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Series Introduction

The primary objectives of the Biostatistics Book Series are to provide
useful reference books for researchers and scientists in academia, in-
dustry, and government, and also to offer textbooks for undergraduate
and/or graduate courses in the area of biostatistics. This book series will
provide comprehensive and unified presentations of statistical designs
and analyses of important applications in biostatistics, such as those in
biopharmaceuticals. A well-balanced summary will be given of current
and recently developed statistical methods and interpretations for both
statisticians and researchers/scientists with minimal statistical knowl-
edge who are engaged in the field of applied biostatistics. The series is
committed to providing easy-to-understand, state-of-the-art references
and textbooks. In each volume, statistical concepts and methodologies
will be illustrated through real-world examples.

On March 16, 2004, the FDA released a report addressing the recent
slowdown in innovative medical therapies being submitted to the FDA
for approval, “Innovation/Stagnation: Challenge and Opportunity on
the Critical Path to New Medical Products.” The report describes the ur-
gent need to modernize the medical product development process — the
Critical Path — to make product development more predictable and less
costly. Through this initiative, the FDA took the lead in the development
of a national Critical Path Opportunities List, to bring concrete focus to
these tasks. As a result, the FDA released a Critical Path Opportuni-
ties List that outlines 76 initial projects to bridge the gap between the
quick pace of new biomedical discoveries and the slower pace at which
those discoveries are currently developed into therapies two years later.
The Critical Path Opportunities List consists of six broad topic areas:
(i) development of biomarkers, (ii) clinical trial designs, (iii) bioinformat-
ics, (iv) manufacturing, (v) public health needs, and (iv) pediatrics. As
indicated in the Critical Path Opportunities Report, biomarker develop-
ment and streamlining clinical trials are the two most important areas
for improving medical product development. Streamlining clinical
trials calls for advancing innovative trial designs such as adaptive de-
signs to improve innovation in clinical development. These 76 initial
projects are the most pressing scientific and/or technical hurdles caus-
ing major delays and other problems in the drug, device, and/or biologic



development process. Among these six topics, biomarker development
and streamlining clinical trials are the two most important areas for
improving medical product development.

This volume provides useful approaches for implementation of adap-
tive design methods to clinical trials to pharmaceutical research and
development. It covers statistical methods for various adaptive designs
such as adaptive group sequential design, N-adjustable design, adap-
tive dose-escalation design, adaptive seamless phase II/III trial design
(drop-the-losers design), adaptive randomization design, biomarker-
adaptive design, adaptive treatment-switching design, adaptive-
hypotheses design, and any combinations of the above designs. It will
be beneficial to biostatisticians, medical researchers, pharmaceutical
scientists, and reviewers in regulatory agencies who are engaged in the
areas of pharmaceutical research and development.

Shein-Chung Chow



Preface

In recent years, the use of adaptive design methods in clinical trials
has attracted much attention from clinical investigators and biostatis-
ticians. Adaptations (i.e., modifications or changes) made to the trial
and/or statistical procedures of on-going clinical trials based on accrued
data have been in practice for years in clinical research and develop-
ment. In the past several decades, we have adopted statistical proce-
dures in the literature and applied them directly to the design of clinical
trials originally planned by ignoring the fact that adaptations, modifi-
cations, and/or changes have been made to the trials. As pointed out
by the United States Food and Drug Administration (FDA), these pro-
cedures, however, may not be motivated by best clinical trial practice.
Consequently, they may not be the best tools to handle certain situa-
tions. Adaptive design methods in clinical research and development
are attractive to clinical scientists and researchers due to the following
reasons. First, they do reflect medical practice in the real world. Second,
they are ethical with respect to both efficacy and safety (toxicity) of the
test treatment under investigation. Third, they are not only flexible but
also efficient in clinical development, especially for early phase clinical
development. However, there are issues regarding the adjustments of
treatment estimations and p-values. In addition, it is also a concern
that the use of adaptive design methods in a clinical trial may have led
to a totally different trial that is unable to address the scientific/medical
questions the trial is intended to answer.

In practice, there existed no universal definition of adaptive design
methods in clinical research until recently, when The Pharmaceutical
Research and Manufacturers of America (PhRMA) gave a formal defini-
tion. Most literature focuses on adaptive randomization with respect to
covariate, treatment, and/or clinical response; adaptive group sequen-
tial design for interim analysis; and sample size re-assessment. In this
book, our definition is broader. Adaptive design methods include any
adaptations, modifications, or changes of trial and/or statistical proce-
dures that are made during the conduct of the trials. Although adaptive
design methods are flexible and useful in clinical research, little or no
regulatory guidances/guidelines are available. The purpose of this book
is to provide a comprehensive and unified presentation of the principles



and methodologies in adaptive design and analysis with respect to adap-
tations made to trial and/or statistical procedures based on accrued data
of on-going clinical trials. In addition, this book is intended to give a
well-balanced summary of current regulatory perspectives and recently
developed statistical methods in this area. It is our goal to provide a com-
plete, comprehensive, and updated reference and textbook in the area
of adaptive design and analysis in clinical research and development.

Chapter 1 provides an introduction to basic concepts regarding the
use of adaptive design methods in clinical trials and some statistical
considerations of adaptive design methods. Chapter 2 focuses on the
impact on target patient populations as the result of protocol amend-
ments. Also included in this chapter is the generalization of statistical
inference, which is drawn based on data collected from the actual pa-
tient population as the result of protocol amendments, to the originally
planned target patient population. Several adaptive randomization pro-
cedures that are commonly employed in clinical trials are reviewed in
Chapter 3. Chapter 4 studies the use of adaptive design methods in
the case where hypotheses are modified during the conduct of clinical
trials. Chapter 5 provides an overall review of adaptive design methods
for dose selection, especially in dose finding and dose response relation-
ship studies in early clinical development. Chapter 6 introduces the
commonly used adaptive group sequential design methods in clinical
trials. Blinded procedures for sample size re-estimation are given in
Chapter 7. Statistical tests for seamless phase II/III adaptive designs
and statistical inference for switching from one treatment to another
adaptively, and the corresponding practical issues that may arise are
studied in Chapter 8 and Chapter 9, respectively. Bayesian approaches
for the use of adaptive design methods in clinical trials are outlined in
Chapter 10. Chapter 11 provides an introduction to the methodology of
clinical trial simulation for evaluation of the performance of the adap-
tive design methods under various adaptive designs that are commonly
used in clinical development. Case studies regarding the implementa-
tion of adaptive group sequential design, adaptive dose-escalation de-
sign, and adaptive seamless phase II/III trial design in clinical trials
are discussed in Chapter 12.

From Taylor & Francis, we would like to thank David Grubbs and
Dr. Sunil Nair for providing us the opportunity to work on this book.
We would like to thank colleagues from the Department of Biostatistics
and Bioinformatics and Duke Clinical Research Institute (DCRI) of
Duke University School of Medicine and Millennium Pharmaceuticals,
Inc., for their support during the preparation of this book. We wish to
express our gratitude to the following individuals for their encourage-
ment and support: Roberts Califf, M.D. and John Hamilton, M.D. of



Duke Clinical Research Institute and Duke University Medical Center;
Nancy Simonian, M.D., Jane Porter, M.S., Andy Boral, M.D. and Jim
Gilbert, M.D. of Millennium Pharmaceuticals, Inc.; Greg Campbell,
Ph.D. of the U.S. Food and Drug Administration; and many friends from
academia, the pharmaceutical industry, and regulatory agencies.

Finally, the views expressed are those of the authors and not nec-
essarily those of Duke University School of Medicine and Millennium
Pharmaceuticals, Inc. We are solely responsible for the contents and
errors of this edition. Any comments and suggestions will be very much
appreciated.

Shein-Chung Chow, Ph.D.
Duke University School of Medicine, Durham, NC

Mark Chang, Ph.D.
Millennium Pharmaceuticals, Inc., Cambridge, MA
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CHAPTER 1

Introduction

In clinical research, the ultimate goal of a clinical trial is to evaluate
the effect (e.g., efficacy and safety) of a test treatment as compared to a
control (e.g., a placebo control, a standard therapy, or an active control
agent). To ensure the success of a clinical trial, a well-designed study
protocol is essential. A protocol is a plan that details how a clinical trial
is to be carried out and how the data are to be collected and analyzed.
It is an extremely critical and the most important document in clinical
trials, since it ensures the quality and integrity of the clinical investi-
gation in terms of its planning, execution, conduct, and the analysis of
the data of clinical trials. During the conduct of a clinical trial, adher-
ence to the protocol is crucial. Any protocol deviations and/or violations
may introduce bias and variation to the data collected from the trial.
Consequently, the conclusion drawn based on the analysis results of
the data may not be reliable and hence may be biased or misleading.
For marketing approval of a new drug product, the United States Food
and Drug Administration (FDA) requires that at least two adequate
and well-controlled clinical trials be conducted to provide substantial
evidence regarding the effectiveness of the drug product under inves-
tigation (FDA, 1988). However, under certain circumstances, the FDA
Modernization Act (FDAMA) of 1997 includes a provision (Section 115
of FDAMA) to allow data from a single adequate and well-controlled
clinical trial to establish effectiveness for risk/benefit assessment of
drug and biological candidates for approval. The FDA indicates that
substantial evidence regarding the effectiveness and safety of the drug
product under investigation can only be provided through the conduct
of adequate and well-controlled clinical studies. According to the FDA
1988 guideline for Format and Content of the Clinical and Statistical
Sections of New Drug Applications, an adequate and well-controlled
study is defined as a study that meets the characteristics of the follow-
ing: (i) objectives, (ii) methods of analysis, (iii) design, (iv) selection of
subjects, (v) assignment of subjects, (vi) participants of studies, (vii) as-
sessment of responses, and (viii) assessment of effect. In the study pro-
tocol, it is essential to clearly state the study objectives of the study.
Specific hypotheses that reflect the study objectives should be provided
in the study protocol. The study design must be valid in order to provide
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a fair and unbiased assessment of the treatment effect as compared to
a control. Target patient population should be defined through the in-
clusion/exclusion criteria to assure the disease conditions under study.
Randomization procedures must be employed to minimize potential bias
and to ensure the comparability between treatment groups. Criteria for
assessment of the response should be pre-defined and reliable. Appro-
priate statistical methods should be employed for assessment of the
effect. Procedures such as blinding for minimization of bias should be
employed to maintain the validity and integrity of the trial.

In clinical trials, it is not uncommon to adjust trial and/or statisti-
cal methods at the planning stage and during the conduct of clinical
trials. For example, at the planning stage of a clinical trial, as an alter-
native to the standard randomization procedure, an adaptive random-
ization procedure based on treatment response may be considered for
treatment allocation. During the conduct of a clinical trial, some adapta-
tions (i.e., modifications or changes) to trial and/or statistical procedures
may be made based on accrued data. Typical examples for adaptations
of trial and/or statistical procedures of on-going clinical trials include,
but are not limited to, the modification of inclusion/exclusion criteria,
the adjustment of study dose or regimen, the extension of treatment
duration, changes in study endpoints, and modification in study design
such as group sequential design and/or multiple-stage flexible designs
(Table 1.1). Adaptations to trial and/or statistical procedures of on-going
clinical trials will certainly have an immediate impact on the target pop-
ulation and, consequently, statistical inference on treatment effect of
the target patient population. In practice, adaptations or modifications
to trial and/or statistical procedures of on-going clinical trials are nec-
essary, which not only reflect real medical practice on the actual patient

Table 1.1 Types of Adaptation in Clinical Trials

Adaptation Examples

Prospective (by design) Interim analysis
Stop trial early due to safety, futility/efficacy
Sample size re-estimation, etc.

On-going (ad hoc) Inclusion/exclusion criteria
Dose or dose regimen
Treatment duration, etc.

Retrospective∗ Study endpoint
Switch from superiority to non-inferiority, etc.

∗Adaptation at the end of the study prior to database lock or unblinding.
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population with the disease under study, but also increase the probabil-
ity of success for identifying the clinical benefit of the treatment under
investigation.

The remainder of this chapter is organized as follows. In the next
section, a definition regarding so-called adaptive design is given.
Section 1.2 provides regulatory perspectives regarding the use of adap-
tive design methods in clinical research and development. Sections 1.3
and 1.4 describe the impact of an adaptive design on the target
patient population and statistical inference following adaptations of
trial and/or statistical procedures, respectively. Practical issues that
are commonly encountered when applying adaptive design methods in
clinical research and development are briefly outlined in Section 1.5.
Section 1.6 presents the aims and scope of the book.

1.1 What Is Adaptive Design

On March 16, 2006, the FDA released a Critical Path Opportunities
List that outlines 76 initial projects to bridge the gap between the quick
pace of new biomedical discoveries and the slower pace at which those
discoveries are currently developed into therapies. (See, e.g., http://www.
fda.gov/oc/initiatives/criticalpath.) The Critical Path Opportunities List
consists of six broad topic areas of (i) development of biomarkers, (ii) clin-
ical trial designs, (iii) bioinformatics, (iv) manufacturing, (v) public
health needs, and (iv) pediatrics. As indicated in the Critical Path
Opportunities Report, biomarker development and streamlining clini-
cal trials are the two most important areas for improving medical prod-
uct development. The streamlining clinical trials call for advancing in-
novative trial designs such as adaptive designs to improve innovation
in clinical development.

In clinical investigation of treatment regimens, it is not uncommon
to consider adaptations (i.e., modifications or changes) in early phase
clinical trials before initiation of large-scale confirmatory phase III tri-
als. We will refer to the application of adaptations to clinical trials as
adaptive design methods in clinical trials. The adaptive design meth-
ods are usually developed based on observed treatment effects. To allow
wider flexibility, adaptations in clinical investigation of treatment reg-
imen may include changes of sample size, inclusion/exclusion criteria,
study dose, study endpoints, and methods for analysis (Liu, Proschan,
and Pledger, 2002). Along this line, the PhRMA Working Group de-
fines an adaptive design as a clinical study design that uses accumu-
lating data to decide on how to modify aspects of the study as it contin-
ues, without undermining the validity and integrity of the trial (Gallo
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et al., 2006). As indicated by the PhRMA Working Group, the adap-
tation is a design feature aimed to enhance the trial, not a remedy
for inadequate planning. In other words, changes should be made by
design and not on an ad hoc basis. By design changes, however, do not
reflect real clinical practice. In addition, they do not allow flexibility.
As a result, in this book we will refer to an adaptive design of a clin-
ical trial as a design that allows adaptations or modifications to some
aspects (e.g., trial and/or statistical procedures) of the trial after its initi-
ation without undermining the validity and integrity of the trial (Chow,
Chang, and Pong, 2005). Adaptations or modifications of on-going clini-
cal trials that are commonly made to trial procedures include eligibility
criteria, study dose or regimen, treatment duration, study endpoints,
laboratory testing procedures, diagnostic procedures, criteria for evalu-
ability, assessment of clinical responses, deletion/addition of treatment
groups, and safety parameters. In practice, during the conduct of the
clinical trial, statistical procedures including randomization procedure
in treatment allocation, study objectives/hypotheses, sample size re-
assessment, study design, data monitoring and interim analysis pro-
cedure, statistical analysis plan, and/or methods for data analysis are
often adjusted in order to increase the probability of success of the trial
by controlling the pre-specified type I error. Note that in many cases,
an adaptive design is also known as a flexible design (EMEA, 2002).

Adaptive design methods are very attractive to clinical researchers
and/or sponsors due to their flexibility, especially when there are pri-
ority changes for budget/resources and timeline constraints, scientific/
statistical justifications for study validity and integrity, medical con-
siderations for safety, regulatory concerns for review/approval, and/or
business strategies for go/no-go decisions. However, there is little or
no information available in regulatory requirements as to what level
of flexibility in modifications of trial and/or statistical procedures of
on-going clinical trials would be acceptable. It is a concern that the
application of adaptive design methods may result in a totally differ-
ent clinical trial that is unable to address the scientific/medical ques-
tions/hypotheses the clinical trial is intended to answer. In addition,
an adaptive design suffers from the following disadvantages. First, it
may result in a major difference between the actual patient population
as the result of adaptations made to the trial and/or statistical proce-
dures and the (original) target patient population. The actual patient
population under study could be a moving target depending upon the
frequency and extent of modifications (flexibility) made to study param-
eters. Second, statistical inferences such as confidence interval and/or
p-values on the treatment effect of the test treatment under study may
not be reliable. Consequently, the observed clinical results may not be
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reproducible. In recent years, the use of adaptive design methods in
clinical trials has attracted much attention from clinical scientists and
biostatisticians.

In practice, adaptation or modification made to the trial and/or statis-
tical procedures during the conduct of a clinical trial based on accrued
data is usually recommended by the investigator, the sponsor, or an
independent datamonitoring committee. Although the adaptation or
modification is flexible and attractive, it may introduce bias and con-
sequently has an impact on statistical inference on the assessment of
treatment effect for the target patient population under study. The com-
plexity could be substantial depending upon the adaptation employed.
Basically, the adaptation employed can be classified into three cate-
gories: prospective (by design) adaptation, concurrent (or on-going ad
hoc) adaptation (by protocol amendment), and retrospective adaptation
(after the end of the conduct of the trial, before database lock and/or un-
blinding). As it can be seen, the on-going ad hoc adaptation has higher
flexibility, while prospective adaptation is less flexible. Both types of
adaptation require careful planning. It should be noted that statistical
methods for certain kinds of adaptation may not be available in the lit-
erature. As a result, some studies with complicated adaptation may be
more successful than others.

Depending upon the types of adaptation or modification made, com-
monly employed adaptive design methods in clinical trials include, but
are not limited to: (i) an adaptive group sequential design, (ii) an
N-adjustable design, (iii) an adaptive seamless phase II/III design, (iv) a
drop-the-loser design, (v) an adaptive randomization design, (vi) an
adaptive dose-escalation design, (vii) a biomarker-adaptive design,
(viii) an adaptive treatment-switching design, (ix) an adaptive-
hypotheses design, and (x) any combinations of the above. An adaptive
group sequential design is an adaptive design that allows for prema-
turely terminating a trial due to safety, efficacy, or futility based on in-
terim analysis results, while an N-adjustable design is referred to as an
adaptive design that allows for sample size adjustment or re-estimation
based on the observed data at interim. A seamless phase II/III adap-
tive trial design refers to a program that addresses within a single
trial objectives that are normally achieved through separate trials in
phases IIb and III (Inoue, Thall, and Berry, 2002; Gallo et al., 2006).
An adaptive seamless phase II/III design would combine two separate
trials (i.e., a phase IIb trial and a phase III trial) into one trial and
would use data from patients enrolled before and after the adapta-
tion in the final analysis (Maca, et al., 2006). A drop-the-loser design
is a multiple-stage adaptive design that allows dropping the inferior
treatment groups. Adaptive randomization design refers to a design
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that allows modification of randomization schedules. Adaptive dose-
escalation design is often used in early phase clinical development to
identify the maximum tolerable dose, which is usually considered the
optimal dose for later phase clinical trials. Biomarker-adaptive design
is a design that allows for adaptations based on the response of biomark-
ers such as genomic markers. Adaptive treatment-switching design is a
design that allows the investigator to switch a patient’s treatment from
an initial assignment to an alternative treatment if there is evidence of
lack of efficacy or safety of the initial treatment. Adaptive-hypotheses
design refers to a design that allows change in hypotheses based on
interim analysis results. Any combinations of the above adaptive de-
signs are usually referred to as multiple adaptive designs. In practice,
depending upon the study objectives of clinical trials, a multiple adap-
tive design with several adaptations may be employed at the same time.
In this case, statistical inference is often difficult if not impossible to ob-
tain. These adaptive designs will be discussed further in later chapters
of this book.

In recent years, the use of these adaptive designs has received much
attention. For example, the Journal of Biopharmaceutical Statistics
(JBS) published a special issue (Volume 15, Number 4) on Adaptive
Design in Clinical Research in 2005 (Pong and Luo, 2005). This special
issue covers many statistical issues related to the use of adaptive design
methods in clinical research (see e.g., Chang and Chow, 2005; Chow,
Chang, and Pong, 2005; Chow and Shao, 2005; Hommel, Lindig, and
Faldum, 2005; Hung et al., 2005; Jennison and Turnbull, 2005; Kelly,
Stallard, and Todd, 2005; Kelly et al., 2005; Li, Shih, and Wang, 2005;
Proschan, 2005; Proschan, Leifer, and Liu, 2005; Wang and Hung, 2005).
The PhRMA Working Group also published an executive summary on
adaptive designs in clinical drug development to facilitate wide usage of
adaptive designs in clinical drug development (Gallo et al., 2006). This
book is intended to address concerns and/or practical issues that may
arise when applying adaptive design methods in clinical trials.

1.2 Regulatory Perspectives

As pointed out by the FDA, modification of the design of an experi-
ment based on accrued data has been in practice for hundreds, if not
thousands, of years in medical research. In the past, we have had a
tendency to adopt statistical procedures in the literature and apply
them directly to the design of clinical trials (Lan, 2002). However, since
these procedures were not motivated by clinical trial practice, they may
not be the best tools to handle certain situations. The impact of any
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adaptations made to trial and/or statistical methods before, during, and
after the conduct of trial could be substantial.

The flexibility in design and analysis of clinical trials in early phases
of the drug development is very attractive to clinical researchers/
scientists and the sponsors. However, its use in late phase II or phase III
clinical investigations has led to regulatory concerns regarding its limi-
tation of interpretation and extrapolation from trial results. As there is
an increasing need for flexibility in design and analysis of clinical trials,
the European Agency for the Evaluation of Medicinal Products (EMEA)
published a concept paper on points to consider on methodological is-
sues in confirmatory clinical trials with flexible design and analysis
plan (EMEA, 2002, 2006). The EMEA’s points to consider discuss pre-
requisites and conditions under which the methods could be acceptable
in confirmatory phase III trials for regulatory decision making. Princi-
pal pre-requisite for all considerations is that methods under investi-
gation can provide correct p-values, unbiased estimates, and confidence
intervals for the treatment comparison(s) in an actual clinical trial. As
a result, the use of an adaptive design not only raises the importance
of well-known problems of studies with interim analyses (e.g., lack of
a sufficient safety database after early termination and over-running),
but also bears new challenges to clinical researchers.

From a regulatory point of view, blinded review of the database at in-
terim analyses is a key issue in adaptive design. During these blinded
reviews, often the statistical analysis plan is largely modified. At the
same time, more study protocols are submitted, where little or no in-
formation on statistical methods is provided and relevant decisions are
deferred to a statistical analysis or even the blinded review, which has
led to a serious regulatory concern regarding the validity and integrity
of the trial. In addition, what is the resultant actual patient population
of the study after the adaptations of the trial procedures, especially
when the inclusion/exclusion criteria are made, is a challenge to the
regulatory review and approval process. A commonly asked question
is whether the adaptive design methods have resulted in a totally dif-
ferent trial with a totally different target patient population. In this
case, is the usual regulatory review and approval process still applica-
ble? However, there is little or no information in regulatory guidances
or guidelines regarding regulatory requirement or perception as to the
degree of flexibility that would be accepted by the regulatory agencies.
In practice, it is suggested that regulatory acceptance should be justi-
fied based on the validity of statistical inference of the target patient
population.

It should be noted that although adaptations of trial and/or statis-
tical procedures are often documented through protocol amendments,
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standard statistical methods may not be appropriate and may lead to in-
valid inference/conclusion regarding the target patient population. As a
result, it is recommended that appropriate adaptive statistical methods
be employed. Although several adaptive design methods for obtaining
valid statistical inferences on treatment effects available in the liter-
ature (see, e.g., Hommel, 2001; Liu, Proschan, and Pledger, 2002) are
useful, they should be performed in a completely objective manner. In
practice, however, it can be very difficult to reach this objectivity in
clinical trials due to external inferences and different interests from
the investigators and sponsors.

As a result, it is strongly recommended that a guidance/guideline for
adaptive design methods be developed by the regulatory authorities
to avoid every intentional or unintentional manipulation of the adap-
tive design methods in clinical trials. The guidance/guideline should
describe in detail not only the standards for use of adaptive design
methods in clinical trials, but also the level of modifications in an adap-
tive design that is acceptable to the regulatory agencies. In addition,
any changes in the process of regulatory review/approval should also
be clearly indicated in such a guidance/guideline. It should be noted that
the adaptive design methods have been used in the review/approval pro-
cess of regulatory submissions for years, though it may not have been
recognized until recently.

1.3 Target Patient Population

In clinical trials, patient populations with certain diseases under study
are usually described by the inclusion/exclusion criteria. Patients who
meet all inclusion criteria and none of the exclusion criteria are quali-
fied for the study. We will refer to this patient population as the target
patient population. For a given study endpoint such as clinical response,
time to disease progression, or survival in the therapeutic area of on-
cology, we may denote the target patient population by (µ,σ ), where µ

is the population mean of the study endpoint and σ denotes the pop-
ulation standard deviation of the study endpoint. For a comparative
clinical trial comparing a test treatment and a control, the effect size of
the test treatment adjusted for standard deviation is defined as

µT − µC

σ
,

where µT and µC are the population means for the test treatment
and the control, respectively. Based on the collected data, statisti-
cal inference such as confidence interval and p-value on the effect
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size of the test treatment can then be made for the target patient
population.

In practice, as indicated earlier, it is not uncommon to modify trial
procedures due to some medical and/or practical considerations dur-
ing the conduct of the trial. Trial procedures of a clinical trial are
referred to as operating procedures, testing procedures, and/or diag-
nostic procedures that are to be employed in the clinical trial. As a
result, trial procedures of a clinical trial include, but are not limited
to, the inclusion/exclusion criteria, the selection of study dose or reg-
imen, treatment duration, laboratory testing, diagnostic procedures,
and criteria for evaluability. In clinical trials, we refer to statistical
procedures of a clinical trial as statistical procedures and/or statistical
models/methods that are employed at planning, execution, and con-
duct of the trial as well as the analysis of the data. Thus, statistical
procedures of a clinical trial include power analysis for sample size
calculation at planning stage, randomization procedure for treatment
allocation prior to treatment, modifications of hypotheses, change in
study endpoint, and sample size re-estimation at interim during the
conduct of the trial. As indicated in the FDA 1988 guideline and the
International Conference on Harmonization (ICH) Good Clinical Prac-
tices (GCP) guideline (FDA, 1988; ICH, 1996), a well-designed protocol
should detail how the clinical trial is to be carried out. Any deviations
from the protocol and/or violations of the protocol will not only dis-
tort the original patient population under study, but will also introduce
bias and variation to the data collected from the trial. Consequently,
conclusions drawn based on statistical inference obtained from the
analysis results of the data may not be applied to the original target
patient population.

In clinical trials, the inclusion/exclusion criteria and study dose or
regimen and/or treatment duration are often modified due to slow
enrollment and/or safety concerns during the conduct of the trial. For
example, at screening, we may disqualify too many patients with strin-
gent inclusion/exclusion criteria. Consequently, the enrollments may be
too slow to meet the timeline of the study. In this case, a typical approach
is to relax the inclusion/exclusion criteria to increase the enrollment.
On the other hand, the investigators may wish to have the flexibility
to adjust the study dose or regimen to achieve optimal clinical benefit
of the test treatment during the trial. The study dose may be reduced
when there are significant toxicities and/or adverse experiences. In ad-
dition, the investigators may wish to extend the treatment duration
to (i) reach best therapeutic effect or (ii) achieve the anticipated event
rate based on accrued data during the conduct of trial. These modifi-
cations of trial procedures are commonly encountered in clinical trials.
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Modifications of trial procedures are usually accomplished through pro-
tocol amendments, which detail rationales for changes and the impact
of the modifications.

Any adaptations made to the trial and/or statistical procedures may
introduce bias and/or variation to the data collected from the trial. Con-
sequently, it may result in a similar but slightly different target patient
population. We will refer to such a patient population as the actual pa-
tient population under study. As mentioned earlier, in practice, it is a
concern whether adaptations made to the trial and/or statistical proce-
dures could lead to a totally different trial with a totally different target
patient population. In addition, it is of interest to determine whether
statistical inference obtained based on clinical data collected from the
actual patient population could be applied to the originally planned tar-
get patient population. These issues will be studied in the next chapter.

1.4 Statistical Inference

As discussed in the previous section, modifications of trial procedures
will certainly introduce bias/variation to the data collected from the
trial. The sources of these biases and variations can be classified into one
of the following four categories: (i) expected and controllable,
(ii) expected but not controllable, (iii) unexpected but controllable, and
(iv) unexpected and not controllable. For example, additional bias/
variation is expected but not controllable when there is a change in
study dose or regimen and/or treatment duration. For changes in labo-
ratory testing procedures and/or diagnostic procedures, bias/variation
is expected but controllable by (i) having experienced technicians to per-
form the tests or (ii) conducting appropriate training for inexperienced
technicians. Bias/variation due to patient non-compliance to trial pro-
cedures is usually unexpected but is controllable by improving the
procedure for patients’ compliance. Additional bias/variation due to un-
expected and uncontrollable sources is usually referred to as the random
error of the trial.

In practice, appropriate statistical procedures should be employed to
identify and eliminate/control these sources of bias/variation whenever
possible. In addition, after the adaptations of the trial procedures, es-
pecially the inclusion/exclusion criteria, the target patient population
has been changed to the actual patient population under study. In this
case, how to generalize the conclusion drawn based on statistical infer-
ence of the treatment effect derived from clinical data observed from
the actual patient population to the original target patient population
is a challenge to clinical scientists. It, however, should be noted that
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although all modifications of trial procedures and/or statistical proce-
dures are documented through protocol amendments, it does not imply
that the collected data are free of bias/variation. Protocol amendments
should not only provide rationales for changes but also detail how the
data are to be collected and analyzed following the adaptations of trial
and/or statistical procedures. In practice, it is not uncommon to ob-
serve the following inconsistencies following major adaptations of trial
and/or statistical procedures of a clinical trial: (i) a right test for wrong
hypotheses, (ii) a wrong test for the right hypotheses, (iii) a wrong test
for wrong hypotheses, and (iv) the right test for the right hypotheses but
insufficient power. Each of these inconsistencies will result in invalid
statistical inferences and conclusions regarding the treatment effect
under investigation.

Flexibility in statistical procedures of a clinical trial is very attractive
to the investigator and/or sponsors. However, it suffers the disadvan-
tage of invalid statistical inference and/or misleading conclusion if the
impact is not carefully managed. Liu, Proschan, and Pledger (2002)
provided a solid theoretical foundation for adaptive design methods in
clinical development under which not only a general method for point
estimation, confidence interval, hypotheses testing, and overall p-value
can be obtained, but also its validity can be rigorously established. How-
ever, they do not take into consideration the fact that the target patient
population has become a moving target patient population as the result
of adaptations made to the trial and/or statistical procedures through
protocol amendments. This issue will be further discussed in the next
chapter.

The ICH GCP guideline suggests that a thoughtful statistical
analysis plan (SAP), which details statistical procedures (including
models/methods), should be employed for data collection and analysis.
Any deviations from the SAP and violations of the SAP could decrease
the reliability of the analysis results, and consequently the conclusion
drawn from these analysis results may not be valid.

In summary, the use of adaptive design methods in clinical trials may
have an impact on the statistical inference on the target patient popula-
tion under study. Statistical inference obtained based on data collected
from the actual patient population as the result of modifications made
to the trial procedures and/or statistical procedures should be adjusted
before it can be applied to the original target patient population.

1.5 Practical Issues

As indicated earlier, the use of adaptive design methods in clinical
trials has received much attention because it allows adaptations of



12 ADAPTIVE DESIGN METHODS IN CLINICAL TRIALS

trial and/or statistical procedures of on-going clinical trials. The flexi-
bility for adaptations to study parameters is very attractive to clinical
scientists and sponsors. However, from regulatory point of view, sev-
eral questions have been raised. First, what level of adaptations to the
trial and/or statistical procedures would be acceptable to the regulatory
authorities? Second, what are the regulatory requirements and stan-
dards for review and approval process of clinical data obtained from
adaptive clinical trials with different levels of adaptations to trial and/or
statistical procedures of on-going clinical trials? Third, has the clinical
trial become a totally different clinical trial after the adaptations to
the trial and/or statistical procedures for addressing the study objec-
tives of the originally planned clinical trial? These concerns are nec-
essarily addressed by the regulatory authorities before the adaptive
design methods can be widely accepted in clinical research and devel-
opment.

In addition, from the scientific/statistical point of view, there are also
some concerns regarding (i) whether the modifications to the trial pro-
cedures have resulted in a similar but different target patient popu-
lation, (ii) whether the modifications of hypotheses have distorted the
study objectives of the trial, (iii) whether the flexibility in statistical pro-
cedures has led to biased assessment of clinical benefit of the treatment
under investigation. In this section, practical issues associated with the
above questions that are commonly encountered in clinical trials when
applying adaptive design methods of on-going clinical trials are briefly
described. These issues include moving target patient population as the
result of protocol amendments, adaptive randomization, adaptive hy-
potheses, adaptive dose-escalation trials, adaptive group sequential de-
signs, adaptive sample size adjustment, adaptive seamless phase II/III
trial design, dropping the losers adaptively, adaptive treatment switch-
ing, Bayesian and hybrid approaches, clinical trial simulation, and case
studies.

1.5.1 Moving target patient population

In clinical trials, it is important to define the patient population with
the disease under study. This patient population is usually described
based on eligibility criteria, i.e., the inclusion and exclusion criteria.
This patient population is referred to as the target patient population.
As indicated in Chow and Liu (2003), a target patient population is usu-
ally roughly defined by the inclusion criteria and then fine-tuned by the
exclusion criteria to minimize heterogeneity of the patient population.
When adaptations are made to the trial and/or statistical procedures,
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especially the inclusion/exclusion criteria during the conduct of the
trial, the mean response of the primary study endpoint of the target
patient population may be shifted with heterogeneity in variability. As
a result, adaptations made to trial and/or statistical procedures could
lead to a similar but different patient population. We will refer to this
resultant patient population as the actual patient population. In prac-
tice, it is a concern that a major (or significant) adaptation could result
in a totally different patient population. During the conduct of a clinical
trial, if adaptations are made frequently, the target patient population
is in fact a moving target patient population (Chow, Chang, and Pong,
2005). As a result, it is difficult to draw an accurate and reliable statisti-
cal inference on the moving target patient population. Thus, in practice,
it is of interest to determine the impact of adaptive design methods on
the target patient population and consequently the corresponding sta-
tistical inference and power analysis for sample size calculation. More
details are given in the next chapter.

1.5.2 Adaptive randomization

In clinical trials, randomization models such as the population model,
the invoked population model, and the randomization model with the
method of complete randomization and permuted-block randomization
are commonly used to ensure a balanced allocation of patients to treat-
ment within either a fixed total sample size or a pre-specified block
size (Chow and Liu, 2003). The population model is referred to as the
concept that clinicians can draw conclusions for the target patient pop-
ulation based on the selection of a representative sample drawn from
the target patient population by some random procedure (Lehmann,
1975; Lachin, 1988). The invoked population model is referred to as
the process of selecting investigators first and then selecting patients
at each selected investigator’s site. As it can be seen, neither the se-
lection of investigators nor the recruitment of patients at the selected
investigator’s site is random. However, treatment assignment is ran-
dom. Thus, the invoked randomization model allows the analysis of the
clinical data as if they were obtained under the assumption that the
sample is randomly selected from a homogeneous patient population.
Randomization model is referred to as the concept of randomization or
permutation tests based on the fact that the study site selection and
patient selection are not random, but the assignment of treatments to
patients is random. Randomization model/method is a critical compo-
nent in clinical trials because statistical inference based on the data
collected from the trial relies on the probability distribution of the



14 ADAPTIVE DESIGN METHODS IN CLINICAL TRIALS

sample, which in turn depends upon the randomization procedure em-
ployed.

In practice, however, it is also of interest to adjust the probability of
assignment of patients to treatments during the study to increase the
probability of success of the clinical study. This type of randomization
is called adaptive randomization because the probability of the treat-
ment to which a current patient is assigned is adjusted based on the
assignment of previous patients. The randomization codes based on the
method of adaptive randomization cannot be prepared before the study
begins. This is because the randomization process is performed at the
time a patient is enrolled in the study, whereas adaptive randomization
requires information on previously randomized patients. In practice,
the method of adaptive randomization is often applied with respect to
treatment, covariate, or clinical response. Therefore, the adaptive ran-
domization is known as treatment-adaptive randomization, covariate-
adaptive randomization, or response-adaptive randomization. Adaptive
randomization procedures could have an impact on sample size required
for achieving a desired statistical power and consequently statistical in-
ference on the test treatment under investigation. More details regard-
ing the adaptive randomization procedures described above and their
impact on sample size calculation and statistical inference is given in
Chapter 3 of this book.

1.5.3 Adaptive hypotheses

Modifications of hypotheses during the conduct of a clinical trial com-
monly occur due to the following reasons: (i) an investigational method
has not yet been validated at the planning stage of the study, (ii) in-
formation from other studies is necessary for planning the next stage
of the study, (iii) there is a need to include new doses, and (iv) reco-
mmendations from a pre-established data safety monitoring committee
(Hommel, 2001). In clinical research, it is not uncommon to have more
than one set of hypotheses for an intended clinical trial. These hypothe-
ses may be classified as primary hypotheses and secondary hypotheses
depending upon whether they are the primary study objectives or sec-
ondary study objectives. In practice, a pre-specified overall type I error
rate is usually controlled for testing the primary hypotheses. However,
if the investigator is interested in controlling the overall type I error rate
for testing secondary hypotheses, then techniques for multiple testing
are commonly employed. Following the ideas of Bauer (1999), Kieser,
Bauer, and Lehmacher (1999), and Bauer and Kieser (1999) for general
multiple testing problems, Hommel (2001) applied the same techniques
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to obtain more flexible strategies for adaptive modifications of hypothe-
ses based on accrued data at interim by changing the weights of hy-
potheses, changing a prior order, or even including new hypotheses.
The method proposed by Hommel (2001) enjoys the following advan-
tages. First, it is a very general method in the sense that any type of
multiple testing problems can be applied. Second, it is mathematically
correct. Third, it is extremely flexible, which allows not only changes to
design, but also changes to the choice of hypotheses or weights for them
during the course of the study. In addition, it also allows the addition
of new hypotheses. Modifications of hypotheses can certainly have an
impact on statistical inference for assessment of treatment effect. More
discussions are given in Chapter 4 of this book.

1.5.4 Adaptive dose-escalation trials

In clinical research, the response in a dose response study could be a
biological response for safety or efficacy. For example, in a dose-toxicity
study, the goal is to determine the maximum tolerable dose (MTD). On
the other hand, in a dose-efficacy response study, the primary objective
is usually to address one or more of the following questions: (i) Is there
any evidence of the drug effect? (ii) What is the nature of the dose-
response? and (iii) What is the optimal dose? In practice, it is always a
concern as to how to evaluate dose–response relationship with limited
resources within a relatively tight time frame. This concern led to a pro-
posed design that allows less patients to be exposed to the toxicity and
more patients to be treated at potentially efficacious dose levels. Such
a design also allows pharmaceutical companies to fully utilize their re-
sources for development of more new drug products. In Chapter 5, we
provide a brief background of dose escalation trials in oncology trials.
We will review the continued reassessment method (CRM) proposed
by O’Quigley, Pepe, and Fisher (1990) in phase I oncology trials. We
will study the hybrid frequentist-Bayesian adaptive approach for both
efficacy and toxicity (Chang, Chow, and Pong, 2005) in detail.

1.5.5 Adaptive group sequential design

In practice, flexible trials are usually referred to as trials that utilize
interim monitoring based on group sequential and adaptive methodo-
logy for (i) early stopping for clinical benefit or harm, (ii) early stopping
for futility, (iii) sample size re-adjustment, and (iv) re-designing the
study in midstream. In practice, an adaptive group sequential design is
very popular due to the following two reasons. First, clinical endpoint
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is a moving target. The sponsors and/or investigators may change their
minds regarding clinically meaningful effect size after the trial starts.
Second, it is a common practice to request a small budget at the design
and then seek supplemental funding for increasing the sample size after
seeing the interim data.

To protect the overall type I error rate in an adaptive design with
respect to adaptations in some design parameters, many authors have
proposed procedures using observed treatment effects. This leads to the
justification for the commonly used two-stage adaptive design, in which
the data from both stages are independent and the first data set is used
for adaptation (see, e.g., Proschan and Hunsberger, 1995; Cui, Hung,
and Wang, 1999; Liu and Chi, 2001). In recent years, the concept of two-
stage adaptive design has led to the development of the adaptive group
sequential design. The adaptive group sequential design is referred to
as a design that uses observed (or estimated) treatment differences at
interim analyses to modify the design and sample size adaptively (e.g.,
Shen and Fisher, 1999; Cui, Hung, and Wang, 1999; Posch and Bauer,
1999; Lehmacher and Wassmer, 1999).

In clinical research, it is desirable to speed up the trial and at the
same time reduce the cost of the trial. The ultimate goal is to get the
products to the marketplace sooner. As a result, flexible methods for
adaptive group sequential design and monitoring are the key factors
for achieving this goal. With the availability of new technology such as
electronic data capture, adaptive group sequential design in conjunction
with the new technology will provide an integrated solution to the lo-
gistical and statistical complexities of monitoring trials in flexible ways
without biasing the final conclusions. Further discussion regarding the
application of adaptive group sequential designs in clinical trials can
be found in Chapter 6.

1.5.6 Adaptive sample size adjustment

As indicated earlier, an adaptive design is very attractive to the sponsors
in early clinical development because it allows modifications of the trial
to meet specific needs during the trial within limited budget/resources
and target timelines. However, an adaptive design suffers from a loss of
power to detect a clinically meaningful difference of the target patient
population under the actual patient population due to bias/variation
that has been introduced to the trial as the result of changes in study
parameters during the conduct of the trial. To account for the expected
and/or unexpected bias/variation, statistical procedures for sample size
calculation are necessarily adjusted for achieving the desired power.
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For example, if the study, regimen, and/or treatment duration have
been adjusted during the conduct of the trial, not only the actual pa-
tient population may be different from the target patient population,
but also the baseline for the clinically meaningful difference to be de-
tected may have been changed. In this case, sample size required for
achieving the desired power for correctly detecting a clinically mean-
ingful difference based on clinical data collected from the actual patient
population definitely needs adjustment.

It should be noted that procedures for sample size calculation based
on power analysis of an adaptive design with respect to specific changes
in study parameters are very different from the standard methods.
The procedures for sample size calculation could be very complicated
for a multiple adaptive design (or a combined adaptive design) involv-
ing more than one study parameter. In practice, statistical tests for a
null hypothesis of no treatment difference may not be tractable under
a multiple adaptive design. Chapter 7 provides several methods for
adaptive sample size adjustment which are useful for multiple adaptive
designs.

1.5.7 Adaptive seamless phase II/III design

A phase II clinical trial is often a dose-response study, where the goal is
to find the appropriate dose level for the phase III trials. It is desirable
to combine phase II and III so that the data can be used more effi-
ciently and duration of the drug development can be reduced. A seam-
less phase II/III trial design refers to a program that addresses within a
single trial objective what is normally achieved through separate trials
in phases IIb and III (Gallo et al., 2006). An adaptive seamless phase
II/III design is a seamless phase II/III trial design that would use data
from patients enrolled before and after the adaptation in the final anal-
ysis (Maca et al., 2006). Bauser and Kieser (1999) provide a two-stage
method for this purpose, where the investigators can terminate the trial
entirely or drop a subset of regimens for lack of efficacy after the first
stage. As pointed out by Sampson and Sill (2005), their procedure is
highly flexible, and the distributional assumptions are kept to a mini-
mum. This results in a usual design in a number of settings. However,
because of the generality of the method, it is difficult, if not impossi-
ble, to construct confidence intervals. Sampson and Sill (2005) derived
a uniformly most powerful conditionally unbiased test for normal end-
point. For other types of endpoints, no results match Sampson and Sill’s
results. Thus, it is suggested that computer trial simulation be used in
such cases. More information is provided in Chapter 8.
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1.5.8 Adaptive treatment switching

For evaluation of the efficacy and safety of a test treatment for progres-
sive diseases such as oncology and HIV, a parallel-group active-control
randomized clinical trial is often conducted. Under the parallel-group
active-control randomized clinical trial, qualified patients are randomly
assigned to receive either an active control (a standard therapy or a
treatment currently available in the marketplace) or a test treatment
under investigation. Patients are allowed to switch from one treatment
to another, due to ethical consideration, if there is lack of responses or
there is evidence of disease progression. In practice, it is not uncommon
that up to 80% of patients may switch from one treatment to another.
This certainly has an impact on the evaluation of the efficacy of the test
treatment. Despite allowing a switch between two treatments, many
clinical studies are to compare the test treatment with the active-control
agent as if no patients had ever switched. Sommer and Zeger (1991) re-
ferred to the treatment effect among patients who complied with treat-
ment as biological efficacy. Branson and Whitehead (2002) widened the
concept of biological efficacy to encompass the treatment effect as if
all patients adhered to their original randomized treatments in clinical
studies allowing treatment switch.

The problem of treatment switching is commonly encountered in can-
cer trials. In cancer trials, most investigators would allow patients to get
off the current treatment and switch to another treatment (either the
study treatment or a rescue treatment) when there is progressed dis-
ease, due to ethical consideration. However, treatment switching dur-
ing the conduct of the trial has presented a challenge to clinical scien-
tists (especially biostatisticians) regarding the analysis of some primary
study endpoints such as median survival time. Under certain assump-
tions, Shao, Chang, and Chow (2005) proposed a method for estimation
of median survival time when treatment switching occurs during the
course of the study. Several methods for adaptive treatment switching
are reviewed in Chapter 9.

1.5.9 Bayesian and hybrid approaches

Drug development is a sequence of drug decision-making processes,
where decisions are made based on the constantly updated informa-
tion. The Bayesian approach naturally fits this mechanism. However,
in the current regulatory setting, the Bayesian approach is not ready
as the criteria for approval of a drug. Therefore, it is desirable to use
Bayesian approaches to optimize the trial and increase the probability
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of success under current frequentist criterion for approval. In the near
future, it is expected that drug approval criteria will become Bayesian.
In addition, full Bayesian is important because it can provide more in-
formative information and optimal criteria for drug approval based on
risk-benefit ratio rather than subjectively (arbitrarily) set α = 0.05, as
frequentists did.

1.5.10 Clinical trial simulation

It should be noted that for a given adaptive design, it is very likely that
adaptations will be made to more than one study parameter simulta-
neously during the conduct of the clinical trial. To assess the impact of
changes in specific study parameters, a typical approach is to perform a
sensitivity analysis by fixing other study parameters. In practice, the as-
sessment of the overall impact of changes in each study parameter is
almost impossible due to possible confounding and/or masking effects
among changes in study parameters. As a result, it is suggested that a
clinical trial simulation be conducted to examine the individual and/or
overall impact of changes in multiple study parameters. In addition,
the performance of a given adaptive design can be evaluated through
the conduct of a clinical trial simulation in terms of its sensitivity,
robustness, and/or empirical probability of reproducibility. It, however,
should be noted that a clinical trial simulation are conducted in such
a way that the simulated clinical data are able to reflect the real situ-
ation of the clinical trial after all of the modifications are made to the
trial procedures and/or statistical procedures. In practice, it is then sug-
gested that assumptions regarding the sources of bias/variation as the
results of modifications of the on-going trial be identified and be taken
into consideration when conducting the clinical trial simulation.

1.5.11 Case studies

As pointed out by Li (2006), the use of adaptive design methods pro-
vides a second chance to re-design the trial after seeing data inter-
nally or externally at interim. However, it may introduce so-called op-
erational biases such as selection bias, method of evaluations, early
withdrawal, modification of treatments, etc. Consequently, the adap-
tation employed may inflate type I error rate. Li (2006) suggested a
couple of principles when implementing adaptive designs in clinical
trials: (i) adaptation should not alter trial conduct, and (ii) type I error
should be preserved. Following these principles, some studies with com-
plicated adaptations may be more successful than others. The successful
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experience for certain adaptive designs in clinical trials is important
to investigators in clinical research and development. For illustration
purposes, some successful case studies including the implementation of
an adaptive group sequential design (Cui, Hung, and Wang, 1999), an
adaptive dose-escalation design (Chang and Chow, 2005), and adaptive
seamless phase II/III trial design (Maca et al., 2006) are provided in the
last chapter of this book.

1.6 Aims and Scope of the Book

This is intended to be the first book entirely devoted to the use of adap-
tive design methods in clinical trials. It covers all of the statistical is-
sues that may occur at various stages of adaptive design and analysis
of clinical trials. It is our goal to provide a useful desk reference and the
state-of-the art examination of this area to scientists and researchers
engaged in clinical research and development, those in government
regulatory agencies who have to make decisions in the pharmaceuti-
cal review and approval process, and biostatisticians who provide the
statistical support for clinical trials and related clinical investigation.
More importantly, we would like to provide graduate students in the
areas of clinical development and biostatistics an advanced textbook
in the use of adaptive design methods in clinical trials. We hope that
this book can serve as a bridge between the pharmaceutical industry,
government regulatory agencies, and academia.

The scope of this book covers statistical issues that are commonly
encountered when modifications of study procedures and/or statistical
procedures are made during the course of the study. In this chapter, the
definition, regulatory requirement, target patient population, statisti-
cal issues of adaptive design, and analysis for clinical trials have been
discussed. In the next chapter, the impact of modifications made to trial
procedures and/or statistical procedures on the target patient popula-
tion, statistical inference, and power analysis for sample size calculation
as the result of protocol amendments are discussed. In Chapter 3, vari-
ous adaptive randomization procedures for treatment allocation will be
discussed. Chapter 4 covers adaptive design methods for modifications
of hypotheses including the addition of new hypotheses after the re-
view of interim data. Chapter 5 provides an overall review of adaptive
design methods for dose selection, especially in dose-finding and dose-
response relationship studies in early clinical development. Chapter 6
introduces the commonly used adaptive group sequential design in clin-
ical trials. Blinded procedures for sample size re-estimation are given in
Chapter 7. Statistical tests for adaptive seamless phase II/III designs,
and statistical inference for switching from one treatment to another
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adaptively and the corresponding practical issues that may arise are
studied in Chapter 8 and Chapter 9, respectively. Bayesian and hy-
brid approaches for the use of adaptive design methods in clinical trials
are outlined in Chapter 10. Chapter 11 provides an introduction to the
methodology of clinical trial simulation for evaluation of the perfor-
mance of the adaptive design methods under various adaptive designs
that are commonly used in clinical development. Case studies regard-
ing the implementation of adaptive group sequential design, adaptive
dose-escalation design, and adaptive seamless phase II/III trial design
in clinical trials are discussed in Chapter 12.

For each chapter, whenever possible, real examples from clinical tri-
als are included to demonstrate the use of adaptive design methods
in clinical trials including clinical/statistical concepts, interpretations,
and their relationships and interactions. Comparisons regarding the
relative merits and disadvantages of the adaptive design methods in
clinical research and development are discussed whenever deemed ap-
propriate. In addition, if applicable, topics for future research are pro-
vided. All computations in this book are performed using 8.20 of SAS.
Other statistical packages such as S-plus can also be applied.





CHAPTER 2

Protocol Amendment

In clinical trials, it is not uncommon to modify the trial and/or sta-
tistical procedures of on-going trials due to scientific/statistical justi-
fications, medical considerations, regulatory concerns, and/or business
interest/decisions. When modifications of trial and/or statistical proce-
dures are made, a protocol amendment is necessarily filed to individual
institutional review boards (IRBs) for review/approval before imple-
mentation. As discussed in the previous chapter, major (or significant)
adaptation of trial and/or statistical procedures of a on-going clinical
trial could alter the target patient population of the trial and conse-
quently lead to a totally different clinical trial that is unable to answer
the scientific/medical questions the trial is intended to address. In this
chapter, we will examine the impact of protocol amendments on the tar-
get patient population through the assessment of a shift parameter, a
scale parameter, and a sensitivity index. The impact of protocol amend-
ments on power for detecting a clinically significant difference and the
corresponding statistical inference are also studied.

In the next section, a shift parameter, a scale parameter, and a sen-
sitivity index that provide useful measures of change in the target
patient population as the result of protocol amendments are defined.
Section 2.2 provides estimates of the shift and scale parameters of the
target patient population and the sensitivity index both conditionally
and unconditionally, assuming that the resultant actual patient popula-
tion after modifications is random. The impact of protocol amendments
on statistical inference and power analysis for sample size calculation
is discussed in Sections 2.3 and 2.4, respectively. Section 2.5 provides
statistical inference for treatment effect when there are protocol amend-
ments, assuming that changes in protocol are made based on one or a
few covariates. A brief concluding remark is given in the last section of
this chapter.

2.1 Actual Patient Population

As indicated earlier, in clinical trials it is not uncommon to modify trial
and/or statistical procedures of on-going trials. However, it should be
noted that any adaptation made to the trial and/or statistical procedures
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may introduce bias and/or variation to the data collected from the trial.
Most importantly, it may result in a similar but slightly different target
patient population. We will refer to such a patient population as the
actual patient population under study. After a given protocol amend-
ment, we denote the actual patient population by (µ1, σ1), where µ1 =
µ+ε is the population mean of the primary study endpoint and σ1 = Cσ

(C > 0) denotes the population standard deviation of the primary study
endpoint. In this chapter, we will refer to ε and C as the shift and scale
parameters of the target patient population (µ, σ ) after modification is
made. As it can be seen, the difference between the actual patient pop-
ulation (µ1, σ1) and the original target patient population (µ, σ ) can be
characterized as follows:

∣
∣
∣
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where

∆ =
1 + ε/µ

C
is a measure of change in the signal-to-noise ratio of the actual patient
population as compared to the original target population. Chow, Shao,
and Hu (2002) refer to ∆ as the sensitivity index. As a result, the signal-
to-noise ratio of the actual patient population can be expressed as the
sensitivity index times the effect size (adjusted for standard deviation)
of the original target patient population. For example, when ε = 0 and
C = 1 (i.e., the modification made has no impact on the target patient
population), then ∆ = 1 (i.e., there is no difference between the target
patient population and the actual patient population after the modi-
fication). For another example, if ε = 0 and C = 0.5 (i.e., there is no
change in mean but the variation has reduced by 50% as the result of
the modification), then ∆ = 2, which is an indication of sensitivity (i.e.,
the actual effect size to be detected is much larger than the originally
planned effect size under the target patient population) as the result of
the modifications made.

In practice, each modification to the trial procedures may result in
a similar but slightly different actual patient population. Denote by
(µi, σi) the actual patient population after the ith modification of trial
procedure, where µi = µ + εi and σi = Ciσ, i = 0, 1, . . . , m. Note that
i = 0 reduces to the original target patient population (µ, σ ). That
is, when i = 0, ε0 = 0 and C0 = 1. After m protocol amendments
(i.e., m modifications are made to the study protocol), the resultant ac-
tual patient population becomes (µm, σm), where µm = µ +

∑m
i=1 εi and

σm =
∏m

i=1 Ciσ . It should be noted that (εi, Ci), i = 1, . . . , m are in fact
random variables. As a result, the resultant actual patient population
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Table 2.1 Changes in Sensitivity Indices With Respect
To ε/µ and C

Inflation of Variability Deflation of Variability

ε/µ (%) C (%) ∆ C (%) ∆

−20 100 0.800 — —
−20 110 0.727 90 0.889
−20 120 0.667 80 1.000
−20 130 0.615 70 1.143
−10 100 0.900 — —
−10 110 0.818 90 1.000
−10 120 0.750 80 1.125
−10 130 0.692 70 1.571
−5 100 0.950 — —
−5 110 0.864 90 1.056
−5 120 0.792 80 1.188
−5 130 0.731 70 1.357

0 100 1.000 — —
0 110 0.909 90 1.111
0 120 0.833 80 1.250
0 130 0.769 70 1.429
5 100 1.050 — —
5 110 0.955 90 1.167
5 120 0.875 80 1.313
5 130 0.808 70 1.500
10 100 1.100 — —
10 110 1.000 90 1.222
10 120 0.917 80 1.375
10 130 0.846 70 1.571
20 100 1.200 — —
20 110 1.091 90 1.333
20 120 1.000 80 1.500
20 130 0.923 70 1.714

following certain modifications to the trial procedures is a moving tar-
get patient population rather than a fixed target patient population. It
should be noted that the effect of εi could be offset by Ci for a given
modification i as well as by (ε j , Cj) for another modification j. As a
result, estimates of the effects of (εi, Ci), i = 1, . . . , mare difficult, if not
impossible, to obtain. In practice, it is desirable to limit the combined
effects of (εi, Ci), i = 0, . . . , m to an acceptable range for a valid and
unbiased assessment of treatment effect regarding the target patient
population based on clinical data collected from the actual patient pop-
ulation. Table 2.1 provides changes in ∆ with respect to various values
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Figure 2.1 3-D Plot of Sensitivity Index Versus ε/µ and C.

of ε/µ and C. As it can be seen from Table 2.1, a shift in mean of target
patient population (i.e., ε) may be offset by the scale parameter C, the
inflation or reduction of the variability as the result of the modification
made.

For example, a shift of 10% (−10%) in mean could be offset by a 10%
inflation (reduction) of variability. As a result, ∆ may not be sensitive
due to the confounding (or masking) effect between ε and C. However,
when C (ε) remains unchanged, ∆ is a reasonable measure for the sensi-
tivity since ∆ moves away from the unity (no change) as ε (C ) increases.
To provide a better understanding of the changes in ∆ with respect to
various values of ε/µ and C, a 3-dimensional plot is given in Figure 2.1.
Figure 2.1 confirms that when C (ε) remains unchanged, ∆ moves away
from the unity (i.e., there is no change in the target patient population)
as ε (C) increases.

2.2 Estimation of Shift and Scale Parameters

The shift and scale parameters (i.e., ε and C) of the target population
after a modification (or a protocol amendment) is made can be esti-
mated by

ε̂ = µ̂Actual − µ̂,

and

Ĉ = σ̂Actual/σ̂ ,
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Figure 2.2 Plot of N(x;µ, σ2) Versus N(x;µµ, σ2 +σ2
µ). Note that the solid line

is for N(x;µ, σ2) and the dot line is for N(x;µµ, σ2 + σ2
µ).

respectively, where (µ̂, σ̂ ) and (µ̂Actual, σ̂Actual) are some estimates of
(µ, σ ) and (µActual, σActual), respectively. As a result, the sensitivity index
can be estimated by

∆̂ =
1 + ε̂/µ̂

Ĉ
.

