


Chapter

1
Introduction

This chapter aims to clarify the concept of population balance model or
population balance equation, terms that are used almost interchange-
ably in this book. This is followed by a short narrative of the strengths
and weaknesses of these models.

1.1 What Are Population Balance Models?

Population balance is not a well-defined concept in science and engi-
neering, but means slightly different things to different people. During
the fall of 2004, a Web search on the term “population balance model”
gave more than 1 million hits, and a casual perusal of some of the Web
pages obtained in this search makes clear this confusion of connota-
tions. In this book, population balance models will connote the equa-
tions or sets of equations that model the dynamics of the distribution
of states of a population of cells or particles.

Population balances are models describing how the number of
individuals in a population and their properties change with time and
with the conditions of growth. In engineering, population balances are
used to model not just populations of living cells, but also populations
of inanimate particles, such as the size and number of crystals in a
crystalizer or the size, number, and composition of droplets in an
aerosol.

Although an engineering concept, there is a population balance
notion that is known to most people and that is the population pyramid.
Age pyramids are histograms depicting the number of people in each of
a set of age classes. Often, these histograms are split into two parts, one
for males and one for females, and are placed with a common vertical
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axis signifying age, and two horizontal axes, running in opposite
dirertions for males and females, indicating number of individuals in
each age class. This placement gives rise to a roughly triangular shape
reminiscent of a pyramid, thus the name. The age pyramids for Burundi
and Denmark for the year 2000 are shown in Fig. 1.1.

Without knowing anything about the mathematics of population
balance models, most people will be able to look at these two pyramids
and immediately conclude that

■ The population of Burundi is increasing while the population of
Denmark is not, or if so, only very slowly compared to the population
of Burundi.

■ Denmark experienced a baby boom after World War II while Burundi
did not.

■ The average life span in Denmark is longer than the average life span
in Burundi.

The rate of population increase in Burundi can be inferred from the
large number of people in the younger age groups as compared to the
older groups, indicating a population with a large fraction of young
individuals. This trend could conceivably be explained by a high rate of
death for all of the age groups, but it is not a valid explanation in this
case, since natural death in humans occurs predominantly at older
ages. Instead, the large fraction of young people is a result of a high
birth rate causing each generation to be larger than the previous and
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Figure 1.1  Population pyramids for Burundi and Denmark, 2000. (Source: U.S. Census
Bureau.)
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thus the total population to increase with time. This trend turns out to
hold for microbial populations as well: the higher the specific growth
rate of the population, the larger the fraction of younger cells and vice
versa. The population pyramid for Denmark, on the other hand, shows
an approximately constant population size for age groups younger than
60. Only after this age does death cause a significant decrease in
population size with age.

The Danish population pyramid is at its widest between ages 25 to
54; the age distribution has a local maximum in this interval of ages.
This, of course, is a signature of the baby boom, the increase in birth
rate that occurred in most of the western world after World War II,
which was a period during which people postponed starting families.
Although the Danish population pyramid indicates a population that is
not changing rapidly in size, the baby boom hump shows that the age
distribution in the population is not at a steady state. The baby boom
subpopulation in the western world will, as time goes by, shift toward
older ages, resulting in a population with a high fraction of senior
citizens and giving rise to concerns about how society can cope with this
increase in retirees. This connection between a temporary increase in
birth rate and a local peak in the age distribution is also seen in the age
distribution of microbial cultures. When such a peak is formed, the
culture is said to be synchronized, or partially synchronized, and the
sharper the peak in the age distribution, the higher the degree of
synchrony is said to be.

The average age in Burundi and Denmark can be easily be calculated
from the values of their respective population pyramids. The average
age is simply the first moment of the age distribution, and the lower
average age for Burundi as compared to Denmark reflects both a
shorter life span and a more rapidly increasing population in Burundi.

Population balance models of the populations in Burundi and
Denmark will allow for quantitative predictions about the future of the
populations in the two countries rather than just the simple qualitative
statements above. For instance, models would allow one to predict or
estimate future population sizes in Burundi or the fraction of retirees
in Denmark, both estimates that are valuable for reaching political
decisions about how to manage future changes in the populations.
However, the focus of this book is not on models of human populations
but of models of cultures of cells, be they single-celled procaryotes,
eucaryotes, or even the cells that make up tissues.

Most growth models of cell cultures can be classified as either
structured or unstructured, and as distributed or segregated [94]. The
term “structured model” refers to a model where more than one variable
is used to specify the composition of the biophase. Typically, these
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variables are the chemical compounds of the biophase. To keep the
number of model variables manageable, models make frequent use of
pseudocomponents, functionally similar compounds that have been
lumped into groups such as proteins, various types of RNAs, and lipid
content. Unstructured models, on the other hand, characterize the
biophase by a single variable such as the amount of biomass.
Distributed models are models that make the simplifying assumption
that the cells in a culture form a single well-mixed biophase, while
segregated models are more realistic and take into account the fact that
the biological material is segregated into individual cells that are not
necessarily identical in composition. In segregated models, the
biophase is described by a distribution of cell states, a frequency
function that indicates the probability that a cell, picked at random, is
in a specified state. This specific state can be any measure of the cell
state: cell size, cell mass, cell age, DNA content, protein content, etc.
The state of a cell can even be specified by using multiple variables such
as DNA and protein content, in which case the distribution of states
becomes a multidimensional frequency function.

Distributed models can be either structured or unstructured. An
unstructured, distributed model consists of a balance on the biomass
coupled with mass balances on the media component, and these
balances form a set of coupled, ordinary differential equations. A
structured, distributed model also consists of coupled ordinary
differential equations, balances on the components in the biophase and
balances on components in the media—identical to the balances one
would write on any two-phase reactor.

Segregated models can be either structured or unstructured,
depending on how many parameters are used to describe the state of a
cell. They are usually much more complex than distributed models,
typically consisting of partial differential, integral equations for the
distribution of cell states, coupled to mass balances on the substrate
components. Segregated models are a type of population balance model,
but the concept of population balances encompasses many more
systems than just cell cultures.

The population balance models that are the topic of this book are
segregated models of microbial populations. They are not only age
distribution models, but also models of the size or mass distribution, or
multidimensional models involving several cell state parameters. As
alluded to earlier, these models share some of the features and issues
of models of human populations. To model either type of population, one
will want to know when reproduction or cell division occurs, at what
rate cells or individuals in different states die, the state (e.g., size or
mass) of newborn cells, and the growth rate of individual cells. Of
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course, for the age distribution problem, the last two issues are trivial;
newborn cells have age zero and the age growth rate is unity. When
other state parameters such as cell mass are used, it is more difficult
to say something about the rate of growth of individual cells or the
distribution of states of newborn cells.

1.2 The Distribution of States

The models of microbial populations that we will consider here will not
be of the discretized version that is exhibited by the human population
histogram in Fig. 1.1, but will assume that the state parameter (age,
mass, etc.) is a continuous variable, giving rise to distributions of states
that are usually smooth functions instead of the discontinuous bins that
the histogram represents. (Of course, a smooth distribution can always
be represented by a histogram if so desired.) The distributions of states
can be scaled several ways, either as a frequency function such that the
zeroth moment equals unity, or as a cell number distribution such that
the zeroth moment equals the cell number concentration. We will adopt
the nomenclature that f(•) indicates the normalized distribution of
states and W(•) the cell number concentration distribution of states.
Thus, if the state of a cell is given by z, then

f (z, t)dz = fraction of cells with state z z, z + dz

at time t and similarly

W(z, t)dz = cell number concentration of cells with state

z z, z + dz

The two distributions scale such that

z
f (z, t)dz = 1

where the z subscript in the integral indicates that the integration is
over all possible cell states z. Similarly

z
W(z, t)dz = N (t)

where N(t) is the cell number concentration at time t. Clearly,

W(z, t) = N(t) f (z, t)

and the equations that describe how these functions evolve with time
and under different growth conditions are the population balance
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models that we seek. The fact that these distributions indicate that the
number of individuals in a given group can be a fractional number does
not contradict the fact that in real populations the number of
individuals within a given group is always an integer because the
distributions should be thought of in a statistical sense. They represent
the probability that a cell chosen at random is in a given group or
interval of states. Also, in most practical applications, the number of
cells in a population is so huge that the difference between the true
discrete population and the continuum approximation represented by
the distribution of states becomes negligible.

Often one may want to find several different distributions of states
for the same population. For instance, one may want to know both the
distribution of cell mass and the distribution of cell age. Instead of solv-
ing for each distribution separately, one can, since a single state pa-
rameter is used, solve for either one and find the other by a variable
transformation. For instance, consider a case where the age distribu-
tion is known and where the mass distribution is desired. All we need
to know to carry out the transformation is the cell mass as a function
of cell age. Call this function m(a) and the inverse function a(m); then

Number of cells between a and a + da = f (a)da

Number of cells between m(a) and m(a + da) = f (m)dm

and thus

f (a)da = f (m)dm

f (m) = f (a(m)) da
dm

, f (a) = f (m(a)) dm
da

The distribution of states can be partially characterized by various
scalar quantities such as the zeroth moment mentioned above. In
general, the nth moment of f(z, t) is

Mn(t) =
z
zn f (z, t)dz = z

znW (z, t)dz

z
W (z, t)dz

The first moment has a simple biological interpretation; it is the
mean or average z value of the cells in the population, e.g., the average
cell mass or cell size. The moments defined this way are mathemat-
ically important because an approximate distribution can often be
reconstructed from the moments. However, in terms of descriptive
value, the centered moments are preferred. These are defined as
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Mn =
z
(z M1)n f (z, t) dz

and many of these have common names such as the second centered
moment or the variance 2,

2 =
z
(z M1)2 f (z, t)dz = M2 M1

2

which describes how broad or uniform the distribution is. For a perfectly
synchronized distribution in which all cells are in the same cell state,
the variance equals zero. The asymmetry of the distribution is mea-
sured by the skewness defined as

1 =
z
(z M1)3 f (z, t) dz/ 3 =

M3 3M1M2 + 2M3
3

(M2 M1
2)3 / 2

The reason for division by 3 is that it renders the skewness
dimensionless. If a distribution is symmetric, it has zero skewness; if it
has a tail at values greater than its maximum, it has positive skewness;
if the tail is at values less than the maximum, it has negative skewness.
Finally, the kurtosis is defined in terms of the fourth centered moment
as

2 =
z
(z M1)4 f (z, t)dz / 4 3 =

M4 4M1M3 + 6M1
2M2 3M1

4

M2
2 2M1

2M2 + M1
4

3

The reason for the –3 term in the definition is that it results in the
normal distribution having a kurtosis of 0. The kurtosis defined above
is therefore sometimes called the kurtosis excess, as opposed to the
kurtosis proper, which is defined without the –3 term. The kurtosis is a
measure of the degree of peakedness of a distribution. If the distribution
is more concentrated around the mean than the normal distribution,
then the kurtosis is positive, otherwise it is negative.

1.3 The Age Population Balance

Derivation of the age population balance is particularly easy and will
be done first to illustrate the general concept of a particle balance. We
can obtain the equation by doing a cell number balance on a group of
cells with ages between b and c, where we assume 0 < b < c. The age
bracket that defines the cells is an example of a so-called control vol-
ume, the “volume” in state space over which a number balance, or any
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other kind of conservation balance for that matter, can be written. The
number of cells in the control volume is

b

c
W (a, t) da

This number changes with time, and the rate of change in the number
of cells inside the control volume is the time derivate of the integral:

Rate of change in cell number =
t b

c
W (a, t) da =

b

c W
t

da

The number of cells in the control volume changes through three
processes: Cells leave the group as they grow older than c, younger cells
enter the group as they grow older than b, and cells leave the group
because they divide. The rates at which cells enter and leave the group
by growth are W(b, t) and W(c, t), respectively. The rate at which cells
of age a divide is harder to account for, and we will need to define a
function, (a, t), such that (a, t) W(a, t) equals this rate.  is called the
division intensity, and we shall return to this function later and discuss
it in more detail. Thus, the rate at which cells leave the control volume
through division equals the rate for cells of age a integrated over all the
control volume ages:

Rate of cell leaving by division =
b

c
(a, t)W(a, t)da

The rate of change of the number of cells in the group can now be
related to the rates at which cells enter and leave the group by a number
balance:

Rate of change in cell number =

rate of cells entering rate of cells leaving

or, as an equation,

b

c W
t

da = W(b, t) W(c, t)
b

c
(a, t)da

The cell balance is not particularly useful in this form, so we will
rewrite it by first writing the difference W(b, t) – W(c, t) as an integral,

b

c W
t

da =
b

c W
a

da
b

c
(a, t)W(a, t)da
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then collecting all the terms under a single integral sign,

b

c{ W
t

+ W
a

+ (a, t)W (a, t)} da = 0

As the limits of the integral are arbitrary, the integrand itself must
be identically zero, giving the desired result:

W
t

+ W
a

= (a, t)W (a, t) (1.1)

Since this equation was obtained from a number balance on cells
inside a specified age bracket or control volume, this equation (as well
as other equations obtained by number balances) will be referred to as
a population balance equation (PBE). By themselves, population
balance equations do not present sufficient information to solve for the
distribution of states. They must first be supplied with side conditions
or boundary conditions, initial conditions, and typically equations for
the concentrations of growth-limiting nutrients in the medium, as well
as equations that relate these concentrations to the division intensity
and other kinetic functions in the population balance equation. We will
refer to the combination of the population balance equation and all its
side conditions and supporting equations as a population balance
model (PBM). The alternative term corpuscular1 models has been
suggested [81], but the term has never caught on, while the term
segregated model is used in many biochemical engineering books for
PBMs of cell cultures [3, 10, 66].

1.4 Other PBMs

The term “population balance model” was firmly established as the
preferred term when a United Engineering Foundation conference in
Kona, Hawaii, in the year 2000 titled itself the Engineering Foundation
Conference on Population Balance Modeling and Applications, and
when, shortly after this conference, Professor Doraiswami Ramkrishna
published the first general textbook on population balances simply en-
titled Population Balances [74]. It is immediately obvious in looking
through this book or through the papers from the Kona conference [47]
that population balance models are not limited to populations of mi-
crobial cells. In fact, in engineering the term refers to any number
balance over a particulate system, and population balance models have
been formulated for aerosols, crystallizers, emulsions, soot formation,
polymerization kinetics, and granulation operations. Even networks

1Pertaining to, or composed of, corpuscles, or small particles.
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and traffic flow can be modeled with population balance equations. All
these models have a similar mathematical structure, and, looking back
at the derivation of the age distribution population balance equation
above, one should notice that there is nothing in the derivation that is
particular to living cells. The very same arguments can be used to for-
mulate a balance equation for crystals that grow and break in a crys-
tallizer. Common to all population balances of this type is that they
describe the dynamics of a population of particles in terms of the ki-
netics of the single particle, i.e., in terms of the growth rate of a single
particle, the probability of breakage/division of this particle, and the
probability that a newly formed particle is in a certain state. In some
particulate systems, additional processes must be considered. For in-
stance, in crystallization, new crystals can be formed, not just by break-
age of larger crystals, but also by nucleation, and the population
balance for a crystallizer must therefore include a nucleation rate. Sim-
ilarly, aggregation or agglomeration is an important process that must
be included in population balances of aerosols, emulsions, and floccu-
lation processes.

People who work with population balances are often fond of pointing
out that particulate systems that are physically dissimilar can all be
modeled with PBMs that share a common mathematical structure.
Unfortunately, this fondness for pointing out the shared mathematical
basis has not resulted in a common nomenclature for PBMs. Each
physical system often carries its own nomenclature over into the PBM.
This can make it a challenge to read the literature on PBMs from areas
outside one’s own, but it is a worthwhile effort to undertake if one wants
to obtain a firmer grasp of these models. This is particularly important
when it comes to computational aspects, the numerical solution and
simulation of PBMs, where algorithms that have proved successful for
one model can often be applied, with little change, to PBMs for different
physical systems.

Population balance models started to appear in the engineering
literature in the early ’60s, the first being a model of the size
distribution of particles in a crystallizer, including nucleation but
assuming no breakage of particles [78]. This was followed by a model of
the age distribution of viable and nonviable cells in a cell culture [34],
and a study of size distributions in two vessel systems when particles
can either grow or shrink [4]. It was quickly realized that these models
shared a common mathematical structure, and general presentations
of abstract population balance models soon appeared [48, 77] as well as
more general overview papers of the current state of the art of
population balance models [73, 76]. A few text books have also been
published, but apart from the book by Professor Ramkrishna [74], these
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have had a narrow focus such as crystalization [79] or process control
[21]. The introduction to population balances for many of the people
working with microbial cultures are arguably two early papers from
Professor Arnold Fredrickson’s group at the University of Minnesota
[27, 33]. Both papers are recommended as excellent introductions to
PBMs of cell cultures. The first [27] presents a derivation and analysis
of PBMs with mass or age as the state parameter and discusses the
relationship between the mass and age models. Also presented are
models of single-cell growth rates based on the assumption that uptake
of mass is proportional to the cell surface area; spherical (cocci) and
cylindrical (bacilli) cells are modeled. The second paper [33] presents a
more ambitious derivation and analysis of structured PBMs.

1.4.1 Population balances in ecology

Before concluding this section, it must be pointed out that the term
population balance model is also used for any number of models, eco-
logical models in particular, that model the size of populations of one
or several species. Being primarily concerned with the dynamics of pop-
ulation sizes, they need not employ the concept of a distribution of states
at all and can be mathematically quite different from the PBMs de-
scribed above. For instance, the celebrated Lotka-Volterra model of a
predator-prey system consists of two coupled ordinary differential
equations [55], while the logistic map is a first-order finite difference
equation which has been used to model the number of individuals in
successive generations [57].

However, some ecological models, often called density-dependent
population models or physiologically structured population models, do
incorporate a distribution of states of the population being modeled. The
main difference between the PBMs of particulate systems that are the
focus of this book and the physiologically structured models used in
ecology is that PBMs of particulate systems typically include equations
for the composition of the environment while physiologically structured
models do not. The reason for this difference is that credible models
exist that describe the effect of the environment on growth of many
types of particles, while such models often cannot be identified in
ecological modeling. For instance, the Monod model [61], which is often
used to model the effect of the limiting substrate concentration on the
specific growth rate of a cell population, is a plausible model of the effect
of substrate concentration on the growth rate of individual cells, and it
is therefore reasonable to include equations for the composition of the
medium in a PBM of microbial cells. On the other hand, in ecological
models, kinetic terms such as birth or death rates are modeled not as
dependent on the composition of the environment, but on various
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weighted moments of the distribution of states. This creates a model
with a mathematical structure that is superficially similar to that of
PBMs but which is nevertheless different, and the literature for PBMs
and that for physiologically structured population models therefore do
not overlap much. The reader interested in learning more about
physiologically structured models can consult the book by Cushing
[25].2

1.5 PBMs of Cell Cultures

Cell cultures possess various features that make them different from
many other particulate systems that are modeled by PBMs and that
make it possible to simplify the general form of the population balance.
For instance, if one ignores processes such as meiosis and spore forma-
tion, cells always split exactly in two at cell division, as opposed to many
other particles that can fracture into any number of pieces. And because
new cells arise only by division of older cells, PBMs for cell cultures
never contain a nucleation term. Additionally, PBMs for cell cultures
do not contain a term for aggregation. Granted, mating and conjugation
occur in sexual reproduction and cells may aggregate to form cell
clumps. But sexual reproduction is not an important process in biore-
actors, and, although cell aggregation does create a population balance
problem in terms of the distribution of aggregate sizes, this problem is
independent of the distribution of cell states unless the aggregation has
a strong effect on the growth kinetics of the single cells. These processes
have therefore so far been ignored in the population balance models of
cell cultures in the literature. It is quite possible, of course, that inter-
esting population balance problems can be identified for cell cultures in
which sexual reproduction plays a large role or in which cell clumping
is so significant that the growth kinetics of single cells are affected.
Finally cells, as opposed to all other kinds of particles that are modeled
by population balances, can die. PBMs for cell cultures may therefore
contain a term that accounts for cell death.

In addition to the constraints placed by biology on PBMs of cell
cultures, there are several simplifying assumptions that are routinely
made in writing PBMs for cell cultures. Cells, when growing at their
maximum rate, double no faster than about once every 15 minutes,
while the mixing times in most bioreactors are of the order of seconds.
PBMs of cell cultures therefore assume that the cultures are well mixed
and the position and velocities of the cells, so-called external
parameters, play no role in the models. Only internal parameters such

2Be sure to download errata to the book from the author’s website, http://
math.arizona.edu/cushing.
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as age, size, and concentrations of metabolites are used in the distri-
bution of states.

In summary, the processes that determine the specific form of the
PBE for a cell culture are single-cell growth rate, cell division rate, some
function specifying how cell matter is distributed at division, and
possibly cell death. But these processes are essentially the processes
that define the cell cycle. PBMs are therefore closely linked to the
concept of the cell cycle, and they provide a mathematical description
of the dynamics of the entire cell culture in terms of the dynamics of the
individual cells as they pass through their cell cycles.

Population balances of cell cultures have been applied to a wide range
of problems [95], and one may well ask when they should be used in
preference to other types of models. A vast majority of mathematical
models of cell culture dynamics found in the literature are distributed
models, models in which all the various metabolite concentrations are
averages over all cells in the culture. But average concentrations almost
never reproduce the correct kinetics. To see this, start by making the
(hopefully) obvious point that there are differences between cells in a
culture and consider the contrived but illustrative case in which some
fraction of the cells, F, is in one state while all other cells are in a
different state. Assume that the two states differ in their intracellular
concentrations of a substrate that is enzymatically converted to a
product, and assume further that the enzyme obeys Michaelis-Menten
kinetics. Then the rate of production formation is found as the sum of
the rate of production from the two subpopulations,

< Rp > = F mS1

K + S1
+ (1 F ) mS2

K + S2

where S1 is the substrate concentration in the first subpopulation
and S2 is the substrate concentration in the second subpopulation. If
this process is instead modeled by using a distributed model, then the
rate of product formation would be calculated on the basis of the average
substrate concentration,

Rp( < S > ) = m(FS1 + (1 F )S2)

K + FS1 + (1 F )S2

These two rates are not the same and a distributed model will
therefore fail to accurately predict the true rate of product formation in
this system. Population balance models are therefore inherently more
correct than distributed models. However, distributed models are
excellent models in many cases. The error that is introduced by lumping
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of the biophase is negligible in comparison to the errors that result from
simplification of the metabolism down to some manageable number of
reactions, or the errors that are caused by ignorance of the model
parameter’s values.

It is somewhat of an art to pick the best type of modeling approach
for a given problem, but in the case of PBMs versus distributed models,
there are important differences between the approaches that usually
make the choice obvious. First of all, PBMs must be used in modeling
phenomena that are inherently segregated, that is, phenomena in
which the distribution of cells over the cell cycle is important. Foremost
among these phenomena is cell cycle synchrony, which cannot be
modeled by a distributed model. The growth of tissue and the
distribution of cell types in a tissue are also a type of problem that cries
out for a population balance model. However, not much work has yet
been done on PBMs of tissue cultures. There are very likely interesting
problems in PBM modeling of tissue culture that await discovery.

Distributed models are superior to PBMs when a detailed description
of the metabolism is required. Distributed models consist of coupled,
ordinary differential equations (one equation for each metabolite), and
models with hundreds of equations or metabolites can readily be solved
on computers. Population balances, on the other hand, cannot yet cope
with a detailed description of the metabolism because this requires a
large number of cell state variables, i.e., a high dimensional distribution
of states, and this makes solution of the model intractable with today’s
computing power. To see why, consider again the population pyramids
in Fig. 1.1. If one uses 10 bins in the histogram, then that requires
keeping track of 10 variables. Adding another state variable to the
description, individual weight, for instance, and using again 10 bins in
the weight histogram, the two-dimensional age-weight histogram will
require 10-by-10 bins or 100 bins, or 100 variables to keep track of.
Adding yet another state variable brings the number of variables to
keep track of to 1000. A description with 100 state variables, a modest
number by the standards of distributed models, brings the number of
variables to keep track of to 10100, an unmanageable number with
today’s computing power. Consequently, most population balance
models of cell cultures are unstructured and use only a single cell state
parameter. It is a disappointing fact that currently (2005 C.E.), detailed
simulation of a three-dimensional PBM would be considered cutting-
edge work.

14 Chapter One
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Chapter

2
Unstructured PBMs

Unstructured population balance models use a single variable, such as
cell mass, to indicate the state of a cell in the culture. Unstructured
models are the least complex PBMs, and will be explored in this and
the following chapters. We will derive a general population balance
model that uses cell mass or any other variable that is conserved in a
cell division, together with associated substrate and product balances.
The age population balance is also rederived together with the bound-
ary conditions that are specific to cell age as the cell state parameter.

2.1 PBEs with Conserved
Cell State Parameter

A state parameter such as cell mass is conserved in a cell division, in
the sense that the sum of the mass of the two newly formed cells is equal
to that of the cell that divided. All PBEs based on such a conserved cell
state parameter share the same general form. Before deriving this
model, we must define the physical setting of the cell population a little
better. We will consider a culture inside a well-mixed vessel with one
liquid feed stream and one liquid exit or product stream. The vessel may
also be supplied with a gas feed for aeration and have an exit gas
stream. However, as the gas streams do not contain any cells, they can
be ignored for the moment. The two liquid streams are assumed to have
the same volumetric flow rates and the feed stream is assumed sterile
but will contain nutrients required for growth. Because the liquid
volume change associated with biochemical reactions usually is in-
significant, the volume of the culture can be assumed constant. This
type of reactor is usually called a CSTR, short for continously stirred

15
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tank reactor, or even C*. In the biochemical engineering literature it is
often called a chemostat, the term which will be used here. A schematic
is shown in Fig. 2.1.

The dilution rate of the reactor is defined as the volumetric flow rate
through the vessel divided by the culture volume, D = Q/V, and one can
easily show that cells in the vessel will wash out of the vessel with
the specific rate D. In the absence of any growth processes, cell
concentration will therefore decrease exponentially with time as e Dt.
The chemostat model encompasses the batch reactor as the special case
where the dilution rate equals zero. Derivation of population balance
models for other reactor configurations, such as fed-batch reactors are
left as an exercise.

Operation of the chemostat is characterized by its operating
parameters. These are the parameters one can specify when running
the reactor in the plant or in the laboratory. They are the dilution rate
and the composition of the feed stream, typically the concentration of
the growth limiting nutrients. Many of the models considered later will
assume a single growth-limiting substrate with a feed concentration
CSf, giving only two operating parameters, D and CSf. During steady-
state operation, the values of the operating parameters determine the
composition of the reactor content and the exit stream and, given a
model of the growth kinetics inside the reactor, one can calculate these
outlet properties as functions of the values of the operating parameters
and the model parameters (in principle, at least). A key objective of this
book is to describe how this calculation is done when a PBM is used to
model the growth kinetics. In rare cases, a model may allow several
steady-state solutions, and in such cases, a more detailed model
analysis is required to determine which of the steady-state solutions
are stable, and thus experimentally observable. Among the observable
solutions, the one that is actually seen in a given situation will depend
on how the reactor is “started up.” Under transient (time-dependent)

Sterile feed
volumetric flow rate Q

Volume V

Exit
volumetric flow rate Q

Figure 2.1 Chemostat or CSTR schematic. This idealized reactor type is assumed well
mixed, with input and exit streams that have the same volumetric flow rates Q.
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operation, the properties of the exit stream will be functions of the
values of the operating parameters, which may now be functions of time
themselves, the model parameters, and the initial condition, the state
of the reactor at some initial time when the reactor is first started up.

Consider a cell culture in a well-mixed chemostat with a dilution rate
D, which may be time dependent, although we will not write this
dependence explicitly. Let the cell state parameter be called z, and
assume that z is conserved in a division; i.e., it can be cell mass, content
of any compound, volume, etc. (but not age). Assume further that z
increases as the cell ages. The cell number balance will be done over a
differential control volume defined as the cells with states between z
and z + dz. Cells enter the control volume through growth and birth and
leave through growth, division, and possibly death, and by being
washed out of the reactor; see Fig. 2.2.

The cell number balance over the control volume now states that

Rate of cell accumulation =

rate of cell birth + growth flux in

growth flux out rate of cell division

rate of cell death rate of reactor washout

The number of cells inside the control volume, per volume of the
reactor, is the cell number concentration distribution W(z, t) multiplied
by dz, the “size” of the control volume. The rate of accumulation of cells
inside the control volume is the time derivative of this term:

Accumulation = W(z, t)dz
t

Cell growth is described by the function r(z). This is the single-cell
growth rate, the rate of increase in z for a cell in the state z, i.e., the
same as dz / dt or equivalently dz / da, where a is cell age. Growth results
in two fluxes, one in and one out of the control volume:

Growth fluxes, in—out = r(z)W(z, t) — r(z + dz)W(z + dz, t)

The fluxes out of the control volume due to division and due to death
of cells inside the volume are described by similar terms. We define the
following two functions:

(z)dt = fraction of cells in state z that divide between t and t + dt

and
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(z)dt = fraction of cells in state z that die between t and t + dt (2.1)

The function (z) is called the division intensity or division
modulus, and (z) is called the death intensity or modulus. They
represent the specific rates of division and death, respectively.
Although not written explicitly above, both are functions of growth
conditions such as substrate and product concentrations and tempera-
ture, and are therefore indirectly functions of time. The control volume
fluxes due to division and death are

Division and death = ( (z) + (z))W(z, t) dz

The flux of cells out of the control volume due to washout is

Washout flux = D W(z, t) dz

Finally, finding the flux of cells into the control volume by birth will
require the use of a distribution of birth states, a function specifying

Birth flux in

Growth flux outGrowth flux in

Death flux outDivision flux out

z

z

W(z)

z + dz

Washout
Figure 2.2 Cell fluxes in and out of a differential control volume in state space z, with
fluxes indicated. W(z) is the distribution of states.
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how cell material is partitioned between the new cells formed in a cell
division:

p(z, z̃)dz = fraction of newborn cells with a cell state between

z and z + dz, formed by division of a cell in the state z̃

We can now write the birth flux of cells into the control volume. The
rate of births from division of cells in the state z̃ is proportional to the
rate of division, (z̃)W(z̃, t). The fraction of these cells that are born into
the control volume is proportional to p(z, z̃) dz. The total birth flux is
then obtained by integration over all dividing cells. New cells form only
from larger dividing cells, so p(z, z̃) = 0 if z > z̃, and the lower limit on the
integration can therefore be written as either z or 0.

Flux in by birth = 2
0

(z̃)W(z̃, t)p(z, z̃)dz dz̃

The factor of 2 appears because each division results in formation of
two new cells. Putting all this together and dividing through by dz gives
the population balance equation

W
t

+ rW
z

= 2
0

p(z, z̃) (z̃)W(z̃, t) dz̃

— (D + (z) + (z))W(z, t)
(2.2)

Notice that this equation is homogeneous, so unless other conditions
are invoked, the solution is determined only up to a constant factor.
Specifically, the steady-state equation can be divided through by the
cell number concentration to obtain a mathematically identical
equation for the normalized distribution, f(z). The two functions (z)
and p(z, z̃) appear in some form in all types of population balances,
whether they be balances for cells, crystals, aerosol drops, or some other
type of particle, and are called the breakage functions.

Equation (2.2) must be supplied with an initial condition and
boundary conditions. As new cells cannot grow from nothing, the
growth flux from z = 0 must be zero:

r(0)W(0, t) = 0 (2.3)

Physically, this boundary condition states that the nucleation rate is
zero in a cell culture. A similar condition, often called a regularity
condition, is imposed at infinity,
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r( )W( , t) = 0 (2.4)

stating that cells cannot vanish from the system by growing arbitrarily
large. In other words, there is no “sink” at infinity. Note that both
boundary conditions specify a zero growth flux, not a zero value of the
distribution of states.

