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Preface

Because of the availability of powerful computational techniques, new modal-

ity techniques such as Computer-Aided Tomography (CAT), Magnetic Resonance

Imaging (MRI) and others, and because of the new techniques of imaging process-

ing (machine vision), the lives of many patients will be saved, and the quality of

all our lives improved. This marriage of powerful computer technology and medi-

cal imaging has spawned a new and growing generation of young dynamic doctors

who hold PhDs in physics and/or computer science, along with their MDs. In addi-

tion, technologists and computer scientists, with their superb skills, are also deeply

involved in this area of major significance.

This volume covers the subject of medical imaging systems — modalities, by

leading contributors on the international scene. This is one of the 5 volumes on

medical imaging systems technology, and together they collectively constitute an

MRW (Major Reference Work). An MRW is a comprehensive treatment of a subject

requiring multiple authors and a number of distinctly-titled and well-integrated

volumes. Each volume treats a specific subject area of fundamental importance

in medical imaging. The titles of the respective 5 volumes which compose this

MRW are:

• Medical Imaging Systems — Analysis & Computational Methods

• Medical Imaging Systems — Modalities

• Medical Imaging Systems — Methods in General Anatomy

• Medical Imaging Systems — Methods in Diagnosis Optimization

• Medical Imaging Systems — Methods in Cardiovascular & Brain Systems

Each volume is self-contained and stands alone for those interested in a specific

volume. However, collectively this 5-volume set evidently constitutes the first multi-

volume comprehensive reference dedicated to the multi-discipline area of medical

imaging.

There are over 130 coauthors of this notable work and they come from 25 coun-

tries. The chapters are clearly written, self-contained, readable and comprehensive

with helpful guides including introduction, summary, extensive figures and exam-

ples with in-depth reference lists. Perhaps the most valuable feature of this work is

the breadth and depth of the topics covered.
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vi Preface

This volume on “Medical Imaging Systems — Modalities” includes essential

subjects like:

(a) Multislice helical computed tomography: Techniques and applications

(b) Techniques in magnetic resonance diffractive imaging and their application

(c) Techniques in 3-D assessment of tracheal stenosis by the means of spiral com-

puted tomography (S-CT) and their application

(d) Edge preserved denoising in magnetic resonance images and their applications

(e) Techniques in X-ray computed tomography in the evaluation of drug release

systems and their application

(f) Techniques in treating the bioelectromagnetic source imaging problems and

their application

(g) Electrical impedance tomography for imaging and lesion estimation

(h) Single-shot magnetic resonance imaging (MRI) techniques and their

applications

(i) Shape based interpolation methods for medical images and their application

(j) Nonparametric pixel appearance probability model using grid quantization for

local image information representation

(k) Measurement of the carotid artery stenosis from magnetic resonance

angiography

The contributors of this volume clearly reveal the effectiveness of the techniques

available and the essential role that they will play in the future. I hope that prac-

titioners, research workers, computer scientists, and students will find this set of

volumes to be a unique and significant reference source for years to come.



Contents

Preface v

Chapter 1

Multislice Helical Computed Tomography: Techniques

and Applications 1

Patrick J. La Rivière

Chapter 2

Techniques in Magnetic Resonance Diffractive

Imaging and Their Application 37

Satoshi Ito and Yoshifumi Yamada

Chapter 3

Techniques in 3D Assessment of Tracheal-Stenosis by the Mean of

Spiral Computed Tomography (S-CT) and Their Applications 61

Erich Sorantin, Darius Mohadjer, Franz Lindbichler, Laszlo G. Nyul,

Kalman Palagyi and Bernhard Geiger

Chapter 4

Edge Preserved Denoising in Magnetic Resonance Images and

Their Applications 81

Paul Bao and Lei Zhang

Chapter 5

Techniques in X-Ray Computed Tomography in the Evaluation of

Drug Release Systems and Their Application 105

Agata A. Exner, Jinming Gao and David L. Wilson

Chapter 6

Techniques in Treating the Bioelectromagnetic Source Imaging

Problems and Their Application 133

F. Greensite, A. Pullan and G. Huiskamp

vii



viii Contents

Chapter 7

Electrical Impedance Tomography for Imaging and

Lesion Estimation 193

Jin Keun Seo, Ohin Kwon and Eung Je Woo

Chapter 8

Single-Shot Magnetic Resonance Imaging (MRI) Techniques and

Their Applications 241

Yihong Yang, Hong Gu, Thomas J. Ross, Wang Zhan and Shaolin Yang

Chapter 9

Shape Based Interpolation Methods for Medical Images and

Their Application 281

Tong-Yee Lee and Chao-Hung Lin

Chapter 10

Non-Parametric Pixel Appearance Probability Model Using Grid

Quantization for Local Image Information Representation 297

Mingzhou Song and Robert M. Haralick

Chapter 11

Measurement of Carotid Artery Stenosis from Magnetic

Resonance Angiography 331

Peter J. Yim and J. Kevin Demarco

Index 351



CHAPTER 1

MULTISLICE HELICAL COMPUTED TOMOGRAPHY:

TECHNIQUES AND APPLICATIONS

PATRICK J. LA RIVIÈRE

University of Chicago, Department of Radiology and

Committee on Medical Physics, 5841 S. Maryland Ave., MC-1037
Chicago, IL 60637, USA

pjlarivi@midway.uchicago.edu

One of the most significant recent developments in CT technology has been the emer-
gence of multislice systems. In contrast to single-slice helical CT systems, in which
the source illuminates a single row of detector elements, the multislice systems feature a

two-dimensional array of detector elements, with up to 64 rows in the longitudinal direc-
tion in the latest generation of scanners. These scanners radically improve the tradeoffs
between imaging time, volume coverage, and longitudinal resolution that constrain any
CT study. In this chapter, we discuss the technical background of multislice CT, as well
as the most common CT clinical applications and the impact multislice CT has had on
them. The new imaging geometry associated with multislice scanners gives rise to new
image reconstruction and visualization challenges, and we discuss these at some length.
Other topics addressed include sampling and aliasing and dose issues.

Keywords: Computed tomography; helical scan; conebeam tomography; multislice
tomography.

1. Introduction

In multislice Computed Tomography (CT), the X-ray source illuminates a curved or

flat two-dimensional array of detector elements, as illustrated in Fig. 1. The emer-

gence of multislice scanners has radically improved the tradeoffs between imaging

time, volume coverage, and longitudinal resolution that constrain any CT study.

The amount of time available for a CT scan is typically limited by the length of time

patients can hold their breath — so as to avoid introducing motion artifacts — or by

the length of time during which an organ of interest is enhanced in a study employ-

ing an injected contrast agent. Given this scan-time limitation, single-slice helical

CT scanners often face a bleak tradeoff between longitudinal resolution (along the

long axis of the patient) and volume coverage. Covering 30 cm of the thorax in

30 seconds with a single slice scanner with a 0.5 s rotation time requires the use of

5mm longitudinal slice collimation if the table translation distance per revolution is

5mm (i.e. the helical pitch is 1) or 2.5mm longitudinal slice collimation if the table

translation distance per revolution is 10mm (i.e. the helical pitch is 2). Given that

CT can reconstruct images with an in-plane pixel size as small as 0.5mm, there is

obviously a mismatch between in-plane and longitudinal resolution in either case.

1
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Source

Collimator

Detector array

Fig. 1. In multislice helical CT systems, the source illuminates a 2D array of detector elements.

This resolution mismatch has been gradually erased by the various generations

of multislice scanners, which increase the volume coverage achievable at any given

longitudinal resolution. Indeed, the current generation of 64-slice scanners achieves

essentially isotropic 0.5mm resolution with excellent extended volume coverage.

Moreover, the combination of speed and volume coverage attainable by multislice

scanners has made it possible to image dynamic processes such as contrast enhance-

ment, perfusion, and even the beating heart over extended areas.

In the remainder of this section we will discuss the historical and technical back-

ground to multislice CT, introducing concepts and terminology that will be used

throughout the chapter. In Sec. 2 we describe some of the most common CT clini-

cal applications and the impact multislice CT has had on them. The new imaging

geometry associated with multislice scanners gives rise to new image reconstruc-

tion challenges that are discussed in Sec. 3. Section 4 discusses the challenges posed

in managing and visualizing the huge datasets acquired by multislice CT, which

reflect the transformation of CT from a slice-based imaging modality, acquiring a

finite number of thick slices of the patient, to a true volumetric imaging modality,

acquiring a three-dimensional dataset that can be sliced and rendered in a vari-

ety of ways. In Sec. 5, we discuss some of the novel sampling and aliasing issues

introduced by multislice geometries, and finally in Sec. 6 we address dose issues in

multislice CT.

1.1. Historical development of multislice Computed Tomography

With roots in classical X-ray tomography and early emission tomography, com-

puted tomography emerged in 1972 with the development of the EMI scanner

by Hounsfield.1 A flurry of academic and commercial research ensued, leading to

the development of four distinct “generations” of CT scanners by the end of the
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decade.1–3 Comparatively speaking, the 1980s were a quiet time for CT develop-

ment, with many researchers and manufacturers focusing instead on the emerging

technology of magnetic resonance imaging.

CT again became a focus of significant research effort in the 1990s with

the emergence of spiral or helical scanning, first implemented by Kalender and

his collaborators.4 This technology was made possible by the development and

improvement of slip-ring technology, which allowed the source and detectors of a

CT system to revolve continuously, unrestricted by power and data cables. By trans-

lating the patient table constantly as the source and detector revolve, one eliminates

the “deadtime” spent incrementing the table in the previous step-and-shoot mode.

This significantly reduced scan times, allowing for the scanning of extended sections

of anatomy during a patient breathhold and also improving patient throughput.

The first multi-row scanner was introduced in 1992 by Elscint, a two-row system

dubbed the CT Twin. The other major manufacturers did not introduce multislice

CT systems until 1998, when the first four-slice scanners were introduced.5,6 The

pace of development has been nearly exponential since then (see Fig. 2), with

64

32

4
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1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

S
li
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s

Year

Simultaneous Slices by Year

Fig. 2. The increase in the number of slices in CT systems has been essentially exponential in
recent years.
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64-slice scanners released in 2004. There will surely be an upper limit to this

growth, for at some point the additional cost and weight of a still-larger detec-

tor will outweigh any additional clinical benefit. Nonetheless, some manufacturers

have already demonstrated prototype 256-slice systems with flat-panel detectors

that span 12.8 cm longitudinally, which would allow for dynamic imaging of entire

organs without patient translation.

1.2. Multislice CT detector arrays and Data Acquisition Systems

Naturally, what distinguishes a multislice CT scanner from a single-slice CT scan-

ner is its use of an array detector comprising of multiple rows along the longitudinal

axis of the patient, as illustrated schematically in Fig. 1. The detector array is cou-

pled to an electronic Data Acquisition System (DAS) that reads out the detector

measurements of each row or, in some cases, of groups of rows clustered electron-

ically into an effective row. The maximum number of longitudinal channels in the

DAS determines the maximum number of effective rows in the scanner. This is a

very important concept. As illustrated in Fig. 3, all of the original four-slice scan-

ners introduced in 1998 had detector arrays comprising considerably more than four

physical rows, but the DAS had only four longitudinal channels and so only four

effective rows could be formed.

The different CT manufacturers have taken a variety of approaches to subdi-

viding the detector array into physical rows and regrouping them into effective

rows. General Electric (GE) initially favored an equally subdivided detector array.

In that manufacturer’s four-slice scanners, the array is subdivided into 16 rows of

(a) (b) (c)

1.25 mm

4 x 5 mm

4 x 2.5 mm

4 x 1.25 mm

4 x 3.75 mm

4 x 1.0 mm

4 x 2.5mm

4 x 5.0 mm

5.0mm

1.0 mm

2.5 mm

1.5 mm

4 x 0.5 mm

.

.

.

4 x 5.0 mm

4 x 8.0 mm

2 x 10.0 mm

1.0 mm 0.5 mm

4 x 1.0 mm

Fig. 3. Longitudinal detector configurations employed in four-slice scanners by various CT man-
ufacturers. Note that all of the detector arrays have more than four physical rows. In practice, the
data acquisition system reads out the signals of at most four effective rows, each comprising one
or more physical rows clustered together electronically. (a) Equally subdivided array employed by
General Electric. (b) Adaptive array employed by Picker/Philips and Siemens. (c) Hybrid array
employed by Toshiba.
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longitudinal extent 1.25mm (all dimensions refer to projected dimensions at the

system rotation axis), as illustrated in Fig. 3(a). These can be grouped into four

effective rows each of extent 1.25mm, 2.5mm, 3.75mm, or 5mm, as shown. Natu-

rally, prepatient collimation is adjusted to illuminate only the active physical rows

so as to minimize radiation dose to the patient. Philips and Siemens have favored

an adaptive array, in which the array is subdivided into physical rows of different

dimensions, with smaller rows near the center and larger rows near the edges of the

detector, as shown in Fig. 3(b). For the four-slice scanners, this allowed three modes

of operation: A 4×1.0mm mode, a 4×2.5mm mode and a 4×5.0mm mode. In order

to achieve the 4 × 1.0mm mode with the adaptive array configuration, the prepa-

tient collimation is adjusted so as to illuminate only a portion of the two 1.5mm

rows. The advantages of this configuration relative to the GE array are the slightly

higher resolution (1.0mm versus 1.25mm) in the highest-resolution mode as well

as the slightly higher detection efficiency in the lower-resolution modes, because

the adaptive array has fewer non-sensitive gaps separating its smaller number of

physical rows than does the equally subdivided array. The disadvantage of this adap-

tive array is the lack of an intermediate-resolution mode between the 4 × 2.5mm

and 4 × 5.0mm modes. Finally, as illustrated in Fig. 3(c), Toshiba took a hybrid

approach in its four-row scanners, with four central 0.5mm rows flanked by a total

of 30 1.0mm rows. This larger detector has both an extremely high-resolution mode

(4 × 0.5mm), a number of intermediate modes (4 × 1.0mm–4 × 5.0mm), and two

lower-resolution, higher volume coverage modes (4 × 8.0mm and 2 × 10.0mm).

Variations on these detector configurations, appropriately scaled up, have been

employed by manufacturers in their later scanners, although with the soon-to-be-

released 64-slice scanners, most of the manufacturers have moved to equally sub-

divided arrays of 64 0.5 or 0.625mm physical rows coupled to a 64-channel DAS.

Siemens, however, is taking a different approach. The manufacturer has coupled a

64-channel DAS to a detector comprising of 32 0.6mm rows and 8 1.2mm rows.

However, they are employing a novel X-ray tube with a “flying” focal spot that can

shift rapidly between two different longitudinal positions. This allows the system to

obtain 64 effective slice measurements at each view angle while illuminating only

the central 32 physical rows of the detector, and thus allows for reconstruction of

0.4mm isotropic voxels.

All existing commercial multislice scanners make use of an array of solid-state

detectors, with each element comprising of a scintillator and a photodetector.7 The

scintillator absorbs X-rays through photoelectric interactions and enters a short-

lived excited state that resolves itself through the emission of visible or ultraviolet

radiation. The photodetector, typically a photodiode, absorbs these emissions and

gives rise to an electrical current that is measured by the DAS. These solid-state

detectors supplanted the use of high-pressure xenon detectors because of their much

higher X-ray detection efficiency as well as the greater ease with which they can

be assembled into arrays. However, the solid-state arrays themselves are likely to

be supplanted in the near future by integrated flat panel detectors, which will be
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more practical and economical to manufacture than arrays as the number of rows

grows.

1.3. Multislice helical pitch

In a single-slice helical CT exam, the pitch is defined as the ratio of the table

translation distance ∆ to the longitudinal collimation of the detector w, as measured

at the rotation axis, i.e.

Pss =
∆

w
. (1)

Pitches of 1.0–2.0 are typically employed in single-slice CT. In multislice helical CT,

there are two competing definitions of helical pitch.3 Given a system with

N effective rows each of width w, as measured at the rotation axis, one could

again define pitch as the ratio of the table translation distance to the longitudinal

width of each effective row:

Pms1 =
∆

w
, (2)

or instead as the ratio of the table translation distance to the total longitudinal

width the effective rows:

Pms2 =
∆

Nw
. (3)

The first definition, Pms1, sometimes called the row-pitch, gives an immediate

sense of the volume coverage achievable at a given longitudinal resolution that is

directly comparable among scanners with different numbers of rows. A four-slice

scanner operating at Pms1 = 6 with 5-mm effective rows is going to cover six times

as much distance in a given amount of time as a single-slice scanner operating at

Pss = 1 with 5-mm collimation. The second definition, Pms2, sometimes called the

beam-pitch, gives an immediate sense of the relative radiation dose produced by

scanners with different numbers of rows, if all other parameters are held constant.

A single-slice scanner with Pss = 1 will deliver comparable radiation dose to a

multislice scanner of any number of rows operating at pitch Pms2 = 1. All other

factors being equal, lower Pms2 correspond to higher doses than do higher Pms2

because of denser longitudinal sampling. Such denser sampling may, of course, lead

to better image quality that justifies the increased dose, and that topic will be

addressed further in Sec. 5.

2. Clinical Applications

The increased volume coverage and longitudinal resolution achievable in multislice

CT for a given imaging time has greatly improved the quality of a number of clinical

CT applications, ranging from CT angiography to lung-cancer screening.
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2.1. CT Angiography

CT Angiography (CTA) is the clinical application that has benefited most from the

imaging speed improvements afforded by multislice scanners.8 CTA involves the

imaging of the vessels of the trunk, brain, or extremities after intravenous injection

of an iodinated contrast bolus. Imaging is performed after waiting for the bolus to

travel through the heart into the arteries. Because the distribution of the contrast

agent changes constantly, the speed of imaging largely determines the resulting

image quality. Multislice CT technology even makes it possible to perform bolus

tracking: Following the bolus of contrast as it travels through the body, even over

the distance from the heart to the feet that is traversed in just a few seconds in a

runoff study. A volume rendering of a CTA study conducted on a 40-slice scanner

is shown in Fig. 4.

Fig. 4. Volume rendering of a CT angiography study showing bones, vessels, and enhanced
organs. The study was performed on a Philips Brilliance 40 CT scanner.
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2.2. Cardiac imaging

The heart is without a doubt the most difficult organ in the entire body to image.

It contracts and twists relentlessly and rapidly — more than 100 times per minute

in some patients — and sometimes irregularly. Moreover, the structures of great-

est clinical interest, the coronary arteries, are only a few millimeters in diameter.

Acquiring a snapshot of the beating heart, with motion frozen and the coronary

arteries well resolved, has long been the holy grail of computed tomography imag-

ing. Each new generation of multislice scanner and each increase in gantry rotation

speeds has moved us closer to that goal.9,10

Early approaches to cardiac CT imaging with helical scanners concentrated

mainly on obtaining images of the heart frozen at a single, somewhat extended phase

of its cycle — diastole — when motion is minimized. This typically involves using an

ElectroCardioGram (ECG) signal acquired in synchrony with the helical imaging

to identify those sectors of the measured data that correspond to the extended

diastolic phase. So long as each of these sectors spans at least a halfscan angular

range (180 degrees plus the fan angle), it is possible to reconstruct an image of the

heart at diastole that is relatively free of motion.3 In single-slice scanners, of course,

achieving the volume coverage needed to span the heart during a single breathhold

requires some sacrifice in longitudinal resolution. Because of their improved volume

coverage, multislice scanners allow these single-phase images to be acquired at much

higher longitudinal resolution than do single-slice scanners, providing essentially

isotropic resolution in each reconstructed volume.

Even more exciting, the speed and volume coverage of multislice scanners makes

it possible to perform multi-phase cardiac imaging, in which one attempts to create

snapshot views of the heart at a number of different phases of the cardiac cycle.

The end result is a truly four-dimensional dataset: An animation of the beating

heart. To reconstruct such multi-phase cardiac images, it is generally necessary to

integrate data acquired during several cardiac cycles at a given phase of the heart

cycle.11,12 Figure 5 depicts a volume rendering of a cardiac study acquired on a

40-slice scanner.

In addition to visualizing the coronary arteries, cardiac CT is often employed

to produce a calcium score, quantifying the degree of calcification in the coronary

arteries, which is believed to be predictive of the severity of coronary disease and

the likelihood of future coronary events.9 The use of this technique as a screening

exam is somewhat controversial, however, as some degree of coronary calcification

seems to occur in almost all patients as they age, regardless of whether they are

genuinely at risk of a heart attack. Thus it is unclear whether the benefits of an

invasive procedure in someone with a high calcium score would necessarily outweigh

the risks of such a procedure. As far as CT technology, the image-quality demands

of calcium scoring are not quite as high as those for images used primarily for

visualization of the coronaries, since calcium scoring generally involves averaging

CT numbers over some region of interest and is thus tolerant of slightly lower

resolution.



Multislice Helical Computed Tomography 9

Fig. 5. The beating heart frozen in diastole in a dataset acquired on a Philips Brilliance 40 CT
scanner.

2.3. Multi-phase organ studies

Iodinated contrast agents are also used to enhance soft-tissue contrast in certain

organs such as the liver, spleen, and pancreas.13,14 In these cases, the speed of

multislice helical CT can be leveraged to obtain images of the entire organ at

multiple different phases of contrast enhancement. Most commonly, one images one

or more of the following four phases:

• Early arterial

• Late arterial
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• Early venous

• Late venous

The differential contrast between normal and abnormal tissue may be greater at

one of these points than at the others, such that a tumor, for instance, that is

essentially invisible in one phase will stand out clearly in another.

2.4. CT perfusion imaging

While most contrast-enhanced CT studies serve simply to provide qualitative

images of vascular morphology and differential organ enhancement, some aim to

determine the quantitative estimates of important physiological parameters. The

most common of these “functional CT” applications is perfusion imaging, which

seeks to determine blood flow and transit time in organs such as the liver, kidneys,

and brain.15

CT perfusion studies rely on the linear relationship between CT number and

contrast agent concentration. Because of this, a curve plotting change in CT number

versus time in a voxel provides much physiological information about the contrast-

enhanced blood flowing to that voxel. Two different kinds of model are employed to

extract physiological parameters from these enhancement curves: Compartmental

models and linear-systems models. In compartmental models, the tissue is modeled

as one of series of compartments.16 So long as the arterial inflow and venous outflow

to the compartment are also measured or estimated, it is possible to determine the

perfusion of the tissue compartment. In linear-systems models, the tissue of interest

is represented as a linear system having some enhancement response to a bolus of

contrast agent.17 By deconvolving the bolus shape from the enhancement curve,

one can determine the tissue’s inherent response function, and from this extract

important parameters such as perfusion or Mean Transit Time (MTT) in the tissue.

Because of the dynamic nature of CT perfusion studies, they are generally per-

formed in cine mode, in which the source and detectors revolve continuously without

accompanying patient translation. In single-slice CT, this affords a dynamic view of

a single slice of the patient. The great advantage of multislice CT for such studies is

that it affords a dynamic view of multiple slices, and possibly even an entire organ

for the large cone angle systems under development.

2.5. CT fluoroscopy

Just as conventional projection fluoroscopy allows physicians to view an X-ray

projection image in real time at high frame rates, CT fluoroscopy allows physicians

to view a tomographic slice in real time at high frame rates.18 The tomographic view

can be very useful during complex needle biopsies or catheter insertions. Single-slice

CT scanners are, naturally, only able to provide a real-time view of one slice at a

time, but multislice scanners can monitor a stack of slices simultaneously, allowing

for three-dimensional visualization that can be valuable during invasive procedures

amid complex anatomy.
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2.6. Virtual colonoscopy

Colon cancer is second leading cause of cancer death in the United States. Most

colon cancers begin as precancerous polyps; early detection and removal of these

polyps is known to reduce the incidence of colon cancer.19 The primary tool for early

polyp detection until recently has been physical colonoscopy, in which an endoscope

is inserted into the patient’s colon and the resulting images visually examined for

evidence of polyps. While effective, the technique is invasive, requiring sedation of

the patient, and it carries a risk of morbidity associated with perforation of the

bowel.

Improvements in CT technology, in particular the emergence of multislice scan-

ners, have made possible a non-invasive form of “virtual colonoscopy,” in which the

entire colon is scanned during a single breathhold and the resulting reconstructed

volume inspected by a radiologist for evidence of polyps.19 The bowel may still need

to be cleaned of stool prior to imaging, through consumption of a cleansing fluid in

the hours before the exam, although the use of stool tagging agents can eliminate the

need for this step. The patient is imaged in both prone and supine positions with

the bowel insufflated. However, unlike conventional colonoscopy, sedation of the

patient is not generally required. The acquired volume is typically viewed through

a variety of multiplanar reformats (see Sec. 4) including a flayed, flattened view of

the colon,20 as well as in a fly-through mode that allows the radiologist to navigate

through the lumen of the colon obtaining a view comparable to that obtained with

an endoscope.21

2.7. Lung cancer screening

Lung cancer is the leading cause of cancer death in the United States. Yet unlike

breast, prostate, and colon cancer, there is not currently a widely accepted screen-

ing protocol for lung cancer. Studies of chest radiography and sputum cytology

conducted in the 1970s did not reveal a decrease in mortality that justified the

expense and complications of widespread lung-cancer screening.22

However, interest in lung-cancer screening was reinvigorated in 1999 with a

report by Henschke et al. on the Early Lung Cancer Action Project (ELCAP),

which is studying the use of low-dose helical CT in 1,000 volunteers age 60 or

greater with at least a 10 pack-year history of smoking.23 The authors have thus

far concluded that “low-dose CT can greatly improve the likelihood of detection of

small non-calcified nodules, and thus of lung cancer at an earlier and potentially

more curable stage.”

Despite the lack of long-term mortality data for these patients, the preliminary

ELCAP results were so promising that they spawned an immediate call by some to

launch widespread lung-cancer screening programs using low-dose CT without both-

ering with further controlled studies. Professional organizations such as the Society

of Thoracic Radiology have taken a more cautious approach, saying that existing

results are inconclusive with regards to the effect on mortality; they do not advo-

cate CT screening for lung cancer until further controlled studies are performed.24
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A major National Lung Cancer Screening Trial (NLST) is currently being spon-

sored by the National Cancer Institute to investigate the efficacy of CT lung cancer

screening.

The latest generation of multislice CT scanners allows for the imaging of the

entire lung during a patient breathhold with isotropic millimeter or even sub-

millimeter resolution. This should improve the detectability of small, subtle lung

nodules that could easily be blurred into the background if imaging were performed

with thicker slices, as would be required on a single-slice scanner.

3. Image Reconstruction Challenges

Multislice CT scanners have a conebeam geometry, in which all of the measured

projections are oblique relative to the scanner axis; the outer rows of the detec-

tor acquire more oblique projections than do the inner rows. This is in contrast

to a single-slice scanner in which all the measured projections are perpendicular

to the scanner axis. Obliqueness introduces challenges for reconstruction, because

in general, standard two-dimensional reconstruction algorithms such as Filtered

Backprojection (FBP) cannot be applied directly to the conebeam data. For scan-

ners with four or fewer rows, however, the cone angle is small enough that the

obliqueness of the projections can be safely ignored. However, even in four-slice

scanners, image reconstruction is not trivial, since when operating in helical mode,

the longitudinal sampling patterns of the various rows interlace with one another in

complex ways depending on the helical pitch. Algorithms are needed to interpolate

among these samples in order to reconstruct slice images. Some of the approaches

taken to this interpolation problem for four-slice scanners are discussed in Sec. 3.1

and the more general conebeam reconstruction problem is addressed in Sec. 3.2.

3.1. Image reconstruction for four-slice CT

3.1.1. Sampling in four-slice CT

In multislice helical CT, the data acquired by an N -row scanner are most naturally

parametrized as p
(h)
n (γ, β′), where n = 0, . . . , N−1 indexes the detector row number,

γ denotes the angle between the projection line and the center line of the fan beam,

β′ denotes the angular position of the source, and the superscript h serves to remind

us that this is a helical dataset. Typically, γ varies from −γm to γm, where 2γm is

the fan angle, and β′ varies from 0 to 2πNr, where Nr is the number of revolutions

in the scan.

In four-slice CT, ignoring the small cone angle is tantamount to making the

multiple-parallel fanbeam assumption. That is, one assumes that the four 1D pro-

jections acquired by the detector at any given view angle correspond to four trans-

verse fanbeam projections, parallel to one another and spaced according to the true

spacing of the oblique projections as they cross the scanner rotation axis. This is

illustrated in Fig. 6.
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z

Fig. 6. Illustration of the multiple parallel fanbeam approximation used for image reconstruction
in four-slice scanners. This is a side view with the cone angle greatly exaggerated for illustrative
purposes. Each solid line represents an oblique fanbeam projection acquired by one of the four
effective detector rows. Under the multiple parallel fanbeam approximation, the obliqueness of the
projections is ignored, and they are assumed to be the purely transverse projections represented
by the dashed lines, which cross the oblique lines at the axis of rotation.

Under this approximation, we can regard the measured helical CT data as pro-

viding samples of a three-dimensional (3D) function p(γ, β, z) in the space {γ, β, z},
where γ is as before and where

β = β′ mod 2π

z =
∆

2π
β′.

(4)

Here ∆ is the table-translation distance per 2π revolution of the source.

∆ = Pms1w, (5)

where Pms1 is the row-pitch defined in Eq. (2). The function p(γ, β, z), if known

fully, could be thought of as a continuous stack of 2D fanbeam sinograms.

Figure 7 illustrates the kind of sampling patterns that can arise in multislice

helical CT. For a four-slice scanner operating at pitch 6, the samples of p(γ, β, z)

in the {β, z} subspace for a fixed value of γ (in this case γ = −π/12) lie on the

solid lines in the figure. Concentrating solely on the longitudinal sampling, we find

that at each γ and β the solid line for detector row n provides direct samples at

positions

z = i∆ +
β

2π
∆ + nw, i = 0, . . . , Nr − 1. (6)

Of course, fanbeam data acquired over 2π is highly redundant, in the sense that

each projection line is measured twice. In helical CT, the second measurement of
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Fig. 7. Illustration of the sampling of p(γ, β, z) in the {β, z} subspace for a four-slice scan at
pitch 6 and γ = −π/12. The direct samples lie on the solid lines and the complementary samples
lie on the dashed lines. The lines are labeled with the detector row numbers, with the suffix “c”
denoting the complementary data. Thus at each pair of γ and β we have eight interlaced sets of
longitudinal samples, each with sampling interval ∆ = 6w.

a given projection line over the course of a 2π revolution takes place at a different

longitudinal position along the object, and thus this redundancy provides an addi-

tional set of longitudinal samples. These so-called complementary samples lie on

the dashed lines in Fig. 7, which satisfy

z = i∆ +
β

2π
∆ + nw + ∆

(
π + 2γ

2π

)
, i = 0, . . . , Nr − 1, (7)

for detector row n and for each γ and β.

Overall, the relationship between the measured helical data p
(h)
n (γ, β′) and the

function p(γ, β, z) can be summarized as

p

(
γ, β, i∆ +

β

2π
∆ + αm

)

=

{
p
(h)
m/2(γ, β + 2πi), m = 0, 2, . . . , 2N − 2

p
(h)
(m−1)/2(−γ, β + 2πi + π + 2γ), m = 1, 3, . . . , 2N − 1,

(8)

for i = 0, . . . , Nr − 1, where

αm =






m

2

∆

Pms1
, m = 0, 2, . . . , 2N − 2

(m − 1)

2

∆

Pms1
+ ∆

(
π + 2γ

2π

)
, m = 1, 3, . . . , 2N − 1.

(9)

Thus at each pair of γ and β we have 2N sets of longitudinal samples, each

with sampling interval ∆ and with γ-dependent relative offsets αm. This is known

as interlaced sampling. The sampling pattern that arises at pitch 3 for a four-slice

scanner is particularly simple: The direct samples from the four rows interlace to

form a uniform set of samples with sampling interval equal to the longitudinal colli-

mation w. (The zeroth and third rows follow the same trajectory through space and

actually provide redundant samples.) The complementary samples also interlace
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Fig. 8. Illustration of the sampling of p(γ, β, z) in the {β, z} subspace for a four-slice scan at
pitch 3 and γ = π/12. Direct samples from the four rows interlace to form a uniform set of samples
with sampling interval equal to the longitudinal collimation w. (The zeroth and third rows follow
the same trajectory through space and actually provide redundant samples.) The complementary
samples also interlace uniformly.

uniformly, and are offset from the direct samples by a γ-dependent interval. This

is illustrated in Fig. 8.

3.1.2. The interpolation problem

In four-slice CT, the goal is to reconstruct images at a number of fixed longitudinal

positions zs. Conceptually, this is achieved by estimating complete fanbeam sino-

grams p̂(γ, β, zs), for γ ∈ [−γm, γm] and β ∈ [0, 2π) at a number of fixed values of zs

and then applying Fanbeam Filtered Backprojection (FFBP) to obtain an image.

This is tantamount to interpolating samples on vertical lines in the {β, z} subspace

of Fig. 7 for all γ from the measured samples on the diagonal lines.

Specific development of interpolation and reconstruction approaches for four-

slice helical CT have been reported by Taguchi and Aradate,25 Schaller et al.,26 and

Hu.6 Most are based on the use of linear interpolation, possibly with some addi-

tional longitudinal filtration. The approach of Schaller et al. first performs rebinning

of fanbeam data to parallel-beam data prior to performing the interpolations.26 A

version of Hu’s algorithm was implemented on General Electric’s Lightspeed four-

slice scanners. It applies to pitches near 3 and 6, and relies on the use of linear

interpolation with some care taken in the handling of redundant samples.6 This

approach also exploits the linearity of the interpolation, filtration and backpro-

jection steps to implement the algorithm in a pipelined fashion, such that each

projection is multiplied by an appropriate interpolation and normalization weight-

ing mask and then filtered and backprojected onto appropriate image grids as soon

as it is acquired. The reconstructed images then build up correctly as additional

projections are measured and processed.

We developed a new projection weighting function for interpolation and recon-

struction of multislice helical computed tomography data with the hope of improv-

ing longitudinal resolution and reducing longitudinal aliasing in reconstructed
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volumes.27 The weighting function is based on the application of the Papoulis gen-

eralized sampling theorem to the interlaced longitudinal samples acquired by the

multislice scanner. We found that for pitch 3, our approach yielded high-quality

images of the 3D Shepp-Logan phantom as well as longitudinal resolution superior

to that of Hu’s approach. The approach was not as successful at mitigating aliasing

as we had hoped, however, because of the limitations of the multiple parallel fan-

beam approximation. Sampling and aliasing questions will be discussed in greater

detail in Sec. 5.

3.2. Image reconstruction for conebeam CT

For systems with more than four slices, it is not possible to ignore the cone angle

during reconstruction if one wishes to obtain diagnostic-quality images. The devel-

opment of true conebeam reconstruction algorithms has been an active area of

research for over 20 years, and it is particularly active at present as CT manufac-

turers introduce scanners with ever larger cone angles requiring ever more accurate

algorithms.

The ideal conebeam reconstruction algorithm would be theoretically exact, com-

putationally efficient, and would allow for reconstruction of a Region-Of-Interest

(ROI) from the minimal possible dataset. In particular, any practical CT conebeam

algorithm must be applicable to the long-object problem, which arises when the

imaging detector only views a limited longitudinal section of the patient at a time,

as will always be the case in any realistic human CT scanner. On the other hand,

if the design of the scanner is such that a more-than-minimal dataset is necessar-

ily acquired, an ideal reconstruction algorithm should also be able to make use of

and properly normalize the redundant data, as simply discarding it means that

unnecessary radiation dose has been delivered to the patient.

While the mathematical details of conebeam reconstruction are beyond the

scope of this chapter, we will introduce a few important geometrical concepts that

will aid in the discussion below. The Tam-Danielsson (TD) window for a given pro-

jection view refers to the maximum extent of the projection of the source’s helical

trajectory onto the detector for that view.28,29 Put differently, the TD window is

the area of the detector bounded by the conebeam projections of the upper and

lower turns of the helical trajectory bracketing the slice of interest. An example of

a TD-window is illustrated in Fig. 9. It is known that a slice can be reconstructed

exactly from knowledge of data only within the TD window.28,29

A pi-line is a line connecting two points on the source helix separated by less

than a 360-degree rotation, as depicted in Fig. 9. It can be shown that each point

within the cylinder bounded by the helical trajectory belongs to one and only one pi-

line.28,30 This implies that a region of interest within a patient can be reconstructed,

in principle, by computing the reconstruction on the pi-line segments that intersect

the ROI.31,32 Finally, the term overscan refers to the additional angular range the
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Fig. 9. Geometry for helical conebeam CT. The X-ray source and detector trace a helical trajec-
tory as they revolve around the patient, assumed to lie within the cylinder of radius R0 illustrated.
The area A on the detector between the two curved lines representing the projections of the upper
and lower turns of the helix bracketing the source position is referred to as the Tam-Danielson
window. The line B illustrated is a pi-line, which is defined as any line connecting two points on
the source helix separated by less than a 360-degree rotation.

source must travel beyond the upper and lower transverse planes bounding the ROI

in order to allow for reconstruction of the ROI.

We can divide conebeam algorithms into five major families: Rebinning algo-

rithms, Feldkamp-David-Kress (FDK) type algorithms, Radon-transform methods

based on exploiting the connection between conebeam data and the 3D Radon

transform, exact FBP-style algorithms based on a formula derived by Katsevich,

and a new class of BackProjection Filtration (BPF) algorithms. In general, most

of the algorithms involve tradeoffs among the ideal characteristics described

above — sacrificing exactness for computational efficiency, for example — but recent

developments minimize the need for serious tradeoffs and appear to be leading

toward algorithms having many of the features described above.
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3.2.1. Rebinning algorithms

Rebinning algorithms involve rearranging the measured data through changes of

coordinates and interpolation into sets of 2D sinograms corresponding, in gen-

eral, to projections along oblique planes or even hyperplanes.33–39 These 2D sino-

grams are used to reconstruct the corresponding oblique planes or hyperplanes and

then interpolation is applied among the resulting reconstructions in order to esti-

mate the transverse slices of interest. While it is possible to derive exact rebinning

algorithms,40 these are very computationally demanding and dose inefficient. Most

rebinning algorithms are thus approximate, but work quite well for scanners of up

to 16 slices.

3.2.2. FDK-style methods

In 1984, Feldkamp, Davis, and Kress (FDK) proposed an approximate filtered back-

projection style algorithm applicable to circular orbits.41 Their algorithm had a

particularly simple form:

• Perform shift-invariant, one-dimensional filtration of each row of the detector at

each projection angle.

• Weight filtered data to compensate for path length and obliquity differences.

• Perform conebeam backprojection.

A number of researchers have extended the FDK algorithm to the case of a helical

scan.42,43 Early work used either fullscan or halfscan helical interpolation, with

redundancy handled by use of Parker-like weights in the latter case.44 Silver derived

a general set of weights allowing for arbitrary scan ranges up to 360.45 In all these

cases, a computational drawback is that the data must be refiltered for each slice to

be reconstructed because as they are formulated the filtration takes place after the

slice-dependent weights are applied. A recent development by Kudo et al. addresses

this shortcoming by formulating an algorithm in which the weights can be applied

after filtration, allowing each projection to be filtered only once.46

Like rebinning algorithms, the accuracy of the approximate FDK method breaks

down as the cone angle grows.

3.2.3. Radon-transform based methods

Grangeat produced one of the most significant advances in conebeam reconstruction

in 1991 when he derived a relationship between conebeam data and the derivative

of the three-dimensional Radon transform.47 This allowed the 3D Radon transform

along planes intersecting a given source vertex to be estimated from the conebeam

projection corresponding to that vertex. The 3D Radon transform is itself readily

invertible.48

While it represented a major breakthrough in conebeam reconstruction research,

the Grangeat algorithm as originally formulated could not be applied to the long
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object problem. Moreover, it was expressed in such a way as to require measure-

ment of the complete conebeam dataset before processing, which does not allow

for projections to be processed sequentially, as they are measured, which is the

preferred mode of operation in medical CT.

Over the years, a number of researchers derived algorithms that addressed one

or the other of these shortcomings, with sequential processing made possible by

FBP-style formulations of the algorithm,49,50 and the long-object problem handled

through approximations that lead to several quasi-exact algorithms, including mod-

ified Radon methods of Tam29 and Kudo and Saito.51 Finally, a few approaches

were presented that allowed both sequential processing and the handling of the

long-object problem, including the zero-boundary method of Defrise et al.,30 the

virtual circle method of Kudo et al.52 and a local-ROI method of Tam.53 Overall

computational burden and sensitivity to numerical errors among these methods is

still high, however.

3.2.4. Exact FBP-type algorithms

In 2002, Katsevich made a major contribution to conebeam reconstruction with

the derivation of the first exact, FBP-style conebeam reconstruction algorithm,

involving only one-dimensional, shift-invariant filtration.54–56 In general, algorithms

derived from this formula are more efficient computationally than are the Radon-

transform based algorithms. In its original form, the algorithm was presented

in very general terms, without assuming a specific detection geometry. Other

researchers have re-expressed the formula in a more practical form in terms of detec-

tor coordinates57,58 and have also used it as the basis for deriving a quasi-exact 3-pi

conebeam reconstruction algorithm.59 Algorithms based upon Katsevich’s formula

generally require less overscan data than do the Radon-transform based algorithms

for exact image reconstruction in long-object problems. However, at each projection

angle, all of these existing algorithms require more data than the minimum data

within the TD window and thus cannot reconstruct images from data containing

transverse truncations.

3.2.5. BPF algorithms

Recently Zou and Pan have developed a new strategy that exploits the proper-

ties of pi-lines and the TD window for image reconstruction in helical conebeam

CT.31,32 Based upon this strategy they derived two algorithms, one of which

is a Backprojection-Filtration algorithm (BPF)31 and the other a FBP-type

algorithm.32 The FBP algorithm resembles Katsevich’s algorithm operationally,

but the BPF algorithm differs fundamentally from any existing algorithm. The

algorithms require only a minimum scan in handling the long object problem. More

importantly, the BPF algorithm can exactly reconstruct ROI images from projec-

tions containing transverse truncations, which no other existing algorithm can do.

The algorithms provide a useful unified point of view for CT reconstruction, as
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existing algorithms for circular conebeam, fanbeam, and parallel-beam geometries

can be readily derived as special cases of the general FBP-type algorithm.60

4. Image Presentation and Data Management Challenges

In the early years of computed tomography, when just a few slice images were

acquired in step-and-shoot mode, it was common practice to print the reconstructed

images on film and display them on light boxes for radiologists to interpret. When

helical CT emerged in the early 1990s, producing studies comprising dozens of

slices, this practice became impractical, and radiologists began interpreting most

CT studies on computer displays, paging through the slices either manually or

in automatic cine mode. The latest generation of multislice scanners, which pro-

duce hundreds of slices per study, can make even soft-copy slice-by-slice reading

impractical. However, the isotropic resolution of the dataset makes possible whole

new modes of presentation, including multiplanar reformats, maximum intensity

projections, and volume renderings.21 In some ways, this requires a very different

approach by the radiologist, a shift from passively interpreting a set of preselected

images to actively interrogating a massive dataset. A typical CT user interface is

shown in Fig. 10.

4.1. Multiplanar reformats

Given a stack of contiguous or even overlapping CT slice images, it is natural to

think of the result as a volume that can be sliced and viewed in a variety of ways.

For example, rather than just viewing the slices perpendicular to the long axis

of the scanner that are reconstructed directly from the CT data (so-called axial

slices), the radiologist could just as easily extract coronal or sagittal slices from

the resulting volume. These are called MultiPlanar Reformats (MPRs).21 In fact,

given the isotropic resolution and voxel size of the latest generation of scanners,

extracting these other perpendicular planes can involve little more than resampling

the reconstructed volume. When resolution is nonisotropic, it may be necessary to

interpolate among the reconstructed slices in order to obtain appropriate coronal

or sagittal slices.

Of course, interpolation can be used to generate images other than simple coro-

nal or sagittal cuts through a reconstructed volume. An oblique plane may bring

more relevant anatomy into a single view, and curved surfaces can be useful for

tracking vessels or unwinding tortuous structures such as the colon.20

4.2. Simulated radiographs and Maximum Intensity Projections

In addition to simply extracting a two-dimensional view from a three-dimensional

volume, as in MPRs, one can also reproject the volume, collapsing three dimensions

into two to obtain an image suitable for display. If this projection is performed

according to the law of exponential attenuation, then one obtains a simulated

radiograph.61 If the projection is performed by simply taking the largest attenuation
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Fig. 10. Modern CT workstations offer views of a variety of multiplanar reformats simultaneously,
allowing for easier navigation and three-dimensional visualization by the radiologist.

value along each projection line, then one obtains a Maximum Intensity Projec-

tion (MIP).62 The latter find widespread use in CTA, as contrast-enhanced vessels

will generally be the most attenuating structures in the reconstructed volume and

will thus be particularly well visualized on a MIP.

4.3. Volume and surface rendering

While MPRs and MIPs represent explicit slicing or collapsing of three-dimensional

volumes to obtain two-dimensional images for viewing, techniques such as volume

rendering and surface rendering seek to preserve some of the illusion of three-

dimensional space in creating two-dimensional view for presentation to radiologists.

In volume rendering, each voxel in a volume is assigned an opacity value

based on its pixel value.63 The volume rendered image is simply a projection of

the opacity values, where all projection values above a certain total opacity are

assigned the same saturation value. By assigning fairly low opacity values to voxels

with attenuation values characteristic of soft tissue, for example, it is possible to

produce images that give the illusion of peering deep into the body, seeing bones

and contrast-enhanced organs through a translucent matrix of overlying tissues.

Figure 11 depicts such a view.
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Fig. 11. Volume rendering of a CT dataset depicting primarily muscle and bone.

In surface rendering, one must first segment the anatomy of interest and deter-

mine its outer boundary.64 In the simplest cases, such as the depiction of bone, this

can often be achieved through simple pixel value thresholding. By specifying the

reflectivity of the surface in question, a virtual light source, and a point of view,

a simulated “optical” view can be created to mimic the visual appearance of the

anatomy in question.

4.4. Computer-aided diagnosis

In order to help radiologists cope with the vast amounts of image data emerging

from the latest CT scanners, a number of investigators have begun developing

computer-aided diagnosis (CAD) systems to provide automated second readings of
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Fig. 12. The output of the University of Chicago computer-aided diagnosis system for a slice of
a lung CT scan. The circle on the upper left of the image flags a subtle lung nodule. The circle
on the right side of the image is a false positive.

certain kinds of CT studies.19,65 The goal is not, of course, to replace the radiologist,

but simply to flag areas of the image that the computer finds suspicious and that the

radiologist may wish to reexamine. This kind of system would be particularly useful

for screening studies for lung or colon cancer in which the image interpretation is

fairly tedious and task is fairly well circumscribed: Finding a lung nodule or colon

polyp. An example of a CT lung image with lesions flagged by a CAD system is

shown in Fig. 12.

5. Sampling and Aliasing

CT scanners, like all digital imaging systems, acquire discrete sets of measurements,

generally on a regularly sampled grid in some coordinate system. Failure to sam-

ple densely enough can lead to reconstructed images containing so-called aliasing

artifacts, which can take the form of streaks or periodic modulations. In-plane sam-

pling and aliasing effects in conventional, step-and-shoot CT are well understood

and have helped inform CT system design. The move to helical scanning produced

interesting new sampling patterns in the single-slice case, and Yen et al.66 have

shown that the longitudinal sampling engendered by pitches of clinical interest (1

or higher) does not strictly satisfy the sampling condition. This gives rise to spa-

tially variant aliasing effects that are negligible near the isocenter and increase

sharply near the edge of the field of view.
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We have shown, however, that under certain conditions the second set of longitu-

dinal samples provided by fanbeam redundancy does contain sufficient information

to eliminate longitudinal aliasing in single-slice helical CT if exploited correctly.67

In particular, we have developed a Fourier-based approach to longitudinal inter-

polation in single-slice helical CT and we have demonstrated that it can, in some

cases, reduce or eliminate the aliasing in single-slice helical CT.67 A more efficient,

approximate spatial-domain version of the Fourier-based approach has also been

developed.68

It is natural, then, to wonder about the aliasing properties that might arise in

multislice helical CT reconstructions. This is a vast, rich topic. In the conebeam

case, the problem has barely been addressed; one preliminary investigation is pre-

sented in Sec. 5.3 below. In the small cone angle regime where the multiple parallel

fanbeam approximation is used for reconstruction, the resulting sampling patterns

in multislice helical CT are highly pitch-dependent due to the interlacing of mea-

surements from different detector rows, as we have already seen. The pitch depen-

dence of longitudinal sampling in multislice helical CT begs the question of whether

some pitches lead to particularly desirable, nonredundant sampling patterns, which

is addressed in the next section.

5.1. Preferred pitch in 4 slice scanners

For four-slice scanners, the question of the existence of “preferred pitch” has been

addressed previously in many ways and often with a different answer. Hu6 has

argued that pitches 3 and 6 are preferred because the bands of projection-ray depen-

dent complementary samples described in Sec. 3.1 are centered between the direct

samples and thus produce average sampling intervals equivalent to those in single-

slice helical CT operating at pitches 1 and 2, respectively. These pitches thus both

lead to a relatively favorable isocenter Slice Sensitivity Profile (SSP), which is the

system response to an input that is an impulse in the longitudinal direction and

circularly symmetric in the transverse plane.69 Wang and Vannier70 performed a

“sensitivity analysis” of central detector channel sampling patterns in multislice

helical CT and reached a nearly opposite conclusion, arguing that pitch 6 is dis-

tinctly suboptimal relative to other nearby pitches and that a pitch slightly less

than 3 is to be preferred to pitch 3 itself.

Both of these sampling analyses are limited in their scope, however, in that

they only truly apply to the longitudinal sampling for the central detector chan-

nel, and thus really only predict performance at the system isocenter. Given the

extreme variation in longitudinal sampling patterns between central and periph-

eral detector channels and the spatially variant nature of aliasing effects, we felt

it important to develop a more global analysis accounting for the entirety of the

longitudinal sampling that arises at each pitch. We calculated the longitudinal alias-

ing that arises when imaging a cylindrical phantom similar to that employed by Yen

et al.,66 comprising adjacent cylindrical disks of alternating high and low densities,
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illustrated schematically in Fig. 13. The phantom has a square wave longitudinal

profile and aliasing can be easily detected and measured in reconstructed volumes.

Working under the multiple parallel fanbeam approximation, we computed a

global contrast-to-aliased noise (CNaR) figure of merit for each pitch, which we

plot in Fig. 14. Higher values of CNaR are better. As expected, the curve is far

from monotonic. Local maxima are evident around pitches 3, 4, 5, and 6. Some

complicated variation is evident between pitches 1 and 2, with pitch 2 being a clear

minimum in the curve. Other minima occur at half-integer pitches.

Fig. 13. Schematic illustration of the numerical phantom used in the aliasing studies described

in the text. It comprises cylindrical disks of alternating high and low density.
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Fig. 14. Contrast-to-aliased-noise ratio (CNaR), in decibels, versus helical pitch for a 4-slice scan-
ner with longitudinal collimation width 2.5mm at the isocenter imaging an object with sinusoidal
longitudinal variation of frequency f0 = 1/3.175 mm−1. Higher values of CNaR are better. This
analysis suggests that pitches near 3, 4, and 5 are optimal and half-integer pitches are suboptimal
for four-slice with narrow-kernel interpolation.
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The analysis described implicitly blends sampling and interpolation effects. In

the results presented straightforward linear interpolation was employed. In prac-

tice, straightforward linear interpolation is sometimes avoided because frequent

“changeovers” in the pairs of detector rows contributing to a given slice tend to

produce artifacts in reconstructed images. In general, either attention is restricted

to pitches where linear or quasi-linear approaches can be applied safely6 or broader,

adaptive z-filtering interpolation approaches are employed.25,26 We do not expect

that the use of a different narrow-kernel interpolation approach would fundamen-

tally alter the conclusions of this study. Indeed, a related study by Bricault and

Ferretti, in which they introduced the concept of a weighted radiation profile and

characterized its width and heterogeneity reached similar conclusions regarding the

relative value of different pitches for narrow-kernel interpolation. For wide-kernel

interpolation, Bricault has confirmed that Schaller et al. are correct in their asser-

tion that no pitches are inherently optimal or preferred.

5.2. Cone-angle induced aliasing in four-slice scanners

The study just described and, indeed, all previous studies of four-slice CT sampling

and aliasing effects tacitly ignored the small cone angle. In order to examine its effect

on aliasing, we studied the differences between the aliasing arising in four-slice CT

and that arising in single-slice helical CT in situations when their longitudinal

sampling is ostensibly equivalent.

Specifically, we examined longitudinal aliasing properties in four-slice scanners

for helical pitches 3 and 6, which have effective longitudinal sampling intervals

equivalent to those in single-slice helical CT operating at pitches 1 and 2, respec-

tively. While these equivalences have been supported by comparative studies of

slice-sensitivity profiles in single- and multislice helical CT, artifacts have been

observed in pitch-3 and pitch-6 multislice images that were not evident in their

purported single-slice counterparts.

Our study attributed these differences to aliasing arising in the multislice recon-

structions that is not present in the single-slice counterparts. We found that the

aliasing has two principal origins: Sampling effects similar to those in the single-

slice case and cone-beam effects. The difference between the multislice, pitch-3

and single-slice, pitch-1 results was attributed to the small cone angle in multislice

helical CT, which introduces inconsistencies among the measurements of different

detector rows. The difference between multislice, pitch-6 and single-slice, pitch-2

results was attributed to a combination of the cone angle and genuine differences

in sampling patterns.

To give a sense of the potential image-quality effects of the longitudinal aliasing

discussed here, we show in Fig. 15 sagittal slices through two reconstructions of a

square-wave phantom of period 3.175mm. Projections were simulated for single-

slice, pitch-1 and multislice, pitch-3 acquisitions. Each image corresponds to half of

a sagittal slice through the cylinder, with the rotation axis at the top of the image.
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Fig. 15. Sagittal slices through reconstructions of a square-wave phantom of period 3.175 mm
for single-slice, pitch-1 and multislice, pitch-3 acquisitions. Each image corresponds to half of a
sagittal slice through the cylinder, with the rotation axis at the top of the image. It can be seen
that in both cases, aliasing effects are negligible near the isocenter but that aliasing increases with
distance from the isocenter.

It can be seen that in both cases, aliasing effects are negligible near the isocenter,

where the original square wave pattern of the phantom is well-resolved, but that

aliasing increases with distance from the isocenter. The magnitude of the aliasing

effect is seen to be worse for the four-slice image than for the single-slice image, as

expected from the preceding discussion.

5.3. Challenges for performing sampling analysis in

conebeam scanners

Conventional multidimensional sampling analysis71–76 does not extend very natu-

rally to true conebeam CT because the oblique nature of the projections makes it

difficult to identify a coordinate system in which the sampling forms a lattice. Sim-

ply ignoring the cone angle and analyzing the longitudinal sampling engendered by

helical scans is not sound since the effect of the cone angle on aliasing is significant

even for four-slice scanners, as discussed above.

One potential approach to characterizing sampling in conebeam CT is to make

use of Fourier crosstalk analysis,77–79 a generalized, object-independent form of

aliasing analysis in which one quantifies the transmission of Fourier components

through an imaging system as well as the ability to distinguish different Fourier

components from the measured data.

In principle, the Fourier crosstalk technique could be used to compare the sam-

pling engendered at different pitches for a given scanner configuration, identifying

tradeoffs and possible optimal scan parameters. Unfortunately, the technique is

extremely and perhaps impractically computationally demanding for imaging sys-

tems with datasets as large as those acquired in CT. In order simply to demonstrate
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the potential application of Fourier crosstalk in this context, we conducted a pre-

liminary study in which we simply compared three different scanner geometries

with ostensibly equivalent volume coverage and average longitudinal sampling: A

single-slice scanner operating at pitch 1, a four-slice scanner operating at pitch 3,

and a 16-slice scanner operating at pitch 15.

We found that moving from a single-slice to a multislice geometry introduces

longitudinal crosstalk characteristic of the longitudinal sampling interval between

periods of individual each detector row, and not of the overall interlaced sampling

pattern. This was attributed to data inconsistencies caused by the obliqueness of

the projections in a multislice/conebeam configuration. However, these preliminary

results suggest that the significance of this additional crosstalk actually decreases

as the number of detector rows increases, which is an intriguing result that bears

further investigation.

6. Dose

6.1. Concerns about CT dose

The new clinical capabilities of CT made possible by the technological innovations

discussed in this chapter have spurred explosive growth in the number of CT exams

performed annually, which has prompted concern over the associated rise in CT-

related radiation dose to the population.80 Typical CT scans result in doses of

1–10mSv, and in some cases as high as 30mSv, which is more than 10 times annual

background radiation.80 With some 60 million CT scans performed in the US,81 CT

is currently the largest source of medical radiation exposure and is second overall

only to background radiation in the population as a whole.81 The number of CT

procedures has been growing at 10–15% annually in recent years, and that growth

rate is not likely to abate.80

6.2. Dose in single and multislice CT

While multislice CT has spurred greater use of CT, the nature and distribution

of the dose differs only slightly from that arising in single-slice CT. In single-slice,

step-and-shoot CT with a 360 degree rotation, the dose delivered in imaging a single

slice of a cylindrical phantom is, naturally, circularly symmetric. The dose along the

central axis of the cylinder is peaked around the center of the slice being imaged,

with a full-width half-maximum approximately equal to the nominal slice width.

However, the dose profile plotted in Fig. 16(a) is seen to have fairly substantial

extended tails due to the scattering of X-rays out of the slice being imaged. When

scanning adjacent slices in step-and-shoot mode, the individual dose profiles simply

add to give a multiple-scan dose profile, as shown in Fig. 16(b). Due to the super-

position of the tails of the various single-slice profiles, the peak dose values can be

considerably higher than the peak value of the single-slice dose profile. Operating a
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Fig. 16. (a) Dose profile in single-slice step-and-shoot CT. The vertical dashed lines denote the
nominal slice thickness. The long tails on the dose profile are due to scattering of X-rays out
of the slice being imaged. (b) Cumulative dose profile in single-slice step-and-shoot CT after
imaging of multiple adjacent slices. Similar dose distributions arise in multislice CT operating in
step-and-shoot mode as well as for both types of scanner operating in helical mode.

scanner in helical mode does not fundamentally change these overall dose distribu-

tions, certainly not on the central axis of the scanner. At peripheral points in the

images volume there may be some modulation of the dose due to the nature of the

helical scan.

Most of these basic properties carry over directly to the multislice case, with

one significant difference. In single-slice CT, the nominal slice thickness is generally

set by the use of pre-patient collimation. Both the umbra and penumbra portions

of the transmitted beam are detected and contribute to the reconstructed image. In

multislice CT, nominal slice thickness is determined mainly by the longitudinal size

and grouping, if any, of the detector rows. Prepatient collimation is used to shape the

beam into the desired overall longitudinal extent, but this means that the penumbra

will fall either beyond the extent of the detector or onto inactive rows, as illustrated

in Fig. 17. The X-rays in the penumbra region thus contribute dose to the patient

but do not contribute to the measured data or reconstructed image. If the beam was

shaped to allow the penumbra to illuminate the outermost active detector rows, the

illumination of the different rows would be very inconsistent and this would lead

to artifacts in reconstructed images. Thus, at least on this count, multislice CT

is slightly less dose efficient than single-slice CT. However, the magnitude of the

differential falls as the longitudinal extent of the beam grows. Thus the already

small dose inefficiency of multislice scanners has grown almost negligible as it has

become possible to use large beam collimations without sacrificing longitudinal

resolution through the use of large, finely subdivided detector arrays.

That said, while the geometric inefficiency of multislice relative to

single-slice CT has shrunk in recent years, the temptation to use multislice scan-

ners in ways that increase patient dose has grown. The speed and volume coverage
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Fig. 17. In single-slice CT, both the umbra and penumbra of the beam are detected. The broad-
ening effect of the umbra is accounted for in setting the prepatient collimation, which is set a little
narrower than purely geometric considerations would dictate for a given slice size. In multislice CT,
only the umbra of the beam is detected, with the prepatient collimation set according to precise
geometric specifications to illuminate only the active detector elements of interest. The penumbra
falls on inactive detector rows and thus constitutes “wasted” dose.

afforded by multislice scanners means that it is possible to image entire organs with

very thin slices that may necessitate increasing X-ray exposure in order to maintain

signal-to-noise ratios. It also makes it possible to rescan organs multiple times dur-

ing a study in order to visualize different phases of contrast enhancement. When

considering such studies, the tradeoff between additional dose and the diagnostic

information to be gained must always be carefully weighed.

6.3. Dose reduction strategies

Due to the rising concerns about CT dose, a number of investigators and manu-

facturers have developed new techniques and imaging protocols aimed at reduc-

ing dose without compromising image quality. One promising approach, already

implemented on a number of commercial scanners, is automatic tube current

modulation,82–84 in which the tube output is dynamically modulated based on

the thickness of the anatomy expected in a given projection view. For example,

when imaging the thorax, fewer X-rays are needed to obtain good measurement

statistics when acquiring an anterior-posterior view than when acquiring a lateral

view. Manufacturers and investigators are also proposing more individual tailoring
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of protocols to patient size and shape,85–90 especially for pediatric patients. Finally,

researchers are examining the use of iterative, statistically principled algorithms,

either for full-blown image reconstruction91–102 or for data smoothing,103 in order

to allow high quality images to be obtained from measurements made at lower

radiation doses.
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TECHNIQUES IN MAGNETIC RESONANCE DIFFRACTIVE

IMAGING AND THEIR APPLICATION
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Magnetic resonance diffractive imaging is proposed as a new approach to Magnetic
Resonance (MR) angiography. The expression of the Nuclear Magnetic Resonance signal
is similar to the equation for the Fresnel diffraction of a 3D object in light or sound waves.
The proposed technique offers the possibility of fast angiographic imaging and the online
reconstruction of 3D volumetric images using the holographic technique. Static imaging
experiments using an ultra-low-field MRI system are performed to verify the feasibility
of the technique. It is shown that the images focused on an arbitrary plane can be
reconstructed from data scanned in two-dimensions, even though blurred image data
is superimposed on the image. Moreover, the 3D image can be observed in a coherent
optical imaging system. This study demonstrates the possibility of the proposed method
as a fast imaging technique for MR angiography.

Keywords: Magnetic resonance (MR); holography; Fresnel transform.

1. Introduction

Angiographic imaging is widely used for clinical diagnosis. However, the use of

Magnetic Resonance (MR) angiography to collect three-dimensional data is a time

consuming process. Decreasing the data acquisition time will therefore reduce the

burden on patients and increase patient throughput.

In order to reduce the data acquisition time, a feasibility study on the use of

magnetic resonance diffractive imaging, in which images containing depth infor-

mation are derived from data scanned in two-dimensions, is performed. Although

Nuclear Magnetic Resonance (NMR) phenomena do not demonstrate the charac-

teristics of wave motion, they approximate the description of the wavefront in the

Fresnel diffractive region by using nonlinear field gradients. We have studied an

NMR imaging technique in which the NMR signal exhibits the form of the Fresnel

integral equation of 2D-objects by scanning a nonlinear quadratic field gradient over

the imaging region in two-dimensions.1,2 We call this technique the “Fresnel trans-

form imaging technique”. The NMR signal has the equation similar to the wavefront

equation, so MR images can be obtained using both the numerical reconstruction

and the holographic reconstruction methods.3,4 We have applied the holographic

reconstruction method to the online reconstruction of 2D MR images.3–6

37
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Diffractive tomography is frequently used to obtain the two-dimensional and

three-dimensional distributions of objects based on the measurement of diffracted

waves.7 It has been applied to optical microscopes8–10 and techniques with super-

sonic waves.11–13

The proposed technique offers the following advantages over conventional imag-

ing for obtaining angiographic images:

(i) The capability to obtain an image focused on an arbitrary plane to derive depth-

related information from two-dimensional image data which were obtained in

the two-dimensional imaging.

(ii) The capability to reconstruct 3D holographic images from a hologram produced

by the NMR signal. Thus, the real-time reconstruction of 3D images is possible

in principle.

To confirm the effectiveness of the proposed technique, we performed an exper-

iment to obtain the signal in MR diffractive imaging, and image reconstruction

was performed either optically on an optical bench or digitally using a computer.

Since NMR signals with a high Signal-to-Noise Ratio (SNR) could not be obtained

with ultra-low-field MRI, static imaging using a tube model was performed. The

practical application of the proposed technique is taken into consideration.

2. NMR Signal in MR Diffractive Imaging

In the NMR Fresnel transform imaging technique, the NMR signal has the form

similar to the wavefront of 2D objects.1,2 Considering the difference in diffraction

equations between 2D and 3D objects is helpful in the design of magnetic fields

gradients, which are required to obtain the NMR signal in the proposed imaging

technique.

2.1. Wavefront equation of 3D objects

The diffractive wavefront scattered from an 3D object g(x0, y0, z0) in the Fresnel

region, u(xi, yi)|z=zi
, is described by Eq. (1)14

u(xi, yi)|z=zi
=

1

jλ(zi − z0)
exp{jk(zi − z0)}

·
∫∫∫ ∞

−∞
g(x0, y0, z0) exp

{
jk

(xi − x0)
2 + (yi − y0)

2

2(zi − z0)

}
dx0 dy0 dz0,

(1)

where λ is the wavelength of the light source, k is the wave number and zi represents

the distance from the center of coordinates (x0, y0, z0) to the screen. Equation (1)

is rewritten by the convolution equation as follows:

u(xi, yi)|z=zi
= g(xi, yi, zi) ∗ f(xi, yi, zi), (2)
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where f(xi, yi, zi) is written as

f(xi, yi, zi) =
1

jλzi
exp
{
jk
[
zi + (x2

i + y2
i )/2zi

]}
. (3)

The function f(xi, yi, zi) is called the “point-spread function”.

2.2. NMR signal equation

In this section, we examine the similarity between the equations of the NMR signal

and those of the three-dimensional diffracted wavefront of Eq. (1). In NMR Fresnel

transform imaging, the Fresnel-transformed signal can be obtained by scanning a

quadratic field gradient over the imaging region.1,2 The quadratic field and the

NMR signal is given as follows:

∆B = b
{
(x′ − x)2 + (y′ − y)2

}
, (4)

v(x′, y′) =

∫∫ ∞

−∞
ρ(x, y) exp

{
−jγbτ

[
(x′ − x)2 + (y′ − y)2

]}
dx dy, (5)

where b is a coefficient of a quadratic field gradient and (x′, y′) are the coordinates

of the center of the quadratic field gradient, which can be fixed in an arbitrary

location by the external field, ρ(x, y) represents the spin density distribution in the

subject, γ is the magnetogyric ratio and τ represents impressed time. A detailed

explanation of the scanning of a quadratic field is given in Sec. 4.2.

To obtain NMR signals with expressions identical to Eq. (1), the coefficient of

the quadratic field must be varied as a function of 1/z, which makes the design

of the magnetic field a difficult process. Therefore, we attempted to simplify the

design of the magnetic fields and approximated the function k/2(zi − z0) in Eq. (1)

as the first order equation (1 + αz). Based on the condition above, we adopted a

quadratic field gradient whose coefficient increases by the increment factor α in the

z-direction, as shown in Eq. (6).

∆B = b(1 + αz)
{
(x′ − x)2 + (y′ − y)2

}
. (6)

We can obtain the target equation for the NMR signal written in Eq. (7) by scanning

the quadratic field gradient in the x–y plane as in the Fresnel transform imaging

technique.

v(x′, y′) = P

∫∫∫ ∞

−∞
ρ(x, y, z) exp

{
−jγbτ(1 + αz)

[
(x′−x)2 + (y′−y)2

]}
dx dy dz,

(7)

where ρ(x, y, z) represents the 3D-distribution of the spin density in the subject and

P is a constant. In order to obtain a signal that approximates the form of Eq. (7),

we used four-types of magnetic fields written as Eqs. (8) to (11) when the phase

encoding and read-out directions are set in the x- and y-directions, respectively.

(a) quadratic field: ∆b(x, y, z) = b (1 + αz)
(
x2 + y2

)
; (8)

(b) scanning field: ∆b0x(z) =
√

1 + αzb0x; (9)
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(c) sweeping field: ∆b0y(z) = (1 + αz) b0y; (10)

(d) field gradient: ∆Gyz(y, z) = (1 + αz)Gyy. (11)

Equation (8) is a quadratic field gradient whose coefficient is varied in the z-

direction. The center position of the quadratic field can be moved to an arbitrary

position (x′), as shown in Eq. (6), by simultaneous application of the scanning field

written as Eq. (9). Equation (10) is a field gradient in the z-direction under the

presence of a field offset of b0y, and Eq. (11) is a field gradient in the y-direction

whose coefficient increments by α in the z-direction. The field gradient of Eq. (9)

can be rewritten as Gyy + Gyzyz, thus Eq. (9) can be generated by field gradients

for the y and yz directions. The fields shown in Eqs. (10) and (11) are required

to make the signal equation having the Fresnel transform form into the read-out

direction (y-direction).

Figure 1 shows a pulse sequence for MR diffractive imaging using the 3D time-

of-flight method. The first step is to saturate the slab region in which the vessels

are to be imaged by a pre pulse under the presence of the volume-selective gradient

Gsel. A spoiling gradient, Gsp, is then applied to eliminate transverse magnetiza-

tion in that region. In the second step, an RF θ◦ pulse is applied to excite the

spins contained in the unsaturated inflow from adjacent slabs. In the third step, a

quadratic field gradient, ∆b, and a scanning field, ∆b0x, are applied simultaneously

in the phase encoding direction for a period τ . The scanning field is applied to move

the center of the quadratic field in the x- (or y-) direction, so that when the amount

of scanning is set to be x′, the expression of the quadratic field after scanning is

RF  pulse

NMR echo signal

0

x′

t-t0

θpre pulse

τ

Fig. 1. Pulse sequence of MR diffractive imaging using the time-of-flight method. First, pre
pulses saturate the slab in which the vessels are imaged under the presence of volume-selective
gradient, Gsel. The spoiling gradient, Gsp, is then applied to eliminate transverse magnetization
in that region. In the second step, the RF θ◦ pulse is applied to excite the spins contained in the
unsaturated inflow from adjacent slabs. In the third step, a quadratic field gradient, ∆b, and a
scanning field, ∆b0x, are applied simultaneously in the phase encoding direction for a period τ
period. Finally, a sweeping field, ∆b0y , and a field gradient, ∆Gyz, are applied simultaneously, by
which the quadratic field is scanned in the y-direction.
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∆b = b(1 + αz)
{
(x′ − x)2 + y2

}
. Finally, the sweeping field, ∆b0y, and the field

gradient, ∆Gyz , are applied simultaneously, by which the quadratic field is equiv-

alently scanned in the y-direction. The echo signal obtained in this sequence can

be written as Eq. (12) when the origin of the time is set at the center of the NMR

echo signal and the inversion time of ∆Gyz is set as −t0. The NMR echo signal has

a form that is significantly different to the signal obtained by conventional Fourier-

transform based imaging.

v(t, y′) = exp(−jγb0t)

∫∫∫ ∞

−∞
ρ(x, y, z) exp

{
−jγbτ (1 + αz)

[
(x′ − x)2 + y2

]}

· exp

{
−jγ (1 + αz)Gyt + γ

∫ t

−t0

(1 + αz)b0ytdt

}
dx dy dz

= exp

{
−jγb0t +

γb0y

2
t0

2

}

·
∫∫∫ ∞

−∞
ρ(x, y, z) exp

{
− jγbτ(1 + αz)

[
(x′ − x)2 +

(
y +

Gyt

2bτ

)2 ]}

· exp

{
jγt2(1 + αz)

(
Gy

2

4bτ
− b0y

2

)}
dx dy dz, (12)

where b0 is a field offset for the static field from the on resonance condition. When

the parameters are set to Eq. (13) and the variables are transformed, Eq. (12) can

be rewritten as Eq. (14), and hence Eq. (7) is obtained

Gy
2

4bτ
=

b0y

2
, y′ = −Gyt

2bτ
, (13)

v(x′, y′) = P exp(jβy′)

∫∫∫ ∞

−∞
ρ(x, y, z)

· exp
{
−jγbτ (1 + αz)

[
(x′ − x)2 + (y′ − y)2

]}
dx dy dz, (14)

where P and β are set as follows:

P = e−j
γb0y

2 t0
2

, β =
2γb0bτ

Gy
. (15)

3. Image Reconstruction

3.1. Numerical reconstruction

Two methods can be employed to reconstruct images from the Fresnel integral

equation. One is a technique using the inverse Fourier transformation once after

multiplying the quadratic phase term. The other method solves the convolution

integral by inverse filtering.2 In this paper, we will discuss the method for recon-

structing images by the inverse filtering, in which the pixel width is not changed

by the imaging parameters depending on the focal plane.
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Let Fxy denote the Fourier transformation with respect to x and y. When Fxy

is applied to Eq. (14), the following equation is obtained.