Estimates for µ and σ can be obtained based on data collected prior to
any protocol amendments that are issued. Assume that the response
variable x is distributed as N(µ, σ 2). Let xji, i = 1, . . . , nj ; j = 0, . . . , m
be the response of the ith patient after the jth protocol amendment. As
a result, the total number of patients is given by

n =
m∑

j=0

nj.

Note that n0 is the number of patients in the study prior to any proto-
col amendments. Based on x0i, i = 1, . . . , n0, the maximum likelihood
estimates of µ and σ 2 can be obtained as follows:

µ̂ =
1
n0

n0∑

i=1

x0i, (2.1)

σ̂ 2 =
1
n0

n0∑

i=1

(x0i − µ̂)2. (2.2)

To obtain estimates for µActual and σActual, for illustration purpose, we
will only consider the case where µActual is random and σActual is fixed.
For other cases such as (i) µActual is fixed but σActual is random, (ii) both
µActual and σActual are random, (iii) µActual, σActual and nj are all random,
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and (iv) µActual, σActual, nj , and m are all random, estimates for µActual
and σActual may be obtained following a similar idea.

2.2.1 The case where µActual is random and σActual is fixed

For convenience’s sake, we set µActual = µ and σActual = σ for the deri-
vation of estimates of ε and C. Assume that x conditional on µ, i.e.,
x|µ=µActual follows a normal distribution N(µ, σ 2). That is,

x|µ=µActual ∼ N(µ, σ 2), (2.3)

where µ is distributed as N(µµ, σ 2
µ) and σ, µµ, and σµ are some unknown

constants. Thus, the unconditional distribution of x is a mixed normal
distribution given below

∫

N(x;µ, σ 2)N(µ;µµ, σ 2
µ)dµ =

1√
2πσ 2

1
√

2πσ 2
µ

∫ ∞

−∞
e
− (x−µ)2

2 σ2
− (µ−µµ)2

2 σ2µ dµ,

(2.4)

where x ∈ (−∞, ∞). It can be verified that the above mixed normal
distribution is a normal distribution with mean µµ and variance σ 2+σ 2

µ

(see proof given in the next section). In other words, x is distributed as
N(µµ, σ 2 + σ 2

µ).
As it can be seen from Figure 2.2 when µActual is random and σActual

is fixed, the shift from the target patient population to the actual pop-
ulation could be substantial, especially for large µµ and σ 2

µ.

Maximum Likelihood Estimation Given a protocol amendment j
and independent observations xji, i = 1, 2, . . . , nj , the likelihood func-
tion is given by

lj =
nj∏

i=1

(
1√

2πσ 2
e− (xij −µ j)

2

2 σ2

)
1

√

2πσ 2
µ

e
− (µ j −µµ)2

2 σ2µ , (2.5)

where µ j is the population mean after the jth protocol amendment.
Thus, given mprotocol amendments and observations xji, i = 1, . . . , nj ;
j = 0, . . . , m, the likelihood function can be written as

L =
m∏

j=0

lj =
(

2πσ 2
)− n

2

m∏

j=0



e−∑nj
i=1

(xij −µ j)
2

2 σ2
1

√

2πσ 2
µ

e
− (µ j −µµ)2

2 σ2µ



. (2.6)
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Hence, the log-likelihood function is given by

LL = −n
2

ln
(

2πσ 2
) − m+ 1

2
ln

(

2πσ 2
µ

)

(2.7)

− 1
2 σ 2

m∑

j=0

nj∑

i=1

(xij − µ j)2 − 1
2 σ 2

µ

m∑

j=0

(µ j − µµ)2.

Based on (2.7), the maximum likelihood estimates (MLEs) of µµ, σ 2
µ ,

and σ 2 can be obtained as follows:

µ̃µ =
1

m+ 1

m∑

j=0

µ̃ j , (2.8)

where

µ̃ j =
1
nj

nj∑

i=1

xji, (2.9)

σ̃ 2
µ =

1
m+ 1

m∑

j=0

(µ̃ j − µ̃µ)2, (2.10)

and

σ̃ 2 =
1
n

m∑

j=0

nj∑

i=1

(xji − µ̃ j)2. (2.11)

Note that ∂LL
∂µ j

= 0 leads to

σ̃ 2
µ

nj∑

i=1

xji + σ̃ 2µ̃µ − (nj σ̃
2
µ + σ̃ 2)µ̃ j = 0.

In general, when σ̃ 2
µ and σ̃ 2 are compatible and n j is reasonably large,

σ̃ 2µ̃µ is negligible as compared to σ̃ 2
µ

∑nj
i=1 xji and σ̃ 2 is negligible as

compared to nj σ̃
2
µ. Thus, we have the approximation (2.9), which greatly

simplifies the calculation. Based on these MLEs, estimates of the shift
parameter (i.e., ε) and the scale parameter (i.e., C) can be obtained as
follows:

ε̃ = µ̃ − µ̂,

C̃ =
σ̃

σ̂
,

respectively. Consequently, the sensitivity index can be estimated
by simply replacing ε, µ, and C with their corresponding estimates ε̃, µ̃,
and C̃.

Remarks In the above derivation, we account for the sequence of pro-
tocol amendments assuming that the target patient population has been
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changed (or shifted) after each protocol amendment. Alternatively, if
the cause of the shift in target patient population is not due to the
sequence of protocol amendments but rather random protocol devia-
tions or violations, we may obtain the following alternative (conditional)
estimates.

Given m protocol deviations or violations and independent observa-
tions xji, i = 1, . . . , nj ; j = 0, . . . , m, the likelihood function can be
written as

L =
m∏

j=0

nj∏

i=1

lji

=
m∏

j=0

[

(

2πσ 2
)− nj

2 e−∑nj
i=1

(xij −µ j)
2

2 σ2
(

2πσ 2
µ

)− nj
2 e

− nj(µ j −µµ)2

2 σ2µ

]

.

Thus, the log-likelihood function is given by

LL = −n
2

ln
(

2πσ 2
) − n

2
ln

(

2πσ 2
µ

)

(2.12)

− 1
2 σ 2

m∑

j=0

nj∑

i=1

(xij − µ j)2 − 1
2 σ 2

µ

m∑

j=0

[nj(µ j − µµ)2].

As a result, the maximum likelihood estimates of µµ, σ 2
µ , and σ 2 are

given by

µ̃µ =
1
n

m∑

j=0

nj∑

i=1

xji = µ̂, (2.13)

σ̃ 2
µ =

1
n

m∑

j=0

[nj(µ̃ j − µ̃µ)2], (2.14)

σ̃ 2 =
1
n

m∑

j=0

nj∑

i=1

(xji − µ̃ j)2, (2.15)

where

µ̃ j ≈ 1
nj

nj∑

i=1

xji.

Similarly, under random protocol violations, the estimates of µµ, σ 2
µ ,

and σ 2 can also be obtained based on the unconditional probability
distribution described in (2.4) as follows. Given mprotocol amendments
and observations xji, i = 1, . . . , nj ; j = 0, . . . , m, the likelihood function
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can be written as

L =
m∏

j=0

nj∏

i=1




1

√

2π(σ 2 + σ 2
µ)

e
− (x ji−µµ)2

2(σ2+σ2µ )



.

Hence, the log-likelihood function is given by

LL = −n
2

ln
[

2π(σ 2 + σ 2
µ)

]

+
m∑

j=0

nj∑

i=1

(xji − µµ)2

2 (σ 2 + σ 2
µ)

. (2.16)

Based on (2.16), the maximum likelihood estimates of µµ, σ 2
µ , and σ 2

can be easily found. However, it should be noted that the MLE for µµ

and σ 2
∗ = (σ 2 + σ 2

µ) are unique but the MLEs for σ 2 and σ 2
µ are not

unique. Thus, we have

µ̃ = µ̃µ =
1
n

m∑

j=0

nj∑

i=1

xji,

σ̃ 2 = σ̃ 2
∗ =

1
n

m∑

j=0

nj∑

i=1

(xji − µ̃)2.

In this case, the sensitivity index is equal to 1. In other words, random
protocol deviations or violations (or the sequence of protocol amend-
ments) do not have an impact on statistical inference on the target
patient population. It, however, should be noted that the sequence of
protocol amendments usually result in a moving target patient popula-
tion in practice. As a result, the above estimates of µµ and σ 2

∗ are often
misused and misinterpreted.

2.3 Statistical Inference

To illustrate the impact on statistical inference regarding the target
patient population after m protocol amendments, for simplicity, we will
only focus on statistical inference on ε, C, and ∆ for the case where
µActual is random and σActual is fixed. For the cases where (i) µActual is fixed
and σActual is random, (ii) both µActual and σActual are random, (iii) µActual,
σActual, and nj are all random, and (iv) µActual, σActual, nj , and m are all
random, the idea described in this section can be similarly applied.

First, we note that the test statistic is dependent on sampling proce-
dure (it is a combination of protocol amendment and randomization).
The following theorem is useful. We will frequently use the well-known
fact that linear combination of independent variables with normal
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distribution or asymptotic normal distribution follows a normal dis-
tribution. Specifically,

Theorem 2.1 Suppose that X|µ ∼ N(µ, σ 2) and µ ∼ N(µµ, σ 2
µ), then

X ∼ N(µµ, σ 2 + σ 2
µ) (2.17)

Proof. Consider the following characteristic function of a normal dis-
tribution N(t;µ, σ 2)

φ0(w) =
1√

2πσ 2

∫ ∞

−∞
eiwt− 1

2σ2
(t−µ)2dt = eiwµ− 1

2 σ2w2
. (2.18)

For distribution X|µ ∼ N(µ, σ 2) and µ ∼ N(µµ, σ 2
µ), the characteristic

function after exchange the order of the two integrations is given by

φ(w) =
∫ ∞

−∞
eiwµ− 1

2 σ2w2
N(µ; µµ, σ 2

µ)dµ =
∫ ∞

−∞
e

iwµ− µ−µµ

2σ2µ
− 1

2 σ2w2

dµ.

Note that
∫ ∞

−∞
e

iwµ− (µ−µµ)2

2σ2µ dµ = eiwµ− 1
2 σ2w2

is the characteristic function of the normal distribution. It follows that

φ(w) = eiwµ− 1
2 (σ2+σ2

µ )w2
,

which is the characteristic function of N(µµ, σ 2 +σ 2
µ). This completes the

proof.

Given protocol amendment j and that xji, i = 1, 2, . . . , nj are inde-
pendent and identically distributed (i.i.d.) normal N(µ j , σ 2),

µ̃ j =
1
nj

nj∑

i=1

xji

is conditionally normally distributed with mean µ j and variance σ2

nj
,

i.e.,

µ̃ j ∼ N
(

µ j ,
σ 2

nj

)

.

In addition,

µ j ∼ N(µµ, σµ).

Hence, from the above theorem, µ̃ j is normally distributed with mean
µµ and variance σ2

nj
+ σ 2

µ , i.e.,

µ̃ j ∼ N
(

µµ,
σ 2

nj
+ σ 2

µ

)

, (2.19)
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and

µ̃ ∼ N



µµ,
σ 2

(m+ 1)2

m∑

j=0

(
1
nj

)

+
σ 2

µ

m+ 1



, (2.20)

where

µ̃ =
1

m+ 1

m∑

j=0

µ̃ j . (2.21)

If nj is random, i.e., nj follows a distribution, say fnj , then, we have

µ̃ ∼
∞∑

k

fkN

(

µµ,
σ 2

(m+ 1)2

(
1
k

)

+
σ 2

µ

m+ 1

)

. (2.22)

Note that at the end of the study, σ 2 and σ 2
µ can be replaced with their

estimates if m and nj are sufficiently large.
For two independent samples, we have

µ̃1 − µ̃2 ∼ N
(

µµ1 − µµ2 , σ 2
p

)

,

where

σ 2
p =

σ 2
1

(m1 + 1)2

m1∑

j=0

(
1

n1 j

)

+
σ 2

µ1

m1 + 1
+

σ 2
2

(m2 + 1)2

m2∑

j=0

(
1

n2 j

)

+
σ 2

µ2

m2 + 1
,

(2.23)

and m1 and m2 are the number of modifications made to the two groups
respectively.

2.3.1 Test for equality

To test whether there is a difference between the mean response of a
test compound as compared to a placebo control or an active control
agent, the following hypotheses are usually considered:

H0 : µ1 = µ2 vs Ha : µ1 �= µ2.

Under the null hypothesis, the test statistic is given by

z =
µ̃1 − µ̃2

σ̃p
, (2.24)

where µ̃1 and µ̃2 can be estimated from (2.8) and (2.9) and σ 2
p can be

estimated using (2.23) with estimated variances from (2.10) and (2.11).
Under the null hypothesis, the test statistic follows a standard normal
distribution for large sample. Thus, we reject the null hypothesis at the
α level of significance if z > zα/2.
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2.3.2 Test for non-inferiority/superiority

As indicated by Chow, Shao, and Wang (2003), the problem of testing
non-inferiority and (clinical) superiority can be unified by the following
hypotheses:

H0 : µ1 − µ2 ≤ δ vs Ha : µ1 − µ2 > δ,

where δ is the non-inferiority or superiority margin. When δ > 0, the
rejection of the null hypothesis indicates the superiority of the test com-
pound over the control. When δ < 0, the rejection of the null hypothesis
indicates the non-inferiority of the test compound against the control.
Under the null hypothesis, the test statistic

z =
µ̃1 − µ̃2 − δ

σ̃p
(2.25)

follows a standard normal distribution for large sample. Thus, we reject
the null hypothesis at the α level of significance if z > zα.

It should be noted that α level for testing non-inferiority or supe-
riority should be 0.025 instead of 0.05 because when δ = 0, the test
statistic should be the same as that for testing equality. Otherwise, we
may claim superiority with a small δ that is close to zero for observing
an easy statistical significance. In practice, the choice of δ plays an im-
portant role for the success of the clinical trial. It is suggested that δ

should be chosen in such a way that it is both statistically and clini-
cally justifiable. The European Agency for the Evaluation of Medicinal
Products recently issued a draft points to consider guideline on the
choice of non-inferiority margin (EMEA, 2004). Along this line, Chow
and Shao (2006) provided some statistical justification for the choice of
δ in clinical trials.

2.3.3 Test for equivalence

For testing equivalence, the following hypotheses are usually
considered:

H0 : |µ1 − µ2| > δ vs Ha : |µ1 − µ2| ≤ δ,

where δ is the equivalence limit. Thus, the null hypothesis is rejected
and the test compound is concluded to be equivalent to the control if

µ̃1 − µ̃2 − δ

σ̃p
≤ −zα or

µ̃1 − µ̃2 − δ

σ̃p
≥ zα. (2.26)

It should be noted that the FDA recommends an equivalence limit of
(80%,125%) for bioequivalence based on geometric means using log-
transformed data.
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2.4 Sample Size Adjustment

2.4.1 Test for equality

The hypotheses for testing equality of two independent means can be
written as

H0 : ε = µ1 − µ2 = 0 vs Ha : ε �= 0.

Under the alternative hypothesis that ε �= 0, the power of the above
test is given by

Φ
(

ε

σ̃p
− zα/2

)

+ Φ
(−ε

σ̃p
− zα/2

)

≈ Φ
( |ε|

σ̃p
− zα/2

)

. (2.27)

Since the true difference ε is an unknown, we can estimate the power
by replacing ε in (2.27) with the estimated value ε̃. As a result, the
sample size needed to achieve the desired power of 1−β can be obtained
by solving the following equation

|ε|
σ̃e

√
2
n

− zα/2 = zβ , (2.28)

where n is the sample size per group, and

σ̃e =
√

n
2
σ̃ 2

p =

√
√
√
√

σ̃ 2

(m+ 1)2

m∑

j=0

(
n
nj

)

+
nσ̃ 2

µ

(m+ 1)
(2.29)

for homogeneous variance condition and balance design. This leads to
the sample size formulation

n =
4(z1−α/2 + z1−β)2σ̃ 2

e

ε2
, (2.30)

where ε, σ̃ 2, σ̃ 2
µ , m, and rj = nj

n are estimates at the planning stage of
a given clinical trial. The sample size can be easily solved iteratively.
Note that if nj = n

m+1
, then

n =
4(z1−α/2 + z1−β)2

(

σ̃ 2 + nσ̃2
µ

m+1

)

ε2
.

Solving the above equation for n, we have

n =
1
R

4(z1−α/2 + z1−β)2(σ̃ 2 + σ̃ 2
µ)

ε2
=

1
R

nclassic, (2.31)
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Table 2.2 Relative Efficiency

m
σ̃2

µ

σ̃2
σ̃2

µ

ε2
R

0 0.05 0.005 0.83
1 0.05 0.005 0.94
2 0.05 0.005 0.98
3 0.05 0.005 0.99
4 0.05 0.005 1.00

Note: α = 0.05, β = 0.1.

where R is the relative efficiency given by

R =
nclassic

n
=

(

1 +
σ̃ 2

µ

σ̃ 2

) (

1 − 4(z1−α/2 + z1−β)2

ε2

σ̃ 2
µ

m+ 1

)

. (2.32)

Table 2.2 provides various m and σ̃ 2
µ with respect to R. As it can be

seen from Table 2.2, an increase of m will result in a decrease of n.
Consequently, there is a significant decrease of the desired power of the
intended trial when no amendment m = 0 and σ̃ 2

µ = 0, R = 1.

2.4.2 Test for non-inferiority/superiority

The hypotheses for testing non-inferiority or (clinical) superiority of a
mean can be written as

H0 : ε = µ1 − µ2 ≤ δ vs Ha : ε > δ,

where δ is the non-inferiority or (clinical) superiority margin. Under the
alternative hypothesis ε > 0, the power of the above test is given by

Φ




ε − δ

σ̃e

√
2
n

− zα/2



. (2.33)

The sample size required for achieving the desired power of 1 − β can
be obtained by solving the following equation

ε − δ

σ̃e

√
2
n

− zα/2 = zβ. (2.34)

This leads to

n =
2(z1−α + z1−β)2σ̃ 2

e

(ε − δ)2
, (2.35)
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where σ̃ 2
e is given by (2.29), and ε, σ̃ 2, σ̃ 2

µ , m, and rj = nj

n are estimates at
the planning stage of a given clinical trial. The sample size can be easily
solved iteratively. If nj = n

m+1
, then the sample size can be explicitly

written as

n =
1
R

(z1−α + z1−β)2σ̃ 2

(ε − δ)2
, (2.36)

where R is the relative efficiency given by

R =
n

nclassic
=

(

1 − (z1−α + z1−β)2

(ε − δ)2
σ̃ 2

µ

m+ 1

)

. (2.37)

2.4.3 Test for equivalence

The hypotheses for testing equivalence can be written as

H0 : |ε| = |µ1 − µ2| > δ vs Ha : |ε| ≤ δ,

where δ is the equivalence limit. Under the alternative hypothesis that
|ε| ≤ δ, the power of the of the test is given by

Φ




δ − ε

σ̃e

√
2
n

− zα



 + Φ




δ + ε

σ̃e

√
2
n

− zα



 − 1 (2.38)

≈ 2Φ




δ − |ε|
σ̃e

√
2
n

− zα



 − 1.

As a result, the sample size needed in order to achieve the desired power
of 1 − β can be obtained by solving the following equation

δ − |ε|
σ̃e

√
2
n

− zα = zβ/2. (2.39)

This leads to

n =
2(z1−α + z1−β/2)2σ̃ 2

e

(|ε| − δ)2
, (2.40)

where σ̃ 2
e is given by (2.29). If nj = n

m+1
, then the sample size is given by

n =
1
R

(z1−α + z1−β/2)2σ̃ 2

(|ε| − δ)2
, (2.41)
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where R is the relative efficiency given by

R =
n

nclassic
=

(

1 − (z1−α + z1−β/2)2

(|ε| − δ)2
σ̃ 2

µ

m+ 1

)

. (2.42)

2.5 Statistical Inference with Covariate Adjustment

As indicated earlier, statistical methods of analyzing clinical data should
be modified when there are protocol amendments during the trial, since
any protocol deviations and/or violations may introduce bias to the con-
clusion drawn based on the analysis of data with no changes made to the
study protocol. For example, the target patient population of the clinical
trial is typically defined through the patient inclusion/exclusion crite-
ria. If the patient inclusion/exclusion criteria are modified during the
trial, then the resulting data may not be from the target patient popu-
lation in the original protocol and, thus, statistical methods of analysis
have to be modified to reflect this change. Chow and Shao (2005) mod-
eled the population deviations due to protocol amendments using some
covariates and developed a valid statistical inference which is outlined
in this section.

2.5.1 Population and assumption

In this section, for convenience’s sake, we denote the target patient pop-
ulation by P0. Parameters related to P0 are indexed by a subscript 0.
For example, in a comparative clinical trial comparing a test treatment
and a control, the effect size of the test treatment (or a given study end-
point) is µ0T − µ0C, where µ0T and µ0C are respectively the population
means of the test treatment and the control for patients in P0.

Suppose that there are a total of K possible protocol amendments.
Let Pk be the patient population after the kth protocol amendment,
k = 1, . . . , K. As indicated earlier, a protocol change may result in a pa-
tient population similar but slightly different from the original target
patient population, i.e., Pk may be different from P0, k = 1, . . . , K. For
example, when patient enrollment is too slow due to stringent patient
inclusion/exclusion criteria, a typical approach is to relax the inclu-
sion/exclusion criteria to increase the enrollment, which results in a
patient population larger than the target patient population. Because
of the possible population deviations due to protocol amendments, stan-
dard statistical methods may not be appropriate and may lead to invalid
inference/conclusion regarding the target patient population.
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Let µk be the mean of the study variable related to the patient pop-
ulation Pk after the kth protocol amendment, k = 1, . . . , K. Note that
the subscript T or C to indicate the test treatment and the control is
omitted for simplicity in general discussion. Suppose that, for each k,
clinical data are observed from nk patients so that the sample mean ȳk
is an unbiased estimator of µk, k = 0, 1, . . . , K. Ignoring the difference
among Pk’s results in an estimator ȳ =

∑

k nkȳk/
∑

k nk, which is an un-
biased estimator of a weighted average of µk’s, not the original defined
treatment effect µ0.

In many clinical trials, protocol changes are made by using one or a few
covariates. Modifying patient inclusion/exclusion criteria, for example,
may involve patient age or ethnic factors. Treatment duration, study
dose/regimen, factors related to laboratory testing, or diagnostic pro-
cedures are other examples of such covariates. Let x be a (possibly
multivariate) covariate whose values are distinct for different protocol
amendments. Throughout this article we assume that

µk = β0 + β ′xk, k = 0, 1, . . . , K, (2.43)

where β0 is an unknown parameter, β is an unknown parameter vector
whose dimension is the same as x, β ′ denotes the transpose of β, and
xk is the value of x under the kth amendment (or the original protocol
when k = 0). If values of x are different within a fixed population Pk,
then xk is a characteristic of x such as the average of all values of x
within Pk.

Although µ1, . . . , µK are different from µ0, model (2.43) relates them
with the covariate x. Statistical inference on µ0 (or more generally, any
function of µ0, µ1, . . . , µK) can be made based on model (2.43) and data
from Pk, k = 0, 1, . . . , K.

2.5.2 Conditional inference

We first consider inference conditional on a fixed set of K ≥ 1 protocol
amendments. Following the notation in the previous section, let ȳk be
the sample mean based on nk clinical data from Pk, which is an unbiased
estimator of µk, k = 0, 1, . . . , K. Again, a subscript T or C should be
added when we consider the test treatment or the control. Under model
(2.43), parameters β0 and β can be unbiasedly estimated by

(
β̂0

β̂

)

= (X′WX)−1X′Wȳ, (2.44)

where ȳ = (ȳ0, ȳ1, . . . , ȳK)′, X is a matrix whose kth row is (1, x′
k), k =

0, 1, . . . , K, and W is a diagonal matrix whose diagonal elements are
n0, n1, . . . , nK . Here, we assume that the dimension of x is less or equal
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to K so that (X′WX)−1 is well defined. To estimate µ0, we may use the
following unbiased estimator:

µ̂0 = β̂0 + β̂ ′x0.

For inference on µ0, we need to derive the sampling distribution of
µ̂0. Assume first that, conditional on the given protocol amendments,
data from each Pk are normally distributed with a common standard
deviation σ . Since each ȳk is distributed as N(µk, σ 2/nk) and it is rea-
sonable to assume that data from different Pk’s are independent, µ̂0 is
distributed as N(µ0, σ 2c0) with

c0 = (1, x0)(X′WX)−1(1, x0)′.

Let s2
k be the sample variance based on the data fromPk, k = 0, 1, . . . , K.

Then, (nk−1)s2
k/σ 2 has the chi-square distribution with nk−1 degrees of

freedom and, consequently, (N−K)s2/σ 2 has the chi-square distribution
with N − K degrees of freedom, where

s2 =
∑

k

(nk − 1)s2
k/(N − K)

and N =
∑

k nk. Confidence intervals for µ0 and testing hypotheses
related to µ0 can be carried out using the t-statistic t = (µ̂0−µ0)/

√
c0s2.

When Pk’s have different standard deviations and/or data from Pk
are not normally distributed, we have to use approximation by assum-
ing that all nk’s are large. By the central limit theorem, when all nk’s
are large, µ̂0 is approximately normally distributed with mean µ0 and
variance

τ 2 = (1, x0)(X′WX)−1X′WΣX(X′WX)−1(1, x0)′, (2.45)

where Σ is the diagonal matrix whose kth diagonal element is the popu-
lation variance of Pk, k = 0, 1, . . . , K. Large sample statistical inference
can be made by using the z-statistic z = (µ̂0 − µ0)/τ̂ (which is approx-
imately distributed as the standard normal), where τ̂ is the same as τ

with the kth diagonal element of Σ estimated by s2
k , k = 0, 1, . . . , K.

2.5.3 Unconditional inference

In practice, protocol amendments are usually made in a random fashion;
that is, the investigator of an on-going trial decides to make a protocol
change with certain probability and, in some cases, changes are made
based on the accrued data of the trial. Let CK denote a particular set of
K protocol amendments as described in the previous sections, and let C
be the collection of all possible sets of protocol amendments. For exam-
ple, suppose that there are a total of M possible protocol amendments
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indexed by 1, . . . , M. Let CK be a subset of K ≤ M integers, i.e.,

CK = {i1, . . . , iK} ⊂ {1, . . . , M}.
Then, CK denotes the set of protocol amendments i1, . . . , iK and C is the
collection of all subsets of {1, . . . , M}. In a particular problem, CK is cho-
sen based on a (random) decision rule ξ (often referred to as adaptation
rule) and P(CK) = P(ξ = CK), the probability that CK is the realization
of protocol amendments, is between 0 and 1 and

∑

CK∈C P(CK) = 1.
For a particular CK , let zCK be the z-statistic defined in the previous

section and let L(zCK |ξ = CK) be the conditional distribution of zξ given
ξ = CK . Suppose that L(zCK |ξ = CK) is approximately standard normal
for almost every sequence of realization of ξ . We now show thatL(zξ ), the
unconditional distribution of zξ , is also approximately standard normal.
According to Theorem 1 in Liu, Proschan, and Hedger (2002),

L(zξ ) = E

[
∑

CK∈C
L(zCK |ξ = CK)Iξ=CK

]

, (2.46)

where Iξ=CK is the indicator function of the set {ξ = CK} and the ex-
pectation E is with respect to the randomness of ξ . For every fixed real
number t, by the assumption,

P(zCK ≤ t|ξ = CK) → Φ(t) almost surely, (2.47)

where Φ is the standard normal distribution function. Multiplying Iξ=CK

to both sides of (2.47) leads to

P(zCK ≤ t|ξ = CK)Iξ=CK → Φ(t)Iξ=CK almost surely. (2.48)

Since the left-hand side of (2.48) is bounded by 1, by the dominated
convergence theorem,

E [P(zCK ≤ t|ξ = CK)Iξ=CK ] → E [Φ(t)Iξ=CK ]

= Φ(t)E [Iξ=CK ]

= Φ(t)P(CK).

It follows from (2.46) and (2.47) that

P(zξ ≤ t) =
∑

CK∈C
E [P(zCK ≤ t|ξ = CK)Iξ=CK ]

→
∑

CK∈C
Φ(t)P(CK)

= Φ(t).

Hence, large sample inference can be made using the z-statistic zξ .
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It should be noted that the finite distribution of zξ given by (2.46) may
be very complicated. Furthermore, assumption (2.47), i.e., L(zCK |ξ =
CK) is approximately standard normal for almost every sequence of
realization of ξ , has to be verified in each application (via the construc-
tion of zCK and asymptotic theory such as the central limit theorem).
Assumption (2.47) certainly holds when the adaptation rule ξ and zCK

are independent for each CK ∈ C. For example, when protocol changes
are modifying patient inclusion/exclusion criteria, the adaptation rule
ξ is related to patient recruiting and, thus, is typically independent
of the main study variable such as the drug efficacy. Another example
is adjustments of study dose/regimen because of safety considerations,
which may be approximately independent with the drug efficacy. Some
other examples can be found in Liu, Proschan, and Hedger (2002).

Example 2.1 A placebo-control clinical trial was conducted to evalu-
ate the efficacy of an investigational drug for treatment of patients with
asthma. The primary study endpoint is the change in FEV1 (forced ex-
pired volume per second), which is defined to be the difference between
the FEV1 after treatment and the baseline FEV1. During the conduct
of the clinical trial, the protocol was amended twice due to slow en-
rollment. For each protocol amendment, a modification to the inclusion
criterion regarding the baseline FEV1 was made. In the original pro-
tocol, patients were included if and only if their baseline FEV1 were
between 1.5 Liters and 2.0 Liters. At the first and the second protocol
amendments, the range of the baseline FEV1 in this inclusion criterion
was changed to, respectively, 1.5 Liters to 2.5 Liters and 1.5 Liters to
3.0 Liters. Some summary statistics are given in Table 2.3.

We first consider the analysis conditional on the two protocol
amendments, i.e., the sample size (number of patients) in each period
of the trial (before or after protocol amendments) is treated as fixed.

Table 2.3 Summary Statistics in the Asthma Trial Example

Baseline Number Baseline FEV1 FEV1
FEV1 Range of Patients FEV1 Mean Change Mean Change S.D.

1.5 ∼ 2.0 9 1.86 0.31 0.14
Test drug 1.5 ∼ 2.5 15 2.30 0.42 0.14

1.5 ∼ 3.0 16 2.79 0.54 0.16

1.5 ∼ 2.0 8 1.82 0.16 0.15
Placebo 1.5 ∼ 2.5 16 2.29 0.19 0.13

1.5 ∼ 3.0 16 2.84 0.20 0.14
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Following the procedure described on the previous page with the mean
of baseline FEV1 as the (one-dimensional) covariate x in assumption
(2.43), we obtain estimates β̂0 = −0.14 and β̂ = 0.25 (according to
formula (2.44)) for the test drug. Then, an estimate of µ0, the pop-
ulation mean for the test drug under the original protocol, is µ̂0 =
−0.14 + 0.25 × 1.86 = 0.33. An estimated τ according to formula (2.48)
with elements of Σ estimated by sample variances is τ̂ = 0.04. Similarly,
for the placebo, the population mean under the original protocol is es-
timated as 0.099 + 0.038 × 1.82 = 0.17 with estimated τ to be 0.04. Thus,
an estimate of the population mean difference (between the test drug
and placebo under the original protocol) is 0.33 − 0.17 = 0.16 with an
estimated standard error

√
2 × 0.04 = 0.057. The approximate p-value

for the one-sided null hypothesis that the test drug mean is no larger
than the placebo mean is equal to 0.0021, and the approximate p-value
for the two-sided null hypothesis that the test drug mean is the same
as the placebo mean is 0.0042.

If we ignore the protocol amendments and combine all data, then our
estimate of the mean difference between the test drug and placebo is
0.25, which is clearly biased. On the other hand, one may perform an
analysis based on patients enrolled before the first protocol amendment,
i.e., 9 patients in the test drug group and 8 patients in the placebo group.
The resulting estimate of the mean difference between the test drug and
placebo is 0.15 with an estimated standard error

√
2 × 0.047 = 0.066.

The approximate p-value is 0.0116 for the one-sided null hypothesis and
0.0232 for the two-sided null hypothesis. The test drug effect seems less
significant, but this is due to the use of data gathered before the first
protocol amendment.

We now consider unconditional analysis. As we discussed above, if the
adaptation rule is independent of the z-statistic for every possible way
of making protocol amendments, then the z-statistic is still valid for un-
conditional analysis. In the asthma trial example, protocol amendments
were made because of the slow enrollment and, hence, could be viewed
as a process independent of the FEV1 change scores. Thus, the conclu-
sions based on the conditional analysis and unconditional analysis in
this example are the same.

2.6 Concluding Remarks

As indicated in this chapter, it is not uncommon to issue protocol amend-
ments during the conduct of a clinical trial. The protocol amendments
are necessary to describe what changes have been made and the ra-
tionales behind the changes to ensure the validity and integrity of
the clinical trial. As the result of the modifications, the original target
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patient population under study could have become a similar but differ-
ent patient population. If the modifications are made frequently during
the conduct of the trial, the target patient population is in fact a moving
target patient population. In practice, there is a risk that major (or sig-
nificant) modifications made to the trial and/or statistical procedures
could lead to a totally different trial, which cannot address the scien-
tific/medical questions that the clinical trial is intended to answer. Thus,
it is of interest to measure the impact of each modification made to the
trial procedures and/or statistical procedure after the protocol amend-
ment. In this chapter, it is suggested that independent estimates of ε,
C and ∆, which are measures of the shift of mean response, cause the
inflation/reduction of variability of the response and effect size of the
primary study endpoint, respectively. The estimates of ε, C and ∆ are
useful in providing the signal regarding how the target patient popu-
lation has been changed due to the protocol amendment. In practice, it
should be noted that reliable estimates of ε, C and ∆ may not be avail-
able for trials with small sample sizes. In other words, the estimates of
ε, C and ∆ may not be accurate and reliable because it is possible that
only a few observations are available after the protocol amendment,
especially when there are a number of protocol amendments. In addi-
tion, although we consider the case where the sample size after protocol
amendment is random, the number of protocol amendments is also a
random variable, which complicates the already complicated procedure
for obtained accurate and reliable estimates of ε, C and ∆. In practice,
it should be recognized that protocol amendments are not given gifts.
Potential risks for introducing additional bias/variation as the result of
modifications made should be carefully evaluated before addressing the
issue of a protocol amendment. It is important to identify, control, and
hopefully eliminate/minimize the sources of bias/variation. For good
clinical and/or statistical practices, it is then strongly suggested that
the protocol amendments be limited to a small number such as 2 or 3
in clinical trials.

In current practice, standard statistical methods are applied to the
data collected from the actual patient population regardless the fre-
quency of changes (protocol amendments) that have been made dur-
ing the conduct of the trial, provided that the overall type I error is
controlled at the pre-specified level of significance. This, however, has
raised a serious regulatory/statistical concern as to whether the resul-
tant statistical inference (e.g., independent estimates, confidence inter-
vals, and p-values) drawn on the originally planned target patient pop-
ulation based on the clinical data from the actual patient population (as
the result of the modifications made via protocol amendments) are accu-
rate and reliable. As discussed in this chapter, the impact on statistical
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inference due to protocol amendments could be substantial, especially
when there are major modifications, which have resulted in a significant
shift in mean response and/or inflation of the variability of response of
the study parameters. It is suggested that a sensitivity analysis with
respect to changes in study parameters be performed to provide a bet-
ter understanding on the impact of changes (protocol amendments) in
study parameters on statistical inference. Thus, regulatory guidance
on what range of changes in study parameters are considered accept-
able is necessary. As indicated earlier, adaptive design methods are
very attractive to the clinical researchers and/or sponsors due to their
flexibility, especially in clinical trials of early clinical development. It,
however, should be noted that there is a high risk that a clinical trial
using adaptive design methods may fail in terms of its scientific valid-
ity and/or its limitation of providing useful information with a desired
power, especially when the sizes of the trials are relatively small and
there are a number of protocol amendments. In addition, statistically
it is a challenge to clinical researchers when there are missing val-
ues. The causes of missing values could be related to or unrelated to
the changes or modifications made in the protocol amendments. In this
case, missing values must be handled carefully to provide an unbiased
assessment and interpretation of the treatment effect.

For some types of protocol amendments, the method proposed by
Chow and Shao (2005) gives valid statistical inference for character-
istics (such as the population mean) of the original patient population.
The key assumption in handling population deviation due to proto-
col amendments is assumption (2.43), which has to be verified in each
application. Although a more complicated model (such as a non-linear
model in x) may be considered, model (2.43) leads to simple derivations
of sampling distributions of the statistics used in inference. The other
difficult issue in handling protocol amendments (or, more generally,
adaptive designs) is the fact that the decision rule for protocol amend-
ments (or the adaptation rule) is often random and related to the main
study variable through the accrued data of the on-going trial. Chow and
Shao (2005) showed that if an approximate pivotal quantity conditional
on each realization of the adaptation rule can be found, then it is also
approximately pivotal unconditionally and can be used for uncondi-
tional inference. Further research on the construction of approximate
pivotal quantities conditional on the adaptation rule in various problems
is needed.

After some modifications are made to the trial and/or statistical pro-
cedures, not only the target patient population may have become a sim-
ilar but different patient population, but also the sample size may not
achieve the desired power for detection of a clinically important effect
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size of the test treatment at the end of the study. In practice, we ex-
pect to lose power when the modifications have led to a shift in mean
response and/or inflation of variability of the response of the primary
study endpoint. As a result, the originally planned sample size may
have to be adjusted. In this chapter, it is suggested that the relative
efficiency at each protocol amendment be taken into consideration for
derivation of an adjusted factor for sample size in order to achieve the
desired power. More details regarding the adjustment of sample size
when various adaptive designs/methods are used in clinical trials are
given in the subsequent chapters of this book.



CHAPTER 3

Adaptive Randomization

Randomization plays an important role in clinical research. For a given
clinical trial, appropriate use of randomization procedure not only en-
sures that the subjects selected for the clinical trial are a truly rep-
resentative sample of the target patient population under study, but
also provides an unbiased and fair assessment regarding the efficacy
and safety of the test treatment under investigation. As pointed out
in Chow and Liu (2003), statistical inference of the efficacy and safety
of a test treatment under study relies on the probability distribution
of the primary study endpoints of the trial, which in turn depends on
the randomization model/method employed for the trial. Inadequate
randomization model/method may violate the primary distribution as-
sumption and consequently distort statistical inference. As a result, the
conclusion drawn based on the clinical data collected from the trial may
be biased and/or misleading.

Based on the allocation probability (i.e., the probability of assign-
ing a patient to a treatment), the randomization procedures that are
commonly employed in clinical trials can be classified into four cat-
egories: conventional randomization, treatment-adaptive randomiza-
tion, covariate-adaptive randomization, and response-adaptive random-
ization. The conventional randomization refers to any randomization
procedures with a constant treatment allocation probability. Commonly
used conventional randomization procedures include simple (or
complete) randomization, stratified randomization, and cluster ran-
domization. Unlike the conventional randomization procedures, treat-
ment allocation probabilities for adaptive randomization procedures
usually vary over time depending upon the cumulative information
on the previously assigned patients. Similar to the conventional ran-
domization procedures, treatment-adaptive randomization procedures
can also be prepared in advance. For covariate-adaptive randomization
and response-adaptive randomization procedures, the randomization
codes are usually generated in a dynamically real-time fashion. This is
because the randomization procedure is based on the patient informa-
tion on covariates or response observed up to the time when the random-
ization is performed. Treatment-adaptive randomization and covariate-
adaptive randomization are usually considered to reduce treatment
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imbalance or deviation from the target sample size ratio between treat-
ment groups. On the other hand, response-adaptive randomization pro-
cedure emphasizes ethical consideration, i.e., it is desirable to provide
patients with better/best treatment based on the knowledge about the
treatment effect at that moment.

In practice, conventional randomization procedures could result in
severe treatment imbalance at some time point during the trial or at
the end of the trial, especially when there is a time-dependent het-
erogeneous covariance that relates to treatment responses. Treatment
imbalance could decrease statistical power for demonstration of treat-
ment effect of the intended trial and consequently the validity of the
trial. In this chapter, we attempt to provide a comprehensive review of
various randomization procedures from each category.

In the next section, the conventional randomization procedures are
briefly reviewed. In Section 3.2, we introduce some commonly used
treatment-adaptive randomization procedures in clinical trials. Several
covariate-adaptive randomization procedures and response-adaptive
randomization methods are discussed in Section 3.3 and Section 3.4,
respectively. In Section 3.5, some practical issues in adaptive random-
ization are examined. A brief summary is given in the last section of
this chapter.

3.1 Conventional Randomization

As mentioned earlier, the treatment allocation probability of conven-
tional randomization procedures is a fixed constant. As a result, it
allows the experimenters to prepare the randomization codes in advance.
The conventional randomization procedures are commonly employed in
clinical trials, particularly in double-blind randomized clinical trials.
In what follows, we introduce some commonly employed conventional
randomization procedures, namely, simple randomization, stratified
randomization, and cluster randomization.

Simple randomization

Simple (or complete) randomization is probably one of the most com-
monly employed conventional randomization procedures in clinical tri-
als. Consider a clinical trial for comparing the efficacy and safety of k
treatments in treating patients with certain diseases. For a simple ran-
domization, each patient is randomly assigned to each of the k treat-
ment groups with a fixed allocation probability pi(i = 1, . . . , k), where
∑k

i=1 pi = 1. The allocation probabilities are often expressed as the
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ratio between the sample size (ni) of the ith treatment group and the
overall sample size (n =

∑k
i=1 ni), i.e., pi = ni

n , which is usually re-
ferred to as the sample size ratio of the ith treatment group. In the
interest of treatment balance, an equal allocation probability for each
treatment group (i.e., pi = p for all i) is usually considered, which has
the following advantages. First, it has the most (optimal) statistical
power for correct detection of a clinically meaningful difference under
the condition of equal variances. Second, it is ethical in the sense of
equal toxicity (Lachin, 1988). In practice, however, it may be of interest
to have an unequal allocation between treatment groups. For exam-
ple, it may be desirable to assign more patients to the treatment group
than a placebo group. It, however, should be noted that a balanced de-
sign may not achieve the optimal power when there is heterogeneity
in variance between treatment groups. The optimal power can only be
achieved when the sample size ratio is proportional to the standard
deviation of the group.

The simple (complete) randomization for a two-arm parallel group
clinical trial can be easily performed assuming that the treatment as-
signments are independent Bernoulli random variable with a success
probability of 0.5. In practice, treatment imbalance inevitably occurs
even by chance alone. Since this treatment imbalance could result in
a decrease in power for detecting a clinically meaningful difference, it
is of interest to examine the probability of imbalance. Denote the two
treatments under study by treatment A and treatment B, respectively.
Let Dn = NA(n) − NB(n) be the measure of the imbalance in treatment
assignment at stage n, where NA(n) and NB(n) are the sample size of
treatment A and treatment B at stage n, respectively. Then, the imbal-
ance Dn is asymptotically normally distributed with mean 0 and vari-
ance n. Therefore, the probability of imbalance, for a real value r > 0,
is given by (see, e.g., Rosenberger et al., 2002; Rosenberger and Lachin,
2002)

P(|Dn| > r) = 2
[

1 − Φ
(

r√
n

)]

. (3.1)

The sample size for a unbalanced design with homogeneous variance is
given by

n =
1
R

2(z1−α/2 + z1−β)σ 2

δ2
,

where the relative efficiency R is a function of sample size ratio k = n2
n1

between the two groups, i.e.,

R =
4

2 + k + 1/k
.
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Table 3.1 Relative Efficiencies

Sample Size Ratio, k Relative Efficiency, R Pr(Efficiency< R)

1 1 1
1.5 0.96 0.11
2 0.889 0.01
2.5 0.816 0.001

Note: n = 64.

Let

r = n2 − n1 =
k − 1
1 + k

n.

Then

P(|Dn| > r) = 2
[

1 − Φ
(

k − 1
1 + k

√
n
)]

.

As it can be seen from Table 3.1, Pr(R < 0.96) = 11% and Pr(R <

0.899) = 1%. Thus, Pr(0.899 < R < 0.96) = 10%.

Stratified randomization

As discussed above, simple (complete) randomization does not assure
the balance between treatment groups. The impact of treatment im-
balance could be substantial. In practice, treatment imbalance could
become very critical, especially when there are important covariates.
In this case, stratified randomization is usually recommended to re-
duce treatment imbalance. For a stratified randomization, the target
patient population is divided into several homogenous strata, which
are usually determined by some combinations of covariates (e.g., pa-
tient demographics or patient characteristics). In each stratum, a sim-
ple (complete) randomization is then employed. Similarly, treatment
imbalance of stratified randomization for a clinical trial comparing two
treatment groups can be characterized by the following probability of
imbalance asymptotically (see, e.g., Hallstron and Davis, 1988)

P(|D| > r) = 2

[

1 − Φ

(

r
√

Var(D)

)]

, (3.2)

where

Var(D) =
∑s

i=1 bi + s
6

,
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s is the number of strata, bi is the size of the ith block, and

D =
s∑

i=1

|Ni − 2Ai|,

in which Ni and Ai are the number of patients and the number of
patients in treatment A within the ith stratum, respectively.

When the number of strata is large, it is difficult to achieve treatment
balance across all stages. This imbalance will decrease the power of
statistical analysis such as the analysis of covariance (ANCOVA).

Cluster randomization

In certain trials, the appropriate unit of randomization may be some
aggregate of individuals. This form of randomization is known as clus-
ter randomization or group randomization. Cluster randomization is
employed by necessity in trials in which the intervention is by nature
designed to be applied at the cluster level such as community-based
interventions. In the simple cluster randomization, the degree of im-
balance can be derived based on simple randomization, i.e.,

P(|Dncluster | > r) = 2
[

1 − Φ
(

r√
ncluster

)]

,

where

Dncluster = Ncluster A(ncluster) − Ncluster B(ncluster).

The number of clusters is Ncluster = N/k where k is the number of
subjects within each cluster. Then

Dncluster = Dn/k =
NA(n/k)

k
− NB(n/k)

k
.

Thus we have

P(|Dn|/k > r) = 2
[

1 − Φ
(

r√
n

)]

.

It can be written as

P(|Dn| > r) = 2
[

1 − Φ
(

r
k
√

n

)]

.

It should be noted that the analysis for a cluster-randomized trial is
very different from that of an individual subject–based randomization
trial. A cluster-randomization trial requires adequate numbers of both
individual subjects and clusters.
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Remarks For a given sample size, the statistically most powerful de-
sign is defined as a design with allocation probabilities proportional to
the standard deviation of the group. For binary responses, Neyman’s
treatment allocation with the following allocation ratio leads to a most
powerful design

r = na/nb =
(

pa

pb

1 − pa

1 − pb

) 1
2

, (3.3)

where pa and pb are the proportions for treatment A and treatment
B, respectively. Note that for the most powerful design, the target im-
balance is r0 �= 0 and the power of a design can be measured by the
quantity

P(|D| > r − r0).

3.2 Treatment-Adaptive Randomization

Treatment-adaptive randomization is also known as variance-adaptive
randomization. The purpose of a treatment-adaptive randomization is
to achieve a more balanced design or to reduce the deviation from
the target treatment allocation ratio by utilizing a varied allocation
probability. Commonly used treatment-adaptive randomization mod-
els in clinical research and development include block randomization,
a biased-coin model, and various urn models. To introduce these ran-
domization procedures, consider a two-arm parallel group randomized
clinical trial comparing a test treatment (A) with a control (B).

Block randomization

In block randomization, the allocation probability is a fixed constant be-
fore any of the two treatment groups reach its target number. However,
after the target number is reached in one of the two treatment groups,
all the future patients in the trial will be assigned to the other treatment
group. As a result, block randomization is a deterministic randomiza-
tion procedure. It should be noted that although the block size of the
block randomization can vary, a small block size will reduce the ran-
domness. The minimum block size commonly chosen in clinical trials is
two, which leads to an alternative assignment of the two treatments.
In variance-adaptive randomization, the imbalance can be reduced or
eliminated when the target number of patients is exactly randomized.
Note that when there are two treatment groups, the block randomiza-
tion is sometimes referred to as a truncated binomial randomization.
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The allocation probability is defined as

P =







0 if NA( j − 1) = n/2,
1 if NB( j − 1) = n/2,

0.5 otherwise,

where NA( j − 1) and NB( j − 1) are the sample size of treatment A and
treatment B at stage j − 1, respectively and n/2 is the target number
for each group.

Efron’s biased coin model

Efron (1971) proposed a biased coin design to balance treatment assign-
ment. The allocation rule to treatment A is defined as follows:

P(δ j |∆ j−1) =







0.5 if NA( j) = NB( j),
p if NA( j) < NB( j),

1 − p if NA( j) > NB( j),

where δ j is a binary indicator for treatment assignment of the jth sub-
ject, i.e., δ j = 1 if treatment A is assigned and δ j = 0 if treatment B is
assigned, and ∆ j−1 = {δ1, . . . , δ j−1} is the set of treatment assignment
up to subject j − 1. The imbalance is measured by

|Dn| = |NA(n) − n|.
The limiting balance property can be obtained by random walk method
as follows:

lim
m→∞ Pr(|D2m| = 0) = 1 − 1 − p

p
,

lim
m→∞ Pr(|D2m| = 1) = 1 − (1 − p)2

p2
.

Note that for an odd number of patients, the minimum imbalance is 1.
It can be seen that as p → 1, we achieve perfect balance. But such a
procedure is deterministic.

Lachin’s urn model

Lachin’s urn model is another typical example of variance-adaptive ran-
domization. The model is described as follows. Suppose that there are
NA white balls and NB red balls in an urn initially. A ball is randomly
drawn from the urn without replacement. If it is a white ball, the patient
is assigned to receive treatment A; otherwise, the patient is assigned to
receive treatment B. Therefore, if NA and NB are the target sample sizes
for treatment groups A and B, respectively, the target sample size ratio
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(or balance) is always reached if the total planned number of patients
is reached. The treatment allocation probability for treatment group A
in a trial comparing two treatment groups is

P(A) =
n
2

− NA( j − 1)
NA + NB − ( j − 1)

.

Although Lachin’s urn model can result in a perfect balance design after
all patients are randomized, the maximum imbalance occurs when half
of the treatment allocations are completed, which is given by

Pmax(|Dn| > r) = 2
[

1 − Φ
(

2r
n

√

(n − 1)
)]

.

Friedman-Wei’s urn model

The Friedman-Wei’s urn model is a popular model that can reduce
possible treatment imbalance (see, e.g., Friedman, 1949; Wei, 1977;
Rosenberger and Lachin, 2002). The Friedman-Wei’s urn model is
described below. Suppose that there is an urn containing a white balls
and a red balls. For treatment assignment, a ball is drawn at random
and then replaced. If the ball is white, then treatment A is assigned.
On the other hand, if a red ball is drawn, then treatment B is assigned.
Furthermore, b additional balls of the opposite color of the ball chosen
are added to the urn. Note that a and b could be any reasonable non-
negative numbers. This drawing procedure is replaced for each treat-
ment assignment. Denote a urn design by UD(a, b). The allocation rule
for UD(a, b) can then be defined mathematically as follows:

P(δ j = 1|∆ j−1) =
a + bNB( j − 1)
2a + b( j − 1)

. (3.4)

Note that UD(a, 0) is nothing but a simple or complete randomization.
Let Dn be the absolute difference in number of subjects between the

two treatment groups after the nth treatment assignment. Then Dn
forms a stochastic process with possible values d ∈ {0, 1, 2, . . . , n}. At
initial, D0 = 0. The (n + 1)th stage transition probabilities are then
given by (see also Wei, 1977)

Pr(Dn+1 = d − 1|Dn = d) = 1/2 + bd[2(2a + bn)], (3.5)

Pr(Dn+1 = d + 1|Dn = d) = 1/2 − bd[2(2a + bn)],

Pr(Dn+1 = 1|Dn = 0) = 1,

where n ≥ d ≥ 1. Note that P(d, n) is a monotonically increasing func-
tion with respect to d and a monotonically decreasing function with re-
spect to n. P(d, n) tends to 1/2 as n increases for a fixed d > 0. Therefore,
the UD(a, b) forces the trial to be more balanced when severe imbalance
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occurs. In addition, UD(a, b) can also ensure the balance of a relatively
small trial. It should be noted that UD(a, b) behaves like the complete
randomization design as n increases.

The transition probabilities in (3.1) can be used recursively to cal-
culate the probability of an imbalance of degree d at any stage of the
trial as

Pr(Dn+1 = d) = Pr(Dn+1 = d|Dn = d − 1) Pr(Dn+1 = d − 1)

+ Pr(Dn+1 = d|Dn = d + 1)Pr(Dn+1 = d + 1). (3.7)

For a moderate or large n, the probability of imbalance is approxi-
mately the normal distribution, Dn˜N

(

0, n(a+b)
3b−a

)

. As a result, the prob-
ability of imbalance for large sample size n can be expressed as

P(|Dn| > r) = 2

{

1 − Φ

(

r

√

3b − a
n(a + b)

)}

. (3.8)

Remarks The urn procedure is relative easy to implement. It forces a
small-scale trial to be balanced but approaches complete randomization
as the sample size increases. It has less vulnerability to selection bias
than does the permuted-block design, biased-coin design, or random
allocation rule. As n increases, the potential selection bias approaches
to the complete randomization for which the expected selection bias is
zero. The urn design can also be extended to the prospective stratifica-
tion trial when the number of strata is either small or large.

The urn design can easily be generalized to the case of multiple-group
comparisons (Wei, 1978; Wei, Smythe, and Smith 1986). We can even
further generalize it using different a and b for difference groups in the
urn model.

3.3 Covariate-Adaptive Randomization

The covariate-adaptive randomization is usually considered to reduce
the covariate imbalance between treatment groups. Thus, the covariate-
adaptive randomization is also known as adaptive stratification. Allo-
cation probability for the covariate-adaptive randomization is modified
over time during the trial based on the cumulative information about
baseline covariates and treatment assignments. Covariate-adaptive
randomization includes Zelen’s model, Pocock-Simon’s model, Wei’s
marginal urn design, minimization, and the Atkinson optimal model,
which will be briefly described below.
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Zelen’s model

Zelen’s model (Zelen, 1974) requires a simple randomization sequence.
When the imbalance reaches a certain threshold, the next subject will
be forced to be assigned to be the group with fewer subjects. Let Nik(n)
be the number of patients in stratum i = 1, 2, . . . , s of the kth treatment
k = 1, 2. When patient n+1 in stratum i is ready to be randomized, one
computes Di(n) = Ni1(n) − Ni2(n). For an integer c, if |Di(n)| < c, then
the patient is randomized according to schedule; otherwise, the patient
will be assigned to the group with fewer subjects, where the constant
can be c = 2, 3, or 4 as Zelen suggested.

Pocock-Simon’s model

Similar to the Zelen’s model, Pocock and Simon (1975) proposed an
alternative covariate-adaptive randomization procedure. We follow
Rosenberger and Lachin’s descriptions of the method (Rosenberger and
Lachin, 2002). Let Nijk(n), i = 1, . . . , I, j = 0, 2, . . . , ni, and k = 1, 2
(1 = treatment A, 2 = treatment B) be the number of patients in stra-
tum j of covariate i on treatment k after n patients have been random-
ized. Note that

∏I
i=1 ni = s is the total number of strata in the trial.

Suppose the (n + 1)th patient to be randomized is a member of strata
r1, . . . , rI of covariates 1, . . . , I. Let Di(n) = Niri1 − Niri2. Define the fol-
lowing weighted difference measure D(n) =

∑I
i=1 wi Di(n), where wi are

weights chosen depending on which covariates are deemed of greater
importance. If D(n) is less than 1/2, then the weighted difference mea-
sure indicates that B has been favored thus far for that set, r1, . . . , rI , of
strata and the patient n+ 1 should be assigned with higher probability
to treatment A, and vice versa. If D(n) is greater than 1/2, Pocock and
Simon (1975) suggested biasing a coin with

p =
c∗ + 1

3

and implementing the following rule: if D(n) < 1/2, then assign the next
patient to treatment A with probability p; if D(n) > 1/2, then assign
the next patient to treatment B with probability p; and if D(n) = 1/2,
then assign the next patient to treatment A with probability 1/2, where
c∗ ∈ [1/2, 1].

Note that if c∗ = 1, we have a rule very similar to Efron’s biased
coin design as described in the previous section. If c∗ = 2, we have the
deterministic minimization method proposed by Taves (1974) (see also
Simon, 1979). Note that many other rules could also be derived following
the Zelen’s rule and Taves’s minimization method with a biased coin



ADAPTIVE RANDOMIZATION 57

twist to give added randomization. Efron (1980) described one of such
rules and applied it to a clinical trial in ovarian cancer research.

Pocock and Simon (1975) also generalized their covariate-adaptive
randomization procedure to more than two treatments. They suggested
the following allocation rule be applied:

pk = c∗ − 2(K c∗ − 1)k
K(K + 1)

, k = 1, . . , K,

where K is the number of treatments.

Wei’s marginal urn design

In practice, when the number of covariates results in a large number
of strata with small stratum sizes, the use of a separate urn in each
stratum could result in treatment imbalance within strata. Wei (1978)
proposed marginal urn design for solving the problem. Instead of using
N urns, one for each unique stratum, he suggested using the urn with
maximum imbalance to do the randomization each time. For a given
new subject with covariate values r(1), . . . , r(I), treatment imbalance
within each of the corresponding urns is calculated. The one with the
greatest imbalance is used to generate the treatment assignment for the
next subject. A ball from that urn is chosen with replacement. Mean-
while, b balls representing the opposite treatment are added to the urns
corresponding to that patient’s covariate values. Wei (1978) called this
approach a marginal urn design because it tends to balance treatment
assignments within each category of each covariate marginally, and
thus also jointly (Rosenberger and Lachin, 2002).

