). Let X

(∗)

i

be the n
i
× (k + 1) centered

covariate vector whose jth row is (1, X

(∗1)

ij

, . . . , X

(∗k)

ij

). A least squares

kernel estimator of β

∗(t) is

β̂

∗LSK(t) =

[

n

∑

i=1

w
i
(X

(∗)

i

)T

K
i
(t)(X

(∗)

i

)T

]−1 [
n

∑

i=1

w
i
(X

(∗)

i

)T

K
i
(t)Y

i

]

,

(38)

where K
i
(t) and Y

i
are defined as in (33).

Wu, Yu and Chiang40 investigated the large sample properties of

β̂

∗LSK(t). Their results suggest that neither β̂

LSK(t) nor β̂

∗LSK(t) is

uniformly superior to the other. In particular, when the covariates are

time-invariant, β̂

LSK(t) and β̂

∗LSK(t) are asymptotically equivalent. How-

ever, when X

(l)(t) for l ≥ 1 changes significantly with t, theoretically and

practically superior estimators of β
l
(t) may be obtained by centering

X

(l)(t).

Of course, after a covariate is centered, the baseline coefficient curve of

the model is changed. The decision on whether a covariate should be

centered or not primarily depends on the biological interpretations of

the corresponding baseline coefficient curve. Such a decision should be made

based on the statistical properties of the estimators only if the effects of the

covariates, rather than the baseline coefficient curve, is of primary interest

in the investigation. Clearly, methods other than kernel smoothing may also

be applied to the estimation with centered covariates. But, because of the

complication caused by smoothing the covariates, statistical properties for

estimators other than (38) have not been investigated in the literature.

4.2.5. A simple modification

The estimators mentioned above, both with and without covariate

centering, rely on a single bandwidth to estimate all (k + 1) coefficient

curves. This simple approach may work well when all the curves roughly

belong to the same smoothness family. However, such an idealized scenario

is often not anticipated in practice. A flexible method which automatically

adjusts for the possibly different smoothing needs for different coefficient

curves is always preferred.

In the literature, the potential deficiency associated with the use of a

single bandwidth has been reported.10,18,40 These authors have also pro-

posed a number of alternative approaches (see Secs. 4.3–4.6) to overcome
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this potential drawback. A simple method suggested by Wu, Yu and

Chiang40 is to use a linear combination of the form

β̂(t;K,h) =

k

∑

l=0

e

T

l+1
β̂(t; K

l
, h

l
) , (39)

where K(·) = (K0(·), . . . , Kk
(·)), h = (h0, . . . , hk

), e
p

is the [(k + 1) × 1]

vector with 1 at its pth place and zero elsewhere and β̂(t; K
l
, h

l
) is the kernel

estimator of β(t) or β

∗(t) obtained from (33) or (38), respectively, using

kernel K
l
(·) and bandwidth h

l
. Intuitively, β̂(t;K,h) relies on a specific pair

of kernel and bandwidth to estimate the corresponding component of β(t)

or β

∗(t). As a general methodology, (39) is not limited to kernel estimators

and may be applied to other local polynomial estimators as well.

4.2.6. Choices of w
i

An important factor that affects the theoretical and practical behaviors of

the least squares local polynomial estimators of β(t) is the choice of w
i

in (32). For cross-sectional studies with independent identically distributed

data, a uniform weight choice, w
i
≡ 1/N , is often desirable. For the cur-

rent sampling, it is conceivable that a proper choice of w
i

may depend

on the intra-subject correlation structures and the numbers of repeated

measurements n
i
. In practice, however, the correlation structures of the

data are often completely unknown and may be difficult to estimate, so

that subjective choices such as w
i

= 1/N and w
i

= 1/(nn
i
) are often

considered. Intuitively, w
i
= 1/N assigns equal weight to each observation

point, while w
i

= 1/(nn
i
) assigns equal weight to each subject. Theoreti-

cally, the choice of w
i
= 1/N may produce inconsistent least squares kernel

estimators when some n
i

are much larger than the others. On the other

hand, the least squares kernel estimators based on w
i
= 1/(nn

i
) are always

consistent regardless the choices of n
i
.18,38

4.3. Penalized least squares

Suppose that all the components of β(t) are twice continuously differen-

tiable and have bounded and square integrable second derivatives with

respect to t. A natural penalized least squares criterion is to minimize

J(β, λ) =

n

∑

i=1

ni
∑

j=1

{

Y
ij
−

k

∑

l=0

X

(l)

ij

β
l
(t

ij
)

}2

+

k

∑

l=0

λ
l

∫

[β′′
l

(t)]2dt (40)
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with respect to β
l
(t), where λ = (λ0, . . . , λk

)T and λ
l
are positive smoothing

parameters. The existence and uniqueness of the minimizer of (40) depend

on t
ij

and X

(l)

ij

. Suppose that (40) can be uniquely minimized. The pena-

lized least squares estimator β̂

PLS(t) = (β̂PLS

0
(t), . . . , β̂PLS

k

(t))T of β(t) is

then defined to be the unique minimizer of (40). Using similar techniques

as in univariate smoothing, it can be shown that β̂

PLS

l

(t) are natural cubic

splines with knots at the distinct values of {t
ij

: i = 1, . . . , n, j = 1, . . . , n
i
}

and can be expressed as linear functions of {Y
ij

: i = 1, . . . , n, j = 1, . . . , n
i
}.

One feature that distinguishes β̂

PLS(t) from the estimators obtained

from (32) is the use of multiple smoothing parameters λ
l

in the penalty

term. In (40), all (k + 1) smoothing parameters λ
l
, l = 0, . . . , k, can be

adjusted in the penalty term. Numerical results presented in Hoover et al.18

demonstrated that the extra flexibility created by multiple smoothing pa-

rameters could indeed lead to better estimators than the least squares local

polynomials that rely on a single smoothing parameter. However, because

β̂

PLS(t) has knots at all the distinct time points, it can be extremely

computationally intensive when the number of distinct time points is large,

a case often happened in unbalanced longitudinal studies.

4.4. A two-step method

In an attempt to provide flexible smoothing estimators that are computa-

tionally accessible with large longitudinal data, Fan and Zhang10 proposed

to estimate β(t) by a two-step smoothing method which uses (k+1) smooth-

ing parameters in a different way from (39) and (40). Their procedure calls

for the following two steps:

(i) computing the raw estimates β̂

RAW (s) of β(s) at a set of distinct time

points, say s1, . . . , sm
, where m may depend on n and n

i
, i = 1, . . . , n;

(ii) estimating each coefficient curve β
l
(t) by smoothing the raw estimates

β̂

RAW

l

(s
r
), r = 1, . . . , m.

Although Fan and Zhang10 used local polynomials to illustrate the method,

other smoothing methods such as splines may in principle be used.

For the special case of balanced longitudinal data where all the subjects

are observed at a same set of time points {s
j
; j = 1, . . . , m} with m = n

i
,

i = 1, . . . , n, the raw estimates can be computed by fitting linear models

between Y
ij

and X
ij

at s
j

for all j = 1, . . . , m. However, when the design

is unbalanced and the numbers of subjects on some time points are sparse,

as in most practical situations, it may be necessary to computing the raw
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estimates by grouping the observations from the adjacent time points.

In particular, we can first compute β̂

RAW

l

(s
r
), l = 0, . . . , k, using the

local polynomial method (32) with a small bandwidth, and then, treating

β̂

RAW

l

(s
r
) as the new data, estimate β

l
(t) by minimizing

L

TS

p,l

(t) =

m

∑

j=1

{

β̂

RAW

l

(s
j
)−

p

∑

r=0

b
lr

(t)(s
j
− t)r

}2

K
l

(

s
j
− t

h
l

)

(41)

with respect to b
lr

(t), where (K
l
(·), h

l
) is a set of kernel and bandwidth.

Similar to (32), if b̂

TS

lr

(t) for r = 0, . . . , k uniquely minimize (41), b̂

TS

l0
(t) is

the two-step pth order local polynomial estimator of β
l
(t), while (r!)b̂TS

lr

(t)

can be used to estimate the rth derivative of β
l
(t).

In contrast to the estimators obtained from (32) where a single band-

width must be used for all β
l
(t), the two-step method has in principle the

flexibility to adjust for the specific smoothing need of each coefficient curve.

However, a main difficulty in current version of two-step smoothing is that

it lacks a specific and practical guideline to construct the raw estimates for

unbalanced longitudinal data. Certain data-driven bandwidth procedures

would be desirable for computing both the raw and the final estimates.

Impacts of different raw estimates on the theoretical and practical proper-

ties of the final two-step estimators are still not well-understood and require

substantial further development.

4.5. Smoothing with time-invariant covariates

When the covariates of interest are time-invariant, such as in clinical trials

when the treatments are kept fixed throughout the study periods, an effec-

tive way motivated by (30) to provide flexible and computational feasible

estimators of β(t) is to smooth each component of β(t) separately.

Let Z

(r)(t) = [
∑

k

l=0
e

rl
X

(l)]Y (t), X
i

= (1, X

(1)

i

, . . . , X

(k)

i

)T be the co-

variate vector of the ith subject and ê
rl

be the (r, l)th element of the matrix

(Ê
XX

T )−1, the inverse of the sample mean Ê
XX

T = (1/n)
∑

n

i=0
X

i
X

T

i

. A

natural estimator of Z

(r)(t) is Z

(r)

ij

= [
∑

k

l=0
ê

rl
X

(l)

i

]Y
ij

. By (30), a compo-

nentwise smoothing estimator of β
r
(t) can be obtained by smoothing Z

(r)

ij

for i = 1, . . . , n and j = 1, . . . , n
i
. Specifically, a local polynomial estimator

of β
r
(t) with order p ≥ 0 is b̂

COM

r0
(t), such that b̂

COM

rl

(t), l = 0, . . . , p,

uniquely minimize

L

COM

p,r

(t) =

n

∑

i=1

ni
∑

j=1

w
i

{

Z

(r)

ij

−

p

∑

l=0

b
rl

(t)(t
ij
− t)l

}2

K
r

(

t
ij
− t

h
r

)

, (42)
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with respect to b
rl

(t). For the local constant fitting with p = 0, (42) leads

to the componentwise kernel estimator

β̂

COM

r

(t) =

∑

n

i=1

∑

ni

j=1
{w

i
Z

(r)

ij

K
r
[(t

ij
− t)/h

r
]}

∑

n

i=1

∑

ni

j=1
{w

i
K

r
[(t

ij
− t)/h

r
]}

. (43)

Wu and Chiang38 established the large sample mean squared errors of

β̂

COM

r

(t), while Wu, Yu and Yuan41 developed a procedure for construct-

ing approximate asymptotic pointwise and simultaneous confidence regions

for β
r
(t). These results shed some light on the asymptotic behaviors of

the higher order estimators b̂

COM

r0
(t), although specific asymptotic risks

and asymptotic distributions have not been established for the case with

p ≥ 1. The results of Wu and Chiang38 and Wu, Yu and Yuan41 indicate

some clear advantages of β̂

COM

r

(t) over the kernel estimator (33) both in

terms of theoretical convergence rates and practical flexibilities. Similar

advantages over the least squares method of (32) are also expected for the

componentwise local polynomial estimators.

Obviously, minimizing (42) is not the only componentwise smoothing

approach. Suppose that the support of the design time points is contained

in a compact set [a, b] and β
r
(t) is twice differentiable with respect to t in

[a, b]. A viable alternative is to estimate β
r
(t) by penalized least squares

estimator β̃

COM

r

(t), where β̃

COM

r

(t) minimizes

J

COM

r

(β
r
, λ

r
) =

n

∑

i=1

ni
∑

j=1

{w
i
[Z

(r)

ij

− β
r
(t

ij
)]2}+ λ

r

∫

b

a

[β′′
r

(s)]2ds , (44)

with λ
r

being a non-negative smoothing parameter. By the same ratio-

nale as in Sec. 2.3, it is easy to verify that β̃

COM

r

(t) is a natural cubic

spline with knots at the distinct points of {t
ij

; i = 1, . . . , n, j = 1, . . . , n
i
}.

Furthermore, using the approach of equivalent kernels, Chiang, Rice and

Wu4 derived the asymptotic mean squared errors and the asymptotic dis-

tributions of β̃

COM

r

(t). In contrast to the multiple penalized least squares of

(40) whose solution is obtained by solving a large linear system involving all

(k+1) components, (44) significantly simplifies the computation by solving

(k + 1) separate linear systems. This computational advantage ensures the

practical implementability of (44) in many situations, while the intensive

computational needs often make the optimization of (40) impracticable.

4.6. Smoothing via basis approximations

All the smoothing methods described above depend on local smoothing

in the sense that only the measurements obtained within some neighbor-

hood of t are effectively used to estimate β(t). Although local smoothing
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works well when all the coefficient curves β
r
(t) are nonparametric, it is not

adequate when some of the coefficient curves have known parametric forms,

as in the partially linear model (2).

Compared with local smoothing, estimation using basis approximations

has three important advantages. First, it can be used to estimate β(t)

whether its components are parametric or nonparametric, hence, is suit-

able for both nonparametric and semiparametric varying-coefficient models.

Second, when a random effect is desired, it provides a natural means to

incorporate random effects into a nonparametric or semiparametric model.

Third, because popular basis estimators, such as truncated polynomials

or B-splines, often rely on far fewer knots or approximation terms than

smoothing splines, they often enjoy considerable computationally advan-

tage over smoothing splines or even local polynomials. Although estimation

with mixed effects is of great interest in various settings, we only discuss

here the case of marginal models. Extension to mixed effects models can be

found in Rice and Wu.31

The main idea is to first approximate β
r
(t) by a basis function expansion

with K
r

terms, where K
r

may or may not tend to infinity as n tends

to infinity, and then estimate β
r
(t) by estimating the coefficients of this

expansion. For each r = 0, . . . , k, let B
rs

(t), s = 1, . . . , K
r
, be a set of basis

functions. If β
r
(t) can be approximated by an expansion based on B

rs
(t),

s = 1, . . . , K
r
, there is a set of constants γ

rs
so that

β
r
(t) ≈

Kr
∑

s=1

γ
rs

B
rs

(t) . (45)

Substituting (45) into (3), an approximation of the varying-coefficient

model is

Y
ij
≈

k

∑

r=0

Kr
∑

s=1

X

(r)

ij

γ
rs

B
rs

(t) + ε
i
(t

ij
) . (46)

The approximation sign in (46) will be replaced by the equality sign if, for

all r = 0, . . . , k, β
r
(t) belongs to a linear space spanned by {B

rs
(t); s =

1, . . . , K
r
}.

Using (46), the least squares estimators γ̂
rs

of γ
rs

can be obtained by

minimizing

`(γ) =
n

∑

i=1

ni
∑

j=1







w
i

[

Y
ij
−

k

∑

r=0

Kr
∑

s=1

(X
(r)

ij

γ
rs

B
rs

(t
ij

))

]2






, (47)
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where γ = (γT

0 , . . . , γ

T

k

)T and γ
r

= (γ
r1, . . . , γrKr

)T . If the minimizer of

(47) uniquely exists, the basis function estimator of β
r
(t) is

β̂

BAS

r

(t) =

Kr
∑

s=1

[γ̂
rs

B
rs

(t)] , (48)

where K
r

may depend on n and n
i
, i = 1, . . . , n. Clearly, if K

r
is finite

and known and β
r
(t) belongs to the linear model spanned by B

rs
(t), s =

1, . . . , K
r
, then (48) returns a parametric estimator of β

r
(t). On the other

hand, if (45) holds with K
r

unknown, a consistent nonparametric estimator

produced by (48) may require K
r

to be a function of n and n
i
, i = 1, . . . , n,

which may tend to infinity as n tends to infinity.

Depending on the underlying scientific nature of the data, many different

bases may be used to approximate the components of β(t). The most

popular basis system in the classical linear models is the polynomial basis

{1, t, . . . , t

Kr−1}. A general class of bases that have certain numerical advan-

tages over the above polynomial basis is the class of piecewise polynomials.

Examples of piecewise polynomial bases include B-spline bases, such as

linear, quadratic or cubic splines, or other types of truncated power series;

see de Boor6 for further details of the explicit expressions of piecewise

polynomials and their numerical properties. If β
r
(t) is believed to exhibit

periodicity, Fourier series are often natural basis choices.

Huang, Wu and Zhou19 recently established the consistency of (48) and

studied the practical performance of (48) with B-splines through an in-

tensive simulation. In general, a B-spline estimator requires a smoothing

parameter consisted of three aspects: degrees of the polynomials and

number and location of the knots. Although generally desired, it is difficult,

however, to simultaneously determine all three of these aspects from the

data. Rice and Wu31 showed that the simple approach of using equally

spaced knots often works well in practice, a finding also corroborated by

the simulation of Huang, Wu and Zhou.19

4.7. A cross-validation procedure

The most important factor that affects all of the above smoothing methods

is the selection of appropriate smoothing parameters, such as the band-

width, the positive penalty weight λ and the number and location of knots.

It is of both theoretical and practical interest to select these values directly

from the data.
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Selecting data-driven smoothing parameters for nonparametric regres-

sion with independent identically distributed data has been a subject of

intense investigation in the literature. Under the current context, a widely

used method, suggested by Rice and Silverman,31 is a cross-validation

that deletes the entire repeated measurements of a subject, rather than

an individual measurement, one at a time. Hart and Wehrly15 derived

the consistency of this cross-validation for a simple nonparametric regres-

sion without the presence of covariates other than time. Without loss of

generality, we denote ξ to be a vector of smoothing parameters, β̂(t; ξ)

a smoothing estimator based on ξ and β̂

(−i)(t; ξ) an estimator computed

using the same method as β̂(t; ξ) but with the ith subject’s measurements

deleted. The cross-validation score for β̂(t; ξ) is

CV(ξ) =

n

∑

i=1

ni
∑

j=1

{w
i
[Y

ij
−X

T

ij

β̂

(−i)(t; ξ)]2} , (49)

which measures the predictive error of β̂(t; ξ). The cross-validated

smoothing parameter ξ
cv

is then the minimizer of CV(ξ), provided that

the unique minimizer of CV(ξ) exists.

The above cross-validation criterion is directly applicable to all the

smoothing methods presented above, except the two-step smoothing of

Sec. 2.4. For the estimators of Secs. 2.2, 2.3 and 2.5 and B-splines with

equally spaced knots, minimizing the corresponding cross-validation scores

would either return a univariate bandwidth or a R

k+1-valued vector. An

automatic search of the global minima usually requires a sophisticated opti-

mization software. In practice, particularly when the smoothing parameter

is multivariate, it is often reasonable to use a smoothing parameter whose

cross-validation score is close to the global minima.

There are three intuitive reasons to use the cross-validation criterion

(49). First, by deleting the subjects one at a time, it preserves the cor-

relation structure of the data. Second, in contrast to alternatives such as

the AIC, the BIC and the generalized cross-validation,1,32,33,36 (49) does

not depend on the structure of the intra-subject correlations, hence, can be

implemented in almost all the practical situations. Third, when the number

of subjects is sufficiently large, minimizing (49) leads to a smoothing

parameter that approximately minimizes the average squared error:

ASE(β̂(·; ξ)) =

n

∑

i=1

ni
∑

j=1

{w
i
[XT

ij

(β(t
ij

)− β̂(t
ij

; ξ))]2} . (50)



June 6, 2003 10:50 WSPC/Advanced Medical Statistics chap23

866 C. O. Wu & K. F. Yu

The last assertion can be heuristically seen by the decomposition:

CV(ξ) =
n

∑

i=1

ni
∑

j=1

{w
i
[Y

ij
−X

T

ij

β(t
ij

)]2}

+ 2

n

∑

i=1

ni
∑

j=1

{w
i
[Y

ij
−X

T

ij

β(t
ij

)][XT

ij

(β(t
ij

)− β̂

(−i)(t
ij

; ξ))]2}

+

n

∑

i=1

ni
∑

j=1

{w
i
[XT

ij

(β(t
ij

)− β̂

(−i)(t
ij

; ξ))]2} . (51)

Here, (50) and the definition of β̂

(−i)(t; ξ) imply that the third term at

the right side of (51) is approximately the same as ASE(β̂(·; ξ)). Because

the first term at the right side of (51) does not depend on the smoothing

parameter and the second term is approximately zero, ξ
cv

approximately

minimizes ASE(β̂(·; ξ)).

5. Confidence Regions Based on Smoothing

Confidence statements can be made either based on the asymptotic dis-

tributions of the estimators or through a bootstrap procedure. Currently,

explicit expressions of asymptotic distributions have only been developed

for the kernel estimators (33) and (43). A bootstrap approach that has

broader appeal in longitudinal analysis is to resample the subjects of

the original data. Although its theoretical properties have not been well-

understood, practical performances of this “resampling-subject” bootstrap

have been investigated by a number of simulation studies. We present in this

section both asymptotic and bootstrap approaches based on the smoothing

estimators of Sec. 4.

5.1. Asymptotic inferences for kernel estimators

5.1.1. Pointwise confidence intervals

For both (33) and (43), their asymptotic distributions have been deve-

loped based on two important assumptions. First, the numbers of repeated

measurements n
i

are non-random and may or may not tend to infinity

as n tending to infinity. Second, the time design points t
ij

are random

and independent identically distributed according to an unknown density

function f(·). These assumptions are made for practical considerations as

well as mathematical tractability.
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We first consider the confidence procedures based on (33). Under the

above assumptions and some additional mild regularity conditions, Wu,

Chiang and Hoover39 showed that, if w
i
= 1/N , h = N

−1/5
h0 and

lim
n→∞

N

−6/5

n

∑

i=1

n

2

i

= θ

for some constants h0 > 0 and 0 ≤ θ <∞, β̂

LSK(t) has an asymptotically

multivariate normal distribution in the sense that

(Nh)1/2[β̂LSK(t)− β(t)]→ N(B(t), D∗(t)) , (52)

in distribution as n → ∞. The bias, B(t), and the variance-covariance

matrix, D

∗(t), of (52) are

B(t) = [f(t)]−1
E

−1

XX

T (t)(b0(t), . . . , bk
(t))T (53)

and

D

∗(t) = [f(t)]−2
E

−1

XX

T (t)D(t)E1

XX

T (t) (54)

where D(t) is a (k + 1)× (k + 1) matrix whose (l, r)th element is

D
lr

(t) = σ

2(t)E[X(l)(t)X(r)(t)]f(t)

{
∫

[K(u)]2du

}

+ θh0ρε
(t)E[X(l)(t)X(r)(t)][f(t)]2 ,

σ

2(t) = E[ε2(t)], ρ
ε
(t) = lim

a→0 E[ε(t + a)ε(t)] and

b
l
(t) = h

3/2

0

k

∑

c=0

{

[
∫

u

2
K(u)du

]

{β′
c

(t)[E[X(l)(t)X(c)(t)]]′f(t)

+ β

′
c

(t)E[X(l)(t)X(c)(t)]f ′(t) + (1/2)β′′
c

(t)E[X(l)(t)X(c)(t)]f(t)}

}

.

Then, there are lower and upper end points L
α
(t) and U

α
(t) given by

{AT

β̂

LSK(t)− (Nh)−1/2
A

T

B(t)} ± Z
α/2(Nh)−1/2[AT

D

∗(t)A]1/2
, (55)

where Z
α/2 is the (1 − α/2) quantile of the standard normal distribution,

so that

lim
n→∞

P{L
α
(t) ≤ A

T

β(t) ≤ U
α
(t)} = 1− α . (56)

Because B(t) and D

∗(t) depend on unknown quantities, (55) is not imple-

mentable in practice. If B(t) and D

∗(t) can be consistently estimated by
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B̂(t) and D̂

∗(t), a pointwise (1− α) confidence interval for A

T

β(t) can be

approximated by (L̂
α
(t), Û

α
(t)) with L̂

α
(t) and Û

α
(t) being the lower and

upper end points given by

{AT

β̂

LSK(t)− (Nh)−1/2
A

T

B̂(t)} ± Z
α/2(Nh)−1/2[AT

D̂

∗(t)A]1/2
. (57)

Wu, Chiang and Hoover39 suggested to compute B̂(t) and D̂

∗(t) by

substituting f(t), σ

2(t), ρ
ε
(t), E[X(l)(t)X(r)(t)] and the required deriva-

tives in (53) and (54) with their kernel estimators. Suppose that the kernel

function K(·) is at least twice continuously differentiable in the interior

of its support. These authors proposed to estimate f(t), σ

2(t), ρ
ε
(t) and

E[X(l)(t)X(r)(t)] by

f̂(t) = (Nh)−1

n

∑

i=1

ni
∑

j=1

K

(

t
ij
− t

h

)

,

σ̂

2(t) =
1

Nhf̂(t)

n

∑

i=1

ni
∑

j=1

{

ε̂

2

i

(t
ij

)K

(

t
ij
− t

h

)}

,

ρ̂
ε
(t) =

∑

n

i=1

∑

j1 6=j2
{ε̂

i
(t

ij1
)ε̂

i
(t

ij2
)K(

tij−t

h

)K(
tij−t

h

)}
∑

n

i=1

∑

j1 6=j2
{K(

tij−t

h

)K(
tij−t

h

)}

and

Ê[X(l)(t)X(r)(t)] =
1

Nhf̂(t)

n

∑

i=1

ni
∑

j=1

{

X

(l)

i

(t
ij

)X
(r)

i

(t
ij

)K

(

t
ij
− t

h

)}

,

where ε̂
i
(t

ij
) = Y

ij
− X

T

i

(t
ij

)β̂(t
ij

) are the residuals, and to estimate the

first and second derivatives of f(t), β
l
(t) and E[X(l)(t)X(r)(t)] by the cor-

responding derivatives of f̂(t), β̂

LSK

l

(t) and Ê[X(l)(t)X(r)(t)]. Through an

intensive simulation, these authors also suggested that the cross-validation

bandwidth h
cv

obtained from (49) may be used to compute all of the above

estimators, although, in general, different bandwidths may be used for these

estimators.

The above plug-in approach can also be extended to β̂

COM

r

(t) of (43)

when the covariates are time-invariant. Wu, Yu and Yuan41 have derived

the explicit expressions of the bias, B(β̂COM

r

; t), and the standard deviation,

SD(β̂COM

r

; t), of β̂

COM

r

(t), and suggested to use the approximate (1 − α)

confidence interval for β
r
(t) with end points

{β̂COM

r

(t)− B̂(β̂COM

r

; t)} ± Z1−α/2
̂SD(β̂COM

r

; t) ,
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where B̂(β̂COM

r

; t) and ̂SD(β̂COM

r

; t) are plug-in estimators of B(β̂COM

r

; t)

and SD(β̂COM

r

; t). Because of the similarity it shares with β̂

LSK(t), we omit

the details for this case.

The above asymptotic intervals differ from their counterparts with

independent identically distributed data in the inclusion of intra-subject

correlations in the variance term. When n
i
are not negligible relative to n,

θ in (54) may not be negligible, so that the contribution of the correlations

may not be ignored. For the HIV/CD4 data (Sec. 1.2.2), the numbers of

repeated measurements range from 1 to 14, while the number of subjects is

400. Asymptotic results that do not take the intra-subject correlations

into account may not lead to adequate approximations. In this case, it

is appropriate to estimate the correlations directly from the data. When the

numbers of repeated measurements are negligible relative to the numbers

of subjects, as in the ASGA data (Sec. 1.2.1), the contribution of the intra-

subject correlation structures becomes negligible in the variances of the

kernel estimators. The resulting confidence intervals are then similar to

that with independent identically distributed samples.

5.1.2. Simultaneous bands

In most applications, the main interest of inference lies in the overall

confidence regions of β
l
(t) within a proper range of t values, rather than

the confidence intervals at a particular time point. When the data are from

independent identically distributed samples, simultaneous confidence re-

gions for regression curves may be constructed using either extreme value

theory of Gaussian processes9 or variability bands bridged by pointwise

intervals over a grid points.11,13,22 For longitudinal samples, analogous

asymptotic theory of extreme values has not been developed. This leaves

the latter approach to be the only practical simultaneous inferential tool in

longitudinal analysis.

To construct a simultaneous band for A

T

β(t) over t ∈ [a, b] based on

the least squares kernel estimator β̂

(LSK)(t), we choose a positive integer

M and partition [a, b] into M equally spaced intervals with grid points

a = ξ1 < · · · < ξ
M+1 = b, such that ξ

j+1−ξ
j

= (b−a)/M for j = 1, . . . , M .

A set of approximate (1−α) simultaneous confidence intervals for A

T

β(ξ
j
),

j = 1, . . . , M + 1, is then the collection of intervals (l̂
α
(ξ

j
), û

α
(ξ

j
)), j =

1, . . . , M + 1, which satisfies

lim
n→∞

P{l̂
α
(ξ

j
) ≤ A

T

β(ξ
j
) ≤ û

α
(ξ

j
) for all j = 1, . . . , M + 1} ≥ 1− α .

(58)
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The Bonferroni adjustment suggests

(l̂
α
(ξ

j
), û

α
(ξ

j
)) = (L̂

α/(M+1)(ξj
), Û

α/(M+1)(ξj
)) , (59)

where (L̂
α
(ξ

j
), Û

α
(ξ

j
)) are defined in (57).

To establish a band that covers all the points between the grid points ξ
j
,

j = 1, . . . , M + 1, we first consider the interpolation of A

T

β(ξ
j
) defined by

(AT

β)(I)(t) =

{

M(ξ
j+1 − t)

b− a

}

[AT

β(ξ
j
)] +

{

M(t− ξ
j
)

b− a

}

[AT

β(ξ
j+1)] ,

(60)

for t ∈ [ξ
j
, ξ

j+1]. A simultaneous band for (AT

β)(I)(t) over t ∈ [a, b] is

(l̂
(I)

α
(t), û

(I)

α
(t)), where l̂

(I)

α
(t) and û

(I)

α
(t) are the linear interpolations of

l̂
α
(ξ

j
) and û

α
(ξ

j
), similarly defined as in (60). The gaps between the grid

points are then bridged by the smoothness conditions of A

T

β(t). If A

T

β(t)

satisfies

sup
t∈[a,b]

|(AT

β)′(t)| ≤ c1 , for a known constant c1 > 0 , (61)

then it follows that

|AT

β(t)− (AT

β)(I)(t)| ≤ 2c1

[

M(ξ
j+1 − t)(t− ξ

j
)

b− a

]

,

for all t ∈ [ξ
j
, ξ

j+1], and consequently
(

l̂

(I)

α

(t)− 2c1

[

M(ξ
j+1 − t)(t− ξ

j
)

b− a

]

,

û

(I)

α

(t) + 2c1

[

M(ξ
j+1 − t)(t− ξ

j
)

b− a

])

(62)

is an approximate (1− α) confidence band for A

T

β(t). If A

T

β(t) satisfies

sup
t∈[a,b]

|(AT

β)′′(t)| ≤ c2 , for a known constant c2 > 0 , (63)

then

|AT

β(t)− (AT

β)(I)(t)| ≤
c2

2

[

M(ξ
j+1 − t)(t− ξ

j
)

b− a

]

,

for all t ∈ [ξ
j
, ξ

j+1], and an approximate (1 − α) confidence band can be

given by
(

l̂

(I)

α

(t)−
c2

2

[

M(ξ
j+1 − t)(t− ξ

j
)

b− a

]

,

û

(I)

α

(t) +
c2

2

[

M(ξ
j+1 − t)(t− ξ

j
)

b− a

])

. (64)
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For smoothness conditions other than the ones considered in (61) and (63),

the corresponding confidence bands may be similarly established. When the

covariates are time-invariant, the same approach can be used to establish

simultaneous confidence bands based on β̂

COM (t); see Wu, Yu and Yuan41

for details.

5.2. Bootstrap variability bands

The above asymptotic inferences subject to two restrictions which, to some

degree, limit their applications in longitudinal analysis. First, because the

asymptotic distributions have so far only been developed for the two kernel

type estimators, β̂

LSK(t) and β̂

COM (t), confidence procedures for other

estimators are still not available. Given that smoothing methods such as

splines and local polynomials have exhibited a number of theoretical and

practical advantages over the kernel methods, particularly at the boundary

of the support of t, inferential procedures based on these smoothing methods

are in demand. Second, because the plug-in estimators require the estima-

tion of the design densities, covariance functions and the other quantities

appeared in the bias and variance terms of the estimators, the procedure is

usually computationally intensive and may introduce additional errors in

its coverage probabilities.

A more appealing inferential procedure that has been suggested in the

literature is the “resampling-subject” bootstrap. Let β̂(t) = (β̂0(t), . . . ,

β̂
k
(t))T be an estimator of β(t) constructed based on any of the previously

mentioned smoothing method. An approximate (1−α) pointwise percentile

interval for A

T

E[β̂(t)] can be constructed by the following steps:

(1) Randomly draw n subjects with replacement from the original dataset

and denote the resulting bootstrap sample to be {(Y ∗
ij

, t

∗
ij

, X

∗
ij

); i =

1, . . . , n, j = 1, . . . , n
i
}.

(2) Compute the bootstrap estimator β̂

boot(t), hence A

T

β̂

boot(t), based on

the above bootstrap sample and the smoothing method specified for

β̂(t).

(3) Repeating the above two steps B times, so that B bootstrap estimators

A

T

β̂

boot(t) are obtained.

(4) Calculate L

boot

α

(t) and U

boot

α

(t), the lower and upper (α/2)th per-

centiles, respectively, of the B bootstrap estimators A

T

β̂

boot(t). The

approximate (1− α) bootstrap interval is then (Lboot

α

(t), U boot

α

(t)).
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When A

T

E[β̂(t)] satisfies the smoothness conditions (61) or (63), simulta-

neous confidence bands for A

T

E[β̂(t)] can be constructed using (62) and

(64) with (59) replaced by (Lboot

α/(M+1)
(ξ

j
), U boot

α/(M+1)
(ξ

j
)).

The main advantages of this bootstrap are its generality and simplicity.

It is not limited to kernel type estimators and does not depend on

the correlations and designs of the data. Despite its potential, several

related theoretical and practical issues have still yet to be resolved.

Because the biases of the estimators have not been adjusted, the resulting

intervals or bands may not always have desirable coverage probabilities

for A

T

β(t). If a consistent estimator of the bias is also available, im-

proved confidence regions for A

T

β(t) may be obtained by adjusting the

bias appeared in (Lboot

α/(M+1)
(ξ

j
), U boot

α/(M+1)
(ξ

j
)). Currently, consistent bias

estimators can only be obtained on a case-by-case basis, and no general

procedure is available. A natural alternative to the percentile end points

used in Step 4 is to consider normal approximated intervals with end points

A

T

β̂(t) ± z(1−α/2)ŝe
boot(t), where ŝe

boot(t) is the sample standard error of

the B bootstrap estimators A

T

β̂

boot(t). Asymptotic properties for both the

percentile and the normal approximation bootstrap procedures have not

been investigated.

6. Two Examples

6.1. Alabama fetal growth study

Normal fetal growth is naturally thought to influence infant survival

and proper child development. Our objective is to investigate the effects

of maternal risk factors and maternal anthropometric measurements on

the patterns of fetal growth. Although the outcomes measured by fetal

abdominal circumference, biparietal diameter and femur length are all

time-dependent, the covariates of interest may be either time-dependent

or time-invariant. A typical time-dependent covariate is the maternal pla-

cental thickness measured by ultrasound at each visit. On the other hand,

mother’s height, weight and body mass index measured at the beginning of

pregnancy, are time-invariant. Other variables, such as maternal habits of

cigarette smoking and alcohol consumption, may be either time-dependent

or time-invariant depending on how these variables are defined. A sim-

ple way to define time-invariant maternal smoking and drinking status is

to categorize the mothers as smokers (ever smoked cigarettes during the

pregnancy) versus non-smokers (never smoked cigarettes during the preg-

nancy) and non-drinkers/light-drinkers (consumed one beer/one glass of
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wine or less per day in average during the pregnancy) versus heavy-drinkers

(consumed more than one beer or one glass of wine per day in average

during the pregnancy). As in most self-reported questionnaires, the data

contain the average numbers of cigarettes smoked and the average amount

of alcohol consumed per day per subject. These actual cigarette and alcohol

consumptions are clearly time-dependent as some of the participating

subjects change their behaviors during the study. Depending on the specific

scientific questions, both smoking and drinking categories and the actual

consumptions could be considered in the analysis.

For the purpose of illustration, the analysis present here focuses on the

effects of maternal smoking/drinking categories and placental thickness on

the growth of fetal abdominal circumference. Other covariate and outcome

measurements can be similarly investigated, provided that the models have

clear and meaningful biological interpretations. Although the general trend

of Fig. 1 shows an upward growth pattern, it hardly provides any clue

on the relationship between fetal growth and the covariates of interest. A

nonparametric analysis with model (3) seems a natural start.

Let Y (t) and X

(1)(t) be the fetal abdominal circumference and placental

thickness, respectively, at t weeks of gestation; X

(2) and X

(3) be the

mother’s drinking and smoking categories defined by

X

(2) =

{

1 if she is a heavy-drinker ,

0 if she is a non-drinker/light drinker ,

X

(3) =

{

1 if she is a smoker ,

0 otherwise ;

and X

(4) be the mother’s height (in centimeters) at the beginning of the

pregnancy.

In view that proper placental development may also be affected by drink-

ing and smoking, we first consider the effects of the time-invariant covariate

vector X = (1, X

(2)
, X

(3)
, X

(4))T . Although we can fit model (3) directly

with (Y (t), t, X) and describe the covariate effects by β(t) = (β0(t), β2(t),

β3(t), β4(t))
T , a better biological interpretation can be obtained if X

(4)

were replaced by its centered version X

(∗4) = X

(4) − E[X(4)], so that the

covariate effects are characterized by β

∗(t) = (β∗
0 (t), β2(t), β3(t), β4(t))

T .

For the latter case, the baseline coefficient curve β

∗
0(t) represents the mean

abdominal circumference at t weeks of gestation for a non-smoking and

non-drinking/light-drinking mother whose height is at average, while, for

the former, β0(t) itself does not have a biological interpretation.
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To fit model (3) with (Y (t), t, X(∗)), X

(∗) = (1, X

(2)
, X

(3)
, X

(∗4))T , we

computed X

(∗4)

i

, i = 1, . . . , 1475, by subtracting the sample average of

{X
(4)

j

; j = 1, . . . , 1475} from X

(4)

i

. Figure 2 shows the estimated coefficient

curves, including the baseline growth curve and the covariate effects char-

acterized by alcohol consumption, cigarette smoking and mother’s height,

and their corresponding 95% simultaneous confidence bands. These coef-

ficient curves were computed using the componentwise estimators of (43)

with the Epanechikov kernel, the cross-validated bandwidths described in

(49) and w
i

= 1/(nn
i
). It is worthwhile noting that in this data set the

numbers of repeated measurements, most of which are around 4, are much

smaller compared with the number of subjects n = 1475. Thus, asymp-

totic results obtained by assuming n tending to infinity and n
i

remaining

finite are expected to give adequate approximations. For kernel smoothing

estimators, this means that both w
i

= 1/(nn
i
) and w

i
= 1/N lead to

very similar estimates, and the intra-subject correlations can be ignored in

the asymptotic variances of the estimators. Thus, no covariance estimators

are needed in the construction of asymptotically approximate confidence

bands. Based on the same kernel and bandwidths used in the coefficient

curve estimates, the simultaneous confidence bands were computed using

the asymptotic approximation (62) and the Bonferroni adjustment with

M = 40 and c1 = 5. These graphs suggest an upward linear baseline curve
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Fig. 2. ————: componentwise kernel estimates of the coefficient curves (covariate
effects) computed using the Epanechnikov kernel, the cross-validated bandwidths and
wi = 1/(nni). - - - - - - - - : the 95% Bonferroni-type confidence bands.
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Table 1. Parameter estimates and their standard errors computed using the Mixed-

Effects Procedure in S-plus.

Parameter Estimate Standard Error Z-ratio

β00 −6.5496 0.0614 −106.5880

β01 1.0645 0.0021 496.1262

β2 0.0026 0.0551 0.0478

β3 0.1009 0.0516 1.9555

β4 0.0007 0.0035 0.1996

β

∗
0
(t) and undetectable effects from alcohol consumption, cigarette smoking

and mother’s height. However, because the confidence bands used here tend

to be conservative, they may not be sensitive enough to detect small in-

fluences of the covariates. We also computed the curve estimates and their

corresponding confidence bands using the least squares kernel method of

(33). We omit these results from the presentation, because they are similar

to the ones shown in Fig. 2.

The above nonparametric results, i.e. graphs shown in Fig. 2, suggest

that the relationship between fetal abdominal circumference Y (t), gesta-

tional age t, alcohol consumption X

(2), cigarette smoking X

(3) and centered

maternal height X

(∗4) can be reasonably described by the linear model

Y (t) = β00 + β01t + β2X
(2) + β3X

(3) + β4X
(∗4) + ε(t) ,

with unknown parameters (β00, β01, β2, β3, β4) and a mean zero error

process ε(t). This model can be fitted using the Mixed-Effects Procedure

in S-plus.3 Table 1 shows the parameter estimates and the corresponding

standard errors computed from the above linear model and the S-plus pro-

cedure. The results from this linear model suggested clearly non-significant

effects for alcohol consumption and maternal height and a very weak, but

slightly positive, effect for cigarette smoking. The weak smoking effect

shown in this linear analysis is likely caused by the random variations of

the data, rather than any substantial association between fetal size and

smoking. These results generally agree with the findings obtained from the

above nonparametric analysis.

When placental thickness X

(1)(t) is added to the model, smoothing

has to be carried out with time-dependent covariates. In order to obtain

a meaningful biological interpretation for the baseline coefficient curve, we

use the centered covariate X

(∗1)(t) = X

(1)(t) − E[X(1)(t)], the difference

between a subject’s placental thickness at time t and the conditional mean

at t. To avoid starting with a model that has too many covariates, we
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Fig. 3. ————: estimated coefficient curve (covariate effect) for placental thickness,
computed using (38) with the standard Gaussian kernel, wi = 1/N , cross-validated band-
widths (top panel) and bandwidth vector (γ1 , h0, h1, h4) = (1.5, 1.0, 2.0, 1.0) (bottom
panel). · · · · · · · · · : the 95% pointwise intervals computed using the “resampling-subject”
bootstrap percentiles.
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consider first fitting (3) with (t, X (∗1)(t), X(∗4)) as the covariate vector.

The top panel of Fig. 3 shows the estimated coefficient curve for X

(∗1)(t)

computed using the kernel method of (38) with the standard Gaussian

kernel, the cross-validated bandwidths and w
i

= 1/N . This estimate

appears to be undersmoothed, as it can not be explained by a clear

biological interpretation. An alternative, perhaps biologically more trans-

parent, estimated coefficient curve of X

(∗1)(t), shown in the bottom panel

of Fig. 3, is computed using the same method except with bandwidth vector

(γ1, h0, h1, h4) = (1.5, 1.0, 2.0, 1.0). This bandwidth vector was chosen

because its cross-validation score was very close to that of the cross-

validated bandwidths. Bootstrap percentile intervals are used to demon-

strate the variability of the estimates, while inferences based on asymptotic

approximations are still not yet available for this type of estimators.

Figure 3 suggests, at least qualitatively, some positive association

between placental thickness and fetal abdominal circumference. The

estimated coefficient curve for the centered maternal height X

(∗4)(t) stays

constantly close to zero, suggesting a non-significant effect for the maternal

height. The estimated baseline coefficient curve is also very close to the

one presented in Fig. 2. Hence, these curves are omitted from the presenta-

tion. Also omitted are the analysis with the mother’s drinking and smoking

status, X

(2) and X

(3), added to the model, as their effects are very similar

to the ones shown in Fig. 2.

6.2. MACS CD4/HIV study

Let t
ij

denote the ith subject’s time length (in years) for his jth measure-

ment since HIV infection. Our objective is to evaluate the effects of two

factors, the pre-HIV infection CD4 percent X

(1) and the smoking status

X

(2)(t), on the post-HIV infection depletion of CD4 percent Y (t) over

time. The first covariate X

(1) does not depend on the time since HIV infec-

tion. The second covariate X

(2)(t) equals 1 if the subject is classified as a

smoker at time t and zero otherwise. Because some of the subjects change

their smoking habits during the study, X

(2)(t) is a time-dependent variable.

Owing to the lack of an existing parametric or semiparametric model that

is known to describe the scientific relevance between these variables, it is

reasonable to consider an initial analysis with the nonparametric model (3).

The same rationale used in the analysis of the ASGA study suggests

that, in terms of biological interpretability, the center variable X

(∗1) =

X

(1) − E[X(1)] is more preferable than its uncentered version X

(1) in the
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model (3). However, because X

(2)(t) is a time-dependent binary variable,

it is unnecessary to be centered. Thus, with X

(∗1)

i

estimated by subtracting

the corresponding sample mean from X

(1)

i

, the model (3) can be fitted

with the data {(Y
ij

, t
ij

, X

∗
ij

); i = 1, . . . , 400, j = 1, . . . , n
i
}. The baseline

coefficient curve β

∗
0 (t) represents the mean CD4 percent at t years after the

infection for those who are non-smokers at time t and have average level of

CD4 percent before the infection. The effects β

∗
1
(t) and β2(t) of X

(∗1) and

X

(2)(t), respectively, can be interpreted the usual way.

Besides the difference in covariate centering, there is another important

difference in the estimation and inferences between this and the previous

example. The numbers of repeated measurements in this data set can not

be simply ignored compared with the number of subjects. Thus, at least

for the known case of kernel estimation, the asymptotic approximations

assuming n tending to infinity and n
i

remaining bounded may not lead

to adequate estimators of the variances, although both w
i

= 1/(nn
i
) and

w
i

= 1/N seem to be reasonable weight choices. Because the correlation

structure of the data is completely unknown and difficult to be estimated

accurately, Wu, Chiang and Hoover39 suggested that it is appropriate in

this case to obtain conservative Bonferroni-type bands with the covariance

ρ
ε
(t) in (55) replaced by the variance σ

2(t), an upper bound for |ρ
ε
(t)|.

The graphs in Fig. 4 show the individuals’ depletion of CD4 percent over

time, the estimated coefficient curves and their corresponding conserva-

tive Bonferroni-type 95% asymptotic confidence bands. The estimated co-

efficient curves were computed using (33) with Epanechnikov kernel, the

cross-validated bandwidth and the w
i
= 1/N weight. The confidence bands

were computed using (57) and (62) with M = 138, c1 = 3 and ρ
ε
(t) replaced

by σ

2(t). The same kernel and bandwidth used in computing (33) were also

used in computing all the plug-in kernel estimators required in (57).

Figure 4(b) shows a declining baseline CD4 percent curve over time since

HIV infection, which coincides with the basic trend suggested by the plot

shown in Fig. 4(a). The simultaneous band for the coefficient curve of the

pre-infection CD4 percent stays positive at least for the first four years after

HIV infection, suggesting strongly the benefit of high pre-infection CD4

level for the initial period since the infection. However, the positive effect

of the pre-infection CD4 percent on the post-infection CD4 percent appears

tapering down at the later stage of the infection. Although the estimated

curve in Fig. 4(c) stays positive throughout the 7-year time range con-

sidered in this data set, the confidence band obtained for this curve does

not show any significant positive association between cigarette smoking
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Fig. 4. (a) Individuals’ CD4 percent versus time (in years) since HIV infection. (b)–(d)
Estimated baseline CD4 percent, coefficient curve for smoking and coefficient curve for
pre-HIV infection CD4 percent (————) and their corresponding 95% simultaneous
confidence bands (· · · · · · · · · ).

and post-infection CD4 level. This may be either caused by the weak as-

sociation between these two variables or the conservative nature of our

confidence bands. Clearly, our findings here only provide some exploratory

insights on the data. Biomedical implications and parametric models that

provide additional meaningful descriptions of the biological mechanisms

have to be further developed and independently confirmed by other studies.

Nevertheless, the usefulness of nonparametric regression, particularly the

varying-coefficient models, in the initial exploration of longitudinal data is

transparent, as was shown in this and the previous examples.

7. Summary and Discussion

This article has presented a series of parametric, semiparametric and

nonparametric models and their estimation and inferential methods for
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the analysis of longitudinal data. These methods have a wide range of

applications in biomedical studies. Theory and methods for parametric

models, particularly the linear models, have been extensively studied in

the literature. Estimation and inferences based on parametric models can

be easily implemented using existing statistical software packages, such

as SAS and S-plus. Methods based on semiparametric and nonparametric

models, on the other hand, represent the most current progress in this active

research field.

The nonparametric estimation and inferential methods introduced

here are all based on the general framework of varying-coefficient models.

These methods have the advantage of being flexible while applicable to large

longitudinal studies. Smoothing methods for these models have been deve-

loped using local polynomials and splines, each has its own advantages and

disadvantages in practice. Generally speaking, the componentwise smooth-

ing methods are flexible and computationally feasible when the covariates

are time-invariant, while methods based on ordinary and penalized least

squares and basis approximations can be applied to models with both

time-dependent and time-invariant covariates. Pointwise and simultaneous

confidence bands for the coefficient curves can be constructed using either

asymptotic approximations or the “resampling-subject” bootstrap. The

asymptotic confidence procedures have only been developed for the kernel

methods. The “resampling-subject” bootstrap may in principle be used with

any smoothing estimators. However, despite the usefulness of this bootstrap

shown by a number of simulation studies, its theoretical properties have not

been investigated. The approach of two-step smoothing appears to be useful

to overcome some of the drawbacks of the ordinary least squares. But, in

order for this approach to be useful in an unbalanced longitudinal study,

further research is needed to establish specific methods for calculating the

raw estimates and the asymptotic properties of the final estimators. Finally,

a practical consideration is the use of the uniform weight w
i
= 1/N versus

the uniform subject weight w
i

= 1/(nn
i
). Although none of these weight

uniformly dominates the other in all the longitudinal designs and an ideal

weight may depend on the unknown correlation structure and how fast n
i
,

i = 1, . . . , n, tending to infinity relative to n, simulation studies that have

been reported in the literature so far suggest that both weight choices are

appropriate when all the subjects have approximately the same numbers

of repeated measurements, while the w
i

= 1/(nn
i
) weight is usually pre-

ferred when the numbers of repeated measurements differ from each other

significantly.

There are a number of topics that warrant further investigation. First
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and foremost, although estimation and confidence tools are important in

longitudinal analyses, methods that are enormously useful in biomedical

studies are testing procedures that can evaluate the statistical evidence for

different hypotheses. Such procedures distinguish a parametric submodel

that explains a given scientific hypothesis from the general nonparametric

model. The main task of decision making is to determine the distributions

of the appropriate test statistics. Another practically important problem

is to improve the confidence procedures. The procedures presented in this

article are known to be conservative, which often hinders their usefulness

in practice. Further work needs to focus on reducing the widths of the

bands while maintaining satisfactory coverage probabilities. Finally, in view

that the varying-coefficient models are still inadequate for a number of

longitudinal settings, there is a need to further extend these models. A

useful extension is to consider regression models where the outcome variable

depends on the history as well as the current values of the covariates. All

the estimation and inference methods will have to be redeveloped for this

extension.
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1. Introduction

Local modeling approaches are useful tools for exploring features of data

without imposing a parametric model. These approaches have been received

increasing attention in last two decades and successfully applied to various

scientific disciplines, such as, economics, engineering, medicine, environ-

mental science, health science and social science. There are a vast amount

of literature on this topic.29,34 A comprehensive account of local modeling

can be found in the books.6,28,48,72,75,76,85 see also Fan and Gijbels29 and

Fan and Müller34 for a brief overview on this topic. In this chapter, we

will introduce fundamental ideas of local modeling and illustrate the ideas

by real data examples. For ease of presentation, we will omit all technical

parts.