Fxy[v(x′, y′)] = P exp(jβy′)

∫ ∞

−∞
exp

(
− j

π

2

)
π

γbτ(1 + αz)

·R(kx, ky, z) exp

{
j

kx
2 + ky

2

4γbτ(1 + αz)

}
dz, (16)

where R(kx, ky, z) denotes the Fourier transform of ρ(x, y, z) with respect to the x

and y coordinate system. Images focused on an arbitrary z′ plane are obtained by

multiplying the inverse function of the modulation transfer function on the z′ plane

to Fxy{v(x′, y′)}, and taking the inverse Fourier transformation. Let ρ′(x′, y′, z′)
denote the image focused on plane z′, where ρ′(x′, y′, z′) is given by the following

equation:

ρ′(x′, y′, z′) =
1

P
exp

{
j

(
π

2
− βy′

)}
γbτ(1 + αz′)

π

· F−1
xy

[
Fxy[v(x′, y′)] exp

{
−j

kx
2 + ky

2

4γbτ(1 + αz′)

}]

=
1

P
exp

{
j

(
π

2
− βy′

)}
F−1

xy

[ ∫ ∞

−∞

1 + αz′

1 + αz

·R(kx, ky, z) exp

{
j

α(z − z′)(kx
2 + ky

2)

4γbτ(1 + αz)(1 + αz′)

}
dz

]
. (17)

We can obtain images focused on an arbitrary plane by substituting the coordinates

of z′ into Eq. (17).

The space described by Eq. (17) is considered to be identical to the signal space,

because the images are reconstructed by inverse filtering. Let the sampling step of

the NMR signal be ∆x′ (and ∆y′), and the pixel width of the reconstructed image

be ∆xw (and ∆yw). The relation ∆xw ≈ ∆x′ holds, because the space described

by Eq. (17) is obtained using the Fourier-transform twice in the inverse filtering

algorithm (here, the inverse Fourier transform is considered as a Fourier transform

in a broad sense).

Let the number of sampling points and the spatial resolution be N , ∆x

(and ∆y), respectively. Then, the spatial resolution in the x-(y-)directions in the

inverse filtering becomes either ∆x′ (∆y′) or ∆x = π/{γbτ(1+αz)N∆x′} whichever

is greater. A detailed description of the spatial resolution in the Fresnel-transformed

signal can be found in Yamada et al.1 ,2

(i) if ∆x′ ≤
√

π

γbτ(1 + αz′)N
, then ∆x ≃ π

γbτ(1 + αz)N∆x′ , (18)

(ii) if ∆x′ ≥
√

π

γbτ(1 + αz′)N
, then ∆x ≃ ∆x′. (19)
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3.2. Holographic reconstruction

The similarity between the equations of the NMR signal obtained by MR diffrac-

tive imaging and the wavefront of light waves implies that holographic reconstruc-

tion of MR images is possible by recording the NMR signals as holograms and

reconstructing the images in a coherent optical imaging system. Turner proposed

the holographic reconstruction of MR images and reconstructed images using the

Fourier hologram produced by NMR signals obtained in the Fourier transform imag-

ing in 1985.15 The procedure to obtain MR images by the holographic method is

briefly discussed in the following section.

3.2.1. Principle of holography

In holography, a reference light is superimposed on an object light O(xi, yi) scat-

tered from an object.14,16 Assuming the case when the wavefront of the reference

plane-wave light R(xi, yi) = R0 exp(jβoptxi) is illuminated parallel to the x-axis,

the intensity of the interferometric fringe, H(xi, yi)opt, is given by the following

relation:

H(xi, yi)opt = |O(xi, yi) + R(xi, yi)|2

= |O(xi, yi)|2 + |R0|2 + O(xi, yi)R0 exp(jβoptxi)

+ O∗(xi, yi)R0 exp(−jβoptxi) (20)

= |O(xi, yi)|2 + |R0|2 + 2 Re[O(xi,yi)R0 exp{jβoptxi}] , (21)

where the ∗ denotes the complex-conjugate, R0 is the amplitude of the reference

light and βopt is a parameter determined from the wavelength of the light and the

angle between the reference light and the object light. The first and second terms

in Eq. (20) correspond to the intensities of the object light and the reference light,

and the third and fourth terms in Eq. (20) and the third term in Eq. (21) contain

information pertaining to the object light and its conjugate light, respectively. In

conventional off-axis Fresnel holography, the first and second terms are not used in

the formation of the image, so they can be replaced by a constant K as in Eq. (22)

H(xi, yi)opt ≈ K + 2 Re[O(xi, yi)R0 exp(jβoptxi)] . (22)

3.2.2. NMR hologram

The NMR signal in Eq. (14) can be rewritten as

v(x′, y′) = P exp(jβy′)v′(x′, y′), (23)

where

v′(x′, y′) =

∫∫∫ ∞

−∞
ρ(x, y, z) exp{−jγbτ(1 + αz)[(x′ − x)2 + (y′ − y)2]}dx dy dz.

(24)
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Comparing Eqs. (23) and (22), we find that v′(x′, y′) corresponds to the object

light O(xi, yi) and exp(−jβy′), giving an amplitude modulation to v′(x′, y′), corre-

sponds to the illumination by the reference plane-wave light in off-axis holography.

Therefore, the NMR hologram is produced by superimposing the constant K ′ for

the real part of the signal15

HNMR = K ′ + Re[v(kx, ky)], (25)

where the value of constant K ′ should be of sufficient magnitude such that HNMR

is always positive.

The reconstruction of images from the NMR hologram is achieved by illuminat-

ing the hologram using a plane-wave laser light. Fresnel holograms can reproduce

convergent and divergent light waves as well as direct transmitting light waves. A

convergent light wave reconstructs an image at a certain focal length. Let us denote

the focal length of the hologram, fhlg, as the distance from the hologram to the

plane in which the object image on the z = 0 plane is to be focused. fhlg is given

based on the Fresnel zone plate theory when the scan width of the quadratic field

gradient is set to xsmax(=N∆x′), and the size of the hologram on the liquid crystal

panel is Lh

fhlg =
πLh

2

λγbτxsmax
2
. (26)

A divergent light wave is the reproduced light wave scattered from the object,

enabling us to view the 3D image of the object through the hologram. Here, the 3D

image is viewed at a distance from the hologram calculated by Eq. (26), and the

size of the reproduced image approximates the size of the hologram’s Lh. When the

size of the hologram is small, the size of the reconstructed image becomes too small

to observe without the aid of specialist equipment. Therefore, we have attempted

to enlarge the size of the reconstructed image by increasing the size of the data

matrix of the hologram. However, the focal length of the hologram is enlarged by

the square of Lh by Eq. (26). A long focal length reduces the perspective because

the reconstructed images are observed at a considerable distance from the view

point. To solve this problem, we shortened the focal length of the hologram by

introducing computerized post processing.

Reducing the focal length of the hologram is similar to the process of image

reconstruction by inverse filtering. In the inverse filtering algorithm, the complex

conjugate of the Fourier transform of the point spread function, which is called the

“modulation transfer function”, is multiplied in the Fourier transformed domain

of the NMR signal such that blurring in the image is eliminated. The Short Focal

Length Hologram (SFH) procedure is equivalent to an original image by back-

propagating the diffracted wavefront of the object in optical holography. Since the

back-propagation of the wavefront produced by NMR holography requires for a

considerable distance, a portion of the back-propagation is executed numerically

in the inverse filtering algorithm and the remainder is executed optically. The γbτ

value of the NMR signal is enlarged by this computer-assisted back propagation,
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resulting in a shortening of the focal length of the hologram. In SFH, the coefficient

s, which approximates the value of γbτ depending on the effect of SFH, is used. Let

the pseudo-enlarged γbτ be γbτlarge. The NMR signal obtained by SFH is written as

v(x′, y′) = P exp

{
− j

(
π

2
− βy′

)}
F−1

xy

[ ∫ ∞

−∞

s

γbτ(1 + αz)

·R(kx, ky , z) exp

{
−kx

2 + ky
2

4γbτ
+

kx
2 + ky

2

4s

}
dz

]

= P exp

{
− j

(
π

2
− βy′

)}
F−1

xy

[ ∫ ∞

−∞

s

γbτ(1 + αz)

·R(kx, ky , z) exp

{
j
[s − γbτ (1 + αz)] (kx

2 + ky
2)

4sγbτ (1 + αz)

}
dz

]

= P exp(jβy′)

∫∫∫ ∞

−∞
ρ (x, y, z)

γbτlarge(z)

γbτ

· exp
{
−jγbτlarge(z) (1 + αz)

[
(x′ − x)2 + (y′ − y)2

]}
dx dy dz, (27)

where

γbτlarge(z) =
s

s − γbτ(1 + αz)
γbτ. (28)

Equation (28) implies that parameter γbτlarge becomes a value s/ {s − γbτ (1 + αz)}
times γbτ . For instance, if s is set to be 1.1 × γbτ , γbτlarge on the plane z = 0 becomes

11 times as large as γbτ , resulting in a shortening of the focal length by 1/11 from

Eq. (26).

Along with SFH, the difference in the focal length in front of and behind the

object, i.e. the size of the object in the z-direction, is taken into consideration, which

is important in stereo viewing applications. Figure 2 illustrates the shortening of

the focal length. Let zf and zb be the coordinates of the front and rear side of the

object. Since the focal length is a function of γbτ and z from Eqs. (27) and (28), it

can be written as fhlg(z, γbτ). Thus, fhlg(zf , γbτ) − fhlg(zb, γbτ) is calculated as

fhlg(zf , γbτ) − fhlg(zb, γbτ) =
πLh

2

λγbτx2
smax

{
1

(1 + αzf )
− 1

(1 + αzb)

}

=
πLh

2α(zb − zf )

λγbτx2
smax(1 + αzf )(1 + αzb)

. (29)

In the case when SFH is applied, fhlg(zf , γbτlarge)−fhlg(zb, γbτlarge) is calculated as

fhlg(zf , γbτlarge) − fhlg(zb, γbτlarge)

=
πLh

2

λγbτx2
smax

{
1

γbτlarge(zf)(1 + αzf )
− 1

γbτlarge(zb)(1 + αzb)

}

=
πLh

2α(zb − zf )

λγbτx2
smax(1 + αzf )(1 + αzb)

= fhlg(zf , γbτ) − fhlg(zb, γbτ). (30)
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NMR hologram
on LC-SLM

3D image
by NMR 

hologram

3D image with
shortening of

hologram focal length

view point

fhlg zb, γbτ large

fhlg z f , γbτ largefhlg zb , γbτ

fhlg z f ,γbτ

fhlg(z f ,γbτ ) - fhlg(zb,γbτ) fhlg z f ,γbτ large - fhlg zb ,γbτ large
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Fig. 2. Focal length of hologram can be shortened by enlarging the γbτ value numerically without
changing the difference in the focal length in front of and behind the object.

Equation (30) indicates that the distance is independent of the application of SFH,

but is enlarged by the square of size of the hologram Lh. Therefore, the size of the

hologram should only be enlarged by a factor by which the distance, fhlg(zf , γbτ)−
fhlg(zb, γbτ), does not become too large.

4. Design of Quadratic and Scanning Fields

4.1. Quadratic field gradient

The static field B0 is defined along the z axis. Consider a rectangular prism coil

located in B0 such that the center axis, the long axis, of the coil is parallel to B0 as

shown in Fig. 3(a). A quadratic field gradient can be generated when the current

supplied to the prism coil, flowing parallel in Fig. 3(a), is made to travel in the

reverse direction.4 Such currents can be produced by combining four sections of

rectangular coils as shown in Fig. 3(a). Let MLIL be the ampere turns supplied

by the current, r be the distance from the z-axis line to each current, and µ0 be

the permeability of free space. The field components in the x- and y-direction, Bx1

and By1, are produced as shown in Fig. 3(a)

Bx1 ≈ −2µ0MLIL

πr0
2

x, (31)

By1 ≈ 2µ0MLIL

πr0
2

y. (32)
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Fig. 3. Coil configuration for generating the quadratic field gradient; (a) Rectangular prism coil
is located in static field B0 such that the center axis of the coil is parallel to the direction of
B0. MLIL is the ampere turns supplied by the current, and r is the distance from the z-axis to
each current. When a current is supplied in the direction shown, the coil generates a field having
components Bx1 and By1 in the x- and y-directions, respectively. The field intensity deviation
of the field from the static field intensity B0 is a quadratic function and the contour map is a
cylindrical shape extending in the z-direction. (b) Configuration of coil generating a quadratic
field gradient and scanning field. The coefficient of the quadratic field is varied in the z-direction
by a factor α. Movement of the center position of the quadratic field is performed by supplying a
uniform field by the scanning coil pair.

The resultant field by the sum of B0 is rewritten as Eq. (33):

B =
√(

B2
0 + Bx1

2 + By1
2
)

= B0

[
1 +

Bx1
2 + By1

2

2B2
0

+ · · ·
]

≈ B0 + b(x2 + y2), (33)
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where the coefficient b is defined as follows:

b =
2µ0

2(MLIL)2

π2B0r4
. (34)

In order to vary the coefficient b of the quadratic field in the z-direction by coefficient

α, the radius r must to satisfy the following equation, where r0 is the radius of r

at z = 0.

1
(

r
r0

)4 = (1 + αz). (35)

Equation (36) is obtained by rearranging the z and r relation. Based on this equa-

tion, the orbit of the current must be in inverse proportion to the biquadratic power

of coil section radius of r:

z =
1

α

[(
r0

r

)4

− 1

]
. (36)

In this case, the coefficient of the quadratic field in Eq. (34) in the z-direction is

varied according to the following equation:

b(z) =
2µ0

2(MLIL)2

π2B0r4r0
4 {1/(1 + αz)}

= (1 + αz)b. (37)

Passing an electrical current through a line described by Eq. (36) is difficult. There-

fore, production of the field given by Eq. (37) is realized by approximating the cur-

rent through a curved line by a combination of currents on the straight line. This

was designed based on the use of a current inversing method,17 which revolves the

polarity of field pulse for phase encoding, shown in the pulse sequence of Fig. 1.

This method can produce an ideal quadratic field by removing unnecessary field

components in the z-direction due to linear currents, passing in a direction per-

pendicular to the static field. As α becomes large, the image out of the focal plane

is significantly blurred and the judgement as to whether the region of interest is

on the focal plane is simplified. However, designing such coils is a difficult process.

Considering blurring effects around the focal plane as well as the ease of design, the

coefficient α is set to be 0.033/cm. After calculation based on infinite straight wire

current theory, a satisfactory field coefficient can be obtained using two sections of

straight coils. Figure 3(b) shows the coil configuration. Figure 4 shows the results

of measuring and calculating the quadratic gradient when design parameters of the

generating coil are as follows: lz12 = lz23 = 25cm, l2 = 8.8, l1 : l2 : l3 = 1 : 1.25 : 1.6.

4.2. Scanning the quadratic field gradient

The position of the center of the quadratic field described in Sec. 4.1 can be moved

by superimposing an additional field component in the x- or y-directions. Here,

movement in the x-direction is taken into consideration. In scanning the quadratic
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Fig. 4. Variation of normalized coefficient of the quadratic field gradient in the z-direction.

field of Eq. (37), the field component in the z-direction is not used, which is com-

monly used in Fourier transform imaging, but the field component in the x- or

y-direction is used. In the case in which the field component in the x-direction,

Bx0, is superimposed on Bx1, the total x component, Bxt, is given by the following

equation:

Bxt = Bx0 + Bx1 ≈ Bx0 −
2µ0MLIL

πr0
2

x

≈ 2µ0MLIL

πr0
2

(x′ − x) . (38)

The position x′ at which Bxt becomes zero is given by;

x′ =
πr0

2

2µ0MLIL
Bx0. (39)

Equations (33) and (38) show that the center position of the quadratic field is moved

in the x-direction by x′. Since the coefficient of a quadratic field, b, is proportional

to the square of Bxt, by Eqs. (31) and (34), the strength of the scanning field

should be varied as a function of
√

1 + αz in the z-direction, being uniform in the

x–y plane.

4.3. Sweeping field gradient

A sweeping field is the field that is uniform in the x- and y-directions but can be

transformed linearly in the z-direction. When Eq. (10) is arranged, Eq. (41) can be
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represented by the combination of a uniform field and a gradient field of Gαz in the

z direction.

∆b0y(z) = (1 + αz) b0y, (40)

= b0y + Gαzz, (41)

where Gαz is set to be αb0y. A uniform field, b0y is generated by Helmholtz coil,

while a gradient field Gαz is produced by circular coil pair called Maxwell Pair.19

4.4. Linear field gradient

Arranging Eq. (11) to Eq. (43), the field gradient given by Eq. (11) can be produced

by the Gy gradient and the Gyz field gradient.

∆Gyz(y, z) = (1 + αz)Gyy, (42)

= Gyy + Gyzyz. (43)

Field gradient coil, which forms a field gradient by straight current passing in

vertical direction to the B0 field,20 was used for generating Gy gradient. And, Gyz

was designed using the Anderson’s equation designed for shimming the main static

field.21 Figure 5 shows photographs of the coil system designed.

5. Experiment

5.1. Experimental conditions

The MRI system used in the experiments generates a static magnetic field of

B0 = 0.0183T by the solenoid coil (the resonant frequency is 779 kHz). Since

the strength of the main static field of the MRI system is low and the SNR of

the NMR signal is small, we improved the SNR of images by averaging the sig-

nal over several dozen observations. For that reason, we have not performed flow

quadratic field
gradient coil

scanning coil

Fig. 5. Coil system for MR angiography diffractive imaging.
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imaging experiments; only static imaging experiments to verify the feasibility of the

proposed imaging technique were performed. The parameters of the experiments

were as follows: γbτ = 1.49 rad/cm2, the repetition time for the pulse sequence,

TR = 300msec, scan step of the quadratic field, ∆x′ = ∆y′ = 0.2 cm, and the

data matrix of the NMR signal was a 64× 64 matrix. The RF flip angle of the pre

and excitation pulses in Fig. 1 were 90◦, and the slice selection pulse, Gsel, and

the spoiling gradient pulse, Gsp, were not utilized. The experimental arrangement

used for online reconstruction of 3D angiographic images is illustrated in Fig. 6.

NMR signal detected by a receiver coil was amplified and converted to complex data

by AMP and PSD, respectively. The signal was then converted to digital data by

ADC and stored in the frame memory of the computer. The NMR hologram data

were computed from the NMR signal data, and transferred to the Liquid Crystal-

Spatial Light Modulator (LC-SLM) driver. The LC-SLM was a liquid-crystal panel

for the red color display of a video projector XP700X (Fuji Xerox). There were

1024× 768 pixels in a display area of 26× 21mm (pixel size 25 µm × 24µm). The

LC-SLM was an active matrix type and had a polycrystalline Si TFT circuit in each

pixel. Coherent plane wave laser light illuminated the hologram on the LC-SLM

LC-SLM

Lens 1

Lens 2

Lens 3
Spatial filter

3D images
of the object

Conjugate image

View point

He-Ne
Laser

MRI 0.0183T

AMPPSDADC

VGA

NMR signal

Hologram
data
HNMR

Computer

Imaging object
coil system

generating quadratic
field gradient

fhlg

fhlg

Fig. 6. Schematic of the experimental arrangement for online 3D reconstruction of MR angio-
graphic images. An NMR signal detected by a receiver coil is amplified and converted to complex
data by AMP and PSD, respectively. The signal is then converted to digital data by ADC and
stored in the frame memory of the computer. The NMR hologram data is computed from the
NMR signal data, and transferred to the LC-SLM driver. Coherent plane wave laser light is used
to illuminate the hologram on the LC-SLM and the amplitude of the input light is modulated by
the hologram. The 3D images are viewed through the hologram.
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and the amplitude of the input light was modulated by the hologram. A linearly

polarized He-Ne laser (4.5mW, 632.8 nm) was used as the light source. The zeroth-

order diffracted light wave does not contribute to image formation and the light

may be superimposed on the reproduced wavefront light of the object, so it was

removed using an optical filter in the spatial frequency domain as shown in Fig. 6.

3D images of the angiographic image were viewed through the hologram.

5.2. Results

5.2.1. Reconstructing images focused on an arbirary plane

Preliminary experiments were performed in order to determine if images focused

on an arbirary plane could be obtained from the signal scanned in two-dimensions.

To improve the SNR of the NMR signal, 64-times averaging of the NMR signal was

performed. Figure 7(a) shows the phantom (phantom I) used in the experiment,

where water poles were placed at equal intervals in the x- and z-directions. Images

were reconstructed numerically based on the reconstruction equation of Eq. (17).

Figures 8(a)–8(d) show the numerically reconstructed images focused on the plane

from z′ = 9mm to z′ = −9mm with a 6mm spacing. The reconstructed images

show that the water pole on a focal plane was imaged clearly. Conversely, the

definition of the water pole out of the focal plane was reduced in proportion to

the distance from the pole to the focal plane. These features provide an indication

of the depth of the imaging object. The results of the preliminary experiments

indicate that we can obtain images focused on an arbitrary plane by a signal scanned

in two-dimensions.

5.2.2. Imaging experiments with 3D tube

Image reconstruction experiments using an enhanced model were performed. The

phantom II with a 4mm diameter tube including water shown in Fig. 7(b) was used

in the experiments. Numerical and holographic reconstructions were performed.

Numerically reconstructed images obtained by adjusting the focal plane z′ from

z′ = 12mm to z′ = −12mm with an 8mm spacing are shown in Figs. 9(a)–

9(d). Holographically reconstructed images focused on the same planes are shown

in Figs. 9(a-o), (b-o), (c-o) and (d-o), respectively. Figure 9(e) shows the holo-

gram obtained from NMR signal data applying a SFH after 6-times enlargement

(384 pixels). Amplitude modulation in Eq. (23) and superimposition of an appro-

priate constant K ′ in Eq. (25) were performed by numerical calculation using

a computer. Without SFH, the enlarged hologram had a focal length of 193 cm

under the following conditions: γbτ = 1.49 rad/cm2, xs max = 12.8 cm, and Lh =

9.8(1.63×6)mm, With the SFH using s = 1.6 rad/cm2, the focal length of the holo-

gram was reduced to 13.4 cm, thereby enabling close observation of the 3D images.

In the numerical reconstructed images, we can obtain a 3D-distribution of the

propagation wavefront by calculating images at small intervals in the z-direction.
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Fig. 7. Phantoms used in the experiments: (a) phantom I, (b) phantom II.

Figure 10 shows the 3D-distribution of the propagation wavefront of phantom II.

Image A shows the projectional view of the image, and B and C show the cross-

sectional views of the wavefront in the x = x′ and y = y′ planes, respectively. Arrows

pa, pb and pc denote the focal points of regions a, b and c, where the diffracted

wavefront becomes the narrowest, having the highest intensity in the z-direction.

This wavefront information provides the spatial distribution of the object in the

z-direction.

There are some regions in which the amplitude of the focal plane images were

emphasized by the superimposition of blurred image components outside the focal
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Fig. 8. Four reconstructed images of phantom I, each focused from (a) to (d) with 6-mm spacing.
The water pole on the focal plane is clearly imaged.

plane. Such regions have a higher intensity and are suspected to contain diseased

vessels. In this case, it may difficult to distinguish between normal and diseased

regions. In order to reduce these interference problems, another experiment in which

the view point was varied was performed. Figures 11(a)–11(d) show the results of

using the phantom II in different locations to the case of Figs. 9(a-o), (b-o), (c-o) and

(d-o) show the 3D images focused on the same planes, by adjusting the focal length

of the CCD camera. Figure 8(e) shows the hologram produced by the NMR signal.

Since the focal length of the hologram was shortened to 13.4 cm, the amplitude of

the hologram roughly represented the distribution of the phantom structure. The

manner in which the interference is changed and the absence of higher intensity

regions in the reconstructed images enable us to conclude that the suspected region

is not diseased.

6. Discussion

In general, MR flow imaging is based on either the Time-Of-Flight (TOF) or the

Phase Contrast (PC) methods. The TOF method is based on the enhancement

of signal intensity by the spins entering the slab between successive excitations.

Since the RF excited region in the proposed imaging technique is similar to that

in the 3D TOF method, we can conclude that TOF method is applicable to MR

diffractive imaging. PC sequences contain incremental bipolar gradients on x-, y-,

or all 3-axes to impart phase shifts in proportion to flow speed along each axis.
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Fig. 9. Reconstructed images of phantom II by numerical and holographic methods: (a)–(d) show
the numerically reconstructed images focused on planes from z′ = 12 mm to z′ = −12mm at a
spacing of 8mm. (a-o)–(d-o) show the 3D images obtained using the holographic method, each
focused on the same planes as (a)–(d) by adjusting the focal length of the CCD camera. (e) shows
the hologram produced by the NMR signal using the proposed imaging technique. The focal length
of the hologram is reduced to 13.4 cm.

Typically, a reference scan is used to remove effects from the phase shifts that are

unrelated to flow. The PC method is also applicable to MR diffractive imaging in

principle, however, it must be noted that the phase of the reconstructed image is

shifted not only by spin movement but also by the deblurring effects of the out-

of-focus plane components. In MR diffractive imaging, reconstructed images are

considered as the sum of the sliced image components in the z-direction, which

consist of an in-focus and out-of-focus plane components. The phase of out-of-

focus images is shifted by the deblurring effect as shown in the diffractive equation.

Therefore, when calculating the phase shifts relating to the spin movement, the

reference image must be focused on the same plane as the flow-encoded image for

the depth-direction such that phase shifts due to the out-of-focus plane components

are removed.
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Fig. 10. Three-dimensional distribution of the propagation wavefront calculated using the numer-
ical method. Image A shows the projectional view of the image, and B and C show the cross-
sectional views of the wavefront on the x = x′ and y = y′ planes, respectively. The arrows show
the focal point of the region a, b, c on the image A, where the diffracted wavefront is minimized
and exhibits the highest intensity in the z-direction.

Image reconstruction from the diffracted wavefront can be performed either

optically on an optical bench or digitally using a computer. Both methods have

advantages and disadvantages. The former can be used to reconstruct 3D images

that can be viewed without specialist equipment. However, the image SNR is infe-

rior to the computed image due to speckle noise arising during reconstruction. In

contrast, in the latter method, images free from speckle noise can be obtained and

it is easier to identify the 3D-distribution of the object by varying the focal plane of

the images. Moreover, improvement of the image SNR or enhancement of the info-

cal image may be performed using image processing techniques. At this time, we

advocate supplementing the reading of the computed images with NMR holograms.

A 3D holographic display system for medical imaging has already been devel-

oped and feasibility studies have been performed.18 It was found that holographi-

cally reconstructed 3D images detected subtle anatomical features that were hidden

by overlapping structures in radiographs and 3D CT images. However, the system

requires several dozen minutes and significant computation capability to produce

each 3D-hologram. Conversely, in MR diffractive imaging, the hologram data is

obtained from the NMR signal, since the NMR signal contains a description of the

wavefront recorded on the hologram. In principle, real-time holographic reconstruc-

tion of 3D images is possible when NMR signals with a high SNR are transformed

into holograms as soon as they are acquired.
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Fig. 11. Reconstructed images of phantom II viewed from different angles: (a)–(d) show the
numerically reconstructed images focused on planes from z′ = 12 mm to z′ = −12mm at a
spacing of 8mm. (a-o)–(d-o) show the 3D images obtained using the holographic method, each
focused on the same planes as (a)–(d), by adjusting the focal length of the CCD camera. (e) shows
the hologram produced by the NMR signal using the proposed imaging technique. Since the
interference differs to that in Fig. 9, these images provide supplemental information to aid in the
diagnosis.

As the LC-SLM used in the experiment had a 1.3 inch-LCD panel designed for

video projection, the size of the reconstructed image was limited to be less than

the size of the LC panel. If the LC panel is replaced by a large LCD panel such

as those used for laptop computers, larger-sized images would be observed. The

clinical significance of the images are significantly improved if they are viewed in

real-time.

7. Conclusion

Magnetic resonance diffractive imaging is proposed and demonstrated as a new

approach to MR angiography. The technique has two distinct advantages over

existing techniques; the possibility of fast angiographic imaging and the online

reconstruction of 3D volumetric images in the holographic technique. To verify
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the feasibility of this imaging method, static imaging experiments using an ultra-

low-field MRI were performed. Images were reconstructed using the numerical and

holographic methods. In the numerical method, images focused on an arbitrary

plane in the depth direction could be reconstructed, which is helpful in the identi-

fication of the 3D-distribution of the object. In the holographic method, 3D images

of the phantom were viewed through a hologram produced by an NMR signal. In

addition, it was shown that acquiring images from different angles is useful in order

to obtain supplemental information for recognizing the spatial distribution of the

object. The experimental results show that the proposed imaging technique offers

the possibility of fast angiographic imaging and enables the online reconstruction

of 3D images of vessels. A 0.2 T MRI system is under development for performing

flow imaging with high-SNR signals.

Acknowledgments

This research was partly supported by a Grant-in-Aid for Encouragement of Young

Scientists from the Ministry of Education, Science, Sports and Culture, Japan and

Nakatani Electronic Measuring Technology Association of Japan.

References

1. Y. Yamada, K. Tanaka and Z. Abe, NMR reconstruction imaging using a scannable
nonlinear field gradient, in Proc. of 14th Int. Conf. on MBE, 17, 25 (1985) 834–835.

2. Y. Yamada, K. Tanaka and Z. Abe, NMR Fresnel transform imaging technique using
a quadratic nonlinear field gradient, Rev. Sci. Instrum. 63 (1992) 5348–5358.

3. S. Ito, O. Sato, Y. Yamada and Y. Kamimura, Online holographic reconstruction of
NMR images by means of a liquid crystal spatial light modulator, in Proc. IEEE Int.
Conf. on Image Processing 96, III, Lausanne, Switzerland, pp. 531–534, 1996.

4. S. Ito, Y. Yamada and Y. Kamimura, Real-time holographic reconstruction of NMR
images in Fresnel transform imaging technique, in Proc. of IEEE Int. Conf. on Engi-
neering in Medicine and Biology Society, 2.2.1-e, Chicago IL, USA, pp. 467–469, 1997.

5. S. Ito, Y. Yamada and Y. Kamimura, Real-time holographic reconstruction of NMR
images using a liquid crystal-spatial light modulator, Systems and Computers in Japan
31 (2000) 70–80.

6. S. Ito, Y. Kamimura and Y. Yamada, Holographic running reconstruction of MR
images in phase scrambled Fourier imaging technique, in Proc. 7th International Soci-
ety for Magnetic Resonance in Medicine, 1 Philadelphia, USA, p. 97, 1999.

7. E. Wolf, Three-dimensional structure determination of semi-transparent objects from
holographic data, Optic Comm. 1 (1969) 153–156.

8. S. Kawata, O. Nakamura and T. Noda, Laser computed-tomography microscope,
Appl. Opt. 29 (1990) 3805–3809.

9. T. Noda, S. Kawata and S. Minami, Three-dimensional phase-contrast imaging by a
computed-tomography microscope, Appl. Opt. 31 (1992) 670–674.

10. D. A. Agard, Y. Hiraoka and P. Shaw, Fluorescence microscopy in three dimensions,
Methods in Cell Biology, 30 (New York: Academic Press, 1989), pp. 353–377.

11. C. K. Avinash and M. Slaney, Principles of computerized tomographic imaging
(New York: IEEE Press, 1988).



Techniques in Magnetic Resonance Diffractive Imaging 59

12. R. K. Mueller, M. Kaveh and G. Wade, A new approach to acoustic tomography and
applications to ultrasonics, in Proc. IEEE 67 (1979) 567–587.

13. A. J. Devancy, A filtered backpropagational algorithm for diffraction tomography,
Ultrason, Imaging 4 (1982) 336–350.

14. G. W. Stroke, An introduction to coherent optics and holography (New York: Aca-
demic Press, 1969).

15. R. Turner, Optical reconstruction of NMR images, J. Phys. E. Sci. Instrum. 18 (1985)
875–878.

16. D. Gabor, A new microscopic principle, Nature 161 (1948) 777–778.
17. N. Kanzaki, S. Tajima, S. Ito, Y. Kamimura and Y. Yamada, Reconstruction image

due to defectiveness of characteristic field in NMR Fresnel transform imaging, IEICE
Transactions on Information and Systems, J81-D-II (1998) 2867–2874.

18. D. D. Robertson, C. J. Sutherland and B. W. Chan, Depiction of pelvic fractures
using 3D volumetric holography: Comparison of plain X-ray and CT, J. Comp. Assist.
Tomogr. 19 (1995) 967–974.

19. J. Rodney and M. Vaugham, Representation of axisymmetric magnetic fields in com-
puter programs, IEEE Trans. Ed. ED-19, 2 (1972) 44.

20. P. Mansfield and P. G. Morris, NMR imaging in Biomedicine, in Advance in Magnetic
Resonance Suppl. 2, (New York: Academic Press, 1982).

21. W. A. Anderson, Electric current shims for correcting magnetic fields, Rev. Sci.
Instrum. 32 (1961) 3.



This page intentionally left blankThis page intentionally left blank



CHAPTER 3

TECHNIQUES IN 3D ASSESSMENT OF TRACHEAL-STENOSIS

BY THE MEAN OF SPIRAL COMPUTED

TOMOGRAPHY (S-CT) AND THEIR APPLICATIONS

ERICH SORANTIN, DARIUS MOHADJER and FRANZ LINDBICHLER

Section of Digital Information and Image Processing
Department of Radiology, Univ. Hospital Graz
Auenbruggerplatz 34, A-8036 Graz, Austria

LASZLO G. NYUL and KALMAN PALAGYI

Department of Applied Informatics
Josefz Attila University Szeged, Arpad ter 2

H-6720 Szeged, Hungary

BERNHARD GEIGER

Siemens Corporate Research Princeton Inc.
755 College Road East Princeton

NJ 8540, USA

Endotracheal intubation is the most common cause of Laryngo-Tracheal Stenoses (LTS),
followed by trauma and prior airway surgery.1–3 In rare cases LTS may have resulted also
from inhalation injuries, gastro-esophageal reflux disease, neoplasia and autoimmune dis-
eases like Wegeners granulomatosis or relapsing polychondritis.1,4 In pediatric patients
vascular compression of the trachea is a common cause of tracheal indentations.5 Clin-
ical management of these conditions requires information on localization, grade, length
and dynamics of the stenosis. Exact LTS information is necessary, since stenoses with
a length less than 1.0 cm can be treated by an endoscopic surgery.6,7 Besides Fiberop-
tic Endoscopy (FE), which represents the gold standard for airway evaluation, imag-
ing modalities like conventional radiography, fluoroscopy, tracheal tomograms, Magnetic
Resonance Imaging (MRI) and above all Spiral Computed Tomography (S-CT) are an
essential part of the clinical work.1,8 S-CT and the recent introduction of multislice
imaging allows volumetric data acquisition of the Laryngo–Tracheal Tract (LTT) during
a short time span. Decreased motion artifacts and increased spatial resolution form the
basis for high quality post processing.9,10 The improved performance of today’s worksta-
tions permits the use of sophisticated post processing algorithms even on standard hard-
ware like personal computers. Thus real time 3D display and virtual endoscopic views
(virtual endoscopy) are just one mouse click away. Other algorithms compute the medial
axis of tubular structures like airways or vessels in 3D, which can be used for the calcula-
tion of 3D cross sectional profiles for better demonstration of caliber changes.11 Thus dis-
play of S-CT axial source images is moving rapidly to 3D display. Moreover, established
network connections within and between institutions allows telemedical cooperation.
Web technologies offer an easy to use way for information exchange. The objective of
this paper is to present an overview on 3D display and quantification of LTS as well as
to provide information how these results can be presented and shared with the refer-
ring physicians on the hospitals computer network. This article is structured in seven
parts; namely: S-CT data acquisition for LTS imaging; selected 3D image post processing
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algorithms; 3D display; Virtual endoscopy; Objective LTS degree and length estimation
using LTT 3D — cross-sectional profiles; Intranet applications; and a conclusion is drawn
in the final section.

Keywords: Endotracheal intubation; LTS; Spiral Computed Tomography.

1. S-CT Data Acquisition for Imaging of LTS

1.1. Positioning

All CT studies should be performed in helical mode. The patient is scanned supine

and special care has to taken for head positioning in order to faciliate comparable

results for follow-up studies. In our institution we prefer a head position, where the

vertical beam of the CT machine laser positioning tool targets the lateral orbital

angle and the tragus cartilage. This procedure puts the head in a neutral position

and is easy to reproduce.

1.2. Scan range

Helical scanning is performed from the caudal mastoid border to the tracheal

bifurcation.

1.3. Scan parameters

Modern multislice scanners now allow a beam collimation of about 0.75mm to

1.25mm. In order to keep the radiation dose as low as possible, the highest pitch

levels, as recommended by the manufacturer, are preferable and the lowest achiev-

able tube current should be used. At reconstruction an overlap of 50% to 70% should

be selected. Thus a whole study ends up with about 200 to 300 axial source images.

1.4. Intravenous contrast medium injection

For LTT evaluation there is usually no need for intravenous (i.v.) contrast medium

injection. Exceptions are oncologic staging investigations, especially laryngeal can-

cers, and the suspicion of vascular anomalies in children. Whenever i.v. contrast

injection is necessary the usuage of an power injector is recommended whereby the

flow rate should be set to 3ml/s and the bolus tracking systems used.

2. Selected 3D Image Post Processing Algorithms

2.1. Airway segmentation

Segmentation can be defined as procedure to define the boundaries of the “Organ of

Desire” or more general speaking “Regions of Interest” (ROI’s). The segmentations

result in a binary mask image (volume), where the value “1” represents pixels

belonging to the segmented ROI’s. All other pixels are set to the value “0”. An
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ideal algorithm should be as much as possible free from the operators in influence

and fast. Several algorithms can be used — from simple manual tracing and region

growing to more sophisticated ones like the “Fuzzy Connectedness” algorithm —

the later ones will be presented in more detail below.

2.1.1. Region growing

Due to the air content of the Laryngo Tracheal Tract (LTT) the attenuation coef-

ficients are well below −150 Hounsfield Units.12 Axial S-CT slices are displayed

at lung window settings (center/width −600/1200 Hounsfield Units). By starting

from a seed point inside the trachea, neighboring voxels are added if their attenua-

tion coefficients are below a specified threshold (usually less than −150 Hounsfield

Units).12 Due to the partial volume effects boundary pixels, respective voxels exhibit

a variation of the attenuation coefficients. Thus organ boundaries are frequently not

closed on axial source images. Therefore, by choosing a fixed threshold value the seg-

mented contour is kept either to “close” function or “bleeding” occurs (meaning the

extension of the segmented region to unwarranted dimensions). The chosen thresh-

old can be adapted on slice-to-slice basis to the individual S-CT patient data.13

Next, the middle of the segmented region is determined and projected to the next

slice, where it serves as a new seed point. The entire process is repeated until the

whole upper respiratory tract has been defined and each step is performed under

the control of the operator. This approach inherits the disadvantage of being highly

operator dependent.

2.1.2. Fuzzy connectedness

“Fuzzy Connectedness” captures the image inherent fuzziness as well as the spatial-

coherence of the voxels in a well defined manner.14,15 In case of LTT, air has a well

defined range of Hounsfield units. Therefore the parameters, needed for the def-

inition of the fuzzy affinities, can be set once and used for all studies without a

per-study training. On one or more axial slices the operator selects by a mouse

click a “seed point” within the LTT center for seeding the fuzzy connected objects.

Since absolute “Fuzzy Connectedness” is used and a single object is segmented,

the uncertain boundary regions (due to partial volume effects) are not captured

by the fuzzy objects. Thus the resulting segmented LTT is uniformly smaller than

the physicians expectations. Hence a 3D dilation using a 3 × 3 × 3 structuring

element is applied to the segmented fuzzy connected object. Finaly the operator

controlls the results of segmentation on the computer screen at fixed window set-

tings (center −600 Hounsfield units, width 1200 Hounsfield units), where the seg-

mented LTT boundaries are outlined on original axial slices (Fig. 1). According to

our own investigations the “Fuzzy Connectedness” algorithm was applied for LTS

segmentation in 36 patients and 18 normal controls. On average 3.9 slices had to

be edited in patients and 2.4 in the normal controls — this difference was found
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Fig. 1. S-CT, LTT segmentation based on fuzzy connectedness: The dashed line, superimposed
on the original axial S-CT image outlines the segmentation results of a normal (upper part) and
a pathologic tracheal part (lower part).

to be statistically insignificant (p = 0.06). In 90% of all cases only less than five

slices had to be corrected manually. In another study the accuracy and precision

of three different approaches for LTS segmentation were investigated, namely: Free

hand tracing, manual tracing augmented by splines and the “Fuzzy Connectedness”

algorithm.16 Segmentation results revealed no statistically significant differences
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regarding accuracy and precision, but the “Fuzzy Connectedness” algorithm proved

to be the fastest, just lasting 15–20 seconds for a complete run of LTT segmentation.

Therefore the conclusion can be drawn, that the “Fuzzy Connectedness” algorithm

represents a fast and robust tool for LTT segmentation.

2.2. Computation of the LTT skeleton

The notion of skeleton was introduced by Blum as a region-based shape fea-

ture/descriptor which summarizes the general form of objects/shapes.17 A very

illustrative definition of the skeleton is given using the prairie-fire analogy: The

object boundary is set on fire and the skeleton is formed by the loci where the

fire fronts meet and quench each other. This definition can be naturally extended

to any dimension. The thinning process is a frequently used method for produc-

ing an approximation to the skeleton in a topology-preserving way.18 It is based

on digital simulation of the fire front propagation: Border points (i.e. 1’s that are

“adjacent” to 0’s) of a binary object that satisfy certain topological and geomet-

rical constraints are deleted in iteration steps. The entire process is repeated until

only a reasonable approximation to the skeleton is left. In 3D, there are two major

types of tinning: These algorithms produce either the medial surface of an object

(by preserving surface endpoints) or can extract the medial lines of an object (by

preserving line end-points).19 Figure 2 illustrates the results of the two types of thin-

ning approaches, whereas Fig. 2(c) demonstrates that extracting medial lines yields

the medical relevant information of the medial axis for “tubular” objects like LTT

and blood vessels. Most of the existing thinning algorithms are parallel, since the

fire front propagation is by nature parallel, meaning that all border points satisfying

the deletion condition of the actual phase of the process are simultaneously deleted.

A recently published parallel 3D 6-subiteration directional thinning algorithm20 is

applied to extract the medial lines from the segmented LTT. Figure 3 exhibits an

Fig. 2. Example of the two types of 3D thinning. Part (a) depicts the character “A” as a 3D
synthetic object, (b) its medial surface, and (c) and its medial lines. The medial lines approximate
the center line of the object, which is the medical relevant information.
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Fig. 3. 3D tracheal model from a patient suffering from a tracheal stenosis. Site of the stenosis
is indicated by the white arrow. The tracheal medial axis is shown as bright line in the center.

example of the computed skeleton in a patient suffering from a tracheal stenosis.

Since skeletonization is rather sensitive to “boundary noise” (i.e. the roughness of

the boundary of the object), the skeleton can contain several unwanted/parasitic

segments. To overcome this problem, pruning of the resulted skeleton (as a post-

processing step) is performed. Since the extracted LTT medial axis exhibits local

variations, thus making a following smoothing according Casteljau’s algorithm is

necessary.21

2.3. Calculation of the LTT 3D cross sectional profile along the

LTT medial axis

Along the extracted LTT medial axis the orthogonal cross sectional area is com-

puted using the interpolated data volume, which represents the segmented LTT.



3D Assessment of Tracheal-Stenosis 67

Thereafter the cross sectional areas are plotted against the positions of the LTT

medial axis. Localization of vocal cords on the LTT medial axis is chosen as the

zero position. Positions on the LTT medial axis lower to the vocal cords are marked

positively and those above negatively. LTS regions can be detected as a decrease

of the cross sectional area. In order to facilitate anatomic cross reference between

endoscopy, imaging and LTT 3D cross sectional charts, the positions of the vocal

cords, caudal border of cricoid (end of subglottic space) and jugular fossa are auto-

matically marked as vertical bars on the line charts too. Additionally, for better

illustration of the plotted cross sectional areas, four circles are drawn on the chart

in real size, whose areas cover the range between the 5th and 95th percentile of the

calculated cross-sectional areas. Figure 4 shows a 3D model of a trachea in a patient

suffering from a tracheal stenosis as well as the corresponding cross sectional profile.

3. 3D Display

In medical literature it is well known that the mental reconstruction process of mul-

tiple, transaxial sections may fail in patients with tracheobronchial deformities.22

On axial CT the shape of tubular structures like airways depends on the angle

between the structure itself and the slice plane: If this angle is 90 degrees to the

longitudinal axis of the tubular structure, the true cross section, e.g. a circle, is

displayed. If this angle is oblique the displayed shape will change, e.g. it will get

more elliptic. Therefore the true caliber and shape in 3D cannot be determined

on axial slices alone. 3D reconstructions help to avoid this problem. Remy–Jardin

published a paper regarding the comparison between reading axial slices alone and

volume rendered transparent bronchographic images. It was found that the vol-

ume rendered bronchographic 3D reconstructions were superior to reading axial

slices alone. 3D display allows one to demonstrate clinical colleagues CT findings

in an easy and impressive way. It addition, they are useful for follow-up investi-

gation, since the underlying pathoanatomy is displayed on just a few views. In

medical image processing mainly “Multiplanar Reformation”, “Surface Rendering”

and “Volume Rendering” are used — these techniques will be described in the

following sections.

3.1. MultiPlanar Reformation (MPR)

For computing MPRs all source images are stacked in order to built up a volume.

Care has to be taken in order to keep the correct aspect ratio — either interpola-

tion is used or the volume is stretched according the ratio between the x-, y- and

z-voxelsize. MPRs are well known for the assessment of spinal CT investigations.

Similar, sagittal and coronal MPR enable additional LTS views. In the case of a

buckled LTT it is not possible to display the LTT in one view, but this can be

achieved using curved MPR’s. In addition, thick MPR’s (MPR with a thickness of

more than one pixel) can be used for better overview (Fig. 5).
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Fig. 4. LTT 3D cross sectional chart from a patient suffering from tracheal stenosis (shown on left side). The short vertical bars represent the three
chosen anatomic landmarks. Distal the caudal border of the cricoid cartilage a drop of the cross sectional area can be seen, representing the stenotic
segment. For better anatomic cross reference three landmarks are displayed as short vertical bars — position of vocal cords (indicates the chosen
zero point), caudal border of cricoid cartilage and jugular fossa. Distal the caudal border of the criocoid cartilage a drop of the cross sectional area
can be seen, thus representing the stenotic segment. For better correlation between caliber changes on 3D — cross sectional chart and the “Real
World” there are four circles drawn in real size below the chart, covering the range of the plotted cross sectional areas. In addition to the table with
the quantification results shown the following abbreviations are used: Degree, represents the degree of caliber changes in percent; length, represents
the length of the LTT caliber changes, calculated by the difference between the end pos and the begin pos (see below); min pos is the position of the
minimal cross sectional area on the 3D cross sectional chart (equal to distance to vocal cords); min cross is the absolute value of the minimum cross
sectional area at min pos; begin pos is the starting point of local airway caliber change — a deflection of the start of the 3D cross sectional profile;
end pos is the end point of local airway caliber change — similar to begin pos.
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(a) (b)

Fig. 5. S-CT, thick MPR reconstruction: Tracheal compression caused by the brachiocephalic
artery (marked by black arrow). (a) shows an ap-view, and (b) a lateral view. On both views the
tracheal compression can be percepted.

3.2. Surface rendering (Synomina: Shaded surface display,

iso-contour rendering)

After segmentation the contours of the ROIs can be extracted easily. Using the

morphological operation of erosion, one layer of the segmented surface voxels can

be “peeled off”.23 The difference between the resulting data volume and the original

volume are just the surface voxels. Therefore once the data volume has been sub-

tracted from the original volume only the contours will remain. In order to obtain

polyhedral surface models these contours are converted into 3D models using the

Delaunay triangulation method.24 Figure 6 demonstrates the individual steps for

generating these models. These surface models can be rendered at interactive speed

at a workstation. Properties such as color and transparency may be manipulated.

In addition, real time rotation, panning and zooming are possible. By conversion

of such 3D models according the standards of the Virtual Reality Modeling Lan-

guage 2.0 (VRML) they can even be visualized on a Personal Computer using

a standard web browser.25 The main disadvantage of “Surface Rendering” is the

necessity of segmentation. The procedure works well only in areas of high con-

trast — e.g. 3D — display of bones based on native CT scans, or air filled organs

like the LTT. As already mentioned in Sec. 2.1, due to partial volume effects the

boundaries of biological structures like the LTT are often not closed, thus lead-

ing to “bleeding”. Consecutively, (sometimes exhausting) editing of the segmented

boundaries are necessary. Moreover, only the prior segmented organ boundaries can
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Fig. 6. The individual steps for creating a polyhedral surface model are demonstrated: (a) The
LTT contours after segmentation, (b) result after triangulation and (c) the final result after arti-
ficial coloring.

be displayed in 3D. Thus for display just about 10% of all available source data

are used. Therefore anatomical information is limited to the boundaries of the seg-

mented organs. Due to its undemanding computational needs “Surface Rendering”

was one of the earliest techniques for 3D display.

3.3. Volume rendering (Synonym: Percentage rendering)

A completely different approach is used by the volume rendering algorithm. No

segmentation is needed using this 3D reconstruction method. Basically, an “opac-

ity curve” is constructed for a given data volume. This curve assigns every grey

value a particular opacity, ranging from 0% (= completely transparent) to 100%

(= completely opaque). By manipulating the opacity curve different anatomical

structures can be displayed. A virtual ray is sent through the data volume. All

grey values along the ray are collected and their opacity is changed according the

chosen shape of the opacity curve. Details of the algorithm have been published

elsewhere.9 In order to achieve high quality 3D reconstructions with multiorgan

display the desired organ systems need good contrast to the surrounding anatomy.

As mentioned above, whenever vessels are of interest, intravenous contrast admin-

istration by a power injector is mandatory. Volume rendering offers several chal-

lenges for the radiologist in presentation of S-CT. The most important step is the
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(a) (b)

Fig. 7. S-CT after iv. contrast injection, multiorgan display: “Volume Rendered” 3D reconstruc-
tion of the neck and upper chest in a patient suffering from a tracheal carcinoma where a tracheal
stent was also implanted: (a) View from outside, (b) result after changing the opacity curve to a
bronchographic appearance of the LTT. The implanted stent as well as the laryngeal cartilage are
depicted by the dark areas.

adjustment of the opacity curve. This can be tricky sometimes especially at low

contrast states. By using different colors for the airways and displayed surrounding

anatomy, topographic relationships can be displayed clearly (Fig. 7). The LTT as

well as the surrounding anatomy can be shown in a comprehensive way.

3.4. Hybrid rendering

The combination of “Surface Rendering” and “Volume Rendering” is called “Hybrid

Rendering”. This makes sense, if in low contrast situations (e.g. tumors) the

pathoanatomy cannot be displayed by “Volume Rendering” alone. Prior segmen-

tation (even using manual tracing) allows to define the boundaries of low contrast

structures. By displaying both, the segmented boundaries by “Surface Rendering”

and the surrounding anatomy by “Volume Rendering”, usually a sufficient 3D rep-

resentation, can be achieved.

4. Virtual Endoscopy

Virtual Endoscopy (VE) was defined as a method that creates visualizations from

3D medical image scans similar to those produced by fiberoptic endoscopy.26

There are many synonyms of VE especially concerning the gastro-intestinal
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tract: CT-based virtual endoscopy, virtual colonoscopy, CT colography, three

dimensional S-CT pneumocolon, 3D colonography, to name a few.27 Rogers has

suggested a new policy in naming VE images, mainly attaching the suffix-graphy

to the organ system rendered. In order to indicate which imaging modality was used,

a prefix is formed from that modality e.g. CT-tracheabronchography (CT-TB), CT-

colonography.27 The generation of these virtual views from inner body surfaces is

based on surface — and volume rendering algorithms as described above. Addition-

ally perspective is used, i.e. objects closer to the virtual camera will appear larger

than objects of the same size farther away from the virtual camera (Fig. 8). It is the

same effect as looking down from a skyscraper: A person just beneath us appears

properly sized whereas people down in the street appear tiny.

Fiberoptic Tracheoscopy (FTB) enables the inspection of the airway surface

including mucosal changes as well as the dynamics. Information regarding the

surrounding anatomy is limited to the perception of abnormal shapes or vessel

Fig. 8. Virtual endoscopic view of the larynx entrance based on S-CT.
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pulsations. S-CT on the other hand, due to its excellent spatial and contrast reso-

lution, provides information on intra- and extraluminal anatomy, but visualization

of mucosal changes is not possible. As mentioned above, the shape of the trachea

or bronchus depends on the angle between the axis of the trachea or bronchus and

the CT slice plane. In a normal individual, where the trachea is just a little bent

to the right and slightly angulated from superior anterior to caudal posterior, it

can be expected that the axial S-CT slice will characterize the shape of the airways

properly. But this may not be assumed in pathological cases, where the trachea can

be buckled in any direction. Therefore LTS characterization on axial slices can be a

troublesome topic. But CT-TB enables the radiologist to navigate through the air-

ways in any direction interactively, to inspect every part from different views and to

assess changes in diameter and shape directly, similar to FTB. In addition, findings

of CT-TB can be easily compared to those of FTB. This is supported by a study of

McAdams, who compared findings on axial CT slices and those of CT-TB in lung

transplant recipients regarding the length and degree of airway stenosis.28 They

concluded that CT-TB was more accurate than axial CT for diagnosis of clinical

relevant stenosis. A study of our institution revealed, that by comparing findings of

axial CT slices (including MPR) with axial CT slice, MPR and virtual endoscopy,

there was a clear advantage of using all three display modes and a reduction of false

negative findings.13 At FTB, the film documentation of a patients CT will be on

the light box and the endoscopist tries to match the information from FTB with

that of CT in his/her mind.

Computer simulations can help in this situation. Since the underlying S-CT

slices of CT-TB contain information about the surrounding anatomy too, this can

be exploited by displaying additional views. As shown in Fig. 9 the global view of

the airways, the axial S-CT slice and the virtual endoscopic view can be displayed

simultaneously. The position of the virtual camera is marked on all views in order

to establish anatomical cross reference. This display allows one to study the topo-

graphic relationships of a patient’s anatomy in a comprehensive way. In addition,

this kind of display is a promising tool for teaching students and residents. There

are even more advantages of CT-TB. At planning for a transbronchial biopsy, the

best suited place for sampling can be chosen interactively.29 Potential hazards of

injuring vessels or other vital structures can be simulated without any danger to

the patient. If transparent rendering of the tracheal wall is used, the extraluminal

anatomy can be inspected within the 3D shape. Airways that cannot be explored by

FTB, can be passed with the virtual endoscope and virtual, retrograde endoscopic

views can be computed as well (Fig. 10). This is far beyond the possibilities of FTB.

Moreover, for imaging of caliber changes during the respiratory cycle dynamic CT

has to be performed, which is not undertaken routinely at every institution due to

the inherited increased radiation. Therefore both, FTB and S-CT including CT-TB,

are not competitive but complementary.
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Fig. 9. “Virtual Endoscopy” — composition of the workstation screen, which is divided into
four parts: Left upper part displays a “Volume Rendered” semitransparent 3D reconstruction of
the chest, the right upper part a sagittal MPR, whereas in the left lower part the axial slice
in lung window settings is shown. On all three parts there is superposition of the position and
opening angle of the virtual camera. On the right lower quadrant the virtual endoscopic view
using “Volume Rendering” is shown.

5. Objective LTS Degree and Length Estimation Using

LTT 3D — Tracheal Cross Sectional Profiles

Clinical management of patients suffering from LTS is based on FTB and imaging

modalities. Based on FE there are several classifications for LTS, but they are either

not practicable or do not predict the clinical course.1,30 Moreover, at FTB the esti-

mation of the length and degree in LTS is regarded to be operator dependent.31

Unfortunately imaging modalities have their inherent weak points too. Conven-

tional radiographs allow one to estimate the sagittal and transverse diameter of the

airways. For assessment of LTS, where the trachea may be shaped asymmetrically,

sagittal and transversal diameters do not characterize the shape of the airways prop-

erly. This was confirmed by Huber et al. who investigated different methods includ-

ing radiographs of the neck, tracheoscopy, direct surgical measurements as well as

necropsy measurements for assessment of tracheal stenosis.32 They concluded that

accurate measurements of tracheal stenosis cannot be done by radiographs and
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(a) (b)

Fig. 10. Virtual retrograde, endoscopic view of a tracheal stenosis (same patient as in Fig. 7),
the cube in the right lower corner indicates the viewing position — the capital letter “F” stands
for viewing direction from feet, “P” for posterior — the dorsal tracheal wall is in the upper part
of the image, the ventral wall on the lower part. (a) “Surface Rendering”: The narrowed lumen
at the caudol border of the stent can be seen, (b) “Volume Rendering”: The tracheal wall is
semitransparent and the dark areas represent the implanted tracheal stent.

tracheoscopy. Using conventional CT or electron beam CT, changes in the cross

sectional area of the upper respiratory tract had been reported for healthy volun-

teers and for the evaluation of chronic airway obstruction in children.33,34 In both

studies the cross sectional area was determined on axial slices alone. As mentioned

already, in the case of a LTS, where the trachea may not be straight but buckled in

any direction, the measured cross sectional area on axial slices will not be a reliable

characterization of the lumen as it will for healthy individuals. Own investigations

yielded, that estimating LTS degree on axial S-CT slices and MPR alone are bur-

dened by a high interobserver error — on average 43.3%, up to a maximum of

141.2%.35 For the same reason the length of a stenosis cannot be estimated by just

calculating the difference of slice positions. Curved multiplanar reformation could

be used for length measurements, thus making it necessary to draw the medial

axis on sagittal or coronal reconstructions. In case of LTS with a buckled trachea,

this is a difficult task and the resulting medial axis will be again operator depen-

dent. In addition, not all vendors of medical workstations are capable of obtaining

length measurements from curved multiplanar reformations. 3D reconstructions, as

described in Sec. 3, helps to display the 3D shape and extension of the airways but

the length and degree of LTS have to been estimated visually and semi quantita-

tive by the reporting radiologist. Although the authors has no scientific evidence,

it is their belief, that this visual assessments will suffer from an similar interop-

erator error as FTB. A potential solution for these problems is the calculation of
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Fig. 11. VGB 1–4 for assessing accuracy and precision of the 3D cross-sectional profile. They
consisted of tubes with symmetric and asymmetric narrowings (upper three) and an intersection
of a sphere with a tube (bottom).

the S-CT based LTT 3D cross-sectional profile using a skeletonization algorithm11

as described in Sec. 2. The (marked) drop of the cross sectional area outlines the

stenosis. By subtraction of the end position from the start one, the true length in

3D can be calculated along the LTT medial axis. Therefore, the tracheal caliber
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Fig. 12. VGB with added surface noise.

changes can be displayed on this charts in a quantitative way and length and degree

of LTS can be determined, as described in Sec. 2. Accuracy and precision of the

3D cross sectional profiles were evaluated using virtual geometric bodies (VGB)

containing narrowed and expanded areas (Fig. 11). These VGBs were generated

mathematically in 3D as binary data volumes and for symmetrical caliber changes

the true 3D cross sectional profile was known as well as the degree and length of

caliber changes. Furthermore, in order to simulate (the always existing) noise in

the CT slices, VGBs with a “rough” surface were computed too (Fig. 12).11 Com-

parison of the true and the computed 3D cross sectional profile by linear regression

yielded excellent results (Fig. 13).

Fig. 13. Correlation between the true 3D cross sectional profile (gray line) and computed one,
obtained by skeletonization (black line) in the VGB as displayed in Fig. 11. Both 3D cross sectional
profiles are nearly identical and linear regression revealed an excellent correlated between both
(p < 0.005).
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6. Intranet Applications

As described in the preceding sections there are several possibilities for imaging of

LTS. Unfortunately, the above described techniques for LTS imaging and assess-

ment involve different computer platforms, operating systems and software, not

all being embedded in an existing Picture Archiving and Communications System

(PACS). At the Department of Radiology Graz/Austria an intranet application was

developed, which allows one to collect all images and data of a particular patient

using standard network computer interfaces (e.g. ftp, network drives, samba clients).

Using the scripting language PHP, the application is fully independent of operating

system.36 Since the software runs in a web browser window, it can be started from

any computer connected to the hospitals network by just using a web browser. The

collected data are processed automatically and displayed as web pages on the hos-

pitals intranet. Multimedia content, like digital videos from virtual endoscopy, can

be viewed by using free software like media players, which can be downloaded from

the internet for almost all operating systems. Therefore the referring physicians can

observe these videos even on his/her desktop computer at no extra costs.

On the internet, web server software is free available for almost all computer

and operating systems, the most utilized being the Apache software.37 Therefore,

as long as a hospital’s network exists, almost every computer can be turned in

a web server without spending additional money for infrastructure. Moreover, by

using a SQL database (e.g. MySQL) for patient data administration, automated

web server administration systems can be programmed.38 At our institution such

software keeps the list of accessible patient data as low as reasonable, which

more or less means, not to display unwanted patients. Algorithms like “First

in first out” will prevent the display of a particular patient at a prior chosen

watermark — e.g. all patients data generated more than three months ago will not

be shown. Cash algorithms represent a better solution. The software will check the

date of the patient’s data last assessment and remove those who were not opened

for a previously fixated time span. Therefore only the needed patients are kept

dynamically. Of course, all patient data, not saved to the PACS System, have to be

archived according the national laws and attention has to be paid to security items.

7. Conclusion

As described in the previous sections, post processing of S-CT offers challenging

possibilities for radiology including LTS imaging and assessment. The inherent

information of S-CT can be displayed in different ways to the referring clinician

in order to facilitate optimal patient management. Modern information technology

and affordable computer hardware allow for new ways of data exchange and inter-

action between hospital departments. By using internet technology, asynchronous,

interactive access to results of imaging and post processing can be provided. For

imaging of LTS different facet’s can be shown in order to provide a road map for

therapeutical decisions.
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CHAPTER 4

EDGE PRESERVED DENOISING IN MAGNETIC RESONANCE

IMAGES AND THEIR APPLICATIONS
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Edge-preserving image enhancement and noise removal are of great interest in medical
imaging. This chapter describes schemes for noise suppression of magnetic resonance

images using wavelet multiscale thresholding. To sufficiently exploit the wavelet inter-
scale dependencies, we multiply the adjacent wavelet subbands of a Canny-edge-detector-
like dyadic wavelet to form a multiscale product function where the significant features
in images evolving with high magnitude across wavelet scales are amplified while noises
are deteriorated, which facilitates an easy differentiation of edge structures from noise.
Thereafter an adaptive threshold is calculated and imposed on the products, instead
directly on the wavelet coefficients, to identify important features. Experiments show
that the proposed scheme outperforms other wavelet-thresholding denoising methods in
suppressing noise and preserving edges.

Keywords: Edge preserved denoising; magnetic resonance; wavelet.

1. Introduction

Magnetic Resonance Imaging (MRI) is a compelling diagnostic technique. The

incorporated noise during image acquisition however degrades the human inter-

pretation, or computer-aided analysis of the features in the MRI images. Time

averaging of image sequences aimed at improving the Signal to Noise Ratio (SNR)

would lead to additional acquisition time and reduce the temporal resolution. There-

fore denoising instead should be performed to enhance the image quality aiming for

more accurate diagnosis.

Wavelet transform1–5 based noise reduction schemes, many of which have

appeared in literature18–23 during the last two decades, proved to be very effective in

noise removal and feature preserving. Most of wavelet based denoising schemes con-

sider the incorporated noise as additive Gaussian white. MRI magnitude images are

however usually modeled by a Rician distribution9,10 and the so-called Rician noise

(the error between the underlying image intensities and the measurement data) is

locally signal dependent. The Rician noise distribution can be well approximated
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by a Gaussian in bright (high SNR) regions while a Rayleigh distribution is more

appropriate in dark (low SNR) regions.

During the past decade, a number of wavelet-based image denoising and

enhancement schemes specifically designed for medical images have been proposed.

A wavelet-based Wiener-filter-like denoising method accounting for the Rician noise

was proposed by Nowak,8 where the magnitude MRI image is squared and the

square of the Rician random variable is modeled by a scaled non-central chi-square

distribution. Although the noise in magnitude MRI images are Rician, the addi-

tive Gaussian white noise assumption holds for each component of the complex

MRI data in k-space. Zhong et al.27 presented a wavelet denoising algorithm using

Sub-domain Noise Detection (SND) and Adaptive Least Squared Error Clustering

(ALSEC). This algorithm is particularly effective in denoising poor SNR medical

images. Ouda et al.30 proposed an adaptive signal-preserving technique for noise

suppression in functional magnetic resonance imaging data based on spectrum sub-

traction. The method estimates a model for the power spectrum of random noise

from the acquired data. Pizurica et al.16 proposed wavelet noise filtering method

adaptive to various types of image noise and to the preference of the medical expert.

The algorithm defines a parameter aimed at balancing the preservation of expert-

dependent relevant details against the degree of noise reduction and classifies the

coefficients based on the correlation of significant image features across the resolu-

tion scales in estimating the statistical distributions of the coefficients that represent

useful image features and noise. Assuming that noise in no signal regions of mag-

netic resonance magnitude images is Rayleigh distributed, Wu et al.31 presented

an effective wavelet-based denoising technique which can work as a standalone

denoising procedure or couple with existing denoising algorithms to enhance their

effectiveness. Lysaker32 presented an image smoothing method for medical mag-

netic resonance images based on a fourth-order partial differential equation model.

The method has demonstrated good noise suppression at poor signal-to-noise ratio.

Denoising can be applied to the real and imaginary channels respectively rather

than to the magnitude images. It has been shown that wavelet denoising techniques

will yield better edge preservation if performed on the raw real and imaginary

images prior to rectification.11–13 Wood28 showed while magnitude and complex

denoising both significantly improved SNR, SBR, and CNR, complex denoising

yielded sharper edge resolution and feature extraction. In view of this, the additive

Gaussian white noise model is adopted in this chapter.

With the denoising applied on the real and imaginary channels prior to rectifi-

cation, the MRI image denoising becomes more or less a generic image denoising

issue where denoising schemes are well researched and richly available. Among the

wavelet-based noise reduction techniques, nonlinear thresholding is simple yet very

effective. In his innovative work,19 Donoho showed that the Universal threshold

t = σ
√

2 logN is asymptotically optimal in the minimax sense, where σ is the stan-

dard deviation of additive white noise and N is the sample length. However, it is well

known that the Universal threshold over-smoothes images. Donoho improved his
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work20 using the SURE threshold. It is subband adaptive and is derived by minimiz-

ing Stein’s unbiased risk estimator. Recently, by modeling the wavelet coefficients

within each subband as i.i.d random variables with generalized Gaussian Distribu-

tion (GGD), Chang et al.23 proposed the BayesShrink scheme. The BayesShrink

threshold is also subband dependent and yields better results than the SURE

threshold. The thresholds mentioned above are based on orthogonal wavelets and

are soft, implying that the input w is shrunk to zero by an amount of threshold t.

In Ref. 22 Pan et al. presented a hard threshold with a non-orthogonal wavelet

expansion. Denoting the standard deviation of noise at the jth wavelet scale by σj ,

Pan et al. imposed tj = cσj , where σj is the standard deviation of noise at the jth

scale and c ∈ [3, 4] is a constant, to identify significant structures. The word hard

implies that the input w is preserved if it is greater than the threshold; otherwise

it is set to zero. The factor c is a constant and Pan et al. set it around 3 since the

values of Gaussian distributed noise are, in high probability, within three times its

standard deviation. The soft BayesShrink and Pan’s hard thresholding are used for

comparison in the sequel.

There exist dependencies between wavelet coefficients. In Ref. 7, Crouse et al.

used the Hidden Markov Tree (HMT) models to characterize the joint statistics

of wavelet coefficients across scales. In the noise reduction technique of Pizurica,16

the interscale correlation information is exploited to classify the wavelet coefficients.

The preliminary classification is then used to estimate the distribution of a coeffi-

cient to decide if it is a feature. If a coefficient at a coarser scale has small magnitude,

its descendant coefficients at finer scales are also likely to be small. Shapiro exploited

this property to develop the well-known embedded zerotree wavelet coder.6 Con-

versely, if a wavelet coefficient produced by a true signal is of large magnitude at

a finer scale, its parents at coarser scales are likely to be large as well. However

for those coefficients caused by noise, the magnitudes will decay rapidly along the

scales. With this observation, Xu et al.18 multiplied the adjacent wavelet scales to

sharpen the important structures while weakening noise. They developed a spa-

tially selective filtering technique by iteratively selecting edge pixels in the multi-

scale products. Sadler and Swami24 analyzed the multiscale products and applied

them to step detection and estimation. Both Xu’s and Sadler’s works are imple-

mented with a dyadic wavelet constructed by Mallat and Zhong.4 The so-called MZ

wavelet is a compactly supported quadratic spline function that approximates the

first derivative of Gaussian. The corresponding dyadic wavelet transform is equiva-

lent to the Canny edge detection17 and characterizes the instantaneous features in

a signal well. The MZ wavelet is also employed in this chapter.

Wavelet thresholding is simple and efficient but takes little or no advantage of

the dependency information between wavelet scales. In this chapter, we present a

multiscale thresholding scheme to incorporate the merits of interscale dependencies

into the thresholding technique for denoising. Two adjacent wavelet subbands are

multiplied to amplify the significant features and dilute noise. In contrast to other

schemes, we apply thresholding to the multiscale products instead of the wavelet
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coefficients. As we will show, the proposed multiscale products thresholding can

effectively distinguish edge structures from noise. The variance of noise needs to be

estimated to implement the denoising scheme. A new noise level estimator is also

proposed in this chapter.

The chapter is organized as follows. Section 2 discusses the wavelet multiscale

products. Section 3 describes the thresholding scheme. An image adaptive threshold

imposed on the multiscale products is calculated to identify the significant struc-

tures. Experiments are given in Sec. 4 in comparison with some existing wavelet

thresholding schemes. The chapter is concluded in Sec. 5.

2. Wavelet Multiscale Products

2.1. Dyadic wavelet transform as a multiscale edge detector

A wavelet transform represents a signal f as a linear combination of elementary

atoms that appear at different resolutions. It is computed by convoluting the input

signal with dilated wavelet filters recursively. More details about the theory of

wavelets and their applications in signal processing can be found in Daubechies,1

Meyer,2 Mallat3,4 and Vetterli.5

We denote by ξs(x) the dilation of a function ξ(x) by a scale factor s:

ξs(x) = ξ(x/s)/s. (1)

Suppose function ψ(x) satisfies the requirements to be a wavelet. The contin-

uous wavelet transform of any measurable and square-integrable function f(x),

f ∈ L2(R), at scale s and position x is defined as

Wsf(x) = f ∗ ψs(x), (2)

where the symbol ∗ denotes the convolution operation.

The wavelet transform can be designed as a multiscale edge detector to enhance

the signal’s instantaneous features.4 Suppose that θ(x) is a differentiable smooth

function whose integral is equal to 1 and that it converges to 0 at infinity. Lets

define ψ(x) as the first order derivative of θ(x)

ψ(x) = dθ(x)/dx, (3)

then Wsf(x) can be written as

Wsf(x) = f ∗
(

s
dθs

dx

)
(x) = s

d

dx
(f ∗ θs)(x). (4)

It can be seen that the wavelet transform Wsf(x) is the first derivative of f(x)

smoothed by θs(x). In particular, when θ(x) is a Gaussian function, the local

extrema determination in Wsf(x) is equivalent to the well-known Canny edge

detection.17

The Canny edge detector-like wavelet transform can be extended to 2D images.

Suppose θ(x, y) is a 2D differentiable smooth function whose integral is equal to 1
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and converges to 0 at infinity. For example θ(x, y) could be the tensor product of

1D smooth functions: θ(x, y) = θ(x) · θ(y). We define the two wavelets ψx(x, y) and

ψy(x, y) at horizontal and vertical directions as:

ψx(x, y) = ∂θ(x, y)/∂x, ψy(x, y) = ∂θ(x, y)/∂y. (5)

The dilation of any 2D function ξ(x, y) by scale s can be therefore denoted by

ξs(x, y) = s−2ξ(x/s, y/s). (6)

Suppose f(x, y) is a 2D measurable and square-integrable function such that f ∈
L2(R2). The wavelet transform of f(x, y) at scale s and position (x, y) has two

components

W x
s f(x, y) = f ∗ ψx

s (x, y) and W y
s f(x, y) = f ∗ ψy

s (x, y). (7)

Similarly to (4) these two components can be rewritten as

W x
s f(x, y) = s

∂

∂x
(f ∗ θs)(x, y),

W y
s f(x, y) = s

∂

∂y
(f ∗ θs)(x, y).

(8)

In the case when θ(x, y) is a Gaussian function, detecting the local extrema form(
W x

s f(x, y)

W y
s f(x, y)

)
is equivalent to the Canny edge detection.