Imbalance minimization model

Imbalance minimization allocation has been advocated as an alterna-
tive to the stratified randomization when there are large numbers of
prognostic variables under the imbalance minimization model (Birkett,
1985). The allocation of a patient is determined as follows. A new pa-
tient is first classified according to the prognostic variables of interest.
He/she is then tentatively assigned to each treatment group in turn, and
a summary measure of the resulting treatment imbalance is calculated.
The measure of imbalance is obtained by summing the absolute value
of excess number of patients receiving one treatment rather than other
treatment within every level of each prognostic variable. The two mea-
sures are compared, and final allocation is made to that group that mini-
mizes that imbalance measurement. As indicated by Birkett (1985), the
imbalance minimization would help gain the power.
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Although minimization has been widely used in clinical trials, it is
a concern that the potential risk of enabling the investigator to break
the code due to the deterministic nature of the allocation may bias the
enrollment of patients (Ravaris et al., 1976; Gillis and Ratkowsky, 1978;
Weinthrau et al., 1977).

Atkinson optimal model

Atkinson (1982) considered a linear regression model to minimize the
variance of treatment contrast in the presence of important covariates.
The allocation rule is given by

pk =
dA(k, ξn)

∑K
k=1 dA(k, ξn)

, (3.9)

where

ξn = arg max
ξ

{|A′M−1(ξ)A|−1
}

, (3.10)

in which M = X′X is the pxp dispersion matrix from nobservations, and
A is an sxp matrix of contrasts, s < p. More details regarding Atkinson’s
optimal model can be found in Atkinson and Donev (1992).

3.4 Response-Adaptive Randomization

Response-adaptive randomization is a randomization technique in
which the allocation of patients to treatment groups is based on the
response (outcome) of the previous patients. The purpose is to provide
the patients better/best treatment based on the knowledge about the
treatment effect at that moment. As a result, response-adaptive ran-
domization takes the ethical concern into consideration. The well-known
response-adaptive models include play-the-winner (PW) model, ran-
domized play-the-winner (RPW) model, Rosenberger’s optimization
model, Bandit model, and optimal model with finite population. In what
follows, these response-adaptive randomization models will be briefly
described.

Play-the-winner model

Play-the-winner (PW) model can be easily applied to clinical trials com-
paring two treatments (e.g., treatment A and treatment B) with binary
outcomes (i.e., success or failure). For PW model, it is assumed that the
previous subject’s outcome will be available before the next patient is
randomized. The treatment assignment is based on treatment response
of the previous patient. If a patient responds to treatment A, then the
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next patient will be assigned to treatment A. Similarly, if a patient
responds to treatment B, then the next patient will be assigned to
treatment B. If the assessment of previous patient is not available, the
treatment assignment can be based on the last available patient with
response assessment or randomly assigned to treatment A or B. It is
obvious that this model lacks randomness.

Randomized play-the-winner model

The randomized play-the-winner (RPW) model is a simple probabilistic
model to sequentially randomize subjects in a clinical trial (see, e.g.,
Rosenberger, 1999; Coad and Rosenberger, 1999). RPW model is useful
especially for clinical trials comparing two treatments with binary out-
comes. For RPW, it is assumed that the previous subject’s outcome will
be available before the next patient is randomized. At the start of the
clinical trial, an urn contains αA balls for treatment A and αB balls for
treatment B, where αA and αB are positive integers. For convenience’s
sake, we will denote these balls by either type A or type B balls. When
a subject is recruited, a ball is drawn and replaced. If it is a type A ball,
the subject receives treatment A; if it is type B, the subject receives
treatment B. When a subject’s outcome is available, the urn is updated.
A success on treatment A or a failure on treatment B will generate an
additional b type B balls in the urn, where b is a positive integer. In this
way, the urn builds up more balls representing the more successful (or
less successful) treatment.

There are some interesting asymptotic properties with RPW. Let
Na/N be the proportion of subjects assigned to treatment A out of N
subjects. Also, let qa = 1 − pa and qb = 1 − pb be the failure probabili-
ties. Further, let F be the total number of failures. Then, we have (Wei
and Durham, 1978)

lim
N→∞

Na

Nb
=

qb

qa
, (3.11)

lim
N→∞

Na

N
=

qb

qa + qb
,

lim
N→∞

F
N

=
2qaqb

qa + qb
.

Note that for balanced randomization, E(F/N) = (qa + qb)/2.
Since treatment assignment is based on response of previous patients

in RPW model, it is not optimized with respect to any clinical endpoint.
It is reasonable to randomize treatment assignment based on some
optimal criteria such as minimizing the expected numbers treatment
failures. This leads to the so-called optimal designs.
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Optimal RPW model

Adaptive designs have long been proposed for ethical reasons. The basic
idea is to skew allocation probabilities to reflect the response history
of patients, hopefully giving a greater than 50% chance of a patient’s
receiving the treatment performing better thus far in the trial. The opti-
mal randomized play-winner model (ORPW) is to minimize the number
of failures in the trial.

There are three commonly used efficacy endpoints in clinic trials,
namely, simple proportion difference (pa − pb), the relative risk (pa/pb),
and the odds ratio (paqb/pbqa), where qa = 1 − pa and qb = 1 − pb are
failure rates. These can be estimated consistently by replacing pa with
p̂a and pb with p̂b, where p̂a and p̂b are the proportions of observed
successes in treatment groups A and B, respectively. Suppose that we
wish to find the optimal allocation r = na/nb such that it minimizes the
expected number of treatment failures naqa + nbqb, which is mathemat-
ically given by

r∗ = arg min
r

{naqa + nbqb} (3.12)

= arg min
r

{
r

1 + r
nqa +

1
1 + r

nqb

}

.

For simple proportion difference, the asymptotic variance is given by

paqa

na
+

pbqb

nb
=

(1 + r)(pa qa + r pb qb)
nr

= K, (3.13)

where K is some constant. Solving (3.13) for n yields

n =
(1 + r)(pa qa + r pb qb)

rK
. (3.14)

Substituting (3.14) into (3.13), we obtain

r∗ = arg min
r

{
(r pa + qb)(paqa + r pbqb)

r K

}

. (3.15)

Taking the derivative of (3.14) with respect to r and equating to zero,
we have

r∗ =
(

pa

pb

) 1
2

.

Note that r∗ does not depend on K.
Note that the limiting allocation for the RPW rule ( qb

qa
) is not optimal

for any of the three measures. It is also interesting to note that none of
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Table 3.2 Asymptotic Variance with RPW

Measure r∗ Asymptotic Variance

Proportion difference
(

pa
pb

) 1
2 pa qa

na
+ pb qb

nb

Relative risk
(

pa
pb

) 1
2

(
qb
qa

)
pa q2

b
naq3

a
+ pb qb

nbq2
a

Odds ratio
(

pb
pa

) 1
2

(
qb
qa

)
pa q2

b
naq3

a p2
b
+ pbqb

nbq2
a p2

b

Source: Rosenberger and Lachin (2002), p. 176.

the optimal allocation rules yields Neyman allocation given by (Melfi
and Page, 1998)

r∗ =
(

pa

pb

qa

qb

) 1
2

,

which minimizes the variance of the difference in sample proportions.
Note that Neyman allocation would be unethical when pa > pb (i.e.,
more patients receive the inferior treatment, Table 3.2).

Because the optimal allocation depends on the unknown binomial
parameters, we must develop a sequential design that can approximate
the optimal design. The rule for the proportion difference is to simply
replace the unknown success probabilities in the optimal allocation rule
by the current estimate of the proportion of successes (i.e., p̂a,n and p̂b,n)
observed in each treatment group thus far. This leads to the so-called
sequential maximum likelihood procedure. Alternatively, we can use
a Bayesian approach such as Bandit allocation rule, where different
optimal criteria can be optionally utilized.

Bandit model

A bandit allocation rule is a Bayesian approach that utilizes prior in-
formation on unknown parameters in conjunction with incoming data
to determine optimal treatment assignment at each stage of the trial
(Hardwick and Stout, 1991, 1993, 2002). The weighting of returns is
known as discounting, which consists of multiplying the payoff of each
outcome by the corresponding element of a discount sequence. The prop-
erties of any given bandit allocation rule depend upon the associated
discount sequence and prior distribution.

Consider a two-arm bandit (TAB) design for the two proportion dif-
ference. The procedure can be described as follows.
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(1) Binary outcomes Xia and Xib for the two treatment groups are
Bernoulli random variable:

Xia ∼ B(1, pa), (3.16)

and

Xib ∼ B(1, pb), i = 1, 2, . . . , n.

(2) Prior distribution is assumed to be a beta distribution:

pa ∼ Beta(a0, b0), (3.17)

and

pb ∼ Beta(c0, d0).

(3) At stage m ≤ n, the posteriors of pa and pb are given by

(pa|k, i, j) ∼ Beta(a, b), (3.18)

and

(pb|k, i, j) ∼ Beta(c, d),

where

k =
m∑

i=1

δia, i =
k∑

i=1

Xia, and j =
m−k∑

i=1

Xia,

and






a = i + a0,
b = k − i − b,
c = j + c0,
d = m− k − j + d0.

(3.19)

Thus, the posterior means of pa and pb at m stage are given by

Em[pa] = a/(a + b),

and

Em[pb] = c/(c + d),

where Em[.] denotes expectation under the model.
(4) Two commonly used discount sequences {1, β1, β2, . . . , βn} are the

n-horizon uniform sequence with all βi = 1, and the geometric sequence
with all βi = β(0 < β < 1).

(5) Allocation rule, δ, is defined to be a sequence (δ1, δ2, . . . , δn) where
δi = 1 if the ith subject receives treatment A and δi = 0 if the ith subject
receives treatment B. It is required that the decision, δi at stage i be
dependent only upon the information available at that time (not the
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future). The two commonly used allocation rules are Uniform Bandit
and Truncated Gittins Lower Bound.

The truncation here refers to a rule that if a state is reached such
that the final decision cannot be influenced by any further outcomes,
then the treatment with the best success rate will be used for all further
subjects.

Uniform Bandit The n-horizon uniform TAB uses prior and accumu-
lated information to minimize the number of failures during the trial.
Let �m(i, j, k, l) denote the minimal possible expected number of fail-
ures remaining in the trial, if m patients have already been treated and
there were i successes and j failures on treatment A, and k successes
and l failures on treatment B. (Note that one parameter can be elim-
inated since m = i + j + k + l.) The algorithmic approach is based on
the observation that if A were used on next patient, then the expected
number of failures for patient m+ 1 and through n would be

�
A
m(i, j, k, l) = Em[pa]�m+1(i, j, k, l) + Em[1 − pa](1 + �m+1(i, j, k, l)),

(3.20)

If B were used, we would have

�
B
m(i, j, k, l) = Em[pb]�m+1(i, j, k, l) + Em[1 − pb](1 + �m+1(i, j, k, l)).

(3.21)

Therefore, � satisfies the recurrence

�m(i, j, k, l) = min
{

�
A
m(i, j, k, l), �

B
m(i, j, k, l)

}

, (3.22)

which can be solved by dynamic programming, starting with patient
n and proceeding toward the first patient. The computation is at order
of O(n4).

Gittins Lower Bound According to a theorem of Gittins and John
(Berry and Fristedt, 1985), for bandit problems with geometric discount
and independent arms, for each arm there exists an index with the
property that, at given stage, it is optimal to select, at the next stage,
the arm with the higher index. The index for an arm, the Gittins Index,
is a function only of the posterior distribution and discount factor β.

The existence of Gittins index removes many computation difficulties
associated with other Bandit problems.

Remarks For small samples, the allocation rule can be implemented
by means of dynamic programming (Hardwick and Stout, 1991). Se-
quential treatment allocation can also be done based on other optimal
criteria. For example, Hardwick and Stout (2002) developed the allo-
cation rule based on maximizing the likelihood of making the correct
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decision by utilizing a curtailed equal allocation rule with a minimal ex-
pected sample size. The optimization is given for any fixed |pa − pb| = ∆
among the curtailed (pruned) equal allocation rule. The pruning refers
to a rule whereby, if a state is reached such that the sign of the final
observed difference in success rate for the two groups will not be in-
fluenced by any further outcomes, then the trial will be stopped. The
pruning could result in an insufficient sample size or power for clinical
trials.

Rosenberger et al.(2002) used computer simulations to compare the
ORPW, Neyman allocation, the RPW rule, and equal allocation. They
found out that the RPW rule tends to be highly variable for larger val-
ues of pa and pb. The adaptive structure of sequential designs includes
dependencies that could result in extra-binomial variability. This in-
creased variability will decrease power to some extent. ORPW reduces
the expected number of failures from equal allocation and reduces the
expected failures by around 3 or 4 when pa and pb are small to mod-
erate. When pa and pb are large, there are more moderate reductions,
and it is questionable whether adaptive designs would improve much
over equal allocation when a test is based on proportion difference. For
the RPW design, for example, if pa = 0.7 and pb = 0.9 with a sample
size of 192, the RPW design has power 0.88 for z1 with t expected 31.5
failures, while equal allocation design for 162 patients has power 0.90
with 32.4 failures.

The RPW rule does not require instantaneous outcomes, or even that
they are available before randomization of the next subject. Investiga-
tors can update the urn when a subject’s outcome is ascertained. The
effect of this will “slow” the adaptation, and hence there will be less
benefit to subjects, particularly those recruited early. If delay of the re-
sponse is so significant, it could be practically impossible to implement
the RPW rule.

Bandit model for finite population

The bandit allocation rule discussed in the previous section is optimal
in the sense that it minimizes the number of failures in the trial. In
what follows, we will discuss an optimal criterion in the scope of the
entire patient population with the disease, and compare five different
randomization procedures (Berry and Eick, 1995) with this criterion.

Suppose that the “patient horizon” is N. Each of the N patients is to
be treated with one of two treatments, A and B. Treatment allocation
is sequential for the first n patients and the response is dichotomous
and immediate. Let Zj , j = 1, . . . , N, denote the response of patient j;
Zj = 1 if success and Zj = 0 if failure. The probability of a success with
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treatment A is pa and with B is pb. We have that

E[Zj |pa, pb]=

{

P[Zj = 1|pa, pb] = pa, if patient j receives treatment A
P[Zj = 1|pa, pb] = pb, if patient j receives treatment B.

Since treatment allocation for patients 1 to n is sequential, treatment
assignment can depend upon the responses of all previously treated
patients. However, treatment assignment for patients n + 1 to N can
depend only on the responses of patients 1 to n. In all the procedures
we consider, these latter patients receive the treatment with the larger
fraction of successes among the first n. (If the two observed success
proportions are equal, then the treatment with the greater number of
observations is given to patients n + 1 to N.) Let D be the class of all
treatment allocation procedures satisfying these restrictions.

The conditional worth (W) of procedure τ ∈ D (given pa and pb) is

Wδ(pa, pb) = Eδ





N∑

j=1

Zj |pa, pb]



, (3.23)

where the distribution of the Zj ’s is determined by τ. This can be no
greater than Nmax{pa, pb}. The conditional expected successes lost (ESL)
using τ is:

Lτ (pa, pb) = Nmax{pa, pb} − Wτ (pa, pb). (3.24)

This function is obviously non-negative for all τ.

Allocation Procedures Barry and Eirick (1995) considered four
adaptive procedures and compared them with a balanced randomized
design or equal randomization (ER). All of these procedures are mem-
bers of D. We describe the procedures on the basis of the way they
allocate treatments to the first n patients. We assume for convenience
that n is an even integer.

Procedure ER: Half of the first n patients are randomly assigned to
treatment A and the other half to B. For comparison purposes, it does
not matter whether patients are randomized in pairs, or in blocks of
larger size.

Procedure JB (J. Bather): Treatments A and B are randomly assigned
to patients 1 and 2 so that one patient receives each. Suppose that
during the trial m patients have been treated, 2 ≤ m < n, and assume
that sa, fa, sb, fb successes and failures have been observed on A and B,
respectively (sa + fa + sb + fb = m). Define

λ(k) = (4 +
√

k)/(15k). (3.25)

Let λa = λ(sa + fa) and λb = λ(sb + fb). Procedure JB random-
izes between the respective treatments except that the randomization
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probabilities depend upon the previously observed response. Let

q =
sa

sa + fa
− sb

sb + fb
+ 2(λa − λb), (3.26)

then under procedure JB, the next patient (patient m + 1) receives
treatment A with probability

λa

λa + λb
exp(q/λa) for q ≤ 0

and

1 − λb

λa + λb
exp(q/λb) when q > 0.

Procedure TAB is a two-armed bandit procedure where the first n pa-
tients are randomized based on the current probability distribution of
(pa, pb), assuming a uniform prior density on (pa, pb):

π(pa, pb) = 1 on (0, 1) × (0, 1) (3.27)

The next patient receives treatment A with probability equal to the
current probability that pa > pb. This probability is

∫ 1

0

∫ 1

0

usa(1 − u) favsb(1 − v) fb dudv

{

B(sa + 1, fa + 1)B(sb + 1, fb + 1
}−1 (3.28)

where B(., .) is the complete beta function:

B(a, b) =
∫ 1

0

ua−1(1 − u)b−1du. (3.29)

Procedure PW (Play-the-winner/Switch-from-loser): The first patient
receives treatment A or B with a equal probability 0.5. For patients 2
to n, the treatment given to the previous patient is used again if it was
successful; otherwise the other treatment is used.

Procedure RB (Robust Bayes): This strategy is optimal in the follow-
ing two-arm bandit problem. Suppose that the uniform prior density
of (pa, pb) is given, the discount sequence of β = {1, β1, β2, . . . , βn} is
defined by

βi =







1 for 1 ≤ i ≤ n,
N − n for i = n + 1,

0 for i > n + 1.

(3.30)

That means that all N patients have equal weights. The first n patients
each have a weight of N − n. Procedure RB maximizes

∫ 1

0

∫ 1

0

Wτ (pa, pb; β) dpadpb (3.31)
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over all δ ∈ D, where

Wδ(pa, pb; β) = Eδ





N∑

j=1

β j Zj |pa, pb



.

This maximum can be found using dynamic programming. The starting
point is after the n patients in the trial have responded. The subsequent
expected number of the successes is N − n times the maximum of the
current expected values of pa and pb. If both treatments are judged
equally effective at any stage, then procedure RB randomizes the next
treatment assignment.

Procedure RB comprises a dynamic programming process. The sym-
metry of the uniform prior distribution implies that the treatments are
initially equivalent. For the first patient, one is chosen at random. If the
first patient has a success, then the second patient receives the same
treatment. If the first patient has a failure, then the second patient re-
ceives the other treatment. Thus, procedure RB imitates procedure PW
for the first two treatment assignments. The same treatment is used
as long as it is successful, again imitating PW. However, after a failure,
switching to the other treatment may or may not be optimal. If the data
sufficiently strongly favor the treatment that has just failed, then that
treatment will be used again.

When following procedure RB, if the current probability of success for
treatment A (which is the current expected value of pa) is greater than
that for treatment B, then treatment A may or may not be optimal for
the next patient. If the current number of patients on treatment A, sa+ fa
is smaller than the number of patients on B, sb + fb, then A is indeed
optimal. However, if sa + fa is greater than sb + fb, then, for sufficiently
large N, treatment B is optimal irrespective of the current expected
values of pa and pb. Procedure RB tends to assign the currently superior
treatment, but less so for large N than for small N. As N increases,
gathering information early on by balancing the treatment assignment
is important. Thus, assignment to the two treatments tends to be more
balanced when N is large than when it is small.

Some comparisons between these procedures are possible without
detailed calculations. Procedure ER is designed to obtain information
from the first n patients that will help patients outside the trial. Because
it gives maximal information about pa − pb, its performance relative to
the other procedures will improve as N increases.

Procedure RB is designed to perform well on the average for any
n, N, pa, and pb. Of the five procedures described, it alone specifically
uses the value of N, giving it an advantage over the other procedures.
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Procedure PW ignores most of the accumulating data; its treatment
assignments are based not on sufficient statistics but only on the result
for the previous patient. On the other hand, since PW tends to allocate
patients to both of the treatments except when one or both p’s is close
to 1, it should perform well when N is large.

Procedures JB and TAB are quite similar. Both randomize allocations
so that the currently superior treatment is more likely to be assigned.

As indicated above, RB maximizes (3.31) over all procedures in D.
Thus, procedures PW, JB and TAB will not perform better than RB
when averaged over pa and pb. However, they might outperform RB
for some N and some moderately large set of (pa, pb). The computer
simulations showed that they do not.

Remarks Berry and Eick (1995) conducted computer simulations com-
paring the five methods mentioned above with N = 100, 1000, 10,000
and 100,000. Their main conclusion is that a balanced randomized de-
sign is nearly optimal when the disease is relatively common, e.g., when
N is moderately large (such as N ≥ 10,000). However, when a substan-
tial portion of patients are involved in the trial (as with a rare form of
cancer), then adaptive procedures can perform substantially better than
a balanced randomization. There are many relevant questions that need
to be answered before these adaptive allocations can provide practical
advantages. These questions include (i) How relevant is the condition?
(ii) How effective are the treatments A and B? (iii) Are other effective
treatments available? (iv) How long will it take to discover a new treat-
ment that is clearly superior to both A and B? In addition, if a Bayesian
approach is used, should pa and pb have different priorities because the
control is using an approved drug?

Adaptive models for ordinal and continuous outcomes

Ordinal Outcome Ivan and Flournoy (2001) developed an urn model,
called Ternary urn model, for categorical outcome. In this section, we
will introduce an urn model for ordinal outcome. This model can fall
into Rosenberger’s treatment effect mapping model, whose allocation
rule is given by

P(δ j |∆ j−1) = g(Ej),

where g is a function of treatment effect Ej−1 at stage j.
We propose here a response-adaptive model with ordinal outcomes

for multiple treatments. Suppose there are K treatment groups in the
trial and the primary response is ordinal with M categories. Without
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loss of generality, let C j( j = 1, . . , M) be the integer scales for the or-
dinal response with a higher score indicating a desired outcome. The
response-adaptive urn model is defined as follows. There are K types
of balls in an urn, initially ai balls of type i. The treatment assignment
for a patient is determined by the ball type randomly drawn from the
urn with replacement. If a ball of type k is drawn from the urn, the
patient will be assigned treatment k. Then observe the response for all
the patients treated. If a patient with treatment i had response C j at
stage n (n patients have been treated), then nCj balls of type i will be
added to the urn. Repeat this procedure for treatment assignment to
all patients in the trial.

Normal Outcome Let Yi be a continuous variable representing the
response of the ith patient, treated with either A or B following the
adaptive design. Assume responses to be instantaneous and normally
distributed. Suppose µa and µb are population characteristics repre-
senting the treatment effects A and B, respectively (assume a larger
value µ indicates a better result). For the ith patient, we define an indi-
cator variable δi which takes the value 1 or 0 accordingly as the patient
is treated by A or B. Then, the adaptive allocation rule is described as
follows:

For the initial two patients, we randomly assign one to each treatment
A or B. For patient i + 1 ( 2 < i ≤ n), we assign him/her to treatment A
with a probability of

Pa(δi+1|δ1, . . , δi, Y1, . . . , Yi) =



Φ




µ̂a − µ̂b

σ̂p

√
1
ia

+ 1
ib









α

, (3.32)

where α is constant that can be determined by optimal criteria later,
Φ(•) is the standard normal cumulative distribution function, ia and
ib are number of patients in treatment A and B at state i, the pooled
variance

σ̂ 2
p =

(ia − 1)σ̂ 2
a − (ib − 1)σ̂ 2

b

ia − ib − 2
,

and µ̂a = Ȳa and µ̂b = Ȳb. Note that Bandyopadhyay and Biswas
(1997) suggested using the allocation probability Φ( µ̂a−µ̂b

T ), where T is a
constant.

Survival Outcome Rosenber and Seshaiyer (1997) proposed a treat-
ment effect mapping g(S) = 0.5(1 + S), where S is the centered and
scaled logrank test. We suggest using the optimal model proposed in
the previous section since logrank test statistic is normally distributed.
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3.5 Issues with Adaptive Randomization

Rosenberger and Lachin (2002) discussed the issues with adaptive
design. They classified the bias into acrrual bias and selection bias as
summarized below.

Accrual bias

RPW or other adaptive designs may lead to a unique type of bias, i.e.,
accrual bias, by which volunteers may wish to be recruited later in the
study to take advantage of the benefit from previous outcomes. Earlier
subjects are mostly to have higher probabilities of receiving the inferior
treatment.

Accidental bias

Efron (1971) introduced the term accidental bias to describe the bias in
estimation of treatment effect induced by an unobserved covariate. The
bias in estimation of treatment, (E(α̂) − α)2, is minimized when treat-
ment assignment is balanced, where α and α̂ are the true treatment
effect and estimated treatment effect through linear regression, respec-
tively. The bound of the bias due to unbalanced treatment assignments
is controlled by the eigenvalue of covariance matrix of treatment assign-
ment sequence. The eigenvalues for different randomization models are
presented in Table 3.3.

Accidental bias does not appear to be a serious problem for any of
the randomization models discussed so far, except for the truncated
binomial design. More details regarding the accidental bias can be found
in Rosenberger and Lachin (2002).

Table 3.3 Accidental Bias for Various Randomization Models

Model Name Maximum Eigenvalue, λmax

Complete random 1

Lachin’s allocation rule 1+ 1
n−1

Stratified Lachin’s allocation rule 1+ 1
m−1

Truncated binomial model
√

πn/3 ≤ λmax ≤ √
n/2

Friedman-Wei’s urn model 1+ 2
3

ln n
n +O(n−1)

Note: n = sample size, and m = sample size with each stratum.
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Selection bias

Selection bias refers to biases that are introduced into an unmasked
study because an investigator may be able to guess the treatment as-
signment of future patients based on knowing the treatments assigned
to the past patients. Patients usually enter a trial sequentially over
time. Staggered entry allows the possibility for a study investigator to
alter the composition of the groups by attempting to guess which treat-
ment will be assigned next. Based on whichever treatment is guessed
to be assigned next, the investigator can then choose the next patient
scheduled for randomization to be one whom the investigator considers
to be better suited for that treatment. One of the principal concerns in
an unmasked study is that a study investigator might attempt to “beat
the randomization” and recruit patients in a manner such that each pa-
tient is assigned to whichever treatment group the investigator feels is
best suited to that individual patient (Rosenberger and Lachin, 2002).

Blackwell and Hodges (1957) developed a model for selection bias.
Using this model the selection bias can be measured by the so-called
expected bias factor,

E(F) = E(G − n/2), (3.33)

where G is total number of correct guesses (A better to B better), n/2 is
the number of patients in each of the two groups.

Blackwell and Hodges (1957) showed that the optimal strategy for the
experimenter upon randomizing the jth patient is to guess treatment A
when NA( j − 1) < NB( j − 1) and B when NA( j − 1) > NB( j − 1). When
there is a tie, the experimenter guesses with equal probability. This is
called convergence strategy. The expected bias factors under convergence
strategy for various randomization models are presented in Table 3.4.

Inferential analysis

Analyses based on a randomization model are completely different from
traditional analyses using hypotheses tests of population parameters
under the Neyman-Pearson paradigm. The most commonly used basis
for the development of a statistical test is the concept of a population
model, where it is assumed that the sample of patients is representative
of a reference population and that the patient responses to treatment
are independent and identically distributed from a distribution depen-
dent on unknown population parameters. A null hypothesis under a
population model is typically based on the equality of parameters from
known distributions. Permutation tests or randomization tests are non-
parametric tests. The null hypothesis of a permutation test is that the
assignment of treatment A versus B has no effect on the responses of the
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Table 3.4 Expected Selection Bias Factors Under Convergence
Strategy

Model Maximum Eigenvalue, λmax

Complete random 0

Lachin’s allocation rule 2n−1
(

n
n/2

)− 1
2

Stratified Lachin’s allocation rule M




2m−1

m − 1
2

( m
m/2

)





Truncated binomial model n
2n+1

(
n

n/2

)

Friedman-Wei’s urn model
∑n

i=1

[
1
2 +

βE(|Di−1|)
2(2α+β(i−1))

]

− n
2

Note: n = sample size, m = # of patients/block, and M = number of blocks.

n patients randomized in the study. The essential feature of a permuta-
tion test is that in a randomization null hypothesis, the set of observed
responses is assumed to be a set of deterministic values that are un-
affected by treatment. The observed difference between the treatment
groups depends only upon the way in which the n patients were ran-
domized. Permutation tests are assumption-free, but depend explicitly
upon the particular randomization procedure used.

A number of questions arise about the permutation test. (1) What
measure of extremeness, or test statistic, should be used? The most gen-
eral family of permutation tests is the family of linear rank tests. Linear
rank tests are used often in clinical trials, and the family includes such
tests as the traditional Wilcoxon rank-sum test and the logrank test.
(2) Which set of permutations of the randomization sequence should be
used for comparison? (3) If the analysis of a clinical trial is based on
a randomization model that does not in any way involve the notion of
a population, how can results of the trial be generalized to determine
the best care for future patients? However, this weakness exists in the
population model too.

Power and sample size

For the urn UD(α, β) design, if the total sample size n = 2m is specified,
a perfectly balanced design with na = nb = mwill minimize the quantity

η = [1/na + 1/nb]
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which is η = 2/m. If n is not known beforehand, it is interesting to know
how many extra observations are needed for UD(0, β) to reduce η to be
less than or equal to 2/m. That is, we continue taking observations until
na and nb satisfy

1
na

+
1
nb

≤ 2
m

(3.34)

If we write na +nb = 2m+ν, then ν is the number of additional observa-
tions required by the UD(0, β) to satisfy this condition. It follows (Wei,
1978) that for any given ν and large m,

Pr(ν ≤ z) ≈ Φ[(3z)1/2] − Φ[−(3z)1/2]. (3.35)

For large m, Pr[ν ≤ 4] is approximately 0.9995, and thus the UD(0, β)
needs at most 4 extra observations to satisfy the above inequality, i.e.,
to yield the same efficiency as the perfectly balanced randomization
allocation rule.

3.6 Summary

In this chapter, we have discussed several types of adaptive random-
ization. Theoretically, outcomes (efficacy or safety) with a response-
dependent randomization are not independent. Therefore, the
population-based inferential analysis method distinguishes the two
types of adaptive designs. However, the randomization-based analy-
sis (permutation test) can be used under both adaptive randomiza-
tions. When a test statistic for the non-adaptive randomized trial is
going to be used for an adaptive randomization trial, the corresponding
power/sample size calculation for the non-adaptive randomization trial
can also be used. For small sample size, permutation can be used for the
inferential analysis, confidence interval estimation, and power/sample
size estimation. An adaptive randomization can be either optimal or
intuitive. The outcome can be binary, ordinal, or continuous. The adap-
tive approach can be Bayesian or non-Bayesian. Our discussions have
been focused on the cases with two treatment groups, but it can be easily
expanded to multiple arms.





CHAPTER 4

Adaptive Hypotheses

Modifications of hypotheses of on-going clinical trials based on accrued
data can certainly have an impact on statistical power for testing the hy-
potheses with the pre-selected sample size. Modifications of hypotheses
of on-going trials commonly occur during the conduct of a clinical trial
due to the following reasons: (i) an investigational method has not yet
been validated at the planning stage of the study, (ii) information from
other studies is necessary for planning the next stage of the study, (iii)
there is a need to include new doses, and (iv) recommendations from a
pre-established data (safety) monitoring committee (DMC) (Hommel,
2001). In addition, to increase the probability of success, the spon-
sors may switch a superiority hypothesis (originally planned) to a non-
inferiority hypothesis. In this chapter, we will refer to adaptive hypothe-
ses as modifications of hypotheses of on-going trials based on accrued
data. Adaptive hypotheses can certainly affect the clinically meaningful
difference (e.g., effect size, non-inferiority margin, or equivalence limit)
to be detected, and consequently the sample size is necessarily adjusted
for achieving the desired power.

In this chapter, we will examine the impact of a modification to hy-
potheses on the type I error rate, the statistical power of the test,
and sample size for achieving the desired power. For a given clinical
trial, the situations where hypotheses are modified as deemed appro-
priate by the investigator or as recommended by an independent data
safety monitoring board (DSMB) after the review of interim data during
the conduct of the clinical trial are described in the next section. In
Section 4.2, the choice of non-inferiority margin, change in statisti-
cal inference, and impact on sample size calculation when switching
from a superiority hypothesis to a non-inferiority hypothesis are dis-
cussed. Multiple hypotheses such as independent versus dependent
and/or primary versus secondary hypotheses are discussed in
Section 4.3. Also included in this section is a proposed decision theory
approach for testing multiple hypotheses. A brief concluding remark is
given in the last section.
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4.1 Modifications of Hypotheses

In clinical trials with planned data monitoring for safety and interim
analyses for efficacy, a recommendation for modifying or changing the
hypotheses are commonly made after the review of interim data. The
purpose for such a recommendation is to ensure the success of the clin-
ical trials for identifying best possible clinical benefits to the patients
who enter the clinical trials. In practice, the following situations are
commonly encountered.

The first commonly seen situation for modifying hypotheses during
the conduct of a clinical trial is switching a superiority hypothesis to
a non-inferiority hypothesis. For a promising compound, the sponsor
would prefer an aggressive approach for planning a superiority study.
The study is usually powered to compare the promising compound with
a placebo control or an active-control agent. However, the interim analy-
sis results may not support superiority at interim analysis. In this case,
instead of declaring the failure of the superiority trial, the independent
data monitoring committee may recommend to switch from testing the
superiority hypothesis to a non-inferiority hypothesis. The switch from
a superiority hypothesis to a non-inferiority hypothesis will certainly in-
crease the probability of success of the trial because the study objective
has been modified to establish non-inferiority rather than show supe-
riority. Note that the concept of switching a superiority hypothesis to a
non-inferiority hypothesis is accepted by the regulatory agency such as
the U.S. FDA, provided that the impact of the switch on statistical issues
(e.g., the determination of non-inferiority margin) and inference (e.g.,
appropriate statistical methods) on the assessment of treatment effect
are well justified. More details regarding the switch from a superiority
hypothesis to a non-inferiority hypothesis are given in the next section.

Another commonly seen situation where the hypotheses are modi-
fied during the conduct of a clinical trial is the switch from a single
hypothesis to a composite hypothesis or multiple hypotheses. A com-
posite hypothesis is defined as a hypothesis that involves more than
one study endpoint. These study endpoints may or may not be indepen-
dent. In many clinical trials, in addition to the primary study endpoint,
some clinical benefits may be observed based on the analysis/review of
the interim data from secondary endpoints for efficacy and/or safety. It
is then of particular interest to the sponsor to change testing a single
hypothesis for the primary study endpoint to testing a composite hy-
pothesis for the primary endpoint in conjunction with several secondary
endpoints for clinical benefits or multiple hypotheses for the primary
endpoint and the secondary endpoints. More details regarding testing
multiple hypotheses are given in Section 4.3.
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Other situations where the hypotheses are modified during the con-
duct of a clinical trial include (i) change in hypotheses due to the switch
in study endpoints, (ii) dropping ineffective treatment arms, and (iii) in-
terchange between the null hypothesis and the alternative hypothesis.
These situations are briefly described below.

In cancer trials, there is no universal agreement regarding which
study endpoint should be used as the primary study endpoint for eval-
uation of the test treatment under investigation. Study endpoints such
as response rate, time to disease progression, and survival are com-
monly used study endpoints for cancer clinical trials (see Williams,
Pazdur, and Temple, 2004). A typical approach is to choose one study
endpoint as the primary endpoint for efficacy. Power analysis for sam-
ple size calculation is then performed based on the primary endpoint,
and other study endpoints are considered as secondary endpoints for
clinical benefits. After the review of the interim data, the investiga-
tor may consider switching the primary endpoint to a secondary
endpoint if no evidence of substantial efficacy in terms of the origi-
nally selected primary endpoint (e.g., response rate) is observed, but
a significant improvement in efficacy is detected in one of the sec-
ondary endpoints (e.g., time to disease progression or median survival
time).

For clinical trials comparing several treatments or several doses of
the same treatment with a placebo or an active-control agent, a parallel-
group design is usually considered. After the review of the interim data,
it is desirable to drop the treatment groups or the dose groups which
either show no efficacy or exhibit serious safety problems based on eth-
ical consideration. It is also desirable to modify the dose and/or dose
regimen for patients who are still on the study for best clinical results.
As a result, hypotheses and the corresponding statistical methods for
testing treatment effect are necessarily modified for a valid and fair as-
sessment of the effect of the test treatment under investigation. More
details regarding dropping the losers are discussed in Chapter 8.

In some cases, we may consider switching the null hypothesis and
the alternative hypothesis. For example, a pharmaceutical company
may conduct a bioavailability study to study the relative bioavailability
of a newly developed formulation as compared to the approved formu-
lation by testing the null hypothesis of bioinequivalence against the
alternative hypothesis of bioequivalence. The idea is to reject the null
hypothesis and conclude the alternative hypothesis. After the review
of the interim data, the sponsor realizes that the relative bioavailabil-
ities between the two formulations are not similar. As a result, instead
of establishing bioequivalence, the sponsor may wish to demonstrate
superiority in bioavailability for the new formulation.
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4.2 Switch from Superiority to Non-Inferiority

As indicated in the previous section, it is not uncommon to switch from
a superiority hypothesis (the originally planned hypothesis) to a non-
inferiority hypothesis during the conduct of clinical trials. The purpose
of this switching is to increase the probability of success. For testing
superiority, if we fail to reject the null hypothesis of non-superiority, the
trial is considered a failure. On the other hand, the rejection of the null
hypothesis of inferiority provides the opportunity for testing superiority
without paying any statistical penalty due to closed testing procedure.

When comparing a test treatment with a standard therapy or an
active control agent, as indicated by Chow, Shao, and Wang (2003), the
problem of testing non-inferiority and superiority can be unified by the
following hypotheses:

H0 : ε ≤ δ versus Ha : ε > δ,

where ε = µ2 − µ1 is the difference in mean responses between the
test treatment (µ2) and the active control agent (µ1), and δ is the clin-
ical superiority or non-inferiority margin. In practice, when δ > 0, the
rejection of the null hypothesis indicates clinical superiority over the
reference drug product. When δ < 0, the rejection of the null hypoth-
esis implies non-inferiority against the reference drug product. Note
that when δ = 0, the above hypotheses are referred to as hypotheses
for testing statistical superiority, which is usually confused with that of
clinical superiority.

Non-inferiority margin

One of the major considerations in a non-inferiority test is the selection
of the non-inferiority margin. A different choice of non-inferiority mar-
gin may affect the method of analyzing clinical data and consequently
may alter the conclusion of the clinical study. As pointed out in the
guideline by the International Conference on Harmonization (ICH), the
determination of non-inferiority margins should be based on both sta-
tistical reasoning and clinical judgment. Despite the existence of some
studies, there is no established rule or gold standard for determination
of non-inferiority margins in active control trials.

According to the ICH E10 Guideline, a non-inferiority margin may be
selected based on past experience in placebo control trials with valid de-
sign under conditions similar to those planned for the new trial, and the
determination of a non-inferiority margin should not only reflect uncer-
tainties in the evidence on which the choice is based, but also be suitably
conservative. Furthermore, as a basic frequentist statistical principle,
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the hypothesis of non-inferiority should be formulated with popula-
tion parameters, not estimates from historical trials. Along these lines,
Chow and Shao (2006) proposed a method of selecting non-inferiority
margins with some statistical justification. Chow and Shao proposed
non-inferiority margin depends on population parameters including pa-
rameters related to the placebo control if it were not replaced by the
active control. Unless a fixed (constant) non-inferiority margin can be
chosen based on clinical judgment, a fixed non-inferiority margin not
depending on population parameters is rarely suitable. Intuitively, the
non-inferiority margin should be small when the effect of the active con-
trol agent relative to placebo is small or the variation in the population
under investigation is large. Chow and Shao’s approach ensures that the
efficacy of the test therapy is superior to placebo when non-inferiority is
concluded. When it is necessary/desired, their approach can produce a
non-inferiority margin that ensures that the efficacy of the test therapy
relative to placebo can be established with great confidence.

Because the proposed non-inferiority margin depends on population
parameters, the non-inferiority test designed for the situation where
the non-inferiority margin is fixed has to be modified in order to apply
it to the case where the non-inferiority margin is a parameter. In what
follows, Chow and Shao’s method for determination of non-inferiority
margin is described.

Chow and Shao’s Approach Let θT, θA, and θP be the unknown
population efficacy parameters associated with the test therapy, the
active control agent, and the placebo, respectively. Also, let δ ≥ 0 be
a non-inferiority margin. Without loss of generality, we assume that a
large value of population efficacy parameter is desired. The hypotheses
for non-inferiority can be formulated as

H0 : θT − θA ≤ −δ versus Ha : θT − θA > −δ. (4.1)

If δ is a fixed pre-specified value, then standard statistical methods can
be applied to testing hypotheses (4.1). In practice, however, δ is often
unknown.

There exists an approach that constructs the value of δ based on a
placebo-controlled historical trial. For example, δ = a fraction of the
lower limit of the 95% confidence interval for θA−θP based on some his-
torical trial data (see, e.g., CBER/FDA Memorandum, 1999). Although
this approach is intuitively conservative, it is not statistically valid be-
cause (i) if the lower confidence limit is treated as a fixed value, then
the variability in historical data is ignored; and (ii) if the lower con-
fidence limit is treated as a statistic, then this approach violates the
basic frequentist statistical principle, i.e., the hypotheses being tested
should not involve any estimates from current or past trials.



80 ADAPTIVE DESIGN METHODS IN CLINICAL TRIALS

From a statistical point of view, the ICH E10 Guideline suggests that
the non-inferiority margin δ should be chosen to satisfy at least the
following two criteria:

Criterion 1. The ability to claim that the test therapy is non-inferior to
the active-control agent and is superior to the placebo (even though
the placebo is not considered in the active-control trial).

Criterion 2. The non-inferiority margin should be suitably conserva-
tive, i.e., variability should be taken into account.

A fixed δ (i.e., it does not depend on any parameters) is rarely suit-
able under criterion 1. Let ∆ > 0 be a clinical superiority margin if a
placebo-controlled trial is conducted to establish the clinical superiority
of the test therapy over a placebo control. Since the active control is an
established therapy, we may assume that θA − θP > ∆. However, when
θT − θA > −δ (i.e., the test therapy is non-inferior to the active control)
for a fixed δ, we cannot ensure that θT − θP > ∆ (i.e., the test therapy is
clinically superior to the placebo) unless δ = 0.

Thus, it is reasonable to consider non-inferiority margins depending
on unknown parameters. Hung et al. (2003) summarized the approach
of using the non-inferiority margin of the form

δ = γ (θA − θP), (4.2)

where γ is a fixed constant between 0 and 1. This is based on the idea
of preserving a certain fraction of the active control effect θA − θP. The
smaller θA−θP is, the smaller δ. How to select the proportion γ , however,
is not discussed.

Following the idea of Chow and Shao (2006), we now derive a non-
inferiority margin satisfying criterion 1. Let ∆ > 0 be a clinical superi-
ority margin if a placebo control is added to the trial. Suppose that the
non-inferiority margin δ is proportional to ∆, i.e., δ = r∆, where r is a
known value chosen in the beginning of the trial. To be conservative,
r should be ≤ 1. If the test therapy is not inferior to the active-control
agent and is superior over the placebo, then both

θT − θA > −δ versus θT − θP > ∆ (4.3)

should hold. Under the worst scenario, i.e., θT − θA achieves its lower
bound −δ, the largest possible δ satisfying (4.3) is given by

δ = θA − θP − ∆,

which leads to

δ =
r

1 + r
(θA − θP). (4.4)

From (4.2) and (4.4), γ = r/(r + 1). If 0 < r ≤ 1, then 0 < γ ≤ 1
2
.
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The above argument in determining δ takes Criterion 1 into account,
but is not conservative enough, since it does not consider the variability.
Let θ̂T and θ̂P be sample estimators of θT and θP, respectively, based on
data from a placebo-controlled trial. Assume that θ̂T − θ̂P is normally
distributed with mean θT − θP and standard error SET−P (which is true
under certain conditions or approximately true under the central limit
theorem for large sample sizes). When θT = θA − δ,

P(θ̂T − θ̂P < ∆) = Φ
(

∆ + δ − (θA − θP)
SET−P

)

(4.5)

where Φ denotes the standard normal distribution function. If δ is cho-
sen according to (4.4) and θT = θA − δ, then the probability that θ̂T − θ̂P
is less than ∆ is equal to 1

2
. In view of Criterion 2, a value much smaller

than 1
2

for this probability is desired, because it is the probability that
the estimated test therapy effect is not superior over that of the placebo.

Since the probability in (4.5) is an increasing function of δ, the smaller
δ (the more conservative choice of the non-inferiority margin) is, the
smaller the chance that θ̂T − θ̂P is less than ∆. Setting the probability
on the left-hand side of (4.5) to ε with 0 < ε ≤ 1

2
, we obtain that

δ = θA − θP − ∆ − z1−ε SET−P,

where za = Φ−1(a). Since ∆ = δ/r, we obtain that

δ =
r

1 + r
(θA − θP − z1−ε SET−P). (4.6)

Comparing (4.2) and (4.6), we obtain that

γ =
r

1 + r

(

1 − z1−ε SET−P

θA − θP

)

,

i.e., the proportion γ in (4.2) is a decreasing function of a type of noise-
to-signal ratio (or coefficient of variation).

As indicated by Chow and Shao (2006), the above non-inferiority mar-
gin (4.6) can also be derived from a slightly different point of view.
Suppose that we actually conduct a placebo-controlled trial with supe-
riority margin ∆ to establish the superiority of the test therapy over
the placebo. Then, the power of the large sample t-test for hypotheses
θT − θP ≤ ∆ versus θT − θP > ∆ is approximately equal to

Φ
(

θT − θP − ∆
SET−P

− z1−α

)

,

where α is the level of significance. Assume the worst scenario θT =
θA − δ and that β is a given desired level of power. Then, setting
the power to β leads to

θA − θP − ∆ − δ

SET−P
− z1−α = zβ ,
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i.e.,

δ =
r

1 + r
[θA − θP − (z1−α + zβ)SET−P]. (4.7)

Comparing (4.6) with (4.7), we have

z1−ε = z1−α + zβ.

For α = 0.05, the following table gives some examples of values of β, ε,
and z1−ε .

β ε z1−ε

0.36 0.1000 1.282
0.50 0.0500 1.645
0.60 0.0290 1.897
0.70 0.0150 2.170
0.75 0.0101 2.320
0.80 0.0064 2.486

As a result, we arrive at the following conclusions with respect to the
non-inferiority margin given by (4.6).

1. The non-inferiority margin (4.6) takes variability into consid-
eration, i.e., δ is a decreasing function of the standard error of
θ̂T − θ̂P. It is an increasing function of the sample sizes, since
SET−P decreases as sample sizes increase. Choosing a non-
inferiority margin depending on the sample sizes does not vio-
late the basic frequentist statistical principle. In fact, it cannot
be avoided when variability of sample estimators is consid-
ered. Statistical analysis, including sample size calculation in
the trial planning stage, can still be performed. In the limiting
case (SET−P → 0), the non-inferiority margin in (4.6) is the
same as that in (4.4).

2. The ε value in (4.6) represents a degree of conservativeness.
An arbitrarily chosen ε may lead to highly conservative tests.
When sample sizes are large (SET−P is small), one can afford
a small ε. A reasonable value of ε and sample sizes can be
determined in the planning stage of the trial.

3. The non-inferiority margin in (4.6) is non-negative if and only
if θA − θP ≥ z1−ε SET−P, i.e., the active control effect is sub-
stantial or the sample sizes are large. We might take our non-
inferiority margin to be the larger of the quantity in (4.6) and 0
to force the non-inferiority margin to be nonnegative. However,
it may be wise not to do so. Note that if θA is not substantially
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larger than θP, then non-inferiority testing is not justifiable
since, even if δ = 0 in (4.1), concluding H1 in (4.1) does not
imply the test therapy is superior over the placebo. Using δ in
(4.6), testing hypotheses (4.1) converts to testing the superior-
ity of the test therapy over the active control agent when δ is
actually negative. In other words, when θA−θP is smaller than
a certain margin, our test automatically becomes a superiority
test and the property P(θ̂T − θ̂P < ∆) = ε (with ∆ = |δ|/r) still
holds.

4. In many applications, there is no historical data. In such cases
parameters related to placebo are not estimable and, hence, a
non-inferiority margin not depending on these parameters is
desired. Since the active control agent is a well-established
therapy, let us assume that the power of the level α test show-
ing that the active control agent is superior to placebo by the
margin ∆ is at the level η. This means that approximately,

θA − θP ≥ ∆ + (z1−α + zη)SEA−P.

Replacing θA − θP − ∆ in (4.6) by its lower bound given in the
previous expression, we obtain the non-inferiority margin

δ = (z1−α + zη)SEA−P − z1−ε SET−P.

To use this non-inferiority margin, we need some informa-
tion about the population variance of the placebo group. As
an example, consider the parallel design with two treatments,
the test therapy and the active control agent. Assume that
the same two-group parallel design would have been used if a
placebo-controlled trial had been conducted. Then

SEA−P =
√

σ 2
A/nA + σ 2

P/nP

and

SET−P =
√

σ 2
T/nT + σ 2

P/nP,

where σ 2
k is the asymptotic variance for

√
nk(θ̂k − θk) and nk is

the sample size under treatment k. If we assume σP/
√

nP = c,
then

δ = (z1−α + zη)

√

σ 2
A

nA
+ c2 − z1−ε

√

σ 2
T

nT
+ c2. (4.8)

Formula (4.8) can be used in two ways. One way is to replace
c in (4.8) with an estimate. When no information from the
placebo control is available, a suggested estimate of c is the
smaller of the estimates of σT/

√
nT and σA/

√
nA. The other
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way is to carry out a sensitivity analysis by using δ in (4.8) for
a number of c values.

Statistical inference

When the non-inferiority margin depends on unknown population
parameters, statistical tests designed for the case of constant non-
inferiority margin may not be appropriate. Valid statistical tests for
hypotheses (4.1) with δ given by (4.2) are derived in CBER/FDA
Memorandum (1999), Holmgren (1999), and Hung et al. (2003), assum-
ing that (i) γ is known and (ii) historical data from a placebo-controlled
trial are available and the so-called “constancy condition” holds, i.e.,
the active control effects are equal in the current and the historical
patient populations. In this section, we derive valid statistical tests
for the non-inferiority margin given in (4.6) or (4.8). We use the same
notations as described in the previous section.

Tests based on historical data under constancy condition We
first consider tests involving the non-inferiority margin (4.6) in the case
where historical data for a placebo-controlled trial assessing the effect of
the active control agent are available and the constancy condition holds,
i.e., the effect θA0 −θP0 in the historical trial is the same as θA−θP in the
current active control trial, if a placebo control is added to the current
trial. It should be emphasized that the constancy condition is a crucial
assumption for the validity of the results.

Assume that the two-group parallel design is adopted in both the
historical and current trials and that the sample sizes are respectively
nA0 and nP0 for the active control and placebo in the historical trial
and nT and nA for the test therapy and active control in the current
trial. Without the normality assumption on the data, we adopt the large
sample inference approach. Let k = T, A, A0 and P0 be the indexes,
respectively, for the test and active control in the current trial and the
active control and placebo in the historical trial. Assume that nk = lkn
for some fixed lk and that, under appropriate conditions, estimators θ̂k
for parameters θk satisfy

√
nk(θ̂k − θk) →d N(0, σ 2

k ) (4.9)

as n → ∞, where →d denotes convergence in distribution. Also, assume
that consistent estimators σ̂ 2

k for σ 2
k are obtained. The following result

can be established.
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Theorem 4.1 We have

θ̂T − θ̂A + r
1+r (θ̂A0 − θ̂P0 − z1−ε ŜET−P) − (θT − θA + δ)

ŜET−C
→d N(0, 1),

(4.10)

where

ŜET−P =
√

σ̂ 2
T/nT + σ̂ 2

P0/nP0

is an estimator of SET−P =
√

σ 2
T/nT + σ 2

P0/nP0 and ŜET−C is an estima-
tor of SET−C, the standard deviation of θ̂T − θ̂A + r

1+r (θ̂A0 − θ̂P0), i.e.,

ŜET−C =

√

σ̂ 2
T

nT
+

σ̂ 2
A

nA
+

(
r

1 + r

)2 (
σ̂ 2

A0

nA0
+

σ̂ 2
P0

nP0

)

.

Proof: From result (4.9), the independence of data from different
groups, and the constancy condition,

θ̂T − θ̂A + r
1+r (θ̂A0 − θ̂P0) − [θT − θA

r
1+r (θA − θP)]

SET−C
→d N(0, 1). (4.11)

From the consistency of σ̂ 2
k and the fact that

√
nSET−C is a fixed constant,

ŜET−P − SET−P

SET−C
=

√
n(ŜET−P − SET−P)√

nSET−C
= op(1)

and

ŜET−C

SET−C
− 1 =

√
n(ŜET−C − SET−C)√

nSET−C
= op(1),

where op(1) denotes a quantity converging to 0 in probability. Then

θ̂T − θ̂A + r
1+r (θ̂A0 − θ̂P0 − z1−ε ŜET−P) − (θT − θA + δ)

ŜET−C

=

{

θ̂T − θ̂A + r
1+r (θ̂A0 − θ̂P0) − [θT − θA + r

1+r (θA − θP)]

SET−C

− r
1 + r

ŜET−P − SET−P

SET−C

}

SET−C

ŜET−C

=

{

θ̂T − θ̂A + r
1+r (θ̂A0 − θ̂P0) − [θT − θA + r

1+r (θA − θP)]

SET−C

− op(1)

}

[1 + op(1)]

and result (4.10) follows from result (4.11) and Slutsky’s theorem.
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Then, when the non-inferiority margin in (4.6) is adopted, the null
hypothesis H0 in (4.1) is rejected at approximately level α if

θ̂T − θ̂A +
r

1 + r
(θ̂A0 − θ̂P0 − z1−ε ŜET−P) − z1−α ŜET−C > 0.

Impact on sample size

Using result (4.10), we can approximate the power of this test by

Φ
(

θT − θA + δ

SET−C
− z1−α

)

.

Using this formula, we can select the sample sizes nT and nA to achieve
a desired power level (say β), assuming that nA0 and nP0 are given (in
the historical trial). Assume that nT/nA = λ is chosen. Then nT should
be selected as a solution of

θT − θA +
r

1 + r



θA − θP − z1−ε

√

σ 2
T

nT
+

σ 2
P0

nP0





= (z1−α + zβ)

√

σ 2
T

nT
+

λσ 2
A

nT
+

(
r

1 + r

)2 (
σ 2

A0

nA0
+

σ 2
P0

nP0

)

. (4.12)

Although equation (4.12) does not have an explicit solution in terms of
nT, its solution can be numerically obtained once initial values for all
parameters are given.

Remarks

The constancy condition The use of historical data usually increases
the power of the test for hypotheses with a non-inferiority margin de-
pending on parameters in the historical trial. On the other hand, us-
ing historical data without the constancy condition may lead to invalid
conclusions. As indicated in Hung et al. (2003), checking the constancy
condition is difficult. In this subsection we discuss a method of check-
ing the constancy condition under an assumption much weaker than
the constancy condition.

Note that the key is to check whether the active control effect θA − θP
in the current trial is the same as θA0 − θP0 in the historical trial. If
we assume that the placebo effects θP and θP0 are the same (which is
much weaker than the constancy condition), then we can check whether
θA = θA0 using the data under the active control in the current and
historical trials.
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Tests without historical data We now consider tests when a non-
inferiority margin (4.8) is chosen. Following the same argument as given
in the proof of result (4.10), we can establish that

θ̂T − θ̂A + (z1−α + zη)ŜEA−P − z1−ε ŜET−P − (θT − θA + ∆)

ŜET−A
→d N(0, 1),

(4.13)

where

ŜEk−l =
√

σ̂ 2
k /nk + σ̂ 2

l /nl.

Hence, when the non-inferiority margin in (4.8) is adopted, the null
hypothesis H0 in (4.1) is rejected at approximately level α if

θ̂T − θ̂A + (z1−α + zη)ŜEA−P − z1−ε ŜET−A − z1−α

√

σ̂ 2
T

nT
+

σ̂ 2
A

nA
> 0.

The power of this test is approximately

Φ
(

θT − θA + δ

SET−A
− z1−α

)

.

If nT/nA = λ, then we can select the sample sizes nT and nA to achieve
a desired power level (say β) by solving

θT − θA + (z1−α + zη)

√

λσ 2
A

nT
+

σ 2
P

nP
− z1−ε

√

σ 2
T

nT
+

σ 2
P

nP

= (z1−α + zβ)

√

λσ 2
A

nT
+

σ 2
T

nT
.

4.3 Concluding Remarks

For large-scale clinical trials, a data safety monitoring committee (DMC)
is usually established to monitor safety and/or perform interim efficacy
analysis of the trial based on accrual data at some pre-scheduled time
or when the trial has achieved a certain number of events. Based on
the interim results, the DMC may recommend modification of study ob-
jectives and/or hypotheses. As an example, suppose that a clinical trial
was designed as a superiority trial to establish the superiority of the
test treatment as compared to a standard therapy or an active control
agent. However, after the review of the interim results, it is determined
that the trial will not be able to achieve the study objective of estab-
lishing superiority with the observed treatment effect size at interim.
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The DMC does not recommend stopping the trial based on futility anal-
ysis. Instead, the DMC may suggest modifying the hypotheses for test-
ing non-inferiority. This modification raises a critical statistical/clinical
issue regarding the determination of a non-inferiority margin. Chow
and Shao (2006) proposed a statistical justification for determining a
non-inferiority margin based on accrued data at interim following ICH
guidance.