This chapter basically consists of two parts: Kernel density estimation

and local polynomial fitting. In Sec. 2, the kernel density estimation method

will be introduced. Important issues, including bandwidth selection, will be

addressed. Real data examples will be used to illustrate the ideas how to

implement this type of method. Local polynomial regression will be intro-

duced in Sec. 3. In this section, we also discuss how to decide the amount

885
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of smoothing, and extend the ideas of local polynomial regression to other

contexts. The idea is further extended to the local likelihood and local par-

tially likelihood in Sec. 4. Section 5 introduces the ideas of nonparametric

smoothing tests. Section 6 summarizes some applications of local modeling,

including estimation of conditional quantile functions, conditional variance

functions and conditional densities, and change point detection.

2. Density Estimation

Suppose that X1, . . . , Xn
are an independent and identically distributed

sample from a population with an unknown probability density f(x). Of

interest is to estimate the density f . In explanatory data analysis, we may

construct a histogram for the data. If the resulting histogram has a bell

shape, then we may assume that the samples were taken from a normal

distribution. In this situation, one may just estimate the population mean

and variance using the sample mean and sample variance because a normal

distribution is completely determined by its mean and variance. In general,

parametric approaches to estimation of a density function assume that the

density belongs to a parametric family of distributions, such as normal,

gamma or beta family. In order to fully specify the density function, one

has to estimate the unknown parameters using, for example, maximum

likelihood estimation. One may use prior knowledge or scientific reasons to

determine a parametric distribution family. In explanatory data analysis,

data analysts frequently construct a histogram based on the sample, and

then draw reasonable conclusions on the population density.

2.1. Histogram

A histogram is usually formed by partitioning the range of data into equally

length intervals, called bins, and then drawing a block over each interval

with height being the proportion of the data falling in the bin divided by

the width of the bin. Specifically, the histogram estimate at a point x is

given by

f̂(x, h) =
number of observations in the bin containing x

nh

,

where h is the width of the bins, namely binwidth. For a fixed choice of

bins, it can be shown that under some mild conditions, f̂(·, h) is a maximum

likelihood estimate of the unknown density f . It is worthwhile to note that
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the nonparametric maximum likelihood estimate of the unknown density f

without any further restriction does not exist, since

max
{f :f≥0,

∫

f=1}

n∏

i=1

f(X
i
) =∞ .

When one constructs a histogram, one has to choose the binwidth and

the centers of bins. Figure 1 depicts four histograms based on the same data

set and the same binwidth, but using different locations of bin centers. It

can be seen from Fig. 1 that the shapes of the resulting histograms are

quite different. This implies that the histogram suffers the “edge” effect.

Figure 2 shows four histograms of the lengths of crabs, collected from 1973

to 1986, but with different binwidths. The crab data set is available from the
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Fig. 1. Histograms of a sample of size 300 from a mixture of normal distribution
1/3N(−1, 0.12) + 1/3N(0, 0.252) + 1/3N(1, 0.12).
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Fig. 2. Histograms for crab sizes. The data is the length of crab (cm).

website of statlib at Carnegie Mellon University at http://lib.stat.cmu.edu.

From Fig. 2, if the binwidth h is too small, then the resulting histogram is

rough, on the other hand, if the binwidth is too large, then the resulting

histogram is too smooth. Thus constructing a histogram actually is not so

simple! Usually one may start from an undersmoothed histogram, and then

increase gradually the binwidth until getting a satisfactory result.

The histogram is the oldest and most widely used nonparametric esti-

mate of density. The choice of binwidth is a smoothing problem. The edge

effect of histograms can be repaired by the kernel density estimation in-

troduced in next section. Furthermore, the kernel estimate will result in a

smooth density curve rather than a step function as in histograms. It is an

improved technique over the kernel density estimation.
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Fig. 3. Kernel density estimate for an hypothetical data set (thick curve). It smoothly
redistributes the point mass at Xi by the function (nh)−1K{(x − Xi)/h}. The small
bumps show how point masses are redistributed.

2.2. Kernel density estimation

A kernel density estimate is defined as

f̂
h

= (nh)−1

n∑

i=1

K{(x−X
i
)/h} ,

where K(·) is a function satisfying
∫
K(x)dx = 1, called a kernel function

and h is a positive number, called a bandwidth or a smoothing parameter. A

density function such as the plot (thick curve) in Fig. 3 is usually obtained

by evaluating the function f̂
h
(x) over a few hundred of grid points. From the

definition, indeed, the kernel estimate is the average of density functions

h

−1
K{(x − X

i
)/h}, which smoothly redistribute the point mass at the

point X
i
. Figure 3 depicts the redistribution of point masses. To facilitate

notation, let K
h
(t) = 1

h

K(t/h) be a rescaling function of K. This allows us

to write

f̂
h

= n

−1

n∑

i=1

K
h
(x−X

i
) . (1)

It is well known that the choice of K is not very sensitive, scaled in

a canonical form64 to the estimate f̂
h
(x). Thus it is assumed throughout

this chapter that the kernel function is a symmetric probability density
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Fig. 4. Commonly-used kernels. (a) Gaussian kernel; (b) Symmetric Beta family of
kernels that are renormalized to have maximum height 1.

function. The most commonly used kernel function is the Gaussian density

function given by

K(t) =
1
√

2π
exp(−t2/2) . (2)

Other popular kernel functions include the symmetric beta family

K(t) =
1

β(1/2, γ + 1)
(1− t2)γ

+
, γ = 0, 1, . . . , (3)

where + denotes the positive part, which is assumed to be taken before

exponentiation, so that the support of K is [−1, 1], and β(·, ·) is a beta

function. The corresponding kernel functions when γ = 0, 1, 2 and 3 are the

uniform, the Epanechnikov, the biweight and the triweight kernel functions.

Figure 4 shows these kernel functions.

The smoothing parameter h controls the smoothness of density esti-

mates, acting as the binwidth in histograms. The choice of the bandwidth

is of crucial importance. If h is chosen too large, then the resulting estimate

misses fine features of the data, while if h is selected too small then spurious

sharp structure become visible. See Fig. 6 for example. In fact, it can be

shown that under some mild conditions, when n→∞, h→ 0 and nh→∞,

Ef̂
h
(x) − f(x) =

f

′′(x)

2
µ(K)h2 + o(h2) (4)
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Fig. 5. Automatic kernel density estimates using the bandwidth according the rule of
thumb. The data set is the crab size data collected from 1973 to 1986.

and

var{f̂
h
(x)} =

R(K)f(x)

nh

(1 + o(1)) , (5)

where µ(K) =
∫
t

2
K(t)dt and R(K) =

∫
K

2(t)dt. Thus, from (4) and

(5), a large bandwidth h results in a large bias while a small bandwidth

produces an estimate with a large variance. A good choice of bandwidth

would balance the bias and variance trade-off. This is conveniently assessed

by the Asymptotic Mean Integrated Square Error (AMISE) which is defined

as

AMISE(h) =
µ

2(K)h4

4

∫
{f ′′(x)}2dx +

R(K)

nh

. (6)

Minimizing (6) with respect to h gives the ideal bandwidth

h
I

=

(
R(K)

µ

2(K)
∫
{f ′′(x)}2dx

)1/5

n

−1/5
, (7)

which involves the unknown density function, and cannot be directly used in

kernel smoothing. Since the choice of bandwidth is critical to kernel density

estimation, there has a large literature on this topic. See Jones et al.56,57

for a survey. In practice, we may take the Gaussian density with variance
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Fig. 6. A family of kernel estimates. The data set is the crab 5size data. The thick
curve corresponds to ĥI .

σ

2 as a reference density. In this situation, Eq. (7) becomes

h
I

=

(
8
√
πR(K)

3µ2(K)

)1/5

σn

−1/5
. (8)

Here we focus on a rule of thumb.75 The rule of thumb of bandwidth

selection is to replace σ by the sample standard deviation s
n
. Thus, for the

Gaussian kernel,

ĥ
I

= 1.06s
n
n

−1/5
,

and for the symmetric β family

ĥ
I

=

[
8
√
πβ(1/2, 2γ + 1)

{β(3/2, γ + 1)}2

]1/5

s
n
n

−1/5
.

Figure 5 depicts a kernel density estimate of the length of crab using the

bandwidth ĥ
I

with the Gaussian kernel. From the shape of the estimated

density curve, it seems that a normal distribution is not appropriate for

modeling the crab size.

While the rule of thumb works well for many data sets, it tends to pro-

duce oversmooth estimates as the referenced density is a Gaussian density.

Another method to avoid choosing a single optimal bandwidth is the family

smoothing approach. This can be done by using a family of estimates

{f̂
h
, h = 1.4j

ĥ
I
, j = −3,−2,−1, 0, 1, 2} (9)
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Fig. 7. Comparison of the length of crabs between 1976 and 1986. The sample mean
and standard deviation for 1976 are 12.9020 and 4.2905, while the sample mean and

standard deviation for 1986 are 14.4494 and 2.6257, respectively.

and then overlaying them in the same plot. The family smoothing approach

allows us to explore possible patterns contained in data using different

scale of bandwidths. This is closely related to scale space ideas in computer

science. Choosing a smaller bandwidth acts as “zoom in”, while selecting

a larger bandwidth corresponds to “zoom out” in the scale space. These

ideas have been further developed in a SiZer map.13 The SiZer map can

detect significant features in estimated curve with different scales. Figure 6

depicts a family smoothing plot for the crab size data.

The density estimation method is also a powerful graphic tool for

comparing the results of two experiments. This is related to the classical

two-sample mean problem. The advantage of the kernel smoothing ap-

proach over the traditional two sample tests is that the smoothing approach

can show an overall pattern of the experiments, including the locations of

centers and the dispersions of the data. Further, it gives us some ideas of two

population distributions. To illustrate the idea, we applied the smoothing

techniques for two subsets of the crab size data. One contains the 1976 data

set and the other consists of the 1986 data set. The two estimated density

curves are depicted in Fig. 7. They have different centers and dispersions.

In this section, the bandwidth remains constant, that is, it depends on

neither the location x nor the datum point X
i
. This kind of bandwidth

is referred as a global bandwidth. From (7), it is desirable to use a larger
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bandwidth when changes of curvature is small and use a smaller bandwidth

when curvature of underlying density dramatically changes. This leads to

studying variable bandwidth selection, which suggests the use of different

bandwidth at different location of x. Usually, a global bandwidth is easier to

choose than the variable bandwidth. In order to use a constant bandwidth,

one may first transform the data by

Y
i
= g(X

i
) , i = 1, . . . , n ,

where g is a given monotone increasing function. The transformation g

should be chosen so that the transformed data have a density with more

homogeneous degree of smoothness so that a global bandwidth for the trans-

formed data is more appropriate. Then apply the kernel density estimate

to the transformed data set and obtain the estimate f̂
Y

(y). Finally apply

the inverse transform to obtain the density of X :

f̂
X

(x) = g

′(x)f̂
Y

(g(x)) = g

′(x)n−1

n∑

i=1

K
h
(g(x)− g(X

i
)).

The performance of this type estimate has been illustrated in Wand et al.86

Marron and Yang (1999) proposed an approach to selecting a good

transformation g.

3. Local Polynomial Fitting

Regression is one of the most useful techniques in statistics. Consider the

(d+1)-dimensional data (X1, Y1), . . . , (Xn
, Y

n
), which form an independent

and identically distributed sample from a population (X, Y ), where X is a

d-dimensional random vector and Y is a random variable. Of interest is to

estimate the regression function m(x) = E(Y |X = x). In other words, the

data are regarded as realizations from the model:

Y = m(X) + ε ,

where ε is a random error with zero mean. For a given data set, one may

try to fit the data by using a linear regression model. If a nonlinear pattern

appears in the scatter plot of Y against X, one may employ polynomial

regression to reduce the modeling bias of linear regression. Consider, for

example, the data plotted in Fig. 8, where the relationship between the

concentration of nitric oxides in engine exhaust (taken as dependent vari-

able) and the equivalence ratio (taken as independent variable), a measure

of the richness of the air/ethanol mix, is depicted for a burning of ethanol in
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Fig. 8. Polynomial fits to the ethanol data. Presented are the scatter plots of the con-
centration of nitric oxides against the equivalence ratio along with the fitted polynomial
regression functions. Adapted from Fan and Gijbels.29

a single-cylinder automobile test engine. From Fig. 8, it can be seen that the

relationship between the concentration of nitric oxides and the equivalence

ratio is highly nonlinear. Polynomial regression is used to fit the data.

Figure 8 presents the resulting fits by using four different degrees of poly-

nomials. One can easily see that all resulting fits have substantial biases.
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Because polynomial functions have all orders of derivatives everywhere,

and polynomial degree cannot be controlled continuously, polynomial

functions are not very flexible in modeling features encountered in practice.

Further individual observations can have a large influence on remote parts

of the curve in polynomial regression models. Nonparametric regression

techniques can be used to repair the drawbacks of polynomial fitting.

Fan and Gijbels28 give detailed background and excellent overview on

various nonparametric regression techniques, which can be classified into

two categories. One is to approximate the regression function globally and

the other one is to parameterize the regression function m(x) locally. Two

common methods of global approximation are the spline approach and the

orthogonal series method. In this section, we focus on the techniques of local

modeling.

3.1. Kernel regression

Consider the bivariate data (X1, Y1), . . . , (Xn
, Y

n
), an i.i.d. sample from

the model:

Y = m(X) + ε ,

where ε is random error with E(ε|X) = 0 and var(ε|X = x) = σ

2(x). The

nonparametric regression problem is to estimate the regression function

m(·) with imposing a form. Usually, a datum point closer to x carries more

information about the value of m(x). Therefore an intuitive estimator for

the regression function m(x) is the running local average. An improved

version of this is the locally weighted average. That is

m̂(x) =

n∑

i=1

w
i
(x)Y

i

/
n∑

i=1

w
i
(x) .

An alternative interpretation of locally weighted average estimators is that

the resulting estimator is the solution to the following weighted least-

squares problem:

min
θ

n∑

i=1

(Y
i
− θ)2w

i
(x) .

In other words, the kernel regression estimators are a weighted least squares

estimate at the point x using a local constant approximation.
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Table 1. Leading terms in the asymptotic biases and variances.25

Method Bias Variance

NW Estimator

{
m′′(x) +

2m′(x)f ′(x)

f(x)

}
bn Vn

GM Estimator m′′(x)bn 1.5Vn

Local Linear m′′(x)bn Vn

Here bn =
1

2

∫
+∞

−∞

u
2
K(u)duh

2 and Vn =
σ

2(x)

f(x)nh

∫
+∞

−∞

K
2(u)du.

Setting the weights w
i
(x) = K

h
(X

i
− x) results in the NW kernel

regression estimator, which is given by68,87

m̂
h
(x) =

∑
n

i=1
K

h
(X

i
− x)Y

i∑
n

i=1
K

h
(X

i
− x)

. (10)

See Nadaraya68 and Watson.87

Since the denominator in (10) is a random variable, it is inconvenient to

take derivatives with respect to x and to derive the asymptotic properties

of the estimator. Assume that the data have already been sorted according

to the X-variable. Taking the local weights w
i
(x) =

∫
si

si−1

K
h
(u−x)du with

s
i

= (X
i
+ X

i+1)/2, X0 = −∞ and X
n+1 = +∞, we obtain the GM

regression estimator given by

m̂
h
(x) =

n∑

i=1

∫
si

si−1

K
h
(u− x) duY

i
.

See Gasser and Müller.41

Just like the kernel density estimate, the choice of bandwidth is critical

to the quality of the estimate. A too large bandwidth yields an over-

smooth estimate, while a too small bandwidth gives a rough estimate. The

basic asymptotic properties of the NW and GM regression estimators have

been well established. The asymptotic biases and variances of these two

estimators are depicted in Table 1.23 The properties on the GM estimator

were established in Mack and Müller63 and Chu and Marron.16

3.2. Local polynomial regression

As indicated in the last section, both the NW estimator and the GM

estimator are a local constant fit. It is natural to extend this to a local

polynomial fit. The idea of local polynomial regression has been around

for a long time. Since both a local constant and local polynomial fits use
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effectively datum points in a local neighborhood, this idea is referred as local

modeling. It appeared in the statistical literature.17,79 Stone80,81 shows that

local regression achieves optimal rates in a minimax sense. Müller16 estab-

lishes the equivalence between a local polynomial fit and a local constant

fit under an equally-spaced design model. Fan23,24 focus on local linear

regression in the random design case and show that it has many advantages,

such as simple expression for local bias and variance, spatial adaptation

and high minimax efficiency. Fan and Gijbels28 proved that theoretically

the local linear regression estimator adapts automatically to the boundary.

This was also empirically observed by Tibshirani and Hastie.82 Ruppert

and Wand70 extended the results of Fan and Gijbels28 to the case of local

polynomial estimation. A thorough study of this topic can also be found in

Chaps. 3 and 4 of Fan and Gijbels.28

Suppose that the regression function m is smooth. For z in a neighbor-

hood of x, it follows from using Taylor’s expansion that

m(z) ≈

p∑

j=1

m

(j)(x)

j!
(z − x)j ≡

p∑

j=1

β
j
(z − x)j

. (11)

Thus, for X
i

close enough to x,

m(X
i
) ≈

p∑

j=0

β
j
(X

i
− x0)

j ≡ XT

i

β ,

where X
i

= (1, (X
i
− x0), . . . , (Xi

− x0)
p)T and β = (β0, β1, . . . , βp

)T

.

Intuitively datum points further from x have less information about m(x).

This suggests using a locally weighted polynomial regression

n∑

i=1

(Y
i
−XT

i

β)2K
h
(X

i
− x) . (12)

Denote by β̂
j
(j = 0, . . . , p) the minimizer of (12). The above exposition

suggests that an estimator for the regression function m(x0) is

m̂(x0) = β̂0(x0) . (13)

Furthermore, an estimator for the νth order derivative of m(x0) at x0 is

m̂
ν
(x0) = ν!β̂

ν
(x0) .

In general, local polynomial fitting has certain advantages over the NW and

the GM estimators not only for estimating regression curves, but also for

derivative estimation.
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Fig. 9. Illustration of the local linear fit. For each given x0, a linear regression is fitted
through the data contained in the strip x0 ± h, using the weight function indicated at
the bottom of the strip. The interactions of the fitted lines and the short dashed lines
are the local linear fits. Adapted from Fan and Gijbels.29

To better appreciate the above local polynomial regression, consider the

ethanol data presented in Fig. 8. The window size h is taken to be 0.051 and

the kernel is the Epanechnikov kernel. To estimate the regression function

at the point x0 = 0.8, we use the local data in the strip x0 ± h to fit a

regression line (c.f. Fig. 9). The local linear estimate at x0 is simply the

intersection of the fitted line and the line x = x0. Suppose that we wish

to estimate the regression function at another point x0 = 0.88, another

line is fitted using the data in the window 0.88± 0.051. The whole curve is

obtained by estimating the regression function in a grid of points. Indeed,

the curve in Fig. 9 was obtained by 101 local linear regressions, taking the

101 grid points from 0.0535 to 1.232.

The local linear regression smoother is particularly simple to implement.

Indeed, the estimator has the simple expression

m̂
L
(x) =

n∑

i=1

w
i
(x)Y

i
, (14)

where with S
n,j

(x) =
∑

n

i=1
K

h
(X

i
− x)(X

i
− x)j ,

w
i
(x) = K

h
(X

i
− x)

{S
n,2(x)− (X

i
− x)S

n,1(x)}/(Sn,0(x)Sn,2(x) − S
2

n,1(x)) . (15)
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We can either use the explicit formula (15) or a regression package to com-

pute it. It has several nice properties such as high statistical efficiency

(in an asymptotic minimax sense), design adaption24 and good boundary

behavior.28,70 The asymptotic bias and variance for this estimator is

E{m̂
L
(x)|X1, . . . , Xn

} −m(x) = µ(K)
m

′′(x)

2
h

2 + o(h2) (16)

and

var{m̂
L
(x)|X1, . . . , Xn

} = R(K)
σ

2(x)

f(x)nh
+ o

(
1

nh

)
, (17)

provided that the bandwidth h tends to zero in such a manner that

nh → ∞, where f is the marginal density of X , namely, the design

density.29 Table 1 lists the leading term in the asymptotic bias and vari-

ance. By comparing the leading terms in the asymptotic variance, clearly

the local linear fit uses locally one extra parameter without increasing its

variability. But this extra parameter creates opportunities for significant

bias reduction, particularly at the boundary regions and slope regions. This

is evidenced by comparing their asymptotic biases.

Local linear fitting requires a choice for the smoothing parameter h

and for the kernel function K. It is well known that the choice of the kernel

function is of less importance in kernel smoothing. This holds truely for local

polynomial regression. It has been shown that the Epanechnikov kernel is

optimal in some sense. See Gasser, Müller, and Mamitzsch,42 Granovsky

and Müller45 and Chap. 3 of Fan and Gijbels.28

The bandwidth selection is critical to all nonparametric estimators. A

too-large bandwidth creates excessive biases in nonparametric estimates

and a too small bandwidth results in a large variance in nonparametric

estimate. There are two basic choices of bandwidth: subjective and data-

driven. In subjective choices, data analysts use different bandwidths to

estimate the regression function and choose the one that visually balances

the bias and variance trade-off. Trials-and-errors are needed in this en-

deavor. Alternatively, one can present the nonparametric estimates using

a few different bandwidths (c.f. Fig. 6 for a similar idea). The data-driven

bandwidth is to let data themselves choose a bandwidth that balances the

bias and variance, via minimizing certain estimated Mean Integrated Square

Errors (MISE).

We now briefly discuss some data-driven choices of the bandwidth. By

(16) and (17), the weighted MISE of the local linear estimator is

µ(K)2h4

4

∫
{m′′(x)}2w(x)dx +

R(K)

nh

∫
σ

2(x)

f(x)
w(x)dx .
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The asymptotic optimal bandwidth, that minimizes the asymptotic

weighted MISE of m̂
L
(x), is given by

hopt =

(
R(K)

∫
σ

2(x)f−1(x)w(x)dx

µ

2(K)
∫
{m′′(x)}2w(x)dx

)1/5

n

−1/5
, (18)

where w(x) is a weight function.

The optimal bandwidth involves the unknown regression function and

the unknown density function of X . Hence it cannot be applied directly.

There are many references on the topic of bandwidth selection. See Chap. 4

of Fan and Gijbels28 and references therein. Here, we focus on the cross-

validation method, which is conceptually simple, but needs intensive

computation. Let m̂
h,(−i)(x) be the local linear regression estimator (12)

without using the ith-observation (X
i
, Y

i
). We now analogously validate the

“goodness-of-fit” by measuring the “prediction error” Y
i
−m̂

h,(−i)(Xi
). The

cross-validation criterion measures the overall “prediction errors”, which is

defined by

CV (h) = n

−1

n∑

i=1

{Y
i
− m̂

h,(−i)(Xi
)}2 . (19)

The cross-validation bandwidth selector ĥ
CV

chooses the one that mini-

mizes CV (h).

In what follows, we illustrate the methodology of local linear regression

in details by an environmental data set. This data set consists of 612 obser-

vations of 15 variables and has been analyzed by Rawlings and Spruill.69

See Sec. 2 of Rawlings and Spruill69 for a detailed description. Here, we are

interested in how depth to mottling (DMOT) of soil affects the increment

of diameter growth of some kinds of pine. Thus we take the increment of

diameter as a response variable Y and the DMOT of soil as an independent

variable X . After excluding the data points with missing values, we have

216 observations. The scatter plot of the data is depicted in Fig. 10.

The cross-validation method was used to search a bandwidth over

20 grid points 0.15∗1.1j multiplying the range of X variable, j = 0, . . . , 19.

With the smallest bandwidth 0.15 multiplying the range of X , we used

15% of data around x0 to estimate m(x0), while with the largest band-

width 0.15 × 1.119 multiple the range of X , we used about 92% of data

around x0 to estimate m(x0). Here the Epanechnikov kernel was used. The

plot of cross-validation scores against candidate bandwidths is depicted in

Fig. 10(a). The corresponding ĥ
CV

is 12.776.

With the selected bandwidth, we are able to estimate the regression

function. In nonparametric regression, one usually plots the curve of the
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estimated regression function. Thus one has to evaluate the regression

function over a grid of points. Usually we take the grid of points evenly dis-

tributing over the range of X . A natural question arises here is how many

grid points at which the estimate needed to be evaluated. Figure 10(c)–(e)

depicts the resulting estimated curve with the number of grid points (Ngrid)

being 100, 200 and 400, respectively. The plots shows nonlinear between

the increment and the DMOT. From these plots, the estimated curves
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Fig. 10. Estimated regression functions. (a) and (b) are plots of cross-validation scores
for increment of diameter versus depth of mottling (DMOT) and for versus log(DMOT),
respectively. (c)–(e) are estimated regression function curves E(increment|DMOT) with
scatter plot of data, corresponding to the number of grid points 100, 200 and 400,
respectively. (h) is the estimated regression curve E(increment|log(DMOT)).
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Fig. 10. (Continued).

are almost the same, since the underline estimate is relatively smooth. In

practice, we recommend using 100 or 200 grid points to evaluate estimated

regression functions.

Now we take the natural logarithm of DMOT as the X-variable, and

then use the cross-validation method to choose a bandwidth. The CV scores

are depicted in Fig. 10(b). This yields ĥ
CV

= 1.3271. The estimated curve

is depicted in Fig. 10(h). Figure 10(h) shows that increment of diameter

growth versus log(DMOT) is nearly linear. For such an implementation, it

spent about 2 seconds (using MATLAB on PC Pentium II 450 MHz) to

compute the estimated function over 200 grid points, including bandwidth

selection using the cross-validation method.

Direct implementation of local polynomial regression for a large data

set needs a considerable amount of computation. Fast computation algo-

rithms have been proposed in Fan and Marron.33 Many computer codes are

available through internet. For example, S-plus codes can be downloaded

from Matt Wand’s homepage at

http://www.biostat.harvard.edu/ mwand/software.html,

while Matlab codes can be downloaded from James S. Marron’s homepage

at

http://www.stat.unc.edu/faculty/marron/marron software.html

or through the authors. These codes can be easily implemented by directly

plugging-in data. There is also a procedure of kernel smoothing in the latest

version of SAS.
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4. Local Likelihood and Local Partial Likelihood

The local likelihood approach was first proposed by Tibshirani and Hastie82

based on the running line smoother. As an extension of the local likeli-

hood approach, local quasi-likelihood estimation using local constant fits,

was considered by Severini and Staniwalis.74 Fan, Heckman and Wand31

investigated the asymptotic properties of the local quasi-likelihood method

using local polynomial modeling. Fan et al.27 addressed the issue of band-

width selection, bias and variance assessment and constructed confidence

intervals in local maximum likelihood estimation. Fan and Chen26 proposed

one-step local quasi-likelihood estimation, and demonstrated that the one-

step local quasi-likelihood estimator performs as well as the maximum local

quasi-likelihood estimator using the ideal optimal bandwidth. Fan et al.30

extended the idea of the local likelihood approach to local partial likelihood

in the context of censored survival data analysis, such as Cox’s regression

model. The ideas in this section are motivated from Fan et al.30,31 Carroll

et al.11 extend the idea further to the likelihood equations.

4.1. Generalized linear models and local likelihool estimate

4.1.1. Generalized linear models

Generalized linear models introduced by Nelder and Wedderburn in 1972

extend the scope of the traditional least squares fitting of linear models. The

relationship between a response variable and a set of covariates is modeled

as a linear fit to the transformed conditional mean. A comprehensive ac-

count of generalized linear models can be found in McMullagh and Nelder.65

Suppose that we have n independent observations (X1, Y1), . . . , (Xn
, Y

n
) of

random vector (X, Y ), where X is a d-dimensional real vector of covariates,

and Y is a scalar response variable. The conditional density of Y given

covariate X = x belongs to the canonical exponential family:

f
Y |X(y|x) = exp{[θ(x)y − b{θ(x)}]/a(φ) + c(y, φ)} (20)

for known functions a(·), b(·) and c(·, ·). In parametric generalized linear

models it is usual to model a transformation of the regression function

m(x) = E(Y |X = x) as linear, that is

η(x) = g{m(x)} = xT

β ,

and g is a known link function. If g = (b′)−1, then g is called the canonical

link because it transform the regression function into the canonical

parameter: (b′)−1{m(x)} = θ(x).
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Here are a few examples that illustrate the model (20). The first example

is that the conditional distribution of Y given X = x has a normal

distribution with mean m(x) and variance σ

2. The normal density can

be rewritten as

f
Y |X = exp

{
m(x)y −m2(x)/2

σ

2
−

y

2

2σ2
− log(

√
2πσ2)

}
.

It can be easily seen that

φ = σ

2
, a(φ) = φ, b(m) = m

2
/2

and

c(y, φ) = −y2
/(2φ)− log(

√
2πφ) .

The canonical link function is the identity link g(t) = t. This model is useful

for a continuous response with homoscedastic errors.

Suppose that the conditional distributions of Y given X = x is a

Bernoulli distribution with the probability of success p(x), in which case it

can be seen that

f
Y |X(y|x) = exp (y log[p(x)/{1− p(x)}] + log{1− p(x)}) .

The canonical parameter in this example is θ(x) = logit{p(x)}, and the

logit function is the canonical link.

Under model (20), it can be easily shown that the conditional mean

and conditional variance are given respectively by m(x) = E(Y |X = x) =

b

′{θ(x)}, and var(Y |X = x) = a(φ)b′′{θ(x)}. Hence,

θ(x) = (b′)−1{m(x)} .

Using the definition of η(·), we have

θ(x) = (b′)−1{g−1[η(x)]} . (21)

Since our primary interest is to estimate the mean function, without loss

of generality, the factors related to the dispersion parameter φ are omitted.

This leads to the following conditional log-likelihood function

`{θ, y} = θ(x)y − b{θ(x)} .

By (21), the above log-likelihood can be expressed as

`{θ, y} =
[
y(b′)−1 ◦ g−1(η(x)) − b{(b′)−1 ◦ g−1(η(x))}

]
, (22)

where ◦ denotes composition. In particular, when g is the canonical link,

`{θ, y} = η(x)y − b{η(x)} .
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4.1.2. Local likelihood estimate

It has been of interest to adapt these models to situations where the

functional form for the dependence of g(m(x)) on x is unknown. In what

follows, the covariate X is assumed to be a scalar random variable. If η(x)

is a smooth function of x, then for X
i
close enough to a given point x0,

η(X
i
) ≈

p∑

j=0

β
j
(X

i
− x0)

j ≡ XT

i

β , (23)

where X
i

= (1, (X
i
− x0), . . . , (Xi

− x0)
p)T and β = (β0, β1, . . . , βp

)T

.

Intuitively data points close to x0 have more information about η(x0) than

those away from x0. Therefore, by (22), the local log-likelihood function

based on the random sample {(X
i
, Y

i
)}n

i=1
is

`(β) =
n∑

i=1

[Y
i
(b′)−1 ◦ g−1(XT

i

β)− b{(b′)−1 ◦ g−1(X
i
β)}]K

h
(X

i
− x0) .

(24)

Define the local maximum likelihood estimator of β to be

β̂ = argmaxβ∈R

p+1`(β) .

Thus η(x0) and the νth derivative of η(x0) can be estimated by

η̂(x0) = β̂ and η̂

(ν) = ν!β̂
ν

respectively, assuming that η has p derivatives. When the canonical like

g = (b′)−1 is used, (24) becomes

`(β) =
n∑

i=1

[Y
i
(XT

i

β)− b(X
i
β)]K

h
(X

i
− x0) .

The log-likelihood function (24) is really a weighted log-likelihood and

hence can be computed by using the existing software. In fact, suppose that

we want to estimate η̂(·) in a given interval. Take a grid of points (200, say)

in that interval. For each given grid point x0, model (24) can be maximized

by using existing software packages such as SAS and Splus that contains

the parametric Glim function. The whole estimated function is obtained by

plotting the estimates obtained at grid points.

The choice of the link function g is not as crucial as for parametric

generalized linear models, because the fitting is localized. Indeed it is con-

ceivable to dispense with the link function and just estimate m(x) directly.

But there are several drawbacks to having the link equal to the identity. An
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identity link may yield a local likelihood that is not convex, allowing for the

possibility of multiple maxima, inconsistency and computational problems.

Use of the canonical link guarantees convexity. Furthermore the canonical

link ensures that the final estimate has the correct range. For example, in

the logistic regression context using the logit link leads to an estimate that

is always a probability whereas using the identity link does not have. A

final reason for preferring the canonical link is that the estimate of m(x)

approaches the usual parametric estimate as the bandwidth becomes large.

This can be useful as a diagnostic tool.31

We now illustrate the local likelihood approach via analyzing the data

set: Burns data, collected by General Hospital Burn Center at the Uni-

versity of South California. It is of interest to estimate the probability of

surviving given the age of victims. Local likelihood estimate was computed

over a grid of points with bandwidth 0.4 multiplying the range ofX , and the

estimated curves are depicted in Fig. 11. Note that the conditional proba-

bility function must be monotonic for the parametric linear model, whereas

for the local linear model, the conditional probability function can be any

curve. The former model can overstate the probability of survival for the

younger group and for the senior group. The solid curves in Fig. 11 suggest
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Fig. 11. Illustration of local likelihood approach for the burn data. (a) Estimated logit
transform of the conditional probability. (b) Estimated conditional probability. Solid
curve — local modeling with about 40% of the data points in each local neighborhood;
dashed curve — global parametric logit linear model. Taken from Fan and Gijbels.29
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that the conditional probability function is unimodal, which is reasonable

in the current context.

4.2. Local partial likelihood estimate

In this section, we apply the local likelihood techniques to survival data

analysis. Let T , C and X be respectively the survival time, the censoring

time and their associated covariates. Correspondingly, let Z = min{T,C}

be the observed time and δ = I(T ≤ C) be the censoring indicator. It is

assumed that T and C are conditionally independent given X and that

the censoring mechanism is noninformative. Suppose that {(X
i
, Z

i
, δ

i
) : i =

1, . . . , n} are an i.i.d. sample from the population (X,Z, δ). For a thorough

introduction to survival analysis, see books by Fleming and Harrington40

and Andersen et al.2

Let h(t|x) be the conditional hazard rate function. The proportional

hazards model assumes that

h(t|x) = h0(t) exp{θ(x)} . (25)

This model indicates that the covariate x inflates or deflates the hazard risk

by a factor of exp{θ(x)}. The function θ(x) is called a hazard regression

function, and characterizes the risk contribution of the covariate at value x.

See Cox19 for proportional hazard models with time-dependent covariates.

In the parametric model, a linear form θ(x) = βx is imposed on

the hazard regression function. The local modeling methodology aims at

removing this restriction and exploring possible nonlinearity, and is appli-

cable to any smooth hazard regression function. For simplicity of discussion,

we focus on the univariate cases. For multivariate settings, a dimensionality

reduction technique such as additive models should be used.52

A commonly-used technique for estimating the hazard regression

function is the partial likelihood technique introduced by Cox.20 Let to
1
<

· · · < t

o

N

denote the ordered observed failure times. Let (j) provide the

label for the item failing at to
j

so that the covariates associated with the

N failures are X(1), . . . , X(N). Denote by R
j

= {i : Z
i
≥ t

o

j

}, the risk set

at time instantaneously before to
j

. Then, the log-partial likelihood in our

context is given by

N∑

j=1



θ(X(j))− log


 ∑

k∈Rj

exp{θ(X
k
)}






. (26)
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See Cox,20 Fleming and Harriton40 and Fan and Gijbels.28 Substituting

the parametric form of θ(·) into (26) yields a maximum partial likelihood

estimate of the hazard regression function.

We now apply the local modeling technique to estimate the hazard

regression function θ(·). For a given x0, approximate θ(x) by

θ(x) ≈ β0 + · · ·+ β
p
(x− x0)

p

, (27)

for x in a neighborhood of x0. Let

β = (β1, . . . , βp
)T and X

j
= {(X

j
− x0), . . . , (Xj

− x0)
p}T .

Then the local partial likelihood is

N∑

j=1

K
h
(X(j) − x0)


XT

(j)
β − log





∑

k∈Rj

exp(XT

k

β)K
h
(X

k
− x0)







. (28)

See Fan et al.30 for a derivation of the local partial likelihood (28). When

the kernel function is uniform and the bandwidth is of the nearest neighbor

type, the local likelihood (28) was introduced by Tibshirani and Hastie.82

For a related approach based on the local likelihood, see Gentleman and

Crowley.43

The function value θ(x0) is not directly estimable since (28) does not

depend on the intercept β0. However, the derivative functions are directly

estimable. Let β̂(x0) be the maximum local log-partial likelihood estimate

that maximizes (28). An estimate θ̂
ν
(x0) of θ(ν)(x0) is given by ν!β̂

ν
(x0).

We impose the condition θ(0) = 0 for identifiability. With this extra

constraint, the function θ(x) can be estimated by

θ̂(x) =

∫
x

0

θ̂

′(t)dt , (29)

where θ̂′(t) = θ̂1(t) is the derivative estimator. In practice, the function

θ̂1(x) is often evaluated at either grid points or the design points. Assume

that θ̂1(xj
) = β̂1(xj

) are computed at points {x0, . . . , xm
}. Then, θ̂(x

i
) can

be approximated by the trapezoidal rule

θ̂(x
i
) =

i∑

j=1

(x
j
− x

j−1)(β̂1,j
+ β̂1,j−1)/2 ,

where β̂1,j
= β̂1(xj

). The coefficients can simply be computed by using

existing software packages for parametric Cox’s proportional hazards model.

We conclude this section with an analysis of the Primary Biliary

Cirrhosis (PBC) data set, which can be found in Fleming and Harrington.40
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Fig. 12. Local partial likelihood estimation of the hazard regression function.
(a) Observed time versus age with “+” indicating censored observations. (b) Estimated
derivative function θ

′(·). (c) Estimated hazard regression function θ(·); solid curve —
bandwidth = 10; short-dashed curve — bandwidth = 20; long-dashed curve — band-
width = 30. From Fan and Gijbels.29

PBC is a rare but fatal chronic liver disease of unknown cause. The analysis

is here based on the data collected at Mayo Clinic between January 1974

and May 1984. Of 312 patients who participated in the randomized trial,

187 cases were censored. In our analysis, we take the time (in days) between
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registration and death, or liver transplantation or the time of the study

analysis (July 1986) as response and the ages of the patients as a covariate.

The observed data are presented in Fig. 12(a). The local partial likeli-

hood method (28) with p = 2 was employed for three different bandwidths

h = 10, 20 and 30. The estimated hazard regression function and its

derivative function are respectively given in Figs. 12(b) and (c). Note that

since the hazard regression function is only identifiable within a constant,

the curves in Fig. 12(c) are normalized to have the same average height

so that they can be better compared. Figure 12(c) reveals the fact that it

is reasonable to model linearly the hazard regression function of covariate

age.

5. Nonparametric Goodness of Fit Tests

Nonparametric goodness of fit test has received increasing attention

recently. A motivating and simple example is to consider a simple nonpara-

metric regression model. Suppose that (X1, Y1), . . . , (Xn
, Y

n
) are a random

sample from the nonparametric regression model

Y
i
= m(X

i
) + ε

i

with E(ε
i
|X

i
) = 0 and var(ε

i
|X

i
) = σ

2. Of interest is to test the hypothesis

H0 : m(x) = α0+α1x1+· · ·+αp
x

p versusH1 : m(x) 6= α0+α1x1+· · ·+αp
x

p

.

This testing problem is well known as test of linearity in the context of

model diagnostic where the question arises whether a family of parametric

models fit adequately the data. It is natural to use the nonparametric model

as an alternative hypothesis. On the other hand, it is known that nonpara-

metric regression may yield a complicated model. Thus, after fitting a data

set by a nonparametric model, we may check whether the data can be fitted

by a less complicated parametric model. This leads to a nonparametric

goodness of fit test. Hart51 gives a comprehensive study and presents many

examples on this topic. Fan25 and Fan and Huang32 proposed some good-

ness of fit tests for various parametric models and nonparametric models.

Fan et al.37 proposed generalized likelihood ratio tests and established a

general framework for nonparametric smoothing tests. Many related liter-

ature, are available1,3,4,21,22,50,55,58 In this section, we illustrate the idea

of nonparametric likelihood ratio test by generalized varying coefficient

models. Some material of this section was extracted from Cai et al.,8

referred as CFL.
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5.1. Generalized varying coefficient models

A generalized varying-coefficient model has the form

η(u,x) = g{m(u,x)} =

p∑

j=1

a
j
(u)x

j
(30)

for some given link function g(·), where x = (x1, . . . , xp
)T , and m(u,x)

is the mean regression function of the response variable Y given the

covariates U = u and X = x with X = (X1, . . . , Xp
)T . Clearly, model (30)

includes both the parametric generalized linear model65 and the generalized

partially linear model.9,14,46,77 An advantage of model (30) is that by

allowing the coefficients {a
j
(·)} to depend on U, the modeling bias can

be reduced significantly and the “curse of dimensionality” is avoided.

In this section, we focus on the cases in which the response is discrete.

For continuous responses, many works have been done. In the least-

squares setting, model (30) with the identity link was introduced by

Cleveland et al.18 and extended by Hastie and Tibshirani53 to various

aspects. Varying-coefficient models are a simple and useful extension of

classical generalized linear models. They are particularly appealing in

longitudinal studies where they allow one to explore the extent to which

covariates affect responses changing over time. See Hoover et al.,54 Brum-

back and Rice7 and Fan and Zhang38 for details on novel applications of

the varying-coefficient models to longitudinal data. For nonlinear time series

applications, see Chen and Tsay15 and Cai et al.9 for statistical inferences

based on the functional-coefficient autoregressive models. Kauermann and

Tutz59 used varying coefficient models for model disgnostics.

5.2. Estimation procedures

For simplicity, we consider the important case that u is one-dimensional.

Extension to multivariate u involves no fundamentally new ideas. However,

implementations with u having more than two dimensions may have some

difficulties due to the “curse of dimensionality”.

In this section, it is assumed that the conditional log-likelihood function

`(v, y) is known and linear in y for fixed v. This assumption is satisfied

for the canonical exponential family, which is the focus of this section.

The methods, introduced in this section, are directly applicable to sit-

uations in which one cannot specify fully the conditional log-likelihood

function `(v, y), but can model the relationship between the mean and
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variance by var(Y |U = u,X = x) = σ

2
V {m(u,x)} for a known vari-

ance function V (·) and unknown σ. In this case, one needs only to replace

the log-likelihood function `(v, y) by the quasi-likelihood function Q(·, ·),

defined by ∂

∂µ

Q(µ, y) = y−µ

V (µ)
.

5.2.1. Local MLE

Local linear modeling will be used here, though general local polynomial

methods are also applicable. Suppose that a
j
(·) has a continuous second

derivative. For each given point u0, aj
(u) can be approximated locally by

a linear function a
j
(u) ≈ a

j
+ b

j
(u − u0) for u in a neighborhood of u0.

Based on a random sample {(U
i
,X

i
, Y

i
)}n

i=1
, one may use the following

local likelihood method to estimate the coefficient functions

`
n
(a,b) =

1

n

n∑

i=1

`



g

−1





p∑

j=1

(a
j
+ b

j
(U

i
− u0))Xij



 , Y

i



K

h
(U

i
− u0) ,

(31)

where a = (a1, . . . , ap
)T and b = (b1, . . . , bp)

T . Note that a
j

and b
j

depend

on u0, and so does `
n
(·, ·). Maximizing the local likelihood function `

n
(a,b)

results in estimates â(u0) and b̂(u0). The components in â(u0) provide an

estimate of a1(u0), . . . , ap
(u0). For simplicity of notation, let β = β(u0) =

(a1, . . . , ap
, b1, . . . , bp)

T , and write the local likelihood function (31) as

`
n
(β). Likewise, the local MLE is denoted by β̂

MLE
= β̂

MLE
(u0). The

sampling properties have been established in CFL.

5.2.2. One-step local MLE

Computation for the above local MLE is expensive. We have to maximize

the local likelihood (31) for usually hundreds of distinct values of u0, with

each maximization requiring an iterative algorithm, in order to obtain

the estimated functions {â
j
(·)}. To alleviate this expense, we replace an

iterative local MLE by the one-step estimator, which has been frequently

used in parametric models.5,61 The one-step local MLE does not lose any

statistical efficiency provided that the initial estimator is good enough. See

CFL for theoretic insights.

Let `

′
n

(β) and `

′′
n

(β) be the gradient and Hessian matrix of the

local log-likelihood `
n
(β). Given an initial estimator β̂0 = β̂0(u0) =

(â(u0)
T

, b̂(u0)
T )T , one-step of the Newton-Raphson algorithm updates its
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solution by

β̂OS = β̂0 − {`
′′
n

(β̂0)}
−1
`

′
n

(β̂0) , (32)

thus featuring the computational expediency of least-squares local polyno-

mial fitting. Furthermore, the sandwich formula can be used as an estimate

for standard errors of the resulting estimate

ĉov(β̂OS) = {`′′
n

(β̂0)}
−1ĉov{`′

n

(β̂0)}{`
′′
n

(β̂0)}
−1
.

This formula has been tested in CFL to be accuracy enough for most of

practical purpose.

In univariate generalized linear models, Fan and Chen26 carefully

studied properties of the local one-step estimator. In that setting, the least-

squares estimate serves a natural candidate as an initial estimator. However,

in the multivariate setting, it is not clear how an initial estimator can be

constructed. The following is proposed in CFL. Suppose that we wish to

evaluate the functions â(·) at grid points u
j
, j = 1, . . . , ngrid. Our idea of

finding initial estimators is as follows. Take a point u
i0

, usually the center

of the grid points. Compute the local MLE β̂MLE(u
i0

). Use this estimate as

the initial estimate for the point u
i0+1 and apply (32) to obtain β̂OS(u

i0+1).

Now, use β̂OS(u
i0+1) as the initial estimate at the point u

i0+2 and apply

(32) to obtain β̂OS(u
i0+2) and so on. Likewise, we can compute β̂OS(u

i0−1),

β̂OS(ui0−2), etc. In this way, we obtain our estimates at all grid points.

A refine alternative of the above proposal is to calculate a fresh local

MLE as a new initial value after iterating along the grid points for a while.

For example, if we wish to evaluate the functions at 200 grid points and are

willing to compute the local maximum likelihood at five distinct points. A

sensible placement of these points is u20, u60, u100, u140 and u180. Use for

example β̂MLE(u60) along with the idea in the last paragraph to compute

β̂OS(ui
) for i = 40, . . . , 79, and use β̂MLE(u100) to compute β̂OS(u

i
) for

i = 80, . . . , 119, and so on.

Note that `′′
n

(β̂0) can be nearly singular for certain u0, due to possible

data sparsity in certain local regions. Seifert and Gasser73 and Fan and

Chen26 explored the use of the ridge regression as an approach to handling

such problems in the univariate setting. See CFL8 for details.

5.3. Hypothesis testing

When fitting a varying-coefficient model, it is natural to ask whether the

coefficient functions are actually varying or whether any particular covariate
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Table 2. Normalization constant rK .

Kernel Uniform Epanechnikov Biweight Triweight Gaussian

rK 1.2000 2.1153 2.3061 2.3797 2.5375

is significant in the model. For simplicity of description, we only consider

the first hypothesis testing problem

H0 : a1(u) ≡ a1, . . . , ap
(u) ≡ a

p
, (33)

though the technique also applies to other testing problems. A useful

procedure is based on the nonparametric likelihood ratio test statistic

T = 2{`(H1)− `(H0)} , (34)

where `(H0) and `(H1) are respectively the log-likelihood functions

computed under the null and alternative hypotheses. Note that the normali-

zation constant in (34) does not change the testing procedure. However, in

order for it to possess a χ

2 distribution, it needs to be normalized as in

Ref. 37

T
K

= r
K
{`(H1)− `(H0)} , (35)

where

r
K

=
K(0)− 1

2

∫
K

2(t)dt∫
(K(t)− 1

2
K ∗K(t))2dt

.

Table 2 gives the value of r
K

for a few commonly used kernels.

For parametric models, it is well known that the likelihood ratio statistic

follows asymptotically a χ2-distribution. The asymptotic null distribution

is independent of nuisance parameters under the null hypothesis. This is the

Wilks type of phenomenon. Fan et al.37 has shown the Wilks phenomenon

still holds for the nonparametric likelihood ratio tests. Furthermore, they

showed that the null distribution of the nonparametric likelihood ratio test

is a χ

2-distribution in some sense and does not depend on the values of

a1, . . . , ap
. Thus one may use the following conditional bootstrap to con-

struct the null distribution of T
K

and hence the P -value. Let {â
j
} be the

MLE under the null hypothesis. Given the covariates (U
i
,X

i
), generate a

bootstrap sample Y ∗
i

from the given distribution of Y with the estimated

linear predictor η̂(U
i
,X

i
) =

∑
p

j=1
â

j
X

ij
and compute the test statistic T ∗

K

in (34). Use the distribution of T ∗
K

as an approximation to the distribution

of T
K

.
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Note that the above conditional bootstrap method applies readily to

setting without presence of dispersion parameter, such as the Poisson and

Bernoulli distributions. It is really a simulation approximation to the con-

ditional distribution of T
K

given observed covariates under the particular

null hypothesis: H0 : a
j
(u) = â

j
(j = 1, . . . , p). As pointed out above,

this approximation is valid under both H0 and H1 as the null distribu-

tion does not asymptotically depend on the values of {a
j
}. In the case

where model (30) involves a dispersion parameter (e.g. the Gaussian model),

the dispersion parameter should be estimated based on the residuals from

the alternative hypothesis.

It is also of interest to investigate whether some covariates are

significant. For example, we want to check whether the covariate X
p

can

be excluded from the model. This is equivalent to testing the hypothesis

H0 : a
p
(·) = 0, the above conditional bootstrap idea can be employed to

obtain the null distribution of T
K

under the model (30) and the generalized

likelihood ratio statistics continue to apply. In this case, the data should

be generated from the mean function g{m(u,x)} =
∑

p−1

j=1
â

j
(u)x

j
, where

â
j
(·) is an estimate under the alternative hypothesis.

5.4. An application

We conclude this section via illustrating the proposed methodology to

analyze the Burn Data set. The binary response variable Y is 1 for those

victims who survived their burns and 0 otherwise, and covariatesX1 = age,

X2 = sex, X3 = log(burn area + 1) and binary variable X4 = Oxygen (0

if oxygen supply is normal, 1 otherwise) are considered. Of interest is to

study how burn areas and the other variables affect the survival probabili-

ties for victims at different age groups. This naturally leads to the following

varying-coefficient model

logit{p(x1, x2, x3, x4)} = a1(x1) + a2(x1)x2

+ a3(x1)x3 + a4(x1)x4 . (36)

Figure 13 presents the estimated coefficients for model (36) via the one-

step approach with bandwidth h = 65.7882, selected by a cross-validation

method. See CFL8 for details.