For the purpose of fast numerical implementation, we restrict the scale s to vary

along the dyadic sequence (2j)j∈Z . For simplicity, we denote by ξj(x) (no confusion

with ξs(x) in Eq. (1)) the dilation of function ξ(x) by 2j, then

ξj(x) = ξ(x/2j)/2j. (9)

The dyadic wavelet transform (DWT) of f(x) at dyadic scale 2j and position x is

Wjf(x) = f ∗ ψj(x). (10)

The function f(x) can be recovered from its DWT by

f(x) =

∞∑

j=−∞
Wjf ∗ χj(x), (11)

where χ(x) is any reconstructing wavelet whose Fourier transform satisfies4

∞∑

j=−∞
ψ̂(2jω)χ̂(2jω) = 1. (12)

The wavelet used in this chapter is the MZ wavelet constructed by Mallat and

Zhong.4 The associated smooth function θ(x) is a cubic spline, which closely approx-

imates a Gaussian function. The wavelet ψ(x) is a quadratic spline that approxi-

mates the first derivative of Gaussian. Thus the DWT behaves like a Canny edge

detector. Section 2.2 shows the functions θ(x) and ψ(x), and illustrates the discrete

decomposition algorithms of the 1D and 2D DWT. Details about the derivation of

the MZ wavelet can be found in Ref. 4.
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2.2. Wavelet and the discrete decomposition algorithm

Mallat and Zhong4 defined a class of wavelets that can be used in the implemen-

tation of dyadic wavelet transform. The Fourier Transform (FT) of the wavelet

ψ(x) is

ψ̂(ω) = iω

(
sin(ω/4)

ω/4

)4

. (13)

Therefore the FT of its associated smooth function θ(x), the primitive of ψ(x), is

θ̂(ω) =

(
sin(ω/4)

ω/4

)4

. (14)

The θ(x) is a cubic spline whose integral is equal to 1 and ψ(x) is a quadratic

spline. In Fig. 1, they are plotted and compared with a Gaussian function and its

first derivative. It is noticed that the θ(x) approximates closely to the Gaussian

function. The wavelet transform behaves like a Canny edge detector.17

The discrete decomposition algorithms of 1D and 2D dyadic wavelet transform

are illustrated in Fig. 2. Filter Hj (Gj) is the 2j scale dilation of H0 (G0) (putting

2j − 1 zeros between each of the coefficients of H0 (G0)). H ′
j (G′

j) is the transpose

of Hj (Gj). The coefficients of filters H0 and G0 are available in Ref. 4. Suppose the

input signal S0f has N samples, then at each scale 2j the wavelet coefficients Sjf

and Wjf also have N samples. There are at most log2 N scales and the complexity

of the decomposition algorithm is O(N log2 N).

It should be noted that in the discrete implementation, at each scale the wavelet

coefficients should be sampled with a constant shift. For a 1D signal, we denote the

discrete sample sequence by

dWjf(n) = Wjf(n + wj), (15)

where the shift variable wj is

wj = 1, 2, . . . , 2j−1. (16)

-1 -0.5 0 0.5 1
0

1

2

(a)

-1 -0.5 0 0.5 1
-5

0

5
(b)

Fig. 1. (a) The smooth function θ(x) (solid) and a Gaussian function (dashed). (b) Wavelet ψ(x)
(solid) and the first derivative of the Gaussian in (a) (dashed).
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Fig. 2. The discrete decomposition algorithms of (a) 1D Dyadic Wavelet Transform (DWT) and
(b) 2D DWT, where filter Hj (Gj) is the 2j dilation of H0 (G0) (putting 2j − 1 zeros between
each of coefficients of H0 (G0)) and H′

j (G′
j) is the transpose of Hj (Gj).

For a 2D image, there are two sample sequences obtained in horizontal and vertical

directions:

dW x
j f(n, m) = W x

j f(n + wx,n
j , m + wx,m

j ),

dW y
j f(n, m) = W y

j f(n + wy,n
j , m + wy,m

j ),
(17)

where the sample shifts are

wx,n
j = 1, 2, . . . , 2j−1, wx,m

j = 0, 1, 2, 4, . . . , 2j−2,

wy,n
j = 0, 1, 2, 4, . . . , 2j−2, wy,m

j = 1, 2, . . . , 2j−1.
(18)

2.3. Multiscale products

Signals and noise behave very differently in the wavelet transform domain. The

evolution of singularities and noise across wavelet scales were analyzed by Mallat

et al.3,4 using the mathematical concept of the Lipschitz regularity. Singularities

are more regular than noise and have higher Lipschitz regularities. For example, the

Lipschitz regularity of a step edge is 0. If a structure is smoother than the step, it will

have positive Lipschitz regularity. Otherwise it can be considered having negative

Lipschitz regularity. The Lipschitz regularity of the Dirac function is equal to −1.

White noise is almost singular everywhere and has a uniform Lipschitz regularity

that is equal to −1/2.

Meyer2 presented a theorem to relate the evolution of the wavelet transform

magnitude with the signal’s Lipschitz regularity. A function f(x) is uniformly

Lipschitz α (0 < α < 1) over interval [a, b] if and only if there exists a constant
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Fig. 3. (a) The Dyadic Wavelet Transform (DWT) of a test signal g at the first four scales.
(b) The DWT of a sequence of Gaussian white noise ε at the first four scales.

K > 0 such that for all x ∈ [a, b], the wavelet transform satisfies

|Wjf(x)| ≤ K(2j)α. (19)

The above equation implies that the wavelet transform magnitudes increase for

positive α with increasing scales. Contrarily, wavelet transform magnitudes decrease

for negative Lipschitz regularities with increasing scales. In Fig. 3 the DWT at the

first four scales of a test signal g, and a sequence of Gaussian white noise ε, are

illustrated. Notice that the signal singularities evolve across scales with observable

peaks while noise decays rapidly along scales. As illustrated in Fig. 3(b), Mallat

and Hwang3 observed that, for Gaussian white noise, the average number of local

maxima at scale 2j+1 is half of that at scale 2j.

With the observation of Fig. 3, we can imagine that multiplying the DWT

at adjacent scales would amplify edge structures and dilute noise. This favorite

property has been exploited by Xu et al.18 and Sadler24 in noise reduction and step

detection. In this chapter, we define the multiscale products of Wjf as

Pjf(x) =

k2∏

i=−k1

Wj+if(x), (20)

where k1 and k2 are non-negative integers.

The support of an isolated edge will increase by a factor of two across scale and

the neighboring edges will interfere with each other at coarse scales (Fig. 3). So in

practice it is sufficient to implement the multiplication at two adjacent scales. Let

k1 = 0 and k2 = 1, then we calculate the DWT scale products as:

Pjf(x) = Wjf(x) · Wj+1f(x). (21)

Similarly for 2D images, the multiscale products have two components:

P x
j f(x, y) = W x

j f(x, y) · W x
j+1f(x, y),

P y
j f(x, y) = W y

j f(x, y) · W y
j+1f(x, y).

(22)
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Fig. 4. The DWT and multiscale products of a noisy test signal at the first three scales.

In Fig. 4 the DWT and multiscale products of a noisy test signal f = g + ε are

illustrated. Though the wavelet transform coefficients of the original signal g are

immersed into noise at fine scales, they are enhanced in the scale products Pjf .

The significant features of g are more distinguishable in Pjf than in Wjf .

3. Adaptive Multiscale Products Thresholding

3.1. The thresholding scheme

Wavelet-based thresholding techniques have proved to be effective in denoising.18–23

Non-significant wavelet coefficients below a preset threshold value are discarded as

noise and the image is reconstructed from the remaining significant coefficients.

Compared with the linear denoising methods that blur images as well as smooth-

ing noise, the nonlinear wavelet thresholding schemes preserve image singularities

better.

In general, thresholds are classified into soft and hard. The soft thresholds

shrink the input wavelet coefficient w to zero by an amount t, i.e. ηt(w) =

sgn(w) · max(0, |w| − t). Contrarily, the hard thresholds preserve the input coef-

ficient if it is greater than the threshold, i.e. ηt(w) = w · 1{|w| > t}. Naturally, the

determination of the threshold value is extremely critical to the threshold-based

algorithms. We denote by f = g + ε the measurements of image g corrupted by

Gaussian white noise ε ∼ N(0, σ2). Donoho et al.19 presented the Universal thresh-

old t = σ
√

2 logN in his well-known Wavelet Shrinkage scheme. Chang et al.23
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presented the BayesShrink threshold t = σ2/σWjg, where σWjg is the image stan-

dard deviation at the jth wavelet scale. The above three thresholds are soft and

are derived from orthogonal wavelet bases. A hard threshold that could be applied

to non-orthogonal wavelet transforms was proposed by Pan et al.22

All the above wavelet thresholding schemes impose the threshold directly on

wavelet coefficients. They do not exploit the dependencies that exist between adja-

cent wavelet scales. From Fig. 4 it can be noticed that, at finer scales if the

threshold t applied to Wjf is relatively sizeable, some edge structures may be sup-

pressed as noise. Otherwise, if t is relatively small, many noisy pixels would be

undesirably preserved. However, in the multiscale products Pjf it can be seen that

the significant structures are strengthened while the noise is weakened. Pjf results

in a more effective discrimination between edges and noise than Wjf . With such

observations Xu et al.18 and Sadler et al.24 have exploited multiscale products in

denoising and step estimation.

In this chapter, we propose a new denoising scheme, the adaptive multiscale prod-

ucts thresholding, to merge the merits of the thresholding technique and wavelet

interscale dependencies. A significant wavelet coefficient Ŵ d
j f(x, y), where d = x, y

indicates x or y dimension, is identified if its corresponding multiscale products

value P d
j f(x, y) is greater than an adaptive threshold tdp(j). The algorithm is sum-

marized as follows:

(i) Compute the DWT of input image f up to J scales.

(ii) Calculate the multiscale products P d
j f and preset the thresholds tdp(j). Then

threshold the wavelet coefficients by:

Ŵ d
j f(x, y) =

{
W d

j f(x, y) P d
j f(x, y) ≥ tdp(j)

0 P d
j f(x, y) < tdp(j)

, j = 1, . . . , J ; d = x, y (23)

(iii) Recover the image from the thresholded wavelet coefficients Ŵ x
j f(x, y) and

Ŵ y
j f(x, y).

3.2. Determination of the threshold

Since a wavelet transform is a linear transform, the DWT of a noisy image f = g+ε

can be written as

W d
j f = W d

j g + W d
j ε, (24)

where W d
j g is the DWT of original image g and W d

j ε is the DWT of additive noise ε.

For convenience, we denote

Zd
j = P d

j f = W d
j f · W d

j+1f. (25)

Due to the high dependencies existing between W d
j f and W d

j+1f , the histograms

of Zd
j will have a heavy positive tail (See Fig. 6). A proper threshold tdp(j) can be

determined and imposed on Zd
j to eliminate the highly noise corrupted pixels and

identify the significant image structures.
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Suppose that the input image is Gaussian white noise ε and it is an ergodic

stationary process. For the convenience of expression, we denote the DWT of ε by

U∗
j (x, y) = W ∗

j ε(x, y) = ε ∗ ψ∗
j (x, y), ∗ = x, y, (26)

where U∗
j is a Gaussian colored noise process and its standard deviation is

σj = ‖ψj‖ σ, (27)

where norm ‖ψj‖ =
√∫∫

ψ2
j (x, y)dx dy. We do not use the superscript “d” in

Eqs. (3–5) because the norm values ‖ψx
j ‖ and ‖ψy

j ‖ are the same.

Ud
j and Ud

j+1 are jointly Gaussian distributed with probability density function

(pdf)26

p(uj , uj+1) =
1

2πσjσj+1

√
1 − ρ2

j+1,j

e
− 1

2(1−ρ2
j+1,j

)

"

u2
j

σ2
j

− 2ρj+1,j ujuj+1
σjσj+1

+
u2

j+1

σ2
j+1

#

, (28)

where the correlation coefficient ρj+1,j of Ud
j and Ud

j+1 is

ρj+1,j =

∫∫
ψj(x, y) · ψj+1(x, y)dx dy√∫∫

ψ2
j (x, y)dx dy ·

∫∫
ψ2

j+1(x, y)dx dy
. (29)

The values of σj and ρj+1,j in the discrete implementation are listed in Table 1 by

setting σ = 1.

We denote the scale products of Ud
j and Ud

j+1 by

V d
j = Ud

j · Ud
j+1. (30)

Then the pdf of V d
j will have the following form25

p(vj) =
1

πΓ(1/2)σjσj+1

√
1 − ρ2

j+1,j

e

ρj+1,j vj

(1−ρ2
j+1,j

)σj σj+1 K0

( |vj |
(1 − ρ2

j+1,j)σjσj+1

)
,

(31)

where Γ(t) =
∫∞
0 e−uut−1du is the Gamma function and K0 modified Bessel func-

tion of the second kind with order zero. When ρj+1,j is positive, p(vj) is right

skewed. In Fig. 5, the theoretical pdf’s p(v1) and p(v2) are plotted by setting σ = 10.

Notice that p(v2) is more positively tailed than p(v1) because ρ3,2 is higher than ρ2,1.

Table 1. Noise standard deviation and correlation coefficient
values of the MZ wavelet in discrete implementation at scale 2j .
The input noise is assumed to be unit Gaussian white.

j 1 2 3 4

σj 2.8284 0.7395 0.3173 0.1531
ρj+1,j 0.3586 0.5504 0.5957 0.6063
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Fig. 5. The theoretical pdf of the multiscale products Vj for Gaussian white noise (σ = 10).
(a) At the first scale j = 1. (b) At the second scale j = 2.

In applications the wavelet coefficient obtained is W d
j f , which is the sum of

noiseless coefficient W d
j g and noise W d

j ε. Since white noise is singular almost every-

where, at fine scales W d
j ε will be predominant in W d

j f except for some significant

features to be preserved (Refer to Fig. 4). In Fig. 6(a), the histograms of Zx
j at the

first three scales are plotted for the noiseless image Lena (i.e. Zx
j = W x

j g ·W x
j+1g).

Figure 6(b) shows the histograms of Zx
j when the input is Gaussian white noise

with zero mean and standard deviation σ = 30 (i.e. Zx
j = W x

j ε · W x
j+1ε). In

Fig. 6(c), the histograms of Zx
j , where the input is the noisy Lena (σ = 30,

SNR = 12.93dB), are shown (i.e. Zx
j = W x

j f · W x
j+1f). It is noticeable that at

scales 21 and 22, the corresponding histograms in Figs. 6(b) and (c) are very sim-

ilar. This is because the energy of noise in these subbands is relatively high. At

coarse scales the energy of the image increases but that of noise decreases rapidly.

The histograms of Zx
j = W x

j f · W x
j+1f will be close to those of Zx

j = W x
j g · W x

j+1g

step by step.

The standard deviation of V d
j is26

κj =
√

E[v2
j ] =

√
E[u2

ju
2
j+1] =

√
1 + 2ρ2

j+1,j · σjσj+1. (32)

In Table 2 we compute the values of probability

Prj(c) = P{vj ≤ c · κj}, (33)

where constant c varies from 1 to 5 by step length 1. Notice that when c ≥ 5, the

probability Prj(c) → 1, implying that 5κj will suppress most of the data in Vj .

We denote

µd
f (j) = E[Zd

j ], µd
ε(j) = E[V d

j ], µd
g(j) = E[W d

j g · W d
j+1g]. (34)

Since the noise ε is independent of the noiseless image g, it can be derived that

µd
g(j) = µd

f (j) − µd
ε(j), (35)
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Fig. 6. The histograms of the multiscale products P x
j f at the first three scales when f is (a) Noise-

less image Lena; (b) Gaussian white noise; (c) Noisy image Lena.
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Fig. 6. (Continued)

Table 2. The values of probability Prj(c) = P{vj ≤ c · κj} for j = 1 and j = 2.

c 1 2 3 4 5

Pr1(c) 0.8445 0.9456 0.9799 0.9927 0.9976
Pr2(c) 0.8291 0.9396 0.9774 0.9915 0.9971

and

µd
ε(j) = ρj+1,jσjσj+1. (36)

The ratio µd
ε(j)/µd

g(j) is a measurement for the intensity of noise against signal in

the multiscale products Zd
j . This ratio can be used to adjust the threshold tdp(j)

imposed on Zd
j . We set the multiscale products threshold as

t∗p(j) = 5κj

(
1 +

µ∗
ε(j)

µ∗
g(j)

)
. (37)

The adaptive threshold tdp(j) is intuitive and effective. When noise is much

stronger compared with the image (i.e. at fine scales), the ratio µd
ε(j)/µd

g(j) is high.

Therefore the threshold tdp(j) becomes sufficiently large to suppress the overwhelm-

ing noise. When the image is dominative (i.e. at coarse scales or when additive
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Table 3. The ratios of µx
ε (j)/µx

g (j) at the first two
scales for image Lena on different noise levels σ.

σ 10 20 30 40

µx
ε (1)/µx

g (1) 0.27 1.18 3.20 7.33

µx
ε (2)/µx

g (2) 0.02 0.10 0.22 0.40

noise is low), the ratio µd
ε(j)/µd

g(j) is small and the threshold tdp(j) is at an appro-

priate level to preserve the image instantaneous features while removing noise.

In Table 3, we gave some values of µd
ε(j)/µd

g(j) for image Lena with noise levels

σ = 10, 20, 30, 40, respectively.

3.3. Noise level estimation

The standard deviation of additive Gaussian white noise, σ, should be estimated to

implement the denoising scheme. A popular noise level estimator has been proposed

by Donoho.19 The Median Absolute Value (MAV) of the wavelet coefficients at the

finest scale is first calculated and the standard deviation of noise is then estimated as

MAV/0.6745. The MAV estimator is inaccurate for those images containing massive

fine structures.

We propose a new noise level estimation method as follows. We compute the

Orthogonal Wavelet Transform (OWT) of the noisy image at the finest scale and

denote by W the wavelet coefficients in the diagonal direction. Because OWT is a

unitary transform, at each wavelet scale the noise standard deviation is equal to σ.

Thus the variance of W is

σ2
f = E[W 2] = σ2

g + σ2, (38)

where σg is the standard deviation of the wavelet coefficients of the noiseless image.

Suppose N is a zero mean Gaussian process with standard deviation σN , we

divide it into two parts. The first part Na consists of points that |N(·)| > σN and

the second part Nb consists of points where |N(·)| ≤ σN . Let σa =
√

E[N2
a ] and

σb =
√

E[N2
b ] , we have

σ2
a = 2

∫ ∞

σN

x2

√
2πσN (1 − 2erf(1))

e−x2/(2σ2
N )dx, (39)

σ2
b =

∫ σN

0

x2

√
2πσNerf(1)

e−x2/(2σ2
N )dx, (40)

where erf(t) = 1√
2π

∫ t

0 e−x2/2 dx is the error function. The ratio of σa to σb is

independent of σN and we can calculate that σa/σb ≈ 2.945.

Next we split W into two parts, Wa such that |Wa(·)| > σf and Wb such that

|Wb(·)| ≤ σf . Let σa
w =

√
E[W 2

a ] and σb
w =

√
E[W 2

b ] . Generally the noise energy



96 P. Bao and L. Zhang

is concentrated on Wb and σb
w can be considered as an approximation of the noise

level σ. We define

σ̂g =
√

(σa
w)2 − 2.92(σb

w)2. (41)

If W is produced totally by noise, obviously σ̂g will be equal to zero. The more

image details involved in Wa, the greater the value of σ̂g. In this case σ̂g can be

seen as an approximated estimation of σg. We then take

r = σ̂g/σb
w (42)

as a measure of signal-to-noise-ratio at the finest scale. Finally the noise level can

be estimated as

σ̂ = σf

/√
1 + r2. (43)

We denote the MAV noise estimator of Donoho by

σ̂d = Median(|W |)/0.6745. (44)

The Monte Carlo experimental results using the two estimators are listed in Table 4.

The test images employed are Lena, Sailboat, Goldhill, Bridge and Baboon. We

added the Gaussian white noise with different standard deviation σ to each of

them. The Daubechies wavelet1 with four vanishing moments is used for the OWT.

It can be observed that the proposed method generally outperforms Donoho’s MAV

estimation scheme. It performs especially well for the image Baboon that contains

massive fine structures.

4. Experiments

In this section, the performances by the proposed scheme on some MRI images are

compared with those of the soft thresholding scheme BayesShrink of Chang et al.23

and the hard thresholding scheme of Pan et al.22 For convenience, we refer the

Table 4. Noise level estimation results. Gaussian white noise with standard deviation σ is added
to five test images. σ̂d is the estimation by Donoho’s median method and σ̂ is the estimation by
our scheme.

σ 5 10 15 20 25 30 35 40

Lena σ̂d 6.15 11.02 15.87 20.82 25.68 30.56 35.54 40.52
σ̂ 3.20 8.37 14.30 19.66 24.13 30.21 35.31 40.56

Sailboat σ̂d 7.84 12.16 16.78 21.47 26.20 31.13 35.94 40.86
σ̂ 4.06 8.78 14.57 19.88 25.14 30.71 35.83 40.80

Goldhill σ̂d 7.49 11.79 16.46 21.18 25.94 30.84 35.69 40.67
σ̂ 4.22 9.02 14.70 20.13 25.34 30.42 35.21 40.78

Bridge σ̂d 8.46 12.73 17.17 21.84 26.54 31.29 36.19 40.98
σ̂ 4.89 9.58 15.10 20.51 25.82 30.95 35.48 40.94

Baboon σ̂d 14.58 18.17 22.29 26.65 30.93 35.34 39.90 44.51
σ̂ 7.05 9.66 13.61 18.66 24.01 29.53 35.25 41.37
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two methods as STH and HTH, respectively. It is well observed that thresholding

with the OWT produces unpleasant Gibbs-like edge artifacts.21 Thus we implement

the two schemes with the over-complete wavelet expansion (OWE). The one stage

transform of OWE is illustrated in Fig. 7. The resultant denoising by thresholding

with the OWE can be interpreted as the average of the circularly shifted denoising

outcomes by the OWT. The residual noise is better smoothed and the artifacts are

attenuated. The wavelet employed in the STH and HTH schemes is the compactly

supported orthogonal wavelet of Daubechies with four vanishing moments.1 The

constant c appearing in the threshold of the scheme HTH is set at 3.1. The proposed

scheme is referred as MPTH. The MRI images in our experiments are 512× 512 in

size and the decomposition level is 4.

To evaluate the medical image quality, we compute the Mean-to-Standard-

deviation-Ratio (MSR)14,15 in a Desired Region Of Interest (DROI):

MSR =
µd

σd
, (45)

where µd and σd are the mean and the standard deviation computed in the DROI.

The Contrast to Noise Ratio (CNR) is also an important quality measurement for

medical image interpretation. It is defined as

CNR =
|µd − µu|√
0.5(σ2

d + σ2
u)

, (46)

where µu and σu are the mean and the standard deviation computed in an Undesired

Region Of Interest (UROI) such as a window or background. Both the MSR and

CNR measurements are proportional to the medical image quality.

In the k-space, the raw MRI data is denoted by8–10

F (µ, ν) = G(µ, ν) + ξ(µ, ν), (47)

where G(µ, ν) is the underlying signal and ξ(µ, ν) is a complex Gaussian white

noise. By computing the Fourier transform (FT) of F (µ, ν) in the complex image
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domain, we have

f(x, y) = g(x, y) + ε(x, y). (48)

ε(x, y) is again a complex Gaussian white noise due to the unitarity of the FT. The

denoising schemes could be applied to each of the real and imaginary components

of f(x, y). For visual inspection, the moduli of the complex data f(x, y) are shown

as the magnitude image.

Figure 8(a) is a noisy MRI image Liver. The DROI and UROI used for calcu-

lating the MSR and CNR indexes are highlighted. Denoised images by the three

schemes are illustrated in Figs. 8(b)–(d), respectively and the MSR and CNR values

DROI 1

DROI 2

UROI

(a) (b)

(c) (d)

Fig. 8. Experiments on MRI image Liver. The Desired Region Of Interest (DROI) and Undesired
Region Of Interest (UROI) used to compute the MSR and CNR indexes (listed in Table 5)
are highlighted. (a) The noisy image. (b) Estimated by the STH. (c) Estimated by the HTH.
(d) Estimated by the presented MPTH.
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Table 5. The MSR and CNR results of MRI
images Liver by the three schemes.

Method DROI 1 DROI 2

CNR MSR CNR CNR

Original 2.61 2.61 2.58 2.45
STH 4.08 5.53 4.55 6.12
HTH 4.10 5.58 4.60 6.20
MPTH 4.31 5.98 4.85 6.72

are listed in Table 5. The presented algorithm MPTH achieves the highest quantity

measurements. Notice that the denoised image by the STH contains a few stains

and the result by the HTH retains much noise. (If the threshold of the HTH is

set higher to suppress noise, the estimated image would be over-smoothed.) The

MPTH preserves edges better and yet effectively removes noise. Zoom-in images of

DROI 1 and DROI 2 are illustrated in Figs. 9 and 10. Another experiment on an

MRI image Spine is illustrated in Figs. 11–13. The MSR and CNR measurements

are listed in Table 6. The results showed in Figs. 11(b) and (c) appear to be veiled

by the residual noise. Zoom-in images of the two DROI are illustrated in Figs. 12

and 13. Although some stings (discontinuities) appeared in Figs. 12(d) and 13(d),

they are almost edge points detected from the multiscale products, but discarded

by the other two schemes.

(c) (d)

(a) (b)

Fig. 9. Zoom in of the DROI 1. (a) The noisy image. (b) Estimated by the STH. (c) Estimated
by the HTH. (d) Estimated by the presented MPTH.
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(a)  (b)

(c)  (d)

Fig. 10. Zoom in of the DROI 2. (a) The noisy image. (b) Estimated by the STH. (c) Estimated
by the HTH. (d) Estimated by the presented MPTH.

DROI 1

DROI 2

UROI

(a) (b)

Fig. 11. Experiments on MRI image Spine. The Desired Region Of Interest (DROI) and Unde-
sired Region Of Interest (UROI) used to compute the MSR and CNR indexes (listed in Table 6)
are highlighted. (a) The noisy image. (b) Estimated by the STH. (c) Estimated by the HTH.
(d) Estimated by the presented MPTH.
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(c) (d)

Fig. 11. (Continued)

(a)

(c)

(b)

(d)

Fig. 12. Zoom in of the DROI 1. (a) The noisy image. (b) Estimated by the STH. (c) Estimated
by the HTH. (d) Estimated by the presented MPTH.
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(a)

(c)

(b)

(d)

Fig. 13. Zoom in of the DROI 2. (a) The noisy image. (b) Estimated by the STH. (c) Estimated
by the HTH. (d) Estimated by the presented MPTH.

Table 6. The MSR and CNR results of MRI
images Spine by the three schemes.

Method DROI 1 DROI 2

CNR MSR CNR CNR

Original 2.26 1.79 2.82 2.34
STH 2.96 2.75 3.99 3.86
HTH 2.98 2.78 4.02 3.91
MPTH 3.10 2.91 4.17 4.06

5. Conclusion

This chapter describes an MRI image denoising scheme using an adaptive wavelet

thresholding technique. Unlike many traditional schemes that directly threshold the

wavelet coefficients, the proposed scheme multiplies the adjacent wavelet subbands

to amplify the significant features and then applies the thresholding to the multi-

scale products to better differentiate edge structures from noise. The distribution

of the products was analyzed and an adaptive threshold was formulated with a rea-

sonable value to remove most of the noise. Experiments on the MRI images show

that the proposed scheme not only achieves high MSR and CNR measurements but

also preserves more edge features.
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Advancement of site-specific drug delivery systems has been hampered by the short-
age of direct techniques for sampling and analysis of drug concentrations at the site of
action. Because the potential target is often deeply imbedded within an organ, the local
concentration of a drug delivered via implantable devices and its movement in tissue and

vasculature (regarded as one significant aspect of pharmacokinetics) are often difficult to
obtain with traditional methods like plasma and urine analysis, and alternative methods
are highly sought after. Imaging is a natural candidate for this application. Thanks to
modern technology, clinical imaging modalities with high spatial and temporal resolution
combined with exceptional sensitivity and ease of use have greatly impacted the cur-
rent diagnosis and treatment of diseases. Although all types of modalities are excellent
candidates for pharmacokinetic imaging, X-ray Computed Tomography (CT) possesses
a unique combination of speed, resolution and inherent simplicity in quantitative anal-
ysis that makes it an attractive choice. This chapter provides a general overview of CT
methods in pharmacokinetic imaging with a specific application to the development and
evaluation of a drug release system for local chemotherapy of liver tumors.

Keywords: X-ray computed tomography; site-specific drug release system; pharmacoki-
netic imaging.

1. Introduction

Direct visualization of physiological events has only become feasible within the past

50 years with the advent of functional imaging technology. Techniques that previ-

ously allowed us only to take a snapshot of the anatomy have evolved into incredible

devices capable of providing an often quantitative glimpse into the actively changing

inner workings of our bodies. Tumor metabolism, blood flow, memory and thought

are only a few of the numerous processes that have been explored within the field

of functional imaging. Recently, the same techniques typically used to monitor the

baseline physiology and pathology have also been applied to the research and devel-

opment of new drugs and Drug Delivery Systems (DDS). Most commonly utilized

modalities are PET and SPECT with some work being done with MRI, ultrasound

and CT, although a surprisingly small fraction has been devoted to the latter. Our
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team has focused on exploration of CT in evaluation of drug release systems and

their efficacy in the treatment of disease, in particular in treatment of cancer. The

following pages review some basic principles of functional CT imaging and how it

can be utilized in the field of drug delivery.

Sections of this chapter are dedicated to describing the development of CT imag-

ing protocols, optimization of image analysis methods, in vitro/in vivo validation of

the image data, and functional application of the concepts to a clinically applicable

problem. The final section discusses encountered and potential problems and offers

perspectives for the future of CT in drug development.

1.1. Minimally invasive treatment

The concepts of site-specific drug delivery can be applied to address a multitude of

clinical problems. One of the most difficult undertakings is the development of local

chemotherapy for treatment of malignancies, the successful treatment and cure of

which has been the driving force for medical research for hundreds of years. Despite

the wide range of options available today (molecular-targeting agents, minimally

invasive tumor ablation, and targeted radiation delivered through a radioactive

seed, or the gamma knife, to name just a few), chemotherapy remains the sta-

ple, yet the most systemically debilitating, approach. The stress from systemic

chemotherapy is so great that, in fact, some patients refuse to or cannot undergo

treatment.

In the last two decades, cancer therapy has taken a minimally invasive approach,

where the stress on the body is lessened but the outcome is equal to or superior

to the widely accepted surgical procedures. This treatment is most useful for cancers

that exhibit solid, localized tumors — ones that have not spread, or metastasized,

throughout the body. Included in this group are: (i) chemoembolization, where a

chemical mixed with a gelling agent is injected directly into the tumor blood supply

to block it; (ii) ablation, where the tumor is either killed by local application of heat

or cold; and (iii) local chemotherapy, where an anticancer agent is placed directly

into the tumor and released immediately or over time to destroy the cancer cells.

Because of their pertinence to the rest of this work, only thermal ablation and local

chemotherapy will be discussed in detail.

1.1.1. Radiofrequency ablation in treatment of liver cancer

Image-guided RadioFrequency Ablation (RFA) has emerged as the cutting-edge

treatment of liver, pancreas, prostate and even lung cancer.1–10 The main goal of

RFA is the induction of thermal coagulative necrosis in the tumor volume to kill

malignant cells while leaving the adjacent healthy tissue unharmed. To carry out

the procedure, a needle electrode is inserted under image guidance directly into

the center of the tumor. To complete the circuit the electrode is connected with

an RF generator, and a large reference electrode pad is placed on the outside of

the body. The generator produces a voltage between the two electrodes causing
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ions in tissue to oscillate, and the area is heated by a resistive energy loss.11–13

The temperature at which the tissue undergoes cellular destruction ranges between

60–100◦C. At this range, the proteins in a cell coagulate, and damage occurs to

cytosolic and mitochondrial enzymes and nucleic acid-histone protein complexes.

This irreversible damage leads to coagulation necrosis within several days. At tem-

peratures exceeding 105◦C, tissue charring and vaporization occur and limit the

transfer of energy necessary for a successful ablation.11–13

Multiple studies have examined the efficacy of RF ablation in the treatment of

HepatoCellular Carcinomas (HCC).13–21 Rossi et al. reported on the ablation of

HCC in 23 patients with HCC up to 3.5 cm in diameter. A complete response was

seen in all tumors by this group. Livraghi et al. compared Percutaneous Ethanol

Injection (PEI) to RF ablation in 86 patients. Here, a complete response was seen in

90% of patients undergoing RFA compared to 80% treated with PEI. Lencioni et al.

studied 80 patients, out of which 87% exhibited long-term tumor control. Livraghi

et al. also studied 114 patients with medium (3–5 cm) and large (5.1–9 cm) HCC.

The results show complete necrosis attained in 47.6% and nearly complete necrosis

in 31.7% of the tumors. Solbiati et al. report on the RF ablation of 109 patients

with 172 hepatic metastases (< 4 cm) from colorectal cancer.17,18 Local control was

achieved in 70.4% of the lesions, with local recurrence occurring in the remaining

29.6%. New metastases developed in 50.4% of the patients after 12 months. The

authors report 2 and 3-year survival rates to be 67% and 33% respectively, and

a zero mortality rate resulting from the procedure.17,18 Curley et al. report on

treatment and 19-month follow up of 110 patients with cirrhosis and unresectable

HCC.19 They report local tumor recurrence at the ablation site of 3.6% of the cases,

and a new tumor growth or extrahepatic metastasis in 45.5% of the patients.20

The limiting factor in the success of RFA is the size of the ablation volume.

The monopolar electrode configuration yields an ablation area of no more than

2 cm in diameter, but electrode configuration alterations have lead to an increase of

the volume upwards to 5.3 cm with a cluster electrode configuration.11–13 Several

physiological factors limit the efficacy of thermal ablation in vivo. The presence of

extensive vasculature in the vicinity of the ablation site leads to perfusion mediated

tissue cooling, which is by far the most significant reason for incomplete ablation.

To assure complete ablation, a margin of healthy tissue surrounding the tumor

(∼ 0.5 cm) may be ablated.11–13 An alternative strategy may be the local release

of chemotherapeutic agents to supplement the RFA treatment and eliminate any

uncertainty regarding completeness of the procedure.

1.2. Site-specific drug release systems

Site-specific drug delivery is a powerful technique that has the potential to become

a mainstream alternative to conventional systemic chemotherapy. This mode of

drug administration can elevate drug concentration at the target to a concentration

significantly higher than is possible with intravenous injection or oral delivery site,
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while limiting systemic effects of toxic drugs; intratumoral drug delivery is one

example of this approach. Advantages of site-specific release include reduced drug

dose, sustained delivery of drug within the therapeutic window, protection of drugs

with a narrow therapeutic index or short half-life, increased comfort, improved

patient compliance, and a decreased number of treatments.

Although superficially a simple concept, advanced development of site-specific

delivery systems has not progressed as quickly as expected due to a number of

reasons, among which lack of accurate local pharmacokinetic analysis techniques

is a primary factor. The goal of pharmacokinetics, the study of drug absorption,

distribution, metabolism and excretion of a drug, is to determine the changes in drug

concentration at the site of action with time. Because conventional analysis of drug

concentration in plasma and urine does not directly reflect drug concentration at

the site of action in a local therapy scheme, a more direct visualization and analysis

method is desirable in order to accurately characterize the pertinent properties of

any such device.

1.3. Non-invasive pharmacokinetic imaging

Understanding the clinical PharmacoKinetics (PK) of drugs in tissue is essential for

the design of a successful local drug delivery device. In order for a local therapy to

attain maximum efficacy, it must deliver the therapeutic dose of a drug to a nearby

target area without substantially affecting the normal tissues. The drug released

from the implant must travel a significant distance and reach the site of action in

its active state, and its ability to do so will depend highly on the properties of

the drug as well as on the property of the tissue. Currently, the local drug release

and transport properties in tissues are not known but need to be quantified for a

successful development of a local drug delivery system. This is true especially in

complex tissue environments such as thermally ablated tissue. Since the viable and

ablated tissue structure varies drastically, with the ablated region lacking viable

cells and vasculature, we predict that this difference will be imposed on the local

drug release profile and drug kinetics.

Non-invasive pharmacokinetic imaging is particularly attractive in cases where

in vitro (or test-tube) dissolution characterization of a drug delivery device does not

correspondwell to the in vivo system, suchas in the case of tumor tissue afterRadioFre-

quency Ablation (RFA) treatment, where the physiology has been severely altered

from the baseline of normal tissue. A number of studies have shown that the vascula-

ture of the ablated tissue is completely destroyed, leading to a low-perfusion environ-

ment that can have a significant impact on drug delivery to the area.22–26 Because

one of our initiatives is the development of a local chemotherapy that can be used

in conjunction with RFA to control any local tumor recurrence after this treatment,

the data gathered with this pharmacokinetic imaging technique will be invaluable in

future development of this approach. The combination of CT imaging and quantita-

tive image analysis can potentially provide a direct method for the evaluation of the

transport of drugs released from a localized, controlled release device in vivo.
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Conventional clinical pharmacokinetic studies require the collection of blood,

urine or tissue samples to determine the tissue distribution, clearance rate, and

even efficacy of the treatment. These procedures are invasive and therefore are not

compliant with patients, especially when multiple sampling is called for. Further-

more, quantitative interpretation of this data can be complicated by issues ranging

from inter-individual variability to uncertainty in the technical procedure, such as

incomplete extraction of drugs from tissue.

Because it addresses many of the issues associated with development of drug

release systems, non-invasive pharmacokinetic imaging is quickly becoming a vital

tool to facilitate the development of new drugs and drug delivery methods. Diagnos-

tic imaging techniques such as Positron Emission Tomography (PET), Single Pho-

ton Emission Computed Tomography (SPECT), and Magnetic Resonance Imaging

(MRI) have been used extensively to study drug distribution and metabolism in

patients with various types of cancer.27–31 However, limitations such as low spa-

tial resolution, radioactive half-life restrictions, long image acquisition time, and

the need for radiopharmaceutical production, restrict their applications in pharma-

cokinetic monitoring.28,29

1.3.1. Notable pharmacokinetic parameters

Local and regional drug delivery presents a unique challenge for the study of drug

PharmacoKinetics (PK) to characterize the drug concentration at its site of action.

Traditionally, measurement of drug concentration at the site of action is not prac-

tical and, alternatively, the drug concentration in plasma and urine — two easily

tested bodily fluids — are used to describe the clinical pharmacokinetics. A result

of years of work, PK models have been created to relate fluid drug levels to rates of

absorption, clearance and ultimately tissue distribution of the drug. In local drug

delivery, however, the traditional PK models do not apply. The nature of the local

therapy, an “inside-out” process, is such that the levels of drug in the fluids no

longer adequately describe the movement of the drug in the body. Because of this,

study of local pharmacokinetics becomes necessary. Here, the crucial parameter is

the concentration of drug in the tissue. Other parameters that need to be studied

are the maximum drug penetration distance which represents the depth of tissue

penetration of a predetermined therapeutic drug concentration, the change of con-

centration with distance from implant with time, and the change in concentration

with time at a particular distance. The Area Under the Concentration-time curve

(AUC) measurements can also be made at the site of action (the radius at which the

drug is needed). Importantly, the methods of directly obtaining these measurements

are limited to either tissue biopsies or non-invasive monitoring.

1.3.2. Available imaging technology

To circumvent limitations associated with standard PK studies, significant research

efforts have been focused on the development of non-invasive imaging techniques
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to characterize the drug movement in the target tissue in vivo.28 Such imaging

techniques include gamma-emission imaging (single photon),29 Positron-Emission

Tomography (PET, dual photons),29 and Magnetic Resonance Imaging (MRI).32

Gamma imaging requires the use of radionuclides that emit high-energy gamma

irradiation (typically 60–600keV) while PET detects positron annihilation radi-

ation (511keV). These two methods provide the most sensitive measurement of

radiolabeled drugs at their therapeutic concentrations. The drawback of these two

methods is their low spatial resolution — for example, the clinical gamma imaging

and PET instruments only provide resolutions at 5 and 10mm, respectively.31 This

low resolution is not adequate to provide an accurate assessment of the therapeutic

margin of drugs at the tumor tissue. Magnetic Resonance Imaging (MRI) is another

non-invasive technique to study pharmacokinetics.34 The MRI detects the magne-

tization changes of nuclei that have net angular momentum such as 1H, 13C and
19F. Examples of drugs studied by MRI include 5-fluorouracil (19F), 13C-labelled

temozolomide and ifosfamide (31P).32

Although clinical MRI instruments can achieve better spatial resolution (2 mm)

than PET, its main limitation is the low sensitivity that makes it difficult to detect

drugs at a therapeutic level.32 In the proposed research, we will introduce computed

tomography as a new imaging modality to study the pharmacokinetics of platinum-

containing drugs in vivo. Compared to other non-invasive imaging techniques, CT

has the advantage to combine superb spatial resolution with high sensitivity without

the necessity to radiolabel selected drugs.

1.3.3. X-ray CT in pharmacokinetic imaging

The CT instrumentation has evolved at an astounding pace to revolutionize the

diagnosis and treatment of cancer. Technological advancement has greatly improved

the speed, and accuracy of CT in medical applications. For example, the Phillips

Mx8000 system, the CT scanner described in this research, can achieve high tem-

poral resolution (0.5 secs/rotation), spatial resolution (0.3 × 0.3 × 0.5mm3) and

sensitivity. Spatial resolution and sensitivity are especially important for pharma-

cokinetic studies as described in this application.

The physical basis of CT contrast originates from the different abilities of

materials to attenuate the X-ray photons in a beam of radiation.33–35 There are

three mechanisms that cause the attenuation of X-ray photons: Raleigh scattering,

Compton scattering and photoelectric absorption. In typical CT analysis, the max-

imum energy of the X-ray beam (kVp) is set at 120keV and the effective energy is

approximately 80 keV for the Phillips scanner. At this energy, Raleigh scattering has

relatively little contribution to the attenuation of the X-rays. Instead, the attenua-

tion of primary photons in soft tissues such as liver (composed mostly of C, H, N, O

elements) is primarily due to Compton scattering. This interaction occurs between

X-ray photons and outer shell electrons, in which the electron is ejected from the
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atom and the primary photon is scattered with reduction in energy. In comparison,

for CT contrast agent (e.g. iohexol) or platinum-containing drugs, the attenuation

is mostly caused by photoelectric absorption of primary photons by the heavy ele-

ments such as iodine (atomic number Z = 53) or platinum (Z = 78). In photoelectric

absorption, the photon is completely absorbed and an inner shell electron (photo-

electron) is ejected from the atom. The CT contrast of different materials can be

characterized and quantified by their linear attenuation coefficients (µ, unit: cm−1)

or mass attenuation coefficients (µm, cm2/g). The latter is obtained by normalizing

the value of µ for density (g/cm3) to correct the influence of material density on

X-ray attenuation. At 80 keV, the values of µm for carbon, iodine and platinum

are 0.16, 3.51 and 8.73 cm2/g, respectively.36 The difference in attenuation coeffi-

cients provides the physical basis of CT contrast for platinum-containing drugs over

background liver tissue.

CT has several advantages for pharmacokinetic studies. It allows non-invasive,

high resolution, fast, accurate, repeated measurements on a single animal. Because

the animal can be used as its own control, inter-animal variability is eliminated.

With proper testing and validation, CT can potentially be used without additional

manipulation to study the in vitro and, more importantly, in vivo properties of

local drug release systems and their behavior in a target tissue environment.

1.4. Chapter overview

The initial direction of the CT development focused on the establishment of

the image acquisition and image analysis techniques. First, the image acquisi-

tion parameters (e.g. voltage, current, slice thickness, rotation time) of the CT

scanner were evaluated and optimized to achieve the best sensitivity and reso-

lution, in essence to maximize the signal to noise ratio, for the detection of the

active agent in tissue. The sensitivity limit for iohexol (a CT contrast agent used

in some preliminary experiments) and carboplatin was determined. Second, an

in vitro model consisting of gelatin gel as a tissue mimic and iohexol as a drug

mimic was used to validate the data obtained by CT analysis. Third, the same

validation was carried out in a rabbit model to test verify the procedure in a liv-

ing, breathing, animal. Fourth, the procedure was applied in an animal model to

non-invasively examine the release of iohexol from the implants and the effect of

RF ablation on this process. The optimization and in vitro — in vivo validation

are described in Sec. 2, and the in vivo evaluation of drug release is described

in Sec. 3. Finally, the technique was applied to determine the tissue penetration

and distribution of carboplatin, a platinum-containing anticancer agent, in nor-

mal liver and livers affected by radiofrequency ablation. Two schemes of image

analysis were applied to the data, and the image-assisted findings were corre-

lated with typical chemical evaluation of tissue platinum levels. This is described

in Sec. 4.
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2. Optimization and In Vitro/In Vivo Validation of

CT in Imaging of Drug Release Systems

Initial excitement about the potential of using computed tomography as a tool in

the development on evaluation of local drug release systems originated due to the

inherently simple linear relationship between X-ray attenuation and concentration

of any radiopaque atom. By exploiting this relationship, CT can provide us with

the desired pharmacokinetic parameters such as concentration of drug at the target

site, local tissue permeation and diffusion into tissue, and information such as the

rate of drug release from implantable devices. In the simplest sense, analyzing the

straightforward changes in contrast density with time in a Region Of Interest (ROI)

should provide us with quantitative, direct data that cannot be obtained by any

other experimental means. No longer does the drug concentration at the target site

have to be inferred from plasma and urine concentrations. Imaging can provide us

with direct measurement of this parameter.

Monitoring the principal characteristics of a drug release system under

unperturbed physiological conditions is important for the rational design and

development of a device with optimal drug dosage, release rate and duration. These

parameters are essential for achieving a safe and sufficient local therapy in a specific

tissue environment. In this section we summarize the development and application

of the CT method in examining the release kinetics of an agent from a polymer

implant into rabbit livers. The image acquisition technique, imaging parameters to

maximize the sensitivity and resolution, and image analysis procedures for quanti-

tative measurement are established, and the method is validated in a gelatin model

system as well as in rabbit livers in vivo.

2.1. Optimization of CT image acquisition

Gelatin gels containing iohexol concentrations from 0.01 to 10mg/ml were used

as imaging phantoms to evaluate the sensitivity of detection under various image

acquisition conditions. The influence of the CT parameters such as peak kilo-voltage

of the X-ray beam (kVp), current-time (mAs), and slice thickness were investigated.

These parameters were examined systematically, with each set of data being ana-

lyzed and optimized before proceeding to the next study. The other parameters

were kept constant: Helical scan at 0.5mm pitch, 1.5 sec rotation time, B filter,

high resolution, 160mm Field Of View (FOV) and 512× 512 pixel matrix.

For the optimization studies, the middle 4 slices, (or the middle 2 in the 2.5mm

case) were analyzed in order to account for the partial volume effect, where the

data from the top and bottom edges of the plate may be averaged with the air,

and incorrect pixel values would be obtained. The analysis consisted of selecting

a circular Region Of Interest (ROI) of 120–125 pixels and determining the val-

ues along the perimeter. The average and standard deviation of the CT inten-

sity in Hounsfield Units (HU) of these pixels were calculated. Next, the average

CT intensity was plotted versus iohexol concentration and the slope of the line

was determined. This slope was then used to convert the standard deviation in
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Hounsfield Units (σHU) to standard deviation in concentration (σC). Then, the

sensitivity was calculated by taking the ratio of the noise to the concentration

(σC/C). The value of σC/C was then plotted versus the iohexol concentration and

a power curve (y = axb) was fitted to each set of data to estimate the sensi-

tivity cutoff. We defined the concentration at which the signal is equal to noise

(σC/C = 1) as the sensitivity limit of iohexol detection by CT for each set of

parameters.

Table 1 summarizes the results from the CT optimization and sensitivity studies.

We found that increasing the current-time, peak kilo-voltage, and/or the slice thick-

ness increases the sensitivity and improves the limit of iohexol detection. Analysis of

the gelatin phantoms indicates that the sensitivity ranges from 0.18 to 0.30mg/ml

iohexol for the evaluated parameters. The sensitivity curves for these two extremes

are shown in Fig. 1. The lowest concentration of iohexol that exceeds the quan-

tum noise is 0.18mg/ml. However, because the slice thickness needs to be 2.5mm

to achieve this limit, this set of parameters compromised the resolution for our

application and will not be considered. The lowest sensitivity attained with a prac-

tical set of parameters is 0.21mg iohexol/ml at 600mAs, 120 kVp, and 1mm slice

thickness. These parameters were chosen as the most favorable image acquisition

conditions and were used in all subsequent studies.

The sensitivity limit of CT is highly dependent on image noise and can be

optimized by maximizing the signal to noise ratio. The image acquisition parameters

that play a crucial role in this effect are the mAs, kVp, slice thickness and the

reconstruction algorithm. The mAs is directly related to the number of photons

emitted in an X-ray beam, and therefore it is inversely correlated to the square

root of the noise of an image. The kVp affects the number of photons as well

as the energy of the X-ray beam. Higher energy X-rays penetrate an object to a

greater degree, while lower energy X-rays are attenuated more.34,35 Increasing the

energy of the beam, thus, increases the amount of signal reaching the detector,

and thus increases the sensitivity. The slice thickness, which is affected by beam

collimation, is also an important factor in the CT signal. Narrowing the collimation

reduces the voxel size, thus decreasing the number of photons per voxel. This leads

to an increase in quantum noise. In our application, it is important to achieve a

Table 1. Dependence of CT detection limit
on image acquisition parameters. (adapted from
A. Szymanski-Exner et al., J. Pharm. Sci., 2003)

Slice Detection limit
mAs kVp (mm) (mg/ml)

600 120 1 0.21
400 120 1 0.23
200 120 1 0.30
400 140 1 0.24
400 90 1 0.22
600 120 2.5 0.18
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Fig. 1. Representative sensitivity plots. Shown are plots from two image acquisition conditions
exhibiting high (�) and low (△) sensitivity with cutoff values at 0.18 and 0.30mg/ml iohexol,
respectively (adapted from A. Szymanski-Exner et al., J. Pharm. Sci., 2003).

maximum sensitivity limit without severely compromising resolution. Because a

trade-off exists between the two, the optimization studies were a necessary step

to determine the optimal parameter combination (e.g. 600mAs, 120 kVp, 1 mm,

as shown in Table 1). In a related note, since the k-edge of Pt is 78.5 keV, it is

possible that the optimal parameters and maximum sensitivity will actually occur

at a voltage much lower than those tested. Little change was noted in the average

signal level with increasing kVp, most likely indicating that the k-edge is currently

some distance away from the range of voltages tested.

2.2. In vitro/In vivo correlation

The model drug release system used for the validation consisted of a biodegradable

polymer matrix entrapping a CT contrast agent, iohexol. The purpose for such

a model system is twofold: It allows for accurate assessment of the CT monitor-

ing method in pharmacokinetic studies while providing valuable insight regarding

the local drug release kinetics in the liver. Polymer implants were fabricated by

compression-heat molding from PLGA, poly(D,L-lactide-co-glycolide), a commonly

utilized, FDA compliant, biodegradable polymer.37

Gelatin phantoms were used as a tissue-mimicking environment to determine the

accuracy of the CT method in monitoring the release of iohexol from the implants.

Implants were inserted periodically over six days into 10% gelatin gels and iohexol

was allowed to be released from the implant and diffuse into the matrix. The tis-

sue phantoms were imaged using optimized parameters, and the implants were
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immediately removed from the gels after the CT scan. The iohexol remaining in

the implants was extracted into PBS over six days and analyzed by UV-Vis spec-

trophotometry. The average CT intensity in each implant was determined from

image analysis of circular ROIs (5 pixel diameter) averaged along the length of

each implant. A background value for the polymer was subtracted from the average

ROI measurement to obtain the signal from iohexol.

The release of iohexol was assessed by calculating the contrast change with time

on the images and correlating this value to the UV-Vis measurement of extracted

iohexol. These data were standardized to the values at t = 0. For the CT data, the

average intensity in HU for the implants scanned immediately after implantation

into gels (t = 0) was used to calculate the percentage of release at other time points.

For the comparable chemical analysis, the same implants were removed from the

gels, and the extracted iohexol concentration was measured with UV-Vis and used

as the standardization value for the other time points.

The relative contrast decrease calculated from the CT images over time can be

directly related to the concentration of iohexol in the explanted implants at each

time point. The correlation between these two modes of analysis was excellent in

the in vitro gelatin system, as shown in Fig. 2. The largest deviation between CT

and UV-Vis data was 12%. Figure 2 insert shows the linear correlation (R2 = 0.99)

of both analysis methods. This result proves conclusively that CT is capable of

accurately determining the concentration of an active agent in a model system.

Furthermore, it should be noted that the study was performed in duplicate (n = 2)

with excellent data reproducibility (see error bars in Fig. 2).
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Fig. 2. Comparison of iohexol release profiles in gelatin gels from CT method and UV-Vis anal-
ysis. Figure 3 insert shows the linear correlation of the two methods (adapted from A. Szymanski-
Exner et al., J. Pharm. Sci., 2003).
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The relationship between iohexol concentration and CT intensity in Hounsfield

units (which is reflective of the X-ray attenuation by iodine) was also found to

be linear, as expected. A plot of CT intensity versus iohexol concentration in the

implants was constructed based on the experimental data. The slope for this rela-

tionship is 8.46HU/(mg/ml). This value was used in the following in vivo studies

to convert the image data to iohexol concentration.

2.3. In vivo validation and CT monitoring of iohexol release

Imagining parameters obtained from the optimization studies (600mAs, 120kVp,

1 mm slice thickness) were used to monitor the in vivo release of iohexol. Implants

were placed into the livers of New Zealand White rabbits. The animals were imaged

independently at 3 time points (1, 4 and 24 hrs) using the optimized scan param-

eters. The rabbits were then sacrificed and the scan was repeated. The implants

were removed and iohexol was extracted into PBS and analyzed with UV-Vis spec-

trometry. The CT images were processed as described below.

2.3.1. Image processing and analysis of iohexol release in vivo

A three-dimensional registration method was utilized to spatially align serial CT

volumes. A detailed description of this method was described previously.38–40 This

approach uses line paths and point landmarks to obtain volume registration. After

registration, the image volume was re-sliced so that the orientation of the slices

was exactly perpendicular to long axis of the implant. Based on phantom simula-

tions of manual localization error and implant orientation typical of our in vivo

experiments, we predicted a voxel displacement registration error of less than

0.5mm. The new image slices were analyzed for the relative change of intensity

within the implanted rod. The average concentration of iohexol remaining within

the implant was estimated by calculating average pixel values in circular ROIs

within the implant body (5 pixels diameter) and subtracting the average base poly-

mer attenuation level (in gelatin) from the average data. The conversion value of

8.46HU/(mg/ml) obtained from gelatin studies was used to calculate the iohexol

concentration.

2.3.2. Correction factor for respiratory motion

Several experiments were carried out to examine the effect of motion artifacts on

the accuracy of the concentration measurements obtained from image data anal-

ysis. We suspected that the lengthy 1.5-second rotation time used for minimizing

noise and maximizing sensitivity during image acquisition might result in motion

blur and artifact that would limit the quantitative concentration measurement. To

examine the extent of motion artifact, we compared CT measurements of iohexol

concentration in studies with movement (live animal) and without movement (fol-

lowing animal sacrifice) at three time points. A correction factor was calculated
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Without respiration

Respiratory motion artifact

B

A

Fig. 3. CT images with and without respiratory motion artifact. A. Representative cross-sectional
slice of the millirod in a live animal, B. The same slice following animal sacrifice (adapted from
A. Szymanski–Exner et al., J. Pharm. Sci., 2003).

as the slope of a linear fit between data without motion versus with respiratory

motion. This factor was applied to all other in vivo concentration measurements to

correct motion artifact in living, breathing animals.

The validity of the method was tested in vivo by directly monitoring the release

of iohexol in rabbit livers at discrete time points. Figure 3 shows two CT slices of the

same iohexol implant in a rabbit liver taken before and after sacrifice. It is evident

that the respiratory motion plays a significant role in the quantitative image analysis

at the current rotation time (1.5 sec) chosen for this study. Iohexol concentrations

calculated from images taken after sacrifice (no motion) were significantly higher

than the concentrations calculated from breathing animals. When plotted against

each other, the slope of a line fit to this data using linear regression was 1.4 ± 0.2.

We used this value as the correction factor to calculate the in vivo release data

from moving, breathing rabbits. This correction factor was further validated during

ongoing experiments with excellent results in multiple rabbits. The correction is

necessary to improve the accuracy of concentration measurement in live rabbits

but will vary depending on the experimental conditions (e.g. the breathing rate of

the animal, and CT rotation time).
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2.4. Summary

As evident by the data, the initial validation of CT in quantifying drug concentra-

tion in polymer release systems as well as evaluating the release profiles of drug

from the implants proved to be quite successful and instigated further exploration

of the technique, as described next.

3. CT Evaluation of In vivo Drug Release from

Polymer Delivery Devices

The CT method was next applied to evaluate the release kinetics of an agent from

a polymer drug release system in normal livers and livers with a pathologic envi-

ronment induced by radiofrequency ablation. The tissue damage inflicted by the

ablation procedure has a significant effect on the drug release rate from the implant,

and thus must be taken into account when designing the therapeutic system for its

clinical application.

Image acquisition parameters obtained from optimization studies were used to

monitor the in vivo release kinetics of iohexol in rabbits with and without ablation

of the liver tissue. Each rabbit was scanned at 1, 4, 24 and 48 hours following RFA

treatment and implant placement. Concurrently, identical implants were placed in

physiological buffer and the drug release was evaluated in vitro. The measurement

of in vivo agent release from the image data was carried out by taking the average

pixel value measurements in circular regions of interest along the entire volume

of the rod. The amount of iohexol remaining in the implant was calculated by

averaging the pixel values from the regions of interest within the implant matrix,

subtracting the average base polymer attenuation levels from the average data, and

using a conversion factor of 8.46HU/(mg/ml) to calculate concentration values.

The correction for respiratory motion was also applied to the data. The 50% release

time was calculated from exponential decay curves fit to the animal data and for

the in vitro data by linear extrapolation. The average release rate during each

sampling interval was calculated by determining the slope of a line between each

interval (HU/(mg/ml)).

The CT intensity was converted to iohexol concentration to permit quantitative

measurement of iohexol release in vivo. The iohexol concentration in the ablated

liver implants is between 16 to 30% higher than that in the normal liver implants

during the first hour and 15.2 to 81.7% higher in 12/16 time points. When examining

the average measurements in the normal liver environment, approximately 20% less

iohexol remains in the polymer after the first hour. This discrepancy increases to

43% after 48 hrs. The 50% release time (t1/2) differs significantly (p = 0.046) and

is 1.7 times faster in normal liver (12.1 ± 5.4 hrs) as compared to ablated liver

(20.6 ± 5.9 hrs).

The in vitro release data were compared to those in vivo to evaluate the ade-

quacy of the in vitro model in representing the physiological system (Fig. 4). The



Techniques in X-Ray Computed Tomography 119

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50

Time (hrs)

Io
h

e
x
o

l 
c
o

n
c
e

n
tr

a
ti
o

n
  

(m
g

/m
l)

Normal liver

Ablated liver

In vitro (PBS)

Fig. 4. Cumulative release of iohexol from PLGA implants in normal and ablated liver in vivo
over 48 hours. The in vitro release data in PBS at 37◦C is also shown for comparison.

release of iohexol in vitro is comparable to that in normal livers, as evident by

similar t1/2 values. This indicates that the local release of an agent in normal

livers is equivalent to, and therefore may be predicted by, the release in PBS. More

specifically, the in vitro release predicts a t1/2 of 10.1 ± 1.2 hrs for normal livers

and correlates well to the 12.1 ± 5.4 hrs calculated from CT data. The value of t1/2

is two times longer in the ablated tissue (20.6± 5.9 hrs) than that indicated by the

in vitro model.

The effect of tissue environment on drug release kinetics presents a unique chal-

lenge for the development of local drug delivery systems. Each tissue environment

has a distinctive set of physiological parameters that affect the local release of a

drug from the implant, and these effects must be evaluated before a successful local

release system is produced. Here, we examined the influence of thermal ablation of

the liver on the local drug release kinetics. Tissue damage caused by RF ablation

is a chief factor in the potential clinical application of our drug delivery device.

Non-invasive examination of in vivo iohexol release from the implants showed

significantly slower release kinetics in ablated livers as compared to normal livers.

We believe these results reflect the different drug transport processes at the two

implantation sites. In normal livers, drug transport consists of interstitial diffusion,

cellular uptake, and drug clearance by perfusion processes.41,42 If iohexol, an extra-

cellular contrast agent, is released into viable liver tissue, diffusion and perfusion are

the only two processes taking place. In non-ablated livers, the clearance of iohexol

from the tissue/implant interface is fast due to the high blood perfusion rate. Con-

sequently, the release rate in normal livers is faster due to the higher concentration

gradient at this interface.
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The unique local environment of the ablated tissue requires special consideration

for the development of a suitable local therapy. Test tube studies are widely accepted

as a sufficient method to characterize the release kinetics of an agent from a drug

delivery device. However, the results suggest that precaution needs to be taken

when in vitro release data is used to predict the release properties in vivo. The

discrepancy in release kinetics between PBS and ablated liver demonstrates the

limitations of the PBS system in approximating drug release in ablated livers and

the importance of non-invasive imaging techniques in pharmacokinetic studies.

These results clearly demonstrate the immense potential of using computed

tomography in monitoring local pharmacokinetics and confirm that CT moni-

toring provides physiologically relevant data that may not be otherwise directly

observed. Because of its non-invasive nature, the technique can examine release

in the same animal over time and minimize the extensive sample collection and

processing required with a large animal group compared to conventional pharma-

cokinetic methods.

4. CT Methods for Evaluation of Tissue Penetration and

Distribution of Drugs Delivered with

Local Drug Release Systems

To validate the efficacy and demonstrate the feasibility of any localized drug deliv-

ery system, questions regarding the dynamics of drug distribution in tumor tissues

and therapeutic margin need to be answered. In contrast to Sec. 3, where only

the release of a model drug from the implant matrix was evaluated with CT, this

section describes the effectiveness of CT image analysis techniques for the evalu-

ation of the tissue penetration and distribution of platinated drugs delivered to

the target site via an implanted sustained-release system. Two distinct methods of

image analysis were employed in the project. In Method 1, registration and refor-

matting was explored for the straightforward, direct comparison of single image

slices acquired at different times.40 In Method 2, a more robust, volume analysis

was utilized to obtain related measurements of drug levels in tissue.43 As a practi-

cal example, the differences in local pharmacokinetics of normal and ablated liver

tissue were explored. The methods were evaluated in a rabbit (Method 1) and rat

(Method 2) model. The implants were placed in the liver, either with or without

prior treatment with radiofrequency ablation (which induces coagulative necrosis).

The animals were imaged with the optimal scan parameters, and the images were

analyzed with either technique.

4.1. Calibration of CT intensity to drug concentration

A common thread in both methods was the determination of a calibration curve

for the correlation of CT intensity in Hounsfield Units (HU) to the concentration of

carboplatin suspended in various gelatin imaging phantoms. To determine the CT
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intensity for each carboplatin concentration, a circular Region Of Interest (ROI)

was manually defined in the four central slices in each volume, and the average

HU value along the perimeter of this region was calculated. The average HU values

were plotted against carboplatin concentration, and linear regression was used to

determine the parameters of a linear fit. Linear regression resulted in a statistically

significant fit (p < 0.05) with a slope of 15.97HU/(mg/mL). This corresponds to a

sensitivity of 1HU of CT signal for every 62.6µg/mL increase in drug concentration.

4.2. Evaluation of drug pharmacokinetics in liver tissue by

Method 1

4.2.1. Registration and reformatting of CT volumes

Serial CT slices were first registered and reformatted in order to spatially examine

drug distributions at different times. The method used line paths, and optional point

landmarks, to obtain volume registration.38 First, the intersection of the cylindri-

cal implants with every applicable slice was manually localized. Next, an optimum

set of rigid body registration parameters was computed by iterative minimization

of an objective function representing the mean Euclidean distance between corre-

spondence points along the implant paths. The function value provided an estimate

of registration error in the region of interest. In addition, based on phantom sim-

ulations of manual localization error and implant orientation typical of in vivo

experiments, a voxel displacement registration error of < 0.5mm was predicted.38

Finally, all volumes were transformed so that the implant is perpendicular to the

slice plane, with voxels at the original in-plane resolution. Image volumes from three

time points were registered to allow accurate comparison between image sets.

The registration and reformatting process is crucial to the accurate analysis of

drug pharmacokinetics. Registration allows a number of time points to be compared

even though the animal has moved between imaging sessions, while reformatting

provides perfect axial slices through the implant, decreasing partial volume effects

and allowing an evaluation of the symmetry of drug transport.

4.2.2. Background subtraction and circumferential averaging of radial plots

To quantitatively evaluate the release of carboplatin, the image background was

subtracted from each registered image set, leaving only signal produced by the

presence of carboplatin. For each image, a background subtraction mask was cre-

ated that consisted of three, manually segmented, homogeneous regions (implant,

ablated tissue, and normal tissue). To obtain the value for normal tissue, a homo-

geneous region of liver background tissue was manually selected and the mean and

standard deviation of the pixel gray levels were computed. The statistics for ablated

tissue regions and the polymer implant were measured in a similar fashion. Abla-

tion and implant boundaries were defined for each registered image set to create
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the subtraction mask. The subtracted image was displayed to verify the quality of

the subtraction.

An averaging algorithm was created to evaluate drug transport out of the

implant and into the surrounding tissue. The registration and reformatting process

provides a series of axial slices through each implant, and the subtraction process

resulted in images where the entire signal is produced by the presence of carbo-

platin. The maximum pixel in the ROI surrounding each rod was defined as that

rod’s center. From this center point, a series of 360 equally spaced radial lines were

drawn and the radial profiles from all 360 lines in each of three slices at the center of

each registered implant volume were averaged together. The previously determined

relationship between CT signal and drug concentration was then applied to the

average profile, converting the CT intensity in HU to the number of drug molecules

present in each pixel over time, revealing the release and distribution of carboplatin

out of the implant. Accurate background subtraction coupled with circumferential

averaging provides previously unknown quantitative information about the concen-

tration of drug at various spatial locations.

Figure 5 shows that drug is transported away from the implant in all directions.

This suggests that an appropriate method for measuring the typical transport is to

circumferentially average over a number of radial lines extending from the center

of each implant. The normal implants, without ablation, show a rapid decrease in

carboplatin both surrounding and inside the rod. Approximately 50% of the drug

in the rod is lost between 1 hour and 24 hours. With ablation, most of the drug

is retained from 1 hour to 24 hours. This is most likely the result of a destruction

of local vasculature due to the ablation procedure, as supported by histological

Normal

Ablated

1 Hr 4 Hrs 24 Hrs 0

1200

6005 mm

HU

Fig. 5. Contour plots showing the spatial distribution of carboplatin in normal and ablated tissue
after subtraction of a background mask. Carboplatin distribution is more extensive in ablated
tissue at 4 and 24 hours, while at 1 hour the spread of drug is about the same in normal and
ablated tissue.
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analysis.25 In all cases, about 4 mm from the center of the implanted implant, the

CT images no longer show measurable drug concentrations.

4.2.3. Regional drug distribution through a pillbox analysis

The local distribution of carboplatin was also evaluated by calculating the number

of drug molecules present in a series of virtual “pillboxes”, or cylindrical volumes

defined to enclose a relevant structure such as the implant or a tumor. In our

analysis, three pillboxes were defined: Implant, virtual tumor and tissue. A fourth

compartment, drug washout, was set to be the total drug dosage minus the total

number of drug molecules that can be counted in the image. To determine the

number of drug molecules in a particular Volume Of Interest (VOI), we integrated

over the pillbox and subtracted the number of molecules that can be committed to

other enclosed regions. The initial number of molecules at the time of implantation

was determined by measuring a control rod placed outside the rabbit. Drug washout

provided a measure of vascular clearance as a result of blood perfusion.

Figure 6 shows the number of molecules in the rod, virtual tumor, and surround-

ing tissue, as well as other drug molecules that have been washed out of the region.

As shown in the radial plots, the amount of drug inside the rod and in the tumor

pillbox is considerably higher in the ablated tissue than in normal tissue, while the

tissue pillbox shows no appreciable drug concentration because it is either lower

than the sensitivity of the technique or contained within the noise of the liver back-

ground. The amount of drug washed out of the treatment site is much higher in

normal tissue at all time points, most likely due to the presence of local vasculature.

Importantly, the amount of drug inside the rod and tumor pillboxes after 24 hours

is 25% higher in ablated as opposed to normal tissue. The pillbox analysis gives

insight into the bulk location of drug at a given time and could be easily expanded
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experiment.
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to look at the movement of drug to other areas of interest or anatomical locations,

such as the kidney or bladder.

Although this analysis technique successfully demonstrated the proof-of-concept

of CT is evaluating local tissue pharmacokinetics, it also revealed a number of

shortcomings that we attempted to correct with a second, more comprehensive

technique. The following section describes the second method of data analysis.

4.3. Evaluation of drug pharmacokinetics in liver tissue by

Method 2

CT data collected in the same manner as above CT data underwent extensive pro-

cessing to evaluate the local pharmacokinetics of carboplatin. An analysis regimen

was developed to isolate tissue and implant levels of carboplatin from the other com-

ponents in each image volume. The method begins with background subtraction of

tissue and polymer attenuation, followed by circumferential averaging of the data

about each cylindrical implant. Next an inherent blur correction is applied and the

analysis is concluded with a separate regional distribution analyses in the implant

and tissue volumes. A detailed description of this analysis is provided below.

4.3.1. Sampling of CT volumes and circumferential averaging of

radial profiles

A three-dimensional sampling method was used to spatially examine drug distri-

butions at an orientation exactly perpendicular to the long axis of the cylindrical

polymer implant. First, the center of the implant was manually localized. Next,

to accurately determine the precise orientation of the implant in the CT volume a

best-fit line was computed in three dimensions using the least squares algorithm.

To determine HU values from the images, a trilinear interpolation was used to

obtain the signal intensity at points along concentric circles perpendicular to the

3D best-fit line.

To evaluate drug transport from the implant into surrounding tissue, points in

the 3D image space were circumferentially averaged to yield a single 1D radial profile

for each implant. Circumferential samples were obtained with an angular interval of

five degrees and a radial interval of one half of the in-plane pixel width (0.147mm).

Sampled points were binned by radial distance and averaged. The measurements

were then compared between slices to establish differences in release properties

along the length of the implant. The profiles were further averaged along the z-axis

to yield one average profile of drug concentration as a function of distance from the

center of the implant. This facilitated direct comparison of the CT and chemical

analysis data.

4.3.2. Accounting for blurring of the implant by the CT imaging system

To account for blurring of the implant by the imaging system, we assumed a linear

response to drug in the implant. We placed a carboplatin implant in a gelatin
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phantom and immediately imaged it. This gave the rod image at t = 0, and the

measured, circumferentially averaged profile was designated as the background pro-

file due to blurring of a drug-containing rod in drug-free surrounding tissue. For each

subsequent experimental profile, this profile was linearly scaled to the peak signal of

the implant as averaged over the innermost half of the implant (radius < 0.4mm).

The background could then be removed from subsequent measurements to obtain

the drug in the tissue.

4.3.3. Calculating carboplatin contained within the implant body and

surrounding tissue

To determine the average carboplatin concentration inside the implant body, we

determined the HU values of the background rod profile that had been scaled to

the experimental profile. Those points nearest the edge of the implant (0.4–0.8mm

from the rod center) were excluded to minimize the effects of drug inhomogeneity

within the implant. To account for X-ray attenuation from the polymer component

of the rod, the HU value for a PLGA polymer implant without drug was sub-

tracted from each HU value within the drug-containing implants. This correction

was typically less than 10% of the total. The resulting difference was converted

to carboplatin concentration using the in vitro rod conversion value determined

as described above. Volume integration of these spatially varying concentrations

for each profile allowed calculation of the drug mass present in each slice of the

implant, which could then be divided by the volume to yield an average drug

concentration. A mean concentration of carboplatin for the entire rod was deter-

mined by further averaging the carboplatin concentrations along the length of the

device.

Carboplatin concentrations outside of the implant were determined by a simi-

lar method. First, we subtracted the background image of the rod that had been

linearly scaled to the experimental profile. These HU values were then converted

to carboplatin concentration by subtracting a background corresponding to either

healthy or ablated liver tissue and using the in vitro conversion value determined

in the gelatin phantom. Figure 7 shows the algorithm used to calculate carboplatin

concentrations, while Fig. 8 shows the distribution of carboplatin in liver tissue as

calculated by Method 2.

In the present method of image processing, sampling, background subtraction

and a precise calculation of the drug concentration to HU conversion factor are all

essential for achieving the most accurate quantitative description of the system.