2.2 Breakage, Death, and Growth Functions

The PBE in Eq. (2.2) contains four functions that shape the distribution
of states: death and division intensity, (z) and (z); the distribution of
newborn cell sizes, p(z, z̃); and the single-cell growth rate, r(z). Unfor-
tunately, there is little information available that can help guide the
choice of expressions used for these functions, and somewhat arbitrary
choices for these functions may have to be made. However, it is the
essence of good modeling to eschew a detailed description of some of the
parts being modeled if the remaining parts of the model cannot support
this high level of detail. Considering the substantial simplifying as-
sumptions that are inherent in one-dimensional or unstructured pop-
ulation balances already, it does not make sense to worry too much
about the detailed form of these functions, and one should seek func-
tions that, while biologically reasonable, give models that are as easy
as possible to work with.

2.2.1 Division intensity 

The division intensity  is a function of the cell state z and of the con-
centrations of the substrates in the media. It will be practically zero
during the G1 and S phases and rise sharply toward the end of the G2
phase. Faster population growth rates require that the cells divide more
often, i.e., at younger ages, and it is thus reasonable to expect that ,
as a function of cell age, will shift toward younger ages and/or increase
more rapidly with age as the population growth rate increases. As pop-
ulation growth rates typically increase with increasing substrate con-
centrations,  must depend on substrate concentrations in such a way
that increasing substrate concentrations bring about this shift toward
younger ages. Similarly, it is reasonable to expect that the division in-
tensity with respect to cell mass will be close to zero until some critical
cell mass is attained, then increase steeply with increasing cell mass.

A suggestion first made by Eakman et al. [27, 28] is to assume that
cell mass at division roughly follows a gaussian distribution. An exact
gaussian distribution is obviously not possible because cell mass must
be nonnegative. Assuming a distribution of division masses of the form

20 Chapter Two
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h(m) = 2e
– ((m – mc) / )2

(erf(mc / ) + 1)
they showed that the division intensity will be

(m, CS) = 2e
– ((m – mc / ))2

(1 — erf
((m — mc) / )

)

r(m, CS)

Here  and mc are adjustable model parameters and CS is the
substrate concentration. Notice that the substrate dependence only
appears as an argument in the factor r(m, CS), the single cell growth
rate. The expression can be rewritten in a compact, dimensionless
form as

2r
= e—x2

1 — erf(x)
(2.5)

where x = (m mc)/ . The graph of this function is shown in Fig. 2.3.
The compact form in Eq. (2.3) shows that this model of (m) has a
limited amount of built-in flexibility. The inherent shape of the function
remains the same irrespective of the values of the two parameters  and
mc, with a value near zero when m < mc  2  and a rapid increase with
m after this point. Evaluating the function for very large arguments
can be tricky because, for large arguments, both numerator and
denominator go to zero and an accurate evaluation therefore requires
a large number of significant digits.

2.2.2 Distribution of birth states p

This function describes how cell matter is partitioned between daughter
cells at division, and it must be a function of the state of the dividing
cell. There is less reason to think that it will be a strong function of
medium composition. Several comments can be made about the math-
ematical properties of the distribution of birth states, p(z, z̃). When z
indicates a physical quantity that is conserved in division, such as total
cell mass, the newborn cell cannot be born in a state with a larger value
of z than the dividing cell. The probability is therefore 1 that the new-
born cell will be in a cell state in the interval [0, z̃ ], or

0

z̃
p(z, z̃)dz = 1 (2.6)
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Similarly, the cell state of newborn cells must on average equal half
that of the dividing cell, z̃ / 2, and the first moment of p(z, z̃) must
therefore equal z̃ / 2:

0

z̃
z p(z, z̃) dz = z̃

2

Finally, p(z, z̃) must satisfy the symmetry condition

p(z, z̃) = p(z̃ — z, z̃)

In some organisms, such as budding yeasts, cell matter is distributed
unevenly but systematically between the two cells formed in a division.
However, lacking such empirical observations, it is reasonable to
assume that cell components are distributed at random in a division
and the central limit theorem indicates that the mass distribution of
newborn cells must be approximately gaussian. Again, cell mass must
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Figure 2.3 Dimensionless division intensity versus dimensionless mass, Eq. (2.5).
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be nonnegative, so the gaussian distribution must be truncated at zero
and scaled, giving the suggested form for p(m, m̃) [27, 28]:

p(m, m̃) = e — ( (( m — m̃) / 2) / )2

(1 — erf(m̃ / 2 ))

The simpler, rational function

p(m, m̃) = 30 m2(m̃ — m)2

m̃5

which has all the required properties, has also been suggested [93].

2.2.3 Death intensity 

Cell death is clearly a function of the environment, so death intensity
should generally depend on the composition of the growth medium. It
can also depend on the cell state because cell death may occur predom-
inately in only a part of the cell cycle. For instance, many antibiotics
function by inhibiting DNA synthesis, and these antibiotics therefore
only kill cells in the S phase, a fact that should be reflected in the choice
of function for death intensity. However, barring such known mecha-
nisms of death, there is little reason to assume other than that death
occurs uniformly over the cell cycle and that death intensity therefore
is independent of cell state. Another possibility, which also gives a
simple PBE, is to assume that cell death occurs only at the time of cell
division. For instance, if death is modeled by assuming that a
fraction  of dividing cells die during the division process, then the
average number of new cells formed in a division equals 2(1 ) and
this factor must be substituted for the factor of 2 in front of the integral
term in Eq. (2.2).

However, cell death is an ambiguous term in the context of single-cell
organisms. A cell may be considered dead if it has lost the ability to
divide, but the cell may still be metabolically active, and such cells must
therefore be accounted for in a PBM because they still consume the
substrates in the growth media. Alternatively, a cell may be considered
dead if it is no longer metabolically active, but until it lyses, it is still
present in the culture and will show up in measurements such as
microscope or electronic particle counting. These dead but not yet lysed
cells may therefore also have to be accounted for in a model. A model
can account for these different types of cells by including a population
balance equation for each type. The first type, the subpopulation of
living, dividing and metabolically active cells, can be modeled by a
standard population balance similar to Eq. (2.2):
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W1
t

+
r1W1

z
= 2

0 1(z̃)W1(z̃, t)p1(z, z̃) dz̃

(D + 1(z) + 1(z))W1(z, t)

where the subscript 1 indicates that the balance and the various
functions refer to only this first subpopulation of cells, metabolically
active and dividing cells. However, in this balance, the function 1
is the rate at which the cells transition to cells of the second type,
cells that are metabolically active but have ceased to divide. It should
thus properly be called a transition inten-sity and not a death inten-
sity. The second subpopulation of cells can be modeled by a slightly
modified population balance with a division intensity equal to zero
and a source term accounting for the transition of cells from type 1 to
type 2,

W2
t

+
r2W2

z
= (D + 2(z))W2(z, t) + 1(z)W1(z, t)

where the function 2 is the rate at which type 2 cells are changed into
type 3 cells, cells that neither divide nor are metabolically active. The
population balance for this subpopulation is quite simple since both
the single-cell growth rate r and the division intensity are identically
zero:

W3

t
= (D + 3(z))W3(z, t) + 2(z)W2(z, t)

where the function 3 is the rate at which these cells lyse and finally
disappear completely from the culture.

These last three equations form a model of a cell culture in which cells
die by first losing the ability to divide, then ceasing to be metabolically
active and finally by lysing. The model consists of three coupled,
unstructured population balances (plus boundary conditions and
substrate and product equations). In this model, each cell is
characterized by two parameters, the state z and an index, 1, 2 or 3,
that identifies the subpopulation to which the cell belongs. The model
is thus formally a structured population balance model. The simplifying
modeling assumption, that a cell population can be split into separate
subpopulations, each of which can then be modeled by an unstructured
population balance, is often a convenient trick for modeling complex
populations that would otherwise need structured models.
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2.2.4 Single-cell growth rate r

Of the various functions that appear in a population balance, the single-
cell growth rate is the least mysterious. This function models the cell
metabolism and describes how fast the state z of a cell changes as a
function of z itself and of the substrate concentrations. The last decade
has seen an enormous amount of literature that addresses the issue of
how to model the metabolism of the cell, and it is only a matter of time
before one will be able to formulate acceptable metabolic models based
exclusively on the genomic sequence of the organism. Unfortunately, all
these models have high dimensionality, involving hundreds of coupled
ordinary differential equations, and are therefore practically useless
from the standpoint of population balances that are only tractable for
very low dimensional state spaces.

Unstructured population balances require unstructured models of
the single-cell growth rate, and it is natural to seek inspiration from,
and possibly apply, the unstructured models of population growth rates
that have been used in unstructured, distributed models. The arguably
most famous and frequently used such model is the Monod model [60,
61]. In our nomenclature,

r(z, CS) = mCS

K + CS
z (2.7)

where CS is the substrate concentration, m the maximum specific
growth rate of the cell, and K a saturation constant, often just called
the Monod constant. The Monod model is popular because it offers a
good compromise between mathematical simplicity and realism.
However, many other growth rate expressions have been used in
distributed models, and all of these can be adapted to population
balances. For instance, the Blackman model [9] is a piecewise linear
approximation of the Monod model:

r(z, CS) = { m, CS 2K

mCS
2K

, CS 2K

Being piecewise linear as opposed to nonlinear, the Blackman
equation can give PBMs that are easier to solve analytically than the
Monod model, but the discontinuity in the slope of r is biologically
unreasonable and is a nuisance to deal with. The Moser model [62] is a
generalization of the Monod model:
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r(z, CS) = mCS
n

K + CS
n

z

and reduces to the Monod model for n = 1.
Instead of using these models, which although biologically rea-

sonable were intended for a population of cells and not single cells, one
can formulate simple models of single-cell growth. Bertalanffy [96]
pointed out that the growth rate of a cell equals the difference between
the rate of substrate uptake and the rate of transformation or release
of cell matter into the medium. When nutrient uptake is limited by the
cell surface, then this rate can be modeled once the shape of the cell is
known, while the rate of release of material can reasonably be modeled
as proportional to the cell mass. Thus, the rate of single cell mass
growth rate can be modeled

r(m, CS) = k uptake (CS)cell surface area k rel m

where kuptake and krel are proportionality constants. The uptake rate will
generally be a function of the substrate concentration CS, while there
is little reason to assume the release rate will be a function of this.
Eakman [27, 28] used this equation to derive growth rate models for
cocci (spherical cells):

r sphere (m, CS) = k uptake (CS) ( 36
2 )1 / 3

m2 / 3 k rel m

where  is the density of the cell. And for rods,

r rod = ( 2k uptake (CS)

R
k rel )m + 4

3
R2k uptake (CS)

where R is the radius of the rod, assumed constant. The substrate
dependence of the proportionality constant for uptake, kuptake, was
modeled by a Monod-type expression

k uptake (CS) =
kCS

K + CS

Clearly other models of substrate dependence can be substituted at
this point.

Expressions for the single-cell growth rate lead to a differential equa-
tion for the cell state as a function of cell age or time:

dz
dt

= r(z, CS)
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The solutions to this equation are the single-cell growth curves.
Assuming constant density and substrate concentration, the mass
growth curves for spherical and rod-shaped cells are found from the
expressions above as [27, 28]

m sphere (t) =
k uptake

k rel
( 36

2 )1 / 3 (1 e
t k rel / 3) + m0

1 / 3e
t k rel / 3 3

(2.8)

and

mrod(t) = m0e
(2kuptake / R krel) t

+
4 R2kuptake(e

(2kuptake / R krel) t
1)

3( 2kuptake
R

krel)
(2.9)

where m0 is the initial cell mass. The two families of growth curves are
graphed in Figs. 2.4 and 2.5, respectively.

For cocci or spherical cells, the specific surface area of the cell, the
surface area per volume, decreases as the cells grow, and the rate of
uptake therefore does not increase with cell mass as fast as the rate of
release. Consequently, the growth curves approach an asymptote,
the upper mass limit of spherical cells, where the rate of substrate
uptake equals the rate of release of cell matter. As the asymptote is
approached, the growth curves converge and the state space is said to
contract.

The growth curves for rods, on the other hand, are approximately
exponential functions; they increase without limit and diverge as the
cells age. In this situation, the state space is said to expand.

Expansion or contraction of state space has a simple effect on the
shape of the distribution of states. Neglecting division and death, it is
clear that when the growth curves are straight parallel lines, the state
space neither contracts nor expands and the distribution of states
simply shifts toward higher values of z with the velocity r(z). When the
state space expands, the population of cells within a given interval of
cell states will shift toward a wider interval of states. Assuming no cell
divisions or death, the number of cells in this population must remain
constant and the integral of the distribution of states over this ex-
panding interval must therefore be constant. This is possible only if the
value of the distribution of states decreases as the interval expands.
Thus, the overall effect of state space expansion is to stretch the dis-
tribution of states over a wider range of cell states while simultaneously
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lowering its value such that the area under the distribution remains
constant. This effect takes place while the distribution shifts toward
higher values of the state parameter z with a velocity equal to the
single-cell growth rate; see Fig. 2.6 left. Similarly, the overall effect of
state space contraction is to make the distribution of states more
narrow while increasing its value and shifting it toward higher values
of z; see Fig. 2.6 right.

An illustration of this effect is seen in traffic flow: Traffic flow can be
modeled by a population balance on the cars, in which the state
parameter is the position of the car. In this case, the velocity of a car
takes the place of the growth rate of a cell and the distribution of states
is simply the density of the cars on a stretch of road. The state space
expands when the cars accelerate, for instance, when they enter a
freeway, and the density of cars must therefore decrease. As everyone
knows, this is in fact what is observed: The density of cars does
decrease, or equivalently the distance between cars increases, as the
speed of the cars increases. Conversely, when traffic is forced to slow
down, for instance when passing road repair, the density goes up; the
cars are closer together.
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Figure 2.4 A family of cell mass growth curves for spherical cells or cocci, Eq. (2.8).
Parameter values are taken from [27] and are as follows:  = 1.01 g/cm3, kuptake = 3.306 
10 5 g/(cm2  h), krel = 1 h 1.
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2.3 Some Properties of PBMs

A couple of points are worth making regarding the properties of
Eq. (2.2). Recall that N(t), the cell number concentration, equals the
zeroth moment of the distribution of states. Thus, by taking the zeroth
moment of the population balance equation itself, one obtains an equa-
tion for N(t) versus time:

d N
dt + r( )W( , t) r(0)W(0, t)

= 2
0

(z̃)W(z̃, t)
0

p(z, z̃)dzdz̃

DN(t)
0

( (z) + (z))W(z, t)dz

Using the regularity conditions, Eqs. (2.3) and (2.4), respectively, the
last two terms on the left-hand side equal zero. Using Eq. (2.6) to get
rid of the integral of p(z, z), we then get

dN
dt

= DN (t) + (t)N (t)
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Figure 2.5  A family of cell mass growth curves for rods, Eq. (2.9). Parameter values
are taken from [27] and are as follows:  = 1.01 g/cm3, kuptake = 3.306  10 5 g/(cm2  h),
krel = 1 h 1, R = 5  10 5 cm.
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where  is the specific growth rate of the cell population, found as

(t) =
0

( (z) (z)) f (z, t)dz (2.10)

It probably cannot be mentioned too often that PBMs are models that
associate the kinetics of the entire cell population, represented here by

(t), the specific growth rate in cell number, with the kinetics of the
single cell. Equation (2.10) is a key relationship in this connection and
can often be simplified once f(z, t) is known. Equations of this type,
linking population kinetic parameters, such as , to single-cell kinetic
parameters, will be called linkage equations. Note that at steady
state D = , and the steady-state dilution rate will therefore often be
used to characterize population growth in lieu of the specific growth
rate.

Another useful relationship is obtained by calculating the first
moment of the steady-state version of Eq. (2.2). One obtains after
simplifications

0
r(z)W(z)dz = D

0
zW(z)dz +

0
z (z)W(z)dz (2.11)

and in the special case where there is no death and single cell kinetics
is first order, r(z) = z, this reduces to

D = or equivalently =

W(z) W(z)

z(t)

z(t)

z z

t2

t1

t2

t1

Time Time

Figure 2.6 The effect of state space expansion (left) is to increase the width of the
distribution of states while simultaneously lowering its value and shifting it toward
higher values of the cell state parameter, z. Contraction (right) has the opposite effect of
making the distribution more narrow while increasing its value.
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showing that, under the assumption of no death and first-order single-
cell kinetics, the single-cell specific growth rate equals the population
specific growth rate.

The specific growth rate of the population  is generally a function of
the substrate concentration, as modeled by, for instance, Monod’s
model, Eq. (2.7). In Eq. (2.10), this dependence is of course manifested
through the distribution f’s dependence on the substrate, but also
through the dependence of  and  on substrate concentration.
However, even under conditions of constant substrate concentration,
the specific growth rate of the population is constant only if the
distribution of states is not a function of time. For instance, a culture
can be inoculated with a population of very young cells, with a narrow
distribution of states situated at low values of the state space
parameter. The cells in this culture must pass through several cell
cycles before the initial cell cycle synchrony is lost and before the
distribution of states attains its steady-state shape. During this period,
the population specific growth rate calculated from Eq. (2.10) will
change with time, without this being in any way caused by changes in
the substrate concentrations. This time dependence of , caused by
transients in the distribution of states, is a phenomenon that can be
captured only by population balance models, never by distributed
models.

A frequently encountered concept in cell growth is the simplifying
notion of exponential growth. This is used to describe steady-state
growth in a chemostat or growth in a batch culture under conditions
when substrate limitations are not significant. Under such conditions,
both (z) and (z) are independent of time and it is reasonable to seek
an asymptotic solution to the PBE, valid when the distribution of states
has reached a steady shape. This solution will have the form

W (t, z) = f (z)e t

where  is the specific growth rate of the population. Substituting this
expression into the population balance for a batch reactor (D = 0) gives,
after simplifications,

dr(z) f (z)
dz

=
0

(z̃) f (z̃)p(z, z̃)dz̃ ( (z) + (z) + ) f (z)

This is the equation for the steady-state distribution in a chemostat
with dilution rate D = , and the two situations are therefore
mathematically equivalent. The result states that the kinetics in a
steady-state chemostat is analogous to that of exponential batch
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growth, assuming that the shape of the distribution of states does not
change with time.

2.4 Substrate and Product Balances

The equation for substrate or product concentration is obtained, as for
unstructured distributed models, by introducing some appropriate
yield Y, defined as the rate of biomass formation over the rate of sub-
strate consumption. However, the yield can be different for different
cell states, and the total rate of substrate production or product forma-
tion must be found by integrating the rate of consumption/production
by cells in a specified state over all possible cell states. Thus, for a
chemostat one obtains

dCS

dt
= D(CS f CS)

0

r(z)
Y (z)

W(z, t)dz

where CS is the substrate concentration in the chemostat and in the exit
stream, CSf the substrate concentration in the feed stream, and Y(z) is
the yield of cells in state z. Similarly, the product balance takes the form

dCP

dt
= D(CP f CP) +

0
rP(z)W(z, t)dz

where CP and CPf are the product concentrations in the chemostat and
in the feed respectively, and rP(z) is the rate of product formation in
cells in state z.

2.5 The Age Distribution

Cell age is not conserved in a division, and the age population balance
therefore does not have the same structure as the population balance
in Eq. (2.2). Like any population balance, the age distribution popula-
tion balance can be derived from a cell balance on a macroscopic control
volume as was done for Eq. (1.1), or on a differential control volume like
Eq. (2.2). A derivation using probabilistic arguments will be used below
to derive the age population balance to emphasize the point that the
distribution of states is a statistical concept; it represents the proba-
bility that a cell chosen at random is in a specified state. For more
detailed steps of the derivations, see Refs. 33 and 94.

Consider a culture in a chemostat at steady state. All the events that
can possibly occur to a cell of age a between the time t and t + dt are
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■ Eage: The cell remains in the chemostat and attains the age a + da.
■ Ewashout: The cell washes out of the chemostat.
■ Edeath: The cell dies.
■ Edivision: The cell divides.

Keep in mind that these probabilities are for cells of age a that are
present at time t and in that sense are conditional probabilities. Since
the events are mutually exclusive, their probabilities P(E) must sum
to 1:

P(E age ) + P(E washout ) + P(E death ) + P(E division ) = 1

or

P(E age ) = 1 P(E washout ) P(E death ) P(E division )

The probabilities on the right-hand side can all be written as

P(E washout ) = Ddt

P(E death ) = (a)dt

where (a) is the probability that a cell of age a will die in the next dt
time interval. This is, of course, the death intensity, but defined slightly
differently than in Eq. (2.1), where it was defined in terms of the
fraction of cells that die. The difference in definition is a matter of
interpretation rather than substance, because the final form of the
population balance is the same whether the balance is derived from
probabilistic arguments or not. Similar comments can be made
regarding the division intensity (a). In the probabilistic context, it will
be interpreted as the probability that a cell of age a divides in the next
dt time interval. Thus,

P(E division ) = (a)dt

and

P(E age ) = 1 (D + (a) + (a))dt

The number of cells that have age a da at time t is given by the age
distribution as W(a da, t)da. The number of these cells that remain
in the chemostat as cells of age a at time t + dt, i.e., the cells that do not
wash out, die or divide, is W(a da, t)da multiplied by the probability
of the cell not washing out, dying, or dividing, i.e.,
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Number of cells of age a at time t + dt = W(a, t + dt)

= W(a da, t)da(1 (D + (a da) + (a da))dt)

Subtracting from this the number of cells with age a that were
present in the chemostat at time t, i.e., W(a,t)da, gives, after
rearrangement,

W (a, t + dt) W (a, t)
dt

+ W (a, t) W (a da, t)
dt

= (D + (a da) + (a da))W(a da, t)

Evidently, da = dt, so this becomes

W
t

+ W
a

= (D + (a) + (a))W(a, t) (2.12)

A cell number balance on cells of zero age leads to a boundary
condition of the form

W(0, t) = 2
0

(a)W(a, t) da (2.13)

The factor of 2 results from the fact that cell divisions produce two
new cells of age zero. This equation is commonly referred to as the
renewal equation.

2.5.1 Age division intensity

The age population balance has only one breakage function, the division
intensity (a). This division intensity can in principle be obtained from
mechanistic models of the cell cycle.

If the cell cycle is modeled as a completely deterministic process, then
all divisions occur at the boundary of state space, and determining the
division intensity is equivalent to determining this boundary. However,
specifying the boundary may well require an exceedingly detailed
description of the cell state and a more reasonable modeling approach
is probably to use stochastic models. Stochastic effects can enter models
on two grounds. Many of the regulatory proteins that control progress
through the cell cycle are present in low amounts, and the usual
assumption in chemical kinetics of continuity of concentration may
not be valid. Secondly, any tractable cell cycle model must include
some amount of lumping, and the state at cell division can therefore not
be specified sufficiently accurately to determine the boundary of the
state space.
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A general approach to stochastic chemical kinetics has been
presented by Gillespie [35] who defines the so-called reaction
probability density function as

P(t, , n) = probability that at time t the next reaction

will be of type n and occur at time t +

which is simply a probability density function and, in general, a
complicated function of the number of molecules of each kind in the
reacting system. However, in the simple cell cycle models that will be
considered below, we will assume that all the reactions in the model are
elemental first-order reactions of the type Xn 1 Xn, for which the
reaction probability density function can be shown to be

P(t) = Ce Ct (2.14)

where C is a constant defined such that C dt equals the probability of
the reaction Xn Xn occurring in the next dt time interval.

A cartoon model of the cell cycle [50] assumes that progress through
the cell cycle can be modeled as progress through a set of reactions in
series, say conversion of an initial reactant X1, through the
intermediates Xn to the final product XN. The reaction probability
density function for the overall reaction from X1 to XN can be found in
terms of the reaction probability density functions for each of the
individual reactions. The reaction probability density function for the
reaction Xn XN will be indicated Pn N(t) and is defined as

Pn N (t)dt probability that the next Xn XN reaction

will occur in the differential time interval (t, t + dt)

where we have assumed that the current time equals zero. Clearly, the
reaction X1 XN will only occur at the time t if the reaction X1 Xn
occurs at a time  < t and is followed by the reaction Xn XN after a
time t . Thus, the reaction probability density function P1 N must be
the product of these two reaction probabilities, integrated over all
possible values of :

P1 N(t) =
0

t
P1 n ( )Pn N(t )d

which is a well-known result for the distribution of the sum of two
stochastic variables. The result can be used recursively to derive models
of the reaction probability density function for a reaction sequence in
terms of the reaction probability density functions of simpler reactions.

Unstructured PBMs 35

0-07-144768-7_CH02_35_08/30/2005

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

Unstructured PBMs



Consider the case where each reaction step can be modeled as a funda-
mental reaction for which the reaction probability density function is
given by Eq. (2.14). It is easily shown by induction that the reaction
probability density function for N steps is

PN (t) = C
(Ct)N 1

(N 1)!
e Ct

which is the Erlang distribution. This distribution represents the prob-
ability that a newborn cell, picked at random, will divide after a time
period t, i.e., it is the a priori distribution of division ages. The division
intensity can be found from the a priori distribution of division ages
as [27]

s(a) =
PN(a)

1
0

a
PN(x) d x

= C
(N 1)!

(Ca)N 1

n = 0
N 1 (Ca)n

n !

The a priori distribution of division ages and the division intensity
for the reaction in series model are plotted in Fig. 2.7.

Another cartoon model of the cell cycle assumes that division occurs
after some number of parallel reactions have occurred [72]. Consider
the case of two parallel reactions and assume for simplicity that both
have the same exponential reaction probability density function, Ce Ct.
The reaction probability density function at t for the two parallel
reactions is then the probability that the first reaction occurs precisely
at t while the other reaction has already occurred plus the probability
that the second reaction occurs precisely at t while the first reaction has
already occurred. Thus,

P(t) =
0

t
P1( ) d P2(t) +

0

t
P2( ) d P1(t) = 2Ce Ct(1 e Ct)

Replacing t with cell age we obtain the a priori distribution of division
age for this model. The division intensity becomes

(a) = 2Ce Ca(1 e Ca)

1
0

a
2Ce C (1 e C )d

= 2Ce Ca 1 e Ca

2e Ca (e Ca)2

This result is easily generalized to N identical reactions in parallel.
The a priori distribution of division ages is

PN(a) = NCe Ca
0

a
Ce Ctdt

N 1
= NCe Ca(1 e Ca)N 1
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and the division intensity becomes

p(a) = N C e Ca (1 e Ca)N 1

1 (1 e Ca)N

The a priori distribution of division ages and the division intensity
for the parallel reactions model are plotted in Fig. 2.8.

The division intensity is usually assumed to go to infinity as the value
of the argument increases, but for the two models considered here, this
is not the case; lima s(a) = lima p(a) = C. This finite limit for the
age division intensity may actually be a better reflection of reality than
models that use unbounded division intensities. If a cell has undergone
almost all reactions required for division and is waiting for the final
reaction to occur, aging by itself does not increase the probability of this
reaction occurring and the division intensity must therefore be
constant. It is similar to standing at the curb and waiting to catch a
taxi. You are continuously getting older but your aging by itself does
not increase the chance of a taxi coming by.

Both of the above models of the age division intensity can be described
as transition probability models. These kinds of models have appeared
in several studies [13, 14, 84, 86, 87] but have also been severely
criticized [52]. Their basic problem is that they assume that cell age is
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Figure 2.7 The a priori distribution of division ages and the division intensity versus age
for the series reaction model with C = 2 and N = 5.
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sufficient to characterize the cell’s state and the probability of cell
division. However, this assumption quickly leads to problems because
newborn cells are bound to exhibit some size and mass differences and,
if cell age is all that determines whether a cell divides or not, this
distribution of sizes of newborn cells will broaden with each generation,
preventing the formation of a steady-state distribution of cell sizes. A
rigorous version of this handwaving argument has been presented for
exponential growth [5]. The conclusion is obviously nonsense and
progress through the cell cycle must therefore depend on other cell state
parameters such as size or mass. However, this requires a structured
population balance model which is not the subject of this chapter.

2.6  Problems

2.1 Derive the population balance equation, including the substrate and
product equation for a fed-batch reactor with volumetric feed rate Q(t).
Take the zeroth moment of the PBE and obtain the distributed model
for this case.

2.2 Derive Eq. (2.11).
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3 4 521
a

Figure 2.8 The a priori distribution of division ages and the division intensity versus age
for the parallel reactions model with C = 2 and N = 5.
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Chapter

3
Steady-State Solutions

Even steady-state population balance models are so mathematically
complex that analytical solutions are possible only in special cases.
However, it is possible to obtain models that are mathematically quite
simple by making use of the concept of cell cycle control points. Al-
though crude, control point models can be solved analytically and the
solutions do provide valuable insight into the properties of the distri-
bution of states and how it changes with growth conditions and with
different kinds of cell cycle controls. Working with these simple control
point models also builds one’s insight and intuition about population
balances and their solutions, intuition that can be extremely valuable
when progressing to analysis of more realistic models. This chapter first
covers control point models in some depth before describing the special
cases in which analytical solutions can be obtained without the as-
sumption of control points.

3.1 Control Points

Living cells differ from almost all other types of particles in that growth
and division processes are tightly controlled by groups of regulatory
proteins usually known as the cell cycle control system [2]. The details
of the control system vary from organism to organism, but all must di-
rect the replication of the genome prior to cell division and the parti-
tioning of the two genome copies as well as other essential cell
components and organelles between the two daughter cells formed in
the division. The cell cycle control system is similar in all eukaryotes
and is customarily divided into a sequence of consecutive phases, the
G1, S, G2, and M phases. The terms stand for first gap (G1), the period
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following division during which DNA replication has not yet begun;
synthesis (S), the period during which the genome is duplicated; second
gap (G2); and mitosis, or cell division (M). The length of the G1 phase
in particular varies with growth conditions, being brief during optimal
growth conditions and long during poor growth conditions. Control of
the duration of the G1 phase is thus the primary way many eukaryotic
cells control the duration of the cell cycle and therefore the growth rate
of the entire population of cells.

Several checkpoints have been identified in the cell cycle, points at
which progress through the cycle will cease if the cell cycle control
system detects a deviation from normal. For instance, the G1 and G2
phases contain DNA damage checkpoints in which the cell cycle ar-
rests while any damage to the DNA is repaired. Likewise, there are
checkpoints that stop the cell from entering mitosis if the DNA has
not been replicated and halt chromosome partitioning until all chro-
mosomes are attached to the mitotic spindle fibers.

The idea of cell cycle checkpoints can be used as a modeling concept
to formulate simple population balance equations, by assuming that
cell divisions and births occur only at discrete points in the cell cycle,
points that will be called control points to distinguish the modeling
concept from the biological concept of a cell cycle checkpoint [42]. The
control points partition the state space into disjoint intervals, and in
these intervals the division intensity and the distribution of birth states
is therefore identically zero. Thus, in each such interval, the steady-
state population balance equation is reduced to an ordinary first-order
differential equation, which is readily solved:

d
dz

(r(z)W(z)) = DW(z)

The division and birth processes are then accounted for through cell
balances over the control points. To illustrate how these balances are
obtained, consider a binary fission organism that divides when the cell
mass M has been attained. New cells must necessarily form at the mass
M/2. We now consider a control volume, split into two parts, with one
part being the point M and the other the point M/2; see Fig 3.1. Notice
that this control volume composed of points has zero “physical” volume.

The cells in the flux growing into the control volume at M all exit the
control volume by division. Division of these cells gives rise to twice as
many new cells, and all the new cells that are born at M/2 leave by
growth. The cell balance therefore states that the growth flux out at
M/2 equals twice the growth flux in at M, or

2r(M)W(M) = r(M / 2)W(M / 2)
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Models can use cell balances that are more complex than shown in
this example. For instance, one can model cell division as occurring at
several division control points with some given fraction of the cells
dividing at each point, and division need not be modeled as binary but
can assume any number of discrete birth points. When setting up a cell
balance on any control point, one equates the flux into the control point
and the flux out of the control point. A point has no volume and therefore
there is no accumulation term in a control volume balance. If the control
point is a point of cell birth, then the cell balance states that the growth
flux into the point plus the sum of the birth fluxes into the point equals
the growth flux out of the point. This is conceptually similar to a mixing
point in a classical chemical engineering flow system with several
streams entering the point and one stream leaving. Similarly, a control
point for division states that the growth flux into the point equals the
sum of the growth and division fluxes out of the point. This is con-
ceptually similar to a splitting point in a classical chemical engineering
flow system. A division flux is equal to the growth flux into the control
point multiplied by the fraction of cells that divide at this point and each
division flux gives rise to a birth flux twice as large as the division flux.
However, this birth flux may be split among several birth control points.
Thus, all fluxes which appear in cell balances over control points are
proportional to growth fluxes which have the form r(z)W(z), and cell

Birth flux Division flux

Growth fluxes

2

M/2 M
Figure 3.1  Cell balances around division and birth points for binary fission.
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balances over control points are therefore linear combinations of terms
of this form.