CHAPTER 5

Adaptive Dose-Escalation Trials

In clinical research, the response in a dose response study could be a
biological response for safety or efficacy. For example, in a dose-toxicity
study, the goal is to determine the maximum tolerable dose (MTD). On
the other hand, in a dose-efficacy response study, the primary objective
is usually to address one or more of the following questions: (i) Is there
any evidence of the drug effect? (ii) What is the nature of the dose
response? and (iii) What is the optimal dose? In practice, it is always
a concern as to how to evaluate the dose-response relationship with
limited resources within a relatively tight time frame. This concern
led to a proposed design that allows less patients to be exposed to the
toxicity and more patients to be treated at potentially efficacious dose
levels. Such a design also allows pharmaceutical companies to fully
utilize their resources for development of more new drug products (see,
e.g., Arbuck, 1996; Babb, Rogatko, and Zacks, 1998; Babb and Rogatko,
2001; Berry et al., 2002; Bretz and Hothorn, 2002).

The remainder of this chapter is organized as follows. In the next
section, we provide a brief background of dose-escalation trials. The
concepts of the continued reassessment method (CRM) in phase I on-
cology trials is reviewed in Section 5.2. In Section 5.3, we propose a
hybrid frequentist-Bayesian adaptive approach. In Section 5.4, several
simulations were conducted to evaluate the performance of the proposed
method. The concluding remarks are presented in Section 5.5.

5.1 Introduction

For dose-toxicity studies, the traditional escalation rules (TER), which
are also known as the “3 + 3” rules, are commonly used in the early
phase of oncology studies. The “3 + 3” rule is to enter three patients
at a new dose level and then enter another three patients when dose
limiting toxicity (DLT) is observed. The assessment of the six patients is
then performed to determine whether the trial should be stopped at the
level or to increase the dose. Basically, there are two types of the “3+3”
rules, namely the traditional escalation rule (TER) and strict traditional
escalation rule (STER). TER does not allow dose de-escalation but STER
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does when two of three patients have DLTs. The “3 + 3” rules can be
generalized to the “m + n” TER and STER escalation rules. Chang and
Chow (2006a) provided a detailed description of general “m + n” designs
with and without dose de-escalation. The corresponding formulas for
sample size calculation can be found in Lin and Shih (2001).

Recently, many new methods such as the assessment of dose re-
sponse using multiple-stage designs (Crowley, 2001) and the contin-
ued reassessment method (CRM) (see, e.g., O’Quigley, Pepe, and Fisher,
1990; O’Quigley and Shen, 1996; Babb and Rogatko, 2004) have been
developed. For the method of CRM, the dose-response relationship is
continually reassessed based on accumulative data collected from the
trial. The next patient who enters the trial is then assigned to the po-
tential MTD level. This approach is more efficient than that of the usual
TER with respect to the allocation of the MTD. However, the efficiency
of CRM may be at risk due to delayed response and/or a constraint
on dose-jump in practice (Babb and Rogatko, 2004). In recent years,
the use of adaptive design methods for characterizing dose-response
curves has become very popular (Bauer and Rohmel, 1995). An adap-
tive design is a dynamic system that allows the investigator to optimize
the trial (including design, monitoring, operating, and analysis) with
cumulative information observed from the trial. For Bayesian adap-
tive design for dose-response trials, some researchers suggest the use
of loss/utility function in conjunction with dose assignment based on
minimization/maximization of loss/utility function (e.g., Gasparini and
Eisele, 2000; Whitehead, 1997).

In this chapter, we use an adaptive method that combines CRM
and utility-adaptive randomization (UAR) for multiple-endpoint tri-
als (Chang, Chow, and Pong, 2005). The proposed UAR is similar to
response-adaptive randomization (RAR). It is an extension of RAR to
multi-endpoint case. In UAR scheme, the probability of assigning a pa-
tient to a particular dose level is determined by its normalized utility
value (ranging from 0 to 1). The CRM could be a Bayesian, a frequen-
tist, or a hybrid frequentist-Bayesian–based approach. This proposed
method has the advantage of achieving the optimal design by means
of the adaptation to the accrued data of an on-going trial. In addition,
CRM could provide a better prediction of dose-response relationship
by selecting an appropriate model as compared to the method simply
based on the observed response. In practice, it is not uncommon that
the observed response rate is lower in a higher-dose group than that
in a lower-dose group provided that the high-dose group, in fact, has a
higher response rate. The use of CRM is able to avoid this problem by
using a monotonic function such as a logistic function in the model. The
proposed adaptive method deals with multiple endpoints in two ways.
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The first approach is to model each dose-endpoint relationship with or
without constraints among the models. Each model is usually a mono-
tonic function family such as logistic or some power function. The second
approach is to combine the multiple endpoints into a single utility in-
dex, and then model the utility using a more flexible function family
such as hyper-logistic function as proposed in this chapter.

5.2 CRM in Phase I Oncology Study

CRM is originally used in Phase I oncology trials (O’Quigley, Pepe, and
Fisher, 1990). The primary goal of phase I oncology trials is not only to
assess the dose-toxicity relationship, but also to determine MTD. Due
to potential high toxicity of the study drug, in practice usually only a
small number of patients (e.g., 3 to 6) are treated at each ascending
dose level. The most common approach is the “3 + 3” TER with a pre-
specified sequence for dose escalation. However, this ad hoc approach
is found to be inefficient and often underestimates the MTD, especially
when the starting dose is too low. The CRM is developed to overcome
these limitations. The estimation or prediction from CRM is weighted
by a number of data points. Therefore, if the data points are mostly
around the estimated value, then the estimation is more accurate. CRM
assigns more patients near MTD; consequently, the estimated MTD is
much more precise and reliable. In practice, this is the most desirable
operating characteristic of the Bayesian CRM. In what follows, we will
briefly review the CRM approach.

Dose-toxicity modeling

In most phase I dose response trials, it is assumed that there is mono-
tonic relationship between dose and toxicity. This ideal relationship sug-
gests that the biologically inactive dose is lower than the active dose,
which is in turn lower than the toxic dose. To characterize this relation-
ship, the choice of an appropriate dose-toxicity model is important. In
practice, the logistic model is often utilized:

p(x) = [1 + bexp(−ax)]−1

where p(x) is the probability of toxicity associated with dose x, and
a and b are positive parameters to be determined. Practically, p(x) is
equivalent to toxicity rate or dose limiting toxicity (DLT) rate as defined
by the Common Toxicity Criteria (CTC) of the United States National
Cancer Institute. Denote θ the probability of DLT (or DLT rate) at MTD.
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Then, the MTD can be expressed as

MTD =
1
a

ln
(

bθ

1 − θ

)

.

If we can estimate a and b or their posterior distributions (for common
logistic model, b is predetermined), we will be able to determine the
MTD or provide predictive probabilities for MTD. The choice of toxicity
rate at MTD, θ , depends on the nature of the DLT and the type of the
target tumor. For an aggressive tumor and a transient and non-life-
threatening DLT, θ could be as high as 0.5. For persistent DLT and less
aggressive tumors, it could be as low as 0.1 to 0.25. A commonly used
value is somewhere between 0 and 1/3 = 0.33 (Crowley, 2001).

Dose-level selection

The initial dose given to the first patients in a phase I study should
be low enough to avoid severe toxicity but high enough for observing
some activity or potential efficacy in humans. The commonly used start-
ing dose is the dose at which 10% mortality (LD10) occurs in mice. The
subsequent dose levels are usually selected based on the following mul-
tiplicative set

xi = fi−1xi−1 (i = 1, 2, . . . k),

where fi is called the dose escalation factor. The highest dose level
should be selected such that it covers the biologically active dose, but
remains lower than the toxic dose. In general, CRM does not require
pre-determined dose intervals. However, the use of a pre-determined
dose is often for practical convenience.

Reassessment of model parameters

The key is to estimate the parameter a in the response model. An initial
assumption or a prior one about the parameter is necessary in order to
assign patients to the dose level based the dose-toxicity relationship.
This estimation of a is continually updated based on cumulative data
observed from the trial. The estimation method can be a Bayesian or
frequentist approach. For Bayesian approaches, it leads to the posterior
distribution of a. For frequentist approaches such as maximum likeli-
hood, estimate or least-square estimate are straightforward. Note that
the Bayesian approach requires a prior distribution about parameter a.

It it provides posterior distribution of a and predictive probabilities of
MTD. The frequentist, Bayesian and a hybrid frequentist-Bayesian–
based approaches in conjunction with the response-adaptive random-
ization will be further discussed in this chapter.
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Assignment of next patient

The updated dose-toxicity model is usually used to choose the dose level
for the next patient. In other words, the next patient enrolled in the trial
is assigned to the current estimated MTD based on the dose-response
model. Practically, this assignment is subject to safety constraints such
as limited dose jump and delayed response. Assignment of patients
to the most updated MTD is intuitive. It leads to the majority of the
patients being assigned to the dose levels near MTD, which allows a
more precise estimate of MTD with a minimum number of patients.

5.3 Hybrid Frequentist-Bayesian Adaptive Design

When Bayesian is used for multiple-parameter response model, some
numerical irregularities cannot be easily resolved. In addition, Bayesian
methods require an extensive computation for a multiple-parameter
model. To overcome these limitations, a hybrid frequentist and Bayesian
method is useful. The use of a utility-adaptive randomization allows the
allocation of more patients to the superior dose levels and less patients
to the inferior dose levels. This adaptive method is not only optimal eth-
ically but also has a favorable benefit/risk ratio (such as benefit-safety
and/or benefit-cost).

The adaptive model

In this section, we use the adaptive design as outlined in Figure 5.1 for
dose-response trial or Phase II/III combined trials. Start with several
dose levels with or without a placebo group, followed by the prediction
of the dose-response relationship using Bayesian or other approaches
based on accrued real-time data. The next patient is then randomized
to a treatment group based on the utility-adaptive or response-adaptive
randomization algorithm. We may allow the inferior treatment groups
to be dropped when there are too many groups based on results from
the analysis of the accrued data using Bayesian and/or frequentist ap-
proaches. It is expected that the predictive dose-response model in con-
junction with a utility-adaptive randomization could lead to a design
that assigns more patients to the superior arms and consequently a
more efficient design. We will illustrate this point further via computer
trial simulations. In the next section, technical details for establish-
ing dose-response relationships using CRM in conjunction with utility-
adaptive randomization are provided.
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Figure 5.1 Bayesian adaptive trial.

Utility-based unified CRM adaptive approach

The utility-based unified CRM adaptive approach can be summarized
by the following steps.

Step 1: Construct utility function based on trial objectives;
Step 2: Propose a probability model for dose–response relation-

ship;
Step 3: Construct prior probability distributions of the parame-

ters in the response model;
Step 4: Form the likelihood function based on incremental infor-

mation on treatment response during the trial;
Step 5: Reassess model parameters or calculate the posterior

probability of the model parameters;
Step 6: Update the expected utility function based on dose-response

model;
Step 7: Determine next action or make adaptations such as chang-

ing the randomization or drop inferior treatment arms;
Step 8: Further collect trial data and repeat Steps 5 to 7 until

stopping criteria are met.

Construction of utility function

Let X = {x1, x2, . . . xk} be the action space where xi is coded value for
action of anything that would affect the outcomes or decision making,
such as a treatment, a withdrawal of a treatment arm, a protocol amend-
ment, stopping the trial, an investment of advertising for the prospective
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drug, or any combination of the above. xi can be either a fixed dose or a
variable of dose given to a patient. If action xi is not taken, then xi = 0.

Let y = {y1, y2, . . . ym} be the outcomes of interest, which can be efficacy
or toxicity of a test drug, the cost of trial, etc. Each of these outcomes,
yi is a function of action yi(x), x ∈ X. The utility is defined as

U =
m∑

j=1

wj =
m∑

j=1

w(yj), (5.1)

where U is normalized such that 0 ≤ U ≤ 1 and wj are pre-specified
weights.

Probability model for dose response

Each of the outcomes can be modeled by the following generalized prob-
ability model:

Γ j(p) =
k∑

i=1

ajixi, j = 1, . . . , m (5.2)

where

p = {p1, . . . , pm}, pj = P(yj ≥ τ j),

and τ j is a threshold for jth outcome. The link function, Γ j(.), is a gen-
eralized function of all the probabilities of the outcomes. For simplicity,
we may consider

Γ j(pj) =
k∑

i=1

ajixi, j = 1, . . . , m, (5.3)

and

pj(x, a) = Γ−1
j

(
k∑

i=1

ajixi

)

, j = 1, . . . , m. (5.4)

The essential difference between (5.4) and (5.5) is that the former mod-
els the outcomes jointly, while the latter models each outcome inde-
pendently. Therefore, for (5.5), Γ−1

j is simply the inverse function of Γ j .
However, for (5.4), Γ−1

j is not a simple inverse function and sometimes
the explicit solution may not exist. Γ j can be used to model the con-
straints between outcomes, e.g., the relationship between the two blood
pressures. Using the link functions could reduce some of the irregu-
lar models in the modeling process when there are multiple outcome
endpoints.

For univariate case, logistic model is commonly used for monotonic
response. However, for utility, we usually don’t know whether it is
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Figure 5.2 Curves of hyper-logistic function family.

monotonic or not. Therefore, we proposed the following model

pj(x, a) = (aj1 exp(aj2x) + aj3 exp(−aj4x))−m; ( j = 1, . . . m) (5.5)

where aji and m are usually positive values and m is suggested to be 1.
Note that when aj1 = 1, aj2 = 0, and m = 1, (5.7) degenerates to
the common logistic model. When aj1 = aj3 = 1, aj2 = 0, and aj4 =
2, it reduces to the hyperbolic tangent model. Note that aji must be
determined such that 0 ≤ pj(x, a) ≤ 1 for the dose range x under study.
For convenience, we will refer to (5.7) as a hyper-logistic function.

The hyper-logistic function is useful especially in modeling utility
index because it is not necessarily monotonic. However, the range of
parameter should be carefully determined before modeling. It is sug-
gested that corresponding various shapes be examined. Some different
shapes that are generated by hyper-logistic function are presented in
Figure 5.2.

A special case that is worth mentioning here is the following single-
utility index (or combined outcomes) model, where the probability is
based on utility rather than each outcome

p = P(U ≥ τ ). (5.6)
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Unlike the probability models defined based on individual outcomes
such as single efficacy or safety outcome, the probability models defined
based on utility are often single mode.

Prior distribution of parameter tensor a

The Bayesian approach requires the specification of prior probability
distribution of the unknown parameter tensor aji.

a ∼ gj0(a), j = 1, . . . m, (5.7)

where gj0(a) is the prior probability for the jth endpoint.

Likelihood function

The next step is to construct the likelihood function. Given n observa-
tions with yji associated with endpoint j and dose xmi , the likelihood
function can be written as

f jn(r |a) =
n∏

i=1

[

Γ−1
j (aj mi xmi )

]rji
[

1 − Γ−1
j (aj mi xmi )

]1−rji , j = 1, . . . m,

(5.8)

where

rji =

{

1, if yji ≥ τ j

0, otherwise
, j = 1, . . . m. (5.9)

Assessment of parameter a

The assessment of the parameters in the model can be carried out in dif-
ferent ways: Bayesian, frequentist, or hybrid approach. Bayesian and
hybrid approaches are to assess the probability distribution of the pa-
rameter, while the frequentist approach is to provide a point estimate
of the parameter.

Bayesian approach For the Bayesian approach, the posterior prob-
ability can be obtained as follows:

gj(a|r) =
f jn(r|a)gj0 (a)

∫

f jn(r|a)gj 0(a) da
, j = 1, . . . m. (5.10)

We then update the probabilities of the outcome or the predictive prob-
abilities

pj =
∫

Γ−1
j

(
k∑

i=1

ajixi

)

gj(a|r) da, j = 1, . . . m. (5.11)
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Note that the Bayesian approach is computationally intensive. Alter-
natively, we may consider a frequentist approach to simplify the calcu-
lation, especially when limited knowledge about the prior is available
and non-informative prior is to be used.

Maximum likelihood approach The maximum likelihood estimates
of the parameters are given by

aji MLE = arg max
a

{ f jn(r | a)}, j = 1, . . . m, (5.12)

where aji MLE is the parameter set for the jth outcome. After having
obtained aji MLE, we can update the probability using

pj(x, a) = Γ−1
j

(
k∑

i=1

aji MLE xi

)

, j = 1, . . . m. (5.13)

Least square approach The least square approach minimizes the
difference between predictive probability and the observed rate or prob-
ability, which is given below.

a jLSE = arg min
a

{Lj(a))}, j = 1, . . . m, (5.14)

where

Lj(a) =
k∑

i=1

(pj(xi, a)− p̂j(xi, a))2 .

We then update the probability

pj(x, a) = Γ−1
j

(
k∑

i=1

aji LSE xi

)

, (5.15)

where aji LSE, the component of a, is the parameter set for the jth
outcome.

Hybrid frequentist-Bayesian approach Although Bayesian CRM
allows the incorporation of prior knowledge about the parameters, some
difficulties arise when it is used in a model with multiple parameters.
The difficulties include (i) computational burden and (ii) numerical in-
stability in evaluation posterior probability. A solution is to use the fre-
quentist approach to estimate all the parameters and use the Bayesian
approach to re-estimate the posterior distribution of some parameters.
This hybrid frequentist-Bayesian approach allows the incorporation of
prior knowledge about parameter distribution but avoids computational
burden and numerical instability. Details regarding the hybrid method
will be specified.
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Determination of next action

As mentioned earlier, the actions or adaptations taken should be based
on trial objectives or utility function. A typical action is a change of
the randomization schedule. From the dose-response model, since each
dose associates with a probability of response, the expected utility func-
tion is then given by Ū =

∑m
j=1 pj(x, a)wj . Two approaches, deter-

ministic and probabilistic, can be taken. The former refers to the op-
timal approach where actions can be taken to maximize the expected
utility, while the latter refers to adaptive randomization where treat-
ment assignment to the next patient is not fully determined by the
algorithm.

Optimal approach As mentioned earlier, in the optimal approach,
the dose level assigned to the next patient is based on optimization of
the expected utility, i.e.,

xn+1 = arg max
xi

Ū =
m∑

j=1

pjwj .

However, it is not feasible due to its difficulties in practice.

Utility-adaptive randomization approach Many of the response-
adaptive randomizations (RAR) can be used to increase the expected
response. However, these adaptive randomization are difficult to apply
directly to the case of the multiple endpoints. As an alternative,
the following utility-adaptive randomization algorithm is proposed. This
utility-adaptive randomization, which combines the idea from
randomized-play-winner (Rosenberger and Lachin, 2003) and Lachin’s
urn models, is based on the following. The target randomization prob-
ability to xi group is proportional to the current estimation of utility
or response rate of the group, i.e., U(xi)/

∑k
i=1 U(xi), where K is the

number of groups. When a patient is randomized into xi group, the ran-
domization probability to this group should be reduced. These lead to
the following proposed randomization model:

Probability of randomizing a patient to group xi is proportional to the
corresponding posterior probability of the utility or response rate, i.e.,

�(xi) =
1
c

(

U(xi)
∑k

i=1 U(xi)
− ni

N

)

, (5.16)

where the normalization factor

c =
∑

i

(

U(xi)
∑k

i=1 U(xi)
− ni

N

)

,
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ni is the number of patients that have been randomized to the xi group,
and N is the total estimated number of patients in the trial. We will
refer to this model as the utility-offset model.

Rules for dropping losers For ethical and economical reasons, we
may consider to drop some inferior treatment groups. The issue is how
to identify the inferior arms with certain statistical assurance. There
are many possible rules for dropping an ineffective dose level. For exam-
ple, just to name two, (i) maximum sample size ratio between groups
that exceeds a threshold, Rn and the number of patients randomized
exceeds a NR; or (ii) the maximum utility difference, Umax − Umin > δu
and its naive confidence interval width less than a threshold, δuw. The
naive confidence interval is calculated as if Umax and Umin are observed
responses with the corresponding sample size at each dose level. Note
that the normalized utility index U ranges from 0 to 1. Note that, op-
tionally, we may also choose to retain the control group or all groups for
the purpose of comparison between groups.

Stopping rule Several stopping rules are available for stopping a
trial. For example, we may stop the trial when

(i) General rule: total sample size exceeds N, a threshold, or
(ii) Utility rules: maximum utility difference Umax −Umin > δu and

its naive confidence interval width is less than δuw, or
(iii) Futility Rules: Umax −Umin < δ f and its naive confidence inter-

val width is less than δ f w.

5.4 Simulations

Design settings

Without loss of generality, a total of 5 dose levels is chosen for the trial
simulations. The response rates, p(U > u), associated with each dose
level are summarized in Table 5.1. These response rates are not chosen
from the hyper-logistic model, but arbitrarily in the interest of reflecting
common practices.

Table 5.1 Assumed Dose-Response Relationship for Simulations

Dose Level 1 2 3 4 5

Dose 20 40 70 95 120
Target Response Rate 0.02 0.07 0.37 0.73 0.52
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Response model

The probability model considered was p(x, a) = P(U ≥ u) under the
hyper-logistic model with three parameters (a1, a3, a4), i.e.,

p(x, a) = C
(

a1 e0.03x + a3e−a4x)−1 , (5.17)

where a1 ∈ [0.06, 0.1], a3 ∈ [150, 200]. The use of scale factor C is a
simple way to assure that 0 ≤ pj(x, a) ≤ 1 during in the simulation
program.

Prior distribution

Two non-informative priors for parameter a4 were used for the trial
simulations. They are defined over [0.05, 0.1] and [0.01, 0.1], respec-
tively.

a4 ∼ g0(a4) =

{
1

b−a , a ≤ a4 ≤ b
0, otherwise.

(5.18)

Reassessment method

In the simulations, the hybrid frequentist-Bayesian method was used.
We first used the frequentist least squares method to estimate the 3
parameters ai (i = 1, 3, 4), then used the estimated a1, a3, and the
prior for a4 in the model and Bayesian method to obtain the posterior
probability distribution of parameter a4 and the predictive probabilities.

Utility-adaptive randomization

Under the utility-offset model described earlier, the probability for ran-
domizing a patient to the dose level xi is given by

�(xi) =







1
K , before an observed responder

C
(

p(xi)
∑k

i=1 p(xi)
− ni

N

)

, after an observed responder,
(5.19)

where p(xi) is the response rate or the predictive probability in Bayesian
sense, ni is the number of patients that have been randomized to the xi
group, N is the total estimated number of patients in the trial, and K
is number of dose groups.

Rules of dropping losers and stopping rule

In the simulations, no losers were dropped. The trial was stopped when
the subjects randomized reached the prespecified maximum number.
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Statistics from Trial Simulations
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Figure 5.3 A typical example of simulation results.

Simulation results

Computer simulations were conducted to evaluate the operating char-
acteristics. Four different sample sizes (i.e., N = 20, 30, 50, 100) and two
different non-informative priors were used. The outcomes from a typi-
cal simulation are presented in Figure 5.3. It is shown that predicted
response rates are still reasonably good even when the observed (sim-
ulated) response rates are showing the sine-shape. The average results
from 1000 simulations per scenario are summarized in Table 5.2.

We can see that the number of patients randomized into each group is
approximately proportional to the corresponding utility or rate in each
dose group, which indicates that the utility-adaptive randomization is
efficient in achieving the target patient allocations among treatment
groups. Compared to traditional balanced design with multiple arms,
the adaptive design smartly allocates majority patients to the desirable
dose levels. In all cases, the predicted rates are similar to the simulated
rates. This is reasonable since non-informative priors were used. The
precision of the predictive rate at each dose level is measured by its
standard deviation:

δp =

√
√
√
√

1
Ns

Ns∑

i=1

[ p̂i(x) − p̄(x)]2, (5.20)

where Ns is the number of simulations, p̂i(x) is the simulated response
rate or predicted response rate, and p̄(x) is the mean response rate at
dose level x. The hybrid method provides estimates with reasonable
precision when there are 50 subjects (10 subjects per arm on average)
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Table 5.2 Comparisons of Simulation Results#

Scenario Dose Level 1 2 3 4 5

Target rate 0.02 0.07 0.37 0.73 0.52

n∗ = 100 Simulated rate 0.02 0.07 0.36 0.73 0.52
Predicted rate 0.02 0.07 0.41 0.68 0.43
Standard deviation 0.00 0.01 0.08 0.07 0.03
Number of subjects 1.71 4.78 25.2 41.8 26.6

n∗ = 50 Simulated rate 0.02 0.07 0.36 0.73 0.52
Predicted rate 0.02 0.07 0.40 0.65 0.41
Standard deviation 0.00 0.02 0.11 0.09 0.04
Number of subjects 1.02 2.48 12.6 20.5 13.4

n∗ = 30 Simulated rate 0.02 0.05 0.36 0.73 0.51
Predicted rate 0.02 0.07 0.40 0.63 0.40
Standard deviation 0.00 0.02 0.13 0.11 0.05
Number of subjects 1.00 1.62 7.50 11.9 8.00

n∗ = 20 Simulated rate 0.02 0.06 0.34 0.72 0.51
Predicted rate 0.02 0.07 0.37 0.58 0.38
Standard deviation 0.00 0.02 0.15 0.14 0.06
Number of subjects 1.00 1.03 4.68 7.60 5.68

n∗∗ = 50 Simulated rate 0.02 0.07 0.36 0.73 0.51
Predicted rate 0.02 0.07 0.41 0.65 0.41
Standard deviation 0.00 0.02 0.11 0.09 0.04
Number of subjects 1.02 2.53 12.7 20.5 13.3

# From simulation software: ExpDesign Studio by www.CTriSoft.net
∗ Uniform prior over [0.05, 0.1]; ∗∗ uniform prior over [0.01, 0.1].

or more. The precision reduces when sample size reduces, but the preci-
sion is not so bad even with only 20 patients. The relationships between
number of subjects and precision for the most interested dose levels
(level 3, 4, and 5) are presented in Figure 5.4. The predicted response
rates seem not to be sensitive to the non-informative priors. The sim-
ulation results for the two non-informative priors are very similar.
Note that precision very much depends upon the number of parameters
used in the response model. The more parameters, the less precision.
In the simulations a three-parameter hyper-logistic model was used.
If a single-parameter model were used, the precision of the predicted
response rates would be greatly improved.
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Figure 5.4 Relationship between sample size and standard deviation of pre-
dictive rate.

5.5 Concluding Remarks

The proposed utility-adaptive randomization has the desirable property
that the proportion of subjects assigned to the treatment is proportional
to the response rate or the predictive probability. Assigning more pa-
tients to the superior groups allows a more precise evaluation of the
superior groups with relatively small number of patients. The hybrid
CRM approach with hyper-logistic model gives reliable predictive re-
sults regarding dose response with a minimum number of patients. It
is important to choose proper ranges for the parameters of the hyper-
logistic model, which can be managed when one becomes familiar with
the curves of hyper-logistic function affected by its parameters. In the
case of low response rates, the sample size is expected to increase accord-
ingly. The hybrid approach allows the users to combine the computa-
tional simplicity and numerical stability of frequentist method with the
flexibility in priors and predictive nature of the Bayesian approach. The
proposed method can be used in phase II/III combined study to accel-
erate the drug development process. However, there are some practical
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issues such as how to perform a thorough review when the trial is on-
going, which are necessarily considered for safety of the patients. Since
the proposed Bayesian adaptive design is multiple-endpoint oriented,
it can be used for various situations. For example, for ordinal responses
(e.g., CTC grades), we can consider the different levels of responses as
different endpoints, then model them separately, and calculate the ex-
pected utility based on the models. Alternatively, we can also form the
utility first by assigning different weights to the response levels and
then modeling the utility.





CHAPTER 6

Adaptive Group Sequential Design

In clinical trials, it is not uncommon to perform data safety monitor-
ing and/or interim analyses based on accrued data up to a certain time
point during the conduct of a clinical trial. The purpose is not only to
monitor the progress and integrity of the trial, but also to take ac-
tion regarding early termination (if there is evidence that the trial
will put subjects in an unreasonable risk or the treatment is ineffec-
tive) or modifications to the study design in compliance with ICH GCP
for data standards and data quality. In most clinical trials, the primary
reasons for conducting interim analyses of accrued data are probably
due to (Jennison and Turnbull, 2000): (i) ethical considerations, (ii) ad-
ministrative reasons, and (iii) economic constraints. In practice, since
clinical trials involve human subjects, it is ethical to monitor the trials
to ensure that individual subjects are not exposed to unsafe or inef-
fective treatment regimens. When the trials are found to be negative
(i.e., the treatment appears to be ineffective), there is an ethical imper-
ative to terminate the trials early. Ethical consideration indicates that
clinical data should be evaluated in terms of safety and efficacy of the
treatment under study based on accumulated data in conjunction with
updated clinical information from literature and/or other clinical trials.

From the administrative point of view, interim analyses are neces-
sarily conducted to ensure that the clinical trials are being executed as
planned. For example, it is always a concern whether subjects who meet
the eligibility criteria are from the correct patient population (which is
representative of the target patient population). Also, it is important
to assure that the trial procedures, dose/dose regimen, and treatment
duration adhere to the study protocol. An early examination of interim
results can reveal the problems (such as protocol deviations and/or pro-
tocol violations) of the trials early. Immediate actions can be taken to
remedy issues and problems detected by interim analyses. An early
interim analysis can also verify critical assumptions made at the plan-
ning stage of the trials. If serious violations of the critical assumptions
are found, modifications or adjustments must be made to ensure the
quality and integrity of the trials.

The remainder of this chapter is organized as follows. In the next
section, basic concepts of sequential methods in clinical trials are
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introduced. In Section 6.2, a unified approach for group sequential
designs for normal, binary, and survival endpoints is introduced. In
Section 6.3, the boundary function proposed by Wang and Tsiatis (1987)
is considered for construction of the stopping boundaries based on equal
information intervals. Also included in this section is the discussion of
the use of unequal information intervals under a two-stage design which
is of practical interest in clinical trials. Section 6.4 introduces a more
flexible (adaptive) design, i.e., error-spending approach, where the in-
formation intervals and number of analyses are not pre-determined,
but the error-spending function is pre-determined. The relationship
between error-spending function and Wang and Tsiatis’ boundary func-
tion is also discussed in this section. A proposed approach for formu-
lating the group sequential design based on independent p-values from
the sub-samples from different stages is described in Section 6.5. The
formulation is valid regardless of the methods used for calculation of
the p-values. Trial monitoring and conditional powers for assessment of
futility for comparing means and comparing proportions are derived in
Sections 6.7 and 6.8, respectively. Practical issues are given in the last
section.

6.1 Sequential Methods

As pointed out by Jennison and Turnbull (2000), the concept of sequen-
tial statistical methods was originally motivated by the need to obtain
clinical benefits under certain economic constraints. For a trial with
a positive result, early stopping means that a new product can be ex-
ploited sooner. If a negative result is indicated, early stopping ensures
that resources are not wasted. Sequential methods typically lead to
saving in sample size, time, and cost when compared with the standard
fixed sample procedures. Interim analyses enable management to make
appropriate decisions regarding the allocation of limited resources for
continued development of the promising treatment.

In clinical trials, sequential methods are used when there are formal
interim analyses. An interim analysis is an analysis intended to assess
treatment effect with respect to efficacy or safety at any time prior
to the completion of a clinical trial. Because interim analysis results
may introduce bias to subsequent clinical evaluation of the subjects
who enter the trial, all interim analyses should be carefully planned
in advance and described in the study protocol. Under special circum-
stances, there may be a need for an interim analysis that was not
planned originally. In this case, a protocol amendment describing the
rationale for such an interim analysis should be implemented prior to
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any clinical data being unblinded. For many clinical trials of investi-
gational products, especially those that have public attention for major
health significance, an external independent group or data monitoring
committee (DMC) should be formed to perform clinical data monitor-
ing for safety and interim analysis for efficacy. The U.S. FDA requires
that the role/responsibility and function/activities of a DMC be clearly
stated in the study protocol to maintain the integrity of the clinical trial
(FDA, 2000, 2005; Offen, 2003).

Basic concepts

A (fully) sequential test is referred to as a test conducted based on ac-
crued data after every new observation is obtained. A group sequential
test, as opposed to a fully sequential test, is referred to as a test per-
formed based on accrued data at some pre-specified intervals rather
than after every new observation is obtained (Jennison and Turnbull,
2000).

Error-inflation For a conventional single-stage trial with one-sided
α = 0.025, the null hypothesis (H0) is rejected if the statistic z ≥ 1.96.
For a sequential trial with K analyses, if at the k-th analysis (k =
1, 2, . . . , K), if the absolute value of Zk is sufficiently large, we will reject
H0 and stop the trial. It is not appropriate to simply apply a level-α one-
sided test at each analysis since the multiple tests would lead to an infla-
tion of the type-I error rate. In fact, the actual α level is given by 1−(1−
αk). Thus, for K = 5, the actual α level is 0.071, nearly 3 times as big as
that of the 0.025 significance level applied at each individual analysis.

Stopping boundary Stopping boundaries consist of a set of critical
values that the test statistics calculated from actual data will be com-
pared with to determine whether the trial should be terminated or
continue. For example, Figure 6.1 provides a set of critical values as
boundaries for stopping. In other words, if the observed sample mean
at a given stage falls outside the boundaries, we will terminate the trial;
otherwise, the trial continues.

Boundary scales Many different scales can be used to construct the
stopping boundaries. The four commonly used scales are the standard-
ized z-statistic, the sample-mean scale, the error-spending scale, and
the sum-mean scale. In principle, these scales are equivalent to one an-
other after appropriate transformation. Among the four scales, sample-
mean scale and error-spending scale have most intuitive interpreta-
tions. As an example, consider the hypothesis for testing the difference
between two-sample independent means. These scales are defined as
follows:
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Figure 6.1 Stopping boundaries.

• Sample-mean scale: θk = x̄Ak − x̄Bk.

• Standardized z-statistic: Zk = θk
√

Ik, where Ik = nk
2σ2 is the

information level.
• Sum-mean scale: Dk =

∑k
i=1 xAi − ∑k

i=1 xBi.

• Error-spending scale: α (sk) , which is also known as probabil-
ity scale.

When the number of interim analyses increases, there are too many
possible designs with desired α and power. Hence, in practice, it is dif-
ficult to select a most appropriate design that can fit our need. Thus,
it is suggested that a simple function to define the preferred stopping
boundaries be used. Such a function with a few parameters such as
the O’Brien-Fleming, Pocock, Lan-DeMets-Kim, or Wang and Tsiatis
boundary functions are useful.

Optimal/flexible multiple-stage designs In early phase cancer tri-
als, it is undesirable to stop a study early when the test drug is promis-
ing. On the other hand, it is desirable to terminate the study as early as
possible when the test treatment is not effective due to ethical consid-
eration. For this purpose, an optimal or flexible multiple-stage design
is often employed to determine whether the test treatment holds suffi-
cient promise to warrant further testing. In practice, optimal or flexible
multiple-stage designs are commonly employed in phase II cancer trials
with single arm. These multiple-stage designs include optimal multiple-
stage designs such as minimax design and Simon’s optimal two-stage
design (Simon, 1989; Ensign et al., 1994) and flexible multiple-stage de-
signs (see, e.g., Chen, 1997; Chen and Ng, 1998; Sargent and Goldberg,
2001).
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The concept of an optimal two-stage design is to permit early stopping
when a moderately long sequence of initial failure occurs, denoted by
the number of subjects studied in the first and second stage by n1 and
n2, respectively. Under a two-stage design, n1 patients are treated at
the first stage. If there are fewer than r1 responses, then stop the trial.
Otherwise, stage 2 is implemented by including the other n2 patients.
A decision regarding whether the test treatment is promising is then
made based on the response rate of the N = n1 + n2 subjects. Let p0

be the undesirable response rate and p1 be the desirable response rate
(p1 > p0). If the response rate of a test treatment is at the undesirable
level, one may reject it as an ineffective compound with a high probabil-
ity, and if its response rate is at the desirable level, one may not reject it
as a promising compound with a high probability. As a result, under a
two-stage trial design, it is of interest to test the following hypotheses:

H0 : p ≤ p0 versus Ha : p ≥ p1.

Rejection of H0 (or Ha) means that further (or not further) study of
the test treatment should be carried out. Note that under the above
hypotheses, the usual type I error is the false positive in accepting an
ineffective drug and the type II error is the false negative in rejecting
a promising compound. An alternative to the optimal two-stage design
described above is so-called flexible two-stage design (Chen and Ng,
1998). The flexible two-stage design simply assumes that the sample
sizes are uniformly distributed on a set of k consecutive possible values.

For comparison of multiple arms, Sargent and Goldberg (2001) pro-
posed a flexible optimal design that allows clinical scientists to select
the treatment to proceed for further testing based on other factors when
the difference in the observed response rates between treatment arms
falls into the interval of [−δ, δ], where δ is a pre-specified quantity. The
proposed rule is that if the observed difference in the response rates of
the treatments is larger than δ, then the treatment with the highest
observed response rate is selected. On the other hand, if the observed
difference is less than or equal to δ, other factors may be considered in
the selection. It should be noted that under this framework, it is not
essential that the very best treatment is definitely selected; rather it is
important that a substantially inferior treatment is not selected when
a superior treatment exists.

Remarks Note that in a classic design with a fixed sample size, either
a one-sided α of 0.025 or a two-sided α of 0.05 can be used because they
will lead to the same results. However, in group sequential trials, two-
sided tests should not be used based on the following reasons. For a trial
that is designed to allow early stopping for efficacy, when the test drug
is significantly worse than the control, the trial may continue to claim
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efficacy instead of stopping. This is due to the difference in continuation
region between a one-sided and a two-sided test, which will have an im-
pact on the differences in the consequent stopping boundaries between
the one-sided and the two-sided test. As a result, it is suggested that
the relative merits and disadvantages for the use of a one-sided test
and a two-sided test should be carefully evaluated. It should be noted
that if a two-sided test is used, the significance level α could be inflated
(for futility design) or deflated (for efficacy design).

6.2 General Approach for Group Sequential Design

Jennison and Turnbull (2000) introduced a unified approach for group
sequential trial design. This unified approach is briefly described below.
Consider a group sequential study consisting of up to K analyses. Thus,
we have a sequence of test statistics {Z1, . . . , ZK}. Assume that these
statistics follow a joint canonical distribution with information levels
{I1, . . . , Ik} for the parameter. Thus, we have

Zk ∼ N(θ
√

Ik, 1), 1, . . . , K,

where Cov(Zk1 , Zk2) =
√

Ik1 Ik2 , 1 ≤ k1 ≤ k2 ≤ K.

Table 6.1 provides formulas for sample size calculations for different
types of study endpoints in clinical trials, while Table 6.2 summarizes
unified formulation for different types of study endpoints under a group
sequential design. As an example, for the logrank test in a time-to-event
analysis, the information can be expressed as

Ik =
r

(1 + r)2
dk =

r

(1 + r)2
Nk

σ 2
,

where dk is the expected number of deaths, Nk is the expected number
of patients, and r is the sample size ratio.

Let T0 and Tmax be the accrual time and the total follow-up time,
respectively. Then, under the condition of exponential survival distri-
bution, we have

dik =
Nik

To

(

To − 1
λieλi T

(

eλi To − 1
)
)

, T > To; i = 1, 2; k = 1, . . . , K,

where dik is the number of deaths in group i at stage k, and Nik is the
number of patients in group i at stage k.

σ 2 =
N1k + N2k

d1k + d2k
=

1 + r
ξ1 + rξ2

,
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Table 6.1 Sample Sizes for Different Types of Endpoints

Endpoint Sample Size Variance

One mean n =
(z1−a+z1−β)

2σ2

ε2
;

Two means n1=
(z1−a+z1−β)

2σ2

(1+1/r)−1
ε2

;

One proportion n =
(z1−a+z1−β)

2σ2

ε2
; σ2= p(1 − p)

Two proportions n1=
(z1−a+z1−β)

2σ2

(1+1/r)−1
ε2

;
σ2= p̄(1 − p̄);

p̄ =n1 p1+n2 p2
n1+n2

.

One survival curve n =
(z1−a+z1−β)

2σ2

ε2
; σ2= λ2

0

(

1 − eλ0T0−1
T0λ0eλ0Ts

)−1

Two survival curves n1=
(z1−a+z1−β)

2σ2

(1+1/r)−1
ε2

;

σ2=
rσ2

1 +σ2
2

1+r ,

σ2
i = λ2

i

(

1 − eλi T0−1
T0λieλi Ts

)−1

Note: r = n2
n1

.λ0 = expected hazard rate, T0 = uniform patient accrual time and
Ts = trial duration. Logrank-test is used for comparison of the two survival curves.

Table 6.2 Unified Formulation for Sequential Design

Single mean Zk=(x̄k−µ0)
√

Ik Ik=
nk
σ2

Paired means Zk= d̄k
√

Ik Ik=
nk
σ̃2

Two means Zk=(x̄Ak−x̄Bk)
√

Ik Ik=
(

σ2
A

nAk
+

σ2
B

nBk

)−1

One proportion Zk=(pk−p0)
√

Ik Ik=
nk
σ2 , σ2= p̄(1 − p̄)

Two proportions Zk=(pAk−pBk)
√

Ik Ik=
1
σ2

(
1

nAk
+ 1

nBk

)−1
,

σ2= p̄(1 − p̄)

One survival curve Zk= Sk/
√

Ik Ik= dk=
Nk
σ2 ,

σ2 is given in (6.1)

Two survival curves Zk= Sk/
√

Ik Ik=
r dk

(1+r)2 = r Nk
(1+r)2σ2 ,

σ2 is given in (6.1)
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where

ξi = 1 − eλi To − 1
Toλie−λi T

.

Note that in practice, we may first choose c and α in the stopping bound-
aries using the conditional probabilities and then perform sample size
calculation based on the determined boundaries and the corresponding
conditional probabilities for achieving the desired power.

6.3 Early Stopping Boundaries

In clinical trials, it is desirable to stop the trial early if the treatment
under investigation is ineffective. On the other hand, if a strong (or
highly significant) evidence of efficacy is observed, we may also termi-
nate the trial early. In what follows, we will discuss boundaries for early
stopping of a given trial due to (i) efficacy, (ii) futility, and (iii) efficacy
or futility assuming that there are a total of K analyses in the trial.

Early efficacy stopping

For the case of early stopping for efficacy, we consider testing the one-
sided null hypothesis that H0 : µA ≤ µB, where µA and µB could be
means, proportions, or hazard rates for treatment groups A and B, re-
spectively. Figure 6.2 illustrates stopping boundaries for efficacy based
on standard Z score. The decision rules for early stopping for efficacy
are then given by

{
If Zk < αk, continue on next stage;
If Zk ≥ αk, (k = 1, . . . K − 1), stop reject H0,
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Figure 6.2 Stopping boundary for efficacy.
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and
{

If ZK < αK , stop accept H0;
If ZK ≥ αK , stop reject H0.

In addition to Pocock’s test and O’Brien and Fleming’s test, Wang and
Tsiatis (1987) proposed a family of two-sided tests indexed by the pa-
rameter of ∆, which is also based on the standardized test statistic Zk.
Wang and Tsiatis’ test includes Pocock’s and O’Brien-Fleming’s bound-
aries as special cases. As a result, in this section, we will simply focus
on the method proposed by Wang and Tsiatis (1987). Wang and Tsiatis’
boundary function is given by

ak > αK

(
k
K

)∆−1/2

, (6.1)

where c is function of K, α,and ∆.

Note that sample sizes N0 in Table 6.3b (also, Table 6.4b, 6.5b) are gen-
erated using ExpDesign Studio(R) based on effect size δ0 = 0.1. There-
fore, for an effect size δ, the sample size is given by N = N0

(
0.1
δ

)2
.

Example 6.1 (normal endpoint) Suppose that an investigator is
interested in conducting a clinical trial with 5 analyses for comparing
a test drug (T) with a placebo (P). Based on information obtained from
a pilot study, data from the test drug and the placebo seem to have a
common variance, i.e., σ 2 = σ 2

1 = σ 2
2 = 4 with µT − µP = 1. Assuming

these observed values are true, it is desirable to select a maximum
sample size such that there is a 85% (1 − β = 0.85) power for detecting
such a difference between the test drug and the placebo at the 2.5%
(one-sided α = 0.025) level of significance. The W-T stopping boundary
with ∆ = 0.3 is used.

The stopping boundaries are given in Table 6.3a. From Table 6.3a,
α5 = 2.1697. Since the effect size δ = µT−µP

σ
= 0.5, the required sample

size for a classic design when there are no planned interim analyses is

Nfixed = 3592
(

0.1
0.5

)2

= 144.

The maximum sample is given by

Nmax = 3898
(

0.1
0.5

)2

= 156,

while the expected sample size under the alternative hypothesis is

N = 2669
(

0.1
0.5

)2

= 107.
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Table 6.3a Final Efficacy Stopping Boundary αK

K
∆ 1 2 3 4 5

0 1.9599 1.9768 2.0043 2.0242 2.0396
0.1 1.9936 2.0258 2.0503 2.0687
0.2 2.0212 2.0595 2.0870 2.1085
0.3 2.0595 2.1115 2.1452 2.1697
0.4 2.1115 2.1850 2.2325 2.2662
0.5 2.1774 2.2891 2.3611 2.4132
0.6 2.2631 2.4270 2.5403 2.6245
0.7 2.3642 2.6061 2.7807 2.9185
0.8 2.4867 2.8297 3.0900 3.3074
0.9 2.6306 3.1022 3.4820 3.8066
1.0 2.7960 3.4268 3.9566 4.4252

Note: Equal info intervals, one-sided α = 0.025.

Table 6.3b Maximum Sample Size and Expected Sample Size
Under Ha

K
∆ 1 2 3 4 5

0 3592 3616/3161 3652/2986 3674/2884 3689/2828
0.1 3644/3080 3685/2920 3713/2829 3732/2774
0.2 3691/3014 3739/2855 3771/2768 3794/2717
0.3 3758/2966 3829/2804 3870/2720 3898/2669
0.4 3850/2941 3962/2773 4031/2695 4078/2649
0.5 3968/2937 4161/2780 4285/2715 4374/2682
0.6 4128/2965 4436/2828 4662/2792 4834/2785
0.7 4316/3012 4809/2923 5195/2933 5520/2975
0.8 4548/3088 5288/3063 5914/3135 6487/3249
0.9 4821/3188 5881/3242 6860/3400 7788/3593
1.0 5130/3307 6586/3454 8011/3696 9427/3974

Note: Equal info intervals, one-sided α = 0.025, power = 85% and effect size
= 0.01.

Early futility stopping

For the case of early stopping for futility, similarly, we consider testing
the one-sided null hypothesis that Ho : µA ≤ µB, where µA and µB could
be means, proportions, or hazard rates for treatment groups A and B,
respectively. Figure 6.3 illustrates stopping boundaries for early futility
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Table 6.4a Final Symmetric Futility Stopping Boundary βK

K
∆ 1 2 3 4 5

0 1.9599 1.9546 1.9431 1.9316 1.9224
0.1 1.9500 1.9339 1.9201 1.9098
0.2 1.9419 1.9224 1.9063 1.8926
0.3 1.9316 1.9063 1.8857 1.8696
0.4 1.9155 1.8834 1.8581 1.8374
0.5 1.8972 1.8535 1.8202 1.7938
0.6 1.8765 1.8191 1.7754 1.7398
0.7 1.8512 1.7777 1.7238 1.6790
0.8 1.8237 1.7364 1.6698 1.6169
0.9 1.7950 1.6916 1.6169 1.5572
1.0 1.7651 1.6480 1.5641 1.4998

Note: Equal info intervals, one-sided α = 0.025.

Table 6.4b Maximum Sample Size and Expected Sample Size Under Ho

K
∆ 1 2 3 4 5

0 3592 3608/2616 3636/2433 3656/2287 3672/2202
0.1 3626/2496 3658/2305 3683/2178 3705/2096
0.2 3655/2396 3700/2174 3734/2053 3759/1974
0.3 3701/2321 3770/2054 3817/1924 3855/1845
0.4 3761/2267 3874/1960 3956/1815 4020/1728
0.5 3845/2241 4024/1901 4165/1742 4285/1648
0.6 3950/2238 4223/1880 4454/1713 4662/1618
0.7 4073/2254 4459/1889 4805/1723 5131/1632
0.8 4207/2285 4726/1923 5196/1761 5651/1675
0.9 4352/2327 4999/1971 5594/1813 6167/1732
1.0 4500/2376 5266/2026 5963/1868 6632/1788

Note: Equal info intervals, one-sided α = 0.025 and δ = 0.1. Power = 85%.

based on Z score. The decision rules for early stopping for futility are
then given by

{
If Zk < βk, (k = 1, . . . K − 1), stop and accept Ho;
If Zk ≥ βk, continue on next stage,

and
{

If ZK < βK , stop and accept Ho;
If ZK ≥ βK , stop reject Ho.
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Figure 6.3 Stopping boundary for futility.

We propose an inner futility stopping boundary that is symmetric to
the Wang-Tsiatis’ efficacy stopping boundary on the z-scale and trian-
gular boundary, which are given below, respectively:

• Symmetric boundary:

βk > 2βK

√

k
K

− βK

(
k
K

)∆−1/2

. (6.2)

• Triangular boundary:

βk = βK
k − k0

K − k0
, wherek0 =

[
K
2

]

+ 1. (6.3)

where [x] is the integer part of x.

Example 6.2 (binary endpoint) Suppose that an investigator is
interested in conducting a group sequential trial comparing a test drug
with a placebo. The primary efficacy study endpoint is a binary re-
sponse. Based on information obtained in a pilot study, the response
rates for the test drug and the placebo are given by 20% (p1 = 0.20) and
30% (p2 = 0.30), respectively. Suppose that a total of 2 (K = 2) analyses
are planned. It is desirable to select a maximum sample size in order
to have an 85% (1 − β = 0.85) power at the 2.5% (one-sided α = 0.025)
level of significance. The effect size is

δ =
p2 − p1

√

( p̄(1 − p̄)
=

0.3 − 0.2
√

0.25(1 − 0.25)
= 0.23094.
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If a symmetric inner boundary boundaries are used with ∆ = 0.6, it is
an optimal design with the minimum expected sample size under the
null hypothesis. From Table 6.5a, β2 = 1.8765, and from (6.2), we have

β1 = 2βK

√

k
K

− βK

(
k
K

)∆−1/2

= 2(1.8765)
√

1/2 − 1.8765 (1/2)0.6−0.5

= 0.902 94.

From Table 6.5b, the sample size needed for a fixed sample size design
is

Nfixed = 3592
(

0.1
0.23094

)2

= 674.

The maximum sample size and the expected sample size under the null
hypothesis are

Nmax = 3950
(

0.1
0.23094

)2

= 742

and

Nexp = 2238
(

0.1
0.23094

)2

= 420.

Early efficacy-futility stopping

For the case of early stopping for efficacy or futility, similarly, we con-
sider testing the one-sided null hypothesis that Ho : µA ≤ µB, where
µA and µB could be means, proportions, or hazard rates for treatment
groups A and B, respectively. Figure 6.4 illustrates stopping boundaries
for early efficacy/futility stopping. The decision rules for early stopping
for efficacy or futility are then given by

{
If Zk < βk, (k = 1, . . . K), stop and accept Ho;
If Zk ≥ αk, (k = 1, . . . K), stop and reject Ho.

The stopping boundaries are the combination of the previous efficacy
and futility stopping boundaries, i.e.,

Symmetric boundary
{

ak = αK(k/K)∆−1/2

βk = 2βK

√
k
K − βK( k

K )∆−1/2 (6.4)

Triangle boundary
{

ak = αK(k/K)∆−1/2

βk = βK
k−k0
K−k0

, (6.5)
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Figure 6.4 Stopping boundary for efficacy or futility.

where the starting inner boundary is given by k0 =
[ K

2

]

+ 1.

Example 6.3.3 (survival endpoint) Suppose that an investigator is
interested in conducting a survival trial with 3 (K = 3) analyses at the
2.5% level of significance (one-sided α = 0.025) with an 85% (1−β = 0.85)
power. Assume that median survival time is 0.990 year (λ1 = 0.7/Year)
for group 1, 0.693 year (λ2 = 1/Year) for group 2. T0 = 1 year and study
duration Ts = 2 years. Using

σ 2
i = λ2

i

(

1 − eλi T0 − 1
T0λieλi Ts

)−1

,

Table 6.5a Final Stopping Boundaries αK = βK

K
∆ 1 2 3 4 5

0 1.9599 1.9730 1.9902 2.0028 2.0143
0.1 1.9856 2.0074 2.0235 2.0373
0.2 2.0074 2.0361 2.0568 2.0717
0.3 2.0396 2.0821 2.1096 2.1303
0.4 2.0866 2.1521 2.1946 2.2256
0.5 2.1487 2.2532 2.3301 2.3737
0.6 2.2290 2.3898 2.5035 2.5896
0.7 2.3301 2.5678 2.7458 2.8871
0.8 2.4530 2.7929 3.0593 3.2798
0.9 2.6000 3.0685 3.4475 3.7759
1.0 2.7722 3.3947 3.9183 4.3823

Note: Equal info intervals, one-sided α = 0.025.
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Table 6.5b Maximum Sample Size and Expected Sample Size Under Ho
and Ha

K
∆ 1 2 3 4 5

0 3592 3636/2722/3142 3698/2558/2942 3744/2420/2826 3785/2346/2764
0.1 3680/2615/3050 3758/2449/2868 3818/2333/2760 3868/2260/2698
0.2 3755/2534/2974 3860/2342/2793 3937/2236/2692 3995/2167/2628
0.3 3868/2484/2918 4024/2251/2728 4128/2140/2628 4207/2073/2567
0.4 4037/2472/2893 4280/2193/2689 4442/2067/2587 4562/1994/2527
0.5 4265/2497/2897 4662/2181/2687 4931/2034/2584 5136/1950/2527
0.6 4573/2568/2937 5209/2226/2726 5675/2059/2630 6038/1959/2578
0.7 4984/2695/3017 5985/2348/2816 6775/2164/2724 7427/2047/2677
0.8 5525/2891/3143 7078/2580/2967 8402/2397/2879 9574/2272/2830
0.9 6238/3180/3327 8619/2972/3207 10805/2835/3131 12885/2736/3083
1.0 6238/3180/3327 10784/3591/3591 14358/3590/3590 17953/3591/3591

Note: Equal info intervals, one-sided α = 0.025, δ = 0.1, power = 85%.

we obtain σ 2
1 = 0.762 2, and σ 2

2 = 1. 303. Note that

δ =
λ2 − λ1

σ
=

1 − 0.7√
0.762 2 + 1. 303

= 0.208 76.

The stopping boundaries (∆ = 0.1) are given by α3 = β3 = 2.0074
(Table 6.6). Thus, we have

α1 = 3. 115 2, α2 = 2. 360 9;
β1 = −0.797 23, β2 = 0.917 21.

Thus,

Nfixed =
(zα/2 + zβ)2

(

σ 2
1 + σ 2

2

)

(λ2 − λ1)
2

=
(1.96 + 1.0364)2 (0.762 2 + 1. 303)

(1 − 0.7)2

= 206.

The maximum sample size is given by

Nmax = 3758
(

0.1
0.20876

)2

= 862.

The expected sample size under the null hypothesis is given by

N̄o = 2449
(

0.1
0.20876

)2

= 562.
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Table 6.6 Error Spending Functions

O’Brien-Fleming α1(s) = 2{1 − Φ(zα/
√

2)
Pocock α2(s) = α log [1 + (e − 1)s]
Lan-DeMets-Kim α3(s) = αsθ , θ > 0

Hwang-Shih α4(s) = α[(1 − eζs)/(1 − e−ζ )], ζ 
= 0

Source: Chow, Shao, and Wang (2003)

The expected sample size under the alternative hypothesis is given by

N̄a = 2868
(

0.1
0.20876

)2

= 658.

6.4 Alpha Spending Function

Lan and DeMets (1983) proposed to distribute (or spend) the total prob-
ability of false positive risk as a continuous function of the information
time in group sequential procedures for interim analyses. If the total
information is scheduled to accumulate over the maximum duration T
is known, the boundaries can be computed as a continuous function of
the information time. This continuous function of the information time
is referred to as the alpha spending function, denoted by α(s). The alpha
spending function is an increasing function of information time. It is 0
when the information time is 0 and is equal to the overall significance
level when information time is 1. In other words, α(0) = 0 and α(1) = α.
Let s1 and s2 be two information times, 0 < s1 < s2 ≤ 1. Also, denote
α(s1) and α(s2) as their corresponding value of alpha spending function
at s1 and s2. Then,

0 < α(s1) < α(s2) ≤ α.α(s1)

is the probability of type I error one wishes to spend at information time
s1. For a given alpha spending function α(s) and a series of standardized
test statistic Zk, k = 1, . . . , K, the corresponding boundaries ck, k =
1, . . . , K are chosen such that under the null hypothesis

P(Z1 < c1, . . . , Zk−1 < ck−1, Zk ≥ ck)

= α

(
k
K

)

− α

(
k − 1

K

)

.

Some commonly used alpha spending functions are summarized in
Table 6.6.
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We now introduce the procedure for sample size calculation based on
Lan-DeMets’ alpha spending function, i.e.,

α(s) = αsθ , θ > 0.

Although alpha spending function does not require a fixed maximum
number and equal spaced interim analyses, it is necessary to make those
assumptions in order to calculate the sample size under the alternative
hypothesis. The sample size calculation can be performed using com-
puter simulations. As an example, in order to achieve a 90% power at
the one-sided 2.5% level of significance, it is necessary to have nfixed = 84
subjects per treatment group for classic design. The maximum sample
size needed for achieving the desired power with 5 interim analyses
using the Lan-DeMets type alpha spending function with δ = 2 can be
calculated as 92 subjects.

6.5 Group Sequential Design Based
on Independent P-values

In this section, we discuss n-stage adaptive design based on individual
p-values from each stage proposed by Chang (2005). In an adaptive
group sequential design with K stages, a hypothesis test is performed
at each stage, followed by certain actions according to the outcomes.
Such actions could be early stopping for efficacy or futility, sample size
re-estimation, modification of randomization, or other adaptations. At
the kth stage, a typical set of hypotheses for the treatment difference is
given by

H0k : ηk1 ≥ ηk2 vs. Hak : ηk1 < ηk2, (6.6)

where ηk1 and ηk2 are the treatment response such as mean, proportion,
or survival at the kth stage. We denote the test statistic for H0k and the
corresponding p-value by Tk and pk, respectively.