The fitting of a line to the center of the cylindrical implant allows sampling of data

at an orientation exactly perpendicular to the long axis of the implant, optimizing

the circumferential averaging process and allowing simple ROI analysis. Contrary

to Method 1, this technique circumferentially averages the signal from a control

image set, and then is linearly scaled and subtracted from the experimental profiles

to determine the carboplatin concentrations both within the implants and in the

surrounding tissue.
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Fig. 7. Schematic of algorithm used to determine carboplatin concentrations in Method 2. After
obtaining an experimental profile (A), the background profile generated by a rod in gelatin at
time = 0 (B) was scaled to the height of the experimental profile (C). After scaling, the concen-
tration value within the implant was determined by averaging the scaled values within 0.4mm
of the implant center (hashed region, D). The value in tissue was determined by subtracting the
difference between the two profiles hashed region, E). The dashed lines (D and E) show approxi-
mately where the implant/tissue interface would be located.
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4.4. Correlation of CT data with chemical analysis

The image data from Method 2 was compared to Atomic Absorption Spectroscopy

(AAS) analysis of carboplatin content in the liver tissue. AAS is a widely accepted

method of analyzing tissue platinum levels. From this analysis we found that the CT

data overestimates the drug content determined by the AAS data predominantly

between 1–2mm and underestimates it as the distance from the implant increased.

Figure 9 is an example of this correlation and describes the quantitative change

in drug concentration as a function of time for a tissue volume. In the ablated

liver, the concentration of carboplatin is sufficiently high and can be detected by

CT with fair correlation to the actual concentration (from AAS). However, when

the drug concentration decreases, the accuracy of the CT detection diminishes.

At distances away from the implant, the CT profile data describes the retention

and penetration of the carboplatin as more extensive in the ablated liver, but it

is not accurate at the low drug concentrations detected by AAS (quantification

limit 25 ppb). The quantum noise combined with background subtraction lead to

negative concentration values which were regarded as zero.

This is the effect of insufficient sensitivity in the CT imaging and is most likely

a result of two factors: (i) the inherent blur artifact associated with small bright

objects (e.g. implants) placed in a larger and less-attenuating matrix (e.g. liver

tissue), and (ii) the beam hardening artifact resulting from the high contrast dif-

ference between the implant and the tissue. Both of the artifacts are clearly visible

in the CT images, and although found in the normal liver, the effects are more
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notable in the ablated tissue (which has gray levels approximately 30HU lower

than the normal liver). It is also evident that the greatest overestimation occurs

at distances closest to the implant boundary and lessens with increasing radius as

well as with time. The less than optimal correlation can also be attributed in part

to the difference in spatial resolution of the two methods. AAS sampling occurred

at a frequency of 2mm compared to the sub-mm sampling of the CT.

4.5. Summary

Section 4 presented two possible methods for analysis of CT data collected from the

evaluation of a local drug release system. Method 1 utilizes a single slice approach,

where a direct comparison of single image slices acquired at different times was

carried out by a circumferential averaging algorithm. This method also utilized a

volume or “pillbox” analysis to gain a more comprehensive understanding of the

local drug behavior. In Method 2, a volume analysis was utilized throughout the

process to obtain the same data as from Method 1. The primary advantage of

this method is that the manual slice by slice registration and reformatting of the

images is no longer required. Furthermore, the method recognizes and attempts

to correct for the blurring artifact, to provide a more precise measurement. Both

methods utilize a similar conversion from HU to drug concentration, and both fall

short of the desired sensitivity for such an analysis technique. The bottom line

is that although the analysis can provide us with accurate measurements of drug

movement within the implant matrix, the signal to noise ratio is insufficient to

detect drugs at the lower limits of their active concentrations within the tissue.

Despite the evolution of the analysis process, a number of improvements can still

be incorporated into the processing techniques to optimize these measurements.

Some of these limitations and ideas for technique refinement are discussed further

in the following section.

5. Potential Limitations of CT in Drug Monitoring

Before the CT tracking method can be reliably used for in depth pharmacoki-

netic analysis, several concerns must be addressed. The primary issue involves

applicability of the technique to therapeutic drugs, which are limited to chemi-

cals containing a heavy element that will attenuate X-rays. Fortunately, there are

currently 25 platinum-containing anticancer agents in clinical trials, and four have

been approved for clinical use.44,45 Thus the CT method is directly applicable for

studying the local pharmacokinetics of clinically used drugs, such as carboplatin and

cisplatin. For most other drugs, covalent attachment of a heavy (but not radioac-

tive) element may be necessary to generate CT contrast. However, special precau-

tion needs to be taken to ensure the addition of such an element does not affect the

drug pharmacokinetics and mechanism of action. Another concern, which we have

touched upon in this work, is the respiratory motion artifact. The correction factor
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used here is an interim solution to a crucial issue affecting the accuracy of the quan-

titative data as well as the sensitivity of the method. The tradeoff between longer

scan times to improve sensitivity and motion reduction to prevent artifact requires

further investigation, particularly in examining tissue penetration and distribution

of a drug in animals as well as in humans. Respiratory gating may offer a supe-

rior resolution to this dilemma. Other potential improvements can also be made to

optimize the technique. For example, blurring, which most likely is responsible for

the overestimation of drug concentration adjacent to the implant/tissue boundary,

can be diminished by changing the reconstruction filter to obtain a more accurate

drug release profile.

Although it is clear that the detection limit of the current CT technique (which

is highly dependent on image noise) is too low to adequately describe the absolute

drug levels present in the tissue, the clear benefits of the CT monitoring lie instead

in the analysis of release from the implants and in the relative comparisons of drug

release and tissue distribution in different systems. Already it can be seen that the

technique does detect a difference between the normal and ablated liver distribution

(as seen in the maximum penetration distance analysis). However, although one can

track the amount of drug in the implant, the accurate quantification of absolute

drug concentration and spatial distribution in the tissue is not realistic at this time.

Overall, the method provides a simple and convincing approach for monitoring

in vivo drug release in agents able to attenuate X-rays, but additional work is

required for the technique to be the sole assessment of tissue distribution (by radial

profiles) at low drug concentrations. Evidence is nevertheless compelling that the

method is quite capable in evaluating the release of an agent from a small drug

delivery device and non-invasively acquiring data unavailable by any other means.

The results of this work could potentially reduce inter-animal variability common

in in vivo evaluations of local therapies and could significantly reduce the number

of animals required to carry out these studies.

6. Conclusions

The current studies demonstrate the feasibility of computed tomography in non-

invasive drug monitoring and offer a glimpse into the immense potential of this

powerful technique. The CT method has a number of unique advantages that make

it an ideal modality for this application. Primarily, CT has a superb combination

of sensitivity and resolution as compared to other imagining modalities. Moreover,

CT allows a rapid collection of many high-resolution images (less than 20 seconds

per animal scan) and can minimize the variability of release kinetics due to long

scanning time (e.g. MRI scans often take significantly longer). Furthermore, it elim-

inates the need for extensive tissue collection and requires fewer animals than more

traditional pharmacokinetic analysis. This non-invasive nature, in turn, minimizes

animal variability. With these advantages, the potential of CT in advancing the

development and clinical applications of drug release systems is unparalleled and
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should be pursued by investigators requiring non-invasive pharmacokinetic moni-

toring in their research quest.
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We present the theory and application of non-invasive or minimally invasive imaging of
bioelectromagnetic sources. We are not concerned with imaging secondary effects of the
sources (that might be used to infer their location), such as changes in tissue oxygenation,
blood flow, or glucose utilization (as with BOLD or dynamic gadolinium functional MRI
strategies, or PET). Thus, we are directly concerned with providing images of source
currents or source potentials. These sources reside in “excitable tissues”, such as brain,
heart, gut, and skeletal muscle.

While we will not be conducting a comprehensive literature survey, this chapter
is intended to provide an overview of the general approaches and trends in bioelectro-
magnetic imaging that presently characterize the field. Within reason, we attempt this
by considering the relevant physiology, physics, engineering, and mathematics that in
concert allow a coherent understanding of the present state of affairs. Accordingly, this
chapter’s sections are arranged as follows:

• General Principles

— Modeling of excitable tissue
— Physics of bioelectromagnetism

— Engineering issues: Signal acquisition
— Mathematical methods

• Source Categories

— Brain: Source physiology, dipole localization, imaging formulations, linear versus
nonlinear problems

— Heart: Source physiology, endocardial, epicardial, and transmembrane potential
imaging

— Smooth and Skeletal muscle: Source physiology, inverse problems related to elec-
tromyography and electrogastrography.

Keywords: Bioelectromagnetic source imaging; heart; skeletal muscle; gastrointestinal
smooth muscle.
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GENERAL PRINCIPLES

1. Modeling of Excitable Tissue

1.1. Ionic currents

The sources that we ultimately seek to image arise from various ionic currents that

control the activity of the cells within the excitable tissues. These ionic currents

result from the transfer of ions through the cell membrane between the intra-cellular

and extra-cellular fluid.

In general the cell-membrane will be permeable only to certain ions in certain

directions. Typically, the intra-cellular concentration for an ion will be different

from the extra-cellular concentration for the ion. The concentrations of common

ions in the different cell spaces for different tissues is given in Tables 1 and 2.

The different concentrations set up an electro-chemical potential across the cell

membrane. This potential is given by the Nernst equation

E =
RT

ZF
loge

[C]o
[C]i

, (1)

where R is the gas constant, T the absolute temperature, Z the valency of the ion

involved and F is Faraday’s constant. At 37◦C RT
F is approximately 26mV so a

10 fold change in ion concentration corresponds to approximately a 60mV change

in potential.

Now from Ohm’s law the ionic current through a membrane for say, potassium,

will be given by

iK =
1

R
∆V

= gK(Vm − EK),

Table 1. Intra- and Extra-cellular ion concentrations and equilibrium
potentials for mammalian skeletal muscle.

Intra-cellular Extra-cellular Equilibrium
concentration (mM) concentration (mM) potential (mV)

Na+ 12 145 ENa+ = +65
K+ 155 4 EK+ = −95
Ca2+ <10−7 1.5 ECa2+ = +128
Cl− 4.2 123 ECl− = −88

Table 2. Intra- and Extra-cellular ion concentrations and equilibrium
potentials for mammalian cardiac muscle.

Intra-cellular Extra-cellular Equilibrium
concentration (mM) concentration (mM) potential (mV)

Na+ 5–34 140 ENa+ = +51
K+ 104–180 5.4 EK+ = −85
Ca2+ 0.0003–0.001 3 ECa2+ = +133
Cl− 8–79 100 ECl− = −22
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where gK is the membrane conductance for potassium ions and Vm is the trans-

membrane potential (i.e. the difference in potential between the intra-cellular and

extra-cellular spaces).

It should be noted that by definition an outward current (from intra- to extra-

cellular space) is defined as a positive current. It should also be noted that electrical

current flows in the direction that the positive charge carriers move. Hence the

potassium current (in which the positive K+ ions move from inside the cell to

outside the cell) is a positive current. As the transmembrane potential increases

above EK the membrane current changes from a negative (inward) current to a

positive (outward) current. The point EK is hence known as the reversal potential

as it is at this point that the current reverses its direction.

The membrane conductance for an ion depends on the number of conducting

channels and their properties or gating. In 1952 Alan Hodgkin and Andrew Huxley

performed voltage clamp experiments on giant squid axons.64 From their experi-

ments, they determined the conductances and dynamic gating mechanisms control-

ling the movement of potassium and sodium ions across the cell membrane. The

work of Hodgkin and Huxley (for which they were awarded the 1963 Noble prize

for Physiology or Medicine) can be summarized in the Hodgkin–Huxley equations

for the action potential.

1

ra

∂2Vm

∂x2
= C

∂Vm

∂t
+ iK + iNa

iK = n4gK(Vm − EK)

iNa = m3hgNa(Vm − ENa)

dn

dt
= αn(1 − n) + βnn (2)

dm

dt
= αm(1 − m) + βmm

dh

dt
= αh(1 − h) + βhh,

where αn, βn, αm, βm, αh and βh are all voltage dependent rate constants, x is the

distance along the axon, ra is the resistance of the axon and t is time. The variables

n, m and h are the names given to the various ion channel gates associated with

the conductances of the K+ and Na+ ions.

Putting the Na+ and K+ channels together we obtain the nerve action potential

shown in Fig. 1.

Action potentials are propagated by the following basic mechanism: When the

membrane potential of one end of the nerve is raised an axial current along the nerve

from the high potential end to the low potential end is generated in accordance

with Ohm’s law. This current raises the membrane potential (depolarises) to a

point whereby the sodium channels open. The point is known as the threshold

voltage. Once the sodium channels open the sodium ions flood in and cause an

inward current which raises the membrane potential even higher. This generates
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Fig. 1. The squid action potential with the sodium and potassium channel conductances.

further axial current and a resultant action potential is hence propagated down the

nerve. It should be noted that this process requires ion pumps in the membrane to

restore the intra- and extra-cellular ion concentrations to their resting levels. These

pumps require energy (ATP — adenosine triphosphate) to operate. Until the ionic

concentrations in an area of nerve have been returned to their resting states an

action potential will not propagate in this area of nerve. This period after an action

potential has passed when the nerve cannot be activated is called the refractory

period.

In contrast to neuronal tissue, muscle is excitable and contractile. There are sev-

eral types of muscle in the human body namely cardiac, skeletal and smooth muscle.

Muscle cell membranes are more complicated than that of the squid axon. In addi-

tion to the sodium and potassium channels muscle cells also have calcium channels,

whose primary role is contraction. When muscle is stimulated appropriately, it gen-

erates an action potential, and Ca+2 is released resulting in a contraction. The

details associated with action potential activity and Ca+2 release are different for

each muscle type. As we will see, these details affect not only the way we attempt to

non-invasively image the underlying electrical activity, but also the type of activity

we can hope to detect. Relevant aspects of neuronal, cardiac muscle, skeletal muscle,

and smooth muscle structure and physiology with be presented in later sections.
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1.2. Models of the electrical activity of non-neural cells

1.2.1. Cardiac cell models

Most cardiac cell models contain components that are based on the Hodgkin–Huxley

model of the squid axon. Since that model first appeared, the number of different

cell models has grown rapidly as more has become known about the different sub-

cellular mechanisms responsible for the functioning of the cell. Some of the better

known models include the DiFrancesco–Noble model of the Purkinje fiber cell,31

the Beeler–Reuter ventricular cell model,10 the Luo–Rudy mammalian ventricular

cell models (LRI and LRII)84,85 and the Noble model of the guinea pig ventricular

cell.103 Figure 2 is a schematic representation of the ionic current, pumps and

exchangers that are captured in the LR-II model. An action potential generated

from this model shown in Fig. 3.

The level of complexity inherent in these cellular models has also increased

significantly, with 2 currents (INa, IK) and 3 gating variables (m, h and n)

required in the original Hodgkin–Huxley model, 4 currents (INa, Is, Ix1, IK1)

and 6 gating variables (m, h, j, d, f, x1) in the Beeler–Reuter model, 12 currents

(If , IK , IK1, It0, IbNa, IbCa, Ip, INaCa, INa, ICaf , ICas, Ipulse) and 7 gating variables

(y, x, r, m, h, d, f) in the model of Difrancesco–Noble and the most recent version of

the Luo–Rudy II model containing 14 currents (INa, ICa, ICaNa, ICaK , IK , INaCa,

IK1, IKp, Ip(Ca), INab, ICab, INaK , InsNa, InsK), 4 fluxes (Irel, Iup, Ileak, Itr) and

11 gating variables (m, h, j, d, f, fCa, X, Xi, K1, Kp, fNaK).

Fig. 2. A schematic diagram describing the ionic currents, pumps and exchangers that are cap-
tured in the LR-II model. The intracellular compartment is the Sarcoplasmic Reticulum (SR),
which is divided into the two subcompartments, the Network SR (NSR) and the Junctional SR
(JSR). Ca2+ buffers are present in both the cytoplasm and the JSR.
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Fig. 3. An action potential simulated using the LR-II model.

The models mentioned above are all biophysically based, i.e. they attempt to

describe the action potential by modeling the biophysics of the subcellular processes.

Alternative non biophysical cell models have been developed which are typically

much simpler and computationally more efficient. These types of models simulate

the basic properties of an action potential without attempting to address the under-

lying processes. In such models the variables typically have no physical meaning.

The most widely known of these models is the Fitzhugh–Nagumo model.34,98 The

Fitzhugh–Nagumo model is based on a cubic excitation model but also includes a

recovery variable so both depolarisation and repolarisation may be modeled.

1.2.2. Skeletal muscle cell models

In contrast to cardiac action potential models, there are relatively few biophysically

based models of the skeletal muscle action potential. The skeletal muscle cell models

are also not yet as complex as the cardiac cell models. Adrian and co-workers

were the pioneers in formulating biophysical models for skeletal muscle electrical

activity.1,2 Among the more recent models are the ones published by Henneberg

and Roberge62 and Wallinga et al.145 These models take into account up to five

different ionic currents (see Fig. 4).

Non-biophysically based models of the skeletal muscle action potential exist, for

example that of Rosenfalck.121

1.2.3. Gastrointestinal smooth muscle cell models

To date no detailed biophysically based models exist that explicitly and separately

represent the electrical activity of both smooth muscle and the Interstitial Cells

of Cajal (ICCs). The most detailed biophysically based model to date is that of

Miftakhov et al.93 but this model makes no distinction between smooth muscle

cells and ICCs, making it unsuitable for an investigation into the underlying mech-

anisms behind ECA initiation and propagation. The most advanced model that



Bioelectromagnetic Source Imaging 139

Fig. 4. Action potential generated using the Adrian et al. model (1973)2 of frog sartorius muscle
electrical activity.

does differentiate between the cell types appears to be that of Aliev et al.4 in which

modified Fitzhugh–Nagumo equations were used to describe both smooth muscle

and ICC.

1.3. Tissue and whole organ models

Models of the muscle cell electrical activity can be incorporated into larger-scale

continuum based models. The excitable tissue is treated as a syncytium and at any

given point there is assumed to exist both intracellular and extracellular space. This

coexistence of extracellular and intracellular information at every point in space is

modeled by the well-known bidomain equations. The equations for the model are

given below

∇ · (σi∇Vm) = −∇ · ((σi + σe)∇φe), (3)

∇ · (σi∇Vm) + ∇ · (σi∇φe) = Am

(
Cm

∂Vm

∂t
+ Iion

)
. (4)

Here φe is the extracellular potential, σi and σe are the intra- and extra-cellular

conductivities respectively, Am is the surface to volume ratio of the cell membrane,

Cm is a membrane capacitance per unit area, and Iion is the appropriate cellular

level model.

2. Physics

2.1. Basic equations

Bioelectric currents and the accompanying fields are electromagnetic phenomena

and thus are ruled by Maxwell’s equations73:

∇× E = −∂B

∂t
, (5)
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∇× H = J +
∂D

∂t
, (6)

∇ · B = 0, (7)

∇ ·D = ρ, (8)

where E is the electric field, H the magnetic field, J the current density, B the

magnetic induction, D electric displacement and ρ charge density. The properties

of the medium in which these are defined enter into the additional “constitutive”

equations (assumed to be linear115):

D = ǫE, B = µH, J = σE + Js. (9)

In the problem addressed, the medium is a bounded volume conductor. The per-

meability µ is taken to be the value in a vacuum, µ0. Macroscopically the medium

can be assumed to be electrically neutral, and a separation of charges cannot occur.

Microscopically, there is a charge built-up over capacitance of the cell membranes,

which only in a non-steady state can produce a net current across the membrane,

often called the impressed current, Js, resulting in a passive return current σE in

the volume conductor. Thus the main constitutive relation is a generalization of

Ohm’s law.

2.2. The quasi-static approximation

One important simplification can be made for sources and fields in biological media.

In the so-called quasi-static approximation, it is assumed that there is no frequency

dependence of the conductivity and over the length scales at hand no phase shifts

occur. All changes in the fields are instantaneous with changes in the membrane

current sources.115 Thus, the partial derivatives in Eqs. (5) and (6) can be set to 0.

As a result, since ∇×E = 0, the electric field can be expressed by a scalar potential

E = −∇Φ, (10)

and, taking the divergence of Eq. (6):

∇ · J = 0, (11)

and of the left- and right-hand side of third equation in (9) (substituting (10)

and (11)) we get:

∇ · (σ∇Φ) = ∇ · Js = −Iv, (12)

which is Poisson’s equation, with Iv the impressed volume current density. σ is kept

within the gradient operator here to allow for an anisotropic conductivity, in which

case it is a tensor rather than a scalar. Note that in the volume outside the region

where sources exist the potential is defined by Laplace’s equation:

∇ · (σ∇Φ) = 0.
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Similarly, since ∇ ·B = 0, the magnetic field can be expressed in terms of a vector

potential

B = ∇× A. (13)

Under quasi-static conditions, the following gauge is used54

∇ · A + µ0σΦ = 0. (14)

In view of H = (1/µ0)B, substituting (13) into (6) leads to

∇ (∇ ·A) −∇× (∇× A) = µ0J,

−µ0σ∇Φ −∇2A = µ0J,

µ0σE −∇2A = µ0J,

µ0 (J − Js) −∇2A = µ0J,

where use is made of the constitutive equations (9). So for the vector potential we

are left with a vector form of Poisson’s equation:

∇2A = −µ0Js. (15)

2.3. Solutions in infinite homogeneous media

2.3.1. Electrical potential

For the electric potential at observation point r, the solution of (12) in the case of

an infinite homogeneous isotropic medium is

Φ∞(r) =
1

4πσ

∫

V

−∇′ · Js(r
′)

|r − r′| dV ′ (16)

=
1

4πσ

∫

V

Iv(r′)

|r − r′| dV ′, (17)

where the integration is over the volume V in which sources exist. Different source

models may lead to different specifications of Iv or ∇ · Js, e.g. by formulating

equivalent sources on the surface bounding the volume V . This will be addressed

in the sections about specific applications. There is one model that is of particular

interest in the general bioelectromagnetic source imaging problem: The equivalent

current dipole.

Consider the Taylor’s series expansion of |r − r′|−1 with respect to r′:

Φ(r) =
1

4πσ

∫

V

∞∑

n=0

(−1)n

n!

[
x′ ∂

∂x
+ y′ ∂

∂y
+ z′

∂

∂z

](
1

r

)
Iv(r′)dV ′

=

∞∑

n=0

Φn(r).

The integral in the first term in this expansion (n = 0),

Φ0(r) =
1

4πσr

∫

V

Iv(r′)dV ′,



142 F. Greensite, A. Pullan and G. Huiskamp

is the total current in the volume which for a biological source will always be zero.

The second term is:

Φ1(r) = − 1

4πσ
∇
(

1

r

)
·
∫

V

r′Iv(r′)dV ′. (18)

This represents a dipolar field with dipole components defined by the integral, which

drops off as r−2. The third term, which will not be evaluated here (cf.54) constitutes

a quadrupolar field and drops off as r−3. Since for many applications the points at

which Φ will be evaluated will be relatively distant from the sources — compared

to the extent of the sources — the contribution of quadrupolar or higher order

fields will be relatively small, and effectively the sources can be described by (a

summation of) equivalent current dipoles.

2.3.2. Magnetic field

For the vector potential A, the solution of (15) in the case of an infinite homoge-

neous isotropic medium is:

A(r) =
µ

4π

∫

V

Js(r
′)

|r − r′| dV ′.

With B = ∇× A and some elementary calculus we get for the magnetic field

B∞(r) =
µ

4π

∫

V

∇′ × Js(r
′)

|r − r′| dV ′. (19)

For the multipole expansion of the magnetic field we refer to Gulrajani.54 As in

the case of the electric potential, remote from the sources the magnetic field will

be dominated by the field of an equivalent current dipole as well. The issue of

(the existence of) pure magnetic dipoles in the bioelectromagnetic source imaging

problem will not be addressed here.

2.4. Solutions in finite inhomogeneous media

Solutions presented in the previous section are valid for unbounded, homogeneous

media only. In the more realistic setting of a volume V of conductivity σ bounded by

a surface S, analytical solutions can be found for Eqs. (12) and (15) if these surfaces

and volumes have relatively simple shapes, e.g. spheres. For the solution in gener-

ally shaped volumes numerical techniques have to be used. One such technique,

the Finite Element Method (FEM), proceeds by addressing (12) and the bound-

ary condition ∇Φ · n̂ on S (indicating that no net current can leave the bounding

surface S) through a variational principle or Galerkin procedure (see the Math-

ematical Methods section). The other technique, the Boundary Element Method

(BEM), makes use of integral formulations of (12), which are the subject of this

section. An isotropic — scalar — conductivity σ is assumed here.
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2.4.1. Electrical potential

Consider Green’s second identity73:

∫

V

σ(Ψ∇2Φ − Φ∇2Ψ)dV =

∫

S

σ(Ψ∇Φ − Φ∇Ψ) · dS (20)

with Φ and Ψ well-behaved scalar functions (Φ(r) will be electrical potential at

observation point r as before). With the choice of Ψ = 1
|r−r′| (and thus ∇2Ψ =

−4πδ(r− r′)) we get:

∫

V

σ

[ ∇′2Φ

|r− r′| + 4πΦ(r)δ(r − r′)

]
dV ′ =

∫

S

σ

[ ∇′Φ

|r − r′| − Φ(r)∇′
(

1

|r − r′|

)]
· dS′.

Inserting (12) and boundary condition ∇Φ · dS = 0, we obtain

Φ(r) = − 1

4πσ

∫

Vs

∇′ · Js(r
′))

|r − r′| dV ′ − 1

4π

∫

S

Φ(r′)∇′
(

1

|r − r′|

)
· dS′, (21)

where the volume integral can be restricted to the source region Vs. Note that the

term with this volume integral is the infinite homogeneous medium solution (16) for

the potential Φ∞(r). The second, surface-integral usually is interpreted as the term

representing secondary sources that correct for the bounded nature of the volume

conductor. The interpretation of

∇′
(

1

|r− r′|

)
· dS′ =

(r − r′)

|r− r′|3
· dS′ = dω(r, r′) (22)

as the solid angle of the surface element dS at r′ as observed from r shows that

these secondary sources are equivalent to a dipole layer density on S with orientation

normal to the surface at r′ and strength proportional to Φ(r′).73 The solid angle

interpretation is at the core of many BEM implementations.

Generalization of (21) to a piecewise homogeneous volume conductor with N

(multiply) contained internal surfaces Si with conductivities σi for the potentials

Φ(r) inside and on the bounding surface S0 reads:

Φ(r) =
σs

σr
Φ∞(r) − 1

4π

N∑

i=0

σ−
i − σ+

i

σr

∫

Si

Φ(r′)
(r − r′)

|r − r′|3
· dS′, (23)

with

σs : The conductivity in the surface containing the sources,

σr : The conductivity at the observation point,

σ+
i : The conductivity just outside surface Si,

σ−
i : The conductivity just inside surface Si.

Here the additional boundary condition that the normal component of the current

density at internal surfaces Si is continuous is used.
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2.4.2. Source model free solutions for the electric potential

If a surface Ss bounding the volume containing all active sources can be defined,

then in Green’s identity (20) the source-free volume can be used, for which Laplace’s

equation ∇· (σ∇Φ) = 0 holds. The equivalent surface integral is then over both the

outer surface S0 and the source-bounding surface Ss (with the appropriate sign).

Again taking Ψ = 1
|r−r′| and boundary condition ∇Φ · dS0 = 0 we obtain:

Φ(r) = − 1

4π

∫

Ss

1

|r − r′|∇
′Φ(r′) · dS′

+
1

4π

∫

Ss

Φ(r′)∇′
(

1

|r − r′|

)
· dS′

− 1

4π

∫

S0

Φ(r′)∇′
(

1

|r − r′|

)
· dS′. (24)

By evaluating Φ(r) for r on S0 and Ss separately, one derives a set of equations

implicitly relating potentials on S0 and on Ss to potentials and gradients of poten-

tials on Ss. This set of equations can be solved to obtain an explicit relation between

potentials on S0 and Ss
8:

Φ0(r) =

∫

Ss

T (r, r′))Φs(r
′)dS. (25)

2.4.3. Magnetic field

For the solution for the magnetic field inside bounded piecewise homogeneous vol-

ume conductors, it is convenient to consider the (continuous form of the) Biot–

Savard law:

B(r) =
µ

4π

∫

V

J(r′) × (r − r′)

|r − r′|3
dV ′. (26)

Here J is the total current density flowing in the bounded inhomogeneous volume V ,

B is the magnetic field outside V , the permeability µ is the same inside and outside

V . With ∇′( 1
|r−r′|

)
= (r−r

′)

|r−r′|3 , inserting (9) (i.e. J = −σ∇Φ + Js), and splitting V

into its N piecewise homogeneous constituents, we get

B(r) =
µ

4π

∫

V

Js ×∇′
(

1

|r− r′|

)
dV ′ − µ

4π

N∑

i=0

∫

Vj

σi∇′Φ(r′)

×∇′
(

1

|r− r′|

)
dV ′.

The first term on the right hand side is equivalent to the expression for the magnetic

field due to the impressed currents Js in an infinite homogeneous medium B∞(r).54

Using the vector identity ∇×(Φa) = ∇Φ×a + Φ∇×a, and noting that ∇×∇Ψ = 0
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for any Ψ, the above expression reduces to

B(r) = B∞(r) − µ

4π

N∑

i=0

∫

Vi

σi∇′ × Φ(r′)∇′
(

1

|r − r′|

)
dV. (27)

We can now transform each volume integral to the proper surface integral using

the identity
∫

v ∇× a dv = −
∫

s a × ds (and again expressing ∇′
(

1
|r−r′| ) = (r−r

′)

|r−r′|3
)
:

B(r) = B∞(r) − µ

4π

N∑

i=0

(σ−
i − σ+

i )

∫

Si

Φ(r′)
(r − r′)

|r − r′|3
× dS. (28)

Thus, the magnetic field can be expressed as the sum of the contributions due to

impressed sources in a infinite homogeneous medium and that of secondary sources

that are the same as those for the electrical potential (cf. Eq. (23)). Two impor-

tant properties of the magnetic field due to current sources in bounded volume

conductors that can be derived from this are56:

• In a spherically symmetric conductor the second term on the right-hand-side of

(28) vanishes: The magnetic field is determined by the impressed currents only.

• In this situation the radial component of the impressed current produces no mag-

netic field. Magnetic field measurements will reflect tangentially oriented dipolar

source activity only.

3. Signal Acquisition

A necessary prerequisite in source imaging is the acquisition of the bioelectric signals

originating from the sources themselves. This is largely an engineering problem,

complicated to a degree by the fact that one is dealing with human subjects which

can impose certain practical, logistical and ethical limitations. Fundamentally, there

are two different types of signal that one might seek to measure, namely an electrical

signal (in the micro- to milli-voltage range) or a magnetic signal (typically in the

pico- to nano-Tesla range). We discuss each of these in turn.

3.1. Recording electrical signals

Generally one is seeking to record many channels of the bioelectrical signal in

the nearest neighborhood of the actual sources. All applications therefore require

appropriate hardware and sensors/electrodes to achieve this. The question of how

many channels is somewhat application dependent, but is also an open issue. Whilst,

for instance, it has been shown86,50 that even with optimal recording conditions, no

more than 20 or so independent pieces of information are present when recording

densely sampled ECGs (known as body surface potential mapping) there is still

the question of where are the optimal locations to obtain this information, in both

normal and diseased conditions. Attempts have certainly been made to answer this

question.86 It is clear that in the cardiac case, these recording sites on the body
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surface are not in the same place in all situations, and current researchers using

densely sampled body surface ECGs for source localization have a range of sampling

sizes and locations (e.g. 6466,128, 25699, 384119). In the brain field, the issue is

also still open, with ranges from 3 to 100s of electrodes used for acquisition. For

non-invasive recording of gastric smooth muscle the standard Electrogastrogram

contains three leads, while for skeletal muscle no standard exists and recordings are

made from a range of different setups.

In all applications, the recording devices must be capable of multichannel record-

ing. With a low channel count, many potential devices can deliver this, but for

higher channel counts, more specialized hardware is required with many of these

systems being developed in the research labs of various Universities, some of which

are now being sold commercially.13,140 Sampling frequency is also an issue to be

considered. For cardiac applications, typically 0.05Hz to 500Hz is the recording

band. Due to the Nyquist sampling theorem, this means that upper frequency lim-

its of 1000Hz or higher are required of the device. Recordings from neural or smooth

muscle activity typically have much lower frequencies — for instance the slow wave

of the gastric smooth muscle is normally at 0.05Hz.

Efforts should also be made to ensure the highest possible signal quality. Shielded

cables, appropriate grounding, active noise cancellation (driven shields, right leg

drive) etc. all aid in this. Vitally important is the recording sensor itself, which

can be either active or passive. Passive electrodes are certainly the most common

and to minimize recording noise, the use of conductive gel and other skin prepara-

tion is desirable. Skin preparation typically involves washing with alcohol or other

appropriate liquid to remove any skin oils and dead skin, and gel also aids in this.

Sometimes shaving is also required (if practical). The aim of these measures is to

decrease the skin impedance, which results in the electrode/skin interface being less

susceptible to noise. Ideally 5 kΩ or less is desirable for ECG. However, with EEG

recordings with an unshaven scalp this can be unrealistically low — and values an

order of magnitude higher can be experienced.

Active electrodes contain amplification within the electrode itself, which can

help reduce the electrode/tissue noise problems. Many use such electrodes dry (gel-

less) and it is a claimed feature of active electrodes, although others still recommend

the use of gel.14

The ultimate aim here is to acquire as many channels as the user feels is neces-

sary to properly characterize (and capture the details of) the sources being studied

with signals of the highest possible quality. At best one is dealing with signals in the

mV range (intracardiac signals can be tens of millivolts, ECG signals a few milli-

volts) and often lower (EEG signals are tens of microvolts). A measure of the size of

the signal relative to background noise is given by the Signal to Noise Ratio (SNR).

The ratio is usually measured in decibels (dB). If the incoming signal strength is Vs,

and the noise level (in the same units as Vs) is Vn, then the signal-to-noise ratio

(in decibels) is given by the formula S/N = 20 log10(Vs/Vn). If Vs = Vn, then the

SNR = 0. In this situation, the signal borders on unreadable, because the noise
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level severely competes with it. Ideally, Vs is greater than Vn, so the SNR is pos-

itive. As an example, suppose that Vs = 10.0 mV and Vn = 1.00 mV. Then the

SNR = 20 log10(10.0) = 20.0 dB which results in the signal being clearly readable.

If the signal is much weaker but still above the noise — say 1.30 mV — then the

SNR = 20 log10(1.30) = 2.28 dB which is a marginal situation.

In optimal recording conditions, noise levels can be as low as a few µV and

10–20 µV is often considered good. For ECG signals this results in high SNRs,

but for EEG and other types of activity, the signal size is comparable to this level

of noise. Signal processing techniques are often then used (e.g. beat averaging) to

improve signal quality, although this is not appropriate for one-off type events. For

inverse studies, one must know where the electrodes are. This can be achieved by

using standard arrangements of electrodes and/or obtaining structural images of

the patient with the electrodes (or other markers) in place.

3.2. Recording magnetic signals

The changing electrical potential of the bioelectric source creates both external

electrical and magnetic fields. With the advent of Superconducting QUantum Inter-

ference Devices (SQUIDs) the recording of the external magnetic fields has become

a reality. This provides a non-contact way of recording activity generated by the

bioelectric source. The magnetic field generated by a single neuron is almost neg-

ligible; thus, when several thousands of nearby cells are synchronously active, the

summated extracranial magnetic field typically achieves a magnitude of only a few

hundred femto Tesla (1 femto Tesla = 10−15 Tesla). Even the strongest neuromag-

netic signals, those associated with epileptic spikes, are only a thousand femto Tesla

(i.e. in the order of 10−13 Tesla in magnitude). This is still more than one billion

times smaller than the earth’s steady magnetic field and the noise fields generated

by even distant moving metal objects (e.g. cars and elevators) and power lines.

To reduce the amount of magnetic noise reaching the biomagnetometer, the sys-

tem is operated in a magnetic and radiofrequency shielded room made of mu-metal

and aluminum. The recording dewar contains magnetic detection coils which are

continuously bathed in liquid helium to superconducting temperatures of −269◦C
(4.2 K). Some people have reported the uses of SQUIDs in unshielded rooms22 these

SQUIDs having been designed with special noise cancellation devices in built.

The number of channels to use is, again, an open question — and channel counts

continually increase. There are MEG recording systems commercially available with

more than 300 channels offering sampling at up to 8 kHz, together with the ability

to simultaneously record 64 EEG signals as well.101

4. Mathematical Methods

For all imaging problems under consideration, there is an initially unknown spa-

tiotemporally elaborated bioelectromagnetic source distribution g(x, t) (a vector or
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scalar valued function), where x is a spatial variable, and t is the temporal variable.

Remote sensing provides data in the form of h(y, t), where y varies over spatial

locations accessible to sensor placement. There are both deterministic and stochas-

tic components in the relationship between g and h, generally expressed as in the

additive model

h = Fg + ν, (29)

where F is some operator and ν is noise.

• The Forward Problem is to determine (or estimate) h given g. In practical terms,

this is equivalent to constructing F , based on physical and geometrical consider-

ations inherent in the setting.

• The Inverse Problem is to determine (or estimate) g given h. Note that this

presupposes F is given — i.e. the Forward Problem has already been treated.

Since F (as provided by the forward problem treatment) is undoubtedly noise-

corrupted, noise ν on the right-hand-side of (29) cannot be considered entirely

independent of source g — a complication that is difficult to deal with or even

quantify, and is often ignored.

The basic relationship between bioelectric sources and their generated electrical

potentials is contained in the field equation presented in the prior section, that

we briefly recap in this paragraph: Calculations and measurements demonstrate

that capacitive, inductive, and electromagnetic propagative effects in the body are

negligible in this problem. Hence, current density j at any location in the body is

the sum of Ohmic and source terms,

j = σE + js, (30)

where σ is the tissue conductivity tensor (which is independent of field strength for

frequencies important in biological sources), E is electric field, and js is “impressed”

(or source) current — referrable to the transmembrane currents in excitable tissue.

Charge conservation (the continuity condition) under these quasi-electrostatic con-

ditions requires that the current be divergenceless. Hence,

∇ · j = ∇ · (σE) + ∇ · js = 0.

Quasi-electrostatic conditions also imply that the electric field E is the (negative)

gradient of a potential φ. Thus, the above can be taken to be a Poisson equation,

L[φ] ≡ ∇ · (σ∇φ) = ∇ · js, (31)

where the linear operator L[·] is understood to include the context of the applicable

boundary conditions, e.g. the vanishing of the normal component of current density

on the body surface (the air around the body is insulating). An analogous expression

can be derived relevant to magnetic field data.
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Evidently, the Forward Problem is to “invert” the linear operator L[·] so as to

compute potential φ given the source ∇ · js (a typical problem in the theory of

partial differential equations).

Note that knowledge of L[·] requires knowledge of the the spatial variation of

conductivity σ over the complicated body geometry. This is most pronounced in

the case of the heart, which (as noted earlier) is composed of spiraling fibers, trans-

versely linked to each other via low resistance “gap junctions”. Accordingly, conduc-

tivity is markedly different along versus transverse to the local fiber axis, and the

degree of anisotropy is quite different in the local extracellular versus intracellular

spaces (“unequal anisotropy”). One immediate problem is that cardiac muscle con-

ductivity is not scalar. In particular, resistance is lowest along the fiber axis — but

excitation also occurs transverse to the fiber axis in a higher resistance direction.

Cleavage planes also exist in cardiac tissue meaning that there is a preferred direc-

tion associated with the degree of tightest transverse coupling of the fibers. Thus

σ is really orthotropic in cardiac tissue. Significant conductivity variations exist

in other tissues, for example the gastric wall has layers of transverse and circular

muscle fibers.

The Inverse Problem is to compute ∇ · js (or some feasible “equivalent” source

representation) given some knowledge of φ (e.g. on the body surface).

Forward and inverse problems are fundamentally different for the following

reasons.53 Differential operators such as L[·] in (31), are “unbounded” — that is,

there exist functions of unit norm that are mapped by L[·] to functions of arbitrar-

ily large norm. For example, consider that the operator d2/dx2 over functions on

interval [−1, 1] with homogeneous boundary conditions sends the function sinnπx

to the function n2π2 sin nπx, whose norm is higher by the factor n2π2, for arbitrar-

ily large n. As is the case for the operator d2/dx2, the sequence of eigenvalues of L[·]
in (31) tends to infinity. This means that the sequence of eigenvalues of its inverse

will tend to zero. To solve the forward problem (i.e. the problem of computing φ

given the source ∇· js), one in fact applies the “inverse” of the differential operator

L[·]. The application of this inverse to any bounded data function will be a sta-

ble procedure — because the inverse operator’s amplification of the data function

component in any eigensubspace will be bounded, and the amplitude of such com-

ponents will tend to zero for the higher-order subspaces (since the eigenvalues of L[·]
tend to infinity, the eigenvalues of its “inverse” will tend to zero). If the function we

begin with is noise-corrupted, the noise components in the higher-order subspaces

will in fact be progressively attenuated when the inverse operator is applied.

In other words, the forward problem is that of integrating a partial differential

equation, and integration is a stable procedure. Thus the forward problem is well-

posed. It also follows that the inverse problem is “ill-posed”. That is, amplification of

components in the higher order eigenspaces (typically noise dominated) will receive

unbounded amplification. This is analogous to the instability of differentiation of a

noise corrupted function.



150 F. Greensite, A. Pullan and G. Huiskamp

4.1. The forward problem

To solve (31), one could look for a function G(x, y) such that

L[G(x, y)] = δ(x − y), (32)

subject to the condition that for y on the boundary, ∂G(x, y)/∂n = 0. In that case,

it is clear that

φ(y) =

∫

X

G(x, y)∇ · js(x) dX, (33)

(i.e. just insert (33) into (31) and use (32) — and also note that the homogeneous

boundary conditions will automatically be satisfied). In other words, one simply

finds the potential that would be induced by a point source at an arbitrary loca-

tion, and then one can solve the problem for an arbitrary source distribution via

superposition. But it is evident that such superposition will not work unless that

boundary conditions are homogeneous.

The way to take inhomogeneous boundary conditions into account is as fol-

lows: Solve the homogeneous equation L[φ] = 0 with the specified inhomogeneous

boundary conditions, and add this solution to the above integral (33). This gives a

solution satisfying the inhomogeneous equation with inhomogeneous boundary con-

ditions. Interestingly, the latter can be treated as a second inhomogeneous equation

with homogeneous boundary conditions, where the source is actually the boundary

conditions themselves. Typically, the Green’s function for this latter case is highly

related to the Green’s function computed for the former inhomogeneous problem.78

This sort of thinking is important for treating boundary element formulations of the

inverse electrocardiography problem in a medium of inhomogeneous conductivity.

Thus, we need only compute the Green’s function to solve the forward problem.

If the body was an infinite homogeneous isotropic medium, it is easy to show that

G(x, y) = 1/‖x− y‖2 (as in the preceding Physics section). Because of the inhomo-

geneity of the medium, and irregular geometry, we must use a general numerical

method. Choices are:

• finite difference,

• finite element,

• boundary element.

4.1.1. The finite difference approach

The ingredients are as follows:

• Place a grid on the volume

• Replace the partial derivatives by their finite difference counterparts, e.g. in two

dimensions

∂2φ

∂x2
→ φi+1,j − 2φi,j + φi−1,j

(∆x)2
,

etc.
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• One evidently replaces the continuous operator equation with a matrix equation,

L[φ] = f → K�φ = �f

with �φ = (φk), and where we have made the three dimensional array (e.g. {φi,j}
with i = 1, . . . , q) into a vector by some appropriate means (e.g. φi,j → φk with

φi,j = φjq+i).

In the bioelectric problem, the grid points can be imagined to be connected to

their neighbors by intervening resistances, and Kirchoff’s current law at each point

results in simultaneous equations to be solved.

A regular grid can lead to geometry imprecisions in regions where φ is expected

to vary rapidly in space (the finite element approach is potentially more accurate

than the finite difference approach for a given mesh density). Other disadvantages

of finite differences compared with finite elements are

• it cannot take advantage of the weak formulation, for which one less is derivative

required (see below),

• for irregular grids a symmetric operator will not in general lead to a symmetric

matrix.

However, the finite difference method is a viable choice in forward electroen-

cephalography and forward electrocardiography.81,143 A regular grid is not an abso-

lute requirement (but abandoning it requires care, as a naive algorithm might not

then converge).

4.1.2. The finite element approach

The first step is to produce a general form for the unknown function (potential) in

terms of “finite elements”.

• An appropriate tesselation of the domain is made (e.g. bricks or tetrahedrons).

• These can be made to conform to the geometry well, and can be given greater

density where more rapid variation of the function is expected.

Now let (φi) be the vector whose components are the (unknown) potential at each

node i. We define shape functions, {Ni(x)}, such that Ni(x) is unity at x = ith

node, and zero in any finite element which does not have i as a node (x, of course,

is a variable over 3-space). Also, Ni(x) is continuous. Such requirements (and the

possibility of higher derivative continuity of the solution) are nicely fulfilled by

the Lagrange polynomials (the n − 1 degree polynomial going through n speci-

fied points), or splines (cubic Hermite polynomials, for example). Then we set our

discretized potential to be

φ̂ =
∑

i

φiNi(x). (34)

Note that φ̂ will be continuous, and capable of approximating any function.
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So now we need an appropriate equation on which to apply the discretization.

To formulate it we use the residual

R ≡ L[φ̂] − f �= 0. (35)

For the Galerkin method (one of several possible numerical schemes), we insist that

for all i,
∫

V

RNidV = 0, (36)

where V is the volume of interest. Thus, the requirement that the residual be

orthogonal to the space spanned by the shape (or basis) functions determines the

system. Note that

L[φ̂] =
∑

φjL[Nj(x)],

so substituting this into (35), it is seen that (36) gives

∑

j

φj

∫

V

L[Nj(x)]Ni(x)dV =

∫

V

fNi(x)dV. (37)

Now, the integral inside the sum on the left-hand-side above can be integrated by

parts — which in this case represents the divergence theorem (recall L[·] is defined

by (31)). For each term we get a volume integral involving ∇Ni ·∇Nj and a surface

integral bounding the support of Ni and Nj . All these surface integrals will cancel

each other (due to common surface orientation differences) except for those with

elements on the boundary of V itself. Ultimately (37) leads to an equation of the

form

K(φi) = (fi).

Now, we have a format where the boundary conditions are explicitly inserted and

the weak formulation (i.e. the integration by parts yields the “weak” formulation —

the necessity of solution smoothness is weakened, and the solution need not be as

differentiable as the differential equation would imply).

The above formulation already contains the (natural) boundary conditions. To

deal with these, it is only necessary to use first order (i.e. linear) shape functions.

However, it might be desired to also satisfy “essential” boundary conditions — e.g.

that the potential and current density be continuous throughout the domain. One

can use splines or Lagrange polynomials of higher order so as to satisfy these.39,117

The book-keeping involving global and local coordinate systems is extensive,

and one ends up with multiply indexed expressions like

φ̂ =
∑

Na(ξ, η, ζ)φh(xe
a)

and a stiffness matrix for each finite element as

Ke =

(∫

Ve

σij
∂Nb

∂xi

∂Na

∂xj
dV

)

ij

, (38)

which can then be assembled into the global stiffness matrix.
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4.1.3. The boundary element approach

As derived in the Physics section, in a medium of scalar conductivity where regions

of differing uniform conductivity are separated by distinct interfaces, the relevant

integral equations are over these boundary surfaces. Discretization for numerical

analysis then involves tesselation of these surfaces along the lines of the volume tes-

selations of the finite element method. This defines the “boundary element method”.

Recent implementations of the boundary element method with piecewise homoge-

neous conductivity are found in Refs. 39 and 118.

4.1.4. A note regarding Green’s functions

The Green’s functions relevant to (31) in a finite body of heterogeneous conductivity

are never computed explicitly. Rather, either simpler (free-space) Green’s functions

are used (referrable to (24) and (25) in a boundary element context) or the governing

equations are solved without specific recourse to any Green’s functions at all (e.g. as

in a finite difference or finite element formulation). The resultant transfer matrices

embody the Green’s functions for the appropriate problem, but only in and indirect

and implicit manner. Thus, for the problem of determining the relationship between

body surface potentials and epicardial potentials (for example), V is the body

volume external to the epicardial surface, and the finite element derived matrices

resulting from (38) can be arranged in a block matrix system like



KTT KTV KTE

KV T KV V KV E

KET KEV KEE








ΦT

ΦV

ΦE



 =




JE

0

0



 ,

where the components of JE are the normal current densities on the epicardial

surface, the components of ΦV are the potentials inside the thoracic volume, the

components of ΦT are the potentials on the surface of the thorax, and the com-

ponents of ΦE are potentials on the epicardial surface.76 We can use the last two

equations implied by the above expression to ignore the unknown JE , eliminate

ΦV , and thus derive the transfer matrix between ΦT and ΦE (analogous to (25)).

This, of course, applies to the inverse EEG problem as well.

4.2. The inverse problem

Computation of potentials given the sources can be formally reduced to that of

Green’s function computation. It is a “well-posed” problem, in that one asks for an

integration (i.e. solving a PDE) — a smoothing procedure.

On the other hand, the source computation problem is that of solving an integral

equation, where the kernel is the Green’s function. Inverting the (well-behaved)

integral operator (sort of a differentiation) is not well posed — i.e. it tends to be

an unstable procedure with potentially great noise amplification (i.e. if one has

a square integrable Green’s function). Treatment therefore requires care. Integral
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equations that can be stably solved have (in some sense) an intrinsically singular

nature. For those without this singular nature, the process of solving the integral

equation is akin to the unstable act of differentiation. Thus, the act of taking a

derivative is equivalent to solving a particular integral equation, e.g. if z(t) is the

nth order derivative of u(t), then it is the solution of the equation

u(t) =

∫ 1

0

H(t − τ)

(n − 1)!
(t − τ)n−1z(τ)dτ,

easily verified via integration by parts, where H(s) is the Heaviside function (zero

for s < 0 and unity for s > 0).

For an inhomogeneous linear differential equation with homogeneous boundary

conditions and Green’s function f(x, y), the relationship of source to field is

h(x) =

∫

Y

f(x, y)g(y)dY,

where h(x) is field, and g(y) is source (i.e. after discretization this is h = Fg, with

h, g vectors and F the transfer matrix). Here, f(x, y) is square-integrable, which

means that we can write its “singular value expansion”61 as

f(x, y) =
∑

n

fnfL,n(x)fR,n(y), (39)

where {fL,n(x)} and {fR,n(y)} are the eigenfunctions of the operators∫
X

∫
Y f(x, y)f(x′, y)(·) dY dX ′ and

∫
Y

∫
X f(x, y)f(x, y′)(·) dX dY ′ and {fn} is the

set of eigenvalues. Thus,

h(x) =

∫

Y

[
∑

n

fnfL,n(x)fR,n(y)

]
g(y)dy

=
∑

n

fn〈g(y), fR,n(y)〉fL,n(x),

where “ 〈·, ·〉 is inner product. But simply expanding h(x) as a Fourier series in

{fL,n(x)}, we get

h(x) =
∑

n

〈h(x), fL,n(x)〉fL,n(x).

The above two equations then imply that

g(y) =
∑

n

〈h(x), fL,n(x)〉
fn

fR,n(y). (40)

Since fn tends to zero as n gets large (this must be the case for a square-integrable

kernel), if h(x) is noise contaminated (even very slightly), we will generally not have

〈h(x), fL,n(x)〉 = o(fn).

Hence, the sum in (40) diverges (unbounded noise amplification).
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Since we have a decay in singular values of f(x, y) toward zero, the obvious

thing to do is truncate the series on the right-hand side of (39) and insert the

resulting estimate into (40). But how does one decide on where or how to trun-

cate? Regularization is the process by which this problem is (hopefully) optimally

dealt with.

4.2.1. Linear estimation and regularization

In reference to h = Fg + ν, we are required to estimate g given h and F . It might

first occur to us that a useful estimate for g would be the one which maximizes

p(h|g) — i.e. the choice that maximizes the conditional probability (density) that

the measured h would occur given a particular candidate for g. This is known as the

“maximum likelihood estimate”. Assuming F has an inverse F−1, and the noise is

zero mean white Gaussian, this is given by gml = F−1h — because the likeliest noise

vector is the zero vector (in this case, the maximum likelihood estimate coincides

with the least-squares solution). If F is ill-conditioned, this is in general a very poor

estimate for g, and is very unstable to noise variations.

But one could alternatively take the estimate for g to be the choice which

maximizes p(g|h) — i.e. the choice that has the greatest chance of being correct,

given the observed noisy data h. This is referred to as the “maximum a posteriori”

estimate, gmap. The relationship between the two conditional probability densities

above is given by a version of Bayes Theorem: p(g|h) = [p(h|g)p(g)]/p(h).

gmap has the great advantage of being stable to noise variations — but the dis-

advantage is that its calculation requires one to first supply nontrivial information

concerning statistical properties of g (in fact, the entire “prior” probability density

p(g)). However, if p(g) is available and reliable, the methodology is referred to as

“Bayesian”. If one supplies some of the statistical properties as estimated from the

given data h itself, the methodology is referred to as “empirical” Bayesian. The

general approach is also referred to as “Statistical Regularization”. Evidently, in

discrete settings, the maximum likelihood estimate is equivalent to the Bayesian

approach in a minimum information setting where every realization of g is consid-

ered equally likely to occur.

All of this suggests that once noise is introduced it is useful to carefully consider

statistical notions. Specifically, each component of noise vector ν is a “realization”

(outcome) of a “random variable”. For our purposes, a random variable is an entity

that associates a probability density value with every real number. From this, we

can compute the probability that some realization of the random variable (outcome

of a measurement) will yield a value falling in some given interval. Accordingly, the

expectation E [·] of some expression involving a random variable is the integral of

the expression over all possible values of the random variable weighted by the prob-

ability density associated with each value. A “Gaussian” random variable α has

a Gaussian probability density (the familiar bell-shaped curve), and is fully char-

acterized by its particular expectation E [α] and variance E [(α − E [α])2]. Similarly,
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a zero mean Gaussian random vector w is a column vector of zero mean jointly

Gaussian random variables. A zero mean random vector is further characterized

by its autocovariance matrix E [ww′], where superscript “ ′ ” denotes transpose. The

autocovariance matrix describes the dependence between all different pairs of com-

ponents of w. Similarly, the cross-covariance matrix of zero mean random vectors

v, w is given by E [vw′], and describes the mutual dependence of v and w.

Just as ν is a random vector, so too can g be considered to be an (unknown)

realization of a random vector (the basic assumption of the Bayesian approach). In

approaching h = Fg + ν, a good objective is to find gopt such that E [‖g − gopt‖2] is

minimum (this being the “minimum-mean-square-error” estimate). If g and ν are

realizations of independent zero mean Gaussian random vectors, gopt is obtained

via the Wiener filter. Under these conditions, the maximum a posteriori estimate

gmap is equivalent to gopt. This linear estimation procedure develops as follows.

A linear estimate of g is given by application of an “estimation matrix” Mest to

data h, i.e. gest = Mesth. Ideally, we desire the solution estimate

gopt = Mopth, (41)

such that E [‖g−Mopth‖2] is minimum. Thus, it is sufficient to calculate Mopt. The

way to proceed follows from the “Orthogonality Principle”, which asserts that gopt

minimizes the mean-square-error when

E [(g − gopt)h
t] = 0, (42)

i.e. when the cross-covariance matrix of the “error of the estimate” (g − gest) and

the “data vector” h is the zero matrix (so that the error and the data have no

dependence). Intuitively, the Orthogonality Principle assures that every bit of useful

information is extracted from the data h in making the solution estimate gopt.

Substitution of (29) and (41) into (42) immediately gives

E [ggtF t + gνt] − E [(MoptFg + Moptν)(gtF t + νt)] = 0. (43)

Thus, assuming that g and ν are independent (i.e. E [gνt] = 0), (43) can be written as

CgF
t − Mopt(FCgF t + Cν) = 0,

where Cg ≡ E [ggt] and Cν ≡ E [ννt] are the autocovariance matrices of signal g and

noise ν. Hence,

Mopt = CgF
t(FCgF

t + Cν)−1. (44)

Thus, gopt is provided by (41), where Mopt is given by (44). Of course, it is assumed

that we know the autocovariance matrices of signal and noise. Evidently, the

Bayesian methods potentially allow (or require) introduction of a larger class of

a priori information.
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If Cν = σ2
νI (i.e. if the noise is white), (44) becomes

Mopt = (F tF + σ2
νC−1

g )−1F t, (45)

since (F tF + σ2
nC−1

g )CgF
t = F t(FCgF t + σ2

νI).

An alternative applicable formulation is provided by the maximum likelihood

method in concert with a deterministic constraint (such as that the signal power is

equal to some a priori value E). Maximum likelihood then corresponds to minimiz-

ing ‖Fg − h‖2 subject to ‖g‖2 = E (assuming Gaussian noise). This is ultimately

the technique of Lagrange multipliers, and leads to a linear estimation matrix of

the form (45), with σ2
νC−1

g replaced by λI (where λ is the Lagrange multiplier).

A third alternative is Tikhonov regularization.133 In this method, one chooses

the estimate that minimizes

‖Fg − h‖2 + λR[g], (46)

where R[·] is a non-negative functional, and λ is a “regularization parameter”. If

R[g] is of the form ‖Lg‖2, where L is a matrix and ‖·‖ is Frobenius norm, application

of the variational principle (setting the functional derivative of (46) to zero) leads

again to (45), with σ2
νC−1

g replaced by λL. When L is the identity, this procedure

is known as zero-order Tikhonov regularization (and first or second order if L is

the gradient or Laplacian operator, respectively).

The question then becomes one of selecting a good choice of λ. There are several

methods for accomplishing this. One popular choice results from constructing an

“L-curve” (a plot of ‖Lg‖2 versus residual ‖h − Fg‖2 for different values of λ).

The plots typically have the form of the letter “L”, and the solution estimate (and

regularization parameter) associated with the corner is chosen. In fact, for Gaussian

noise, the solution which minimizes the error is found at the L-curve corner.61

For the choice of L = I, a similar sort of thing results from setting to zero

the terms in (40) corresponding to the smallest singular values — with “small”

as determined by the L-curve. This is known as Truncated SVD regularization

(TSVD).

As stated earlier, a square-integrable (i.e. well-behaved) function (or image)

must be such that its higher order Fourier coefficients tend to zero. In the presence

of white noise, whose Fourier coefficients therefore do not tend to zero, it is then

clear that higher order Fourier coefficients of data h are hopelessly noise-corrupted.

The Wiener filter and Tikhonov regularization achieve stable results by removing

any attempt at meaningful reconstruction of the high resolution components.

There is only one way out of the dilemma of resolution loss. If physiological con-

straints exist which effectively reduce the dimension of the solution space to be com-

mensurate with the number of useful data Fourier coefficients, one can anticipate

that it will be possible to preserve spatial resolution. For example, for the inverse

electroencephalography problem (where one wishes to image the brain sources of

the scalp electrical potentials), it might be true that only a single focus is responsi-

ble for inciting an epileptic seizure, and that this focus can be modeled as a single



158 F. Greensite, A. Pullan and G. Huiskamp

current source dipole located at some unknown location in the brain. In that case,

one is searching for an entity with six degrees of freedom (reflecting its location,

orientation, and magnitude). High spatial resolution could conceivably be possible

assuming there are six or more data Fourier coefficients (with respect to the transfer

matrix SVD-derived coordinate system) that are not dominated by noise.

At first, such an obvious constraint does not appear to be applicable to the heart,

since the heart is not faithfully modeled as a small number of dipoles. However, a

deeper look at the geometry reveals that such constraints do in fact apply for the

“critical points” of ventricular activation — from which an activation map can be

fashioned, in principle.47

4.2.2. Incorporation of time in the regularization procedure

The source imaging problem is actually posed as

h(x, t) =

∫

Y

f(x, y)g(y, t)dY,

where h(x, t) is the time-varying data (e.g. body surface potentials), f(x, y) is the

Green’s function, and g(y, t) is the unknown time-varying source. As indicated

above, one can expect to preserve resolution if one has the powerful geometrical

constraint that the source is a point. In fact, using the “MUltiple SIgnal Classifi-

cation” (MUSIC) algorithm,124 it is possible to resolve several point sources whose

activity overlap in time, so long as their time series are linearly independent of

each other. The simple underlying idea is that if there are only a few point sources,

then there will only be a few components of the singular value expansion of the

spatiotemporal data h(x, t) that are not due to noise. The noise components can

presumably be recognized by their “uniformly” small singular values (if the noise

power is sufficiently small, and the noise components are independent and iden-

tically distributed Gaussian random variables uncorrelated to the signal). In that

case, a “signal space” spanned by the non-noise data spatial singular vectors can be

constructed from the spatiotemporal data matrix. Any candidate for a point source

which (after being operated on by F ) does not map to a vector close to being in

this signal space, can thereby be rejected as a possible source. In effect, there is a

point source at y′ (i.e. a multiple of δ(y−y′)) “if and only if” f(x, y′) is in the space

spanned by the spatial singular functions of h(x, t). This approach evidently relies

in a fundamental way on the geometrical assumption that the sources are “nearly”

zero dimensional. Such a supposition is quite relevant to the brain.

On the other hand, the point source constraint (other than in the context of

the Critical Point Theorem47) does not pertain to the cardiac situation. Thus,

based on the last subsection, it might seem like what we want to do is find the

optimal Tikhonov solution for each distinct time point (independently of all other

times), and call this our regularized solution for g(y, t) (e.g. this is the supposition

of the current approach found in Ramanathan et al. (2004)120). However, this is
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potentially a suboptimal thing to do because

• members of the time series {g(y, t)} are typically correlated,

• one often notices “noise” in the reconstructed time series using that approach.

Thus, several methods to effect an intrinsically spatiotemporal regularization have

been proposed.11,18,132 Each of those approaches have ad hoc features. Instead, if

one adopts a Bayesian perspective, and insists that the utilized prior (i) be invari-

ant to any transformation which does not impact the known specifications of the

setting, and (ii) is consistent with the data statistics, one arrives at a very spe-

cific spatiotemporal regularization procedure. It can be shown that the resulting

method (in the setting where there is no prior knowledge of any specific temporal

constraints) is as follows: Write

h(x, t) =
∑

i

hihL,i(x)hR,i(t)

=

∫

Y

f(x, y)g(y, t)dY, (47)

where the sum is the singular value expansion of h(x, t). Multiplying both sides of

(47) by hR,j(t), and integrating over data acquisition interval T , we get integral

equations for Fourier components of g(y, t) with respect to {hR,j(t)}, i.e.

hjhL,j(x) =

∫

Y

f(x, y)γj(y)dY, (48)

j = 1, 2, . . . , with

g(y, t) =
∑

j

hR,j(t)γj(y). (49)

It can be shown that the optimal solution estimate for γj(y), obtained from treat-

ment of the isolated equation (48), inserted for γj(y) on the right-hand-side of (49),

for j = 1, 2, . . . , gives the optimal solution estimate for g(y, t) — assuming the

unavailability of valid prior temporal constraints.51

A comprehensive treatment of (47) follows from the recognition that it is a

“Partial Inverse Problem”, i.e. an inverse problem where the defining operator

(
∫

Y
f(x, y)(·) dY ) does not address all of the variables of the unknown g(y, t). This

leads to the inevitability of symmetries in the prior, and a clear means for incor-

portation of data statistics in the estimation procedure.52

SOURCE CATEGORIES

5. The Brain

5.1. The nature of the sources

The main building blocks of the brain are the neurons. As is the case with the

myocardial cells in the heart, and the smooth- and skeletal muscle cells, electrical
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current sources are generated by the cell membrane in a non-steady state. Neurons

are excitable cells as well, and can generate action potentials. In fact, these action

potentials are the carriers of information within the brain and between the brain and

the rest of the body. However, it is not the action potentials that are the generators

of the electric potentials and magnetic fields that can be measured on and over the

scalp surface as the Electro- and Magneto Encephalogram (EEG and MEG).

The brain contains about 1010 neurons. They are found in various aggregates in

both cortex and subcortical areas and in the cerebellum. The neuron consists of a

cell-body called soma with tree-like extensions called dendrites that receive infor-

mation and a single long trunk-like extension called axon that outputs informa-

tion through action potentials. Connections between different neurons are through

synapses that provide a one-way electro-chemical connection between the output

axon of one neuron and the input dendrites of another.

If an action potential arrives at a synapse (through a process of diffusion

of certain chemical agents called neuro-transmitters), the dendritic membrane

can become depolarized, i.e. the resting membrane potential becomes less nega-

tive and more excitable, or hyperpolarized — more negative and less excitable.

These inferred changes on the transmembrane potential are called Excitatory Post

Synaptical Potentials (EPSP’s) and Inhibitory Post Synaptical Potentials (IPSP’s)

respectively. IPSP’s and EPSP’s are relatively long lasting (10–200ms). They can

be considered as sub-threshold responses from a system similar to that described

by the Hodgkin–Huxley equations (2).

The dendrites can receive input from the axons of various other neurons, each

of which can generate either an EPSP or an IPSP. If enough EPSP’s are present

simultaneously (with respect to the relative long duration of these processes) they

add up, and a fast (1–2 ms) action potential is generated that propagates from the

soma to the output axon of the neuron.

An individual EPSP can be modeled by a current sink at the location of the

synapse. The rest of the membrane acts as a (distributed) current source (for the

IPSP source and sink are interchanged). Such a configuration has a non vanish-

ing dipole moment. The currents involved with each individual EPSP or IPSP in

the dendritric tree are of course extremely small. However, in neocortex, neurons

called pyramidal cells are arranged in an ordered way with dendritic tree, soma

and axon trunk aligned and perpendicular to the cortical surface (Fig. 5).17 In

addition to that, neighboring cells receive the same input. As a result, given the

relative long duration, the semi-synchronous currents associated with individual

EPSP’s (IPSP’s) may add up to produce a net current distribution that from a

distance can be characterized by a current dipole moment, oriented perpendicular

to the cortical surface. On the other hand, the characteristic macroscopic geometry

of the neocortex with gyri and sulci (Fig. 5) can cause cancellation of simultaneous

activity on both sides of a sulcus.

For the short and fast propagating action potentials, the duration is too short

to allow for any effective addition. Also, the current distribution of an individual
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Fig. 5. Left: Ordered structure of the microscopic columns of pyramidal cells in neocortex shown
in three different stainings, after Brodmann (1909).17 Right: Macroscopic Gyri and sulci of neo-
cortex, with oriented equivalent dipoles indicated.

propagating action potential is quadrupolar rather than dipolar, and thus decreases

rapidly with distance. So, the EEG and MEG are determined by synchronous post-

synaptical activity in the ordered structure of the columns of pyramidal cells in

neocortex that can be modeled as a current dipole. Interestingly, recent research

has shown that post-synaptical activity is also the major source of the signals

measured in BOLD-fMRI.83

5.1.1. Spontaneous and evoked activity

The ensemble of neurons in the brain constitutes a bioelectromagnetic source that

has a reportoire the size of which vastly exceeds that of the heart and other bio-

electromagnetic sources of the body. As already pointed out by Helmholtz, recon-

struction of any full 3D current distribution that is associated with this activity

from remote measurements by means of EEG or MEG is impossible, since the asso-

ciated inverse problem is not unique.60 In order to arrive at any sensible approach

to bioelectromagnetic imaging of the brain, severe restrictions on both the nature

of the sources and of the data that are to be imaged are necessary.
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The patterns most suited for bioelectromagnetic source imaging are those that

can be assumed to be originating from a small number of areas of limited extent. But

in addition to those patterns arising from localized activity (to be called “signal”),

there will always be EEG and MEG components that cannot be attributed to a

specific well localized site. This latter activity, which cannot be characterized as

artifact or random noise, can be correlated and can have a frequency range from

DC to 100Hz. This is referred to as background activity. For spontaneous activity,

if the patterns of interest have a high enough amplitude e.g. an epileptic spike, or

have a narrow frequency content that allows for bandpass filtering such as some

brain rhythms, episodes containing signal can be easily identified.

However, another class of signals consists of those that can be elicited by external

stimuli — so called Evoked or Event Related Potentials, EP’s and ERP’s (or fields,

in the case of MEG). In those situations, a trigger is available that allows for the

averaging of data over an interval following the trigger. Assuming that background

and (evoked) signal are uncorrelated, the averaging of the interval over N triggers

will result in a reduction of the background level by a factor of
√

N .

5.2. The nature of the volume conductor

The EEG is measured on and over the scalp surface at a distance from the generators

which for many cortical regions is not larger than 2 cm (for MEG the distance may

be somewhat larger because of the distance of the measurement coils from the skin,

and the location of the tangential sources, to which it is sensitive, that are located

deeper in the sulci of the brain). In spite of this proximity, when compared to the

inverse problem of electrocardiography, the inverse EEG/MEG problem is by no

means less ill-posed. This is because of the low conductivity of the skull as compared

to that of the skin and the brain itself. This configuration acts as a spatial low-pass

filter: Spatial detail in the potential distribution at the cortical surface appears

severely smeared on the scalp.

Since this low skull conductivity is such a determining factor in the EEG inverse

problem, knowledge of its actual value and of the geometry and thickness of the

skull, is of paramount importance. The fact that in a practical application this

knowledge generally is not available at an individual level poses perhaps a big-

ger problem to the EEG inverse problem than the ill-posedness as such, since

in the case of dipole localization it can lead to systematic errors of the order of

centimeters.68 Also, if the BEM is used for solving the forward problem, special

approaches (the “Isolated Problem Approach” or IPA) are required in order to

avoid numerical instabilities that arise from having compartments of significantly

differing conductivity.58,90 Literature values of the skull/scalp conductivity ratio

show values ranging from 1/80 to 1/10, often related to the way in which con-

ductivity is measured.65 Also, skull thickness is difficult to estimate from MRI,

whereas CT in individual cases is often unacceptable for both patients and vol-

unteers, because of the radiation issues involved. Approaches in which an effective
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skull-scalp conductivity ratio is estimated from impedance tomography measure-

ments, using the EEG electrodes and the same volume conductor geometry as for

the inverse problem, may be the most promising.45

It is also this mostly unknown skull conductivity and thickness that constitutes

the great advantage of MEG over EEG. Equation (27) can be interpreted as stating

that B is to first order determined by the impressed currents Js with a correction

based on the volume currents in each compartment. It is clear that most volume

currents flow in the compartment enclosed by the skull, and that current flowing

in the skull and in the scalp (the latter of course ultimately causing a measureable

EEG) are negligible. As a result only the geometry of the inner surface of the skull

is relevant to the MEG, and this can be extracted fairly reliable from individual

3DT1 MR.35

5.3. Methods for the inverse problem

In the following a scalar function B rather than the vector B will be used when

possible. This reflects the fact that in the vast majority of MEG systems used the

recording coils are arranged as gradiometers that measure a gradient (either planar

or axial) of the magnetic flux.

5.3.1. Dipole localization

Equations for the electrical potential and magnetic field generated by current

dipoles in bounded, partially homogeneous volume conductors of arbitrary shape

are given by Eqs. (23), (16) and (28), (19). The Boundary Element Method that

can be used to solve these equations can be described as the computation of the

linear operator L0 that transforms infinite medium potentials Φ∞(r) (or fields B∞)

to the potentials (fields) Φ(r) that are actually measured: Φ = L0Φ∞. Operator

L0 contains all conductivity and geometrical factors defining the volume conductor.

For a current dipole p at location r′, an analytical expression for Φ∞(r) that follows

from (18) is available:

Φ∞(r) =
1

4πσs
p · (r − r′)

|r − r′|3
.

Similarly for the magnetic field:

B∞(r) =
µ

4π
p× (r− r′)

|r − r′|3
.

If a single localized source can be assumed, the bioelectromagnetic imaging prob-

lem reduces to the nonlinear but well-posed problem of finding the location r′ and

strength p of a current dipole given the measurements Φ(r) or B(r). Since L0

needs to be computed only once for a given volume conductor, and given the ana-

lytical expressions available, this can be efficiently done using e.g. a Quasi-Newton,

Marquard, or Simplex algorithm.43
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The quasi-static nature of the bioelectromagnetic source imaging problem

demands that Φ(r, t) directly reflects dipolar strength p(t) at location r′(t). For

a truly localized source, r′ does not change over time and the cortical columns at

r′ define dipole orientation, p(t) = p̂ s(t), with s(t) scalar dipole strength. This

model is often referred to as the spatio-temporal or fixed dipole model. The rotating

dipole model refers to the situation where no constraint on orientation is assumed.

If the position of the dipole is allowed to change with time as well, the term moving

dipole model is used.

If a small known number of localized sources is assumed, the nonlinear problem

is still well-posed — but solving it becomes tedious. The algorithms mentioned

above easily get locked up in local minima, especially when the noise level (i.e. the

background activity) is high. Methods like simulated annealing may help here, but

in practice these do not converge easily. If available, constraints, e.g. demanding

symmetry of dipole location and (vector) strength, can sometimes increase stability.