Consider for instance the case shown in Fig 3.2, a cell cycle where all
cells divide when they reach the state z2 and the newborn cells have the
states z0 and z1 respectively. If z is conserved in a division then
z2 = z0 + z1, but we need not make that assumption here. Without loss
of generality, we can assume that the state z1 represents cells that are
older than cells in state z0.

A cell balance over the control point z0 states that the growth flux out
equals the birth flux in. But the birth flux in equals twice times half
(half, since only half of the cells formed in a division go to z0) of the
division flux out of the control point z2, and the division flux out at z2
equals the growth flux in at z2. Considering a control volume made up
of the control points at z0 and z2, the cell balance becomes

½ 2 r(z2)W(z2) = r(z0)W(z0)

The control point at z1 is similar to a mixing point in which the flux
out from z1 equals the sum of the growth and the birth fluxes into the
point. The birth flux into the point is identical to twice times half the
division flux in the previous cell balance so we get

½ 2 r(z2)W(z2) + r(z1)W (z1) = r(z1)W+(z1)

where the subscripts  and + indicate the limit of W(z) when the free
variable approaches the argument through lesser or greater values. We
have to specify that W(z) is calculated this way because the function is
discontinuous at the control point. This notation is inconvenient, and it
is better to do the following: The control points partition the state space
into discrete intervals in which no divisions or births occur so in each
of these intervals, the distribution of states must be continuous.
Number these intervals consecutively and denote the distribution of
states in the nth interval Wn(z) or fn(z). The cell balances can then be

Division and
birth fluxes

Growth fluxes

z2z1z0
Figure 3.2  Cell fluxes when cell division results in two cells in different states.
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written as linear combinations of terms of the form r(z) Wn(z). For the
case considered above, the first interval runs from z0 to z1 and the
second interval from z1 to z2 so the cell balances take the form

r(z2)W2(z2) = r(z0)W1(z0)

r(z2)W2(z2) + r(z1)W1(z1) = r(z1)W2(z1)

Of course, each Wn will be governed by its own PBE, which, when
solved, will generate an arbitrary constant. As the number of intervals
goes up, so does the number of cell balances, and if the model is
formulated correctly the number of cell balances will equal the number
of PBEs, or equivalently, the number of arbitrary constants. However,
it turns out that even though the number of cell balances equals the
number of arbitrary constants, it is not possible to solve for all the
arbitrary constants. One constant will always remain unknown. It must
necessarily be so because both the PBEs and the cell balances are
homogeneous and can be multiplied through by an arbitrary constant
to obtain an identical set of equations. The solution to the PBE is
therefore determined only up to a constant multiplier. Specifically, one
can divide through by the cell number concentration N and obtain
balances for the normalized distribution f(z). In the language of linear
algebra: the equations between the arbitrary constants, the equations
obtained when the solutions to the PBEs are substituted into the cell
balances, are linear and homogenous and therefore have an infinity of
nonzero solutions, solutions in which all but one of the arbitrary
constants is found in terms of this constant. This remaining arbitrary
constant that cannot be found from the cell balances must generally be
found by using a substrate balance.

One cannot conclude from the comments above that one of the cell
balances is superfluous; this is not the case. All the balances are needed
because, when solved, they yield not only the arbitrary constants minus
one, but also a linkage equation similar to Eq. (2.10), which relates the
parameters of single-cell growth kinetics, such as the single-cell mass
growth rate, to the parameters of the population growth, such as the
specific growth rate . This equation is an important part of the solution
to a control point PBM and should always be reported.

Cell balances over control points at steady states are especially
simple because the control points are fixed in time. However, the point
at which they are fixed may depend on various system parameters such
as the concentrations of substrates, but this dependence simply adds
additional algebraic equations to the problem, it does not affect the way
the balances themselves are written. In the general transient case, the
states at which cells divide and are born may change with time. This
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complicates calculation of the fluxes into and out of the control points
and will be considered later in the section on transient solutions.

The examples that follow should make all these ideas clearer.

Example 3.1: Cells with a single division age For cells that all divide at the age
ad the steady-state PBE is

d f
da

= D f f (a) = Ce Da

Using the normalization condition determines the arbitrary constant C:

1 =
0

ad Ce Dada C = D

1 – e
Dad

The cell balance around birth and division is

f (0) = 2 f (ad)

and when the result for f(a) is substituted in, one obtains

1 = 2e
P Dad Dad = ln(2)

This is the linkage equation for this organism, relating the specific growth
rate of the population, as given by D, to the single-cell kinetic parameter
ad. The equation is so simple because ad is the only parameter needed to
characterize single-cell kinetics. It is well known that in an exponentially
growing population, the doubling time td and the specific growth rate are
related by a similar equation, Dtd = ln(2). The linkage equation therefore
shows that the doubling time of a population is equal to the length of the cell
cycle, assuming that the length of the cell cycle is the same for all cells in the
population.

Example 3.2: Zeroth-order single-cell kinetics Consider an example where cells
divide at the mass M, are born at the mass M/2, and the single-cell growth
rate follows zeroth-order kinetics, i.e.,

r(m) = k

The control points are at M/2 and M, and the distribution of states is
identically equal to zero outside this interval. The PBE can now be solved for
the normalized distribution of states

dk f
dm

= D f f (m) = Ce
– (D / k )m, M

2
< m < M

The normalization condition gives
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M / 2
M

Ce
(D / k )mdm = 1 f (m) = De

(D / k )m

k(e DM / 2k
e DM / k

The cell balance can now be used to derive the linkage equation between
k, the single-cell kinetics parameter, and D

2k f (M ) = k f (M / 2) DM
k

= ln(4)

Keep in mind that the single-cell kinetics and the population kinetics are
different concepts and that it is completely wrong to assume that the specific
growth rate of the population equals the specific growth rate of single cells.
In fact, as this example shows, the rate equations for the population and for
the single cell need not even be the same: Here single-cell growths follow
zeroth-order kinetics while population growth follows first-order kinetics.

The linkage equation can be used to simplify the expression for the
distribution of states. In our case, one finds that

f (m) = ln(256)
M

e
ln(4)m / M

We see that if M is a constant, independent of, e.g., concentrations of
components in the medium, then this model predicts a distribution of cell
masses that is independent of dilution rate. However, for most organisms,
cell size, and thus M, is a function of substrate concentrations, and the
distribution of states will therefore change with dilution rate. In order to
model this, we will have to introduce an equation for M as a function of the
substrate concentration CS and find the substrate concentration from the
substrate balance. Finding the substrate concentration, and with that the
cell number concentration, will be the first task. We will assume a single
growth limiting substrate with concentration CS and a constant single-cell
yield Y. The consumption term in the substrate balance must be found by
integrating the rate of single-cell substrate consumption over all cell states,

D(CS f CS) =
0

r(m)
Y

W (m)dm = N
Y 0

k f (m)dm

where CSf is the inlet substrate concentration. For our model, this balance
reduces to

Nk = Y D(CS f CS)

However, the problem is still not completely solved. We want to be able to
solve for N and CS as functions of the D and CSf, the operating parameters of
the chemostat, so we need one more equation. The missing equation is a
model of how the single-cell growth kinetics depends on the concentration of
the limiting substrate. For instance, analogy with the Monod model would
suggest
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k (CS) =
kmCS
K + CS

CS = k K
km k

= KDM
ln(4)km DM

This is now the appropriate time to make use of an equation for M(CS). It
is not possible to write an equation that can serve as a good general model
for this dependence; the dynamics of cell cycle control found in nature is
simply too rich to be encompassed by a single, simple model. For our case,
we will assume that cell size is an increasing function of substrate
concentration and use the simplest possible expression for this, a linear
dependence

M(CS) = M0 + CS

which is substituted into the expression for CS found just above. Solving
for CS gives the rather unpleasant expression

CS =
ln(4) km D(M0 + K ) + A

2D

where

A = ln2(4) km
2 ln(16) kmD(M0 + K ) + D2(M0 2 K)2

We can solve for cell number concentration also:

N = Y ln(4)
M0 + CS

(CS f CS)

where we have abstained from substituting in the expression for the
substrate concentration. Other quantities of interest can be found, such as,
e.g., the washout dilution rate. This is defined as the dilution rate at which
the biomass or cell number concentration becomes zero. From the equation
above, this occurs when CS CSf:

Dwashout =
S f km ln(4)

(M0 + CS)(K + CS f )

where, once more, we have left the final manipulation steps to the reader.
The biomass concentration X, which is the first moment of W(m), or the
average cell mass times the cell number concentration, is

X =
0

mW (m) dm = N
M / 2
M

m f (m) dm =
N (M0 + CS)

ln(4)

At this point it is instructive to look back at the solution and try to organize
all the information and steps taken to find the solution. Start by noting that
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the complete, well-posed PBM consists of several equations: (1) the PBE and
its cell balances,

d f
dm

= D
k

f , 2 f (M ) = f (M /2)

(2) the substrate balance,

D(CS f CS) = N
Y 0

k f (m) dm

k (CS) =
kmCS
K + CS

, M (CS) = M0 + CS

In the general case, the values of the growth parameters may depend on
the concentrations of several substrates and products and any number of
substrate/product balances may therefore be needed for a well-posed PBM.

Solving the problem means finding all the primary unknowns, the
distribution of states, the cell number concentration, and the substrate
concentration(s), in terms of the model parameters and the two operating
parameters of the chemostat, dilution rate D and substrate feed
concentration CSf.

In solving, it is often slightly more convenient to work with the normalized
distribution f(m) instead of W(m) because, using the normalization condition,
one can find a solution for f that does not contain the unknown cell number
concentration, N.

Start by solving for f. Eliminate the constant of the integration using the
normalization condition and substitute the result into the cell balance. What
results is the linkage equation between the dilution rate D and the single-
cell growth parameters k and M, DM = k ln(4). This equation is not only an
essential part of the result; it often also comes in handy for simplifying the
final and intermediate results.

The single-cell growth parameters in this equation are dependent on the
substrate concentration, and when these dependencies are substituted in,
one obtains an equation from which the substrate concentration can be found
as a function of the dilution rate. This solution can be quite complicated in
appearance and, in some cases, one may only be able to obtain the solution
numerically.

Finally, use the substrate concentration and the solution for f to find the
cell number concentration N in terms of the substrate concentration CS.
Because the expression for CS(D) is often so complicated in appearance, it is
a good idea to refrain from substituting it into the expressions for the other
results and simply report these in terms of D, CSf, and CS, as was done in the
solution above for N, X, and Dwashout.
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Example 3.3: Unequal division Find the normalized steady-state distribution
of cell mass as a function of dilution rate if cell division results in formation
of one cell with mass m0 and another cell with mass m1 > m0 and if single-
cell mass growth rate follows first-order kinetics with specific growth
rate .

In this case, the control points of the cell cycle split the state space into two
intervals, and we will define f1(m) as the part of the normalized distribution
that lies between m0 and m1, and f2(m) as the part between m1 and m0 +
m1. For both parts, the PBE takes the form

m f
dm

= D f (m) d f
dm

=
D + 1

m
f (m)

where  is the specific single-cell mass growth rate and D is the dilution rate.
The solutions to these equations are

f1(m) = ( C1
m )(D + )/

, m m0, m1

f2(m) = ( C2
m )(D + )/

, m m1, m0 + m1

where C1 and C2 are arbitrary constants. The cell balance at m0 is

f2(m0 + m1) (m0 + m1) = f1(m0) m0

and at m1 is

f2(m0 + m1) (m0 + m1) + f1(m1) m1 = f2(m1) m1

When the solutions are substituted into the two cell balances, the following
equations are obtained:

m0( C1
m0 )(D + )/

= (m0 + m1)( C2
m0 + m1 )(D + )/

(m0 + m1)( C2
m0 + m1 )(D + )/

+ m1( C1
m1 )(D + )/

= m1( C2
m1 )(D + )/

from which

C1
(D + )/ ( 1

m0
)D /

= C2
(D + )/ ( 1

m0 + m1
)D /

and

(m0 + m1)D / = (m1)D / + (m0)D /
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which is the desired linkage equation.
We have not assumed any bounds on or relationship between m0 and m1,

so clearly this result can be valid only if D/  = 1; i.e., if D = , a much simpler
linkage equation. Notice that the two parameters m0 and m1 do not appear.
The specific growth rate of the population depends only on the specific growth
rate of single cells. This result is now used to simplify the equation between
C1 and C2 and eliminate one of these arbitrary constants from the solution
for f(m). After a bit of algebra, one obtains

f1(m) = ( C1
m )2

f2(m) =
m0 + m1

m0 ( C1
m )2

As the final step, we will use the normalization criterion to eliminate C1,

1 = m0

m1 f1(m) dm + m1

m0 + m1 f2(m) dm C1
2 = m0

giving

f (m) = {
m0

m2
, m m0, m1

m0 + m1

m2
, m m1, m0 + m1

Example 3.4: Binary fission with cell death The effect of cell death on growth
dynamics will be modeled two different ways. First, we will assume that cell
death occurs continuously through the cell cycle with a constant value of the
death intensity c. Next, we will assume that death occurs at discrete control
points only. Specifically, we will assume that death occurs only at the division
control point with the probability d. In other words, a cell at this point can
either die, probability d, or divide, probability 1 d. In both cases we will
assume binary division at the state M with birth at the state M/2 and first-
order single-cell kinetics with the specific growth rate .

Continuous case The PBE takes the form

d f
dm

=
D + c +

m
f f (m) = ( C

m )(D + c + ) /

and the cell balance becomes

2 M f (M) = M
2

f ( M
2 )
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Substituting the solution for f(m) into the cell balance and simplifying
gives the linkage equation between D, , and c:

D = c

Using this result, the expression for the distribution of states can be
simplified to

f (m) = ( C
m )2 = M

m2

where the normalization criterion has been used to obtain the final result.
Notice that this result is identical to what one would get without death.
This model of cell death thus shows no effect between the rate of death and
the shape of the distribution of states. The effect of cell death is solely seen
in the linkage equation, which shows that the specific growth rate of the
population is depressed relative to the specific growth rate of single cells
by an amount equal to the rate of death.

Discrete case The PBE takes the form

d f
dm

=
D +

m
f f (m) = ( C

m )(D + ) /

and the cell balance becomes

2(1 d) M( C
M )(D + ) / = M

2 ( 2C
M )(D + ) /

Simplifying gives the linkage equation

D = (1+
ln(1 d)

ln(2) )
from which one obtains

f (m) = (1 +
ln(1 d)

ln(2) ) M
1 + (ln(1 d )) / ln(2)

2
1 + (ln(1 d

)) / ln(2)
1

( 1
m )2 +

We see from this result that, when cell death is not uniformly distributed
over the cell cycle, cell death distorts the shape of the distribution of states
relative to the shape found when death does not occur.

In summary, to solve a PBM for the values of the process variables,
such as substrate, product concentrations, biomass, and cell concen-
trations, as functions of the operating parameters, the dilution rate,
and substrate feed concentration, one needs the following:
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The PBE and associated cell balances

Substrate/product balances

Kinetic equations for the single-cell growth rate parameters in terms
of the substrate and product concentrations

Expression for the position of the cell cycle control points in terms of
substrate and product concentrations

Points 3 and 4 are both equations that model how the single-cell
kinetics depend on substrate concentration(s). It is important to realize
that the population growth rate depends not only on the single-cell
growth rate but also on the locations of the control points. The locations
of the control points in state space is therefore an important measure
of the single-cell kinetics. For instance, in the age distribution problem,
the single-cell growth rate is unity and the population growth rate can
change only by changes in the control point(s) for cell division. At higher
population growth rates, cell division occurs at younger ages than at
low population growth rates. Thus, the linkage equation relating
population growth rate and single-cell kinetics becomes an equation
between the dilution rate and the division age(s).

One can write all these equations down and solve them
simultaneously, but this can be rather confusing, and it is better to work
systematically. First solve the PBE for each interval between control
points. With N intervals, this gives N arbitrary constants. Then apply
the cell balances of which there should be N. The resulting equations
can be solved for N – 1 of the arbitrary constants in terms of the
remaining constant. In addition, one will obtain the linkage equation
relating the population growth rate, usually the dilution rate, which
equals the specific population growth rate, and the parameters that
characterize growth kinetics on the cellular level, i.e., the parameters
in the function r(z) and the parameters that specify the location of the
control points. The remaining arbitrary constant can be found by using
the normalization criterion on f(z).

One can now use the substrate balance to get an equation between
the total cell number concentration N and the substrate concentration

. However, both are unknown and an additional equation is needed.
This equation is the linkage equation. We can formally write this
equation as

D = F ( 1, 2, … , M)

where m are the single-cell kinetic parameters. But all these param-
eters are functions of the substrate concentration, so we can write
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D = F ( 1(CS), 2(CS), , M(CS)) CS = F 1(D)

The substrate concentration can be found from this equation, and
the cell number concentration can then be found from the substrate
balance.

3.2 Distributed Breakage Functions

Control point models are obviously quite simplistic, but they do pro-
vide reasonable predictions about how the distribution of states
changes in shape and position with different growth conditions. The
great advantage of control point models is, of course, that the steady-
state solutions can almost always be found analytically without any
great difficulty.

More realistic models that are based on distributed breakage
functions must usually be solved numerically. However, in some special
cases, steady-state solutions can be found analytically even if control
points are not assumed. It may not seem worthwhile pursuing such
models because they lack the simplicity of control point models, yet do
not approach the realism of more general models; they thus appear to
provide the least advantage of any modeling approach. However, it is
the experience of this author that the solutions of these models are very
useful as cases against which numerical solutions of general models can
be tested. Numerical codes must always be debugged and tested
carefully and at a minimum must be able to reproduce the analytical
steady-state solutions described in this section when the model
parameters and functions are specified such that these analytical
solutions are obtainable.

The obvious example of a model with distributed breakage functions
that can be solved is the steady-state age distribution case. The solution
for the steady-state age distribution, Eqs. (2.12) and (2.13), is

f (a) = e 0
aa(D + (ã) + (ã))dã

0 e 0
a(D + (ã) + (ã))dã

da

This case is easy to solve because there is no integral term in the age
PBE.

A simplifying assumption that can be used for state parameters other
than age is that either birth or division occurs at control points, but not
both. We will first consider points for division; in fact, we will assume
a single division point for all cells and leave generalization to several
discrete points to the reader.
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When all cells divide at the same point, say zd, the division intensity,
which equals the rate of division at zd, is equal to the growth flux
into zd. One can formally write

(z) = r(z) (z zd) (3.1)

and, since cells never achieve states greater than zd, the division
intensity is not defined for these values. Substituting this expression
into the PBE and simplifying, using the elementary properties of the
-function, gives

d f
dz

= 2r(zd) f (zd)
p(z, zd)

r(z)
D + r (z)

r(z)
f (z) (3.2)

Solving this equation is a tedious and often difficult task for anything
but the simplest kinetic expressions and is illustrated in the example
below.

p(z, zd) = 30
z2(zd z)2

zd
5

We will also assume no death, so it is already known from Eq. (2.11) that
D = ; however, we will rederive this result here. Substituting these ex-
pressions into Eq. (3.2) and solving for f(z) subject to the boundary condition
that f(zd) is known gives

f (z) = 60
f (zd)z4

(5 + D)zd
4

+ 60
f (zd)z2

(3 + D)zd
2

120
z3 f (zd)

(4 + D)zd
3

+ f (zd)( zd
z )D / + 1 D3 + 12 D2 + 47 2D 60 3

D3 + 12 D2 + 47 2D + 60 3

Notice that the last term contains the factor zD/  + 1, which has a singu-
larity at z = 0 (the factor goes to ±  as z goes to 0). This is not acceptable
in the solution, so the factor must be multiplied by zero in order for this
term to drop out of the solution. Thus we require that

D3 + 12 D2 + 47 2D 60 3 = 0

which has only one real solution, D = , the expected linkage equation for
this case. The solution for f(z) simplifies down to
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f (z) = f (zd) 10( z
zd

)4 + 15( z
zd

)2 24( z
zd

)3
Applying the normalization criteria

0

zd f (z)dz = 1 f (zd)zd = 1

Notice that we could also have obtained this result by using Eq. (2.10).
At steady state, with (t) = D and with (z) given by Eq. (3.1), Eq. (2.10)
simplifies to

D = r(zd) f (zd) = zd f (zd) f (zd)zd = 1

Consequently

f (z) = 1
zd

10( z
zd

)4 24( z
zd

)3 + 15( z
zd

)2
For purpose of comparison, a more narrow distribution of birth states

p(z, zd) = 630
z4(zd z)4

zd
9

gives the solution

f (z) = 1
zd

126( z
zd )8 560( z

zd )7
+945( z

zd )6 720( z
zd )5 + 210( z

zd )4
while the control point model with all births occurring at zd/2 gives

f (z) = 1
zd

( zd
z )2,

zd
2

< z < zd

The three solutions are plotted together in Fig 3.3 in dimensionless form,
zdf (z) versus z/zd.

The other case that is amenable to analytical solution is the case of
distributed cell division but with birth points that are not distributed.
In other words, cells split exactly in two halves (or some other ratio) in
cell division and the distribution of birth states degenerates to one or
more delta functions. When all cells split exactly in half and the state
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variable is a quantity that is conserved in division, the function p(z, z̃)

takes the form

p(z, z̃) = (z z̃ / 2)

and the PBE becomes

dr(z) f (z)
dz

= 4 (2z) f (2z) (D + (z)) f (z) (3.3)

The factor of 4 multiplying the first term on the right-hand side looks
suspicious because it seems to imply that four cells, not two, are formed
in a division, and this equation has in fact been reported in the
literature both with the correct factor of 4 [1, 92] and with an incorrect,
but intuitively appealing, factor of 2 [27, 28]. The factor of 4 is not only
correct but also physically reasonable once the issue is contemplated.
Had we derived the result above by doing a cell balance on cells between
z and z + dz, then the balance would include a birth flux into the control
volume and that birth flux equals twice the division flux of the relevant
dividing cells. However, this division flux does not equal 2 (2z)W(2z)
dz, as one might think initially. Since the cell balance is done on cells
between z and z + dz, the cells that divide into this control volume
occupy the state space between 2z and 2z +2dz, i.e., a state space twice
as large as that of the newborn cells. Consequently, the flux of newborn

4

3

2

1

0
0.0

z/zd

0.2 0.4 0.6 0.8 1.0

z d
f(z

)

Figure 3.3  Plots of the normalized distributions of states for the three models of binary
fission. (It is hopefully obvious to the reader which graph corresponds to which model.)
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cells is 2 (2z)W(2z)d(2z) or 4 (2z)W(2z)dz. The additional factor of 2 is
seen to account for the contraction of state space that follows from
division. When the same number of cells is forced to occupy a smaller
state space, the distribution function of these cells must increase such
that the zeroth moment of the distribution or the cell number does not
change.

The PBE we have obtained for binary fission, Eq. (3.3), is a
differential, functional equation and is not any easier to solve than the
differential, integral equation we started with. However, if one makes
the biologically quite reasonable assumption that the cell state
parameter z does not exceed some maximum value zm, then a closed-
form solution can in principle be found. Since divisions are binary and
the variable z is conserved in a division, cell births do not take place in
the interval from zm/2 to zm. Equation (3.3) therefore does not contain
the birth term and can be solved:

dr f1
dz

= D + (z) f1(z) (3.4)

f1(z) = C1exp( z

zm D + (z̃) + r (z̃)
r(z̃)

dz̃), zm / 2 z zm

where prime indicates differentiation with respect to z. The
nomenclature here has been changed slightly from that used
previously. Instead of counting the interval number, indicated by the
subscript, from the lowest value of the state parameter, interval
counting now starts at the highest value of the state parameter and
counts backward. This numbering is more in tune with the solution
method. The solution over the remaining cell states can now be found.
For cell states between zm/4 and zm/2, Eq. (3.3) takes the form

dr f2
d z

= 4 f1(2z) (2z) (D + (z)) f2(z)

z zm / 4, zm / 2 , f2(zm / 2) = f1(zm / 2)

which has a well-known closed-form solution. In general, the population
balance over the interval [zm/2n, zm/2n 1] takes the form

dr fn
d z

= 4 fn 1(2z) (2z) (D + (z)) fn(z)

z zm / 2n, zm / 2n 1 , fn(zm / 2n 1) = fn 1(zm / 2n 1)

56 Chapter Three

0-07-144768-7_CH03_56_08/30/2005

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

Steady-State Solutions



A cursory examination of the solution method above will make it clear
that it does not even require that cell births are discrete in the sense
that p(z, z) can be represented by  functions. The method can be used
as long as the parameter z is conserved in a division and a minimum
and maximum cell state exists. To be more specific, let the minimum
and maximum cell states be zmin  0 and zmax. Certainly, no cell can be
born at a state greater than zmax zmin so in this interval Eq. (3.4) is
valid. Now, split the state space into disjoint intervals of the type [zmax

nzmin, zmax  (n  1) zmin]. The PBEs over these intervals take the form

dr fn
d z

= (D + (z)) fn(z) +
j = 1

n 1

zmax j zmin

zmax ( j 1)zminp(z, z) (z) f j(z)dz

Each of these ODEs can be solved in closed form, although it is not
easy to see what biologically reasonable choices of p(z, z) and (z) give
results that are easily manageable.

(z) = { 0, z < 1
z 1
2 z

, z > 1

where  is an adjustable parameter. In this model, the distribution of states
splits naturally into two parts: one part between z = 1 and z = 2 that con-
tains the dividing cells but no births, and another part between z = 0.5 and
z = 1 that contains all the cell births but no divisions. For the dividing cells
one obtains

f1(z) = f1(1)(z(2 z)) / 2
z

D / 1, 1 z 2

and the differential equation for the second part, between z = 0.5 and z =
1, becomes

dz f2
dz

= 4 f1(1)(2z(2 2z)) / 2 (2z) D / 1 2z 1
2 2z

D f2(z)

which must satisfy the continuity boundary condition, f2(1) = f1(1). The so-
lution is

f2(z) = (1 2(4z 4z2)
/ 2

2

D ) f1(1)

z
D / + 1

, 0.5 z 1
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An additional boundary condition on this solution is that it must equal
zero at the minimal value of the state parameters, i.e., f2(0.5) = 0. One finds
that

f2(0.5) = 2
(D + ) / f1(1) 4 f1(1) = 0

D =

the expected linkage equation. From this, the solution for f(z) can be written

f (z) = f1(1){ (1 (4z 4z2)
/ 2D)z 2, 0.5 z 1

(z(2 z)) / 2D
z 2, 1 z 2

The constant f1(1) must be determined from the normalization criteria.
This determination turns out to be quite nasty, involving hypergeometric
functions, and is probably best done numerically. Figure 3.4 shows the re-
sult for several values of . As expected, as  becomes smaller divisions are
less likely to occur at low values of z, occurring predominantly close to z =
2, and the distribution approaches the shape of the distribution for the
equivalent control point model.

z
0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

f(
z)

0.0

0.5

1.0

1.5

2.0

2.5

α = 1, D = 1
α = 0.1, D = 1
α = 10, D = 1

Figure 3.4  Normalized distributions of states.
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3.3 Problems

3.1 Consider an organism for which division occurs at the cell mass M, birth
at the cell mass M/2 and for which the single-cell mass growth rate
follows first-order kinetics, i.e., r(m) = m.
A. Find the normalized, steady-state cell mass distribution f(m) in a

chemostat with dilution rate D.
B. Derive the linkage equation between D and  and use it to eliminate

 from the expression for f(m).
C. Compare the result with the distribution for zeroth-order single-cell

kinetics by plotting the two distributions. Note: The solution for
zeroth-order kinetics is

f (m) = ln(256)
M

exp( m
M

ln(4))
D. Assuming a constant yield Y of mass per individual cell per amount

of substrate, write a steady-state substrate balance and simplify
this to obtain an equation between D, , and N, the cell number
concentration.

E. Assume that the substrate dependence of  follows a Monod-type
expression. Find the substrate and cell number concentrations as
functions of the dilution rate.

F. Assuming that the dependence of M on CS follows M = M0 + CS,
solve for M in terms of the two operating parameters D and CSf and
the kinetic parameters of the problem.

3.2 Consider an organism that, when it attains the age ad, either dies with
a probability  or divides.
A. Write the cell balance over dividing cells and solve for the steady-

state, normalized age distribution in a chemostat with dilution rate
D.

B. Show that the doubling time, defined as the duration of the cell cycle
ad does not equal the doubling time defined on the basis of the
specific growth rate of the population.

3.3 For plant cell cultures in a chemostat, it has been found that the dilution
rate experienced by the cells is different from that of the medium [82].
This is caused by the large size of plant cells and cell clumps, which
occasions them to sediment out of the outlet stream and back into the
vessel. Of course, this effect can be expected to be more pronounced for
large cells than for small cells, and the phenomenon can therefore be
expected to affect the cell mass distribution. We can model this by
assuming that the cell mass distribution in the outlet stream can be
calculated from the distribution in the vessel by the following formula
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foutlet(m) = f essel(m)
m +

where  is a constant parameter. Derive a population balance equation
for this situation and find the normalized steady-state cell mass
distribution in the vessel assuming that: cells divide when they reach
the cell mass M, cells are born at the mass M/2, and cell mass growth
rate follows zeroth-order kinetics. Using  as a parameter, produce a plot
with a family of normalized cell mass distributions.

3.4 Cell divisions do not occur at a point in state space but are distributed
over a range of ages. We can derive a model that approximates this
behavior by assuming that division occurs at a sequence of points in state
space. For instance, assume that the cells can divide at the points an,
given as

an = ad + n a, n = 0, 1, 2, …

and that at each point a fixed fraction  divides while the rest grows
older. Find the normalized age distribution for a steady-state chemostat
with dilution rate D for this model.

3.5 Budding yeasts such as Saccharomyces cerevisiae are organisms for
which a single cell state parameter is insufficient to fully describe the
cell cycle and the cell cycle controls. The cycle can be described, a bit
simplified, as follows: When cells reach a critical cell mass m*, they
initiate budding and all subsequent growth goes into the bud. After
attaining the critical mass m* cell age increases by a fixed amout P
before cell division occurs. It follows from this that after cell division,
one cell will have the mass m* and will immediately initiate a new
budding cycle. We will refer to the cells with cell masses larger than
m* as mother cells while cells with smaller masses will be called
daughters. A convenient way to model the cell cycle is then to use
age as a cell state parameter for mothers and cell mass as a parameter
for daughters. Thus, daughters become mothers at the cell mass m*;
mothers divide at the age P and at division form a new mother with
age 0 and cell mass m* and a new daughter with a mass equal to the
mass at division minus m*. When a daughter cell attains the mass
m*, it is reclassified as a mother cell with age 0. The cell cycle is
sketched in Fig 3.5. In the following, assume that cell mass growth rate
follows first-order kinetics, r(m) = m, and consider steady-state in a
chemostat.
A. Find the mass of newborn daughter cells m0, and from this

determine an upper limit on  by using the fact that a newborn
daughter cell cannot have a mass larger than m*.
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B. Write the appropriate population balance equations and cell
balances using age as a cell state parameter for mothers and cell
mass as a cell state parameter for daughters.

C. Solve for the age distribution of mothers, fM(a), and the mass
distribution of daughters, fD(m). Find the linkage equation between
 and D and use this result to eliminate  from the expressions for

the distributions.
D. Scale the distributions such that the complete distribution of cell

states is unity, i.e.,

m0

m *
fD(m)dm +

0

P
fM (a)da = 1

and find the fraction of mother cells versus dilution rate.