A natural question arises whether the coefficients in (36) are actually

varying. To see this, we consider the parametric logistic regression model

logit{p(x1, x2, x3, x4)} = β0 + β1x1 + β2x2 + β3x3 + β4x4 (37)
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Fig. 13. The estimated coefficient functions (the solid curves) via the one-step approach
with bandwidth chosen by the CV. The dot curves are the estimated functions
plus/minus twice estimated standard errors. Adapted from Cai, Fan and Li.8

as the null model. As a result, the MLE of (β0, . . . , β4) in model (37) and

its standard deviation are (23.2213,−6.1485,−0.4661,−2.4496,−0.9683)

and (1.9180, 0.6647, 0.2825, 0.2206, 0.2900), respectively. The likelihood

ratio test T
K

is 58.1284 with p-value 0.000, based on 1000 bootstrap

samples (the sample mean and variance of T ∗
K

are 6.3201 and 11.98023,

respectively). This implies that the varying-coefficient logistic regression

model fits the data much better than the parametric fit. It also allows us to

examine the extent to which the regression coefficients vary over different

ages. The estimated density of T ∗
K

is depicted in Fig. 14, from which we can

seen that the null distribution is well approximated by a χ

2 distribution

with 6.5 degrees of freedom (a gamma distribution).



June 6, 2003 11:2 WSPC/Advanced Medical Statistics chap24

918 J. Fan & R. Li

0 5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
Estimated density of T

de
ns

ity

T

Fig. 14. The estimated density of TK by Monte Carlo simulation. The solid curve is the
estimated density, and the dashed curve stands for the density of chi-squared distribution
(gamma distribution) with 6.5 degrees of freedom.

To examine whether there is any gender gap for different age groups

or if the variable X4 affects the survival probabilities for different age of

burn victims, we consider testing the null hypothesis H0 : both a2(·) and

a4(·) are constant under model (36). The corresponding test statistic T
K

is

3.4567 with p-value 0.7050 based on 1000 bootstrap samples. This in turn

suggests that the coefficient functions a2(·) and a4(·) are independent of age

and indicates that there are no gender differences for different age groups.

Finally, we examine whether both covariates sex and oxygen are statis-

tically significant in model (36). The likelihood ratio test for this problem

is T
K

= 11.9256 with p-value 0.0860, based on 1000 bootstrap samples (the

sample mean and variance of T ∗
K

are 5.5915 and 10.9211, respectively). Both

covariates sex and oxygen are not significant at level 0.05. This suggests

that gender and oxygen do not play a significant role in determining the

survival probability of a victim.

6. Other Applications

There are many other applications of local modeling methods. This section

briefly introduces some of them and gives some relevant references for

those who wish for more details. Suppose that (X1, Y1), . . . , (Xn
, Y

n
) are a

random sample from a population (X,Y ). We are interested in estimating
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a population parameter function θ. The function θ(·) can be, for example,

the conditional mean function E(Y |X) and the conditional quantile

function. In parametric settings, we model θ(x) using a parametric family

θ(x) = g(x;β). To get an estimator of β, we optimize (either minimize or

maximize) an objective function

L(β) =
n∑

i=1

`{X
i
, Y

i
, g(X

i
, β)} . (38)

Here ` is a discrepancy loss function or the log-likelihood function of an

individual observation. For example, the L2-loss function leads to a least

squares estimate, while the L1-loss function corresponds to a robust linear

regression.

The local modeling method can be used to relax the global parametric

model assumption and to significantly reduce the modeling bias. For a given

point x0, we replace the objective function by its local version

L{β(x0)} =

n∑

i=1

`{X
i
, Y

i
, g(X

i
, β(x0))}Kh

(X
i
− x0) . (39)

Optimizing (39) yields an estimate β̂(x0), just like the local likelihood

estimate discussed in the last section. Thus, an estimate of the function

θ(·) by θ̂(x0) = g{x0; β̂(x0)}. Since the local estimate β̂(x0) optimizes (39),

the estimate g{x0, β̂(x0)} should converge to its population version. There-

fore the estimate θ̂(x0) is a consistent estimator of the function θ(x0) if

h→ 0 in such a way that nh→∞.

For a given x0, by Taylor’s expansion, we can parametrize the function

in a local neighborhood of x0 as

g(x;β) = β0(x0) + β1(x0)(x− x0) + · · ·+ β
p
(x0)(x − x0)

p

. (40)

With suppressing the dependence of β’s on x0, (39) can be rewritten as

L{β(x0)} =

n∑

i=1

`{X
i
, Y

i
, β0 + β1(Xi

− x0) + · · ·+ β
p
(X

i
− x0)

p}

×K
h
(X

i
− x0) . (41)

Let β̂
j
(j = 0, 1, . . . , p) optimize (41). Then as in last section,

θ̂(x0) = β̂0

and

θ̂
ν
(x0) = ν!β̂

ν
, ν = 1, . . . , p

estimates the νth derivative of the function θ(x) at x = x0.
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It is clear that local polynomial regression and local likelihood approach

are special cases hereof. An extension of the ideas for estimating bias and

variance can be found in Fan et al.,27 in which methods for selecting

bandwidths and constructing confidence intervals are also proposed. A

closely related framework is the local estimating equation method intro-

duced by Carroll et al.11 and the kernel generalized estimating equation

(GEE) proposed by Lin and Carroll.62

6.1. Estimation of conditonal quantiles and median

In explanatory data analysis, quantiles provide us informative summary of

a population. In regression analysis, conditional quantiles have important

applications for constructing predictive intervals and detecting hetero-

scedasticity. When the error distribution is asymmetric, the conditional

median regression function is more informative than the conditional mean

regression.

Take the loss function in (38) to be `(x, y, θ) = `
α
(y − θ) with

`
α
(t) = |t|+ (2α− 1)t . (42)

The minimizer of E`(X,Y, θ) in this situation is the conditional α-quantile

function ξ
α
(x) = G

−1(α|x), where G−1(y|x) is the conditional distribution

of Y given X = x.

Now we apply the local modeling approach to estimate the conditional

quantile function. Minimize

n∑

i=1

`
α
{Y

i
− β0 − β1(Xi

− x0)− · · · − βp
(X

i
− x0)

p}K
h
(X

i
− x0) (43)

and the resulting estimator for ξ
α
(x0) is simply β̂0.

Now we apply the proposed approach to the 12-month Treasury bill

data presented in Fig. 15(a). Figure 15(b) depicts the estimated conditional

median, the conditional 10th percentile and the conditional 90th percentile.

The fan shape of the conditional quantiles shows that the variability

gets larger as the interest rate gets higher. The intervals sandwiched by

conditional 10th and 90th percentiles are 80%-predictive intervals. For

example, given the current interest rate being 10%, with probability 80%

the difference of the next week’s rate and this week’s rate falls in the interval

[−0.373%, 0.363%].



June 6, 2003 11:2 WSPC/Advanced Medical Statistics chap24

Local Modeling: Density Estimation and Nonparametric Regression 921

calendar time
    (a)

In
te

re
st

 ra
te

s

1970 1980 1990

4
6

8
10

12
14

Twelve-month T-bill rate Running quantile curves

Interest rate
(b)

di
ffe

re
nc

e

4 6 8 10 12 14

-0
.8

-0
.4

0.
0

0.
2

0.
4

0.
6

80% predictive interval

(a)

calendar time
    (a)

In
te

re
st

 ra
te

s

1970 1980 1990

4
6

8
10

12
14

Twelve-month T-bill rate Running quantile curves

Interest rate
(b)

di
ffe

re
nc

e

4 6 8 10 12 14

-0
.8

-0
.4

0.
0

0.
2

0.
4

0.
6

80% predictive interval

(b)

Fig. 15. Quantile regression. (a) The yields of 12-month Treasury bill. (b) Conditional
quantiles - - - - - : α = 0.1, solid curve — α = 0.5, −−−−− : α = 0.9. The vertical bar
indicates the 80%-predictive interval at the point x = 10. Taken from Fan and Gijbels.29

For robust estimation of the regression function, one can simply replace

the loss function in (42) by an outlier-resistant loss function such as

`(t) =

{
t

2
/2 when |t| ≤ c

c|t| − c2/2 when |t| > c ,

namely, taking the derivative of `(t) to be Huber’s ψ-function: ψ
c
(t) =

max{−c,min(c, t)}. When the conditional distribution of Y given X = x

is symmetric about the regression function m(x), the resulting estimates

are consistent for all c ≥ 0. Another useful robust procedure is LOWESS,

introduced by Cleveland,17 which reduces the influence of outliers by an

iterative reweighted least-squares scheme with weights proportional to the

residuals from the previous iteration.

There is a large literature on nonparametric quantile regression and

robust regression. Härdle and Gasser49 and Tsybakov84 considered respec-

tively local constant and local polynomial fitting. Other contributions in

this area are also available.12,28,47,60,83
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6.2. Estimation of conditional variance

Conditional variance functions have many statistical applications, parti-

cularly in finance. Because of their important applications in finance in

which data are often dependent, we formulate the problems in stochastic

setup.

Let {(X
i
, Y

i
)} be a two-dimensional strictly stationary process having

the same joint distribution as (X,Y ). Letm(x) = E(Y |X = x) and σ2(x) =

var(Y |X = x) be respectively the regression function and the conditional

variance function. Our approach is based on the residuals of the local fit.

Let m̂
h1,K

(·) be the local fit of m(·) using a kernel K and a bandwidth h1.

Consider the squared residuals

r̂
i
= {Y

i
− m̂

h1,K
(X

i
)}2 . (44)

Note that the conditional variance function can be expressed as

σ

2(x) = E[{Y −m(X)}2|X = x] ,

which is the regression function of the squared residuals. Therefore, a natu-

ral procedure is to run a local fit on the squared residuals. Let σ̂2

h2,W

(x) be

the local fit based on the data {(X
i
, r̂

i
), i = 1, . . . , n}, using a bandwidth

h2 and a kernel W . Then, it was shown by Fan and Yao,35 Ruppert et al.71

that the estimator σ̂2

h2,W

(x) performs as well as the ideal estimator, which

is a local linear fit to the true squared residuals

{(X
i
, {Y

i
−m(X

i
)}2), i = 1, . . . , n}

using the same bandwidth h2 and the same kernel W . They also obtained

the order of bias and variance of the resulting estimators. Their results

suggest that if the bandwidth h1 is of order n−1/5, then the residual-based

conditional variance estimator performs asymptotically as well as the ideal

one. In particular, the optimal bandwidth for estimating the mean regres-

sion function is permitted to be used for computing the residuals. Thus a

data-driven procedure can be established.35

To illustrate the usefulness of the above automatic method, consider

the yields of 12-month Treasury bill. The refined global bandwidth selector

of Fan and Gijbels28 and the Epanechnikov kernel. Figure 16(a) gives the

estimated mean regression function. The bandwidth ĥ1 = 3.99 was chosen

by the software. Figure 16(b) depicts the estimated conditional standard

deviation (the volatility function) and the conditional variance function.

The bandwidth ĥ2 = 3.63 was selected by the software. Visual inspection

suggests that the volatility function should be a power function. Indeed,
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Fig. 16. The regression function and the volatility function for the 12-month Treasury
bill data. (a) The estimated mean regression function and, (b) Estimated volatility func-
tion (thick curve) and the estimated conditional variance function (thin curve). The
two dashed curves around a solid one indicate one standard error above and below the
estimated mean regression function. From Fan and Gijbels.29

the correlation coefficient between {log(x
j
)} and {log(σ̂(x

j
))} is 0.997!,

where x
j
, (j = 1, . . . , 201) are grid points in the interval [3, 14]. Fitting a

line through the data {(log(x
j
), log{σ̂(x

j
)}), j = 1, . . . , 201}, we obtain the

estimate

σ̂(x) = 0.0154x1.3347
.

This estimate is presented as a thick-dashed curve in Fig. 16(b). This is an

example where the nonparametric analyses yield a good parametric model

σ(x) = αx

β . Based on the linear regression on the data (log(X
i
), log(r̂

i
)),

one can also obtain directly an estimate of α and β.

6.3. Estimation of conditional density

It is well known that probability density function is much more informa-

tive than the mean and the variance. Similarly, in regression settings, the

conditional probability density function provided more information about

the population than the conditional regression function. The probability

density function plots can show us about the center as well as the spreadness
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of the population. The shape of conditional probability density function tells

us whether it is symmetric. This provides a guidance for us to summarize the

population via the conditional mean regression function or the conditional

median regression function.

Suppose that (X1, Y1), . . . , (Xn
, Y

n
) are a random sample from the

population (X,Y ) with the conditional density g(y|x). Note that

E{K
h2

(Y − y)|X = x} ≈ g(y|x) , as h2 → 0 . (45)

Thus, g(y|x) can be regarded approximately as the regression function of

the variable K
h2

(Y − y) on X . Considerations of this nature lead to the

following local polynomial regression problem:

n∑

i=1



Kh2

(Y
i
− y)−

p∑

j=0

β
j
(X

i
− x)j





2

W
h1

(X
i
− x) , (46)

for a given bandwidth h1 and a kernel function W . Let {β̂
j
(x, y), j =

0, . . . , p} be the solution of the least-squares problem. Then an estimator

of g(ν)(y|x) = ∂

ν
g(y|x)

∂x

ν is ν!β̂
ν
(x, y). We write ĝ(y|x) = β̂0(x, y) as the

estimator of the conditional density.

To apply the proposed approach of conditional density estimation, we

have to choose two bandwidths h1 and h2. The method for constructing

a data-driven bandwidth for local polynomial regression can be used to

compute a bandwidth for h1, and the method for choosing a bandwidth for

kernel density estimation can be employed to find a bandwidth h2.
36

With the estimated conditional density function, one can derive many

statistical estimators. For example, the mean regression function can simply

be estimated by

m̂(x) =

∫
yĝ(y|x)dy .

It can be shown that this estimator is the same as the local polynomial re-

gression estimator when the kernel functionK has mean zero. Similarly, one

can derive estimates for the conditional variance and conditional quantile

functions.

6.4. Change point detection

Change point detection is useful in medical monitoring and quality control.

For example, when the treatment effects change suddenly without warning
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or planning, jump points arise. The statistical problem can be formulated

as follows.

Let (X1, Y1), . . . , (Xn
, Y

n
) be a random sample from a population (X,Y )

with conditional mean function m, which is smooth except for a few number

of jump discontinuities. For simplicity, we assume that there is only one

single discontinuity point, also called a change point.

One may regard the change point as the location where the derivative

function |m′(·)| is maximized. Thus, a naive method is to first estimate

the derivative curve and then find the maximizer of the absolute value of

the estimated derivative function. Let D(x, h) be a derivative estimator

resulting from a local polynomial fit of order p with bandwidth h and kernel

K. For simplicity, assume that the support of K is [−1, 1]. The above idea

translates into the following estimating scheme: plot the function |D(·, h)|

for a range of values of h and identify the jump as the point x in the

vicinity of which |D(x, h)| is consistently large for a range of values of h.

More precisely, let x̃(h) be the global maximum of the function |D(·, h)|.

Put

x̃−(h) = sup
h1∈[h,ηn]

{x̃(h1)− 2h1} , x̃+(h) = inf
h1∈[h,ηn]

{x̃(h1) + 2h1} , (47)

for h ≤ η
n
, where η

n
> 0 is a prescribed number, tending to zero more

slowly than n

−1 logn. Let h̃ denote the infimum of values h such that

x̃−(h) ≤ x̃+(h). The proposed jump point estimator is x̂0 = x̃(h̃).44

Gijbels et al.44 also propose a further refinement of the above idea. For

a given bandwidth h, pretend the change point lies in the interval x̃(h)±2h

and the regression function is a step function on this interval. Then, find the

unknown location of the jump such that it minimizes the residual sum of

squares, using only the data in the strip x̃(h)± 2h. The resulting estimator

is a refinement of the estimator x̃(h). In particular, we can take h = h̃ to

yield a refinement of x̂0.

Müller67 proposed an alternative method based on a one-sided kernel

approach. The idea can be extended to the local polynomial setting as

follows. Denote by K− a kernel function supported on [−1, 0] and m̂−(x, h)

a local polynomial fit using the bandwidth h and the kernel K−. Note that

the estimator m̂−(x, h) uses only the local data on the left-hand side of the

point x. Analogously, let K+ be a kernel function supported on [0, 1] and

m̂+(x, h) be a local polynomial fit using the bandwidth h and the kernel

K+. Then, m̂+(x, h) uses only the data on the right-hand side of the point

x. At the smooth locations, the estimates m̂−(x, h) and m̂+(x, h) are about

the same, since both are consistent estimates of m(x). At the discontinuity
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point, however, they estimate respectively the left-limit and the right-limit

of the function m at the point x. Thus, a natural estimator is the location

such that the difference function |m̂+(x, h)− m̂−(x, h)| is maximized. The

bandwidth for detecting the change point is typically much smaller than

the optimal bandwidth for curve estimation. Müller67 and Gijbels et al.44

also gave some interesting examples.
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48. Härdle, W. (1990). Applied Nonparametric Regression, Cambridge University

Press, Boston.
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50. Härdle, W. and Mammen, E. (1993). Comparing nonparametric versus para-

metric regression fits. The Annals of Statistics 21: 1926–47.

51. Hart, J. D. (1997). Nonparametric Smoothing and Lack-of-fit Tests, Springer,

New York.

52. Hastie, T. J. and Tibshirani, R. (1990). Generalized Additive Models.

Chapman and Hall, London.

53. Hastie, T. J. and Tibshirani, R. J. (1993). Varying-coefficient models (with

discussion). Journal of the Royal Statistical Society B55: 757–796.

54. Hoover, D. R., Rice, J. A., Wu, C. O. and Yang, L. P. (1998). Nonpara-

metric smoothing estimates of time-varying coefficient models with longitu-

dinal data. Biometrika 85: 809–822.

55. Inglot, T., Kallenberg, W. C. M. and Ledwina, T. (1994). Power approxima-

tions to and power comparison of smooth goodness-of-fit tests. Scandinavian

Journal of Statistics 21: 131–45.



June 6, 2003 11:2 WSPC/Advanced Medical Statistics chap24

Local Modeling: Density Estimation and Nonparametric Regression 929

56. Jones, M. C., Marron, J. S. and Sheater, S. J. (1996a). A brief survey of

bandwidth selection for density estimation. Journal of the American Statis-

tical Association 91: 401–407.

57. Jones, M. C., Marron, J. S. and Sheater, S. J. (1996b). Progress in data-based

bandwidth selection for kernel density estimation. Computational Statistics

11: 337–381.

58. Kallenberg, W. C. M. and Ledwina, T. (1997). Data-driven smooth tests

when the hypothesis is composite. Journal of the American Statistical

Association 92: 1094–1104.

59. Kauermann, G. and Tutz, G. (1999). On model diagnostics using varying

coefficient models. Biometrika 86: 119–128.

60. Koenker, R., Portnoy, S. and Ng, P. (1992). Nonparametric estimation of

conditional quantile function. In Proceedings of the conference on L1 —

Statistical Analysis and Related Methods, ed. Y. Dodge, Elsevier, 217–229.

61. Lehmann, E. L. (1983). Theory of Point Estimation, Pacific Grove,

Wadsworth and Brooks/Cole, California.

62. Lin, X. and Carroll, R. J. (2000). Nonparametric function estimation for

clustered data when the predictor is measured without/with error. Journal

of the American Statistical Association 95: 520–534.

63. Mack, Y. P. and Müller, H. G. (1989). Convolution type estimators for

nonparametric regression estimation. Statistics and Probability Letters 7:

229–239.

64. Marron, J. S. and Nolan, D. (1988). Canonical kernels for density estimation.

Statistics and Probability Letters 7: 195–199.

65. McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models. Chapman

and Hall, London.

66. Müller, H.-G. (1987). Weighted local regression and kernel methods for non-

parametric curve fitting. Journal of the American Statistical Association 82:

231–238.

67. Müller, H.-G. (1992). Change-points in nonparametric regression analysis.

The Annals of Statistics 20: 737–761.

68. Nadaraya, E. A. (1964). On estimating regression. Theory Probability Applied

9: 141–142.

69. Rawlings, J. O. and Spruill, S. E. (1994). Estimating pine seedling response to

ozone and acidic rain. In Case Studies in Biometry, eds. N. Lange, L. Ryan,

L. Billard, D. Brillinger, L. Conquest and J. Greenhouse, Wiley, New York,

81–106.

70. Ruppert, D. and Wand, M. P. (1994). Multivariate weighted least squares

regression. The Annals of Statistics 22: 1346–1370.

71. Ruppert, D., Wand, M. P., Holst, U. and Hössjer, O. (1997). Local polynomial
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1. Introduction

In the practice of applied statistics and data analysis, summarizing data

points, making inference to the unknowns, fitting probability models and

predicting the future are all important elements to be considered. Many

statistical methodologies have been developed in modern days to deal with

different problems in the world full of randomness. Two schools of statistics

are popular nowadays. One of them is called classic or frequentist statistics.

The other one, which has progressed rapidly in the last decade and which

has been more and more used in common practice, is called Bayesian

statistics. Due to the current advances in computing technology and the

development of efficient computational algorithms, Bayesian statistics are

now becoming more popular in many applied fields such as agriculture,

medicine, biology, public health, and epidemiology.

The Bayesian paradigm is based on specifying a probability model for

the observed data D = (n,y, X), where n is the sample size, y is the n× 1

response vector, and X is the n × p matrix of covariates, given a vector

of unknown parameters θ, leading to the likelihood function L(θ|D). Then

we assume that θ is random and has a prior distribution denoted by π(θ).

Inference concerning θ is then based on the posterior distribution, which is

933
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obtained by Bayes’ theorem. The posterior distribution is given by

π(θ|D) =
L(θ|D)π(θ)

∫

Ω
L(θ|D)π(θ) dθ

, (1)

where Ω denotes the parameter space of θ. From (1), it is clear that π(θ|D)

is proportional to the likelihood multiplied by the prior,

π(θ|D) ∝ L(θ|D)π(θ) ,

and thus it involves a contribution from the observed data through L(θ|D),

and a contribution from prior information quantified through π(θ). The

quantity m(D) =
∫

Ω
L(θ|D)π(θ) dθ is the normalizing constant of π(θ|D),

and is often called the marginal distribution of the data or the prior

predictive distribution.

Notice that other than the data D to be random, from a Bayesian

point of view, the parameter θ is also random. Foundationally speaking, to

gain information of an unknown, say θ, it would be natural if the know-

ledge of θ can be described by using a form of statistical distribution. The

more the information about the unknown through data is obtained, the

better knowledge of the unknown is gained. The posterior in (1) can also

be viewed as a prior distribution for future experimental observations, if

any. Hence, Bayesian thinking requires a sequential learning process that

leads to understanding unknowns in the scientifical world.

In this chapter, we are going to describe a few aspects of Bayesian

statistics, including posterior inference (Sec. 2), prior elicitation (Sec. 3),

Bayesian computations (Sec. 4), and applicational examples (Sec. 5).

2. Posterior Inference

2.1. Summary of posterior distributions

In Bayesian data analysis, many posterior quantities are of the form

E[h(θ)|D] =

∫

R

p

h(θ)π(θ|D) dθ , (2)

where h(·) is a real-valued function of θ = (θ1, θ2, . . . , θp)
′. We call (2) an

integral-type posterior quantity, or the posterior expectation of h(θ). In

(2), we assume that

E(|h(θ)| |D) =

∫

R

p

|h(θ)|π(θ|D) dθ <∞ .
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Integral-type posterior quantities include posterior means, posterior vari-

ances, covariances, higher-order moments, and probabilities of sets by

taking appropriate functional forms of h. For example, (2) reduces to:

(a) the posterior mean of θ when h(θ) = θ;

(b) the posterior covariance of θ
j

and θ
j

∗ if h(θ) = (θ
j
− E(θ

j
|D))(θ

j

∗ −

E(θ
j
∗ |D))′, where E(θ

j
|D) =

∫

R

p θjπ(θ|D) dθ;

(c) the posterior predictive density when h(θ) = f(z|θ), where f(z|θ) is

the predictive density given the parameter θ; and

(d) the posterior probability of a set A if h(θ) = 1{θ ∈ A}, where 1{θ ∈ A}

denotes the indicator function.

In (d), the posterior probability leads to a Bayesian p-value72 by taking an

appropriate form of A.

Some other posterior quantities such as normalizing constants, Bayes

factors, and posterior model probabilities, may not simply be written in the

form of (2). However, they are actually functions of integral-type posterior

quantities. Posterior quantiles, Bayesian credible intervals, and Bayesian

Highest Posterior Density (HPD) intervals are often viewed as nonintegral-

type posterior quantities. Even for these types of posterior quantities, we

can express them as functions of integral-type posterior quantities under

certain conditions. For example, let ξ = h(θ), and ξ1−α be the (1 − α)th

posterior quantile of ξ with respect to π(θ|D), where 0 < α < 1 and h(·) is

a real-valued function. Then, ξ1−α is the solution of the following equation:
∫

R
p

1{h(θ) ≤ t}π(θ|D) dθ = 1− α .

Therefore, the posterior quantile is a function of the posterior expectation

of 1{h(θ) ≤ t}.

2.2. Predictive distributions

A major aspect of the Bayesian paradigm is prediction. Prediction is often

an important goal in regression problems, and usually plays an important

role in model selection problems. The posterior predictive distribution of a

future observation vector z given the data D is defined as

π(z|D) =

∫

Ω

f(z|θ)π(θ|D) dθ , (3)

where f(z|θ) denotes the sampling density of z, and π(θ|D) is the posterior

distribution of θ. We see that (3) is just the posterior expectation of f(z|θ),
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and thus sampling from (3) is easily accomplished via the Gibbs sampler

(See Sec. 4 for detail) from π(θ|D). This is a nice feature of the Bayesian

paradigm since Eq. (3) shows that predictions and predictive distributions

are easily computed once samples from π(θ|D) are available.

Regarding the complementary roles of the predictive and posterior

distributions in Bayesian data analysis, Box12 notes that the posterior

distribution provides a basis for “estimation of parameters conditional on

the adequacy of the entertained model” while the predictive distribution

enables “criticism of the entertained model in light of current data”. In this

spirit, Gelfand et al.37 consider a cross-validation approach, in which the

predictive distribution is used in various ways to assess model adequacy. The

main idea of this cross-validation approach is to validate conditional predic-

tive distributions arising from single observation deletion against observed

responses.

Let y = (y1, y2, . . . , yn)
′ denote the n × 1 vector of the observed re-

sponses. Let X denote the n × p matrix of covariates whose ith row x
′
i

is

associated with y
i
. Then, the observed data can be written asD = (n,y, X).

Also let y
(−i) denote the (n−1)×1 response vector with y

i
deleted, letX(−i)

denote the (n − 1) × p matrix that is X with the ith row x
′
i

deleted, and

the resulting observed data are written as D(−i) = ((n − 1),y(−i)
, X

(−i)).

In addition, let θ be the vector of model parameters. We assume that

y
i
∼ f(y

i
|θ,x

i
) and we let π(θ) denote the prior distribution of θ. Then,

the posterior distribution of θ based on the data D is given by

π(θ|D) ∝

[

n

∏

i=1

f(y
i
|θ,x

i
)

]

π(θ) , (4)

and the posterior distribution of θ based on the data D(−i) is given by

π(θ|D(−i)) ∝





∏

j 6=i

f(y
j
|θ,x

j
)





π(θ) . (5)

Let z = (z1, z2, . . . , zn)
′ denote future values of a replicate experiment.

Also let π(z
i
|x
i
, D

(−i)) denote the conditional density of z
i

given x
i

and

D

(−i) defined as

π(z
i
|x
i
, D

(−i)) =

∫

f(z
i
|θ,x

i
)π(θ|D(−i)) dθ , (6)

for i = 1, 2, . . . , n. The conditional predictive density π(z
i
|x
i
, D

(−i)) is also

called the cross-validated predictive density. This density is to be checked

against y
i
, for i = 1, 2, . . . , n in the sense that, if the model holds, y

i
may

be viewed as a random observation from π(z
i
|x
i
, D

(−i)). To do this, we
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take z
i
= y

i
in (6) and then we obtain the Conditional Predictive Ordinate

(CPO):

CPO
i
= π(y

i
|x
i
, D

(−i)) . (7)

CPO
i
, which was proposed by Geisser36 and further discussed in Gelfand

et al.,37 is a very useful quantity for model checking, since it describes how

much the ith observation supports the model. Large CPO values indicate

a good fit.

Another application of the predictive distribution to construct the

Bayesian standardized residual. Similar to the Studentized residuals with

the current observation deleted, the Bayesian standardized residual can be

computed as

d
i
= E[g(z

i
, y
i
)|x

i
, D

(−i)] =
y
i
− E(z

i
|x
i
, D

(−i))
√

var(z
i
|x
i
, D

(−i))
, (8)

where var(z
i
|x
i
, D

(−i)) is the variance of z
i

with respect to the predictive

distribution π(z
i
|x
i
, D

(−i)) given by (6). Large |d
i
|’s cast doubt upon the

model but retaining the sign of d
i

allows patterns of under or over fitting

to be revealed.

Example 1. Estimating apple production y in New Zealand.17

Let β
j

denote the average number of cartons per tree, conditional on

the age of the tree, j, for j = 1, 2, . . . , 10. These averages are combined

using the linear model

y =

10
∑

j=1

β
j
x
j
+ ε , (9)

where x
j

is the number of trees of age j and and ε ∼ N(0, σ2). Younger

trees are known to produce fewer apples on average, so the model is subject

to the constraints

0 ≤ β1 ≤ β2 ≤ · · · ≤ β10 . (10)

Given data D on the number of trees and production by year and by or-

chard, Chen and Deely17 choose a noninformative prior for β1, . . . , β9, and

σ

2 as well as a proper prior for β10, which allow them to derive the full

joint posterior density

π(β, σ2|D) =
exp

{

− (β10−µ10)
2

2σ2

10

}

c(D)σN+1
exp











−
1

2σ2

N

∑

i=1





y
i
−

10
∑

j=1

β
j
x
ij





2










,

(11)
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where β = (β1, β2, . . . , β10)
′, c(D) is the normalizing constant, 0 ≤ β1 ≤

β2 ≤ · · · ≤ β10, and σ

2
> 0. For the New Zealand apple data, N = 207,

µ10 = 0.998, and σ

2

10
= 0.0891, where µ10 and σ

2

10
are specified using

method-of-moments estimates from the growers’ data for trees of age 10.

For the model given in (9), we have

f(z
i
|β, σ2

,x
i
) =

1
√

2πσ
exp

{

−
(z
i
− x

′
i

β)2

2σ2

}

,

where x
i
= (x

i1, xi2, . . . , xi,10)
′. Thus,

E(z
i
|x
i
, D

(−i)) =

∫

(x′
i

β)π(β, σ2|D(−i)) dβ dσ

2
.

Note that CPO
i
given by (7) can be rewritten as

CPO
i
= f(y

i
|x
i
, D

(−i)) =

(
∫

1

f(y
i
|β, σ2

,x
i
)
π(β, σ2|D) dβ

)−1

.

Let {(β
l

, σ

2

l

), l = 1, 2, . . . , L} denote a Gibbs sample from π(β, σ2|D) using

the Gibbs sampler given in Sec. 4. Then, the Monte Carlo estimate of CPO
i

is given by

ĈPO
i
= L

[

L

∑

l=1

(f(y
i
|β
l

, σ

2

l

,x
i
))−1

]−1

, (12)

and the Monte Carlo estimates of E(z
i
|x
i
, D

(−i)) and var(z
i
|x
i
, D

(−i)) are

given by

Ê(z
i
|x
i
, D

(−i))) = ĈPO
i
L

−1

L

∑

l=1

x
′
i

β
l

f(y
i
|β
l

, σ

2

l

,x
i
)
, (13)

and

v̂ar(z
i
|x
i
, D

(−i))) = Ê(z2

i

|x
i
, D

(−i))− [Ê(z
i
|x
i
, D

(−i))]2

= ĈPO
i
L

−1

L

∑

l=1

σ

2

l

+ (x′
i

β
l

)2

f(y
i
|β
l

, σ

2

l

,x
i
)

− [Ê(z
i
|x
i
, D

(−i))]2 , (14)

respectively. Using (13) and (14), the Monte Carlo estimate of the Bayesian

standardized residual d
i

is

d̂
i
=
y
i
− Ê(z

i
|x
i
, D

(−i))
√

v̂ar(z
i
|x
i
, D

(−i))
. (15)
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Fig. 1. The Bayesian standardized residual plot.

For the New Zealand apple data, Chen and Deely17 use 50,000 Gibbs

iterations to obtain the d̂
i
’s, and the results are displayed in Fig. 1.

From Fig. 1, it can be seen that: (i) the d̂
i
’s are small when the Ê(z

i
|x
i
,

D

(−i))’s are small; and (ii) the d̂
i
’s are roughly symmetric about zero,

which implies that the model is neither over-fitted nor under-fitted. Chen

and Deely17 also check the distribution of d̂
i
and find that the d̂

i
’s roughly

follow a Student t distribution. Noting that f(y
i
|β, σ2

,x
i
) is a normal dis-

tribution and f̂(y
i
|x
i
, D

(−i)) in (12) is a finite mixture of normal distribu-

tions, it follows from a result of Johnson and Geisser65 that f(y
i
|x
i
, D

(−i))

is approximately a Student t distribution. Hence the results obtained by

Chen and Deely17 are consistent with the theoretical result of Johnson and

Geisser,65 and give further support that the normal assumption of the error

terms in the constrained multiple linear regression model is appropriate.
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2.3. Marginal distributions

In Bayesian inference, a joint posterior distribution is available through

the likelihood function and a prior distribution. One purpose of Bayesian

inference is to calculate and display marginal posterior densities be-

cause the marginal posterior densities provide complete information about

parameters of interest.

Let

θ
(j) = (θ1, . . . , θj)

′ and θ
(−j) = (θ

j+1, . . . , θp)
′

be the first j and last p − j components of θ, respectively. The support

of the conditional joint marginal posterior density of θ
(j) given θ

(−j) is

denoted by

Ω
j
(θ(−j)) = {(θ1, . . . , θj)

′ : (θ1, . . . , θj , θj+1, . . . , θp)
′ ∈ Ω} , (16)

and the subspace of Ω, given the first j components θ
∗(j) = (θ∗1 , . . . , θ

∗
j

)′,

is denoted by

Ω−j(θ
∗(j)) = {(θ

j+1, . . . , θp)
′ : (θ∗1 , . . . , θ

∗
j

, θ
j+1, . . . , θp)

′ ∈ Ω} . (17)

Then the marginal posterior density of θ
(j) evaluated at θ

∗(j) has the form

π(θ∗(j)|D) =

∫

Ω−j(θ
∗(j))

π(θ∗(j)
,θ

(−j)|D) dθ(−j)
. (18)

In general, the analytical evaluation of π(θ∗(j)|D) is not available. Thus,

a Monte Carlo method is much needed to estimate it. There are several

Monte Carlo methods available. These include the kernel density esti-

mation, the conditional density estimation, and the importance weighted

marginal density estimation (IWMDE) of Chen.16 Here, we briefly describe

how IWMDE works, and we refer the interesting readers to Chen et al.26

for detailed discussion of other methods.

Consider the following identity:

π(θ∗(j)|D) =

∫

Ω

w(θ(j)|θ(−j))π(θ∗(j)
,θ

(−j)|D)

π(θ|D)
π(θ|D) dθ , (19)

where w(θ(j)|θ(−j)) is a completely known conditional density whose sup-

port is contained in, or equal to, the support, Ω
j
(θ(−j)), of the con-

ditional density π(θ(j)|θ(−j)
, D). Here, “completely known” means that

w(θ(j)|θ(−j)) can be evaluated at any point of (θ(j)
,θ

(−j)). In other words,

the kernel and the normalizing constant of this conditional density are
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available in closed form. Using the identity (19), the IWMDE of π(θ∗(j)|D)

is defined by

π̂(θ∗(j)|D) =
1

n

n

∑

i=1

w(θ
(j)

i

|θ
(−j)

i

)
π(θ∗(j)

,θ
(−j)

i

|D)

π(θ
(j)

i

,θ
(−j)

i

|D)
, (20)

where {θ
i

= (θ
(j)

i

,θ
(−j)

i

), i = 1, 2, . . . , n} is an MCMC sample from

π(θ|D). In (20), w plays the role of a weight function. Further, π̂(θ∗(j)|D)

does not depend on the unknown normalizing constant c(D), since c(D)

cancels in the ratio π(θ∗(j)
,θ

(−j)

i

|D)/π(θ
(j)

i

,θ
(−j)

i

|D). In fact, using (1),

we can rewrite (20) as

π̂(θ∗(j)|D) =
1

n

n

∑

i=1

w(θ
(j)

i

|θ
(−j)

i

)
L(θ∗(j)

,θ
(−j)

i

|D)π(θ∗(j)
,θ

(−j)

i

)

L(θ
i
|D)π(θ

i
)

.

The choice of w and the properties of π̂(θ∗(j)|D) can be found in Chen.16

Thus, the detail is omitted here for brevity.

2.4. Posterior Model Probabilities

Suppose there are K models under consideration. Assume model m has a

vector θ
(m) of unknown parameters, with dimension p

m
, which may vary

from model to model, for m = 1, 2, . . . ,K. Under model m, the posterior

distribution of θ
(m) takes the form

π(θ(m)|D,m) ∝ π∗(θ(m)|D,m) = L(θ(m)|D,m)π(θ(m)|m) , (21)

where L(θ(m)|D,m) is the likelihood function, D denotes the data,

π(θ(m)|m) is the prior distribution, and π

∗(θ(m)|D,m) is the unnorma-

lized posterior density. Let p(m) denote the prior probability of model m.

Then, using Bayes’ theorem, the posterior probability of model m can be

written as

p(m|D) =
p(D|m)p(m)

∑K

j=1
p(D|j)p(j)

, (22)

where

p(D|m) =

∫

L(θ(m)|D,m) π(θ(m)|m) dθ(m)

=

∫

π

∗(θ(m)|D,m) dθ(m) (23)

denotes the marginal distribution of the data D under model m. The

marginal density p(D|m) is precisely the normalizing constant of the joint
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posterior density of θ
(m). We choose the model with the largest posterior

model probability p(m|D).

Model selection, in particular variable selection, is one of the most fre-

quently encountered problems in statistical data analysis. In cancer or AIDS

clinical trials, for example, one often wishes to assess the importance of

certain prognostic factors such as treatment, age, gender, or race in pre-

dicting survival outcome. Bayesian approach to model selection is more

attractive than a criterion-based classical method such as the Akaike Infor-

mation Criterion (AIC)2 or Bayesian Information Criterion (BIC),90 since

available prior information can be incorporated into the posterior model

probability via p(m) and π(θ(m)|m) and thus more power can be achieved

in order to identify the correct model. However, Bayesian model selection is

often difficult to carry out because of the challenge in specifying prior dis-

tributions for the regression parameters for all possible models; specifying

a prior distribution on the model space; and computations.

Other than focusing on a particular model selection using the largest

posterior probability, one may also use the probability in (22) as a weight

function to incorporate model uncertainty in a prediction. Such a criterion

is called Bayesian Model Averaging or simply BMA. Suppose that one is

interested in predicting certain quantity ∆ such as predicting a future obser-

vation or a coefficient estimation for a regression problem. Instead of using

just one model in prediction, one makes a prediction by average all feasible

models through a weighted average whereas the weights are calculated from

the posterior probabilities of the models. The posterior distribution given

data D is

p(∆|D) =
∑

model m

p(∆|m,D)p(m|D) . (24)

The models used in the above calculation are the ones with significant

posterior probabilities. The purpose of this model averaging is to avoid any

risk of believing that the data belongs to a particular model. Instead, it

accounts for the model uncertainty in predictions. More details of BMA

can be found in Raftery et al.83 and Hoeting et al.57 and the references

therein. As an illustration, we look at the following example.

Example 2. Assessment of health using body fat data.

A variety of popular health books suggest that the readers assess their

health, at least in part, by estimating their percentage of body fat. A data

set used in Penrose et al.80 studied the predictive equations of human’s body

fat with other variables such as age, weight, height, neck circumference,
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Table 1. Regular model selection results for the body fat data.

Method Variable Names R2 s2

Stepwise Age, Weight, Neck, Abdomen, Thigh, Forearm, Wrist 0.7445 18.41

Adjusted R2 Age, Weight, Neck, Abdomen, Hip, Thigh, Biceps, 0.7447 18.32

Forearm, Wrist

Table 2. Posterior probabilities of models for the body fat data.

Model Variable Names R2 p(m|D)

1 Weight, Abdomen, Forearm, Wrist 0.7350 0.47043

2 Weight, Abdomen, Wrist 0.7277 0.24656

3 Weight, Abdomen, Biceps, Wrist 0.7328 0.16415

4 Weight, Neck, Abdomen, Forearm, Wrist 0.7379 0.11885

chest circumference, abdomen 2 circumference, hip circumference, t high

circumference, knee circumference, ankle circumference, biceps (extended)

circumference, forearm circumference and wrist circumference. Apparently

a multiple linear regression model can be used here. However, since there

are a lot of independent variables, it is quite natural to use certain model

selection techniques to obtain a “best” model. The two commonly used

methods, namely stepwise regression and adjusted R

2 method come up

with two different models as follows.

From Table 1, it seems both methods yielded quite comparative results

in terms of variation explanation and regression accuracy. Suppose that

we want to predict somebody’s body fat at the values Age = 36, Weight =

226.75, Height = 71.75, Neck = 41.5, Chest = 115.3, Abdomen = 108.8, Hip

= 114.4, Thigh = 69.2, Knee = 42.4, Ankle = 24, Biceps = 35.4, Forearm =

21 and Wrist = 20.1. The stepwise regression gave an estimate of 21.39 with

a prediction variance 22.73, while the adjusted R

2 resulted in an estimate

of 21.73 with a prediction variance 22.81. Note that those variances are the

variances of the predictions under given models. If the prediction model is

not a correct one, then the variance in prediction would be very different.

On the other hand, we may use the method of BMA to deal with this

data set. The models with significant posterior probabilities are given in

Table 2.

In Table 2, it clearly shows that both models selected by classical se-

quential model selection methods are not with high posterior probabilities.

To predict the person’s body fat for the same values as above, the prediction
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is at 24.26 with a prediction variance of 26.82. However, this is the variance

over all plausible models and it can be decomposed by two parts. The first

part is 21.37 which is quite comparable to the variances we derived using

sequential methods. This part is called pooled variances of all the models

used in BMA. The second part, which is 5.45, is the part due to model

uncertainty.

Bayesian approaches are now feasible due to recent advances in comput-

ing technology and the development of efficient computational algorithms.

In particular, Chen et al.21 and Ibrahim et al.61 propose informative prior

distributions π(θ(m)|m) and p(m) for the parameter θ
(m) and model m,

and develop novel methods for computing the marginal distribution of the

data. In addition, the stochastic search variable selection of George and

McCulloch45 and a novel reversible jump MCMC algorithm proposed by

Green52 make the computation of posterior model probabilities possible

when K is large. In Sec. 6 below, we present a real data example from a

series of animal toxicological experiments performed in the Department of

Biology at the University of Waterloo to illustrate Bayesian model selection

using informative priors.

3. Prior Elicitation

Prior distribution is one of the most important elements in Bayesian

methodology. As the matter of fact, it is the most challenging element to

practitioners. Rather than having a large amount of data when people can

use large sample theory, most of the experiments consist of small to mode-

rate sample size data sets. Thus, prior distribution plays a very important

role in Bayesian analysis. We insist that whenever a practitioner can sum-

marize historical or subjective information on an unknown, an informative

prior should be elicited. The difficulty of seeking an informative prior is

how one can connect the known or subjective information to a prior distri-

bution. Conjugate priors are most commonly sought before because of the

simplicity of the distributional forms and computational reason. However,

the recent development in Bayesian computation overcome much of the

difficulty using non-conjugate priors. Hence, to a practitioner, it is impor-

tant to summarize all the information about an unknown to an approximate

distribution form and use such a distribution as a prior.

On the other hand, many times, either historical or subjective knowledge

of the unknown is not available, or there are too many parameters whose

prior distributions need to be specified, noninformative priors are constantly
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used as alternatives. However, as contrary to its name, all noninformative

priors are actually informative. They are usually based on different criteria

people use to generate prior distributions serving different purposes.

In subsequent subsections, we discuss in more details about informative

and noninformative priors.

3.1. Informative priors

Informative priors are useful in applied research settings where the inves-

tigator has access to previous studies measuring the same response and

covariates as the current study. For example, in many cancer and AIDS

clinical trials, current studies often use treatments that are very similar or

slight modifications of treatments used in previous studies. We refer to data

arising from previous similar studies as historical data. In carcinogenicity

studies, for example, large historical databases exist for the control animals

from previous experiments. In all of these situations, it is natural to in-

corporate the historical data into the current study by quantifying it with

a suitable prior distribution on the model parameters. The methodology

discussed here can be applied to each of these situations as well as in other

applications that involve historical data.

From a Bayesian perspective, historical data from past similar studies

can be very helpful in interpreting the results of the current study. For

example, historical control data can be very helpful in interpreting the

results of a carcinogenicity study. According to Haseman et al.,55 historical

data can be useful when control tumor rates are low and when marginal

significance levels are obtained in a test for dose effects. Suppose, for ex-

ample, that 4 of 50 animals in an exposed group develop a specific tumor,

compared with 0 of 50 in a control group. This difference is not statistically

significant (p = 0.12, based on Fisher’s exact test). However, the difference

may be biologically significant if the observed tumor type is known to be

extremely rare in the particular animal strain being studied. By specifying

a suitable prior distribution on the control response rates that reflect the

observed rates of a particular defect over a large series of past studies, one

can derive a modified test statistic that incorporates historical information.

If the defect is rare enough in the historical series, then even the difference

of 4/50 versus 0/50 will be statistically significant based on a method that

appropriately incorporates historical information.

To fix ideas, suppose we have historical data from a similar previous

study, denoted by D0 = (n0, y0, X0) where n0 is the sample size of the
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historical data, y0 is the n0×1 response vector, and X0 is the n0×p matrix

of covariates based on the historical data. Chen et al.19 and Ibrahim and

Chen58 proposed the power prior to incorporate historical information. The

power prior is defined to be the likelihood function based on the historical

dataD0, raised to a power a0, where 0 ≤ a0 ≤ 1 is a scalar parameter that it

controls the influence of the historical data on the current data. One of the

most useful applications of the power prior is for model selection problems,

since these priors inherently automate the informative prior specification

for all possible models in the model space. They are quite attractive in this

context, since specifying meaningful informative prior distributions for the

parameters in each model is a difficult task requiring contextual interpre-

tations of a large number of parameters. In variable subset selection, for

example, the prior distributions for all possible subset models are automa-

tically determined once the historical data D0, and a0 are specified. Berger

and Mallows8 refer to such priors as “semi-automatic” in their discussion

of Mitchell and Beauchamp.76 Chen et al.23 use the power prior for her-

itability estimates from human twin data. Chen et al.22 demonstrate the

use of the power prior in variable selection contexts for logistic regression.

Ibrahim et al.61 and Chen et al.20 develop the power prior for the class

of generalized linear mixed models. Ibrahim and Chen,59 Ibrahim et al.,60

Chen et al.18,21 develop the power prior for various types of models for

survival data.

Let π0(θ) denote the prior distribution for θ before the historical data

D0 is observed. We shall call π0(θ) the initial prior distribution for θ. Given

a0, we define the power prior distribution of θ for the current study as

π(θ|D0, a0) ∝ L(θ|D0)
a0
π0(θ) , (25)

where a0 is a scalar prior parameter that weights the historical data relative

to the likelihood of the current study. The parameter a0 can be interpreted

as a precision parameter for the historical data. It is reasonable to restrict

the range of a0 to be between 0 and 1, and thus we take 0 ≤ a0 ≤ 1. One

of the main roles of a0 is that it controls the heaviness of the tails of the

prior for θ. As a0 becomes smaller, the tails of (25) become heavier. Setting

a0 = 1, (25) corresponds to the update of π0(θ|c0) using Bayes theorem.

That is, with a0 = 1, (25) corresponds to the posterior distribution of θ

from the previous study. When a0 = 0, then the prior does not depend on

the historical data, and in this case, π(θ|D0, a0 = 0) ≡ π0(θ). Thus, a0 = 0

is equivalent to prior specification with no incorporation of historical data.
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Therefore, (25) can be viewed as a generalization of the usual Bayesian

update of π0(θ). The parameter a0 allows the investigator to control the

influence of the historical data on the current study. Such control is impor-

tant in cases where there is heterogeneity between the previous and current

study, or when the sample sizes of the two studies are quite different.

The hierarchical power prior specification is completed by specifying

a (proper) prior distribution for a0. Thus we propose a joint power prior

distribution for (θ, a0) of the form

π(θ, a0|D0) ∝ L(θ|D0)
a0
π0(θ) = π(a0|γ0) , (26)

where γ0 is a specified hyperparameter vector. A natural choice for π(a0|γ0)

is a beta prior. However, other choices, including a truncated gamma prior

or a truncated normal prior can be used. These three priors for a0 have

similar theoretical properties, and our experience shows that they have

similar computational properties. In practice, they yield similar results

when the hyperparameters are appropriately chosen. Thus, for a clear focus

and exposition, we will use a beta distribution for π(a0|γ0), which takes the

form

π(a0|γ0) ∝ a
δ0−1

0
(1− a0)

λ0−1
,

where γ0 = (δ0, λ0). The beta prior for a0 appears to be the most natural

prior to use and leads to the most natural elicitation scheme. The prior in

(26) does not have a closed form in general, but it has several attractive

theoretical and computational properties for the classes of models consi-

dered here. One attractive feature of (26) is that it creates heavier tails for

the marginal prior of θ than the prior in (25), which assumes that a0 is a

fixed value. This is a desirable feature since it gives the investigator more

flexibility in weighting the historical data. In addition, the construction

of (26) is quite general, with various possibilities for π0(θ). If π0(θ) is

proper, then (26) is guaranteed to be proper. Further, (26) can be proper

even if π0(θ) is an improper uniform prior. Specifically, Ibrahim et al.62

and Chen et al.22 characterize the propriety of (26) for generalized linear

models, and also show that for fixed a0, the prior converges to a multivariate

normal distribution as n0 → ∞. For the class of generalized linear mixed

models, Ibrahim et al.,61 Chen et al.18,19 characterize the propriety of (26)

and derive various other theoretical properties of the power prior. Ibrahim

et al.,60 and Ibrahim and Chen59 characterize various properties of (26) for

proportional hazards models, and Chen et al.21 examine various theoretical

properties of (26) for a class of cure rate models.
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3.1.1. Example 3. An analysis of the AIDS study ACTG036 using

the data from ACTG019 as historical data

The ACTG019 study was a double blind placebo-controlled clinical trial

comparing zidovudine (AZT) to placebo in persons with CD4 counts less

than 500. The results of this study were published in Volberding et al.100

The sample size for this study, excluding cases with missing data, was

n0 = 823. The response variable (y0) for these data is binary with a 1

indicating death, development of AIDS, or AIDS related complex (ARC),

and a 0 indicates otherwise. Several covariates were also measured. The

ACTG036 study was also a placebo-controlled clinical trial comparing AZT

to placebo in patients with hereditary coagulation disorders. The results of

this study have been published by Merigen et al.74 The sample size in

this study, excluding cases with missing data, was n = 183. The response

variable (y) for these data is binary with a 1 indicating death, development

of AIDS, or AIDS related complex (ARC), and a 0 indicates otherwise.