Figure 6 shows moving dipole solutions (crosses) and a two-spatio-temporal

dipole solution (arrows) for EEG (left panels) and simultaneously measured MEG

data (right panels) of an epileptic spike. The cortical area shown is around the left

Fig. 6. Moving 1-dipole (plusses) and spatio-temporal 2-dipole (poles) solutions for EEG (left
panels) and simultaneous MEG (right panels) for epileptic spike data. Left lateral view for top
panels, superior view for lower panels. Reproduced with permission from Huiskamp et al. (2004),69

c©American Clinical Neurophysiology Society.
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central sulcus (drawn line). “1st” and “2nd” indicate the sequence of activation of

the spatio-temporal dipoles. “H” and “M” indicate estimates of the hand and foot

area as known from functional neuro-anatomy.69

One could argue that source localization based on the single or (limited) multi-

ple dipole model is not obviously interpreted as “source imaging”, especially when

results are presented in the graphical form of an arrow symbol placed in a stylized

representation of a head and brain. Raw data methods have been described in which

MEG or EEG is pre-processed by means of a bandpass filter and single dipoles are

fitted to each time sample passing a certain predefined amplitude threshold.29 If

the residual error of the fit does not exceed a preset value, a counter for the voxel

to which the fitted dipole position can be assigned is incremented. By thresholding

the total number of counts thus gathered for the whole segment of data under con-

sideration a functional image comparable to e.g. one obtained using the Statistical

Parametrical Mapping (SPM) technique in fMRI is obtained.33

5.3.2. The lead field

Most other techniques in EEG and MEG source imaging use the concept of the lead

field or transfer function. If the forward problem is solved for a dipole of arbitrary

position and strength (i.e. Φ = L0Φ∞ from the previous section) a formal function

Lxk
(r, r′) linking orthogonal current dipoles of unit strength pxk,k=1,2,3

at r′ to

surface data Φ or B at r can be defined as:

LE
xk

(r, r′) ≡ Φ(r; pxk
(r′)) = L0E

Φ∞(r; pxk
(r′)), (50)

LM
xk

(r, r′) ≡ B(r; pxk
(r′)) = L0M

B∞(r; pxk
(r′)). (51)

If the geometry of the cortical surface (i.e. the layer containing the ordered pyrami-

dal cells) is known from MRI, unit dipoles p̂ normal to that surface can be defined

instead of the more general 3 orthonormal components. In that case the lead field

links a scalar dipole strength at r′ ǫ Scortex to potential Φ or Magnetic flux B at

r on (or just above) the scalp. Since the layer of pyramidal cells is relatively thin

(3mm), an oriented double layer instead of oriented point dipoles can be assumed,

leading to a description similar to that of the electrical generator in the heart

(noted in Sec. 5). This has the advantage that L(r, r′) does not tend to infinity as

r approaches r′, since a double layer is described by the solid angle as in (22).

5.3.3. Lead field scanning methods

If a single focal source is assumed, the nonlinear dipole fitting method can be

replaced by a scanning of the lead field computed for a pre-defined number of loca-

tions in the full volume of the brain or constrained to the cortical surface. If the

resolution of the computed lead field is chosen high enough, in this way it can be

guaranteed that a global minimum residual error solution is found. The residual

error, or the explained variance, at each location in the brain, in combination with
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an estimate of the noise (or background) level of the data can be used to con-

struct and threshold a functional image of brain activity.36 If more than one focal

source is assumed, the method mentioned above will fail because of the computa-

tional burden posed by the implied combinatorial problem. A very elegant method

with the attractive acronym MUSIC (MUltiple SIgnal Classification) that origi-

nates from radar technique was first introduced to the EEG/MEG field by Mosher

et al. (1992),96 and circumvents this problem in the case of multiple dipolar sources

with temporally independent activity.

Consider k normalized dipolar sources p̂i at fixed, distinct locations r′i having a

fixed orientation normal to the cortical surface, having source strengths represented

by sampled time series si(tj) which are independent during a time interval [t1, tn].

These sources can be represented by a k ×n matrix S. Measurements in m sensors

over the same time interval [t1, tn] can be defined as a m × n matrix M , which

is related to the sources through the matrix equation M = LS + N where L is

a matrix composed of the lead fields of each of the sources p̂i and N is a m × n

matrix representing additive white noise. If m > k, and the noise time series are

uncorrelated with the signal (and the SNR > 1), a Singular Value Decomposition

(SVD)44 of M, M = UΣV t can be partitioned as

M = UsΣsV
t
s + UnΣnV t

n ,

where the matrix Us of rank k defines the spatial (in terms of sensors) eigenvectors

of signal space and Un (rank m − k) represents noise space. The diagonal matrix

Σs contains k positive singular values σs1 , . . . , σsk
, so that σsk+1

, . . . , σsm
= 0. The

first k singular values of Σn, σn1 , . . . , σnk
, will therefore be zero, while for stationary

white Gaussian noise, σnk+1
, . . . , σnm

are all equal, positive and smaller than σsk
.

The matrices Vs and Vn represent temporal signal and noise space respectively.

It is important to realize that the subspace spanned by Us, span (Us) is equal

to the subspace span (LS). If at a particular location r′ on the cortical surface a

source p is independently active, the vector L(r′) defined by its lead field in the

sensors at ri, i=1,M is in this subspace, and orthogonal to noise space. Conversely,

if at a particular location there is no activity, the lead field for that location has a

non-zero projection in noise space. The metric

Q ≡ Lt(r′)Us · U t
sL(r′)

Lt(r′) · L(r′)
(52)

is used in MUSIC to quantify this projection. Q = 1 if the lead field for r′ is totally

contained in signal space, Q = 0 if it is orthogonal to it. By examining (1 − Q)−1

in all possible source locations (“lead field scanning”), a plot is obtained which

peaks at the locations of multiple, independently active sources in a single scan.

Derivations of a similar metric for situations where source orientations are unknown

or allowed to vary are given in Ref. 96.

Practical problems arise with the application of MUSIC in situations where

assumptions are violated or where the noise level is high. If highly correlated sources
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exist, the metric Q will not show a pronounced maximum or show one at an erro-

neous location. Also, the determination of the rank k that separates signal space

from noise space is not straightforward, and may depend on assumptions of the

character of noise.80 In general, if signal and noise are truly uncorrelated and the

SNR is high, over-estimation of the number of independent signal components k will

not produce erroneous results — though it will reduce resolution.67 However, if k is

under-estimated, false peaks will appear. In a more recent adaptation of the clas-

sical MUSIC algorithm, unavoidably named RAP-MUSIC, some of the drawbacks

of the original approach have been overcome.97

An example of a rank two MUSIC solution for high resolution EEG data of a

Rolandic epilepsy spike is shown in Fig. 7. The area shown is the left central sulcus,

with the white spot fMRI BOLD activation during tongue movement measured

from the same patient.146

A scanning approach that is similar to MUSIC, but that computes for each

scanning location an optimal spatial filter from the lead field, has recently gained

more attention in the MEG field. There it is referred to as Synthetic Aperture Mag-

netometry (SAM),7 in the EEG field has been called linearly constrained minimum

variance spatial filtering, or LCMV beamforming.141

5.3.4. Linear inverse methods

If no assumptions about the existence of a small number of focal sources can be

made, the source imaging problem takes the general form of the linear inverse

problem (as discussed in Sec. 3).

Fig. 7. Rank 2 MUSIC solution for EEG Rolandic epilepsy spike data showing two distinct
extrema. Size of black circles is proportional to value of MUSIC metric. Left lateral view of
central sulcus area for left panels, superior view for right panels. White spot indicates fMRI
BOLD activation during tongue movement of same patient.
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Φ(r, t) =
∑

xk

∫

X

LE
xk

(r, r′)Sxk
(r′, t)dX + NE(r, t), (53)

B(r, t) =
∑

xk

∫

X

LM
xk

(r, r′)Sxk
(r′, t)dX + NM (r, t), (54)

where potentials Φ(r, t) or Magnetic flux B(r, t) are given, LE
xk

(r, r′) and (LM
xk

(r, r′))
are available through the solution of the forward problem, NE(r, t) and NM (r, t)

are unknown noise and Sxk
(r′, t) is the source strength to be estimated.

In the most general case the sum is over all three orthonormal dipole components

x1, x2, x3 and over the brain Volume X. This problem is ill-posed, but in addition

to that solutions are not unique. Nevertheless, standard zero-order Tikhonov (“the

minimum norm solution”) is traditionally used in order to solve this problem.57

Implicitly, second order Tihonov was utilized in a paper by Pascual-Marquis et al.

(1994).111 Figure 8 depicts an application of this method, referred to in the EEG

modeling field as “LORETA”.148

Minimum l1-norm solutions have also been proposed.37 These proceed from

minimization of (46), where R = ‖g‖. For the magnetic case, an additional problem

arises from the fact that pure radial sources produce near-zero magnetic fields. This

can be circumvented by truncating the SVD of the lead field matrix (defined by

LM
xk

(r, r′i) for each position i in the brain) to rank 2. In practice methods using

Tikhonov regularization in this type of 3D inverse problem favor superficial solu-

tions to deeper ones. Normalization methods for the columns of the lead field matrix

have been used,111 a more formal way of handling this was presented by Grave et al.

(1997)46 using the concept of resolution kernels. Other methods mentioned in Sec. 3

have been applied to the problem defined by (53), e.g. Bayesian approaches5,12 and

Wiener estimation.126

If the cortical surface geometry is available, the sum over the three orthonormal

dipole components in (53) reduces to the single unit dipole normal to this surface

(or a double layer element), and the integral is a surface integral. Such an approach

Fig. 8. LORETA solutions for ictal epileptic data, overlay on axial, coronal and saggital 3DT1
MRI. Reproduced with permission from Worell et al. (2000),148 c©Human Sciences Press, Inc.
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was first introduced by Dale and Serreno (1993).27 Although this introduces addi-

tional constraints to the problem, the specific geometry of the sulci, with nearby

sources of opposing orientation, adds additional ill-posedness. For the magnetic

field, to make things worse, the gyri sources are oriented mainly radially, producing

a negligible MEG. Baillet et al. (1999) proposed combined MEG-EEG modeling

and measurement using limited regions of interest.6

5.3.5. Cortical potential imaging

This method, in which no assumptions about sources are made has its basis in

Eq. (25). In the EEG field (a similar method for MEG would not make sense) this

is often referred to as “spatial deblurring of scalp potentials”.82 It aims at estimating

potentials that could be measured on the brain surface (in fact on a surface just

beneath the skull surface) from scalp potentials. For this, only knowledge of the

geometry and conductivity of scalp and skull are required. This imaging problem

has a unique solution, but is ill-posed as well.

Since for most parts of the head the geometry resembles that of concentric

spheres, if has been suggested that reasonable approximation of brain-surface poten-

tials ΦB is given by104

ΦB(r′, t) ≈ Φ(r, t) − σsc

σsk
dskdsc∇2

SΦ(r, t), (55)

where Φ is scalp potential (EEG), σsc and σsc are scalp and skull conductivity,

dsc and dsk scalp and skull thickness and ∇2
S is the surface Laplacian. The valid-

ity of (55) is based on the fact that (homogeneous) skull conductivity is much

lower than that of cortex and dsk and dsc are much smaller than the size of the

brain, and that as a result currents through the skull are mainly radial. In practice

these assumptions will be less valid, especially in the case of superficial tangential

sources, and the surface Laplacian has to be approximated from a limited number

of measurement sites by numerical techniques. Edlinger et al. presented an ana-

lytical solution of (25) for a concentric spherical brain-skull-scalp model, which is

more accurate when inter-electrode distances are less than 2.5 cm and is not depen-

dent on assumptions about trans-skull currents and the need to construct a surface

Laplacian operator.32

For realistically shaped head models Gevins et al. used the FEM for the solution

of (25).41 A BEM approach, adapted from the method introduced in by Barr et al.

(1977)8 for the corresponding ECG problem, was presented by He et al. (1999).59

The full array of potentially applicable inverse methodology has not yet been

applied to this imaging problem. For the case of superficial sources involved in the

generation of evoked potentials, it is expected that progress can be made towards

non-invasive potential imaging (e.g. approximating Cortical SEP (CSEP) by imaged

surface SEP’s). However, for spontaneous signals such as epileptic spikes, the appli-

cation makes less sense. In epilepsy patients with implanted electrodes, inversion
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strategies applied to recorded Electro Cortico Grams (ECoG’s) require an assumed

source model or other details that the imaging method cannot itself provide.

5.4. Validation

Validation of results obtained by the various methods for EEG-MEG source imaging

have been mainly done on basis of data available from epilepsy patients that have

been treated surgically, or that of candidates for such a procedure. In the former

case, ECoG’s are measured on the exposed brain in order to tailor the resection,

or cortical evoked responses are measured and cortical stimulation is performed in

order to localize functional areas. In the case of surgery candidates, often electrodes

are implanted subdurally or intracortically and the patient is monitored for seizures

during some period. Cortical evoked response and stimulation may be performed

as well.

However, few of the data available from such studies is used for a quantitative

validation. Reports from Gevins et al.41 ,42 present examples of a qualitative com-

parison between computed cortical potential distributions and those measured on

the brain in the case of median nerve evoked responses. Ossenblok et al. (2003),109

present potential distributions measured in grids placed over the central sulcus and

compare these to dipoles localized on basis of MEG evoked by median nerve stimu-

lation. Similar comparisons of localization of evoked responses for MEG, EEG and

ECoG were presented by Sutherling et al. already in 1988.130

For the spontaneous inter-ictal spikes and ictal discharges that occur in epilepsy

patients, simultaneous measurements of EEG or MEG and ECoG have shown that

activity that is truely localized intracranially (i.e. that is observed around a single

electrode) is not detectable with scalp EEG or MEG.91,106 If an activity with a

dipolar character is observed in EEG or MEG, it will be accompanied by widespread

cortical activity over several cm2. For any quantitative analysis and validation a

model for such activity that goes beyond the single dipole is required.

6. The Heart

6.1. Cardiac muscle structure and function

Cardiac muscle cells or myocytes are roughly cylindrical with a length in human

ventricular tissue of 80 µM to 100 µM and a diameter of 10 µM to 20 µM, and are

bounded by the cell membrane or sarcolemma.

There are two sets of filaments present in muscle cells: Thin filaments composed

of a globular protein called actin, and thick filaments formed as an aggregate of

a much larger protein called myosin. The thick and thin filaments interdigitate

to form a sarcomere between the thin filament tethering points at Z lines. The

sarcomere is the basic contractile unit.

A large number of sarcomeres are present in a single cell. Cells are joined end-

to-end with other cells through intercalated disks and also branch and interconnect
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with neighboring, nearly parallel cellular strands. Electrical connection between

adjacent cells is through gap junctions which are located in the intercalated disks.

Additionally, there are several important internal structures. Due to the almost

constant energy requirements of repeated cellular contraction in the cardiac cell

there are a large number of mitochondria which provide oxygen to the cell. A

network of Sarcoplasmic Reticulum (SR) provides a large region of uptake pumps

which remove Ca+2 from the cellular matrix and stores it in the Junctional SR (JSR)

awaiting release for enabling contraction. Deep invaginations of the sarcolemma into

the fiber are known as the transverse tubular system or T-tubules. This system is

used primarily to conduct the action potential down into the cell, and additionally

to transport components from the interstitial fluid surrounding the cell deep into

the cell, and is of particular importance in the excitation-contraction coupling.

An averaged myocyte direction can be defined at any point, which is known as

the local fiber orientation. Measurements of fiber orientation at a large number of

sites spread throughout the ventricular myocardium have been made.102 There also

exists a comprehensive organization of extracellular connective tissue, including a

substantial hierarchy of collagen structures which constrain the movement of the

muscle fibers.

Mechanical contraction of the heart is caused by the electrical activation of the

myocardial cells. The heart is electrically self-contained, having the ability to initi-

ate its own beat with a regular period, and will continue to beat after being removed

from the body. Cells capable of initiating electrical activity are called pacemaker

cells, and exist in several places throughout the heart. Only those pacemaker cells

with the fastest rate of pacemaker discharge control the electrical activity of the

entire heart. The region of tissue with the shortest period of spontaneous electrical

activity is the SinoAtrial (SA) node, which is located on the atrial wall near the

junction of the superior vena cava and the right atrium, and consists of a group

of pacemaker cells. Action potentials are normally generated here at the rate of

60 to 100 per minute. From the SA node, the action potential is propagated from

cell to cell through firstly the right atrium, followed closely by the left atrium at

a conduction velocity of approximately 1 meter/second until it reaches the Atri-

oVentricular (AV) node. The AV node consists of similar pacemaker-type cells as

are found in the SA node, but because they beat spontaneously at a slower rate

(approximately 40 to 55 beats per minute) they are governed by the propagation

from the SA node. In the event that the SA node is removed or destroyed, or that

conduction is slowed through the atria, the cells in the AV node will take over as

pacemaker for the heart.

Conduction through the AV node is at a much slower rate (around 0.05 meter/

second) giving time for the atria to contract and pump blood into the ventricles

before the action potential conducts through the ventricles and causes them to

contract. The AV node is normally the only electrical connection between the atria

and the ventricles. From the AV node, the electrical propagation enters the bundle of

His which is the upper portion of the ventricular conduction system and runs down
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the right side of the septum. This common bundle divides after a short distance

into right and left bundle branches. The right branch continues down the right

septal wall, and the left perforates the septum and splits into two further main

branches on the left septal wall. All of these branches continue to subdivide into a

complex network of fibers called the Purkinje fiber network, spreading across the

endocardial surface of both ventricles and into the subendocardial region of the

ventricular myocardium. Due to the arrangement of connecting fibers the septum

is activated first. The papillary muscles are also activated early so that they can

prevent the AV valves from inverting during systole. Due to the faster conduction

of approximately 2 meter/second through the bundle and Purkinje fibers, the entire

endocardium is excited almost simultaneously. The apical regions contract first and

the basal regions are usually the last regions to be excited. Excitation spreads

outwards through the ventricular wall at a rate of about 0.3 to 0.4 meter/second,

and the first epicardial region to be excited is the thinnest portion of the right

ventricular wall.

The bioelectric sources which arise during the heart’s excitation process produce

a flow of electric current in the surrounding tissues. It is therefore possible to detect,

with a pair of electrodes external to the heart, time-varying potential differences

known as electrocardiograms.

The first recording of a human ECG was by Waller in 1887.144 The electrical

activity of the exposed heart was already known (and galvanometers had been

invented) but Waller decided to investigate the possibility of recording potentials

from the limbs of animals and from man. He dipped his right hand and left foot

into a couple of basins of salt solution which were connected to two poles of an

electrometer and “at once had the pleasure of seeing the mercury column pulsate

with the pulsation of the heart”.

Waller demonstrated this feat at St Mary’s Laboratory in 1887 to an audience

which included Professor Willem Einthoven. Einthoven went on to refine the pro-

cess, developing the string galvanometer, and in 1924 was awarded the Nobel prize

for Physiology or Medicine for the discovery of electrocardiogram mechanism.

6.2. Derivation of the basic imaging equations for

various source imaging models

As noted earlier, the heart supports propagation of “action potentials”. These result

from transmembrane currents subsequent to time-varying membrane conductance

to various ions in the presence of previously established transmembrane ionic con-

centration gradients. While highly sophisticated models of such events exist and

continue to be refined (mostly taking inspiration from the Hodgkin–Huxley model

of the neuron), for our purposes a simplified version of the so-called bidomain

model63 is sufficient. Each bidomain “point” contains a bit of intracellular space

and a bit of extracellular space. Continuum notions, quasi-static assumptions, and

Ohm’s Law imply that the current density j at any of these bidomain points must
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satisfy

j = −Gi∇φi − Ge∇φe,

where Gi, Ge are intracellular and extracellular conductivity tensors and φi, φe are

the intracellular and extracellular potential. Any excess current (non-zero diver-

gence) appearing in the extracellular component of a bidomain point must come

from the intracellular component of the bidomain (via the cell membrane), and vice

versa. Hence ∇ · j = 0, and so we have

∇ · [Ge∇φe] = −∇ · [Gi∇φi]. (56)

The divergences on both sides of the above equation express the location’s role

as a source of extracellular current (net transmembrane current). Transmembrane

currents capable of influencing body surface potentials only occur in excitable tissue

(i.e. sensory-neuro-muscular tissue) — the predominant one being the heart. Thus,

in the body volume excluding the heart muscle, both sides of the above equation

are zero. In particular, the above becomes Laplace’s equation,

∇ · [Ge∇φe] = 0, (57)

for the volume external to the heart. Note that the time-independence of the oper-

ators in the above equations follows from the quasi-electrostatic assumption.

• One “continuous volume” where (57) is valid is the body region external to the

heart (pericardium). The boundary conditions are the zero normal component of

current at the body surface (Neumann) and the epicardial potentials (Dirichlet).

This leads to the epicardial imaging approach.

• Another continuous volume where (57) holds is within a blood-filled chamber

of the heart. The boundary conditions would then be the zero component of

current normal to a multi-electrode catheter tip (floated into the chamber via

a peripheral vein or artery) and the endocardial potentials. This leads to the

endocardial imaging approach.

In either case, Green’s second identity supplies a linear equation for (measured)

body surface potentials or catheter tip potentials in terms of the unknown epicardial

or endocardial potentials. Thus, the relationship can be expressed by

f = Kφ, (58)

where (after discretization) f is a vector whose components are the measured body

surface or catheter tip potentials at various locations, φ is a vector of epicardial or

endocardial potentials at various locations, and K is the Green’s-function-derived

transfer matrix (computation of K constitutes the “Forward Problem”55). Estima-

tion of φ via “inversion” of (58) supplies an image of the epicardial (or endocardial)

potentials at any point in time. Reconstruction of the epicardial potentials are by

far the most investigated imaging formulations of the inverse electrocardiography

problem.88
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However, it is also possible to base an imaging formalism on reconstruction of

transmembrane potential φm = φi − φe. Substituting φm into (56), we obtain

−∇ · [(Ge + Gi)∇φe] = ∇ · [Gi∇φm]. (59)

We still have the homogeneous Neumann boundary condition (zero normal compo-

nents of current density on the body surface). Applying a Green’s function formal-

ism (as described in the Mathematical Methods section), we get

φ(y, t) =

∫

V

ψ(x, y)∇ · [Gi(x)∇φm(x, t)] dVx, (60)

where ψ(x, y) is the Green’s function of (59), V is the volume of heart muscle, and

φ(y, t) is the (extracellular) potential at y (e.g. on the body surface) at time t.

Integrating by parts twice, one obtains149

φ(y) = −
∫

S

[Gi∇ψ(x, y)] · nxφm(x)dSx +

∫

V

∇ · [Gi∇ψ(x, y)]φm(x)dVx, (61)

where S is the boundary of V , and nx is the outward unit normal on S at x. If tensors

Gi and Ge are related to each other by a scalar (equal anisotropy), then the volume

integral on the above right vanishes (by definition of the Green’s function). The

resulting equation then relates body surface potentials to transmembrane potential

on the heart surface (note that S includes both epicardial and endocardial surfaces).

However, as noted earlier, the equal anisotropy assumption is not accurate.24,116

An important distinction between the above source formulations is that com-

putation of the Green’s function for the transmembrane potential (59) requires

knowledge of the anisotropic conductivity of the heart — whereas in the epicardial

potential formulation (57) only knowledge of tissue conductivity external to the

heart is required (and in the endocardial potential formulation one requires only a

value for blood conductivity). Though standard conductivity values from the liter-

ature are typically used, it is noted that strategies exist for patient-specific tissue

conductivity tensor imaging via MRI.138,139

6.3. Epicardial potential imaging

The concept of epicardial potential imaging arose in a formal way with the work

of Martin and Pilkington89 in the early 1970s. They immediately recognized the

severely ill-posed nature of the problem and discussed appropriate statistically

based regularization strategies. Barr et al. introduced a numerically favorable

boundary element scheme,8 which was evaluated in chronically instrumented dogs.9

Over the years, there has been a great deal of work on refinements of regularization

methodology, beginning with Colli-Franzone and coworkers.25 The advent of CT

and MRI obviated many difficulties regarding reliable identification of the anatomy

for solution of the forward problem, though quantification of conductivity variations

remains extremely problematic. While the impact of conductivity imprecisions has

been contraversial, there is in any case reason to believe that MRI could provide very

useful information relevant to relative tissue conductivity, including anisotropy.138
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By far the most sustained effort in the realm of invasive investigations appropri-

ate to verification of non-invasive imaging strategies, has been conducted by

Taccardi (presently at the University of Utah) and coworkers, extending back to

the 1960s. The Utah group, sometimes in collaboration with the group at Case

Western led by Rudy, have produced a long series of investigations of non-invasive

epicardial potential imaging (which they term Electrocardiographic Imaging), inva-

sively verified via the Utah torso tank system. The experimental setup employs a

heart suspended in a torso shaped electrolytic tank, perfused by an anesthetized dog

external to the tank.110 Electrodes are present on the outer margin of the tank, and

also in proximity to the epicardium (either with electrodes in proximity to the heart

via projections from the tank surface, or via an epicardial electrode sock). Such work

has addressed inverse reconstruction of epicardial potentials and activation in the

setting of sinus rhythm, pacing, and arrhythmias,21 and has also been used to a

limited degree to assess the impact of torso inhomogeneities.119 Data recorded from

infarcting dogs has been used in a simulation study to demonstrate the potential

promise of the epicardial potential imaging formulation.20 This approach has also

been applied to demonstrate the feasibility of reconstructing repolarization prop-

erties of interest (e.g. increased dispersion of repolarization38). Another report114

(extending earlier work87) identified local changes in inversely computed epicardial

electrograms in patients whose data was accessed during coronary catheterization,

preceeding and following angioplasty balloon catheter inflation. In the eighteen

study patients, the predicted region of ischemia following balloon inflation corre-

lated with the expected region of perfusion deficit based on the vessel occluded.

Recently, the Case Western group has also presented non-invasively recon-

structed human epicardial potential images in human hearts in a variety of normal

and pathological conditions,120 although only qualitative validation of the results

could be made (from the known sequence of atrial depolarization in normal sub-

jects, and from beats artificially paced from a known location). These results conflict

with earlier results of a different group using invasive data from patients undergo-

ing arrhythmia surgery, which had suggested that the usual epicardial potential

regularization methodology was able to usefully image epicardial potential during

the QRS interval only in its initial portions.127

There remain many issues regarding the efficacy and accuracy of epicardial

potential imaging (or “electrocardiographic imaging”). Most importantly, in vivo

validation is required — something very difficult to obtain. In addition, the impact

of present imprecise knowledge of organ conductivities on the quality of the inversely

computed images has still not been definitively settled. Another issue involves accu-

racy of activation isochrones based on identification of the inversely computed

intrinsic deflection.112 Particularly as regards the latter, there remain questions

regarding optimal regularization techniques. For example, it is evident from numer-

ical simulations that for a wide range of signal-to-noise ratio conditions there will

be significant noise in the electrogram reconstructions unless time is jointly consid-

ered in the reconstructions52 — clearly impacting isochrone computation. Finally, a
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measurable clinical impact of epicardial potential imaging has not yet been verified

(though a potential role clearly could exist). However, all of the above questions

and concerns could be settled in the not distant future.

6.4. Endocardial potential imaging

Interventional cardiologists employ transvenous catheter procedures to treat

arrhythmogenic foci and aberrant conduction pathways. Such treatment first

requires mapping the endocardial potential. This initial invasive imaging is cum-

bersome, tedious, and lengthy. Typically, a roving probing transvenous electrode

catheter is brought into contact with many endocardial locations over the course

of many heartbeats, and a depiction of an endocardial activation map is thereby

inferred (an improved technology along these lines is described in Gepstein et al.

(1996)40). The number of sites accessed is limited, and there is no accounting for

beat-to-beat activation variability when reconstructing the maps from the many

beats. Recently introduced expandable basket electrode arrays125 have their own

problems related to limited numbers of electrodes, the need to contact (and perhaps

irritate) the endocardium, and the possibility of difficulties in collapsing the basket

at the end of the acquisition.

These problems can be potentially addressed by the use of a transvenous

catheter whose tip is studded with multiple electrodes, and which is placed some-

where in the midst of a cardiac chamber (without contacting the endocardium).

Once the catheter location relative to the endocardium is registered, it becomes

theoretically possible to inversely compute the endocardial potentials from a sin-

gle heartbeat — indeed, to follow dynamic isopotential maps within a single beat,

as well as beat-to-beat changes in activation maps. For this inverse problem, the

volume is bounded by the endocardial surface and the multielectrode probe sur-

face. Laplace’s equation holds in this volume, and the boundary conditions are

the (unknown) endocardial potentials, and the zero normal current density at the

multi-electrode probe surface. As indicated earlier, a linear relationship is derived

between the endocardial potentials and the catheter electrode potentials (Fig. 9).

Notwithstanding the inconvenience of the required cardiac catheterization, there

are two very significant advantages of this formulation over the technique of imaging

the epicardial potentials from the body surface. First, the electrodes are relatively

close to all portions of the surface to be imaged (e.g. as opposed to the distance

between body surface electrodes and the posterior wall of the heart). Second, the

relevant volume is composed only of blood in the lumen of the cardiac chamber.

Therefore, the modeling required for estimation of the transfer matrix is vastly less,

and the uncertainties in the values of key components of the model (i.e. tissue con-

ductivities) are markedly diminished (the blood has uniform isotropic conductivity).

The initial proposal and work on a multielectrode non-contact array, placed

in a cardiac chamber for purposes of accessing endocardial potentials, was due

to Taccardi et al.131 In the past few years there has been much significant work
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Fig. 9. Atrial activation. (a) A normally conducted sinus originated beat is imaged, along with
the V2 ECG tracing. (b) Atria in four projections imaged during atrial flutter, with the V2 ECG
tracing. From Ramanathan et al., Nature Medicine, 10:422–428 (2004),120 used by permission.

reported on successors to this idea. For example, in experiments on dogs, Khoury

et al.79 used a 128 electrode catheter, inserted via a purse string suture in the

left ventricular apex, and showed that faithful renditions of endocardial activation,

both with paced and spontaneous beats, was possible by solving the inverse prob-

lem. Ischemic zones were also well defined. A spiral catheter design has also been

investigated.74

An impressive series of experiments has been performed with a competing sys-

tem, developed by Endocardial Solutions, Inc. In addition to a 64-electrode 7.5ml

inflatable balloon catheter, a second transvacular catheter is passed and dragged
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along the endocardium. As it is dragged, a several kHz signal is passed between

it and the electrode catheter, localizing its position with respect to the electrode

catheter. In this way, a rendition of the endocardium with respect to the elec-

trode catheter is produced. Following construction of a “virtual endocardium” via

a convex hull algorithm applied to the above anatomical data, the inverse problem

is then solved, generating several thousand “virtual electrograms” on the virtual

endocardium.

One study of endocardial potential imaging describes the classification of atrial

fibrillation in humans in terms of numbers of independent reentrant wavefronts

identified.123 Another report129 describes the successful ablation of fifteen instances

of ventricular tachycardial guided by this catheter system. A further report113

describes the utility of the system in directing catheter ablative therapy in sub-

jects with atrial arrhythmias refractory to pharmacologic therapy.

Also notable is the most recent work with the spiral catheter design75 where

the images obtained were verified by 92 intramural needle electrodes placed into

the myocardium of an isolated dog heart. Invasively verified reconstructions were

obtained in normal and infarcting heart, with reportedly faithful construction of a

variety of electrophysiologic characteristics.

6.5. Transmembrane potential imaging

Epicardial and endocardial potential imaging addresses the need to reconstruct

something that is currently accessed invasively, and is thus of evident interest.

However, such potentials are not themselves a clinical endpoint. Ultimately, clin-

icians are interested in the action potential — or at least, features of the action

potential. The most important features of the action potential are activation time

(time of arrival of phase zero at every location, the aggregate of which globally

describe conduction disturbances), phase zero amplitude (reflecting ischemia), and

action potential duration (reflecting refractory periods, potentially associated with

propensity for re-entrant arrhythmias).

The marker for activation in an electrogram (a tracing of epicardial or endo-

cardial potential at a given cardiac site) is the “intrinsic deflection” — defined as

its steepest downward deflection. Recall that the source derives from the gradient

of transmembrane potential (e.g. (60)), and that during cardiac activation this is

usually appreciably non-zero only at the locus of points undergoing action potential

phase 0. This locus is approximately a surface (the interface between depolarized

and nondepolarized muscle). Electrically, this behaves approximately as a propa-

gating surface of dipole moment density (a double layer). There is a discontinuity of

potential as the double layer is crossed. Ideally, as an extracellular location is passed

over by the activation wavefront, there will then be a sharp downward deflection in

the extracellular (electrogram) potential — the intrinsic deflection. However, the

reality is that it is not infrequent that there is more than one reasonable candidate

for the intrinsic deflection within a given location’s electrogram. Furthermore, the
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intrinsic deflection is often rather lengthy, so the selection of a single activation time

within the intrinsic deflection is to some extent arbitrary.71,112 The activation time

is presumably the inflection point of the deflection (which itself is poorly defined

in the noisy setting). To a large extent, these problems are inherent in the source

formulation: The epicardial (or endocardial) potential at a location actually reflects

contributions from electrical activity at all surrounding locations, when in fact we

desire to resolve results of the membrane function at a single location — i.e. the

local action potential.

One can begin with consideration of (60), which expresses the linear relation-

ship between cardiac muscle current sources (or sinks) expressed as ∇· [Gi(x)∇φm]

and accessible potentials. However, the null space of this operator is non-trivial:

In a heart of uniform conductivity (or equal anisotropy), it includes every arrange-

ment of φm such that the set of points where ∇φm �= 0 effectively constitutes a

closed surface. One must be ready to accept a similarly annoying null space for the

setting of anisotropy as well. Therefore, to date, all forays in this direction have

concentrated on (61), where one ultimately plans on “ignoring” the second inte-

gral on the right-hand-side, so as to compute φm solely on the surface bounding

the heart muscle S. Ignoring of the second integral, of course, can only be defini-

tively justified by successful verification of estimate accuracy. There also remains

the need to know the anisotropic conductivity of the heart muscle for computation

of the Green’s function in the first integral on the right-hand side, presumably via

strategies connected with MRI.138

The numerically sophisticated forays in this direction were due to Cuppen and

van Osteroom.26 Ultimately, these relied on modeling the local transmembrane

potential during the activation interval as a step function, thus

φm(x, t) = a + b(x)H(t − τ(x)), (62)

where H(t) is the Heaviside function (zero for t < 0, unity for t > 0) and τ(x) is the

time of phase 0. Substituting in (60), one evidently obtains a nonlinear equation

for τ(x), which was treated by a quasi-Newton routine66 with initial seed obtained

from the linear equation
∫

QRS

φ(y, t)dt = −
∫

S

A(x, y)τ(x)dSx , (63)

(obtained by substituting (62) into (61) and then integrating by parts (while ignor-

ing the volume integral and assuming Gi(x) is a constant scalar).

The problem of reconstruction of τ(x) is well posed if its relative extrema are

known,48 in that case being merely a question of interpolation. Relevant to this,

the Critical Point Theorem47,49 states that x′ is a relative extremum of τ(x) as

a function over S (in particular, a source or sink of surface activation) if and

only if φ(x′, y) is in the space spanned by the eigenfunctions of the operator∫
Y

∫
X [Gi∇ψ(x, y)] · nx[Gi∇ψ(x, ŷ)] · nx dX(·)dŶ . An algorithm based on this the-

orem is presented in Huiskamp and Greensite (1997).67 Oostendorp et al. at the
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Fig. 10. Non-invasive ventricular surface activation maps of a human subject, produced by Tilg
et al., IEEE Trans. Biomed. Eng., (2002).136 The image on the left has the anterior cardiac wall
cut away, so that endocardial activation is visualized. The image on the right is a view of the
anterior epicardium. Used by permission.

University of Nijmegen/University of Helsinki have produced work evaluating this

approach, both in vitro107 and in vivo108 (validation in hearts removed at the time

of cardiac transplantation). The group at Graz and Innsbruck have produced much

work on transmembrane potential imaging, some of which utilizes the Critical Point

Theorem94,95,134–136,142. Figure 10 is an example of activation imaging obtained by

a nonlinear algorithm using the Critical Point Theorem to provide an initial seed.

On the other hand, a recent study92 proposes convex optimization treatment of

(61), where the side constraint is that φm(x, t) is monotonic (the cardiac cycle is

split into two parts: During the QRS interval φm(x, t) is monotonic increasing, and

outside this interval it is monotonic decreasing).

A rather different approach was proposed by Ohyu,105 where a covariance matrix

for b(x) and a covariance matrix for τ(x) were used to define a maximum a posteriori

expression solved by simulated annealing.

7. Skeletal Muscle

7.1. Skeletal muscle structure and function

Contraction of skeletal muscles causes them to shorten and, hence, move the bones

that they are attached to. Each muscle has one or more origins and insertions.

The origin point of the muscle is the point of attachment (of the muscle to bone)

that is less movable during contraction of the muscle. The insertion point is the

point of attachment that moves the most during a contraction. The idea of origins

and insertions provides a macroscopic view of muscle structure and attachment. In

reality, muscles are compartmentalized — fibers are grouped into different bundles
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that may run in slightly different directions to other bundles. Muscle fibers can be

further separated into myofibrils that are approximately 1µm in diameter.

Skeletal muscles are activated by the central and peripheral nervous systems.

The process by which fine motor control can be achieved by the nervous system

is a very complex one. The Motor Unit (MU) is the basic functional unit in the

muscle that the nervous system has control over. Each motor unit consists of a

single motor neuron, its axon and the group of fibers that it innervates or supplies.

The number of fibers in a motor unit is highly variable — this can range from 3

to 2000. The fibers in a MU are not situated side-by-side but spread over a certain

volume known as the Motor Unit Territory. MU territory diameters can vary from

2 to 10mm.

Each fiber in a motor unit is innervated by one of the several branches of the

axon belonging to that motor unit. Each branch of the axon is attached to a muscle

fiber at the Neuromuscular Junction or endplate, which is generally situated in the

middle of the fiber. When a neuron controlling a motor unit fires, all the fibers in

that motor unit contract to produce twitches. In order to grade the contractions

of the whole muscle, therefore, the number of motor units activated is varied and

synchronization of motor unit activation is also varied. The central nervous system

can increase the force produced by a muscle by increasing the number of motor units

that are already active or by increasing the rate of excitation of each motor unit.

The motor unit action potential is built up from individual fiber activity and

is dependent on the distributions of fibers within the motor unit, the variation of

the innervation of each fiber within the unit, the motor unit recruitment and firing

behavior, and the interpulse interval. A surface electrode placed on or over a skeletal

muscle records the summation of the various motor unit action potentials, and is

termed a surface EMG (electromygram) recording.

7.2. Skeletal muscle inverse problems

The inverse problem of electromyography generally involves the estimation of cer-

tain parameters of the bioelectric sources that generate the surface EMG signals.

EMGs also provide valuable information in analysis of biomechanical models. The

focus, in the latter case, is not on the determination of bioelectric source strength

or position but rather in processing the SEMG signals to provide a measure of

muscle activation, timing of activation, muscle force or some other similar parame-

ter(s) that can be easily used as input to other models or as an indication of muscle

pathology.

Given the earlier description of skeletal muscle physiology, the task of identifying

the underlying source is extremely difficult. Not only are the distribution of fibers

within a motor unit unknown, but also unknown is the distribution of the end

plates of each fiber within that unit. This variation in innervation within fibers of

the same motor unit means that there can be a spread of one to two milliseconds

in the activation of a given motor unit. Also different motor units can be activated



182 F. Greensite, A. Pullan and G. Huiskamp

to produce the same response. However, typically what one is interested in when

performing EMG recordings is not so much the individual fiber activation per se,

but the result of the activation, i.e. the force produced. For this reason, most EMG

inverse analysis attempt to reconstruct muscle forces (or estimate fatigue) from the

derived signals. This is mostly done empirically i.e. inverse dynamics, rather than

source localization.

8. Gastrointestinal Smooth Muscle

The muscular layers in the walls of the GastroIntestinal (GI) system produce peri-

staltic waves through interplay between the enteric nervous system, the Interstitial

Cells of Cajal (ICC) and smooth muscle cells. These smooth muscle cells are uni-

tary (or visceral) cells that act like a syncytium in which the electrical activity

is conducted from fiber to fiber.15 The muscular system is characterized by spon-

taneous activity with regular cellular depolarizations that are known as the slow

wave or electrical control activity (ECA).137 The ICC are critical for initiating

this slow wave activity and are believed to regulate the pacing of the GI ECA.70

As with all muscle, electrical action potentials initiate each muscular contraction.

However, not every electrical impulse in the GI tract gives rise to a contraction,

and hence these impulses are not considered to be a true action potential. Muscu-

lar contraction occurs only when the Electrical Response Activity (ERA) or spike

activity is triggered by the depolarization of the cell membrane above threshold.

Thus, the temporal and spatial coordination of the muscular activity of the gut is

based upon the ECA.

The ECA exhibits a frequency that is location dependent with pacemakers

present in both the stomach and duodenum.147,122 It is the slow wave membrane

depolarization generated by the ICC that determines the maximum frequency and

the propagation characteristics of the intestinal rhythmic contractions. The ICC

associated with Auerbach’s plexus (a group of ganglion cells between the circular

and longitudinal muscle layers of the muscularis externa in the digestive tract) spon-

taneously depolarize three times a minute to initiate the ECA in the stomach.100

In the duodenum, the frequency of the slow wave activity is about 12 cycles per

minute (cpm) and this decreases over the length of the small intestine to about 8

cpm in the terminal ileum. Transection of the small intestine allows local pacemak-

ers to take control. Thus, the ECA frequency of the intestine distal to the transection

is less than when previously controlled by the more proximal pacemaker, especially

if the transection is made in the proximal frequency plateau.30

The electrical activity of the stomach can be recorded with cutaneous electrodes

giving rise to what is termed the ElectroGastroGram (EGG). This was first recorded

by Alvarez in 19223 from “a little old woman whose abdominal wall was so thin that

her gastric peristalsis was easily visible”. It was independently discovered again in

195728 but it was not until 1975 that the gastric origin of the EGG was conclusively

demonstrated.19 In the last 25 years much has been learnt about the electrical
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activity of the stomach, and research into the relationship between gastric electrical

activity and the EGG has recently substantially increased. This research has also

resulted in significant advances in the study of intestinal ECA, but the cutaneous

recording of intestinal potentials continues to be problematic.

Analysis of electrical recordings from gastrointestinal activity have mostly been

limited to an analysis of the various frequency components within the signals.

Recordings of the magnetic field associated with the stomach and small intes-

tine have been made, e.g. Bradshaw et al. (1997).16 These data are beginning to

be used in inverse studies. Some simple inverse calculations have been presented

in Irimia and Bradshaw (2004)72 in which the body was modeled as an infinite

plane. Anatomically based models were used in Cheng et al. (2004),23 in which

qualitatively normal gastric activity was constructed from 19 channels of magnetic

recordings.

From an inverse point of view, this field is still in its infancy and much work

has to be done. However, there is the possibility, given the complete lack of spa-

tial information obtainable from the EGG (particularly compared with the ECG)

that some useful information can be obtained via the use of inverse analysis. For

instance, the EGG can fail to detect even the most simplest of rhythm disorders,

for instance retrograde propagation, or asynchronous activation of the fundus and

corpus occurring at the same frequency. Such activity can be potentially identified

with a model-based inverse analysis.
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57. M. Hämäläinen and R. Ilmoniemi, Interpreting magnetic fields in the brain: Minim-
ium norm estimates, Med. Biol. Eng. Comp. 32 (1994) 35–42.
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This chapter describes electrical impedance imaging techniques providing information on
electrical properties of biological tissues. Sections on Electrical Impedance Tomography
(EIT) deal with cross-sectional image reconstructions of conductivity and/or permit-
tivity distributions from boundary measurements of current-voltage data. After math-
ematically defining the imaging problem in EIT, image reconstruction algorithms are
discussed. Describing measurement techniques, examples of EIT images are presented.
Noting that EIT suffers from the ill-posed nature of the corresponding inverse problem,
Magnetic Resonance Electrical Impedance Tomography (MREIT) has been proposed
to provide images with better spatial resolution and accuracy. MREIT utilizes internal
information on the induced magnetic field in addition to the boundary measurements.
Mathematical theory, algorithms, and experimental results of current MREIT research
are described. As another way of handling the ill-posedness in EIT, lesion estimation
techniques have been suggested. Assuming that a lesion has a different conductivity
and/or permittivity compared with normal tissues, the lesion estimation including its
location and size estimate could be a well-posed problem. Introducing mathematical
models, lesion estimation algorithms, and measurement techniques, some of experimen-
tal results are explained. At the end of the chapter, potential applications of EIT and
MREIT are discussed. Breast cancer detection is taken as the primary application area
of the lesion estimation techniques.

Keywords: Electrical impedance tomography; static imaging; MREIT; lesion estimation.

1. Introduction

Numerous experimental findings have shown that different biological tissues in the

human body have different electrical properties of conductivity and permittivity at

the frequency range of tens of Hz to several MHz.1 These properties change with
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ion concentrations in extra and intracellular fluids, cellular structure and density,

molecular composition, membrane capacitance, and so on. Therefore, they manifest

structural, functional, and pathological conditions of the tissue providing valuable

diagnostic information.

In most studies of electrical bioimpedance, we either inject current or apply

voltage using electrodes attached on a subject. Measuring the induced voltage

or current, electrical properties of the subject are evaluated. An extracted tis-

sue sample could also be investigated for in vitro experimental studies. Electrical

Impedance Spectroscopy (EIS) is a technique to characterize a biological tissue from

its bioimpedance measurements at multiple frequencies. In Electrical Impedance

Tomography (EIT), we try to reconstruct cross-sectional images of conductivity

and/or permittivity distributions inside the subject.

For example, consider the problem of finding the conductivity of a homoge-

neous electrolytic solution inside a plastic cylindrical container shown in Fig. 1(a).

Attaching electrodes on the top and bottom of the container, we inject current I

and measure the induced voltage V between them. Then, the conductivity σ can

be found from the Ohm’s law:

R =
V

I
=

L

σS
, (1)

where R is the measured resistance, L the length, and S the cross-sectional area

of the cylinder. Here, we neglected the characteristics of the electrode-electrolyte

interface.

When the subject is a human body as shown in Fig. 1(b), it is not cylindrical

and its conductivity distribution is inhomogeneous. Furthermore, there are limited

areas where we can attach electrodes. In EIT, therefore, finding the inhomogeneous

conductivity and/or permittivity distribution in a form of cross-sectional image

becomes a complicated inverse problem also known as the inverse conductivity

EIT System

(Current sources

and voltmeters)

I V
Electrolytic

solution

with

conductivity σ

Fig. 1. Problems of finding (a) a single conductivity value of a homogeneous electrolytic solution
and (b) an inhomogeneous conductivity distribution inside the human body.
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problem. In most cases, surface electrodes as many as 8 to 256 are attached in a

two or three-dimensional configuration. Injecting patterns of currents through all or

chosen pairs of electrodes, induced boundary voltages on all or selected electrodes

are measured. The measured boundary current-voltage data set is utilized to recon-

struct cross-sectional images of the conductivity and/or permittivity distribution

inside the subject.2–6 It is known that most biological tissues are anisotropic in

terms of their electrical properties. Throughout this chapter, however, we only con-

sider isotropic cases since there is no solid technique yet to deal with the anisotropy

in EIT.

When we inject current into a subject, the internal current pathway or the

current density distribution is affected nonlinearly by the global structure of the

electrical properties of the subject. Any change in the conductivity of an internal

region alters the current pathway and its effect is conveyed to the corresponding

change in the boundary voltage. However, these boundary measurements are very

insensitive to a local change away from measuring points. For this reason, EIT

suffers from the ill-posed characteristics of the corresponding inverse problem. This

makes it difficult to reconstruct accurate conductivity and/or permittivity images

with a high spatial resolution under realistic environments where modeling and

measurement errors are unavoidable.

In practice, we can attach only a limited number of electrodes and this means

that we are limited by a fixed amount of information from boundary measure-

ments. Using a larger number of electrodes requires a more complicated instrument

and cumbersome electrode attachment procedure and these are prone to increase

the total amount of measurement errors in practice. With these kinds of technical

restrictions, it is desirable for EIT to find clinical applications where its portabil-

ity and high temporal resolution to monitor changes in electrical properties are

significant merits. This kind of impedance imaging has been called the dynamic

or difference imaging in EIT. In the following sections on EIT, we will describe

its mathematical formulation, image reconstruction algorithms, measurement tech-

niques, and examples of EIT images.

For the static or absolute imaging, Magnetic Resonance Electrical Impedance

Tomography (MREIT) has been lately proposed to overcome the technical limita-

tions of EIT.7–12 When we inject current into a subject, it produces distributions

of voltage, current density, and also magnetic flux density inside the subject. The

basic idea of MREIT is to utilize the information on magnetic as well as elec-

tric field induced by an injection current. While EIT is limited by the boundary

measurements of current-voltage data, MREIT utilizes the internal magnetic flux

density data obtained using a Magnetic Resonance Imaging (MRI) scanner. Recent

progress in MREIT providing conductivity images with an improved spatial resolu-

tion and accuracy is presented including the mathematical theory, algorithms, and

experimental outcomes.

While MREIT is capable of static impedance imaging with better performance,

it requires an MRI scanner. As another way of handling the ill-posedness in EIT,
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lesion estimation techniques are suggested.13–15 They utilize boundary measure-

ments of current-voltage data as in EIT. However, the goal is not the cross-sectional

imaging but the extraction of core information on any lesions with different electrical

properties. Introducing theory and algorithms for feature extractions, experimental

results and potential applications are discussed.

At the end of the chapter, we will introduce most promising application areas

of impedance imaging. Dynamic imaging using EIT techniques are mainly for func-

tional imaging and monitoring of physiological events. Providing static images

of conductivity distributions, MREIT could find important contributions in the

areas of neuronal source localization and mapping. There are numerous methods

of applying electromagnetic energy to the human body mostly for therapeutic pur-

poses. Conductivity information from MREIT will be valuable for the optimization

and evaluation of these therapeutic treatments. Feature extraction of lesions may

find applications in breast cancer detection, non-destructive testing such as bubble

detection in two-phase flow, and others.

2. Electrical Impedance Tomography (EIT)

After many years of worldwide research investments on EIT, several review papers

describe numerous aspects of the EIT technique.2–6 We can classify previous works

into two categories. One is a kind of works with theoretical meanings that enhance

our understanding of the problem. All other works with practical applicability in

mind belong to the other kind. In this second category, we may often have to

sacrifice the mathematical rigorousness for practical implementations.

We will first introduce mathematical theories and image reconstruction algo-

rithms in EIT. After discussing the ill-posed nature of the EIT problem together

with experimental limitations, typical examples of EIT images are presented. The

dynamic EIT imaging rather than static imaging is emphasized in the following

sections on EIT.

2.1. Mathematical formulation of EIT

2.1.1. Forward problem: Voltage due to an injection current for

a given conductivity

Let Ω ⊂ R
3 be an electrically conducting subject with its boundary ∂Ω as shown

in Fig. 2. Surface electrodes Ej for j = 1, . . . , E are attached on the boundary ∂Ω.

Assume that we inject current I at a fixed angular frequency ω through a pair of

chosen electrodes. Denoting a position vector in R
3 as r, the time harmonic electric

field E and magnetic flux density B due to the injection current satisfy the time

harmonic Maxwell equations:

∇×
(

1

µ
B(r)

)
= (σ(r) + iωǫ(r))E(r) and ∇× E(r) = −iωB(r),



Electrical Impedance Tomography for Imaging and Lesion Estimation 197

Fig. 2. Electrically conducting subject Ω with a conductivity σ and voltage u distribution. Surface
electrodes Ej , j = 1, . . . , E are attached on the boundary ∂Ω. Here, we assume that current is
injected between the pair of electrodes Ei and Ej and voltage is measured between Ek and El.

where σ is the conductivity, ǫ permittivity, and µ magnetic permeability. We may

express a complex conductivity τ at r ∈ Ω as

τ(r) = σ(r) + iωǫ(r). (2)

Since ∇ · ∇ ×
(

1
µB(r)

)
= 0, E satisfies ∇ · (τ(r)E(r)) = 0. At a relatively low

frequency range, we may assume ∇ × E(r) = 0. Then, we can define a voltage

distribution u in Ω satisfying −∇u(r) = E(r). Now, we can formulate the following

boundary value problem with the Neumann boundary condition:
{ ∇ · [τ(r)∇u(r)] = 0 in Ω

−τ∇u · n = g on ∂Ω
, (3)

where n is the outward unit normal vector on ∂Ω and g the magnitude of the current

density on ∂Ω due to the injection current I. On a current injection electrode Ej ,

we have
∫
Ej

g ds = ±I where ds is the surface element and the sign depends on the

direction of the injection current. The Neumann data g is zero on the regions of

the boundary not contacting with current injection electrodes. Setting a reference

voltage u(r0) = 0 for r0 ∈ ∂Ω, we can obtain a unique solution u of (3) from σ

and g. The current density J in Ω due to the injection current is given by

J(r) = −τ(r)∇u(r) = τ(r)E(r) in Ω. (4)

If we apply currents with sinusoidal waveform at a low frequency range, the

imaginary part of τ , ωǫ, is relatively small. Throughout this chapter, we will assume

τ = σ for simplicity. However, note that the permittivity ǫ is also frequently imaged

in EIT in addition to the conductivity σ. By EIT technique, we cannot determine an

anisotropic conductivity distribution of a subject, since the boundary information

of current-voltage data are not sufficient to recover the anisotropic conductivity

distribution. This means that many different anisotropic conductivity distributions

may have the same boundary measurements in EIT.16 For this reason, we will

assume that σ is isotropic.

Using a simple numerical example, we now illustrate how the voltage and

current density distributions are formed from (3) and (4). Figure 3(a) shows
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Fig. 3. (a) An example of an electrically conducting subject with a given conductivity distribu-
tion. Numbers inside ellipsoids are conductivity values in S/m. (b) Voltage and current density
distribution induced by the injection current. Black and white lines are equipotential and current
density streamlines, respectively.

a two-dimensional model of an electrically conducting subject with a given

conductivity distribution σ. With 16 electrodes on its boundary, the injection cur-

rent is applied between the chosen pair of electrodes. Figure 3(b) shows the com-

puted voltage and current density distribution using the Finite Element Method

(FEM).17,18

In EIT, we measure the boundary voltage f , the restriction of u to the boundary

∂Ω, to reconstruct an image of τ . If the subject is homogeneous, a single measure-

ment of the boundary current-voltage pair (g, f) will be enough to determine the

constant τ . For the general case where the subject is inhomogeneous, the recon-

struction of the target image τ requires applying several independent currents gj,

j = 1, . . . , N and measuring the corresponding boundary voltages fj . As an exam-

ple, Figs. 4(a) and (b) show the Neumann data g and voltage f , respectively, on

the boundary of the model in Fig. 3.

With E electrodes attached to the subject as in Fig. 2, there could be different

methods to inject several independent currents.2,3 Since all currents entering the

subject must exit from it to form a closed circuit including one or multiple current

sources, any injection current must satisfy
∫

∂Ω
gjds = 0 and the number N of

the independent injection currents should be N ≤ (E − 1). For each injection

current gj , we can measure (E−1) boundary voltages since we use one electrode as

the reference electrode. However, the reciprocity theorem tells that the boundary

voltage between a pair of electrodes Ek and El due to an injection current between

another pair Ei and Ej is the same as the case where the two pairs exchange their

roles. Removing the redundant data, the number M of the independent voltage

measurements satisfies M ≤ (E−1)(E−1)+(E−1)
2 = E(E−1)

2 . This indicates that the
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Fig. 4. (a) Neumann boundary data of the model in Fig. 3. We assumed that the current density
underneath each current injection electrode is uniform. (b) Boundary voltage on 16 electrodes of
the model. Here, we neglected the effects of electrode contact impedances.

number of electrodes is the primary limiting factor determining the total amount

of information available from the boundary measurements.

Now, the inverse problem is to reconstruct τ from the boundary current-voltage

pairs (gj , fj), j = 1, . . . , N . To search τ , it is necessary to interpret how the change

in conductivity distribution affect the current-to-voltage relation on the bound-

ary. Also, we should take inevitable measurement noise and modeling errors into

account.

2.1.2. Inverse problem: Conductivity from Neumann-to-Dirichlet (NtD) map

There has been a significant progress in theoretical study of the inverse problem

in EIT. To provide a quick survey on these results, we denote the solution u of

the Neumann boundary value problem in (3) by u[σ, g] because it is determined

uniquely by the conductivity distribution σ and the Neumann data g. To explain

the inverse problem, we define the map Λσ: g → f by Λσ[g] = u[σ, g]|∂Ω where u|∂Ω

is the restriction of u to ∂Ω. The map Λσ is called the Neumann-to-Dirichlet (NtD)

map. The reconstruction of σ requires us to invert the following map:

σ → {(gj, fj)}N
j=1, with fj = Λσ[gj ]

for a given sequence of injection currents {gj}N
j=1.

The NtD map Λσ is closely related with the Neumann function restricted on ∂Ω.

The Neumann function Nσ(r, r′) is the solution of the following Neumann problem:

for each r,
{∇r′ · (σ(r′)∇r′Nσ(r, r′)) = δ(r − r′) for all r′ ∈ Ω

σ(r′)∇r′Nσ(r, r′) · n(r′) = 0 for all r′ ∈ ∂Ω
,
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where δ is the Dirac delta function. With the use of the Neumann function Nσ(r, r′),
we can represent u[σ, g](r) in terms of the singular integral:

u[σ, g](r) =

∫

Ω

δ(r − r′)u[σ, g](r′)dr′

=

∫

Ω

∇ · (σ(r′)∇Nσ(r, r′))u[σ, g](r′)dr′

= −
∫

Ω

σ(r′)∇Nσ(r, r′) · ∇u[σ, g](r′)dr′

=

∫

∂Ω

Nσ(r, r′)g(r′)dsr′ .

Since Λσ[g] is the restriction of u[σ, g] to the boundary ∂Ω, it can be represented as

Λσ[g](r) =

∫

∂Ω

Nσ(r, r′)g(r′)dsr′ , r ∈ ∂Ω. (5)

Therefore, the kernel Nσ(r, r′) with r, r′ ∈ ∂Ω can be viewed as a kind of an

expression of the NtD map Λσ. Note that the map Λσ is sensitive to a change of

the geometry of the surface ∂Ω since Nσ(r, r′) is singular at r = r′.
It has been proved that the knowledge of Λσ is sufficient to uniquely determine

σ provided that σ satisfies some minor regularity condition. For the uniqueness

results, please see the previous works.19–27 Nachman provided a direct method of

reconstructing a two dimensional conductivity from the NtD map Λσ.26

To reconstruct σ, it would be ideal if we could measure the full NtD map Λσ.

However, in practice, it is not possible to get the complete knowledge of Λσ due to

a limited number of electrodes and the difficulty in capturing the geometry of ∂Ω.

Furthermore, it is well known that this map is highly nonlinear and insensitive to

perturbations of an internal σ. Hence, it is generally well accepted that there is no

stable way to reconstruct σ with a high spatial resolution.

2.2. EIT image reconstruction techniques

2.2.1. Dynamic imaging using sensitivity matrix method

Dynamic imaging in EIT produces images of any difference in conductivity distri-

butions between two states. It could be a temporal change or frequency-dependent

change in a multi-frequency EIT system. The dynamic EIT imaging was first pro-

posed by Barber and Brown28 using the backprojection method following numerous

variations. In this section, however, we describe the dynamic imaging by introducing

the sensitivity matrix method since it is more widely used.4,29,30

In (5), we expressed the voltage u[σ, g] with the aid of Neumann kernel Nσ(r, r′)
and it is rewritten as

u[σ, g](r) =

∫

∂Ω

Nσ(r, r′)g(r′)dsr′ , r ∈ ∂Ω. (6)
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Providing that we have a full knowledge of the NtD map, we can compute the

Neumann kernel Nσ(r, r′) for r, r′ ∈ ∂Ω and, therefore, the inverse problem becomes

determining σ from the Neumann kernel Nσ(r, r′). However, any given electrode

configuration with a finite number of electrodes provides only a partial knowledge

of the NtD map with unavoidable measurement noise in it. Also, for a numerical

implementation, an appropriate discrete version of the inverse problem should be

considered. In such a discrete version, we must pay special attention to the effects

of inaccurate and incomplete data set due to the ill-posed nature (the prime cause

of inaccuracy in EIT imaging) of the problem.

Let E be the number of electrodes and Ej with j = 1, . . . , E indicates each

surface electrode. We denote by χE the indicator function of E ; χE = 1 on E and 0

otherwise. As described before, we inject (E − 1) number of linearly independent

currents Ij for j = 1, . . . , (E − 1). Let gj denote the corresponding Neumann data

due to the current Ij . In order to derive a discrete version of (6), we multiply both

sides of (6) by χEk
, k = 1, . . . , E and integrate them over the boundary ∂Ω:





∫
∂Ω

u[σ, gj ](r)χE1(r)ds
...∫

∂Ω
u[σ, gj ](r)χEE

(r)ds



 =

∫

∂Ω





∫
∂Ω

Nσ(r, r′)χE1(r)ds
...∫

∂Ω
Nσ(r, r′)χEE

(r)ds



 gj(r
′)ds (7)

for each gj . The Neumann data gj is supported on
⋃E

k=1 Ek and we assume that it

is uniform underneath each electrode. Then, gj can be approximated as

gj(r) ≈
E∑

k=1

(
1

ak

∫

Ek

gj ds

)
χEk

(r), r ∈ ∂Ω,

where ak is the surface area of Ek. Here, we used the simple uniform current density

electrode model. One may consider the complete electrode model31,32 that results

in the same sensitivity matrix.17

Substituting the above approximation into (7) yields

u∗
j [σ] = N

∗[σ]g∗
j , (8)

where

u∗
j [σ] =





1
a1

∫
E1

u[σ, gj ](r)ds
...

1
aE

∫
EE

u[σ, gj](r)ds



 , g∗
j =





1
a1

∫
E1

gjds
...

1
aE

∫
EE

gjds



 ,

and N∗[σ] is the E × E matrix with

(i, j)th-component of N
∗[σ] =

1

ai

∫

Ei

∫

Ej

Nσ(r, r′)dsr dsr′ .

Due to the reciprocity relation between current and voltage, the matrix N∗[σ] is

symmetric.
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Since we use one electrode, say EE, as a reference electrode, the Eth compo-

nent of u∗
j does not have any information. Moreover, since

∫
∂Ω gj ds = 0, the Eth

component of gj is determined by the remaining (E − 1) components of g∗
j . This

means that the system (8) having the E × E matrix is essentially the same as the

following reduced system having the (E − 1) × (E − 1) matrix:

uj [σ] = N[σ]gj , (9)

where N[σ] is the (E − 1) × (E − 1) sub-matrix of N∗[σ] eliminating its Eth row

and Eth column and uj and gj are the corresponding sub-vectors of u∗
j and g∗

j ,

respectively.

The (E − 1)× (E − 1) matrix N[σ] having E(E−1)
2 number of unknown compo-

nents can be determined from the relationship between (E − 1) number of linearly

independent currents gj and the corresponding measured voltages fj . The inverse

problem is to determine σ from N[σ] containing E(E−1)
2 data. It should be noticed

that the resolution of a reconstructed conductivity image σ is restricted by the

number of data, E(E−1)
2 . Therefore, the reconstruction with a limited knowledge

leads us to approximate σ as a piece-wise constant function:

σ =

P∑

j=1

σjχ∆j
, P ≤ E(E − 1)

2
,

where σj is a constant and ∆j is a voxel, a partition of the domain Ω. With this

approximation, σ can be viewed as a vector, σ = (σ1, . . . , σP ).

Let the vector σ ∈ RP be a small perturbation of σ0 ∈ RP with a perturbing

term δσ ∈ RP :

σ = σ0 + δσ.

We can view σ0 as the background conductivity of a subject and δσ as a change

of the conductivity due to a physiological event. The mathematical problem in

dynamic impedance imaging is to visualize δσ.

From (9), we have

uj [σ] − uj [σ0] = (N[σ] − N[σ0])gj ≈ δσ · ∇σ (N[σ0]gj) , j = 1, . . . , E − 1. (10)

Unification of the above approximations with all injection currents leads to

δu[σ] = S[σ0]δσ,

where

δu[σ] =




u1[σ] − u1[σ0]

...

uE−1[σ] − uE−1[σ0]



 ∈ R
(E−1)2
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and S[σ0] is a (E − 1)2 × P matrix given by

S[σ0] =





...

((E − 1)(j + 1))th row of S[σ0]
...

((E − 1)(j + 1))th row of S[σ0]
...





=





...

↑ ↑
∂

∂σ1
(N[σ0]gj) · · · ∂

∂σm
(N[σ0]gj)

↓ ↓
...





.

The box in the above equation corresponds to the formula (10) for a certain j,

and the matrix S[σ0] is the simple arrangement of the contents within the box for

j = 1, . . . , E − 1. This matrix S[σ0] is called the sensitivity matrix.

We now explain this sensitivity matrix in a variational point of view. If we

know the background conductivity σ0, we can compute u[σ0, gj] by solving the

direct problem:

∇ ·
(
σ0∇u[σ0, gj ]

)
= 0 in Ω, −σ0

∂u[σ0, gj]

∂n
= gj on ∂Ω.

For simplicity, we write u[σ0, gk] = u0
k and u[σ, gk] = uk = u0

k + δuk. We try to

reconstruct the conductivity change δσ from the voltage difference (uk −u0
k) on the

electrodes. Using the properties of uk and u0
k and the divergence theorem, we have

the following identity:

∫

Ω

δσ∇u0
j∇u0

k dr =

∫

Ω

[σ∇uj∇u0
k − σ0∇uj∇u0

k]dr −
∫

Ω

δσ∇δuj∇u0
k dr

=

∫

∂Ω

gj[u
0
k − uk]ds −

∫

Ω

δσ∇δuj∇u0
k dr.

Since the last term in the above identity can be regarded as negligibly small, we

obtain
∫

Ω

δσ∇u0
j∇u0

k dr =

∫

∂Ω

gj[u
0
k − uk]ds.

Since we assume that σ =
∑P

j=1 σjχ∆j
is piecewise constant, the above identity

can be expressed as the following matrix form:

A[σ0]δσ = b, (11)
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where

b =





b[1, 1]
...

b[1, E − 1]

b[2, 1]
...
...

b[E − 1, E − 1]





∈ R
(E−1)2 with b[j, k] =

∫

∂Ω

gj [u
0
k − uk]ds,

and A[σ0] is the (E − 1)2 × P matrix given by

A[σ0] =





...

((E − 1)(j + 1))th row
...

((E − 1)(j + 1))th row
...





=





...∫
∆1

∇u0
j∇u0

1dr · · ·
∫
∆P

∇u0
j∇u0

1dr
... · · ·

...∫
∆1

∇u0
j∇u0

E−1dr · · ·
∫
∆P

∇u0
j∇u0

E−1dr
...





.

The biggest advantage of the dynamic imaging comes from the fact that the right

hand side of (11) contains the difference in measured boundary voltage, u0
k − uk.

Since any systematic errors common to both u0
k and uk are cancelled out, the

dynamic imaging could be more robust against different kinds of noise. However, in

order to solve the system (11) for δσ, we need to compute u0
k and the background

conductivity σ0 is usually unknown in advance. So, in most dynamic imaging meth-

ods, a homogeneous conductivity distribution is often used as σ0. Alternatively, we

may utilize as much a priori information as possible to setup a better background

conductivity distribution σ0.

Now, one may wonder if we use an iterative scheme to reconstruct a static

image of σ starting from a homogeneous initial guess σ0. Actually, this is the basic

idea of the static imaging in EIT as described in the next section. If successful, the

static imaging may provide a good background conductivity image for a subsequent

dynamic imaging. However, considering the ill-posedness of the EIT problem imply-

ing that the sensitivity matrix is severely ill-conditioned, any iterative approach is

very difficult to be successful. For this reason, lately MREIT techniques have been

suggested for the static conductivity imaging and will be discussed later. Static
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images from MREIT may improve the quality of dynamic images in EIT when

both techniques are properly combined.

2.2.2. Static imaging using data fitting method

Most static image reconstruction algorithms in EIT can be viewed as a data fitting

method as described in Fig. 5. We first construct a computer model of the subject

satisfying (3). Since we do not know the true σ of the subject, we assume an

initial conductivity distribution σk with k = 0 for the model. When we inject

several currents into both the subject and the model, the corresponding measured

and computed boundary voltages are different since σk �= σ in general. An image

reconstruction algorithm iteratively updates σk until it minimizes the difference

between measured and computed boundary voltages.

To illustrate this idea, we define the following minimization problem:

σ̂ = arg minσk

[
1

2

∑

m

‖fm − fm
c (σk)‖2

2

]
, (12)

where “arg min” is an operator which gives an energy functional minimizer, fm is a

vector of measured boundary voltages with the mth injection current, and fm
c (σk)

is a corresponding vector of computed voltages. For the solution of (12), we may

use the Newton-Raphson method.33 Since the Jacobian matrix of this minimization

problem is ill-conditioned, we often use some Tikhonov type regularization:

σ̂ = arg minσk

[
1

2

∑

m

‖fm − fm
c (σk)‖2

2 + λη(σk)

]
, (13)

where λ is a small regularization parameter and η(σ) is a function measuring reg-

ularity of σ. The computation of the Jacobian matrix is basically the same as the

Image Reconstruction

Algorithm

Data Acquisition

System

Measured
Boundary
Voltage

Forward Solver

Computed
Boundary
Voltage

Subject Computer

Model
Injection

Current
σ σk

Fig. 5. Static image reconstruction as a data fitting method.
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computation of the sensitivity matrix at σk instead of σ0 as described in the previ-

ous section.

This kind of method was first introduced in EIT by Yorkey et al.33 following

numerous variations and improvements.34–39 These include utilization of a pri-

ori information, various forms of regularization, adaptive mesh refinement, and

so on. Even though this approach is widely adopted for static imaging by many

researchers, it requires a large amount of computation time for producing static

images even with a low spatial resolution and poor accuracy. Though it seems to be

generally regarded as a classical technique in static impedance imaging, new ideas

are still desired to get images with better quality.

2.3. Ill-posedness in EIT

EIT reveals technical difficulties in producing high-resolution conductivity images.

This stems from the inherent insensitivity problem that perturbations of an internal

conductivity distribution deliver relatively small changes of the measured bound-

ary voltage data in a highly nonlinear way. In this section, we investigate this

ill-posedness of EIT in detail.

The value of the voltage at a point inside the subject can be expressed as a

weighted average of its neighboring voltages where the weights are determined by

the conductivity distribution. In this weighted averaging way, the information on

the conductivity distribution is conveyed to the boundary voltage as illustrated in

Fig. 3(b). Therefore, the current-voltage data on the boundary is entangled with

the global structure of the conductivity distribution in a highly nonlinear way.

Only for simplicity, we assume that the domain Ω of the subject is a square

region in R
2. We divide Ω uniformly into K × K sub-squares Ωi,j with the center

point (xi, yj) where i, j = 0, . . . , K−1. Our goal is to determine K×K conductivity

values under the assumption that the conductivity σ is constant on each sub-square

Ωi,j , say σi,j . Let

Σ = {σ|σ|Ωi,j
= constant ∀ i, j = 0, . . . , K − 1}.

For a given σ ∈ Σ, the solution uσ of the direct problem in (3) can be approximated

by a vector u = (u0, u1, . . . , uK2−1) such that each interior voltage uk, k = i + jK

is determined by the weighted average (depending on the conductivity σ) of the

four neighboring voltages. To be precise, the conductivity equation

∇ · (σ∇u(r)) = 0, r ∈ Ω

can be written as the following discretized form of

uk =
1

ak,k
[ak,kN

ukN
+ ak,kS

ukS
+ ak,kE

ukE
+ ak,kW

ukW
] (14)

with

ak,k = −
∑

d

ak,kd
and ak,kd

=
σkσkd

σk + σkd

for d = N, S, E, W, (15)
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where kN , kS , kE , and kW denote north, south, east and west neighboring points of

the kth point, respectively. The discretized conductivity Eq. (14) with the Neumann

boundary condition can be rewritten as the linear system Aσu = g where g is the

injection current vector associated with a Neumann boundary data g. Let f denote

a small-size sub-vector of u restricted to ∂Ω, which corresponds to the boundary

voltage on ∂Ω where sensing electrodes are attached. Then the inverse problem is

to determine the conductivity σ, which is equivalent to obtain Aσ, from several

measurements of current-to-voltage pairs (gm, fm), m = 1, . . . , N.

The fundamental shortcoming of EIT for providing high-resolution images is

due to the fact that reconstructing Aσ from (gm, fm), m = 1, . . . , N is exponen-

tially difficult as the matrix size of Aσ increases. Let us explain this difficulty more

precisely. According to (14), the value of the voltage at each pixel inside the region

can be expressed as the weighted average of its neighboring voltages where weights

are determined by the conductivity distribution. Therefore the measured data f is

entangled in the global structure of the conductivity distribution in a highly non-

linear way and any internal conductivity value σi,j influences little to boundary

measurements if σi,j is away from measuring points.