3.6 Consider an organism for which division occurs at the cell mass M, birth
occurs at the cell mass M/2, and the single-cell mass growth rate follows
r(m) = k + m.
A. Find the normalized, steady-state cell mass distribution f(m) in a

chemostat with dilution rate D.
B. Find the linkage equation between D and  and k.
Because there is more than one parameter in the rate expression for the
single-cell kinetics, it is not possible to use the last result to simplify the
expression for the distribution of states and write it solely as a function
of the dilution rate. There are simply not enough equations to solve
for  and k in terms of D. This problem can be resolved if one knows the
kinetic equations that give the parameters in terms of the concentration
of the growth limiting substrate. From these equations, one can then
eliminate the substrate concentration and obtain one of the parameters
in terms of the others. This result can then be used with the expression
obtained in B to find all the parameters in terms of the dilution rate.

Age

Mass
PO

m* + m0m0 m*
Figure 3.5  Schematic of the budding yeast cell cycle.
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3.7 In a cell population, all cells divide when they reach the division age
ad. Over the region of interest, this division age is a function of the
concentration of the growth limiting substrate CS as follows:

ad = C
CS

where C is a known constant. At all cell ages, cell death occurs with a
rate given by the constant death intensity . The single-cell yield is
independent of cell age, and the substrate balance therefore takes the
form

dCS
dt

= D(CS f CS)
0

ad W (a)da

where CSf is the substrate feed concentration, D the dilution rate,  a
known constant, and W (a) the age distribution.
A. Derive an equation for the steady-state value of ad as a function of

dilution rate and substrate feed concentration.
B. Find the steady-state value of the cell number concentration as a

function of dilution rate and substrate feed concentration.

3.8 Consider an organism for which all cells divide at the age ad. This
division age is a function of the concentration CS of the growth limiting
substrate, given as ad(CS) = a0 + K / CS. The single-cell yield Y is constant,
independent of cell age.
A. Write the chemostat steady-state age population balance equation,

the substrate balance, and the renewal equation for this organism.
B. Find the steady-state substrate concentration as a function of

dilution rate.
C. Solve for the steady-state cell number concentration.
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Demonstrate this process for the model above by assuming that
k = k̃CS / (K + CS) and = CS / (K + CS), where CS is the concentration of the
growth limiting substrate. Express k as a function of  and
substitute the result into the expression obtained in B, solve for 
as a function of D, and eliminate k and  from the expression for
f(m).

C.
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Chapter

4
Transient Solutions

The one-dimensional, transient PBE for a control point model is

W
t

+ rW
z

= (D + (z))W

or written slightly differently as

W
t

+ r(z) W
z

= (D + (z) + r (z))W (4.1)

This is a special case of a first-order, homogeneous, linear partial
differential equation, a type of equation of the general form

n = 1

N
A (x)n

W
xn

= B(x)W(x)

where x is a vector of free variables. Structured, transient control point
PBEs turn out also to have this form, so the solution methods for solving
linear first-order partial differential equations play a key role in the
transient solution of PBMs. The complete PBM is obtained when the
PBE, valid between the control points, is coupled to cell balances and
substrate equations.

The solution method for linear first-order partial differential equa-
tions is known as the method of characteristics or Cauchy’s method.
The two names refer, not to different methods, but to two different ways
of presenting or thinking about what is essentially the same under-
lying solution method. The method of characteristics presentation is
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based on a geometric interpretation of the differential equation and its
solution, an interpretation that is very helpful for visualizing the
solution method for two-dimensional problems but difficult to use in
higher dimensions, i.e., for structured models. Cauchy’s method, on the
other hand, is more abstract and easily generalized to any number of
dimensions. Both methods will be described in this chapter, and, to
become fully comfortable with the methods, the reader is urged to study
both to the point where it becomes apparent that they both represent
the same, identical solution method. The material that follows can
range from trivial to quite challenging, depending on the reader’s
mathematical background. Readers are urged to work through the
material by sketching their own diagrams and plots to illustrate the
geometric interpretations that underpin the solution methods.

Instead of proceeding straight to the solution method for this type
of equation, an example, simple enough to be solved with the use a
little physical insight, will be considered first. This will hopefully build
an intuitive understanding of the structure of the solutions of these
equations.

Example 4.1: The plug-flow reactor, a trivial introductory example A plug-flow
reactor is one of several idealized chemical reactors used to develop simple
reactor models. It is best visualized as a tube of constant cross section. The
mixture of reactants enter at one end of the tube and flow through it with a
velocity that is constant and the same for all fluid elements. In other words,
the velocity profile of the fluid moving through the tube is flat, like a plug.
Thus the name plug-flow reactor (PFR). The chemical reactions start when
a fluid element enters the reactor and stop when they leave. Each fluid
element is assumed isolated from the others; there is no diffusion of matter
from one element to another. A differentially small fluid element can there-
fore be regarded as a tiny batch reactor as it passes through the reactor tube,
and the reaction time of this batch reactor equals the time that the fluid
element has been inside the plug-flow reactor. One can therefore model a
plug-flow reactor by writing a reactant balance on this tiny batch reactor,
using a differential control volume that moves with the fluid element, a so-
called Lagrangian description. However, one can equally well write a model
of the plug flow reactor using a stationary control volume, more specifically
a differential slice of the tube, and, in this balance, account for the flux of
matter in and out of the control volume due to fluid flow. This is called an
eulerian description. The two types of models must be equally valid, and one
would usually choose to work with the model that is the easiest to solve. But
that means that one can solve the more difficult model, say the eulerian
model, simply by switching to the simpler model, the lagrangian model. The
method of characteristics or Cauchy’s method is essentially just that. The
methods take a partial differential equation, which represents an eulerian
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description, and changes it to a lagrangian description represented by a set
of coupled ordinary differential equations, which can be solved more readily.
This will be illustrated by using the plug-flow reactor as an example. A
schematic of a plug-flow reactor with the two control volumes that will be
used is shown in Fig. 4.1. 

Consider a first-order, constant-volume reaction in a plug-flow reactor and
let the reactant concentration at position x at time t be c(t, x). To derive a
model for this system, we will first use an eulerian description, i.e., a control
volume that is fixed in space. Place an x axis along the reactor axis with an
origin at the reactor inlet. If the velocity of the fluid through the reactor is ,
a transient balance on the reacting component in a fixed control volume gives

Flux in by flow flux out by flow =

rate of accumulation + rate of consumption

or

A c(x)— A c(x + d x) = dc
dt

Ad x + kcAd x

where A is the cross-sectional area of the tube and k is the reaction rate con-
stant. This is rearranged to

c
t

+ c
x

= kc (4.2)

which is a linear, homogeneous, first-order partial differential equation, the
same mathematical form as the PBE between control points. The balance
must be supplied with initial and boundary conditions that specify the initial
concentration profile in the reactor, c0(x), x > 0, and the inlet concentration
cinlet(t), t > 0.

v
v

dV

x + dxx x
Figure 4.1 Control volumes used in writing balance equations on a PFR. Reactants are
moving through the tube with the constant velocity . The volume used in an eulerian
description is the stationary slice between x and x + dx. The volume used in a
lagrangian description is the fluid element dV that moves through the reactor with
the velocity .
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Before solving this partial differential equation, we will write a reactant
balance using a lagrangian description. The control volume is a small lump
of matter that moves with the fluid flow, and since there is no transfer of
matter across the control volume boundary, the reactant balance is simply

Rateof accumulation = rateofconsumption

which results in an ordinary differential equation

dc
dt

= kc

with the solution

c(t) = cinlet (tin)e
k (t tin)

where tin is the time at which the matter inside the control volume entered
the reactor. We would of course like to eliminate this variable and write the
solution in terms of t and x only. This is done by using the equation that
relates position and time for the fluid element under consideration. Setting
the x coordinate equal to zero at the reactor inlet gives

x = v(t tin) c(t, x) = cinlet(t x / v)e k x / v

The solution, written this way, assumes that the fluid element entered the
reactor after the initial time 0 such that the argument of cinlet is positive. If
this is not the case, then the initial condition for the fluid element is the initial
concentration at the point in the reactor where the fluid element was located
at time 0, i.e.,

c(t) = c0(xinitial)e kt

but

xinitial = x t

so

c(t, x) = c0(x t)e kt

and the complete solution to our problem can be written as follows

c(t, x) = { cinlet(t x / )e k (x / ), x < t

c0(x t)e kt, x > t
(4.3)
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which, one can easily confirm, is a solution to the eulerian model, Eq. (4.2).
It is instructive to look at a phase space plot of the fluid elements or control

volume on which the Lagrangian balance was done. This is shown in Fig. 4.2.
The trajectories of the control volumes are straight lines with a slope of

, and the initial conditions are given along the positive t and x axis. For there
to be a solution along a trajectory, the trajectory must have a point on which
an initial condition is known. For trajectories corresponding to fluid elements
that were present in the reactor at time zero, this initial point is the point of
intersection with the x axis. For the other trajectories, it is the points of in-
tersection with the t axis.

So, we essentially solved the partial differential equation by first convert-
ing it to an ordinary differential equation, valid along the trajectories. This
equation was then solved and the arbitrary constant evaluated after first
determining which initial condition was appropriate by determining if the
trajectory intersected with the positive x axis or the positive t axis.

For this example, the ordinary differential equation that was solved along
the trajectories, as well as the trajectories themselves, was obtained simply
from physical insight into the problem. In the general case a very similar
solution procedure is used: An ordinary differential equation is found that
must be solved along a family of curves in the state space. For some first-
order partial differential equations, one may be able to reformulate the
problem in this way by using physical insight; after all, the reformulation is
only a change from an eulerian description to a lagrangian description. How-
ever, since we cannot rely on being able to do this all the time, we will now
look at a systematic way of converting a two-dimensional, first-order partial
differential equation problem to a problem involving only coupled ordinary

x = vt + xinitial

x - xinitial x = v(t - tin)

t - tin

t

x

Figure 4.2  Phase space plot of fluid elements in a plug flow reactor.
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differential equations. In a sense, we will try to abstract the process that
converts an eulerian model to a lagrangian model.

4.1 Method of Characteristics

We will, for illustrative purposes, continue using the partial differential
equation for the plug-flow reactor, Eq. (4.2), from the first example. The
solution method we will describe is called the method of characteris-
tics. Central to the method, as it is presented here, is the concept of a
directional derivative, the rate of change, not in the coordinate direc-
tions in phase space, but in some other direction, at an angle with the
coordinate directions. In order to introduce this concept, we will digress
briefly from the main topic.

Consider a curve C(s) in our phase plane (t, x) parameterized by s. For
instance, the upper trajectory in Fig. 4.2 can be parameterized the obvi-
ous way as (t(s), x(s)) = (s, s + xinitial). A parameterization of a curve in
terms of arc length, starting from an arbitrary point on the curve, is
called a natural parametric representation. We will indicate it as M :
(t(s), x(s)) and assume in the following that s is always the arc length.1

Given a function c(t, x), one can certainly define a new function c(s)
by c(s) = c(t(s), x(s)) and ask, What is the rate of change of c(s) with
respect to s? From the chain rule,

dc
ds

= c
t

dt
ds

+ c
x

d x
ds

= ( c
t

c
x

) ( dt
ds

d x
ds

) (4.4)

where the first vector in the scalar product on the right-hand side is the
gradient of c(t, x) and the second vector is the positive unit tangent
vector to the curve k. (A proof of the second fact can be found in any
elementary textbook on differential geometry.) It is important in this
context that the curve is parameterized by the arc length, because only
when this is the case is the vector (dt/ds, dx/ds) a unit vector, and it
therefore holds that (dt/ds)2 + (dx/ds)2 = 1. Comparing this equation
to the well-known formula cos( )2 + sin( )2 = 1, where  can be any

1Notice that the parametric representation of a curve is not unique. For instance, the
upper trajectory in Fig. 4.2 can just as easily be parameterized by the expressions
(t(s), x(s)) = (s3, s3 + xinitial) or (t(s), x(s)) = (sinh(s),  sinh(s) + xinitial). Not even the natural
parametric representation is unique because the starting point for measuring the arc
length is arbitrary. In general, it is relatively easy to find some parametric representation
of a curve, while finding a natural parametric representation is surprisingly difficult. So,
although a natural parametric representation of a curve is rarely found, the existence of
such a representation has important theoretical significance. Readers wanting to learn
more about this can consult any introductory text on differential geometry.
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number, it can be seen that one can always define a so-called directional
angle  such that

( dt
ds

, d x
ds ) = (cos( ), sin( ))

The directional angle  is the angle between the t axis and the positive
tangent vector (Fig. 4.3). In terms of this angle, the expression for dc / ds
becomes

dc
ds

= c
t

cos( ) + c
x

sin( )

We now want to try and rewrite the eulerian model of the plug-flow
reactor, Eq. (4.2), so that it resembles the form above, in which the
coefficient functions can be interpreted as directional cosines. This is
done by dividing through by 1 + 2:

c
t

+ c
x

= kc

1

1 + 2
c
t

+
1 + 2

c
x

= k

1 + 2
c

and one can now clearly interpret the two coefficient functions as di-
rectional cosines because they satisfy

x

(dt/ds, dx/ds)

C(s)

s

α

t
Figure 4.3  Positive unit tangent vector (dt/ds, dx/ds) to the curve C(s) and the
directional angle .
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( 1

1 + 2 )2
+ ( 1 + 2 )2

= 1

so one can define

cos( ) = 1

1 + 2
= dt

ds

sin( ) =
1 + 2

= d x
ds

giving the model equation

dt
ds

c
t

+ d x
ds

c
x

= k

1 + 2
c

and by comparison with Eq. (4.4), we see that the eulerian model of the
plug-flow reactor can be written as

dc
ds

= k

1 + 2
c

We now have an ordinary differential equation for the dependent
variable and one could solve this for c(s), find the natural parametric
representation for the curves (t(s), x(s)), and eliminate s to obtain c(t, x).
The dedicated reader, who will spend 15 minutes doing this as an
important part of the learning process, will discover that all the alge-
braic work leads to a cancellation of the square root term in the solution
for c(s). In fact, the ordinary differential equation above is not the most
convenient equation to work with. A simpler problem is almost always
obtained if the arc length s is eliminated from the problem before the
equation is solved. To do this, we will multiply both sides of the equation
by ds/dt and assume without proof that ds/dt = 1/(dt/ds). Thus

dc
ds

ds
dt

=
kc

1 + 2
1 + 2 = kc

The quantity on the left-hand side is known as a directional
derivative, indicated

dc
dt |

It represents the rate of change of c with respect to t when c changes
along a line that makes an angle  with the t axis. Thus, one can write
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dc
dt | = kc (4.5)

and we see that all the result of all the manipulations is to reduce the
sum of the partial derivatives on the left-hand side of Eq. (4.2) to a single
derivative, creating an ordinary differential equation. The right-hand
side of Eq. (4.2) is unchanged.
Solution of Eq. (4.5) requires an initial condition, and the solution

that is found is not simply c(t, x) but c along the curve C(s) (which is not
yet known). Assuming an initial condition is known at the point
(t0, x0), the solution can be written

c(t, x) = c(t0, x0)e
k (t t0) along curve (4.6)

The curves in the (t, x) plane along which c is obtained can formally
be written as t(x) or x(t), and they must be found by solving another
ordinary differential equation, this time in t and x. This equation is
obtained as follows:

dt
d x

= dt
ds

ds
d x

= 1

1 + 2

1 + 2
= 1

t = x + p (4.7)

The solutions form a one-parameter family of curves, parameterized
by p, which arises naturally as the arbitrary constant in the integration
of the differential equation. The solution curves are called the char-
acteristic curves or characteristic base curves or characteristic ground
curves.
To find the final solution at a point (t, x), one must piece together

information about the characteristic curves, the solution for the de-
pendent variable along the characteristic curves and the initial and
boundary conditions for the partial differential equation. Usually, this
is straightforward but tedious. One proceeds as follows:

1. For the given point, (t, x), determine the characteristic curve on
which this point lies. If the family of characteristic curves is given
by F(t, x, p) = 0, then this means determining the value of the
parameter p as a function of t and x.

2. Then find the point on this characteristic curve where an initial
condition is known. Call this point (t0(p(t, x)), x0(p(t, x))). If such a
unique point cannot be identified, then the problem is not well posed
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and does not have a solution. At this point, the initial conditions
provide a value for c, say

c(t0(p(t, x), x0(p(t, x))) = c0(p(t, x))

3. Finally, the solution to our problem is obtained as

c(t, x) = c0(t0(p(t, x)), x0(p(t, x)))e
k (t t0(p(t, x)))

It is obvious that initial and boundary conditions are treated in an
identical fashion and usually they are both called initial conditions
because they both function as initial conditions to the ordinary dif-
ferential equation along the characteristics [Eq. (4.5)]. The curve in the
phase space along which the initial/boundary conditions are given is
called the initial manifold.
To illustrate this process for the plug-flow reactor problem, note that

the initial manifold is the positive t and x axis and the family of
characteristic curves is parameterized by p and given by Eq. (4.7). To
find the solution at a given point (t, x), first solve for p:

p = t x

If p is greater than zero, then the characteristic curve through (t, x)
intersects the initial manifold at the positive t axis; otherwise, it
intersects the manifold at the positive x axis. Consider first the case
when p > 0, or equivalently, t > x. In this case, p has a simple physical
interpretation; it is the time at which the lump of matter, which at time
t is at position x, entered the reactor. The characteristic curve intersects
the t axis at the point (t0, x0) = (p, 0) = (t x/ , 0), and the initial condition
at this point is cinlet(t0) = cinlet(t x/ ). Substituting all this into Eq. (4.6)
gives

c(t, x) = cinlet(t x/ )e k (t (t x / ))

= cinlet(t x/ )e k (x / ) t > x

which is identical to the previously found result, Eq. (4.3).
Consider now the case when x > t and p < 0. The characteristic

curves through (t, x) now intersect the initial manifold on the positive
x-axis at the point (t0, x0) = (0, p) where the initial condition is
c(x0) = c( p) = c0(x t), giving
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c(t, x) = c0(x t)e kt, x > t

which is identical to the previously found result, Eq. (4.3).
We will now retire our plug-flow reactor example and try to use this

method for an equation of the more general form

p(t, x) c
t

+ q(t, x) c
x

= r(t, x)c + f (t, x)

Assuming that p  0 and q  0, the equation can be rewritten as

p

p2 + q2
c
t

+ q

p2 + q2
c
x

= r

p2 + q2
c + f

p2 + q2

dc
ds

= r

p2 + q2
c + f

p2 + q2

where s is the arc length along the characteristic curves. Remember
that we will interpret the new coefficient functions as

p

p2 + q2
= dt

ds

q

p2 + q2
= d x

ds

One can now multiply this equation by either ds/dt or ds/dx. It does
not matter which one, since the two free variables appear in a com-
pletely symmetric fashion in the equation. For argument’s sake,
multiply by ds/dt to get

dc
ds

ds
dt

= rc

p2 + q2
p2 + q2

p
+ f

p2 + q2
p2 + q2

p

dc
dt | = rc

p
+ f

p

This differential equation is now solved and the solution is valid along
the characteristic curves which are found from

d x
dt

= d x
ds / dt

ds
= q

p

Finally, the arbitrary constants must be determined from the initial
values given along the initial manifold.
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4.2 Cauchy’s Method

The description of the method of characteristics given above relies on
the concept of a directional derivative, which is basically a geometric
concept and therefore hard to generalize to higher dimensions–at least
without losing the insight that the geometric interpretion provides.
Therefore, Cauchy’s method, a more abstract formulation of the method
of characteristics that is easily generalized to higher dimensions, will
now be presented. Consider again a linear first-order partial differen-
tial equation of the form

p(t, x) c
t

+ q(t, x) c
x

= r(t, x) c + f (t, x) (4.8)

with an initial condition given on the initial manifold M. As the first
step, parameterize the initial manifold by the parameter . This pa-
rameter does not have to be the arc length, but can be the parameter
that gives the simplest and most convenient parameterization of M. We
can then formally write the initial condition as

c(t( ), x( )) = c0( )

along M. Define now the so-called characteristic equations

dT
ds = p(T(s, ), X (s, )), T(0, ) = t( )

d X
ds

= q(T(s, ), X (s, )), X (0, ) = x( )

dC
ds = r(T(s, ), X (s, ))C(s, ) + f (T(s, ), X (s, ) ), C(0, ) = c0( )

These equations are first-order, coupled ordinary differential
equations that in the general case are obtained as follows. For the first
two equations, take the coefficient functions of Eq. (4.8), i.e., p(t, x) and
q(t, x), and convert these to functions of one argument s by setting each
free variable, t and x, equal to a function of s. Then set the derivative
(with respect to s) of the nth free variable equal to the nth coefficient
function. The equations obtained this way are called the base
equations and their solutions are the characteristic curves. The
dependent variables of the base equations, T(s) and X(s), are indicated
by capital letters to distinguish them from the free variables, t and x,
of Eq. (4.8). However, it will be shown shortly that T can be identified
with t and X with x. Because of this identification, many texts do not
distinguish clearly between the two types of variables and use the same
set of symbols for both. We will adopt this convention in the examples
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that follow, after we have proved that it is valid to do so. To be able to
identify the free variables of Eq. (4.8) with the solutions to the base
equations, the initial conditions to the base equations must be the
points on the initial manifold. These points are given in terms of the
parameter , and the solutions to the base equations are therefore
functions of both s and . To emphasize this fact, some people write the
derivative in the base equations using partial differentials.

The last characteristic equation is slightly different from the base
equations. It is obtained from the right-hand side of Eq. (4.8) in a
similar fashion to that of the base equations. The initial condition is the
initial values of the dependent variable along the initial manifold, and
is thus a function of .

We will first show that, if c(t, x) is a solution to Eq. (4.8) and T is
identified with t and X with x, then

c(T(s), X (s)) = C(s, )

To see this, simply calculate the derivative of c(T(s, ), X(s, )) with
respect to s and confirm that it satisfies the defining equation for
C(s, ). Using the chain rule, one first obtains

d
ds

(c(T(s, ), X (s, )) =
c
t

dT
ds

+
c
x

d X
ds

where, in order to be able to use the chain rule, I have identified
T(s, ) with the free variable t and X(s, ) with the free variable x. (When
using the chain rule, one can equally well make the opposite
identification, but that would not be a good idea. Why?) Then, using the
base equations, one gets

d
ds

(c(T(s, ), X (s, )) =
c
t

p(T(s, ), X (s, )) +
c
x

q(T(s, ), X (s, ))

but since c(t, x) is a solution to Eq. (4.8), the right-hand side can be
rewritten to obtain

d
ds

(c(T(s, ), X (s, )) = r(T(s, ), X (s, ))c(s, ) + f (T(s, ), X (s, ))

which is the defining equation for C(s, ). Thus, c(T(s, ), X(s, )) =
C(s, ) is a solution to Eq. (4.8) and, furthermore, a solution to the initial
value problem, provided that c(T(0), X(0)) = c0( ).

To eliminate s and  from the problem, one first solves the char-
acteristic equations to obtain T and X as functions of s and . But, as
mentioned above when the chain rule was used, T(s, ) is identified with
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t and X(s, ) is identified with x, so the following equations must hold
between these variables:

dt
ds

= dT
ds
, T(s = 0, ) = t(s = 0, )

d x
ds

= dX
ds
, X (s = 0, ) = x(s = 0, )

Solving for x and t gives

x = X (s, ) , t = T(s, )

Invert these equations to obtain

= (t, x) , s = s(t, x)

and substitute this result into the expression for C(s, ):

c(t, x) = C(s(t, x), (t, x))

When formulated this way, the method of characteristics is easily
generalized to problems of any dimensionality. We will state this
general procedure before considering specific examples.
Given:

n =1

N
An (x)

c
xn

= B(x)c(x) + D(x)

where x is a vector of free variables, xn. The initial values of c(x) are
given along the initial manifold M. The solution is obtained as follows.

1. Parameterize the initial manifold and initial condition by the pa-
rameters 1, 2, …, N  1. We can formally write this as

M : (x1( ), x2( ), . . . , xn( ))c0 = c0( )

where  is the vector ( 1, 2, …, N 1).

2. Write and solve the N coupled ordinary differential equations that
constitute the characteristic equations, using the initial conditions
given along the initial manifold

d
ds

Xn(s, ) = An(X (s, )), Xn(0, ) = xn(0, )

3. Set
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x = X (s, )

and invert these equations to obtain

s = s(x), = (x)

This inversion can be a very difficult problem if the dimen-
sionality of the problem is high.

4. Solve the ODE

d
ds

C(s, ) = B(X (s, ))C(s, ) + D(X (s, ))

subject to the initial condition

C(0, ) = c0( )

5. The solution of the PDE then is

c(x) = C(s(x), (x))

Example 4.2: The plug-flow reactor strikes back For first-order reaction kinet-
ics, the concentration of a reactant in a plug-flow reactor is given by Eq. (4.2):

c
t
+

c
x
= kc

Let the initial conditions be given as

c(0, x) = c0(x), x > 0

c(t, 0) = cin(t), t > 0

and solve for the concentration using Cauchy’s method.
First parameterize the initial condition along the positive x axis as

t = 0 : x = , c = c0( )

From the base equations we get

dt
ds

= 1, t(0) = 0 t = s

d x
ds

= , x(0) = x = s + } s = t

= x t

The last characteristic equation is
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dc
ds

= kc, c(0) = c0( )

c(s, ) = c0( )e k s

c(x, t) = c0(x t)e kt

Repeat now this procedure for the initial condition given at the reactor
inlet. Parameterize the initial condition as

x = 0 : t = , c = cin( )

Write and solve the base equations

dt
ds

= 1, t(0) = t = s +

d x
ds

= , x(0) = 0 x = s } s = x /

= t x /

and the last characteristic equation

dc
ds

= kc, c(0) = cin( )

c(s, ) = cin( )e k s,

c(x, t) = c in (t x )e k x /

At this point in the presentation, it is probably a good idea to point
out two common sources of confusion and error that occur in working
with Cauchy’s method. The first source of confusion is caused by the
commonly used nomenclature for functions of several variables. This
nomenclature is very poor and usually leaves a lot to be inferred from
the context, but it is used because an unambiguous, rigorous nomen-
clature is too cumbersome to work with. Consider, for instance, the
function f = x sin(y). We can make the list of free variables explicit two
different ways: either as f(x, y) = x sin(y) or as f(y, x) = x sin(y). Often,
we may use f(x, y) and f(y, x) inter-changeably because the free variables
are physical quantities, amplitude and phase in this example, and we
“know” that the amplitude x always appears as factor and the phase y
as the argument of the sine function. However, this careless per-
mutation of arguments must be avoided when physical insight is
missing and the order in which the free variables are given in the
argument list becomes important. For instance, if we define f(x, y) x
sin(y), then this definition states that the first argument in the list
appears as a factor of the sine function and the second argument as
the argument of the sine function; i.e., f(y, x) = y sin(x). The order of
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the arguments as they appear in an expression for a function can be
made explicit by indexing the arguments by the natural numbers;
i.e., f = x1 sin(x2). This indexing also makes it possible to define
derivatives in an unambiguous way. For instance, even after we define
f(x, y) x sin(y), the expression f/ x remains ambiguous because we
do not know if the x is a reference to the first argument of f or to a free
variable called “x” that can appear as either the first or second
argument of f. An unambiguous definition of a derivative would be
f/ xn which is the derivative of f with respect to the nth variable. We

will not use this unwieldy indexing of the free variables in the text that
follows. However, we will assign significance to the position of a
variable in the argument list and argument can therefore not be
casually permuted.

Another possible source of error is the confusion of dummy variables
in integrals with a true variable. Consider, for instance, the problem

W
x

+
W
y

= F (x, y)W

subject to an initial condition along the x axis:

: x = , y = 0, W = W0( )

Proceeding as usual, the base equations give

d x
ds = 1 , x(0) = x = s +

d y
ds = 1 , y(0) = 0 y = s } s = y

= x y

and

dW
ds

= F ( + s, s)W(s) , W(0) = W0( )

W(s, ) = W0( )e0
sF ( + s, s)ds

One must now recognize that the s that appears inside the integral
is a dummy variable, while the s that appears in the upper limit of the
integral is a true variable. Thus, when the expressions for s and  that
were obtained from the base equations are substituted into this result,
the substitution should not be made in the dummy variable, i.e.,

W(x, y) = W0(x y)e0
yF (x y + s, s)ds
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To minimize the risk of mistakes, it often pays to use unique symbols
for dummy variables as soon as they appear; e.g., write the solution to
the last characteristic equation as

W(s, ) = W0( )e 0
sF ( + s̃, s̃)ds̃

The next example has no relevance to population balances what-
soever. In fact, it is a deliberate attempt to present an example that is
as far removed from population balances as possible in order to provide
additional practice with Cauchy’s method as an abstract tool. Readers
who feel that they do not need this additional practice can skip the
example without loss of continuity.

Example 4.3: The wave equation Just as some nth-order ordinary differential
equations can be solved by reducing the problem to the solution of n first-
order equations, some higher-order partial differential equations can be
solved by reducing them to the solution of several first-order equations. An
elegant example of this technique is d’Alembert’s solution of the wave
equation. The wave equation is

2W

t2
2

2W

x2
= 0

Initial conditions are usually given as initial displacement and initial
velocity:

W (x, 0) = f (x), ( W
t )(x, 0)

= g(x)

This second-order wave equation can be written as two first-order
differential operators, operating in series on W:

( t
+

x ) ( t x ) W = 0

Remember that the expressions in the parentheses are operators and the
parentheses are not the common algebraic kind. Instead, the expression
above means that all the derivatives inside a pair of parentheses operate on
the expression to the right of the parentheses. Thus all the derivatives inside
the first pair operate on everything inside the second pair and the derivatives
inside the second pair operate on W. If we call the argument of the outer
operator U, we have

U
t

+ U
t

= 0

and
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U = W
t

W
x

= 0

The initial condition on U is

U (x, 0) = g(x) f (x)

We start by solving for U. First parameterize the initial manifold and
initial conditions by

x = : t = 0, U = g(x) f (x)

The characteristic equations become

d x
ds

= , dt
ds

= 1, dU
ds

= 0

Solving these subject to the initial conditions gives

x = s + , t = s , U (s, ) = g( ) f ( )

Now solve for s and  and substitute into the result for U(s, ):

s = t , = x t

U (x, t) = g(x t) f (x t)

From the definition of U, one then obtains a new PDE problem:

W
t

W
x

= g(x t) f (x t) , W (x, 0) = f (x)

The initial conditions are parameterized as

x = , t = 0 , W = f ( )

The characteristic equations are

d x
ds

= , dt
ds

= 1, dW
ds

= g(x(s, ) t(s, )) f (x(s, ) t(s, ))

and their solution is

x = s + , t = s

W =
0

s
(g(x(s, ) t(s, )) f (x(s, ) t(s, )))ds + f ( )

Both g and f  are functions of only one argument x t. From the solution
for x and t we find that this argument can be written as x t = 2 s + . We
can therefore write the solution for W(s, ) as
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W (s, ) =
0

s
(g( 2 s + ) f ( 2 s + ))ds + f ( )

= 1
2

2 s +
g( )d + 1

2
f ( 2 s + ) + 1

2
f ( )

where the variable transformation  = 2 s +  has been used to obtain the
last integral. We can now proceed as usual: Solve for s and  in terms of x
and t and substitute this result into the expression for W(s, ) to get d’Alem-
bert’s solution:

W (x, t) = 1
2

( f (x + t) + f (x t) + 1
2 x t

x + t
g( )d

In the next example, we will solve a simple instance of the transient
age distribution problem. The problem is special in that it does not
assume any control points of the cell cycle but uses a general division
intensity.

Example 4.4: Solution of the transient age distribution The age distribution PBE
is

W
t

+ W
a

= (D + (a, t))W (a, t)

with the initial condition and the renewal equation.