Several covariates were measured for these data. A summary of both data

sets can be found in Chen et al.22 Therefore, we let D0 denote the data from

the ACTG019 study and D denote the data from the ACTG036 study.

Chen et al.22 use the priors given by (26) and the logistic regression

model to carry out variable subset selection, which yields the model con-

taining an intercept, CD4 count (cell count per mm3 of serum), age, and

treatment as the best model. For this model, we use the power prior (26) to

obtain posterior estimates of the regression coefficients for various choices

of (µ
a0
, σ
a0

), where µ
a0

= δ0

δ0+λ0

and σ2
a0

= µ
a0

(1−µ
a0

)(δ0 +λ0 +1)−1. The

results based on the standardized covariates and the logit model with an

improper uniform prior for the regression coefficients are given in Table 3.

The values of (µ
a0
, σ
a0

) and the corresponding values of (δ0, λ0) are also

reported in the table. We used 50,000 Gibbs iterations for all posterior

computations and the Monte Carlo method of Chen and Shao24 to calcu-

late 95% highest probability density (HPD) intervals for the parameters

of interest. From Table 3, we see that as the weight for ACTG019 study

increases, the posterior mean of a0 (denoted E(a0|D,D0)) increases, the

posterior standard deviations (SD) for all parameters decrease, and the

95% HPD intervals get narrower. Most noticeably, when (δ0, λ0) = (100, 1),

none of the HPD intervals for the regression coefficients contain 0. Table 3

also indicates that the HPD intervals are not too sensitive for moderate

changes in (µ
a0
, σ
a0

). This is a comforting feature, since it implies that

the HPD intervals are fairly robust with respect to the hyperparameters
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Table 3. Posterior estimates for AIDS data.

Posterior Posterior 95% HPD

(δ0, λ0) (µa0
, σa0

) E(a0|D,D0) Variable Mean SD Interval

(5, 5) (0.50, 0.151) 0.02 Intercept −4.389 0.725 (−5.836, −3.055)
CD4 count −1.437 0.394 (−2.238, −0.711)
Age 0.135 0.221 (−0.314, 0.556)
Treatment −0.120 0.354 (−0.817, 0.570)

(20, 20) (0.50, 0.078) 0.09 Intercept −3.803 0.511 (−4.834, −2.868)
CD4 count −1.129 0.300 (−1.723, −0.559)
Age 0.176 0.195 (−0.214, 0.552)
Treatment −0.223 0.300 (−0.821, 0.364)

(30, 30) (0.50, 0.064) 0.13 Intercept −3.621 0.436 (−4.489, −2.809)
CD4 count −1.028 0.265 (−1.551, −0.515)

Age 0.194 0.185 (−0.170, 0.557)
Treatment −0.259 0.278 (−0.805, 0.288)

(50, 1) (0.98, 0.019) 0.26 Intercept −3.337 0.323 (−3.978, −2.715)
CD4 count −0.865 0.211 (−1.276, −0.448)
Age 0.233 0.160 (−0.081, 0.548)
Treatment −0.314 0.230 (−0.766, 0.138)

(100, 1) (0.99, 0.010) 0.53 Intercept −3.144 0.231 (−3.601, −2.705)
CD4 count −0.746 0.161 (−1.058, −0.429)
Age 0.271 0.135 ( 0.001, 0.529)
Treatment −0.356 0.181 (−0.717, −0.011)

of a0. This same robustness feature is also exhibited in posterior model

probability calculations.22

3.2. Conjugate priors

Conjugate priors were quite popular before the powerful breakthrough of

the Bayesian computational techniques. Suppose F is a class of prior distri-

butions for θ, where θ is the parameter, P a class of sampling distributions

f(y|θ). The class F is conjugate for P for any f(y|θ) in P if the prior π(θ)

and the posterior π(θ|y) all from the same family F . Since the posterior

distributions have the same form as the prior, the closed form of the pos-

teriors can be derived accordingly. Hence, it does not cause much trouble

in computing the posterior as described in Sec. 1.

Example 4.

Suppose that a random variable Y follows a Poisson distribution with

mean λ. The density function of Y given λ can be written as

f(y|λ) = e

−λλ
y

y!
, for y = 0, 1, . . . . (27)
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Further suppose that the prior distribution of λ is a Gamma distribution

with parameters α and β, as follows

π(λ) ∝ λαe−βλ , for λ > 0 . (28)

The posterior distribution of λ thus can be calculated as

π(λ|y) ∝ π(λ)f(y|λ) ∝ λαe−βλλy = e

−λ ∝ λα+y
e

−(β+1)λ
, (29)

which is another Gamma distribution. Clearly, the prior (28) and the

posterior (29) all belong to the same Gamma distribution family for any

Poisson family sampling distribution.

The practical advantage of the conjugate prior distributions is obvious.

This is the reason why it is still popular when practitioners often use

it if they believe that their priors may be specified as conjugate priors.

Although, it is flexible to elicit a conjugate prior due to changing the

hyper-parameter values, many times it is not accurate to decide a prior

knowledge by only choosing one or two parameter values. On the other

hand, sometimes a finite mixture of conjugate priors may be a good idea

to overcome this difficulty since the mixture of conjugate priors is also a

conjugate prior.5

We have to note here that the conjugacy depends on the family F and

P one chooses. Also, it depends on dimensions of the parameter space. For

instance, normal priors on the mean of normal sampling distribution when

the variance is known constitute a conjugate prior family, while inverse

gamma priors on the variance of normal sampling distribution when the

mean is assumed known constitute another conjugate prior family. How-

ever, normal priors on the mean and inverse gamma priors on the variance

of the normal sampling distribution do not constitute a conjugate family

since the marginal posteriors of the mean parameter is no longer normal.

This suggests that people have to be careful when examining conjugacy for

multi-dimensional parameter problems.

Another point about conjugacy we like to point out is that it is often

quite useful to have conditionally conjugacy to parameters for a multi-

dimensional parameter model. Conditional conjugacy or sometimes called

semi-conjugacy means that the conditional posterior distributions of a set

of parameters given others and the prior distribution of the same set of

parameters belong to the same distributional family, for instance, to the

example we just mentioned above about normal mean and normal variance.

Although the marginal posterior distribution of the normal mean is no

longer normal, the conditional posterior distribution of the normal mean
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given that the normal variance is still normal. Likewise, the conditional

posterior distribution of the normal variance given the normal mean is still

inverse gamma. The advantage of this semi-conjugacy can be used in full

conditional distributions in Gibbs sampling (see Sec. 4.1).

3.3. Noninformative priors

As described in the opening of this section, none of the noninformative

priors are non-informative. The derivations of those so called noninforma-

tive priors all depend on certain informative criteria. One of the earliest

methods of defining noninformative priors was based on the principle of

insufficient reason. This method, sometimes referred to as Laplace’s rule,

prescribes a uniform prior on the parameter space Θ. Laplace used uniform

priors on the probabilities of two binomial populations. Laplace’s rule and

the principle of insufficient reason are intuitively appealing. The reasoning

is that if no prior information is available that favors certain parameter

values over others, then all parameter values should be considered equally

likely. However, the immediate criticism of this uniform prior is that it

does not follow probability law in the sense of invariance in parameter

transformation.

Example 5.

Suppose that Y follows a Binomial distribution with parameters n and

p, while n is known. Using Laplace’s argument, if there is no subjective

prior information available for p, a uniform prior π(p) = 1, for 0 < p <

1 should be used. Now assume that we are interested in the parameter

q = 1/(1 + p). Since we still do not have information about q, we have

to assume the prior distribution of q as uniform, i.e. π(q) = 2, for 1/2 <

q < 1. Since q is a variable transformation of p, with the Jacobian 1/q2,

following the probability law it follows that π(q) = π(p(q))/q2 = 1/q2 for

1/2 < q < 1. However, if both uniform distributions are used, the above

equality cannot hold. This implies that the uniform prior is not invariant

under transformation.

There is also another issue that has been discussed extensively in

Bayesian school. Suppose we are going to use Laplace’s rule and assign

a uniform prior on the parameter. If the parameter space is finite, the

uniform distribution is proper (that is, its integration over its domain is

finite). However, if the parameter space is infinite such as the mean of a

normal distribution, a uniform prior is improper (not integrable). Such a

phenomenon does not only happen for a uniform prior, it may happen to
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many other noninformative priors we will discuss later. As a matter of fact,

many of the noninformative priors we use are improper.

Although an improper prior is not supported by Bayes’ rule, it does not

necessarily lead to problems in Bayesian analysis as long as the posterior

distributions are proper. For more discussions of improper priors, readers

are referred to Berger,5 Bernardo and Smith,10 and Kass and Wasserman.66

Once a posterior distribution is integrable, after normalization to a pro-

bability distribution, the final posterior distribution still represents a post-

knowledge of the unknowns. Therefore, if an improper noninformative prior

is used in practice, it is important to verify that the posterior distribution is

integrable before making posterior inferences. This is even more important

if simulation methods (see Sec. 4) are used to draw posterior inference

because even if the posterior distribution is improper, sometimes it cannot

be detected by using simulation. Therefore, it may lead to inappropriate

conclusion when the true posterior distribution is actually improper.

Since the pioneer work of Laplace to use Bayesian methodology into

applied statistics, there have been a lot of attempts to seek default or

automatic prior distributions. In the following subsections, we will discuss

Jeffreys priors, the reference priors and the probability matching priors.

3.4. Jeffreys priors

To overcome the difficulty of the non-invariant uniform prior criterion,

Jeffreys64 derived a prior using invariance of parameter transformations.

Before we present the Jeffreys prior, one term called expected Fisher in-

formation needs to be defined. Suppose that a random vector Y , given

θ, has a probability density function f(y|θ) which is twice differentiable

with respect to θ. The expected Fisher information matrix, denoted by

I(θ) = {I
ij

(θ)}, is defined as

I
ij

(θ) = −Eθ

[

δ

2

δθ
i
δθ
j

log(f(y|θ))

]

. (30)

Once a sampling distribution is known with the density satisfying the

existence of the Fisher information matrix, the Jeffreys prior is simply

π
J
(θ) ∝

√

det(I(θ)) , (31)

where det stands for a determinant. For any one-to-one transformation

between two parameters θ and η, the two priors for θ or η calculated

using (31) will not cause any ambiguous results, i.e. the method used here
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is invariant through parameter transformation. On the other hand, like a

uniform prior, Jeffreys prior may be improper.

Example 6.

Suppose that Y follows a Binomial distribution with unknown

parameter p and known n. The density function of this distribution is

f(y|p) ∝ p

y(1 − p)1−y. Taking second derivative to − log(f), with respect

to p, yields y/p2 + (1− y)/(1− p)2. The expectation of this form becomes

n/p(1− p). Thus, the Jeffreys prior is proportional to 1/
√

p(1− p).

Example 7.

Suppose y1, . . . , yn form a random sample from a normal population

N(µ, σ2). The density function is given as f(y|µ, σ) ∝ e

−(y−µ)
2
/2σ

2

/σ. To

calculate the Fisher information matrix, note that I11(µ, σ) = E(1/σ2) =

1/σ2, I12 = I21 = 0 and I22 = 2/σ2. Hence the Jeffreys prior for (µ, σ) is

1/σ2.

Note that while the prior distribution in Example 6 is proper, the prior in

Example 7 is improper. Yet, in the later example, the posterior distributions

are usually proper except in certain degenerate cases.

Jeffreys priors are very commonly used for many different models. Even

in many other developments of noninformative priors, one can always trace

them back to Jeffreys priors in some sense. One property of the Jeffreys

priors is the invariance under parameter transformations. However, the use

of Jeffreys prior is not quite appealing in multi-dimensional situations. For

instance, Jeffreys prior in Example 7 is 1/σ2. Of making inference about

the mean variable, even Jeffreys himself pointed out that this prior does not

yield satisfactory results. Instead, in this case a prior 1/σ is usually used

for the parameterization (µ, σ) which is the product of the Jeffreys prior of

µ alone (uniform) and that of σ alone (1/σ). Here alone means that when

the Jeffreys prior is calculated for one parameter, the other parameter is

treated as fixed. In this case, both individual priors do not depend on the

fixed parameter. When the product of the two priors is used, it means

that “independence” of the prior knowledge of those two parameters is

assumed. However, once the data is used, in the posterior analysis, those

two parameters are rarely independent.

The above discussion raises a question that what kind of prior is good

for multi-dimensional parameter problems. In most of the applied statistical

problems, there are more than one parameters and some of them are treated

as very important and the others are treated as nuisance. To find a noninfor-

mative prior for such kinds of models, Berger and Bernardo6 developed an
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iterative algorithm to calculate noninformative priors for multi-parameter

problems. Such priors are called the reference prior which will be briefly

described in the next subsection.

3.5. The reference priors

The reference prior method, introduced by Bernardo9 and further developed

by Berger and Bernardo,6,7 is motivated by the notion of maximizing the

expected amount of information about the parameter θ provided by the

data y. The amount of information provided by the experiment is quantified

by the Kullback–Liebler divergence, which is defined by

D(g, h) =

∫

Θ

g(θ) log

(

g(θ)

h(θ)

)

dθ ,

for two densities g and h. The expected information about θ provided by

the data can be naturally defined as

EY (D(π(θ|y), π(θ))) , (32)

where π(θ) and π(θ|y) are prior and posterior distributions, respectively.

Theoretically, the reference prior approach is to find a prior such that the

quantity (32) is maximized. However, the actual process of this maximiza-

tion involves a modification of the form (32) and asymptotic process using

infinitely many independent replications of the experiments would be used.

Now we briefly mention the idea and procedure of the algorithm developed

by Berger and Bernardo.7

To derive the reference priors for an experiment, one has to decompose

the parameter space by ordered groups in the order of importance of the

groups: θ(1),θ(2), . . . ,θ(m), where each group θ(j) contains one or more of

the scalar parameter in θ. The reference prior is developed iteratively by

first computing the marginal prior for θ(m), then the conditional prior for

θ(m−1) given θ(m), then the conditional prior for θ(m−2) given θ(m−1) and

θ(m), etc. Finally, a reference prior can be obtained by multiplying all the

priors above together. In the derivation, the parameter spaces should be

truncated to compact sets and certain limiting procedures may be used.

The detailed algorithm can be found in Berger and Bernardo.7

Note that in addition to being divided into groups, the parameters in θ

are also ordered. The order of the importance of the groups may be different

by different users, although the parameter of interests stay the same. Berger

and Bernardo recommended single group ordering, which means that there

is only one parameter in each group.105,107 This recommendation is based on
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their experience in applying the reference prior method to various applied

problem. Since different groupings may yield different preference priors,7,106

it is possible that there exist different reference priors for the same model.

Berger and Bernardo also state, concerning the ordering of the

parameters in terms of inferential importance, that “. . . beyond putting

the “parameters of interest” first, it is too vague to be of much use.” They

recommend that, if possible, all reference priors for which the parameters of

interest are placed first in the ordering should be computed. This provides

a set of prior distributions which can be compared, to assess the sensitivity

of the resulting analyses to the choice of prior distribution.

Finally, we want to point it out that interestingly, under certain regular

conditions, the reference prior is the same as the Jeffreys prior which means

that using the Jeffreys prior, the expected information about the parameter

coming from data only is maximized. More studies of the reference priors

can be found in Refs. 19, 46, 66, 94 and 105. In Sec. 5.3, we will discuss the

reference priors for a statistical calibration model.

3.6. Probability matching priors

From inference point of view, confidence interval is quite frequently used

in practice. Although, the concept of confidence interval creates a lot of

confusing in interpretation, this interval however, gives quite important in-

formation in accuracy of an estimate. In the frequentist domain such that

for many runs of experiments, the probability associated with a confidence

interval provides coverage probability of the random intervals covering the

true unknown. On the other hand, one can also derive a credible interval

in Bayesian study. Such an interval is quite similar to a confidence interval,

except that the probability of this credible interval implies the probability

that the unknown parameter belonging to two fixed numbers. This is

actually how people usually interpret a confidence interval. The advantage

in this interpretation comes from the fact that the parameter in consi-

deration is random and the posterior probability is calculated under the

parameter domain, not in the frequentist domain anymore.

Getting an automatic prior is one purpose of developing a noninforma-

tive prior method. This means that the prior derived using this method

can be applied to any data created from the statistical model in study.

Obviously, not only a Bayesian credible interval is of interest, but also the

confidence interval. Probability matching priors are those priors to have

the property that posterior probabilities of the posterior quantiles from
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the resulting Bayesian analysis match frequentist coverage probabilities of

the same quantiles, at least asymptotically.

Suppose that θ is a parameter of interest and an interval (φ(y) ≤ θ) has

the posterior probability α = P ({φ(y) ≤ θ)|y) (αth posterior quantile). On

the other hand, if we treat θ as fixed, the frequentist coverage probability

of this interval can also be calculated as P (φ(y) ≤ θ|θ). If a prior can be

obtained such that

α = P (φ(y) ≤ θ|y) ≈ P (φ(y) ≤ θ|θ) , (33)

for all y and θ, asymptotically, we say the prior a probability matching

prior.

Welch and Peers101 are the first ones to study such kind of priors. In one-

dimensional case, they found that the Jeffreys priors satisfies this equality

in the order of O(1/
√
n), which means that when n goes to infinity, the

rate of the difference between the two probabilities in (33) goes to zero in

the rate same as 1/
√
n. This is called the first order matching. Stein93 and

Tibshirani97 extended their work and used differential equations to obtain

more first order matching priors.

The probability matching priors have played certain justification rules

to many of the noninformative priors. For instance, in many models, the

reference priors are matching priors. However, in a few occasions, they are

not. Since there are usually many priors satisfying the differential equations

in deriving the probability matching priors, only using this method does not

lead to a single prior which may be satisfactory.

4. Bayesian Computation

There are two major challenges involved in advanced Bayesian computation.

These are how to sample from posterior distributions and how to compute

posterior quantities of interest using Markov chain Monte Carlo (MCMC)

samples. Several books,26,34,48,85,95 cover the development of MCMC sam-

pling and advanced Monte Carlo (MC) methods for computing posterior

quantities using the samples from the posterior distribution.

4.1. Sampling from posterior distribution

During the last decade, Monte Carlo (MC) based sampling methods for

evaluating high-dimensional posterior integrals have been rapidly develop-

ing. Those sampling methods include MC importance sampling,44,54,84,102
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Gibbs sampling,41,43 Metropolis–Hastings sampling52,56,75 and many other

hybrid algorithms.

4.1.1. Basic Gibbs sampler

The Gibbs sampler may be one of the best known MCMC sampling

algorithms in the Bayesian computational literature. As discussed in Besag

and Green,11 the Gibbs sampler is founded on the ideas of Grenander,53

while the formal term is introduced by Geman and Geman.43 The primary

bibliographical landmark for Gibbs sampling in problems of Bayesian

inference is Gelfand and Smith.41 A similar idea termed as data augmen-

tation is introduced by Tanner and Wong.96 Casella and George15 provide

an excellent tutorial on the Gibbs sampler.

Let θ = (θ1, θ2, . . . , θp)
′ be a p-dimensional vector of parameters and

let π(θ|D) be its posterior distribution given the data D. Then, the basic

scheme of the Gibbs sampler is given as follows:

Step 0. Choose an arbitrary starting point θ0 = (θ1,0, θ2,0, . . . , θp,0)
′, and

set i = 0.

Step 1. Generate θ
i+1 = (θ1,i+1, θ2,i+1, . . . ,= θ

p,i+1)
′ as follows:

• Generate θ1,i+1 ∼ π(θ1|θ2,i, . . . , θp,i, D);

• Generate θ2,i+1 ∼ π(θ2|θ1,i+1, θ3,i, . . . , θp,i, D);

· · · · · · · · ·

• Generate θ
p,i+1 ∼ π(θ

p
|θ1,i+1, θ2,i+1, . . . , θp−1,i+1, D).

Step 2. Set i = i+ 1, and go to Step 1.

Thus each component of θ is visited in the natural order and a cycle

in this scheme requires generation of p random variates. Gelfand and

Smith41 show that under certain regularity conditions, the vector sequence

{θ
i
, i = 1, 2, . . .} has a stationary distribution π(θ|D). Schervish and

Carlin88 provide a sufficient condition that guarantees geometric conver-

gence. Other properties regarding geometric convergence are discussed in

Roberts and Polson.87

Example 8.

For the constrained linear model considered in Example 1, the posterior

distribution for (β, σ2) based on the New Zealand apple data D is given by

(11). The Gibbs sampler can be implemented by taking

β
j
|β1, . . . , βj−1, βj+1, . . . , β10, σ

2
, D ∼ N(θ

j
, δ

2

j

) , (34)
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subject to β
j−1 ≤ βj ≤ βj+1 (β0 = 0) for j = 1, 2, . . . , 9,

β10|β1, . . . , β9, σ
2
, D ∼ N(ψθ10 + (1− ψ)µ10, (1− ψ)σ2

10) , (35)

subject to β10 ≥ β9 and

σ

2|β , D ∼ IG

(

n

2
,

∑

n

i=1
(y
i
−
∑10

j=1
x
ij
β
j
)2

2

)

, (36)

where in (34) and (35), ψ = σ

2

10
/(σ2

10
+ δ

2

10
),

θ
j

=

(

n

∑

i=1

x

2

ij

)−1




n

∑

i=1





y
i
−
∑

l6=j

x
il
β
l





x
ij





, (37)

and

δ

2

j

=

(

n

∑

i=1

x

2

ij

)−1

σ

2
, (38)

for j = 1, . . . , 10, and IG(ξ, η) denotes the inverse gamma distribution.

Inverse gamma distribution with parameters (ξ, η), whose density is given

by

π(σ2|ξ, η) ∝ (σ2)−(ξ+1)
e

−η/σ2

.

4.1.2. Metropolis–Hastings algorithm

The Metropolis–Hastings algorithm is developed by Metropolis et al.75 and

subsequently generalized by Hastings.56 Tierney98 gives a comprehensive

theoretical exposition of this algorithm, and Chib and Greenberg27 provide

an excellent tutorial on this topic.

Let q(θ,ϑ) be a proposal density, which is also termed as a candidate-

generating density by Chib and Greenberg,27 such that
∫

q(θ,ϑ) dϑ = 1 .

Also let U(0, 1) denote the uniform distribution over (0, 1). Then, a

general version of the Metropolis–Hastings algorithm for sampling from

the posterior distribution π(θ|D) can be described as follows:

Step 0. Choose an arbitrary starting point θ0 and set i = 0.

Step 1. Generate a candidate point θ
∗ from q(θ

i
, ·) and u from U(0, 1).
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Step 2. Set θ
i+1 = θ

∗ if u ≤ a(θ
i
,θ

∗) and θ
i+1 = θ

i
otherwise, where the

acceptance probability is given by

a(θ,ϑ) = min

{

π(ϑ|D)q(ϑ,θ)

π(θ|D)q(θ,ϑ)
, 1

}

. (39)

Step 3. Set i = i+ 1, and go to Step 1.

The performance of a Metropolis–Hastings algorithm depends on the

choice of a proposal density q. In the context of the random walk pro-

posal density, which is of the form q(θ,ϑ) = q1(ϑ − θ), where q1(·) is a

multivariate density, Roberts et al.,86 show that if the target and proposal

densities are normal, then the scale of the latter should be tuned so that

the acceptance rate is approximately 0.45 in one-dimensional problems and

approximately 0.23 as the number of dimensions approaches infinity, with

the optimal acceptance rate being around 0.25 in six dimensions. For the

independence chain, in which we take q(θ,ϑ) = q(ϑ), it is important to

ensure that the tails of the proposal density q(ϑ) dominate those of the

target density π(θ|D), which is similar to a requirement on the importance

sampling function in Monte Carlo integration with importance sampling.

Example 9. Consider a Poisson mixed model:

y
i
∼ P(µ

i
) ,

where µ
i
= exp(x′

i

β+ε
i
) for i = 1, 2, . . . , n, x

i
is a p×1 vector of covariates,

and β is a p × 1 vector of regression coefficients. We assume the random

effects

ε = (ε1, ε2, . . . , εn)
′ ∼ N(0,Σ) ,

where

Σ = σ

2















1 ρ ρ

2 · · · ρ

n−1

ρ 1 ρ · · · ρ

n−2

...
...

...
. . .

...

ρ

n−1
ρ

n−2
ρ

n−3 · · · 1















.

Assume that a noninformative prior for (β, σ2
, ρ) has the form

π(β, σ2
, ρ) ∝ (σ2)−(δ0+1) exp(−σ−2

γ0) ,
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where the hyperparameters δ0 > 0 and γ0 > 0 are prespecified. Then, the

joint posterior distribution for (β, σ2
, ρ, ε) is given by

π(β, ρ, σ2
, ε|D) ∝ exp

{

y

′(Xβ + ε)− J ′
n

Q(β, ε)−
1

2
ε
′Σ−1

ε

}

×
1

σ

n(1− ρ2)
n−1

2

× (σ2)−(δ0+1) exp

(

−
λ0

σ

2

)

, (40)

where y = (y1, y2, . . . , yn)
′, J

n
= (1, 1, . . . , 1)′, Q(β, ε) = (q1, q2, . . . , qn)

′,

q
i

= exp(x
i
β + ε

i
) + log(y

i
!), X is the covariate matrix with the ith row

equal to x
′
i

, and D = (n,y, X).

To obtain a more efficient MCMC sampling algorithm, we consider a

hierarchically centered reparameterization, which is given by

η = Xβ + ε .

Using (40), the reparameterized posterior for (β, σ2
, ρ,η) is written as

π(β, σ2
, ρ,η|D) ∝ exp{y′

η − J ′
n

Q(η)− J ′
n

C(y)}

× (2πσ2)−n/2(1− ρ2)−(n−1)/2

× exp

{

−
1

2σ2
(η −Xβ)′Σ−1(η −Xβ)

}

, (41)

where η = (η1,η2, . . . ,ηn)
′, andQ(η) is an n×1 vector with the tth element

equal to q
i

= exp(η
i

). We note that the hierarchical centering method of

Gelfand et al.39,40 is a tool to improve convergence of MCMC sampling.

As discussed in Chen et al.,26 this technique is particularly useful for the

Poisson mixed model.

To sample from the reparameterized posterior π(β, σ2
, ρ,η|D), the

following steps are required:

Step 1. Draw η from its conditional posterior distribution

π(η|β, σ2
, ρ,D)

∝ exp

{

y
′
η − J ′

n

Q(η)−
(η −Xβ)′Σ−1(η −Xβ)

2σ2

}

. (42)

Step 2. Draw β from

β|η, σ2
, ρ, D ∼ N8((X

′Σ−1
X)−1

X

′Σ−1
η, σ

2(X ′Σ−1
X)−1) .

Step 3. Draw σ

2 from its conditional posterior

σ

2|β, ρ,η, D ∼ IG(δ∗, γ∗) ,
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where δ∗ = δ0 + n/2, γ∗ = γ0 + 1

2
(η − Xβ)′Σ−1(η − Xβ), and

IG(δ∗, γ∗) is an inverse gamma distribution.

Step 4. Draw ρ from its conditional posterior

π(ρ|σ2
,β,η, D) ∝ (1− ρ2)−(n−1)/2

× exp

{

−
1

2σ2
(η −Xβ)′Σ−1(η −Xβ)

}

. (43)

In Step 1, it can be shown that π(η|β, σ2
, ρ,D) is log-concave in

each component of η. Thus η can be drawn using the adaptive rejection

sampling algorithm of Gilks and Wild.49 The implementation of Steps 2

and 3 is straightforward, which may be a bonus of hierarchical centering,

since sampling β is much more expensive before the reparameterization.

In Step 4, we use a so-called “Localized Metropolis” algorithm, which was

introduced in Chen et al.26

The Localized Metropolis algorithm requires the following trans-

formation:

ρ =
−1 + e

ξ

1 + e

ξ

, −∞ < ξ <∞ .

Using (43), we have

π(ξ|σ2
,β,η, D) = π(ρ|σ2

,β,η, D)
2eξ

(1 + e

ξ)2
.

Now, we generate ξ by using a normal proposal N(ξ̂, σ̂2

ξ̂

), where ξ̂ is a

maximizer of the logarithm of π(ξ|σ2
,β, ε, D), which can be obtained by,

for example, the Newton-Raphson algorithm, and σ̂

2

ξ̂

is the minus of the

inverse of the second derivative of logπ(ξ|σ2
,β,η, D) evaluated at ξ = ξ̂,

i.e.

σ̂

−2

ξ̂

= −
d

2 logπ(ξ|σ2
,β,η, D)

dξ

2

∣

∣

∣

∣

ξ=ξ̂

.

The algorithm to generate ξ operates as follows:

(1) Let ξ be the current value.

(2) Generate a proposal value ξ∗ from N(ξ̂, σ̂2

ξ̂

).

(3) A move from ξ to ξ∗ is made with probability

min







π(ξ∗|σ2
,β,η, D)φ

(

ξ−ξ̂

σ̂

ξ̂

)

π(ξ|σ2
,β,η, D)φ

(

ξ

∗−ξ̂

σ̂

ξ̂

) , 1







,

where φ is the N(0, 1) probability density function.
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Note that the proposal (ξ̂, σ̂2

ξ̂

) does not depend on the current value of ξ,

which will typically produce a small autocorrelation among ξ’s.

Recently, several Bayesian software packages have been developed.

These include BUGS for analyzing general hierarchical models via MCMC

(http://www.mrc-bsu.cam.ac.uk/bugs/), BATS for Bayesian time series

analysis (http://www.stat.duke.edu/∼mw/bats.html), Matlab and Minitab

Bayesian computational algorithms for introductory Bayesian analysis

(http://www-math.bgsu.edu/∼albert/), and many others. A more complete

listing and description of pre-1990 Bayesian software can be found in Goel.50

A listing of some of the Bayesian software developed since 1990 is given

in Berger.4

4.2. Computing posterior quantities

In Bayesian inference, MC methods are often used to compute the poste-

rior expectation E(h(θ)|D), since the analytical evaluation of E(h(θ)|D)

is typically not available. Assuming that {θ
i
, i = 1, 2, . . . , n} is an MCMC

sample from π(θ|D), the MC estimator of E(h(θ)|D) is given by

Ê(h) =
1

n

n

∑

i=1

h(θ
i
) . (44)

Asymptotic or small sample properties of Ê(h) depend on the algorithm

used to generate the sample {θ
i
, i = 1, 2, . . . , n}. Under certain regularity

conditions such as ergodicity, the MC estimator Ê(h) is consistent.

Since Ê(h) is a random quantity, it is important to compute the simula-

tion standard error of Ê(h), as it provides the magnitude of the simulation

accuracy of the estimator Ê(h). Let var(Ê(h)) be the variance of Ê(h), and

let v̂ar(Ê(h)) be an estimate of var(Ê(h)). Then, the simulation standard

error of Ê(h) is defined as

se(Ê(h)) = [v̂ar(Ê(h))]1/2 , (45)

which is the square root of the estimated variance of the MC estimator

Ê(h). Since the sample generated by an MCMC sampling algorithm is

often dependent, a complication that arises from the autocorrelation is

that var(Ê(h)) is difficult to obtain. A variety of methods for obtaining

a dependent sample based estimate of var(Ê(h)) are discussed in system

simulation textbooks.13,71,84 In this subsection, we briefly discuss a general

overlapping batch statistics (obs) method considered in Schmeiser et al.89

for computing v̂ar(Ê(h)).
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Suppose that {θ
i
, i = 1, 2, . . . , n} is a dependent sample, from which a

point estimator ξ̂ of the posterior quantity of interest is computed. (Here,

ξ̂ = Ê(h).) The obs estimate of the variance of ξ̂ is

V̂ (m) =

[

m

n−m

]

∑

n−m+1

j=1
(ξ̂
j
− ξ̂)2

(n−m+ 1)
, (46)

where ξ̂
j

is defined analogously to ξ̂, but is a function of only θ
j
, θ

j+1, . . .,

θ
j+m−1. Sufficient conditions for obs estimators to be unbiased and have

variance inversely proportional to n are given in Schmeiser et al.89 Using

(46), the simulation standard error of ξ̂ is se(ξ̂) =

√

V̂ (m). The primary

difficulty in using the obs estimator is the choice of the batch size m to

balance bias and variance, since no optimal batch size formula is known

for general obs estimators. Limiting behavior for V̂ (m) for some special

obs estimators is discussed.51,92 For many situations, choosing m so that

10 ≤ n/m ≤ 20 is reasonable.

During last several years, many other efficient Monte Carlo methods

have been developed for computing posterior quantities other than

E(h(θ)|D). These include the bridge sampling method of Meng and

Wong,73 the path sampling method of Gelman and Meng42 and the ratio

importance sampling method of Chen and Shao25 for computing normaliz-

ing constants and Bayes factors; and the MC methods of Chen and Shao24

for calculating HPD intervals. The detailed description and discussion of

these methods can be found in Chen et al.26

5. Applications and Examples

5.1. Bayesian analysis for survival data with a cure

fraction

The cure rate model is needed for modelling time-to-event data for

various types of cancers, including breast cancer, non-Hodgkins lymphoma,

leukemia, prostate cancer, melanoma, and head and neck cancer, where for

these diseases, a significant proportion of patients are “cured”. To demon-

strate such a phenomenon, we consider a recent phase III clinical trial

in malignant melanoma (E1684) undertaken by the Eastern Cooperative

Oncology Group (ECOG). The graph in Fig. 2 gives the Kaplan–Meier

survival curve for 284 patients in E1684, with the survival time given in

years. We see from Fig. 2 that a plateau in the curve occurs at approxi-

mately 0.36, suggesting that 36% fraction of patients are “cured” after

sufficient follow-up.
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Fig. 2. Kaplan–Meier plot for E1684 data.

An important issue with cure rate modelling is model comparison. It

will be of interest to compare various cure models to the Cox model. It will

also be of interest to compare various semi-parametric models to obtain

the most parsimonious and best fitting semi-parametric model. For model

comparisons, Bayes factors require proper priors, and criterion based statis-

tics such as the L measure63 will not be well defined for cure rate models

since the cure rate model does not have proper probability density. As a

result, we need to turn to other measures to carry out model comparisons.

Here, we use the Conditional Predictive Ordinate (CPO) as a goodness of

fit statistic that is well defined for these models and will allow us to do

formal model comparisons.

We compare three types of models for modelling time-to-event data.
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5.1.1. Cox model

A proportional hazards model is defined by a hazard function of the form

h(t,x) = h0(t) exp(x′
β) , (47)

where h0(t) denotes the baseline hazard function at time t, x denotes the

covariate vector for an arbitrary individual in the population, and β de-

notes a vector of regression coefficients. Suppose we have n subjects, and

let y1, . . . , yn denote the observed failure times or censoring times for the

individuals, and ν
i

is the indicator variable taking on the value 1 if y
i

is a

failure time, and 0 if it is a censoring time. Our semi-parametric develop-

ment for this model is based on a piece-wise constant hazard. We construct

a finite partition of the time axis, 0 < s1 < · · · < s
J
, with s

J
> y

i
for all

i = 1, 2, . . . , n. Thus, we have the J intervals (0, s1], (s1, s2], . . . , (sJ−1, sJ ].

In the jth interval, we assume a constant hazard λ
j
. Throughout, we let

D = (n,y, X,ν) denote the observed data for the current study, where

y = (y1, . . . , yn)
′, ν = (ν1, . . . , νn)

′, and X is the n × p matrix of covari-

ates with ith row x
′
i

. Letting λ = (λ1, . . . , λJ )′, we can write the likelihood

function of (β,λ) for all n subjects as

L(β,λ|D) =

n

∏

i=1

J

∏

j=1

(λ
j
exp(x′

i

β))δijνi

× exp

{

−δ
ij

[

λ
j
(y
i
− s

j−1) +

j−1
∑

g=1

λ
g
(s
g
− s

g−1)

]

exp(x′
i

β)

}

,

(48)

where δ
ij

= 1 if the ith subject failed or was censored in the jth interval, and

0 otherwise, x
′
i

= (x
i1, . . . , xip) denotes the p×1 vector of covariates for the

ith subject, and β = (β
1
, . . . ,β

p

)′ is the corresponding vector of regression

coefficients. The indicator δ
ij

is needed to properly define the likelihood

over the J intervals for the semi-parametric models. The semi-parametric

model in (48), sometimes referred to as a piecewise exponential model, is

quite general and can accommodate various shapes of the baseline hazard

over the intervals. Moreover, we note that if J = 1, then the model reduces

to a parametric exponential model with failure rate parameter λ ≡ λ
j
,

j = 1, 2, . . . , J . This semi-parametric proportional hazards model is a useful

and simple model for modelling survival data. It serves as the benchmark

for comparisons with other semi-parametric or fully parametric models for

survival data.
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5.1.2. Parametric cure rate model

We present a version of the cure rate model studied.21,104 Suppose that

for an individual in the population, we let N denote the number of

metastatic-competent tumor cells for that individual left active after the

initial treatment. A metastatic-competent tumor cell is a tumor cell which

has the potential of metastasizing. Further, we assume that N has a Poisson

distribution with mean θ. We let Z
i

denote the random time for the ith

metastatic-competent tumor cell to produce detectable metastatic disease.

That is, Z
i
can be viewed as an incubation time for the ith tumor cell. The

variables Z
i
, i = 1, 2, . . ., are assumed to be independent and identically

distributed with a common distribution function F (t) = 1 − S(t) and are

independent of N . The time to relapse of cancer can be defined by the

random variable T = min{Z
i
, 0 ≤ i ≤ N}, where P (Z0 =∞) = 1 and N is

independent of the sequence Z1, Z2, . . . . The survival function for T , and

hence the survival function for the population, is given by

S
p
(t) = P (no metastatic cancer by time t)

= P (N = 0) + P (Z1 > t, . . . , Z
N
> t,N ≥ 1)

= exp(−θ) +
∞
∑

k=1

S(t)k
θ

k

k!
exp(−θ) = exp(−θ + θS(t))

= exp(−θF (t)) . (49)

Since S
p
(∞) = exp(−θ) > 0, (49) is not a proper survival function. We

see that (49) shows explicitly the contribution to the failure time of two

distinct characteristics of tumor growth: the initial number of metastatic-

competent cells and the rate of their progression. Thus the model incor-

porates parameters bearing clear biological meaning. The model in (49)

is quite different from the standard mixture cure rate model proposed by

Berkson and Gage,3 and has several attractive properties. For a detailed

discussion of the various properties of (49), we refer the reader to Yakovlev

and Tsodikov.104 Aside from the biological motivation, the model in (49) is

suitable for any type of failure-time data with a surviving fraction. Thus,

failure-time data which do not “fit” the biological definition given above

can still certainly be modeled by (49) as long as the data has a surviving

fraction and can be thought of as being generated by an unknown number

N of latent independent competing risks (Z
i
’s). Yakovlev et al.103 dis-

cuss a similar modeling technique for tumor latency, but do not consider a

Bayesian formulation of the model.
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We also see from (49) that the cure fraction (i.e. cure rate) is given by

S
p
(∞) ≡ P (N = 0) = exp(−θ) . (50)

As θ →∞, the cure fraction tends to 0, whereas as θ → 0, the cure fraction

tends to 1. The sub-density corresponding to (49) is given by

f
p
(t) = θf(t) exp(−θF (t)) , (51)

where f(t) = d

dt

F (t) is a proper probability density function. The hazard

function is given by

h
p
(t) = θf(t) . (52)

Note that h
p
(t) is not a hazard function corresponding to a probability

distribution since S
p
(t) is not a proper survival function.

Suppose we have n subjects and for the ith subject, let y
i

denote the

observed survival time, let ν
i
be the censoring indicator that equals 1 if y

i

is a failure time and 0 if it is right censored, and also let N
i

denote the

number of metastatic-competent tumor cells. Further, we assume that the

N
i
’s are i.i.d. Poisson random variables with mean θ

i
, which is related to

the covariates by θ
i
≡ θ(x′

i

β) = exp(x′
i

β). Letting N = (N1, . . . , Nn)
′,

the “complete data” is given by Dcomp = (n,y,ν,N), where N is an

unobserved vector of latent variables. Then, we can write the complete

data likelihood of (β, λ) as

L(β, λ|Dcomp) =

(

n

∏

i=1

S(y
i
|λ)Ni−νi (N

i
f(y

i
|λ))νi

)

× exp

{

n

∑

i=1

[N
i
x

′
i

β − log(N
i
!)− exp(x′

i

β)]

}

, (53)

where f(y
i
|λ) is exponential density given above, and S(y

i
|λ) = 1 −

F (y
i
|λ) = exp(−λy

i
). Since the latent vector N is not observed, the likeli-

hood function based on the observed data D = (n,y, X,ν) is obtained by

summing (53) over N , leading to

L(β, λ|D) =
∑

N

L(β, λ|Dcomp) . (54)

5.1.3. Semi-parametric cure rate model

We consider a semi-parametric version of the parametric cure rate model

in (53) by considering a piecewise constant hazard model, and thus assume



June 6, 2003 11:15 WSPC/Advanced Medical Statistics chap25

968 M.-H. Chen & K. Ye

that the hazard is equal to λ
j

for the jth interval, j = 1, . . . , J . With this

assumption, the complete data likelihood can be written as

L(β,λ|Dcomp)

=

n

∏

i=1

J

∏

j=1

exp

{

−(N
i
− ν

i
)δ
ij

[

λ
j
(y
i
− s

j−1) +

j−1
∑

g=1

λ
g
(s
g
− s

g−1)

]}

×

n

∏

i=1

J

∏

j=1

(N
i
λ
j
)δijνi exp

{

−ν
i
δ
ij

[

λ
j
(y
i
− s

j−1) +

j−1
∑

g=1

λ
g
(s
g
− s

g−1)

]}

× exp

{

n

∑

i=1

[N
i
x

′
i

β − log(N
i
!)− exp(x′

i

β)]

}

, (55)

where λ = (λ1, . . . , λJ )′. The model in (55) is a semi-parametric version of

(53). If we take J = 1 in (55), then the model reduces to the fully parametric

model given in (53). There are several attractive features of the model in

(55). First, we note the degree of the non-parametricity is controlled by

J . The larger the J , the more non-parametric the model is. However, by

picking a small to moderate J , we get more of a parametric shape for

the survival function. This is an important aspect for the cure rate model,

since the estimation of the cure rate parameter θ could be highly affected by

the non-parametric nature of the survival function. For this reason, it may

be desirable to choose small to moderate values of J for cure rate modelling.

In practice, we recommend doing analyses for several values of J to see

the sensitivity of the posterior estimates of the regression coefficients. We

recommend doing sensitivity analyses for small, moderate, and large values

of J . Thus, the semi-parametric cure rate model (55) is quite flexible, as it

allows us to model general shapes of the hazard function, as well as choose

the degree of parametricity through suitable choices of J . Again, since N

is not observed, the observed data likelihood, L(β,λ|D) is obtained by

summing out N from (55) as in (54).

5.1.4. Prior distributions

First, we consider a noninformative prior. Take

π(β,λ) ∝

J

∏

j=1

λ

ζ0−1

j

exp(−τ0λj) , (56)
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where ζ0 ≥ 0 and τ0 ≥ 0, so that β has an improper uniform prior and

λ
j
∼ gamma(ζ0, τ0). The prior given in (56) includes two special cases:

(i) Jeffreys’s prior for λ when ζ0 = τ0 = 0, and (ii) uniform prior for λ

when ζ0 = 1 and τ0 = 0.

Second, we consider an informative prior. We use the power prior

to formally construct an informative prior distribution from historical

data D0. Let n0 denote the sample size for the historical data, y0 =

(y01, y02, . . . , y0n0
)′ be an n0×1 vector of right censored failure times for the

historical data with censoring indicators ν0 = (ν01, ν02, . . . , ν0n0
)′, and X0

is an n0×k matrix of covariates with ith row x
′
0i

. Let D0 = (n0,y0
, X0,ν0)

denote the observed historical data. The power prior given by (26) has the

form

π(β,λ, a0|D0) ∝ L(β,λ|D0)
a0
π0(β,λ)aα0−1

0
(1− a0)

λ0−1
, (57)

where L(β, λ|D0) is the likelihood function based on the observed historical

data, and α0 and λ0 are prespecified hyperparameters. The quantity

π0(β, λ) is the initial prior for (β,λ), which is (56).

It is well known that with insufficient follow-up or with too few events,

the estimate of the cure rate can be quite unreliable and unstable. In addi-

tion, the model itself may not be identifiable or nearly identifiable if there is

insufficient follow-up and there are too few events. The use of informative

prior distributions can help overcome such difficulties, which can provide

better estimates of the cure rate and make the model identifiable.

5.1.5. Model assessment

We use a summary statistic of the CPO
i
’s given by (7), the logarithm of

the pseudo-Bayes factor, for model assessment. The CPO
i
given by (7) has

the form

CPO
i
= f(y

i
|y(i)) =

∫

f(y
i
|β,λ) π(β,λ|y(i)) dβ dλ , (58)

where y
i

denotes the response variable for case i, and y(i) denotes the

entire response vector with the ith case deleted. Then, the logarithm of

the pseudo-Bayes factor is defined as

B =

n

∑

i=1

log(CPO
i
) . (59)

In the context of survival data, the statistic B has been discussed

before.30,38,91
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We see from (58) that B is always well defined as long as the posterior

predictive density is proper. Thus, B is well defined under improper priors,

and in addition, it is very computationally stable. Therefore, B has a clear

advantage over the Bayes factor as a model assessment tool, since it is well

known that the Bayes factor is not well defined with improper priors, and

is generally quite sensitive to vague proper priors. Thus, the Bayes factor

is not applicable for many of our models here, since we consider several

models involving improper priors. In addition, the B statistic also has clear

advantages over other model selection criteria, such as the L measure.63,70

The L measure is a Bayesian criterion requiring finite second moments of

the sampling distribution of y
i
, whereas the B statistic does not require

existence of any moments. Since the cure rate models in (53) and (55) have

improper survival functions, no moments of the sampling distribution exist,

and therefore the L measure is not well defined for these models. Thus, for

the models considered here, the B statistic is well motivated.

5.1.6. E1690 melanoma study

To demonstrate the methodologies, we consider the second ECOG trial,

E1690, in malignant melanoma. This study had n = 427 patients on the

high dose interferon arm and observation arm combined. ECOG initiated

this trial, right after the completion of E1684, to attempt to confirm the

results of E1684 and to study the benefit of Interferon Alpha-2b (IFN) given

at a lower dose. The E1690 trial accrued patients from 1991 until 1995, and

was unblinded in 1998. The E1690 trial was designed for exactly the same

patient population as E1684, and the high dose IFN arm in E1690 was

identical to that of E1684. See Kirkwood et al.67,68 for detail.

We carry out a Bayesian analysis of E1690 using E1684 as historical

data using relapse-free survival (RFS) as the response variable with the

treatment as a covariate. Since E1684 has longer follow-up than E1684,

the use of E1684 as a historical may help to improve the accuracy in the

estimates of cure rates based on E1690. But, in this example, we solely

focus on model comparisons. We consider Cox model, parametric cure rate

(PCR) model, and semiparametric cure rate (SPCR) model with J = 1,

J = 5, and J = 10 for noninformative and informative priors. Table 4 shows

the results of Pseudo-Bayes Factors (B’s) when a0 = 0 with probability 1,

E(a0|D) = 0.05, 0.20, 0.30, and 0.60, and a0 = 1 with probability 1. We

note that a0 = 0 implies the use of noninformative prior, which is equivalent

to a prior specification with no incorporation of historical data, while with

a0 = 1, we simply combine D and D0 together.



June 6, 2003 11:15 WSPC/Advanced Medical Statistics chap25

Bayesian Methods 971

Table 4. Pseudo-Bayes factors (B’s).

E(a0|D) '

Model a0 = 0 0.05 0.20 0.30 0.60 a0 = 1

J = 1 −575.60 −575.45 −575.23 −575.13 −574.95 −574.64
Cox J = 5 −522.30 −522.05 −521.67 −521.59 −521.61 −522.24

J = 10 −523.62 −523.20 −522.39 −522.12 −522.02 −522.71

J = 1 −519.75 −519.61 −519.39 −519.34 −519.40 −519.67
SPCR J = 5 −520.24 −519.89 −519.43 −519.31 −519.67 −520.16

J = 10 −524.42 −523.82 −522.83 −522.53 −522.56 −522.97

Fig. 3. Plot of pseudo-Bayes factors for SPCR with J = 5.

Table 4 is quite informative. First, for the degree of parametricity, J = 5

is better than J = 1 or J = 10. However, for SPCR J = 1 and J = 5

are fairly close. Second, for both J = 1 or J = 5, the cure rate model

yields a better fit than the Cox model. Third, the incorporation of E1684

in the analysis improves the model fit over the exclusion of historical data.

Fourth, for all the cases, B is a concave function of E(a0|D), see Fig. 3 for

an illustration. This is an interesting feature in B in that it demonstrates

that there is an “optimal” weight for the historical data with respect to the

statistic B, and thus this property is potentially very useful in selecting a

model and the prior weight a0.
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5.2. Bayesian model selection for multivariate mortality

data with large families

To illustrate Bayesian model selection, we consider an analysis of the

multivariate mortality data with large families from a series of animal

toxicological experiments performed in the Department of Biology at the

University of Waterloo. One of these experiments to study the toxic ef-

fect of potassium thiocyanate (KSCN) on the mortality of trout fish eggs.

In this experiment, each of the six levels of KSCN were added to differ-

ent tanks each containing many trout fish eggs (61 to 179 eggs per vial).

Half of the tanks were water hardened before the application of the KSCN

(x1 = 1) and other half were water hardened after the application of the

KSCN (x1 = 0). Another covariate is the continuous variable x2, which is

defined as the natural logarithm of the level of KSCN. Each experimental

condition was replicated 4 times, so there were in total 48 tanks. Another

similar experiment was conducted in the same laboratory with a differ-

ent toxicant, sodium thiocyanate (NaSCN). For the KSCN data, mortality

counts for each tank were taken at 5, 11, 19, 31 and 35 days after the appli-

cation of KSCN, while for the NaSCN data mortality counts for each tank

were taken at 1, 6, 13, 20, and 27 days after the application of the NaSCN.

We refer the reader to O’Hara Hines77 and O’Hara Hines and Lawless78

for the more detailed description of these two experiments. Since NaSCN

is a toxicant similar to KSCN and both experiments were similar in design

and purpose, the data from the NaSCN experiment will be used to build

an informative prior distribution for the KSCN study.

For the KSCN data, there are K = 48 tanks (families) of fishes

(subjects). Suppose that the observation times for each tank are t0 =

0 < t1 < · · · < t
m

(m = 5). Moreover, it is given that t1 = 5, t2 =

11, t3 = 19, t4 = 31 and t5 = 35. The cumulative mortality counts (the

observed data) in each tank at these five days, can be summarized as

{(d
kj
, r
kj

) : j = 1, . . . , 5; k = 1, . . . , 48} where d
kj

is the number of fishes

dying and r
kj

is the number of fishes at risk in the kth tank during the

time interval (t
j−1, tj ] = I

j
. Let h

kj
be the mortality rate, which can be

also interpreted as the discrete hazard rate, for a fish from the kth tank at

the time interval I
j
:

h
kj

= P (T
i
∈ I

j
|i ∈ R

kj
,x

i
) ,

where T
i
is the time of death for a fish from the kth tank, and R

kj
is the set

of fishes still “at risk” (alive) in the kth tank at the beginning of the time

interval (t
j−1, tj ] (for j = 1, 2, . . . , 5 and k = 1, 2, . . . ,K). There are two
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covariates x1k and x2k for each tank, where x2k is the primary covariate,

the natural logarithm of the KSCN level applied to the kth tank, and x1k

is the water hardening of the kth tank. Thus, the number of fishes dying in

the kth tank during I
j

is distributed as Binomial with success probability

h
kj

and the number of trials is equal to the number of fishes at risk during

that interval in the kth tank, i.e. d
kj
∼ Binomial(r

kj
;h
kj

).