This ill-posed nature and severe nonlinearity make it very difficult for EIT to

provide good static conductivity images. Increasing the matrix size for better spatial

resolution makes the problem more ill-conditioned. Hence, having a larger number of

electrodes beyond a certain limit may result in poorer images since the deteriorated

ill-conditioning problem may take over the benefit of additional information from

the increased number of electrodes. Furthermore, we must consider inevitable errors

caused by modeling and measurement system. For these reasons, the static EIT

imaging is still far from clinical applications though the dynamic imaging has been

tried in numerous clinical application areas.3,4,40

2.4. Measurement techniques in EIT and images

There exist several EIT systems already developed and also being developed with

different design concepts and technical details in their implementations. We may

classify recent EIT systems into two types. The first may be characterized as one

current source and multiple voltmeters. In this case, current is sequentially injected

between a chosen pair of electrodes and there always exists only one active current

source. The second type uses multiple current sources and multiple voltmeters.

Here, we inject a pattern of current through multiple electrodes using multiple

active current sources to maximize the distinguishability.41 The sum of all currents

from multiple current sources must be zero. In most current EIT systems belong-

ing to both types, voltages from all electrodes are simultaneously measured using

multiple voltmeters. Typical examples of the first and second type are Mk3.5 from

Sheffield42 and ACT-3 from RPI,43 respectively. Boone et al.3 summarized numer-

ous techniques in the development of EIT system and it is still controversial to

decide which type is superior. Figure 6 shows a typical example of EIT system.
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Fig. 6. Block diagram of a typical EIT system.

When the injection current iij(t) between ith and jth electrode is

iij(t) = I sinωt,

the measured voltage between kth and lth electrode is

ukl(t) = IZ sin(ωt + θ),

where Z = Zeiθ is the trans-impedance. Extracting the trans-impedance from

the measured voltage requires the phase-sensitive demodulation. Important fac-

tors affecting the performance of an EIT system include the amplitude stability

and source impedance of the current source. For the voltmeter, dynamic range,

common-mode rejection ratio, and noise level are of primary concerns. When the

EIT system include many switches and cables, special care must be given to mini-

mize stray capacitances and cross-talks. The capability of providing the information

on the boundary shape and size of the subject and electrode positions would be

necessary especially for static imaging.

At the frequency of tens of kHz, the range of trans-impedance is from a few

mΩ to tens of Ω depending on the subject, number of electrodes, and their con-

figuration. Assuming the magnitude of the injection current is 1mA, for example,

the voltage is in the range of a few µV to tens of mV. Allowing the noise of 1%

of the smallest voltage, we are dealing with a noise level of much less than 1µV

requiring the state-of-the-art electronic instrumentation technology. Modern EIT

system usually acquires a complete set of data within 10ms enabling the tempo-

ral resolution of more than 16 frames/s using a fast dynamic image reconstruction

algorithm. This means that it is possible to produce real-time images of most physi-

ological time-varying events. In designing a new EIT system, we should consider the

factors such as the complexity of the system, technology available at present, and

future direction of EIT system development including miniaturization and wireless

interconnection.
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Fig. 7. (a) Two dimensional conductivity phantom and (b) reconstructed static conduc-
tivity image using ACT-3 EIT system from the RPI group. See text for details and also
http://www.rpi.edu/newelj/eit.html.

Figure 7(a) shows a two-dimensional conductivity phantom with 32 electrodes

constructed by the RPI group.5 The phantom is circular with 30 cm diameter and

saline-filled. On its inside surface, there are 32 stainless steel electrodes with the

size of 2.54 × 2.54 cm2. Two lung-shaped structures and a heart-shaped structure

made of agar are immersed in saline. Figure 7(b) is a static conductivity image of

the phantom reconstructed from a set of boundary data.

Metherall described numerous in-vivo three-dimensional EIT images using

Sheffield Mk3.5 EIT system.4 Figure 8 shows one set of those images showing the

impedance changes during ventilation. Figure 8(a) are 8 images at 8 different cross-

sectional planes of a human thorax with both lungs at residual volume. The images

are difference images with respect to a set of reference data at total lung capacity.

Figure 8(b) and (c) are corresponding images at functional residual capacity and

peak tidal volume, respectively.

Tidswell et al. applied the EIT technique to image functional activity in the

brain.44 Figure 9 shows a time series of EIT images during visual stimulation.

The goggles were used to produce a bright flash which stimulated the infant’s

vision. Each column represents averaged images over 4 seconds at six slices of the

baby’s head. From the EIT images, we can see that visual stimulation produced

impedance changes at the front and the back of the head. The area on the back

of the head corresponds to the position of the visual cortex and the impedance

decrease there is probably due to the increased blood volume in response to the

visual stimulus. The larger change at the front of the head was interpreted as

artifacts due to blinking or muscle movement during the bright visual stimulus.

More information on EIT techniques and numerous applications can be found at

http://www.eit.org.uk/index.html.
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Fig. 8. Three-dimensional in-vivo EIT images of a human thorax using Sheffield Mk3.5
EIT system. See text for details and also http://www.shef.ac.uk/uni/academic/I-M/mpce/
rsch/funimg.html.

3. Magnetic Resonance Electrical Impedance

Tomography (MREIT)

Injected current in an electrically conducting subject produces a magnetic field as

well as an electric field. In EIT, the information on the electric field in a form of

boundary current-voltage data is used to reconstruct conductivity images. Noting

that the magnetic field inside the subject can also be measured by a non-contact

method using an MRI scanner, we may transform the ill-posed problem into a well-

posed one utilizing this additional information. This new idea initiated the research

area called Magnetic Resonance Electrical Impedance Tomography (MREIT).
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Visual Stimulus
Front

Back

RightLeft

Fig. 9. Time series EIT images of a neonatal brain during visual stimulation from the UCL
group. See text for details and also http://madeira.physiol.ucl.ac.uk/midx-group/.

Since late 1980s, measurements of the internal magnetic flux density due to

an injection current have been studied in Magnetic Resonance Current Density

Imaging (MRCDI) to visualize the internal current density distribution.45–47 This

requires an MRI scanner as a tool to capture internal magnetic flux density images.

Once we obtain the magnetic flux density B = (Bx, By, Bz) due to an injection

current I, we can produce an image of the corresponding internal current density

distribution J from the Ampere’s law J = ∇ × B/µ0 where µ0 is the magnetic

permeability of the free space.

The basic concept of MREIT was proposed by combining EIT and MRCDI

techniques.7–12 In MREIT, we measure the induced magnetic flux density B inside

a subject due to an injection current I using an MRI scanner. Then, we may

compute the internal current density J as is done in MRCDI. From B and/or J,

we can perceive the internal current pathways due to the conductivity distribution

to be imaged.

However, if we try to utilize J = ∇× B/µ0 by measuring all three components

of B, there occurs a serious technical problem. Since any currently available MRI

scanner measures only one component of B that is parallel to the direction of the

main magnetic field of the MRI scanner, measuring all three orthogonal components

of B = (Bx, By, Bz) requires subject rotations. These subject rotations are imprac-

tical and also cause other problems such as misalignments of pixels. Therefore, it

is highly desirable to reconstruct conductivity images from only Bz instead of B

where z is the direction of the main magnetic field of the MRI scanner. For this

reason, most recent MREIT techniques focus on analyzing the information embed-

ded in the measured Bz data to extract any constructive relations between Bz and

the conductivity distribution to be imaged.
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This section addresses the image reconstruction problem in MREIT as a well-

posed inverse problem taking advantage of the information on internal magnetic flux

density distributions. Assuming that the magnetic flux density B = (Bx, By, Bz)

or only Bz is available, a mathematical formulation for the MREIT problem is

presented to explain the fundamental concept. Following the description on image

reconstruction algorithms and measurement methods with some of experimental

results, practical limitations in terms of the measurement noise and the amount of

injection current are discussed. At the end of this section, future research directions

are summarized.

3.1. Mathematical formulation of MREIT

3.1.1. Forward problem: Magnetic flux density due to an injection current

for a given conductivity

As shown in Fig. 10, we assume an electrically conducting domain Ω with its bound-

ary ∂Ω and a conductivity distribution σ. We choose a pair of electrodes attached

on ∂Ω, for example, Ei and Ej to inject current I. Lead wires carrying the injection

current I are denoted as Li and Lj . Then, the voltage u in Ω satisfies the Neumann

boundary value problem in (3). Knowing the voltage distribution u, the current den-

sity J is given by (4). Denoting the Neumann boundary data due to the injection

current as g, those equations are rewritten as

{ ∇ · [σ(r)∇u(r)] = 0 in Ω

−σ∇u · n = g on ∂Ω
, (16)

and

J(r) = −σ(r)∇u(r) = σ(r)E(r) in Ω. (17)

Fig. 10. Electrically conducting subject Ω with a conductivity σ and voltage u distribution.
Surface electrodes Ej , j = 1, . . . , E are attached on the boundary ∂Ω. Here, we assume that
current is injected between the diagonal pair of electrodes Ei and Ej .
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We now consider the magnetic field produced by the injection current. The

induced magnetic flux density B in Ω can be decomposed into three parts as

B(r) = BΩ(r) + BE(r) + BL(r) in Ω, (18)

where BΩ, BE and BL are magnetic flux densities due to J in Ω, J in E = Ei ∪ Ej

and I in L = Li ∪ Lj , respectively. From the Biot-Savart law,

BΩ(r) =
µ0

4π

∫

Ω

J(r′) × r − r′

|r − r′|3
dv′, (19)

BE(r) =
µ0

4π

∫

E
J(r′) × r − r′

|r − r′|3
dv′, (20)

and

BL(r) =
µ0I

4π

∫

L
a(r′) × r − r′

|r − r′|3 dl′, (21)

where a(r′) is the unit vector in the direction of the current flow at r′ ∈ L. From

the Ampere’s law, the current density J is also given by

J(r) =
1

µ0
∇× B(r) in Ω. (22)

We must have

1

µ0
∇× B(r) = −σ(r)∇u(r) and ∇ · J(r) = 0 in Ω. (23)

Numerical techniques in solving (16)–(22) are described by Lee et al. with several

examples.18 Figure 11 shows a typical example.

3.1.2. Inverse problem: Conductivity from Neumann-to-Bz (NtBz) map

Now, the problem of interest is to reconstruct an image of σ in Ω from measured

magnetic flux density and boundary voltage. For the uniqueness of a reconstructed

conductivity image, it has been shown that we need to inject at least two currents

using more than three electrodes and measure the corresponding magnetic flux

densities.48,49 In addition, at least one boundary voltage measurement is needed to

recover the absolute values of the conductivity distribution. Since the measurement

of B = (Bx, By, Bz) requires the impractical subject rotations, in this section, we

assume that we measure only Bz without rotating the subject.

The description of the inverse problem in MREIT is based on the following

setup. We place a subject Ω inside an MRI scanner and attach surface electrodes.

The conductivity distribution σ of the subject is assumed to be isotropic with

0 < σ < ∞. When the number of electrodes is E, we can sequentially select one

of N ≤ E(E−1)
2 different pairs of electrodes to inject currents into the subject. Let

the injection current between the jth pair of electrodes be Ij for j = 1, . . . , N

with N ≥ 2. The current Ij produces a current density Jj = (Jj
x, Jj

y , Jj
z ) inside

the subject. The presence of the internal current density Jj and the current Ij
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Fig. 11. Typical numerical results of a simple thorax model of 50×50×50 mm3. Current of 1 mA
is injected between the pair of electrodes on the surface of the model in (a). Computed results of
(b) u, (c) Jx, (d) Jy, (e) Jz, (f) Bx, (g) By, and (h) Bz .
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in external lead wires generates a magnetic flux density Bj = (Bj
x, Bj

y, Bj
z) and

Jj = ∇ × Bj/µ0 holds inside the electrically conducting subject. We now assume

that we have measured Bj
z for j = 1, . . . , N .

Let uj be the voltage due to the injection current Ij for j = 1, . . . , N . Since

σ is approximately independent of injection currents, each uj is a solution of the

following Neumann boundary value problem:
{∇ · (σ(r)∇uj(r)) = 0 in Ω

−σ∇uj · n = gj on ∂Ω
, (24)

where gj is the normal component of current density on the boundary of the subject

for the injection current Ij . If σ, Ij , and electrode configuration are given, we can

solve (24) for uj using a numerical method such as FEM.17,18

Now, we introduce a map relating Bj
z with the Neumann data gj :

Λσ[gj ](r) = Bj
z(r), r ∈ Ω.

We will call this map Λσ by the Neumann-to-Bz map (NtBz-map). According to

the Biot–Savart law with a given gj , Λσ[gj ] is expressed as

Λσ[gj ](r) =
µ0

4π

∫

Ω

σ(r′)[(x − x′)∂uj

∂y (r′) − (y − y′)∂uj

∂x (r′)]

|r− r′|3 dr′, (25)

where uj is the solution of (24). The inverse problem in MREIT is to reconstruct

σ from several NtBz data, Λσ[gj ], j = 1, . . . , N . In order for MREIT to be more

practical, N should not be a large number.

3.2. MREIT image reconstruction techniques

When B = (Bx, By, Bz) is available, we may use J from (22) to reconstruct con-

ductivity images using image reconstruction algorithms such as the J-substitution

algorithm,10,50,51 current constrained voltage scaled reconstruction (CCVSR)

algorithm,52 and equipotential line methods.49,53,54 However, since these methods

require the impractical subject rotation procedure, we describe algorithms utilizing

only Bz data.

3.2.1. Harmonic Bz algorithm

Based on the relation of ∇2B = −µ0∇u×∇σ observed by Scott et al.,46 Seo et al.

derived the following expression that holds for each position in Ω.55

1

µ0
∇2Bj

z =

(
∂σ

∂x
,
∂σ

∂y

)
·
(

∂uj

∂y
,−∂uj

∂x

)
=

∂σ

∂x

∂uj

∂y
− ∂σ

∂y

∂uj

∂x
, j = 1, . . . , N. (26)

Note that the magnetic flux density due to the injection current Ij along external

lead wires becomes irrelevant by using ∇2Bj
z . Using a matrix form, (26) becomes

Us = b, (27)
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where U =





∂u1

∂y −∂u1

∂x
...

...
∂uN

∂y −∂uN

∂x



, s =

[
∂σ
∂x
∂σ
∂y

]
, and b =

1

µ0




∇2B1

z...

∇2BN
z



.

For the case where two injection currents are used (N = 2), we can obtain s

provided that two voltages u1 and u2 corresponding to two injection currents I1

and I2 satisfy

−∂u1

∂y

∂u2

∂x
+

∂u1

∂x

∂u2

∂y
�= 0. (28)

We can argue that (28) holds for almost all positions within the subject since two

current densities J1 and J2 due to appropriately chosen I1 and I2 will not have the

same direction.48,49,56

We use N injection currents to better handle measurement noise in Bz and

improve the condition number of UT U where UT is the transpose of U. Using the

weighted regularized least square method suggested by Oh et al.,11 we can get s as

s = (ŨT Ũ + λI)−1 ŨT b̃, (29)

where λ is a positive regularization parameter, I is the 2 × 2 identity matrix, Ũ =

WU, b̃ = Wb and W = diag(w1, . . . , wN ) is an N × N diagonal weight matrix.

Oh et al. discussed different ways of determining the value of λ and the weight wj .

Computing (29) for each position or pixel, we obtain a distribution of s =
[

∂σ
∂x

∂σ
∂y

]T

inside the subject.

We now tentatively assume that the imaging slice S is lying in the plane {z = 0}
and the conductivity value at a fixed position r0 = (x0, y0, 0) on its boundary ∂S
is 1. For a moment, we denote r = (x, y), r′ = (x′, y′) and σ(x, y, 0) = σ(r). In order

to compute σ from ∇σ =
(

∂σ
∂x , ∂σ

∂y

)
, Oh et al. suggested a layer potential technique

in two dimension.11 Then,

σ(r) =

∫

S
∇2Φ(r − r′)σ(r′)dr′

= −
∫

S
∇r′Φ(r − r′) · ∇σ(r′)dr′ +

∫

∂S
nr′ · ∇r′Φ(r − r′) σ(r′)dlr′ , (30)

where Φ(r−r′) = 1
2π log |r − r′| and ∇r′Φ (r − r′) = − 1

2π
r− r

′

|r− r′|2 . It is well known57

that for r ∈ ∂S

lim
t→+0

∫

∂S
nr′ · ∇r′Φ(r − tnr − r′)σ(r′)dlr′ =

σ(r)

2
+

∫

∂S
nr′ · ∇r′Φ(r − r′)σ(r′)dlr′ .

Hence, as r ∈ S approaches the boundary ∂S in (30), we have

σ∂S(r)

2
+

1

2π

∫

∂S

(r − r′) · nr′

|r − r′|2
σ∂S(r′)dl′

r
=

1

2π

∫

S

(r − r′) · ∇σ(r′)

|r − r′|2
dr′, (31)

where σ∂S denotes the conductivity restricted at the boundary ∂S. It is also well

known that the solvability of the integral equation (31) for σ∂S is guaranteed for a

given right side of (31).57 Since ∇σ is known in S, so does the right side of (31).
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This enables us to obtain the value σ∂S by solving the integral equation (31). Now,

we can compute the conductivity σ in S by substituting the boundary conductivity

σ∂S into (30) as

σ(r) = −
∫

S
∇r′Φ(r − r′) · ∇σ(r′)dr′ +

∫

∂S
nr′ · ∇r′Φ(r − r′) σ∂S(r′)dlr′ . (32)

The process of solving (29) for each pixel and (31) and (32) for each imaging

slice can be repeated for all imaging slices of interest within the subject as long as

the measured data Bz are available for the slices. Furthermore, we can apply the

method described in this section to any imaging slice of axial, coronal and sagittal

direction.

As expressed in (24), voltages uj depend on the unknown true conductivity σ

and, therefore, we do not know the matrix U corresponding to σ. This requires us

to use the iterative algorithm described below. For j = 1, . . . , N , we sequentially

inject current Ij through a chosen pair of electrodes and measure the z-component

of the induced magnetic flux density Bj
z . For each injection current Ij , we also

measure boundary voltages uj |∂S on electrodes not injecting the current Ij . Then,

the ∇2Bz algorithm is as follows.

(i) Let n = 0 and assume an initial conductivity distribution σ0.

(ii) Compute un
j by solving the following Neumann boundary value problems for

j = 1, . . . , N :
{∇ ·

(
σn∇un

j

)
= 0 in Ω

−σn∇un
j · n = gj on ∂Ω.

(33)

(iii) Compute σn+1 using (29), (31) and (32). Scale σn+1 using the measured bound-

ary voltages uj |∂S and the corresponding computed ones un
j |∂S .

(iv) If ‖σn+1 − σn‖2 < ǫ, go to Step 5. Here, ǫ is a given tolerance. Otherwise, set

n ← (n + 1) and go to Step 2.

(v) If needed, compute current density images as Jj ← −σn+1∇uM
j where uM

j is

a solution of the boundary value problem in (24) with σn+1 replacing σ.

3.2.2. Gradient Bz decomposition algorithm

After the introduction of the harmonic Bz algorithm, there has been an effort to

improve its performance especially in terms of the way we numerically differentiate

the measured noisy Bz data. Based on a novel analysis utilizing the Helmhortz

decomposition, Park et al. suggested the gradient Bz decomposition algorithm.58

In order to explain the algorithm, let us assume Ω = D × [−δ, δ] = {r =

(x, y, z)|(x, y) ∈ D, −δ < z < δ} is an electrically conducting subject where D

is a two dimensional smooth simply connected domain. Let u be the solution of

the Neumann boundary value problem (16) or (24) with the Neumann data g. We

parameterize ∂D as ∂D:= {(x(t), y(t)): 0 ≤ t ≤ 1} and define g̃(x(t), y(t), z) :=∫ t

0 g((x(t), y(t), z))
√

|x′(t)|2 + |y′(t)|2 dt for (x, y, z) ∈ ∂D × (−δ, δ).
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The gradient Bz decomposition algorithm is based on the following key identity:

σ =

∣∣−
(

∂H
∂y + Λx[u]

)
∂u
∂x +

(
∂H
∂x + Λy[u]

)
∂u
∂y

∣∣
(

∂u
∂x

)2
+
(

∂u
∂y

)2 in Ω, (34)

where

Λx[u] :=
∂ψ

∂y
− ∂Wz

∂x
+

∂Wx

∂z
and Λy[u] :=

∂ψ

∂x
+

∂Wz

∂y
− ∂Wy

∂z
in Ω,

and

H = φ +
1

µ0
Bz , W (r) :=

∫

Ωδ

1

4π|r − r′|
∂(σ∇u(r′))

∂z
dr′.

Here, φ and ψ are solutions of the following equations:






∇2φ = 0 in Ω

φ = g̃ − 1
µ0

Bz on ∂Ωside

∂φ
∂z = − 1

µ0

∂Bz

∂z on ∂Ωtb

and






∇2ψ = 0 in Ω

∇ψ · τ = ∇× W · τ on ∂Ωside

∂ψ
∂z = −∇× W · ǫz on ∂Ωtb

,

where ǫz = (0, 0, 1), ∂Ωside = ∂D × (−δ, δ), Ωtb is the top and bottom surfaces of

Ω, and τ := (−νy, νx, 0) is the tangent vector on the lateral boundary ∂D× (−δ, δ).

Since the term u in (34) is a highly nonlinear function of σ, the identity (34)

can be viewed as an implicit reconstruction formula for σ. It should be noticed that

we cannot identify σ with a single g using (34). Hence, we may use an iterative

reconstruction scheme with multiple Neumann data gj , j = 1, . . . , N to find σ. Let

um
j be the solution of (24) with σ = σm and gj. Then, the reconstructed σ is the

limit of a sequence σm that is obtained by the following formula:

σm+1 =

∑N
i=1

∣∣∣−
(

∂Hi

∂y + Λx[um
i ]
) ∂um

i

∂x +
(

∂Hi

∂x + Λy[u
m
i ]
) ∂um

i

∂y

∣∣∣
∑N

i=1

[(
∂um

i

∂x

)2

+
(

∂um
i

∂y

)2
] .

3.2.3. Other algorithms

There are other algorithms such as the variational gradient Bz algorithm.59 Lately,

a new algorithm that can handle anisotropic conductivity distributions has also

been suggested.60 All of these algorithms are quite successful in numerical simula-

tions and experimental studies using a relatively large amount of injection current.

Therefore, the algorithm development in MREIT should be focused on how to han-

dle random and systematic noise in the measured Bz data. It should include efficient

denoising techniques utilizing the fundamental properties of the induced magnetic

flux density. Since conventional MR images providing excellent structural informa-

tion are always available in MREIT, we may incorporate this a priori information

in MREIT conductivity image reconstructions.



Electrical Impedance Tomography for Imaging and Lesion Estimation 219

3.3. Measurement techniques in MREIT and images

Let z be the coordinate that is parallel to the direction of the main magnetic

field B0 of an MRI scanner. Using a constant current source and a pair of surface

electrodes, we sequentially inject two current pulses of I± and I∓ synchronized

with the standard spin echo pulse sequence shown in Fig. 12. The application of

the injection current during MR imaging induces a magnetic flux density B =

(Bx, By, Bz). Since the magnetic flux density B produces inhomogeneity of the

main magnetic field changing B0 to (B0 + B), it causes phase changes that are

proportional to the z-component of B, that is Bz. Then, the corresponding MRI

signals are

SI±

(m, n) =

∫∫ ∞

−∞
M(x, y)ejδ(x,y)ejγBz(x,y)Tcej(xm∆kx+yn∆ky)dx dy, (35)

and

SI∓

(m, n) =

∫∫ ∞

−∞
M(x, y)ejδ(x,y)e−jγBz(x,y)Tcej(xm∆kx+yn∆ky)dx dy. (36)

Here, M is the transverse magnetization, δ is any systematic phase error, γ =

26.75×107 rad/Tesla · s is the gyromagnetic ratio of the hydrogen, Tc is the duration

of current pulses.

Two-dimensional discrete Fourier transformations of SI±

(m, n) and SI∓

(m, n)

result in two complex images of M±
c (x, y) and M∓

c (x, y), respectively. Dividing the

two complex images, we get

Arg

(M±
c (x, y)

M∓
c (x, y)

)
= Arg

(
ej2γBz(x,y)Tc

)
= Φ̃z(x, y),

Fig. 12. An example of spin echo pulse sequence for MREIT.
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where Arg(ω) is the principal value of the argument of the complex number ω. Since

Φ̃z is wrapped in −π < Φ̃z ≤ π, we must unwrap Φ̃z to obtain Φz.
61 Finally, we get

Bz(x, y) =
1

2γTc
Φz(x, y). (37)

Scott et al. analyzed the Gaussian random noise in measured Bz .
47 Denoting

the standard deviation of the Gaussian random noise as sB, it can be estimated as

sB =
1

2γTcΥM
, (38)

where ΥM is the Signal-to-Noise Ratio (SNR) of the corresponding MR magnitude

image M(x, y) in (35) or (36). The noise standard deviation is inversely proportional

to the size of each pixel since ΥM in (38) is proportional to the size. With Tc =

50ms, we obtain sB = 1.43 × 10−9 and 5.68 × 10−9 Tesla when ΥM = 50 and 25,

respectively.

In MREIT, we are interested in the SNR of measured magnetic flux density

images and it is mainly determined by the noise standard deviation sB in (38),

amount of injection current, size of the subject, and electrode configuration. To

reduce sB, we must increase the SNR of the MR magnitude image, ΥM in (38).

This can be done by increasing the voxel size, number of averaging, strength of the

main magnetic field, and so on. In doing so, it is inevitable to sacrifice the spatial

and/or temporal resolution to some extent.

Regarding the amount of injection currents, it should be lower than the level

that can stimulate muscle or nerve tissues. Although the amount depends on several

factors such as the size and shape of electrodes, anatomical structure, and type of

tissues, it is desirable to conform to the safety guideline. According to the guideline,

the current should be limited below 0.1mA at the frequency range of below 1 kHz.

The safety limit increases as frequency goes up and a current up to 5mA is allowed

at 50 kHz and beyond.

From the Biot–Savart law in (19), we can see that the magnitude of magnetic

flux density at one point is strongly dependent on the current density near the point.

The current density distribution inside the subject could be quite inhomogeneous

and very low current density could appear at some local regions depending on the

dimension of the subject and electrode configuration. If we use small electrodes

compared with the subject size, the current density at the vicinity of the electrodes

will be much higher than that in the far region. To alleviate the spatial dependency

of the SNR, it may be desirable to use electrodes with an appropriate size.

Since MREIT is still at its early stage of development, most of the published

MREIT conductivity images are from numerical simulations and preliminary phan-

tom experiments.11,12,55,58–60 Lately, Woo et al. used a 3 Tesla MREIT system

to produce conductivity images of a biological tissue phantom shown in Fig. 13.62

They injected current pulses with 48mA amplitude and 10ms width. Magnetic flux

density images are shown in Fig. 14. Figures 15(a) and (b) are the MR magnitude

image at the middle imaging slice and the corresponding reconstructed conductivity
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Fig. 13. Biological tissue phantom.

Fig. 14. Magnetic flux density images of the tissue phantom in Fig. 13 at the middle imaging

slice for (a) horizontal and (b) vertical injection current.

Bovine Tongue Porcine Muscle

Chicken BreastAgar Gelatin

Recessed

Electrode

Air

Bubble

1.0

0.8

0.6

0.4

0.2

[S m-1]

Fig. 15. (a) MR magnitude image of the tissue phantom in Fig. 13 at the middle imaging slice
and (b) reconstructed conductivity image at the same slice.
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image, respectively. The pixel size is 1.56×1.56 mm2 and there are 90×90 pixels in

the reconstructed conductivity image. They found that the reconstructed conduc-

tivity values of the image in Fig. 15(b) are very close to the measured ones using an

impedance analyzer after the experiment. This result demonstrates the feasibility

of the MREIT technique in producing conductivity images of different biological

tissues with a high spatial resolution and accuracy when we use a sufficient amount

of injection current.

Though there are still several technical problems to be solved including the

reduction of the amount of injection current, MREIT has the potential to provide

cross-sectional conductivity images with better accuracy and spatial resolution.

Reconstructed static conductivity images will allow us to obtain internal current

density images for any arbitrary injection currents and electrode configurations.

4. Lesion Estimation using EIT

This section handles the problem of estimating or detecting lesions or anoma-

lies inside an electrically conducting subject using boundary measurements of

current-voltage data as in EIT. We assume that there exists a high contrast between

conductivity or permittivity values of a lesion and the surrounding medium. Here,

the major difficulty basically comes from the followings. First, its reconstruction

map from the current-voltage data to the geometry of an anomaly is highly non-

linear. Second, the sensitivity of the current-voltage data to the inhomogeneity due

to the anomaly is very low. Therefore, as already discussed in the previous sec-

tions on EIT, the cross-sectional conductivity and/or permittivity imaging of the

subject may not be able to provide enough spatial resolution needed to localize the

anomaly. Without appropriately managing this difficulty, any static or absolute EIT

image would be suspicious in terms of its accuracy. Hence, this section focuses on

the feature extraction of anomalies inside the subject instead of its cross-sectional

imaging.

Based on the understanding of fundamental shortcomings in static EIT imaging,

Kwon et al. looked at the problem in a different way and showed that the estimation

of locations and sizes of anomalies is a well-posed problem.13,14,63 Suppose anoma-

lies D1, . . . , DM occupy a region D = D1∪· · ·∪DM inside a background medium Ω.

Since the conductivity σ changes abruptly across the interface ∂D, a clear contrast

exists between the anomalies and the surrounding medium. To distinguish them,

we denote

σ =

{
σ0 in Ω\D̄

σj in each Dj
, (39)

for j = 1, . . . , M . Along the interface ∂D, the tangential component of the electric

field is continuous while the normal component changes abruptly. If u is the voltage
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in (3), it satisfies the transmission conditions of

σj n(r) · ∇uint(r) = σ0 n(r) · ∇uint(r) for each r ∈ ∂Dj,

uext(r) = uint(r) for r ∈ ∂D,
(40)

where uint := u|D and uext := u|Ω\D̄ are voltages inside and outside of D, respec-

tively. The inverse problem is to recover anomalies D from the relationship between

current g = −σ∇u · n|∂Ω and boundary voltage u|∂Ω. The goal of this problem is

to develop an algorithm for extracting a quantitative core information of D with

a few measured data in such a way that the core information of D is reasonably

stable against measurement errors. This section considers non-iterative anomaly

estimation algorithms for searching location of anomaly and estimating its size.

4.1. Global measurement: Ring of electrodes encircling a subject

To provide a feasible representation formula for estimating an anomaly, we begin

with considering the simplest case where σ0, σ1, . . . , σM are constants. We assume

that the domains {Dj}M
j=1 are small relative to Ω, separated apart from each other,

and away from the boundary. As in Figs. 2 and 3, we place surface electrodes Ej for

j = 1, . . . , E on the boundary ∂Ω. Let u be the solution of the Neumann boundary

value problem in (3) and f be its boundary voltage.

4.1.1. Mathematical formulation

In order to extract the information of the collection of anomalies D, it is desirable

to express u in terms of D. In the section, we derive a representation formula of u

involving D.13,14,64 Let Φ be the fundamental solution of the Laplace equation:

Φ(r, r′) = − 1

4π|r− r′| =
−1

4π
√

(x − x′)2 + (y − y′)2 + (z − z′)2
. (41)

Carefully using the transmission condition in (40), we have the following identities:

u(r) =

M∑

j=1

(
σj

σ0
− 1

)∫

Dj

∇u(r) · ∇Φ(r, r′)dr′ + H(r; g, f) for r ∈ Ω,

0 =

M∑

j=1

(
σj

σ0
− 1

)∫

Dj

∇u(r) · ∇Φ(r, r′)dr′ + H(r; g, f) for r ∈ R
3\Ω̄.

(42)

Here, H(r; g, f) is a harmonic function that is computed directly from the data g

and f :

H(r; g, f) :=
1

σ0

∫

∂Ω

Φ(r, r′)g(r′)dsr′ +

∫

∂Ω

n(r′) · ∇r′Φ(r, r′)f(r′)dsr′ (43)

for r ∈ R3\∂Ω. The derivation of the representation formula (42) is given by Kwon

et al.14 In order to extract the core information of D, we need to find a direct

interplay between the unknown D and known H(r; g, f) from the formula (42).



224 J. K. Seo, O. Kwon and E. J. Woo

Since (42) involves the unknown u that depends on D in a highly nonlinear way, it

is desirable to approximate u in terms of H(r; g, f) and D.

We express the integral term involving Dj in (42) as a single layer potential

with the weight ϕj :

(
σj

σ0
− 1

)∫

Dj

∇yΦ(r − r′) · ∇u(r′)dr′ =

∫

∂Dj

Φ(r − r′)ϕj(r
′)dsr′ , (44)

where ϕj with j = 1, . . . , M is the normal component of ∇u on the interface ∂D

multiplied by the constant (
σj

σ0
− 1):

ϕj =

(
σj

σ0
− 1

)
∇u · n|∂Dj

.

The main advantage of introducing ϕj is that we can represent ϕj as a function

depending only on Dj and the known function H(r; g, f). To be precise, ϕj is the

solution of the following integral identity:

σ0 + σj

2(σj − σ0)
ϕj(r) −K∗

Dj
ϕj(r) = n(r) · ∇Hj(r), for r ∈ ∂Dj, (45)

where

K∗
Dj

ϕj(r) =
1

4π

∫

∂Dj

(r − r′) · n(r)

|r − r′|3 ϕj(r
′)dsr′ , for r ∈ ∂Dj,

Hj(r) := H(r; g, f) +
∑

k 	=j

∫

∂Dj

Φ(r − r′)ϕk(r′)dsr′ , for r ∈ R
3.

This enables us to provide the following approximations:

u(r) ≈ H(r; g, f) +

m∑

j=1

1

λj

∫

Dj

∇r′Φ(r − r′) · ∇Hj(r
′)dr′ for r ∈ Ω,

H(r; g, f) ≈ −
m∑

j=1

1

λj

∫

Dj

∇r′Φ(r − r′) · ∇Hj(r
′)dr′ for r ∈ R

3\Ω̄,

(46)

where λj =
σ0+σj

2(σj−σ0) . The detailed explanation of (46) is given by Ammari et al.63

In the next section, we use the above identities to extract features of D.

4.1.2. Location search method

The location of an anomaly can be determined by the pattern of a simple weighted

combination of injection current and boundary voltage.14 We assume that the sub-

ject contains a single anomaly D = D1 that is small compared with the subject

and separated away from the boundary ∂Ω. We also assume that σ0 and σ1 are
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constants. According to (46), D and H(r, g, f) satisfy the following approximate

identity:

H(r; g, f) ≈ − 1

λ1

∫

D

∇r′Φ(r − r′) · ∇H(r′; g, f)dr′, r ∈ R
3\Ω̄. (47)

The location search algorithm is based on simple aspects of the function H(r; g, f)

outside the domain Ω which can be computed directly from the data g and f .

For the injection current pattern, we choose g(r) = �a · n(r) for some fixed

constant vector �a. Now, we are ready to explain the location search method using

only the boundary current-voltage data.

(1) Take two observation regions Σ1 and Σ2 contained in R3\Ω given by

Σ1 := a line parallel to �a,

Σ2 := a plane (or a line if n = 2) normal to �a.

(2) Find two points Pi ∈ Σi(i = 1, 2) so that

H(P1; g, f) = 0,

and

H(P2; g, f) =

{
minr∈Σ2 H(r; g, f) if (σj − σ0) > 0,

maxr∈Σ2 H(r; g, f) if (σj − σ0) < 0.

(3) Draw the corresponding plane Π1(P1) and the line Π2(P2) given by

Π1(P1) := {r |�a · (r − P1) = 0},
Π2(P2) := {r | (r − P2) is parallel to �a}.

(4) Find the intersecting point P of the plane Π1(P1) and the line Π2(P2), then

this point P can be viewed as the location of the anomaly D.

In order to provide more insight on the above location search method, we let u0

be the voltage in the absence of the anomaly D. With the same injection current

g = �a · n, the voltage u0 satisfies ∇u0|Ω = �a/σ0. If we denote by f0 the boundary

voltage of u0, it follows from (42) that

0 ≈ H(r; g, f0) for r ∈ R
3\Ω̄. (48)

Subtracting (48) from (47) gives

H(r; g, f0) − H(r; g, f) ≈ 1

λ1

∫

D

∇r′Φ(r − r′) · ∇H(r′; g, f)dr′, for r ∈ R
3\Ω̄.

Since H(r; g, f0) = 0 for r ∈ R
3\Ω̄,

H(r; g, f) ≈ −1

λ1

∫

D

∇r′Φ(r − r′) · ∇H(r′; g, f)dr′, for r ∈ R
3\Ω̄. (49)

Due to the special injection current g = �a · n, ∇H(r; g, f0) = �a/σ0. Using the

assumption that the anomaly D is relatively small and situated away from ∂Ω, we

obtain

∇H(r; g, f) ≈ ∇H(r; g, f0) = �a/σ0, for r ∈ D.
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Hence, (49) is reduced to

H(r; g, f) ≈ 1

4πσ0λ1

∫

D

(r − r′) · �a
|r− r′|3 dr′, for r ∈ R

3\Ω̄. (50)

Examining the integrand of (50), we can see that the sign of H(·; g, f) is determined

by �a, D, and the sign of λ1. Indeed, the identity (50) leads to the crucial observation

that for P1 ∈ R
n\Ω̄ with H(P1; g, f) = 0, the plane or the line Π1(P1) := {r |�a ·

(r − P1) = 0} divides the domain D.

4.1.3. Total size estimation

The total size estimation of anomalies D = ∪M
j=1Dj also uses the projection current

g = �a · n, where �a is a unit constant vector. In this section, we assume that the

conductivity values of all anomalies are the same constant σ1 so that σ(r) = σ0 in

the background region Ω\D̄ and σ = σ1 in the anomalies D. We may assume Ω

contains the origin. Define the scaled domain Ωt = {tr: r ∈ Ω} for a scaling factor

t > 0. Let vr be the solution of the problem





∇ · ((σ0χΩ\Ωt
+ σ1χΩt

)∇vt) = 0 in Ω

σ0 n · ∇vt = g on ∂Ω,

∫

∂Ω

vt = 0
,

where χT is the indicator function of the domain T .

The total size of D is very close to the size of the domain Ωt0 where t0 with

0 < t0 < 1 is determined uniquely from
∫

∂Ω

vt0g ds =

∫

∂Ω

ug ds. (51)

Various numerical experiments indicate that the algorithm gives a nearly exact esti-

mate for arbitrary multiple anomalies even though some restrictions on anomalies

are necessary in its rigorous proof.15

We now show why t0 is uniquely determined in the interval (0, 1). Let η(t) :=∫
∂Ω

vtg ds as a function of t defined in the interval (0, 1). If t1 < t2, it follows from

integration by parts that

η(t1) − η(t2) =

∫

∂Ω

(vt1 − vt2)g ds

=

∫

Ω

(σ0χΩ\Ωt1
+ σ1χΩt1

)|∇(vt1 − vt2)|2 dr

+ (σ1 − σ0)

∫

Ωt2\Ωt1

|∇vt2 |2 dr,

η(t1) − η(t2) = −
∫

Ω

(σ0χΩ\Ωt2
+ σ1χΩt2

)|∇(vt1 − vt2)|2 dr

+ (σ1 − σ0)

∫

Ωt2\Ωt1

|∇vt1 |2 dr.
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These identities give a monotonicity of η(t):

η(t1) < η(t2) if (σ1 − σ0) < 0 and η(t1) > η(t2) if (σ1 − σ0) > 0.

Since D ⊂ Ω, a similar monotonicity argument leads to the following inequalities:

η(0) <

∫

∂Ω

ug ds < η(1) if (σ1 − σ0) < 0,

η(0) >

∫

∂Ω

ug ds > η(1) if (σ1 − σ0) > 0.

Since η(t) is continuous, there exists a unique t0 so that η(t0) =
∫

∂Ω ug ds.

Next, we try to provide an explanation on the background idea of the following

size estimation:

the volume of Ωt0 ≈ the total volume of ∪M
j=1Dj . (52)

We begin with the following identities which can be obtained easily from integration

by parts:

∫

∂Ω

(u − vt)g dσ =

∫

Ω

σ∇(u − vt)|2 dr + (σ1 − σ0)

∫

Ωt

|∇vt|2 dr

− (σ1 − σ0)

∫

D

|∇vt|2 dr,

∫

∂Ω

(u − vt)g dσ = −
∫

Ω

σt|∇(u − vt)|2 dr + (σ1 − σ0)

∫

Ωt

|∇u|2 dr

− (σ1 − σ0)

∫

D

|∇u|2 dr

where σ = σ0χΩ\D̄ + σ1χD and σt = σ0χΩ\Ω̄t
+ σ1χΩt

. By adding the above two

identities, we obtain

2

∫

∂Ω

(u − vt)g dσ = (σ1 − σ0)

[ ∫

D

|∇(u − vt)|2 dr +

∫

Ωt

|∇vt|2 + |∇u|2 dr

]

− (σ1 − σ0)

[∫

Ωt

|∇(u − vt)|2 dr +

∫

D

|∇vt|2 + |∇u|2 dr

]

= 2(σ1 − σ0)

[ ∫

Ωt

∇u · ∇vt dr −
∫

D

∇u · ∇vt dr

]
.

According to the choice of t0,

∫

Ωt0

∇u · ∇vt0 dr =

∫

D

∇u · ∇vt0 dr.

The above identity is possible when the volume of Ωt0 is close to the total volume

of D = ∪M
j=1Dj .
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4.1.4. Experimental settings and results

In order to test the feasibility of the location search and size estimation methods,

Kwon et al. carried out phantom experiments.15 They used a circular phantom with

290mm diameter as a container and it was filled with NaCl solution of 0.69S/m

conductivity. Anomalies with different conductivity values, shapes, and sizes were

placed inside the phantom. Equally spaced 32 electrodes were attached on the

interior surface of the phantom. Using a 32-channel EIT system with a measurement

error of about 1.73%, they applied the algorithms described in the previous sections

to the measured boundary current-voltage data. In this section, we describe one

example of applying the algorithms.

The circular phantom can be regarded as a unit disk Ω := B1(0, 0) by normal-

izing the length scale. In order to demonstrate how the location search and size

estimation algorithm work, Kwon et al.15 place four insulators D = ∪4
j=1Dj into

the phantom as shown in Fig. 16:

D1 = B0.1138(0.5172, 0.5172), D2 = B0.1759(−0.5172, 0.5172),

D3 = B0.1828(−0.5172,−0.5172), D4 = B0.2448(0.1724,−0.1724).

We inject a projection current g = �a · n with �a = (0, 1) and measure the boundary

voltage f .

D1

D2

D3

D4

PP1

P2

-0.06            0             0.06

-0.06

-0.10

-0.12

PM

Fig. 16. Illustration of the location and size estimation process. Four anomalies are all insulators
and the conductivity of the saline is 0.69 S/m. Lower-left: Configuration of anomalies. Upper-left:
H-plot on Σ1. Lower-right: H-plot on Σ2. Upper-right: Estimation of the location and size.
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For the location search described in Sec. 4.1.2, we choose two observation lines,

Σ1 := {(−1.5, s)|s ∈ R} and Σ2 := {(s,−1.5)|s ∈ R}.

We evaluate the two dimensional version of H(r; f, g) defined in (43) with Φ replaced

by Φ(r) = 1
2π log

√
x2 + y2. In Fig. 16, the upper-left plot is the graph of H(r; f, g)

on Σ1 and the lower-right plot is the graph of H(r; f, g) on Σ2. We find the zero

point of H(r; f, g) on Σ1 and the maximum point of |H(r; f, g)| on Σ2 denoted

by P1 and P2, respectively, in Fig. 16. The intersecting point was calculated as

P (−0.1620,−0.0980) which is close to the center of mass PM (−0.1184,−0.0358)

of the four anomalies. For the case of a single anomaly or a cluster of multiple

anomalies, the intersecting point furnishes a meaningful location information.

For the size estimation, we use (51) and (52) to compute the total size of

∪4
j=1Dj . The estimated total size was 0.4537 compared with the true total size

of 0.4311. In Fig. 16, the corresponding disk with the size of 0.4537 centered at

P (−0.1620,−0.0980) is drawn with a solid line and the corresponding disk with

the true size centered at PM is drawn with a dotted line. The relative error of the

estimated size was about 5.24%.

4.2. Local measurement: Planar array of electrodes placed

on a portion of a subject

In this section, we describe lesion estimation techniques using a local measurement

from a planar array of electrodes placed on a portion of an electrically conducting

subject. Since the breast cancer detection problem is a typical and most important

example of this setting, we explain the method in the context of the breast cancer

detection problem.

Lately, a commercial system called TransScan TS2000 (TransScan Medical, Ltd.,

Migdal Ha’Emek, Israel) has been released for adjunctive clinical uses with X-ray

mammography in the diagnosis of breast cancer.65,66 Interestingly, TS2000 system

is similar to the frontal plane impedance camera that initiated EIT research early

in 1978.67 In TS2000 system, a metallic cylindrical electrode is held by a patient

in her hand. A scan probe with a planar array (16 × 16 or 8 × 8) of electrodes is

placed on the breast. A constant voltage of 1 to 2.5V with frequencies spanning

from 100Hz to 100kHz is applied to the hand-held electrode and all the electrodes

in the scan probe are kept at the ground potential. From each electrode in the

planar array, the amplitude and phase shift of the exit current are measured. The

measured trans-admittance data from all electrodes of the planar array are displayed

as images of conductivity and permittivity. Then, any white spots on these images

are interpreted as showing the possibility of cancerous lesions under them. Figure 17

shows the configuration of TS2000 system and the primary goal is to decrease

equivocal findings and thereby reducing unnecessary biopsies.

However, the diagnostic information from the currently available TS2000 sys-

tem lacks of a sophisticated reconstruction method of finding lesions. Definitely,
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Fig. 17. TS2000 configuration for breast cancer detection.

systematic studies are essential to achieve a higher performance in the breast can-

cer detection, and it is necessary to derive agreements between experimental results

and mathematical theory that provides the relationship between lesions and a trans-

admittance map acquired by the scanning probe on the breast.

In order to develop a more sophisticated analysis and lesion estimation algo-

rithm, an explicit representation of the relation between the measured trans-

admittance data and the core information of the lesion is required. In this section,

we describe a mathematical model based on TS2000 system and develops a lesion

estimation algorithm in a systematic way. The spatial distribution of the trans-

admittance data from all electrodes of the planar scan probe will be exploited to

provide the core information of the lesion.

For the development of a practical estimation algorithm, we must take account

the following limitations:

• We only measure the data in a small surface Γ instead of the whole surface ∂Ω.

• Since ∂Ω differs for each subject, the algorithm should not depend much on the

global geometry of ∂Ω.

• Electrical safety regulation limits the amount of total current flowing through

the human subject and therefore the range of the applied voltage is also limited.

The challenge of this problem is to develop a proper analysis to provide a quan-

titative information of a tumor in the breast region from a few measured data on

the breast. This must be done in such a way that a reconstruction formula for the

tumor is reasonably stable to any change of the conductivity distribution outside

breast region.

4.2.1. Mathematical formulation

Let Ω be a bounded domain in R
3 with a smooth boundary ∂Ω. We denote by γ the

contact surface of the reference electrode and by Γ the probe plane, that is, contact

plane of the scan probe on the breast as shown in Fig. 17. If a constant voltage of

1 volt with frequency ω is applied to the hand-held electrode, the resulting voltage

u(r) at position r = (x, y, z) in Ω satisfies the following mixed boundary value
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problem:





∇ · ((σ + iωǫ)∇u(r)) = 0, r ∈ Ω

u(r) = 0, r ∈ Γ

u(r) = 1, r ∈ γ

(σ + iωǫ)∇u(r) · n(r) = 0, r ∈ ∂Ω\(Γ ∪ γ).

(53)

Both σ and ǫ depend on the position r and frequency ω.

Through the probe plane Γ, we measure

(σ + iωǫ)∇u(r) · n(r) := −g(r), r ∈ Γ. (54)

The goal is to detect a tumor within a region underneath the probe plane Γ. Now

we suppose that there is a tumorous lesion D underneath the probe plane Γ so

that the complex conductivity (σ + iωǫ) changes abruptly across the interface ∂D

as shown in Fig. 18. A clear contrast exists between the lesion and surrounding

normal tissues. To distinguish them, we denote

σ + iωǫ =

{
σ1 + iωǫ1 in Ω\D̄

σ2 + iωǫ2 in D.
(55)

We fix the voltage f = 0 on Γ as in TS2000 system. Keeping f = 0 on Γ has an

advantage because it forces the level surface of the voltage in the breast region to

be approximately parallel to the probe plane Γ. Its electric field −∇u will be in the

direction perpendicular to the level surface, and so more currents will flow along D

of which the conductivity σ2 is much higher than the surrounding.

We denote τ1 = σ1 + iωǫ1 and τ2 = σ2 + iωǫ2. For simplicity, we let z be

the label of the axis normal to Γ and let Ω be contained in the lower half space

Fig. 18. A lesion to be detected in an inhomogeneous background.
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Ω = R3
− := {r = | z < 0}. Let the center of Γ be the origin 0 = (0, 0, 0) and let

Bρ = {r ∈ R3: |r| < ρ}, the ball with radius ρ. Assume that anomaly D is included

in the breast region Ωρ = Ω ∩ Bρ. If u0 is the voltage in the absence of D and

g0 = −τ1
∂u0

∂z |Γ, then we have the following approximation:

1

2
[g(r) − g0(r)] ≈

∂

∂z

∫

D

(τ2 − τ1)∇Φ(r, r′) · ∇u(r′)dr′, r ∈ Γρ, (56)

where Γρ = Γ ∩ Bρ. Under the assumption that τ1 and τ2 are almost constant in

Ω\D̄ and D, respectively, we can get

1

2
[g(r) − g0(r)] ≈

3α(τ1 − τ2)

2τ1 + τ2
|D|2ξ2

3 − (x − ξ1)
2 − (y − ξ2)

2

4π|r− ξ|5 , r ∈ Γρ, (57)

where ξ is the gravitational center of the anomaly D and α = 1
|Γρ|
∫
Γρ

g ds denotes

the average of g over Γρ.

In practice, we often do not have a priori knowledge of the background τ1,

and so we cannot compute the data g0. In this case, we may use more than two

different frequencies provided that the frequency dependencies of conductivity and

permittivity values for background and anomaly are different. Let ω̃ be a frequency

such that the corresponding τ̃2 is quite different from τ2, while τ̃1 is close to τ1. Let

ũ be the solution of (53) at the frequency ω̃ and let g̃ = −τ̃1
∂ũ
∂z |Γ. Suppose now

that the difference τ2 − τ̃2 in cancerous region D is much larger than the difference

τ1 − τ̃1 in the normal region. Then, the expression corresponding to (57) is

1

2
[g̃(r) − g(r)] ≈ 9ατ1(τ2 − τ̃2)

(2τ1 + τ2)(2τ1 + τ̃2)
|D|2ξ2

3 − (x1 − ξ1)
2 − (x2 − ξ2)

2

4π|r − ξ|5 , r ∈ Γρ.

(58)

4.2.2. Lesion estimation algorithm

The following anomaly estimation procedure for breast cancer detection is based

on the formula (57).68 Similar algorithm can be derived from (58).

• Transversal position. We let (x0, y0) be the point at which the absolute value

|g(x, y) − g0(x, y)| has the greatest quantity:

|g(x0, y0) − g0(x0, y0)| = max
(x,y)∈Γ

|g(x, y) − g0(x, y)|. (59)

• Depth. Let (a, b) be any chosen point in Γ near (x0, y0) and let d be the distance

between (x0, y0) and (a, b), that is, d =
√

(x0 − a)2 + (y0 − b)2. The depth z0 is

determined by the identity:

|g(a, b) − g0(a, b)|
|g(x0, y0) − g0(x0, y0)|

=

∣∣2 − d2

z2
0

∣∣

2
(

d2

z2
0

+ 1
)5/2

. (60)

• Size. If we know τ1 and τ2, the size |D| is determined by

|D| =
π|2τ1 + τ2||z0|3

|τ1 − τ2|
|g(x0, y0) − g0(x0, y0)|

3ḡ0
. (61)
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4.2.3. Experimental settings and results

The method described in the previous section requires applying a voltage between

the reference electrode at patient’s hand and the planar array of electrodes kept

at the ground potential as shown in Fig. 17. The measured data are exit cur-

rents through each grounded electrode in the array. This means that we mea-

sure a map of trans-admittance using a multi-channel ammeters. Figure 19 shows

a typical configuration of a trans-admittance scanner. It is very similar to the

typical EIT system shown in Fig. 6 and shares a lot of technical details. Kim

et al. described the development of a trans-admittance scanner for breast cancer

detection including a hand-held electrode, scan probe with planar array of elec-

trodes, constant sinusoidal voltage source, multi-channel ammeters, controller, and

computer.69 Figure 20 shows trans-admittance maps measured from a saline phan-

tom. For the maps in Figs. 20(a) and (b), a small anomaly was located at 5 and

10mm depth, respectively, from the surface where the scan probe was placed. The

size of the scan probe was 33 × 33 mm2 and it included 8 × 8 array of electrodes.

We can see that the distributions of the trans-admittance maps provide enough

information to distinguish the two different anomalies.

Seo et al. evaluated the performance of the estimation algorithm described in

the previous section using various anomaly configurations.68 One of them was a

ball-shaped lesion D with its radius r∗ = 0.05. It was located at (0, 0, z∗) and

the depth z∗ was set to be one of four different values of −0.2, −0.3, −0.4, and

−0.5. Assuming that τ1 = 1 and τ2 = 5, Fig. 21 shows four different images of

|g − g0| corresponding to four different depths of D. The brightness of the image

indicates the magnitude of |g − g0|. Applying the algorithm, they provided the

results summarized in Table 1. From other tests to estimate anomalies inside an
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lator
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...
...
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Fig. 19. Block diagram of a typical trans-admittance scanner.
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Fig. 20. Trans-admittance maps from a saline phantom with a small anomaly at (a) 5 and (b)
10 mm depth from the surface. The maps were measured using a scan probe of 33 × 33mm2 with
8× 8 array of electrodes. For the maps in (a) and (b), the left is the real part and the right is the
imaginary part of the trans-admittance map. Three-dimensional plots are just different views of
the corresponding maps.

Fig. 21. Magnitude images of |g − g0| with a ball-shaped lesion D at different depths of −0.2,
−0.3, −0.4, and −0.5. The radius of D is 0.05 for all cases.
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Table 1. Estimated depth z and radius r
of the lesion D at (0, 0, z∗) with r∗ = 0.05.

z∗ r∗ z r

−0.2 0.05 −0.18976 0.05838
−0.3 0.05 −0.28973 0.05762
−0.4 0.05 −0.38969 0.05665
−0.5 0.05 −0.48966 0.05501

inhomogeneous background, they found that both location and size estimate are

within an acceptable range of accuracy assuming that the measurement noise is

below 1%.

5. Applications of EIT, MREIT, and Lesion Estimation

EIT can be used to visualize physiological activities in the human body such as res-

piration, cardiac circulation, brain function, stomach emptying, fracture healing,

bladder filling, and others.2,40 One of the most tried clinical applications of EIT

is the imaging of the thorax including lungs and cardiovascular system. There are

numerous experimental studies in this area as summarized by Metherall.4 These

include imaging of respiratory related impedance changes, cardio-synchronous

changes, and also perfusion related changes. Especially, EIT has been suggested

to diagnosis pulmonary embolism and other lung diseases.

Applying EIT techniques to image brain activities has been tried by Tidswell

et al.30 ,44 Reginal cerebral blood flow and blood volume changes during brain activ-

ity alter the local impedance of the corresponding cortical area. Even though current

EIT images have a relatively poor spatial resolution, the high temporal resolution

and portability could be a big advantage in neuroimaging area especially for the

imaging of epilepsy, migraine, and stroke.

In this chapter, we took the breast cancer detection as an example for the

lesion estimation technique. There are, however, different approaches using EIT

imaging methods for the detection of breast cancers. Kerner et al. placed a circular

array of electrodes around the breast and produced cross-sectional conductivity

images.70 There are also several investigations for the usefulness of planar electrode

arrays instead of conventional circular electrode arrays in breast EIT imaging.71–73

Cherepenin et al. used a planar array of 256 electrodes placed on the breast to

reconstruct so called electrical impedance mammograms by sequentially injecting

currents through chosen electrodes and measuring voltage data on other electrodes

in the array.74,75

Clinical applications of MREIT have not been tried yet since it is still in its early

stage of development. Once we could reconstruct cross-sectional conductivity and

current density images with improved spatial resolution and accuracy, MREIT will

find numerous clinical applications. These include all clinical application areas of

EIT where static or absolute values of conductivity and current density are needed.

However, the temporal resolution of MREIT is expected to be much worse than
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that of EIT and MREIT lacks the portability. Therefore, MREIT will never replace

EIT in application areas where monitoring of fast physiological events is requested.

For this kind of applications, MREIT may provide static conductivity images to be

utilized as a priori information in subsequent dynamic EIT image reconstructions.

Bodurka et al. tried a direct mapping of neural activity by measuring very

weak transient magnetic field changes using a 3.0 Tesla MRI scanner.76 Providing

static images of conductivity and current density distributions, MREIT could find

important contributions in the areas of neuronal source localization and mapping.

There are numerous methods of applying electromagnetic energy to the human

body mostly for therapeutic purposes. Conductivity information from MREIT will

be valuable for the optimization of these therapeutic treatments and current density

images could be used to visualize how therapeutic electric currents are actually

distributed within the subject. Based on the temperature dependency of tissue

conductivity, MREIT could also be used for internal temperature mappings.

The feature extraction or lesion estimation techniques have numerous applica-

tions including breast cancer detection, corrosion detection, crack detection, elec-

tric field sensing, and bubble detection. These methods may also be utilized as a

parametric dynamic imaging technique where temporal and/or spatial changes in

locations and sizes of lesions are of primary concern. These may include the mon-

itoring of impedance related physiological events, bubble detection in two-phase

flow, and others in medicine and nondestructive testing.

6. Conclusions and Outlook

EIT has been an active research area since early 1980s. Struggling to over-

come the ill-posed nature of the inverse problem in EIT image reconstructions,

numerous techniques have been suggested. Even with these efforts, further improve-

ments in image quality are needed for more successful clinical applications. Three-

dimensional dynamic EIT imaging with a wireless miniaturized EIT system is

believed to make the next breakthrough in EIT technology. Obtaining and uti-

lizing the accurate data for the shape and size of a subject with electrode positions,

static EIT imaging could be improved. However, since the ill-posedness in EIT still

remains anyway, we should not expect EIT to compete with other medical imaging

modalities such as MRI and X-ray CT in terms of spatial resolution. The signif-

icance of EIT should be emphasized based on the fact that it provides the infor-

mation on electrical properties of biological tissues. Since this kind of information

is not available from any other imaging modality, EIT should keep finding unique

application areas especially in dynamic functional imaging. Based on the frequency

dependent characteristics of tissue conductivity and permittivity, multi-frequency

three-dimensional EIT imaging is also quite promising.

The latest research outcomes in MREIT show the definite feasibility of the

technique for high-resolution static conductivity and current density imaging. With

many possible clinical and biological applications in mind, future research direction
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in MREIT should follow the way to reduce the amount of the required injection

current. Anisotropic conductivity imaging is believed to be pursuable in MREIT

even though it is not feasible in EIT. MREIT should always include the current

density imaging to provide more information from the same measured data. The

performance of the MRI system itself has been greatly enhanced to make 3 Tesla

systems available to clinical settings. The progress in MREIT techniques will follow

this trend.

The lesion estimation technique can be viewed as a parametric EIT imaging.

Providing the core information on lesions inside a subject, it can effectively avoid the

ill-posedness in conventional cross-sectional EIT imaging. Considering the fact that

there are numerous medical and also industrial applications, further developments

in its theory, algorithms, and measurement techniques are desirable. Currently, the

potential applicability of the technique to breast cancer detection is the strongest

motivation for future research efforts.
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CHAPTER 8

SINGLE-SHOT MAGNETIC RESONANCE IMAGING (MRI)

TECHNIQUES AND THEIR APPLICATIONS
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Single-shot fast MRI acquisition techniques are described in this chapter, with an empha-
sis on echo-planar imaging and spiral imaging. Advantages and potential shortcomings
of these imaging schemes are discussed. Applications of the fast acquisition techniques
in advanced MRI techniques such as functional neuroimaging, perfusion imaging with
arterial spin labeling, diffusion tensor imaging and perfusion imaging with injection of
susceptibility contrast agents are demonstrated.

Keywords: Magnetic resonance imaging; image acquisition; distortion; BOLD.

1. Introduction

Fast MRI acquisition techniques1–4 have been of great interest in a number of appli-

cation areas including functional neuroimaging (fMRI),5 Diffusion Tensor Imaging

(DTI),6 and perfusion imaging based on Arterial Spin-Labeling (ASL)7 or Dynamic

Susceptibility Contrast (DSC).8 Many of the fast imaging techniques allow data

acquisition of a slice in a single excitation (in 20–100ms). The capability of scan-

ning a whole brain volume in a few seconds provides excellent opportunities for

observing dynamic changes of physiological variations (e.g. blood volume, flow and

oxygenation) associated with brain activity. Single-shot acquisition is generally less

sensitive to motion artifacts. This feature is critical for diffusion tensor imaging and

arterial spin-labeling perfusion imaging, in which either the signal is dependent on

microscopic movements of molecules (for DTI) or the inherit image contrast is very

subtle (for ASL). Furthermore, the efficient data acquisition of single-shot fast imag-

ing leads to higher Signal-to-Noise Ratio (SNR) per unit time than conventional

imaging techniques, which is essential for many applications.

In this chapter, we will first introduce a number of single-shot image acquisition

techniques, with an emphasis on two popular techniques: Echo-Planar Imaging

(EPI) and spiral imaging. The advantages and potential pitfalls of these techniques

will be discussed. Then, we will demonstrate applications of fast image acquisition

in several advanced MRI techniques, including fMRI, DTI, ASL and DSC perfusion

imaging. Through this chapter, readers are expected to learn the basic concepts of

the single-shot image acquisition schemes and their potential applications.

241
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2. Single-Shot Image Acquisition Techniques

2.1. Data acquisition in spatial-frequency space (k-space)

For a 2D object I(x, y), the signal detected in MRI S(t), neglecting relaxation,

can be described as a planar integral of the object function multiplied by a phase

factor Φ

S(t) =

∫∫
I(x, y)e−i2πΦ dx dy. (1)

The phase factor is modulated by magnetic field gradients, Gx and Gy, in order

to encode spatial information into frequency and phase. Based on the angular fre-

quency of nuclear precession (Larmor frequency), Φ is determined by

Φ = (γ/2π)

[
x

∫ t

0

Gx(τ)dτ + y

∫ t

0

Gy(τ)dτ

]
,

= kx(t)x + ky(t)y (2)

where γ is the gyromagnetic ratio, and kx(t) and ky(t) are defined as

kx(t) = (γ/2π)

∫ t

0

Gx(τ)dτ ,

ky(t) = (γ/2π)

∫ t

0

Gy(τ)dτ .

(3)

Therefore, the MRI signal (Eq. (1)) can be expressed as

S(kx, ky) =

∫∫
I(x, y)e−i2π[kx(t)x+ky(t)y]dx dy. (4)

This equation states that the MRI signal S(kx, ky) is simply a 2D Fourier

transform of the object function I(x, y). The Fourier transform space is usually

called spatial-frequency space or k-space,9 where k represents the spatial-frequency

variable. Typically, kx and ky are in the units of cycle/cm. Figure 1 illustrates the

Fourier transform relationship between an object and the corresponding MRI signal

in k-space.

FT

FT-1

kx

ky

x

y

Fig. 1. Illustration of the Fourier transform relationship between an object and the corresponding
MRI signal in the k-space. A brain image is shown on the left, and its Fourier transform on the
right.
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Given the description above, the process of image acquisition in MRI is to collect

data in k-space that can be reconstructed to an image as an estimate of the original

object. In traditional MRI techniques, such as T1-weighted spin-echo imaging, only

a single line in the k-space is collected per excitation, leading to a lengthy acquisition

time. Imaging time can be reduced significantly by techniques acquiring multi-lines

per excitation or using partial excitation with reduced repetition time for each

line. Single-shot imaging techniques collect the entire data in k-space after a single

excitation. These techniques, with the advantages of high temporal resolution, high

signal-to-noise ratio, and insensitivity to motion artifacts, have been widely used

in research and clinical applications.

Various types of single-shot techniques have been proposed. These techniques

can be categorized into two major groups based on their traversal patterns in

k-space during data acquisition. The first group collects data in rectilinear patterns,

and echo-planar imaging1,2 is a representative of this group. Image reconstruction is

convenient and rapid for these techniques since a two-dimensional (2D) Fast Fourier

Transform (FFT) algorithm can be used directly. The second group acquires data

in non-rectilinear trajectories, such as spirals,3,4 rosettes,10 Lissajous,11 and radial

patterns.12 These techniques usually have faster acquisition speed due to their effi-

cient coverage of k-space. However, image reconstruction is usually not straight-

forward, because regridding of the data is often required before using the FFT

algorithm.

2.2. Echo-planar imaging

Echo-Planar Imaging (EPI) is the first single-shot imaging technique and was pro-

posed by Mansfield,1 shortly after the inception of MRI. EPI is characterized by

the acquisition of planar data in k-space per excitation with the data collected on

a rectilinear trajectory. Figure 2 shows a typical EPI pulse sequence (time series

of radio-frequency pulse and magnetic gradients). A 2D slice is first selected by a

slice-selective Radio-Frequency (RF) pulse together with a z-gradient (Gz). In-plane

gradients (Gx and Gy) are then used to encode spatial information into frequency

R F

Gx

Gy

Gz

R F

Gx

Gy

Gz

…

…

t

Fig. 2. An EPI pulse sequence for collecting a set of 2D data in a single excitation.
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kx

ky

Fig. 3. k-space trajectory of the EPI pulse sequence shown in Fig. 2.

and phase of the MRI signal. Since kx and ky are proportional to the integral of Gx

and Gy along the time, respectively, as indicated in Eq. (3), an appropriate design

of the in-plane gradients will allow acquisition of data on Cartesian grid.

As shown in Fig. 3, after initial movement to the lower left corner of k-space,

the trajectory moves along the kx direction driven by the positive Gx, and blips

upwards in the ky direction due to Gy. Then, the trajectory travels back along the

kx direction by the negative Gx, and moves up by Gy . These steps are repeated until

the entire k-space is scanned. Gx is called the frequency-encoding gradient because

it makes the oscillation frequency of the MRI signal linearly dependent on the

spatial location. Gy, on the other hand, is called the phase-encoding gradient, due

to the fact that signals from different y-positions in the object accumulate different

phase angles. The pulse sequence in Fig. 2 assumes ideal switching of the gradients.

In practice, due to the limited gradient slew rate (dB/dt), the rising and falling

time of the gradients have to be taken into account. Usually, trapezoidal gradient

waveforms, instead of rectangular waveforms, are used in Gx, and triangular “blips”

are used in Gy .

2.3. Spiral imaging

Spiral imaging usually acquires data along an Archimedian spiral trajectory in

k-space.3,4 The trajectory typically starts at the center of k-space and spirals out

radially with certain constraints, such as at a constant angular velocity or a constant

linear velocity. Advantages of spiral methods include superior performance in the

presence of motion and flow, and less demanding gradient strength and slew rate.

Spiral imaging has been used in a variety of applications, including cardiac imaging,

flow imaging, abdominal imaging, and functional neuroimaging.

An Archimedian spiral in k-space is described by

k(t) = Aθ(t)eiθ(t), (5)
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where k(t) = kx(t) + iky(t) is the complex location in k-space, A is a constant that

is determined by the Field-Of-View (FOV) of the image and the number of spiral

interleaves N (N = 1 for single-shot), with A = N / FOV. The required gradient

waveform in complex form is given by13,14

G =
1

γ

dk

dt
=

A

λ
θ̇(1 + iθ)eiθ, (6)

where θ̇ ≡ dθ/dt. The gradient slew rate is then given by

S =
dG

dt
=

A

λ
{θ̈ − θθ̇2 + i[θθ̈ + 2θ̇2]}eiθ, (7)

where θ̈ ≡ d2θ/d2t. Considering hardware constraints for gradient amplifiers,

Eqs. (6) and (7) can be rearranged as14

θ̈ =
f(θ, θ̇) − θθ̇2

1 + θ2
, (8)

where

f(θ, θ̇) =

{
[α2(1 + θ2) − θ̇4(2 + θ2)2]1/2, if |G| < Gmax,

0 otherwise
(9)

and α = γSmax/A, and Gmax and Smax are the maximum available gradient

strength and slew rate, respectively.

Equations (8) and (9) can be solved by numerical methods such as a 4th-order

Runge–Kutta algorithm. Alternatively, simple analytic algorithms with appropriate

approximations can be found to speed up the spiral waveform design for real-time

applications. An example of spiral trajectories generated with slew-rate constraints

is illustrated in Fig. 4.

kx

ky

Fig. 4. k-space trajectory of a spiral pulse sequence.
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Reconstruction of a spiral image includes correction of non-uniform sampling

density in k-space, resampling of the data onto an orthogonal equidistant grid,

Fourier transform of the k-space data to image space, and correction of the apodiz-

ing effects of the regridding.15

3. Advantages and Potential Artifacts

Single-shot MRI techniques can collect an MR image in about 20–100ms. Such

a rapid acquisition has a number of advantages over conventional MR imaging

that requires multiple RF excitations. First, the efficient data acquisition schemes

in single-shot imaging techniques provide rapid imaging speed (or high temporal

resolution) for dynamic imaging applications. Secondly, single-shot techniques can

achieve higher Signal-to-Noise Ratio (SNR) per unit time than multi-shot methods

due to their capability to collect a larger number of images within a fixed time

duration. For comparable voxel size, theoretical analyses and empirical measure-

ments have demonstrated a nearly five-fold SNR improvement of EPI over FLASH

techniques.2 Thirdly, single-shot MRI is less sensitive to patient motion, and thus

is helpful for reducing motion-related artifacts. With these advantages, single-shot

techniques have been widely employed to study dynamic and functional processes

in biological systems.

There are several potential artifacts in single-shot imaging techniques. In prin-

ciple, the reconstructed MR image should reflect the original object authentically,

irrespective of the k-space sampling trajectory. In practice, however, each technique,

with its specific k-space traversal pattern, has its own traits and artifact behavior.

In this section, the properties and basic problems of EPI and spiral imaging are

discussed.

3.1. Chemical shift

In MRI, the spatial location of protons in the object can be accurately encoded by

external gradients, with the assumption that the local magnetic field to which the

protons are exposed is solely determined by the externally superimposed gradients.

However, this is not true for protons with different resonant frequencies, such as fat

and water. The resonant frequency of a nucleus is affected by its local molecular

structure, and this frequency shift is called chemical shift. Without taking the

chemical shift effect into consideration, signals from fat and water at the same

position will be mapped to different image locations, resulting in chemical shift

artifacts as shown in Fig. 5.

The chemical shift between fat and water protons is about 3.5 parts

per million (ppm). This corresponds to a 447Hz difference of resonant frequency

at 3 Tesla. The chemical shift artifact is inversely proportional to the receiver

bandwidth, i.e. the range of frequencies used to encode the MR signal. In EPI

sequences, the receiver bandwidth along frequency-encoding direction is usually



Single-Shot MRI Techniques and their Applications 247

Fig. 5. Chemical shift artifacts caused by different resonant frequencies of water and fat.

very high, typically 250 kHz, amounting to 3906Hz/pixel for 64 sampling points.

In this case, the fat signal will be shifted 0.11 pixels from its correct location.

However, the receiver bandwidth along phase encoding direction is narrow, usu-

ally 40Hz/pixel if 64 lines are acquired. With such a low receiver bandwidth, the

fat and water component in the same location will be shifted from each other

by about 11 voxels. Therefore chemical shift artifacts are typically seen along

the phase encoding direction in EPI images. To suppress this artifact, a simple

method is to saturate the signal from the unwanted component and only image

the component of interest, which is usually water in neuroimaging. Alternatively

one can either use spatial-spectral selective RF excitation pulses to excite only

water spins,16 or apply the Dixon technique to decompose the water and fat

images.17,18

3.2. Geometric distortion

Apart from the chemical shift effect, the heterogeneous nature of EPI sequence

makes it vulnerable to various off-resonance effects along the phase-encoding direc-

tion. Unlike the fixed spatial shift in chemical-shift artifacts, the displacement

artifacts caused by field inhomogeneity and susceptibility vary across the image,

leading to highly nonlinear image deformations.19 In brain imaging, macroscopic

susceptibility-induced local field inhomogeneity usually exists around petrous bone

and the sinuses, resulting in image distortions in the orbito-frontal and temporal

lobes.