W (a, 0) = W0(a) W(0, t) = 2
0

(a, t) W (a, t) da

Even if we assume that (a, t) is given, such that this PDE problem
is uncoupled from the substrate balances, it is still difficult to solve because
the initial condition along that part of the initial manifold that is the time
axis is given by the renewal equation and not by some specified, known
function. To overcome this problem, we will solve for each generation in turn
and find the entire age distribution as the sum over all generations. Let
wn(a, t) be the age distribution of cells that have undergone n divisions
since time 0 and try to find a closed-form expression for these distributions.
Clearly

W (a, t) =
n = 0

wn(a, t)

where wn satisfies the PBE and the following side conditions:

w0(a, 0) = W0(a), wn(0, t) = 2
0

wn 1 (a, t) da , n > 0
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For w0, the initial manifold is the positive age axis while, for the other
distributions, it is the positive time axis. The solution for the zeroth
distribution is obtained separately from the others. Parameterizing the
initial conditions for w0 along the age axis gives

a = , t = 0, w0(0, ) = W0( )

Solve the base equations to get

da
ds

= 1, a(0) = a = s +

dt
ds

= 1, t(0) = 0 t = s } s = t

= a t

The third characteristic equation can now be written and solved:

dw0
ds

= (D + (s + , s))w0(s), w0(0) = W0( )

w0(s, ) = W0( )e Dse 0
s (s̃ + , s̃)ds̃

So finally

w0(a, t) = W0(a t)e Dte 0
t

(s̃ + a t, s̃)ds̃

The solution for the remaining distributions is now obtained in the same
straightforward manner. Initial conditions are parameterized along the
positive time axis as follows:

t = , a = 0, wn(0, ) = 2
0

wn 1(a, ) (a, ) da

Solve the base equations

da
ds

= 1, a(0) = 0 a = s

dt
ds

= 1, t(0) = t = s + } s = a

= t a

and the last characteristic equation becomes

dwn
ds

= (D + (s, s + ))wn(s), wn(0) = 2
0

wn 1(a, ) (a, )da

giving
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wn(s, ) = 2
0

wn 1(ã, ) (ã, )dã e Dse 0
s (s̃, s̃ + )ds̃

wn(a, ) = 2
0

wn 1(ã, t a) (ã, t a)dã e Dae 0
a (s̃, s̃ + t a)ds̃

The following cumbersome expression is then obtained for the closed-form
solution of the age distribution:

W (a, t) = W0(a t)e Dte 0
t (s̃ + a t, s̃)ds̃

+

n = 1
2n

0 0
W0(a1 t)

m = 1

n
e

Dame 0

am (s, s + t am)ds
(am, t)dam

The generational approach used in the above example to solve for the
transient age distribution can be extended to other, more complicated,
models [54]. Derivation of the method, as described above, is based on a
biological argument but can be given a sound theoretical basis in terms
of integral equations. To recast the age population balance as an inte-
gral equation, note that a solution for W(0, t) is just as good as a solution
for W(a, t), since the latter can always be found from the former by
considering the entire t axis as the initial manifold. Thus, we find that

W(a, t) = W(0, t a) e 0
aD + (s̃, t a + s̃)ds̃

da

Substitution into the renewal equation gives

W(0, t) = 2
0

(a, t)W(0, t a)e 0
aD + (s̃, t a + s̃)ds̃

da

=
t

2 (t s, t)e 0
t sD + (s̃, s̃ + s)d s̃

W(0, s)ds

=
t

K(t, s)W(0, s)ds

We can now use the initial condition that specifies W(0, t) for negative
values of t to rewrite this result as

W(0, t) =
0

K(t, s)W(0, s) ds +
0

t
K(t, s) W(0, s) ds

= f (t) +
0

t
K(t, s) W(0, s) ds
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where both K(t, s) and f(t) are known functions. The above equation is
a well-known problem in mathematics; it is known as a Volterra inte-
gral equation of the second kind. This kind of integral equation is solved
by the method of successive approximations, a method similar to the
well-known Picard iteration used for solving first-order ordinary dif-
ferential equations. The zeroth-order approximation to the solution is
the inhomogeneous term f(t):

w0(t) = f (t)

and the higher-order approximations are then found recursively as

wn(t) = f (t) +
0

t
K(t, s) wn 1(s)ds

The solution is obtained as

W(0, t) = limn wn = f (t) +
n = 1 0

t
Kn(t, s) f (s) ds

where the kernels that appear in the integrals are defined recursively as

Kn(t, s) =
0

t
K(t, s)Kn 1(t, s)ds

The series that appears in the solution is called a Neumann series.
Obviously, the treatment of integral equations above is quite brief

and does not address important questions such as whether or not the
successive approximations or the Neumann series converge. Interested
readers can consult almost any book on integral equations to find a
deeper discussion of these issues.

4.3 Fixed Control Points

Looking back at the transient PBE, Eq. (4.1), it is clear that the char-
acteristic curves are given by the differential equation

dz
dt

= r(z)

and the characteristic curves are therefore the single-cell growth
curves. Keeping this in mind is helpful when solving the transient pop-
ulation balance. The process for doing so is sketched in Fig. 4.4. The
solution is obtained in a repetitive process in which one first solves the
PBE in an initial domain and then uses this solution together with the
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cell balances or boundary conditions to generate the initial conditions
for a new domain [43].

In Fig. 4.4, the region of state space in which cells are found is limited
from below by the state of cells at birth, the curve zbirth(t), and from
above by the state of cells at division, the curve zdivision(t). It is possible
to encounter more complex cases than the one depicted here, cases for
which the state of cells at birth is not the lower bound on the cell
containing region in state space. This will occur whenever the rate of
single-cell growth is less than the rate of change of the state at birth.
In such a situation, an additional domain below the curve zbirth(t) is
formed. However, the solution procedure is not significantly altered by
this additional domain.

As the initial population of cells grow older, their growth curves cover
the domain marked I in Fig. 4.4. Of course, this domain is the same as
the domain covered by the characteristic curves that intersect the z axis
at time zero and the solution for the transient distribution of states in
the domain is readily obtainable from the initial condition. The domain
vanishes at time t1 when the youngest of the cells present at time zero
divides.

z

z2

z1

t1

zbirth(t)

zdivision(t)

t2
t

II

I

III

Figure 4.4  Solution process for transient PBMs. The solution in the hatched domain, I,
is found from the initial condition. This solution, in conjunction with the cell bal-
ance over division and birth, then provides an initial condition for the solution in domain
II.
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The rate of cell division versus time is then calculated from the
solution in domain I, and a cell balance provides the value of the rate
of cell birth as a function of time up to the time t1. This function, along
the initial manifold zbirth(t), then serves as the initial condition for
the problem in domain II. Continuing in this fashion, the solution in
domain II is used to calculate an initial condition for domain III, etc. To
keep the nomenclature user-friendly, it is a good idea to indicate the
domain as a subscript on the distribution of states, i.e., label the
individual domain solutions WI, WII, etc.

The transient problem becomes particularly simple if the control
points are fixed. In that case, the control point balances are the same
as for the steady-state case and the solution of the transient problem
proceeds in a straightforward manner. This is illustrated in the next
example.

Example 4.5: Binary fission Consider an organism that divides at the cell
mass M and for which all new cells are formed at the cell mass M/2. Assume
further that single-cell mass growth rate is zeroth order with rate
constant k. Given an initial mass distribution W0(m) for this organism, find
the mass distribution after one cell cycle period when it is cultivated in a
chemostat with dilution rate D.

The cell cycle period obviously equals M/(2k). The model equations are the
PBE between the control points

W
t

+ k W
m

= DW

and the cell balance over the control point

W (M / 2, t) = 2W (M , t)

and the initial condition

W (m, 0) = W0(m)

The solution domain structure for this problem is very simple and is
sketched in Fig. 4.5. Domain I is bounded from above by the division control
point m = M and from below by the growth curve m = M/2 + kt. Domain II is
bounded from above by this growth curve and below by the birth control point
m = M/2.

In domain I, parameterize the initial manifold by

t = 0, m = , W = W0( )

The characteristic equations become
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dm
ds

= k , dt
ds

= 1, dW
ds

= DW (s)

which are solved to give

m = ks + , t = s, W (s, ) = W0( )e Ds

Inverting the first two of these equations to find  and s as functions of m
and t gives

= m kt, s = t

Substituting this result into the expression for W(s, ) gives the solution in
domain I:

WI(m, t) = W0(m kt)e Dt

We can now proceed to domain II. The initial manifold for this domain is
the line segment m = M/2, t  [0, M/(2k)], and the initial condition along the
manifold is given by a cell balance as

W II (M / 2, t) = 2WI(M , t)

= 2W0(M kt)e Dt

Parameterize this as

t = , m = M / 2, WII = 2W0(M k )e D

m
M

I

II

M/2k

M/2 + kt

0 t

M/2

Figure 4.5  The solution domains for a binary fission organism with zeroth-order
single-cell mass growth, division at M, and birth at M/2.
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The characteristic equations are

dm
ds

= k , dt
ds

= 1,
dW II

ds
= DW II (s)

and the solutions become

m = ks + M / 2, t = s + , W II (s, ) = 2W0(M k )e D e Ds

Inverting the two first equations gives

s = (m M / 2) / k , = t (m M / 2) / k

and substituting into the result for WII gives

W II (m, t) = 2W0(M / 2 + m kt)e Dt

So the mass distribution after one cell cycle period becomes

W (m, M / (2k )) = 2W0(m)e DM / 2k

Notice that the shape of the distribution has not changed, only its
magnitude.

4.4 Transient Control Point Balances

As already mentioned, the cell balances or boundary conditions that
must be used in transient calculations are, in general, not the same as
those that are used in steady-state calculations. Situations in which the
birth and/or division state(s) change with time therefore present special
problems. The reason for this is that the cell balances are obtained from
expressions for the cell fluxes into and out of cell cycle control points
and when the position of these points change with time, the fluxes de-
pend on both the growth flux and the rate of change of the control point.
The obvious solution to this is to set the flux of cells into the control
point equal to the difference of the growth flux and the rate of change
of the control point–in other words, to use the growth rate relative to
the control point velocity. This is correct in almost all cases. To deter-
mine exactly when it is correct, we derive this result more rigorously.

Consider the situation shown in a phase space plot in Fig. 4.6.
A cell that at time zero is in the state z reaches the control point

state Z at time t. Clearly, the total number of cells that divide between
time 0 and time t is simply the integral of the cell number distribution
of states from z(0) to Z(0). The average cell flux into the control point
between time zero and t therefore is 
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Average cell flux into control point = z(0)
Z(0)

W (t, z) d z

t

so the cell flux at time 0 is the limit of this expression.

Cell flux into control point at time 0 = lim
t 0

z(0)
Z(0)

W (t, z) dz

t

= lim
t 0

z(t)
Z(t)W (t, z)d z z(0)

Z(0)
W (t, z)d z

t

= ( d
dt )

t = 0 z(t)
Z(t)W(t, z)dz

= (r(z(0)) ( dZ
dt )

t = 0)W(0, z)

or

z(t)

Z(t)

0 t
Figure 4.6  Calculation of cell flux into a moving control point. The growth curve of the
cell, z(t), is indicated by the thin line; the trajectory of the control point, Z(t), is
indicated by the thick line. The total number of cells that divide between time zero and
time t is equal to the number of cells present at time zero with states z greater than z
(0) – in other words, the integral of the distribution of states from z(0) to Z(0). The
average flux into the control point is this integral divided by t.
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Flux into control point = (r(Z) ( dZ
dt ))W(t, Z) (4.9)

We see that when the control point moves with time, the factor r(Z)
must be replaced with r(Z) dZ/dt, where Z is the state of the control
point. This is, in fact, the above-mentioned relative growth flux. If
dZ/dt is greater than r(Z), then the flux is formally negative and, of
course, a negative flux does not occur. When dZ/dt > r(Z), then the
magnitude of the division state increases faster than the single cell
growth rate so the cells cannot “keep up” with the increase and cell
division simply ceases temporarily.

Similarly, if a birth control point moves as Z(t), then the flux out of
the control point is

Flux out of control point = (r(Z) ( dZ
dt ))W(t, Z)

and this flux is also negative if dZ/dt > r(Z). However, a negative birth
flux does make physical sense. It simply means that the single cell
growth curves that cross the Z(t) curve do so “from above.” Stated
differently: The newborn cells grow so slowly that their growth curves
lie below Z(t), and growth curves that are above Z(t) will, with time,
intersect Z(t), causing a growth flux into the moving control point. A
cell balance on such a point must therefore account for two fluxes into
the point, the growth flux of cells with states immediately above Z(t)
and the birth flux from dividing cells. The sum of these two fluxes equals
the growth flux out of the point.

Some of these scenarios will be illustrated in the examples that
follow.

The derivation above is valid only when the integral of the distri-
bution of states is differentiable, and this is not the case if the
distribution is discontinuous or specifically a  function. Only the 
function case is worth considering because discontinuities do not show
up in the cell balances, as they appear only along the boundaries that
separate the solution domains. However,  functions represent a pulse
of perfectly synchronized populations, which we will study in a later
section. For these populations we will not need to write flux balances
as before, but instead we must find the instant in time when the
synchronized population reaches the control point. At this point we can
then do a balance on all the cells represented by the  function.
Depending on what happens at the control point, the pulse of cells can
either continue at the other side of the control point, it can divide to
form pulses of newborn synchronized cells, or it can merge with a pulse
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of newborn synchronized cells if these cells are born at the exact time
when the first pulse reaches the birth control point.

In solving transient problems, it is extremely helpful to first produce
a reasonably accurate sketch of the solution domains. This is usually
possible without having to solve the PBE because the domain
boundaries are characteristic curves that are often known or easily
found if the single cell growth kinetics is known. Thus, in order to sketch
the solution domains in state space, one needs the trajectories of the
control points and the growth curves that form the domain boundaries.
When a domain boundary intersects the curve of division states, the
boundary terminates (assuming all cells divide), but is propagated to
the cells formed in the division. Thus a new domain boundary emanates
from the curve of birth states at the same point in time that the old
domain boundary terminates at the curve of division states.

In this context, it is useful to define the concept of a cell line. By a cell
line, we mean the growth curves or trajectories in state space of a group
of identical cells and their offspring. Because domain boundaries
propagate in cell divisions to both daughter cell states, the domain
boundaries of a given problem are identical to one or several cell lines.
To find all the domain boundaries one must identify all the cell lines
that correspond to boundaries. We have already seen that such cell lines
arise from the youngest cells in the initial population, but a domain
bounding cell line can also appear if the mathematical expression for a
cell balance changes at a point in time. This will, for instance, occur if
the state at division or the state at birth is modeled by using different
functional expressions in different time intervals. When this happens,
the initial manifold along which the cell balance is applied must be split
into two parts, the first part corresponding to the cell balance before
the change and the second part to the cell balance after the change. A
domain bounding cell line arises at the point where the change occurs
and this cell line must be included when sketching the solution domains
of the problem.

In the next couple of examples we will consider situations in which
the control points move in state space as part of the transient behavior.

Example 4.6: Shift up in dilution rate for binary fission organism An increase
in dilution rate will force the cells to divide more rapidly and the age at di-
vision must therefore decrease in some fashion after a dilution rate shift-up.
The actual transient behavior of the division age will depend in some complex
way on the growth kinetics and the past history of the culture, but we can
hope to capture much of the essential features of the population dynamics by
modeling the division transient by the simplest possible model: a linear de-
crease with time from the old to the new value followed by a constant function
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equal to the division age at steady state under the new dilution rate. Thus,
if ad is the age at division, we have the model

ad = { a1 (a1 a2) t , t <

a2, t >

where the shift-up occurred at time 0. It is readily found from solution of the
steady-state problem that the two division ages a1 and a2 are related to the
dilution rates by

Dnan = ln2

and, furthermore, the initial condition for this problem is

W0(a) = 2N0D1e
D1a

In the calculations that follow, N0 is carried along as a constant multiplier,
so to avoid writing this constant all the time, we will simply set it equal to 1
and remember that in this problem W actually stands for W/N0.

In sketching a diagram of the solution domains, a problem immediately
materializes: The way that the solution domains tile the state space is sen-
sitive to the value of . Two possible scenarios are shown in Fig. 4.7.

Because the mathematical expression for the age at division changes at
, we are forced to consider cells that divide before  separately from cells

that divide after, and the cell line that originates at the point ( , 0) will
therefore be a solution domain boundary. Specifically, the boundaries are the
growth curves that pass through the points (  + na2, 0) where n is any non-
negative integer. Similarly, the cell line originating with the youngest cell in
the initial population will be a domain bounding cell line. The boundaries
formed by this cell line are the growth curves that pass through the points
(na2, 0). In the top diagram of Fig. 4.7,  equals a2 and the two sets of domain
boundaries are superimposed. In the bottom part,  is less than a2. Notice
that half as many domains per unit time are formed when  equals a2 than
when  is different from a2. Since the domain tiling depends on the value
of , it is difficult to derive a general closed-form solution with  as an arbi-
trary parameter. In the rest of the problem, we will therefore first focus on
the special case when  = a2.

In domain I, the solution to the age distribution balance is

WI(t, a) = W0(a t)e
D2t

= 2D1 e
D1a t(D2 D1)
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and the boundary condition along t ]0, ad[ becomes

WII(t, 0) = 2WI(t, ad) (1 dad
dt )

= 4 D1e
D1(a1 (a1 a2) / a2t) t(D2 D1) a1

a2

= 2 D2

II

I

III

tδ

tδ

IV

III V

II
I

IV VI

a
a1

a2

a
a1

a2

Figure 4.7  The solution domains in state space that are generated when the age at
division decreases linearly with time between zero and  and remains constant
thereafter. The top diagram shows the situation when  equals the new steady-state
age at division a2; the bottom diagram shows the situation when  is less than a2. The
diagram for the situation when  is greater than a2 is left as an exercise.
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where all the simplifications have been done using a1D1 = a2D2 = ln 2. The
solution in domain II can now be found as

WII(t, a) = 2D2e
D2a

, = a2

but this is simply the steady-state solution at the new dilution rate! Further
calculations are unnecessary, the distribution will obviously not change from
its steady-state value. This certainly is remarkable, the transient dies out
completely in the period of just one cell cycle. However, this is not a clue
offering a deep insight into population dynamics; it is only a remarkable co-
incidence, as we can discover by solving the case when  equals a2/2. Before
proceeding any further, the reader should draw a reasonably accurate dia-
gram of the solution domains for this case and find the points of intersection
between the domain boundaries and the age at division. This diagram will
make it easier to follow the solution procedure below. We start by finding the
solution in the first domain, the domain spanned by the cells present at the
initial time. This is obviously the same as the solution in the previous case,

WI(t, a) = 2D1e
D1a t(D2 D1)

but now the cell balance takes a different form for t < a2/2 and for t > a2/2. In
the first case

WII(t, 0) = 2WI(t, ad) (1 + 2
a1 a2

a2 )
= 4 D1(2 a1

a2
1) e

D1(a1 2(a1 a2)t / a2)
e

t(D2 D1), t 0, a2 / 2

which can be simplified to

WII(t, 0) = 2D1(2 D2
D1

1) e
t(D2 D1)

, t 0, a2 / 2

giving the following solution in domain II

WII(t, a) = 2D1(2 D2
D1

1) e
t(D2 D1) a(2D2 D1)

, = a2 / 2

while in the second case

WIII(t, 0) = 2WI(t, a2) = 4D1e
D1a2 t(D2 D1)

, t a2 / 2, a2

giving
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WIII (t, a) = 4D1 e
(D1 / D2) ln 2 t(D2 D1) a D1 = a2 / 2

We can now find the solution at time t = a2 as

W ( t = a2, a) = { WIII (a2, a), a < a2 / 2
WII (a2, a), a > a2 / 2

and using that a2 D2 = ln 2 this can be simplified to

W (a2, a) = { 2D1e
aD1, a < a2 / 2

4D1 (2D2 / D1 1) e
ln 2 (D1 / D2) a(2 D2 D1), a > a2 / 2

This solution becomes very different from the steady-state solution when
the difference between the two dilution rates becomes large, as is shown in
Fig. 4.8, where the dimensionless age distribution is plotted versus dimen-
sionless age. We see that as the change in dilution rate becomes greater, a
larger fraction of the population ends up in domain II. In other words, the
population is partially synchronized by the dilution rate shift and the degree

Figure 4.8  Dimensionless age distributions W/D2 versus dimensionless age aD2 after
a dilution rate shift-up. The parameters used are  = a2/2 and t = a2.
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of synchrony increases when the difference between the two dilution rates
increases.

One can often get a good idea of the qualitative character of the
transient simply by studying the way in which the solution domains tile
the state space. For instance, consider again the tiling shown in the
bottom diagram of Fig. 4.7, the shift-up in growth rate. At the time
t = a2, the solution has two parts, the younger cells in domain III and
the older cells in domain II. This solution is plotted in Fig. 4.8, and one
can see that the frequency of older cells, domain II cells, has increased
relative to that of younger cells, domain III cells. How can one conclude
that this will happen just by studying the domain tiling in Fig. 4.7?

Simply note that the domain II cells are descendents of cells that
divided while the age of division decreased with time, while the domain
III cells are descendents of cells that divided while the division age was
constant. Cells that divide while the division age decreases with time
experience a contraction of state space similar to the contraction seen
when single-cell growth curves converge. The contraction occurs
because the newborn cells must fit in a more narrow age interval than
the dividing cells. For the example in question, we can be quite specific
and state that the cells that divide while the division age is a decreasing
function of time, initially at time 0, have ages from a2  to a1. After
one division, at time , the daughter cells fit in the age interval from
0 to . Thus, the width of the state space of these cells lines decrease
from a1 a2 +  to . Just as for converging single-cell growth curves,
the contraction of state space causes the frequency to increase, and this
is why one can conclude, just from looking at the domain tiling in
Fig. 4.7, that the frequency in domain II, the domain containing cells
that have experienced a state space contraction, must have increased
relative to the frequency of cells in domain III, the domain containing
cells that did not experience a contraction.

One can go further and conclude that this increase in frequency
becomes more extreme as  becomes smaller. In the limit as  goes to
zero, all cells between ages a2 and a1 divide simultaneously at time zero,
causing the state space of these cells to contract to size zero and giving
rise to a perfectly synchronized pulse of cells, which must be modeled
as a  function.

The effect of the contraction of state space can also be seen in
Eq. (4.9). When the birth state decreases with time, the term dZ/dt is
negative and the factor r dZ/dt, which multiplies W, becomes greater
than r, causing the flux into the moving control point to increase above
the value it would have for a stationary control point. This flux increase
is then reflected in an increase in the value of the frequency after the
division. Similarly, it can be seen that an increase in the value of the
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division state, dZ/dt > 0, will cause an expansion of state space in a divi-
vision resulting in a relative decrease in the frequency after the division.

Contraction and expansion of state space will also occur if the
magnitude of a birth control point changes with time. The reader is
urged to ponder this situation and reason out what qualitative
dynamics is to be expected in different situations.

In the examples done up till now, the tiling of state space by the
solution domains was relatively simple because, even though all
domains were not the same size, the tiling had a nice repetitive or
periodic structure and the domain size did not decrease with time. It is,
however, quite easy to construct situations in which this is not the case:
where the domain tiling is a periodic and the domain size is contin-
uously decreasing. This situation can, for instance, occur in organisms
with unequal division such as budding yeasts. In these organism, the
unequal division causes a domain boundary or cell line to split into two
different lines in a division, one for each type of newborn cell. So, unless
these cell lines later merge, an event that will only occur in unusual
circumstances, the number of domain boundaries in the distribution of
states will increase approximately exponentially with time, making an
analytical solution at large times practically impossible to obtain except
in special cases (cases that will be pursued in the next section). In the
next example, we will consider such a situation.

Example 4.7: Shift up of budding yeast The cell cycle of Baker’s yeast, or
Saccharomyces cerevisiae, a budding yeast, can be summarized, somewhat
simplified, as follows. At division, a large and a small cell are formed. The
larger is termed a mother cell and the younger a daughter cell. All newborn
mother cells have the same cell mass m* and immediately initiate budding,
a process that takes a fixed amount of time, P. During this period, all growth
goes into formation of the bud, which at cell division becomes the daughter
cell with mass m0. This newborn daughter cell mass must equal the mass of
the budded mother cell at division minus m*, and newborn daughter cells
must grow to attain the cell mass m* before they can initiate their first bud-
ding cycle. The cell cycle is sketched in Fig. 4.9.

For this organism, it is convenient to use cell age as the state parameter
for the mother cell and cell mass as the state parameter for daughter cells.
Assuming that single-cell mass growth follows first-order kinetics, the PBEs
for a batch culture become

WM
t

+
WM

a
= 0

WD
t

+ m
WD
m

= WD
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where the subscripts M and D refer to mother and daughter cells, respec-
tively, and  is the specific single-cell mass growth rate. The first transient
cell balance gives the rate of formation of mother cells at mass m* as the sum
of a birth flux from dividing mother cells and a growth flux of daughter cells
that attains the mass m*. The second sets the flux out of the control point for
daughter cell birth equal to the flux into the division point:

WM(t, 0) = (1 dP
dt )WM(t, P) +WD(t, m*) ( (t)m*(t) dm*

dt )
( (t)m0(t)

dm0
dt )WD(t, m0(t)) = (1 dP

dt )WM(t, P)
(4.10)

where the newborn daughter cell mass is

m0(t) = m* et P
t ( )d

1

Let the initial distributions be WM0(a) and WD0(m). To pin the problem
down further, we will restrict ourselves to solving for the transient after a
step increase in . We will render all units of time dimensionless by division
with P and all cell masses dimensionless by division with m*. Effectively, we
accomplish this by setting both P and m* equal to 1. Further, let the dimen-
sionless specific growth rates before and after the growth rate shift, 1 and

2 respectively, equal

1 = 1 / 3 2 = 1 / 2

It is now easy to show that the dimensionless birth mass changes as

Age
PO

Mass
m* + m0m0 m*

Figure 4.9  Schematic of the budding yeast cell cycle.
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m0(t) =

e 1 — 1, t < 0

e 1 + t (
2 — 1

)
— 1, 0 < t < 1

e 2 — 1, t > 1

When this function is plotted together with the growth curve of the
smallest cell at time zero, the picture in Fig. 4.10 emerges. Study this figure
carefully!

One of the domain boundaries is m0(t), the mass of newborn cells. However,
initially, the smallest cells in the population grow slower than m0(t) and
therefore their growth curves must lie below m0(t), forming a separate do-
main, here called D II. This situation persists until time t1, at which the
growth rate of the smallest cells equals the rate of change in m0(t), when the
term ( (t) m0(t) dm0/dt) in Eq. (4.10) equals zero. For t < t1, the flux out of
the birth control point is negative, for t > t1 it is positive, and for t < t1, the
cell balance at birth is an initial condition for the solution in D II, while
for t > t1 it is an initial condition for the solution in domain D III. Because of

m

0

m0(t)

t1 t2
t

D I
D III

D II

D IV

Figure 4.10  A plot of the birth mass m0(t), indicated by the thick curve, together with
three growth curves, thin curves, for a situation in which the mass at birth increases
faster with time than the cell mass of the smallest cells. The single-cell growth rate
becomes less than the rate of increase in newborn cell mass at time 0. At this point in
time, a domain starts to form below the curve for the birth mass m0(t). Initially, the
growth flux of cells is in a direction from the domain above m0(t) into the domain below
m0(t). At time t1, the rate of single-cell mass growth becomes equal to the rate of
increase in the mass of newborn cells and the cell growth flux changes direction so it
is from the domain below m0(t) to the domian above m0(t). Finally, at t2, the smallest
cell in the culture attains a mass equal to that of newborn cells and the region
below m0(t) vanishes.
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this change in the structure of the solution, a domain boundary is formed by
the growth curve that starts at the point (t1, m0(t1)).

The domains that are formed can now be described in words as follows:
Domain D I represents cells larger than m0(t) and larger than the cells on the
growth curve starting at t1, m0(t1). The initial condition for D I is the initial
distribution. D II is the cells that are formed below m0(t) while the flux out
of this control point is negative. The initial condition for D II is a cell balance
at m0(t) between t = 0 and t = t1. D III is the cells on the growth curves in-
tersecting m0(t) while the flux out of this control point is positive. D III is
bounded on the left by the domain boundary that emanates from (t1, m0(t1)),
below by m0(t), and on the right by the domain boundary emanating from
(t2, m0(t2)), where t2 is the time at which domain D II vanishes. The initial
condition is a cell balance along m0(t) for t1 < t < t2. This cell balance accounts
for both the growth flux from below, from D II, and the birth flux. Finally,
D IV represents the cells born after t2, when there is no longer a growth flux
into the birth control point.

The time t1 is defined as the time when the rate of cell mass increase be-
comes equal to the rate of increase in newborn cell mass, so this time is found
by solving

dm0(t)

dt
= r(m0)

( 2 1) e 1 + t1(
2 1

)
= 2(e 1 + t1(

2 1
)

1)

t1 = 1

2 1
ln( 2

1e 1 ) 0.4327906

The time at which the domain vanishes, t2, is found by determining the
intersection of m0(t) with the growth curve of the smallest cell in the culture.
Assuming first that this point occurs before time 1, the equation for t2
becomes

(e 1 1)e 2t2 = e 1 + t2 (
2 1

)
1

which must be solved numerically, giving a root less than 1 as assumed:

t2 0.924825

In Fig. 4.11, more of the initial domains for our problem are plotted to
scale. The figure was obtained by placing a figure of the mother cell domains
above a figure of the daughter cell domains. The horizontal line that runs
through the figure one-third up from the bottom therefore represents the cell
state of newborn mother cells or of daughter cells that have reached the cell
mass m*.
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The domain structure is complex, and there is no simple repetitive struc-
ture appearing at larger times. A simple repetitive structure does not develop
because the duration of the daughter part of the cell cycle is not a simple
fraction or multiple of the duration of the mother cell cycle. The two cycles
are not close to being synchronized. However, for special cases, such as if the
duration of the daughter cell cycle exactly equals the duration of the mother
cell cycle, a very simple repetitive domain structure does appear. (Convince
yourself of this by drawing the relevant diagrams.) Domains D II, D III, and
D IV are so narrow that they are virtually obscured by the lines that indicate
domain boundaries. It is tempting to ignore the solutions in these domains,
as they appear so insignificant, but the small size does not mean that they
are insignificant. All daughter cells born between time 0 and 1 pass through
domains D III and D IV and, as these domains are so narrow, these cells
experience a significant contraction of state space. The value of the frequency
function must therefore be large in these domains. Thus, a small and seem-
ingly insignificant region of state space may still contain a significant frac-
tion of the total number of cells in a population.