Chen et al.18 assume that for a logit link function,

logit(h
kj

) = log

(

h
kj

1− h
kj

)

= x
′
k

β + g
γ
(t
j
) + e

kj
, (60)

where g
γ

is a known function with unknown parameters γ, possibly vector

valued, x
k

= (1, x1k, x2k)
′, β = (β0, β1, β2)

′ is a 3 × 1 vector of the

regression coefficients with respect to covariates x
k
. In (60), e

kj
’s are the

random effects for the hazard rate of the fishes in the kth tank during

the time interval I
j
. Let e

k
= (e

k1, ek2, . . . , ek,m)′ for k = 1, 2, . . . ,K. We

assume that these random effects, e
kj

’s, are dependent on each other within

the same tank (family) but independent between any two different tanks.

Also let A = diag(a1, a2, . . . , am), where a
j

= (t
j
− t

j−1)
1/2 is the square

root of the length of consecutive time intervals for j = 1, 2, . . . ,m. We

build the dependence structure using a m-dimensional multivariate normal

distribution within each tank, so that

e
k
∼ N

m
(0, σ2Σ) , (61)

where Σ is a m×m matrix defined by

Σ = A















1 ρ ρ

2 · · · ρ

m−1

ρ 1 ρ · · · ρ

m−2

...
...

...
. . .

...

ρ

m−1
ρ

m−2
ρ

m−3 · · · 1















A . (62)

The function g
γ
(t) in (60) is a function of time known up to the unknown

parameter γ. The choice of g
γ

depends on the entertained response-time

model of these kinds of mortality data. The most simple form of g
γ
(t) is

linear, i.e. g
γ
(t) = γ1t, the constant term is absent to preserve the identifi-

ability of the model. There are many other possible choices for the function

g
γ
(t) such as quadratic, g

γ
(t) = γ1t + γ2t

2, and even more complex one

such as a spline function of known order with a known number of knots

but, with unknown knot positions. In this example, we use Bayesian vari-

able selection approach to explore a suitable form for g
γ
(t) from the data.



June 6, 2003 11:15 WSPC/Advanced Medical Statistics chap25

974 M.-H. Chen & K. Ye

Here, we assume that g
γ
(t) takes the form

g
γ
(t) = γ1g1(t) + γ2g2(t) + · · ·+ γ

q
g
q
(t) , (63)

where the g
j
(t) are the known functions of t and q ≥ 0. For the notational

convenience, we denote g
γ
(t) ≡ 0 when q = 0. We further denote γ =

(γ1, γ2, . . . , γq)
′.

Let D denote the complete data, that is, D = ((d
k
, r
k
,x

k
,

g1(tk1), . . . , gq(tkm)), k = 1, . . . , 48), where d
k

= (d
kj
, j = 1, 2, . . . ,m)

and r
k

= (r
kj
, j = 1, 2, . . . ,m). Also let φ

m
(e
k
|µ, σ2Σ) denote the

m-dimensional normal density of the random effect e
k

with mean µ and

covariance matrix σ2Σ, i.e.

φ
m

(e
k
|µ, σ2Σ) =

|Σ|−1/2

(2πσ2)m/2
exp

(

−
1

2σ2
(e
k
− µ)′Σ−1(e

k
− µ)

)

. (64)

Then, it can be shown that the likelihood function is given by

L(β, γ, σ2
, ρ|D) =

K

∏

k=1

{

∫





m

∏

j=1

(h
kj

)dkj (1− h
kj

)rkj−dkj





×φ
m

(e
k
|0, σ2Σ)de

k

}

, (65)

where h
kj

and e
kj

are given in (60). Notice that from (62), we have

|Σ| = (1− ρ2)m−1 ×

m

∏

j=1

a
j
.

We use the NaSCN added fish tank data77 to build our prior dis-

tributions. Let D0 denote the complete NaSCN data, that is, D0 =

((d0k, r0k,x0k, g1(t01), . . . , gq(t0m0
)), k = 1, 2, . . . ,K0 = 36), where

x0k = (1, x01k, x02k)
′
, d0k = (d0kj , j = 1, 2, . . . ,m0 = 5) and r0k =

(r0kj , j = 1, 2, . . . ,m0 = 5). In the NaSCN data, d0kj is the number

of fishes dying and r0kj is the number of fishes at risk in the kth tank

during the time interval I0j = (t0,j−1, t0j) for j = 1, 2, . . . ,m0 = 5, where

t01 = 1, t02 = 6, t03 = 13, t04 = 20, t05 = 27, and m0 = 5 for

k = 1, 2, . . . ,K0 (K0 = 36).

To determine the form of g
γ
, let M denote the model space with each

model containing β and a specific choice of covariates g
l
(t
j
). The full model

is defined here as the model containing all of the available covariates in the

toxicity experiment. Also, let θ
(Q) = (β′

, γ1, γ2, . . . , γq)
′ and let θ

(m) denote



June 6, 2003 11:15 WSPC/Advanced Medical Statistics chap25

Bayesian Methods 975

a q
m
×1 vector of regression coefficients for model m with β, and a specific

choice of q
m
− 3 covariates g

l
(t
j
). We write θ

(Q) = (θ(m)
′

,θ
(−m)

′

)′, where

θ
(−m) is θ

(Q) with θ
(m) deleted.

Using the power prior given by (26), we construct the prior distribution

for (θ(m)
, σ

2
, ρ) under model m as

π(θ(m)
, σ

2
, ρ|m) ∝ π

∗
0
(θ(m)

, σ

2
, ρ|D0,m)

=

∫ 1

0

K0
∏

k=1

{

m0
∏

j=1

∫

exp{a0d0kj((x
∗(m)

0kj
)′θ(m) + e0kj)}

[1 + exp{(x
∗(m)

0kj
)′θ(m) + e0kj}]a0r0kj

×φ
m0

(e0k|0, σ
2Σ0)de0k

}

×π1(σ
2) π2(ρ) π3(a0)da0 , (66)

where e0k is a m0×1 vector of random effects, and x
∗(m)

0kj
is a q

m
×1 vector

of covariates corresponding to θ
(m). Note that under the full model, x

∗
0kj

=

(1, x01k, x02k , g1(t0kj), . . . , gq(t0kj))
′. In (66), we specify an inverse gamma

prior for σ2 given as π1(σ
2) ∝ (σ2)−(δ0+1) exp(−σ−2

ζ0), a scaled beta prior

for ρ given as π2(ρ) ∝ (1 + ρ)ν0−1(1− ρ)ψ0−1, and independent beta priors

for each a0 given as π3(a0) ∝ a

α0−1

0
(1 − a0)

λ0−1. Let L(θ(m)
, σ

2
, ρ|D,m)

denote the likelihood function given by (65) under model m. Then, the

marginal likelihood given in (23) has the following expression:

p(D|m) =

∫

L(θ(m)
, σ

2
, ρ|D,m)π(θ(m)

, σ

2
, ρ|m) dθ(m)

dσ

2
dρ . (67)

To completely determine the posterior probability of model m given by

(22), we elicit the prior model probability p(m) as:

p(m) =

∫

π

∗
0
(θ(m)

, σ

2
, ρ|D0,m) dθ(m)

dσ

2
dρ

∑Q

j=1

∫

π

∗
0
(θ(j)

, σ

2
, ρ|D0, j) dθ

(j)
dσ

2
dρ

. (68)

The choice for p(m) in (68) is a natural one since the numerator is just the

normalizing constant of the joint prior of (θ(m)
, σ

2
, ρ) under model m. The

prior model probabilities in (68) are based on coherent Bayesian updating.

It can be shown that p(m) in (68) corresponds to the posterior probability

of model m based on the data D0 using a uniform prior on the model

space for the previous study, p0(m) = 2−q for m ∈ M as α0 → ∞. That

is, p(m) ∝ p(m|D
(m)

0
), and thus p(m) corresponds to the usual Bayesian

update of p0(m) using D0 as the data.
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Next, we briefly discuss how to compute the posterior model probability

p(m|D). From (67) and (68), it can be seen that p(m|D) is a function of the

ratios of analytically intractable prior and posterior normalizing constants,

which are expensive to compute. However, the following result can greatly

ease such computational burden. Using (22), (67) and (68) along with the

Savage–Dicky ratio,99 it directly follows from Ibrahim et al.61 that the

posterior probability p(m|D) in (22) of model m reduces to

p(m|D) =
π(θ(−m) = 0|D,Q)

∑Q

j=1
π(θ(−j) = 0|D,Q)

, (69)

m = 1, . . . ,Q, where π(θ(−m) = 0|D,Q) is the marginal posterior density of

θ
(−m) evaluated at θ

(−m) = 0 under the full model. In (69), for notational

convenience we assume that π(θ(−Q) = 0|D,Q) = 1. Note that the joint

posterior distribution of θ is given by

π(θ|D,Q) ∝

∫

L(θ, σ2
, ρ|D)π(θ, σ2

, ρ|Q)dσ2
dρ .

The result in (69) is attractive since it shows that the posterior model

probability p(m|D) is simply a function of the marginal posterior density

functions of θ
(−m) for the full model evaluated at θ

(−m) = 0. This formula

does not algebraically depend on the prior model probability p(m) since it

cancels out in the derivation due to the structure of p(m). This is an impor-

tant feature since it allows us to compute the posterior model probabilities

directly without numerically computing the prior model probabilities. This

has a clear computational advantage and as a result, allows us to compute

posterior model probabilities efficiently. Although the analytical evaluation

of π(θ(−m) = 0|D,Q) does not appear possible due to the complexity of our

model, it can be easily computed by using the IWMDE method discussed

in Sec. 2.3.

We implement the above Bayesian variable subset selection to deter-

mine the form of g
γ
. The terms t, t2, log(t) were previously used in the

toxicological mortality estimation literature by some authors77,78 to model

the effect of time. We do not know which form of g(t) fits the data best

before our analysis, and therefore, we use the formal Bayesian model

selection procedure allowing the possibility of including all of these co-

efficients in the selected model. So, we consider that the full model for

g
γ
(t
j
) contains t

j
, t

2

j

, and ln t
j
, that is, g

γ
(t
j
) = γ1tj + γ2t

2

j

+ γ3 ln t
j
.

Thus, the model space M has a dimension of Q = 23 = 8. We specify
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Table 5. Posterior model probabilities for the fish tank data.

(µ0 , σ0) Model p(m|D)

(0.50, 0.109) (x1, x2, T ) 0.486

(x1, x2, T 2) 0.352

(x1, x2, lnT ) 0.153

(0.50, 0.050) (x1, x2, T ) 0.484

(x1, x2, T 2) 0.351

(x1, x2, lnT ) 0.153

(0.91, 0.027) (x1, x2, T ) 0.484

(x1, x2, T 2) 0.350

(x1, x2, lnT ) 0.153

(0.98, 0.006) (x1, x2, T ) 0.483

(x1, x2, T 2) 0.350

(x1, x2, lnT ) 0.154

noninformative priors for ρ and σ2. Specifically, we take a uniform prior for

ρ on [−1, 1] (i.e. ν0 = ψ0 = 1) and take an inverse gamma prior for σ2 given

as π1(σ
2) ∝ (σ2)−(δ0+1) exp(−σ−2

ζ0) with δ0 = ζ0 = 0.005. Then, we con-

sider several choices of hyperparameters (α0, λ0) for a0 to perform a small

scale sensitivity study. Similar to Example 3, we let µ
a0

= α0/(α0 + λ0),

and σ
a0

= (µ0(1 − µ0)(α0 + λ0 + 1)−1)1/2. We generate 50,000 Gibbs

iterations from the posterior distribution under the full model to obtain

IWMDE. Table 5 gives results for the top three models based on several

values of (µ
a0
, σ
a0

). In Table 5, we let T, T

2, and lnT denote time,

time square, and the natural logarithm of time. It can be seen that (i)

for all choices of (µ
a0
, σ
a0

), the order of the top three models does not

change while model (x1, x2, T ) is clearly the top model, and (ii) the pos-

terior model probabilities for all top three models are almost the same

for all choices of (µ
a0
, σ
a0

) despite the one with a strong prior on a0 (see

(µ
a0
, σ
a0

) = (0.98, 0.006)). Therefore, model choice is reasonably robust to

the choice of (µ
a0
, σ
a0

). In addition, the total sum of the posterior model

probabilities for the top three models is close to 1, for example, this sum

equals 0.988 for (µ
a0
, σ
a0

) = (0.50, 0.050). This result implies that for the

purpose of posterior prediction, it suffices to use these three models to

apply model averaging techniques82 to incorporate model uncertainty in

posterior densities for parameters. Also, from the principle of parsimony

and from the result of Bayesian variable selection, the best model to use

is g(t) = γ1 + γ2t.
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5.3. Reference prior analysis to a statistical calibration

model

A statistical calibration problem (or, more precisely, an absolute statistical

calibration problem), bears a resemblance to a regression problem. It is still

assumed that the variables x and y are related through a function of spec-

ified form. However, in calibration, interest centers on the estimation of an

unknown value of x, corresponding to an observed value of y. Inferences are

based on two samples of data. At a first stage of data collection, n pairs

(x
i
, y
i
) are observed, with the x values fixed at known levels. At a second

stage, c replications of the response variable y are observed, correspond-

ing to an unknown value of the regressor x0; estimation of this regressor

value is of primary interest. A review of statistical calibration is given by

Osbourne.29

Noninformative priors for the linear calibration problem have been pre-

sented by several authors.31,47,69,81 Also, Eno and Ye32 studied the refer-

ence priors for the polynomial calibration models, as well as the probability

matching prior for an extended calibration problem.33

5.3.1. An example of polynomial calibration

The data set was presented by Aitchison and Dunsmore.1 These data

resulted from an assay of an antibiotic, based on the “clearance circle”

technique. The goal of such an experiment is to estimate the concentration

of the active constituent in a particular test preparation of the antibiotic.

In a clearance circle assay, the regressor variable x is a precise measure of

the concentration of active constituent in a preparation of antibiotic. This

concentration is controlled in a laboratory experiment, where it is set at

several different values by diluting a known full-strength antibiotic prepa-

ration to varying degrees. Each response y
i
is obtained by placing a drop of

antibiotic solution (of a specified volume) on a petri dish which is uniformly

infected with bacteria. The actual response variable y
i

is the measured

diameter of the circle which has been disinfected by the antibiotic prepa-

ration after a specified period of time. It is expected that the diameter of

this clearance circle depends on the concentration of the active constituent

in an antibiotic solution. Based on the known dilutions of the standard

preparation, this regression relationship can be estimated.

At the same time that the clearance circles corresponding to the known

antibiotic concentrations are measured, clearance circles are also mea-

sured for the test preparation whose unknown antibiotic concentration is
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Fig. 4. Scatterplot of the transformed data in clearance circle assay.

of interest. What we want to do here is to use the reference prior Bayesian

analysis to estimate this unknown antibiotic concentration. The data are

plotted in Fig. 4.

In the plot (Fig. 4), the response is transformed via the square root

transformation and the regressor is transformed via the log transformation.

The plot really fits a quadratic model well.

5.3.2. The model and the reference priors

The polynomial calibration problem can be formally stated as follows. Data

in the form of n pairs (x
i
, y
i
) are collected. In addition to these n data pairs,

we observe c values of the response, y
n+1, yn+2, . . . , yn+c, which correspond

to a single unknown value of the regressor x0. The response variable y

is assumed to be related to the regressor x via a polynomial function of

order p:

y
i
= α+ β1xi + β2x

2

i

+ · · ·+ β
p

x

p

i

+ ε
i
, for i = 1, 2, . . . , n+ c .

For convenience, we have written x
i

in place of x0, for i = n + 1, n +

2, . . . , n+ c. We assume that the errors ε
i

are independent and identically

distributed normal deviates, with mean 0 and standard deviation σ.

Of primary interest in this problem is the estimation of the unknown

regressor value x0. A feature that distinguishes the polynomial calibration

problem from the linear calibration problem is that, since a polynomial
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Fig. 5. Reference prior for the quadratic model, for the clearance circle assay example.

function need not be monotonic, more than one value of x0 may give rise

to a particular mean response ȳ0. This issue in the context of the clearance

circle assay described above has been discussed and addressed in Eno and

Ye.32

Reference priors for the univariate polynomial calibration problem, as

described above, are given as follows.

π
k
(x0, α,β, σ) ∝ σ

−k

(

ζ

′
0
ζ0

1 + cξ

′
0
(X′

α,1
X
α,1)−1

ξ0

)
1

2

= σ

−k(ζ ′0ζ0)
1

2

(

1 +
cn

n+ c

(x0 − x̄)′(X′
1X1)

−1(x0 − x̄)

)− 1

2

,

(70)

where X1 is the n × p matrix whose ith row is x′
i

, the vector of regressor

at ith observation, X
α,1 is the n× (s+ 1) matrix whose ith row is (1,x′

i

),

ζ
′
0

= (1, 2x0, 3x
2

0
, . . . , px

p−1

0
) is a vector of derivative terms of x0, and k is

the number of parameters in the group involving σ in the implementation

of the reference prior algorithm.

Clearly the prior in (70) is improper. As we noted in Sec. 3.3, it is

necessary to check the propriety of the posteriors once an improper prior is

used. In Eno and Ye,32 integrability of the reference prior in form (70) was

proven. The prior function is shown in Fig. 5 for the clearance circle assay

problem.
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5.3.3. Posterior results

Applying the reference prior (70) to the clearance circle assay problem, we

are ready to estimate the antibiotic concentration level for the observed

responses. The marginal posterior distribution of the log(concentration) is

shown in Fig. 6. It is quite clear to see the bi-modal properties of both

the prior and the posterior since the model considered here is quadratic.

Furthermore, it can easily seen that the small bump in the posterior distri-

bution reflects to x0 value way beyond the region of original regressor. It is

conceivable that this local mode does not belong to this data set.

Fig. 6. Marginal reference posterior for log(x0).

Fig. 7. Marginal reference posterior for x0.
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Since the model is not likely to be reliable outside the range of the

controlled regressor values, we truncate the range of the posterior density

and transform the logarithm back to the original scale. Figure 7 shows the

marginal posterior distribution of x0.
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A stochastic process X = {X(t), t ∈ T} is a t-indexed collection of

random variables. i.e. for any t ∈ T , X(t) is a random variable and t is a

parameter. We often interpret t as time. If the set T is a countable set,

we call the process a discrete-time stochastic process, usually denoted by

{X
n
, n = 1, 2, . . .}. And if T is continuum, we call it a continuous-time

stochastic process, usually denoted by {X(t), t ≥ 0}. X(t) is called the

state of process at time t. The collection of possible values of X(t) is

called state space.

Stochastic processes have ever applied in many fields. Now we in-

troduce some important stochastic processes and their applications in

medical science.

1. Markov Chains

1.1. Discrete-time Markov chains

Suppose that we roll a six-sided dice. The probability of rolling 1 is denoted

p1(0 < p1 < 1). Now consider a sequence of consecutive rolls. Suppose that

they are all independent. If we let X
n

denote the accumulative number

of rolling 1 after n consecutive rolls, it is easy to see that the variables

{X
n
, n = 1, 2, . . .} are not independent. However, If the value of X

n
is

given, for example X
n

= i, we can see X
n+1 takes either the value i (with

probability 1−p1) or the value i+1 (with probability p1). In other words, the

process {X
n
, n = 1, 2, . . .} shows the property that conditional distribution

of the future state X
n+1, given the present state X

n
, depends only on the

present state and is independent of the past states of X1, X2, . . . , Xn−1.

991
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This property is called Markovian property. Markov chains are discrete-

state stochastic processes with Markovian property.

Definition.2,19,21 Consider a stochastic process {X
n
, n = 0, 1, 2, . . .} that

takes on a finite or countable values. {X
n
, n = 0, 1, 2, . . .} is said to be

Markov chain if

P{X
n+1 = j|X

n
= i, X

n−1 = i
n−1, . . . , X1 = i1, X0 = i0}

= P{X
n+1 = j|X

n
= i} . (1)

For all states i0, i1, . . . , in−1, i, j and all n ≥ 0.

P{X
n+1 = j|X

n
= i} in Eq. (1) is associated with a transition taking

place in one step, so it is called (one-step) transition probability and is

denoted as p
i,j

(n, n + 1). A Markov chain is said to be homogeneous if

p
i,j

(n, n+1) is independent of n. Then p
i,j

(n, n+1) can be denoted as p
ij

.

Let P denote the matrix of transition probability p
ij

, so that

P =̂ (p
ij

) =







p00 p01 p02 · · ·

p10 p11 p12 · · ·

· · · · · · · · · · · ·






.

It is obvious that
∑

j

p
ij

= 1 for any i.

1.1.1. A simple example — simple random walk

A particle make a random walk on the integer points. Wherever it is, it

will either goes up one step (with probability p) or down one step (with

probability 1− p). Let X
n

denote the site of the particle after n steps.

It is easy to see the simple random walk is a Markov chain. Its transition

probability

p
ij

=











p j = i + 1

1− p j = i− 1 i = 0,±1, . . .

0 else

As similar as one-step transition probability p
ij

. m-step (m > 1)

transition probability is

p

(m)

ij

=̂ P{X
n+m

= j|X
n

= i} .

Let P

(m) denote the matrix of p

(m)

ij

, i.e. P
(m) = (p

(m)

ij

).
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1.1.2. Chapman–Kolmogorov equationm (C–K equation)

For any m, n,

p

(m+n)

ij

=
∑

k

p

(m)

ik

p

(n)

kj

, (2)

or in terms of the transition probability matrices:

P

(m+n) = P

(m) · P (n)
, (3)

especially,

P

(n) = [P (1)]n .

So C–K equation can be used to derive higher order transition probability

from one-step transition probability. Chiang11 pointed out that

p

(n)

ij

=

s

∑

l=1

A

′
ij

(λ
l
)λn

l

∏

s

m=1
m6=l

(λ
l
− λ

m
)

, i, j = 1, 2, . . . , s , (4)

when s × s transition probability matrix P has s distinct eigenvalues

λ1, λ2, . . . , λs
, where the matrix A

′(λ
l
) = (λ

l
I − P )′.

The probability distribution of X
n

is

p

(n)

j

=̂ P{X
n

= j} =
∑

i

P{X0 = i}P{X
n

= j|X0 = i}

=
∑

i

P{X0 = i}p
(n)

ij

.

And in terms of the matrices,

P
Xn

= (p
(n)

j

) = P
X0
· P (n)

. (5)

So, the probability distribution of a Markov chain can be derived from

transition probability matrix and initial distribution.

1.1.3. Example: Hardy–Weinberg law of equilibrium in genetics2,11

Consider a biological population. Each individual in the population is

assumed to have a genotype AA or Aa or aa, where A and a are two alleles.

Suppose that the initial genotype frequency composition (AA, Aa, aa)

equals to (d, 2h, r), where d + 2h + r = 1. Then the gene frequencies of

A and a are p and q, where p = d + h, q = r + h and p + q = 1. We can

use Markov chain to describe the heredity process. We number the three

genotypes AA, Aa and aa by 1, 2, 3 and denote by p
ij

the probability that
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an offspring has genotype j given that a specified parent has genotype i.

For example,

p12 = P{a child has genotype Aa|his mother has genotype AA}

= P{his father has gene a|his mother has genotype AA} .

Under random mating assumption,

P{his father has gene a|his mother has genotype AA}

= P{his father has gene a} .

So p12 = q. Similar computations yield the other transition probabilities.

The one-step transition probability matrix is

P =







p11 p12 p13

p21 p22 p23

p31 p32 p33






=











p q 0

1

2
p

1

2

1

2
q

0 p q











.

Let p

(k)

i

denote the probability that the kth generation has genotype i. The

initial genotype distribution of the 0th generation

(p
(0)

1
, p

(0)

2
, p

(0)

3
) = (d, 2h, r) .

And then the genotype distribution of the first generation

(p
(1)

1
, p

(1)

2
, p

(1)

3
) = (p

(0)

1
, p

(0)

2
, p

(0)

3
)P

= (d, 2h, r)











p q 0

1

2
p

1

2

1

2
q

0 p q











= ((d + h)p, dq + h + rp, (h + r)q)

= (p2
, 2pq, q

2) .

The genotype distribution of the second generation

(p
(2)

1
, p

(2)

2
, p

(2)

3
) = (p

(1)

1
, p

(1)

2
, p

(1)

3
)P

= (p2
, 2pq, q

2)











p q 0

1

2
p

1

2

1

2
q

0 p q










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= (p2(p + q), pq(p + q + 1), q2(p + q))

= (p2
, 2pq, q

2)

and has the same distribution as that of the first generation. Similar

computations show the distributions of the 3rd, 4th, . . . are all same and

still are (p2
, 2pq, q

2). This is Hardy–Weinberg law of equilibrium. That is,

whatever the parent genotype frequency compositions (d, 2h, r) may be,

under random mating assumption, the first generation progenies will have

the genotype composition (p2
, 2pq, q

2) and this composition will remain in

equilibrium forever.

1.2. Stationary distribution and limiting distribution

State j is said to be accessible2 from state i if for some n ≥ 0, p

(n)

ij

> 0.

Two states accessible to each other are said to communicate.2 We say that

the Markov chain is irreducible2 if all states communicate with each other.

State i is said to have period d if p

(n)

ii
= 0 whenever n is not divisible

by d and d is the greatest integer with the property. A state with period 1

is called aperiodic.20

A probability distribution {π
j
} related to a Markov chain is called sta-

tionary if it satisfied the relation

π
j

=
∑

i

π
i
p

ij
. (6)

If the initial distribution {P (X0 = i)} is stationary distribution, then

P{X1 = j} =
∑

i

P{X0 = i}P{X1 = j|X0 = i} =
∑

i

π
i
p

ij
= π

j

and by induction, the probability P{X
n

= j} = π
j
. Therefore the dis-

tribution of X
n

is independent of n (time) and the corresponding process

is in a statistical equilibrium. In the example of Hardy–Weinberg law of

equilibrium, the stationary distribution of the Markov chain is (p2
, 2pq, q

2).

A Markov chain is called finite2 if the chain has finite states. There must

exist unique stationary distribution {π
j
} in a finite and irreducible Markov

chain,2 the π
j
, j ≥ 0, are the unique solution of Eq. (6) and

∑

j

π
j

= 1.

If there is a distribution {π
j
} such that

lim
n→∞

∑

i

π
j
p

(n)

ij

= π
j

for any i, j (7)

{π
j
} is called long-run distribution (or limiting distribution).
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If a Markov chain has long-run distribution {π
j
}, the chain has asymp-

totic distribution {π
j
} no matter what the initial distribution is. A long-run

distribution must be a stationary distribution. If a finite Markov chain is

aperiodic, its stationary distribution is long-run distribution.2,18,20

1.2.1. Example: Social status change2,18

In sociology, there is a question about how much effect be made on son’s

social status by father’s social status. We take one’s occupation indicates

his social status. Now, consider the conditional probability distribution

for son’s occupation. In a research report about social status change,

probability distribution is provided as following:

Table 1.

Father’s Son’s occupation

occupation good median bad

good 0.448 0.484 0.068

median 0.054 0.699 0.247

bad 0.011 0.503 0.486

We consider social status’s change as transition between states. If

Markovian property is satisfied in the states, we can use a finite (three

states) Markov chain to describe the social status’s change. This chain

is irreducible and aperiodic, and there must be long-run distribution

(π1, π2, π3) satisfied

(π1, π2, π3)P = π1, π2, π3 .

So we can get






π1

π2

π3






=







0.067

0.624

0.309






.

We can say, if social status’s change is a Markov chain with above transition

probability, the social status take asymptotically the proportions: 6.7 for

good, 62.4 for median, 30.9 for bad.

1.3. Continuous-time Markov chain

Definition. For all states i, j, x
u

and all s, t ≥ 0, if the equation

P{X
t+s

= j|X
s

= i, X
u

= x
u
, 0 ≤ u < s} = P{X

t+s
= j|X

s
= i} (8)
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is satisfied, the discrete process {X
t
, t ≥ 0} is called continuous-time

Markov chain. P{X
t+s

= j|X
s

= i} in the equation is also called transition

probability, denoted by p
i,j

(s, s + t). A continuous-time Markov chain is

said to be homogeneous if p
i,j

(s, s + t) is independent of (denoted by p
ij

(t)

here).

If the state is i at time t, the chain transform into state j with the

probability

p
ij

(∆t) = P{X(t + ∆t) = j|X(t) = i}

after ∆t.

Let

δ
ij

{

0 j 6= i

1 j = i

.

q
ij

=̂ lim∆t→0+

pij (∆t)−δij

∆t

is said to be transition intensity.20 The matrix

Q =̂ (q
ij

) is called transition intensity matrix.

q
ij

dt = P{X(t + dt) = j|X(t) = i} , j 6= i

q
ii
dt = P{X(t + dt) = i|X(t) = i} − 1 = −P{X(t + dt) 6= i|X(t) = i} .

So
∑

j

q
ij

= 0 .

The continuous-time Markov chain with intensity matrix Q = (q
ij

).

(1) The sojourn time of state i have exponential distribution with the mean

−q
ii
.

(2) The chain step into state j(j 6= i) with the probability p
ij

= −
qij

qii

after

leaving state i.

The transition probability satisfies Chapman–Kolmogorov equation

p
ij

(t + s) =
∑

k

p
ik

(t)p
kj

(s)

and two Chapman–Kolmogorov differential equations which are Chapman–

Kolmogorov forward equation

p

′
ij

(t) =
∑

k

p
ik

(t)q
kj

, i.e. P

′(t) = P (t)Q (9)

and Chapman–Kolmogorov backward equation

p

′
ij

(t) =
∑

k

q
ik

p
kj

(t) , i.e. P

′(t) = QP (t) (10)

for all i, j and t ≥ 0.



July 9, 2003 10:16 WSPC/Advanced Medical Statistics chap26

998 J.-Q. Fang & C.-X. Li

We can obtain transition probabilities from the differential equations.

Example. Now consider a two-state continuous-time Markov chain. The

sojourn time of state 0 has exponential distribution with rate λ and the

sojourn time of state 1 has exponential distribution with rate u. Therefore

the intensity matrix is
(

−λ λ

µ −µ

)

.

From forward equation

p

′
00

(t) = −λp00(t) + µp01(t) = −λp00(t) + µ(1− p00(t))

= −(λ + µ)p00(t) + µ

we have

p00(t) =
µ

λ + µ

+
λ

λ + µ

exp(−(λ + µ)t) .

Similarly,

p11(t) =
λ

λ + µ

+
µ

λ + µ

exp(−(λ + µ)t) .

Hence, transition probability matrix

P (t)=









µ

λ + µ

+
λ

λ + µ

exp(−(λ + µ)t)
λ

λ + µ

−
λ

λ + µ

exp(−(λ + µ)t)

µ

λ + µ

−
µ

λ + µ

exp(−(λ + µ)t)
λ

λ + µ

+
µ

λ + µ

exp(−(λ + µ)t)









.

Generally, for s-state chain, when the intensity matrix has single

eigenvalues λ1, λ2, . . . , λs
, Chiang11 presented the solution of Chapman–

Kolmogorov differential equations

P
ij

(t) =

s

∑

l=1

A

′
ij

(λ
l
) exp(λ

l
t)

∏

s

m=1
m6=l

(λ
l
− λ

m
)

, i, j = 1, 2, . . . , s (11)

where A

′(λ
l
) = (λ

l
I −Q)′.

2. Applications of Markov Chains

Markov chain is usually used to describe a systems with Markovian

property. For example, We usually divide a certain disease into several

states in medical science. Under Markovian property assumption, we can

get the transition information among states.
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Table 2. Frequence of tree species in 1983 and 1988.

1983 1988 Total

1 2 3 4 5 6

1 83 8 0 0 1 12 104

2 8 81 0 0 0 18 107

3 12 2 116 2 1 6 139

4 2 0 6 75 0 1 84

5 7 0 3 0 35 4 49

6 39 27 44 5 4 362 481

Total 151 118 169 82 41 403 964

2.1. Example 1: Predict the structure of future system

In the paper of Chen Jianzhong et al.1 analysis the data investigated

in 964 areas of NanPing in 1983 and 1988, a Markov model is built to

predict forest resources with tree species. The tree species include cunning-

hamia lanceolata (state 1), pinus massoniana (state 2), broad-leaved trees

(state 3), phyllostachys pubescens (state 4), economic trees (state 5) and

others (state 6). The data from two investigations see Table 2.

One step (five years) transition probability matrix P is estimated as

follows:

P =



















79.81 7.69 0 0 0.96 11.54

7.48 75.70 0 0 0 16.82

8.63 1.44 83.45 1.44 0.72 4.32

2.38 0 7.14 89.29 0 1.19

14.29 0 6.12 0 71.43 8.16

8.11 5.61 9.15 1.04 0.83 75.26



















.

The chain with transition matrix P has stationary distribution. Based

on the initial distribution in 1988 and transition matrix P , the distributions

of trees from 1993 to 2023 are computed in Table 3.

The stationary distribution shows the structure at present is unrea-

sonable and needs to be adjusted in accordance to future structure. The

transition probability matrix after adjustment becomes

P =



















79.81 7.69 0 0 0.96 11.54

7.48 75.70 0 0 0 16.82

2.88 1.44 89.21 1.44 0.72 4.32

2.38 0 7.14 89.29 0 1.19

14.29 0 6.12 0 71.43 8.16

3.95 5.61 7.28 3.12 4.78 75.26



















.
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Table 3. Prediction for occupied % of tree species in different years.

Year 1 2 3 4 5 6

1983 0.1079 0.1111 0.1442 0.0871 0.0508 0.4990

1988 0.1566 0.1224 0.1753 0.0851 0.0425 0.4180

1993 0.1913 0.1307 0.1932 0.0828 0.0366 0.3653

1998 0.2159 0.1369 0.2028 0.0805 0.0324 0.3318

2003 0.2335 0.1418 0.2073 0.0783 0.0295 0.3097

2008 0.2460 0.1457 0.2087 0.0761 0.0273 0.2961

2013 0.2550 0.1488 0.2084 0.0740 0.0259 0.2879

2018 0.2614 0.1514 0.2071 0.0721 0.0248 0.2831

2023 0.2661 0.1536 0.2054 0.0703 0.0241 0.2805
..
.

..

.
..
.

..

.
..
.

..

.
..
.

Stationary 0.2805 0.1663 0.1901 0.0534 0.0226 0.2871

Table 4. Prediction for occupied % of tree species in different years
after adjustment.

Year 1 2 3 4 5 6

1983 0.1079 0.1111 0.1442 0.0871 0.0508 0.4990

1988 0.1276 0.1224 0.1743 0.0954 0.0622 0.4180

1993 0.1437 0.1285 0.1965 0.1008 0.0669 0.3637

1998 0.1562 0.1315 0.2131 0.1041 0.0680 0.3270

2003 0.1658 0.1330 0.2255 0.1062 0.0672 0.3023

2008 0.1728 0.1337 0.2348 0.1075 0.0657 0.2855

2013 0.1779 0.1339 0.2420 0.1083 0.0639 0.2741

2018 0.1815 0.1339 0.2474 0.1087 0.0622 0.2663

2023 0.1840 0.1338 0.2572 0.1089 0.0607 0.2609
..
.

..

.
..
.

..

.
..
.

..

.
..
.

Stationary 0.1872 0.1324 0.2698 0.1084 0.0545 0.2477

The distributions of trees from 1993 to 2023 are computed similarly in

Table 4.

2.2. Example 2: Decision analysis and

cost-effectiveness analysis

Helicobacter pylori (HP) infection is a factor on tummy cancer. A markov

model is provided for cost analysis in Wang Qian et al.9 Four states in

the chain are without HP infection (state 1), HP infection (state 2), cancer

(state 3) and death (state 4). The transition probabilities are given in Fig. 1.

Suppose that is 50% individuals in the population is HP infectious and

the cancer incidence is 27/105. For cost analysis, assume that the heath



July 9, 2003 10:16 WSPC/Advanced Medical Statistics chap26

Stochastic Processes and Their Applications 1001

Table 4  Prediction for occupied percentage of tree species in different years after
adjustment

year 1 2 3 4 5 6
1983 0.1079 0.1111 0.1442 0.0871 0.0508 0.4990
1988 0.1276 0.1224 0.1743 0.0954 0.0622 0.4180
1993 0.1437 0.1285 0.1965 0.1008 0.0669 0.3637
1998 0.1562 0.1315 0.2131 0.1041 0.0680 0.3270
2003 0.1658 0.1330 0.2255 0.1062 0.0672 0.3023
2008 0.1728 0.1337 0.2348 0.1075 0.0657 0.2855
2013 0.1779 0.1339 0.2420 0.1083 0.0639 0.2741
2018 0.1815 0.1339 0.2474 0.1087 0.0622 0.2663
2023 0.1840 0.1338 0.2572 0.1089 0.0607 0.2609
� � � � � � �

stationary 0.1872 0.1324 0.2698 0.1084 0.0545 0.2477

Example 2 ( Decision Analysis and Cost-effectiveness Analysis)
Helicobacter pylori (HP) infection is a factor on tummy cancer. A markov model

is provided for cost analysis in the paper of Wang Qian et al. [ 9 ] . Four states in the
chain are without HP infection (state 1) , HP infection (state 2), cancer (state 3) and
death (state 4). The transition probabilities are given in figure 2.

Figure 1  transition probabilities
Suppose that is 50% individuals in the population is HP infectious and the cancer
incidence is 27/105. For cost analysis, suppose that the heath values of four states are
1, 0.95, 0.3, 0 respectively. The cost of a sufferer with cancer is 104$ per year. The
transitions and costs for the population are given in table 5.

Table 5  The cost in the population (10,000 individuals) without screening
              states   Communication valueT

1    2 3 4 S Q Cost S Q Cost

0 0.5 0.5 0 0 0 0 0 0 0 0
1 0.4917

5
0.5016
0

0.0002
7

0.0063
8

9936 9684 27050 9936 9684 27050

2 0.4836
4

0.5031
0

0.0004
9

0.0127
7

9872 9617 48660 19808 19301 75710

3 0.4756
6

0.5045
2

0.0006
6

0.0191
6

9808 9551 65916 29617 28852 141627

4 0.4678
1

0.5058
4

0.0008
0

0.0255
5

9745 9486 79687 39361 38338 221314

5 0.4600
9

0.5070
8

0.0009
1

0.0319
2

9681 9421 90667 49042 47759 311981

28 0.3138
2

0.5153
2

0.0012
9

0.1695
7

8304 8038 129002 254820 247422 318186
3

Fig. 1. Transition probabilities.

Table 5. The cost in the population (10,000 individuals) without screening.

T States Communication value

1 2 3 4 S Q Cost S Q Cost

0 0.5 0.5 0 0 0 0 0 0 0 0

1 0.49175 0.50160 0.00027 0.00638 9936 9684 27050 9936 9684 27050

2 0.48364 0.50310 0.00049 0.01277 9872 9617 48660 19808 19301 75710

3 0.47566 0.50452 0.00066 0.01916 9808 9551 65916 29617 28852 141627

4 0.46781 0.50584 0.00080 0.02555 9745 9486 79687 39361 38338 221314

5 0.46009 0.50708 0.00091 0.03192 9681 9421 90667 49042 47759 311981
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

28 0.31382 0.51532 0.00129 0.16957 8304 8038 129002 254820 247422 3181863

29 0.30864 0.51496 0.00129 0.17512 8249 7982 128703 263069 255404 3310566

30 0.30355 0.51454 0.00128 0.18063 8194 7927 128387 271263 263332 3438953

T = time S = survival time Q = quality survival time

values of four states are 1, 0.95, 0.3, 0, respectively. The cost of a patient

with cancer is $104 per year. The transitions and costs for the population

are given in Table 5.

Suppose that the sensitivity and specificity are both 90% in the screen-

ing test and the cost of the screening test is $25 per individual. The cure

rate of HP infection is 80% and the cost for cure is $300. Similarly, the

transitions and costs for the population with screening can be computed.

They are given in Table 6.

There is a contrast between them and see Table 7.

2.3. Example 3: Using the transition dependent on

covariates to analysis the factors for illness

In the paper of Fang et al.,3 two non-homogeneous Markov chains were

used to study a two-stage model with time-dependent covariates for latent



July 9, 2003 10:16 WSPC/Advanced Medical Statistics chap26

1002 J.-Q. Fang & C.-X. Li

Table 6. The cost in the population (10,000 individuals) with screening.

T States Communication value

1 2 3 4 S Q Cost S Q Cost

0 0.86 0.14 0 0

1 0.84581 0.14765 0.00016 0.00638 9936 9861 16070 9936 9816 1766070

2 0.83186 0.15510 0.00029 0.01275 9873 9793 29082 19809 19654 1795152

3 0.81813 0.16236 0.00040 0.01911 9809 9725 39642 29618 29379 1834794

4 0.80464 0.16944 0.00048 0.02544 9746 9658 48236 39363 39037 1883030

5 0.79136 0.17634 0.00055 0.03175 9682 9590 55251 49046 48627 1938281
...

...
...

...
...

...
...

...
...

...
...

28 0.53977 0.29162 0.00092 0.16769 8323 8171 91973 255075 251730 3848064

29 0.53086 0.29504 0.00092 0.17318 8268 8114 92283 263343 259844 3940347

30 0.52210 0.29834 0.00093 0.17863 8214 8085 92571 271557 267902 4032918

Table 7. The costs between two populations.

Screening Non-Screening Difference

S (year) 271557 271263 294

Q (year) 267902 263332 4570

Cancer frequency 55 82 −27

Summary cost ($) 4032918 3438953 593965

Screening cost ($) 1750000 — 1750000

Cost for cancer ($) 2282918 3438953 −1156035

Fig. 2. The transitions between four states.

period of cancer. There are four states in the chains, which are inapparent

illness (state 0), soakage stage (state 1), non-soakage stage (state 2) and

observable clinic state (state 3). The transitions between the states are

in Fig. 2.

2.3.1. Model 1. A non-homogeneous discrete-time Markov model

Let

p
ij

(t) = P{X(t + 1) = j|X(t) = i} and Z(t) = (Z1(t), Z2(t), . . . , Zp
(t))′ ,
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where Z1(t), Z2(t), . . . , Zp
(t) are p covariates. The transition probability

matrix is

P (t) =











p00(t) p01(t) 0 0

p10(t) p11(t) p12(t) 0

0 0 p22(t) p23(t)

0 0 0 1











,

where

p01(t) = a01 · θ(t) , p00(t) = 1− p01(t) ,

p10(t) = a10 · (1− θ(t)) , p12(t) = a12 · θ(t) , p11(t) = 1− p10(t)− p12(t) ,

p23(t) = a23 · θ(t) , p22(t) = 1− p23(t) ,

θ(t) = 1− exp(−C

′
Z(t)) , C = (r1, r1, . . . , rp

)′ .

2.3.2. Model 2. A non-homogeneous continuous-time Markov model

In the model, the transition intensities

λ
ij

(t)dt = P{X(t + dt) = j|X(t) = i}

Let

λ01(t) = A0 + A1Z1(t) + · · ·+ A
p
Z

p
(t) ,

λ10(t) = B0 + B1Z1(t) + · · ·+ B
p
Z

p
(t) ,

λ12(t) = C0 + C1Z1(t) + · · ·+ C
p
Z

p
(t) ,

λ23(t) = D0 + D1Z1(t) + · · ·+ D
p
Z

p
(t) .

The two models were applied to analyze a set of 12-year and 6-run

screening data of cervical cancer in Jingan county, Jiangxi Province, China.

The covariates are sex disorder, sex health, age, age-square and cervicitis.

In model 1, the estimation of parameter C = (r1, r1, . . . , rp
)′ is

r̂1 = 0.7095 , r̂2 = 0.0189 , r̂3 = 0.0152 , r̂4 = 2.23× 10−4
, r̂5 = 0.631 ,

i.e. Ĉ = (0.7095, 0.0189, 0.0152, 2.23× 10−4
, 0.631).

In the likelihood ratio tests for the hypothesis r
i
= 0, the χ2 statistics

are 58.65, 59.62, 22.97, 39.72 and 77.38 respectively. P < 0.01 for all.

The results show the 5 covariates have effect on the transition.
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In model 2, let C
i
= 0, D

i
= 0(i = 1, 2, 3, 4, 5). The estimations of other

parameters are

Â0 = 2.81× 10−5
, Â1 = 0.765 , Â2 = 0.963 ,

Â3 = 4.16× 10−4
, Â4 = 7.61× 10−4

, Â5 = 1.333 ,

B̂0 = 8.25× 10−3
, B̂1 = 0.019 , B̂2 = 0.116 ,

B̂3 = 2.32× 10−3
, B̂4 = 3.12× 10−3

, B̂5 = 0.109 ,

Ĉ0 = 7.03× 10−4
, D̂0 = 0.0279 .

After hypothesis test, except the covariates age and age-square, the

others have effect on the transition.

2.4. Example 4: Modeling for sequence with

short-term memory

In a sequence {X
t
}, the value of X

s
usually has effect on the value of X

s+t
,

i.e. Cov(X
s
, X

s+1) 6= 0. The effect attenuates gradually when the time

length t gets longer. The sequence is said to have short-term memory if the

attenuation is fast and said to have long-term memory if the attenuation is

slow. Markov chain is a sequence with short-term.

Ion-channels sometime is open and sometime is close. The single ion-

channel patch-clamp recordings recorded by patch-clamp are shown in

Fig. 3.

Fang et al.15 proposed two-state Markov model to study quantita-

tively memory existing in ion-channels. A two-state Markov process with

constant transition intensities well fitted the short-term memory and a two-

state Markov process within a kind of random environment well fitted the

long-term memory. In the short-term memory model, the auto-correlation

function is exp[−(λ + µ)t].

effect on the transition.

Example 4 (Modeling for sequence with short-term memory)
In a sequence }{ tX , the value of sX  usually has effect on the value of tsX + , i.e.

0),( ≠+tss XXCov . The effect attenuates gradually when the time length t  gets
longer. The sequence is said to have short-term memory if the attenuation is fast and d
to have long-term memory if the attenuation is slow. Markov chain is a sequence with
short-term.

Ion-channels sometime is open and sometime is close. The single ion-channel
patch-clamp recordings recorded by patch-clamp are as follows Fig.4

Fig. 3      single ion-channel patch-clamp recordings

Fang[1996][15] et al. proposed two-state Markov model to study quantitatively memory
existing in ion-channels. A two-state Markov process with constant transition intensities well
fitted the short-term memory and a two-state Markov process within a kind of random
environment well fitted the long-term memory. In the short-term memory model, the auto-
correlation function is ])(exp[ tµλ +− .

3  Generalized Markov Chains
1. Markov Chains in Random Environment

A Markov chain in random environment[15] is called if the transition intensities
are random variables.

Example Considering a two-state continuous-time Markov chain }0),({ ≥ttX ,
the transition intensities 1001 , qq == µλ  are random variables. The probability
density functions are )(),( µλ gf  respectively"

When µλ,  are given|the transition intensity matrix of )(tX  is



















+−
+

+
+

+−
+

−
+

+−
+

−
+

+−
+

+
+

=
))(exp())(exp(

))(exp())(exp(
)(

tt

tt
tP

µλ
µλ

µ
µλ

λµλ
µλ

µ
µλ

µ

µλ
µλ

λ
µλ

λµλ
µλ

λ
µλ

µ

.

The conditional distribution }1,0),({ | =jtp j λ  of )(tX  satisfies

},,)0(|)({},|)0({},|)({ˆ)(
1

0
| µλµλµλλ iXjtXPiXPjtXPtp

i
j ====== ∑

=

.

So the distribution of )(tX  becomes

ddgfjtXPjtXPtp j ,)()(},|)({})({ˆ)(
0

λµλµλ==== ∫
∞

The long-term memory model for ion-channels proposed by Fang et al [1996][15]

is Markov model in random environment. The distributions of transition intensities

Fig. 3. Single ion-channel patch-clamp recordings.
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3. Generalized Markov Chains

3.1. Markov chains in random environment

A Markov chain in random environment15 is called if the transition inten-

sities are random variables.

Example. Considering a two-state continuous-time Markov chain {X(t),

t ≥ 0}, the transition intensities λ = q01, µ = q10 are two independent

random variables. The probability density functions are f(λ), g(µ)

respectively.

When λ, µ are given, the transition matrix of X(t) is

P (t)=









µ

λ + µ

+
λ

λ + µ

exp(−(λ + µ)t)
λ

λ + µ

−
λ

λ + µ

exp(−(λ + µ)t)

µ

λ + µ

−
µ

λ + µ

exp(−(λ + µ)t)
λ

λ + µ

+
µ

λ + µ

exp(−(λ + µ)t)









.

The conditional distribution {p
j|λ,µ

(t), j = 0, 1} of X(t) satisfies

p
j|λ,µ

(t) =̂ {X(t) = j|λ, µ}

=

1
∑

i=0

P{X(0) = i|λ, µ}P{X(t) = j|X(0) = i, λ, µ} .

So the distribution of X(t) becomes

p
j
(t) =̂ P{X(t) = j} =

∫ ∞

0

P{X(t) = j|λ, µ}f(λ)g(µ)dλdµ .

The long-term memory model for ion-channels proposed by Fang et al.15

is Markov model in random environment. The distributions of transi-

tion intensities are Γ distributions, Γ(α1, β), Γ(α2, β). The auto-correlation

attenuates as (βt + 1)−(α1+α2). The attenuation shows long-term memory.

3.2. Semi-Markov processes

A continuous-time Markov chain {X(t), t ≥ 0}. The time τ
i

spending for

the transition between two successive states i→ j(j 6= i) have exponential

distribution. The distribution is dependent with state i and independent

with state j. The chain is called semi-Markov process if the distribution of

τ
i

is arbitrary distribution and the distribution is dependent with state i

and state j. Markov chain is a semi-Markov process.
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X
t–1 X

t+1 ........ X
t

Y
t–1 Y

t+1 ........ Y
t

Fig. 4. The relation between {Xt} and {Yt}.

3.3. Hidden Markov chains

A hidden Markov chain19 {X
t
, Y

t
} is composed by two processes. One is a

underline finite-state Markov chain {X
t
}. The other is observed processes

{Y
t
} and the distribution of Y

t
is dependent with X

t
.

For example, the ion-channel sometimes is open and sometimes is close.

The open (state 1) or close (state 0) cannot be observed directly because

there are noise in the channel. Hidden Markov model can be used here. Let

{X
t
} denote the sequence of states and {Y

t
} denote the observed sequence

recorded by patch-clamp. Suppose that {X
t
} has Markov property. Y

t
has

normal distribution N(µ0, σ
2
0) when X

t
= 0 and has normal distribution

N(µ1, σ
2

1) when X
t
= 1. If {X

t
} is given, there is conditional independence

among Y
t

s. The relation between {X
t
} and {Y

t
} as shown in Fig. 4.

At present, hidden Markov model is also used for biological sequence

analysis.