The global test for the null hypothesis of no treatment effect can
be written as an intersection of the individual hypotheses at different
stages.

H0 : H01 ∩ . . . ∩ H0K (6.7)

Note that a one-sided test is assumed in this chapter. At the kth stage,
the decision rules are given by







Stop for efficacy if Tk ≤ αk ,
Stop for futility if Tk > βk,
Continue with adaptations if αk < Tk ≤ βk,

(6.8)
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where αk < βk (k = 1, . . . , K − 1), and αK = βK . For convenience’s sake,
αk and βk are referred to as the efficacy and futility boundaries, respec-
tively.

To reach the kth-stage, a trial has to pass all stages up to the (k− 1)th

stages, i.e.,

0 ≤ αi < Ti ≤ βi ≤ 1(i = 1, . . . , k − 1).

Therefore, the cumulative distribution function of Tk is given by

ϕk (t) = Pr(Tk < t, α1 < t1 ≤ β1, . . . , αk−1 < tk−1 ≤ βk−1)

=
∫ β1

α1

. . .

∫ βk−1

αk−1

∫ t

0

fT1...Tk dtk dtk−1 . . . dt1, (6.9)

where fT1...Tk is the joint probability density function of T1, . . . , and Tk,
and ti is realization of Ti.

The joint probability density function fT1...Tk in (6.5) can be any den-
sity function. However, it is desirable to choose Ti such that fT1...Tk

has a simple form. Note that when ηk1 = ηk2, the p-value pk from the
sub-sample at the kth stage is uniformly distributed on [0,1] under Ho
and pk (k = 1, . . . , K) are mutually independent. These two desirable
properties can be used to construct test statistics for adaptive designs.

The simplest form of the test statistic at the kth stage is given by

Tk = pk, k = 1, . . . , K, (6.10)

due to independence of pk, fT1...Tk = 1 under H0 and

ϕk (t) = t
k−1∏

i=1

Li, (6.11)

where Li = (βi − αi). For convenience’s sake, when the upper bound
exceeds the lower bound, define

∏K
i=1(·) = 1. It is obvious that the error

rate (α spent) at the kth stage is given by

πk = ϕk(αk). (6.12)

When the efficacy is claimed at a certain stage, the trial is stopped.
Therefore, the type I errors at different stages are mutually exclusive.
Hence, the experiment-wise type I error rate can be written as

α =
K∑

k=1

πk. (6.13)

From (6.13), the experiment-wise type I error rate is given by

α =
K∑

k=1

αk

k−1∏

i=1

Li. (6.14)
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Note that (6.15) is the necessary and sufficient condition for determi-
nation of the stopping boundaries (αi, βi).

6.6 Calculation of Stopping Boundaries

Two-stage design

For a two-stage design, (6.15) becomes

α = α1 + α2(β1 − α1). (6.15)

For convenience’s sake, a table of stopping boundaries is constructed
using (6.16) (Table 6.7). The adjusted p-value is given by

p(t, k) =
{

t if k = 1,
α1 + (β1 − α1)t if k = 2.

(6.16)

K-stage design

For K-stage designs, it is convenient to define a function for Li and αi.

Such functions could be of the form

Lk = b
(

1
k

− 1
K

)

, (6.17)

and

ak = c kθα, (6.18)

Table 6.7 Stopping Boundaries for Two-Stage Designs

α1 0.000 0.005 0.010 0.015 0.020

β1

0.15 0.1667 0.1379 0.1071 0.0741 0.0385
0.20 0.1250 0.1026 0.0789 0.0541 0.0278
0.25 0.1000 0.0816 0.0625 0.0426 0.0217
0.30 0.0833 0.0678 0.0517 0.0351 0.0179
0.35 α2 0.0714 0.0580 0.0441 0.0299 0.0152
0.40 0.0625 0.0506 0.0385 0.026 0.0132
0.50 0.0500 0.0404 0.0306 0.0206 0.0104
0.80 0.0312 0.0252 0.0190 0.0127 0.0064
1.00 0.0250 0.0201 0.0152 0.0102 0.0051

Note: One-sided α = 0.025.
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where b, c, and θ are constants. Because of the equality Lk = βk − αk,
the futility boundaries become

βk = b
(

1
k

− 1
K

)

+ ckθα. (6.19)

Note that the coefficient b is used to determine how fast the continuation
band shrinks when a trial proceeds from one stage to another. θ is used
to determine the curvity of the stopping boundaries αk and βk. Substi-
tuting (6.18) and (6.19) into (6.16) and solving it for constant c, leads to

c =

[
K∑

k=1

{

bk−1kθ

k−1∏

i=1

(
1
i

− 1
K

)}]−1

(6.20)

When K, b and θ are pre-determined, (6.20) can be used to obtain c.
Then, (6.19) and (6.20) can be used to obtain the stopping boundaries
αk and βk. For convenience, constant c is tabulated for different b, θ and
K (Table 6.8).

Note that when θ < 0, θ > 0, and θ = 0, the efficacy stopping bound-
aries are a monotonically decreasing function of k, an increasing func-
tion of k, and a constant, respectively. When the constant b increases,
the continuation-band bound by the futility and efficacy stopping bound-
aries will shrink faster. It is suggested that b should be small enough
such that all βk < 1. Also, it should be noted that LK = 0.

Trial Examples

To illustrate the group sequential methods described in the previous
section, in what follows, two examples concerning clinical trials with
group sequential designs are given. For illustration purposes, these two
examples have been modified slightly from actual trials.

Example 6.1 Consider a two-arm comparative oncology trial compar-
ing a test treatment with a control. Suppose that the primary efficacy
endpoint of interest is time to disease progression (TTP). Based on
data from previous studies, the median time for TTP is estimated to be
8 months (hazard rate = 0.08664) for the control group, and 10.5 months
(hazard rate = 0.06601) for the test treatment group. Assume that there
is a uniform enrollment with an accrual period of 9 months and the total
study duration is expected to be 24 months. The logrank test will be used
for the analysis. Sample size calculation will be performed under the
assumption of an exponential survival distribution.

Assuming that the median time for TTP for the treatment group is
10.5 months, the classic design requires a sample size of 290 per treat-
ment group in order to achieve an 80% power at the α = 0.025 level
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Table 6.8 Constant c in (6.18)

K
b θ 2 3 4 5 6

0.25 −0.5 0.9188 0.8914 0.8776 0.8693 0.8638
0.0 0.8889 0.8521 0.8337 0.8227 0.8154
0.5 0.8498 0.8015 0.7776 0.7635 0.7540
1.0 0.8000 0.7385 0.7087 0.6911 0.6795

0.50 −0.5 0.8498 0.7989 0.7733 0.7578 0.7475
0.0 0.8000 0.7347 0.7023 0.6830 0.6702
0.5 0.7388 0.6581 0.6190 0.5960 0.5808
1.0 0.6667 0.5714 0.5267 0.5009 0.4840

0.75 −0.5 0.7904 0.7196 0.6840 0.6626 0.6483
0.0 0.7273 0.6400 0.5972 0.5718 0.5549
0.5 0.6535 0.5509 0.5022 0.4738 0.4553
1.0 0.5714 0.4571 0.4052 0.3757 0.3567

1.00 −0.5 0.7388 0.6512 0.6074 0.5811 0.5635
0.0 0.6667 0.5625 0.5120 0.4823 0.4627
0.5 0.5858 0.4683 0.4138 0.3825 0.3622
1.0 0.5000 0.3750 0.3200 0.2894 0.2699

of significance (based on a one-sided test). Suppose that an adaptive
group sequential design is considered in order to improve efficiency
and allow some flexibility of the trial. Under an adaptive group se-
quential design with an interim analysis, a sample size of 175 patients
per treatment group is needed for controlling the overall type I error
rate at 0.025 and for achieving the desired power of 80%. The interim
analysis allows for early stopping for efficacy with stopping boundaries
α1 = 0.01, β1 = 0.25, and α2 = 0.0625 from Table 6.7. The maximum
sample size allowed for adjustment is nmax = 350. The simulation re-
sults are summarized in Table 6.8, where EESP and EFSP stand for
early efficacy stopping probability and early futility stopping probabil-
ity, respectively.

Note that power is the probability of rejecting the null hypothesis.
Therefore, when the null hypothesis is true, the power is equal to the
type I error rate α. From Table 6.9, it can be seen that the one-sided α

is controlled at the 0.025 level as expected. The expected sample sizes
under both hypothesis conditions are smaller than the sample size for
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Table 6.9 Operating Characteristics of Adaptive Methods

Median Time Expected
Test Control EESP EFSP N Power (%)

0 0 0.010 0.750 216 2.5
10.5 8 0.440 0.067 254 79

Note: 1,000,000 simulation runs.

the classic design (290/group). The power under the alternative hypoth-
esis is 79%.

To demonstrate the calculation of the adjusted p-value, assume that
(i) naive p-values from the logrank test (or other tests) are p1 = 0.1 and
p2 = 0.07, and (ii) the trial stops at stage 2. Therefore, t = p2 = 0.07 >

α2 = 0.0625, and we fail to reject the null hypothesis of no treatment
difference.

Example 6.2 Consider a phase III, randomized, placebo-controlled,
parallel group study for evaluation of the effectiveness of a test treat-
ment in adult asthmatics. Efficacy will be assessed based on the forced
expiratory volume in one second (FEV1). The primary endpoint is the
change in FEV1 from baseline. Based on data from phase II studies
and other resources, the difference in FEV1 change from baseline be-
tween the test drug and the control is estimated to be δ = 8.18% with
a standard deviation σ of 18.26%. The classic design requires 87 sub-
jects per group for achieving an 85% power at the significance level of
α = 0.025 (based on a one-sided test). Alternatively, a 4-stage adaptive
group sequential design is considered for allowing comparisons at var-
ious stages. The details of the design and the corresponding operating
characteristics are given in Table 6.10 and Table 6.11, respectively.

Note that the two sequential designs and the classic design have the
same expected sample size under the alternative hypothesis condition.
The two sequential designs have an increase in power as compared to
the classic design.

6.7 Group Sequential Trial Monitoring

Data monitoring committee

As indicated in Offen (2003), the stopping rule can only serve as a guide
for stopping a trial. For clinical trials with group sequential design, a
Data Monitoring Committee (DMC) is usually formed. The DMC will
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Table 6.10 Four-Stage Adaptive Design Specifications

Design Scenario Stage k
1 2 3 4

αi 0.01317 0.02634 0.03950 0.05267
βi 0.38817 0.15134 0.08117 0.05267

GSD 1 N 60 120 170 220

αi 0.00800 0.01600 0.02400 0.03200
βi 0.78200 0.28200 0.11533 0.03200

GSD 2 N 50 95 135 180

Note: For design 1, b = 0.5, θ = 1, and c = 0.5267.
For design 2, b = 1.032, θ = 1, and c = 0.32.

usually evaluate all aspects of a clinical trial including integrity, quality,
benefits, and the associated risks before a decision regarding the ter-
mination of the trial can be reached (Ellenberg, Fleming, and DeMets,
2002). In practice, it is recognized that although all aspects of the con-
duct of the clinical trial adhered exactly to the conditions stipulated
during the design phase, the stopping rule chosen at the design phase
may not be used directly because there are usually complicated factors
that must be dealt with before such a decision can be made. In what
follows, the rationales for closely monitoring a group sequential trial
are briefly outlined.

DMC meetings are typically scheduled based on the availability of
its members, which may be different from the schedules as specified

Table 6.11 Operating Characteristics of Various Designs

Design Scenario Expected N Range of N Power (%)

Classic Ho 87 87–87 2.5
Ha 87 85

GSD 1 Ho 85 60–220 2.5
Ha 87 94

GSD 2 Ho 92 50–180 2.5
Ha 87 89

Note: 500,000 and 100,000 simulation runs for each Ho and Ha scenar-
ios, respectively.
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at the design phase. In addition, the enrollment may be different from
the assumption made at the design phase. The deviation of analysis
schedule will affect the stopping boundaries. Therefore, the boundaries
should be re-calculated based on the actual schedules.

In practice, the variability of the response variable is usually un-
known. At interim analysis, an estimate of the variability can be ob-
tained based on the actual data collected for the interim analysis. How-
ever, the estimate may be different from the initial guess of the variabil-
ity at the design phase. The deviation of the variability will certainly
affect the stopping boundaries. In this case, it is of interest to study
the likelihood of success of the trial based on current available informa-
tion such as conditional and predictive power and repeated confidence
intervals. Similarly, the estimation of treatment difference in response
could be different from the original expectation in the design phase. This
could lead to the use of an adaptive design or sample size re-estimation
(Jennison and Turnbull, 2000).

In general, efficacy is not the only factor that will affect DMC’s recom-
mendation regarding the stop or continuation of the trial. Safety factors
are critical for DMC to make an appropriate recommendation to stop
or continue the trial. The term benefit-risk ratio is probably the most
commonly used composite criterion in assisting the decision making. In
this respect, it is desirable to know the likelihood of success of the trial
based on the conditional power or the predictive power.

In many clinical trials, the company may need to make critical de-
cisions on its spending during the conduct of the trials due to some
financial constraints. In this situation, the concept of benefit-risk ratio
is also helpful when viewed from the financial perspective. In prac-
tice, the conditional and/or predictive powers are tools for the decision
making. In group sequential trials, the simplest tool that is commonly
used for determining whether or not to continue or terminate a trial
is the use of sequential stopping boundaries. The original methodology
for group sequential boundaries required that the number and tim-
ing of interim analyses be specified in advance in the study protocol.
Whitehead (1983, 1994) introduced another type of stopping boundary
method (the Whitehead triangle boundaries). This method permits un-
limited analyses as the trial progresses. This method is referred to as a
continuous monitoring procedure. In general, group sequential methods
allow for symmetric or asymmetric boundaries. Symmetric boundaries
would demand the same level of evidence to terminate the trial early
and claim either lack of a beneficial effect or establishment of a harmful
effect. Asymmetric boundaries might allow for less evidence for a nega-
tive harmful trend before an early termination is recommended. For
example, the O’Brien-Fleming sequential boundary might be used for
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monitoring beneficial effects, while a Pocock-type sequential boundary
could provide guidance for safety monitoring.

A practical and yet complicated method is to use the operating char-
acteristics desired for the design, which typically include false positive
error rate, the power curve, the sample size distribution or information
levels, the estimates of treatment effect that would correspond to early
stopping, the naive confidence interval, repeated confidence intervals,
the curtailment (conditional power and predictive powers), and the fu-
tility index. Both the conditional power and the predictive power are
the likelihood of rejecting the alternative hypothesis conditioning on the
current data. The difference is that the conditional power is based on a
frequentist approach and the predictive power is a Bayesian approach.
Futility index is a measure of the likelihood of failure to reject Ho at
k analysis given that Ha is true. The defining property of a (1-α)-level
sequence of repeated confidence interval (RCI) for θ is

Pr
{

θ ∈ Ik for all k = 1, . . . , K
}

= 1 − α.

Here each Ik (k = 1, . . . , K) is an interval computed from the information
available at analysis k. The calculation of the RCI at analysis k is similar
to the naive confidence interval but z1−α is replaced with αk, the stopping
boundary on the standard z-statistic. For example, CI = d ± z1−ασ ;
RCI = d ± αkσ (Jennison and Turnbull, 2000)

The conditional power method can be used to assess whether an early
trend is sufficiently unfavorable that reversal to a significant positive
trend is very unlikely or nearly impossible. The futility index can also
be used to monitor a trial. Prematurely terminating a trial with a very
small futility index might be inappropriate. It is the same for continuing
a trial with very high futility index.

Principles for monitoring a sequential trial

Ellenberg, Fleming, and DeMets (2002) shared their experiences on
DMC and provided the following six useful principles for monitoring a
sequential trial.

Short-term versus long-term treatment effects When early data
from the clinical trial appear to provide compelling evidence for short-
term treatment effects, and yet the duration of patient follow-up is in-
sufficient to assess long-term treatment efficacy and safety, early ter-
mination may not be warranted and perhaps could even raise ethical
issues. The relative importance of short-term and long-term results de-
pends on the clinical setting.

Early termination philosophies Three issues should be addressed.
First, what magnitude of estimated treatment difference, and over what
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period of time, would be necessary before a beneficial trend would be
sufficiently convincing to warrant early termination? Second, should
the same level of evidence be required for a negative trend as for a
positive trend before recommending early termination? Third, for a trial
with no apparent trend, should the study continue to the scheduled
termination?

Responding to early beneficial trends Determination of optimal
length of follow-up can be difficult in a clinical trial having an early
beneficial trend. Ideally, evaluating the duration of treatment benefit
while continuing to assess possible side effects over a longer period of
time would provide the maximum information for clinical use. However,
for patients with life-threatening diseases such as heart failure, cancer,
or advanced HIV/AIDS, strong evidence of substantial short-term ther-
apeutic benefits may be compelling even if it is unknown whether these
benefits are sustained over the long term. Under these circumstances,
early termination might be justified to take advantage of this important
short-term benefit, with some plan for continued follow-up implemen-
tation to identify any serious long-term toxicity.

Responding to early unfavorable trends When an unfavorable
trend emerges, three criteria should be considered by a DMC as it
wrestles with the question of whether trial modification or termination
should be recommended: (i) Are the trends sufficiently unfavorable that
there is very little chance of establishing a significant beneficial effect
by the completion of the trial? (ii) Have the negative trends ruled out
the smallest treatment effect of clinical interest? (iii) Are the negative
trends sufficiently strong to conclude a harmful effect?

While the conditional power argument only allows a statement of
failure to establish benefit, the symmetric or asymmetric boundary ap-
proach allows the researchers to rule out beneficial effects for a treat-
ment or, with more extreme results, to establish harm. When early
trends are unfavorable in a clinical trial that is properly powered, stoch-
astic curtailment criteria would generally yield monitoring criteria for
termination that would be similar to the symmetric lower boundary
for lack of benefit. However, in underpowered trials having unfavor-
able trends, the stochastic curtailment criteria for early termination
generally would be satisfied earlier than criteria based on the group
sequential lower boundary for lack of benefit. Most trials comparing
a new intervention to a standard of care or a control regimen do not
set out to establish that the new intervention is inferior to the control.
However, some circumstances may in fact lead to such a consideration.

Responding to unexpected safety concerns Statistical methods
are least helpful when an unexpected and worrying toxicity profile
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begins to emerge. In this situation there can be no pre-specified sta-
tistical plan, since the outcome being assessed was unanticipated.

Responding when there are no apparent trends In some trials,
no apparent trends of either beneficial or harmful effects emerge as the
trial progresses to its planned conclusion. In such instances, a decision
must be made as to whether the investment in participant, physician,
and fiscal resources, as well as the burden of the trial to patients, re-
mains viable and compelling.

6.8 Conditional Power

Conditional power at a given interim analysis in group sequential trials
is defined as the power of rejecting the null hypothesis at the end of the
trial conditional on the observed data accumulated up to the time point
of the planned interim analysis. For many repeated significance tests
such as Pocock’s test, O’Brien and Fleming’s test, and Wang and Tsiatis’
test, the trial can only be terminated under the alternative hypothesis.
In practice, this is usually true if the test treatment demonstrates sub-
stantial evidence of efficacy. However, it should be noted that if the trial
indicates a strong evidence of futility (lack of efficacy) during the in-
terim analysis, it is unethical to continue the trial. Hence, the trial may
also be terminated under the null hypothesis. However, except for the
inner wedge test, most repeated significance tests are designed for early
stop under the alternative hypothesis. In such a situation, the analy-
sis of conditional power (or equivalently futility analysis) can be used
as a quantitative method for determining whether the trial should be
terminated prematurely.

Comparing means

Let xij be the observation from the jth subject ( j = 1, . . . , ni) in the
ith treatment group (i = 1, 2). xij , j = 1, . . . , ni, are assumed to be in-
dependent and identically distributed normal random variables with
mean µi and variance σ 2

i . At the time of interim analysis, it is assumed
that the first mi of ni subjects in the ith treatment group have already
been observed. The investigator may want to evaluate the power for
rejection of the null hypothesis based on the observed data and appro-
priate assumption under the alternative hypothesis. More specifically,
define

x̄a,i =
1

mi

mi∑

j=1

xij and x̄b,i =
1

ni − mi

ni∑

j=mi+1

xij .



134 ADAPTIVE DESIGN METHODS IN CLINICAL TRIALS

At the end of the trial, the following Z test statistic is calculated:

Z =
x̄1 − x̄2

√

s2
1/n1 + s2

2/n2

≈ x̄1 − x̄2
√

σ 2
1 /n1 + σ 2

2 /n2

=
(m1 x̄a,1 + (n1 − m1)x̄b,1)/n1 − (m2 x̄a,2 + (n2 − m2)x̄b,2)/n2

√

σ 2
1 /n1 + σ 2

2 /n2

.

Under the alternative hypothesis, we assume µ1 > µ2. Hence, the power
for rejecting the null hypothesis can be approximated by

1 − β = P(Z > zα/2)

= P





(n1−m1)(x̄b,1−µ1)
n1

− (n2−m2)(x̄b,2−µ2)
n2

√
(n1−m1)σ

2
1

n2
1

+ (n2−m2)σ
2
2

n2
2

> τ





= 1 − Φ(τ ),

where

τ =
[

zα/2

√

σ 2
1 /n1 + σ 2

2 /n2 − (µ1 − µ2)

−
(

m1

n1
(x̄a,1 − µ1) − m2

n2
(x̄a,2 − µ2)

)]

[
(n1 − m1)σ 2

1

n2
1

+
(n2 − m2)σ 2

2

n2
2

]−1/2

.

As it can be seen from the above, the conditional power depends not
only upon the assumed alternative hypothesis (µ1, µ2) but also upon
the observed values (x̄a,1, x̄a,2) and the amount of information that has
been accumulated (mi/ni) at the time of interim analysis.

Comparing proportions

When the responses are binary, similar formulas can also be obtained.
Let xij be the binary response observed from the jth subject ( j =
1, . . . , ni) in the ith treatment group (i = 1, 2). Again, xij , j = 1, . . . , ni,
are assumed to be independent and identically distributed binary vari-
ables with mean pi. At the time of interim analysis, it is also assumed
that the first mi of ni subjects in the ith treatment group have been
observed. Define

x̄a,i =
1

mi

mi∑

j=1

xij and x̄b,i =
1

ni − mi

ni∑

j=mi+1

xij .
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At the end of the trial, the following Z test statistic is calculated:

Z =
x̄1 − x̄2

√

x̄1(1 − x̄1)/n1 + x̄2(1 − x̄2)/n2

≈ x̄1 − x̄2
√

p1(1 − p1)/n1 + p2(1 − p2)/n2

=
(m1 x̄a,1 + (n1 − m1)x̄b,1)/n1 − (m2 x̄a,2 + (n2 − m2)x̄b,2)/n2

√

p1(1 − p1)/n1 + p2(1 − p2)/n2

.

Under the alternative hypothesis, we assume p1 > p2. Hence, the power
for rejecting the null hypothesis can be approximated by

1 − β = P(Z > zα/2)

= P





(n1−m1)(x̄b,1−µ1)
n1

− (n2−m2)(x̄b,2−µ2)
n2

√
(n1−m1)p1(1−p1)

n2
1

+ (n2−m2)p2(1−p2)
n2
2

> τ





= 1 − Φ(τ ),

where

τ =
[

zα/2

√

p1(1 − p1)/n1 + p2(1 − p2)/n2 − (µ1 − µ2)

−
(

m1

n1
(x̄a,1 − µ1) − m2

n2
(x̄a,2 − µ2)

)]

[
(n1 − m1)p1(1 − p1)

n2
1

+
(n2 − m2)p2(1 − p2)

n2
2

]−1/2

.

Similarly, the conditional power depends not only upon the assumed al-
ternative hypothesis (p1, p2) but also upon the observed values (x̄a,1, x̄a,2)
and the amount of information that has been accumulated (mi/ni) at the
time of interim analysis.

6.9 Practical Issues

The group sequential procedures for interim analyses are basically in
the context of hypothesis testing, which is aimed at pragmatic study ob-
jectives, i.e., which treatment is better. However, most new treatments
such as cancer drugs are very expensive or very toxic or both. As a result,
only if the degree of the benefit provided by the new treatment exceeds
some minimum clinically significant requirement, it will then be con-
sidered for the treatment of the intended medical conditions. Therefore,
an adequate well-controlled trial should be able to provide not only the
qualitative evidence whether the experimental treatment is effective
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but also the quantitative evidence from the unbiased estimation of the
size of the effectiveness or safety over placebo given by the experimental
therapy. For a fixed sample design without interim analyses for early
termination, it is possible to achieve both qualitative and quantitative
goals with respect to the treatment effect. However, with group sequen-
tial procedure, the size of benefit of the experimental treatment by the
maximum likelihood method is usually overestimated because of the
choice of stopping rule. Jennison and Turnbull (1990) pointed out that
the sample mean might not be even contained in the final confidence in-
terval. As a result, estimation of the size of treatment effect has received
a lot of attention. Various estimation procedures have been proposed
such as modified maximum likelihood estimator (MLE), median unbi-
ased estimator (MUE), and the midpoint of the equal-tailed 90% con-
fidence interval. For more details, see Cox (1952), Tsiatis et al. (1984),
Kim and DeMets (1987), Kim (1989), Chang and O’Brien (1986), Chang
et al. (1989), Chang (1989), Hughes and Pocock (1988), and Pocock and
Hughes (1989).

The estimation procedures proposed in the above literature require
extensive computation. On the other hand, simulation results (Kim,
1989; Hughes and Pocock, 1988) showed that the alpha spending func-
tion corresponding to the O’Brien-Fleming group sequential procedure
is very concave and allocates only a very small amount of total nominal
significance level to early stages of interim analyses, and hence, the
bias, variance, and mean square error of the point estimator following
O’Brien-Fleming procedure are also the smallest. Current researchers
mainly focus upon the estimation of the size of the treatment effect for
the primary clinical endpoints on which the group sequential procedure
is based. However, there are many other secondary efficacy and safety
endpoints to be evaluated in the same trial. The impact of early termi-
nation of the trial based on the results from primary clinical endpoints
on the statistical inference for these secondary clinical endpoints is un-
clear. In addition, group sequential methods and their followed estima-
tion procedures so far are only concentrated on the population average.
On the other hand, inference of variability is sometimes also of vital
importance for certain classes of drug products and diseases. Research
on estimation of variability following early termination is still lacking.
Other areas of interest for interim analyses include clinical trials with
more than 2 treatments and bioequivalence assessment. For group se-
quential procedures for the trials with multiple treatments, see Hughes
(1993) and Proschan et al. (1994). For group sequential bioequivalence
testing procedure, see Gould (1995).



CHAPTER 7

Adaptive Sample Size Adjustment

In clinical trials, it is desirable to have a sufficient number of subjects
in order to achieve a desired power for correctly detecting a clinically
meaningful difference if such a difference truly exists. For this purpose,
a pre-study power analysis is often conducted for sample size estima-
tion under certain assumptions such as the variability associated with
the observed response of the primary study endpoint (Chow, Shao, and
Wang, 2003). If the true variability is much less than the initial guess
of the variability, the study may be over-powered. On the other hand,
if the variability is much larger than the initial guess of the variabil-
ity, the study may not achieve the desired power. In other words, the
results observed from the study may be due to chance alone and cannot
be reproducible. Thus, it is of interest to adjust sample sizes adaptively
based on accrued data at interim.

Adaptive sample size adjustment includes planned and unplanned
(unexpected) sample size adjustment. Planned sample size adjustment
is referred to as sample size re-estimation at interim analyses in a group
sequential clinical trial design or an N-adjustable clinical trial design.
Most unplanned sample size adjustments are due to changes made to
on-going study protocols and/or unexpected administrative looks based
on accrued data at interim. Chapter 2 provides an adjustment factor
for sample size as the result of protocol amendments. In this chapter,
we will focus on the case of planned sample size adjustment in a group
sequential design.

In the next section, statistical procedures for sample size re-estimation
without unblinding the treatment codes are introduced. Statistical meth-
ods such as Cui-Hung-Wang’s idea, Proschan-Hunsberger’s method,
and Bauer and Köhne’s approach for sample size re-estimation with
unblinding data in group sequential trial designs are given in Sections
7.2, 7.3, and 7.4, respectively. Other methods such as the generaliza-
tion of independent p-volume approaches and inverse-normal method
are discussed in sections 7.5 and 7.6, respectively. Some concluding
remarks are given in the last section of this chapter.
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7.1 Sample Size Re-estimation without Unblinding Data

In clinical trials, the sample size is determined by a clinically mean-
ingful difference and information on the variability of the primary end-
point. Since the natural history of the distribution is usually not known
or the test treatment under investigation is a new class of drug, the esti-
mate of variability for the primary endpoint for sample size estimation
may not be adequate during the planning stage of the study. As a result,
the planned sample size may need to be adjusted during the conduct of
the trial if the observed variability of the accumulated response on the
primary endpoint is very different from that used at the planning stage.
To maintain the integrity of the trial, it is suggested that sample size
re-estimation be performed without unblinding of the treatment codes
if the study is to be conducted in a double-blind fashion. Procedures
have been proposed for adjusting the sample size during the course of
the trial without unblinding and altering the significance level (Gould,
1992, 1995; Gould and Shih, 1992). For simplicity, let us consider a ran-
domized trial with two parallel groups comparing a test treatment and
a placebo. Suppose that the distribution of the response of the primary
endpoint is normally distributed. Then, the total sample size required
for achieving a desired power of 1 − β for a two-sided alternative hy-
pothesis can be obtained using the following formula (see, e.g., Chow,
Shao, and Wang, 2003)

N =
4σ 2(zα/2 + zβ)

∆2
,

where ∆ is the difference of clinically importance. In general, σ 2 (the
within-group variance) is unknown and needs to be estimated based
on previous studies. Let σ ∗2 be the within-group variance specified for
sample size determination at the planning stage of the trial. At the
initiation of the trial, we expect the observed variability to be similar to
σ ∗2 so that the trial will have sufficient power to detect the difference
of clinically importance. However, if the variance turns out to be much
larger than σ ∗2, we will need to re-estimate the sample size without
breaking the randomization codes. If the true within-group variance is
in fact σ ′2, then the sample size to be adjusted to achieve the desired
power of 1 − β at the α level of significance for a two-sided alternative
is given by

N′ = N
σ ′2

σ ∗2 ,

where N is the planned sample size calculated based on σ ∗2. However,
σ ′2 is usually unknown and must be estimated from the accumulated
data available from a total n of N patients. One simple approach to



ADAPTIVE SAMPLE SIZE ADJUSTMENT 139

estimate σ ′2 is based on the sample variance calculated from the n
responses, which is given by

s2 =
1

n − 1

∑ ∑

(yij − y)2,

where yij is the jth observation in group i and y is the overall sample
mean, j = 1, . . . , ni, i = 1 (treatment), 2 (placebo), and n = n1 + n2.If
n is large enough for the mean difference between groups to provide a
reasonable approximation to ∆, then it follows that σ ′2 can be estimated
by (Gould, 1995)

σ ′2 =
n − 1
n − 2

(

s2 − ∆2

4

)

.

Note that the estimation of within-group variance σ ′2 does not require
the knowledge of the treatment assignment, and hence the blindness of
the treatment codes is maintained. However, one of the disadvantages
of this approach is that it does depend upon the mean difference, which
is not calculated and is unknown.

Alternatively, Gould and Shih (1992) and Gould (1995) proposed a
procedure based on the concept of EM algorithm for estimating σ ′2

without a value for ∆. This procedure is briefly outlined below. Sup-
pose that n observations, say, yi, i = 1, . . . , n on a primary endpoint
have been obtained from n patients. The treatment assignments for
these patients are unknown. Gould and Shih (1992) and Gould (1995)
considered randomly allocating these n observations to either of the
two groups assuming that the treatment assignments are missing at
random by defining the following πi as the treatment indicator

πi =
{

1 if the treatment is the test drug
0 if the treatment is placebo.

The E step is to obtain the provisional values of the expectation of πi
(i.e., the conditional probability that patient i is assigned to the test
drug given yi), which is given by

P(πi = 1|yi) =
(

1 + exp{(µ1 − µ2)(µ1 + µ2 − 2yi)/2σ 2]
)−1 ,

where µ1 and µ2 are the population mean of the test drug and the
placebo, respectively. The M step involves the maximum likelihood es-
timates of µ1, µ2 and σ after updating πi by their provisional values
obtained from the E step in the log-likelihood function of the interim
observations, which is given by

1 = n log σ +
∑

[πi(yi − µ1)2 + (1 − πi)(yi − µ2)2]
2σ 2

.

The E and M steps are iterated until the values converge. Gould and
Shih (1992) and Gould (1995) indicated that this procedure can estimate
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within-group variance quite satisfactorily, but failed to provide a reli-
able estimate of µ1 − µ2. As a result, the sample size can be adjusted
without knowledge of treatment codes. For sample size re-estimation
procedure without unblinding treatment codes with respect to binary
clinical endpoints, see Gould (1992, 1995). A review of the methods for
sample size re-estimation can be found in Shih (2001).

7.2 Cui–Hung–Wang’s Method

For a given group sequential trial, let Nk and Tk be the planned sample
size and test statistic at stage k. Thus, we have

Tk =
√

Nk√
2σ

(

1
Nk

Nk∑

i=1

xi − 1
Nk

Nk∑

i=1

yi

)

.

Denote NL and TL by the planned cumulative sample size from stage
1 to stage L and the weighted test statistic from stage 1 to stage L.
Thus, for a group sequential trial without sample size adjustment, the
test statistic for mean difference between two groups at stage k can
be expressed as weighted test statistics of the sub-samples from the
previous stages as follows (see, e.g., Cui, Hung, and Wang, 1999)

TL+ j = TL

(
NL

NL+ j

)1/2

+ wL+ j

[
NL+ j − NL

NL+ j

]1/2

, (7.1)

where

wL+ j =
∑NL+ j

i=NL+1(xi − yi)
√

2(NL+ j − NL)
, (7.2)

in which xi and yi are from treatment group 1 and 2, respectively, and
ML is the adjusted cumulative sample from stage 1 to stage L.

For group sequential trials with sample size adjustments, let M be
the total sample size after adjustment and N be the original planned
sample size. We may consider adjusting sample size with effect size as
follows

M =
(

δ

∆L

)2

N, (7.3)

where δ is the expected difference (effect size) given by

(µ2 − µ1)
σ

,
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Table 7.1 Effects of Sample Adjustment Using Original
Test Statistic and Stopping Boundaries

Time to N change, tL 0.20 0.4 0.6 0.8 ∞
Type-I error rate, α 0.038 0.035 0.037 0.033 0.025
Power 0.84 0.91 0.94 0.96 0.61

Note: δ = 0.03, α = 0.025, and power = 0.9 => N = 250/group.
True ∆ = 0.21. Sample size adjustment is based on equation 7.3.
Source: Cui, Hung, and Wang (1999).

and ∆L is observed mean difference ∆µL
σ

at stage L. Based on the ad-
justed sample sizes, test statistic TL+ j becomes

UL+ j = TL

(
NL

NL+ j

)1/2

+ w∗
L+ j

[
NL+ j − NL

NL+ j

]1/2

, (7.4)

where

w∗
L+ j =

∑ML+ j
i=NL+1(xi − yi)

√

2(ML+ j − NL)
. (7.5)

Cui, Hung, and Wang (1999) showed that using UL+ j and original
boundary from the group sequential trial will not inflate the type I
error rate, both mathematically and by means of computer simulation
(see also Table 7.1 and Table 7.2).

Example 7.1
Cui, Hung, and Wang (1999) gave following example: A phase III two-
arm trial for evaluating the effect of a new drug for prevention of my-
ocardial infection in patients undergoing coronary artery bypass graft
surgery has a sample size of 600 [300] patients per group to detect a 50%
reduction in incidence from 22% to 11% with 95% power. However, at in-
terim analysis based on data from 600 [300] patients, the test group has
16.5% incidence rate. If this incidence rate is the true rate, the power

Table 7.2 Effects of Sample Adjustment Using New Test
Statistic and Original Stopping Boundaries

Time to N change, tL 0.20 0.4 0.6 0.8 ∞
Type-I error rate, α 0.025 0.025 0.025 0.025 0.025
Power 0.86 0.90 0.92 0.91 0.61

Note: N = 250/group, true, α = 0.025. True ∆ = 0.21
Note: sample size adjustment is based on equation 7.3.
Source: Cui, Hung, and Wang (1999).
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is about 40%. If using the Cui-Hung-Wang method to increase sample
size to 1400 per group [unrealistically large], the power is 93% based
on their simulation with 20,000 replications. (The calculations seem to
be incorrect! All the sample sizes are twice as large as they should be.)

Remarks
Ciu-Hung-Wang’s method has the following advantages. First, the ad-
justment of sample size is easy. Second, using the same stopping bound-
aries from the traditional group sequential trial is straightforward. The
disadvantages include (i) their sample size adjustment is somewhat ad
hoc, which does not aim a target power; and (ii) weighting outcomes
differently for patients from different stages is difficult to explain
clinically.

7.3 Proschan–Hunsberger’s Method

For a given two-stage design, Proschan and Hunsberger (1995) and
Proschan (2005) considered adjusting the sample size at the second
stage based on the evaluation of conditional power given the data ob-
served at the first stage. We will refer to their method as Proschan-
Hunsberger’s method. Let Pc(n2, zα|z1, δ) be the conditional probability
that Z exceeds zα, given that Z1 = z1 and δ = (µx − µy)/σ based on
n = n1 + n2 observations. That is,

Pc(n2, zα|z1, δ)

= Pr (Z > zα|Z1 = z1, δ)

= Pr

[

n1

(

Ȳ1 − X̄1

)

+ n2

(

Ȳ2 − X̄2

)

√
2σ̂ 2n

> zα|Z1 = z1, δ

]

= Pr

[

n2

(

Ȳ2 − X̄2

) − n2δσ√
2n2σ̂ 2

>
zα

√
2σ̂ 2n − z1

√
2n1σ̂ 2 − n2δσ√

2nσ̂ 2
|δ

]

.

If we treat σ̂ as the true σ, we have

Pc(n2, zα|z1, δ) = 1 − Φ

[

zα

√
2n − z1

√
2n1 − n2δ√

2n2

]

. (7.6)

Since Z1 is normally distributed, the type I error rate of this two-stage
process without early stopping is given by
∫ ∞

−∞
Pc(n2, zα|z1, 0)φ(z1)dz1=

∫ ∞

−∞

{

1 − Φ

[

zα

√
2n − z1

√
2n1√

2n2

]}

φ(z1)dz1.
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Proschan and Hunsberger (1995) showed that without adjustment of
reject regions, the type I error rate caused by sample size adjustment
could be as high as

αmax = α + 0.25e−z2α /2.

In the interest of controlling the type I error rate at the nominal level,
we may consider modifying the rejection region from zα to zc such that

∫ ∞

−∞
Pc(n2, zc|z1, 0)φ(z1)dz1 = α, (7.7)

where zc is a function of z1, n1, and n2. Since the integration is a con-
stant α, we wish to find zc such that Pc(n2, zc|z1, 0) depends only upon
a function of z1, say A(z1), i.e.,

Pc(n2, zc|z1, 0) = A(z1). (7.8)

From (7.7) and (7.8), we can solve for zc as follows

zc =
√

n1 z1 +
√

n2 zA√
n1 + n2

, (7.9)

where zA = Φ−1(1− A(z1)) and A(z1) is any increasing function with the
range of [0, 1] satisfying

∫ ∞

−∞
A(z1)φ(z1)dz1 = α. (7.10)

To find the function of A(z1), it may be convenient to write A(z1) in
the form of A(z1) = f (z1)/φ(z1).(7.10) provides the critical value for re-
jecting the null hypothesis while protecting overall α. The next step is
to choose the additional sample size n2 at stage 2. At stage 1 we have
the empirical estimate δ̂ = (ȳ1 − x̄1)/σ̂ of the standard treatment dif-
ference. We may wish to power the trial to detect a value somewhere
between the originally hypothesized difference and the empirical esti-
mate. Whichever target difference δ we use, if we plug zc from (7.9) into
(7.6), we obtain the conditional power

Pc(n2, zc|z1, δ) = 1 − Φ
(

zA −
√

n2/2 δ
)

. (7.11)

Supposing that the desired power is 1 − β2, we can immediately obtain
the required sample size as follows

n2 =
2(zA + zβ2)

2

δ2
. (7.12)

Plugging this into (7.9), we have

zc =
δ
√n1

2
z1 + (zA + zβ2) zA

√
n1
2

δ2 + (zA + zβ2)
2

. (7.13)
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Note that zc is the reject region in n terms of (
√

n1z1 +
√

n2z2)/
√

n, usual
z score on all 2n observations. If we use the empirical estimate δ̂, (7.12)
and (7.13) become

n2 =
n1(zA + zβ2)

2

z2
1

, (7.14)

and

zc =
z2
1 + (zA + zβ2) zA

√

z2
1 + (zA + zβ2)

2
. (7.15)

The fact that the value of β2 can be changed after observing Z1 =
z1 underscores the flexibility of the procedure. Note that (7.14) is the
sample size formula to achieve power 1 − β in the fixed sample test at
level A(z1). This interpretation allows us to see the benefit of extending
our study relative to starting a new one. If A(z1) < α, we would be
better off starting a new study than extending the old. We can extend
the test procedure to two-stage with negative or positive early stopping
with stopping rules in the first stage being







Stop not to reject Ho, z1 < zcl;
Continue to stage 2, zcl ≤ z1 ≤ zcu;
Stop to reject Ho, z1 > zcu.

(7.16)

Then (7.7) should be modified as follows:

α1 +
∫ zcu

zcl

Pc(n2, zc|z1, 0)φ(z1)dz1 = α (7.17)

where φ(z1) is the standard normal density function α1 =
∫ +∞

zcu
φ(z1)dz1.

Define

P̃c(z1; zc1; δ) =







0 z1 < zcl;
Pc(n2, zc|z1, δ) zcl ≤ z1 ≤ zcu;
1 z1 > zcu.

(7.18)

Note that

α1 =
∫ zcu

zcl

Pc(n2, zc|z1, 0)φ(z1)dz1.

Then (7.17) can be written

α =
∫ ∞

−∞
P̃c(n2, zc|z1, 0)φ(z1)dz1, (7.19)
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Table 7.3 Corresponding Values zcu for Different zcl

α0= Φ(1 − zcl)
α .10 .15 .20 .25 .30 .35 .40 .45 .50

0.025 2.13 2.17 2.19 2.21 2.22 2.23 2.25 2.26 2.27
0.050 1.77 1.82 1.85 1.88 1.89 1.91 1.93 1.94 1.95

Source: Proschan and Hunsberger, 1995.

which in the same format as (7.7). Let P̃c(z1; zc1; δ) = A(z1), i.e.,

A(z1) =







0 z1 < zcl;
Pc(n2, zc|z1, δ) zcl ≤ z1 ≤ zcu;
1 z1 > zcu.

(7.20)

Note that (7.10)–(7.18) are still valid when A(z1) is any increasing
function with range [0, 1] satisfying the form of

A(z1) =







0 z1 < zcl;
f (z1)/φ(z1) zcl ≤ z1 ≤ zcu;
1 z1 > zcu.

(7.21)

Proschan (1995) and Hunsberger (2004) gave the following linear-error
function:

A(z1) = 1 − Φ(
√

2zα − z1).

Given observed treatment difference δ, we can use (7.12) or (7.14) re-
estimate sample size and substitute (7.21) into (7.13) or (7.15) to deter-
mine reject region zc. Note that this is a design without early stopping.

Example 7.2 Consider the following circular-function:

A(z1) =







0 z1 < zcl;

1 − Φ(
√

z2
cu − z2

1) zcl ≤ z1 ≤ zcu;
1 z1 > zcu.

(7.22)

For each zcl, the corresponding zcu can be calculated by substituting
(7.21) into (7.11). and then calculated zc from (7.12) or (7.14) with A(z1)
of (7.21). For convenience’s sake, we tabulate zcl, zcu and zc in Table 7.3
for overall one-sided α = 0.025 and 0.5.
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7.4 Muller–Schafer Method

Muller and Schafer (2001) showed how one can make any data-
dependent change in an on-going adaptive trial and still preserve the
overall type I error. To achieve that, all one need do is preserve the con-
ditional type I error of the remaining portion of the trial. Therefore, the
Muller-Schafer method is a special conditional-error approach.

7.5 Bauer–Köhne Method

Two-stage design

Bauer-Köhne’s method is based on the fact that under H0 the p-value for
the test of a particular null hypothesis, H0k, in a stochastically indepen-
dent sample, which is generally uniformly distributed on [0,1], where
continuous test statistics are assumed (Bauer and Köhne, 1994, 1996).
Usually, however, one obtains conservative combination tests when un-
der H0 the distribution of the p-values is stochastically larger than the
uniform distribution.

Moreover, under H0 the distribution of the resultant p-value is stochas-
tically independent of previously measured random variables. Hence,
provided H0 is true, data-dependent planning (e.g., sample size change)
does not change the convenient property of independently and uni-
formly distributed p-values, but some care is needed (Liu, Proschan,
and Pledger, 2002). The modification considered here would imply that
data are not allowed to be pooled over the whole trial. Data from the
stages before and after that adaptive interim analysis have to be looked
at separately. In the analysis, p-values from the partitioned sample
have to be used. These are general measures of “deviation” from the re-
spective null hypotheses. There are many ways to test the intersection
Ho of two or more individual null hypotheses based on independently
and uniformly distributed p-values for the individual test (Hedges and
Olkin, 1985; Sonnesmann, 1991). Fisher’s criterion using the product
of the p-values has good properties. One obvious question is whether
combination tests could be used that explicitly include a weighting of
the p-values by the sample size. If the sample size itself is open to adap-
tation, then clearly the answer is no. To derive critical regions for test
statistics explicitly containing random sample sizes, one would need
to know or pre-specify the distribution. This, however, contradicts the
intended flexibility of general approach.

Let P1 and P2 be the p-values for the sub-samples obtained from
the first stage and second stage, respectively. Fisher’s criterion leads to
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Table 7.4 Stopping Boundaries α0, α1, and Cα

α Cα α0 0.3 0.4 0.5 0.6 0.7 1.0

0.1 0.02045 0.0703 0.0618 0.0548 0.0486 0.0429 0.02045
0.05 0.00870 α1 0.0299 0.0263 0.0233 0.0207 0.0183 0.00870
0.025 0.00380 0.0131 0.0115 0.0102 0.0090 0.0080 0.00380

Source: Table 1 of Bauer (1994).

rejection of H0 at the end of trial if

P1 P2 ≤ cα = e− 1
2 χ2

4,1−α , (7.23)

where χ2
4,1−α is the (1 − α)−quantile of the central χ2 distribution with

4 degrees of freedom (see Table 7.4). Decision rules at the first stage:






P1 ≤ α1, Stop trial and reject H0

P1 > α0, Stop trial and accept H0

α1 < P1 ≤ α0, Continue to the second stage.
(7.24)

For determination of α1 and α0, the overall type I error rate is given by

α1 +
∫ α0

α1

∫ cα
P1

0

dP2dP1 = α1 + cα ln
α0

α1
. (7.25)

Letting this error rate equal to α, and using the relationship

cα = e− 1
2 χ2

4,1−α ,

we have

α1 + ln
α0

α1
e− 1

2 χ2
4,1−α = α. (7.26)

Decision rules at final stage are given by
{

P1 P2 ≤ e− 1
2 χ2

4,1−α , Reject H0

Otherwise, Accept H0.

Assuming that zi and ni are the standardized mean and sample size
for the sub-sample at stage i, under the condition that n1 = n2, the
uniformly most powerful test is given by

z1 + z2√
2

≥ z1−α.

Equivalently,

Φ−1
o (1 − P1) + Φ−1

o (1 − P2) ≥
√

2Φ−1
o (1 − α).
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Three-stage design

Let pi(i = 1, 2, 3) be the p-values for the hypothesis tests based on sub-
samples obtained at stage 1, 2, and 3, respectively.

Decision Rules:

Stage 1:







Stop with rejection of H0 if p1 ≤ α1,
Stop without rejection of H0 if p1 > α0,
Otherwise continue to stage 2.

Stage 2:







Stop with rejection of H0 if p1 p2 ≤ ca2 = e− 1
2 χ2

4 (1−α2),
Stop without rejection of H0 if p2 > α0,
Otherwise continue.

Stage 3:
{

Stop with rejection of H0 if p1 p2 p3 ≤ da = e− 1
2 χ2

6 (1−α),
Otherwise stop without rejection of H0.

To avoid qualitative interaction between stages and treatments, choose

ca2 = dα/α0.

Then, no values of p3 ≥ α0 can lead to the rejection of H0 because the
procedure would have stopped beforehand. On the other hand, if

α1 ≥ cα2/α0,

then no p2 ≥ α0 can lead to the rejection of H0. Note that

α1 +
∫ α0

α1

∫ dα/(α0 p1)

0

dp1dp2 +
∫ α0

α1

∫ α0

dα/(α0 p1)

∫ dα/(p1 p2)

0

dp1dp2dp3

= a1 +
dα

α0
(lnα0 − lnα1) + da(2 lnα0 − ln dα)(lnα0 − lnα1)

+
dα

2
(ln2 α0 − ln2 α1).

Now, let it be equal to α. We can then solve for α1 given α and α0. For
α0 = 0.025, dα = 0.000728.

7.6 Generalization of Independent p-Value Approaches

General Approach

Consider a clinical trial with K stages and at each stage a hypothe-
sis test is performed, followed by some actions that are dependent on
the analysis results. Such actions could be an early futility or efficacy
stopping, sample size re-estimation, modification of randomization, or
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Table 7.5 Stopping Boundaries

α0 α1 α2

.4 .0265 .0294

.6 .0205 .0209

.8 .0137 .0163

Source: Bauer and Köhne (1995)

other adaptations. The objective of the trial (e.g., testing the efficacy
of the experimental drug) can be formulated using a global hypothesis
test, which is the intersection of the individual hypothesis tests from
the interim analyses.

H0 : H01 ∩ . . . ∩ H0K , (7.27)

where H0k (k = 1, . . . , K) is the null hypothesis test at the kth interim
analysis. Note that the H0k have some restrictions, that is, rejection
of any H0k (k = 1, . . . , K) will lead to the same clinical implication
(e.g., drug is efficacious). Otherwise the global hypothesis cannot be
interpreted. In the rest of the paper, H0k will be based on sub-samples
from each stage with the corresponding test statistic denoted by Tk and
p-value denoted by pk. The stopping rules are given by







Stop for efficacy if Tk ≤ αk ,
Stop for futility if Tk > βk,
Continue with adaptations if αk < Tk ≤ βk,

(7.28)

where αk < βk (k = 1, . . . , K − 1), and αK = βK . For convenience, αk and
βk are called the efficacy and futility boundaries, respectively.

To reach the kth stage, a trial has to pass the 1st to (k − 1)th stages,
therefore the CDF of Tk is given by

ϕk (t) = Pr(Tk < t, α1 < t1 ≤ β1, . . . , αk−1 < tk−1 ≤ βk−1)

=
∫ β1

α1

. . .

∫ βk−1

αk−1

∫ t

0

fT1...Tk dtk dtk−1. . .dt1, (7.29)

where fT1...Tk is the joint PDF of T1, . . . , and Tk. The error rate (α spent)
at the kth stage is given by Pr(Tk < αk), that is,

πk = ϕk (αk) . (7.30)
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When the efficacy is claimed at a certain stage, the trial is stopped.
Therefore, the type I errors at different stages are mutually exclusive.
Hence the experiment-wise type I error rate can be written as

α =
K∑

k=1

πk. (7.31)

(7.33) is the key to determining the stopping boundaries as illustrated
in the next four sections with two-stage adaptive designs.

There are different p-values that can be calculated: unadjusted p-
value and adjusted p-value. Both are measures of the statistical strength
for treatment effect. The unadjusted p-value (pu) associates with πk
when the trial stops at the kth stage, while the adjusted p-value asso-
ciates with the overall α. The unadjusted p-value corresponding with
an observed t when the trial stops at the kth stage is given by

pu(t; k) = ϕk (t) , (7.32)

where ϕk (t) is obtained from (7.31). The adjusted p-value corresponding
to an observed test statistic Tk = t at the kth stage is given by

p(t; k) =
k−1∑

i=1

πi + pu(t; k), k = 1, . . .K. (7.33)

Note that the adjusted p-value is a measure of statistical strength for
rejecting H0. The later the H0 is rejected, the larger the adjusted p-value
is and the weaker the statistical evidence is.

Selection of Test Statistic

Without losing generality, assume H0k is a test for the efficacy of the
experimental drug, which can be written as

H0k : ηk1 ≥ ηk2 vs. Hak : ηk1 < ηk2, (7.34)

where ηk1 and ηk2 are the treatment response (mean, proportion, or
survival) in the two comparison groups at the kth stage. The joint PDF
fT1...Tk in (7.31) can be any density function; however, it is desirable to
chose Tk such that fT1...Tk has a simple form. Note that when ηk1 = ηk2, the
p-value pk from the sub-sample at the kth stage is uniformly distributed
on [0,1] under H0. This desirable property can be used to construct test
statistics for adaptive designs.

In what follows, two different combinations of the p-values will be
studied: (i) linear combination of p-values (Chang, 2005), and (ii) prod-
uct of p-values. The linear combination is given by

Tk = Σk
i=1wki pi, k = 1, . . . , K, (7.35)
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where wki > 0, and K is the number of analyses planned in the trial.
There are two interesting cases of (7.37) that will be studied. They are
the test based on the individual p-value for the sub-sample obtained
at each stage and the test based on the sum of the p-values from the
sub-samples.

The test statistic using the product of p-values is given by

Tk = Πk
i=1 pi, k = 1, . . . , K. (7.36)

This form has been proposed by Bauer and Köhne (1994) using Fisher’s
criterion. Here, it will be generalized without using Fisher’s criterion
so that the selection of stopping boundaries is more flexible. Note that
pk in (7.37) and (7.38) is the p-value from the sub-sample at the kth
stage, while pu(t; k) and p(t; k) in the previous section are unadjusted
and adjusted p-values, respectively, calculated from the test statistic,
which are based on the cumulative sample up to the kth stage where
the trial stops.

Test Based on Individual P-values

The test statistic in this method is based on individual p-values from
different stages. The method is referred to as method of individual p-
values (MIP). By defining the weighting function as wki = 1 if i = k, and
wki = 0 otherwise, (7.37) becomes

Tk = pk. (7.37)

Due to the independence of pk, fT1...Tk = 1 under H0 and

ϕk (t) = t
k−1∏

i=1

Li, (7.38)

where Li = (βi − αi) and for convenience, when the upper bound exceeds
the lower bound, define

∏0
i=1(·) = 1 .The family experiment-wise type I

error rate is given by

α =
K∑

k=1

αk

k−1∏

i=1

Li. (7.39)

(7.41) is the necessary and sufficient condition for determining the stop-
ping boundaries, (αi, βi).

For a two-stage design, (7.41) becomes

α = α1 + α2(β1 − α1) (7.40)
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Table 7.6 Stopping Boundaries with MIP

α1 0.000 0.005 0.010 0.015 0.020

β1

0.15 0.1667 0.1379 0.1071 0.0741 0.0385
0.20 0.1250 0.1026 0.0789 0.0541 0.0278
0.25 0.1000 0.0816 0.0625 0.0426 0.0217
0.30 0.0833 0.0678 0.0517 0.0351 0.0179
0.35 α2 0.0714 0.0580 0.0441 0.0299 0.0152
0.40 0.0625 0.0506 0.0385 0.026 0.0132
0.50 0.0500 0.0404 0.0306 0.0206 0.0104
0.80 0.0312 0.0252 0.0190 0.0127 0.0064
1.00 0.0250 0.0201 0.0152 0.0102 0.0051

Note: One-sided α = 0.025.

For convenience, a table of stopping boundaries has been constructed
using (7.42) (Table 7.6). The adjusted p-value is given by

p(t, k) =

{

t if k = 1,
α1 + (β1 − α1)t if k = 2.

(7.41)

Test Based on Sum of P-values

This method is referred to as the method of sum of p-values (MSP). The
test statistic in this method is based on the sum of the p-values from
the sub-samples. Defining the weights as wki = 1, (7.37) becomes

Tk =
k∑

i=1

pi, k = 1, . . . , K. (7.42)

For two-stage designs, the α spent at stage 1 and stage 2 are given by

Pr(T1 < α1) =
∫ α1

0

dt1 = α1, (7.43)

and

Pr(T2 < α2, α1 < T1 ≤ β1) =

{∫ β1

α1

∫ α2

t1
dt2dt1, for β1 ≤ α2,

∫ α2

α1

∫ α2

t1
dt2dt1, for β1 > α2,

(7.44)

respectively. Carrying out the integrations in (7.46) and substituting
the results into (7.33), it is immediately obtained that

α =
{

α1 + α2(β1 − α1) − 1
2
(β2

1 − α2
1), for β1 < α2,

α1 + 1
2
(α2 − α1)2, for β1 ≥ α2.

(7.45)
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Table 7.7 Stopping Boundaries with MSP

α1 0.000 0.005 0.010 0.015 0.020

β1

0.05 0.5250 0.4719 0.4050 0.3182 0.2017
0.10 0.3000 0.2630 0.2217 0.1751 0.1225
0.15 α2 0.2417 0.215 4 0.187 1 0.1566 0.1200
0.20 0.2250 0.2051 0.1832 0.1564 0.1200

>0.25 0.2236 0.2050 0.1832 0.1564 0.1200

Note: One-sided α = 0.025.

Various stopping boundaries can be chosen from (7.47). See Table 7.7
for examples of the stopping boundaries.

The adjusted p-value can be obtained by replacing α1 with t in (7.45)
if the trial stops at stage 1 and by replacing α2 with t in (7.47) if the
trial stops at stage 2.

p(t; k) =







t, k = 1,
α1 + t(β1 − α1) − 1

2
(β2

1 − α2
1), k = 2 and t ≤ α2,

α1 + 1
2
(t − α1)2, k = 2 and t > α2,

(7.46)

where t = p1 if the trial stops at stage 1 (k = 1) and t = p1 + p2 if the
trial stops at stage 2 (k = 2).