In a slice-selective imaging experiment, the induced MR signal S(t), obtained

from an object I(x, y), can be described as:

S(t) =

∫∫
I(x, y)e−i2π[kx(t)x+ky(t)y]e−t/T∗

2 dx dy, (10)

where T ∗
2 is the effective transverse relaxation time. During the EPI scans, S(t)

is discretely sampled at times t = t0 + nTsy + mTsx (0 ≤ m ≤ N − 1, 0 ≤ n ≤
N − 1), where t0 is the time interval between the RF excitation pulse and the
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beginning of the EPI encoding gradient, Tsx is the interval between two sampling

points along the readout direction, also referred to as dwell time, Tsy is the inter-

echo time between two adjacent lines, and the image matrix size is N × N . In

the absence of field inhomogeneity, the phase evolution of spins within a voxel,

or the k-space position (kx, ky) at time t, is determined by the readout gradient

Gx and the phase-encoding blip gradient ∆Gy , i.e. kx = mγGxTsx = m∆kx and

ky = nγ∆Gyτ = n∆ky, where τ is the duration during which the blip gradient is

applied. Assuming a local magnetic field offset ∆Bsus at location (x, y), the signal

in Eq. (10) becomes

Smn =

∫∫
I(x, y)ei(m∆kxx+n∆kyy)eiγ∆Bsus(x,y)(mTsx+nTsy)e−t/T∗

2 dx dy

=

∫∫
I(x, y)eim∆kx(x+ γ∆Bsus(x,y)Tsx

∆kx
)e

in∆ky

“

y+
γ∆Bsus(x,y)Tsy

∆ky

”

e−t/T∗
2 dx dy.

(11)

It can be seen from Eq. (11) that the extra phase caused by ∆Bsus will erro-

neously map the spins’ actual position (x, y) to a pair of new spatial coordinates(
x + γ∆Bsus(x,y)Tsx

∆kx
, y +

γ∆Bsus(x,y)Tsy

∆ky

)
. Usually ∆kx equals to ∆ky in most imag-

ing experiments. Therefore under same field inhomogeneity, the ratio of pixel shift

along phase-encoding direction over shift along readout direction is determined by

Tsy/Tsx. Since the phase-encoding dwell time Tsy is much longer than the read-

out dwell time Tsx, the image distortion consists of pixel shifts primarily along the

phase-encoding direction. Taking typical parameters of Tsx = 4 µs, Tsy = 0.4 ms,

and a 64 × 64 imaging matrix over a 24 × 24 cm2 FOV, a field inhomogeneity of
γ
2π ∆Bsus(x, y) = 16 Hz will lead to a pixel shift of 0.004 pixels along the readout

direction, and a shift of 0.4 pixels along the phase-encoding direction, with a ratio

determined by Tsy/Tsx = 100. In areas of the brain with stronger field inhomogene-

ity, the pixel shift can be much larger.

In functional brain mapping, it is desirable to superimpose the brain activation

maps onto the high-resolution structural images that are acquired using a conven-

tional non-EPI sequence and have negligible geometric distortion. The distortion in

EPI images makes it difficult to accurately coregister the functional and structural

data sets. To correct the geometric distortion, a commonly used method is to sepa-

rately acquire a set of complex gradient-echo images20–22 with different echo times

(TE1 and TE2), through which the information on field inhomogeneity across the

object can be obtained:

∆Bsus(x, y) =
φTE1(x, y) − φTE2(x, y)

γ ∆TE
, (12)

where φ is the phase information calculated from the gradient-echo image data

sets. This field map is then used to correct the pixel shift along the phase-encoding

direction. An example of distortion correction based on field maps measurement is

shown in Fig. 6. It can be observed that the corrected EPI image in Fig. 6(c) shows
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Fig. 6. Geometric distortion and correction. (a) The 256×256 anatomical image. (b) The uncor-
rected 64×64 EPI image. (c) The corrected 64×64 EPI image. (d) The field map calculated from
separately acquired complex image data sets.

better correspondence to the high-resolution anatomical image than the uncorrected

image in Fig. 6(b), as indicated by the two dashed horizontal lines.

Besides the geometric correction algorithms based on a field map, there are other

correction approaches, e.g. the point spread function method23 and the multiple

reference scan method,24,25 proposed to circumvent the technical difficulty of phase

unwrapping in the field mapping methods.

3.3. Signal loss

The presence of field inhomogeneity, regardless of the source, alters the intended

k-space trajectory defined by the spatial-encoding gradients and will induce not

only geometric distortion, but also signal dropout in the reconstructed images,

especially at high magnetic fields.26 In the neighborhood of bone-tissue and air-

tissue boundary where macroscopic susceptibility gradients exist, spins located at

different positions within a voxel will experience a different magnetic field, and thus

precess at different frequencies and become out of phase over time.

The effects of such dephasing on image quality depend on several factors, such

as the particular sequence, data acquisition speed, echo time, voxel size, slice ori-

entation, and phase-encoding direction in the case of EPI.27 Slower data sampling

rate and longer echo time will give spins more opportunity for intravoxel dephasing

and cause larger signal loss. Larger voxel size means larger variations in the spins’

precession frequency across the voxel, leading to more signal cancellation from the

spins and more signal loss. Since slice thickness is usually larger than the in-plane

resolution, signal dropout along the through-plane direction (assuming z-direction)

is more severe, and much effort has been made to compensate for dephasing along

this direction.

The most straightforward method to alleviate the through-plane signal loss

along slice select direction is to reduce the slice thickness,28 which, however, will

reduce SNR and sacrifice spatial coverage or increase the total acquisition time.

The tailored Radio Frequency (RF) pulse technique is more complicated, which

designs RF pulses with specific phase profiles to compensate for the intravoxel
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Fig. 7. Signal profile in the presence of a susceptibility gradient along slice-selective direction.

dephasing.29–31 This technique is useful for recovering the signal loss in the

susceptibility affected areas, but in general has the drawback of reducing SNR

elsewhere. Another method is called the z-shim technique.26,32–37 Assume a gra-

dient Gsusz is present along the through-plane direction (z-direction). The signal

magnitude at the time of acquisition t will be a sinc function of Gsusz , as shown

in Fig. 7, where kz = (γ/2π)Gsuszt. In the ideal situation (Gsusz = 0), except

for the imaging gradients applied along frequency- and phase-encoding direction,

there should not be any gradients influencing the spins’ phase evolution. Therefore,

spins at the same position (x, y) but with different z coordinates will precess in

synchronization after the excitation and contribute maximum signal at the time of

acquisition. This is the case of kz = 0 in Fig. 7. However, if a susceptibility gradient

Gsusz is present, the sampling point will be shifted away from kz = 0 position and

signal loss will occur after large enough dephasing has accrued. If an external z gra-

dient with comparable strength is applied to counteract the susceptibility gradients

Gsusz , intravoxel dephasing will decrease and signal can thus be recovered. This is

the fundamental principle of z-shim methods.

To account for varying susceptibility gradients in different areas, a z-shim encod-

ing method typically acquires multiple images of the same location with different

amplitudes of z refocus gradient, and then combines these images to form a compos-

ite image. Figure 8(b) illustrates a set of composite images combined from 16 z-shim

encoding images. Compared with conventional EPI images in Fig. 8(a), the z-shim

composite images demonstrate satisfactory signal recovery in the ventral prefrontal

and lateral temporal lobes, as indicated by the arrows. The limitation of this tech-

nique is the reduced temporal resolution due to multiple acquisitions of the same

imaging plane. If it takes 2 sec to cover the whole brain using a conventional EPI

sequence, z-shim EPI with 16 encodings will require 32 sec with other parameters

kept the same. To shorten the effective repetition time, first z-shim techniques

with reduced encodings,32,35 and then single-shot z-shim techniques36,37 were pro-

posed. Figure 8(c) shows the composite images combined from two z-shim encod-

ings images, whose compensation results demonstrate significant improvement over

conventional EPI images.
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Fig. 8. (a) Conventional single-shot EPI Images; (b) 16 z-shim encoded EPI composite images;
(c) 2 z-shim encoded EPI composite images.

Fig. 9. (a) Demonstration of Nyquist ghost on brain image; (b) Improved image after phase
correction.

3.4. Nyquist ghosting

Ideally, an echo will form at the refocusing point of each readout gradient waveform.

However, due to inaccurate timing of the readout gradients, eddy current effects

from rapid gradient switching, and off-resonance effects, the actual echo position

could be delayed or advanced relative to the k-space center. In conventional imaging,

since each line of k-space is traversed in the same direction, the echo shift in k-space

leads to a constant phase shift in the reconstructed images, which will not appear in

the magnitude images and thus causes no problems. But the back and forth k-space

trajectory used in EPI is different. Before reconstruction, every other line collected

in k-space must be flipped, which could produce different echo offsets between the

odd and even lines, leading to a “ghost” image shifted by half of the field-of-view

in the phase-encoding direction after Fourier transform as shown in Fig. 9(a). This

artifact is usually referred to as a “Nyquist ghost” or “N/2 ghost”.
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Hardware improvement in gradients and filter performance can suppress Nyquist

ghost to some extent, but other post-processing methods are still needed to fur-

ther reduce ghosting intensity. Several methods have been proposed to solve this

problem.38–40 The commonly used technique is to acquire a reference scan with

phase-encoding gradients turned off. Such a reference scan can be either a very

short separate scan or incorporated into the beginning of the imaging sequence

without affecting its single-shot nature. The 0th- and 1st-order phase information

about the echo offset difference between the odd and even lines can be extracted

from the reference scan and then the odd/even lines can be corrected by multiply-

ing the exponential of the conjugate phase difference in image space. Figure 9(b)

illustrates the removal of ghosting artifact using this reference scan technique.

3.5. Spatial resolution degradation

Image blurring is another important issue in fast imaging techniques. The blurring

process can be characterized by a Point Spread Function (PSF), whose Full Width

at Half Maximum (FWHM) is often used to assess the spatial resolution of the

imaging system. The spatial resolution of an MR imaging system is determined

not only by the sampling duration, but also by the intrinsic spin-spin relaxation T2

effect and the intravoxel inhomogeneity T ′
2 effect.

Assuming T2 and T ′
2 are spatially invariant, the point spread function in a

conventional gradient-echo sequence is given by41

PSF(x) = Txacq
sin(γḠxxTxacq/2)

γḠxxTxacq/2
⊗ γḠxT ∗

2

1 + iγḠxT ∗
2 x

, (13)

where ⊗ denotes convolution, 1
T∗
2

= 1
T2

+ 1
T ′
2
, Txacq is the echo sampling dura-

tion, Ḡx = 1
Txacq

∫ Txacq

0 Gx(t)dt is the mean of the trapezoidal gradient waveform

Gx(t) during Txacq. The first term in Eq. (13) is the sampling point spread func-

tion caused by the finite acquisition time, whose full width at half maximum is

FWHMxacq = 1.2π/(γḠxTxacq); the second term, with a full width at half maxi-

mum of FWHMT∗
2

= 2/(γḠxT ∗
2 ), reflects the T ∗

2 decay effect.42 The impact of these

two terms in degrading spatial resolution is determined by their relative FWHM:

FWHMxacq

FWHMT∗
2

=
1.2πT ∗

2

2Txacq
≈ 1.9T ∗

2

Txacq
. (14)

If the FWHM of one term is significantly larger than the other, it will domi-

nate the resolving power. In conventional imaging, a typical receiver bandwidth of

32 kHz with 256 sampling points requires 8 ms to acquire an echo, not considering

ramp sampling. Given a typical T ∗
2 relaxation time of 27ms at 3T in brain tissue,

FWHMxacq is significantly greater than FWHMT∗
2
. Therefore the effects of T ∗

2 in

degrading spatial resolution are negligible in conventional imaging.

The receiver bandwidth along the readout direction in EPI is even higher (typ-

ically 250 kHz) than conventional imaging, hence the pixel broadening caused by
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T ∗
2 decay is minimal in this direction. After ignoring the contribution of T ∗

2 effect

to the blurring of the readout direction, a similar expression as Eq. (14) can be

derived for the phase-encoding direction:

FWHMyacq

FWHMT∗
2

≈ 1.9T ∗
2

Tyacq
. (15)

Assuming an inter-echo time Tsy of 0.4ms, the total acquisition time Tyacq

for 64 views will be 25.6ms. It can be seen from Eq. (15) that the FWHM of the

sampling point spread function still dominates but to a lesser degree, so there will be

small spatial resolution degradation induced by T ∗
2 decay along the phase-encoding

direction.

3.6. Off-resonance artifacts in spiral imaging

Unlike EPI’s distinct behaviors between readout and phase-encoding directions,

spiral trajectories do not have a preferable encoding orientation and hence, instead

of prominent artifacts along a particular direction, the off-resonance effects (e.g.

chemical shift, field inhomogeneities, susceptibilities) will give rise to radial blurring

in spiral imaging.43

Numerous off-resonance correction methods for spiral imaging, either extended

from correspondent EPI solutions or specifically developed for spiral itself, have

been proposed. To avoid chemical shift artifacts, the fat signal suppression tech-

niques used in EPI, such as spatial-spectral selective RF pulses, fat signal presatu-

ration, and modified Dixon techniques,44 can all be employed to spiral imaging as

well. The removal of blurring artifacts introduced by magnetic field inhomogeneity

and susceptibility can be achieved through image reconstruction with or without

field map acquisitions.45–48 As to the signal loss along slice-selective direction, all

of the compensation techniques used in EPI can be applied in spiral imaging. An

interesting method unique to spiral acquisition to alleviate in-plane signal loss is

the reverse spiral scanning technique,49–51 which has been demonstrated to have

improved SNR and reduced susceptibility artifacts around interfaces between dif-

ferent materials.

4. Applications in Functional MRI

Functional MRI (fMRI) is the non-invasive in vivo measuring of neuronal activity

using MRI techniques. Although there are emerging methods to directly measure

changes in the MRI signal caused by the current of neurons firing,52 the vast major-

ity of fMRI experiments measure changes in hemodynamic parameters as an indi-

rect measure of neuronal activity. The earliest of these experiments was reported

by Bellivieu et al.53 in 1991 and utilized an exogenous contrast agent using a

now seldom-used technique called dynamic susceptibility contrast MRI (DSC-MRI)

described in further detail in Sec. 7. It is possible to measure Cerebral Blood Flow
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Fig. 10. Physiologic changes that give rise to the BOLD signal.

(CBF) directly using single-shot techniques, described in the next section, but the

majority of fMRI experiments utilize single-shot techniques optimized for blood

oxygen level dependant (BOLD) contrast.

4.1. The BOLD effect

The BOLD phenomenon was first described by Ogawa et al.54 It arises from the

fact that deoxyhemoglobin is paramagnetic whereas oxyhemoglobin is diamagnetic.

An increase in the concentration of deoxyhemoglobin [deoxy-Hb] will cause a local

perturbation in the magnetic field. Perturbations in the magnetic field, both macro-

scopic and microscopic, cause an increase in dephasing and thus a decrease in T ∗
2 .

Physiologically, there are three causes to a change in [deoxy-Hb]: A change in the

metabolic rate of oxygen extraction, CMRO2, a change in regional cerebral blood

flow, rCBF, or a change in regional cerebral blood volume, rCBV. The chain of

events leading to the BOLD signal is shown in Fig. 10. Note that there is a mis-

match between the change in rCBF and CMRO2, leading to the seemingly para-

doxical increase in MRI signal with increased neuronal activity. This overperfusion

is sometimes described as “Watering the whole garden for the sake of one flower”,

and results in a decrease in [deoxy-Hb] with increased neuronal activity.

4.2. The relationship between BOLD and neuronal activity

It is natural to ask exactly how changes in BOLD relate to the underlying neuronal

activity. The mechanism by which changes in neuronal activity cause changes in

hemodynamic parameters, termed “coupling”, is unknown, although there are sev-

eral candidate mediators including nitric oxide, adenosine, changes in pH, K+ and

neurogenic mechanisms.55,56 In a non-human primate model using simultaneous

BOLD and direct recording of electrical activity, Logothetis et al.57 demonstrated
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that changes in the BOLD signal were best predicted by changes in local field

potentials, indicating that BOLD most strongly reflects the input and intracortical

processing of an area.

4.3. The hemodynamic response

The temporal dynamics of the three physiologic parameters leading to a change in

[deoxy-Hb] are complicated and still poorly understood. Various models have been

put forth, the most famous being the balloon model.58,59 An empirical description

is shown in Fig. 11 and is as follows: Assuming a brief burst of neuronal activity

there is a delay of about 2 seconds. Following this, some experimenters see a dip

in the MRI signal, attributed to an increase in [dexoy-Hb] due to an increase in

oxygen extraction.60 There is even some evidence that activation maps based upon

this initial dip have greater spatial specificity to the sites of neuronal activation,61

but the size and irreproducibility of this effect make it unsuitable for most studies.

Following this dip, there is a broad increase in the MRI signal, peaking at about

4 seconds after onset and having a full width at half max of around 4.5 seconds. This

is attributed to the increase in perfusion that overcompensates for the increase in

oxygen extraction and removes the deoxy-Hb. The vast majority of BOLD imaging

experiments make maps based upon this signal increase. Finally, there is a broad

so-called “post undershoot” attributed to an increase in regional CBV due to the

vasodilation and thus a greater amount of deoxy-Hb. The positive-going portion

of the hemodynamic response has been modeled with several functions, the most

common being a gamma-variate function.62

Fig. 11. Model of the hemodynamic response function, which is the BOLD response to a brief
neuronal activity. The dashed portion indicates the controversial “initial dip”.
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There is considerable heterogeneity, both inter- and intrasubject, in the onset

time and shape of the hemodynamic response.63 Critically, the variations in the

onset are most likely due to variations in local vasculature and not asynchronies

in neuronal firing. By and large, with a few notable exceptions64,65 this makes

BOLD unsuitable for determining the chronology of neuronal events. To determine

the temporal order, there has been considerable advancement in the simultaneous

measuring of BOLD and EEG,66 the former providing the spatial specificity and

the latter providing temporal information.

4.4. Experimental design using BOLD

The hemodynamic response shown in Fig. 11 is for a brief burst of neuronal activity.

If one assumes the activity is infinitely brief, and infinitely large, then the hemody-

namic response function shown takes on the role of an impulse response function

and basic signal processing theory states that the response to any activation will

be the convolution of that activation with the hemodynamic response function. For

this to be true, two conditions must be met: Linearity (the response to the sum of

two events is equal to the sum of the responses to each event) and time invariance

(a given event will always generate the same response, no matter when it happens).

Unfortunately, either/both of these are violated in certain circumstances. If two

neuronal events are too close together (about < 2 sec) the response to the second is

reduced.67 Further, there is evidence that the size of the responses varies during an

experiment.68 Despite these caveats, most experiments are designed and analyzed

with the assumption that the convolution is valid.

The duration of the hemodynamic response gives rise to two domains of experi-

mental design. The first is when the duration of neuronal activity is long compared

to the hemodynamic response. These designs include the earliest fMRI experiments

and are commonly referred to as “block-designs”.These experiments consist of blocks

when the subject is continuously performing some task alternating with blocks when

the subject is performing a control task and/or blocks when the subject is resting.

Analysis can be as simple as subtracting the average of the task images from the

average of the control/rest images. The other regime of experimental design is when

the duration of neuronal activity is short compared to the hemodynamic response

such that each event is expected to produce a single hemodynamic response — com-

monly referred to as “event-related” designs. In initial event-related experiments the

events were separated far enough in time that they could be averaged in a time-

locked fashion. Currently, events are overlapped with random69 or pseudorandom70

inter-stimulus intervals for efficiency. Event-related designs have the advantage that

individual events can be discarded, for example incorrect responses, the stimuli can

be less predictable, and the hemodynamic response can be determined; block designs

are typically more sensitive.71 An ideal experiment combines the two.71

Analysis of fMRI data is at its most fundamental level the analysis of time

course data. Single-shot MRI techniques permit the acquisition of whole brain with
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a temporal resolution around 2 seconds and with a spatial resolution of around

3 × 3× 3mm. Typically a design matrix is formed by convolving the expected neu-

ronal response (based upon the experimental design) with a set of basis functions

(for example, a gamma-variate function and its derivative to help account for varia-

tions in onset) and the data in each voxel is modeled under a general linear model.72

A second level of analysis is then performed, also under a general linear model across

subjects/treatments. Statistical parameter maps are then formed from this sec-

ond level analysis. More advanced multivariate approaches, which analyze both the

spatial and temporal data simultaneously are starting to be more common. These

include partial least squares,73 structural equation modeling/path analysis74 and

data driven approaches that look for patterns in the data without any model such as

independent component analysis,75 canonical correlation76 and fuzzy clustering.77

4.5. Application of BOLD imaging

In the just over one decade of its existence, fMRI using single-shot techniques

has undergone explosive growth. There are books and journals dedicated to its

application; see, for example Refs. 78 and 79. It would be impossible to review

such a large literature here — instead we will present some examples from various

applications.

The earliest fMRI experiments were simple sensory or motor tasks.80–82 These

tasks consist of activating the primary visual system via flashing lights or changing

visual patterns, or activating the motor system via timed hand movements. Over a

range of frequencies, graded neuronal activation will occur by varying the frequency

in either of these paradigms.83,84 This, their simplicity, and the robustness of their

activation have made sensory/motor paradigms the de facto standard for the testing

of new pulse sequences, analysis techniques and other basic advances in fMRI. Fast

imaging techniques have permitted retnotopic85 and tonotopic86 mapping of human

cortex. Figure 12 gives an example of a simple motor task and a typical time course

for these types of experiments.

Arguably the largest effort in fMRI has gone toward the understanding of human

cognition, here broadly defined to include learning and memory and attention.

Whereas much was already known about sensory/motor systems through the pre-

clinical and human lesion literatures, with neuroimaging performing a mostly con-

firmatory role, the non-invasive nature of fMRI allows the study of what makes

humans unique, in vivo, and in healthy individuals. Some of the work here has uti-

lized standard neuropsychological tests, or slight variations thereof, to probe various

cognitive systems. Excellent examples of this are the Stroop task,87 the continuous

performance task88 and the Wisconsin card sorting task.89 In addition, a plethora

of new tasks have been created to probe systems/constructs such as the storage

and retrieval of long-term memory,90 attention,91 decision-making,92 language,93

and executive functions such as working memory,94 set switching,95 inhibition.96
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Fig. 12. Example of fMRI activation, in this case bilateral finger-tapping in a block design. The
image on the left is the high-resolution T1 anatomical image, in the middle a single-shot EPI
image of the same slice, on the right a map of t-values indicating the correspondence between the
fMRI data and the experimental design. Note the highest activation is in primary motor cortex.
The bottom figure is the time-course of a typical activated voxel, with the black bars indicating
when the subject was tapping their fingers.

Functional neuroimaging has also made contributions to the affective litera-

ture. It has been long known from the preclinical literature that the amygdala is

involved in fear conditioning, confirmed in humans using neuroimaging.97 But there

is evidence that it may be arousal, irrespective of the valence of the stimulus, that

activates this key brain region.98 Fast imaging techniques have also permitted the

investigation of drive states such as hunger99 and thirst,100 satiation,101 sexual

arousal,102 and drug craving.103

By combining the fast imaging of single-shot techniques with pharmacolog-

ical challenges an offshoot neuroimaging technique has been created, abbrevi-

ated phMRI. Although it lacks the ability to look at specific transmitter/receptor
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systems compared to PET, phMRI has the advantage of high temporal and spa-

tial resolution. The high temporal resolution permits the characterization of the

response based upon known pharmacokinetic parameters.104 Using these methods,

the neuronal sites of action of cocaine105 and nicotine106 have been mapped. A diffi-

culty with these methods is that the BOLD signal has a 1/f noise characteristic,107

and thus is subject to slow drifts. It can be difficult to separate these drifts from

signal induced by the pharmacological manipulations. A second approach is to mea-

sure how a drug affects a second process. Two examples of this are nicotine’s effect

on attentional processes108 and the effect of remifentanil (an analgesic) on painful

thermal stimuli.109

While the previous examples mostly point to the utility of fMRI in the investi-

gation of normal neural functioning, it is the application to clinical medicine and

disease states that will ultimately be neuroimaging’s greatest benefit. Examples

here include the investigation of the neural underpinnings and consequences of

mental disorders such as attention deficit/hyperactivity disorder,110 depression,111

obsessive-compulsive disorder112 and schizophrenia.89 There is evidence that BOLD

imaging may someday be used in the diagnosis of Alzheimer’s disease.113 Finally,

BOLD imaging is being used as a preoperative tool to aid in the planning of neuro-

surgery. Two examples here are using BOLD imaging to locate language areas prior

to surgery to help relieve epileptic seizures114 and to locate motor regions prior to

tumor extraction.115

5. Applications in Perfusion Imaging with Arterial Spin Labeling

Cerebral Blood Flow (CBF) is the amount of arterial blood delivered to a local

volume of brain tissue per unit time. It is usually quantified in milliliters of blood

per gram of tissue per second (ml/g/sec). Cerebral perfusion determines the effec-

tiveness of the blood circulation to provide oxygen and nutrients to the brain tissue,

and to remove waste products from the tissue. Measurements of perfusion in brain

and other organs provide information about tissue viability and function, and are

therefore of fundamental significance in medical research and clinical diagnostics. It

is of particular interest that local perfusion changes in the brain reflect regional neu-

ronal activity and metabolism, and thus CBF can be used as an index for mapping

functional neuroanatomy.116

Perfusion MR imaging with Arterial Spin-Labeling (ASL) is a non-invasive tech-

nique developed in the past decade that can be used to map blood flow in the

brain, heart, kidney and other organs.7 Single-shot fast imaging techniques have

been successfully used for ASL perfusion measurements, due to their high SNR,

high temporal resolution and insensitivity to motion artifacts.

5.1. Principles of ASL perfusion imaging

Arterial spin-labeling perfusion imaging utilizes magnetically labeled water in arter-

ies as an endogenous tracer to obtain quantitative blood flow information in the
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Fig. 13. Illustration of spin labeling in FAIR perfusion imaging. The image acquired with local
labeling (in the imaging slice) is compared to the one with global labeling (entire brain) to generate
perfusion contrast.

tissue.7 The labeling is usually accomplished by inverting or saturating the magne-

tization of the inflowing arterial blood with respect to the tissue of interest. Several

strategies for spin labeling have been proposed,117–121 but here we will focus on

discussing one of the most popular techniques called Flow-sensitive Alternating

Inversion Recovery (FAIR).118 In FAIR imaging, as illustrated in Fig. 13, perfusion

contrast is obtained by comparing images with local and global spin labeling. Typi-

cally, a time series of inversion recovery images are acquired, with alternative slice-

selective inversion (local labeling) or a non-selective inversion (global labeling).118

The difference image between the local and global labeling is equivalent to label-

ing only the spins outside the imaging slices, and thus reflects the signal change

associated with perfusion.

To quantify blood flow, a perfusion model describing the blood/tissue water

exchange kinetics and the magnetization characteristics is necessary. A perfu-

sion model was proposed incorporating arterial transit and trailing times for

improved quantification of CBF.121 In the model, the amplitude of the difference

signal at time t obtained from the locally and globally labeled images, ∆M(t), is

described as121

∆M(t)

M0
= − (2Q/λ)

∫ t

0

αcap(ξ)e
−R1(t−ξ)dξ, (16)

where M0 is the amplitude of the fully relaxed signal, Q is the cerebral blood flow,

λ is the partition coefficient of brain water, R1 is the longitudinal relaxation rate of

brain water, and αcap(ξ) is the extent of arterial labeling at the capillary exchange

site in the brain. The labeling is due to the difference in preparation for spins

outside the imaging slices. We assume that

αcap(t) = h(t)e−R1at, (17)
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Fig. 14. Difference images between local and global labeling.

where h(t) is defined as

h(t) =






0, for 0 ≤ t < τa

1, for τa ≤ t < τd,

0, for t ≥ τd

(18)

where τa and τd are arterial transit and trailing times respectively, and R1a is the

longitudinal relaxation rate of arterial blood. Inserting Eq. (17) into Eq. (16) gives

∆M(t)

M0
= 0, for 0 < t ≤ τa, (19)

∆M(t)

M0
= −2Q/(λ∆R)e−R1at[1 − e−∆R(t−τa)], for τa ≤ t < τd, (20)

∆M(t)

M0
= −2Q/(λ∆R)e−R1aτd [1 − e−∆R(τd−τa)]e−R1(t−τd), for t ≥ τd, (21)

where ∆R = R1a − R1. The τa and τd can be measured from an ASL experiment

with a series of inversion times, and R1 can be measured using inversion recovery

experiments. Tissue perfusion (Q) can then be calculated from Eqs. (19)–(21) if τa,

τd, R1 and R1a are known. An example of the difference images ∆M on a normal

subject is shown in Fig. 14.

5.2. Brain activation measurement using ASL imaging

In the past decade, ASL perfusion imaging techniques have been successfully used

for cerebral activation studies.117–121 The mechanism for detecting brain activa-

tion using ASL techniques is that increased brain activity is accompanied by local

changes of cerebral blood flow, as demonstrated by PET studies.116 In perfusion-

based brain activation studies, as in BOLD functional imaging described previously,

a time series of ASL images is collected during which the subject is asked to perform

specific tasks. Brain activation areas can be detected by comparing images acquired

at different states (e.g. performing task versus rest). Such studies have been carried

out with visual and sensorimotor activation paradigms,117–121 as well as cognitive

paradigms.122 The increase in CBF during brain activation varied from 30% to

90% depending on the activation paradigms, and was generally consistent with the

blood flow change observed in PET studies.123 Compared to BOLD imaging, which

is relatively more venous-weighted, ASL perfusion techniques target signals closer
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to the capillaries and tissue, and are therefore more closely related to neuronal

activity. Another advantage of ASL techniques, comparing to BOLD, is their capa-

bility to obtain a quantitative and physiologically more meaningful index for brain

activation, which may provide for more precise interpretation of the data.

Whereas ASL perfusion techniques are attractive for functional brain imag-

ing studies, there are a few disadvantages for the techniques that one should be

aware of. First, sensitivity of the ASL techniques is inherently low, due to the small

perfusion-related signal difference between control and label (< 1%) and the require-

ment of image subtraction to obtain blood flow information. In general, perfusion

Contrast-to-Noise Ratio (CNR) is lower than BOLD CNR in brain activation stud-

ies, although the CNR difference of the two techniques depends on a number of fac-

tors including perfusion/BOLD methodologies, field strength, and image acquisition

parameters. Second, temporal resolution is usually low in most of ASL techniques,

because the perfusion image is obtained from a subtraction of two raw images,

resulting in a temporal resolution half of that of the raw images. In addition, inver-

sion time (TI) is required for labeled (inverted) spins to recover, leading to a typical

temporal resolution of 4–8 s for ASL imaging. This poor temporal resolution makes

an event-related functional study124 difficult to perform. Recently, several pulsed

ASL techniques with improved temporal resolution have been suggested,125–127 and

significant improvements of temporal resolution (0.5–1.0 s) have been achieved for

ASL perfusion imaging. Third, ASL techniques usually cover less brain volume than

BOLD imaging. Typically, ASL imaging is limited to acquisition of a few slices per

labeling, due to potential artifacts and technical difficulties. Single-shot fast imag-

ing techniques are particularly important for developing multi-slice or 3-dimensional

perfusion techniques, covering a larger brain volume. For example, the utilization

of efficient image acquisition of fast spiral scanning allows 10 or more slices to be

acquired per labeling,121 greatly facilitating brain functional studies with multiple

activation areas.

Simultaneous measurement of ASL perfusion and BOLD signals in a single scan

session has been proposed in recent years.128–131 In these methods, ASL signal is

obtained by labeling the in-flowing spins in arteries, whereas BOLD contrast is

achieved by effective transverse relaxation (T ∗
2 ) weighting. From a time series of

images acquired with alternating control and labeling, ASL and BOLD signals can

be obtained by subtracting or adding the control and labeled images, respectively,

in the same data set. The capability of simultaneous detection of ASL and BOLD

signals has a number of advantages, including efficient acquisition of two functional

images (improvement of CNR per unit time) and minimization of temporal and

spatial variations between the two types of images. These advantages may be par-

ticularly important for functional brain studies involving transient and dynamic

signal changes such as those with drug-induced brain activation.105,106 Simultane-

ous image acquisition is also useful for more accurate determination of Cerebral

Metabolic Rate of Oxygen consumption (CMRO2) from a combination of perfusion

and BOLD techniques.134–136
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6. Applications in Diffusion Magnetic Resonance Imaging

“Diffusion” generally refers to the random thermal motion of small particles, e.g.

water molecules, in a given medium. The strength of a diffusion process can be

quantified by the Diffusion Coefficient (DC) as the mean squared diffusion dis-

placements of an ensemble of molecules within a unit duration of time. The value

of the DC characterizes the molecular diffusive mobility that is associated with

the temperature and the compartment restriction of the medium. For ideal free

diffusion, the DC has a uniform value in all direction, which is called isotropic dif-

fusion. However, a diffusion process in biological tissue, e.g. brain white matter,

could be anisotropic because the diffusion process may experience different restric-

tions in different directions due to the orientation-dependent structure of the tissue.

Quantitative assessment of diffusion thus provides an indirect measurement of the

complex structure of biological tissue on a cellular scale that could be well beyond

the imaging resolution itself.

Diffusion MRI (dMRI) is a technique to non-invasively measure the diffusion

process by incorporating diffusion-sensitive gradients into an MRI sequence. The

concept of diffusion measurement by NMR dates back to year before the birth of

MRI, but vulnerability to noise and motion artifacts of the techniques had hindered

its wide application.137 It was the single-shot fast imaging techniques, especially

EPI, that practically enabled dMRI to acquire diffusion images of a living bio-

logical organization with clinically acceptable quality and acquisition time. Recent

methodological developments focused on investigating anisotropic properties of bio-

logical tissue based on dMRI acquired at a number of directions. Diffusion Tensor

Imaging (DTI) and High Angular Resolution Diffusion (HARD) analysis models

have been developed to identify the orientation and more complex structures of the

white matter.138,139 These methods have shown promising ability to virtually delin-

eate the anatomical connectivity of a neural system in vivo.140 Due to the increasing

demands for rapid and robust acquisition, single-shot fast imaging techniques are

playing more important roles in dMRI applications.

6.1. Principles of diffusion MRI

For a diffusion process in three-dimensional (3D) space, the dependence of the

net molecular displacements of an ensemble of spins on the diffusion coefficient is

described by the Einstein relationship141

〈
r2
〉

= 6DτD, (22)

where 〈r2〉 is the mean squared displacement, τD is the diffusion time, and D is

the diffusion coefficient that is generally linearly related to the temperature of the

medium.142 The conditional probability distribution of the net displacement is given

by a 3D Gaussian function

P (r, τD) =
1√

(4πDτD)3
exp

( −r2

4DτD

)
. (23)
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Fig. 15. Schematic diagram of the Stejskal–Tanner pulsed gradient experiment.

Essential principles of diffusion MRI can be illustrated by the Stejskal and

Tanner pulsed gradient experiment,143 which is designed to measure the spin echo

attenuation caused by the diffusive motion of the spins during the presence of a

pair of diffusion-sensitive gradients.

As illustrated in Fig. 15, identical magnetic field gradients (shaded areas) with

the same duration δ and magnitude G are placed on both sides of the 180-degree RF

pulse in a typical spin-echo MR experiment. Any spin motion that occurs during a

pulsed gradient generates a phase shift that is proportional to the product of δ and

the displacement in the direction of the applied gradient. Therefore, static spins

would produce a pair of phase shifts with the same magnitude but opposite signs

during the two separated gradients, generating no net phase change at the echo

time. In contrast, diffusive spin motion with random displacements over the time

would produce a random net phase shift with the same Probability Distribution

Function (PDF) as the diffusive displacements. Due to the ensemble effects of a

large number of spins, an attenuation of the spin-echo magnitude would occur

because of the phase dispersion (dephase) caused by the pair of gradients. Based

on the Gaussian PDF of the displacements as in Eq. (23), the spin-echo attenuation

in the Stejskal–Tanner experiment can be explicitly written as143

ln

(
S(G, ∆, δ)

S(0)

)
= −γ2G2∆2

(
∆ − δ

3

)
D, (24)

where S(G, ∆, δ) is the spin-echo magnitude obtained from the experiment with

the 2 diffusion-weighting gradients separated by interval ∆, whereas S(0) denotes

the echo magnitude in a reference experiment without the diffusion weighting. For

convenience, we generally use the so-called “b factor” to characterize the strength

of the diffusion-weighting gradients, such that

b = γ2G2∆2

(
∆ − δ

3

)
. (25)
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Thus, the echo attenuation S(b)/S(0) has a negative exponential relationship with

the b factor and the diffusion coefficient, i.e.

S(b) = S(0) exp(−bD). (26)

Given the b factor and the diffusion and non-diffusion weighted spin echo signal

intensities measured in the experiments, the diffusion coefficient D of the spin

ensemble can then be estimated by

D = − ln(S(b)/S(0))/b. (27)

It should be noted that regular imaging gradients of an MRI experiment also

produce a small diffusion-weighting effect. In general, the b factor of an arbitrary

MRI gradient sequence is defined by

b =

∫ TE

0

k(t′) · k(t′)dt′, (28)

where k(t) represents the vector of the image acquisition trajectory in k-space. In

general, the b factor of a regular spin echo EPI sequence for clinical brain imaging

would be less than 50 (s/mm2), whereas a typical diffusion-weighting EPI sequence

would have a b factor of 1000 (s/mm2) or more. Therefore, the diffusion-weighting

effect of regular imaging gradients is negligible and will not be discussed further.

Diffusion MRI can be implemented by a modified single-shot fast imaging

sequence incorporating the diffusion-weighting gradients, so that the Stejskal–

Tanner experiment can be performed voxel-wise. However, water diffusion in bio-

logical tissue with complex microscopic structures may only be approximated by

the free diffusion model as described above. Because free diffusion is an imperfect

model of real diffusive processes, diffusion strength measured in biological systems

is generally termed “apparent diffusion coefficient” or ADC.

A typical value of the ADC measured in room-temperature free water is

(2.30 ± 0.02) × 10−3 (mm2/s). The ADC measured in the Grey Matter (GM) of a

human brain is about (0.76 ± 0.03) × 10−3 (mm2/s). Due to its anisotropic struc-

ture, White Matter (WM) exhibits different diffusion strengths in directions orthog-

onal and parallel to the fiber orientation, with ADC values of (0.45 ± 0.03) × 10−3

and (0.95 ± 0.03) × 10−3 (mm2/s) respectively. The decreased ADC value of water

in tissue with respect to that of free water provides an indication of the confined

environment within biological systems. These ADC differences are generally owing

to restricted/hindered diffusion, or multiple compartments in the tissue.144

6.2. Diffusion tensor imaging

The quantitative characterization of the anisotropy of the diffusion systems has

been one of the primary objectives of diffusion MRI. In early studies, the diffusion-

sensitive gradients were usually applied separately along the x-, y- and z-axis, to

acquire the Diffusion-Weighted Images (DWI) along the three directions, respec-

tively. The diffusion anisotropy can be roughly inferred from the intensity differences
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among these DWI images. However, an obvious disadvantage is that the result is

rotation-variable, i.e. it depends on the position/orientation of the subject with

respect to diffusion gradients.

To overcome the difficulties of regular DWI, the Diffusion Tensor Imaging (DTI)

technique has been established to offer a rotation invariant model for diffusion

anisotropy.145 In the formulation of DTI, the diffusion coefficient is no longer char-

acterized by a scalar parameter D, but rather by a 3 × 3 tensor D:

D =




Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz



 , (29)

where Dij(i, j = x, y, z) denotes the cross-correlation of the diffusion coefficient

between the i and j axis, and thus D is always symmetric, i.e. Dij = Dji. Similarly,

another 3 × 3 matrix b is employed in DTI with each element bij representing the

b-factor corresponding to the element Dij in D. Thus, the diffusion-weighted echo

attenuation described in Eq. (26) can be expressed in the DTI formulation as

S(b) = S(0) exp



−
∑

i=x,y,z

∑

j=x,y,z

bijDij



 . (30)

Considering the symmetry of D and b, we have

ln(S(b)/S(0)) = −bxxDxx−byyDyy−bzzDzz−2bxyDxy−2bxzDxz−2byzDyz. (31)

To determine the six independent elements in D, we need to perform the

diffusion-weighted imaging experiment at least six times with the b matrices inde-

pendent from each other. An additional experiment is also needed to provide a

non-diffusion weighted reference image. Therefore, a total of at least seven MRI

images are required to fully determine the diffusion tensor D based on the linear

relationship stated in Eq. (31). A typical set of the gradients for DTI are given by

following six vectors with unit magnitude:

[
1/

√
2, 0, 1/

√
2
]
;
[
0, 1/

√
2, 1/

√
2
]
;
[
1/

√
2, 1/

√
2, 0
]
;

[
−1/

√
2, 0, 1/

√
2
]
;
[
0, 1/

√
2,−1/

√
2
]
;
[
−1/

√
2, 1/

√
2, 0
]
,

(32)

where the three elements in each vector correspond to the magnitudes of the

gradient components applied on the x-, y-, and z-axis, respectively. These six

directions are linearly independent from each other. When more than six indepen-

dent diffusion-encoding directions are used, the diffusion tensor can still be fully

estimated by solving a set of over-determined equations. In fact, several studies

have indicated that using more directions for diffusion encoding generally helps to

improve the accuracy and/or the efficiency of the DTI technique, if these directions

are appropriately optimized.146
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6.3. Quantification and visualization of DTI

An essential procedure in DTI is to quantify and visualize useful diffusion informa-

tion. Many analysis methods are based on the eigen-analysis theorem:147 A real,

symmetric and positive-defined matrix (tensor) can be decomposed into the product

of three matrices, such that



D11 D12 D13

D21 D22 D23

D31 D32 D33



 = (V1 V2 V3 )




λ1 0 0

0 λ2 0

0 0 λ3



(V1 V2 V3

)T
, (33)

where the three diagonal elements λ1, λ2 and λ3 in the middle matrix on the right

side are defined as the three eigenvalues of the diffusion tensor. The first and the

third matrixes are orthogonal and transposes of each other, and the three vectors

V1, V2 and V3 are called the eigenvectors of the diffusion tensor associated with

the eigenvalues λ1, λ2 and λ3, respectively.

The eigen-analysis can be understood as a geometric interpretation for the dif-

fusion tensor: Each tensor corresponds to a 3D ellipsoid with three axes defined

by the eigenvalues and the eigenvectors in terms of their lengths and orientations,

respectively. Assume λ1 ≥ λ2 ≥ λ3 ≥ 0; the primary eigenvector V1 is associated

with the primary eigenvalue λ1 and corresponds to the longest axis of the diffusion

ellipsoid, which reflects the dominant direction of the diffusion process.

Several eigen-system based invariant indexes have been widely used to visualize

the diffusion tensor map in various DTI applications. These include146 the Mean

Diffusivity (MD) for visualizing the average diffusion strength in all directions:

MD = 〈D〉 =
λ1 + λ2 + λ3

3
. (34)

The relative anisotropy (RA) for visualizing the degree of anisotropy of the diffusion

tensor:

RA =

√
(λ1 − 〈D〉)2 + (λ2 − 〈D〉)2 + (λ3 − 〈D〉)2

3〈D〉 (35)

and the fractional anisotropy (FA) for visualizing the normalized (0≤FA< 1)

degree of the diffusion anisotropy:

FA =

√
3
(
(λ1 − 〈D〉)2 + (λ2 − 〈D〉)2 + (λ3 − 〈D〉)2

)

2(λ2
1 + λ2

2 + λ2
3)

. (36)

Figure 16 illustrates maps of MD, RA, and FA calculated from the diffusion ten-

sor map acquired from a human brain. In general, the MD map shows high inten-

sities in ventricles and GM, where the diffusion is relatively isotropic with higher

strength. Both the RA and FA maps highlight the WM tracts in the brain, where the

diffusion is highly anisotropic. The primary eigenvector map is also useful for indi-

cating the orientation of the fibrous tissues. Figure 17 illustrates the primary eigen-

vector map of a partial brain by using a line-field technique. The primary eigenvector



268 Y. Yang et al.

Fig. 16. The Mean Diffusivity (MD), Relative Anisotropy (RA), and Fractional Anisotropy (FA)
maps of a same slice on a human brain.

Fig. 17. A primary eigen-vector map calculated from the diffusion tensor data of a part of a
coronal slice of human brain.

is represented by a line segment in each voxel. Directionally Encoded Color (DEC) is

another method to visualize the V1 orientation by color encoding.149 For example,

a color mixed by red, green and blue (r, g, b) components in color space can be used

to indicate the orientation of vector (r, g, b) in 3D space. Recently, a new technique

called “fiber-tracking” was developed to virtually reconstruct the connectivity of

the white matter tracts in the brain based on the primary eigenvector map.150

Despite the successes of DTI in a wide variety of applications, there are still

challenges in dealing with some complex diffusion patterns. A major challenge is

caused by fiber crossings, i.e. the multiple fiber compartments share a single voxel.

In this case, the major eigenvector of the tensor can be substantially biased from the

real fiber orientation. Unfortunately, the DTI formulation cannot offer a complete

solution to this fiber-crossing problem, mainly because of the limitation of the

tensor model itself. This is because the diffusion tensor is only a second order

approximation (in terms of mean square fitting) to the real 3D diffusion process.151
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Diffusion models beyond the tensor, such as High Angular Resolution Diffusion

(HARD) and q-Space Imaging (QSI) are essential to overcome these difficulties.152

7. Application in Perfusion Imaging with Susceptibility

Contrast Agents

MR perfusion imaging using exogenous contrast agents was developed at the end

of 1980s and the early of 1990s.153–160 In the so-called Dynamic Susceptibility

Contrast Magnetic Resonance Imaging (DSC-MRI) techniques, a bolus of para-

magnetic contrast agent is administrated and rapid MR imaging techniques are

employed to collect the MRI signal change during its first pass through the tissue.155

The paramagnetic contrast agents, on the one hand, shorten the longitudinal relax-

ation time T1 due to the short-reaching dipolar coupling between the unpaired

electrons of the paramagnetic contrast agents and the proton nuclear spins. On the

other hand, the paramagnetic contrast agents shorten the tissue T2 as well. This

effect relies on the compartmentalization of the contrast agent, which creates a sus-

ceptibility gradient between the intravascular and extravascular space. The effect

of the susceptibility gradient reaches far beyond the vessels into the surrounding

tissue and thus leads to greater signal attenuation.154 The understanding of the

relationship between the MR signal change and the contrast agent is one of the

keys to DSC-MRI perfusion imaging.

7.1. MR signal change and contrast agent

7.1.1. Susceptibility

When a sample is placed in the magnetic field B0, the actually established magnetic

field within the sample may be different from B0. This phenomenon is explained in

terms of “susceptibility” as follows

B = B0 + M = B0(1 + χ), (37)

where M is the resultant magnetization in the sample and χ is the sample mag-

netic susceptibility constant. The induced magnetization may align with or opposite

to the applied magnetic field, respectively, depending on the number of unpaired

or paired electrons in the sample. Gadolinium chelates (such as Gd-DTPA) are

the commonly used contrast agents in DSC-MRI techniques, possessing sufficient

unpaired electron spins that tend to align with the applied magnetic field, and

therefore, are typical paramagnetic contrast agents.154

7.1.2. Change in T1 in blood and tissue with contrast agents

The delivery of contrast agents into tissue can reduce the T1 of the tissue. In general,

a linear relationship between the increase in the relaxation rate R1 (i.e. 1/T1) and

the blood concentration C of contrast agent exists. Assuming the original relaxation

rate of the tissue is R0
1, the relaxation rate after the injection of a contrast agent, R1,
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can be expressed as

R1 ≡ 1

T1
= R0

1 + r1C, (38)

where r1 is called the longitudinal relaxivity (T1 relaxivity). When a T1-weighted

pulse sequence is used, the MR signal will increase after the injection of a contrast

agent. The linear relationship between the longitudinal relaxation rate and the

concentration of the contrast agent is the basis of the T1-weighted perfusion imaging

techniques.156,161

7.1.3. Change in T2 or T ∗
2 in blood and tissue with contrast agent

In the blood, the Red Blood Cells (RBC) and plasma possess different magnetic

susceptibility constants, χRBC and χplasma. Therefore, a susceptibility gradient

exists in the blood. The contrast agent is usually distributed in the plasma and will

also contribute to the susceptibility difference. The transverse relaxation of blood is

predominantly due to diffusion of water protons through field gradients arising from

the susceptibility difference between the red blood cell and plasma, ∆χRBC/plasma,

expressed as

∆χRBC/plasma = χRBC − (χplasma + χca), (39)

where χca is the volume susceptibility constant of the contrast agent.156 Since

water exchange between intravascular and extravascular space is relatively slow,

the change of tissue T2 and T ∗
2 in the extravascular space is mainly not due to the

water exchange, but to the dephasing of the extravascular spins in the spatially

varying field caused by the magnetic susceptibility gradient between the blood and

tissue.156 At a large dose of a contrast agent, gradient-echo based techniques are

equally sensitive to both macro- and microvasculature and can be used to measure

the total vascular volume. A similar linear relationship between the change of the

relaxation rate ∆R∗
2 and the blood concentration of contrast agent C is given by

R∗
2 ≡ 1

T ∗
2

= R∗0
2 + r∗2C, (40)

where r∗2 is called the transverse relaxivity. This relationship is the basis of perfusion

imaging using DSC-MRI techniques. In contrast to gradient-echo based techniques,

spin-echo based techniques are mainly sensitive to the microvasculature.156,162

7.2. DSC-MRI perfusion imaging techniques

7.2.1. Theoretic basis

The theoretical model used in the DSC-MRI perfusion imaging is established in the

context of tracer kinetics of nondiffusible tracers.163–166 In the model, several key

quantities are defined as follows155,167:

CVOI (t) is the tissue concentration of the tracer in the Volume Of Interest (VOI)

at time t after a bolus of tracer has been injected into the tissue.
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Ca(t) is the blood concentration of the tracer in the feeding artery at time t, and

is generally called Arterial Input Function (AIF).

h(t) is the probability density function of transit time t of the tracer through the

VOI following an ideal instantaneous unit bolus injection. This quantity expresses

the distribution of transit time of the tracer through the voxel and is determined

only by the vascular structure. It is generally called transport function.

R(t) is the fraction of the tracer still present in the VOI at time t following an

ideal instantaneous unit bolus injection. It is generally called the residue function,

and R(t) = 1 −
∫ t

0 h(τ)dτ , where the integral term represents the fraction of the

total tracer that has left the VOI, and R(0) = 1, i.e. all of the tracer is present

within the VOI at time t = 0 immediately after the ideal instantaneous unit bolus

injection.

We firstly establish the inter-relationship between these quantities, from which

we then derive Cerebral Blood Flow (CBF) and other physiologic parameters related

to CBF, Cerebral Blood Volume (CBV) and the Mean Transit Time (MTT) of

blood through a volume of tissue.155,167 Considering a tracer is delivered to the VOI

with an arterial input function Ca(t) and the VOI possess the transport function

h(t), the concentration of tracer in the venous blood CV (t) follows the convolution

relationship

CV (t) = Ca(t) ⊗ h(t) =

∫ t

0

Ca(τ)h(t − τ)dτ . (41)

Assuming a constant arterial blood flow FVOI feeding the VOI, the amount of tracer

entering per unit volume of the VOI is a time dependent product, FVOI Ca(t). Given

that the microvasculature of the VOI possesses a residue function R(t), the amount

of tracer remained in the VOI, i.e. time dependent tissue concentration of tracer,

CVOI (t), follows the convolution relationship:

CVOI (t) = (FVOI Ca(t)) ⊗ R(t) = FVOI

∫ t

0

Ca(τ)R(t − τ)dτ , (42)

As commonly used in the literature,155,156 tissue density ρ needs to be added

to the above expression. In addition, considering the difference in hematocrit

between capillaries and large vessels and the fact that tracers are only dis-

tributed in intravascular and extracellular space (i.e. plasma space), another factor

kH = (1 − Hart)/(1 − Hcap) also needs to be added to the above expression. So the

final expression is as follows

CVOI (t) =
ρ

kH
(FVOI Ca(t)) ⊗ R(t) =

ρ

kH
FVOI

∫ t

0

Ca(τ)R(t − τ)dτ . (43)

Equation (43) is the central equation in the model to estimate the blood flow with

nondiffusible tracer.167 Similarly, we can derive cerebral blood volume in the VOI

as follows155

CBV =
kH

ρ

∫∞
0 CVOI (t)dt
∫∞
0 Ca(t)dt

. (44)
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According to the central volume theorem,163,164 MTT can be calculated from CBV

and CBF

MTT =
CBV

CBF
. (45)

7.2.2. Perfusion calculation from DSC MR signal

The equations given above indicate that the concentration of contrast agent is the

fundamental quantity in the calculation of perfusion parameters. However, MR

scanners cannot measure the concentration directly. So, an important step in MR

perfusion imaging is to convert the DSC MR signal changes during the pass of

contrast agent through tissue to the concentration of contrast agent in blood. As

described earlier, a linear relationship between the change in relaxation rate, R2 or

R∗
2, and the blood concentration of contrast agent is the basis of this conversion.

If the T1-weighting effect during the pass of contrast agent is negligible, the MR

signal, S(t), after the injection of contrast agent follows a simple single exponential

relation154,155,167

S(t) = S0 exp(−TE∆R∗
2(t)) , (46)

where S0 represents the baseline MR signal before the injection of contrast agent.

Based on Eqs. (40) and (46), the concentration of contrast agent can be obtained

from the following relation154,155,167

C(t) = κVOI ∆R∗
2 = −κVOI

TE
ln

(
S(t)

S0

)
, (47)

where TE is the echo time of the pulse sequence, and κVOI is a proportionality

constant depending on the tissue, the type of contrast agent, the field strength,

and the pulse sequence parameters. Similarly, the concentration of contrast agent

in arterial blood, i.e. the AIF, can also be obtained using Eq. (47) with a differ-

ent proportionality constant, κart, due to different physical environments in the

arterial blood. After the tissue concentration-time curve and AIF are available,

CBF, CBV and MTT can be obtained using Eqs. (43), (44) and (45), respectively.

Equation (44) only involves integration of the tissue concentration-time curve and

the AIF. Calculation of Eq. (45) is also straightforward.

To obtain CBF, one needs to deconvolve the tissue concentration-time curve

CVOI (t) with the arterial input function Ca(t) in Eq. (43). A successful decon-

volution is critical to obtain the blood flow, FVOI , accurately. A comprehensive

treatment to this issue has been given in Refs. 167 and 168. There are two main

categories of approaches to deconvolve Eq. (43): Model dependent techniques and

model independent techniques. In the model dependent techniques, a specific ana-

lytical expression is assumed for the residue function, R(t). Because the residue

function is determined only by the tissue microvasculature, this empirical expres-

sion implicitly assumes a specific tissue microvasculature, which, however, may not

have sufficient precision in the actual application. A single decreasing exponential
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is commonly used as the residue function

R(t) = exp(−t/MTT), (48)

where MTT is a parameter representing the mean transit time under this model.

This expression models the vascular bed as a single, well-mixed compartment. Incor-

porating Eq. (48) into Eq. (43), the two parameters FVOI and MTT can be esti-

mated by nonlinear least squares curve fitting, and CBV can then be obtained

with Eq. (45). This is the general processing procedure of the model dependent

deconvolution techniques.

In the model independent approaches, the residue function, R(t), along with

the blood flow FVOI , is estimated from a non-parametric deconvolution procedure

without any prior assumption. The model independent approaches are divided into

two subcategories, the transform approach and the algebraic approach. The trans-

form approach uses a Fourier transform or some other transform, combined with

the associated convolution theorem, to deconvolve Eq. (43). Generally, however,

this approach is very sensitive to noise and filtering is needed to suppress high

frequency noise in the data.167,169

In the algebraic approach, Eq. (43) is reformed as a matrix equation by dis-

cretization of the convolution integral167:

CVOI (tj) =
ρ

kH
FVOI

∫ tj

0

Ca(τ)R(t − τ)dτ

≈ ρ

kH
FVOI

(
tj∑

i=0

Ca(ti)R(tj − ti)

)
∆t, (49)

where ∆t is the sampling interval of the AIF and the tissue concentration-time

curve. Equation (49) can be written as matrix notation:

ρ

kH
∆t





Ca(t1) 0 · · · 0

Ca(t2) Ca(t1) · · · 0
...

...
...

...

Ca(t1) Ca(t1) · · · Ca(t1)








FVOI





R(t1)

R(t2)
...

R(tN )








=





CVOI (t1)

CVOI (t2)
...

CVOI (tN )




, (50)

or

A · b = c, (51)

where b represents the vector of elements FVOI R(ti) and c represents the vector

of tissue concentrations. This is generally an inverse problem and the goal is to

obtain b, from which the estimation of the blood flow and the residue function is

straightforward. Two approaches are commonly used to solve this inverse problem,

one using regularization167,170 and the other is based on Singular Value Decompo-

sition (SVD).167,171,172

Some other issues in perfusion quantification include elimination of the recircu-

lation of contrast agent and the measurement of the AIF. The first one is due to
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the theoretical model assuming only the first pass of contrast agent through the

tissue. The most commonly used method is to fit the concentration-time curve to a

gamma-variate function. A detailed investigation on gamma-variate function fitting

to the concentration-time curves is made in Ref. 173. The measurement of the AIF

is an important factor to the perfusion measurement using DSC-MRI techniques.

The effect of the delay and dispersion of the AIF on the estimation of CBF has

been assessed in numerical simulation in Ref. 174. It was shown that an approxi-

mately 40% underestimation of CBF was introduced by a delay of 1 to 2 seconds

in the AIF.175 The effect of a delay in the AIF can be eliminated using a circular

deconvolution.172 However, the effect of dispersion of the AIF on the quantification

of CBF cannot be ignored because the theoretical model cannot differentiate the

dispersion of the AIF and the dispersion of contrast agent within the VOI that the

indicator dilution theory is based upon.175 Several factors, even conflicting with

each other, can influence the measurement of AIF. To reduce the dispersion of the

AIF, the site for the AIF measurement should be as close to the tissue of interest

as possible. But, the partial volume effect will appear more easily in this case. It

will bring about an underestimation of the AIF, and correspondingly, an overes-

timation of the CBF. To minimize the effect of partial volume, the sampling site

for the AIF should be in a large artery. However, this is opposite to the effort of

reducing the dispersion of the AIF due to a long transit from the artery to the

tissue. Some related issues include which artery should be chosen as the sampling

site for the AIF, and whether a common AIF is used for all the VOIs, or different

AIFs for different VOIs, etc. On the whole, it seems that there is no consensus in

the literature to the issues about the AIF measurement,175 and further studies are

required to provide better solution to these problems.

7.3. Clinical application of the DSC-MRI perfusion

imaging techniques

Conventional MRI is insensitive to the detection of acute stroke. With conventional

MRI, therefore, the cerebral ischemia is seldom studied during the hyperacute phase

(first few hours) until the affected area was already visible on T2-weighted images.

As early assessment of the affected area become critical with the advent of throm-

bolytic therapy, perfusion imaging with DSC-MRI techniques begins to be exten-

sively used in hyperacute diagnosis, identification of tissue at risk, and prediction

of neurological outcome.155

A combined analysis using DSC-MRI, Diffusion-Weighted Imaging (DWI), and

Magnetic Resonance Angiography (MRA) could be used to identify patients who

might benefit from various treatment modalities and those who can avoid the poten-

tial risks associated with thrombolysis and neuroprotective agents. DSC-MRI and

DWI could improve patient selection, guide stroke therapy, and, therefore, improve

the evaluation of new therapeutic strategies.155
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Due to abnormal blood flow and vascular patterns, brain tumors are also com-

mon targets of DSC-MRI studies. Most of these studies use CBV, and a few studies

use the distribution of CBF and other parameters. A good correlation between

CBV and tumor grade has been demonstrated. Cerebral blood volume mapping

has also been used to differentiate recurrent tumor from radiation necrosis, and

to monitor the changes associated with radiotherapy in a group of patients with

astrocytomas. Tumor heterogeneity, not observed in conventional MRI, has been

shown on the CBV maps and the DSC-MRI technique has shown high sensitivity

to small regional CBV variations in the tumor.155
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In the past, a variety of interpolation approaches have been proposed for medical images.
The shape-based interpolation is a well-known and most commonly used method that
can be implemented efficiently and achieve reasonable results. In this chapter, the
morphology-based interpolation is first introduced and it can solve drawbacks in the
shape-based interpolation method. Next, a powerful feature-guided image interpola-
tion is presented. This method automatically finds feature-line segments and integrates
image-warping technique to interpolate shapes. In comparison with the shape-based and
morphology-based methods, the feature-guided method can manage more general image
cases and generate better shape interpolation.

1. Introduction

Clinicians exploit computer graphics tools to enable them to visualize, manipulate,

and quantitate the 3D internal structures of patients. Major sources of data in these

medical applications are gathered from 2D medical-imaging devices such as CT,

MRI and PET. A 3D image, formed by stacking a contiguous series of 2D images,

can be used to visualize complex structures in 3D. However, generally, the number

of image slices generated from these instruments is not adequate enough to produce

high-quality 3D images. Therefore, the 3D reconstruction must be accomplished by

appropriate interpolation methods to fill gaps between available image slices.

A variety of approaches have been proposed to reconstruct 3D objects. Among

these works, the simplest method is to linearly interpolate the gray values in the

slices to fill in the gray values in the missing slices.1–3 With this scheme, an artifact

always arises when the location of a boundary between two uniform regions shifts

considerably between two adjacent slices.

Raya et al.4 and Herman et al.5 proposed shape-based methods by encoding

the segmented image with distance codes. This approach interpolates the distance

instead of the gray values and therefore maintains better geometric changes than

the gray-value interpolation. Because the shape-based method can be implemented

efficiently and achieve reasonable interpolation results, it has become a widely used

method. However, it cannot deal effectively with objects with holes, large offsets,

or heavy invagination. To overcome these drawbacks, Guo et al.6 and Lee et al.7
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develop a morphology-based interpolation method. This method first overlaps the

two slices to obtain a Morphologically Difference Image (MDI) and then applies a

sequence of dilation and erosion operations on non-overlapping regions to achieve

interpolation. This method successfully resolves the problems in objects with holes

and large offsets.

In this chapter, the shape-based interpolation and the morphology-based inter-

polation are introduced first. A feature-guided image interpolation scheme8 is then

presented. It is an effective and improved shape-based interpolation method used

for interpolating image slices in medical applications. This approach integrates fea-

ture line-segments to guide the shape-based method for better shape interpolation.

An automatic method for finding these line segments is given. This approach can

manage translation, rotation and scaling situations when the slices have similar

shapes. It can also interpolate intermediate shapes when the successive slices do

not have similar shapes.

2. Shape-Based Interpolation

Shape-based interpolation converts segmented binary images into distance maps.

The value of distance maps is the Euclidean shortest distance between the pixel

and the boundary of the organ (positive values for inside the organ and negative

values for outside). Therefore, the distance of a pixel P is defined by (1)

dist−map(P ) =






0 if P ∈ ∂X

+dis(P, ∂X) if P ∈ X

−dis(P, ∂X) if P /∈ X

, (1)

where

X represents the object;

∂X represents the contour of the object X ;

dist(P, ∂X) represents the shortest distance from P to ∂X.

The intermediated slices can be interpolated by thresholding the distance maps

at zero. Unfortunately, if there is no prior alignment between two input images, the

shape-based interpolation cannot perform well, For example, in Figs. 1(a) and (b),

there are two contours denoted as R1 and R2 on two binary images. Without

an appropriate alignment, the shape-based scheme creates a bad interpolation in

Fig. 1(c), where there is no contour in this interpolated image. If an appropriate

alignment is performed (i.e. match the centroids of two objects prior to distance

transformation (as shown in Fig. 1(d)), a better interpolation (as shown in Fig. 1(e))

can be obtained.

In Refs. 4 and 5 a variety of distance transformations for digital images are

discussed. In general, most approaches concentrate on using difference convolu-

tion masks such as city block or chamfer template to efficiently approximate the

Euclidean shortest distance. Considering the example of Fig. 2. There are two

objects X0 and Xn+1. The object Xn+1 fully enclosed the object X0. In this case,
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(a) (b) (c) (d) (e)

Fig. 1. Shape-based interpolation and object centralization.

P
PE

PD

X0

Xn+1

:

: +

Euclidean Distance

Dilation Based Distance

Fig. 2. Dilation based distance versus Euclidean distance.

I III

II

X0

Xn+1

Fig. 3. Morphology difference between X0 and Xn+1 after object centralization.

a pixel P belonging to Xn+1 will correspond to PE on X0 using Euclidean shortest

distance transformation. This result seems awkward, since a better result would

have the intermediate pixel moving from P to PD.

To overcome these drawbacks, Guo et al.6 and Lee et al.7 present the

morphology-based interpolation method. In this method, only the non-overlapping

regions are interpolated using a sequence of dilation and erosion operations. First,

the two corresponding objects X0 and Xn+1 are aligned using object centraliza-

tion. After this alignment, there are three kinds of possible portions: Regions I, II,

and III, respectively (as shown in Fig. 3). Regions I and II represent the morpho-

logical difference between the two objects X0 and Xn+1. Then, apply a dilation

operator to both regions I and II, respectively. The purpose of this step is to obtain
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the dilation-based distance from the pixel P (i.e. on region I or II) to the boundary

of region III. Next, apply an erosion operator to interpolate the results.

Algorithm Dilation Based Distance Coding

Begin

/* a. initialize */
index ← 0 ;
Initialize all elements of Array A0 and An+1 to be −1;
Set elements A0(x, y) to be 0, if the pixel (x, y) ∈ X0;
Set elements An+1(x, y) to be 0, if the pixel (x, y) ∈ Xn+1;
For each pixel (x, y) of ∂X0

Insert a new node M(x, y, 0, n + 1, 0) into the active dilation contour list LD ;
For each pixel (x, y) of ∂Xn+1

Insert a new node M(x, y, n + 1, 0, 0) into the active dilation contour list LD

/* b. entering dilation process */
While LD is not empty

Retrieve the first node of the list LD and denoted as N(x, y, a, b, d)
/* c. the same dilation layer */
If N · d = index then
/* d. check if 4-neighbors could be updated as the next dilation layer*/

For each four-neighbor P (x′, y′) of (N.x, N.y)
/* e. check if inside another object */

If P ∈ Xb then

If Aa(P ) ≥ 0 and Aa(P ) ≤ index + 1 then

No update on Aa(P ) and LD ;
Else

Insert point P into the tail of the list LD

with (x′, y′, a, b, index + 1);
Aa(P ) ← index + 1;

/* f. next dilation layer */
Else

index ← index + 1;
Insert node N back to the first position of the list LD ;

End

The above pseudo-code is the dilation-based distance transformation algorithm.7

In this algorithm, two arrays A0 and An+1 are used to store the distance codes for

regions II and I, respectively. Initially [part (a) in algorithm], each pixel of the

distance maps is set to be −1 (i.e. outside X0 or Xn+1) or 0 (i.e. inside X0 or

Xn+1). Then, all pixels of both ∂X0 and ∂Xn+1 are inserted into a list called active

dilation list LD. The distance code of these contour pixels is all zero. Assume a

smaller object X0 is fully enclosed by a larger object Xn+1. Start from each node

at active linked list LD to perform the dilation [part (b)]. In other words, start

the dilation from layer zero, since the distance code of all nodes at LD is zero

(i.e. contour pixels at both ∂X0 and ∂Xn+1). In the course of dilation, there will

be many dilation layers created in a monotonically increasing order (distance code

value) and each layer has an equal distance code [part (c)]. Furthermore, once a

layer is totally completed, another layer is then started [part (f)]. While performing

dilation, a node will insert a new node belonging to the next layer into the tail

of LD. Therefore, this newly added node will not start dilation until those nodes
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(with smaller distance codes) in front of it finish dilation. The whole dilation will

be repeated until there is no pixel with −1 within the morphology difference region

[part (e)].

3. Feature-Guided Shape-Based Image Interpolation

In this section, a feature-guided interpolation scheme is presented. Figure 4 shows

a brief overview of this interpolation scheme. This scheme can be divided into the

following steps. For any given two consecutive segmented images (binary images),

extract the contours for the objects of interest. Compute the object matching and

create positive and negative object (i.e. hole) pairs. For each object pair (positive

or negative), generate the corresponding distance maps. The feature line-segments

are found automatically and warping is used to interpolate the intermediate dis-

tance maps. Next, by threshold the distance map at zero to obtain the interpolated

contours. If creating multiple contours is required, such as branching or holes, some

of the above procedures must be processed several times (see the dashed line in

Fig. 4). Finally a contour-blending task is required to combine all interpolated con-

tours together to obtain the correct results. In the following subsections, these main

steps for this interpolation scheme are presented.

3.1. Pseudo-object generation

In the image slices, the holes will be treated as negative objects and the organs

will be treated as positive objects. For any negative object pair, there must exist

a corresponding positive object pair. Sometimes one hole is inside one object, but

there is no corresponding hole inside the other object. In such a situation, a pseudo-

object must be created. Similarly, if a positive object is on a slice and there is

no corresponding positive object on the other slice, a pseudo-positive object will

Fig. 4. The flowchart of the feature-guided shape-based interpolation algorithm.
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Fig. 5. Pseudo-object generation.

be created. To generate a pseudo-positive object is very straightforward. Assume

there is a positive object and its center is at Ccentroid . Then, on the other slice,

a corresponding pseudo-positive object is created at Ccentroid with a size of one

pixel. For a pseudo-negative object, there is some extra work described as follows.

In Fig. 5, there are two corresponding objects and their centroids are O1 and O2.

These two objects are bounded by boxes A1B1C1D1 and A2B2C2D2. Each box is

further divided into four subregions (AiOi, BiOi, CiOi, DiOi) based on Oi. Assume

there is a hole on the first and its centroid is Ccentroid . In Fig. 5(a), suppose Ccentroid

is located in D1O1 (denoted as region1). Then, a pseudo-object will be created at

D2O2 (denoted as region2) in Fig. 5(b), too. The size of this pseudo-object is one

pixel and its centroid C′
centroid

can be computed in (2) and (3).

−−−−→
Voc2 · x =

−−−−→
Voc1 · x · length of region

2

length of region
1

−−−−→
Voc2 · y =

−−−−→
Voc1 · y · width of region

2

width of region
1

, (2)

C′
centroid = O2 +

−−→
Voc2 . (3)

In (4) and (5), Vocl is a vector from O1 to Ccentroid . If, instead, one tries to compute

C′
centroid

directly by O2 + Vocl, it could incorrectly create a pseudo-object outside

the object (as shown in Fig. 6).

3.2. Object matching

Multiple objects may exist on two input slices. In this situation, the matching

problem must be solved. In here, a simple method is provided. First, for each

potential object pair (a, b), a score of matching can be evaluated by (4). Then, if

this score is higher than a threshold, this object pair is matched. In (4), two factors

are taken into account: (i) Object pair (a, b) is overlapped or not (i.e. returns 1

or 0), and (ii) the distance between two object centers is within a range or not.
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Fig. 6. Example of incorrect pseudo-object generation.

Fig. 7. An example of interpolation using the matching policy.

Both w1 and w2 are user-specified weights to compute (4). For a given object pair,

the distthreshold can be selected as the sum of width and length of the larger object.

Figure 7 shows an interpolation result using this matching policy.

score−match = overlap(a, b) × w1 + (dist threshold − dist(a, b)) × w2. (4)

3.3. Shape-based interpolation using warping

The object contour pairs (Cs, Cs+1) are extracted from two matched objects X0

and Xn+1. Two distance maps (Ds, Ds+1) are computed using any distance trans-

formation algorithm. After the corresponding feature line-segments are computed

(will be described later) for (Cs, Cs+1), a warping technique9 is used to fill in

the distance information for the intermediate distance map Dt. To create Dt, the

warping is divided into two main steps. First, two deformed distance maps (D′
s,

D′
s+1) from (Ds, Ds+1) are computed according to the control line-segments. The

two deformed (D′
s, D′

s+1) maps are then linearly blended to generate Dt. Each
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control line segment is directed. For each corresponding pair of line segments PsQs

and Ps+1Qs+1 on (Ds, Ds+1), the warping computes an intermediate line segment

PtQt, where 0 ≤ t ≤ 1, Pt = Ps ∗ (1− t)+ t ∗ Ps+1 and Qt = Qs ∗ (1− t)+ t ∗ Qs+1.

The deformed D′
s can then be computed as follows. For each pixel coordinate P of

D′
s and its corresponding image pixel P ′ on Ds, the warping computes P ′ using:

u =
(P − Pt) • (Qt − Pt)

‖Qt − Pt‖2
, (5)

v =
(P − Pt) • Perpendicular (Qt − Pt)

‖Qt − Pt‖
, (6)

P ′ = Ps + u • (Qs − Ps) +
v • Perpendicular(Qs − Ps)

‖Qs − Ps‖
, (7)

where the value u is the position along the line normalized by the distance PtQt and

v is the distance from the line and procedure Perpendicular() returning a vector

that is perpendicular to the input vector. The idea is very simple in the above

equations. Both directed lines PtQt and PsQs define their local coordinate systems.