Example.19 Let {Y
t
, t = 1, 2, . . . , n}, Y

t
∈ {a, c, g, t} =̂ {1, 2, 3, 4} is a DNA

sequence. S
t
, S

t
∈ {1, 2, . . . , r} denote the type of homogeneous segment at

position t in the sequence. S
t
, S

t
∈ {1, 2, . . . , r} is unobservable. A hidden

Markov processes modeled for {S
t
, Y

t
}. Supposed {Y

t
} is a Markov chain,

the transition probability

P{Y
t
= y

t
|S

t
= s

t
, y1, y2, . . . , yt−1} = P{Y

t
= y

t
|S

t
= s

t
, y

t−1}

= p

(st)

yt−1yt
,

dependent with the segment type S
t
.

Suppose that the conjugate prior distribution for the row vectors p

(k)

i

of

the transition matrix is Dirichlet distribution. Then the posterior distribu-

tion is still Dirichlet distribution. The segment type can be decided by the

conditional probability P (S
t

= k|y) (k = 1, 2, . . . , r) and the probability

P (S
t
= k, S

t+1 6= k|y).
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3.4. Time-reversible Markov chain

Consider a stationary Markov chain with transition matrix P = (p
ij

). If

the initial distribution is the stationary distribution {π
i
}, the distribution

of the chain at any time will remain the same. Now, we trace the sequence

of states backwards in time. The reversible sequence X
n
, X

n−1, . . . , is still

a Markov chain. The transition probability

p

∗
ij

= P{X
m

= j|X
m+1 = i, X

m+2 = i2, . . . , Xm+k
= i

k
}

=
P{X

m
= j, X

m+1 = i, X
m+2 = i2, . . . , Xm+k

= i
k
}

P{X
m+1 = i, X

m+2 = i2, . . . , Xm+k
= i

k
}

=

P{X
m

= j}P{X
m+1 = i|X

m
= j}

×P{X
m+2 = i2, . . . , Xm+k

= i
k
|X

m
= j, X

m+1 = i}

P{X
m+1 = i}P{X

m+2 = i2, . . . , Xm+k
= i

k
|X

m+1 = i}

=
π

j
p

ji
P{X

m+2 = i2, . . . , Xm+k
= i

k
|X

m+1 = i}

π
i
P{X

m+2 = i2, . . . , Xm+k
= i

k
|X

m+1 = i}

=
π

j

π
i

p
ji

.

If p

∗
ij

= p
ij

, for all i, j, the Markov chain is called time-reversible.20 If a

Markov chain is time-reversible, then

π
i
p

ij
= π

j
p

ij
, for all i, j . (12)

4. Applications in Statistic Computation

4.1. MCMC

In statistic computation, we usually compute the expectation of a function

f(x):

E
π
f =

∫

f(x)π(x)dx ,

where x = (x1, x2, . . . , xk
) is k-dimensional vector and π(x) is a density

function. Markov chain Monte Carlo (MCMC)8 methods are applied for

computation.

At present, there are two different definitions about Markov chain .In

MCMC, the Markov chain is a discrete-state Markov process. There are

transition probabilities for discrete-time chain and transition intensities for

continuous-time chain. The transition probabilities and transition intensi-

ties are called transition kernel for discrete-state Markov process.
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In MCMC, an aperiodic irreducible Markov chain {X (0)
, X

(1)
, X

(2)
, . . .}

with stationary distribution π(x) was built. If the initial state X

(0) has

distribution π(x), X

(t) will have the same distribution π(x). An aperiodic

irreducible Markov chain with stationary distribution π(x) has limiting dis-

tribution which is also π(x). The distribution of X

(m) has little effect on the

initial state X

(0) and gets close to π(x) when m is large enough. Therefore,

the n−m state, X

(m+1)
, X

(m+2)
, . . . , X

(n), is used for computation.

The steps in MCMC methods as follows.

Step 1. Building a Markov chain with stationary distribution π(x).

Step 2. Getting a sample X

(0)
, X

(1)
, X

(2)
, . . . , X

(n).

Step 3. Taking m, n(m < n) and estimating of E
π
f :

Ê
π
f =

1

n−m

n

∑

t=m+1

f(X(t)) . (13)

In MCMC methods, the transition kernel p(x, x

′) is very important,

where x

′ = (x′
1
, x

′
2
, . . . , x

′
k

). In the different MCMC methods, the kernel is

different.

In MCMC methods, the full conditional distribution π(x
T
|x−T

) are

used, where T ⊂ {1, 2, . . . , k}, x
T

= {x
i
, i ∈ T}, x−T

= {x
i
, i /∈ T}.

π(x
T
|x−T

) =
π(x

T
)

∫

π(x)dx
T

∝ π(x) .

Example. Suppose the joint distribution of X1, X2 is

π(x1, x2) ∝ exp

{

−
1

2
(x1 − 1)2(x2 − 1)2

}

.

Then the full conditional distribution

π(x1|x2) ∝ π(x1, x2) ∝ exp

{

−
1

2
(x1 − 1)2(x2 − 1)2

}

= N(1, (x2 − 1)−2)

π(x2|x1) ∝ π(x1, x2) ∝ exp

{

−
1

2
(x1 − 1)2(x2 − 1)2

}

= N(1, (x1 − 1)−2)

Two important MCMC methods, Gibbs method and Metropolis-

Hastings method, are introduced respectively.
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4.1.1. Gibbs sampling method

Gibbs sampling method is proposed by Geman S. and Geman D. (1984).21

Let x

′
−T

= x−T
. Consider the conditional distribution of X

T
|X−T

. Let

the transition kernel p(x
T
, x

′
T

|x−T
) =̂ π(x′

T

|x−T
). So x

′
T

can be gotten

from the distribution π(•|x−T
). It can be proved that X

′ = (X ′
T

, X

′
−T

) has

distribution π(x′).

The simple Gibbs method is called if only one element is in T . Sampling

from full conditional distribution becomes simple. The steps are given as

follows.

Suppose that initial value x

(0) = (x
(0)

1
, x

(0)

2
, . . . , x

(0)

k

) is given and the

(t − 1)th iterative value is x

(t−1). The tth iterative value x

(t) is gotten as

follow k steps.

Step 1. Sampling x

(t)

1
from full conditional distribution π(x1|x

(t−1)

2
, . . . ,

x

(t−1)

k

);
. . . . . . . . . . . .

Step i. Sampling x

(t)

i

from full conditional distribution π(x
i
|x

(t)

1
, . . . ,

x

(t)

i−1
, x

(t−1)

i+1
, . . . , x

(t−1)

k

);
. . . . . . . . . . . .

Step k. Sampling x

(t)

k

from full conditional distribution π(x
k
|x

(t)

1
, . . . ,

x

(t)

k−1
). Let x

(t) = (x
(t)

1
, x

(t)

2
, . . . , x

(t)

k

).

4.1.2. Metropolis–Hastings sampling method

Metropolis–Hastings sampling method is proposed by Metropolis (1953)22

and Hastings (1970).23 The transition kernel p(x, x

′) is built as follows.

Suppose that q(x, x

′) is an irreducible transition kernel. Let

p(x, x

′) = q(x, x

′)α(x, x

′) , x 6= x

′

where α(x, x

′) is a function and 0 < α(x, x

′) ≤ 1.

When the current state is x, i.e. X

(t) = x. We propose a transition

x→ x

′ with intensity q(x, x

′). The proposal is not automatically accepted.

The probability of acceptance is α(x, x

′). Therefore, the successive state will

be changed as x

′ with probability α(x, x

′) and not changed with probability

1− α(x, x

′). That is to say,

x

(t+1) =

{

x

′
u ≤ α(x, x

′)

x u > α(x, x

′)
,

where u is a random number from [0, 1] uniform distribution.



July 9, 2003 10:16 WSPC/Advanced Medical Statistics chap26

1010 J.-Q. Fang & C.-X. Li

Table 8. The capture-recapture data when k = 3.

3rd sample

Observed Non-observed

2nd sample 2nd sample

Observed Non-observed Observed Non-observed

1st sample Observed x123 x12̄3 x123̄ x12̄3̄

Non-observed x1̄23 x1̄2̄3 x1̄23̄ x1̄2̄3̄

q(x, ·) is a probability function or density function. It is called proposal

distribution in Metropolis–Hastings sampling. α(x, x

′) is called acceptance

probability. An expression for α(x, x

′) is derived to ensure the chain with

stationary distribution π(x).

α(x, x

′) = min

{

1,

π(x′)q(x′
, x)

π(x)q(x, x

′)

}

. (14)

For full conditional distribution, let x

′
−T

= x−T
. The proposal distribution

is q(x
T
, x

′
T

|x−T
) and acceptance probability

α(x, x

′) = min

{

1,

π(x′
T

|x−T
)q(x′

T

, x
T
|x−T

)

π(x
T
|x−T

)q(x
T
, x

′
T

|x−T
)

}

. (15)

Gibbs sampling is a special Metropolis–Hastings sampling, where pro-

posal distribution is π(x′
T

|x−T
) and acceptance probability is constant 1.

In the dissertation of Gao6 about Bayesian analysis of capture-recapture

data, an application for MCMC is provided.

In capture-recapture model, the size of a closed population is N . N

is unknown and need to be estimated by k samples from the population.

Suppose that the size of the ith sample is n
i

and n(n < N) individuals

are observed in all k samples and. Every individual was captured with

probability p
i

in the ith sample. When k = 3, the capture-recapture data

as following Table 8, where x1̄2̄3̄ is unknown. Let u = x1̄2̄3̄. Then N = n+u.

Let {ω} = {123, 123̄, 12̄3̄, 1̄23, 1̄2̄3, 1̄23̄} and {ω′} = {ω}+ {1̄2̄3̄}.

When the three samples are independent, the likelihood function is

p({x
ω
}|N, {p

i
}) =

N !

(N − n)!
∏

ω

x
ω
!

3
∏

1

p

ni

i

(1− p
i
)N−ni

.

The posterior distribution (N, {p
i
}) is

p(N, {p
i
}|x

ω
′) ∝

N !

(N − n)!
∏

ω

x
ω
!

∏

ω

(p
i
)xω(1− p

i
)N−ni

π(N, {p
i
}) ,
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where π(N, {p
i
}) is prior distribution of (N, {p

i
}). If π(N, {p

i
}) is uniform

distribution, the full conditional distribution of (N, {p
i
}) is

p(p
i
|u, p−i

, {x
ω
}) ∝ p

ni

i

(1− p
i
)u+n−ni ∼ β(n

i
+ 1, u + n− n

i
+ 1) ,

where β(n
i
+ 1, u + n− n

i
+ 1) is β distribution, and

p(u|{p
i
}, {x

ω
}) =

(

u + n

u

)

(p∗)u(1− p

∗)n = b(n + u, p

∗) ,

where p

∗ =
∏3

1
(1− p

i
).

4.2. Reversible jump MCMC computation

In above MCMC methods, the dimension k of vector x is known and fixed.

They are not available when k is not fixed. Peter J. Green16 proposed

reversible jump MCMC samplers that jump between parameter subspaces

of differing dimensionality.

4.2.1. The general case

Suppose that we have a countable collection of candidates model {M
k
, k ∈

K}. Model M
k

has a vector θ

(k) of unknown parameters, where θ

(k) ∈ R

nk

and is a n
k

dimensional vector. Let x = (k, θ

(k)), Ω
k

= {k} × R

nk and

Ω =
⋃

k

Ω
k
, x ∈ Ω

k
. For a given k, π(x) is the joint posterior distribution

of k and θ

(k), i.e.

π(x) = p(k, θ

(k)|y) = p(k|y)p(θ(k)|k, y) ,

where y is an observed sample.

When the current state is x, we propose a move x → dx

′ of type m

with probability q
m

(x, dx

′). Thus the successive state is not changed with

probability 1−
∑

m

q
m

(x, Ω), where
∑

m

q
m

(x, Ω) ≤ 1. Let α
m

(x, x

′) is the

acceptance probability of the move of type m. The transition kernel is

P (x, B) =
∑

m

∫

B

q
m

(x, dx

′)α
m

(x, x

′) + s(x)I(x ∈ B) ,

where B ⊂ Ω, I(·) is indicator function and

s(x) =
∑

m

∫

B

q
m

(x, dx

′){1− α
m

(x, x

′)}+ 1−
∑

m

q
m

(x, Ω)

is the probability of not moving from x.
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α
m

(x, x

′) given by Peter J. Green16 is

α
m

(x, x

′) = min

{

1,

π(dx

′)q
m

(x′
dx)

π(dx)q
m

(x, dx

′)

}

. (16)

Suppose that π(dx)q
m

(x, dx

′) has a finite density f
m

(x, x

′). Then

α
m

(x, x

′) = min

{

1,

f
m

(x′
, x)

f
m

(x, x

′)

}

. (17)

4.2.2. Switching between two simple subspaces

A simple example is given first. Let two subspaces Ω1 = {1} × R, Ω2 =

{2} × R

2
x = (1, θ) ∈ Ω1 when k = 1 and x = (2, θ1, θ2) ∈ Ω2 when k = 2.

Consider a move between Ω1 and Ω2. A move from Ω1 to Ω2 is defined as

(1, θ)→ (2, θ + u, θ− u), where u and θ are independent random variables.

Then the reversible move from Ω2 to Ω1 is (2, θ1, θ2) → (1,

1

2
(θ1 + θ2)).

For dimensional matching of (θ, u) and (θ1, θ2), there is a bijection between

(θ, u)and (θ1, θ2).

In general, Ω1 = {1} × R

n1
, Ω2 = {2} × R

n2
, Ω =

⋃

k

Ω
k
, x = (k, θ

(k)).

For a given k, x ∈ Ω
k
, k = 1, 2). Consider just one move type between

Ω1 and Ω2. The proposal distribution is q(x, dx

′) and this move is chosen

with probability j(x). From Ω1 to Ω2, a m1 dimension random vector u

(1)

independent with θ

(1) is generated. Set θ

(2) to be some function of θ

(1)

and u

(1). Then the move (1, θ

(1))→ (2, θ

(2)) is defined. Similarly, to switch

back, a m2 dimension random vector u

(2) independent with θ

(2) is generated

and set θ

(1) to be some function of θ

(2) and u

(2). Then there is a bijection

between (θ(1)
, u

(1)) and (θ(2)
, u

(2)). For dimensional matching, m1 and m2

must satisfy n1 + m1 = n2 + m2. Suppose that the densities of u

(1) and

u

(2) are q1(u
(1)) and q2(u

(2)) respectively. Let x = (1, θ

(1)
, µ

(1)) ∈ Ω, x

′ =

(2, θ

(2)
, µ

(2)) ∈ Ω and

f(x, x

′) = p(1, θ

(1)|y)j(1, θ

(1))q1(u
(1)) ,

f(x′
, x) = p(2, θ

(2)|y)j(2, θ

(2))q2(u
(2))

∣

∣

∣

∣

∂(θ(2)
, u

(2))

∂(θ(1)
, u

(1))

∣

∣

∣

∣

.

Then the acceptance probability

α(x, x

′) = min

{

1,

p(2, θ

(2)|y)j(2, θ

(2))q2(u
(2))

p(1, θ

(1)|y)j(1, θ

(1))q1(u(1))

∣

∣

∣

∣

∂(θ(2)
, u

(2))

∂(θ(1)
, u

(1))

∣

∣

∣

∣

}

. (18)

Sometimes, m1 or m2 is 0. For example, when m2 is 0, Eq. (18) becomes

α(x, x

′) = min

{

1,

p(2, θ

(2)|y)j(2, θ

(2))

p(1, θ

(1)|y)j(1, θ

(1))q1(u(1))

∣

∣

∣

∣

∂(θ(2))

∂(θ(1)
, u

(1))

∣

∣

∣

∣

}

.
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5. Branching Processes

5.1. Branching processes

Branching Processes were studied by Galton and Watson in 1874. Consider

a population, in which the individuals can produce offspring. Each

individual can produce k new offspring with probability p
k
, k = 0, 1, 2, . . . ,

independently of the others’ producing. That is to say, all individuals’

producings have independent identical distribution (i.i.d.). Suppose that

the numbers of initial individuals is X0, which is called the size of the

0th generation. The size of the first generation, which is constituted by all

offspring of the 0th generate, is denoted by X1, . . . . Let Z

(n)

j

denote the

number of the offspring produced by the jth individual in the nth genera-

tion. Then,

X
n

= Z

(n−1)

1
+ Z

(n−1)

2
+ · · ·+ Z

(n−1)

Xn−1
=

Xn−1
∑

j=1

Z

(n−1)

j

.

It shows that X
n

is a sum of X
n−1 random variables with i.i.d. {p

k
, k =

0, 1, 2, . . .}. The process {X
n
} is called branching processes.18

The Branching Processes is a Markov Chain and its transition proba-

bility is

p
ij

= P{X
n+1 = j|X

n
= i} = P

(

i

∑

k=1

Z

(n)

k

= j

)

.

Suppose that there are x0 individuals in the zeroth generation, i.e. X0 =

x0. Let E(Z
(n)

j

) =
∑∞

k=0
kp

k
= µ and var(Z

(n)

j

) =
∑∞

k=0
(k − µ)2p

k
= σ

2.

Then it is easy to see

E(X
n
) = x0µ

n

,

var(X
n
) =











x

2
0µ

n−1
σ

2
µ

n−1

µ− 1
µ 6= 1

nx

2
0σ

2
µ = 1

.

Now, we can see that the expectation and variance of the size will increase

when µ > 1 and will decrease when µ < 1.

In branching processes, the probability π0 that the population dies out

is shown in the following theorem.

Theorem. Suppose that p0 > 0 and p0 + p1 < 1. Then
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(1) π0 = q

x0 if µ > 1, where q is the smallest positive number satisfying

the equation

x =

∞
∑

k=0

p
k
x

k

. (19)

(2) π0 = 1 if µ ≤ 1.

Example. Suppose that each individual in a population can produce 0,

1, 2 and 3 offspring with probabilities 1/8, 3/8, 3/8 and 1/8, respectively.

Then the mean number of offspring per individual is

µ = 0×
1

8
+ 1×

3

8
+ 2×

3

8
+ 3×

1

8
= 1.5 > 1 .

If the size of 0th generation is 1, i.e. x0 = 1, the probability π0 that the

population dies out satisfies

x = x

0 ×
1

8
+ x

1 ×
3

8
+ x

2 ×
3

8
+ x

3 ×
1

8
,

i.e. x

3 + 3x

2 − 5x + 1 = 0.

This equation has 3 roots, 1, −
√

5− 2 and
√

5− 2. So q =
√

5− 2.

Lotka2,18 proposed a branching process model to study the white Amer-

ican family. Suppose that a white generates k sons (k = 0, 1, 2, . . .) with

probability

p
k

=















bc

k−1
k 6= 0

1−

∞
∑

k=1

bc

k−1
k = 0 ,

where b, c is positive number and b + c < 1.

In this branching process,

µ =
∞
∑

k=0

kp
k

=
b

1− c

2
.

The equation

x =

∞
∑

k=0

p
k
x

k

has two roots, i.e. 1 and q = 1−(b+c)

c(1−c)
. Lotka got b = 0.2126, c = 0.5893

according to a data collected in 1920. So we will obtain

µ = 1.26 > 1 , q = 0.819 .
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That is to say, given x0 = 1, the probability that the population will

eventually die out is 0.819.

In addition, branching processes has ever used in genes mutation,

genetics and epidemiology.

5.2. Generalized branching processes

Branching processes introduced above is in very simple cases.

(1) Each individual in certain generation produces offspring with the iden-

tical probability distribution.

(2) The probability distribution above is independent of generation.

(3) Any two individuals’ producing is independent each other.

(4) Each individual will not die before it produces offspring.

(5) The population is close.

In this simple case, the size of the population will eventually become 0 or

infinity. In fact, the above assumptions usually come into broken before the

size become infinity. There are some cases to generalize simple branching

processes.

(i) Suppose that each individual survives with probability r before

producing.

(ii) The distribution {p
k
, k = 0, 1, 2, . . .} is dependent on generation n.

(iii) The population is not close.

Suppose that the population in simple branching processes is not close

when the generation n is produced, there are Y
n

individuals of the same

kind immigrating and the Y
n

individuals’ producing independently. The

size of population which is not close can be stationary if the immigration

satisfies some certain conditions.

Suppose that survival times of each individual in simple branching pro-

cesses have independent identical distribution F . Before dying, each individ-

ual will have produced k new offspring with probability p
k
. Let X(t) denote

the number of living individuals at time t. For the process {X(t), t ≥ 0},

when t is large enough,

E(X(t)) ≈
(µ− 1)eαt

µ

2
α

∫∞

0
xe

−αx

dF (x)
,
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where µ =
∑∞

k=0
kp

k
is expectation of each individual’s offspring. α is the

positive number which satisfies the follow equation
∫ ∞

0

e

−αx

dF (x) =
1

µ

.

Lucas17 used branching processes to study plasmodia’s producing.

After a plasmodium comes into the cell in the liver, it propagates rapidly.

When the number of plasmodia is large enough, the cell will be broken and

plasmodia will go into red cells in blood. And with the number of plasmodia

produced increasing, the red cell is broken and go into other red cells. The

red cell’s broken is periodical. Every period is about 48–72 hours.

A branching process is used here. The initial plasmodia which go into

red cells constitute 0th generation. The offspring of 0th generation is called

1st generation, and so on. Two models were considered.

In model 1, each plasmodium’s survival probability is r before produc-

ing. It is easy to see

E(X
n
) = x0r

n−1
µ

n

.

So we can conclude that the expectation of the number of plasmodia

increase if rµ > 1, decrease if rµ < 1, and is fixed if rµ = 1. This model

cannot fit well the data given in Table 9.

In model 2, suppose that the survive probability is dependent on gen-

eration n and denotes r
n
. Then

E(X
n
) = x0r1r2 · · · rn−1µ

n

.

Therefore E(X
n+1) = r

n
µE(X

N
). If µ is given, r

n
can be estimated from

this equation.

When µ = 10, the estimations are given in Table 10.

Table 9. The number of invaded from 106 red cells every 48 hours.

Date Time Invaded number

10/24 22:15 5600

10/26 22:30 1220

10/28 22:00 1330

10/30 22:30 1200

11/1 22:30 1560

11/3 22:30 1440

11/5 22:30 2000

11/7 23:00 1370

11/9 23:15 161
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Table 10. The estimations of rn when µ = 10.

Date Invaded number rnµ rn

10/24 5600

10/26 1220 0.218 0.0218

10/28 1330 1.090 0.1090

10/30 1200 0.902 0.0902

11/1 1560 1.300 0.1300

11/3 1440 0.923 0.0923

11/5 2000 1.389 0.1389

11/7 1370 0.685 0.0685

11/9 161 0.118 0.0118

6. Birth Death Processes

6.1. Birth death process

Birth–death processes {N(t), t ≥ 0} were discussed in the processes that

a population grow and decline. Birth–death processes are Markov chains

with transition probabilities satisfying q
ij

= 0 if |i− j| ≥ 2. Let

λ
i
= q

i,i+1 , µ
i
= q

i,i−1 .

The transition probability matrix for Birth–death processes is














−λ0 λ0 0 0 · · ·

µ1 −(λ1 + µ1) µ1 0 · · ·

0 µ2 −(λ2 + µ2) µ2 · · ·

...
...

...
...

...















.

Let N(t) denote the size of a population at time t. We say that 1 birth (or

1 death) occurs in the population when the size increase by 1 (decrease by

1, respectively). λ
i
and µ

i
are called birth rate and death rate respectively.

According to the C–K forward equation, the distribution p
k
(t) =̂

P{N(t) = k} satisfies the equation

p

′
0(t) = −(λ0 + µ0)p0(t) + µ1p1(t) ,

p

′
k

(t) = −(λ
k

+ µ
k
)p

k
(t) + λ

k−1pk−1(t) + µ
µ+1pk+1(t) k ≥ 1

when N(0) = 0.

Example.20 There are M mice in a cage, and there are infinity foods to

provide them to eat. A mouse will stop eating at time t+h with probability

µh+o(h) if it is eating at time t and will have been eating before time t+h
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with probability λh+o(h) if it is not eating at time t. Each mice’s eating is

independent of others’ eating. Let N(t) denote the number of mice which

are eating at time t. {N(t)} is a birth–death process, and

P{N(t + h) = i + 1|N(t) = i} = (M − i)λh + o(h) ,

P{N(t + h) = i− 1|N(t) = i} = iµh + o(h) .

Therefore, the birth rate is λ
i
= (M − i)λ, the death rate is µ

i
= iµ.

The processes discussed above are homogeneous. A birth–death process

is called homogeneous when the birth rate and death rate depend on time.

6.2. Pure birth process

A birth–death process is called pure birth process if µ
i
= 0 for all i. There-

fore, the distribution {p
k
(t)} of pure birth process satisfies

p

′
0(t) = −λ0p0(t) ,

p

′
k

(t) = −λ
k
p

k
(t) + λ

k−1pk−1(t) k ≥ 1 .

6.2.1. Example20 Mckendrick model

There is one population which is constituted by 1 infected and N − 1 sus-

ceptible individuals. The infected state is a absorbing state. Suppose that

any given infected individual will cause, with probability βk + o(h), any

given susceptible individual infected in time interval (t, t + h), where β is

called infection rate. Let X(t) denote the number of the infected individuals

at time t. Then {X(t)} is a pure birth process with birth rate

λ
n
(t) = (N − n)nβ .

This epidemic model was proposed by A. M. Mckendrick in 1926.

Let T denote the time until all individuals in the population are infected

and T
i

denote the time from i infective to i + 1 infective. Then T
i

has

exponential distribution with mean 1

λi

= 1

(N−i)iβ
. Therefore

ET = E

(

N−1
∑

i=1

T
i

)

=
1

β

N−1
∑

i=1

1

i(N − i)
.

6.2.2. Example: M. J. Faddy and J. S. Fenlon13

Some stochastic models based on pure birth processes are constructed to

describe the invasion process of nematodes in fly larvae. Let X(t) denote
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the number of nematodes which have invaded the host at time t. Then

{X(t)} is a pure birth process with birth rate λ
n
, i.e.

P{X(t + ∆t) = n + 1|X(t) = n} = λ
n
∆t + o(∆t) ,

λ
n

= (N − n)a
n

,

where N is the number of nematodes outside the host at time 0 and

X(0) = 0.

Five models in which appropriate forms for λ
n

are given constructed as

follows.

Let λ
n

= (N − n)a
n
.

Model 1. Let a
n

= a, where a is a constant. From the differential equa-

tions, we can know that X(t) has binomial distribution

P{X(t) = n} =

(

N

n

)

(1− exp(−at))n exp(−at)N−n

.

However, in practice, such a model is unlikely to be adequate.

Model 2. Let

a
n

=

{

a0 n = 0

a1 n ≥ 1
, where a1 > a0 .

Model 3. Let a
n

= exp(a + bn), where b > 0.

Model 4. Let

a
n

=
a

1 + exp(b + cn)
, where c < 0 .

Model 5. Let

a
n

=
a exp(−dN)

1 + exp(b + cn)
, where c < 0, d > 0 .

The solution of the four differential equations for the latter 4 models

can be calculated numerically using MATLAB software. Three data sets

are given in Tables 11, 12 and 13 respectively.

Three data sets are analyzed. All models fitted to these data resulted

in a log-likelihood. Let L
i
denote the log-likelihood value for model i.

For Table 11, L1 = −626.80, L2 = −602.57, L3 = −588.88, L4 =

−588.46 and L5 = −588.21. Model 3 is good enough. In model 3, â =

−1.17(0.05), b̂ = 0.25(0.03) where the values in parentheses are standard
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Table 11. Numbers of invading nematodes for various N .

Number of larvae with the following numbers of invading nematodes

N 0 1 2 3 4 5 6 7 8 9 10

10 1 8 12 11 11 6 9 6 6 2 0

7 9 14 27 15 6 3 1 0

4 28 18 17 7 3

2 44 26 6

1 158 60

Table 12. Numbers of invading nematodes for various N .

Number of larvae with the following numbers of invading nematodes

N 0 1 2 3 4 5 6 7 8 9 10

10 4 11 15 10 10 11 8 3 0 0 0

7 12 21 17 12 7 5 0 0

4 32 22 15 6 0

2 35 26 17 2

1 165 59

Table 13. Numbers of invading nematodes for various N .

Number of larvae with the following numbers of invading nematodes

N 0 1 2 3 4 5 6 7 8 9 10

10 21 13 11 11 9 4 2 2 1 0 0

7 34 15 13 1 2 3 1 1

4 35 19 12 3 2

2 45 26 3

1 186 40

errors. After combining some of the entries in Table 11 with low counts,

a χ

2 goodness-of-fit statistic is calculated. χ

2 = 17.42, degree of freedom

df = 16 and p-value p ≈ 0.36.

For Table 12, L1 = −559.28, L2 = −545.04, L3 = −542.12, L4 =

−540.041 and L5 = −540.039. Model 4 is better. In model 4, the estimators

of parameters are â = 0.72(0.20), b̂ = 0.60(0.42), ĉ = −0.61(0.25). After

combining some of the entries in Table 12 with low counts, χ

2 = 7.75,

df = 13 and p ≈ 0.86.

For Table 13, L1 = −554.81, L2 = −517.60, L3 = −512.39, L4 =

−509.58 and L5 = −503.71. Model 5 is the best. In model 5, the estimators
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of parameters are â = 1.94(0.78), b̂ = 2.07(0.41), ĉ = −0.87(0.19), d̂ =

0.062(0.018). After combining some of the entries in Table 13 with low

counts, χ

2 = 19.22, df = 13 and p ≈ 0.12.

When the birth rate λ
i

in homogeneous process or λ
i
(t) in non-

homogeneous process takes appropriate forms, some special processes are

gotten.

6.3. Poisson process

6.3.1. Poisson process — λ
i
= λ

A Poisson process {X(t)} is a pure birth process with constant birth rate.

The solution of the differential equations in pure birth processes gives the

distribution of X(t)

p
k
(t) =̂ P{X(t) = k} =

exp(−λt)(λt)k

k!
.

It is a Poisson distribution with mean λt.

6.3.2. Non-homogeneous Poisson process — λ
i
(t) = λ(t)

Non-homogeneous Poisson processes {X(t)} are time dependent Poisson

processes. The distribution of X(t) is Poisson distribution

p
k
(t) =̂ P{X(t) = k} =

exp(−
∫

t

0
λ(s)ds)(

∫

t

0
λ(s)ds)k

k!
,

with mean
∫

t

0
λ(s)ds.

6.3.3. Weighted Poisson process11 — λ is a random variable

The Poisson process describe the frequency of occurrence of an event to an

individual with risk parameter λ. The variability of individuals with respect

to this risk takes into account. That is to say, we permit λ is various with

the density function f(λ). The conditional distribution p
k|λ(t) of X(t) given

λ is

p
k|λ(t) =̂ P{X(t) = k|λ} =

exp(−λt)(λt)k

k!
.

Thus the distribution of X(t) is

p
k
(t) =

∫ ∞

0

exp(−λt)(λt)k

k!
f(λ)dλ .
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For example, if λ has a gamma distribution, we can get that the distribution

of X(t) is a negative binomial distribution.

Weighted Poisson model which incorporates variability of risk has been

found useful in studies of accident proneness.

6.3.4. Compound Poisson process

A stochastic process {X(t), t ≥ 0} is called a compound Poisson process if

it is represented by

X(t) =

N(t)
∑

n=1

Y
n

,

where {N(t), t ≥ 0} is a Poisson process, {Y
n
, n = 1, 2, . . .} is a collection

of random variables with independent and identically distribution (i.i.d.),

and {N(t), t ≥ 0} and {Y
n
, n = 1, 2, . . .} are independent.

Example.2 Suppose that the insurants in a insurance company die at time

τ1, τ2, . . . , (0 < τ1 < τ2 < · · · ). Their deaths are Poisson events with rate λ.

The insurance is Y
n

when the death occurs at time τ
n
. Let X(t) denote the

total amount of insurance by time t. Then,

X(t) =

N(t)
∑

n=1

Y
n

,

where N(t) is the number of deaths by time t and it is a Poisson process

with rate λ. {X(t)} is a compound Poisson process.

6.4. Yule process

6.4.1. Yule process — λ
i
= iλ

The Yule process is a pure birth process with linear birth rate. Suppose

that all individuals alive at time t give birth to another individual with the

same rate λ and that individuals give birth independently of each other.

Let N(t) denote the total number of the population at time t. Then N(t)

is a Yule process.

The Yule process, starting from i individuals, has a negative binomial

distribution

p
ij

(t) =̂ P{N(t) = j|N(0) = i} =

(

j − 1

i− 1

)

exp(−λt)i(1− exp(−λt))j−i

.
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Yule18 used this process to study evolution. Let N(t) is the number of

animal or plant species in a certain genus at time t. Suppose that each

species would not be extinct when it come into being. In interval (t, t +

h), a new species is generated with probability λN(t)h. Suppose that the

new genera generated at time τ1, τ2, . . . , (0 < τ1 < τ2 < · · · ) with non-

homogeneous Poisson rate. The mean function of the Poisson process is

m(t) = N0e
at

,

where N0 and a are positive constant. Let X

(n)(T ) denote be the numbers of

genera in which n species are contained at the given time T . Then X

(n)(T )

can be represented by

X

(n)(T ) =

∞
∑

m=1

W

(n)

m

(T, τ
m

) ,

where

W

(n)

m

(T, τ
m

)

=

{

1 if the genus generated at time τ
m

contains n species at time T

0 else
.

We can get

E[W (n)(t, τ)] = p1,n
(t− τ) = exp(−λ(t− τ)){1− exp(−λ(t− τ))}n−1

,

and

E[X(n)(T )] ≈

∫

T

0

W

(n)(T, τ)dm(τ) .

When T is large enough,

E[X(n)(T )] ≈ c

∫

1

0

(1− y)n−1
y

a/λ

dy ,

where c is a constant independent of n. Therefore

E[X(1)(T )]
∑∞

n=1
E[X(n)(T )]

=

∫ 1

0
y

a/λ

dy

∫

1

0
y

a/λ−1
dy

=
1

1 + λ/a

.

Let M denote the total number of genera and M1 denote the number of

the genera in which only one species is contained. If M and M1 are large

enough, we can estimate λ/a from the equation

M1

M

=
1

1 + λ/a

.
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The estimator of λ/a is

λ

a

=
M −M1

M1

.

6.4.2. Non-homogeneous Yule process — λ
i
(t) = iλ(t)

Non-homogeneous Yule process {N(t)} is a time dependent Yule process.

Similarly, N(t) has probability distribution

p
ij

(t) =̂ P{N(t) = j|N(0) = i}

=

(

j − 1

i− 1

)

exp[−(−ρ(s))]i{1− exp[−(ρ(t)− ρ(s))]}j−i

,

where ρ(t) =
∫

t

0
λ(τ)dτ .

6.5. Pure death process

A birth–death process {N(t)} is said to be a pure death process if birth

rates λ
i

= 0 for all i. The pure death process is exactly analogous to the

pure birth process.

In the usual applications, N(t) is the number of individuals alive at

time t and time t is interpreted as age. Let µ(t) denote the intensity that

an individual alive at time t will die in the interval (t, t + ∆t). µ(t) is

known as force of mortality, intensity of risk of dying, or failure rate. When

N(t) = i, one death event occur in the interval (t, t + ∆t) with probability

iµ(t)∆t + o(∆t). As we can see, {N(t)} is a pure death process with death

rates iµ(t). And N(t) has binomial distribution

p
ni

(t) =̂ P{N(t) = i|N(0) = n}

=

(

n

i

)

exp

(

−

∫

t

0

µ(τ)dτ

)

i
(

1− exp

(

−

∫

t

0

µ(τ)dτ

))

n−i

i = 0, 1, . . . , n .

Suppose that i individuals are independent and have the same force of

mortality. Let T denote the individual’s survival time. The survival function

is defined by

S(t) =̂ P{T > t} = 1− F (t) ,
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where F (t) is distribution of T . It is easy to show

S(t) = exp

(

−

∫

t

0

µ(τ)dτ

)

,

f(t) = µ(t) exp

(

−

∫

t

0

µ(τ)dτ

)

,

µ(t) =
f(t)

S(t)
=

f(t)

f

+∞
t

f(s)ds

.

For example, when T has Weibull distribution

f(t) = µγt

γ−1 exp(−µt

γ−1) .

Then we can calculate

µ(t) = µγt

γ−1
,

and

S(t) = exp(−µt

γ−1) .

7. Counting Processes and Regression Models for

Survival Data

7.1. Life table

There are two kinds of life tables, current life table and cohort life table,

working for two different kinds of studies, cross-sectional study and follow-

up study. For current life table, Chiang12 proposed a method to calculate

the probability of death.

q
i
=

n
i
M

i

1 + (1− a
i
)n

i
M

i

,

where q
i
is age specific probability of death, the probability in (x

i
, x

i
+n

i
),

and M
i
is age specific death rate.

Based on stage processes, a new life table is constructed by Chiang.12

In this new table, probability of death is not only dependent on age, but

also dependent on stage of disease. The stage process is usually used to

describe the development of chronic diseases. Generally, chronic diseases

advance with time from mild through intermediate stages to death. The

process often is irreversible but a patient may die while being in any one of

stages. For example, evolution of cancer is always a stage process. There

are many staging phenomena in many other areas, birth order and child

spacing, engagement-marrige-divorce in demography, and so on.
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7.2. Counting process

A process {N(t), t ≥ 0} is called a counting process if N(t) represents the

total number of events that occurred in (0, t]. A counting process must be

a non-negative integer valued process. Let τ
i

denotes the time of the ith

event and it is said to be the arrival time of the ith event. τ1, τ2, . . . are

random variables and 0 < τ1 < τ2 < · · · . Let

T1 = τ1, T2 = τ2 − τ1, . . . , T
n

= τ
n
− τ

n−1, . . . .

{T
i
, i = 1, 2, . . .} is called the sequence of interarrival times.

A counting process is called a renewal process if the interarrival times

have independent and identically distribution. It is called Poisson process

if the distribution is exponential distribution.

Now consider k different kinds of events may occur. Let N
i
(t) de-

note the total number of the ith kind of events that occurred in (0, t).

N(t) = (N1(t), N2(t), . . . , Nk
(t)) is called multiple counting process with k

dimensions.

Let X1, X2, . . . , Xn
denote survival times of n individuals. They are

independent and have the same survival function S(t). Let

N(t) = #(i : X
i
≤ t) =

n

∑

i=1

I(X
i
≤ t) ,

where #(·) is a counting function and I(·) is a indicator function. Then

N(t) is the total number of death that occurs in (0, t] and {N(t), t ≥ 0} is

a counting process.

In survival analysis problems, compete data is not possible. We can

observe that (X̃
i
, D

i
), i = 1, 2, . . . , n, where D

i
is a censoring indicator.

Then

X
i
= X̃

i
, if D

i
= 1 ,

X
i
> X̃

i
, if D

i
= 0 .

Let

N(t) = #{i : X̃
i
≤ t, D

i
= 1} .

7.3. Kaplan Meier estimator

Kaplan–Meier estimator is a non-parametric estimator for survival function.

It is also called product-limit estimator:

̂

S(t) =
∏

s≤t

(

1−
∆N(s)

Y (s)

)

,
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where ∆N(s) = N(s)−N(s−), Y (s) = #{i : X̃
i
≥ t} is the number at risk

just before time t.

7.4. Cox regression

In above assumption, survival times of n individuals have identical distri-

bution. However, survival time usually depend on some covariates. If the

values of covariates are different for individuals, survival times of individuals

have different distribution. In other words, survival function depends on

the covariates. Regression model can be used here. When the distribution

is known as a certain distribution, for example, exponential distribution, a

parametric regression model can be used. However, the distribution usually

is unknown. Some semiparametric models are considered. Cox regression

model is a semiparametric model. In Cox regression model, the intensity of

hazard is

µ
i
(t, z) = µ0(t) exp(β′

Z
i
) ,

where Z
i
= (z

i1, zi2, . . . , zip
)′ is covariates vector, β is regression coefficient

vector and µ0(t) is an intensity of risk independent of individuals. This

model is also called proportional hazard model.

Because µ0(t) is unknown, the estimators of parameters are based on

partial likelihood function. Suppose that we observed d individuals, denoted

by (1), (2), . . ., (d), dead. Let X(i) denote the survive time of individual

(i). And X(1) < X(2) < · · · < X(d). Let R(i) = {j : X̃
j
≥ X(i)}, the number

at risk just before the time X(i). Then the partial likelihood function is

L =

d

∏

i=1

P

{

individual (i) die at time X(i)| one

individual in R(i) die at time X(i)

}

=

d

∏

i=1

exp(β′
Z(i))

∑

j∈R(i)

exp(β′
Z(j))

.

Then logarithm partial likelihood function is

ln L =
d

∑

i=1







β

′
Z(i) − ln





∑

j∈R(i)

exp(β′
Z(j))











.

Therefore, the maximal partial likelihood estimator of β can be calculated.

It is also called Cox estimator.

Cox estimator is consistent, i.e. the estimator→ β when the sample size

n→∞.
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Sometimes, the covariates are time-dependent. Some counting process

models with time-dependent covariates are given next.

7.5. Multiple renewal process model

A multiple renewal process with time-dependent covariates is used as a

model for acute respiratory infections (ARI) in the paper of Fang.13 Con-

sider a marked renewal process with g marks D1, . . . , Dg
corresponding g

classes of diseases.

Let µ
si

(t), s = 1, 2, . . . , g, i = 1, 2, . . . , n denote the intensity that

disease D
s

for individual i happens at time t. Let Z
i
(t) = (z′

i

(t), (t − t
ri

),

(t − t
ri

)2, . . . , (t − t
ri

)q)′. It contains a set of p time dependent covariates

z
i
(t) and quasi-covariates, (t − t

ri
), (t − t

ri
)2, . . . , (t − t

ri
)q , representing

the effect of time, where t
ri

is the latest renewal time of individual i before

time t. And let

µ
si

(t) = exp(C ′
s

Z
i
(t) + θ

s
) ,

where C
s

= (c
s1, cs2, . . . , cs,p+q

)′ is a p+q dimensional column vector and θ
s

are parameters related to the occurrence of D
s
and expected to be estimated

from the data.

For individual i, the records in the data include the beginning and the

end of observed time, t0i
and t

ei
, the occurrence times t1i

, t2i
, . . . , t

kii
, and

the corresponding states d1i
, d2i

, . . . , d
kii

, where k
i

is the number of tran-

sitions happening. The full log-likelihood function for n individuals can be

written as

ln L =

n

∑

i=1
ki 6=0

ki
∑

j=1

ln µ
dj i

(t
ji

)−

n

∑

i=1

∫

tei

t0i

[

g

∑

s=1

µ
si

(t)

]

dt .

As a especial case, if the parameter vectors C
s

are assumed to be equal to

C for all s = 1, 2, . . . , g, the parameters are fewer. To estimate the vector

C, a numerical method such as the Newton–Raphson algorithm is used.

The child survey data on ARI was analyzed. Eighteen covariates are

dealt with, of which nine are indices of health, seven are weather indices,

and the last two are (t− t
r
) which is length of time since the latest illness

(TEF), and (t− t
r
)2 which is square of TEF (TEF2), respectively, serving

to explore the effect of time. The nine indices of health include hemochrome

(HEM), history of tracheitis (HTR), rickets (RIC), age (AGE), history of

tuberculosis (HTB), dental caries (CAR), sex (SEX), ratio of height and

weight (RHW), family history of tracheitis (FHT). The seven indices of
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weather include low temperature for days (LTM), range of temperature

for days (RTM), relative humidity for days (RHU), difference of minimal

temperatures for two days (DLT), maximal wind velocity for days (MWV),

atmospheric pressure for days (ATP).

By means of the likelihood ratio test, we find that one index of health

HEM, three weather indices LTM, RTM, and RHU, and the effect of time,

TEF and TEF2 are significant on the risk of occurrence of disease D. The

estimates of parameter θ
s

corresponding to the six types of ARI are given as

−2.0759, −3.9243, −7.6897,−4.4043, −2.0402 and −6.4517. The regression

coeffients are 0.5115,−0.2971, 0.3055, 0.2176, 2.2937,−4.9689, respectively.

7.6. Markov counting process model

In the paper of Fang et al.,4 a Markov counting process with time-dependent

covariates is used as a model. Let N
ij

denote the numbers of transitions

i → j(i 6= j) that occur in (0, t]. Let µ
ijh

(t) denote the intensity that the

transition i→ j for individual h happens at time t. We assume

µ
ijh

(t, z) = µ
ij0(t) exp(β′

ij

Z
ijh

(t)) .

Then the partial likelihood function is

L =
∏

t

∏

i,j,h

(

exp(β′
ij

Z
ijh

(t))
∑

n

h=1
exp(β′

ij

Z
si

(t))Y
ih

(t)

)∆Nijh(t)

,

where N
ijh

(t) is the number of transitions i→ j(i 6= j) that occur in (0, t]

for the individual h, ∆N
ijh

(t) = N
si

(t) − N
si

(t−) and Y
ih

is indicator of

the individual h at risk, corresponding state i. i.e.

Y
ih

(t) =

{

1 if individual h at risk at time t, corresponding state i ,

0 else .

Using this model, Fang4 analyzed a set of 12-year and 6-run screening

data of cervical cancer in Jingan county, Jiangxi Province, China. The co-

variates are sex disorder, sex health, age, age-square and cervicitis. There

are four states and five covariates are dealt with. To obtain maximal par-

tial likelihood estimator of parameter vector β, Marquardt modification

algorithm was used. The estimators are solved as

β

′
01

= (0.13488
, −0.6567, 0.1088∗, −0.0012∗, 0.1838∗) ,

β

′
10 = (0.0450, −0.8642, 0.0542∗

, −0.0010∗, −0.0173) ,
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β

′
12 = (−0.2087, −0.7219, 0.0691∗

, −0.0008∗, 0.5787∗) ,

β

′
23 = (1.7469∗, 0.0000, 0.0544, 0.0014∗, 0.6952) ,

where ∗ means the covariate is significant.

7.7. General multiple counting process model

Andersen et al.10 proposed a statistical model based on multiple counting

process. Now consider k types of event. Let µ
si

(t, z) denote the occurrence

intensity of type s event for individual i with time-dependent covariate

vector z. We assume

µ
si

(t, z) = µ
s0(t, θ)f(β′

Z
si

(t)) , s = 1, 2, . . . , k ,

where Z
si

(t) = (z
si1(t), zsi2(t), . . . , zsip

(t))′ is covariate vector, β is a re-

gression coefficient vector and θ is a parameter.

The partial likelihood function is given as

L =
∏

t

∏

s,i

(

f(β′
Z

si
(t))

∑

n

i=1
f(β′

Z
si

(t))Y
si

(t)

)∆Nsi(t)

,

where N
si

(t) is the occurrence number of type s event by time t for the indi-

vidual i, ∆N
si

(t) = N
si

(t)−N
si

(t−), and Y
si

is indicator of the individual

i at risk, corresponding type s event.
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1. Introduction

In this chapter, I describe the development and applications of tree-based

methods. The thrust of these methods is the recursive partitioning tech-

nique that facilitates a process to divide an initially heterogeneous sample

of observations into smaller subgroups within each of which the outcome of

interest is relatively homogeneous.

The book by Breiman et al.2 on classification and regression trees

(CARTTM ) is the milestone of the tree-based methodology. It provides

much historical background and describes the methods and applications

systematically. The associated CART program has become a commercial

software. Since 1984, there has been a great deal of methodological deve-

lopments as well as applications of tree-based methods, particularly in the

area of survival trees. As in CART, the idea of recursive partitioning is still

the heart and soul of the more recently developed methods. Please refer to

Zhang and Singer28 for a detailed introduction to those methods.

The rest of this chapter is organized as follows. First, the basic in-

gredients in CART is introduced. Then, survival trees is described. Finally,

tree-based methods for analyzing multiple correlated responses is discussed.

2. The Basics of CART

One of the important and original applications of CART was to develop

expert systems that can assist physicians in diagnosing patients potentially

suffering heart attacks. Traditionally, the physicians made diagnoses in a

1033
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Fig. 1. A sample tree structure.

subjective, intuitive, idiosyncratic manner. A data-driven classification tree

would enable the physician to interpret a patient’s conditions by taking

advantage of the empirical information from a large number of patients

with similar conditions.20 Now, the applications of the tree-based methods

are far reaching.1,3,4,8,11,12,14,24,27

CART is arguably the most popular method among classification trees.

All of tree-based approaches have in common the successive partitioning

of a “feature space” of predictors into subsets. The partitioning is done

on the basis of a learning sample, and it is sometimes validated by a test

sample. Some of classification trees make use of a multi-level partition of

a non-terminal node (a sub-group of the learning sample that is subject

to a further division). However, only binary trees will be presented, i.e. a

non-terminal node has exactly two daughter nodes. It is noteworthy that a

tree that is constructed in a binary manner is not confined to be presented

in the same manner as illustrated in Fig. 1 of Zhang and Bracken27 for the

sake of an easier interpretation. In other words, a multi-level partition can

be derived in principle by repeated binary partitions on the same variable.

Suppose that we have collected p covariates x and a response y from n

subjects. For the ith subject, the measurements are

x
i
= (x

i1, . . . , xip
)′ and y

i
, i = 1, . . . , n .

The objective is to model the probability distribution of P (y|x) or some-

times a function of this probability. The covariates x can be an array of

mixed categorical (nominal or ordinal) and continuous variables, and they

may have missing values for some subjects. In this section, we consider a

single response y of either a categorical or continuous form. Later sections

will deal with censored response or multiple responses. The characteristics

of y mandate the choice of methodology.
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Let us begin with an arbitrary tree as depicted in Fig. 1. This tree has

four layers of nodes. In general, the number of layers varies from case to case.

At the top is the unique root node. Including the root node, there are three

non-terminal, or internal nodes. They are represented by the circles and

labeled as 1, 3, and 5. The tree has four terminal nodes, represented by boxes

and labeled as 2, 4, 6, and 7. The root and the internal nodes are connected

to two nodes in the next layer that are called left and right daughter nodes,

whereas the terminal nodes do not have “offspring.” Moreover, the tree is

not necessarily symmetric in that one of the two daughter nodes can be an

internal node and the other a terminal one; for instance, nodes 2 and 3 are

both the daughter nodes of node 1, and node 2 is terminal whereas node 3

is internal. The connection from a parent node to the two daughter nodes

is determined by a splitting rule that I will elaborate in detail shortly.

Although the details and the implementation are complex, the nutshell

of tree construction is really a few key questions: (a) How are the nodes de-

termined from the data? (b) How do we split a node? (c) When does a node

become terminal? I divide the answers to these questions in two steps: tree

growing and tree pruning. After a tree is constructed, we need to interpret

the tree structure and make statistical inferences to reveal the relationships

among the predictors and the response. This issue is important and may

determine the final tree, but it belongs to the use and interpretation of trees

and does not have a clear-cut answer.

2.1. Tree growing through node splitting

Node is the most basic element of a tree. A node is simply a collection

of observations. For example, the root node contains the learning sample,

namely, all of the observations that are used during a tree construction. All

nodes except the root node are subsets of the learning sample. When an

internal node is divided into its daughter nodes, it means that a subset of

the sample is further divided into sub-groups. Because the node division is

exclusive, the terminal nodes are disjoint subgroups of the learning sample

and the union of all terminal nodes is the root node.