Test Based on Product of P-values

This method is known as the method of products of p-values (MPP). The
test statistic in this method is based on the product of the p-values from
the sub-samples. For two-stage designs, (7.37) becomes

Tk = Πk
i=1 pi, k = 1, 2. (7.47)

The α spent in the two stages are given by

Pr(T1 < α1) =
∫ α1

0

dt1 = α1 (7.48)

and

Pr(T2 < α2, α1 < T1 ≤ β1) =
∫ β1

α1

∫ min(α2, t1)

0

1
t1

dt2dt1. (7.49)
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Table 7.8 Stopping Boundaries with MPP

α1 0.005 0.010 0.015 0.020

β1

0.15 0.0059 0.0055 0.0043 0.0025
0.20 0.0054 0.0050 0.0039 0.0022
0.25 0.0051 0.0047 0.0036 0.0020
0.30 0.0049 0.0044 0.0033 0.0018
0.35 α2 0.0047 0.0042 0.0032 0.0017
0.40 0.0046 0.0041 0.0030 0.0017
0.50 0.0043 0.0038 0.0029 0.0016
0.80 0.0039 0.0034 0.0025 0.0014
1.00 0.0038 0.0033 0.0024 0.0013

Note: One-sided α = 0.025.

(7.51) can also be written as

Pr(T2 < α2, α1 < T1 ≤ β1)

=

{∫ β1

α1

∫ α2

0
1
t1

dt2dt1, for β1 ≤ α2;
∫ α2

α1

∫ α2

0
1
t1

dt2dt1 +
∫ β1

α2

∫ t1
0

1
t1

dt2dt1, for β1 > α2.
(7.50)

Carrying out the integrations in (7.52) and substituting the results into
(7.33), it is immediately obtained that

α =

{

α1 + α2 ln β1
α1

, for β1 ≤ α2,

α1 + α2 ln β1
α1

+ (β1 − α2), for β1 > α2.
(7.51)

Note that the stopping boundaries based on Fisher’s criterion are special
cases of (7.53), where

β1 < α2

and

α2 = exp
[

−1
2
χ2

4 (1 − α)
]

, (7.52)

that is, α2 = 0.0380 for α = 0.025. Examples of the stopping boundaries
using (7.49) are provided in Table 7.8.

The adjusted p-value can be obtained by replacing α1 with t in (7.50)
if the trial stops at stage 1 and replacing α2 with t in (7.53) if the trial
stops at stage 2.

p(t; k) =







t, k = 1,
α1 + t ln β1

α1
, k = 2 and t ≤ α2,

α1 + t ln β1
α1

+ (β1 − t), k = 2 and t > α2,
(7.53)
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where t = p1 if the trial stops at stage 1 (k = 1) and t = p1 + p2 if the
trial stops at stage 2 (k = 2).
Rules for Sample Size Adjustment The primary rule for adjust-
ment is based on the ratio of the initial estimate of effect size (E0) to
the observed effect size (E), specifically,

N =
∣
∣
∣
∣

E0

E

∣
∣
∣
∣

a

N0, (7.54)

where N is the newly estimated sample size, N0 is the initial sample
size which can be estimated from a classic design, and a is a constant,

E =
η̂i2 − η̂i1

σ̂i
. (7.55)

With large sample size assumption, the common variance for the two
treatment groups is given by

σ̂ 2
i =







σ̂ 2
i , for normal endpoint,

η̄i(1 − η̄i), for binary endpoint,

η̄2
i

[

1 − eη̄i T0−1
T0η̄ieη̄i Ts

]−1

, for survival endpoint,

(7.56)

where

η̄i =
η̂i1 + η̂i1

2
.

η̄i = η̂i1+η̂i2
2

and the logrank test is assumed to be used for the survival
analysis. Note that the standard deviations for proportion and survival
have several versions. There are usually slight differences in sample
size or power among the different versions.

The sample size adjustment in (7.56) should have the following addi-
tional constraints: (i) It should be smaller than Nmax (due to financial
and or other constraints) and greater than or equal to Nmin (the sample
size for the interim analysis), and (ii) If E and E0 have different signs,
no adjustment will be made.

Operating characteristics

The operating characteristics are studied using the following example,
which is modified slightly from an oncology trial.

Example 7.3 In a two-arm comparative oncology trial, the primary
efficacy endpoint is time to progression (TTP). The median TTP is esti-
mated to be 8 months (hazard rate = 0.08664) for the control group, and
10.5 months (hazard rate = 0.06601) for the test group. Assume a uni-
form enrollment with an accrual period of 9 months and a total study
duration of 24 months. The log-rank test will be used for the analysis.
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Table 7.9 Operating Characteristics of Adaptive Methods

Median time Expected Power (%)
Test Control EESP EFSP N MIP/MSP/MPP

0 0 0.010 0.750 216 2.5/2.5/2.5
9.5 8 0.174 0.238 273 42.5/44.3/45.7

10.5 8 0.440 0.067 254 78.6/80.5/82.7
11.5 8 0.703 0.015 219 94.6/95.5/96.7

Note: 1,000,000 simulation runs.

An exponential survival distribution is assumed for the purpose of sam-
ple size calculation.

When there is a 10.5 month median time for the test group, the classic
design requires a sample size of 290 per group with 80% power at a
level of significance (one-sided) α of 0.025. To increase efficiency, an
adaptive design with an interim sample size of 175 patients per group
is used. The interim analysis allows for early efficacy stopping with
stopping boundaries (from Tables 7.6, 7.7, and 7.8) α1 = 0.01, b1 = 0.25
and α2 = 0.0625 (MIP), 0.1832 (MSP), 0.00466 (MPP). The sample size
adjustment is based on the rules described in the appendix where a = 2.
The maximum sample size allowed for adjustment is Nmax = 350. The
simulation results are presented in Table 7.9, where the abbreviations
EESP and EFSP stand for early efficacy stopping probability and early
futility stopping probability, respectively.

Note that power is the probability of rejecting the null hypothesis.
Therefore when the null hypothesis is true, the power is the type I error
rate α. From Table 7.9, it can be seen that the one-sided α is controlled
at a 0.025 level as expected for all three methods. The expected sample
sizes under all four scenarios are smaller than the sample size for the
classic design (290/group). In terms of power, MPP has 1% more power
than MSP, and MSP has about 1% more power than MIP. If the stopping
boundaries are changed to α1 = 0.005 and β1 = 0.2, then the power
(median TTP = 10.5 months for the test group) will be 76, 79, and
82 for MIP, MSP and MPP, respectively. The detailed results are not
presented.

To demonstrate how to calculate the adjusted p-value (e.g., using
MSP), assume that naive p-values from logrank test (or other test)
are p1 = 0.1, p2 = 0.07, and the trial stops at stage 2. Therefore,
t = p1 + p2 = 0.17 < α2, and the null hypothesis of no treatment
difference is rejected. In fact, the adjusted p-value is 0.0228 (< 0.025)
which is obtained from Eq. 7.46 using t = 0.17 and α1 = 0.01.



ADAPTIVE SAMPLE SIZE ADJUSTMENT 157

Remarks
With respect to the accuracy of proposed methods, a larger portion of
the stopping boundaries in Tables 7.6 through 7.8 is validated using
computer simulations with 10,000,000 runs for each set of boundaries
(α1, β1, α2). To conduct an adaptive design using the methods proposed,
follow the steps below:

Step 1: If MIP is used for the design, use (7.42) or Table 7.6 to de-
termine the stopping boundaries (α1, β1, α2), and use (7.43) to calculate
the adjusted p-value when the trial is finished.

Step 2: If MSP is used for the design, use (7.45) or Table 7.7 to deter-
mine the stopping boundaries, and use (7.48) to calculate the adjusted
p-value.

Step 3: If MPP is used for the design, use (7.53) or Table 7.8 to de-
termine the stopping boundaries, and (7.54) to calculate the adjusted
p-value.

To study the operating characteristics before selecting an optimal de-
sign, simulations must be conducted with various scenarios. A SAS pro-
gram for the simulations can be obtained from the author. The program
has fewer than 50 lines of executable code and is very user-friendly.

7.7 Inverse-Normal Method

Lehmacher and Wassmer (1999) proposed normal-inverse method. The
test statistic that results from the inverse normal method of combining
independent p values (Hedges and Olkin, 1985) is given by

1√
k

k∑

i=1

Φ−1(1 − pi) (7.57)

where Φ−1(·) denotes the inverse cumulative standard normal distri-
bution function. The proposed approach involves using the classical
group sequential boundaries for the statistics (7.59). Since the

Φ−1(1 − pi)′s, k = 1, 2, . . . , K,

are independent and standard normally distributed, the proposed ap-
proach maintains α exactly for any (adaptive) choice of sample size.

Example 7.4 Lehmacher and Wassmer gave the following example to
demonstrate their method. In a randomized, placebo-controlled, double-
blind study involving patients with acne papulopustulosa, Plewig’s grade
Il-Ill, the effect of treatment under a combination of 1% chloramphenicol
(CAS 56-75-7) and 0.5% pale sulfonated shale oil versus the alcoholic
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vehicle (placebo) was investigated (Fluhr et al., 1998). After 6 weeks
of treatment, reduction of bacteria from baseline, examined on agar
plates (log CFU/cm2; CFU, colony forming units), of the active group
as compared to the placebo group were assessed. The available data
were from 24 and 26 patients in the combination drug and the placebo
groups, respectively. The combination therapy resulted in a highly sig-
nificant reduction in bacteria as compared to placebo using a two-sided
t-test for the changes (p = 0.0008).

They further illustrated the method. Suppose that it was intended to
perform a three-stage adaptive Pocock’s design with α = 0.01, and after
2 × 12 patients the first interim analysis was planned. The two-sided
critical bounds for this method are α1 = α2 = α3 = 2.873 (Pocock, 1977).
After ni = 12 patients per group, the test statistic of the t-test is 2.672
with one-sided p-value p1 = 0.0070, resulting from an observed effect
size x̄ii − x̄21 = 1.549 and an observed standard deviation si = 1.316. The
study should be continued since

Φ−1(i − P1) = 2.460 < α1.

The observed effect is fairly near to significance. We therefore plan the
second interim analysis to be conducted after observing the next 2 × 6
patients, i.e., the second interim analysis will be performed after fewer
patients than the first. The t-test statistic of the second stage is equal
to 1.853 with one-sided p value P2 = 0.0468 (x̄12 − x̄22 = 1.580, standard
deviation of the second stage s2 = 1.472). The test statistic becomes

√
2(Φ−1(1 − p1) + Φ−1(1 − p2)) = 2.925,

yielding a significant result after the second stage of the trial. Corre-
sponding approximate 99% RCIs are (0.12, 3.21) and (0.21, 2.92) for the
first and the second stages, respectively.

7.8 Concluding Remarks

One of the purposes for adaptive sample size adjustment based on ac-
crued data at interim in clinical trials is not only to achieve statistical
significance with a desired power for detecting a clinically significant
difference, but also to have the option for stopping the trial early for
safety or futility/benefits. To maintain the integrity of the trial, it is
strongly recommended that an independent data monitoring committee
(DMC) should be established to perform (safety) data monitoring and
interim analyses for efficacy/benefits regardless of whether the review
or analysis is blinded or unblinded. Based on sample size re-assessment,
the DMC can then recommend one of the following: (i) continue the trial
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with no changes; (ii) decrease/increase the sample size for achieving
statistical significance with a desired power; (iii) stop the trial early
for safety, futility or benefits; and (iv) modifications to the study proto-
col. In a recent review article by Montori et al. (2005), it is indicated
that there is a significant increasing trend in the percentage of ran-
domized clinical trials that are stopped early for benefits in the past
decade. Pocock (2005), however, criticized that the majority of the trials
stopped early for benefits do not have correct infrastructure/system in
place, and hence the decisions/recommendations for stopping early may
not be appropriate. Chow (2005) suggested that so-called reproducibil-
ity probability be carefully evaluated if a trial is to be stopped early for
benefits, in addition to an observed small p-value.

It should be noted that current methods for adaptive sample size
adjustment are mostly developed in the interest of controlling an over-
all type I error rate at the nominal level. These methods, however, are
conditional and may not be feasible to reflect current best medical prac-
tice. As indicated in Chapter 2, the use of adaptive design methods in
clinical trials could result in a moving target patient population after
protocol amendments. As a result, sample size required in order to have
an accurate and reliable statistical inference on the moving target pa-
tient population is necessarily adjusted unconditionally. In practice, it
is then suggested that current statistical methods for group sequential
designs should be modified to incorporate the randomness of the tar-
get patient population over time. In other words, sample sizes should
be adjusted adaptively to account for random boundaries at different
stages.





CHAPTER 8

Adaptive Seamless Phase II/III Designs

A seamless phase II/III trial design is a program that addresses within
a single trial the objectives that are normally achieved through sepa-
rate trials in phases IIb and III (Gallo et al., 2006; Chang et al., 2006).
An adaptive seamless phase II/III design is a combination of phase II
and phase III, which aims at achieving the primary objectives normally
achieved through the conduct of separate phase II and phases III tri-
als, and would use data from patients enrolled before and after the
adaptation in the final analysis (Maca et al., 2006). In a seamless de-
sign, there is usually a so-called learning phase that serves the same
purpose as a traditional phase II trial, and a confirmatory phase that
serves the same objective as a traditional phase III study. Compared
to traditional designs, a seamless design can not only reduce sample
size but also shorten the time to bring a positive drug candidate to the
marketplace. In this chapter, for illustration purposes, we will discuss
different seamless designs and their utilities, through real examples.
We will also discuss the issues that are commonly encountered followed
by some recommendations for assuring the validity and integrity of a
clinical trial with seamless design.

In the next section, the efficiency of an adaptive seamless design is
discussed. Section 8.2 introduces step-wise tests with respect to some
adaptive procedures employed in a seamless trial design. Statistical
methods based on the concepts of contrast test and naı̈ve p-value are
described in Section 8.3. Section 8.4 compares several seamless designs.
Drop-the-loses adaptive designs are discussed in Section 8.5. A brief
summary is given in the last section of this chapter.

8.1 Why a Seamless Design Is Efficient

The use of a seamless design enjoys the following advantages. There are
opportunities for savings when (i) a drug is not working through early
stopping for futility and when (ii) a drug has a dramatic effect by early
stopping for efficacy. A seamless design is efficient because there is no
lead time between the learning and confirmatory phases. In addition,
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the data collected at the learning phase are combined with those data
obtained at the confirmatory phase for final analysis.

The most notable difference between an adaptive seamless phase
II/III design and the traditional approach that has separate phase II
and phase III trials is the control of the overall type I error rate (alpha)
and the corresponding power for correctly detecting a clinically mean-
ingful difference. In the traditional approach, the actual α is equal to
αI IαI I I , where αI I and αI I I are the type I error rates controlled at phase
II and phase III, respectively. If two phase III trials are required, then

α = αI IαI I IαI I I .

In a seamless adaptive phase II/III design, actual α = αI I I . If two phase
III studies are required, then α = αI I IαI I I . Thus, the α for a seamless
design is actually 1/αI I times larger than the traditional design. Simi-
larly, we can steal power (permissible) by using a seamless design. Here
power refers to the probability of correctly detecting a true but not hy-
pothetical treatment difference. In a classic design, the actual power is
given by

power = powerII ∗ powerIII ,

while in a seamless adaptive phase II/III design, actual power is

power = powerIII ,

which is 1/powerII times larger than the traditional design.
In practice, it is not necessary to gain much power by combining the

data from different phases. Table 7.9 provides a summary of the results
(power) using individual p-values from the sub-sample of each stage
(MIP), sum of the p-values from different stages (MSP), and Fisher’s
combination of the p-values from sub-samples from each stage (MPP)
under a two-group parallel design. Power differences between methods
are small.

8.2 Step-Wise Test and Adaptive Procedures

Consider a clinical trial with K stages. At each stage, a hypotheses
testing is performed followed by some actions that are dependent on
the analysis results. In practice, three possible actions are often con-
sidered. They are (i) an early futility stopping, (ii) an early stopping
due to efficacy, or (iii) dropping the losers (i.e., inferior arms including
pre-determined sub-populations are dropped after the review of anal-
ysis results at each stage). In practice, the objective of the trial (e.g.,
testing for efficacy of the experimental drug) can be formulated as a
global hypotheses testing problem. In other words, the null hypothesis
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is the intersection of individual null hypotheses at each stage, that is

H0 : H01 ∩ . . . ∩ H0K , (8.1)

where H0k (k = 1, . . . , K) is the null hypothesis at the kth stage. Note
that the H0k have some restrictions, that is, the rejection of any H0k
(k = 1, . . . , K) will lead to the common clinical implication of the efficacy
of the study medication. Otherwise, the global hypothesis cannot be in-
terpreted. The following step-wise test procedure is often employed. Let
Tk be the test statistic associated with H0k. Note that for convenience’s
sake, we will only consider one-sided tests throughout this chapter.

Stopping Rules

To test (8.1), first, we need specify stopping rules at each stage. The
stopping rules considered here are given by







Stop for efficacy if Tk ≤ αk ,
Stop for futility if Tk > βk,
Drop losers and continue if αk < Tk ≤ βk,

(8.2)

where αk < βk (k = 1, . . . , K − 1), and αK = βK . For convenience’s sake,
we denote αk and βk as the efficacy and futility boundaries, respectively.
The test statistic is defined as

Tk =
k∏

i=1

pi, k = 1, . . . , K, (8.3)

where pi is the naive p-value for testing H0k based on sub-samples col-
lected at the kth stage. It is assumed that pk is uniformly distributed
under the null hypothesis H0k.

8.3 Contrast Test and Naive p-Value

In clinical trials with M arms, the following general one-sided contrast
hypotheses testing is often considered:

H0 : L(u) ≤ 0; vs. Ha : L(u) = ε > 0, (8.4)

where

L(u) =
M∑

i=1

ciui
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is a linear combination of ui, i = 1, . . . , M, in which ci are the contrast
coefficients satisfying

M∑

i=1

ci = 0,

and ε is a pre-specified constant. In practice, ui can be the mean, propor-
tion, or hazard rate for the ith group depending on the study endpoint.
Under the null hypothesis of (8.4), a contrast test can be obtained as
follows:

Z =
L(û; H)

√

varL(û)
, (8.5)

where û is an unbiased estimator of u, where u = (ui) and

ûi =
nij∑

j=1

xij

nij
.

Let

ε = E(L(û)), v2 = var(L(û)), (8.6)

where homogeneous variance assumption under H0 and Ha is assumed.
It is also assumed that ui, i = 1, . . . , M are mutually independent.
Without loss of generality, assume that ciui > 0 as an indication of
efficacy. Then, for a superiority design, if the null hypothesis H0 given
in (8.4) is rejected for some ci satisfying

∑M
i=1 ci = 0 , then there is a

difference among ui, i = 1, . . . , M.

Let û be the mean for a normal endpoint (proportion for a binary
endpoint, or MLE of the hazard rate for a survival endpoint). Then,
by the Central Limit Theorem, the asymptotic distribution of the test
statistic and the pivotal statistic can be obtained as follows:

Z =
L(û|H0)

v
∼ N(0, 1), (8.7)

and

Z =
L(û|Ha)

v
∼ N(

ε

v
, 1), (8.8)

where

v2 =
M∑

i=1

c2
i var(ûi) = σ 2

M∑

i=1

c2
i

ni
=

θ2

n
, (8.9)

and

θ2 = σ 2
M∑

i=1

c2
i

fi
, (8.10)
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in which ni is the sample size for the ith arm, fi = ni
n is the size fraction,

n =
∑k

i=0 ni, and σ 2 is the variance of the response under H0. Thus, the
power is given by

power = Φo

(
ε
√

n − θz1−α

θ

)

, (8.11)

where Φ0 is cumulative distribution function of N(0, 1). Thus, the sam-
ple size required for achieving a desired power can be obtained as

n =
(z1−a + z1−β)2θ2

ε2
. (8.12)

It can be seen from above that (8.11) and (8.12) include the commonly
employed one-arm or two-arm superiority design and non-inferiority
designs as special cases. For example, for a one-arm design, c1 = 1,
and for a two-arm design, c1 = −1 and c2 = 1. Note that a minimal
sample size is required when the response and the contrasts have the
same shape under a balanced design. If, however, an inappropriate set
of contrasts is used, the sample size could be several times larger than
the optimal design.

When the shape of the ci is similar to the shape of uik, the test statistic
is a most powerful test. However, ui is usually unknown. In this case, we
may consider the adaptive contrasts cik = ûik−1 at the kth stage, where
ûik−1 is the observed response at the previous stage, i.e., the (k − 1)th

stage. Thus, we have

Zk =
m∑

i=1

(ûik−1 − ūk−1)ûik, (8.13)

which are conditionally, given data at the (k − 1)th stage, normally dis-
tributed. It can be shown that the correlation between zk−1 and zk is
zero since pk (=α) is independent of cm = um, m = 1, . . . , M and pk is
independent of Zk−1 or pk−1. It follows that Z1 and Z2 are independent.

8.4 Comparison of Seamless Designs

There are many possible seamless adaptive designs. It is helpful to
classify these designs into the following four categories according to the
design features and adaptations: (i) fixed number of regimens, which
includes stopping early for futility, biomarker-informed stopping early
for futility, and stopping early for futility/efficacy with sample size re-
estimation; (ii) flexible number of regimens, which includes a flexible
number of regimens, adaptive hypotheses, and response-adaptive ran-
domization; (iii) population adaptation, where the number of patient
groups can be changed from the learning phase to the confirmatory
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phase; and (iv) combinations of (ii) and (iii). For seamless adaptive
designs in category (iii), patient groups are often correlated, such as
the entire patient population and sub-population with certain genomic
markers. When all patient groups are mutually independent, categories
(iii) and (iv) are statistically equivalent. Chang (2005) discussed various
designs in category (i) and proposed the use of a Bayesian biomarker-
adaptive design in a phase II/III clinical program.

In this section, we will focus on seamless adaptive designs with a
flexible number of regimens. We will compare four different seamless
adaptive designs with normal endpoints. Each design has five treatment
groups including a control group in the learning phase. Since there are
multiple arms, contract tests are considered for detecting treatment
difference under the null hypothesis of

H0 :
5∑

i=1

ciui > 0,

where ci is the contrast for the ith group that has an expected response
of ui. The test statistic is T = Σ5

i=1ciûi. The four seamless designs consid-
ered here include (i) a five-arm group sequential design; (ii) an adaptive
hypotheses design, where contracts ci change dynamically according to
the shape of the response (ui) for achieving the most power; (iii) a drop-
the-losers design, where inferior groups (losers) will be dropped, but two
groups and the control will be kept in the confirmatory phase; and (iv) a
keep-the-winner design, where we keep the best group and the control
at the confirmatory phase. Since the maximum power is achieved for
a balanced design when the shape of the contrasts is consistent with
the shape of the response (Stewart and Ruberg, 2000; Chang and Chow,
2006; Chang, Chow, and Pong, 2006), in the adaptive hypotheses ap-
proach, the contrasts in the confirmatory phase are re-shaped based
on the observed responses in the learning phase. Three different re-
sponse and contrast shapes are presented (see Table 8.1). The powers
of the adaptive designs are summarized in Table 8.2, where the gen-
eralized Fisher combination method (Chang, 2005) with efficacy and
futility stopping boundaries of α1 = 0.01, β1 = 1, α2 = 0.0033 are used.

Table 8.1 Response and Contrast Shapes

Shape u1 u2 u3 u4 u5 c1 c2 c3 c4 c5

Monotonic 1.0 2.0 3.5 4.0 4.5 −1.9 −0.9 0.1 1.1 1.6
Convex 1.0 1.0 4.0 1.0 3.0 −1.0 −1.0 2.0 −1.0 1.0
Step 1.0 3.4 3.4 3.4 3.4 −1.92 0.48 0.48 0.48 0.48
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Table 8.2 Power (%) of Contrast Test

Contrast
Response Design Monotonic Wave Step

Sequential 96.5 27.1 71.0
Monotonic Adaptive 83.4 50.0 70.0

Drop-losers 94.6 72.7 87.9
Keep-winner 97.0 84.9 94.2

Sequential 26.5 95.8 23.3
Wave Adaptive 49.5 82.1 48.0

Drop-losers 56.1 85.6 54.6
Keep-winner 67.7 88.7 66.6

Sequential 42.6 14.6 72.4
Step Adaptive 41.0 26.4 54.6

Drop-losers 64.9 49.6 78.9
Keep-winner 77.5 64.6 87.9

Note: σ = 10, one-sided α = 0.025, interim n = 64/group.
Expected total n = 640 under the alternative hypothesis for all the designs.
For simplicity, assume the best arm is correctly predetermined at interim
analysis for the drop-losers and keep-winner designs.

It can be seen that the keep-the-winner design is very robust for differ-
ent response and contrast shapes.

It can be seen from Table 8.1 and Table 8.2, when the contrast shape
is consistent with the response shape, it gives the most power regard-
less the type of design. When the response shape is unknown, adaptive
design (may be drop-the-losers) is the most powerful design. Note that
the examples provided here controlled the type I error under the global
null hypothesis.

8.5 Drop-the-Loser Adaptive Design

In pharmaceutical research and development, it is desirable to shorten
the time of the conduct of clinical trials, data analysis, submission, and
regulatory review and approval process in order to bring the drug prod-
uct to the marketplace as early as possible. Thus, any designs which
can help to achieve the goals are very attractive. As a result, various
strategies are proposed. For example, Gould (1992) and Zucker et al.
(1999) considered using blinded data from the pilot phase to design a
clinical trial and then combine the data for final analysis. Proschan and
Hunsberger (1995) proposed a strategy which allows re-adjustment of
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the sample size based upon unblinded data so that a clinical trial is
properly powered. Other designs have been proposed to combine stud-
ies conducted at different phases of traditional clinical development into
a single study. For example, Bauer and Kieser (1999) proposed a two-
stage design which enables investigators to terminate the trial entirely
or drop a subset of the regimens for lack of efficacy at the end of the
first stage. Their procedure is highly flexible, and the distributional
assumptions are kept to a minimum. Bauer and Kieser’s method has
the advantage of allowing hypothesis testing at the end of the confir-
mation stage. However, it is difficult to construct confidence intervals.
Brannath, Koening, and Bauer (2003) examined adjusted and repeated
confidence intervals in group sequential designs, where the responses
are normally distributed. Such confidence intervals are important for
interpreting the clinical significance of the results.

In practice, drop-the-losers adaptive designs are useful in combining
phase II and phase III clinical trials into a single trial. In this sec-
tion, we will introduce the application of the drop-the-losers adaptive
designs under the assumption of normal distributions. The concept,
however, can be similarly applied to other distributions. The drop-the-
losers adaptive design consists of two stages with a simple data-based
decision made at the interim. In the early phase of the trial, the inves-
tigators may administer K experimental treatments (say τ1, . . . , τK) to
n subjects per treatment. A control treatment, τ0, is also administered
during this phase. Unblinded data on patient responses are collected
at end of the first stage. The best treatment group (based on observed
mean) and the control group are retained and other treatment groups
are dropped at the second stage.

Cohen and Sackrowitz (1989) provided an unbiased estimate using
data from both stages. Cohen and Sackrowitz considered using a condi-
tional distribution on a specific event to construct conditionally unbia-
sed estimators. Following a similar idea, the test statistic and confidence
intervals can be derived. The specific conditional distribution used in
the final analysis depends on the outcomes from the first stage. Provided
the set of possible events from the first stage on which one condition is a
partition of the sample space, the conditional corrections also hold un-
conditionally. In our setting, conditional level α tests are unconditional
level α tests. In other words, if all of the null hypotheses are true for all
of the treatments, the probability of rejecting a null hypothesis is never
greater than α, regardless of which treatment is selected (Sampson and
Sill, 2005).

Sampson and Sill assume the following ordered outcome after the
first stage,

Q = {X : X̄1 > X̄2 > · · · > X̄k}
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so that τ1 continues into the second stage (other outcomes would be
equivalently handled by relabeling). Typically, at the end of the trial, we
want to make inferences on the mean µ1 of treatment τ1, and compare it
with the control (e.g., test H0 : µ1 − µ0 ≤ ∆10 or construct a confidence
interval about µ1 − µ0). Therefore, we can construct uniformly most
powerful (UMP) unbiased tests for hypotheses concerning ∆1 based
upon the conditional distribution of W given (X ∗, T). To see this, note
that the test is based on the conditional event Q. Lehmann (1983) gives
a general proof for this family, which shows that conditioning on suf-
ficient statistics associated with nuisance parameters causes them to
drop from the distribution. In addition, the theorem states that the use
of this conditional distribution to draw inferences about a parameter of
interest yields hypothesis testing procedures which are uniformly most
powerful unbiased unconditionally (i.e., UMPU before conditioning on
the sufficient statistics). The test statistic is

W =
n0 (nA + nB)

(n0 + nA + nB) σ 2
(Z̄ − Ȳ0),

which has the distribution of

W ∼ fa (W|∆1, X∗, T) = CN exp
{

− 1
2G

(W − G∆1)
2

}

D

where

Z̄ =

(

nAX̄M + nBȲ
)

nA + nB
,

X̄M = max
(

X̄1, . . . , X̄k
)

= maximum mean observed mean at first stage,

G =
n0 (nA + nB)

(n0 + nA + nB) σ 2
,

T =
n0Ȳ0 + (nA + nB) Z̄

n0 + nA + nB
,

D = Φ

[√

nA (nA − nB)
(

σ 2W + (nA + nB)
(

T − X̄2

))

√

nA (nA + nB)σ

]

,

and CN is the normalization constant, which involves integrating W
over real line.

In order to test

H0 : µ1 − µ0 ≤ ∆10 versus Ha : µ1 − µ0 > ∆10,

we consider the following function

FQ (W|∆10, X∗, T) =
∫ W

−∞
fQ (t |∆10, X∗, T) dt.
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We can use the function to obtain a critical value, Wu, through FQ (Wu|∆10,
X∗, T) = 1 − α. Note that 100(1 − α)% confidence intervals, [∆L, ∆U] ,
can be constructed from

FQ (Wobs|∆L, X∗, T) = 1 − α/2,

and

FQ (W|∆10, X∗, T) = α/2

because W|X∗, T is monotonic likelihood ratio in T. Computer programs
are available at

http : //www.gog.org/sdcstaf f/mikesill

or

http : //sphhp.buf f alo.edu/biostat/.

To illustrate the calculation, Sampson and Sill (2005) simulated a data
set from a design, where k = 7, µ1 = · · · = µ7 = 0, nA = nB1 = 100, n0 =
200, and σ = 10. The experimental data have been relabeled in decreas-
ing order. Suppose we want to test

H0 : µ1 − µ0 ≤ 0 versus H1 : µ1 − µ0 > 0.

The simulated data are given as follows:

X̄1 = 1.8881,

X̄2 = 0.9216,

X̄3 = 0.0691,

X̄4 = −0.3793,

X̄5 = −0.3918,

X̄6 = −0.8945,

X̄7 = −0.9276,

Ȳ = 0.7888,

Ȳ0 = −0.4956.

Based on these data, Wobs = 1.83. Thus, the rejection region is given
by (2.13, ∞). Hence, we fail to reject H0. The 95% confidence interval is
given by (−0.742, 3.611).
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8.6 Summary

The motivation behind the use of an adaptive seamless design is proba-
bly the possibility of shortening the time of development of a new med-
ication. As indicated earlier, an adaptive seamless phase II/III design
is not only flexible but also efficient as compared to separate phase II
and phase III studies. However, benefits and drawbacks for implement-
ing an adaptive seamless phase II/III design must be carefully weighed
against each other. In practice, not all clinical developments may be can-
didates for such a design. Maca et al. (2006) proposed a list of criteria for
determining the feasibility of the use of an adaptive seamless design in
clinical development plan. These criteria include endpoints and enroll-
ment, clinical development time, and logistical considerations, which
are briefly outlined below.

One of the most important feasibility considerations for an adaptive
seamless design is the amount of time that a patient needs in order to
reach the endpoint, which will be used for dose escalation. If the end-
point duration is too long, the design could result in unacceptable inef-
ficiencies. In this case, a surrogate marker with much shorter duration
might be used. Thus, Maca et al. (2006) suggested that well-established
and understood endpoints (or surrogate markers) be considered when
implementing an adaptive seamless design in clinical development. It,
however, should be noted that if the goal of a phase II program is to learn
about the primary endpoint to be carried forward into phase III, an
adaptive seamless design would not be feasible. As the use of an adap-
tive seamless design is to shorten the time of development, whether the
adaptive seamless design would achieve the study objectives within a
reduced time frame would be another important factor for feasibility
consideration, especially when the adaptive seamless trial is the only
pivotal trial required for regulatory submission. In the case where there
are two pivotal trials, whether the second seamless trial can shorten the
overall development time should be taken into feasibility consideration
as well. Logistical considerations are drug supply and drug packaging.
It is suggested that development programs which do not have costly or
complicated drug regimens would be better suited to adaptive seamless
designs.

Although adaptive seamless phase II/III designs are efficient and flex-
ible as compared to the traditional separate phase II and phase III stud-
ies, potential impact on statistical inference and p-value after adapta-
tions are made should be carefully evaluated. It should be noted that
although more adaptations allow higher flexibility, this could result in
a much more complicated statistical analysis at the end of trial.





CHAPTER 9

Adaptive Treatment Switching

For evaluation of the efficacy of a test treatment for progressive disease
such as cancer or HIV, a parallel-group active control randomized clin-
ical trial is often conducted. Under the study design, qualified patients
are randomly assigned to receive either an active control (a standard
therapy or a treatment currently available in the marketplace) or the
test treatment under investigation. Patients are allowed to switch from
one treatment to another due to ethical consideration such as lack of
response or evidence of disease progression. In practice, it is not un-
common that up to 80% of patients may switch from one treatment to
another. This certainly has an impact on the evaluation of the efficacy
of the test treatment. Despite allowing a switch between two treat-
ments, many clinical studies are to compare the test treatment with
the active control agent as if no patients had ever switched. Sommer
and Zeger (1991) referred to the treatment effect among patients who
complied with treatment as biological efficacy. In practice, the survival
time of a patient who switched from the active control to the test treat-
ment might be on the average longer than his/her survival time that
would have been if he/she had adhered to the original treatment (either
the active control or the test treatment), if switching is based on prog-
nosis to optimally assign patients’ treatments over time. We refer to
the difference caused by treatment switch as switching effect. The pur-
pose of this chapter is to discuss some models for treatment switch
with switching effect and methods for statistical inference under these
models.

The remainder of this chapter is organized as follows. In the next
section, the latent event times model under the parametric setting is
described. In Section 9.2, the concept of latent hazard rate is considered
by incorporating the switching effect in the latent hazard functions.
Statistical inferences are also derived using Cox’s regression with some
additional covariates and parameters in this section. A simulation study
is carried out in Section 9.3 to examine the performance of the method
as compared to two other methods, where the one ignoring the switching
data and the other one including the switching data but ignoring the
switching effect. A mixed exponential model is considered to assess the
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total survival time in Section 9.4. Some concluding remarks are given
in the last section of this chapter.

9.1 Latent Event Times

Suppose that patients are randomly assigned to two treatment groups:
a test treatment and an active control. Consider the case where there
is no treatment switch and the study objective is to compare the effi-
cacy of the two treatments. Let T1, . . , Tn be independent non-negative
survival times and C1. . ., Cn be independent non-negative censoring
times that are independent of survival times. Thus, the observations
are Yi = min(Ti, Ci), i = 1 if Ti ≤ Ci, and i = 0 if Ti > Ci. Assume that
the test treatment acts multiplicatively on a patient’s survival time,
i.e., an accelerated failure time model applies. Denote the magnitude
of this multiplicative effect by e−β , where β is an unknown parameter.
Assume further that the survival time distribution under the active
control has a parametric form Fθ (t), where θ is an unknown parameter
vector and Fθ (t) is a known distribution when θ is known. Let ki be the
treatment indicator for the ith patient, i.e., ki = 1 for the test treatment
and ki = 0 for the active control. Then, the distribution of the survival
time is given by

P (Ti ≤ t) = Fθ (eβki t), t > 0. (9.1)

If Fθ has a density fθ , then the density of Ti is given by eβki , t > 0.
Consider the situation where patients may switch their treatments

and the study objective is to compare the biological efficacy. Let Si > 0
denote the ith patient’s switching time. Branson and Whitehead (2002)
introduced the concept of latent event time in the simple case where only
patients in the control group may switch. We define the latent event
time in the general case as follows. For a patient with no treatment
switch, the latent event time is the same as his/her survival time. For
patient i who switches at time Si, the latent event time T̃i is an abstract
quantity defined to be the patient’s survival time that would have been
if this patient had not switched the treatment. For patients who switch
from the active control group to the test treatment group, Branson and
Whitehead (2002) suggested the following model conditional on Si:

T̃i
d= Si + eβ (Ti − Si), (9.2)

where d denotes equality in distribution. That is, the survival time for
a patient who switched from the active control to the test treatment
could be back-transformed to the survival time that would have been if
the patient had not switched. For the case where patients may switch
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from either group, the model (9.2) can be modified as follows:

T̃i
d= Si + eβ(1−2ki) (Ti − Si), (9.3)

where ki is the indicator for the original treatment assignment, not for
the treatment after switching.

Model (9.2) or (9.3), however, does not take into account the fact that
treatment switch is typically based on prognosis and/or investigator’s
judgment. For example, a patient in one group may switch to another be-
cause he/she does not respond to the original assigned treatment. This
may result in a somewhat optimal treatment assignment for the patient
and a survival time longer than those patients who did not switch. Ig-
noring such a switching effect will lead to a biased assessment of the
treatment effect Shao, Chang and Chow (2005) consider the following
model conditional on Si:

T̃i
d= Si + eβ(1−2ki)wk,η (Si) (Ti − Si), (9.4)

where η is an unknown parameter vector and wk,η (S) are known func-
tions of the switching time S when η and k are given. Typically, wk,η (S)
should be close to 1 when S is near 0, i.e., the switching effect is negli-
gible if switching occurs too early. Note that

lim
S↓0

wk,η (S) = 1.

An example is

wk,η (S) = exp
(

ηk,0S+ ηk,1S2
)

,

where ηk,l are unknown parameters.
Under model (9.1) and model (9.4), the distributions of the survival

times for patients who switched treatments are given by (conditional
on Si)

P(Ti ≤ t) = P(T̃i ≤ Si + eβ(1−2ki)wk,η(Si)(t − Si))

= Fθ (eβki [Si + eβ(1−2ki)wk,η(Si)(t − Si)])

= Fθ (eβki Si + eβ(1−ki)wk,η(Si)(t − Si))

for ki = 0, 1. The distributions for patients who never switch are

Fθ (eβki t), ki = 0, 1.

Assume that F has a density fθ . For convenience’s sake, we denote
Si = ∞ for patient i who never switch. Then, the conditional likelihood
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function given Si is

L(θ , β, η)

=
∏

i:Si=∞
[eβki fθ (eβki Yi)]δi [1 − Fθ (eβki Yi)]1−δi

×
∏

i:Si<∞
[eβ(1−ki)wki (si) fθ (eβki Si + eβ(1−ki)wki (Si)(Yi − Si))]δi

×[1 − Fθ (eβki Si + eβ(1−ki)wki (Si)(Yi − Si))]δi .

Let γ = (θ , β, η). The parameter vector can be estimated by solving the
following likelihood equation

∂ log L(γ )
∂γ

= 0. (9.5)

Under some regularity conditions, the estimate of γ is asymptotically
normal with mean vector 0 and covariance matrix

[

E
∂2 log L(γ )

∂γ ∂γ ′

]−1

Var
[

E
∂ log L(γ )

∂γ

] [

E
∂2 log L(γ )

∂γ ∂γ ′

]−1

, (9.6)

which can be estimated by substituting with its estimate. Statistical
inference can then be obtained based on the asymptotic results.

Branson and Whitehead (2002) proposed an iterative parameter es-
timation (IPE) method for statistical analysis of data with treatment
switch. The idea of the method is to relate the distributions of the sur-
vival times of the two treatments under a parametric model. Thus,
under model (9.2), IPE can be described as follows. First, an initial es-
timate β̂ of β is obtained. Then, latent event times are estimated as

T̂i = Si + bβ̂ (Ti − Si)

for patients who switched their treatments. Next, a new estimate of β is
obtained by using the estimated latent event times as if they were the
observed data. Finally, the previously described procedure is iterated
until the estimate of β converges.

Note that although a similar IPE method can be applied under model
(9.4), it is not recommended for the following reason. If initial esti-
mates of model parameters are obtained by solving the likelihood equa-
tion given in (9.5), then iteration does not increase the efficiency of
estimates and hence adds unnecessary complexity for computation. On
the other hand, if initial estimates are not solutions of the likelihood
equation given in (9.5), then they are typically not efficient and the
estimates obtained by IPE (if they converge) may not be as efficient
as the solutions of the likelihood equation (9.5). Thus, directly solving
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the likelihood equation (9.5) produces estimates that are either more
efficient or computationally simpler than the IPE estimates.

9.2 Proportional Hazard Model with Latent
Hazard Rate

The above parametric approach for latent event times is useful. How-
ever, statistical analysis under such a parametric model may not be
robust against model mis-specifications. For survival data in clinical
trials, alternatively, we may consider the following Cox’s proportional
hazard model, which is a semi-parametric model.

Let F(t) be the distribution of the survival time and f (t) be its corre-
sponding density. Then, the hazard rate at time t is defined as

λ(t) = f (t)/[1 − F(t)].

The Cox’s proportional hazard model is then given by

λki (t) = λ0 (t) eβki , (9.7)

where ki is the treatment indicator and λ0(t) is left unspecified. In a
more general setting, we can replace ki in (9.7) by a covariate vector
associated with the ith patient and β by a parameter vector. Under
model (9.7), if there is no treatment switch, an estimator of β can be
obtained by maximizing the following partial likelihood function

L (β) =
∏

i

(

eβki

∑

j∈Ri
eβkj

)δi

, (9.8)

where Ri is the set of patients who are alive and observed just before
time Ti. When there is treatment switch but the switching effect is
ignored (i.e., patients switch treatments at random), model (9.7) can be
modified by replacing ki by the time-dependent covariate ki(t) as follows:

ki (t) =

{

1 − ki, t ≥ Si

ki t < Si,

where Si is the switching time for the ith patient and 0 ≤ t < ∞. Note
that by definition, Si = ∞ if the ith patient never switched. This reduces
to a special case of the proportional hazard model with time-dependent
covariates (see, e.g., Kalb and Prentice, 1980; Cox and Oakes, 1984).

Consider the case where the switching effect wk,η(Si) may depend
on prognosis and/or investigator’s assessment, which is an unknown
parameter vector. Instead of including the switching effect in the model
as latent event times (9.4), we include it in the proportional hazard
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model as follows:

λki (t) = λ0 (t) eβki(t)wk,η (t, Si), (9.9)

where

wk,η (t, Si) =

{

wk,η (Si), t ≥ Si

1, t < Si
.

We refer to this model as the latent hazard rate model since λki(t) in
(9.9) corresponds to a latent event time and hence can be treated as a
latent hazard rate. Under the latent hazard rate model (9.9), the partial
likelihood is given by

L (β, η) =
∏

i:Si=∞



eβki wk,η (Ti, Si)




∑

j∈Ri

eβkj wk,η (Ti, Si)





−1



δi

. (9.10)

Estimators of β and η can be obtained by solving

∂ log L(γ )
∂γ

= 0,

where γ = (β, η). Under some regularity conditions, these estimators
are asymptotically normal with mean vector 0 and covariance matrix
as given in (9.6). Based on the asymptotic results, statistical inference
can be obtained.

If log wk,η(s) is linear in η such as

wk,η(s) = eηk,0S+ηk,1S2
,

then model (9.9) is another special case of the proportional hazard model
with time-dependent covariates since the switching effect term can be
written as

wk,η(t, Si) = eηki ,0Si(t)+ηki ,1S2
i (t), (9.11)

where

Si (t) =

{

Si, t ≥ Si

0 t < Si
,

which can be treated as another time-dependent covariate. That is,
model (9.9) is the proportional hazard model with time-dependent co-
variates ki(t) and Si (t), where Si (t) is additional time-independent co-
variate. Thus, the parameter vector is given by

γ = (β, η0,0, η0,1, η1,0, η1,1)
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and it can be estimated by solving

∑

i

δi

(

zii −
∑

j∈Ri
Zijeγ ′ Zij

∑

j∈Ri
eγ ′ Zij

)

= 0,

where

Zij =
(

kj (Ti), (1 − kj)Sj (Ti), (1 − kj) S2
j (Ti), kj Sj (Ti), kj S2

j (Ti)
)

.

The resulting estimator, denoted by γ̂ , is asymptotically normal with
mean 0 and a covariance matrix that can be estimated by

B̂−1 ÂB̂−1,

where

Â =
∑

i

δi

(

zii −
∑

j∈Ri
Zijeγ̂ ′ Zij

∑

j∈Ri
eγ̂ ′ Zij

) (

zii −
∑

j∈Ri
Zijeγ̂ ′ Zij

∑

j∈Ri
eγ̂ ′ Zij

)′
,

and

B̂=
∑

i

δi

(∑

j∈Ri
Zijeγ̂ ′ Zij

∑

j∈Ri
eγ̂ ′ Zij

) (∑

j∈Ri
Zijeγ̂ ′ Zij

∑

j∈Ri
eγ̂ ′ Zij

)′

−
∑

i

δi

∑

j∈Ri
Zij Z′

i je
γ̂ ′ Zij

∑

j∈Ri
eγ̂ ′ Zij

.

The above results can be easily extended to the case where there
are some other time-independent and/or time-dependent covariates in
model (9.9). The latent event times approach described in the previous
section coincides with the latent hazard rate model when the survival
time distribution is exponential, i.e.,

F(t) = 1 − e−t/θ

with an unknown parameter θ > 0. However, for other types of survival
time distributions, the two approaches are different. If we apply the
latent event times model (9.4) under the semi-parametric approach in
which Cox’s proportional hazard model is used for data without treat-
ment switch, then the resultant latent hazard model for log λki (t)/λ0(t)
depends on t is rather complicated. Statistical inference under such
models could be very difficult.

9.2.1 Simulation results

In this section, we studied the finite sample performance of the Cox’s
proportional hazard model with switching effect through simulation.
Consider a clinical trial comparing a test treatment with an active
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control agent. Suppose 300 patients per treatment group is planned.
The survival time was generated according to the exponential distribu-
tion with hazard rate 0.0693 for the active control group (mean = 14.43
months) and 0.0462 for the treatment group (mean = 21.65 months).
For both treatment groups, the random censoring time was generated
according to the uniform distribution over the range of 15–20 months.
This results in the censoring percentage of 24.6% for the active control
group and 34.6% for the treatment group. On the other hand, the pa-
tient treatment switch time was generated according to the exponential
distribution with a mean of 7.22 months for the active control group and
a mean of 10.82 months for the treatment group. The switching rate is
about 67% for both the active control group and the treatment group.
This choice of switching rate is within the range of 60–80% practical
experience of patients who switch from one treatment to another.

For each combination of parameters (β and ηk, j), 1000 simulation
runs were done. The results are summarized in Table 9.1. As it can be
seen from Table 9.1, the estimators based on the method of latent haz-
ard rate perform well. The relative bias is within 3% in all cases. The
performance of the estimator of β (the treatment effect) is generally bet-
ter than that of the estimators of η’s (switching effects) in terms of both
relative bias and the coefficient of variation. We note that the estimated
standard deviation has very little bias. Furthermore, the coverage prob-
ability of the asymptotic confidence interval is close to the nominal level
of 95%.

In the simulation, two other methods were also considered for the pur-
pose of comparison. One method is to estimate β under model (9.7) with
wk,η(t; Si) ≡ 1, (i.e., ignoring the switching effect), which is clearly bi-
ased. The other method is to estimate β under model (9.7) based on data
from patients who adhered to their original randomized treatments (i.e.,
ignoring data from patients who switched). Simulation results indicated

Table 9.1 Simulation Results Based on 1000 Simulation Runs

Proposed Method Other* Other†
Parameter β η0,0 η0,1 η1,0 η1,1 β β

True value −0.406 0.100 0.009 0.080 0.010 −0.406 −0.406
Mean of estimates −0.396 0.098 0.009 0.082 0.010 −0.393 0.033
SD of estimates 0.128 0.052 0.004 0.049 0.004 0.147 0.094
Mean of estimated SD 0.129 0.053 0.004 0.049 0.004 0.148 0.093
Coverage probability 0.951 0.951 0.949 0.952 0.956 0.951 0.003

∗The method that ignores data from patients who switched.
†The method that ignores switching effect, i.e., uses model with wki ,η(t; Si) ≡ 1.
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that this method has little bias in estimating β. However, the estimator
from this method has larger standard deviation (less efficiency). The
efficiency gain in using data from patients who switched is about 15%
under the switching rate of 67%. This gain is not as large as what is
hoped for, because of the fact that the proposed method estimates four
additional parameters ηk, j . However, a 15% gain in efficiency in terms
of standard deviation amounts to approximately a 32% of reduction in
sample size. For example, suppose that a sample size 100 is required
in the case of no switching. If the switching rate is 67% and we ignore
data from patients who switched, then we need a sample size of approx-
imately 300 in order to retain the efficiency. On the other hand, with the
same switching rate and the proposed method, the sample size required
to retain the same efficiency is 228.

9.3 Mixed Exponential Model

As indicated earlier, treatment switch is a common and flexible medical
practice in cancer trials due to ethical considerations. Treatment switch
is in fact a response-adaptive switch. Due to the treatment switch, how-
ever, the treatment effect can only be partially observed, and the ef-
fects of different treatments are difficult to separate from each other. In
this case, the commonly used exponential models with a single param-
eter may not be appropriate. Alternatively, a mixed exponential model
(MEM) with multiple parameters is more flexible and hence suitable
for a wide range of applications (see, e.g., Mendenhal and Hader, 1985;
Susarda and Pathala, 1965; Johnson et al., 1994).

In clinical trials, the target patient population often consists of two or
more subgroups based on heterogeneous baseline characteristics (e.g.,
the patients could be a mixture of the second-line and the third-line
oncology patients). The median survival time of the third-line patients
is usually shorter than that of the second-line patients. If the survival
times of the two subgroup populations are modeled by exponential dis-
tributions with hazard rates λ1 and λ2, respectively, then the survival
distribution of the total population in the trial is a mixed exponential
distribution with a probability density function of

P1λ1e−λ1t + P2λ2e−λ2t(t > 0),

where t is the survival time and P1 and P2 (fixed or random) are the
proportions of the two sub-populations. Following the similar idea of
Mendenhal and Hader (1958), the maximum likelihood estimates of
the parameters λi and Pi can be obtained. In clinical trials, a patient’s
treatment is switched in the middle of the study often because there is
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a biomarker, such as disease progression, indicating the failure of the
initial treatment regimen. If the test drug is more effective than the
control, then the majority of patients in the control group will switch to
the test drug. In this case, the response or survival difference between
the two treatment groups will be dramatically reduced in comparison
to the case without treatment switching. Moreover, if the test drug is
much more effective in treating a patient after disease progression than
before disease progression, it could lead to an erroneous conclusion that
the test drug is inferior to the control without considering the switching
effect, but in fact it is not. This biomarker-based treatment switch is ob-
viously not a random switch but a response-adaptive treatment switch.
In what follows, we will focus on the application of mixed exponential
model to a clinical trial with biomarker response-adaptive treatment
switching (Chang, 2005).

9.3.1 Biomarker-based survival model

In cancer trials, there are often some signs/symptoms (or more gener-
ally biomarkers) that indicate the state of the disease and the ineffec-
tiveness or failure of a treatment. A cancer patient often experiences
several episodes of progressed diseases before death. Therefore, it is
natural to construct a survival model based on the disease mechanism.
In what follows, we consider a mixed exponential model, which is de-
rived from the more general mixed Gamma model. Let τi be the time
from the (i − 1)th disease progression to the ith disease progression,
where i = 1, . . , n. τi is assumed to be mutually independent with prob-
ability density function of fi(τi). The survival time t for a subject can
be written as follows:

t =
n∑

i=1

τi. (9.13)

Note that the nth disease progression is death. The following lemma re-
garding the distribution of linear combination of two random variables
is useful.

Lemma Given x ∼ fx(x) and y ∼ fy(y). Define z = ax + by. Then, the
probability density function of z is given by

fz(z) =
1
a

∫ ∞

−∞
f
(

z − by
a

, y
)

dy (9.14)

Proof.

Fz(z) = P(Z ≤ z) =
∫ ∫

ax+by≤z

f (x, y)dxdy =
∫ ∞

−∞

∫ z−by
a

−∞
f (x, y)dxdy (9.15)
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Take the derivative with respect to z and exchange the order of the two
limit processes, (9.14) is immediately obtained.

Corollary When x and y are independent, then

fz(z) =
1
a

∫ ∞

−∞
fx

(
z − by

a

)

fY(y)dy. (9.16)

Theorem If n independent random variables τi, i = 1, . . . , n are ex-
ponentially distributed with parameter λi, i.e.,

τi ∼ fi(τi) = λie−λiτi , (τi ≥ 0),

then the probability density function of random variable t =
∑n

i=1 τi is
given by

f (t; n) =
n∑

i=1

λie−λi t

∏n
k=1

k
=i
(1 − λi

λk
)
, t > 0, (9.17)

where λi 
= λk if k 
= i for i, k ∈ m0 ≤ n and mi is the number of replicates
for λi with the same value.

Proof. By mathematical induction, when n = 2, Lamma (9.14) gives
(λi 
= λk if i 
= k)

f (t; 2) = λ1λ2

∫ t

0

exp(−λ1t − (λ2 − λ1)τ2)dτ2 =
λ1e−λ1t

1 − λ1
λ2

+
λ2e−λ2t

1 − λ2
λ1

.

Therefore, (9.17) is proved for n = 2.
Now assume (9.17) holds for any n ≥ 2, and it will be proven that

(9.17) also holds for n + 1. From (9.17) and corollary (9.16), we have

f (t; n + 1) =
∫ t

0

f (t − τn+1; n) fn+1(τn+1)dτn+1

=
∫ t

0

n∑

i=1

λie−λi(t−τn−1)

∏n
k=1

k
=i
(1 − λi

λk
)
λn+1e−λn+1τn+1dτn+1

=
n∑

i=1

1
∏n

k=1

k
=i
(1 − λi

λk
)

[

λie−λi t

1 − λi
λn+1

+
λn+1e−λn+1t

1 − λn+1
λi

]

=
n+1∑

i=1

λie−λi t

∏n+1
k=1

k
=i

(1 − λi
λk

)
.

This completes the proof.

For the exponential distribution fi(τi) = λie−λi τ , by the above theo-
rem, the probability density function of t , which is a mixed Gamma
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distribution, is given by

f (t; n) =

{ n∑

i=1

wiλie−λi t, t > 0; λi 
= λk if k 
= i, (9.18)

where λi 
= λk if k 
= i for i, k ≤ m0 ≤ n, mi is the number of replicates
for λi with the same value, and

1∏

k=1

k
=i

(

1 − λi

λk

)

= 1.

For disease progression, it is usually true that λi > λk for i > k. Note
that f (t; n) does not depend on the order of λi in the sequence, and

f (t; n)λn→+∞ = f (t; n − 1).

The survival function S(t) can be easily obtained from (9.18) by inte-
gration and the survival function is given by

S(t; n) =
n∑

i=1

wie−λi t; t > 0, n ≥ 1, (9.19)

where the weight is given by

wi =





n∏

k=1,k
=i

(1 − λi

λk
)





−1

. (9.20)

The mean survival time and its variance are given by

µ =
n∑

i=1

wi

λi
and σ 2 =

n∑

i=1

wi

λ2
i

, (9.21)

respectively. When n = 1, w1 = 1, (9.19) reduces to the exponential
distribution. It can be shown that the weights have the properties of
∑n

i=1 wi = 1 and
∑n

i=1 wiλi = 0.

9.3.2 Effect of patient enrollment rate

In this section, we will examine the effect of the accrual duration on the
survival distribution. Let N be the number of patients enrolled and let
(0, t0) be the patient enrollment period defined as the time elapsed from
the first patient enrolled to the last patient enrolled. Also, let t denote
the time elapsed from the beginning of the trial. Denote fd(t) and fe(τe),
where τeε[0, T0], the probability density function of failure (death) and
the patient enrollment rate, respectively. The failure function (or the
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probability of death before time t) can be expressed as

F(t) =
∫ t

0

fd(τ )dτ =
∫ t

0

∫ min(τ,t0)

0

f (τ − τe) fe(τe)dτedτ. (9.22)

For a uniform enrollment rate,

fe(τe) =

{
N
t0

, τeε[0, t0]
0, otherwise

and probability density function (9.18), (9.22) becomes

F(t) =
∫ t

0

∫ min(τ,t0)

0

n∑

i=1

wi
λie−λi(τ−τe)

t0
dτedτ.

After the integration, we have

F(t) =

{
1
t0

{t +
∑n

i=1
wi
λi

[

e−λi t − 1
]}, t ≤ t0

1
t0

{t0 +
∑n

i=1
wi
λi

[

e−λi t − e−λi(t−t0)
]

t > t0
. (9.23)

Differentiating it with respect to t, it can be obtained that

f (t) =

{ 1
t0

(

1 − ∑n
i=1 wie−λi t

)

, t ≤ t0
1
t0

∑n
i=1 wi

[

e−λi(t−t0) − e−λi t
]

, t > t0
. (9.24)

The survival function is then given by

S(t) = 1 − F(t), (9.25)

and the number of deaths among N patients can be written as

D(t) = NF(t). (9.26)

Note that (9.23) is useful for sample size calculation with a non-
parametric method. For n = 1, (9.26) reduces to the number of deaths
with the exponential survival distribution, i.e.,

D =

{

R(t − 1
λ
e−λt), t ≤ t0

R
[

t0 − 1
λ
(eλt0 − 1)e−λt

]

, t > t0
,

where the uniform enrollment rate R = N
t0

.