Now that the domains have been carefully defined, we can find the tran-
sient distribution of states. We will seek the solution only up to time 1, and

M I

D I
D III

D II

D IV D V

D VI

M II

M III

M IV

M V

M VII
M VI

1

1

0 0.5 1 1.5 2 2.5

A
g

e
M

as
s

Time
Figure 4.11  Solution domains in a shift up in single cell specific growth rate of budding
yeast. The bottom one-third of the diagram represents the domains for daughter cells
and the top two-thirds the domains for mother cells. The state of daughter cells is
specified by cell mass, while the state of mother cells is indicated by cell age.
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we will therefore only need the solutions in domains M I, M II, D I, D II,
D III, and D IV.
Domain M I Straightforward:

WMI(t, a) = WM0(a t)

Domain D I Equally straightforward:

WDI(t, m) = WD0(me 2t
) e 2t

Notice the factor e 2 t in the solution in domain D I. This term is caused
by the fact that the single-cell growth curves diverge and the state space
therefore expands. Thus the frequency must decrease, which is taken care of
by the term e 2 t.
Domain M II In this domain, the boundary condition along the initial manifold
is given by the cell balance

WMII(t, 0) = WMI(t, 1) +WDI(t, 1) 2, 0 < t < 1

which can be written in terms of the two initial distributions as

WMII(t, 0) = WM0(1 t) +WD0(e 2t
) e 2t

2

and the solution becomes

WMII(t, a) = WM0(1 t + a) + e 2
(t a)

WD0(e 2
(t a)

) 2

Domain D II For this domain, the initial manifold is the section of the curve
m0(t) that lies between time 0 and t1. Let us first write the cell balance along
this curve segment. The cell flux is from domain D I, the older cells, to domain
D II, the younger cells, and the flux into the control point m0(t) is the growth
flux from D I, so

Cell flux into m0(t) = WDI(t, m0(t))( dm0
dt 2m0(t))

where the two terms inside the parentheses have been switched relative to
their position in Eq. (4.10) in order to give a positive flux. Similarly, the flux
out of the control point is the growth flux into D II:

Cell flux out of m0(t) = WDII(t, m0(t)) ( dm0
dt 2m0(t))

and the cell balance becomes
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WDII(t, m0(t)) ( dm0
dt 2m0(t)) = WDI(t, m0(t)) ( dm0

dt 2m0(t))
+WMI(t, 1)

or

WDII(t, m0(t)) =
WMI(t, 1)

dm0
dt 2m0(t)

+WDI(t, m0(t))

=
WM0(1 t)

1 1e 1
(1 t) + 2t

+ e 2t
WD0(e 1

(1 t)
e 2t), 0 < t < t1

Now parameterize the initial manifold, the m0(t) curve, as follows:

t = , m = e 1
(1 ) + 2 1, W DII ( ) = W DII ( , m0( ))

Solve the characteristic base equations and invert the results to obtain 
and s:

dm
ds

= 2m, m(0) = e 1
(1 ) + 2 m(s, ) = e 1

(1 ) + 2
( + s)

dt
ds

= 1, t(0) = t = s + }
s = t 1 +

lnm 2t

1

= 1
lnm 2t

1

Solving the last characteristic equation gives

dW DII
ds

= 2 W DII , W DII (0) = W DII ( , m0( ))

W DII (s, ) = e 2s
W DII ( , m0( ))

Substituting in the expressions for  and s gives
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W DII (t, m) = e 2
(t 1 + (ln m 2t) / 1

) W M0 ( ln m 2t

1 )
1 1me 2t + 2

(1 (ln m 2t) / 1
)

+e 2
(1 (ln m 2t) / 1

)
W D0 (me 2t

e 2
(1 (ln m 2t) / 1

))
Domain D III In this domain, the initial manifold is the section of the curve m0

(t) that lies between t1 and t2. Along this section of the curve, the cell flux is
in the usual direction, from the domain with the younger cells, D II, to the
domain with the older cells, D III. The growth flux in the cell balance is
therefore written the usual way, and the cell balance becomes

W DIII (t, m0(t)) =
W MI (t, 1)

2m0(t)
dm0
dt

+W DII (t, m0(t))

The characteristic equations and the parameterization of the initial man-
ifold is identical to domain II, and we can therefore take the results from there
and proceed straight to the substitution of the balance equation into the so-
lution for WDIII(s, ). Further substituting the expressions for s and  gives

W DIII (t, m) = e 2
(t 1 + (ln m 2t) / 1

) W M0 ( ln m 2t

1 )
1 1me 2t + 2

(1 (ln m 2t) / 1
)

+exp{ 2

1
(ln m 2t ln (me 2t + 2

(1 (ln m 2t) / 1
)

1)
+ 2(1 ln m 2t

1 ))}

{ W M0 ( ln m 2t

1 )
1 1me 2t + 2

(1 (ln m 2t) / 1
)

+e 2
(1 (ln m 2t) / 1

)
W D0 (me 2t

e 2
(1 (ln m 2t) / 1

))}
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Domain D IV The initial manifold is the section of m0(t) between t2 and 1. There
is no domain below this manifold, so the cell balance is quite simple.

WDIV(t, m0(t)) =
W MI (t, 1)

2m0(t)
dm0
dt

, t2 < t < 1

and the characteristic equations are the same as for the previous domains.
The following solution is now obtained:

W DIV (s, ) = e 2s WM0(1 )

1 1e 1
(1 ) + 2

and, from the previously obtained expression for s and , this becomes

WDIV(t, m) = e 2
(t 1 + (ln m 2t) / 1

) W M0 ( ln m 2t

1 )
1 1me 2

(t 1 + (ln m 2t) / 1
)

The two distributions at time 1 are plotted in Fig. 4.12 for the distribution
WM0 = 1e 1 a and WD0 = (1 e 1)/m2 as the initial condition.

All daughter cells that were born between times 0 and 1 were born close
to the state of the smallest cell in the culture. Consequently, all these cells
are close to each other in state space and therefore form a sharp peak in the
daughter cell distribution. The value of the distribution in the peak is so large
that the remaining parts of the distribution are not even visible in a linear
plot such as this. The shoulder visible on the left side of the peak is not an
artifact of the plotting routine. It represents the value of the solution in do-
main D IV, which is less than the value in domain D III, the domain that
forms the bulk of the peak.
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Figure 4.12  Daughter cell mass distribution (left plot) and mother cell age distribution
(right plot) following a shift up in cell mass growth rate.
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4.5 Solutions for Large Times

In many transient calculations, one either undertakes to find the dis-
tribution of states as they approach steady state under conditions when
the control points are fixed, or the dynamic calculations get to a point
where this is the case. Once the transient in the control point dynamics
has died out, the tedious domain-by-domain solution procedure can be
abolished in favor of a more powerful method capable of providing a
solution for arbitrary large times. The method can be used not just for
situations in which the control points have become fixed but in any case
where the control point dynamics has settled down to a simple repeti-
tive behavior such as periodically changing control points.

A simple recursion formula between solutions at different times can
often be obtained quite easily by perceptive guessing. The guessing is
done after studying the solution for the first couple of domains after the
control points have become fixed. For instance, for a chemostat with a
binary fission organism that divides at the age ad, it is trivial to show
that if the age distribution at time t0 is W0(a), then the age distribution
at time t0 + ad is 2 W0(a) e Dt. But the origin of the time axis is arbitrary,
so one can certainly generalize this result to the following recursion
formula:

W(t0 + nad, a) = 2W(t0 + (n 1)ad, a)e
Dad

or, written more compactly in a notation we will use in the following
paragraphs,

Wn(a) = 2Wn 1(a)e
Dad

where the subscript n indicates n time steps of length ad. When one
looks at this result, the following general solution suggests itself:

Wn(a) = 2n W0(a) e
Dadn

This solution may seem obvious, but this is only because the problem
is so simple. In more complex cases, it will be harder to infer a general
solution from a recursion formula, and the proposed general solution
should always be shown to be correct by an induction proof.

Proof by induction requires two steps: The first step is a proof that
the induction hypothesis, the proposed general solution, is true for
some low value of n, usually 0 or 1. The second step is a proof show-
ing that if the induction hypothesis is true for n, then it must also be
true also for n + 1. In our case, the proposed solution is trivially true
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for n = 0. If the solution is assumed true for n, then we can use
Wn(a) as the initial condition for a transient calculation and we find that
the age distribution at time ad or Wn+1(a) is 2e DadWn(a) or
2n + 1e Dad (n + 1)W0(a). But this is the induction hypothesis evaluated at
n + 1, and the proof is complete.

Example 4.8: Recursion formula for budding yeast In the previous example
we calculated the transient following a shift up in specific cell mass growth
rate for budding yeast. The calculations generated a plethora of domains, but
this fact becomes irrelevant as soon as the control point dynamics has died
out at the time t = 1. The solution at that point in time becomes the initial
condition for the recursion formula, and to obtain this formula, we need only
the solution at some time later than the initial time. We therefore need so-
lutions in only a few domains, exactly enough to find the distribution of states
at some later time, and the domains should be those that are naturally gen-
erated in a transient calculation with fixed control points.

We will take the solution from the previous example at t = 1 as the initial
condition for a chemostat with dilution rate and single-cell specific growth
rate equal (which will assure the existence of a steady state) and set D =  =

2 = ½.
The model equations, in dimensionless state variables, are the population

balance equations for mother and daughter cells,

WM
t

+
WM

a
= WM

WD
t

+
mWD
m

= WD

the cell balances

WM(t, 0) = WM(t, 1) + WD(t, 1)

(e 1) WD(t, e 1) = WM(t, 1)

and the initial conditions

WM(0, a) = WM0(a), WD(0, m) = WD0(m)

The initial domains in which we will seek a solution are shown in Fig. 4.13.
The solution procedure should be well established by now, so we will not

show any intermediate steps, only the final domain solutions in the order in
which they are obtained. (For the reader not yet comfortable with solving
transient problems, checking the results below is an excellent exercise.)
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Domain M I 0 < t < 1, t < a < 1

WMI(t, a) = WM0(a t)e t

Domain D I 0 < t < ln(e 1)
, (e 1)e t < m < 1

WDI(t, m) = WD0(me t)e 2 t

Domain M II

WMII(t, a) = WM0(1 t + a)e t + WD0(e (t a))e 2 te a

Domain D II

WDII(t, m) = WM0 1 t +

ln( m

e 1 ) e t

m

1

1
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Figure 4.13  Initial domains used in the calculation of a recursion formula for budding
yeast transients.
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The largest time at which a solution for the distribution of states can be
found from these domain solutions is at t = ln(e 1) / 0.8655045.

WM(t , a) = { WM0(1 t + a)(e 1)

+ WD0(e a(e 1))e a(e 1)2, 0 < a < t

WM0(a t )(e 1), t < a < 1

WD(t , m) = WM0(1 + lnm ) (e 1)
vm

, e < m < 1

so the time step in the recursion formula will be equal to t̃ and the recursion
formula can be stated as

WM,n(a) = { WM,n 1(1 t + a)(e 1) +

WD,n 1(e a(e 1))(e 1)2e a, 0 < a < t

WM,n(a t )(e 1), t < a < 1

WD,n(m) = WM,n 1(1 + lnm ) (e 1)
m

, e < m < 1

This result has been used to calculate and plot the distributions of states
at large times after a shift up in specific growth rate (Fig. 4.14). The initial
condition for the recursion formula is the distribution found in the previous
example at the dimensionless time 1, the time at which the control points
cease to move. This initial distribution is plotted in Fig. 4.12. The solution at
the late time shows that the peak of cells that was generated by the step-up
has multiplied into numerous peaks. This happens because, when the cells
in the peak divide, two new peaks are formed, a daughter cell peak and a
mother cell peak; these new peaks in turn double when the cells in them
divide. The peak number will therefore increase exponentially with time un-
til the peaks become so numerous that they start to become superimposed on
one another.

The recursion formula result is quite complex and it is far from easy to
guess a general solution for Wn. However, the recursion formula is still very
useful because it provides a practical tool for rapid calculation of the distri-
bution at any reasonable time. Some software packages such as Maple and
Mathematica allow the user to define functions recursively, in which case
calculation of the distribution is straightforward. However, it is obvious from
the recursion formula that, as n increases, the number of function evalua-
tions increases rapidly, roughly as the exponential of n, and the computa-
tional time therefore places a practical limit of the values of n for which the
recursion formula is useful.
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Alternatively, the initial distribution of states can be approximated by a
discrete distribution and stored in an array or table. Distributions at later
times are calculated from the recursion formula and stored in additional ta-
bles, one new table for each time step forward. However, calculation of the
entries in a new table requires interpolation in the table representing the
previous time. Each interpolation introduces an error, which is particularly
large when the interpolation is between two points that span a discontinuity
in the distribution. This tabular method therefore results in a degradation
of the accuracy of the table entries at larger times, and an increasingly fine
discretization of the distributions is needed for longer times. Of course, a finer
discretization gives rise to a larger computational time, making this method
unsuitable for finding the distributions during long transients.

A comparison of the exact use of the recursion formula and a calculation
using tabular interpolation is shown in Fig. 4.15. The figure shows the
mother cell distribution after 19 time steps. The degradation of the values
obtained by the tabular interpolation method, the dots, is becoming visible
around the discontinuities. However, calculation of the distribution using the
exact recursion formula required approximately 40 times as much computer
time as the calculation using tabular interpolation. The computational time
required for the exact recursion formula increases approximately exponen-
tially with the number of recursion steps n, as e0.4 n, while the computational
time for the tabular interpolation is roughly proportional to n. However, the
proportionality constant increases with the number of entries used in the
tables.

In the previous example, the recursion formula was so complex that
guessing a general solution was difficult, and readers will probably
agree that it would be nice to have a systematic method for finding a
closed-form solution at large times. A systematic solution method does
exist and is based on the observation that, when the control points are
stationary, the tiling of the state space by the solution domains almost
always becomes periodic at some point in time [40, 44]. This is seen most
easily in the case of the age distribution, which is the only case that will
be covered here. Consider the situation depicted in Fig. 4.16, in which
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Figure 4.14  The distributions of states for a budding yeast 10 time steps of length t
after the control points have become fixed.
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Figure 4.15 The distribution of mother cell ages for budding yeast by 19 time steps of
length t̃ after the control points have become fixed. The solid line is obtained using the
recursion formula, and 500 points are plotted. The dots represent the result obtained
by tabular interpolation using 500 entries in the table.
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Figure 4.16  Initial solution domains obtained with control points at ages 3 and 5. A
repetitive structure arises after time 9. The vertical arrows indicate points where a
domain boundary bifurcates to create two new boundaries. One, a straight line
continuation of the old boundary represents cells that have not divided; another, starting
at age zero, represents cells that have divided.
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control points are located at ages 3 and 5. Some of the cells divide at
age 3, the remaining cells at age 5. Thus, the domain boundaries that
intersect the horizontal line at the division age 3 bifurcate and form two
new domain boundaries: one corresponding to the cells that did not
divide and one to the cells that did divide. As a result, the number of
domain boundaries increases with time until, at a time equal to 9 in
this case, the system has reached a state where bifurcating domain
boundaries form on already-existing boundaries and no new boundaries
therefore form. After this time, the tiling of the state space is periodic
or repetitive in the sense that the geometry of the solution domains
between t and t + 1 is identical to the geometry between t + N and t +
N + 1 (N integer).

A little contemplation will show that this repetitive structure will
arise when the ratio of the distance between any two control points is
a rational number. In this case, the tiling will eventually repeat with a
period equal to the largest number equal to an integer fraction of all the
age differences between control points.

Because of this repetitive structure of the domain tiling, the
distribution of states can, at any time, be conveniently partitioned into
a set of solutions, each valid over a subinterval of the age axis between
two adjacent domain boundaries. This is quite similar to the situation
encountered in solving for the steady-state distribution in control point
models. The difference is only that, in the transient case, the evolution
of the domain boundaries partitions the age space into finer intervals
than those defined by the control points.

Let the vertical distance or age difference between two adjacent
domain boundaries in this repetitive structure be . Clearly,  is also
the period with which the tiling repeats. Assume that the age
distribution is known for t = n , where n is an integer. The domain
structure depicted in the left diagram of Fig 4.17 now appears. Before
finding the solutions in these domains, we will introduce the simplified
nomenclature, indicated in the figure, that Wm(a, n ) is the age
distribution in the subinterval between age (m  1)  and m  at
time n .

It turns out that using the physical age of a cell as a state parameter
in the calculations that follow results in rather cumbersome
expressions. It is more convenient to work with a state parameter, call
it , which runs between 0 and  for each subinterval. Thus, let the
state parameter for Wm be  = a  (m  1) . This variable transformation
is simply a translation along the age axis, and it does not alter the form
of the age population balance equation itself. The diagram on the right
of Fig. 4.17, showing the domains relevant to obtaining the solution for
Wm( , t), now results. Notice that when the translated age  is used as
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a state coordinate, the diagram is identical for all values of m with an
age parameter that runs between zero and , and the problem that
must be solved is thus the same for all values of m. The solutions in
domains I and II are as follows.

In domain I, the initial condition is

t = n WI( , n ) = Wm ( , n )

and the solution is trivial:

WI( , t) = Wm( (t n ), n )e D(t n ) (4.11)

The domain boundary between domains I and II may be a control
point, and some fraction of the cells may therefore divide at this point.
Let the fraction of cells that divide be m. The initial condition for
domain II becomes

a = 0 WII(0, t) = (1 m)WI( , t)

and the solution in domain II then is

WII( , t) = WII(0, t )e

= (1 m)Wm((n + 1) t + , n ) e D(t n )
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But, since Wm+1( , (n + 1) ) is this solution evaluated at t = (n + 1) ,
one obtains the recursion formula

Wm + 1( , (n + 1) ) = (1 m)Wm( , n ) e D , m > 1

The recursion formula for W1 is a special case and requires the use of
the renewal equation. Let the solution in the domain along a = 0 be WI
(a, t). Then, from the renewal equation and using the result in
Eq. (4.11), one obtains

WI(0, t) = 2
m = 1

M

mWI( , t)

= 2
m = 1

M

mWm((n + 1) t, n ) e D(t n )

WI( , t) = 2
m = 1

M

mWm((n + 1) (t ), n ) e D((t ) n )e

and W1( , (n + 1) ) is this solution evaluated at t = (n + 1) .

W1( , (n + 1) ) = 2
m = 1

M

mWm ( , n ) e D

The results are most conveniently written in vector-matrix notation
as

W n + 1 = AW n (4.12)

where

Wn = (
W1(â, n )

W2(â, n )

W3(â, n )

WM(â, n )
)

and
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A =

2 1e D 2 2e D 2 M 1e D 2 Me D

(1 1)e D 0 … 0 0

0 (1 2)e D … 0 0

0 0 … (1 M 1)e D 0

Since cells that grow to attain the highest possible age must all divide
at this age, M must equal unity.

At steady state, a linkage equation must exist, relating the dilution
rate to the many single-cell parameters of the model. This equation is
obtained as follows. Note that, at steady state, Wn + 1 = Wn. It follows
from the first of the vector-matrix equations that

W1 = 2e D

m = 1

M

mWm

and the remaining equations give

Wm = (1 m 1)e D Wm 1

which, when used recursively, gives

Wm =
j = 1

m 1
(1 j)e

D (m 1)W1

Putting both results together and dividing out W1 gives the linkage
equation

1
2

=
m = 1

M ( j = 1

m 1
(1 j)) m(e D )m

(4.13)
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Notice that it is a polynomial equation in e D . As there are many
powerful numerical tools for finding polynomial roots, it is a trivial
matter to find the appropriate steady-state value of the dilution rate
for a given model.

Having derived Eq. (4.12), which is a linear, first-order, finite-
difference equation with constant coefficients, we are essentially done,
since this equation represents a well-understood mathematical prob-
lem for which a solution method exists. Of course, going through the
trouble of finding the analytical solution may not always be worthwhile
because Eq. (4.12) can be used to easily compute consecutive values
of Wn from any given initial condition. However, it is quite informative
to study the analytical solution because it provides added insight into
the structure and properties of the transient dynamics. The analytical
solution method is therefore outlined briefly below, and understanding
it does require some background knowledge of linear algebra, in
particular about the algebraic eigenvalue problem. This subject matter
is described in most textbooks on linear algebra.

If the eigenvalues of the matrix A are all simple or semisimple, then
there exists a so-called similarity transformation of the form

A = K K 1

where K is a matrix of eigenvectors and  is a diagonal matrix of eigen-
values. Substitution into Eq. (4.12) yields

Wn + 1 = K K — 1W n K — 1W n + 1 = K — 1W n Qn + 1 = Qn

Since  is a diagonal matrix, the equations in the last expression are
uncoupled with each equation of the form

qm, n + 1 = m qm, n qm, n = m
n qm, 0

where we can assume that all the qm,0 are known from the initial con-
dition. The solution in terms of Q is backtransformed to get W:

Wn = KQn

Notice that, if all the eigenvalues are located inside the unit circle in
the complex plane, then all the components of the solution vector will
go to zero as n goes to infinity. In other words, the sterile or cell-free
solution is stable. If just one of the eigenvalues is outside the unit circle,
then the solution will increase without bounds and it is therefore
unstable. This result, stability only when the eigenvalues are inside
the unit circle, is different from the well-known result in continuous
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time models where stability requires the eigenvalues to be in the left
half-plane of the complex plane. The most interesting situation is when
a nonsterile steady state exists. This is expected to be the case when
Eq. (4.13) holds. In this case, the limiting behavior at large n is expected
to be constant for each element of Wn, and this will only be the case if
at least one eigenvalue is equal to 1 and no eigenvalues are outside the
unit circle. A steady-state model that does not have such an eigenvalue
spectrum should be viewed with skepticism. However, the truncation
errors that occur in numerical calculations of the eigenvalues may
perturb the eigenvalue at 1 and cause the solution that is calculated
on the basis of these approximate eigenvalues to be either stable or
unstable.

When A has eigenvalues that are neither simple nor semisimple, then
there is no similarity transformation between A and a diagonal matrix.
However, there exists a similarity transformation between A and a
matrix in Jordan canonical form

A = K J K 1

where K is now a matrix of generalized eigenvectors. One obtains as
above

Qn + 1 = J Qn

but each Jordan block contains a set of coupled first-order difference
equations of the form

qn + 1 = (
1 0 0

0 1 0

0 0 0
) qn

The equation for the last element qM,n is solved to give qn,M = nq0,M.
The equation for the second-to-last element now becomes

qn + 1, M 1 = qn, M 1 + q0, M
n

which is a linear, first-order, inhomogeneous, finite-difference
equation. The solution is found by standard techniques to be qn,M 1 =
q0,M 1

n + q0,M n n 1, where the first term in the expression is the
homogeneous solution and the second term is a particular solution. The
third-to-last element satisfies

qn + 1, M 2 = qn, M 2 + q0, M 1
n + q0, Mn n 1
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which again is a linear, first-order, inhomogeneous, finite-difference
equation. It is obvious how one now proceeds to find the solutions for
all the qn,m.

An important point to note about the analytical solution is that
changing the initial condition by multiplying by a constant changes the
solution by the same factor. This is, of course, as expected. The pop-
ulation balance is homogenous and, unless the normalization criteria
or a substrate balance is used, the solution is determined only up to an
arbitrary constant.

Another point worth noting about the analytical solution is that it
shows that the transient distribution over a subinterval of size  is a
linear combination of all the initial subinterval distributions. This
greatly restricts the possible transient solutions and in particular
makes it impossible for the system to reach the true steady-state
distribution if the initial distributions are such that a linear com-
bination of them cannot equal the steady-state distribution. This point
as well as the analytical solution method are illustrated in the example
below.

Example 4.9: Transients with two control points for division Consider an or-
ganism growing in a chemostat with dilution rate D, for which half the cells
divide at age a1 and the remaining cells all divide at age 2. The true steady-
state solution, the solution to the steady-state population balance model, will
be needed for comparison purposes. Its normalized version is

fss(a) = { 2De Da, 0 < a < a1

De Da, a1 < a < 2
(4.14)

where the linkage equation is

1 = e
Da1 + e 2D

We get the smallest possible number of subdivisions of the age axis if we
pick a1 = 1, in which case  = 1, 1 = 0.5 and 2 = 1. The matrix A becomes

A = ( e D
2e D

0.5e D 0 )
We want to pick the value of the dilution rate that gives us a steady state,

so e D is the root of the linkage equation

1 = e D + (e D)
2
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Only the positive root of this equation gives a physically meaningful value
for D, so

e D =
5 1

2

giving the equation

Wn + 1 = ( 5 1
2

5 1

5 1
4

0 )Wn (4.15)

An eigenvalue analysis of the A matrix provides the similarity transfor-
mation below

Wn + 1 = ( 1 5 1

1 5 1
4 ) ( 5 3

2
0

0 1 ) ( 5 1
2( 5 5)

2
5 5

2
5 5

2( 5 1)
5 5

)Wn

or, equivalently,

Qn + 1 = ( 5 3
2

0

0 1 ) Qn Qn = ( ( 5 3
2 )n q0,1

q0,2 )
Backtransforming the solution gives

Wn = ( 1 5 1

1 5 1
4 ) ( ( 5 3

2 )n q0,1

q0,2 ) =

( (1 5) ( 5 3
2 )n q0,1 + q0,1

( 5 3
2 )n q0,1 + ( 5 1

4 ) q0,2
)

The two constants q0,1 and q0,2 must be determined from the initial condi-
tion. In order to obtain any interesting dynamics, this initial condition must
evidently be different from the steady-state distribution. We will use a con-
stant value of f(a, 0) = ½. Therefore q0,1 and q0,2 satisfy the equation
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( 1
2

1
2

) = ( (1 5)q0,1 + q0,2

q0,1 + ( 5 1
4 )q0,2 ) ( q0,1

q0,2 ) = ( 1
4

5 + 1
4

)
So, finally

Wn = ( 1 + 5
4

+ ( 5 3
2 )n 1 5

4

1
4 (1 + ( 5 3

2 )n) ) (4.16)

The steady state predicted by this solution is obtained in the limit as n
goes to infinity. Clearly

W = ( 1 + 5
4

1
4

) (4.17)

which, after normalization, gives

f (a) = { 3 5, 0 < a < 1

5 2, 1 < a < 2

which, obviously, is different from the true steady-state solution, Eq. (4.14).
The result is plotted for n = 1, n = 2, and n =  together with the true

steady-state solution, Eq. (4.14), in Fig. 4.18. Although the transient solution
rapidly approaches its steady-state solution, this solution is very different
from the true steady-state solution. The reason for the poor final result is, of
course, that the initial condition is a constant. The transient solution, being
a linear combination of the initial distributions, must therefore be constant
over each subinterval and the best one can hope for is a steady-state solution
that approximates the true exponential solution by a step function with
only two steps. Considering this constraint, the steady-state solution is quite
reasonable.

Furthermore, one must not confuse the true steady-state solution,
Eq. (4.14), with the steady-state solution in Eq. (4.17). The former is the so-
lution to the steady-state PBM, while the latter is the steady-state solution
to a finite-difference equation, Eq. (4.15). This finite-difference equation
models only the distribution of states at times equal to integer multiples of
the step size , and, even at steady state, the solution between these times
may not equal the steady-state solution to the difference equation.
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For instance, using the steady-state solution to the finite-difference equa-
tion, Eq. (4.17), as initial condition for the age population balance, one finds
the transient solution between t = 0 and t =  = 1 to be

W (a, t) = {
3 + 5

4
e Dt, 0 < a < t

1 + 5
4

e Dt, t < a < 1

1 + 5
8

e Dt, 1 < a < 1 + t

1
4

e Dt, 1 + t < a < 2

where the physical age a has been reintroduced instead of the translated age
â. This solution is best appreciated by viewing it as an animation as time
increases from 0 to 1. Readers who can create this animation easily on avail-
able software are strongly encouraged to do so. In a book, plots of the solution
at various times, Fig. 4.19, will have to suffice.

The initial solution is a step function consisting of two steps. These two
steps move toward higher ages as time increases, while simultaneously de-
creasing in magnitude as a result of washout of cells from the reactor. At the
same time, cell divisions at the two control points at a = 1 and a = 2 maintain

n = 1
n = 2
n = ∞
fss(a)

1.2

1.0

0.8

0.6

0.4

0.2

0.0
-0.5 0.0

Age

W
n(
a)

0.5 1.0 1.5 2.0 2.5

Figure 4.18  The solution in Eq. (4.16) for n = 1, n = 2, and n = , together with the
true steady-state solution, fss(a).
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the discontinuous steps at these points. The overall effect is that of two step
functions, one stationary and one continuously moving toward higher ages.
At times equal to integer multiples of , the discontinuous points on the two
step functions coincide perfectly, creating a distribution with only two steps.
Thus, the transient solution is periodic with the period  = 1.

It may seem strange that the transient solution to the PBM does not ap-
proach the solution to the steady-state PBM as time becomes large, but
instead approaches a periodic function. One might at first suspect that the
steady state is unstable and the solution approaches a limit cycle. However,
this is not the case. As we shall see forthwith, the solution that was found
above is not a limit cycle because it is altered when the initial condition is
changed and is therefore not the general limit of the system at large times.
The dynamic situation can be compared to that of a frictionless pendulum.
Once started, the pendulum will never stop swinging, but the magnitude of
the back and forth movement will depend on how the swinging of the pen-
dulum was started. The pendulum, being frictionless, will also never reach
the steady state and hang straight down without moving. This is so because,
without friction, there is no way to dissipate kinetic energy once it is imparted
to the pendulum. Similarly, the population balance model with divisions only
at ages 1 and 2 has transient solutions that are linear combinations of the
initial distributions over each of the subintervals 0 < a < 1 and 1 < a < 2. The
model does not have a mechanism for altering the shape of these distributions
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Figure 4.19  Transient solution obtained when the steady-state solution in Eq. (4.17)
is used as the initial condition to the PBM. The solution repeats with a period of

 = 1.
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and therefore has no mechanism for reaching the solution of the steady-state
population balance. This is a problem that will occur in all control point
models. They are inherently incapable of exhibiting a dynamics that is
sufficiently rich to allow a system to reach the true steady state, except in
very special cases, and will therefore tend toward an oscillatory solution as
time becomes large.

The fact that the transient distributions are linear combinations of the
initial distributions over the subintervals that arise in the solution procedure
described above suggests that a better model of the transient dynamics can
be obtained by picking a more reasonable initial condition. We do know that
the steady-state solution is an exponential function, so to get an initial con-
dition that can represent this fact, pick the normalized function

f (a, 0) = D

1 e 2D
e Da 0 < a < 2

Partitioning this function into the two subintervals and translating the
age variable of the second interval to an age between 0 and 1 gives the initial
condition

( W1( , 0)

W2( , 0) ) = (
D

1 e 2D
e

De D

1 e 2D
e )

and the two constant q0,1 and q0,2 therefore satisfy

(
D

1 e 2D
e

De D

1 e 2D
e ) = ( (1 5)q0,1 + q0,2

q0,1 + ( 5 1
4 )q0,2 )

giving, after considerable simplification steps,

( q0,1

q0,2 ) = ( 1
4

+ 5
20

7
10

5 + 1
2

)De

and

W n = ( (1 5)( 5 3
2 )n ( 1

4
+ 5

20 ) + 7
10

5 + 1
2

( 5 3
2 )n ( 1

4
+ 5

20 ) + 15 5
20

)De (4.18)
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The solution at large times approaches

W = ( 7
10

5 + 1
2

15 5
20

)De Dâ

which, after normalization, does give the same solution as the true steady-
state solution, Eq. (4.14). Readers are urged to do the calculations necessary
to convince themselves of this. Solutions for several values of n are plotted
in Fig. 4.20.

Using an initial condition with the same functional forms as the steady-
state solution gives a transient that is more intuitively convincing than the
transients that follow from other initial conditions because this transient
does approach the true steady-state distribution. However, the transient
shape of the distribution is still quite limited because it is, at all times, a
linear combination of just two initial distributions. One can overcome this
limitation by a minor change in the problem, a change that results in a
smaller size of the interval .
For instance, one can pick a1 = 1.02. Although only a small change in the

value of this model parameter, this change in a1 forces a change in  from 1
to 0.02, resulting in a solution that is in many ways more intuitively appeal-
ing. The new, smaller value of  results in 100 subintervals, as opposed to

1.2

1.0

0.8

0.6

0.4

0.2

0.0

-0.5 0.0 0.5 1.0

Age

fss(a)

n = 1
n = 2
n = 2000

W
(a

)

1.5 2.0 2.5

Figure 4.20  The solution in Eq. (4.18) for n = 1, n = 2, and n = 2000, together with the
steady-state solution, fss(a). The last two graphs are, for practical purposes, identical.
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two in the model considered above, and the transient over each subinterval
is therefore a linear combination of 100 initial distributions, opening up the
possibility of much richer dynamics. To solve Eq. (4.12) one must now find
the eigenvalues and eigenvectors of a 100-by-100 matrix. The only s that
are not equal to zero are 51 = 0.5 and 100 = 1, so the matrix is quite sparse,
yet it is not feasible to find the eigenvalues and eigenvectors symbolically.
However, there are well-known and powerful methods for doing this numer-
ically, and they are available on most mathematical platforms. Such numer-
ical results, for the constant initial condition f(a, 0) = ½, are plotted in
Fig. 4.21 The values of n are chosen to show the distribution at the same
dimensionless times as in Fig. 4.18

In this case, the distributions at n = 50 and n = 100 are qualitatively very
similar to the distributions at n = 1 and n = 2 for the model with a1 = 1, and,
as for this model, the distribution at large times is a piecewise constant func-
tion. However, the smaller value of  and the concomitant larger number of
intervals provides for a much better approximation to fss(a) at large times.
However, the transient still does not reach the true steady state, as it can
not possibly do, given the constant initial condition, but oscillates with the
period .