The tree growing procedure begins with the split of the root node into

its two daughter nodes. Once this is done, the resulting two daughters can

be split recursively in the same way. This is why the procedure is called

recursive partitioning. Obviously, the fundamental step is to partition one

parent node (e.g. the root node) to the two daughter nodes. How do we split

a node? The division of the root node is carried out through a predictor.
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The purpose of splitting is to generate two daughter nodes within which the

distributions of the response are more homogeneous than that in the parent

node. Every predictor in x competes against another to achieve a combined

maximum homogeneities in the two daughters. If x
j

is an ordered covariate

such as age, two subgroups result from the question of the form “Is x
j

> c?”

Here the cutoff point c is in the range of the observed values of x
j
. The ith

subject goes to the right or left node according to whether or not x
ij

> c.

The number of such distinct questions that can be asked upon an ordered

covariate is one fewer than the number of the distinctly observed value of

x
j
. On the other hand, if x

j
is nominal such as nationality, we can send a

subject to the left or right node by asking questions such as “is the subject

an Asian?” and “is the subject a Hispanic or an African?” If x
j

has k levels,

we can ask 2k−1 − 1 meaningfully different questions, considering that the

designation of left and right daughter nodes is arbitrary. For example, if x
j

has four levels, A, B, C, and D, we can make seven distinct cut as follows:

{A}, {B}, {C}, {D}, {A, B}, {A, C}, and {A, D}. We do not list {B, C} and

others, because its compliment {A, D} is listed and asking “x
ij
∈ {B, C}?”

or “x
ij
∈ {A, D}?” has the same effect. Considering p covariates and the

number of possible cutoff points from each of them, we see that there are

usually many possibilities to split a parent node into two daughter nodes.

Therefore, we need a criterion to decide which split is preferable over the

rest. This leads to the concept of impurity.

Let us use age as a predictor and cancer status as the response to explain

how to evaluate the splits for a node (t) based on this age predictor. Suppose

that we consider an age cutoff at c, e.g. 35. As a result of the question “Is

x
j

(age) > c (35)?”, we have the following table:

Normal Cancer

Left Node (t
L
) x

j
≤ c n11 n12 n1·

Right Node (t
R
) x

j
> c n21 n22 n2·

n·1 n·2

What do we like to see? As stated earlier, we want a split such that

the distributions of y in the daughter nodes are homogeneous. In other

words, we would like to push as many observations as possible either along

the diagonal n11, n22 or along the off-diagonal n12, n21. A perfect example

is n11 = n22 = 0. In this case, the two nodes are pure (or completely

homogeneous) because each of them contains either the cancer patients

only or the normal subjects only. In contrast, their parent node includes
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a mixture of n21 normal subjects and n12 cancer patients. Thus, the two

daughter nodes are “more desirable” than their parent node. However, in

most applications, whether the daughter nodes are more desirable than their

parent node is not so clear cut and it generally requires a mathematical

criterion to make the comparison.

One commonly used measure of node impurity for a categorical response

is defined through the entropy function as follows:

i(t
L
) = −

n11

n1·

log

(

n11

n1·

)

−
n12

n1·

log

(

n12

n1·

)

. (1)

Likewise, i(t
R
) and i(t) can be defined. Then, we select a split that mini-

mizes the weighted node impurity:

n·1

n

i(t
L
) +

n·2

n

i(t
R
) , (2)

which can be regarded as the node splitting criterion.

For the later discussions, it is useful to note that −i(t
L
) is simply the

maximum log likelihood of y by assuming that it follows a binomial dis-

tribution in node t
L
. Minimizing criterion (2) amounts to maximizing the

likelihood or homogeneity in this case.

When y is a continuous response, a node is pure when the responses

within the node equal to the same constant. However, when the within-

node responses are not constant, commonly used node impurity measures

are the within-node variance and the absolute distance toward the median.

So far, I have described the splitting procedure based on completely

observed ages from all subjects. In the presence of missing ages for some

subjects, two strategies are available to deal with the splitting. One makes

use of surrogate splits. The idea is this. If we cannot use age to decide how to

send a subject to the left or right daughter node due to missing information,

we try to find a split based on another predictor that hopefully resembles

the age split sufficiently. The other strategy is much easier. We simply create

another level for missing values. Then, all subjects with missing information

will be sent to the same daughter node.

2.2. Tree pruning by determining terminal nodes

Applying the node splitting procedure described above to the root node,

then to the resulting daughter nodes, and so on, we usually end up with

a tree of excessive nodes. We do not need to worry about when to stop

the recursive partitioning process because it stops by itself when further

splitting is not possible or meaningless. In an extreme case, for example,
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we cannot split a node with one observation. And, the number of study

subjects is always finite. What we need to be concerned with is how to deal

with a tree of excessive size. In usual practice, such a tree is too large to be

useful and trustworthy. This is why we need the tree pruning step to trim

off some over-fitting nodes. Let us pretend that the tree in Fig. 1 is large

and subject to pruning. We need to address the question: “can we prune

away some of the nodes?” If we have a general answer for this question,

then we can prune any tree.

Tree pruning starts at the bottom of a tree, and the pruned tree is a

subtree of the original one. Thus, pruning the tree in Fig. 1 is equivalent to

selecting one of its subtrees. The latter requires a measure of tree quality,

reflecting our objective of extracting homogeneous subgroups of the study

sample. Whether we construct trees for classification or prediction purpose,

we make our decision based on the distributions of the response in the

terminal nodes. All internal nodes play an intermediate role ultimately to

lead to relatively homogeneous terminal nodes. Therefore, the quality of a

tree depends on the quality of its terminal nodes. Let Q(T ) denote a certain

quality measure of tree T, and we have

Q(T ) =
∑

t∈T̃

p(t)q(t) , (3)

where T̃ is the set of terminal nodes of tree T, q(t) summarizes the quality

of node t, and p(t) is the proportion of subjects falling into node t.

For binary outcomes, q(t) is usually replaced with the within-node mis-

classification cost r(t), and Q(T ) with a tree misclassification cost R(T ). In

other words, a tree is assessed by

R(T ) =
∑

t∈T̃

p(t)r(t) .

There are two types of misclassifications, each of which is associated with

a certain misclassification cost. The misclassification cost should reflect the

severity of the error, for instance, when a cancer patient is classified to be

cancer free or vice versa. Let C(i|j) be the misclassification cost that a

class j patient is classified as a class i patient. Here, there are two classes of

subjects: 0 for normal and 1 for cancer patients. For medical reasons, it is

natural to choose C(0|1) > C(1|0) because the consequence is potentially

more severe when a patient with disease is wrongly diagnosed than when a

normal person is classified to have the disease. Without loss of generality, we

can set C(1|0) = 1 as the cost unit and let C(0|1) = c, which means that the
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a false positive diagnosis costs as many as c false negative ones. In addition,

there is no cost when the classification is correct, namely, C(i|i) = 0. Unless

a node is pure, we makes mistakes one way or another. The within-node

misclassification cost is the minimum of the two possible misclassification

costs.

Although defining the measure in Eq. (3) is easy, using it is not as

straightforward unless there is an independent set of sample–the so-called

test sample. When a test sample is available, we can estimate p(t) and

r(t) from it, leading to an estimate of R(T ). Then, we can select a subtree

that has the lowest estimated cost R̂(T ). However, in many applications,

such a second sample is not feasible or is too costly. Sample re-use methods

are used as an alternative. For these methods, the size of a tree is an-

other important aspect, indicating the tree complexity. Note that the total

number of nodes in a tree, T, is 2|T̃ | − 1, where |T̃ | is the number of the

terminal nodes of T. Hence, the complexity of T can be defined directly as

|T̃ |. Usually, a unit penalty, called a complexity parameter, is assigned to

each terminal node, and the sum of these penalties becomes the penalty

for the tree complexity. Therefore, the final quality measure of a tree is the

following cost-complexity:

R
α
(T ) = R(T ) + α|T̃ | , (4)

where α(> 0) is the complexity parameter.

For a given complexity parameter and an initial tree such as the one in

Fig. 1, there is a unique smallest subtree of the initial tree that minimizes

the cost-complexity measure Eq. (4). Importantly, if α1 > α2 the optimally

pruned subtree corresponding to α1 turns out to be a subtree of the one

corresponding to α2. So, as we increase the complexity parameter, we have

a sequence of nested optimally pruned subtrees. The fact that the succes-

sive optimally pruned subtrees are nested can entail important savings in

computation.2 This nested sequence of subtrees has a finite length, because

the number of subtrees is finite, and the last one is the root node. On

the other hand, the complexity parameter takes a continuous value, which

implies that an interval of the complexity parameter must correspond to the

same subtree. Let T0 be the initial tree. To prune off some nodes from T0,

we need to find the smallest α, denote by α1, to allow some of the terminal

nodes to be removed such that R
α1

(T1) for the pruned T1 is better than

R
α1

(T0) of the initial tree. It turns out

α1 = min
t∈T̃0

r(t)p(t) −R(T (t))

|T̃ (t)| − 1
,
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where T (t) represents a tree rooted at node t. Likewise, we proceed to find

the next smallest α, denoted by α2, to allow some of the terminal nodes

to be removed from T1 such that R
α2

(T2) for the pruned T2 is better than

R
α2

(T1). As we continue this process until we reach the tree with the single

root node, we end up with a sequence of increasing complexity parameters

{α
i
}m0 (here α0 = 0) and a sequence of nested and shrinking subtrees {T

i
}m0

(here T
m

is the single root node tree).

The next step is to select a subtree from the nested sequence, and a

cross-validation procedure is usually recommended. For example, we can

randomly divide the study sample into several, say 5, sub-samples of about

the same size. We use 4 of the 5 sub-samples to grow a large tree and

prune it using the sequence {α
i
}m
0

that leads to a new sequence of subtrees.

Then, we compute R(T ) for each of those subtrees based on the left-over

subsample, giving us one set of estimates for {R(T
i
)}m

0
. We can do this

5 times and the average will be the final estimates for {R(T
i
)}m

0
. With this

sequence of estimates, we can select the subtree with the smallest or near

the smallest R̂(T ). Please refer to Breiman et al.2 and Zhang and Singer28

for details. Once the subtree is selected, the pruning step is accomplished.

3. Survival Trees

Although CART is a well-known brand name, the most frequently used

tree-based method in biomedical research is survival trees, partly because

survival analysis per se is a major topic in the health sciences. In this

section, how to adapt the ideas expressed above for censored survival data

will be explained. We face the same basic issues. One is to define a splitting

criterion to divide a node into two, and the other is to choose a “right-sized”

tree for subsequent use. Many criteria have been proposed in the literature,

but they differ primarily in the way of declaring which daughter nodes are

desirable. A few major ideas have emerged. First, as in CART, we can split

a node to achieve better impurities in its daughter nodes. The concept of

impurity is very intuitive in CART; however, for survival trees, we have to

decide what we mean by node impurity. The second idea is to maximize

the distributional difference between the two daughter nodes. In classical

ANOVA, reducing within-group variances increases the between-group vari-

ances. But, for survival trees, it is not clear that reducing node impu-

rity increases the distributional difference between the two daughter nodes.

Finally, as hinted earlier, there is a connection between node impurity and
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maximum likelihood in CART. Although this connection may not hold in

survival trees, we can nonetheless base our splitting decision on likelihood.

In the following, the focus will be on presenting the approaches that have

been implemented in the author’s STREE program. Also see Zhang and

Singer28 and Zhang et al.25

3.1. Use of the difference

I begin the introduction of splitting rules with the use of Wasserstein

metrics to measure the between-nodes distributional difference as proposed

by Gordon and Olshen.13 The within-node survival distribution is estimated

by the Kaplan–Meier curve.17 A desirable split can be characterized as one

that results in two very different survival functions in the daughter nodes.

Gordon and Olshen13 used the so-called L

p Wasserstein metrics, d
p
(· , ·), as

the measure of discrepancy between the two survival functions. Specifically,

for p = 1, the Wasserstein distance, d1(SL
, S

R
), between two Kaplan–Meier

curves, S
L

and S
R
, is the area sandwiched by the two Kaplan–Meier curves.

Suppose that S
L

and S
R

are respectively the Kaplan–Meier curves for the

left and right daughter nodes. We choose the split that maximizes the dis-

tance, d1(SL
, S

R
). As before, we employ the recursive partitioning process

to produce an initially large tree that will be pruned later.

A standard approach for comparing the survival times of two groups

is the log-rank test. Thus, it is no surprise in the literature that the log-

rank test is also used to separate the left and right daughter nodes. Indeed,

Ciampi et al.6 and Segal18 adopted the log-rank test statistic as the splitting

criterion.

3.2. Use of likelihood functions

One very flexible way of forming a splitting criterion is to use likelihood

functions. Not only is this true for survival trees, but it is also the case for

analyzing more complex responses. This approach is useful and convenient

because we can assume a simple within-node distribution when we assess a

split or node. In fact, a few likelihood based splitting and pruning criteria

have been proposed. Davis and Anderson9 assume that the survival function

within any given node is an exponential function with a constant hazard.

LeBlanc and Crowley15 and Ciampi et al.7 assume the proportional hazard

models in two daughter nodes, but the hazard functions are unknown, but

they respectively used the full and partial likelihoods for maximization.
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3.3. Use of impurity

Note that we observe a binary death indicator and the (failure or censored)

time. If we take these two outcomes separately for the moment, we can

compute the within-node impurity, i
δ
, of the death indicator and the

within-node variation, i
y
, of the time toward the median. By considering

both of them together, we have the within-node impurity for both the death

indicator and the time using a weighted combination, w
δ
i
δ
+w

y
i
y
. Zhang21

examined a similar approach and recommended some choices of weights w
δ

and w
y
. Even though this approach does not fully incorporate the relation-

ship between the censoring and observed time variables, existing evidence

suggests that this simple extension outperforms the more sophisticated ones

in discovering the underlying structures of data.

3.4. Pruning survival trees

I explained various ways of growing a survival tree. There is also a variety

of options to prune a survival tree. We need the same recipes as before: a

quality measure and a cost-complexity of a tree. They enable us to use the

cross validation procedure again to finish the pruning step.

Gordon and Olshen13 suggested using the deviation of survival times

toward their median as a measure of node quality q(t) for a node t and

model (4) as the cost-complexity where R(T ) is taken as Q(T ).

In addition, a variety of tree cost-complexities has also been proposed

by using the likelihood ratio statistic that compares the survival times in

a parent node with those in its daughter nodes. A related method due to

Therneau et al.19 makes use of what are termed martingale residuals from

the Cox model as the input to a cost-complexity scheme using least squares

as the cost.

LeBlanc and Crowley16 introduced the notion of “goodness-of-split”

complexity as a substitute for cost-complexity in pruning the tree. Now, let

q(t) be the value of the log-rank test at node t. Then the split-complexity

measure is

Q(T ) =
∑

t∈T̃

q(t)− α(|T̃ | − 1) ,

where the summation above is over the set of internal (non-terminal) nodes

rather than the terminal nodes as in Eq. (4). The negative sign in front of

the complexity part is a reflection of the fact that Q is to be maximized

here, whereas the cost-complexity R is minimized there. In CART, cross
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validation is used to determine an optimal complexity parameter value,

while here LeBlanc and Crowley16 recommend choosing α between 2 and

4. I refer to their work for the justification of this choice.

Although the tree pruning procedures as described above are statisti-

cally elegant, they are rather sophisticated for researchers outside of the

statistical society to comprehend. Even within the statistical community,

we do not necessarily agree upon the correct use of these procedures. Thus,

a practical and intuitive approach is appealing. Segal18 recommended the

following alternative for pruning survival trees. For each internal node

(including the root node) of an initial tree, we assign it a value that equals

the maximum of the log-rank statistics over all splits starting from the

internal node of interest. Then, plot the values for all internal nodes in an

increasing order and decide a threshold from the graph. If an internal node

corresponds to a smaller value than the threshold, we prune all of its off-

spring. Although this usually works out fine, the choice of threshold could

be arbitrary. In the author’s RTEE program, pruning a tree (not necessarily

a survival tree) at a different significance level is chosen. Analyzing genetic

data, Zhang and Bonney23 demonstrated how to decide a final tree based

on both the scientific implication and computer output.

It is clear that there are plenty of choices to construct survival trees,

which is good and bad. More choices give the data analysts the opportunity

to select the ones that make a better scientific sense. Sometimes, however,

too many choices can also lead the data analysts to wonder what to do.

The state of the art is still to construct survival trees using a number of

approaches and discuss them with experts to come up one or more trees

that are as simple, informative, and interpretable as possible.

4. Classification Trees for Multiple Binary Responses

In this section, I introduce a tree-based approach for analyzing multiple

correlated binary outcomes. Such outcomes are sometimes referred to as

clustered outcomes. Correlated discrete responses can be generated from a

single endpoint by repeatedly measuring it on individuals in a temporal or

spatial domain. They are called longitudinal discrete responses. The corre-

lated responses may also consist of distinct endpoints, which are actually

the focus of this section.

Suppose that Y
i

= (Y
i1, . . . , Yiqi

)′ is a vector of binary responses for

subject i, i = 1, . . . , n. The index length q
i

may vary from individual to

individual. This is particularly useful when some responses are missing for
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some individuals. Multiple correlated outcomes arise from many applica-

tions. For example, (Y1, Y2) may indicate the blindness of the left and right

eyes or cancer status for a sib pair.

We have seen in both classification and survival trees that some of the

simple parametric distributions form the foundations for tree constructions.

For multiple correlated responses, the following distribution from an expo-

nential family is proven useful:

P{Y
i
= y

i
} = exp

[

qi
∑

j=1

θ
ij

y
ij

+
∑

j1<j2

θ
ij1j2

y
ij1

y
ij2

+ · · ·+ θ
i1···qi

y
i1 · · · yiqi

+ A
i
(θ

i
)

]

, (5)

where

θ
i
= (θ

i1, . . . , θiqi
, θ

i12 · · · θi,qi−1,qi
, . . . , θ1···qi

)

is the (2qi−1 − 1)-vector of canonical parameters and exp[A
i
(θ

i
)] is the

normalizing constant. The above model is commonly referred to as log-

linear model.

In lieu of extensive search of node splitting, it is important that the

distribution used to form the splitting criterion is as simple as possible. Even

in more traditional, parametric data analyses, a much simplified version of

model (5) is generally used by setting the canonical parameters with respect

to the terms with the third- or higher-orders to zero.10,29 Thus, Zhang22

considered the following quadratic exponential model:

P{Y = y} = exp





q

∑

j=1

θ
j
y

j
+

∑

j<k

θ
jk

y
j
y

k
+ A(Ψ, θ)





, (6)

where

Ψ = (θ1, . . . , θq
)′ , θ = (θ12 · · · θq−1,q

) .

He defined the generalized entropy criterion of node t as the maximum of

the log-likelihood derived from this distribution, which equals

h(t) =
∑

{subject i∈t}

(Ψ̂′y
i
+ θ̂w

i
−A(Ψ̂, θ̂)) , (7)

where Ψ̂ and θ̂ are the maximum likelihood estimates of Ψ and θ, respec-

tively. Then, he chose a split to maximize h(t
L
) + h(t

R
).
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Node 1

Node 2

Node 4 Node 5 Node 6

Node 3

Node 7

Node 8 Node 9 Node 11
Node 12 Node 13

Node 15

Was air often too stuffy?
Yes

Was air sometimes
too dusty?

YesNo

Was there often

too much air movement?

Yes Are you
allergic to dust?

YesNo

Node 10

6800

3833 2967

Was your
chair comfortable?

2291 1542 1620

What was the 
 type of your job?

1347

2071
220

Was your area
never too dry?

Node 14
793 1278

828

Node 16 Node 17
136692

1071
714

549

experience a glare?
Did you often YesNo*

*

No*

*

No*

Yes No*

Others Managerial,
Technical

No*Yes

#14 #15 #9 #16 #17 #11 #12 #13 #7

Terminal Node Cluster of symptoms

node No. Size CNS UA Pain Flu Eyes LA

7 1347 377 637 642 340 114 143

9 220 18 42 35 28 3 48

11 714 72 106 139 79 10 57

12 1071 206 267 333 152 27 35

13 549 103 194 214 120 27 71

14 793 36 41 45 26 2 16

15 1278 113 166 197 101 22 43

16 692 103 238 182 103 22 64

17 136 39 60 73 44 7 19

Fig. 2. Tree Structure for the Risk of Symptoms.22 Inside each node (© or a �) are
the node number and the number of subjects. The splitting question is given under the
node. The asterisks indicate where the subjects with missing information are assigned.
The nine diagrams under the tree show the incidence rates of the six clusters (CNS,

upper airway, pain, flu-like, eyes, and lower airway) in the nine terminal nodes. The top
and bottom lines in each diagram define the unit of 1.
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To determine the terminal nodes, Zhang22 defined the tree quality

measure as:

R(T ) = −
∑

t∈T̃

h(t) . (8)

To illustrate the use of this classification tree approach, Zhang22

analyzed a subset of the data from a 1989 survey of 6,800 employees of

the Library of Congress and the headquarters of the Environmental Pro-

tection Agency in the United States. The response variables are six cluster

indicators for building-related occupant complaint syndrome, which is a

nonspecific set of related symptoms of discomfort reported by occupants of

buildings. The six clusters are: central nerve system, upper airway, pain,

flu-like, eyes, and lower airway. Zhang22 considered 22 predictors including

those used in Fig. 2 as the risk factors. Please refer to Zhang22 for more

details.

Figure 2 reveals that terminal nodes 7 and 17 have the highest incidences

of symptoms. The table below the figure gives the number of symptoms

reported in each terminal node and for each cluster. The respondents in

terminal nodes 7 and 17 experienced more problems in nearly all clusters

than others. The figure shows that it is because the air quality in their

working area was poor, namely, often too stuffy or sometimes dusty. On

the other hand, respondents in terminal node 14 had the least discomfort

because they had the best air quality.

The subjects in terminal nodes 16 and 17 were allergic to dust whereas

those in terminal node 11 were not. Due to this personal difference, many

more symptoms in the central nervous system, upper airway, pain, and

flu-like were reported among the allergic subgroups than among the non-

allergic ones. Overall, the incidence rate of the eye symptoms is very low,

and it appears to be mostly related to air stuffiness as shown in Fig. 2. In

fact, this figure reveals a lot more information about the symptom incidents

than what is mentioned here. Please refer to Zhang22 for a detailed analysis.

5. Final Remarks

The tree-based methods have become increasingly popular in medical

research.1,3–5,8,14,26,27 In addition, they have proven to be very useful in

machine learning, marketing, finance, etc. The tree-based methods may

become one of the standard analytic choices, but they likely complement

rather than replace the classic statistical methods such as logistic regres-

sion models and Cox proportional hazard models. The tree-based methods
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enable us to produce intuitive and interpretable tree structures without

making restrictive parametric assumptions as in the classic models. For the

same reason, however, it is more difficult to make statistical inference based

on tree structures.
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CHAPTER 28

MAXIMUM LIKELIHOOD ESTIMATION FROM

INCOMPLETE DATA VIA EM-TYPE

ALGORITHMS

CHUANHAI LIU

Rm 2C-262, Bell Laboratories, Lucent Technologies,

700 Mountain Av., Murray Hill, NJ 07974-0636

Tel: (908) 582-3986; liu@research.bell-labs.com

This article reviews EM-type algorithms, including the Expectation-

Maximization (EM), Expectation-Conditional-Maximization (ECM),

Expectation-Conditional-Maximization-Either (ECME), and Parameter-

Expanded-Expectation-Maximization (PX-EM) algorithms, which are

popular tools for modal estimation from incomplete data. These algo-

rithms are presented along with maximum likelihood estimation of the

t-distribution, which has played an important role in the development

of EM-type algorithms and robust estimation. Existing algorithms are

reviewed and new algorithms are proposed for maximum likelihood es-

timation of the general linear mixed-effects models, which has become a

popular tool for analyzing repeated measures and longitudinal data in

many fields such as biology and medicine.

1. Introduction

Incomplete data are pervasive in scientific investigations for many reasons.

Unexpected interruptions of scheduled experiments create fully missing

values; limitations of measurement methods when values are below de-

tection limits produce censored values; and the use of latent variables in

modeling data with complex structures introduces unobservable values.

Missing data make it difficult to analyze incomplete data using

complete-data methods. Numerous statistical methods have been deve-

loped in the last twenty five years for dealing with missing data problems.

Rubin33–35 and Little and Rubin10 provided fundamental principles in

analyzing incomplete data. Dempster, Laird, and Rubin1 formulized the

Expectation-Maximization (EM) algorithm for maximum likelihood esti-

mation from incomplete data. The simplicity and stability of EM may well

1051
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explain both the unprecedented explosion of applications of EM in last two

decades26 and the comprehensive expansion and extension of EM in last

decade.29

The EM algorithm has been applied to fitting a wide range of

statistical models, including multivariate normal distributions with in-

complete data;1,10,15 factor analysis;1,20,21,37 general linear mixed-effects

models;1,5,6,21,29 loglinear models and general location models;1,20 Poisson

imaging models and their extensions;7,16,39 mixture models;1,22,41 and (mul-

tivariate) t-distributions.8,12,17,19,21,29,36 While not all inclusive, these ref-

erences are useful starting points for understanding the power of the EM

algorithm.

The expansions and extensions of EM in last decade include the ECM

algorithm,28 the ECME algorithm,18 the AECM algorithm,29 and the PX-

EM algorithm.21 The Data-Augmentation (DA) algorithm40 and its exten-

sions, such as the Gibbs sampler,3 can also be viewed as stochastic versions

of EM-type algorithms. These are useful for fitting Bayesian models.

The rest of the article is arranged as follows. Section 2 discusses the

t-distribution, which is used throughout to explain the EM, ECM, ECME,

ACEM, and PX-EM algorithms. Section 3 reviews EM-type algorithms and

illustrates their application with the t-distribution. Section 4 considers the

general linear mixed effects models. Existing algorithms are reviewed. New

algorithms are proposed. Finally, Sec. 5 concludes with a brief discussion.

2. A Gamma-Normal Hierarchical Model and

the t Distribution

The t-distribution is a useful model for data analysis, especially for robust

estimation.8,11,17,36 The development of likelihood-based methods for esti-

mation of the multivariate t distribution has also stimulated many methods

that more efficient, such as the ECME algorithm of Liu and Rubin,18 the

efficient data augmentation algorithm of Meng and van Dyk,29 and the

PX-EM algorithm of Liu, Rubin, and Wu.21 This section describes a sim-

ple model with the univariate t-distribution, which can be obtained from a

Gamma-normal hierarchical model.

2.1. A Gamma-normal hierarchical model

Suppose that (i) the random variable τ follows the χ

2

ν

-distribution, or more

generally, the Gamma distribution

τ ∼ Ĝ(ν/2, ν/2) ; (1)
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with ν(ν > 0) number of degrees of freedom and density function

h(τ |ν) =
1

Γ(ν/2)

(

ν

2

)

ν/2

τ

ν/2−1 exp
{

−
ντ

2

}

, τ ∈ (0,∞) ,

where Γ(.) denotes the Gamma function. Also suppose that (ii), given τ ,

the conditional distribution of z follows the normal distribution with mean

µ and variance σ

2
/τ ; that is,

y|(τ, µ, σ

2
, ν) ∼ N(µ, σ

2
/τ) .

It follows that the joint distribution of (τ, y) has the density function

f(τ, y|µ, σ

2
, ν) =

1

Γ(ν/2)

(

ν

2

)

ν/2

τ

ν/2−1 exp
{

−
ντ

2

}

×
1

(2πσ

2
/τ)1/2

exp

{

−
τ(y − µ)2

σ

2

}

.

Maximum likelihood estimation of the parameters µ and σ in the joint

distribution of (τ, y) with known ν from a sample of n observations X =

{(τ
i
, y

i
) : i = 1, . . . , n} is straightforward. The loglikelihood function of the

parameter (µ, σ

2), ignoring constants, is

`(µ, σ

2) = −
n

2
ln(σ2)−

1

2σ

2

n

∑

i=1

τ
i
y

2

i

+
µ

σ

2

n

∑

i=1

τ
i
y

i
−

µ

2

2σ

2

n

∑

i=1

τ
i
.

Thus, the joint distribution of X belongs to the exponential family. The

loglikelihood is linear in the sufficient statistics

S
τy

=

n

∑

i=1

τ
i
y

i
, S

τy

2 =

n

∑

i=1

τ
i
y

2

i

, and S
τ

=

n

∑

i=1

τ
i

(2)

for the unknown parameter (µ, σ

2). The maximum likelihood estimate

(µ̂, σ̂

2) of (µ, σ

2) can be written, in terms of the sufficient statistics as

follows,

µ̂ =
S

τy

S
τ

and σ̂

2 =
1

n

[

S
τy

2 −
S

2

τy

S
τ

]

. (3)

The solution is known as weighted least squares.

2.2. The t-distribution

Suppose that τ1, . . . , and τ
n

in the sample X are missing, and thereby the

observed data Y consist of y1, . . . , and y
n
, that is, Y = {y

i
: i = 1, . . . , n}.
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The marginal distribution of y is t(µ, σ

2
, ν), which has the density function

g(y|µ, σ

2
, ν) =

∫ ∞

0

f(τ, y|µ, σ

2
, ν)dτ

=

∫ ∞

0

1

Γ(ν/2)

(

ν

2

)

ν/2

τ

ν/2−1

× exp
{

−
ντ

2

} 1

(2πσ

2)1/2
exp

{

−
τ(y − µ)2

σ

2

}

dτ

=
Γ((ν + 1)/2)

Γ(ν/2)(νπσ

2)1/2

[

1 +
(y − µ)2

νσ

2

]−(ν+1)/2

,

y ∈ (−∞,∞) , (4)

where µ and σ are the center and scale parameters, respectively, and ν is

the number of degrees of freedom. Thus, with known degrees of freedom ν,

the loglikelihood function of the parameter (µ, σ

2), ignoring constants, can

be written as

L(µ, σ

2) = −
n

2
ln(σ2)−

ν + 1

2
ln[1 + (y

i
− µ)2/(νσ

2)] .

It is difficult to find the maximum likelihood estimate of (µ, σ

2), (µ̂, σ̂

2)

that maximizes L(µ, σ

2) over (µ, σ

2). Making use of the complete data X ,

the EM algorithm provides an iterative procedure to find the maximum

likelihood estimates of µ and σ

2.

3. The EM Algorithm and its Extensions

3.1. The EM algorithm

Let X be the complete-data with the density f(X |θ) and the sample space

X , where the parameter θ lies in the parameter space Θ ⊂ R

d, the d-

dimensional Euclidean space; and let Y be the observed incomplete-data,

which is obtained by a many-to-one mapping Y = Y (X) from X to Y , the

sample space of Y . Also let g(Y |θ) denote the density of Y . Then

g(Y |θ) =

∫

X (Y )

f(X |θ)dX ,

where X (Y ) = {X : X ∈ X , Y (X) = Y }. The objective is to find the

maximum likelihood estimate θ̂ of θ, which maximizes the loglikelihood

L(θ) ≡ ln[g(Y |θ)] .
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Denote by k(X |Y, θ) the conditional density of X given Y. Then

f(X |θ) = g(Y |θ) · k(X |Y, θ) .

For any θ

′ ∈ Θ, the loglikelihood can be written as

L(θ) = Q(θ|θ′)−H(θ|θ′) ,

where

Q(θ|θ′) = E{ln f(X |θ)|Y, θ

′}

=

∫

X (Y )

ln[f(X |θ)]k(X |Y, θ

′)dX

is the expected complete-data loglikelihood, and

H(θ|θ′) = E{ln k(X |Y, θ)|Y, θ

′}

=

∫

X (Y )

ln[k(X |Y, θ)]k(X |Y, θ

′)dX

is the expected missing-data loglikelihood.

The EM algorithm maximizes L(θ) by iteratively maximizing Q(θ|θ′)

over θ with θ

′ replaced with the current estimate of θ. More precisely,

starting with θ

(0) ∈ Θ, the tth (t ≥ 1) iteration of the EM algorithm

consists of two steps: An Expectation (E) step and a Maximization (M)

step.

3.1.1. The EM algorithm

E step: Compute the expected complete-data loglikelihood Q(θ|θ(t−1)).

M step: Find θ

(t) that maximizes Q(θ|θ(t−1)) over θ ∈ Θ.

Dempster et al.1 showed that (i) each iteration of EM increases L(θ),

which implies that EM is stable, and (ii) if EM converges to θ

∗, then θ

∗ is

a (local) maximum of L(θ) (see Wu (1983) for more discussion).

When the complete-data model for X belongs to the exponential family,

the complete-data loglikelihood of the parameter θ is linear in a set of suffi-

cient statistics T (X) for θ. Denote by θ̂(T (X)) the complete-data maximum

likelihood estimate of θ. Then the EM algorithm can be written as follows:

3.1.2. The EM algorithm (for exponential family)

E step: Compute the expected complete-data sufficient statistics

T

(t)(X) = E{T (X)|θ(t−1)
, Y }.
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M step: Calculate θ

(t) = θ̂(T (t)(X)).

For the t-distribution with the sample Y = {y
i
: i = 1, . . . , n}, the suf-

ficient statistics are linear functions of the missing data {τ
i
: i = 1, . . . , n}.

Given the observed data Y , the missing data τ1, . . . , and τ
n

are indepen-

dent, and for each i = 1, . . . , n,

τ
i
|(Y, θ = (µ(t−1)

, (σ2)(t−1)))

∼ Ĝ

(

ν + 1

2
,

ν + (y
i
− µ

(t−1))2/(σ2)(t−1)

2

)

,

which leads to

τ

(t)

i

≡ E{τ
i
|Y, θ = (µ(t−1)

, (σ2)(t−1))}

=
ν + (y

i
− µ

(t−1))2/(σ2)(t−1)

ν + 1
.

Then, the EM algorithm for the t-distribution with known degrees of

freedom is given as follows.

3.1.3. The EM algorithm (for the t-distribution with known degrees

of freedom)

E step: Compute the expected complete-data sufficient statistics

S

(t)

τy
=
∑

n

i=1
τ

(t)

i

y
i
, S

(t)

τy
2 =

∑

n

i=1
τ

(t)

i

y

2

i

, and S

(t)

τ
=
∑

n

i=1
τ

(t)

i

.

M step: Calculate

µ

(t) =
S

(t)

τy

S

(t)

τ

=

∑

n

i=1
τ

(t)

i

y
i

∑

n

i=1
τ

(t)

i

,

and

(σ2)(t) =
1

n

[

S

(t)

τy
2 −

(S
(t)

τy
)2

S

(t)

τ

]

=

∑

n

i=1
τ

(t)

i

(y
i
− µ

(t))2

n

.

This iterative procedure is known as re-weighted least squares.36

3.2. The ECM, ECME, and ACEM algorithms

When the M-step of EM is difficult, it can be replaced with a sequence

of constrained (on some functions of parameters) maximizations of the Q

function, called CM-steps. This extension of the EM algorithm is called

the ECM algorithm by Meng and Rubin.28 Liu and Rubin18 realized that

an algorithm that converges faster can be obtained by replacing some of
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CM-steps of ECM with CM-steps that maximize the corresponding con-

strained actual loglikelihood. For the sake of convenience, we call a step that

maximizes a constrained expected complete-data log-likelihood a CMQ-

step and a step maximizing a constrained actual loglikelihood a CML-step.

This extension of EM and ECM is called the ECME algorithm by Liu and

Rubin,18 with “E” for “either”. As noticed by Meng and van Dyk,29 an

E-step is generally required after a sequence of CML-steps and before a

call to a sequence of CMQ-steps to guarantee the monotone convergence of

the likelihood. Starting with the CML algorithm that iteratively maximizes

constrained actual loglikelihood functions, Fessler and Hero2 considered an

EM-step, i.e. an iteration of the EM algorithm, for each CML-step and

proposed the SAGE algorithm (for Space-Alternating Generalized EM).

Meng and van Dyk29 extended EM, ECM, ECME, and SAGE further to

allow data-augmentation schemes as well as the constraining functions for

the CM-steps to vary from a CM-step to another CM-step. They call this

algorithm AECM (for Alternating ECM).

Suppose that the number of degrees of freedom ν of the t-distribution

is also unknown. The complete-data sufficient statistics for θ = (µ, σ

2
, ν)

are T (X) = (S
τ
, S

τy
, S

τy

2 , Sln τ−τ
), where S

τ
, S

τy
, and S

τy

2 are given in

Condition (2) and

Sln τ−τ
=

n

∑

i=1

[ln(τ
i
)− τ

i
] .

The complete-data maximum likelihood estimates of µ and σ

2 are the same

as those with known number of degrees of freedom given in Eq. (3). The

complete-data maximum likelihood estimate of ν is obtained by maximizing

Q(ν) = −n ln(Γ(ν/2)) +
nν

2
ln(ν/2) +

ν

2
Sln τ−τ

by a one-dimensional search, e.g. the Newton–Raphson method. If the

parameter space of θ = (µ, σ

2
, ν) is partitioned as θ1 = (µ, σ

2) and θ2 = ν,

then the EM algorithm can be used to find the maximum likelihood esti-

mate of θ = (µ, σ

2
, ν). The extra computation involved in the E-step is the

evaluation of

S

(t)

ln τ−τ

≡ E{Slnτ−τ
|Y, θ

(t−1)}

=
n

∑

i=1

[φ((ν(t−1) + 1)/2)− ln((ν(t−1) + 1)/2)]

+
n

∑

i=1

[ln(τ
(t)

i

)− τ

(t)

i

] , (5)
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where φ(.) is the Digamma function. In this situation, the ECM algorithm

is the same as the EM algorithm.

3.2.1. The EM algorithm and the ECM algorithm (for the

t-distribution with unknown degrees of freedom)

E step: This is the same as the E-step of the EM algorithm for the

t-distribution with known ν. In addition, compute S

(t)

ln τ−τ

in

Eq. (5).

CM step 1: This is the same as the M-step of the EM algorithm for the

t-distribution with known ν.

CM step 2: Find ν

(t) that maximizes Q

(t)(ν) = −n ln(Γ(ν/2)) + nν

2
ln ν

2
+

ν

2
S

(t)

ln τ−τ

over ν(> 0).

Liu and Rubin18 proposed a version of the EMCE algorithm with a

CMQ-step that is the same as the above CM-step 1 and a CML-step that

maximizes the actual constrained likelihood function of ν

L(µ, σ

2
, ν) = n ln[Γ((ν + 1)/2)]− n ln[Γ(ν/2)]−

n

2
ln(νπ)

−
n

2
ln(σ2)−

ν + 1

2
ln[1 + (y

i
− µ)2/(νσ

2)] ,

instead of Q(ν), with µ and σ

2 fixed at their current estimates. As with

the CM-step 2 of ECM (or EM) for updating ν, the CML step needs a

one-dimensional search algorithm. They showed that this version of ECME

converges dramatically faster than both EM and ECM.

3.3. Accelerating EM via Parameter Expansion:

The PX-EM algorithm

Notice that the scale parameter 2/ν of the γ distribution (1) for the miss-

ing τ
i

is constrained to the inverse of the shape parameter ν/2. The scale

parameter could be considered as an unknown parameter to be estimated

from the complete data X = {(τ
i
, y

i
) : i = 1, . . . , n}. For the sake of clarity,

denote by

θ
x

= (µ
x
, σ

2

x

, ν
x
, λ

x
)

the corresponding parameters for X , where µ
x
, σ

2

x

, and ν
x

correspond to

µ, σ

2
, and ν, respectively, and λ

x
(> 0) is the extra scale parameter for τ

i
.
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More precisely, the model for the complete data is written as follows

τ
i
|(ν

x
, λ

x
) ∼ G

(

ν
x

2
,

ν
x

2λ
x

)

, and y
i
|(τ, ν

x
, µ

x
, σ

2

x

) ∼ N(µ
x
, σ

2

x

/τ
i
) .

Integrating out the τ
i

from the joint distribution of (τ
i
, y

i
) gives the

marginal distribution of y
i

Γ((ν
x

+ 1)/2)

Γ(ν
x
/2)(ν

x
π)1/2(σ2

x

/λ
x
)1/2

[

1 +
(y − µ

x
)2

ν(σ2
x

/λ
x
)

]−(ν+1)/2

, y ∈ (−∞,∞) .

(6)

The parameters σ

2
x

and λ
x

in the marginal distribution (6) of y is uniden-

tifiable from the observed data Y = {y
i

: i = 1, . . . , n} when τ1, . . . , and

τ
n

are missing. It is thus necessary to constrain (σ2
x

, λ
x
). For example, fix

λ
x

at λ
x

= 1 as in Sec. 2.2. However, the EM algorithm converges faster

if it is applied to the expanded model with the extra parameter λ
x
. This

extra parameter can be used to capture the information of “imputed” S
τ

(i.e. S

(t)

τ
) which goes to n as t → ∞, and then the information is used to

adjust the current estimate of σ

2. This leads to the parameter-expanded

EM algorithm.21

PX-EM expands the complete-data model f(X |θ) (θ ∈ Θ) used in EM to

a larger model f
x
(X |θ

x
, λ

x
) ((θ

x
, λ

x
) ∈ Θ×Λ) with the expansion satisfying

two conditions: (i) the observed-data model is preserved in the sense that

there is a many-to-one reduction function

θ = R(θ
x
, λ

x
) , θ

x
∈ Θ; λ

x
∈ Λ; θ ∈ Θ (7)

from Θ×Λ onto Θ such that Y |θ
x
∼ g(Y |θ = R(θ

x
, λ

x
)); and (ii) there is a

(fixed) null value λ
x
, λ, in the sense that, for all θ, f

x
(X |θ

x
= θ, λ

x
= λ) =

f(X |θ). PX-EM extends EM by replacing the complete-data model f(X |θ)

with the expanded complete-data model f
x
(X |θ

x
, λ

x
). More specifically,

starting with (θ
(0)

x
= θ

(0)
, λ

(0)

x
= λ), the tth iteration of PX-EM consists of

a parameter-expanded E-step and a parameter-expanded M-step.

3.3.1. The PX-EM algorithm21

PX-E step: Compute Q
x
(θ

x
, λ

x
|θ

(t−1)

x
, λ

(t−1)

x
) = E{log f

x
(X |θ

x
, λ

x
)|Y,

θ

(t−1)

x
, λ

(t−1)

x
}.

PX-M step: Find (θ
(t−)

x
, λ

(t−)

x
) that maximizes Q

x
(θ

x
, λ

x
|θ

(t−1)

x
, λ

(t−1)

x
),

then apply the reduction function R(θ
x
, λ

x
) to obtain θ

(t) =

R(θ
(t−)

x
, λ

(t−)

x
) and set θ

(t)

x
= θ

(t) and λ

(t)

x
= λ.
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For the t-distribution with known number of degrees of freedom ν
x

= ν,

the reduction function is given by the many-to-one mapping

µ = µ
x

and σ

2 = σ

2

x

/λ
x

with the null value of λ
x

: λ = 1. The sufficient statistics for the expanded

parameter (µ
x
, σ

2

x

, λ
x
) are the same as those for (µ, σ

2) given in Condi-

tion (2). The complete-data maximum likelihood estimates of µ
x

and σ

2

x

are the same as those of µ and σ

2 given in Eq. (3), respectively, that is,

µ̂
x

= µ̂ =
S

τy

S
τ

and σ̂

2

x

= σ̂

2 =
1

n

[

S
τy

2 −
S

2

τy

S
τ

]

.

The complete-data maximum likelihood estimate of λ
x

is

λ̂
x

=
S

τ

n

.

The null value of λ
x

is λ = 1. Thus, PX-EM t-distribution with the sample

Y = {y
i
: i = 1, . . . , n}, can be written as follows.

3.3.2. The PX-EM algorithm (for the t-distribution with a known

number of degrees of freedom)

PX-E step: This is the same as the E-step of EM

PX-M step: This is the same as the M-step of EM except that (σ2)(t) is

replaced by

(σ2)(t) =
1

S

(t)

τ

[

S

(t)

τy

2 −
(S

(t)

τy
)2

S

(t)

τ

]

=

∑

n

i=1
τ

(t)

i

(y
i
− µ

(t))2
∑

n

i=1
τ

(t)

i

.

This algorithm for the t-distribution is first proposed by Kent et al.4 Meng

and van Dyk29 showed that this algorithm is an EM with a different

complete-data model. Liu et al.21 provided this PX-EM version. The ECME

algorithm can also be applied to the expanded model with unknown degrees

of freedom.12

4. General Linear Mixed Models

4.1. The model

Mixed-effects models are among the most important applications of EM.

van Dyk42 and Pinherio et al.32 provided recent such examples. The most
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commonly used linear mixed-effects model was proposed by Laird and

Ware,5 which, without loss of generality, is simplified as follows

y
i

= X
i
β + Z

i
b

i
+ e

i
, i = 1, . . . , m , (8)

where i is the subject index, y
i

is an n
i
-dimensional vector of observed

responses, X
i

is a known n
i
× p design matrix corresponding to the p-

dimensional fixed effects vector β = (β1, . . . , βp
)′, Z

i
is a known n

i
× q

design matrix corresponding to the q-dimensional random effects vector

b
i

= (r
i,1, . . . , ri,q

)′, and e
i

= (e
i,1, . . . , ei,ni

)′ is an n
i
-dimensional vector

of within-subject errors.

The random effects b1, . . . , and b
m

are independent of each other. For

each i, b
i

follows the q-dimensional normal distribution

b
i
∼ N

q
(0,Ψ) , i = 1, . . . , m ,

where 0, a vector of q zeros, is the mean vector and Ψ is the (q × q)

variance-covariance matrix. The errors e1, . . . , and e
m

are independent of

each other and independent of b1, . . . , and b
m

. For each i, e
i

follows the

n
i
-dimensional normal distribution

e
i
∼ N

ni
(0, σ

2
I

ni
)

with a common unknown variance parameter σ

2, where I
ni

denotes the

(n
i
× n

i
) identity matrix. For more discussion of the structure of the

variance-covariance matrices for the random effects and errors, see Pinherio

et al.32 and the references therein.

Integrating out the unobservable (missing) random effects b1, . . . , and

b
m

leads to the observed data model

y
i

|(X
i
, Z

i
, β,Ψ, σ

2) ∼ N
ni

(X
i
β, Z

i
ΨZ

′
i

+ σ

2
I

ni
) , i = 1, . . . , m .

(9)

It is difficult to find the maximum likelihood estimates of the parameter

θ = (β,Ψ, σ

2) from the observed data Y = {y
i

: i = 1, . . . , m}, especially

when q, the dimension of Ψ, is large.

4.2. The complete-data maximum likelihood estimates

Consider the complete data that consist of both observed data Y = {y
i

:

i = 1, . . . , m} and missing data {b
i

: i = 1, . . . , m}. The complete-data
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model can also be written as
[

b
i

y
i

]
∣

∣

∣

∣

∣

(X
i
, Z

i
, β,Ψ, σ

2)

∼ N
ni+q

([

0

X
i
β

]

,

[

Ψ ΨZ
′
i

Z
i
Ψ Z

i
ΨZ

′
i

+ σ

2
I

ni

])

. (10)

The complete-data model belongs to the exponential family with the suffi-

cient statistics

S
bb

′ =
m

∑

i=1

b
i
b
′
i

,

S(y−zb)′(y−zb) =

m

∑

i=1

(y
i

−Z
i
b

i
)′(y

i

−Z
i
b

i
) , and

S
x

′(y−zb) =

m

∑

i=1

X
′
i

(y
i

−Z
i
b

i
) (11)

for the parameter θ = (β,Ψ, σ

2). Let S
x
′
x

=
∑

m

i=1
X

′
i

X
i

and let S
n

=
∑

m

i=1
n

i
. The complete-data maximum likelihood estimates of β, Ψ, and

σ

2 are given as follows

β̂ = S

−1

x
′
x

S
x

′(y−zb) , Ψ̂ =
1

m

S
bb

′ ,

and

σ̂

2 =
1

S
n

(S(y−zb)′(y−zb) − S

′
x
′(y−zb)

S

−1

x

′
x

S
x

′(y−zb))

=
1

S
n

m

∑

i=1

(y
i

−X
i
β̂ −Z

i
b

i
)′(y

i

−X
i
β̂ −Z

i
b

i
) .

4.3. EM-type algorithms

4.3.1. The EM algorithm

Given the observed data and the current estimate θ

(t−1) = (β(t−1)
,Ψ(t−1)

,

(σ2)(t−1)), under the complete-data model (10), the b
i

are independent of

each other and

b
i
|(y

i

, θ

(t−1)) ∼ N
q
(b̂

i
, V̂

i
) ,
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where the mean vector and variance-covariance matrix are

b̂
i
≡ E{b

i
|Y, θ

(t−1)}

= Ψ(t−1)
Z

′
i

(Z
i
Ψ(t−1)

Z
′
i

+ (σ2)(t−1)
I

ni
)−1(y

i

−X
i
β

(t−1))

= [(σ2)(t−1)(Ψ(t−1))−1 + Z
′
i

Z
i
]−1

Z
′
i

(y
i

−X
i
β

(t−1)) (12)

and

V̂
i
≡ cov{b

i
|Y, θ

(t−1)}

= Ψ(t−1) −Ψ(t−1)
Z

′
i

(Z
i
Ψ(t−1)

Z
′
i

+ (σ2)(t−1)
I

ni
)−1

Z
i
Ψ(t−1)

=

[

(Ψ(t−1))−1 +
1

(σ2)(t−1)
Z

′
i

Z
i

]−1

(13)

respectively. Thus, the (standard) EM algorithm18 is given as follows.

E step: Compute b̂
i

and V̂
i
for i = 1, . . . , m, and then

Ŝ
bb

′ =

m

∑

i=1

b̂
i
b̂
′

i

+

m

∑

i=1

V̂
i
, Ŝ

x
′(y−zb) =

m

∑

i=1

X
′
i

(y
i

−Z
i
b̂

i
) ,

and

Ŝ(y−zb)′(y−zb) =

m

∑

i=1

(y
i

−Z
i
b̂
i
)′(y

i

−Z
i
b̂
i
) +

m

∑

i=1

tr(Z
i
V̂

i
Z

′
i

) ,

where the trace function tr(Z
i
V̂

i
Z

i
) denotes the sum of the di-

agonal elements of the (q × q) matrix Z
i
V̂

i
Z

i
.

M step: Compute

β
(t) = S

−1

x
′
x

Ŝ
x
′(y−zb) , Ψ(t) =

1

m

Ŝ
bb

′ ,

and

(σ2)(t) =
1

∑

m

i=1
S

n

[Ŝ(y−zb)′(y−zb) − Ŝ

′
x

′(y−zb)
S

−1

x
′
x

Ŝ
x

′(y−zb)]

=
1

S
n

[

m

∑

i=1

(y
i

−X
i
β

(t) −Z
i
b̂

i
)′(y

i

−X
i
β

(t) −Z
i
b̂

i
)

+ tr(Z
i
V̂

i
Z

′
i

)

]

.
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4.3.2. The ECME algorithm

It is well known that EM for general linear mixed-effects models can con-

verge very slowly. Many methods for accelerating EM have been proposed

in the literature.6 A modified version of the above EM was proposed as

an EM implementation by Laird and Ware.5 This algorithm can be rep-

resented as the ECME algorithm with a CML step that updates β and a

CMQ step that updates (Ψ, σ

2).