Parameter estimate

It is convenient to use the paired variable (̂tj , δ j) defined as (̂tj , 1) for a
failure time t̂j and (̂tj , 0) for a censored time t̂j . The likelihood then can
be expressed as

L =
N∏

j=1

[

f (̂tj)
]δ j

[

S(̂tj)
]1−δ j , (9.27)
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where the probability density function f (t) and survival function S(t)
are given by (9.18) and (9.19), respectively, for instantaneous enroll-
ment, but (9.24) and (9.25) otherwise. Note that for an individual whose
survival time is censored at t̂j , the contribution to the likelihood is given
by the probability of surviving beyond that point in time, i.e., S(̂tj). To
reduce the number of parameters in the model, we can assume that the
hazard rates take the form of a geometric sequence, i.e., λi = aλi−1

or λi = aiλ0; i = 1, 2, . . . , n. This leads to a two-parameter model
regardless of n, the number of progressions. The maximum likelihood
estimates of λ and a can be easily obtained through numerical
iterations.

Example 9.1 To illustrate the mixed exponential model for obtaining
the maximum likelihood estimates with two parameters of λ1 and λ2,
independent x1 j and x2 j , j = 1, . . , N from two exponential distributions
with λ1 and λ2, respectively were generated. Let τ j = x1 j + x2 j . Then
τ j has a mixed exponential distribution with parameters λ1 and λ2. Let
t̂j = min(τ j , Ts), where Ts is the duration of the study. Now, we have
the paired variables

(

t̂j , δ j
)

, j = 1, . . . , N, which were used to obtain
the maximum likelihood estimators λ̂1 and λ̂2. Using (9.21) and the
invariance principle of maximum likelihood estimators, the maximum
likelihood estimate of mean survival time, µ̂, can be obtained as

µ̂ =
2∑

j=1

ŵj

λ̂ j
=

1
λ̂1

+
1
λ̂2

. (9.28)

For each of the three scenarios (i.e., λ1 = 1, λ2 = 1.5; λ1 = 1, λ2 =
2; λ1 = 1, λ2 = 5), 5000 simulation runs were done. The results of
the means and coefficients of variation of the estimated parameters are
summarized in Table 9.2. As it can be seen from Table 9.2, the mixed
exponential model performs well, which gives an excellent estimate of
mean survival time for all three cases with virtually no bias and a less
than 10% coefficient of variation. The maximum likelihood estimate
of λ1 is reasonably good with a bias less than 6%. However, there are
about 5% to 15% over-estimates for λ2 with large coefficients of variation
ranging from 30% to 40%. The bias increases as the percent of the cen-
sored observations increases. Thus, it is suggested that the maximum
likelihood estimate of mean survival time rather than the maximum
likelihood estimate of the hazard rate be used to assess the effect of a
test treatment.



ADAPTIVE TREATMENT SWITCHING 187

Table 9.2 Simulation Results with Mixed Exponential Model

λ1 λ2 µ λ1 λ2 µ λ1 λ2 µ

True 1.00 1.50 1.67 1.00 2.00 1.50 1.00 5.00 1.20
Mean* 1.00 1.70 1.67 1.06 2.14 1.51 1.06 5.28 1.20
CV* 0.18 0.30 0.08 0.20 0.37 0.08 0.18 0.44 0.09
PDs (%) 93 96 96
Censors (%) 12 8 5

Note: Study duration T = 3.2 with quick enrollment. Number of subjects N = 100.
∗Mean and coefficient of variation of the estimates from 5000 runs for each scenario

9.3.3 Hypothesis test and power analysis

In a two-arm clinical trial comparing treatment difference in survival,
the hypotheses can be written as

H0 : µ1 ≥ µ2 (9.29)

Ha : µ1 < µ2.

Note that hazard rates for the two treatment groups may change over
time. In practice, the proportional hazard rates do not generally hold
for a mixed exponential model. In what follows, we will introduce two
different approaches for hypotheses testing: nonparametric and simu-
lation methods.

Nonparametric method

In most clinical trials, there are some censored observations. In this
case, the parametric method is no longer valid. Alternatively, nonpara-
metric methods such as the logrank test (Marubini and Valsecchi, 1995)
are useful. Note that procedure for sample size calculation using the
logrank test under the assumption of an exponential distribution is
available in the literature (see, e.g., Marubini and Valsecchi, 1995;
Chang and Chow, 2005). In what follows, we will derive a formula for
sample size calculation under the mixed exponential distribution based
on logrank statistic. The total number of deaths required for a one-sided
logrank test for the treatment difference between two equal-sized inde-
pendent groups is given by

D =

[

z1−α + 2z1−β

√
θ

1 + θ

]2 (
1 + θ

1 − θ

)2

, (9.30)
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where the hazard ratio is

θ =
ln F1(Ts)
ln F2(Ts)

, (9.31)

Ts is trial duration, and Fk(Ts) is the proportion of patients with the
event in the kth group. The relationship between Fk(Ts) and t0 and Ts
and hazard rates is given by (9.23). From (9.23) and (9.26), the total
number patients required for the case where the enrollment is uni-
formly distributed can be obtained as follows:

N =

[

z1−α + 2z1−β

√
θ

1+θ

]2 (
1+θ
1−θ

)2

F1 + F2
, (9.32)

where t0 is the duration of enrollment.

Example 9.2 Assume a uniform enrollment with a duration of t0 = 10
months and trial duration Ts = 14 months. At the end of the study,
the proportions of failures are F1 = 0.8 and F2 = 0.75 for the control
(group 1) and the active drug (group 2), respectively. Choose a power
of 90% and one-sided α = 0.025. The hazard ratio is calculated using
(9.31) as θ = 1.29. From (9.32), the total number of patients required is
N = 714. If hazard rates are given instead of the proportions of failures,
we may use (9.23) to calculate the proportion of failures first.

Simulation method

The computer simulation is a very useful tool, which can be directly
applied to almost all hypotheses testing problems and power analysis
for sample size calculations. It can be used with or without censoring.
It can also be easily applied to a trial with treatment switching. The
following is the simulation algorithm:

Step 1: Generate simulation data under H0

Generate xi and yi independently from a mixed exponential distribution
with parameters λ11 and λ12, the hazard rates under the null hypothesis
Ho, using the method as described in the previous section.

Step 2: Find the distribution of test statistic T under H0

For each set of data, calculate the test statistic T as defined (e.g., the
maximum likelihood estimate of mean difference). By repeating step 1
M times, M values of the test statistic T, and its distribution can be
obtained. The precision of the distribution will increase as the number
of replications, M, increases.



ADAPTIVE TREATMENT SWITCHING 189

Step 3: Calculate p-value

Sort the Ts obtained from step 2, and calculate the test statistic T̂ based
on the observed value from the trial. The p-value is the proportion of
the simulated Ts whose values are larger (less) than T̂.

Step 4: Calculate test statistic under Ha

For the power calculation, data under Ha must be generated (i.e., gener-
ate xi (i = 1, . . . , N) from a mixed exponential distribution with param-
eters λ11 and λ12, and yi (i = 1, . . . , N) from another mixed exponential
distribution with parameters λ21 and λ22, as described in section 4).
Calculate the test statistic as in step 2.

Step 5: Calculate the power of test

Repeat step 4 M times to form the distribution of the test statistic under
Ha. The power of the test with N subjects per group is the proportion
of the simulated test statistic T with its value exceeding the critical
value Tc.

Note that steps 4 and 5 are for power analysis for sample size calcu-
lations. For hypotheses testing, only the distribution of the test statistic
under H0 is required. However, for power and sample size calculation,
distributions under both H0 and Ha are required. This simulation ap-
proach is useful in dealing with adaptive treatment switching.

9.3.4 Application to trials with treatment switch

As indicated earlier, it is not uncommon to switch a treatment when
there is evidence of lack of efficacy or disease progression. Due to the
natural course of the disease, most patients will have disease progres-
sion during the trial. When this happens, the clinician often gives an al-
ternative treatment. Patients who were initially treated with the stan-
dard therapy are often switched to the test drug, but patients who were
initially treated with the test drug are not necessarily switched to the
standard therapy; rather, they could be switched to a different drug
that has a similar effect as the control.

For a typical patient in the Kth group who experiences disease pro-
gression and dies, the time to disease progression is assumed to be an
exponential distribution with a hazard rate of λk1, and the time from
the progression to death is another exponential distribution with a haz-
ard rate of λk2. Due to treatment switching, a patient in treatment 1
will have a hazard rate of λ∗

12 = λ22 after switching to treatment 2,
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and a patient in treatment 2 will have a hazard rate of λ∗
22 = λ12 af-

ter switching to treatment 1. Further, assume all patients eventually
have progressive disease and will switch treatment if the trial lasts
long enough. Under these conditions, the probability density function
and survival function for the kth group are given by

f ∗
k = w∗

k1λk1e−λk1t + w∗
k2λ

∗
k2e−λ∗

k2t (9.33)

and

S∗
k = w∗

k1e−λk1t + w∗
k2e−λk2t, (9.34)

respectively, where

w∗
k1 =

[

1 − λk1

λ∗
k2

]−1

,

and

w∗
k2 =

[

1 − λ∗
k2

λk1

]−1

.

The likelihood for kth group is similar to (9.27), i.e.,

L∗
k =

N∏

j=1

[

f ∗
k (̂tj)

]δ j
[

S∗
k (̂tj)

]1−δ j
. (9.35)

The likelihood for the two groups combined is given by

L∗ = L∗
1L∗

2.

Under the assumption that all patients will eventually switch treat-
ment, maximizing L∗ is equivalent to maximizing both L∗

1 and L∗
2. After

obtaining the maximum likelihood estimates of λ̂11, λ̂22, λ̂21, and λ̂12

using (9.35), one can calculate the mean survival times µ̂1 and µ̂2 for
the two groups using

µ̂k =
(

1
λ̂k1

+
1

λ̂k2

)

. (9.36)

µ̂k is called the estimator of latent survival time µk. The latent survival
time can be interpreted as (i) the survival time that would have been
observed if the patient had not switched the treatment, or (ii) overall
survival benefit of the drug in treating patients with different baseline
severities (e.g., 2nd-line and 3rd-line oncology patients). In the first
interpretation, it is assumed that the drug has that magnitude of re-
treatment effect, which implies that the investigator should not switch
treatment at all. The second interpretation is appropriate regardless of
the re-treatment effect of the drug. For the hypotheses testing

Ho : µ1 ≥ µ2 versus Ha : µ1 < µ2,
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the test statistic is defined as

T = µ̂2 − µ̂1.

Example 9.3 Suppose that a clinical trial comparing two parallel treat-
ment groups was conducted to demonstrate that the test drug (group 2)
is better than the control (group 1) in survival. The study duration was
3.2 years and the enrollment was quick (i.e., t0 = 0). The trial protocol
allowed the investigator to switch a patient’s treatment if his/her dis-
ease progression was observed. Suppose that λ11 = 1, λ12 = 5, λ21 = 0.7,
and λ22 = 1.5. The latent mean survival times for the two groups calcu-
lated using (9.21) are µ1 = 1.2 and µ2 = 2.095 for the control and test
groups, respectively. The latent survival times indicate that the test
drug is better than the control in survival. However, if the treatment
switch is not taken into account, the mean survival will be calculated
as follows:

µ1 =
1

λ11
+

1
λ22

= 1.667

and

µ2 =
1

λ21
+

1
λ12

= 1.629,

which could lead to a wrong conclusion that the control is better than
the test drug. Therefore, it is critical to consider the switching effect in
the statistical analysis.

Note that the nonparametric method may not be appropriate for trials
with treatment switching. In this case, it is suggested that the method
of computer simulation be used. Table 9.3 presents results of computer
simulation. The results indicate that under H0, the critical point Tc for
rejecting the null hypothesis is 0.443 for the test statistic (the observed
mean survival difference). Using Tc = 0.443 to run the simulation under
Ha with N = 250 patients per group shows that the trial has 86% power
for detecting the difference. The distributions of the test statistic under
H0 and Ha are plotted in Figure 9.1. Under Ha, there is about a 3% over-
estimate of µ1 and a 3% under-estimate of µ2. There is about a 13%
under-estimate in mean difference µ2 − µ1 with a standard deviation
of 0.34. The expected standard deviation for mean survival difference

σ =
√

σ 2
1 + σ 2

2 = 1.88,

where σ 2
1 and σ 2

2 are calculated from (9.21). We can see that the method
of computer simulation improves the precision at the cost of accuracy.

Remarks For patients who are never switched regardless of treatment
failure or other reasons, the probability density function and survival



192 ADAPTIVE DESIGN METHODS IN CLINICAL TRIALS

Table 9.3 Simulation Results with Treatment Switching

Under H0 Condition

λ11 λ12 µ1 λ21 λ22 µ2 µ2−µ1

True 1 5 1.2 1 5 1.2 0.00
Mean* 1.03 5.17 1.20 1.02 5.13 1.20 0.004
SD* 0.11 1.63 .12 0.11 1.60 .12 0.22
PDs (%) 96 96
Censors (%) 5 5

Under Ha Condition

λ11 λ12 µ1 λ21 λ22 µ2 µ2−µ1

True 1 5 1.2 0.7 1.5 2.10 0.90
Mean* 1.00 5.25 1.24 0.71 1.64 2.06 0.82
SD* 0.14 1.81 0.17 0.07 0.42 0.20 0.34
PDs (%) 96 89
Censors (%) 11 12

*Mean and standard deviation of the estimates (5000 runs).
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Figure 9.1 Distribution of test statistic with n = 250 (5000 runs).
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function are given by (9.18) and (9.19), respectively. Denote Ps the pro-
portion of patients who are willing to switch. Then, the distribution of
survival time for a typical patient in the trial is given by

f̃k(t) = Ps f ∗
k + (1 − Ps) fk,

which is the unconditional distribution. For patients who already
switched and for patients who did not switch at a certain time, the
conditional distributions will be different. This case will not be studied
here. It is assumed that re-treatment of a patient with the same drug
after disease progression is not an option, and all patients will eventu-
ally develop progressed disease and switch their treatments at the time
of disease progression if the trial lasts long enough. In the simulation,
the sample size N has been adjusted several times in order to meet the
power requirement. Note that every time N changes, the critical point
also changes due to the nature of the test statistic.

9.4 Concluding Remarks

Branson and Whitehead’s method considered the use of latent event
times to model a patient’s observed survival time after switching and
the survival time that would have been observed if this patient had
not switched treatment. Their model does not take into account the
fact that a treatment switch is often based on the observed effect of
the current treatment. For example, the survival time of a patient who
switches from the active control to the test treatment might be longer
than his survival time if he had adhered to the original treatment.
Therefore, Branson and Whitehead’s model is a model for random treat-
ment switching with a constant latent hazard rate over time. In fact,
even in the case of random switching, the hazard rate increases after
the switch, and the later the switch occurs, the bigger the hazard rate
after the switch. Shao, Chang, and Chow’s method considered a gener-
alized time-dependent Cox’s proportional hazard model and provided
maximum likelihood estimates (MLE) of the parameters. However, the
method for hypothesis testing was not provided.

On the other hand, the biomarker-based mixed exponential model
provides a great flexibility for modeling. The maximum likelihood es-
timate does not require the collection of biomarker data in the trial.
Instead, the time to biomarker response can be estimated using one of
the hazard rates in the mixed exponential model. One can use the data
to improve the maximum likelihood estimates of the parameters if the
biomarker response data are available.





CHAPTER 10

Bayesian Approach

As pointed out by Woodcock (2005), Bayesian approaches to clinical tri-
als are of great interest in the medical product development community
because they offer a way to gain valid information in a manner that is
potentially more parsimonious of time, resources, and investigational
subjects than our current methods. The need to streamline the prod-
uct development process without sacrificing important information has
become increasingly apparent. Temple (2005) also indicated that the
FDA’s reviewers have already used some of the thinking processes that
involve Bayesian approaches, although the Bayesian approaches are
not implemented. In Bayesian paradigm, initial beliefs concerning a
parameter of interest (discrete or continuous) are expressed by a prior
distribution. Evidence from further data is then modeled by a likeli-
hood function for the parameter. The normalized product of the prior
and the likelihood forms so-called posterior distribution. Based on the
posterior distribution, conclusions regarding the parameter of interest
can then be drawn. The possible use of Bayesian methods in clinical tri-
als has been studied extensively in the literature in recent years. See,
for example, Brophy and Joseph (1995), Lilford and Braunholtz (1996),
Berry and Stangl (1996), Gelman, Carlin, and Rubin (2003), Spiegel-
halter, Abrams, and Myles (2004), Goodman (1999, 2005), Louis (2005),
and Berry (2005).

Bayesian approaches for dose-escalation trials have been discussed
in Chapter 4. In this chapter, our focus will be placed on the use of
different utilities of Bayesian approaches in clinical trials. In the next
section, some basic concepts of Bayesian approach such as Bayes rule
and Bayesian power are given. Section 10.2 discusses the determination
of prior distribution. In Section 10.3, Bayesian approaches to multiple-
stage design for a single-arm trial are discussed. Section 10.4 introduces
the use of Bayesian optimal adaptive designs in clinical trials. Some
concluding remarks are given in the last section of this chapter.

10.1 Basic Concepts of Bayesian Approach

In this section, basic concepts of a Bayesian approach such as Bayes
rule and Bayesian power are briefly described.
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10.1.1 Bayes rule

Let θ be the parameter of interest. Denote the prior distribution of
θ as π (θ) . Also let f (x|θ) be the sampling distribution of X given θ.

Basically, a Bayesian approach involves the following four elements:

• The joint distribution of (θ , X) , which is given by

ϕ (θ , x) = f (x|θ) π (θ) ; (10.1)

• The marginal distribution of X, which can be obtained as

m(x) =
∫

ϕ (θ , x) dθ =
∫

f (x|θ) π (θ) dθ ; (10.2)

• The posterior distribution of θ , which can be obtained by Bayes’
formula

π (θ |x) =
f (x|θ) π (θ)

m(x)
; (10.3)

• The predictive probability distribution, which is given by

P (y|x) =
∫

P (x|y, θ)π (θ |x) dθ. (10.4)

To illustrate the use of a Bayesian approach, the following exam-
ples are useful. We first consider the case where the study endpoint is
discrete.

Example 10.1 Assume that x follows a binomial distribution with the
probability of success p, i.e., X ∼ B(n, p). Also, assume that the pa-
rameter of interest p follows a beta distribution with parameters α and
β, i.e., p ∼ Beta(α, β). Thus, the prior distribution is given by

π (p) =
1

B (α, β)
pα−1 (1 − p)β−1 , 0 ≤ p ≤ 1, (10.5)

where

B (α, β) =
Γ (α) Γ (β)
Γ (α + β)

.

Furthermore, the sampling distribution of X given p is given by

f (x|p) =
(

n
x

)

px (1 − p)n−x , x = 0, 1, . . . , n. (10.6)
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Thus, the joint distribution of (p, X) is given by

ϕ (p, x) =

(n
x

)

B (α, β)
pα+x−1 (1 − p)n−xβ−1

. (10.7)

and the marginal distribution of X is given by

m(x) =

(n
x

)

B (α, β)
B (α + x, n − x + β). (10.8)

As a result, the posterior distribution of p given X can be obtained as

π (p|x) =
pα+x−1 (1 − p)n−xβ−1

B (α + x, β + n − x)
= Beta (α + x, β + n − x). (10.9)

For another example, consider the case where the study endpoint is
a continuous variable.

Example 10.2 Assume that x follows a normal distribution with mean
θ and variance σ 2/n, i.e., X ∼ N

(

θ , σ 2/n
)

. Also, assume that the pa-
rameter of interest θ follows a normal distribution with mean µ and
variance σ 2/n0, i.e., θ ∼ N

(

µ, σ 2/n0

)

. Thus, we have

π (θ |X) ∝ f (X|θ)π (θ).

As a result, the posterior distribution of θ given X can be obtained as

π (θ |X) = Ce− (X−θ)2n
2σ2 e− (θ−µ)2n0

2σ2
, (10.10)

where C is a constant with θ. It can be verified that (10.10) is a normal
distribution with mean θ n0µ+nx

n0+n and variance σ2

n0+n, i.e.,

θ |X ∼ N
(

θ
n0µ + nX

n0 + n
,

σ 2

n0 + n

)

.

Now, based on (10.10), we can make predictions concerning future val-
ues of x by taking into account for the uncertainty about its mean θ. For
this purpose, we rewrite X = (X − θ) + θ so that X is the sum of two in-
dependent quantities, i.e., (X − θ) ∼ N

(

0, σ 2/n
)

and θ ∼ N
(

µ, σ 2/n0

)

.

As a result, the predictive probability distribution can be obtained as
(see, e.g., Spiegelhalter, Abrams, and Rubin, 2004)

X ∼ N
(

µ, σ 2

(
1
n

+
1
n0

))

. (10.11)



198 ADAPTIVE DESIGN METHODS IN CLINICAL TRIALS

Note that if we observe the first n1 observations (i.e., the mean of the
first n1 observations, xn1 is known), then the predictive probability dis-
tribution is given by

X|xn1 ∼ N
(

n0µ + n1xn1

n0 + n1
, σ 2

(
1

n0 + n1
+

1
n

))

. (10.12)

The above basic Bayesian concepts can be easily applied to some clas-
sical designs in clinical trials. However, it may affect the power and
consequently sample size calculation. For illustration purposes, we con-
sider the following example.

Example 10.3 Consider a two-arm parallel-group design comparing a
test treatment and a standard therapy or an active control agent. Under
the two-arm trial, it can be verified that the power is a function of effect
size of ε (see, e.g., Chow, Shao, and Wang, 2003). That is,

power (ε) = Φ0

(√
nε

2
− z1−α

)

, (10.13)

where Φ0 is cumulative distribution function of the standard normal
distribution. Suppose the prior distribution of the uncertainty ε is π (ε).
Then the expected power is given by

Pexp =
∫

Φ0

(√
nε

2
− z1−α

)

π (ε) dε. (10.14)

In practice, a numerical integration is usually employed for evaluation
of (10.14). To illustrate the implication of (10.14), we assume a one-sided
α = 0.025 (i.e., z1−α = 1.96) and the following prior for ε

π (ε) =

{

1/3, ε = 0.1, 0.25, 0.4
0, otherwise.

. (10.15)

Conventionally, we use the mean (median) of the effect size ε̄ = 0.25
to design the trial and perform sample size calculation assuming that
ε̄ = 0.25 is the true effect size. For the two-arm balanced design with
β = 0.2 or power = 80%, the classical approach gives the following
sample size:

n =
4(z1−a + z1−β)2

ε2
=

4 (1.96 + 0.842)2

0.252
= 502. (10.16)
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On the other hand, the Bayesian approach based on the expected power
from (10.14) yields

Pexp

=
1
3

[

Φ0

(
0.1

√
n

2
− z1−α

)

+ Φ0

(
0.25

√
n

2
− z1−α

)

+ Φ0

(
0.4

√
n

2
− z1−α

)]

(10.1)

=
1
3

[

Φ0

(

0.1
√

502
2

− 1.96

)

+ Φ0

(

0.25
√

502
2

− 1.96

)

+ Φ0

(

0.4
√

502
2

− 1.96

)]

=
1
3

[Φ0 (−0.839 73) + Φ0 (0.840 67) + Φ0 (2. 521 1)]

=
1
3

(0.2005 + 0.7997 + 0.9942) = 0.664 8 = 66%. (10.17)

As it can be seen from the above, the expected power is only 66%, which
is lower than the desired power of 80%. As a result, in order to reach
the same power, the sample size is necessarily increased.

If π (ε) follows a normal distribution as N
(

µ, σ 2/n0

)

, then the ex-
pected power can be obtained using the predictive distribution by eval-
uating the chance that the critical event occurs, i.e.,

P
(

X >
1√
n

z1−ασ

)

.

This gives

Pexp = Φ
(√

n0

n0 + n

(
µ

√
n

σ
− z1−α

))

. (10.18)

As indicated earlier, the total sample size required for achieving the
desired power is a function of the effect size ε, i.e.,

n(ε) =
4(z1−a + z1−β)2

ε2
. (10.19)

Thus, the expected total sample size can be obtained as

nexp =
∫

4(z1−a + z1−β)2

ε2
π (ε) dε. (10.20)
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For a given flat prior, i.e., π (ε) ∼ 1
b−a ,where a ≤ ε ≤ b, we have

nexp =
∫ b

a

4(z1−a + z1−β)2

ε2

1
b − a

dε

=
4

ab
(z1−a + z1−β)2. (10.21)

This gives the following sample size ratio

Rn =
nexp

n
=

ε2

ab
.

As it can be seen from the above, if ε = 0.25, α = 0.025, β = 0.8, n = 502,
a = 0.1, b = 0.4 (note that (a + b)/2 = ε), then

Rn =
0.252

(0.1) (0.4)
= 1. 56.

This indicates that the frequentist approach could substantially under-
estimate the sample size required for achieving the desired power.

10.1.2 Bayesian power

For testing the null hypothesis that H0 : θ ≤ 0 against an alternative
hypothesis that Ha : θ > 0, we defined the Bayesian significance as

PB = P (θ < 0 | data) < αB.

Note that the Bayesian significance can be easily found based on the
posterior distribution. For the case where the data and the prior both
follow a normal distribution, the posterior distribution is given by

π (θ |x) = N
(

n0µ + nx
n0 + n

,
σ 2

n0 + n

)

. (10.22)

Thus, Bayesian significance can be calculated if the parameter estimate
X satisfies

X >

√
n0 + nz1−ασ − n0µ

n
. (10.23)

Note that the Bayesian power is then given by

PB (n) = Φ
(

µ
√

n0 + n
√

n0

σ
√

n
−

√
n0

n
z1−α

)

. (10.24)

Example 10.4 For illustration purposes, consider a phase II hypoten-
sion study comparing a test treatment with an active control agent.
Suppose the primary endpoint is the reduction in systolic blood pres-
sure (SBP). Assume that the estimated treatment effect is normally
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distributed, i.e.,

θ ∼ N
(

µ,
2σ 2

n0

)

.

The design is targeted to achieve the Bayesian power at (1 − βB) at the
Bayesian significance level of αB = 0.2. For the sample size, the sample
mean difference

θ̂ ∼ N
(

θ ,
2σ 2

n

)

,

where n is the sample size per group. For a large sample size, we can
assume that σ is known. In this case, the sample size n is the solution
of the following equation:

Φ
(

µ
√

n0 + n
√

n0

σ
√

2n
−

√
n0

n
z1−αB

)

= 1 − βB. (10.25)

This leads to
µ

√
n0 + n

√
n0√

2n
−

√
n0

n
z1−αB = z1−βB. (10.26)

The above can be rewritten as follows:

An + B
√

n + C = 0, (10.27)

where






A = z2
1−βB

− µ2n0,
B = 2 z1−βBz1−α

√
2n0,

C = 2z2
1−αn0 − µ2n2

0.

(10.28)

As a result, we can solve (10.27) for n, which is given by

n =

(

−B +
√

B2 − 4AC
2A

)2

(10.29)

10.2 Multiple-Stage Design for Single-Arm Trial

As indicated in Chapter 6, in phase II cancer trials, it is undesirable to
stop a study early when the test drug is promising, and it is desirable
to terminate the study as early as possible when the test treatment is
not effective due to ethical consideration. For this purpose, a multiple-
stage design single-arm trial is often employed to determine whether
the test treatment is promising for further testing. For a multiple-
stage single-arm trial, the classical method and the Bayesian approach
are commonly employed. In this section, these two methods are briefly
described.
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10.2.1 Classical approach for two-stage design

The most commonly used two-stage design in phase II cancer trials is
probably Simon’s optimal two-stage design (Simon, 1989). The concept
of Simon’s optimal two-stage design is to permit early stopping when a
moderately long sequence of initial failure occurs. Thus, under a two-
stage trial design, the hypotheses of interest are given below:

H0 : p ≤ p0 versus Ha : p ≥ p1,

where p0 is the undesirable response rate and p1 is the desirable re-
sponse rate (p1 > p0). If the response rate of a test treatment is at the
undesirable level, one may reject it as an ineffective treatment with a
high probability, and if its response rate is at the desirable level, one
may not reject it as a promising compound with a high probability. Note
that under the above hypotheses, the usual type I error is the false posi-
tive in accepting an ineffective drug and the type II error is the false
negative in rejecting a promising compound.

Let n1 and n2 be the number of subjects in the first and second stage,
respectively. Under a two-stage design, n1 patients are treated at the
first stage. If there are fewer than r1 responses, then stop the trial.
Otherwise, additional n2 patients are recruited and tested at the sec-
ond stage. A decision regarding whether the test treatment is promising
is then made based on the response rate of the n = n1+n2 subjects. Note
that the rejection of H0 (or Ha) means that further (or not further) study
of the test treatment should be carried out. Simon (1989) proposed to se-
lect the optimal two-stage design that achieves the minimum expected
sample size under the null hypothesis. Let nexp and Pet be the expected
sample size and the probability of early termination after the first stage.
Thus, we have

nexp = n1 + (1 − Pet)n2.

At the end of the first stage, we would terminate the trial early and
reject the null hypothesis if r1 or fewer responses are observed. As a
result, Pet is given by

Pet = Bc(r1; n1, p),

where Bc(r1; n1, p) denotes the cumulative binomial distribution that
X ≤ r1. Thus, we reject the test treatment at the end of the second
stage if r or fewer responses are observed. The probability of rejecting
the test treatment with success probability p is then given by

Bc(r1; n1, p) +
min(n1,r)

∑

x=r1+1

B(x; n1, p)Bc(r − x; n2, p),
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where B(x; n1, p) denotes the binomial probability density function. For
specific values of p0, p1, α, and β, Simon’s optimal two-stage design can
be obtained as the two-stage design that satisfies the error constraints
and minimizes the expected sample size when the response rate is p0.

Example 10.5 Assume the undesirable and desirable response rates
under the null hypothesis and the alternative hypothesis are given by
0.05 and 0.25, respectively. For a given one-sided α = 0.05 with a desired
power of 80%, we obtain the sample size and the operating character-
istics as follows. The sample size required at stage 1 is n1 = 9. The
cumulative sample size at stage 2 is n = 17. The actual overall α and
the actual power are given by 0.047 and 0.812, respectively. The stop-
ping rules are specified as follows. At stage 1, stop and accept the null
hypothesis if the response rate is less than or equal to 0/9. Otherwise,
continue to stage 2. The probability of stopping for futility is 0.63 when
H0 is true and 0.075 when Ha is true. At stage 2, stop and accept the null
hypothesis if the response rate is less than or equal to 2/17. Otherwise,
stop and reject the null hypothesis.

10.2.2 Bayesian approach

Assume that X ∼ B (n, p) and p ∼ Beta (a, b). At the first stage with
n1 subjects, the posterior distribution of p given X is given by

π1 (p|x) = Beta (a + x, b + n1 − x). (10.30)

Similarly, at the end of the second stage with n subjects, the posterior
distribution of p given X is

π (p|x) = Beta (a + x, b + n − x). (10.31)

As a result, the cutoff point for stopping the trial is chosen in a way such
that the Bayesian power at the first stage is (1 − β1) at Bayesian sig-
nificance level of αB1. Similarly, the n is chosen such that the Bayesian
power at the second stage is (1 − β) at Bayesian significance level αB.
Based on (10.30) and (10.31), conditional power and predictive power
can be derived. Given X out of n1 patients who respond at the first
stage, the probability (or conditional power) of having at least y addi-
tional responses out of the n2 additional patients at the second stage is
given by

P (y|x, n1, n2) =
n2∑

i=y

(

n2

i

)(
x
n1

)i (

1 − x
n1

)n2−i

. (10.32)

However, Bayesian approach provides a different look. Assume that the
prior follows a binomial prior distribution p ∈ [0, 1]. Thus, the sampling
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distribution of X given p is given by

P(X = x|p) =
(

n1

x

)

px(1 − p)n1−x.

Since

P(a < p < b ∩ X = x) =
∫ b

a

(
n1

x

)

px(1 − p)n1−xdp,

and

P(X = x) =
∫ 1

0

(
n1

x

)

px(1 − p)n1−xdp,

the posterior distribution of p given X can be obtained as

P(a < p < b | X = x) =

∫ b
a

(n1
x

)

px(1 − p)n1−xdp
∫ 1

0

(n1
x

)

px(1 − p)n1−xdp

=

∫ b
a px(1 − p)n1−xdp

B(x + 1, n1 − x + 1)
,

where

B(x + 1, n1 − x + 1) =
Γ(x + 1)Γ(n1 − x + 1)

Γ(n1 + 2)
.

Thus, the posterior distribution of p conditionally on X = x responses
out of n1 is a Beta distribution, i.e.,

π(p|x) =
px(1 − p)n1−x

B(x + 1, n1 − x + 1)
. (10.33)

As a result, the predictive power (which is different from the frequen-
tist’s conditional power) or the predictive probability of having at least
y responders out of additional m patients, given the observed response
rate of x/n1 at the first stage, is given by

P (y|x, n1, n2) =
∫ 1

0

P(X ≥ k|p, n2)π (p|x) dp

=
∫ 1

0

n2∑

i=y

(
n2

i

)

pi(1 − p)n2−i px(1 − p)n1−x

B(x + 1, n1 − x + 1)
dp. (10.34)

Carrying out the integration, we have

P (y|x, n1, n2) =
n2∑

i=y

(
n2

i

)
B(x + i + 1, n2 + n1 − x − i + 1)

B(x + 1, n1 − x + 1)
.
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Note that the above results follow directly from the fact that
∫ 1

0

pa (1 − p)b dp = B(a + 1, b + 1). (10.35)

As a result, the conditional and/or predictive power can be used to design
the sequential or other adaptive designs.

10.3 Bayesian Optimal Adaptive Designs

In practice, different adaptations and choices of priors with many possi-
ble probabilistic outcomes (good or bad) could lead to different types of
adaptive designs. How to select an efficient adaptive design among these
designs has become an interesting question to the investigators. In this
section, we propose to evaluate so-called utility index for choosing a
Bayesian optimal adaptive design. The utility index is an indicator of
patients’ health outcomes. Bayesian optimal design is a design that has
maximum expected utility under financial, time, and other constraints.

For illustration purposes, we apply the approach for choosing a Baye-
sian optimal design among the three commonly considered two-arm
designs in pharmaceutical research and development. The three com-
monly considered two-arm trial designs include a classical approach
of two separate two-arm designs (i.e., a two-arm phase II design fol-
lowed by a two-arm phase III design) and two different seamless phase
II/III designs, which are group sequential designs with O’Brien-Fleming
boundary and Pocock boundary, respectively. For each design, we calcu-
late the utility index and weighted by its prior probability to obtain the
expected utility for the design. For a given design, the Bayesian optimal
design is the one with maximum utility. For convenience’s sake, we con-
sider three scenarios of prior knowledge, which are given in Table 10.1.

Assume that there is no dose selection issue (i.e., the dose has been
determined by the toxicity and biomaker response in early studies). For
the classical approach of two separate two-arm designs, we consider a
phase IIb and a phase III (assuming that one phase III study is sufficient
for regulatory approval). For the phase II study, we assume δ = 0.2, one-
sided α = 0.1 and power = 0.8. Thus, the total sample size required is

Table 10.1 Prior Knowledge

Scenario Effect Size Prior Prob.

1 0 0.2
2 0.1 0.2
3 0.2 0.6
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Table 10.2 Characteristics of Classic Phase II and III Designs

Prob. of Continue Phase III
Scenario, i Effect Size Prior Prob. π to Phase III, Pc Power, P3

1 0 0.2 0.1 0.025
2 0.1 0.2 0.4 0.639
3 0.2 0.6 0.9 0.996

n1 = 450. For the phase III trial, we assume

δ = 0.2(0) + 0.2(0.1) + 0.6(0.2)
= 0.14,

which was calculated from Table 10.1. Furthermore, assuming that α =
0.025 (one-sided) and power = 0.9, the total sample size required is
n = 2144. If the phase II study didn’t show any statistical significance,
we will not conduct the phase III trial. Note that the rule is not always
followed in practice. The probability that continues to phase III is the
weighted continual probability given in Table 10.2, i.e.,

Pc =
3∑

i=1

Pc (i)π(i)

= 0.2 (0.1) + 0.2 (0.4) + 0.6(0.9)
= 0.64.

Thus, the expected sample size for phase II and phase III trials as a
whole is given by

N̄ = (1 − Pc) n1 + Pcn
= (1 − 0.62)(450) + 0.62 (2144)
= 1500.

The overall expected power is then given by

P̄ =
3∑

i=1

Pc(i)π(i)P3(i)

= (0.2)(0.1)(0.025) + (0.2)(0.4)(0.639) + (0.6)(0.9)(0.996)
= 0.59

In conclusion, the classical approach for separate phase II and phase
III designs (i.e., a phase II design followed by a phase III design) has
an overall power of 59% with expected total (combined) sample size of
1500. On the other hand, for seamless phase II/III designs, we assume
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Table 10.3 Characteristics of Seamless Phase II/III
Design with OB Boundary

Scenario, i Effect Size Prior Prob. π Nexp Power

1 0 0.2 1600 0.025
2 0.1 0.2 1712 0.46
3 0.2 0.6 1186 0.98

(i) δ = 0.14, (ii) one-sided α = 0.025, (iii) power = 0.90, (iv) O’Brien-
Fleming efficacy stopping boundary, and (v) symmetrical futility stop-
ping boundary. Suppose there is one planned interim analysis when 50%
of patients are enrolled. Thus, this design has one interim analysis and
one final analysis. Thus, we have:

• The sample sizes for the two analyses are 1,085, and 2,171,
respectively.

• The sample size ratio between the two groups is 1.
• The maximum sample size for the design is 2,171.
• Under the null hypothesis, the expected sample size is 1,625.
• Under the alternative hypothesis, the expected sample size is

1,818.

The decision rules are specified as follows. At stage 1, accept the null
hypothesis if z1 < 0. We would reject the null hypothesis if z1 ≥ 2.79;
Otherwise, continue. At stage 2, accept the null hypothesis if z < 1.974
and reject the null hypothesis if z ≥ 1.97. The stopping probabilities at
the first stage are given by

• Stopping for H0 when H0 is true is 0.5000,
• Stopping for Ha when H0 is true is 0.0026,
• Stopping for H0 when Ha is true is 0.0105,
• Stopping for Ha when Ha is true is 0.3142.

The operating characteristics are summarized in Table 10.3.
Furthermore, the average total expected sample size can be obtained as

∑

π (i) Nexp (i) = 0.2(1600) + 0.2(1712) + 0.6(1186)

= 1374.
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Table 10.4 Characteristics of Seamless Phase II/III
Design with Pocock Boundary

Scenario, i Effect Size Prior Prob. π Nexp Power

1 0 0.2 1492 0.025
2 0.1 0.2 1856 0.64
3 0.2 0.6 1368 0.996

and the average power is given by
∑

π (i) Nexp (i) Power (i) = 0.2(0.025) + 0.2(0.46) + 0.6(0.98)

= 0.69.

Now, consider another type of adaptive seamless phase II/III trial
design using Pocock’s efficacy stopping boundary and the symmetric fu-
tility stopping boundary. Based on the same parameter specifications,
i.e., α = 0.025, power = 0.9, mean difference = 0.14, and standard devi-
ation = 1, we have:

• The sample sizes for the two analyses are 1,274, and 2,549,
respectively.

• The sample size ratio between the two groups is 1.
• The maximum sample size for the design is 2,549.
• Under the null hypothesis, the expected sample size is 1,492.
• Under the alternative hypothesis, the expected sample size is

1,669.

The decision rules are specified as follows. At stage 1, accept the null
hypothesis if the p-value > 0.1867 (i.e., z1 < 0.89). We would reject the
null hypothesis if p-value ≤ 0.0158 (i.e., z1 ≥ 2.149); otherwise, con-
tinue. At stage 2, accept the null hypothesis if the p-value > 0.0158
(i.e., z = 2.149) and reject the null hypothesis if the p-value ≤ 0.0158.
The stopping probabilities at the first stage are given by

• Stopping for H0 when H0 is true is 0.8133,
• Stopping for Ha when H0 is true is 0.0158,
• Stopping for H0 when Ha is true is 0.0538,
• Stopping for Ha when Ha is true is 0.6370.

Other operating characteristics are summarized in Table 10.4.
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Table 10.5 Comparison of Classic and Seamless Designs

Design Nmax Average Nexp Average Power Expected utility

Classic 1500 0.59 $0.515B
OB 1374 0.69 $0.621B
Pocock 1490 0.73 $0.656B

Furthermore, the average total expected sample size can be obtained
as

∑

π (i) Nexp (i) = 0.2(1492) + 0.2(1856) + 0.6(1368)

= 1490,

and the average power is given by
∑

π (i) Nexp (i) Power (i) = 0.2(0.025) + 0.2(0.64) + 0.6(0.996)

= 0.73.

In addition, we may compare these designs from the financial per-
spective. Assume that the pre-patient cost of the trial is about $50K
and the value of regulatory approval before deducting the cost of the
trial is $1B. For simplicity, potential time savings are not included in
the calculation. We consider the following expected utility

Expected utility = (average power)($80M) − (average Nexp)($50K).

Table 10.5 summarizes the comparison of the classical separate phase
II and phase III design and the two seamless phase II/III designs using
O’Brien-Fleming boundary and Pocock boundary.

As it can be seen from Table 10.5, Pocock’s design is the best among
the three designs based on power or the expected utility.

10.4 Concluding Remarks

The Bayesian approach has several advantages in pharmaceutical de-
velopment. First, it provides the opportunity to continue updating the
information/knowledge regarding the test treatment under study.
Second, Bayesian approach is a decision-making process that specifi-
cally ties to a particular trial, a clinical development program, and a
company’s portfolio for pharmaceutical development. In practice, regu-
latory agencies require the type I error rate be controlled with many ex-
ternally mandated restrictions when implementing a Bayesian
design, which might decrease the application of Bayesian methods in
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clinical trials. In essence, once Bayesian methods become more
familiar to clinical scientists, they will face fewer externally mandated
restrictions.

In the past several decades, the process of pharamaceutical develop-
ment has been criticized for not being able to bring promising and safe
compounds to the marketplace in a timely fashion. As a result, there is
increasing demand from political bodies and consumer groups to make
drug development more efficient, safer, and yet faster. However, it is
a concern that we may abandon fundamental scientific principles for
pharmaceutical (clinical) research and development. Alternatively, it
is suggested that a Bayesian approach be used because it will lead to
more rapid and more economical drug development without sacrificing
good science. However, the use of Bayesian approach in pharmaceu-
tical development is not widely accepted by the regulatory agencies
such as the U.S. FDA, although it has been used more in certain ther-
apeutic areas of medical device development. It should be noted that
the Bayesian approach is useful for some diseases such as cancer in
which there is a burgeoning number of biomarkers available for mod-
elling the disease’s progress. These biomarkers will enable a patient’s
disease progression to be monitored more accurately. Consequently, a
more accurate assessment of the patient’s outcome can be made. In re-
cent years, trials in early phases of clinical development (e.g., phases I
or II) are becoming increasingly Bayesian, especially in the area of on-
cology. Moreover, strategic planning and portfolio management such as
formal utility assessment and decision-making processes in some phar-
maceutical companies are becoming increasingly Bayesian. The use of
the Bayesian approach in various phases of pharmaceutical develop-
ment will become evident to the decision makers in the near future.



CHAPTER 11

Clinical Trial Simulation

Clinical trial simulation is a process that uses computers to mimic the
conduct of a clinical trial by creating virtual patients and extrapolating
(or predicting) clinical outcomes for each virtual patient based on the
pre-specified models (Li and Lai, 2003). The primary objective of clin-
ical trial simulation is multi-fold. First, it is to monitor the conduct of
the trial, project outcomes, anticipate problems, and recommend reme-
dies before it is too late. Second, it is to extrapolate (or predict) the
clinical outcomes beyond the scope of previous studies from which the
existing models were derived using the model techniques. Third, it is to
study the validity and robustness of the trial under various assumptions
of study designs. Clinical trial simulation is often conducted to verify
(or confirm) the models depicting the relationships between the inputs
such as dose, dosing time, patient characteristics, and disease severity
and the clinical outcomes such as changes in the signs and symptoms
or adverse events within the study domain. In practice, clinical trial
simulation is often considered to predict potential clinical outcomes un-
der different assumptions and various design scenarios at the planning
stage of a clinical trial for better planning of the actual trial.

Clinical trial simulation is a powerful tool in pharmaceutical develop-
ment. The concept of clinical trial simulation is very intuitive and easy
to implement. In practice, clinical trial simulation is often considered a
useful tool for evaluation of the performance of a test treatment under
a model with complicated situations. It can achieve the goal with mini-
mum assumptions by controlling type I error rate effectively. It can also
be used to visualize the dynamic trial process from patient recruitment,
drug distribution, treatment administration, and pharmacokinetic pro-
cesses to biomarker development and clinical responses. In this chapter,
we will review the application of clinical trial simulations in both early
and late phases of pharmaceutical development.

In the next section, the framework of a clinical trial simulation is
briefly outlined. Section 11.2 provides an overview of commonly em-
ployed clinical trial simulations in early phases clinical development,
while Section 11.3 discusses some theoretical and practical issues that
are commonly encountered when conducting clinical trial simulations
in late phases clinical development. Section 11.4 introduces a software
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product developed by CTriSoft Intl for clinical trial simulation with
demonstration. A number of examples concerning early and late phase
development are given in Section 11.5. A brief concluding remark is
given in the last section.

11.1 Simulation Framework

The framework of clinical trial simulation is rather simple. It consists of
trial design, study objectives (hypotheses), model, and statistical tests.
For the trial design, critical design features such as (i) a parallel design
or a crossover design, (ii) a balanced or unbalanced design, (iii) the
number of treatment groups, and (iv) adaptation algorithms need to
be clearly specified. For the trial design, hypotheses such as testing
for equality, superiority, or non-inferiority/equivalence can then be for-
mulated for achieving the study objectives. A statistical model is nec-
essarily implemented to generate virtual patients and extrapolate (or
predict) clinical outcomes. We can then evaluate the performance of the
test treatment through the study of statistical properties of the statis-
tical tests derived under the null and alternative hypotheses.

More specifically, we begin a clinical trial simulation by choosing a
statistical model under a valid trial design with various assumptions
according to the trial setting. We then simulate the trial by creating
virtual patients and generating the clinical outcomes for each virtual
patient based on the model specifications under the null hypothesis of
H0 for a large number of times (say m times). For each simulation run,
we calculate the test statistic. The m test statistic values constitute a
distribution of the test statistic numerically. Similarly, we repeat the
process to simulate the trial under the alternative hypothesis of Ha m
times. The m test statistic values obtained represent the distribution of
the test statistic under the alternative hypothesis. These two distribu-
tions can be used to determine the critical region for a given α level of
significance, p-value for a given data, and the corresponding power for
the given critical region. To provide a better understanding, Figure 11.1
provides the flowchart of the general simulation framework.

Note that the computer simulation starts with generating data un-
der the null hypothesis. The data are often generated from a simple
distribution such as a normal distribution for continuous variables, a
binary distribution for discrete variables, and an exponential distri-
bution for time-to-event data. The generation of simulated data occurs
only once per simulation run. The adaptive algorithm is usually applied
later for the case of a sequential trial design or an N-adjustable design
(sample size re-estimation). In some cases such as response-adaptive
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Figure 11.1 Simulation framework.

randomization, the randomization may have to be generated step-by-
step. It should be noted that under the above mentioned framework,
other operating characteristics such as stopping boundary and condi-
tional probability can also be obtained.

11.2 Early Phases Development

Clinical trial simulation has been widely used in early phases develop-
ment such as pharmacokinetic and pharmacodynamic (PK/PD) mod-
eling, assessment of QT/QTc prolongation, and optimal dose-finding
strategies (Kimko and Duffull, 2003). To illustrate the application of
simulation in early phase clinical trials, we will focus on an early phase
oncology study (e.g., dose-escalation trial) because (i) typically there
are only a very small number of patients involved due to potential high
risk of toxicity of the test drug (how to obtain a precise estimation of the
dose-toxicity relationship is challenging to the investigator); (ii) the tra-
ditional escalation methods are ad hoc and lack scientific or statistical
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justification (the reliability of the traditional escalation method is al-
ways a concern to the investigator); (iii) many approaches based on
clinical trial simulation have been proposed in the literature. See, for
example, O’Quigley, Pepe, and Fisher (1990), Crowley (2001), CTriSoft
Intl (2002), and Babb and Rogatko (2004). Our intention is not only to
review or compare these methods and make a recommendation, but also
to use several typical methods as vehicles to illustrate the application
of clinical trial simulation.

In a typical early phase dose escalation trial, we often begin with a
treatment at a low dose that is very likely to be safe. Then, a small num-
ber of cohorts of patients are treated at progressively higher doses until
drug-related toxicity reaches a pre-determined level. The primary objec-
tives are not only to determine the maximum tolerated dose (MTD), but
also to characterize the dose limiting toxicity (DLT) of the test treatment
under investigation. In what follows, key study parameters that are
necessarily specified when conducting a simulation for dose-escalation
trial are briefly described.

11.2.1 Dose limiting toxicity (DLT) and maximum tolerated dose (MTD)

The definitions of dose limiting toxicity (DLT) and maximum tolerable
dose (MTD) need to be specified in a simulation for dose-escalation trial.
As indicated in Chapter 5, drug toxicity is considered tolerable if the
toxicity is acceptable, manageable, and reversible. A dose limiting toxi-
city (DLT) is defined based on the Common Terminology Criteria (CTC).
For example, any AE from the CTC categories of grade 3 or higher re-
lated to treatment is considered a DLT. The maximum tolerated dose
(MTD) is defined as a dose level at which DLT occurs with at least a
certain frequency, e.g., one-third.

11.2.2 Dose-level selection

Next, we need to select initial dose for the simulation. As discussed in
Chapter 5, the commonly used starting dose is the dose at which 10%
mortality (LD10) occurs in mice. The subsequent dose levels are usually
selected based on the following multiplicative set, xi = fi−1xi−1 (i =
1, 2, . . .k), where fi is the dose-escalation factor. Two commonly used
sequences of dose-escalation factors are the Fibonacci numbers (2, 1.5,
1.67, 1.60, 1.63, 1.62, 1.62, . . . ) and modified Fibonacci numbers (2, 1.65,
1.52, 1.40, 1.33, 1.33, . . . ). Note that the highest dose level in the
trial should be selected such that it covers the biologically active
dose.
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11.2.3 Sample size per dose level

In principle, the number of patients to be treated per dose level should
be small enough to limit any potential safety issues, but large enough to
allow the investigators to determine the optimal dose levels. In practice,
recommendations may vary between one and eight patients per dose
level. It is suggested that three to six patients per lower dose level or a
minimum of three per dose level and a minimum of five near the MTD
be included. This information is necessarily provided for the conduct of
the clinical trial simulation.

11.2.4 Dose-escalation design

For the clinical trial simulation, we need to specify which dose-escalation
design will be used. Commonly employed dose-escalation designs
include (i) the traditional dose-escalation design and (ii) two-stage dose-
escalation design. As indicated in Chapter 5, the traditional dose-
escalation design utilizes the traditional escalation rules (TER) or strict
traditional escalation rules (STER). Two-stage dose-escalation design
utilizes a two-stage escalation algorithm (TSER), where in the first
stage, only a single patient is treated at each dose level. When a DLT
is observed, the traditional “3 + 3” rule is applied.

If the continual reassessment method (CRM) is to be used, the dose
toxicity model and prior distribution of the parameters should be spec-
ified. In practice, the logistic model p(x) = [1 + bexp(−ax)]−1 is often
utilized, where p(x) is the probability of toxicity associated with dose
x, and a and b are positive parameters to be determined. The updated
dose toxicity model is then used to determine the dose level for the next
patient.

11.3 Late Phases Development

Although clinical trial simulation has been used for several decades, it
has not received much attention until recently (Maxwell, Domenet, and
Joyce, 1971; Parmigiani, 2002; Kimko and Duffull, 2003). Since clinical
trial simulation is useful in evaluating very complicated models with
minimum assumptions, it has become a very popular tool for searching
for an optimal trial design in late phases clinical development. In this
section, we will focus on the simulation for adaptive designs discussed
in the previous chapters of this book because statistical theory of an
adaptive design could be very complicated with limited analytical so-
lutions under some strong assumptions. Besides, in some complicated
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adaptive designs, analytical solutions might not exist. Similarly, when
conducting a simulation for adaptive trial designs, key adaptation rules
are necessarily specified, which are briefly described below.

11.3.1 Randomization rules

In clinical trials, it is desirable to randomize more patients to superior
treatment groups. This can be accomplished by increasing the proba-
bility of assigning a patient to the treatment group when the evidence
of responsive rate increases in a group. The response-adaptive ran-
domization rule can be the randomized-play-the-winner or utility offset
model. Response-adaptive randomization requires unblinding the data,
which may not feasible at real time. There is often a delayed response,
i.e., randomizing the next patient before knowing responses of previ-
ous patients. Therefore, it is practical to unblind the data several times
during the trial, i.e., group sequential response-adaptive randomiza-
tion, instead of fully sequential adaptive randomization.

11.3.2 Early stopping rules

It is desirable to stop a trial when the efficacy or futility of the test
drug becomes obvious during the trial. To stop a trial prematurely, we
provide a threshold for the number of subjects randomized and at least
one of the following:

(1) Utility rules: The difference in response rate between the most
responsive group and the control group exceeds a threshold,
and the corresponding two-sided 95% naive confidence interval
lower bound exceeds a threshold.

(2) Futility rules: The difference in response rate between the
most responsive group and the control is lower than a thresh-
old, and the corresponding two-sided 90% naive confidence in-
terval upper bound is lower than a threshold.

11.3.3 Rules for dropping losers

In addition to the response-adaptive randomization, you can also im-
prove the efficiency of a trial design by dropping some inferior groups
(losers) during the trial. To drop a loser, we provide two thresholds for
(1) maximum difference in response rate between any two dose levels,
and (2) the corresponding two-sided 90% naive confidence lower bound.
We may choose to retain all the treatment groups without dropping a
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loser and/or to retain the control group with a certain randomization
rate for the purpose of statistical comparisons between the active groups
and the control.

11.3.4 Sample size adjustment

Sample size determination requires anticipation of the expected treat-
ment effect size defined as the expected treatment difference divided by
its standard deviation. It is not uncommon that the initial estimation
of the effect size turns out to be too large or small, which consequently
leads to an under-powered or over-powered trial. Therefore, it is desir-
able to adjust the sample size according to the effect size for an on-going
trial. The sample size adjustment is determined by a power function of
treatment effect size, i.e.,

N = N0

(
E0max

Emax

)a

, (11.1)

where N is the newly estimated sample size, N0 the initial sample size,
and a a constant. The effect size Emax is defined as

Emax =
pmax − p1

σ 2
; σ 2 = p̄(1 − p̄); p̄ =

pmax + p1

2
;

pmax and p1 are the maximum response rates, respectively, and the
control response rate, and E0max is the initial estimation of Emax.

11.3.5 Response–adaptive randomization

Conventional randomization refers to any randomization procedure with
a constant treatment allocation probability such as simple randomiza-
tion. Unlike the conventional randomization, response-adaptive ran-
domization is a randomization in which the probability of allocating a
patient to a treatment group is based on the response of the previous
patients. The purpose is to improve the overall response rate in the trial.
There are many different algorithms such as random-play-the-winner
(RPW), the utility-offset model, and the maximum utility model. The
generalized randomized-play-the-winner denoted by RPW(n1, n2, . . . , nk;
m1, m2, . . . , mk) can be described as follows.

• Step 1: Place ni balls of the ith color (corresponding to the
ith treatment) into an urn (i = 1, 2, . . . , k), where k is number
of treatment groups. There are initially N =

∑
ni balls in

the urn.
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Table 11.1 Bias in Rate Due to Adaptive Randomization

Dose Level 1 2 3 4 5

Target rate 0.5 0.1 0.2 0.7 0.55
Number of patients 130 14 23 362 171
Observed rate 0.47 0.08 0.16 0.7 0.53
Standard deviation 0.10 0.08 0.10 0.05 0.08
Bias in rate 0.03 0.02 0.04 0.00 0.02

N = 700; 10,000 simulations.

• Step 2: Randomly choose a ball from the urn. If it is the ith
color, assign the next patient to the ith treatment group.

• Step 3: Add mk balls of the ith color to the urn for each response
observed in the ith treatment. This creates more chances for
choosing the ith treatment.

• Step 4: Repeat Steps 2 and 3.

When ni = n and mi = m for all i, we simply write RPW(n, m) for
RPW(n1, n2, . . . , nk; m1, m2, . . . , mk).

Note that the commonly used estimators that are based on the as-
sumption of independent samples are often biased due to adaptive ran-
domization RPW(1,1). See Table 11.1.

11.3.6 Utility-offset model

To have a high probability of achieving target patient distribution among
the treatment groups, the probability of assigning a patient to a group
should be proportional to the corresponding predicted or observed re-
sponse rate minus the proportion of patients that have been assigned
to the group, i.e.,

Pr(i) =

{
1
k , SR = 0,
1
c max

{

0,
(

Ri
SR

− ni
N

)}

, SR > 0,
(11.2)

where the normalization factor

c =
∑

i

(
Ri

SR
− ni

N

)

,
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Table 11.2 Comparisons of Simulations Results

N Dose Level 1 2 3 4 5

Target rate 0.02 0.07 0.37 0.73 0.52
50 Predicted rate 0.02 0.07 0.40 0.65 0.41
30 Predicted rate 0.02 0.07 0.40 0.63 0.40
20 Predicted rate 0.02 0.07 0.37 0.58 0.38

ni is the number of patients that have been randomized to the ith group,
Ri is the observed response rate for the ith group,

SR =
k∑

i=1

Ri,

k is the number of dose groups and N is the total estimated number
of patients in the trial. The maximum utility model for the adaptive-
randomization always assigns the next patient to the group that has
the highest response rate based on current estimation of either the
observed or model-based predicted response rate.