The two models, the model with a1 = 1 and the model with a1 = 1.02, both
with the constant initial condition, give different transients and very differ-
ent periodic solutions at large times. This is disturbing because one would
expect that a small change in a model parameter value would give a small
change in the model solution. Yet, in this case, the opposite holds. An even
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0.8
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0.4

0.2

0.0

-0.5 0.0 0.5 1.0

Age

W
n(
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fss(a)
n = 50,000
n = 100
n = 50

1.5 2.0 2.5

Figure 4.21  The solution for the case a1 = 1.02 for n = 50, n = 100, and n = 50,000,
together with the steady-state solution fss(a).
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smaller change, say setting a1 = 1.002, will result only in a transient that is
even more different from the a1 = 1 transient than the a1 = 1.02 transient.
The solution at large times will oscillate with an even smaller period of

 = 0.002 and will be very close to the true steady-state solution at all times.
In fact, as  becomes smaller and the number of subintervals required by the
solution method becomes larger, the ability of the solution to approximate
the true steady-state solution becomes better. Thus, the model solution does
not depend in a smooth manner on the value of the model parameter a1. An
arbitrary small change from a1 = 1 will have a huge effect on the solution.
Of course, this happens because the solution domain tiling is not a smooth
function of a1 and each solution is valid for only one specific tiling and value
of a1. In other words, each a1 value is a bifurcation point for the transient
solution.

These solution properties—the inability to eliminate oscillations in the
transient, except for very specific initial conditions, and the fact that a spe-
cific oscillatory solution exists only at an isolated point in the parameter
space—are absurd from a biological point of view. The absurd properties oc-
cur because the control point model does not fully portray what happens in
the population.

In actual cell populations, divisions occur at random over a continuous
interval of ages or cell states. The descendants of two cells that are initially
in very similar or even identical states can therefore have very different cell
states. This process may be thought of as a gradual mixing state space so
that descendants of any cell will have states that are distributed over the
entire range of cell states.

In the control point model, on the other hand, cells that initially have
cell states such that they are located in the same subinterval, as these in-
tervals appear in the solution procedure, will remain a constant distance
from one another in state space. Thus there is no mixing of state space within
any of the subintervals. It is this absence of a complete mixing of state space
that causes control point models to exhibit these biologically absurd solu-
tions.

As demonstrated in this example, the absurd solution properties can be
alleviated to some extent by choosing model parameters that give a fine,
rather than a coarse, tiling of solution domains. The control point model can
be regarded as an approximation to the biologically more reasonable model
with a continuous distribution of division states, and the finer the domain
tiling is, the better this approximation is.

The example above, division at only two control points, is rather
contrived but serves to illustrate the method. In the next example, we
will calculate the transient age distribution for a more realistic case,
but first we must address the issue of how one might reasonably
approximate an arbitrary division intensity by a sequence of division
control points.

A reasonable way is to first approximate the division intensity by a
staircase function. For instance, pick a sequence of ages {an}n = 1 N
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that will become the ages at the control points and let the staircase
approximation of the division intensity be, as in Fig. 4.22,

approx = (an), an < a < an + 1

With the approximate division intensity, the age distribution
between an and an + 1, at steady state in a chemostat is

W(a) = W(an) e
(an) (a an)

e
D(a an)

The two exponential terms indicate the fraction of cells that did not
divide between an and a and the fraction of cells that did not wash out
of the reactor. We will let n, the fraction of cells that divide at the
control point at an, equal the fraction of cells that divide between an and
an + 1 when the staircase approximation of the division intensity is used.
Thus

n = 1 e
(an)(a an)

(4.19)

Example 4.10: Decay of synchrony Assume a division intensity of the form

Γapprox(an)

Γ(an)

Γ(a)

0

an+1an
Age

Figure 4.22  Approximation of the division intensity by a staircase function.
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(a) = { 0, a < 1

R a 1
2 a

, 1 < a < 2

and approximate this by using Eq. (4.19) and equidistant control points be-
tween 1 and 2.

To set up the difference equation for the transient, first solve for the dilu-
tion rate that gives a steady state using the linkage equation, then set up the
matrix A and find the eigenvectros and eigenvalues, all of which is just
tedious protocol. Results for various choices of model parameter values are
shown in the following figures, using as initial condition a pulse of synchro-
nized cells between ages 0 and 0.2,

W0(a) = { 5, 0 < a < 0.2

0, 0.2 < a

Twenty-five equidistant control points between 1 and 2 were used in all
cases. Fig 4.23 shows the distribution at a dimensionless time of 2 or
n = 50, the earliest time after which all cells initially present must have
divided once. The distribution is shown for R = 0.1, R = 5, and R = 50.

Notice how the synchrony is better maintained for the high and low values
of R. At these two extremes, the bulk of the cells divide at ages either close
to 2 or close to 1, resulting in minimal loss of synchrony. This is also reflected
in the position of the two distributions at this time. The distribution for

Age

R = 0.1
R = 5
R = 50

1.41.21.00.80.60.40.20.0
0.0

W
50

(a
)

0.2

0.4

0.6

0.8

1.0

Figure 4.23  The age distribution at dimensionless time 2 for R = 0.1, R = 5, and
R = 50.
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R = 0.1 is located at young ages, reflecting the fact that these cells just di-
vided, i.e., at ages close to 2, while the distribution for R = 50 is centered
around the age 1, reflecting the fact that these cells divided around an age
of 1. At intermediate values of R the divisions are spread more evenly over
the interval from 1 to 2, causing a greater loss of synchrony.

The same observations can be made at a dimensionless time of 10
Fig. 4.24 The case for which R = 5 has almost attained the steady-state dis-
tribution, while the two other cases still have a significant amount of
synchrony.

4.6 Problems

4.1. Solve

x1 x1
+ (x2 + 1) x2

= x1 + x2

where the initial condition is given along the x1 axis as w0(x1). The final
result does contain a difficult integral, which you do not have to evaluate.

4.2. Solve

x1 x1
+ (x2 + 1) x2

+
x3

+ 2x3 x4
= x3 + x1

with the boundary condition that w is given as some function w0 in
(x1, x3, x4) space for x2 = 0. That is,

R = 0.1
R = 5
R = 50

0.6

0.5

0.4

0.3

0.2

0.1

0.0
0.0 0.2 0.4 0.6

Age

W
50

(a
)

0.8 1.0 1.2 1.4

Figure 4.24  The age distribution at dimensionless time 10 for R = 0.1, R = 5, and
R = 50.
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(x1, 0, x3, x4) = 0(x1, x3, x4)

The final result does contain a difficult integral, which you do not have
to evaluate.

4.3. Solve the wave equation

2

t2
2

2

x2
= 0

for a wave reflection at x = 0 using d’Alembert’s method. For simplicity
consider only waves on the positive x axis and assume the initial
conditions below are valid.

(x, 0) = 0(x), ( t )x, 0
= 0, (0, t) = 0

where clearly one must demand that w0(0) = 0 and w0(x) are defined only
for positive values of x.

This problem is not as straightforward as it might seem. The initial
manifold is the positive x axis, but the solution obtained from this
manifold is not valid for all positive arguments of x and t because w0,
which appears in the solution, is defined only for positive arguments.
Figuring out how to solve this puzzle is the main motive for this
assignment.

4.4. Solve

W
t

+
mW
m

= (D + (m))W (t, m), W (0, m) = W0(m)

This model can be interpreted as the cell mass population balance equa-
tion of a population of cells that have lost the ability to divide, but still
grow, in this case by first-order single-cell kinetics, and die according to
some death intensity .

4.5. For a binary fission organism that divides at the cell mass 2M and with
a single-cell mass growth rate that follows zeroth-order kinetics with
the rate constant k, the steady-state mass distribution in a chemostat is

f (m) = ln(16)
M

e ln(2)m / M , M < m < 2M

and

D = k
M

ln(2)
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Suppose now that the dilution rate in the chemostat is increased to

D = 0.75 k
M

but that the organism is already growing at its maximum rate, i.e., that
k and M do not change. Follow the washout and the effect on the shape
of the distribution of states by calculating W(m, t) for the first couple of
generations after the increase in the dilution rate, assuming an arbi-
trary initial distribution W0(m).

Examine the solutions obtained for the first couple of domains and
come up with an educated guess for the solution in the nth domain.
Prove by induction that the guessed solution is, in fact, the correct
solution (assuming of course that you have guessed correctly).

4.6. Solve for the transient age distribution for times up to 2a2 for a dilution
rate shift up if the age at division changes according to

ad = { a1 (a1 a2) t
2a2

, t < 2a2

a2, t > 2a2

and the initial condition is the steady-state age distribution in a popula-
tion with division age a1. Find the solution up to a time equal to 2a2.
Plot the dimensionless age distribution when a2 = a1/2 and when a2 =
a1/10. Make diagrams, to scale, of the solution domains for these two
cases and, on the basis of these diagrams, give a qualitative
explanantion for the shape of the age distributions at t = 2a2.

4.7. Consider the transient age distribution in a dilution rate shift down in
which the age at division changes according to

ad = { a1 + (a2 a1) t , t <

a2, t >

Solve the following specific cases:
A.  = a2 and find the solution up to t = ,

B.  = 2a2 and find the solution up to t = .
In all cases, use the steady-state age distribution in a culture with
division age a1 as the initial condition. Draw the solution domains and
discuss, on the basis of the drawings, the qualitative transient for the
cases when  = a2/2 and a1 = a2/2, a2/4, and 3a2/4.

4.8. Consider a situation in which the age at division changes as follows:
Between times 0 and , it increases linearly from a1 = 1.8  to a2 = 2.2 .
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Between times  and 2 , it decreases linearly from a2 to a1. Let the age
distribution at time 0 be W0(a) and find the transient age distribution
up to time 2  in a batch culture. From your result, deduce an equation
for the age distribution after n periods, Wn(a), in terms of the age
distribution after n  1 periods, Wn  1(a), assuming that the age at
division changes as described above. Write a program that calculates
and plots Wn(a) for any value of n, using this recursive formula. To
illustrate the transient dynamics, you may also want to plot a surface
plot or contour plot of Wn(a) as a function of a and n. Any such plot will
be dominated by the part that represents the age distribution at the
highest value of n unless the distributions are scaled in some way.
Instead of normalizing the distribution for each value of n, it is simpler
to multiply the values of Wn(a) by 2 n. It will hopefully become clear to
the reader why this scaling policy works well.

4.9. Consider an organism for which half the cells divide at age 1 and the
remaining cells divide at age 2. Let the initial age distribution be
W0,1(a) for a < 1 and W0,2(a) for a > 1 and find the age distribution for
times up to 3. This appears to be a very tedious problem, and to some
extent it is. However, the point of doing this calculation is to see that,
after finding the solution in the first couple of domains, the calculations
get to a point where they become so repetitive that one can fairly easily
extend the calculations to higher times by “copying” previous results. In
fact, if you do this, finding the solution to time 4 or 5 involves only
slightly more work than finding the solution up to time 3.

4.10. Assume that cells in a population first start to divide when they reach
the age A and that all cells have divided by the age 2 A. The simplest
expression for the division intensity (a) that satisfies this behavior is
an expression of the form

(a) = { 0, a < A

R
a A
2A a

, a > A

where R is a positive model parameter.
Use this model to explore the gradual loss of synchrony through

consecutive cell divisions. I suggest you proceed as follows: Start by
simplifying the problem a bit by making time and cell age dimensionless
by division with A. As initial condition, assume a narrow, normalized
rectangular distribution of cells between ages 0 and ; i.e., assume that

W (t = 0, a) =W0(a) = { 1 , a <

0, a >
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Then solve for the age distribution at dimensionless times 2, 4, etc. (as
long as you can stand it), and compare these distributions by plotting
them together. Plot the cell number, the zeroth moment of the age
distribution, versus time. Discuss the possibility of obtaining (a) from
measurements of the cell number versus time in cultures that are
initially synchronized.

After a sufficiently long time, the shape of the age distribution will
not change. One can then write

W (t, a) = Ce t f (a)

where  is the specific growth rate of the population and f(a) is the
normalized age distribution. Find  and f(a) and plot f(a) together with
the normalized distributions found in the previous question.

The next two problems have nothing whatsoever to do with
population balances. They are examples of pathological problems where
blind, uncritical use of Cauchy’s method gives problems. Working
through the solution may be a help in coming to a firmer understanding
of the solution structure of first-order linear PDEs.

4.11. Discuss solution of

W
t

(t + x) W
x

= 0

subject to the four different initial conditions below

W (0, x) = W0(x), x R

W (t, 0) = W0(t), t R

W (0, x) = W0(x), x 0 and W (t, 0) = t + 1, t 0

W (0, x) = x, x 0 and W (t, 0) = 1 + et(t 1), t 0

4.12. Discuss the solution of

W
t

+ 2 x
W
x

= F (t, x)

subject to

W (0, t) = W0(t), t R

for F(t, x) = 0, F(t, x) = 1, and F(t, x) = t.
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Chapter

5
Cell Cycle Synchrony

A growing cell culture is considered synchronous if cell divisions occur
approximately simultaneously for all cells—in other words, if the spe-
cific rate of cell division is not constant but alternates between low
values, corresponding to an absence of cell divisions, and high values,
corresponding to the synchronous cell divisions. Thus, in principle at
least, any batch culture that is not in steady exponential growth or any
continuous culture that is not in steady-state growth is partially
synchronized.

The better the cell divisions are synchronized, the higher the “degree”
or percent of synchrony is said to be. Although many attempts have
been made to devise rigorous, quantitative measures of synchrony [12,
29, 30, 83, 104], the terms degree of synchrony, percent synchrony,
and synchrony index are often used as self-explanatory, qualitative
terms without any attempt to define them rigorously. Obviously, cell
cycle synchrony reflects a deviation of the distribution of states from
the shape it would have under steady growth conditions and a single
number, such as degree of synchrony, is generally insufficient to fully
characterize such a deviation. Furthermore, unless steps are taken to
maintain synchrony, cell cycle synchrony is typically lost within a few
generations and the degree of synchrony therefore decreases
continuously.

Synchronous cultures are primarily used as a tool for study of the cell
cycle and, at the current rate of scientific progress in cell biology, can
only be considered ancient, with books devoted to the subject appearing
as early as the 1960s [15, 59, 105]. There are essentially two different
methods for obtaining synchronous cultures: selection and induction
synchrony. Selection synchrony, as the name implies, uses tools such
as filtration, elution of bound cells, or sedimentation to isolate a
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subpopulation of cells that are approximately all in the same state. The
yield of synchronous cells by selection methods is typically low
compared to the cell yield obtained by induction synchrony, the main
topic of this chapter.

5.1 Induction Synchrony

Methods of induction synchrony force an entire population of cells into
approximately similar cell states, using periodic environmental shifts,
such as changes in temperature, nutrients, or illumination. Cell cycle
blockers have also been used to arrest all cells in the same part of the
cell cycle and a synchronous culture is obtained after removal of the
block. Although induction synchrony has been used in numerous cell
cycle studies, it has remained controversial, as it is argued that the
division synchrony does not necessarily reflect synchrony of other as-
pects of the cell cycle and that the forcing required to achieve synchrony
is so draconian as to render the synchronized cells unrepresentative of
normal cells. For a recent contribution to this debate, see Refs. 23, 24,
88, and 89.

From a population balance perspective, induction synchrony can be
explained as the outcome of periodic forcing of the population balance
equation [39]. To develop a model of induction synchrony and to help
understand the relevance of the timing and magnitude of the
environmental shifts, consider a batch culture in which the age at
division is forced, through some environmental means, to change with
a period equal to 2 in the following manner:

ad(t) = { 1.8 + 0.4t, 0 < t < 1

2.2 0.4(t 1), 1 < t < 2

ad(t 2), t > 2
(5.1)

We will find the solution for the first period of forcing. The solution
domains are shown in Fig. 5.1 and the domain solutions are 

Domain I: WI(a, t) = W0(a t), t < a < ad(t)

Domain II: W II (a, t) = 1.2 W0(1.8 0.6(t a)), t 1 < a < t

Domain III: W III (a, t) = 2.8W0(2.6 1.4(t a)), t 13 / 7 < a < t 1

Domain IV: W IV (a, t) = 3.36W0(3.36 0.84(t a)), a < t 13 / 7

from which the following recursion formula is obtained:
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Wn + 1(a) = { 3.36 Wn(1.68 + 0.84a), a < 1 / 7

2.8 Wn(1.4a 0.2), 1 / 7 < a < 1

1.2 Wn(0.6 + 0.6a), 1 < a < 1.8

When the steady-state distribution for ad = 1.8 is used as the initial
condition for this recursion formula, the distributions in Fig. 5.2 are
obtained. The onset of synchrony is evident.

The mechanism of induction synchrony can easily be understood in
terms of the contractions and expansions of state space that occur over
subsequent periods (Fig. 5.3).

When the magnitude and period of the forcing is such that the age at
division equals the period of forcing at some point during the period,
one can always identify a cell line that divides at an age equal to the
period of forcing. In fact, one can find two such cell lines: one for which
cell division occurs while the division age is a decreasing function of
time, i.e., when state space is contracting, and another that divides
while the division age is an increasing function of time, i.e., while the
state space is expanding. These two cell lines are periodic in the sense
that they represent cells that always divide at the same point in time
during the period of forcing. All other growth curves experience a phase
shift during each period. The phase shift is caused by the expansion and
contraction of the state space and will therefore bring all nonperiodic

Age
2.2

1.8

I

II IV

III Time

1 2
Figure 5.1 Solution domains for periodic forcing of division age.
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Figure 5.2 Age distributions after 1, 2, 8, and 9 periods of forcing, starting with the steady-
state distribution. The distributions have been normalized by division by 2n, where n is
the number of periods since the start of periodic forcing.

Figure 5.3 Attracting and repelling cell lines during periodic forcing. The attracting cell
line is the curve that intersects the division age while the division age is decreasing. The
repelling cell line is a curve that intersects the division age while the division age is
increasing.
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growth curves closer and closer to the periodic growth curve that divides
while the division age is a decreasing function. This cell line is called
attractive while the other periodic cell line is called repelling. Clearly,
synchrony is induced only if an attractive cell line is formed during the
periodic forcing. This in turn happens only when the division age equals
the period of forcing at some point during the period. Thus, not all
periodic environmental shifts can be expected to induce synchrony.

An entirely different way of looking at the phenomenon of induction
synchrony is through derivation of iterated maps, functions that, in this
case, relate the age of a cell before a period of forcing to the age after one
period of forcing. Consider again the forcing function in Eq. (5.1). The
cells present at time 0 can be partitioned into three groups, depending on
how and when they divide during the following period of forcing (Fig. 5.4).

Cells in group I all divide while the division age is increasing. After
this first division, the cells in group Ia undergo another division while
the division age is decreasing, while the cells in Ib do not divide again.
Cells in group II divide only once and all of them while the division age
is decreasing.

Consider first the cells in group I. Let their age at time zero be an.
The time of their first division t1 is given by

Figure 5.4 Partitioning of cells into groups depending on their division history. Cells in
group I divide while the division age is increasing and split into two groups, Ia and Ib,
depending on whether or not they undergo another division. Cells in group II divide only
once and while the division age is decreasing.
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ad(t1) = 1.8 + 0.4t1 = an + t1 t1 = 3 5
3an

If t1 < 0.2, these cells divide a second time, at t2 given by

ad(t2) = 2.2 0.4 (t2 1) = t2 t1 t2 = 4 25
21an

The age at time 2 of the cells that divided twice is an + 1 = 2  t2, while
the age of cells that divide only once is 2  t1.

The cells in group II divide once, at t1 given by

ad(t1) = 2.2 0.4 (t1 1) = an + t1 t1 = 13
7

5
7an

and their age at time 2 equals 2  t1. Putting everything together, we
obtain the following map between a cell’s age before and after one period
of forcing:

an + 1 = {
1

7
+ 5

7
an, 0 < an < 1.2

5
3
an 1, 1.2 < an < 1.68

25
21

an 2, 1.68 < an < 1.8

This map is plotted in Fig. 5.5, where the broken diagonal line repre-
sents the identity map, an + 1 = an. The identity map intersects the map
of cell ages at age values that do not change over a period, i.e., at the
roots of the equation an + 1 (an) = an or a = 0.5 and a = 1.5. This equation
can be viewed as an instance of numerical root finding by direct substi-
tution1 and it is well known that initial guesses converge to the root
if | (dan + 1(x))

d x | < 1. Rephrased for the situation at hand: Over several
periods of forcing, all ages will converge to the root at a = 0.5 and diverge
from the root at a = 1.5. Obviously, the root at a = 0.5 corresponds to
the attracting cell line found above and the root at a = 1.5 to the
repelling cell line.

5.2 Autonomous Oscillations

Autonomous oscillations have been observed in many microbial cul-
tures, and in some cases, though certainly not all, these oscillations are
associated with some degree of cell cycle synchrony. This phenomenon

1In direct substitution the roots of the equation f(x) = 0 are found by rewriting the
equation in the form x = g(x), providing an initial guess of the value of the root x0 and
improving this guess by iterations with xn + 1 = g(xn).
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is particularly well established for the budding yeast Saccharomyces
cerevisiae and related species as documented by many experimental
studies [7, 8, 11, 18, 19, 26, 31, 38, 58, 63, 64, 65, 68, 91, 97, 98, 99, 101,
102] and numerous models, both distributed [38, 49, 53, 85] and segre-
gated [6, 16, 17, 41, 45, 46, 69, 90, 103, 106, 107] that have been
proposed as explanations of the oscillations.

Any cell population for which the distribution of states is not at steady
state can be thought of as partially synchronized in the sense that
the specific rate of cell division is not constant but changes with a
period roughly equal to the length of the cell cycle. In turn, the
periodic changes in specific division rate may induce periodic changes
in the environment, the medium composition in particular, also with a
period roughly equal to the length of the cell cycle. As shown in the
previous section, periodic changes in the environment can induce cell
cycle synchrony if the period of the changes is of approximately the

an

a n
+

1
1.8

1.8

1.6

1.6

1.4

1.4

1.2

1.2

1.0

1.0

0.8

0.8

0.6

0.6

0.4

0.4

0.2

0.2
0.0

0.0

Figure 5.5 Graph of a cell’s age after one period of forcing as a function of the cell’s age
before one period of forcing. The dashed diagonal line is the identity map, an + 1 = an.
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same length as the duration of the cell cycle. It is therefore natural to
ask if the changes in substrate concentrations that are caused by a
partially synchronized cell population can stabilize the synchrony and
prevent its decay. If so, the culture would exhibit autonomous
oscillations corresponding to periodic solutions to the population
balance equations.

We use a simple population balance model of a binary fission
organism to show the existence of such periodic solutions, and we will
determine the operating conditions, i.e., the values of the dilution rate
and substrate feed concentration, at which the solutions are physically
meaningful. The model we will analyze is the age distribution PBE with
the following additional model equations.

Substrate balance:
dCS

dt
= D (CS f CS)

0

ad W (t, a) da

This is probably the simplest possible substrate balance we can pick.
The parameter  is assumed constant and the rate of substrate con-
sumption is therefore proportional to the cell number. Consequently,
the rate of substrate consumption will increase rapidly as a cohort of
synchronous cells divide, giving rise to clear periodic changes in the
substrate concentration.

Model of division age as a function of substrate concentration:

ad = ad(CS(t)) = 0 + 1
CS(t )

In this model equation the parameters 0, 1 and  are assumed
constant. This expression for the division age is chosen because it is a
simple expression with the expected qualitative behavior: a decrease in
division age with an increase in the concentration of the growth-
limiting substrate. To reflect the fact that cell metabolism cannot adjust
instantaneously to changes in the environment, but requires some
amount of time to adjust to new growth conditions, the delay  is
introduced. Thus, the division age at time t is modeled as dependent on
the substrate concentration at the previous time t .

For comparison purposes, it will be useful to have the steady-state,
nonoscillatory solution. It is given by

W(a) = 2 D2(CS f
1D

ln(2) 0D )e Da

and
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CS = 1D

ln(2) 0D

from which the washout dilution rate is found to be

Dw = ln(2)

0 + 1 / CS f

The analysis now proceeds by first postulating a periodic, perfectly
synchronized population of cells as a solution for the distribution of
states. Using this postulate, we will obtain the expression for the
substrate concentration and the age at division versus time. This
complete solution will then be checked against the various
requirements it must satisfy in order to find the operating conditions
over which the solution is valid. The postulated solution for the age
distribution has the form

W(a, t) = N0 (t a)e Dt, t 0, P

where the solution is periodic with period P and thus W(a, t) = W(a, t +
nP) for any integer value of n. The period P and the cell number
concentration N0 are both unknowns at this point, but their values will
be determined later in the analysis. Substituting this expression for W
(a, t) into the substrate balance gives

dCS

dt
= D (CS f CS) N0e Dt, t 0, P

which must be solved subject to the boundary condition that the
solution is periodic with period P, i.e., CS(0) = CS(P), giving

CS(t) = CS f + N0P e Dt

1 eD P
N0te Dt, t 0, P

from which ad(t) is readily obtained. When using this result in the fol-
lowing, we must be careful to use it correctly. The expression above is
valid only for times between 0 and P, and if the substrate concentration
is desired at any other time, one must use the periodicity of CS(t) to
switch the argument into the valid range.

We now apply the cell balance at division. The number of cells
immediately after division equals twice the number of cells immediately
 before division, or

N0 = 2N0e DP DP = ln(2)
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When this result for P is substituted into the result for the substrate,
the following simplified expression is obtained:

CS(t) = CS f (t + 1
D

ln(2)) N0e Dt, t 0, P

Finally, we need to find an expression for the unknown cell number
concentration N0. This is done by making use of the fact that divisions
all occur at the age P and at the time equal to P:

P = 0 + 1

CS(P )
CS(P ) = 1

P 0

This result is then substituted into the expression for the substrate
concentration, giving

1

P 0
= CS f (P + P) N0e D(P )

which is combined with the expression for P found above and solved for
N0 to give

N0 = 2D
CS f

1D

ln(2) 0D

(ln(4) D) eD

The oscillatory solution is summarized as follows:

W(a, t) = 2 D
CS f

1D

ln(2) 0D

(ln(4) D) eD
(t a)e Dt, t 0, P

CS(t) = CS f (t + 1
D

ln(2)) N0e Dt, t 0, P

ad(t) = { 0 + 1
CS(P + t ) , 0 t <

0 + 1
CS(t ) , t < P

P = ln(2)
D

The next step is to check this solution against the constraints that
substrate concentration and cell number concentration are positive and
that division occurs while ad is a decreasing function of time. First note
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that, as the solution we are investigating is periodic with period P, all
values of  + nP give the same result for any integer value of n and we
need only consider values of  in the interval from 0 to P. Thus D  ln
(2)  0.69315 · · · . Another constraint is obtained by noting that ad must
equal P at some points in time, and therefore P > 0, or D 0 < ln(2).

Checking first that ad is a decreasing function during cell division,
we find

( dad
dt )t = P

< 0 ( 1

CS(t )2

dCS(t )

dt )
t = P

< 0

( dCS(t )

dt )t = P
> 0

and

dCS(t )

dt
= N0e D(t )(D(t ) + ln(2) 1)

Evaluating this expression at t = P gives

N0e D(P )(D(P ) + ln(2) 1) > 0

D < ln(4) 1 0.38629 · · ·

Notice that this is a more restrictive bound on D  than the one
obtained just above.

Next check that the cell number concentration is positive:

N0 > 0 2 D
CS f

1D

ln(2) 0D

(ln(4) D ) eD
> 0

The constraint we just obtained on D  assures that the denominator
is positive. Thus

N0 > 0 CS f > 1D

ln(2) 0D
or D < ln(2)

0 + 1 / CS f

= Dw

where obtaining the second inequality from the first required use of the
previously derived constraint that D 0 < ln(2).

The requirement that the substrate concentration is positive is a bit
more cumbersome to investigate. We will start by finding the time at
which CS(t) attains its minimum value:
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dCs
dt

= 0

0 = N0e
Dtmin + (tmin + ln(2) / D) N0De

Dtmin

tmin = 1
D

(1 ln(2))

Notice that tmin is always between 0 and P. The minimum value of
CS is

CS(tmin ) = CS f

2 N0
De

so in order to have a non-negative substrate concentration at all times,
we require that

CS f >
2 N0

De
=

2
De

2 D
CS f

1D

ln(2) 0D

(ln(4) D) eD

giving

( eD + 1

4
(ln(4) D ) 1) CS f + 1D

ln(2) 0D
> 0

To evaluate this inequality, note that the coefficient multiplying CSf
is zero for D  = ln(4)  1 and negative elsewhere. But we already require
that D  < ln(4)  1, so the coefficient is negative over the range of
interest and the inequality becomes

CS f <

1D

ln(2) 0D

1 eD + 1

4
(ln(4) D )

The constraints on the oscillatory solution are summarized below:

1D

ln(2) 0D
< CS f <

1D

ln(2) 0D

1
eD + 1

4
(ln(4) D )

D < ln(4) 1

D 0 < ln(2)

146 Chapter Five

0-07-144768-7_CH05_146_08/30/2005

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

Cell Cycle Synchrony



These constraints are illustrated by the operating diagrams shown
in Fig. 5.6. The gray areas indicate where the constraints are satisfied.
The upper boundary of this area is the washout dilution rate. The
difference between the two figures is only in the value of the parameter

1, which changes by an order of magnitude between the two diagrams.
As the value of 1 decreases, so does the effect of changes in substrate
concentration on division age, and one would therefore expect less of a
tendency to oscillate. This is reflected by the shrinking of the domain
over which the physical constraints are satisfied.

It must be emphasized that the analysis above shows only that a
periodic solution to the PBM does exists. The more difficult problem of
determining whether or not this solution is stable, and therefore
experimentally observable, has not been addressed. However, the
general problem of determining the stability and bifurcation properties
of population balance models is very difficult and still awaits a solution.

5.3  Problems

5.1. Consider the model of autonomous oscillations in a binary fission
organism, Sec. 5.2. Find the solution of this model for oscillations with
a period half that of the cell cycle length with two identical but out-of-
phase subpopulations of synchronized cells and determine the dilution
rates and substrate feed concentrations over which the solution is
physically valid. The desired solution is illustrated qualitatively in
Fig. 5.7.

Figure 5.6 Operating diagram showing (gray area) where the autonomously oscillating
solution to the PBM satisfies the physical constraints.
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5.2. Explore, both by solving the population balance and by finding the
iterated map of cell ages, the fate of a population of cells subjected to the
forcing in division age of the form

ad(t) = { 2.2 + 0.4t, 0 < t < 1
2.6 0.4(t 1), 1 < t < 2

ad(t 2), t > 2

5.3. Explore, both by solving the population balance and by finding the
iterated map of cell ages, the fate of a population of cells subjected to the
forcing in division age of the form

ad(t) = { 1.4 + 0.4t, 0 < t < 1
1.8 0.4(t 1), 1 < t < 2

ad(t 2), t > 2

Time

Age

2P

P

P

ad(t)

Figure 5.7 Qualitative diagram of division age and growth curves in the time-age plane
of an autonomously oscillating culture with two identical but out-of-phase synchronized
subpopulations.
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Chapter

6
Growth by Branching

There are a large number of organisms that do not grow by a pattern
similar to the simple cycle of cell growth followed by a division yielding
two new cells. In filamentous organisms such as molds and in root
cultures of higher plants, growth occurs by elongation and branching.
New cells and/or biomass is formed primarily in the tip or apical region,
and formation of lateral branches occurs in a region behind the tip of
the parent branch or, in fungal hyphae, by bifurcation of the parent tip.
In roots of higher plants, cells that leave the tip cease to divide and
undergo a process known as terminal differentiation, in the process
forming the structures that make up the root. Thus, cell age in a root
equals zero in the tip and increases with distance from the tip. It is thus
reasonable to characterize the state of a root by its age distribution and
to model the dynamics of the distribution by using some model of the
branching kinetics. Several PBMs developed along these lines have
been proposed in the literature [36, 51, 56].