4.3.2.1. The ECME algorithm (version 1)

E step: This is the same as the E-step of EM

CMQ step: Update the estimates of Ψ and σ

2 : Ψ(t) = Ŝ
bb

′/m and

(σ2)(t) =
1

S
n

[

m

∑

i=1

(y
i

−X
i
β

(t−1) −Z
i
b

i
)′

× (y
i

−X
i
β

(t−1) −Z
i
b

i
) +

m

∑

i=1

tr(Z
i
V

i
Z

′
i

)

]

.

CML step: Updates the estimate of β with β and Ψ fixed at their current

estimates:

β
(t) =

[

m

∑

i=1

X
′
i

(Z
i
Ψ(t)

Z
′
i

+ (σ2)(t)I
ni

)−1
X

i

]−1

×

[

m

∑

i=1

X
′
i

(

Z
i
Ψ(t)

Z
′
i

+ (σ2)(t)I
ni

)−1

y
i

]

.

Liu and Rubin18 considered another version of ECME with three CM

steps: A CMQ step for updating the estimate of Ψ, a CML step for updating

the estimate of β, and a CML step for updating the estimate of σ

2. The

CML step for updating σ

2 does not have a closed-form solution. A modified

version (see Schafer38 and Lindstrom and Bates9) has a closed-form solution

for σ

2.

4.3.2.2. The ECME algorithm (version 2)

E step: This is the same as the E-step of EM

CMQ step: Update the estimate of Ψ : Ψ(t−) = Ŝ
bb

′/m.
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CML step: Update the estimates of σ

2 and β with Φ ≡ Ψ/σ

2 fixed at its

current estimate Φ(t) = Ψ(t−)
/(σ2)(t−1):

β
(t) =

[

m

∑

i=1

X
′
i

(Z
i
Φ(t)

Z
′
i

+ I
ni

)−1
X

i

]−1

×

[

m

∑

i=1

X
′
i

(Z
i
Φ(t)

Z
′
i

+ I
ni

)−1
y

i

]

.

and

(σ2)(t) =
1

S
n

n

∑

i=1

(y
i

−X
i
β

(t))′(Z
i
Φ(t)

Z
′
i

+ I
ni

)−1

× (y
i

−X
i
β

(t)) ;

and then adjust the current estimate of Ψ:

Ψ(t) = Φ(t)(σ2)(t) =
(σ2)(t)

(σ2)(t−1)
Ψ(t−)

.

As was noted by van Dyk,42 this ECME version can also be obtained using

the more convenient parameterization that replaces Ψ by σ

2Φ.

4.3.3. The PX-EM algorithm

Meng and van Dyk30 considered efficient data augmentation for deriving

fast implementations of EM for general linear mixed model. The basic idea

is to augment less missing information, as was described in Meng and van

Dyk.29 As shown by Liu et al.,21 PX-EM is easier to implement and con-

verges faster than the efficient implementation of EM by Meng and van

Dyk.30 The idea of PX-EM is to expand the complete-data model (10)

to capture the information on (i) the covariance matrix between missing

data b
i

and the observed responses y
i

, which is implicitly constrained by

the variance-covariance matrix Ψ of b
i

in the original model; and (ii) the

mean vector of b
i
, which is fixed at 0 in the original model. First, we

describe the PX-EM version of Liu et al.21 (see also Liu13), who considered

the case (i) and implemented the model with n
i
= 1 for all i = 1, . . . , m, is

presented. Second, we discuss a new version that takes both (i) and (ii) into

account.
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The expanded model that activates the covariance matrix between b
i

and y
i

can be written as
[

b
i

y
i

] ∣

∣

∣

∣

∣

(X
i
, Z

i
, β∗,Ψ∗, σ

2

∗ , C∗)

∼ N
ni+q

([

0

X
i
β∗

]

,

[

Ψ∗ Ψ∗C
′
∗Z

′
i

Z
i
C∗Ψ∗ Z

i
C∗Ψ∗C

′
∗Z

′
i

+ σ

2

∗Ini

])

, (14)

where C∗ is a (q×q) matrix. The observed-data model is thus given by the

marginal distribution of y
i

in model (14). The reduction function is

β = β∗ , σ

2 = σ

2

∗ , and Ψ = C∗Ψ∗C
′
∗

with the null values of C∗ : C = I
q
, the q-dimensional identity matrix.

The complete-data maximum likelihood estimates of θ∗ = (β∗,Ψ∗, σ
2

∗ , C∗)

is obtained from the following linear model

y
i

= X
i
β∗ + (b′

i

⊗Z
i
)~C + e

i
,

where ⊗ denotes the Kronecker operator, ~C denotes the vector obtained

by stacking the columns of C (i.e. ~C = (C′
1
, . . . , C

′
q

)′, which C
j

is the jth

column of C), and e
i
∼ N

ni
(0, σ

2

∗Ini
) for i = 1, . . . , m. This leads to the

following PX-EM algorithm.

4.3.3.1. The PX-EM algorithm (version 1)

PX-E step: This is the same as the E-step of EM

PX-M step: Compute Ψ(t), which is the same as the M-step of EM,




β
(t)

∗

~

C
(t)

∗



 =

[

m

∑

i=1

(

X
′
i

X
i

X
′
i

(b̂
′

i

⊗Z
i
)

(b̂
i
⊗Z

′
i

)X
i

(b̂
i
b̂
′

i

+ V̂
i
)⊗ (Z ′

i

Z
i
)

)]−1

×

[

m

∑

i=1

(

X
′
i

b̂
i
⊗Z

′
i

)

y
i

]

,

and

(σ2

∗)
(t) =

1

S
n

[

n

∑

i=1

ê
i
ê

i

′ +

n

∑

i=1

( ~C∗

(t)

)′(V̂
i
⊗ (Z ′

i

Z
i
)) ~C∗

(t)

]

,

where ê
i
= y

i

−X
i
β

(t)

∗ −Z
i
C

(t)

∗ b̂
i
, and then apply the reduc-

tion function to obtain

β
(t) = β

(t)

∗ , (σ2)(t) = (σ2

∗)
(t)

, and Ψ(t) = C
(t)

∗ Ψ
(t)

∗ (C
(t)

∗ )′ .
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In order to activate the mean vector of the random effects, suppose that

there is a known (p×q) matrix K such that Z
i
= X

i
K for all i = 1, . . . , m.

For example, the design matrix Z
i
consists of the columns of X

i
, as is often

the case in practice. In this situation, PX-EM can be used to accelerate EM

further by activating the mean vector of the random effects. The complete-

data model can be written as

b
i
|(β∗,Ψ∗, σ

2

∗ , C∗, µ∗) ∼ N
q
(µ∗,Ψ∗)

y
i

|(b
i
, β∗,Ψ∗, σ

2

∗ , C∗, µ∗) ∼ N
ni

(X
i
β∗ + Z

i
C∗bi

, σ

2

∗Ini
) ,

The corresponding complete-data model is

y
i

|(β∗,Ψ∗, σ
2

∗, C∗, µ∗)

∼ N
ni

(X
i
(β∗ + KC∗µ∗), Z

i
C∗Ψ∗C

′
∗Z

′
i

+ σ

2

∗Ini
) .

The reduction function is then given by

β = β∗ + KC∗µ∗ , σ

2 = σ

2

∗ , and Ψ = C∗Ψ∗C
′
∗ ,

with the null values of the extra parameters C = I
q

and µ = 0. Thus, we

have the following new version of PX-EM.

4.3.3.2. The PX-EM algorithm (version 2)

PX-E step: This is the same as the E step of EM.

PX-M step: Compute

µ

(t−)

∗ =
1

m

m

∑

i=1

b̂
i
,

Ψ
(t−)

∗ =
1

m

m

∑

i=1

[(b̂
i
− µ

(t−)

∗ )(b̂
i
− µ

(t−)

∗ )′ + V̂
i
] ,

and (β
(t−)

∗ ,
~C∗

(t−)

, (σ2
∗)

(t−)), that is the same as that in M step

of PX-EM version 1; and then apply the reduction function to

obtain

β
(t) = β

(t)

∗ = β
(t−)

∗ + KC
(t−)

∗ µ
(t−)

∗ ,

(σ2)(t) = (σ2

∗)
(t) = (σ2

∗)
(t−)

,

Ψ(t) = C
(t−)

∗ Ψ
(t−)

∗ (C
(t−)

∗ )′ ,

µ

(t−)

∗ = 0 , and C
(t−)

∗ = I
q
.
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Another PX-EM version can be obtained by activating only the mean

vector of the random effects. Parameter expansion can also be used to

accelerate the ECM and ECME algorithms. van Dyk42 provides such

examples with the expanded model that includes the extra parameter C∗.

5. Discussion

There are many other important issues about EM that this brief review

has not touched on. These include how to compute asymptotic variance-

covariance matrix,14,25,27 the relationship between EM and Markov chain

Monte Carlo methods, e.g. EM and the Data-Augmentation algorithm;40

ECM and the Gibbs sampler;3 ECME and collapsed Gibbs sampler;18 and

PX-EM and the Parameter-Expanded-Data-Augmentation algorithm,24,31

and Monte Carlo EM algorithms.43,44
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1. Introduction

While recent progressions of neurology lead the rapid development of arti-

ficial neural networks (ANN), the growing requirement of digital computer

and artificial intelligence (AI) also promotes ANN. Today, in all problems

that involve AI, human intelligence is still performed over AI. To de-

velop new generation of intelligent computers, we must fully understand

the human intelligent processes; in particular, the mechanisms of dealing

with information by the neural network systems in human brains. On the

other hand, although the initial intention of ANN was merely to explore and

simulate informational processing of human, its superior capability has been

demonstrated in problems that traditional digital computer systems and

artificial intelligence encountered. Indeed, ANNs can be viewed as a major

new break-through to various fields such as computational methodology

and AI, etc.

Artificial neural networks (ANN) is an engineering method that simu-

lates the structures and operating principles in the information processing

systems possessed by human brain. It was a milestone that psycholo-

gist McCulloch and mathematician Pitts had originally proposed the first

1073
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mathematical model of ANNs in 1940s. Since then ANN has made rapid

progresses, and various perceptron models have been brought forth sub-

sequently by many researchers such as F. Rosenblatt, Widrow, Hopf and

J. J. Hopfield, etc.

In a magnitude of ANN studies, simulated annealing (SA)1,2,4 and

Genetic Algorithm (GA)3,4 are two popular stochastic optimization algo-

rithms. The former was proposed by Metropolis to simulate the annealing

process of metal heating, and the latter was proposed by Holland to simulate

the natural evolutional process of living beings. Although the stimulated

objectives are at all different, both algorithms are extremely similar each

other in formulation of algebraic structures. SA holds for the ergodicity of

state spaces by generation functions and ensures the directions of iter-

ation processes by acceptation operator. GA holds for the ergodicity of

state spaces by crossover operator and mutation operator, and ensures the

directions of iteration processes by selection operator.

The traditional statistics, especially parametric statistics, usually as-

sume a population distribution with unknown parameter. It is the mostly

perplexing to assure the validity of the assumptions that samples indeed

come from the population specified before using statistical techniques such

as t test, ANOVA, regression and so on. However, in accordance to directly

learning from data sets, ANN dynamically modulates the “weight” of

neurons, and sequentially be able to perceive newly resembled data. Because

of its favorable resilience against distortions, ANN has unique advantages

to processing imperfect data sets and to problems of complex nonlinear

systems. Statistically ANN can be described as the nonparametric non-

linear models. Its applications include predictions, cluster analysis, pattern

recognition engines, time series analysis and wick relationship gauge among

complex systems. Depending on the nonlinear linkage of numerous simple

rule sets (neurons), ANN, especially multilayer perceptron networks, is

different in essence from normal expert systems, which is some enumer-

ative procedures based on comprehensive rule systems. As knowledge of

experts is collected and represented using some traditional measurements,

the establishment of expert systems is more difficult than ANN.

2. Back Propagation (BP) Neural Networks

There are many different types of ANN, including the popular Hopfield

model,5 the connection networks by Feldmann,6 the Baltzmann machine

model by Hinton,7 the multilayer perceptron model by Rumelhart8 and
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Chapter 29. An Introduction to Artificial Neural Networks
Xia Jielai, Jiang Hongwei (Department of Biostatistics, The Fourth Military Medical University,

China)
Tang Qiyi (College of Agricultural and Biological Technology, Zhejiang University, China)

1 Introduction
While recent progressions of neurology lead the rapid development of artificial neural

networks (ANN), the growing requirement of digital computer and artificial intelligence (AI) also
promotes ANN. Today, in all problems that involve AI, human intelligence is still performed over
AI. To develop new generation of intelligent computers, we must fully understand the human
intelligent processes; in particular, the mechanisms of dealing with information by the neural
network systems in human brains. On the other hand, although the initial intention of ANN was
merely to explore and simulate informational processing of human, its superior capability has been
demonstrated in problems that traditional digital computer systems and artificial intelligence
encountered. Indeed, ANNs can be viewed as a major new break-through to various fields such as
computational methodology and AI, etc.

Artificial neural networks (ANN) is an engineering method that simulates the structures and
operating principles in the information processing systems possessed by human brain. It was a
milestone that psychologist McCulloch and mathematician Pitts had originally proposed the first
mathematical model of ANNs in 1940s. Since then ANN has made rapid progresses, and various
perceptron models have been brought forth subsequently by many researchers such as
F.Rosenblatt, Widrow, Hopf and J.J.Hopfield,etc.

In a magnitude of ANN studies, simulated annealing (SA) [1,2,4] and Genetic Algorithm (GA)
[3,4] are two popular stochastic optimization algorithms. The former was proposed by Metropolis
to simulate the annealing process of metal heating, and the latter was proposed by Holland to
simulate the natural evolutional process of living beings. Although the stimulated objectives are at
all different, both algorithms are extremely similar each other in formulation of algebraic
structures. SA holds for the ergodicity of state spaces by generation functions and ensures the
directions of iteration processes by acceptation operator. GA holds for the ergodicity of state
spaces by crossover operator and mutation operator, and ensures the directions of iteration
processes by selection operator.

The traditional statistics, especially parametric statistics, usually assume a population
distribution with unknown parameter. It is the mostly perplexing to assure the validity of the
assumptions that samples indeed come from the population specified before using statistical
techniques such as t test, ANOVA, regression and so on. However, in accordance to directly
learning from data sets, ANN dynamically modulates the “weight” of neurons, and sequentially be
able to perceive newly resembled data. Because of its favorable resilience against distortions,
ANN has unique advantages to processing imperfect data sets and to problems of complex
nonlinear systems. Statistically ANN can be described as the nonparametric nonlinear models. Its
applications include predictions, cluster analysis, pattern recognition engines, time series analysis
and wick relationship gauge among complex systems. Depending on the nonlinear linkage of
numerous simple rule sets (neurons), ANN, especially multilayer perceptron networks, is different
in essence from normal expert systems, which is some enumerative procedures based on
comprehensive rule systems. As knowledge of experts is collected and represented using some
traditional measurements, the establishment of expert systems is more difficult than ANN.
2 Back Propagation (BP) neural networks

There are many different types of ANN, including the popular Hopfield model[5], the
connection networks by Feldmann[6], the Baltzmann machine model by Hinton[7], the multilayer
perceptron model by Rumelhart[8] and the self-organization networks models by Kohonen[9], etc.
Multilayer perceptron model is the most general among these ANN models. Although ANN had

Input layer Hidden layer Output layer

Figure 1  A BP neural network modelFig. 1. A BP neural network model.

the self-organization networks models by Kohonen,9 etc. Multilayer per-

ceptron model is the most general among these ANN models. Although

ANN had been around since the late 1940’s, no major progress was made

until the mid-1980’s when the multilayer forward-propagation perceptron

model was proposed by Minsky10 and became sophisticated enough for

general applications through combination with back-propagation (BP)

algorithm by Rumelhart and simulated annealing (SA) algorithms. A

manifold of three-layer BP neural network is shown in Fig. 1.

The BP neural networks (BPNN) systems with the hierarchical struc-

ture, including one input layer, several hidden layers and one output layer.

Each layer consists of various neutrons taking on two phases: Activity and

inactivity. Figure 1 illustrates a typical network with one input layer, one

hidden layer and one output layer.

Typically in BPNN, after having processed the signals received from the

input layer, the neutrons of the hidden layers propagate it forward to the

output layer that completes the finial procedure to export the results. A

conventional stimuli function of every neutron usually is a S-shaped curve

function such as the logistic function.

f(x) =
1

1 + e

−x/Q

.

Here, Q is the threshold parameter to adjust the formulation of stimuli

function. The learning procedure of this algorithm is made up of forward-

propagation and backward-propagation. The special characteristic of this

type of network is its simple dynamics: when a signal is inputted into the

BPNN, it is propagated to the next layer by the interconnections between
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Fig. 2. Relationships between units of the hidden layer and estimated error.

the neurons. The sign is processed by the neurons of one layer and then

be propagated onto the next layer. It means that the state of each layer

locally influence the next layer. This procedure will not stop until the signal

reaches the output layer sending out the processed signal. In order to up-

grade the precision of the system, signal errors feedback across the same

pathways. Through modifications of the weights for all units of each layer,

the differences between the expected and observed outcome are minimized.

At present, there is no matured theory on how to select the number of

units and hidden layers. In general, the more units of hidden layers neural

networks possess, the more complexity they reflect and higher precision of

learning. Nevertheless, with the increment of units in hidden layers, over-

fitting to the learning data comes into being easily. If an ANN model is

trained on a learning data set very well, its ability to predict subsequently

future data set will be enhanced.

Figure 2 shows a special example in which the lowest error achieved

when the system has 6 units in the hidden layer.

For simplicity, we assume that there are n sigmoid type units in a neural

network which possesses only one unit x in the input layer and one unit

y in the output layer. Let (x
k
, y

k
) (k = 1, 2, 3, . . . , N) be observations in

which x
k

is the input signal and y
k

is the output signal for the kth sample.

Also, let the output of any unit i as O
ik

and the input of unit j is

net
jk

=
∑

i

W
ij

O
ik

.



July 9, 2003 10:17 WSPC/Advanced Medical Statistics chap29

Introduction to Artificial Neural Networks 1077

And the error function is

E =
1

N

N

∑

k=1

(y
k
− ŷ

k
)2 .

In this function ŷ
k

is the predicted value of the network output. If

E
k

= (y
k
− ŷ

k
)2, δ

jk
= ∂Ek

∂netjk

and O
jk

= f(net
jk

), then

∂E
k

∂W
ij

=
∂E

k

∂net
jk

∂net
jk

∂W
ij

=
∂E

k

∂net
jk

O
ik

= δ
jk

O
ik

.

If the unit j is in the output layer, O
jk

= ŷ
k

δ
jk

=
∂E

k

∂ŷ
k

∂ŷ
k

∂net
jk

= −(y
k
− ŷ

k
)f ′(net

jk
) . (1)

Else if unit j is not in the output layer, then

δ
jk

=
∂E

k

∂net
jk

=
∂E

k

∂O
jk

∂O
jk

∂net
jk

=
∂E

k

∂O
jk

f

′(net
jk

)

∂E
k

∂O
jk

=
∑

m

∂E
k

∂net
mk

∂net
mk

∂O
jk

=
∑

m

∂E
k

∂net
mk

∂

∂O
jk

∑

i

W
mi

O
ik

=
∑

m

∂E
k

∂net
mk

∑

i

W
mj

=
∑

m

δ
mk

W
mj

.

Thus,














δ
jk

= f

′(net
jk

)
∑

m

δ
mk

W
mj

∂E
k

∂W
ij

= δ
mk

O
ik

.

(2)

If a neural network has M layers in which the Mth only owns the output

units and the first layer only possesses the input units, then BP algorithms

are

(i) Select the initial weights W .

(ii) Repeat following procedures until converging:

a. For K from 1 to N

(a) Calculate O
ik

, net
jk

and ŷ
k

(in the procedure of forward-

propagation)
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(b) Implement the reversed calculation of layers from M to 2 (in

the procedure of backward-propagation)

b. For the same unit j ∈M , calculated δ
jk

by (1) and (2).

(iii) Modulate weights, W
ij

= W
ij
− δ

∂E

∂Wij
, δ > 0, for ∂E

∂Wij
=
∑

N

k

∂Ek

∂Wij

From BP algorithms, it concludes that BP models transform input-to-

output patterns of sampling data sets into the optimization of nonlinear

models. Its optimization is different at all from the traditional gradient

descend method. So neural networks are the absolutely nonlinear mapping

projects between input and output.

The focal design of a neural network lies in how to estimate the structure

of models and the selection of learning algorithms. To establish appropriate

learning algorithms and model structure, we must rely on current theore-

tical developments of ANN and train these systems with enormous datasets.

By dynamically adjusting the parameters of networks in the continuous

procedures of learning, ANN can reach the precision required.

3. Introduction to Operation of DPS Data Process System

ANN packages have been embedded in statistical software packages, such

as SPSS, MATLAB and so forth. They can be browsed in those statis-

tical software websites. DPS, Data Processing System, programmed by Qiyi

Tang, will be showed below in this section. The basic data structure is that

each row is a single case (observation), each column is a single variable

and the left is the data of input units (independent variables), the right is

the data of output units (dependent variables). And all values of cases are

entered one by one. Do not need to enter the outputs (dependent variables)

for the individuals to be recognized (predicted).

After the data-entering step has finished, press CTRL and right button

of mouse to define the predicted data as the second block.

Before the learning procedure of neural networks, an optional dialogue,

showed in Fig. 3 below, will appear to require some parameters of neural

network. The principles of setting parameters are:

(1) Number of units : The number of units of the input layer equals to

the number of characteristic factors (independent variables), and the

units of the output layer just amount to the number of system targets.

Generally the number of units in hidden layers, greatly varying

according to individual experiences, is 75% units of input layer. For
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MATLAB and so forth. They can be browsed in those statistical software websites. DPS, Data
Processing System, programmed by Qiyi Tang, will be showed below in this section. The basic
data structure is that each row is a single case (observation), each column is a single variable
and the left is the data of input units (independent variables), the right is the data of output units
(dependent variables). And all values of cases are entered one by one. Don’t need to enter the
outputs (dependent variables) for the individuals to be recognized (predicted).

After the data-entering step has finished, press CTRL and right button of mouse to define the
predicted data as the second block.

Before the learning procedure of neural networks, an optional dialogue, showed in Figure 3
below, will appear to require some parameters of neural network. The principles of setting
parameters are:

Figure 3 optional dialogue of parameters in neural network

1) Number of units: The number of units of the input layer equals to the number of
characteristic factors (independent variables), and the units of the output layer just
amount to the number of system targets. Generally the number of units in hidden layers,
greatly varying according to individual experiences, is 75% units of input layer. For
example, if there are 7 units in an input layer and 1 unit in an output layer, the number of
units in a hidden layer will be 5 to constitute a 7-5-1 model of neural network. In
practice, due to comparing the output consequences of various units in a hidden layer, the
most reasonable structure is established conclusively after the learning procedure of
neural network..
�� Initial weights:  All of initial weights mustn’t be exactly equal to each other, for the fact

has been verified that once the initial weights are identical, even if there exists a set of
diverse weights so as to the minimum error of neural network, the weights of units will
remain to be equal. Thus, in our software, a random generator is programmed to yield a
set of random numbers ranged from –0.5 to +0.5 as the initial weight of neural network.

3) Optimum learning speed:  As a typical BP algorithm, the larger the learning speed is, the
greater the change of the weights is, and the faster the convergence is. However when
learning speed is beyond a certain limitation, the neural network will oscillate.
Consequently learning speed is larger with the guarantee against system oscillation. So,
in DPS, learning speed is optimized automatically, though user can specify a certain
value, say 0.9.

4) Dynamic coefficient:  It is chosen empirically too, just as the range from 0.6 to 0.8.
5) Error tolerance: generally ranges from 0.001 to 0.00001. If the error between the results

of two successive iterations is below the tolerance, computing stops systematically to
provide the results.

6) Times of iteration:  The default value is 1000. Due to the possible divergence of neural
network computing, the maximum iteration times is given beforehand.

7) Coefficient of Sigmoid function:  The value, regulating the stimuli formulas of neutron,
ranges from 0.9 to 1.0 generally.

Fig. 3. Optional dialogue of parameters in neural network.

example, if there are 7 units in an input layer and 1 unit in an out-

put layer, the number of units in a hidden layer will be 5 to constitute

a 7-5-1 model of neural network. In practice, due to comparing the

output consequences of various units in a hidden layer, the most reason-

able structure is established conclusively after the learning procedure

of neural network.

(2) Initial weights : All of initial weights must not be exactly equal to each

other. For the fact that it has been verified that once the initial weights

are identical, even if there exists a set of diverse weights so as to the

minimum error of neural network, the weights of units will remain to

be equal. Thus, in our software, a random generator is programmed to

yield a set of random numbers ranged from −0.5 to +0.5 as the initial

weight of neural network.

(3) Optimum learning speed : As a typical BP algorithm, the larger the

learning speed is, the greater the change of the weights is, and the

faster the convergence is. However when learning speed is beyond a

certain limitation, the neural network will oscillate. Consequently learn-

ing speed is larger with the guarantee against system oscillation. So,

in DPS, learning speed is optimized automatically, though user can

specify a certain value, say 0.9.

(4) Dynamic coefficient : It is chosen empirically too, just as the range from

0.6 to 0.8.

(5) Error tolerance: Generally ranges from 0.001 to 0.00001. If the error

between the results of two successive iterations is below the tolerance,

computing stops systematically to provide the results.
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(6) Times of iteration: The default value is 1000. Due to the possible di-

vergence of neural network computing, the maximum iteration times is

given beforehand.

(7) Coefficient of Sigmoid function: The value, regulating the stimuli for-

mulas of neutron, ranges from 0.9 to 1.0 generally.

(8) Data transformation: DPS has advantage of allowing data transforma-

tions in several functions, such as logarithm, square root and norma-

lization.

4. Application Examples

Example 1 is an illustration to use our software. Physicians under ran-

domization collect the dataset. The influencing factors set of body surface

area consists of 4 physical factors: Sex, age, weight and height. Figure 4

shows the nonlinear relationships between predictor variables and response

variable.

Before establishing BP neural network, we split the data set into two

segments: From No. 1 to No. 70 as learning sample and from No. 71 to

No. 90 severally as predicted sample. The data structure is defined as the

following blocks in Table 1.

8) Data transformation:  DPS has advantage of allowing data transformations in several
functions, such as logarithm, square root and normalization.

4 Application examples
Example 1 is an illustration to use our software. Physicians under randomization collect the

dataset. The influencing factors set of body surface area consists of 4 physical factors: sex, age,
weight and height. Figure 4 shows the nonlinear relationships between predictor variables and
response variable.

Figure 4   3-d Scatter of Weight, Height and Body Surface Area

Before establishing BP neural network, we split the data set into two segments: from No. 1 to
No. 70 as learning sample and from No. 71 to No. 90 severally as predicted sample. The data
structure is defined as the following blocks in Table 1.

Table 1   Random Allotment of 90 Persons’ Physical Measurements

No. No.

1 1 13 30.5 138.5 10072.9 46 0 15 43 152 12998.7
2 0 5 15 101 6189 47 0 13 27.5 139 9569.1
3 0 0 2.5 51.5 1906.2 48 0 3 12 91 5358.4
4 1 11 30 141 10290.6 49 0 15 40.5 153 12627.4
5 1 15 40.5 154 13221.6 50 1 5 15 100 6364.5
6 0 11 27 136 9654.5 51 1 1 9 80 4380.8
7 0 5 15 106 6768.2 52 1 5 16.5 112 7256.4
8 1 5 15 103 6194.1 53 0 3 12.5 91 5291.5
9 1 3 13.5 96 5830.2 54 1 0 3.5 56.5 2506.7
10 0 13 36 150 11759 55 0 1 10 77 4180.4
11 0 3 12 92 5299.4 56 1 9 25 126 8813.7
12 1 0 2.5 51 2094.5 57 1 9 33 138 11055.4
13 0 7 19 121 7490.8 58 1 5 16 108 6988
14 1 13 28 130.5 9521.7 59 0 11 29 127 9969.8
15 1 0 3 54 2446.2 60 0 7 20 114 7432.8
16 0 0 3 51 1632.5 61 0 1 7.5 77 3934

Fig. 4. 3-D Scatter of weight, height and body surface area.
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Table 1. Random allotment of 90 persons’ physical measurements.

Body Body
No. Sex Age Weight Height Surface No. Sex Age Weight Height Surface

(year) (kg) (cm) Area (year) (kg) (cm) Area
(cm2) (cm2)

1 1 13 30.5 138.5 10072.9 46 0 15 43 152 12998.7
2 0 5 15 101 6189 47 0 13 27.5 139 9569.1
3 0 0 2.5 51.5 1906.2 48 0 3 12 91 5358.4
4 1 11 30 141 10290.6 49 0 15 40.5 153 12627.4
5 1 15 40.5 154 13221.6 50 1 5 15 100 6364.5
6 0 11 27 136 9654.5 51 1 1 9 80 4380.8
7 0 5 15 106 6768.2 52 1 5 16.5 112 7256.4
8 1 5 15 103 6194.1 53 0 3 12.5 91 5291.5
9 1 3 13.5 96 5830.2 54 1 0 3.5 56.5 2506.7

10 0 13 36 150 11759 55 0 1 10 77 4180.4
11 0 3 12 92 5299.4 56 1 9 25 126 8813.7
12 1 0 2.5 51 2094.5 57 1 9 33 138 11055.4
13 0 7 19 121 7490.8 58 1 5 16 108 6988
14 1 13 28 130.5 9521.7 59 0 11 29 127 9969.8
15 1 0 3 54 2446.2 60 0 7 20 114 7432.8
16 0 0 3 51 1632.5 61 0 1 7.5 77 3934
17 0 7 21 123 7958.8 62 1 11 29.5 134.5 9970.5
18 1 11 31 139 10580.8 63 0 5 15 101 6225.7
19 1 7 24.5 122.5 8756.1 64 0 3 13 91 5601.7
20 1 11 26 133 9573 65 0 5 15 98 6163.7
21 0 9 24.5 130 9028 66 1 15 45 157 13426.7
22 1 9 25 124 8854.5 67 1 7 21 120 8249.2
23 1 0 2.25 50.5 1928.4 68 0 9 23 127 8875.8
24 0 11 27 129 9203.1 69 0 7 17 104 6873.5
25 0 0 2.25 53 2200.2 70 1 15 43.5 150 13082.8
26 0 5 16 105 6785.1 71∗ 1 15 50 168 14832
27 0 9 30 133 10120.8 72∗ 0 7 18 114 7071.8
28 0 13 34 148 11397.3 73∗ 1 3 14 97 6013.6
29 1 3 16 99 6410.6 74∗ 1 7 20 119 7876.4
30 1 3 11 92 5283.3 75∗ 0 0 3 54 2117.3
31 0 9 23 126 8693.5 76∗ 1 1 9.5 74 4314.2
32 1 13 30 138 9626.1 77∗ 0 15 44 163 13480.9
33 1 9 29 138 10178.7 78∗ 0 11 32 140 10583.8
34 1 1 8 76 4134.5 79∗ 1 0 3 52 2121
35 0 15 42 165 13019.5 80∗ 0 11 29 141 10135.3
36 1 15 40 151 12297.1 81∗ 0 3 15 94 6074.9
37 1 1 9 80 4078.4 82∗ 0 13 44 140 13020.3
38 1 7 22 123 8651.1 83∗ 1 5 15.5 105 6406.5
39 0 1 9.5 77 4246.1 84∗ 1 9 22 126 8267
40 1 7 25 125 8754.4 85∗ 0 15 40 159.5 12769.7
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Table 1. (Continued).

Body Body
No. Sex Age Weight Height Surface No. Sex Age Weight Height Surface

(year) (kg) (cm) Area (year) (kg) (cm) Area
(cm2) (cm2)

41 1 13 36 143 11282.4 86∗ 1 1 9.5 76 3845.9
42 1 3 15 94 6101.6 87∗ 0 13 32 144 10822.1
43 0 0 3 51 1850.3 88∗ 1 13 40 151 12519.9
44 0 1 9 74 3358.5 89∗ 0 9 22 124 8586.1
45 0 1 7.5 73 3809.7 90∗ 1 11 31 135 10120.6

Note: The sign ∗ denote predicted sample.

17 0 7 21 123 7958.8 62 1 11 29.5 134.5 9970.5
18 1 11 31 139 10580.8 63 0 5 15 101 6225.7
19 1 7 24.5 122.5 8756.1 64 0 3 13 91 5601.7
20 1 11 26 133 9573 65 0 5 15 98 6163.7
21 0 9 24.5 130 9028 66 1 15 45 157 13426.7
22 1 9 25 124 8854.5 67 1 7 21 120 8249.2
23 1 0 2.25 50.5 1928.4 68 0 9 23 127 8875.8
24 0 11 27 129 9203.1 69 0 7 17 104 6873.5
25 0 0 2.25 53 2200.2 70 1 15 43.5 150 13082.8
26 0 5 16 105 6785.1 71* 1 15 50 168 14832
27 0 9 30 133 10120.8 72* 0 7 18 114 7071.8
28 0 13 34 148 11397.3 73* 1 3 14 97 6013.6
29 1 3 16 99 6410.6 74* 1 7 20 119 7876.4
30 1 3 11 92 5283.3 75* 0 0 3 54 2117.3
31 0 9 23 126 8693.5 76* 1 1 9.5 74 4314.2
32 1 13 30 138 9626.1 77* 0 15 44 163 13480.9
33 1 9 29 138 10178.7 78* 0 11 32 140 10583.8
34 1 1 8 76 4134.5 79* 1 0 3 52 2121
35 0 15 42 165 13019.5 80* 0 11 29 141 10135.3
36 1 15 40 151 12297.1 81* 0 3 15 94 6074.9
37 1 1 9 80 4078.4 82* 0 13 44 140 13020.3
38 1 7 22 123 8651.1 83* 1 5 15.5 105 6406.5
39 0 1 9.5 77 4246.1 84* 1 9 22 126 8267
40 1 7 25 125 8754.4 85* 0 15 40 159.5 12769.7
41 1 13 36 143 11282.4 86* 1 1 9.5 76 3845.9
42 1 3 15 94 6101.6 87* 0 13 32 144 10822.1
43 0 0 3 51 1850.3 88* 1 13 40 151 12519.9
44 0 1 9 74 3358.5 89* 0 9 22 124 8586.1
45 0 1 7.5 73 3809.7 90* 1 11 31 135 10120.6

Note: The sign * denote predicted sample.

Figure 5 is an editor window of DPS system. The format of data is inputted as the
following.

Figure 5    Diagram of the data editor window for BP neural network

After launching the learning procedure of neural network, a window similar to Figure 5 will
Fig. 5. Diagram of the data editor window for BP neural network.

Figure 5 is an editor window of DPS system. The format of data is

inputted as the following.

After launching the learning procedure of neural network, a window

similar to Fig. 5 will be displayed. And then assign the parameter of net-

work: Units in input layer is 4, hidden layer has 2 layers, optimum learning

speed is 0.1, dynamic coefficient is 0.6, the coefficient of Sigmoid function

is 0.9, error tolerance is 0.00001, maximum times of iteration are 2000, and

the selection of data transformation is normalization.

Then press the “OK” button. Then we set 5 to the units of the first

hidden layer and set 3 to the units of second hidden layer. After 2000
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iterations, the error is 0.00000170. The weights of neutron in output layer

is shown below:

Weights matrix of units in the first hidden layer

0.597230 −0.824710 0.566580 −1.065810 0.051900

0.750700 −0.151260 0.172180 −0.369140 −0.139280

−0.715220 2.044800 0.194420 −0.869060 −2.243410

−2.33773 −0.07406 1.46518 −0.12269 1.168

Weights matrix of units in the second hidden layer

−0.507940 −4.616450 3.675080

−0.928980 1.937520 −1.824980

−0.268910 0.21253 −3.046950

−0.708560 −4.81552 2.276470

−0.08934 −4.92864 −0.5283

Weights matrix of units in the output layer

1.12130

7.20956

−5.5911

Table 2 compared the predicted values with the observed values of the

body surface area. And these predicted values from No. 71 to No. 90, used

as predicted sample, are very close to the observed values. So the facts

illustrate that the neural network has favorable abilities in model fitting

and predicting.
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Table 2. The predicted values and the observed values of neural network.

No. Predicte Observed No. Predicted Observed No. Predicted Observed
d Value Value Value Value Value Value

1 10226.87 10072.9 31 8511.77 8693.5 61 3793.63 3934
2 6370.82 6189 32 10085.21 9626.1 62 10024.22 9970.5
3 2076.073 1906.2 33 10138.25 10178.7 63 6370.82 6225.7
4 10320.32 10290.6 34 3896.33 4134.5 64 5528.03 5601.7
5 12589.19 13221.6 35 12830.50 13019.5 65 6183.77 6163.7
6 9544.59 9654.5 36 12484.89 12297.1 66 13052.96 13426.7
7 6651.57 6768.2 37 4353.68 4078.4 67 8072.70 8249.2
8 6510.22 6194.1 38 8353.89 8651.1 68 8536.07 8875.8
9 6034.13 5830.2 39 4053.10 4246.1 69 6733.68 6873.5

10 11881.13 11759 40 8993.87 8754.4 70 12893.16 13082.8
11 5461.66 5299.4 41 11713.91 11282.4 71∗ 13282.39 14832
12 2166.992 2094.5 42 6090.36 6101.6 72∗ 7358.28 7071.8
13 7748.67 7490.8 43 2082.186 1850.3 73∗ 6173.54 6013.6
14 9342.00 9521.7 44 3746.90 3358.5 74∗ 7875.99 7876.4
15 2275.284 2446.2 45 3485.76 3809.7 75∗ 2163.63 2117.3
16 2082.186 1632.5 46 12914.47 12998.7 76∗ 3909.322 4314.2
17 8109.89 7958.8 47 9703.54 9569.1 77∗ 13002.22 13480.9
18 10528.90 10580.8 48 5387.18 5358.4 78∗ 10854.05 10583.8
19 8803.51 8756.1 49 12658.19 12627.4 79∗ 2213.59 2121
20 9157.74 9573 50 6306.22 6364.5 80∗ 10094.41 10135.3
21 8894.74 9028 51 4353.68 4380.8 81∗ 6026.73 6074.9
22 8797.66 8854.5 52 7228.11 7256.4 82∗ 12950.38 13020.3
23 2145.221 1928.4 53 5457.31 5291.5 83∗ 6703.66 6406.5
24 9414.36 9203.1 54 2386.589 2506.7 84∗ 8315.04 8267
25 2104.641 2200.2 55 4120.19 4180.4 85∗ 12601.92 12769.7
26 6732.92 6785.1 56 8871.79 8813.7 86∗ 4075.91 3845.9
27 10243.62 10120.8 57 11159.89 11055.4 87∗ 10903.51 10822.1
28 11424.97 11397.3 58 6947.78 6988 88∗ 12564.37 12519.9
29 6584.85 6410.6 59 9869.52 9969.8 89∗ 8277.76 8586.1
30 5395.49 5283.3 60 7658.39 7432.8 90∗ 10423.74 10120.6

Note: The sign ∗ denote predicted sample.

5. ANNs Based on Genetic Algorithm

Genetic Algorithm (GA), firstly proposed in 1975 by Holland in Michigan

University, USA, is inspired by natural selection of Darwinism and the

genetics machine. As a brand-new global optimization technique, the al-

gorithm uses the population evolution principles to continuously optimize

the prediction weights and eventually finds the optimal or nearly optimal

solutions. Because it is simple, universal, robust and applicable to parallel

computing, this method is effectively used in a wide variety of fields, such

as computer, dispatch optimization, transport problems and constitution

optimizations etc.
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Fig. 6. The conjunction of GA and ANN.

GA, instead of many traditional methods, has been increasingly applied

in ANNs design in the learning steps. The conjunction of GA and ANNs,

showed below in Fig. 6, will be applied to the evaluation of crops in current

research.

5.1. Value encoding GA oriented to learning of

weights in ANN

5.1.1. Encoding

The procedure of weight learning in neural network is a continuously

complicated optimization problem of parameters. Binary encoding gives

too many possible chromosomes even with a small numbers of alleles. On

the other hand, this encoding is often not natural for many problems and

sometimes corrections must be made after crossover and/or mutation. By

this method, the change of weights will step forward so as to influence the

precision of learning in neural network. Therefore value encoding is adopted

in current study.

5.1.2. Fitness function

The weights of chromosomes are allocated to ANN, and the learning data

sets are served as input/output. Then inverse mean squared error, coming

out after ANN computing, is defined as fitness function:

f = 1

/

n

∑

i=1

e

2

i

.
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5.1.3. Weights initialization

Against that in ordinary BP algorithms performing with the uniform

distribution from 0.0 to 1.0, the initial weights of neural network are

obtained in accordance with the distribution of e

−|γ|, supported by

enormous known trials, because all possible solution can be run around.

As a result, the absolute values of weights are relatively small after neural

network converges.

5.1.4. Genetic operator

Although genetic operators are different from various application circum-

stances, the weight crossover and weight mutation are two most important

operators.

5.1.5. Selection

The selection probability of each individual is determined not by means

of proportion, but by an elite ratio S, a measure of the surviving ratio of

offspring. This can be written as:

P2 = P1 · S

P3 = P2 · S

...

where P1, P2, P3, . . . represent the individual probabilities of various fitness

functions: First-rate, second-rate, third-rate and so on.

5.2. The conjunction of GA and ANN

There is a 3-layer BP neural network with one input layer, one output layer

and one hidden layer. Now first, using training sample A
k

and expected

output C
k
(k = 1, 2, . . . , m), we calculate the stimuli values from the input

layer to the hidden layer by formula

b
i
= f

(

n

∑

h=1

a
h
V

hi
+ θ

i

)

,

where i = 1, 2, . . . , p, the units in output layer are a
h
, the connection weights

from input layer to hidden layer are V
hi

, the thresholds of units in hidden
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layer are θ
i
. The values of a

h
, V

hi
, θ

i
are determined by the probability

distributions, e

−|γ|. The stimuli algorithm is a logistic function:

f(x) = 1/(1 + e

−x) . (3)

And then using formula (3) and (4), we compute the stimuli values of units

in the output layer:

C
j

= f

(

p

∑

i=1

W
ij

b
i
+ γ

j

)

.

where j = 1, 2, . . . , q, the connection weights from hidden layer to output

layer are W
ij

, the thresholds of units in the output layer are γ
j
. And also

the values of W
ij

, γ
j

are determined by the probability distribution, e

−|γ|.

The method for calculating normalized error of output layer is given in (5):

d
j
C

j
(1− C

j
)(Ck

j

− C
j
) , (4)

where the expected value of unit j in output layer is C

k

j

.

Finally, compute the error of units in hidden layer compared with

each d
j

e
i
= b

i
(1− b

i
)

q

∑

j=1

W
ij

d
j
.

On the basis of abiding on the above-mentioned steps and recombining

crossover and mutation, we modulate the hidden-layer-to-output-layer con-

nection weights and the thresholds of units in the output layer following

the adjustment of the input-layer-to-hidden-layer connection weights and

the thresholds of units in hidden layer. When the error between expected

and observed outcomes converge to the pre-determined error tolerance, the

learning of neural network stops.

6. Future Research Trends

Because the intelligent computing techniques, such as ANN, succeed in

many applications, they obtain considerate attention and play important

role in magnitude of research fields. As a popular utility, should become

more matured in the future. But in terms of intelligent computing itself

and statistics, several outstanding obstacles, which be urgently solved in

this field are:

(1) It is known that AI still does not possess multitude inherent characte-

ristics of brain, such as tolerance and robustness. Although ANNs have
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solved some problems in AI, their theories are not perfect in and are still

in their infancy. Moreover, AI and ANN may be completely different

realizations of the natural principles on which the brain is based. So a

number of mathematical principles should been developed right now.

But this is ignored in lots of standard textbooks and reviews. Re-

searchers should pay more attention to studying existing theories and

to establishing mathematical foundations. To avoid losing in “forest”

of biological mechanisms, the nature of AI and ANN theories should be

figured out. As there have been a multitude materials and experiences,

it is time to replace many seemly faultless algorithms, which are full

with analogues and metaphors, with the specifically objective methods

and theories of quantification.

(2) It will take longer time to reveal and understand the intelligent mech-

anisms of human being. These biological discoveries are increasingly

considered as a way to open up the scopes of AI and ANN. Once biology,

neurology, genetics make break-through, AI and ANN can simulate

high-level intelligent mechanisms to solve some unsolvable problem

encountered today. Furthermore, they also urge biologic researches to

unveil more sealed puzzle in intelligence. Although AI and ANN are

gray-box algorithms and approximately correspond to intelligence of

human being, they can provide some useful clues and foundations for

further research. While verifying rationality of previous models, the

methodology of AI and ANN, how to construct more sophisticated

model, become more individualistic and explicit.

(3) Although AI and ANN have developed for near 50 years, their termino-

logy is not standardized by any cases. Especially as to random system,

most networks completely conceal or rigidly utilize the statistics. In

the words of Anderson, Pellionisz and Rosenfeld22: Neural networks

are statistics for amateurs. Most statisticians still soberly stand by

the development of ANNs and will not to accept it in a short time

because ANNs are quite imperfect compared with statistics. They,

especially in statistical applications, are reluctant to waste valuable

data and time in automatic processing of computer. However, along

with maturity of MCMC theory and Gibbs sampling and the increas-

ing Interactions between Frequency School and Bayesian School, the

ANN based on Bayesian theory is growing rapidly. All the advantages

of ANN are evaluated empirically based on practical applications rather

than in theoretical comparisons with statistic methods. The impact of

ANNs on the theory and application of statistics is rather obscure at



July 9, 2003 10:17 WSPC/Advanced Medical Statistics chap29

Introduction to Artificial Neural Networks 1089

this stage. At present, as a system method between gray-box and black-

box, we cannot evaluate ANNs advantages in generalized range. So how

to combine ANN with statistics may be a feasible approach to get out of

current dilemma. Statistician should pay more attention to the aspects

of AI and ANN.
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158, 211

WHOQOL, 196

quantitative trait locus (QTL), 607

quantitative ultrasound (QUS), 104,

116

quasi-confidence interval, 167

quasi-likelihood method, 516, 842

radiology, 101

random effect model, 59, 251, 687,

692, 695, 841

random effects, 844

random variation, 319

randomization, 11, 447, 526, 537

randomized block design, 47

randomized experiment, 784

range, 436

ratios, 321

reader agreement, 483

receiver operating characteristic

(ROC) analyses, 29, 34, 486, 886

receptor, 409

recombination fraction, 585

recurrent events, 823

recursive partitioning, 1033

reference concentration (RfC), 619

reference dose (RfD), 619

reference prior, 954, 980

relapse-free survival (RFS), 970

relative risk, 237, 247

reliability, 223, 225

repeated measures, 322

reproductive and developmental

toxicological data, 624

reproductive studies, 509

responses, 1043

restricted iterative generalized least

squares (RIGLS), 78

restricted maximum likelihood

(REML), 253, 696, 847

reverse transcriptase inhibitor, 663

reversible jump MCMC samplers,

1011

risk assessment, 495

risk differences, 247

robust method, 284

rosiglitazone maleate tablets, 48

ruggedness, 436
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safety, 444, 524

safety and efficacy, 435

sample coverage, 724

sample size, 92, 112, 182, 447, 473

sample size and cost effect, 92

sample size re-estimation, 562

sample surveys, 685

sampling frame, 686

sampling plan, 686

sampling units, 686

SAS, 291

Savage-Dicky ratio, 976

scintigraph, 26

seasonality, 333, 336, 357

second phase slopes, 462

secondary endpoints, 546

segmentation, 392

segregation analysis of dominant loci,

592

segregation analysis of recessive loci,

594

segregation ratio, 589

semi-Markov process, 1005

semi-parametric, 324

semiparametric accelerated failure

time model, 826

semi-parametric cure rate model,

967

semiparametric model, 842

sensitivity, 22, 280, 486, 746

sensitivity analysis, 164

sensitizing tests, 122

sequential

group sequential procedure, 560

sequential clinical decision rule, 561

sequential decision structure, 561

serial correlations, 844

short-term memory, 1004

sib-pair method, 300

Sickness Impact Profile (SIP), 198

signal-noise ratio (SNR), 386

significance level, 446

simple random sampling, 687

simple random walk, 992

Simpsons Paradox, 780, 781

simultaneous bands, 869

single ascertainment, 595

single blind, 529

single-photon computed tomography,

379

small area estimation, 692

smooth nonparametric (SNP) model,

423

smoothing estimators, 850

sojourn time of state, 997

source language, 205

Spearman-Brown prophey formula,

227

specificity, 22, 280, 436, 486

SPECT, 381

spectral analysis, 357, 359

spectral function, 362

spline

B-spline, 864

spline approach, 896

spline smoothing estimator, 326

split-halves method, 227

SROC curve, SROC regression

model, 286, 549

standardized means differences, 249

standardized validity coefficient, 222

stationarity and invertibility, 353

stationary distribution, 995

stationary process, 340

statistical anisotropic diffusion, 386

statistical calibration, 978

statistical process control (SPC), 121

stochastic process, 333, 992

strata, 687

stratified cluster sampling, 62

stratified random sampling, 687

strong ingorable, ignorability, 785,

786

strongly stationary process, 340

structural nonparametric models, 850

structural nonparametric regression

models, 843

study design, 474

surrogate efficacy, 523

surrogate endpoint, 524

Survey of Asset and Health Dynamics

of the Oldest Old (AHEAD), 685
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survival function, 816

susceptible-infection-removal (SIR),

653

symmetric beta family, 890

synthetic estimator, 694

target language, 205

temporal domain, 383

terminal nodes, 1035

test for

stationarity, 341

overfitting, 353

of hypotheses, 16

CER, 181

ICER, 179

homogeneity, 253

test sample, 1034

test-retest method, 225

threshold autoregression model, 366

thrombolytic agents, 236

time-dependent covariates, 827, 908

time-invariant, 861

time-reversible, 1007

time-to-event outcome, 815

time-to-virologic-failure endpoints,

667

tissue time active curve (TAC), 384

topotecan in Solid Tumors, 324

toxicology, 48, 410, 495

t-PA, 558

tracer kinetic techniques, 382

transition intensity, 997

transition probability, 992

transmission/disequilibrium test

(TDT), 609

treatment of congestive heart failure,

552

Tree

Classification and Regression Tree

(CART), 1033

tree node, 1035

tree pruning, 1038

tree splitting, 1036

trend

trend assessment interval (TAI),

115

trend assessment margin (TAM),

115

trend test, 333, 502

two-phase sampling, 688

two-phase shelf-life estimation, 459

two-stage model, 752

two-step smoothing method, 860

type I error, 446

types of data, 320

ultrasound, 104, 116, 379, 380

uniform irrelevant factor, 796

unique validity variance, 223

unstandardized coefficient linking,

222

unstandardized validity coefficient,

222

urokinase, 50

vaccine

attack rate, 670

vaccine efficacy, 670

vaccine studies, 669

validity, 215, 221

variability, 323

varying-coefficient models, 843, 912

nonparametric and semiparametric

varying-coefficient models, 863

VASOTEC, 552

volume of distribution, 413

Wald test, 517

weak stationary, 341

weighting type estimator, 689

within-node impurity, 1042

World Health Organization (WHO),

196, 742

xeloda, 571

x-rays, 380

x-ray mammography (MG), 381

x-ray transmission imaging, 379

Yule process, 1022

non-homogeneous Yule process,

1024

Yule-Walker estimation, 369
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