11.3.7 Null-model versus model approach

It is interesting to compare model and null-model approaches. When
the sample size is larger than 20 per group, there is no obvious advan-
tage of using the model-based method with respect to the precision and
accuracy (Table 11.2). Therefore, a null-model approach will be used in
the subsequent simulations.

11.3.8 Alpha adjustment

The α-adjustment is required when (i) there are multiple comparisons
with more than two groups involved, (ii) there are interim looks, i.e.,
early stopping for futility or efficacy, and (iii) there is a response-
dependent sampling procedure such as response-adaptive randomiza-
tion and unblinded sample size re-estimation. When samples or ob-
servations from the trial are not independent, the response data are
no longer normally distributed. Therefore, the p-value from a normal
distribution assumption should be adjusted, or equivalently the alpha
should be adjusted if the p-value is not adjusted. For the same reason,
the other statistic estimates from normal assumption should also be
adjusted.
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Table 11.3 Alpha Inflation/Deflation

Randomization Inflated FWE α Adjusted α

RPW(1,0) 0.146 0.015
RPW(1,1) 0.143 0.007

Note: Five group with total N = 100. H0 Rate = 0.5.

The adjusted alpha can be found easily using simulation (See exam-
ple, Table 11.3). Run simulations under the null hypothesis H0 to find
the adjusted alpha for the pairwise comparisons such that family-wise
error rate = 0.025. Then run simulations under the alternative hypoth-
esis Ha using the adjusted alpha to find the power for various sample
sizes and other scenarios.

11.4 Software Application

In this section, we will introduce the application of clinical trial sim-
ulation through a software ExpDesign Studio® developed by CTriSoft
Intl (2002) with demonstration (www.CTriSoft.net).

11.4.1 Overview of ExpDesign Studio

ExpDesign Studio is an integrated environment for designing clini-
cal trials. It is a user-friendly statistical software that consists of five
main components. These main components include Conventional Trial
Design (CTD), Sequential Trial Design (STD), Multi-Stage Trial De-
sign (MSTD), Dose-Escalation Trial Design (DETD), and Adaptive Trial
Design (ATD). Conventional trial design is probably the most com-
monly used design in practice. There are over 160 procedures for sam-
ple size calculation in CTD for various trial designs. STD covers a
broad range of sequential trials including methods for different num-
bers of experiment groups, different endpoints (e.g., mean, proportion,
and survival), different hypotheses (e.g., test for difference and equiv-
alence), and different stopping boundaries. MSTD provides three op-
timal designs, namely minimax (MinMax) design, MinExp, and max-
imization of utility (MaxUtility) design. These designs minimize the
maximum sample size, the expected sample size, and maximize the
utility index, respectively. DETD provides researchers with an efficient
way to search the optimal design for dose-escalation trials with differ-
ent criteria by means of computer simulations. It includes the tradi-
tional escalation rules, restricted escalation rules, two-stage escalation
algorithms, and customized algorithms with varieties of dose intervals
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Figure 11.2 The ExpDesign integrated environment.

such as Fibonacci, modified Fibonacci series, and the customized dose
interval series. It also provides three different toxicity models. ATD in
ExpDesign Studio allows a user to simulate trials under specific adap-
tive designs. One can use response-adaptive randomization to assign
more patients to superior treatment groups or drop the losers (or the
inferior groups). One may stop a trial prematurely to claim efficacy
or futility based on the observed data. One may also modify sample
size based on observed treatment difference. One may also conduct
simulations using Bayesian or frequentist modeling approaches or a
non-parametric approach. All design reports are generated through an
automated procedure.

ExpDesign Studio covers many statistical tools required for design-
ing a trial. It is helpful to get familiar with the functions of the icons on
the toolbar. The black-white icons on the left-hand side of the toolbar
are standard for all word processors. The first group of the four color
icons is the starting point to launch the four different types of designs:
Conventional Trial Design, Sequential Trial Design, Multi-Stage Trial
Design, and Dose-Escalation Trial Design (see Figures 11.2 and 11.3).
Alternatively, one may click one of the four buttons in the ExpDesignTM
Studio to start the corresponding design. The next set of three color icons
are for launching Design Example, Computing Design Parameters, and
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Figure 11.3 ExpDesign start window.

generating Design Report. Following these are four color icons for the
toolkits including Graphic Calculator, Distribution Calculator, Confi-
dence Interval Calculator, and TipDay. One can move the mouse over
any icon on the toolbar to see the Tiptext, which describes what the icon
is for.

11.4.2 How to design a trial with ExpDesign studio

To get started, we first double-click on ExpDesign Studio icon. Then,
on the ExpDesign start window, we select the trial design we wish to
implement.

11.4.3 How to design a conventional trial

To design a conventional trial, we simply follow the following steps.

• Step 1: Click Conventional Trial Design on the toolbar.
• Step 2: Select the desired option from Design Option Panel.
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Figure 11.4 The conventional design window.

• Step 3: Select a method from the list of methods available.
• Step 4: Enter appropriate values for the selected design.
• Step 5: Click on Compute to calculate the required sample size.
• Step 6: Click on Report to view the report of the selected design.
• Step 7: Click on Print to print the desired output.
• Step 8: Click on Copy-Graph to copy the graph and use Paste or

Paste-Special under Edit menu to paste it to other applications
(Figure 11.4).

11.4.4 How to design a group sequential trial

To design a group sequential trial, we simply follow the following steps.

• Step 1: Click on Group Sequential Design on the toolbar.
• Step 2: Select the desired option from the Design Option Panel.
• Step 3: Select a method from the list of methods available.
• Step 4: Enter appropriate values for the selected design.
• Step 5: Click on Compute to generate the design.
• Step 6: Click on Report to view the design report.
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Figure 11.5 Sequential design window.

• Step 7: Click on Print to print the desired output.
• Step 8: Click on Copy-Graph to copy the graph and use Paste or

Paste-Special under Edit menu to paste it to other applications.
• Step 9: Click Save to save the design specification or report

(Figure 11.5).

11.4.5 How to design a multi-stage trial

To design a multiple-stage design, we simply follow the following steps.

• Step 1: Click on Multi-Stage Design on the toolbar.
• Step 2: Select the desired Option from the Multi-Stage Design

window or open an existing design by clicking Open.
• Step 3: Enter appropriate values for the selected design in the

textboxes.
• Step 4: Click on Compute to generate the valid designs.
• Step 5: Click on Report to view the report of the selected design.
• Step 6: Click on Print to print the desired output.
• Step 7: Click on Save to save the design specification or report

(Figure 11.6).
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Figure 11.6 Multi-stage design window.

11.4.6 How to design a dose-escalation trial

To design a dose-escalation trial, we simply follow the following steps.

• Step 1: Click Dose-Escalation Design on the toolbar.
• Step 2: Enter appropriate values for your design on the Basic

Spec Panel.
• Step 3: Select Dose-response Model, Escalation Scheme, and

Dose Interval Spec or open an existing design by clicking
Open.

• Step 4: Click on Compute to generate the simulation results.
• Step 5: Click on Report to view the design report.
• Step 6: Click on Print to print the desired output.
• Step 7: Click on Save to save the design specification or report

(Figures 11.7 and 11.8).

When clicking on Customized Design for the Escalation Scheme (see
Figure 11.7), a second window will pop up for further selection of the
escalation rules. When it is done, click OK. It will go back to the Dose-
Escalation Design Window.
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Figure 11.7 Dose-escalation design window.

Figure 11.8 Dose-escalation customization window.
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Figure 11.9 The adaptive design window.

11.4.7 How to design an adaptive trial

To design an adaptive trial, we simply follow the following steps.

• Step 1: Click on Adaptive Design on the toolbar.
• Step 2: Follow the steps specified in the Simulation Setup

panel.
• Step 3: Specify parameters in each of the steps.
• Step 4: Click on Run to generate the simulation results.
• Step 5: Click on Report to view the design report.
• Step 6: Click on Print to print the desired output.
• Step 7: Click on Save to save the design specification or report

(Figure 11.9).

11.5 Examples

In this section, several examples regarding the application of the clini-
cal trial simulations in early and late phases of pharmaceutical devel-
opment are provided. For early phases development, we will consider
phase I oncology study for dose escalation with different traditional
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Table 11.4 Simulation Results from TER

Dose Level 1 2 3 4 5 6 7

Dose 30 45 68 101 151 228 342
DLT rate (%) 1 1.2 1.5 2.2 3.7 8.4 25
mean n 3.1 3.1 3.1 3.2 3.5 5.0 5.0
MTD rate (%) 0 0 1 2 6 57 33

escalation rules (TER) and continued re-assessment method (CRM). For
late phases development, we will consider phase II oncology trials com-
paring two treatment groups under different adaptive design setting
such as an adaptive group sequential design, an adaptive-randomization
design, an N-adjusted design (sample size re-estimation), a drop-the-
loser design, and an adaptive dose-response design.

11.5.1 Early phases development

To illustrate the application of clinical trial simulation in early phases
of clinical development, we consider the example of dose-escalation trial
as described in the previous section. Suppose the study objective is to
determine the maximum tolerable dose (MTD) of newly developed test
treatment. In what follows, the application of clinical trial simulation
for dose escalation with different traditional escalation rules (TER) and
continued reassessment method (CRM) are discussed.

Example 11.1 Simulation example using TER and TSER For a
planned dose-escalation trial, suppose we are interested in choosing an
appropriate dose-escalation algorithm from the traditional escalation
rule (TER) and the two-stage escalation rule (TSER) described earlier.
Suppose that based on results from pre-clinical studies, it was estimated
that the toxicity (DLT rate) is 1% for the starting dose of 30 mg/m2 (1/10
of the lethal dose). The DLT rate at the MTD was defined as 17% and
the MTD was estimated to be 300 mg/m2. The true dose toxicity was
assumed to follow a logistic model, i.e.,

Logit(p) = −4.952 + 0.011Dose,

where p is the probability of DLT or DLT rate. There were 7 planned
dose levels with a constant dose increment factor of 1.5. Suppose only
one dose level de-escalation was allowed. Twenty thousand simulation
runs were conducted using ExpDesign Studio (www.CTriSoft.net) for
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Table 11.5 Simulation Results from TSER

Dose 30 45 68 101 151 228 342

mean n 1.1 1.1 1.2 1.3 1.5 5.9 5.2
MTD rate (%) 0 0 0 0 2 69 29

each of the two algorithms. The results are summarized in Tables 11.5
through 11.7.

The true MTD is somewhere between dose level 6 and 7. As it can be
seen from Tables 11.5 and 11.6, the two-stage design requires fewer pa-
tients at the dose levels lower than MTD. Table 11.7 indicates that there
is a large gain in the expected sample size with TSER, i.e., 17 compared
26 in TER. On average, both methods cause 2 DLTs each and 5 patients
are treated above the MTD. The TSER increases slightly in precision
compared to TER (66 versus 70 in dispersion of simulated MTDs). In
the given scenario, both TER and TSER underestimate the true MTD
(about 13%). This bias can be reduced using continual re-assessment
method (CRM), which will be discussed below.

Example 11.2 Simulation example using CRM We repeat the
above clinical trial simulation using the Bayesian continual re-
assessment method (CRM). The logistic model considered to model the
dose toxicity relationship is given by

Pr(x = 1) = (1 + 150e−ax)−1,

where parameter a follows a uniform prior distribution over the range
of [0, 0.3]. The next patient is assigned to the dose level that has the
predicted response rate closest to the target DLT rate of 0.17 as de-
fined earlier for the MTD. No response delay is considered. Due to
safety concerns, no dose jump is allowed. Ten thousand simulations
were conducted using ExpDesign Studio� version 2.0, where 21 subjects

Table 11.6 Comparison of TER and TSER

Method MTD MTD σMTD N DLTs n

3 + 3 TER 300 257 70 26 2 5
Two-stage 300 258 66 17 2 5.2

MTD = Simulated MTD, σMTD = dispersion of MTDs, N = expected
sample size, n = patients treated above MTD.
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Table 11.7 Simulation Results with CRM

Dose Level 1 2 3 4 5 6 7

Dose 30 45 68 101 151 228 342
PDLT (%) 1 1.2 1.5 2.2 3.7 8.4 25
P̂DLT (%) .9 1.1 1.4 2.2 4.1 10.3 30
σDLT (%) 1 1 0.3 0.6 1.5 5.2 15
n 1 1 1 1 1.24 9.24 6.5

PDLT = DLT rate, P̂DLT and σDLT are the predicted rate and
its standard deviation, n = number of patients.

were used for each trial or simulation. The results are summarized in
Table 11.8.

In this example, the CRM produces excellent predictions for the DLT
rates. We can see that one of the advantages with CRM is that it pro-
duces the posterior parameter distribution and predicted probability of
DLT for each dose level (any dose) and allows us to select an unplanned
dose level as the MTD. In the current case, the true MTD is 300 mg/m2

with a DLT rate PDLT = 0.17, which is an unplanned dose level. As
long as the dose-response model is appropriately selected, bias can be
avoided. This is an advantage compared to TER or TSER discussed in
the previous example. The simulations also indicate that the number of
DLTs per trial is 2.5. The number of patients treated with dose higher
than MTD is 6.5 per trial. These numbers are larger than those in TER
and TSER, which can be viewed as a trade-off for bias reduction.

11.5.2 Late phases development

To investigate the effect of the adaptations, we will compare the classic,
group sequential, and adaptive designs with regards to their operating

Table 11.8 Group Sequential Design

Dose Level Control Active

Number of patients 244 244
Response rate 0.2 0.3
Observed rate 0.198 0.303
Standard deviation 0.028 0.033
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characteristics using computer simulations. In what follows, each ex-
ample represents a different trial design. Examples 3 through 6 as-
sume a phase II oncology trial with two treatment groups. The pri-
mary endpoint is tumor response (PR and CR), and the estimated re-
sponse rates for the two groups are 0.2 and 0.3, respectively. We use
simulation to calculate the sample size required, given that one-sided
alpha = 0.05 and power = 80%. Note that a classical fixed sample
size design with 600 subjects will have a power of 81.4% at one-sided
α = 0.025. The total number of responses per trial is 150 based on 10,000
simulations.

Example 11.3 Flexible design with sample size re-estimation In
practice, since the power of a trial depends upon the estimated effect
size, it is desirable to have a design that allows modification of the
sample size at some points of time during the conduct of the trial. Let
us design a trial that allows a sample size re-estimation and evaluate
the robustness of the design. In order to control the family-wise error
rate (FWE) at 0.025, the alpha must be adjusted to 0.023, which can be
done by computer simulation under the null hypothesis. The average
sample size is 960 under the null hypothesis. Using the algorithm for
sample size re-estimation (1), where E0max = 0.1633 and a = 2, the de-
sign has 92% power with an average sample size of 821.5. Now assume
that the initial effect sizes are not 0.2 versus 0.3 for the two treatment
groups. Instead, they are 0.2 and 0.28, respectively. We want to know
what power the flexible design will have. Keep everything the same
(also keep E0max = 0.1633), but change the response rates to 0.2 and
0.28 for the two dose levels and run the simulation again. It turns out
that the design has 79.4% power with an average sample size of 855.
Given the two response rates 0.2 and 0.28, the design with a fixed sam-
ple size of 880 has a power of 79.4%. We can see that there is a saving
of 25 patients by using the flexible design. If the response rates are 0.2
and 0.3, for 92.1% power, the required sample size is 828 with the fixed
sample size design, which means that the flexible design saves 6–7 sub-
jects. A flexible design increases power when observed effect size is less
than expected, while a traditional design with a fixed sample size either
increases or decreases the power regardless of the observed effect size
when the sample increases.

Example 11.4 Design with play-the-winner randomization To
randomize more patients to the superior treatment group using
response-adaptive randomization, the same example with a sample size
of 600 subjects is used. The commonly used response-adaptive random-
ization is RPW(1,1), i.e., one initial ball for each group and one addi-
tional ball with the corresponding color for each response. The data will
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be unblinded for every 100 new patients. The adjusted alpha is found
to be 0.02. The design has 77.3% power with an average sample size
of 600. On average, there are 223 subjects in dose level 1 and 377 in
dose level 2. The expected number of responses is 158. Comparing this
to the classical design, the RPW design gains 8 responses, but loses 4%
in power.

Example 11.5 Group sequential design with one Interim anal-
ysis Group sequential design is very popular in clinical trials. For the
two-arm trial, the adjusted alpha is found to be 0.024. The maximum
number of subjects is 700. The trial will stop if 350 or more patients
are randomized and one of the following criteria is met: (1) The efficacy
(utility) stopping criterion: The maximum difference in response rate
between any dose and the control is larger than 0.1 with the lower bound
of the two-sided 95% naive confidence interval greater than or equal to
0.0; or (2) The futility stopping criterion: The maximum difference in
response rate between any dose and dose level 1 is less than 0.05 with
the upper bound of the one-sided 95% naive confidence interval less
than 0.1.

The average total number of subjects for each trial is 488. The total
number of responses per trial is 122. The probability of correctly pre-
dicting the most responsive dose level is 0.988 based on observed rates.
Under the alternative hypothesis, the probability of early stopping for
efficacy is 0.505, and the probability of early stopping for futility is
0.104. The power for testing the treatment difference is 0.825.

Example 11.6 Adaptive design permitting early stopping and
sample size re-estimation Sometimes it is desirable to have a de-
sign permitting both early stopping and sample size modification.

With an initial sample size of 700 subjects, a grouping size of 350,
and a maximum sample size of 1000, the one-sided adjusted alpha is
found to be 0.05. The simulation results are presented as follows:

The maximum sample size is 700. The trial will stop if 350 patients
or more are randomized and one of the following criteria is met: (1) The
efficacy (utility) stopping criterion: The maximum difference in response
rate between any dose and the control is larger than 0.1 with the lower
bound of the two-sided 95% naive confidence interval greater than or
equal to 0.0; or (2) The futility stopping criterion: The maximum differ-
ence in response rate between any dose and the control is less than 0.05
with the upper bound of the one-sided 95% naive confidence interval less
than 0.1. The sample size will be re-estimated when 350 subjects have
been randomized. When the null hypothesis is true (p1 = p2 = 0.2), the
average total number of subjects for each trial is 398.8. The probability
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Table 11.9 Design with Early Stopping
and n-Re–estimation

Dose Level Control Active

Number of patients 271 272
Response rate 0.2 0.3
Observed rate 0.198 0.303
Standard deviation 0.028 0.032

of early stopping for efficacy is 0.0096. The probability of early stopping
for futility is 0.9638.

When the alternative hypothesis is true (p1 = 0.2, p2 = 0.3), the aver-
age total number of subjects for each trial is 543.5. The total number of
responses per trial is 136 (Table 11.9). The probability of correctly pre-
dicting the most responsive dose level is 0.985 based on observed rates.
The probability of early stopping for efficacy is 0.6225. The probability
of early stopping for futility is 0.1546. The power for testing the treat-
ment difference is 0.842. Examples 11.7 through 11.9 are for the same
scenario as the six-arm study with response rates of 0.5, 0.4, 0.5, 0.6,
0.7, and 0.55 for the 6 dose levels from doses 1 through 6, respectively.

Example 11.7 Conventional design with multiple treatment
groups With 800 subjects, a 0.5 response rate under H0, and a group-
ing size of 100, we found the one-sided adjusted α to be 0.0055. The
total number of responses per trial is 433. The probability of correctly
predicting the most responsive dose level is 0.951 based on observed
rates. The power for testing the maximum effect comparing any dose
level to the control is 80%. The powers for comparing each of the 5 dose
levels to the control are 0, 0.008, 0.2, 0.796, and 0.048, respectively.

Example 11.8 Response-adaptive design with multiple treat-
ment groups To further investigate the effect of Random-Play-the-
Winner randomization RPW(1,1), a design with 800 subjects, a grouping

Table 11.10 Design with RPW(1,1) under H0

Dose Level 1 2 3 4 5 6

Response rate 0.5 0.5 0.5 0.5 0.5 0.5
Observed rate 0.50 0.49 0.49 0.49 0.49 0.49
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Table 11.11 Design with RPW(1,1) Under Ha

Dose Level 1 2 3 4 5 6

No. of subjects 200 74 100 133 176 116
Response rate 0.5 0.4 0.5 0.6 0.7 0.55
Observed rate 0.50 0.39 0.49 0.59 0.7 0.54

size of 100, and a response rate of 0.2 under the null hypothesis is simu-
lated (Table 11.10). The one-sided adjusted α is found to be 0.016. Using
this adjusted alpha and response rates 0.5, 0.4, 0.5, 0.6, 0.7, and 0.55
for dose levels 1 through 6, respectively, the simulation indicates that
the designed trial has 86% power and 447 responders per trial on av-
erage (Table 11.11). In comparison to 80% power and 433 responders
for the design with simple randomization RPW(1,0), the adaptive ran-
domization is superior in both power and number of responders. The
simulation results also indicate that there are biases in the estimated
mean response rates in all dose levels except dose level 1, where a fixed
randomization rate is used.

The average total number of subjects for each trial is 800. The total
number of responses per trial is 446.8. The probability of correctly pre-
dicting the most responsive dose level is 0.957 based on observed rates.
The power for testing the maximum effect comparing any dose level to
the control (dose level 1) is 0.861 at a one-sided significance level (al-
pha) of 0.016. The powers for comparing each of the 5 dose levels to the
control are 0, 0.008, 0.201, 0.853, and 0.051, respectively.

Example 11.9 Adaptive design with dropping the losers Imple-
menting the mechanism of dropping losers can also improve the effi-
ciency of a design. With 800 subjects, a grouping size of 100, a response
rate of 0.2 under the null hypothesis, and a fixed randomization rate
in dose level 1 at 0.25, an inferior group (loser) will be dropped if the
maximum difference in response between the most effective group and
the least effective group (loser) is greater than 0 with the lower bound
of the one-sided 95% naive confidence interval greater than or equal

Table 11.12 Bias in Rate with Dropping Losers Under H0

Dose Level 1 2 3 4 5 6

Response rate 0.5 0.5 0.5 0.5 0.5 0.5
Observed rate 0.50 0.46 0.46 0.46 0.46 0.46
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Table 11.13 Bias in Rate with Dropping Losers under Ha

Dose Level 1 2 3 4 5 6

No. of subjects 200 26 68 172 240 95
Response rate 0.5 0.4 0.5 0.6 0.7 0.55
Observed rate 0.50 0.37 0.46 0.57 0.69 0.51

to 0. Using the simulation, the adjusted alpha is found to be 0.079.
From the simulation results in Tables 11.12 and 11.13, biases can be
observed with this design. The design has 90% power with 467 respon-
ders. The probability of correctly predicting the most responsive dose
level is 0.965 based on observed rates. The powers for comparing each
of the 5 dose levels to the control (dose level 1) are 0.001, 0.007, 0.205,
0.889, and 0.045, respectively. The design is superior to both RPW(1,0)
and RPW(1,1).

Example 11.10 Dose-response trial design The trial objective is to
find the optimal dose with the highest response rate. There are 5 dose
levels and 30 planned subjects in each simulation (Table 11.14). The
hyper-logistic model is defined with the parameters a3 ∈ [20, 100] and
a4 ∈ [0, 0.05]. The RPW(1, 1) is used for the randomization. The simu-
lation results show that the probability of correctly predicting the most
responsive dose level is 0.992 by the model and only 0.505 based on
observed rates.

11.6 Concluding Remarks

From classic design to group sequential design to adaptive design, each
step forward increases in complexity and at the same time improves the
efficiency of clinical trials as a whole. Adaptive designs can increase the

Table 11.14 Dose-Response Trial Design

Dose Level 1 2 3 4 5

No. of subjects 15 30 50 85 110
Response rate 0.2 0.3 0.6 0.7 0.5
Observed rate 0.193 0.294 0.593 0.691 0.489
Predicted rate 0.098 0.181 0.406 0.802 0.379
σobs 0.185 0.209 0.221 0.204 0.226
σprd 0.074 0.073 0.104 0.151 0.056



236 ADAPTIVE DESIGN METHODS IN CLINICAL TRIALS

number of responses in a trial and provide more benefits to the patient
in comparison to the classic design. With sample size re-estimation, an
adaptive design can preserve the power even when the initial estima-
tions of treatment effect and its variability are inaccurate. In the case of
a multiple-arm trial, dropping inferior arms or response-adaptive ran-
domization can improve the efficiency of a design dramatically. Find-
ing analytic solutions for adaptive designs is theoretically challenging.
However, computer simulation makes it easier to achieve an optimal
adaptive design. It allows a wide range of test statistics as long as they
are monotonic functions of treatment effects. Adjusted alpha and p-
values due to response-adaptive randomization and other adaptations
with multiple comparisons can be determined easily using computer
simulations. Unbias in point estimations with adaptive designs has not
been completely resolved by using computer simulations. However, the
bias can be ignored in practice by using a proper grouping size (cluster)
such that there are only a limited number of adaptations (<8).

Simulations have many applications in clinical trials. In early phases
of the clinical development with many uncertainties (variables), clinical
trial simulation can be used to assess the impacts of the variables. Clin-
ical trial simulation with the Bayesian approach could produce certain
desirable operating characteristics that can answer questions raised
in the early development phase such as posterior distribution of tox-
icity. There are a few things we should caution about with regard to
clinical trial simulation. The quality of simulation results is very much
dependent on the quality of the pseudo-random number. We should be
aware that most built-in random number generators in computer lan-
guages and software tools are poor in quality; therefore it should not
be used directly if we are not sure about the algorithm. Implementing
a high-quality of random number generator is as simple as a dozen of
lines of computer code (Press et al., 2002; Gentle, 1998) as implemented
by ExpDesign Studio®. The common steps for conducting a clinical
trial simulation include defining the objectives, analyzing the problem,
assessing the scope of the work and proposing time and resources re-
quired to complete the task, examining the assumptions, obtaining and
validating the data source if applicable, nailing down evaluation cri-
teria for various trial designs/scenarios, selecting an appropriate soft-
ware tool, outlining the computer algorithms for the simulation, imple-
menting and validating the algorithms, proposing scenarios to simulate,
conducting simulations, interpreting results and making recommenda-
tions, and last but not least, addressing the limitations of the performed
simulations.

We have demonstrated that clinical trial simulation can be used for
various complex designs. By comparing the operating characteristics of
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each design provided by clinical trial simulation, we are able to choose
an optimal design or development strategy. Computer simulation is
commonly seen in statistics literature related to clinical trials, most of
them for power calculations and data analyses. We will see more phar-
maceutical companies using clinical trial simulation for their clinical
development planning to streamline the drug process, increase the prob-
ability of success, and reduce the cost and time-to-market. Ultimately,
clinical trial simulation will bring the best treatment to the patients.
When conducting clinical trial simulation for an adaptive design, the
following is recommended in order to protect the integrity of the trial:
Specify in the trial protocol (i) the type of adaptive design, (ii) details of
the adaptations to be used, (iii) the estimator for treatment effect, and
(iv) the hypotheses and the test statistics. Run the simulation under
the null hypothesis and construct the distribution of the test statistic.
To estimate the sample size for the adaptive design, run the simulation
under the alternative hypothesis and construct the distribution of the
test statistic. Sensitivity analyses are suggested to simulate potential
major protocol deviations that would impact the validity of the trial
simulations. To achieve an optimal design, a Bayesian or frequentist-
Bayesian hybrid adaptive approach should be used. There are several
simulation tools available on the Web. For adaptive designs discussed
in this section, the ExpDesign Studio� can be used.





CHAPTER 12

Case Studies

As indicated earlier, the adaptation or modification made to a clinical
trial includes prospective adaptation (by design), concurrent or on-going
adaptation (ad hoc), and retrospective adaptation (at the end of the trial
and prior to database lock or unblinding). Different adaptation or mod-
ification could lead to different adaptive designs with different levels
of complexity. In practice, it is suggested that by design prospective
adaptation be considered at the planning stage of a clinical trial (Gallo
et al., 2006), although it may not reflect real practice in the conduct
of clinical trials. Li (2006) pointed out that the use of adaptive design
methods (either by design adaptation or ad hoc adaptation) provides
a second chance to re-design the trial after seeing data internally or
externally at interim. However, it may introduce so-called operational
biases such as selection bias, method of evaluations, early withdrawal,
and modification of treatments. Consequently, the adaptation employed
may inflate type I error rate. Uchida (2006) also indicated that these
biases could be translated to information (assessment) biases, which
may include (i) patient enrollment, (ii) differential dropouts in favor of
one treatment, (iii) crossover of the other treatment, (iv) protocol de-
viation due to additional medications/treatments, and (v) differential
assessment of the treatments. As a result, it is difficult to interpret the
clinically meaningful effect size for the treatments under study (see
also, Quinlan, Gallo, and Krams, 2006).

In the next section, basic considerations when implementing adap-
tive design methods in clinical trials are given. Successful experience
for the implementation of adaptive group sequential design (see, e.g.,
Cui, Hung, and Wang, 1999), adaptive dose-escalation design (see, e.g.,
Chang and Chow, 2005), and adaptive seamless phase II/III trial design
(see, e.g., Maca et al., 2006) are discussed in Section 12.2, Section 12.3,
and Section 12.4, respectively.

12.1 Basic Considerations

As discussed in early chapters of this book, the motivation behind the
use of adaptive design methods in clinical trials includes (i) the flexibility
in modifying trial and statistical procedures for identifying best clinical



240 ADAPTIVE DESIGN METHODS IN CLINICAL TRIALS

benefits of a compound under study and (ii) the efficiency in shorten-
ing the development time of the compound. In addition, adaptive de-
signs provide the investigator a second chance to re-design the trial
with more relevant data observed (internally) or clinical information
available (externally) at interim. The flexibility and efficiency are very
attractive to investigators and/or sponsors. However, major adaptation
may alter trial conduct and consequently result in a biased assessment
of the treatment effect. Li (2006) suggested a couple of principles when
implementing adaptive designs in clinical trials: (i) adaptation should
not alter trial conduct and (ii) type I error should be preserved. Fol-
lowing these principles, some studies with complicated adaptation may
be more successful than others. In what follows, some basic considera-
tions when implementing adaptive design methods in clinical trials are
discussed.

12.1.1 Dose and dose regimen

Dose selection is an integral part of clinical development. An inade-
quate selection of dose for a large confirmatory trial could lead to a
failure of the development of the compound under study. Traditional
dose-escalation and/or dose de-escalation studies are not efficient. The
objective of dose or dose regimen selection is not only to select the best
dose group but also to drop the least efficacious or unsafe dose group
with limited number of patients available. Under this consideration,
adaptive designs with appropriate adaptation in selection criteria and
decision rules are useful.

12.1.2 Study endpoints

Maca et al. (2006) suggested that well-established and well-understood
study endpoints or surrogate markers be considered when implement-
ing adaptive design methods in clinical trials, especially when the trial
is to learn about the primary endpoints to be carried forward into later
phase clinical trials. An adaptive design would not be feasible for clini-
cal trials without well-established or well-understood study endpoints
due to (i) uncertainty of the treatment effect and (ii) the fact that a
clinically meaningful difference cannot be determined.

12.1.3 Treatment duration

For a given study endpoint, treatment duration is critical in order to
reach the optimal therapeutic effect. If the treatment duration is short
relative to the time needed to enroll all patients planned for the study,
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then an adaptive design such as response-adaptive randomization de-
sign is feasible. On the other hand, if the treatment duration is too long,
too many patients would be randomized during the period, which could
result in unacceptable inefficiencies. In this case, it is suggested that
an adaptive biomarker design be considered.

12.1.4 Logistical considerations

Logistical considerations relative to the feasibility of adaptive designs
in clinical trials include, but are not limited to, (i) drug management, (ii)
site management, and (iii) procedural consideration. For costly and/or
complicated dose regimens drug packaging and drug supply could be
a challenge to the use of adaptive design methods in clinical trials,
especially when the adaptive design allows dropping the inferior dose
groups. Site management is the selection of qualified study sites and pa-
tient recruitment for the trial. For some adaptive designs, recruitment
rate is crucial to the success of the trial, especially when the intention
of the trial is to shorten the time of development. Procedural consider-
ations are decision processes and dissemination of information in order
to maintain the validity and integrity of the trial.

12.1.5 Independent data monitoring committee

When implementing an adaptive design in a clinical trial, an indepen-
dent data monitoring committee (DMC) is necessarily considered for
maintaining the validity and integrity of the clinical trial. A typical
example is the implementation of an adaptive group sequential design
which cannot only allow stopping a trial early due to safety and/or
futility/efficacy, but also address sample size re-estimation based on the
review of unblinded data. In addition, DMC conveys some limited infor-
mation to investigators or sponsors about treatment effects, procedural
conventions, and statistical methods with recommendations so that the
adaptive design methods can be implemented with less difficulty.

12.2 Adaptive Group Sequential Design

12.2.1 Group sequential design

Group sequential design is probably one of the most commonly used
clinical trial designs in clinical research and development. As indicated
in Chapter 6, the primary reasons for conducting interim analyses of
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accrued data are probably due to (i) ethical consideration, (ii) adminis-
trative reasons, and (iii) economic constraints. Group sequential design
is very attractive because it allows stopping a trial early due to (i) safety,
(ii) futility, and/or (iii) efficacy. Moreover, it also allows adaptive sample
size adjustment at interim either blinding or unblinding through an
independent data monitoring committee (DMC).

12.2.2 Adaptation

Basic adaptation strategy for an adaptive group sequential design is
that one or more interim analyses may be planned. In practice, it is
desirable to stop a trial early if the test compound is found to be inef-
fective or not safe. However, it is not desirable to terminate a trial early
if the test compound is promising. To achieve these goals, data safety
monitoring and interim analyses for efficacy are necessarily performed.
Note that how to control the overall type I error rate and how to deter-
mine treatment effect that the trial should be powered at the time of
interim analyses would be the critical issues for this adaptation.

At each interim analysis, an adaptive sample size adjustment based
on unblinded interim results and/or external clinical information avail-
able at interim may be performed. In practice, at the planning stage of
a clinical trial, a pre-study power analysis is usually conducted based
on some initial estimates of the within or between patient variation
and the clinically meaningful difference to be detected. This crucial
information is usually not available or it is available (e.g., data from
small pilot studies) with a high degree of uncertainty (Chuang-Stein,
et al., 2006). Lee, Wang, and Chow (2006) showed that sample size ob-
tained based on estimates from small pilot studies is highly unstable.
Thus, there is a need to adjust sample size adaptively at interim. Mehta
and Patel (2003) and Offen et al. (2006) also discussed other situations
where sample size re-estimation at interim is necessary. The use of an
independent data monitoring committee (DMC) would be the critical
issue for this adaptation.

Other adaptations such as adaptive hypotheses from a superiority
trial to a non-inferiority trial may be considered. In practice, interim
results may indicate that the trial will never achieve statistical signif-
icance at the end of the trial. In this case, the sponsors may consider
changing the hypotheses or study endpoints to increase the probability
of success of the trial. A typical example is to switch from superiority hy-
potheses to non-inferiority hypotheses. At the end of the trial, final anal-
ysis will be performed for testing non-inferiority rather than superior-
ity. Note that superiority can still be tested after the non-inferiority has
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been established without paying any statistical penalty due to closed
testing procedure. Note that the determination of non-inferiority mar-
gin would be the challenge for this adaptation.

12.2.3 Statistical methods

For the adaptation of interim analyses, statistical methods as described
in Chapter 6 for controlling overall type I error rate are useful. For the
adaptation of sample size re-estimation, the methods proposed by Cui,
Hung, and Wang (1999), Fisher’s combination of p-values, error-function
method, inverse normal method, or linear combination of p-values can
be used. For the adaptation of switching hypotheses, statistical meth-
ods discussed in Chapter 4 are useful. As indicated by Chuang-Stein
et al. (2006), since the weighting of the normal statistics will not, in
general, be proportional to the sample size for that stage, the method
does not use the sufficient statistics (the unweighted mean difference
and estimated standard deviation from combined stages) for testing,
and is therefore less efficient (Tsiatis and Mehta, 2003). Additional dis-
cussion on efficiency can be found in Burman and Sonesson (2006) and
Jennison and Turnbull (2006a).

12.2.4 Case study — an example

For illustration purposes, consider the example given in Cui, Hung,
and Wang (1999). This example considers a phase III two-arm trial for
evaluating the effect of a new drug for prevention of myocardial infec-
tion (MI) in patients undergoing coronary artery bypass graft surgery.
It was estimated that a sample size of 300 patients per group would
give a 95% power for detecting a 50% reduction in incidence rate from
22% to 11% at the one-sided significance level of α = 0.025. Although
the sponsor was confident about the incidence rate of 11% in the con-
trol group, they were not sure about the 11% incidence rate in the
test group. Thus, an interim analysis was planned to allow for sample
size re-estimation based on observed treatment difference. The interim
analysis was scheduled when 50% of the patients were enrolled and
had their efficacy assessment. The adaptive group sequential using the
method of Fisher’s combination of stage-wise p-values was considered.
The decision rules were: at stage 1, stop for futility if the stage-wise
p-value p1 > α0 and stop for efficacy if p1 ≤ α1; at the final stage, if
p1 p2 ≤ Cα, claim efficacy; otherwise claim futility. The stopping bound-
ary was chosen from Table 7.4. The futility boundary α0 = 0.5, the
efficacy stopping boundary α1 = 0.0102 at stage 1 and Cα = 0.0038 at
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the final stage. The upper limit of the sample size is Nmax = 800 per
group. The futility boundary was used to stop the trial in the case of very
small effect size because in such a case, to continue the trial would re-
sult in an unrealistic large sample size or Nmax with insufficient power.
The adaptive group sequential design would have a 99.6% power when
the incidence rates were 22% and 11%, and an 80% power when the
incidence rates were 22% and 16.5%.

At interim analysis based on data from 300 patients, it was observed
that the test group had an incidence rate of 16.5% and 11% in the control
group. If these incidence rates were the true incidence rates, the power
for the classical design would be about 40%. Under the adaptive group
sequential design, the sample size was re-estimated to be 533 per group.
If the 16.5% and 11% are the true incidence rates, the conditional power
is given by 88.6%.

Remarks Note that the trial was originally designed not allowing
for sample size re-estimation. The sponsor requested sample size re-
estimation and was rejected by the FDA. The trial eventually failed
to demonstrate statistical significance. In practice, it is recommended
that the adaptation for sample size re-estimation be considered in the
study protocol and an independent data monitoring committee (DMC)
be established to perform sample size re-estimation based on the review
of unblinded date at interim to maintain the validity and integrity of
the trial.

12.3 Adaptive Dose-Escalation Design

12.3.1 Traditional dose-escalation design

As discussed in Chapter 5, the traditional “3 + 3” escalation rule is
commonly considered in phase I dose-escalation trials for oncology. The
“3 + 3” rule is to enter three patients at a new dose level and then en-
ter another three patients when dose limiting toxicity is observed. The
assessment of the six patients is then performed to determine whether
the trial should be stopped at the level or to increase the dose. The goal
is to find the maximum tolerated dose (MTD). The traditional “3 + 3”
rule (TER) is not efficient with respect to the number of dose limiting
toxicities and the estimation of MTD. There is a practical need to have
a better design method that will reduce the number of patients and
number of DLTs, and at the same time have a more precise estimation
of MTD. We will use Bayesian continual reassessment method (CRM)
to achieve our goals.
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12.3.2 Adaptation

The basic adaptation strategy for an adaptive dose-escalation trial de-
sign is change in traditional escalation rule (TER). As discussed in
Chapter 5, the traditional 3 + 3 dose-escalation rule is not efficient.
As a result, a m + n dose-escalation rule may be considered with some
pre-specified selection criteria based on the dose limiting toxicity (DLT).
Other adaptations that are commonly considered include the applica-
tion of adaptation to the design characteristics such as the selection of
starting dose, the determination of dose levels, prior information on the
maximum tolerable dose (MTD), dose toxicity model (Figure 12.1),
stopping rules, and statistical methods.

12.3.3 Statistical methods

As indicated earlier, many methods such as the assessment of dose
response using multiple-stage designs (Crowley, 2001) and the contin-
ued re-assessment method (CRM) are available in the literature for
assessment of dose-escalation trials. For the method of CRM, the dose-
response relationship is continually re-assessed based on accumulative
data collected from the trial. The next patient who enters the trial is
then assigned to the potential MTD level. This approach is more effi-
cient than that of the usual TER with respect to the allocation of the
MTD. However, the efficiency of CRM may be at risk due to delayed
response and/or a constraint on dosejump in practice (Babb and Ro-
gatko, 2004). Chang and Chow (2005) proposed an adaptive method that
combines CRM and utility-adaptive randomization (UAR) for multiple-
endpoint trials. The proposed UAR is an extension of the response-
adaptive randomization (RAR). Note that the CRM could be a Bayesian,
a frequentist, or a hybrid frequentist-Bayesian–based approach. As
pointed out by Chang and Chow (2005), this method has the advantage
of achieving the optimal design by means of the adaptation to the ac-
crued data of an on-going trial. In addition, CRM could provide a better
prediction of dose-response relationship by selecting an appropriate
model as compared to the method simply based on the observed response.

12.3.4 Case study — an example

A trial is designed to establish the dose toxicity relationship and to iden-
tify maximum tolerable dose (MTD) for a compound in treatment of pa-
tients with metastatic androgen independent prostate cancer. Based on
pre-clinical data, the estimated MTD is about 400 mg/m2. The modified
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Figure 12.1 Example of dose-toxicity model.

Fibonacci series is chosen for the dose levels (Table 12.1). Eight dose
levels are considered in this trial with the option of adding more dose
levels if necessary. The initial dose level is chosen to be 30 mg/m2, at
which about 10% of deaths (MELD10) occur in mice after the verifica-
tion that no lethal and no life-threatening effects were seen in another
species. The toxicity rate (i.e., the DLT rate) at MTD defined for this
indication/population is 17%.

We compare the operating characteristics between the traditional es-
calation rule (TER) design and the CRM design. In CRM, the following
logistic model is used:

p =
1

1 + 150 exp(−ax)
,

where the prior distribution for parameter a is flat over (0,0.12).
Using ExpDesign Studio®, the simulation results are presented as

follows. The TER predicts the MTD at dose level 7 (lowest dose level to
the true MTD) with a probability of 75%. The CRM predicted the MTD
at dose level 7 with a probability of 100% (5000 out of 5000 simulations).
The TER requires average 18.2 patients and 2.4 DLTs per trial. CRM
requires only 12 patients with 4 DLTs per trial.

Remarks Dose-escalation trial is an early phase trial with flexible
adaptation for dose selection using CRM. It is suggested that the protocol
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Table 12.1 Dose Levels and DLT Rates

Dose Level 1 2 3 4 5 6 7 8

dose 30 60 99 150 211 280 373 496
DLT rate 0.010 0.012 0.017 0.026 0.042 0.071 0.141 0.309

should be submitted to the Regulatory Agencies for review and approval
prior to the initiation of the trial. The design characteristics such as
starting dose, dose levels, prior information on the MTD, dose toxicity
model, escalation rule, and stopping rule should be clearly stated in
the study protocol. In practice, there may be a situation that the next
patient has enrolled before the response from the previous patient is
obtained. In this case, the efficiency of the TER and CRM may be re-
duced. There may also have been limitation for dose escape which may
also reduce the efficiency of the CRM. To investigate this, a simulation
was conducted using ExpDesign Studio with cluster randomization of
size 3 patients (i.e., 2 patients have enrolled before the response is ob-
tained). In the simulation, we allow for one level of dose escape. Under
this scenario, the CRM requires only 12 patients with 1.8 DLTs. It can
be seen that with the limitation of dose escalation, the average DLTs
per trial is reduced from 4 to 2 without sacrificing the precision. This
is because with 12 patients there is enough precision to eliminate the
precision loss due to the delayed response. Note that when we use CRM,
we need to do the modeling or simulation at real time such that the next
dose level can be determined quickly.

12.4 Adaptive Seamless Phase II/III Design

12.4.1 Seamless phase II/III design

A seamless phase II/III trial design is a design that combines a tra-
ditional phase IIb trial and a traditional phase III trial into a single
trial. As a result, the study objectives of a seamless design are the
combination of the objectives which have been traditionally addressed
in separate trials. This type of design closes the gap of the time that
would have occurred between the two trials which are traditionally
conducted separately. Maca et al. (2006) defines an adaptive seamless
phase II/III design as a seamless phase II/III design that would use
data from patients enrolled before and after the adaptation in the final
analysis. Thus, the feasibility and/or efficiency of an adaptive seamless
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phase II/III trial design depend upon the adaptation employed. In prac-
tice, it is possible to combine studies into a seamless design within or
across phases of clinical development. Seamless designs are useful in
early clinical development since there are opportunities in the seamless
transition between phase IIb (learning phase) and phase III (confirming
phase).

12.4.2 Adaptation

The basic adaptation strategy for a seamless phase II/III trial design is
to drop the inferior arms (or drop the losers) based on some pre-specified
criteria at the learning phase. The best arms and the control arm will
be retained and advanced to the confirming phase. Other commonly
employed adaptations include (i) enrichment process at the learning
phase of the trial and (ii) change in treatment allocation at the confirm-
ing phase. The enrichment process is commonly employed to identify
sub-populations, which are most likely to respond to the treatment or
to suffer from adverse events based on some pre-specified criteria on
genomic biomarkers. Change in treatment allocation at the confirming
phase is not only to have more patients to be assigned to superior arms
but also to increase the probability of success of the trial. In practice,
it is not uncommon to apply an adaptation on the primary study end-
point. For example, at the learning phase, the treatment effect may be
assessed based on a short-term primary efficacy endpoint (or a surro-
gate endpoint or some biomarkers), while a long-term primary study
endpoint is considered at the confirming phase. It should be noted that
the impact on statistical inference should be carefully evaluated when
implementing an adaptation to a seamless trial design.

12.4.3 Methods

For an adaptive seamless phase II/III trial design, if the trial is not
stopped for lack of efficacy after the first stage, we proceed into the sec-
ond stage. At the end of the second stage, we may calculate the second
stage p-value based upon the disjoint sample of the second stage only.
The final analysis is conducted by combining the two p-values into a sin-
gle test statistic using a pre-defined combination function. The method
proposed by Sampson and Sill (2005) for dropping the losers in normal
case and the contrast test with p-value combination method suggested
by Chang, Chow, and Pong (2006) are useful. Note that a data-dependent
combination rule should not be used after the first stage. It is suggested
that a prior be considered at the planning phase.
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Thall, Simon, and Ellenberg (1989) proposed a two-stage design for
trials with binary outcomes. In their proposed two-stage design, the
first stage is used to select the best treatment, and the second stage
includes just the selected treatment together with the control. As indi-
cated by Thall, Simon, and Ellenberg (1989), the inclusion of the control
in the first stage is crucial because it allows results from that stage to be
pooled with the data observed in the second stage. On the other hand,
Schaid, Wieand, and Therneau (1990) considered a time-to-event end-
point. Their design not only allows stopping the trial early for efficacy
after the first stage, but also allows more than one treatment to con-
tinue into the second stage. Stallard and Todd (2003) generalized these
designs to allow for the possibility of more than two stages by using
error-spending functions. The design is applicable for general endpoint
such as normal, binary, ordinal, or survival time. These methods are
useful for adaptive seamless phase II/III trial designs.

Remarks Note that the methods considered above are based on the
same primary endpoint. As an alternative, Todd and Stallard (2005)
considered an adaptive group sequential design that incorporates treat-
ment selection based upon a short-term endpoint, followed by a confir-
mation stage comparing the selected treatment with control in terms
of a long-term primary endpoint.

12.4.4 Case study — some examples

In what follows, several examples are provided to illustrate the im-
plementation of adaptive seamless phase II/III trial designs in clinical
trials. The first three examples are adopted from Maca et al. (2006).

Example 12.1 Adaptive Treatment Selection Similar to the
study design described in Bauer and Kieser (1999), an adaptive seam-
less phase II/III two-stage design is considered to evaluate the efficacy
and safety of a compound when given in combination with methotrex-
ate to patients with active rheumatoid arthritis (RA) who have had two
or more inadequate responses to anti-TNF therapy (Maca et al., 2006).
The objectives of this trial include treatment selection and efficacy con-
firmation. The primary clinical endpoint is ACR-20 (American College
of Rheumatology 20 score) at 6 months. The first stage will be used for
dose selection, while the second stage is for efficacy confirmation. At
the end of the second stage, data obtained from the second stage and
the relevant data from the first stage will be combined for final analy-
sis using Fisher’s combination test at the significance level of 0.025. In
this adaptive seamless phase II/III two-stage design, early stopping is
allowed for futility, but not for efficacy.
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Qualified subjects will be randomly assigned to five treatment arms
(4 active and 1 placebo) in equal ratio. At the end of the first stage, a
planned interim analysis will be conducted. The best active treatment
arm and the placebo arm will be retained and advanced to the second
stage for efficacy confirmation. The best treatment arm will be selected
based on a set of pre-defined efficacy, safety, and immunogenicity cri-
teria. Based on interim results, the decisions that (i) the best treat-
ment group (safe and efficacious) will be advanced to the second stage,
(ii) the least efficacious and/or unsafe treatment groups will be dropped,
and (iii) the futility requirement will be evaluated will be made based
upon the clinical endpoint in conjunction with information obtained
from early endpoint. To ensure the validity and integrity of the trial
design, two committees will be established: one is an external indepen-
dent data monitoring committee (DMC) and the other one is an internal
Executive Decision Committee (EDC).

Example 12.2 Confirming Treatment Effect A seamless phase
II/III trial design is employed to confirm substantial treatment effect in
patients with neuropathic pain (Maca et al., 2006). The primary end-
point considered in this trial is the PI-NRS score change from baseline
to the 8th week of treatment. Qualified patients will be randomly as-
signed to four treatment groups (three active doses and one placebo) at
equal ratio. An adaptation for having two interim analyses is planned
prior to the end of the enrollment period. Another adaptation to select
best dose and change treatment allocation at first interim is also made.
Note that patients are initially equally randomized to three doses of
the new compound and placebo. Two interim analyses are planned be-
fore the end of the enrollment period. At the second interim, one dose
will be selected to continue for confirmation of treatment effect. Final
analysis will use a p-value combination test to confirm the superiority
of the selected dose over placebo.

As compared to the traditional approach of a phase IIb trial with
three doses and placebo based on a short-term endpoint (e.g., 2 weeks
change from baseline) followed by a confirmatory phase III trial with a
long-term (e.g., 8 week) endpoint, this adaptive design combines the two
trials in one study with a single protocol and uses information on the
long-term endpoint from patients in the first (learning) and the second
(confirmatory) phases of the study. Note that a longitudinal model for
the primary endpoint in time (i.e., at 2 weeks, 4 weeks, 6 weeks, and
8 weeks) can be used to improve the estimate of the sustained treatment
effect.

Example 12.3 Confirming Efficacy in Sub-population Maca et al.
(2006) presented an example concerning a clinical trial using a



CASE STUDIES 251

two-stage adaptive design trial for patients with metastatic breast can-
cer. This trial has two objectives. First, it is to select patient population
at the first stage. Second, it is to confirm the efficacy based on the hazard
ratio between treatment and control at the second stage. In addition, a
genomic biomarker (expression level) was used. Patients were initially
randomized into three treatment arms (two actives and one control) in
equal ratio. One interim analysis was planned for this study when the
trial reached approximately 60% of the targeted events. During the in-
terim analysis, two sub-populations were defined based on whether the
biomarker expression level of each subject of that population exceeded a
pre-defined cutoff value. Data were analyzed for efficacy evaluation and
safety assessment for both populations. A decision was made based on
patients advanced to the second stage. Moreover, a futility was also as-
sessed at this interim analysis. The final analysis was performed using
the inverse normal p-value combination test for the selected population
to confirm the superiority of the selected dose over control. In contrast
to a conventional design with one phase IIb for population selection fol-
lowed by a confirmatory phase III study, this trial design was able to
achieve the same objectives.

Example 12.4 The objective of this trial in patients with asthma is
to confirm sustained treatment effect, measured as FEV1 change from
baseline to the 1 year of treatment. Initially, patients are equally ran-
domized to four doses of the new compound and placebo. Based on early
studies, the estimated FEV1 changes at 4 weeks are 6%, 13%, 15%, 16%,
and 17% (with pooled standard deviation 18%) for the placebo (dose level
0), dose level 2, 3, and 4, respectively. One interim analysis is planned
when 50% of patients have their short-term efficacy assessment (4-week
change from baseline). The interim analysis will lead to either pick-
ing the winner (arm with best observed response) or early stopping for
futility with a very conservative stopping boundary. The selected dose
and placebo will be used at the stage 2. The final analysis will use a sum
of the stage-wise p-values from both stages. (Note that the Fisher’s com-
bination of p-values was not used because it does not provide a design
with futility stopping only. In other work, Fisher’s combination is not ef-
ficient for adaptive design with no early efficacy stopping.) The stopping
boundaries are shortened from Table 7.7: α1 = 0, β1 = 0.25, α2 = 0.2236.

The decision rule will be: if p1 > β1, stop the trial; if p1 ≤ β1, proceed to
the second stage. At the final analysis, if p1 + p2 ≤ 0.2236, claim efficacy,
otherwise claim futility. The p1 is the p-value from a contrast test based
on sub-sample from stage 1 (See Table 12.2 for contrasts).

With the maximum sample size of 120 per group, the power is 91.2%
at overall one-sided α−level of 0.025. The expected total sample size is
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Table 12.2 Seamless Design

Arms 0 1 2 3 4

4-week FEV1 change 0.06 0.12 0.13 0.14 0.15
Contrasts −0.54 0.12 0.13 0.14 0.15

240 and 353 under the null hypothesis and the alternative hypothesis,
respectively. As mentioned earlier, the method controls the type I error
under global null hypothesis.

12.4.5 Issues and recommendations

Adaptive seamless trial designs are very attractive to the sponsors in
pharmaceutical development. They help in identifying best treatment
in a more efficient way with certain accuracy and reliability within a rel-
atively short time frame. In practice, the following issues are commonly
encountered when implementing a seamless trial design.

Clinical development time

As indicated earlier, the primary rationale behind the use of an adaptive
seamless trial design is to shorten the time of development. Thus, it is
important to consider whether a seamless development program would
accomplish the goal for reducing the development time. In practice, it is
clear if the seamless trial is the only pivotal trial required for regulatory
submission. However, if the seamless trial is one of the two pivotal trials
required for registration, the second pivotal trial should be completed
in a timely fashion, which can shorten the overall development time.
During the planning stage, the additional time required for the second
seamless trial must be included in the evaluation of the overall clinical
development time.

Statistical inference

As indicated by Maca et al. (2006), data analysis for seamless trials may
be problematic due to bias induced by the adaptation employed. This
bias of the maximum likelihood estimate of the effect of the selected
treatment over the control could lead to an inaccurate coverage for the
associated confidence interval. As a result, it is suggested that the test
comparing the selected treatment with the control must be adjusted to
give a correct type I error rate. Estimates of treatment effect must also
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be adjusted to avoid statistical bias and produce confidence intervals
with correct coverage probability. Brannath, Koening, and Bauer (2003)
derived a set of repeated confidence intervals by exploiting the duality
of hypothesis tests and confidence intervals. This approach, however,
is strictly conservative if the trial stops at the interim analysis. Al-
ternatively, Posch et al. (2005) proposed a more general approach: to
use for each null hypothesis a different combination test. Stallard and
Todd (2005) evaluated the bias of the maximum likelihood estimate and
proposed a bias-adjusted estimate. Using a stage-wise ordering of the
sample space, they also constructed a confidence region for the selected
treatment effect.

Decision process

Seamless Phase II/III trials usually involve critical decision making at
the end of the learning phase. A typical approach is to establish an in-
dependent data monitoring committee (DMC) to monitor ongoing trials.
For an adaptive seamless phase II/III trial design, the decision process
may require additional expertise not usually represented on DMCs,
which may require a sponsor’s input or at least a sponsor’s ratification
on DMC’s recommendation. Maca et al. (2006) pointed out several crit-
ical aspects that are relevant to the decision process in seamless phase
II/III designs. These critical aspects include (i) composition of the de-
cision board, (ii) process for producing analysis results, (iii) sponsor
representation, (iv) information inferable from the selection decision,
and (v) regulatory perspectives.

For the composition of the decision board, it is not clear whether all
of the study objectives or adaptation of a seamless trial at the learning
phase should be addressed by the same board or by separate boards.
There seems to be no universal agreement on which approach is cor-
rect. Maca et al. (2006) suggested that if it is decided that a single
board would suffice, then at a minimum, it should be strongly consid-
ered whether the composition of the board should be broadened to in-
clude individuals not normally represented on a DMC who have proper
perspective and experience in making the selection decision; for exam-
ple, individuals with safety monitoring expertise may not have rele-
vant experience in dose selection. On the other hand, if separate boards
are used, then the members of the board making the selection deci-
sion should in general only review unblinded data at the selection point
and should only see results relevant to the decision they are charged
to make. For the process of producing analysis results, results should
be produced by an independent statistician and/or programmer who
should provide the results directly to the appropriate DMC for review.
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For sponsor representation, as indicated in a recent FDA guidance, the
following principles should be followed (FDA, 2005):

• Sponsor representatives who will participate in the recom-
mendation, or be allowed to ratify the recommendation, are
adequately distanced from trial activities, i.e., they do not have
other trial responsibilities, and should have limited direct con-
tact with people who are involved in the day-to-day manage-
ment of the trial.

• Sponsor representation is minimal to meet the needs, i.e., the
smallest number of sponsor representatives which can pro-
vide the necessary perspective is involved, these individuals
see the minimum amount of unblinded information needed to
participate in the decision process, and only at the decision
point.

• Appropriate protections and firewalls are in place to ensure
that knowledge is appropriately limited; e.g., procedures and
responsibilities are clearly documented and understood by all
parties involved, confidentiality agreements reflecting these
are produced, secure data access and transfer processes are in
place, etc.

For information inferable from the selection decision, as a general
principle, knowledge regarding which treatment groups continue into
the confirming phase should be perceived to provide only minimal in-
formation without potentially biasing the conduct of the trial. There
should be caution to limit the information to personnel who may infer
from a particular selection decision. For regulatory perspectives, it is
strongly recommended that a regulatory reviewer be consulted when
implementing adaptive seamless trial designs in appropriate clinical
development programs in order to maintain the validity and integrity
of the trial.
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