The situation for filamentous fungi is somewhat different. The
hyphae of higher fungi consist of individual cells, while in lower fungi
the cell walls or septa break down and the hyphae consist of a
multinucleate branching tube without clearly defined individual cells.
Growth occurs primarily from the tip and elongation, and tip
bifurcation is usually assumed to be controlled by a cell organ known
as the Spitzenkörper [80]. Thus, in spite of the lack of clearly
identifiable, individual cells, one may still model growth of the hyphae
by a branching model similar to that for roots.
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6.1 Branching Rules

We will develop a model of the age distribution in a filamentous organ-
ism based on the simple picture of the root or of a filamentous fungi in
which the organism is made of well-defined cells with cell ages that
increase with distance from the tip or apical region. New cells are formed
only in the tip or when a new tip is created during formation of a new
lateral branch. New cells formed in the tip leave the tip, cease to divide,
and form the body of the root or hyphae. It is the age distribution of
these nondividing cells that will be modeled below. It is important to
understand that the model is for the age distribution of a single “indivi-
dual,” a single root mat or fungal pellet. We will also assume that the
mat or pellet does not break into smaller pieces, although the issue of
breakage is immaterial if the age distribution in the model is thought
of as the age distribution of the combined pieces. However, if there is no
breakage of the pellet, then it is not possible to grow the pellet in a
chemostat at steady state, and the model we are considering is therefore
for a single pellet in batch. Furthermore, we will assume, at least ini-
tially, that growth is not substrate limited; i.e., the model is conceptu-
ally similar to that of exponential batch growth of a dividing organism.

The renewal equation for the age distribution balance is

W(t, 0) = CT(t)

where C is the rate of new cell formation in a tip and T(t) is the number
of tips at time t. It follows that the age distribution is

W(a, t) = { W0(a t), a > t

CT(t a), a < t
(6.1)

where W0(a) is the distribution at time 0. Clearly, the main problem will
be finding T(t), the number of tips as a function of time.

Growth by branching cannot be described by a single characteristic
time, such as the length of the cell cycle, but requires several times or
delays: the delay between formation of a new branch and formation of
the first lateral on this parent branch, the delays between formation of
sibling branches, etc. One can describe tip formation dynamics by a
set of branching rules, verbal statements such as: “the first lateral
branch in generation n forms when the parent branch, generation
n – 1, is 12 hours old,” “the second lateral branch in generation n forms
6 hours after the appearance of the first lateral branch in generation
n,” and so on. Branching rules and the effect of branching on growth
can be significantly more complex than these examples indicate. For
instance, in roots tips may die, causing loss of apical dominance and
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formation of a burst of new laterals [32], and in fungal hyphae the tip
extension rate can decrease during apical branching [20]. Branching
rules are equivalent to the statements one uses to describe a cell cycle.
But a cell cycle is such a simple mode of growth relative to branching
that, for the purpose of population balance modeling, we can often
describe it just by keywords such as “binary fission.” Either way, clearly
stated branching rules, or the cell cycle rules, allow us to write cell
balances at control points. In the simple model of branching outlined
above, the branching rules specify when new tips form, i.e., when cells
of age zero appear, and the cell balances are therefore instances of the
renewal equation. For instance, if a branching rule states that the
first tip in a new generation of lateral branches forms on a parent
branch the period a after the appearance of the tip of the parent
branch, then the number of new tips of this type that form at time t,
call this number TA(t), must be equal to the total number of new tips
formed at time t – a. Written as a formal equation, this becomes

TA(t) = T(t a)

where T(t) is the total number of new tips formed at time t. This tip
number balance relates the number of tips of a given type (in this case
tips that are the oldest in their generation) to the number of tips of
another type (in this case all extant tips). In general, the tip number
balances can be written only after the tips have been classified into
such different types. This classification is the only part of the modeling
process that requires one to be a bit clever, but for a clearly stated set
of branching rules, it is usually not hard to come up with a tip
classification which will work.

After all possible tip balances have been written, they must be
converted to difference equations. To do so, one must identify a time
step or interval  such that all the time delays that appear in the
branching rules are integer multiples of this . The problem of finding
this , given some set of branching delays, is almost identical to the
problem of finding an age interval that describes the domain size in the
periodic tiling that appears in state space after the age control points
become fixed (see Fig. 4.16). Thus, if a branching process is charaterized
by the delays a1 through aN, then the times at which new tips form
must equal a sum of integer multiples of these delays, i.e.,

ttipformation =
n=1

N
Mn an =

n = 1

N
MnKn

where  is the largest time interval such that all the delays are integer
multiples of this interval, an = Kn . This  is the time step that will
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be used to convert the tip number balances to difference equations. For
instance, in the example above, if a = K , the difference equation
version of the tip balance becomes

TA(t = n ) = T(n K ) TA, n = Tn K

After this is done, either the set of difference equations can be
manipulated by standard methods to obtain a single higher-order
difference equation for the number of new tips or the coupled difference
equations can be solved directly as an instance of a first-order vector
difference equation, as in Eq. (4.12). Initial conditions for either
equation can be specified from inspection of the physical problem and
a well-defined mathematical problem is obtained. Let the difference
equation so obtained be

n = 0

N
anT new, n + = 0

where an is a constant, independent of n. This is a linear, Nth-order
difference equation. The parameter  can be any integer and reflects the
fact that the difference equation is invariant to translations by any
number of steps along the time axis. (This is similar to an ordinary
differential equation of a variable with respect to time. If time does not
occur explicitly in the differential equation, then the equation is
invariant with respect to translations along the time axis and the origin
of the time axis can be chosen arbitrarily.) The dependent variable is
the number of new tips as a function of n, the number of time steps of
size  since time zero. We would like to find the total number of tips
Tn, however. Assuming no tip death, the total number of tips is simply

Tn + = T new, n + +Tn + – 1 T new, n + = Tn + – Tn + – 1

Substituting this expression into the difference equation for Tnew,n
gives

0 =
n = 0

N
anTn + –

n = 0

N
anTn + – 1

n = 0

N
anTn + =

n = 0

N
anTn + – 1 =

n = 0

N
an +Tn + – k

where the last equality follows from repeated use of the first equality.
The parameter k is any integer, so the only way the last equality can
hold is for the sum to be a constant C:
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n = 0

N
anTn + = C (6.2)

The total number of tips therefore satisfies a difference equation that,
except for the inhomogeneous constant term, is identical to the
difference equation for the new tips. The value of the constant will
depend on the initial condition, and in the following we will assume that
it equals zero. In many instances with biologically reasonable initial
conditions, the constant will in fact be identically equal to zero and even
when it is not, assuming so does not give rise to a significant error, as
we will shortly show.

It is at this point perhaps prudent to recall the theory of linear differ-
ence equations: The complete solution to a linear difference equation
(constant coefficients not required) is the sum of the homogenous
solution and a particular solution. Furthermore, the homogeneous
solution is a linear combination of N basis solutions, where N is the
order of the difference equation. A particular solution to Eq. (6.2) is a
constant, T = C / n = 0

N
an. Therefore, the solution for the total tip number

equals the homogeneous solution, which is identical to the solution for
the new tip number, plus this constant. The total tip number will
increase without bounds as time increases and the particular solution,
the constant solution, will therefore become insignificant relative to the
homogenous solution as time becomes large. It is for this reason that it
is almost always acceptable to assume that the right-hand side in
Eq. (6.2) is zero.

To find the solution for the total number of tips, one needs to find N
basis solutions to Eq. (6.2). Fortunately, this is quite easy for an
equation with constant coefficients. Assume a solution of the form

Tn = n

and substitute this solution into the difference equation. After
simplifications, one obtains the so-called characteristic polynomial of
the equation:

n = 0

N
an

n = 0

and the guessed solution is valid if and only if  is a root of the
characteristic polynomial. We will refer to this polynomial as the
branching polynomial. If all the roots of the branching polynomial, say

1 through N, have multiplicity one, then they provide the N linearly
independent basis solutions needed and the complete solution becomes
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Tn = C1 1
n + C2 2

n + + CN N
n

where the Cn’s are arbitrary constants that can be determined from the
initial conditions. If the characteristic polynomial has multiple roots,
additional solutions must be found to obtain a complete set of basis so-
lutions. It can be shown, rather easily in fact, that if a root  has
multiplicity M, a set of basis solutions that correspond to the root is n,
n n,n2 n, . . . , nM–1 n. We can summarize these results in the closed-
form solution

Tn =
r = 1

N {m = 1

Mr
Cn, mrm – 1

r
n}

where Ñ is the number of discrete roots and Mr is the multiplicity of the
rth root, r.

Once the Tn’s are known, we can go back to the expression for the age
distribution, Eq. (6.1). Since W(a, t) is equal to C times the total number
of tips at time t – a, or CTn = Int ((t a) / ), where Int( ) is the integer
obtained by truncation of the argument, we can write

W(a, t) = { W0(a t), a > t

C n= 0
Int (t / )

TnUn(a, t), a < t

where Un (a, t) equals 1 for a t – (n + 1) , t – n  and zero elsewhere. The
zeroth moment, or total number of cells, becomes

N(t) = N(0) + C
n = 0

Int (t / ) – 1

Tn + C(t – Int (t / ))T Int (t / )

Example 6.1: Branching rules with two delays Consider a filamentous organ-
ism that grows according to the following branching rules: (1) The first lateral
branch in a new generation is formed on the parent branch a time period
ab + a after the parent branch first appeared. (2) Once started, formation of
lateral branches continues in such a way that the delay between initiation of
new lateral branches equals a.

The structure of an organism growing by these branching rules is sketched
in Fig. 6.1. One can classify the new tips by their number in the sequence of
siblings, but this does not work well because it creates an infinity of tip types.
Instead, note that tips can form either as the first tip on a branch, the event
marked A or as one of the later tips, the event marked B. If TA(t) denotes the
number of new tips of type A, TB(t) the number of new tips of type B and
T(t) the total number of new tips, then the tip balances are

154 Chapter Six

0-07-144768-7_CH06_154_08/30/2005

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

Growth by Branching



TA(t) = T(t – ab – a), Rule 1

TB(t) = T(t – a), Rule 2

So the equation for the total number of new tips formed at time t is

T(t) = TA(t) +TB(t)

Let a = K  and ab = L . The difference equations become

TA, n = Tn – L – K

TB, n = Tn – K

Tn = TA, n +TB, n

and hence

Tn = Tn – K +Tn – L – K

ab

a

A

B

ab

Δ aΔ aΔ

Figure 6.1 Branching rules with two delays. The first lateral branch that forms on a
parent branch is indicated by the event A, while subsequent branching events are
indicated by B.
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or equivalently

Tn + K + L – Tn + L – Tn = 0

with a similar equation holding for the total tip number.
The initial condition for this difference equation must specify values of

T0 through TK + L – 1, and the values must be chosen so that they make sense
biologically. For instance, they cannot decrease with time and they certainly
cannot be negative. To get sensible values let the inoculum be a branch
formed from a tip that appeared at time 0. This branch will form its first
lateral at time ab + a, or after L + K time steps. Thus, Tnew,0 = 1 and Tnew,1
through Tnew,K + L – 1 equal 0. Or, considering the total number of tips, T0
through TK + L – 1 equals 1. As the first lateral branch forms after K + L time
steps, Tnew,K + L = 1 and TK + L = 2. The constant C in Eq. (6.2) is therefore
identically zero. With this initial condition, the solution for T  can be found
for any values of K and L. The solution is plotted in Fig. 6.2 for K = 10 and
L = 17.

More interesting perhaps than the total tip number is the total cell
number, or the zeroth moment of the age distribution Nn . This is shown in
Fig. 6.3.

The growth curve exhibits an initial transient during which the specific
growth rate is decreasing, qualitatively the opposite of the classical lag
phase. A classical lag is not expected since the model assumes no substrate
limitation but the opposite type of transient requires an explanation. It is
seen because the initial condition, or inoculum, is a tiny segment of a branch

n

n

25

20

15

10

5

0
0 20 40 60 80 100

T

Figure 6.2 Total number of tips for branching rules with two delays, K = 10 and L = 17.
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close to the tip, i.e., a segment from which cells that are not yet old enough
to form laterals have been removed. Removal of these unproductive cells does
not change the growth rate or tip formation rate, but it does lower the total
amount of cells, thus increasing the specific growth rate. In fact, for the hy-
pothetical inoculum used in this example, the cell number at time zero is zero
and the specific growth rate at time zero must therefore equal infinity, ex-
plaining the vertical tangent to the growth in the Fig. 6.3 curve at t = 0.
Evidently, the initial transient is more an artifact of the model idealizations
than a measurable phenomenon.

The example above shows that the shape of the age distribution of a
branching organism changes continuously and so does its specific
growth rate. A growth curve will exhibit an initial transient caused by
the transient in the branching dynamics, and this transient is
phenomenologically different from the classical lag phase caused by
transient adaptation of the inoculum to the fresh medium. However, a
limiting value of the specific growth rate is reached as time goes to
infinity, and, from an engineering perspective, the specific growth rate
may reach this limiting value early on in a growth curve. The limiting
specific growth rate is by definition

= lim
t

1
t2 – t1

ln ( 0
W(t2, a)da

0
W(t1, a)da )

Nn

1000

100

10

1
0 20 40 60 80 100

n
Figure 6.3 Total number of cells for branching rules with two delays, K =10 and L = 17.
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Assuming that the root of the characteristic polynomial with the
numerically largest real part, P, has an algebraic multiplicity of 1, it
is not hard to show that [51]

= 1
n2 – n1

ln ( P

n2

P

n1 ) = ln ( P) /

where t2 = n2  and t1 = n1 . The result is this simple only when P has
multiplicity 1. Clearly, it is P, the root of the characteristic polynomial
with the numerically largest real part, that is of primary interest in
these models because it is this root that determines the specific growth
rate in the culture at all but the earliest times. Luckily, for most
realistic branching rules, this polynomial root turns out to be easy to
find. Most realistic branching rules give characteristic polynomials of
the form

N –
n = 0

N – 1
an

n (6.3)

where an is positive. Negative an values could conceivably occur if
branching events were not independent and new branch formations
were inhibited by older branches. For polynomials of this type, the fol-
lowing claim can be shown to hold [51].

Claim

A polynomial of the form in Eq. (6.3) has a unique, positive root of
multiplicity 1, and this root is an upper bound on the absolute value of
the real part of all other roots.

This result simplifies a numerical search for P.

6.2 Simulation of Tip Numbers

Rather than solve the difference equation for the tip numbers, Eq. (6.2),
analytically, a procedure that requires finding the roots of the
characteristic polynomial and the values of the arbitrary constants, the
equation can be evaluated directly on a computer. One simply uses the
initial condition, given as values of T0 through TN – 1, to find TN as

TN = C
aN

– 1
aN n = 0

N – 1
anTn
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then one replaces the initial condition with the values T1 through TN
and repeats the process. This evaluation can be done up to large times
quite quickly, so rapidly in fact that the trouble of finding the analytical
solution does not appear worthwhile, except for the rigorous insight it
provides into the solution structure.

However, this still leaves one with the need to derive the difference
equation for a given set of branching rules, a tedious and error-prone
process. To get around this problem, the tip number can be simulated
directly from the branching rules by using a simple algorithm [51].
Although implementation of the algorithm is a bit more involved than
direct evaluation of the difference equation, the algorithm has the great
advantage that model parameters can easily be changed without
changing the code or without the need for a rederivation of a difference
equation, thus making it quite easy to explore the effect of changes in
model parameters on tip formation kinetics.

In the algorithm, each branch in the root or hyphae is represented
by an element of a one-dimensional array or table. The element
representing a given branch contains the time at which a new
branching event will occur on this branch. Let the initial condition be
a single branch with no lateral branches. This initial condition is
represented by an array with a single element, [t0], where the branching
time t0 will depend on the age of the inoculum branch. For the purpose
of illustration, assume now that the branching rules are the two rules
used in Example 6.1. To start the simulation, the array is scanned to
find the time of the first upcoming branching event, call it ti, and the
branch on which this occurs. The value of the element representing the
branch on which the event will occur is increased by a and the size of
the array is increased by 1. The new element represents the new
branch, and for the branching rules proposed above, the value of this
component must therefore be ti + ab + a. After the array has been
updated this way it can be scanned again for the next branching event
and so forth. This process is illustrated below. After the first lateral
branch is formed, the array takes the form

( Branch 1

Branch 2 ) = ( t1 = t0 + a

t2 = t0 + a + ab )
and, clearly, the next branching event must take place on branch 1,
giving
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( Branch 1

Branch 2

Branch 3
) = (

t1 = t0 + 2 a

t2 = t0 + a + ab

t3 = t0 + 2 a + ab
)

At this point, the next step can yield two different arrays, depending
on the relative magnitude of ab and a. If t1 < t2 then

(
Branch 1

Branch 2

Branch 3

Branch 4
) = (

t1 = t0 + 3 a

t2 = t0 + a + ab

t3 = t0 + 2 a + ab

t4 = t0 + 3 a + ab

)
while, if t1 > t2,

(
Branch 1

Branch 2

Branch 3

Branch 4
) = (

t1 = t0 + 2 a

t2 = t0 + 2 a + ab

t3 = t0 + 2 a + ab

t4 = t0 + 2 a + 2ab

)
This algorithm is simple to program and can be used for any

branching rules that do not exibit any coupling between branching
events. In other words, any rules that are local in the sense that the
timing for formation of a lateral branch is independent of branching
events occurring elsewhere on the root/hyphae. The algorithm is not
efficient in the sense that the computational time increases
exponentially with the duration of the growth period being simulated.
However, execution up to large times is still so fast on a desktop PC
that this will almost never be an issue.

A significant advantage of this algorithm over the analytical
approach is that stochastic branching times can easily be incorporated.
Just as microbial cells have distributed division ages or states, the
branching times in roots and hyphae are not constants but vary
between branching events. This variation is of less concern in the study
of fungi than in the study of roots. Fungal cultures are usually
inoculated with a large number of cells, and the law of large numbers
assures that replicate experiments have approximately the same
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average growth dynamics. Roots, on the other hand, are often studied
in small cultures, even as single roots, and stochastic branching times
can result in huge variations between roots grown under identical
conditions. It is therefore important to understand and quantify this
inherent variation and not confuse it with the variation due to different
growth conditions.

To illustrate the variation in growth curves caused by stochastic
branching parameters, consider the branching rules from Example 6.1,
but assume that the two characteristic times ab and a are log-normally
distributed stochastic variables. To simulate this situation, the
algorithm described above needs only to be supplied with a method of
generating log-normal random numbers for ab and a. (Methods for
generation of pseudo-random numbers are available in the literature
for all commonly used probability distributions, and many of these are
included as routines in popular mathematical software packages.) An
example of such a simulation is shown in Fig. 6.4. The simulations were
done with log-normal distributed values of ab and a with means of
2 and 1 respectively, and a variance of 1 for each, and the graph shows
10 tip number growth curves.

The 10 curves are quite different, and one of them shows much faster
initial growth than all the others. This is not due to any inherent
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Figure 6.4 Ten tip number growth curves for stochastic branching using the branching
rules of Example 6.1. The two branching parameters are log-normally distributed with
means a = 1 and ab = 2 and variance 1. The figure of the left shows the growth curves
plotted on a linear scale, the figure on the right shows the same curves plotted on a
logarithmic scale.
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differences between the growth kinetics of the roots, but is caused by
the random occurrences of early branching events on the inoculum
branch. Similarly, the growth curves that show the lowest initial
growth rates do so because the initial branching events occurred late.
Given enough time, all the simulated roots develop so many tips that
growth becomes insensitive to the randomness of the individual
branching events and all roots approach the same limiting specific
growth rate, as evidenced by the similar slopes of the asymptotes in the
logarithmic plot of the growth curves on the right of Fig. 6.4.

A more detailed description of the variation among tip number
growth curves is obtained by running a large number of simulations to
find the probability distribution of tip numbers versus time. The results
of 20,000 such simulations are shown as a contour plot of the tip number
probability distribution in Fig. 6.5. The simulations required for this
figure took less that 1 minute on a desktop PC and used the same model
parameters as the simulations depicted in Fig. 6.4.
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Figure 6.5 Contour plot of the tip number probability distribution versus time using the
same model parameters as in Fig. 6.4. Twenty thousand growth curves were simulated
to generate this figure.
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The plot clearly shows how a well-defined initial condition of a single
tip can quickly produce a wide distribution of tip numbers when
branching times are not constant.

Another use of the simulation algorithm is to investigate the effect
of tip death. Just as individual microbial cells in a culture may die,
individual tips in a root or hyphae may also die although the entire
root/hyphae dies only if all its tips are dead. Consider, once more, the
branching rules from Example 6.1 with constant model parameters,
and add a constant probability that a tip can die in each time step. The
only change needed in the code is to include a call to a random number
generator, once for each tip in each time step, to determine whether or
not the tip dies in that time step. The result of such a simulation is
shown in Fig. 6.6.

The figure shows a series of seven histograms of the frequency of tip
numbers during the first seven time steps. The tall bars indicate the
growth of roots or hyphae that have not experienced any tip death and
clearly show the approach toward exponential growth. Each of these
tall bars has a tail of lower bars at a lower tip frequency, indicating
the presence of roots/hyphae on which one or more tips have died.
Finally, the ridge of low bars in the front of the figure indicates the
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Figure 6.6 Histograms of the number of live tips versus the number of time steps in the
simulation. The histograms are the result of 10,000 simulations with a probability that
a tip will die in one time step equal to 0.05. The branching rule parameters are a = 1
and ab = 2.
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frequency of roots/hyphae that are dead because all tips have died. This
frequency increases fast in the beginning when the total tip number is
low, but quickly approaches a steady value at large times. The steady
value is reached because, once the number of tips on a root/hyphae is
reasonably large, the probability that all tips will die becomes
vanishingly small. The figure thus shows that in a set of cultures, each
using a single tip as inoculum, one can expect that the cultures will
partition into two groups, a small group of dead cultures and a larger
group of live cultures, most of which have experienced approximately
similar specific growth rates.

6.1. Find the branching polynomial for the following branching rules.
1. New lateral branches are formed at a point on the root where the cells

in the parent branch have reached a fixed age ab.
2. The first lateral branch is formed when the cells at the base of the

parent branch have the age ã + ab.
3. Once started, branching continues in such a way that the distance

between branch points equals a constant age difference a.
You can assume that a < ab.

6.2. Find the branching polynomial for the following branching rules.
1. New lateral branches are formed at a point on the root where the cells

in the parent branch have reached a fixed age ab.
2. The first lateral branch is formed when the cells at the base of the

parent branch have the age a + ab.
3. Once started, branching continues in such a way that the distance

between branch points equals a constant age difference a.
4. Branching stops and the parent tip dies after a total of Z lateral

branches have formed on the parent branch.
The death of a tip often results in rapid formation of several lateral
branches behind the dead tip. This phenomenon is referred to as loss of
apical dominans and can, for instance, be observed when a tip or shoot
is cut off a growing plant. Usually new branches will quickly form below
the cut. To model the dynamics of this response, find the branching
polynomial when the branching rules above are augmented with the
following rule.
5. After the last of the Z normal lateral branches have formed, a period

ã passes before X additional laterals form as a result of loss of apical
dominans.
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Chapter

7
Alternative Formulations

An alternative formulation of the population balance distribution in
exponential growth was originally derived for the length distribution,
f (l) [22, 37]. It is usually called the Collins-Richmond equation,

r(l ) =
0

l
(2 (l ) (l ) f (l ))dl / f (l)

where r(l) is the rate of change of cell length l, (l) the probability that
a newborn cell has a length between l and l + dl, and (l) the probability
that a dividing cell has a length between l and l + dl. In this form, the
equation assumes no cell death, but it can be extended to do so [100].
This equation appears to be substantially different from our previous
formulation of a PBE, but can in fact be derived from this [75]. The two
formulations use different probability functions, and one must derive
equations between these different functions in order to transform one
formulation to the other. Doing so is more than an idle exercise in vari-
able transformation and is important because it allows one to find
equations between probability functions that can be measured experi-
mentally (at least in theory) and nonmeasurable functions that appear
in a given PBM formulation. We will therefore briefly look at the deriva-
tion of a few equations between various probability functions. Experi-
mentally obtained distributions, together with a discussion of some of
the problems and issues concerning these measurements, are given
elsewhere [70, 71].

It is important to understand clearly what the function (z)
represents. This function is the distribution of probabilities that a
dividing cell has a state between z and z + dz; i.e., the function is
determined empirically by measuring the state of cells caught in the
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act of dividing. We will refer to (z) as the distribution of division
states. This is different from the a priori distribution of division states,
the probability that a newborn cell selected at random will have a
state between z and z + dz when it divides. We will denote this distri-
bution h(z).

The difference between these two distributions is subtle and requires
a brief illustrative example. For instance, if in a population growing at
steady state in a chemostat, a newborn cell, picked at random, has a
probability of 0.5 of dividing at the age of 20 minutes and an equal
probability of dividing at an age of 30 minutes, then the a priori
distribution of division states is

h(a) = 0.5 (a 20) + 0.5 (a 30)

where (a) is the Dirac delta function. However, because the cells that
divide at an age of 30 minutes stay longer in the reactor after being
born than cells that divide after 20 minutes, more 30-minute cells will
wash out before they have a chance to divide than 20-minute cells.
Consequently, the probability that a dividing cell, picked at random,
will have the age 20 minutes is greater than the probability that it will
have the age 30 minutes, and the distribution of division states (a) will
therefore be skewed toward younger ages and have the form

(a) = A (a 20) + (1 ) (a 30)

where A is some probability greater than 0.5. The actual value of A will
depend on the dilution rate. The explicit dependence of (z) on dilution
rate indicates that it is probably not a good indicator of the physiological
state of the cell population. The a priori distribution of states h(z)
depends only implicitly on the dilution rate of the reactor and is
therefore a better candidate for models of cell division. The distribution
of division ages also depends on the age of the cells one is considering.
This is seen in human populations, where it is common knowledge that
the life expectancy of a newborn child is different from that of an older
child. The older child has a higher life expectancy because it has already
survived the initial years of life while the newborn child still is at risk
for infant mortality. In the example above, the distribution of division
ages of cells older than 20 minutes is (a  30), different from h(a).

Let us first derive an equation between the distribution of division
ages, (a), and the a priori distribution of division ages, h(a). We will
work directly from the definitions. (a) is defined by

(a)da = fraction of dividing cells with age a
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but this can be written as

(a)da = number of cells born at time t a with an a priori division age a
number of dividing cells

If we consider a time interval of length t, then the number of
dividing cells during this interval will equal the net increase in cell
number. Thus, the number of dividing cells is (N(t)e t N(t)), where
 is the specific growth rate of the culture and N(t) is the total cell

number at time t.
Similarly, the term in the numerator, the number of cells born in the

time interval from t – a to t – a + t, must equal twice the net increase
in cell number over this interval, i.e., 2(N(t a)e t N (t a)) — twice
because the net increase equals the number of divisions and each
division creates two new cells (while destroying one old cell). Multiply
this number by h(a) da to obtain the number of cells born between t –
a and t – a + t with an a priori division age a  [a, a + da], or
2(N (t a)e t N (t a))h(a)da. Putting these expressions into the
equation for (a) and simplifying gives

(a) = 2e ah(a)

which is the desired equation.
The first moment of the a priori distribution of division ages is the

average cell cycle length, or the average doubling time on the single-cell
level:

< tc.c. =
0

ah(a)da

One might hypothesize that t c.c. = td, where td is the population
doubling time, td = ln 2 / . Certainly this is true if all divisions occur at
the same age, but it turns out not to hold otherwise. To see this, start
by noting that the distribution of division ages, (a), obviously satisfies

1 =
0

(a)da

Writing (a) in terms of h(a), one obtains

1 =
0

2e ah(a)da = 2e
<tc.c.

0
e

(a tc.c. )
h(a)da

We now use the inequality 1 x e x , which is valid for all x different
from 0. This gives the inequality

Alternative Formulations 167

0-07-144768-7_CH07_167_08/30/2005

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

Alternative Formulations



2e
tc.c.>

0
(1 (a c.c. h(a)da 1

Clearly,

0
(1 (a tc.c. > ))h(a)da =

0
h(a)da

0
ah(a)da + < tc.c. >

0
h(a)da = 1

so one obtains

<tc.c.>>ln 2 /
This result was derived by Painter and Marr [67], who also derived

an approximate formula for tc.c. in terms of μ and the variance of the a
priori distribution of division ages.

We will now derive an equation between (z) and (z). Start with the
following obviously true equality:

(Rate of cell division) (fraction of dividing cells in state z)

= rate of division of cells in state z

Each factor in this balance is known. The rate of cell division is μN,
the fraction of dividing cells in state z is (z)dz, and the rate of division
of cells in state z is (z)W(z)dz. Therefore,

(z) =
(z)

f (z)

We can eliminate f(z) from this result by solving the Collins-
Richmond equation for f(z) and substituting the solution into the
expression above. The Collins-Richmond equation can be solved for the
distribution of states by first differentiating the equation with respect
to z to get the ordinary differential equation

d
dz

( f (z)r(z)) = (2 (z) (z) f (z))

and solving this subject to the boundary condition f(0) = 0,

f (z) =
r(z) 0

z
exp ( z

z̃ dz
r( z̃̃) )(2 (z̃) (z̃))dz̃
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which finally gives

(z) =
(z)r(z)

0

z
exp (

z

z̃ d z̃̃
r(z̃̃)

)(2 (z̃) (z̃))dz̃

An equation between the a priori distribution of division states and
the division intensity is derived as follows: Assuming that the state
parameter z increases with time, the probability that a newborn cell
will divide before reaching the state z is

0

z
h(z̃)dz̃

and the probability that a cell which has reached the state z will divide
between z and z + dz is therefore1

h(z)dz

1
0

z
h(z̃)dz̃

= h(z)dz

0
h(z̃)dz̃

The probability of division between z and z + dz equals the probability
of division between t and t + dt, where dt is given by dz/dt = r(z). But
this is exactly how the division intensity was defined, so

(z)dt =
h(z)dz dt

dt

z
h(z̃)dz̃

= r(z)h(z)dt

z
h(z̃)dz̃

(z) = r(z)h(z)

z
h(z̃)dz̃

Notice that for h(z) = (z zd), we obtain Eq. (3.1).

Example 7.1: Two discrete division ages We will find the distribution of
divisions ages in the case for which the a priori distribution of division ages
is given by an expression of the form

h(a) = 0.5 (a a1) + 0.5 (a a2)

For this case, the normalized age distribution has a discontinuity at age
a1, and, assuming without loss of generality that a1 < a2, the cell balances
take the form

1The result is obtained by using the conditional probability theorem, typically written
P(A|B) = P(A B)/P(B), or, stated in words: The probability of A occurring, assuming
that B has occurred, equals the probability of A and B occurring divided by the probability
of B occurring.
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f1(0) = 2 0.5 f1(a1) + 2 f2(a2)

0.5 f1(a1) = f2(a1)

where f1(a) = C1 exp(–Da) and f2(a) = C2 exp(–Da). Solving for the arbitrary
constants and applying the normalization condition gives

f (a) = {
2D

2 exp( Da1) exp( Da2) e Da, 0 < a < a1

D
2 exp( Da1) exp( Da2) e Da, a1 < a < a2

where the two division ages are bound by the constraint that

1 = e
Da1 + e

Da2

The distribution of division ages (a) is now

(a) =
( f1(a1) f2(a2)) (a a1) + f2(a2) (a a2)

( f1(a1) f2(a1)) + f2(a2)

= e
Da1 (a a1) + e

Da2 (a a2)

= 2e Dah(a)

which is a special case of the general result derived previously.

7.1 Problems

7.1. Assuming that the distribution of division ages, (a), in a chemostat is

(a) = 0.5 (a a1) + 0.5 (a a2)

find:
A. The age distribution in the culture in terms of the dilution rate

B. a1 and a2

C. The equation that the value for the dilution rate must satisfy
You can assume without loss of generality that a1 < a2.

7.2. The life span of a cell can be defined as the time between formation of
the cell and the first subsequent division. With this definition in mind,
given the a priori distribution of division ages, h(a), what is the life
expectancy of a newborn cell? Find an expression for the life expectancy
of a cell that has attained the age a1.

7.3. The distribution of division ages of extant cells is the distribution
obtained by taking cells at random from the culture and measuring their
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division ages. Of course, it is not possible to actually do this because one
cannot measure the age of a cell picked at random and therefore one
cannot determine its division age even if one observes the cell until it
divides. Even though the distribution of division ages of extant cells is
not a directly measurable distribution, it can be useful in models. To
relate this distribution to something measurable, show that it equals

2(1 e a)h(a)
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