For the corresponding P and P ′, their local coordinates are (u, v) in these two

local systems defined by PtQt and PsQs. The warping method uses multiple line

segments. Assume that P ′
1, P

′
2, . . . , P

′
n have been computed due to n corresponding

line segments. The combined point P ′ for P can be calculated as follows:

P ′ =

∑n
i=1 wi ∗ P ′

i∑n
i=1 wi

and wi = (a + distance)−b, (8)

where the distance is the distance from point P to each line segment on D′
s. The

parameter a is a small number to avoid wi being a zero value and the parameter b

is used to control the rate of degradation influence per each line segment. In this

manner, the warping function calculates P ′ for P. We then let the distance value

for P on D′
s be the distance for P ′ on Ds. Using procedures similar to those above

we can also compute the deformed D′
s+1. Now, we have computed two deformed

(D′
s, D′

s+1) maps for the intermediate Dt. Next, both D′
s and D′

s+1 are blended in

a linear manner to calculate Dt using:

Dt(P ) = D′
s(P ) ∗ (1 − t) + D′

s+1 ∗ t, (9)

where 0 ≤ t ≤ 1 and P is a pixel coordinate. The above procedures are called a

feature-guided shape-based interpolation method.

3.4. Automatically computing control line segments

In this section an approach to compute corresponding line segments for a given con-

tour pair (Cs, Cs+1) will be presented. This approach consists of three main tasks:

(i) Finding the principle axis of each contour, (ii) simplifying the input contours

and (iii) contour matching. These three tasks will be presented in the following

sections.
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3.4.1. Principle axis alignment

Given two input contours, align their principle axes must be aligned before finding

their corresponding line segments. A 2D contour C consists of n points and any

two consecutive points pi and pi+1 of these n points can form a line segment. The

coordinate of pi is denoted as (pi · x, pi · y). The principle axis of a contour C can

be computed from its Σ, covariance matrix, where Σ is defined by:

Σ =





1

n

n∑

i=1

{(pi ·x − m ·x)(pi ·x − m ·x)} 1

n

n∑

i=1

{(pi ·x − m ·x)(pi ·y − m ·y)}

1

n

n∑

i=1

{(pi ·y − m ·y)(pi ·x − m ·x)} 1

n

n∑

i=1

{(pi ·y − m ·y)(pi ·y − m ·y)}




.

(10)

In the above equation, (m · x, m · y) represents the average of n points. The cor-

responding eigenvector of maximum eigenvalue λ of Σ defines the principle axis of

the contour C. The principle axes for the two input contours (Cs and Cs+1) can be

computed and their axes are denoted Vs and Vs+1, respectively. The included angle

θ between Vs and Vs+1 is then determined. Using this included angle θ, each pi of

Cs is then rotated to achieve alignment using:

p′i = R(θ) ∗ pi, (11)

where R(θ) is the rotation matrix.

3.4.2. Contour simplification

In the feature-guided shape-based interpolation scheme, line segments are used to

control the shape-based interpolation. Ideally, the line segments will not be too

many and should be features of the given contours. For this purpose, the optimal

polygonal approximation of digitized curves10 is performed. In Ref. 10, the error

function, error (i, j) is used to estimate the local approximation and is equal to the

square Euclidean distance from contour each point from (xi, yi) to (xj , yj) to its

orthogonal projection onto the line y = ax+ b defined by (xi, yi) and (xj , yj) using:

error(i, j) =

j∑

t=i

(yPt
− axPt

− b)2

a2 + 1
, (12)

where Pt is a point from (xi, yi) to (xj , yj). Figure 8 shows an example using

this method. After simplification, only the feature points of a given contour are

left. In the next subsection, we will describe a matching method to determine the

correspondence among these feature points.

3.4.3. Contour matching

Let Cs(u), u ∈ [0, 1] and Cs+1(v), v ∈ [0, 1] be two parametric curves for the source

and input contours. To establish the correspondence between the two curves, two
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Fig. 8. Contour simplification: (a) An input contour consists of 999 points. (b), (c) and (d) are
simplified contours of (a) consisting of 250, 60 and 12 points, respectively.

matching criteria are considered: Intensity and geometry similarities. The image

correlation is used to evaluate the intensity similarity. Assume that two contours

are originally extracted from two given gray-level image slices Is and Is+1. For two

contour points pi
s and pj

s+1 on Is and Is+1, their image correlation can be computed

using:

C(pi
s, p

j
s+1) =

σ2
s,s+1

(σ2
sσ2

s+1)
1/2

, (13)

where σ2
s and σ2

s+1 are the variances in intensity value for two m∗n blocks centered

on pi
s and pj

s+1, respectively. σ2
s and σ2

s+1 are computed using:

σ2
k =

n∑

j=1

m∑

i=1

{Ik(i, j) − µk}2/(mn) for k = s, or s + 1, (14)

and σ2
s,s+1 is covariance of Is and Is+1, and can be computed using:

σ2
s,s+1 =

n∑

j=1

m∑

i=1

[{Is(i, j) − µs}{Is+1(i, j) − µs+1}]/(mn). (15)

For a continuous parametric curve C(x), we can compute its unit tangent vector

T (x) using the following:

T (x) =
dC(x)

dx∥∥∥dC(x)
dx

∥∥∥
=

C′(x)

‖C′(x)‖ . (16)

The geometric similarity of Cs(p
i
s) and Cs+1(p

j
s+1) is evaluated using the inner

product of Ts(p
i
s) and Ts+1(p

j
s+1). This inner product is denoted using:

〈Ts(p
i
s), Ts+1(p

j
s+1)〉. (17)

The basic idea is that when two curves are matched, each correspondence pair

(pi
s, p

j
s+1) has an equal tangent vector (i.e. inner product is equal to 1). Therefore,

when all of the equal tangent vectors between two curves are found, the best match

occurs when the sum of Eq. (17) for all correspondences is the maximum. After the

contour simplification discussed in Sec. 3.4.2, assume that both Cs(u) and Cs+1(v)

consist of m points and each point is denoted as Cs(p
i
s) and Cs+1(p

j
s+1), where
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Fig. 9. Contour matching: (a) and (b) are the input contours on Is and Is+1. Each corresponding
point pair is shown using a line connecting two corresponding points on two contours in (c).

1 ≤ i, j ≤ m. To find the best matched points between Cs(u) and Cs+1(v), the

solution is computed using the following:

max
j(i)

m∑

i=1

{w1 ∗ 〈Ts(p
i
s), Ts+1(p

j(i)
s+1)〉 + w2 ∗ C(pi

s, p
j(i)
s+1)}. (18)

To evaluate Eq. (18), Cs+1(p
j
s+1) is re-parameterized using Cs+1(p

j(i)
s+1) to find the

solutions. Where w1 and w2 are the weights for the intensity and geometry similar-

ities. In addition, the re-parameterization must be subject to j(1) = 1, j(m) = m

and j(i) ≤ j(i+1). In here, the dynamic programming can be adopted to solve this

optimization problem. First, a cost function is defined as (19)

Cost(i, j) = min(Cost(i − 1, j − 1),Cost(i − 1, j),Cost(i, j − 1))

+ w1 ∗ 〈Ts(p
i
s), Ts+1(p

j
s+1)〉 + w2 ∗ C(pi

s, p
j
s+1). (19)

The meaning of Cost(i, j) is interpreted as the optimal cost for matching the first

i samples of Cs(u) with the first j samples of Cs+1(v). The time complexity of

Cost(i, j) is O(ij) using the dynamic programming approach. Figure 9 shows an

example of matching two curves using the proposed method. In this example, each

corresponding point pair is shown using a line connecting two corresponding points.

After the matching task, these matched points will define corresponding points

between the two contours and two consecutive feature-points from a feature line-

segment on each contour.

3.5. Solving interpolation problems

The example shown in Fig. 10 is a brief overview of the feature-guided shape-based

interpolation scheme. In this scheme, the distance maps Ds (Fig. 10(a)) and Ds+1

(Fig. 10(b)) for two input contours Cs and Cs+1 on image slices Is and Is+1 are

created first. The feature line-segments are then computed from the algorithms pre-

sented in Sec. 3.4 to generate two warping distance maps D′
s (Fig. 10(c)) and D′

s+1

(Fig. 10(d)). Next used Eq. (9) to linearly interpolate any number of intermediate

distance maps.
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(a)

(b)

(c)

(d)

(e)Warping

Warping

Blending

Fig. 10. The warping procedures to interpolate contours.

As mentioned earlier, this interpolation scheme separately interpolates positive

object pairs and negative object pairs. Therefore, these objects must be combined

using:





X+
R =

⋃
Xi if Xi ∈ positive object

X−
R =

⋃
Xi if Xi ∈ negative object

XR = X+
R − X−

R

. (20)

In (20), objects X+
R and X−

R are blended results for the positive and negative

objects, respectively. This equation defines the blending order : Blend all positive

and negative objects separately and then subtract X−
R from X+

R .

4. Experimental Results and Discussion

Figure 11 shows a comparison between the interpolation result generated by the

shape-based interpolation method and that generated by the feature-guided shape-

based interpolation scheme. In this case, the shape-based interpolation method does

not perform well due to the matched objects with large offsets. In the morphology-

based interpolation, the object centralization is used to have one object enclosed

by another before interpolation.6,7 However, the conventional centralization (i.e.

aligning the centroids of the two objects) sometimes failed when the objects are

concave. In this issue, the feature-guided interpolation method can manage this

problem well. This method interpolates the slices with a warping function described

in Sec. 3.3. Therefore, this method has the ability to manage the matched object

with large difference.

In the following examples, all corresponding point pairs are shown using lines

connecting the corresponding points among the contours. Figure 12 shows an exam-

ple of the object slices with holes. In this example two contour pairs are cre-

ated: A positive pair for the outer contours and a negative pair for the inner
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(a)

(d)

(b) (c)

(e)

Fig. 11. (a) is the original frames; (b) is the interpolation result generated by the shape-based
interpolation method; (d) is the interpolation result generated by the feature-guided shape-based
interpolation scheme; (c) and (e) are the rendered results of the (b) and (d), respectively.

(a) (b) (c) (d)

(e)

Fig. 12. Objects with a hole: (a), (b) are the original frames, (c) left: Positive pair and (c)
right: Negative pair; (d) the rendered result of interpolated volume and (e) shows a sequence of
interpolated object.

hole-contours. The feature-guided interpolation scheme will generate two interpo-

lated contours: One for a positive pair and one for a negative pair. The two con-

tours are then blended to generate a desired contour. Figure 13 shows a branching

case. In this example, there are three matched pairs. The feature-guided interpo-

lation scheme will independently interpolate these three positive object pairs. The

final contour can then be reconstructed from the union of these three interpolated

contours.

Figure 14 shows the interpolation result using the feature-guided method to real

3D molar data. The number of the original slices of the molar volume is 16 as shown

in Fig. 14(a). Figure 14(b) shows two views of the reconstructed results.
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(a) (b) (c) (d)

(e)

Fig. 13. Branching case: (a) and (b) original slices, (c) matched object pairs, (d) the rendered
result of interpolated volume and (e): a sequence of interpolation.

(a)

(b)

Fig. 14. Molar volume reconstruction. Original input images were scanned from V. Chatzis and
I. Pitas.11
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CHAPTER 10

NON-PARAMETRIC PIXEL APPEARANCE PROBABILITY
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We describe a non-parametric pixel appearance probability model to represent local
image information. It allows an optimal image analysis framework that integrates low-
and high-level stages to substantially improve overall accuracy of object reconstruc-

tion. In this framework, feature detection would be an overall consequence rather than
an intermediate result. The pixel appearance probability model is a probability den-
sity function obtained by grid quantization. A grid is found by a genetic algorithm
and a local refinement algorithm. The density values in each cell of the grid are
computed by smoothing neighboring cells. We apply the pixel appearance probabil-
ity model to represent features of echocardiographic images. We illustrate the substan-
tially improved performance on left ventricle surface reconstruction due to the proposed
model.

Keywords: Non-parametric pixel appearance probability model; grid quantization; ultra-
sound imaging.

1. Introduction

The ultimate goal of medical image analysis is to acquire quantitative represen-

tations of objects that are of medical concern from observed images. In echocar-

diography, one objective is to create a three-dimensional (3D) Left Ventricle (LV)

surface model, including the EPIcardium (EPI), the outer surface of the LV, and

the ENDOcardium (ENDO), the inner surface of the LV. A standard two-stage

approach comprises feature detection and object reconstruction. Feature detection

classifies each pixel into categories such as edges and regions. Established tech-

niques based on pixel intensities and their derivatives, known as low-level operators,

are able to reliably perform feature detection on images of good quality. Detected

features are fed into an algorithm for object reconstruction, known as high-level

297
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methods. Such a two-stage framework is computationally efficient and is feasible

when image quality is high. However, noisy imagery is particularly common in

ultrasound imaging. Under uncertainty due to low signal-to-noise ratio, low-level

feature detection by inspecting only the local neighborhood of each pixel is inaccu-

rate. To overcome the unreliable feature detection, we advocate an image analysis

framework that integrates low- and high-level stages to substantially improve overall

accuracy of object reconstruction.

Rather than using detected features to represent information in images, we will

adopt a much richer representation of the low-level information using a grid quan-

tization technique. Statistical and computational considerations lead to this choice.

This representation is non-parametric and carries much less biases than a paramet-

ric one such as an appearance-based model using a multivariate normal distribution.

Grid quantization alleviates the online computation and storage burden of standard

non-parametric ones. A grid can be trained either in conjunction with a high-level

model or directly from low-level groundtruth.

The grid quantization technique is used to obtain the pixel appearance prob-

ability model in three steps. In the first step, a global grid is found by a genetic

algorithm; in the second step, the grid is refined by a fast local algorithm; in the

last step, probability density values are obtained for each cell in the grid.

Training of the pixel appearance probability model usually involves much more

than a single run of grid quantization, when pixel classification is not available or

unreliable. We provide a generalized EM algorithm to handle such situations when

only images and object models are available with no edge information.

We applied the pixel appearance probability model in reconstructing the 3D left

ventricle surface model from 2D images. We reduced the reconstruction error by

about 2.6mm when compared with a standard two-stage approach.

In this chapter, we will review related work to pixel appearance probability

models in Sec. 2. We describe an integrated framework in Sec. 3 and explain the

role of a pixel appearance probability model in the integrated framework. In Sec. 4,

we deal with the technicalities of grid quantization. We introduce a pixel appearance

probability model for echocardiographic images in Sec. 5 and a pixel class prediction

probability model in Sec. 6. A method to train the two models is given in Sec. 7,

when low-level edge information is not available. We illustrate the performance

of 3D left ventricle surface reconstruction in Sec. 8. In Sec. 9, we summarize this

chapter.

2. Related Work

Chakraborty et al. integrate gradient and region information when performing pixel

classification.1 The region information is modeled by Markov random fields without

shape statistics applied. Cootes et al. model image pixels by the statistical active
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appearance models,2,3 which are equivalent to parametric multivariate normal prob-

ability models. They combine the active appearance models and the active shape

models to find the best 2D contour from images. Pixel classification decisions are

still made but might change during the model fitting iterations. This iterative clas-

sification scheme allows shape statistics to guide local feature detection, though it

may not necessarily be optimal in the Bayesian sense. As far as we know in the liter-

ature, only Mignotte and Meunier have explored the idea of modeling shapes from

images without an explicit feature detection stage.4 Their treatment is more or less

intuitive and lacks for a systematic account. By contrast, we will use the Bayesian

framework to integrate the low-level image information and high-level prior shape

knowledge through a pixel class prediction mechanism.

To represent image feature vectors, parametric statistical models are widely used

in general and Gaussian distributions in particular. However, in a noisy imaging

environment, Gaussian models or other simple parametric models are not effective

because of their large modeling biases. Standard non-parametric kernel methods are

seldom employed owing to their low efficiency when dealing with millions of feature

vectors, which is not an especially large sample size for pixel based applications. An

alternative to kernel methods is quantization, which is a function that maps a larger

set to a smaller one. Two steps, discretization and representation, are performed

during quantization. The discretization step determines the size and shape of the

cells by partitioning the larger set into smaller subsets. The representation step

assigns summary statistics to each cell.

For discretization, equal bin width histograms or their simple extension in multi-

dimensions have often been adopted, because they are computationally efficient.

However, they are not statistically effective for two reasons. First, the cells are

blindly allocated in advance, not adapting to the data. Second, the normalized

frequency may be zero for many cells and there is no guarantee for the con-

sistency of the density estimates. The statistically equivalent blocks approach is

an early tree-structured partitioning scheme.5 The CART algorithm is a tree-

structured classifier.6 Grid-based partition schemes are studied, e.g. multivariate

ASH,7 STING algorithm,8 OptiGrid algorithm,9 STUCCO algorithm10 and Adap-

tive Grids.11 All these multivariate discretization approaches are sub-optimal algo-

rithms; most of them are greedy. For tree-based algorithms, it is evident since a

tree is constructed level by level using a certain greedy method and does not pos-

sess a global optimal measure. For grid-based algorithms, a grid can be acquired

randomly12,13; the grid lines can be equally spaced7; a grid is improved by merg-

ing adjacent intervals by hypothesis testing10; the adaptive grids technique merges

dense cells.11

Splines or local polynomials have been used to delineate a probability den-

sity function over each cell, but they are not computationally efficient in a multi-

dimensional space. On the other hand, using the empirical density directly leads to
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empty cells. Existence of empty cells is particular prominent in a high dimensional

space, due to the increased sparsity of data. WARPing14 and averaging shifted

histograms15 smooth cell density estimates. Otherwise there are relatively few meth-

ods. We will present a closely related smoothing method for grid quantization.

3. A Framework to Integrate Low- and High-Level Stages

Although the pixel appearance probability model to be discussed can be used sep-

arately from high-level object reconstruction, it is best understood under a frame-

work that integrates the low- and high-level stages. We use a Bayesian framework

to formulate the overall object reconstruction problem:

max
Θ

p(Θ|Z) (MAP Rule),

where Θ is the object model, Z is the feature vector of a pixel, p(Θ|Z) is the

posterior probability of Θ given Z. This formulation is known as the maximum

à posteriori (MAP) rule. By Bayes’ Theorem, the MAP rule is equivalent to

max
Θ

p(Θ|Z) = max
Θ

p(Θ)p(Z|Θ)

p(Z)
∝ max

Θ
p(Θ)p(Z|Θ), (1)

where p(Θ) is the prior probability of object model Θ and p(Z|Θ) is the condi-

tional probability of observed feature vector Z given an object model Θ. We also

call p(Z|Θ) the object appearance model, capturing the overall imaging system

behavior.

The prior probability p(Θ) is application-specific. For a surface object model, it

can be the prior probability characterizing smoothness, or the shape of the objects,

or several user input points. p(Z) is the probability of observing a particular fea-

ture vector Z, the knowledge of which is only necessary when the exact posterior

probability is desired. Computing p(Z|Θ) directly is difficult because of the many

degrees of freedom of the feature vector Z.

Feature detection precisely avoids finding the functional form of p(Z|Θ). We use

Y to denote the class label of a pixel, marking each pixel to be visible as either

on or off the object. If we can detect the class labels for each pixel, we can search

for an object model Θ∗ that fits the class labels best, instead of fitting to the

original images. These two stages, i.e. feature detection and model fitting, form a

standard approach of object reconstruction, summarized as Algorithm 1. P (Y |Z) is

the posterior of a class label Y given the feature vector Z. p(Z|Y ) is the likelihood

of the class label Y for the feature vector Z. p(Θ|Y ) is the posterior of the object

model Θ given the class label Y . P (Y |Θ) is the likelihood of the object model Θ for

the class label Y . Estimation of p(Z|Θ) is unnecessary in this framework. Instead,

we estimate p(Z|Y ) and P (Y |Θ), as well as apply suitable priors P (Y ) and p(Θ).

However, if we have to detect class labels on fuzzy images, the two-stage framework

does not yield an optimal Θ∗ because the detected class label Y ∗ from the first

stage may be unreliable.
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Algorithm 1 Two-stage object reconstruction.

Stage 1. Feature detection. Find Y ∗ that solves

max
Y

P (Y |Z) ∝ max
Y

P (Y )p(Z|Y );

Stage 2. Model fitting. Find Θ∗ that solves

max
Θ

p(Θ|Y ∗) ∝ max
Θ

p(Θ)P (Y ∗|Θ).

In the integrated approach to be proposed, we will not assign a class label

to each pixel, but will profile each pixel by probabilities of having different class

labels. We still need the class label Y to avoid direct off-line estimation and online

computation of p(Z|Θ). Being not directly observable, a class label serves as a

hidden bridge between the feature vector Z and the object model Θ. Under the

assumption that an object model Θ1 inferred from both the feature vector Z and

the class label Y has the same probability distribution as the object model Θ2

inferred from only the class label Y , we can obtain the following theorem.16

Theorem 1. (Integrated object inference) The posterior probability of an object

model Θ given the observed feature vector Z can be written as

p(Θ|Z) =
p(Θ)

p(Z)

K∑

y=1

P (Y = y|Θ)p(Z|Y = y), (2)

with the assumption p(Θ|Z, Y ) = p(Θ|Y ). K is the number of pixel classes.

The integrated object inference theorem leads to the integrated approach of object

model optimization

Θ∗ = argmax
Θ

p(Θ)
∑

y

P (Y = y|Θ)p(Z|Y = y), (3)

where Θ∗ is an optimal object model. The interpretation behind the integrated

approach is as follows. Every image pixel is assigned a likelihood profile of being

different classes p(Z|Y ). Another class probability P (Y |Θ) profile is predicted from

an object model. When the likelihood profile P (Y |Z) and the predicted class prob-

ability profile P (Y |Θ) match well, the object model that generates the predicted

class probability profile is a good explanation of the images. If p(Z) can be calcu-

lated, we can get the posterior p(Θ∗|Z) which indicates the goodness of the solu-

tion Θ∗. When P (Y |Z) has a single narrow peak, the maximization of p(Θ|Z) can

be approximated by the two-stage approach. However, the two-stage approximation

generally is not optimal in the sense of the Bayesian framework and may lead to less

consistent results. We call P (Y |Θ) the Pixel Class Prediction (PicPre) probability
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model, meaning that the class label Y can be predicted probabilistically from a

given object model Θ. We call p(Z|Y ) the Pixel Appearance (PixApp) probability

model, because p(Z|Y ) depicts probabilistically the appearance of a pixel with the

class label Y .

4. Grid Quantization

Grid quantization we describe is a non-parametric statistical pattern recognition

technique. It partitions the space into hyper-rectangular cells shown in Fig. 1 and

estimates the probability density for each cell. Non-parametric methods do not

necessarily guarantee a minimum variance estimate. However, it does not have

the potentially large modeling biases inherent in parametric models that do not fit

reality. Non-parametric models usually require a larger sample size than parametric

models, since the degrees of freedom of non-parametric models are usually much

greater than parametric models. However, a larger sample size almost always implies

more CPU cycles and memory capacity. Best control variables in a non-parametric

model are typically determined during the time consuming off-line training. The

online CPU cycles and the memory requirement are evidently high for standard

non-parametric models, which might be unacceptable in some applications. For

example, a kernel method often estimates the density value for a single point from

the sample directly, typically involving the entire data with the implication that

time and space are at least in proportion to the sample size.

Grid quantization alleviates the online computation and storage burden of stan-

dard non-parametric techniques. Grid quantization finds the most effective non-

parametric representation of the data, for given computation resources, in terms

of CPU cycles, memory requirement and the targeted performance. It requires an

intensive off-line training in order to determine the best representation. Grid quanti-

zation possesses the scalability to trade more resources for performance. In contrast,

it is prohibitive to scale most other non-parametric models. A grid quantization

locates the most important regions in the feature space which are then finely

quantized, while unimportant regions are coarsely quantized. What determines

Fig. 1. The grid partition pattern.
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importance relies on the pattern recognition task. We will use a convex combi-

nation of average log likelihood, entropy, classification accuracy. Kernel methods

treat equally everywhere in the space and for unimportant regions, there exists the

potential of wasting resources. A concern might arise for the quantization effect,

but to accomplish acceptable results does not necessarily entail infinite resolution

quantization. Since a grid is constructed by adapting to the data, the quantization

effect can be minimized for a particular task.

We choose grid quantization pattern because it is a reasonable tradeoff between

computational and statistical efficiencies. Other options are less attractive. For an

equal spacing grid, retrieval efficiency is linear in the dimension and does not depend

on the number of cells. However, an equal spacing grid may not be statistically effi-

cient. Variable spacing grid lines can dramatically improve the statistical efficiency

while having low computational complexity. A tree structured quantization pattern

can have very high statistical efficiency and low computational complexity, but

to optimize a tree for a global criterion is a hard problem. Almost all tree struc-

tured quantizers use greedy approaches. An irregular quantization pattern can fur-

ther improve statistical efficiency, but the computational complexity could be much

higher — more expensive to use than a kernel method. Another consideration to

choose a grid pattern is that smoothing can be carried out efficiently. The purpose

of smoothing is to improve the generalization ability of a quantizer. Smoothing of

a grid quantizer is analogous to pruning a tree structured quantizer.

A quantizer is constructed off-line on training data by optimizing a certain per-

formance measure. Training is two fold. The first is to achieve as good performance

as possible on the training data. The second is to obtain a consistent density esti-

mate of each cell by smoothing. Our smoothing strategy is a close approximation

to the kN spacing approach. The latter subdivides the space into cells such that

each cell contains kN data points. It has been shown that the kN density estimate

is both L1
17 and L2

15,18 consistent. A quantizer is used online by table-lookup.

A cell is located for a given data vector and then the density value of that cell is

returned.

4.1. Notations, definitions and problem statement

Let the random vector X ∈ RD represent an individual data or pattern. X(d) is the

dth dimension random variable of X . We call the sequence XN = {x1, x2, . . . , xN}
a data set or a sample of size N . This set contains i.i.d. data vectors from x1

to xN . Let K be the total number of classes and {1, 2, . . . , K} be the class label

set. Let random variable Y ∈ {1, 2, . . . , K} be the class assignment of X . We call

the sequence YN = {y1, y2, . . . , yN} the class assignment set of XN , where x1 has

class label y1, x2 has class label y2 and so on. We also consider a more general case

where the class assignment is not exclusive, but instead weighted. Let random vector

W ∈ [0, 1]K be the weighted class assignment vector. W (y) is the weight for class y.
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We also require
∑K

y=1 W (y) = 1. We call the sequence WN = {w1, w2, . . . , wN} the

weighted class assignments of the data set XN .

Definition 2. A quantizer Q is a function that maps RD to I. I, called quantization

index set, is a finite set of integers or integer vectors.

Definition 3. A quantization cell of Q is a set C ⊂ RD such that for any x1, x2 ∈ C,

Q(x1) = Q(x2).

For each cell, we assign an index q ∈ I to it. We use the function notation

q = Q(x) to denote that x is quantized to q or x belongs to cell q. We use N(y) to

denote the total number of class y data in XN , that is

N(y) =

N∑

n=1

wn(y).

Let Nq be the total number of data in cell q. Let Nq(y) be the total number of data

of class y in cell q, that is

Nq(y) =
∑

n∈{n|q=Q(xn)}
wn(y).

Let L be the number of cells. The index to the first cell is q = 1, and the last cell

q = L.

Let pX|Y (x|Y = y) be the class y conditional probability density function

(p.d.f.). We use p̂X|Y (x|Y = y) to denote the estimated p.d.f. In most cases, we

shall drop the subscript X |Y from pX|Y (x|Y = y) and p̂X|Y (x|Y = y) to simplify

the notation. The overall grid quantization problem is to estimate the p.d.f.s

pX|Y (x|Y = 1), pX|Y (x|Y = 2), . . . , pX|Y (x|Y = K),

such that a certain quantizer performance measure T ( ), which we will define later,

is maximized for the training data XN , YN or WN . It is equivalent to solving

max
Q

T (XN , YN ) or T (XN , WN ). (4)

4.2. The performance measure of a quantizer

The quantizer performance measure includes three components: log likelihood,

entropy and correct classification probability. We explain each of them as follows.

4.2.1. Log likelihood

Kullback-Leibler divergence from p̂(x) to p(x) is

D(p||p̂) =

∫
p(x) log

p(x)

p̂(x)
dx = E[log p(X)] − E[log p̂(X)],
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which, being non-negative (zero if and only if p̂(x) = p(x)), should be minimized.

As p(x) is fixed, minimizing DKL(p‖p̂) is equivalent to maximizing E[log p̂(X)].

Let p(q|y) be the density of cell q. Then E[log p̂(X |Y )] can be estimated by
1

N(y) log
∏L

q=1 (p(q|y))
Nq(y)

. The overall average log likelihood of a quantizer Q is

J(Q) =
1

N

K∑

y=1

N(y)E[log p̂(X |y)] =
1

N

K∑

y=1

log
L∏

q=1

(p(q|y))Nq(y) .

When the class number ratio N(1) : N(2) : · · · : N(K) is representative for the data

population, the overall average log likelihood is preferred, with the log likelihood

of popular classes being emphasized.

The mean class average log likelihood is

J(Q) =
1

K

K∑

y=1

E[log p̂(X |y)] =
1

K

K∑

y=1

1

N(y)
log

L∏

q=1

(p(q|y))
Nq(y)

.

When the class number count N(y) is randomly decided or every class is considered

to have equal importance, the mean class average log likelihood is preferred, with

every class contributing equally to the log likelihood of the quantizer.

4.2.2. Correct classification probability

Let P (y) be the prior probability of class Y . Within cell q, the Bayes’ rule is

equivalent to

y∗
q = argmax

y
P (y)

Nq(y)

N(y)
.

Let Nc(q) be the number of correct decisions in cell q, i.e. Nc(q) = Nq(y
∗
q ). We

define the correct classification probability in two situations. The overall correct

classification probability is

Pc(Q) =

∑L
q=1 Nc(q)

N
. (5)

The mean class correct classification probability is

Pc(Q) =
1

K

K∑

y=1

L∑

q=1

I(y = y∗
q )

Nc(q)

N(y)
. (6)

In the above equation, I is indicator function. The choice of (5) or (6) should follow

the same considerations for the choice of average log likelihood.
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4.2.3. Entropy

Similar to the case of average log likelihood, we give two options: Overall entropy

and mean class entropy. Again, the choice of either should also follow the consider-

ations for the choice in average log likelihood and correct classification probability.

We define the overall entropy by

H(Q) =
Nq

N
log

N

Nq
. (7)

We define the mean class entropy by

H(Q) =
1

K

K∑

y=1

L∑

q=1

Nq(y)

N(y)
log

N(y)

Nq(y)
. (8)

Entropy has been used as a class impurity measure. But we use entropy as a measure

of the consistence or generalization ability of a quantizer.

4.2.4. The performance measure function

We define the quantizer performance measure function, by linearly combining aver-

age log likelihood, entropy and the log of correct classification probability, as follows

T (Q) = WJJ(Q) + WHH(Q) + Wc log Pc(Q), (9)

where WJ , WH and Wc are given non-negative weights for average log likeli-

hood J(Q), entropy H(Q) and log of correct classification probability logPc(Q),

respectively.

4.3. Preprocessing

The performance of classifiers does not monotonically increase with dimensions

when sample size is fixed, because the required sample size would have grown expo-

nentially to achieve a similar performance. Dimension reduction may be necessary.

Popular techniques including principal component analysis, projection pursuit and

independent component analysis. In addition to dimension reduction, for data in

a high dimension, we may also want to view the data in a new coordinate system

such that the most interesting dimensions come first, and use more quantization

levels. Let z1, z2, . . . , zN ∈ RM denote the feature vectors, each corresponding to a

pixel. Normalization may also be necessary to make the dimension reduction sen-

sible. We use matrix B to represent the normalization and matrix W to represent

dimensional reduction and coordinate change. A feature vector z is projected to

x ∈ R
D by x = WT Bz.

4.4. Relative quantization levels

The choice of a proper total number of quantization cells L depends on the sam-

ple size and the underlying distribution. It is also confined by available storage
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resource. When the sample size is large enough, it would be mostly determined by

the available storage resource, as a small quantization cell is always preferred for

asymptotic optimality, which means at least a large L. Once L is fixed, quantization

levels L1, . . . , LD for each dimension are to be assigned. The information content of

a random variable can be measured by its entropy. We assign the number of quan-

tization levels for each dimension based on the marginal entropy in that dimension.

We use the scale invariant portion of the continuous histogram entropy, or the dis-

crete histogram entropy, to guide the assignment of quantization levels. Let Hd(X)

be the marginal histogram entropy for the dth dimension of X . The bit-allocation

rule is defined by

H1(X)

log L1
=

H2(X)

log L2
= · · · =

HD(X)

log LD
, (10)

log L1 + log L2 + · · · + log LD = log L. (11)

Solving the above equations for Ld, d = 1, . . . , D, we get

Ld = L
Hd(X)

PD
m=1

Hm(X) , d = 1, 2, . . . , D. (12)

4.5. Obtaining a grid quantizer

Having defined the quantizer performance measure function and applied certain

pre-processing of the data, we will obtain a grid quantizer by three algorithms in

turn. The first algorithm attempts to find a good grid in a global sense using a

genetic algorithm. The second algorithm refines a grid locally by adjusting the grid

lines one by one. The third algorithm obtains a smoothed density estimate for each

grid cell.

4.5.1. Finding a globally good grid

We cast the grid optimization problem under a genetic algorithms model19 in the

following way. Each individual has a single chromosome, which is a grid. A gene

is the decision boundaries in a particular dimension of the grid. A nucleotide is

a single decision boundary. How well an individual adapts to the environment

is measured by a fitness function. The choice of a fitness function depends on

how selection is carried out. We use fitness proportionate selection, the chance of

selecting individual being in proportion to its fitness. Therefore, we would nor-

mally require the fitness function be non-negative in order to directly relate it with

probabilities.

Definition 4. The fitness function of a grid G is

ϕ(G) = exp(T (G)) = [exp(J(G))]WJ [exp(H(G))]WH [Pc(G)]Wc . (13)

ϕ(G) is non-negative since it is a real exponential function of T (G). exp(J(G))

corresponds to the geometric average of likelihood. exp(H(G)) is the information
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content of the grid expressed in terms of the size of a code book. Pc(G) is exactly

the correct classification probability. ϕ(G) is a weighted geometric combination of

the above components.

Algorithm 2 (Optimize-Grid-Genetic) outlines the main steps of the grid opti-

mization genetic algorithm. It starts with an initial population of Np random grids.

The population evolves in the selection-reproduction-selection cycle as described in

the for loop from line 2 to 16. In each cycle, or generation, Np children are repro-

duced in the for loop from line 7 to 15. Every execution of the loop produces two

children C1 and C2 by parents G1 and G2. G1 and G2 are randomly selected (line 8

and 9) from the population and the chance of their being selected is in proportion

to their fitness function values. Selection is illustrated in Fig. 2. A cross-over site dr

is randomly decided for the parent chromosomes or grids G1 and G2. The cross-over

occurs with a probability of Pr . A cross-over example of a grid is shown in Fig. 3.

Once the cross-over is finished, two children C1 and C2 are produced (line 11). The

Fig. 2. Grid selection. In a population of four grids, two (lower left and upper right) are randomly
selected as the parents by a chance in proportion to their fitness.

Fig. 3. Grid crossover. The quantization of the vertical axis in the top grid and the quantization
of the horizontal axis of the bottom grid are crossed over to form a next generation grid on the
right.



Non-Parametric Pixel Appearance Probability Model 309

Fig. 4. Grid mutation. The thick vertical grid line could be mutated to the dashed lines on its
sides. In this example it was mutated to the one on the right.

Algorithm 2 Optimize-Grid-Genetic(XN , YN , Np, Ng, Pr , Pu)

1: P0 ← a population of NP random grids;
2: for j ← 0 to Ng − 1 do

3: if ϕ(G∗) < max
G∈Pj

ϕ(G) then

4: G∗ ← argmax
G∈Pj

ϕ(G);

5: end if

6: Pj+1 ← φ;
7: for i ← 0 to Np − 1 with increment of 2 do

8: Select a grid G1 from Pj with a probability proportional to its fitness value;
9: Select a grid G2 from Pj with a probability proportional to its fitness value;

10: Randomly decide a dimension dr as the cross-over site;
11: Exchange the decision boundaries of dimensions 1 to dr between

C1 and C2 with probability Pr or do not exchange;
12: Mutation: Adjust each decision boundary of C1 with probability Pu;
13: Mutation: Adjust each decision boundary of C2 with probability Pu;
14: Pj+1 ← Pj+1 ∪ {C1, C2};
15: end for

16: end for

17: if ϕ(G∗) < max
G∈PNg

ϕ(G) then

18: G∗ ← argmax
G∈PNg

ϕ(G);

19: end if

20: return G∗;

decision boundaries of each child grid are randomly changed by mutation (line 12

to 13), illustrated in Fig. 4. Then both children are added to the next generation

(line 14). The best grid is kept as G∗, and is returned after a certain number of

generations have evolved.

4.5.2. Local refinement of a grid

When the current best solution is close to the global optimal, genetic algorithms

will be less efficient. Here we design a more efficient grid refinement algorithm by

adjusting the decision boundaries one by one. An adjusted boundary is accepted

only when the performance measure increases. The idea is explained in Fig. 5. By
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Fig. 5. Grid refinement. We adjust the thick grid line within the shaded area until a local maxi-
mum is reached.

definitions of J(G), H(G) and Pc(G), they are additive, i.e.

J(G) =
L∑

q=1

J(q), H(G) =
L∑

q=1

H(q), Pc(G) =
L∑

q=1

Pc(q).

Therefore, when one decision boundary of a grid is moved, we need only recalculate

the change of the additive measures on those affected cells and data.

Algorithm 3 describes the Refine-Grid algorithm. The input includes a grid G,

data sets XN and YN , number of refinements NR and the convergence parameter δ.

J, H, Pc and T record the performance measures of current grid. The refinement is

done dimension by dimension in the for loop between line 6 and 20. The decision

boundaries of each dimension are refined one by one in the for loop from line 7

to 19. A sub-grid Gs is formed by all the cells that is affected by a current decision

boundary. The data that fall in the sub-grid are kept in sets XN ′ and YN ′ . Other

data will not affect the refinement of the current decision boundary. The additive

measures Js, Hs and P s
c are calculated for the sub-grid Gs. Line 12 finds the opti-

mal decision boundary that maximizes the overall measure T (Gs) and assigns the

optimal boundary to the optimal sub-grid G∗
s. The changes in the additive measures

of the sub-grid are calculated and the additive measures of the grid G are updated

by the changes (line 13 to 16). The optimal decision boundary replaces the original

one in G (line 17). The overall measure T is also updated. The refinement repeats

until convergence is achieved as measured by ∆T/T .

4.5.3. Density estimation for each quantization cell

The consistency of a quantizer is determined by the bias and variance of the density

estimates. To reduce the bias, the sample size N must be large, and Nq/N of each

cell must be small. To diminish the variance, the sample size Nq within a cell must

be large. Overfitting manifests the large variance in cell density estimates, as a result

of cell emptiness. Smoothing can reduce the variance of the density estimates. When

smoothing is overdone, a quantizer gives very consistent result on both the training

sample or an unseen sample, but carries large biases.
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Algorithm 3 Refine-Grid(G, XN , YN , NR, δ)

1: J ← J(G), H ← H(G), Pc ← Pc(G);
2: T ← WJJ + WHH + Wc log Pc;
3: j ← 0;
4: repeat

5: T− ← T ;
6: for d ← 1 to D do

7: for q ← 1 to Ld − 1 do

8: Form a sub-grid Gs by the cells sharing the decision boundaries G[d, q];
9: G∗

s ← Gs;
10: XN′ ,YN′ ← {(xn, yn)|xn(d) ∈ (Gs[d, 0], Gs[d, 2]]};
11: Js ← J(Gs), Hs ← H(Gs), P s

c ← Pc(Gs), all on XN′ ,YN′ ;
12: G∗

s [d, 1] ← argmax
Gs[d,1]

T (Gs) on XN′ ,YN′ ;

13: ∆J ← J(G∗
s) − Js, ∆H ← H(G∗

s) − Hs, ∆Pc ← Pc(G∗
s) − P s

c , all on

XN′ ,YN′ ;
14: J ← J + ∆J ;
15: H ← H + ∆H;
16: Pc ← Pc + ∆Pc;
17: G[d, q] ← G∗

s [d, 1];
18: T ← WJJ + WHH + Wc log Pc;
19: end for

20: end for

21: j ← j + 1;
22: ∆T ← T − T−;
23: until j = NR or |∆T/T | < δ;

We offer a smoothing algorithm to assign a density estimate to a quantization

cell. The algorithm is an approximation to the k nearest neighbor density estimate.

Let V (q) be the volume of cell q. Let Vk(q) be the volume of a minimum neighbor-

hood of cell q that contains at least k points. Let kq be the actual number of points

in the neighborhood. A smoothed probability density estimate of cell q is

p(q) =
kq

Vk(q)
∑

r
kr

Vk(r)V (r)
. (14)

Searching for the exact kth nearest neighbor is computationally expensive. We

introduce an approximate, but no less than k, nearest neighbor smoothing algorithm

after the following definitions.

Definition 5. We call cell a and b neighbor cells if they share at least a partial

decision boundary.

Definition 6. The radius 0 neighborhood of cell q is a set that contains exactly the

cell itself. We use N (q, 0) to denote the radius 0 neighborhood of cell q.

Definition 7. The radius R (R ∈ Z
+) neighborhood of cell q, N (q, R), is the union

of the radius R − 1 neighborhood N (q, R − 1), and the set of all the neighbor cells

to those in N (q, R − 1).
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Fig. 6. Radius R neighborhood of a cell.

Figure 6 shows the neighborhoods of a cell with different radii. In Fig. 6(a), the

cell of interest is the cell in gray. The cell itself is also its radius 0 neighborhood.

Figures 6(b) and (c) draw its radius 1 and 2 neighborhoods.

Definition 8. The k neighborhood of a cell is the smallest radius R neighborhood

of the cell that contains at least k points.

Algorithm 4 Radius-Smoothing is based on the k neighborhood concept. The algo-

rithm searches for a minimum radius R neighborhood with at least k data points

for a current cell. The density of the k neighborhood is assigned to the cell as its

density estimate. M is the total mass on the density support. M can be consid-

ered an adjusted data count by smoothing and is closely related to N . For cells

with less than k data points, the initial guess of R is the radius of the k neigh-

borhood of a previously processed neighbor cell. To make this initial guess more

realistic, we shall go through the cells in an order that a pair of cells visited consec-

utively are neighbor cells. kq is the actual number of data points in current radius R

neighborhood. We either increase R until there are at least k data points in the

neighborhood, or decrease R until the R − 1 neighborhood contains less than k

data points.

The extent of smoothing is usually controlled by k. We use cross-validation to

determine an optimal control parameter k∗ for smoothing, such that it maximizes

the average quantizer performance.

5. A Pixel Appearance Probability Model for

Echocardiographic Images

The appearance of a pixel is defined by its local information, such as intensity,

contrast, directional derivatives, gradient, and etc. It is a result of the imaging

process of a point on the object with some structural type corresponding to the

pixel location. However, it may not be strictly a function of structural types. As

we have discussed earlier, the PixApp probability model is used to capture such

appearance uncertainty. We present in this section a PixApp probability model for

echocardiographic image pixels.
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Algorithm 4 Radius-Smoothing(Q, k)

1: M ← 0, R ← −1;
2: for each cell q do

3: if N(q) = k then

4: R ← 0, kq ← N(q);
5: else

6: if R < 0 then

7: R ← 0, kq ← N(q);
8: else

9: A ← N (q−, R) ∩N (q, R);
10: kq ← kq− |N (q−, R) −A| + |N (q, R) −A|;
11: end if

12: while kq > k and R > 0 do

13: kq ← kq − |N (q, R) −N (q, R − 1)|, R ← R − 1;
14: end while

15: while kq < k and R < Rmax do

16: kq ← kq + |N (q, R + 1) −N (q, R)|, R ← R + 1;
17: end while

18: end if

19: ρ(q) ←
kq

V (N (q,R))
, M ← M + ρ(q)V (q), q− ← q

20: end for

21: for each cell q do

22: p(q) ← ρ(q)
M

;

23: end for

Figures 7(a), (d), (g) show ultrasound images of the left ventricle and Figs. 7(b),

(e), (h) show the same images with the visible left ventricle boundary overlaid.

Figures 7(c), (f), (i) overlay the complete contour of the underlying left ventricle

surface on the original images. It is quite evident that pixels on the underlying

surface contour do not have uniform appearance everywhere: Some pixels are bright

with high contrast, while others do not differ too much from the background. The

background pixels also have variable appearance.

During ultrasound imaging, signals arriving at an interface between media with

different acoustic impedance produce strong echo when the angle of incidence is near

perpendicular; signals arriving at an interface at near tangential angles produce

very weak echo. Thus, the image intensity and its spatial variation are important.

The derivatives carry spatial variation information. We fit a cubic facet model20 to

the pixel intensities in a local window centered at each pixel. A facet is a smooth

surface patch in 3D. We analytically derive all first- and second-order derivatives

for each pixel by fitting a facet centered at that pixel. Each pixel feature vector

contains

(i) the spatially and temporally smoothed pixel intensity value, capturing absolute

strength of echo signals. A 3D median filter, with a window of 5 pixels ×
5 pixels × 5 frames, is used to obtain the smoothed pixel values;
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Fig. 7. Ultrasound images of the left ventricle and surface model contours.

(ii) the third-order facet model approximation of the pixel intensity value, giv-

ing the absolute strength of echo signals but on a larger scale. A window of

21 pixels × 21 pixels is used to compute each facet;

(iii) the directional derivative along the gradient direction, providing a local mea-

sure of edginess. A window of 21 pixels × 21 pixels is used to compute each

facet;
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Fig. 8. An original parasternal long axis view image and its five feature maps.

(iv) the minimum second directional derivative, among second derivatives along all

directions, indicating relative strength of echo signals. A window of 21 pixels ×
21 pixels is used to compute each facet;

(v) the directional derivative from a point inside the LV, to help distinguish ENDO

and EPI surfaces. The inner point is derived from user input points. A 3D

median filter with a window of 17 pixels × 17 pixels × 17 frames is first applied

to get the smoothed pixel values. Then a window of 21 pixels × 21 pixels is

used to compute each facet.

Examples of the feature vector maps are shown in Fig. 8.

The PixApp probability model describes the pixel appearance uncertainty under

noise for a given structural type. Let classes Y = 1 and Y = 2 correspond to EPI

and ENDO pixels, respectively. An additional class Y = 3 labels the background.

Thus, the PixApp probability model for echocardiographic images includes three

p.d.f.s: p(Z|1), p(Z|2) and p(Z|3). We use grid quantization to represent them. Our

technique requires a larger sample size in order to obtain a better representation

for the pixel appearance than a multivariate normal model. For a multivariate

sample of size on the order of millions, not uncommon for image pixels, we are

reasonably grounded. The PixApp probability model can be estimated using the

technique described in Sec. 4 directly if the pixel class information Y is available for
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each pixel. Section 7 introduces a strategy to estimate PixApp probability models

without explicit knowledge of pixel classes.

6. A Pixel Prediction Probability Model for Ultrasound Imaging

When pixel classification is not available for observed training images, the PixApp

probability model cannot be trained directly. If high-level object models are given

for the observed training images, which is common in practice, a pixel class can be

predicted probabilistically through the PicPre probability model using an object

model. In this section, we describe a PicPre probability model for ultrasound imag-

ing. In Sec. 7, we describe how this model is trained simultaneously with the PixApp

probability model.

Pixel class prediction associates every pixel on an imaging plane with some phys-

ical properties of a given object model and its environment. Pixel class prediction

and classification are fundamentally different. Pixel classification assigns class label

information to each pixel based on observed images, not from an object model. We

denote the deterministic prediction from an object model to pixel class by Y |Θ, by

which each pixel has an exclusive class assignment. We represent the probabilistic

prediction by the conditional probability P (Y |Θ), which provides a soft pixel class

prediction, allowing a more precise relationship to be captured.

Deterministic prediction methods can be considered special cases of the prob-

abilistic prediction methods to be described. To predict the output of a physical

system, we need to model both systematic and random behaviors of the system.

Well understood systematic behaviors are often described by functional models.

Less studied and more complex physical processes, often represented by proba-

bilistic models, account for the random behaviors, as well as random noises from

the environment. The overall probabilistic prediction is shown in the diagram in

Fig. 9. A surface model Θ is used to produce simulated images via a physical sim-

ulation. By the distance transform, the distance d(y) to and the intensity I(y) of

the closest surface y pixel are calculated. Details of d(y) and I(y) will be explained

shortly. Then the pixel class probability profile P (Y |Θ) is obtained by probability

modeling.

When a 2D image is scanned from a 3D object in ultrasound imaging, two

phenomena occur:

(i) A 3D point on the object is transformed to a 2D pixel on the image by plane

intersection. The plane is defined by ultrasound beams emitted in a single

B-scan.

Fig. 9. Probabilistic pixel class prediction.
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(ii) the physical properties of the 3D point yield a 2D pixel intensity, determined

mostly by the reflective properties of the object.

Simulation generates images from an object model by functional modeling of a

real imaging system. We have implemented an ultrasound imaging simulation sys-

tem to synthesize echocardiographic images from 3D surface models of the left

ventricle.21,22 The object model of LV includes two geometric surface models, one

for EPI and the other for ENDO. The simulation software is capable of performing

backscattering, attenuation, and reflection, implemented by a ray-tracing algorithm.

We only do reflections in this study, since our purpose is to predict the systematic

image dropout rather than the stochastic behavior of the speckle noise. The dropout

is mostly due to weak reflection at interfaces. The randomness is accounted for in

the PixPre and PixApp probability models.

The distance from a pixel p to its closest class-y neighbor pixel q on the simulated

image is denoted by d(y). The intensity of the neighbor pixel q is denoted by I(y).

d(y) and I(y) of every pixel on a simulated image can be efficiently found by the

distance transform.20,23

During imaging, a point on the surface may be transformed to a pixel to look

more like the background; a point not on the surface may be transformed to a

pixel as if on the surface. The PicPre probability model allows such variations than

simply saying that a pixel coming from a point on surface y must have label y.

In addition, we have further considerations in the PicPre probability model for

the following observations. An off-surface point closer to an on-surface point may

appear as a pixel with similar location and intensity with the type of the pixel from

the on-surface point. An off-surface point that has a stronger on-surface neighbor

point is more likely to appear as a pixel that is similar to the type of a pixel from

the on-surface neighbor point. To satisfy the above considerations, we design the

following parametric PicPre probability model P (Y |Θ):

P (Y = y|Θ)

f(I(y), d(y)|λy)
=

P (Y = K|Θ)

β
, y = 1, 2, . . . , K − 1, (15)

with the constraints

K∑

y=1

P (Y = y|Θ) = 1 and P (Y = y|Θ) ≥ 0, y = 1, . . . , K. (16)

In Eq. (15), f(I, d|λ) : [0,∞)× [0,∞) → (0,∞) is a decay function decreasing with

d but increasing with I; λ1, λ2, . . . , λK−1 are non-negative decay rates of different

classes; and β is a non-negative parameter which corresponds to the strength of a

pixel being the background. Solving Eqs. (15) and (16), we get

P (Y = y|Θ) =






f(I(y), d(y)|λy)

β +
∑K−1

k=1 f(I(k), d(k)|λk)
, y = 1, 2, . . . , K − 1

β

β +
∑K−1

k=1 f(I(k), d(k)|λk)
, y = K

. (17)
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In the above model, the probability of a pixel being class y is in proportion to

some monotonically decreasing function of its distance to the nearest pixel coming

directly from surface y; the probability of a pixel being on background is in pro-

portion to some function of the smallest distances for this pixel to all other types

of non-background pixels. Meanwhile, a pixel is more likely to be from surface y if

its neighbor pixel coming directly from surface y has a larger intensity.

In our study, we design the intensity exponential decay model with f(I, d|λ) =

Ie−λd, that is

P (Y = y|Θ) =






I(y)e−λyd(y)

β +
∑K−1

k=1 I(k)e−λkd(k)
, y = 1, 2, . . . , K − 1

β

β +
∑K−1

k=1 I(k)e−λkd(k)
, y = K

. (18)

We will illustrate this PicPre probability model by an example in next section.

7. Training PixApp and PicPre Probability Models

without Low-Level Edge Groundtruth

In some applications, an example of object models Θ and their images are given,

but the class labels Y are not available. In other situations, the class labels Y

are too inaccurate to use. To achieve the overall optimality, we need to consider

simultaneous estimation of the PixApp and PicPre probability models. Our strat-

egy will allow each pixel to participate in a different manner on a scale of 0 to

1 in the PixApp probability models for different classes. We solve the problem of

joint estimation of the PixApp and the PicPre probability models by a general-

ized EM algorithm. In the off-line training phase, the aim is to make an accu-

rate and consistent estimation of p(Z|Θ). We use the Kullback-Leibler divergence

as the criterion for the density estimation, equivalent to the expected log likeli-

hood. A caveat is that the target of estimation is not Θ, but the conditional p.d.f.

p(Z|Θ).

It is necessary to inspect how the models are estimated in the two-stage

approach, i.e. the feature detection and model fitting approach. In the feature detec-

tion stage, the PixApp probability model p(Z|Y ) is used. Estimation of p(Z|Y )

requires the knowledge of class labels. However, the class labels are not observed

data and they are typically produced by human experts. A class label has to be

unique for each pixel. In the model fitting stage, the PicPre probability model

P (Y |Θ) is used. Using the class labels and known surface models, P (Y |Θ) can be

estimated. A problem with these two estimations is that the uncertainty of class

label Y as described by P (Y |Θ) is not taken into account in the estimation of

p(Z|Y ). The isolation can seriously degrade the performance seriously when uncer-

tainty of class labels for given surface models is prominent.
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In the integrated approach, the conditional probability p(Z|Θ) is given in terms

of a summation over Y by

p(Z|Θ) =
∑

y

P (Y = y|Θ)p(Z|Y = y).

In this form, we still need to estimate the PicPre probability model P (Y |Θ) and

the PixApp probability model p(Z|Y ), but we do not have to make a decision on

the class label Y of each pixel, because every possibility of Y is considered. Since we

have decided that P (Y |Θ) is a parametric model and p(Z|Y ) is a non-parametric

model, the overall model p(Z|Θ) is a hybrid model. On one hand, maximum likeli-

hood estimation for p(Z|Θ) requires joint estimation of the PixApp and the PicPre

probability models. On the other hand, joint estimation of a hybrid model poses a

computational challenge.

Although it is typically a solution to parametric density estimation with missing

or hidden variables, the Expectation Maximization (EM) algorithm suitably per-

forms maximum likelihood estimation on p.d.f.s that can be written as an integral

or a sum. The missing or hidden variable is precisely the integral or summation

variable. Whether the targeted p.d.f. is parametric, non-parametric or hybrid will

affect neither the applicability nor the convergence of the EM algorithm. In the

integrated model, the goal is to maximize

E[log p(Z|Θ)] (19)

over all possible p.d.f.s p(Z|Θ) (not over Θ in our case.) When p(Z|Θ) is written

in the integrated form, Y is the missing or hidden variable. Instead of maximizing

Eq. (19), the EM algorithm maximizes an approximation of

E[log p(Y, Z|Θ)] (20)

over p(Y, Z|Θ) in its iterations. We shall link p(Y, Z|Θ) to the PixApp and the

PicPre probability models soon. Through the EM algorithm, the maximization of

E[log p(Y, Z|Θ)] is substantially computationally easier than that of E[log p(Z|Θ)].

We initialize p(Y, Z|Θ) by a guess p0(Y, Z|Θ). It is then followed by iterations

of expectation steps (E-steps) and maximization steps (M-steps). In the E-step

of iteration m, we first compute the conditional probability πm(Y |Z,Θ), using

pm(Y, Z|Θ). Then we find the expectation φm(p(Y, Z|Θ)) = Eπm
[log p(Y, Z|Θ)],

using the conditional probability πm(Y |Z,Θ). In the M-step of iteration m, we find

a solution that maximizes the expectation φm(p(Y, Z|Θ)), assigning the optimal

solution to pm+1(Y, Z|Θ). The E-step and the M-step alternate until convergence is

achieved. When the M-step returns a sub-optimal solution that does not decrease

φm(p(Y, Z|Θ)), the algorithm is known as a generalized EM algorithm. Both the

original and the generalized EM algorithms increase the targeted expected log like-

lihood E[log p(Z|Θ)] monotonically as a function of the iteration number.24
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Now we associate p(Y, Z|Θ) with the PixApp probability model p(Z|Y ) and the

PicPre probability model P (Y |Θ). By the conditional independence assumption

p(Θ|Z, Y ) = p(Θ|Y ), we have

p(Y, Z|Θ) = P (Y |Θ)p(Z|Y,Θ) = P (Y |Θ)p(Z|Y ).

The above equation implies that p(Y, Z|Θ) is exactly the product of the prediction

probability P (Y |Θ) and the appearance probability p(Z|Y ). Hence the M-step can

be written as

max
p(Y,Z|Θ)

Eπm
[log p(Y, Z|Θ)]

= max
p(Y,Z|Θ)

Eπm
[log P (Y |Θ)] + Eπm

[log p(Z|Y )]

= max
P (Y |Θ)

Eπm
[log P (Y |Θ)] + max

p(Z|Y )
Eπm

[log p(Z|Y )]. (21)

Thus, the M-step is broken into two separate optimization problems. One is the

parametric estimation of the PicPre probability model, and the other is the non-

parametric estimation of the PixApp probability model. Replacing p(Y, Z|Θ) by

P (Y |Θ)p(Z|Y ), we present Algorithm 5, Estimate-Integrated-Model.

Algorithm 5 Estimate-Integrated-Model

Initialization:

P0(Y |Θ) and p0(Z|Y )

Iteration:

(1) E-step.

πm(Y |Z, Θ) =
Pm(Y |Θ)pm(Z|Y )

P

k Pm(Y = k|Θ)pm(Z|Y = k)
(22)

φm(P (Y |Θ)) = Eπm [log P (Y |Θ)] (23)

ψm(p(Z|Y )) = Eπm [log p(Z|Y )] (24)

(2) M-step.

Pm+1(Y |Θ) = argmax
P (Y |Θ)

φm(P (Y |Θ)) (25)

pm+1(Z|Y ) = argmax
p(Z|Y )

ψm(p(Z|Y )) (26)

The Estimate-Integrated-Model algorithm differs in Eq. (22) from the two-stage

estimation solution. In the two-stage approach, every pixel is assigned a unique class

label y, equivalent to setting πm(Y |Z,Θ) = δ(Y − y). Here, πm(Y |Z,Θ) signifies

the probability profile of class labels for the images and the surface model given. In

addition, Estimate-Integrated-Model iterates over the two steps, while the two-stage

approach does the two steps only once.

Here is a summary of the overall training strategy. Training images and the cor-

responding ground-truth surface models are input data to the estimation. Training

images are pre-processed to remove noise and obtain feature vectors. Imaging sim-

ulation produces simulated images using ground-truth surface models. Before the
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first iteration, initial guesses for PixApp and PicPre probability models are made.

With the PixApp probability model, feature vectors are optimally quantized to

calculate the PixApp probability of each pixel for each class. K maps of PixApp

probabilities are generated per image. Meanwhile, the PicPre probability profile

of each pixel is calculated on the simulated images using the PicPre probability

model. A total of K PicPre probability maps are created for each image. With the

PixApp and PicPre probability maps, we can calculate a class probability profile

for each pixel given both the observed images and the ground-truth surface models.

The class profile of each pixel, as a weight vector, participates in both finding a

grid quantization for PixApp probability model and the parameter estimation of

the PicPre probability model. With the weight vectors and the feature vectors, we

obtain an updated PixApp probability model. With the weight vectors and the

simulated images, we obtain an updated PicPre probability model. Then we start

the next iteration with the newly updated models, until the overall log likelihood

Eπm
[log p(Y, Z|Θ)] converges.

7.1. PixApp probability model estimation

One of the two expectations to be maximized in the M-step is Eπ[log p(Z|Y )].

The expectation is with respect to both Y and Z. However the unknown condi-

tional probability P (Y |Z,Θ) is replaced by an approximation π(Y |Z,Θ). Hence

Eπ[log p(Z|Y )] can be written as

Eπ[log p(Z|Y )] =

∫
p(z|Θ)

K∑

k=1

π(Y = k|z, Θ) log p(z|Y = k)dz.

Taking the sample average log likelihood as the expected value, we obtain

L1 =
1

N

N∑

n=1

K∑

k=1

π(yn = k|zn, Θ) log p(zn|yn = k).

Since π(Y |Z,Θ) is given in the E-step, we simplify the notation by letting

πk
n = π(yn = k|zn, Θ), (27)

which can be thought of as a normalized class weight. Then L1 can be written as

L1 =
1

N

N∑

n=1

K∑

k=1

πk
n log p(zn|yn = k),

which is the weighted log likelihood of the sample. Thus, maximization of

Eπ[log p(Z|Y )] is approximated by that of L1. As Z is usually a continuous vector,

p(Z|Y ) is a p.d.f. conditioned on the discrete variable Y . Assumptions on p(Z|Y )

reflects how well the imaging process is understood. When there is complex and less

studied noise during the imaging process, we would like to make as few assump-

tions as possible. In the worst case where the least information is available about

the noise, we use the grid quantization technique described in Sec. 4 to describe the

density function p(Z|Y ).
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Fig. 10. The 3D quantization grid.

For the original pixel feature vector Z of 5 dimensions, we reduce it to a 3 dimen-

sional vector X . We perform grid quantization on X instead of Z. The optimal 3D

quantization grid we obtained for the three classes are displayed in Fig. 10, where

1D and 2D combinations of the grid are drawn. We show the 1D and 2D marginal

densities of the 3D PixApp probability densities p(X |Y ) in Figs. 11 and 12, respec-

tively. Figure 13 shows the estimated PixApp probability maps for the three classes

of a given image.

7.2. PicPre probability model estimation

The other expectation to be maximized in the M-step is Eπ[log P (Y |Θ)]. The

expectation is on both Z and Y , where Z is implicitly expressed in π(Y |Z,Θ).
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Fig. 11. One-dimensional marginal densities of estimated PixApp probability model.

Eπ[log P (Y |Θ)] is an estimate of E[log P (Y |Θ)] with P (Y |Z,Θ) replaced by

π(Y |Z, Θ). Therefore we have

Eπ[log P (Y |Θ)] =

∫
p(z|Θ)

K∑

k=1

π(Y = k|z, Θ) logP (Y = k|Θ) dz.

We can further obtain an estimate of Eπ[log P (Y |Θ)] by the average log likelihood

of the sample, that is

L2 =
N∑

n=1

K∑

k=1

π(yn = k|zn, Θ) log P (yn = k|Θ).
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Fig. 12. Two-dimensional marginal densities of estimated PixApp probability model.

The average factor 1/N is not shown because it does not affect the maximization.

Therefore,

L2 =

N∑

n=1

K∑

k=1

πk
n log P (yn = k|Θ),

which is the weighted log likelihood of the PicPre label assignments. Hence the

maximization of Eπ[log P (Y |Θ)] reduces to that of the weighted log likelihood L2.

As we have defined P (Y |Θ) by a continuous parametric model previously, L2 is a

function of the PicPre model parameters λ1, λ2, . . . , λK−1, β. Since the parameters

are all non-negative, we can re-parameterize them by

λk = τ2
k , k = 1, . . . , K − 1

β = α2.
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Fig. 13. PixApp probability maps of apical four chamber view.

We denote the parameter vector by

u = [τ1, τ2, . . . , τK−1, α],

and the likelihood L2 by L2(u). We adopt a quasi-Newton method that has been

widely applied in many unconstrained optimization problems, called the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) method. It updates the Hessian matrix with

a rank two difference matrix during every iteration and guarantees the approxi-

mated Hessian matrix is positive definite for minimization problems.25 The major

steps include finding a Newton search direction, the line search and the Hessian

update. Since we are to maximize L2(u), the objective function of the minimization

is −L2(u). Figure 14 shows the estimated intensity exponential decay PicPre prob-

ability model. Figure 15 illustrates the pixel class prediction process. We obtain

a simulated image shown in Fig. 15(a) through ultrasound imaging simulation.

Then we compute the distance transform of the epicardium and endocardium con-

tours, shown as Figs. 15(b) and (c). Figures 15(d) and (e) are the intensity maps

of the closest on-surface pixels. We apply the estimated PicPre probability model

on the distance and intensity maps and display the PicPre probability maps in

Figs. 15(f) to (h).

8. Surface Reconstruction for Left Ventricle Using the Estimated

Pixel Appearance Probability Model

In our experiment, we used a total of 45 in vivo clinical studies. There are 16 nor-

mal studies and 29 diseased studies. There are six condition groups among the

45 studies. Forty-four sets of image sequences were acquired from ATL ultrasound

machines; one set of image sequences was acquired from an HP ultrasound machine.

These image sequences were for other studies by three operators over a period of

two years, so that they incorporate some amount of operator and system setting
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Fig. 14. The estimated PicPre probability model.

variability. The frame rate was 30 per second. The horizontal and vertical resolu-

tions of the images were, respectively, 0.37–0.46mm and 0.37–0.41mm per pixel.

For each study, we selected subsequences of images from four or five different views,

including three or four long-axis views and one short-axis view. Each view was fur-

ther cut into an upper sector and a lower division, divided by an arc passing an

inner point of the LV and centered at the transducer location. We selected 20 studies

with good image quality as the training set. The remaining 25 studies formed the

test set. We performed the experiment at end diastole. We measured the projection

distance between the optimized and the ground-truth surface models. The projec-

tion distance from surface A to surface B is defined as the mean vertex projection

distance from all the vertices of surface A to surface B. The projection distance

between surface A and B is the average of the projection distances from A to B

and from B to A.

In our study of 3D left ventricle surface reconstruction from 2D echocardio-

graphic images, we obtained much better results using the pixel appearance prob-

ability model with the integrated approach than the two-stage approach. In the
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Fig. 15. A simulated image and its intensity, distance and PicPre probability maps.

two stage approach, we used Canny edge detector to find boundaries and then

reconstruct 3D surface model from the detect edges. We were only able to obtain

meaningful results for the studies with the best quality images. The distance errors

between the manually delineated surfaces and the reconstructed ones range from

3.1mm to 6.6mm for normal cases, which were far from the requirement for prac-

tical clinical use. For the integrated approach, we were able to handle images with

modest image quality. On all the normal studies, we achieved distance errors from

1.1mm/1.7mm (endocardium/epicardium) to 3.1mm/4.0mm, the average being

1.9mm/2.4mm.16

9. Conclusions

In this chapter, we have presented the pixel appearance probability model for repre-

sentation of local pixel information, and illustrated its usage in echocardiographic

image analysis. It is vastly different from standard feature detection based low-

level image processing techniques, in that it preserves much richer information

from the original images. The model is obtained by a grid quantization technique,

which is a statistically effective and computationally efficient approach to estimating
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probability density functions. The pixel appearance probability model can be used

in its own right for purposes such as pixel classification. We have argued that this

model can be used much more effectively in an integrated object reconstruction

framework as opposed to the traditional two-stage approach. In our study, the

adoption of the pixel appearance probability model has reduced the max construc-

tion error of the left ventricle groundtruth surface by about 2.6mm.
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CHAPTER 11

MEASUREMENT OF CAROTID ARTERY STENOSIS FROM

MAGNETIC RESONANCE ANGIOGRAPHY
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The Degree of Stenosis (DS) is a primary consideration in determining the course of

treatment for atherosclerotic disease of the Internal Carotid Artery (ICA). This chapter
describes recent developments in Magnetic Resonance Angiography (MRA) for mea-
surement of DS of the ICA. The primary focus is on computational image analysis
methodology for the quantification of DS. Background on MRA acquisition strategies,
physical models of the MRA acquisition and clinical experiences with MRA are provided
that form a basis for the design of image interpretation methodology. Measurement of
DS is viewed largely as a segmentation problem. The most promising algorithms for seg-
mentation of the carotid artery from MRA are Geometric Deformable Models (GDM’s).
Several GDM’s have been developed that incorporate a tubular topology. These GDM’s
are based on the tensor-product-b-spline and on level-sets surface representations. Delin-
eation of the vessel centerline plays an important role in the tubular GDM and can be
performed by algorithms based on various models of the image-intensity structure includ-
ing a differential-geometry model, a moment-of-inertial model, a shortest-path model and
a skeletonization model. A non-tubular GDM, the Isosurface Deformable Model, is also
discussed. Consideration is given to both conceptual aspects of the algorithms and their
performance.

Keywords: Carotid artery stenosis; Magnetic Resonance Angiography (MRA); geometric
deformable model.

1. Introduction

Atherosclerotic disease of the internal carotid artery (ICA) is a leading cause of

stroke.1 The formation of atherosclerotic plaque typically occurs in the vicinity of

the carotid bifurcation. As the plaque grows, the ICA progressively narrows and

becomes prone to causing stroke. Stroke occurs when a thrombus (blood clot),

that is formed at the plaque, breaks off, flows downstream and embolizes a cerebral

artery. The risk of stroke has been shown to be related to the degree of narrowing of

the ICA which is defined as the percent diameter reduction. In the North American

Symptomatic Carotid Endarterectomy Trialists (NASCET) study, stroke was seen

in 22% of symptomatic patients (with a prior history of transient ischemic attack

or stroke) with moderate stenosis of the ICA (30–70%) in a five-year follow-up

period.2 In contrast, stroke was seen in 26% of symptomatic patients with severe

ICA stenosis (70–99%) in a two-year follow-up period.3 Comparison of the risks of

331
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Fig. 1. Relationship between five-year risk of ipsilateral stroke and the degree of stenosis of
the internal carotid artery. Reproduced with permission from Inzitari et al., N. Engl. J. Med.,
Volume 342(23), 2000.

stroke with DS are shown in Fig. 1. Surgical removal of ICA plaque was found to be

beneficial, in spite of perioperative risks associated with endarterectomy, only for

symptomatic patients with severe ICA stenosis.3 Similar results have been obtained

by the European Carotid Surgery Trial (ECST).4

DS of the ICA in the NASCET and ECST was obtained from Digital Subtrac-

tion Angiography (DSA) which unambiguously depicts ICA stenosis. However, DSA

requires intra-arterial injection of contrast media that is expensive and causes stroke

in 1–4% of cases.5 Thus, alternatives to DSA have emerged for non-invasive evalua-

tion of carotid artery stenosis including Magnetic Resonance Angiography (MRA),

Computed Tomographic Angiography (CTA) and Doppler Ultrasound (DU). This

chapter describes methodology for measurement of carotid artery stenosis from

MRA. The primary focus of the chapter is on computational methodology for quan-

tification of carotid artery stenosis. However, the problem is manifold in nature.

Perspectives are provided on MRA acquisition strategies and on clinical studies of

the accuracy of MRA.

2. Contrast-Enhanced Magnetic Resonance Angiography

Contrast-enhanced Magnetic Resonance Angiography (MRA) has emerged as a

promising non-invasive alternative to Digital Subtraction Angiography (DSA) and

MRA obtained by this mechanism is the primary focus of this chapter. In this tech-

nique a bolus of Gd Chelate contrast is injected intravenously and the angiogram is

acquired during the arterial phase of the circulation of the contrast. This technique

was first introduced by Prince et al.6 The use of contrast media for obtaining MRA

has been found to be particularly advantageous for detection and evaluation of arte-

rial stenoses. Another contrast mechanism for MRA is Time-Of-Flight (TOF) in

which the lumen-to-background contrast is produced by the presence of blood flow.
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Fig. 2. Comparison of MIP rendering of contrast-enhanced MRA (center) and time-of-flight MRA
(right) against gold-standard DSA (left). The location of the stenosis is indicated by the arrows.
Reproduced with permission from J. Huston et al., Radiology, Volume 218, 2001.

In 2D TOF MRA, for example, the magnetization of stationary tissue within a slice

is saturated and produces mimimal image intensity whereas blood flowing into the

plane of the slice produces a relatively high image intensity. A significant limitation

of this acquisition method is that regions of vessels associated with atherosclerotic

plaque formation often have slow or reversed flow, such as in the internal carotid

artery immediately distal to the carotid bifurcation and on the side opposite to the

flow division.7 In these locations, a normal vessel may have a stenotic appearance.8

Visualization of high-grade stenoses may be superior for contrast-enhanced MRA

as compared to TOF MRA as shown in Fig. 2 although contrary findings have also

been reported.9 Limitations in TOF MRA can be potentially overcome by more

sophisticated interpretation. Ahn et al. have shown that the artifactual appearance

of stenosis in TOF MRA can potentially be discriminated from true stenosis by

consideration of other image features.10,11 DeMarco et al. found that the flow void

that may occur at carotid artery stenoses with “classic” 2D TOF MRA is predictive

of severe stenosis.12 Other motivations for the use of contrast for obtaining MRA

are to reduce the long image-acquisition times and motion artifacts associated with

TOF MRA.

Typically, contrast-enhanced MRA is obtained using a 3D gradient-echo pulse

sequence that allows for high-speed image acquisition. 3D MRA can be obtained

by either Fourier imaging or projection imaging.13 At this time, MRA is primar-

ily performed by Fourier imaging. In Fourier imaging, the image is acquired in

the spatial-frequency domain and reconstructed by the Fourier Transform. Since

contrast-enhanced MRA is acquired under dynamic conditions in which the concen-

tration of the contrast media in the arteries is varying with time, the order in which

the spatial frequencies are acquired has a significant impact on the image quality.

Elliptical centric acquisitions, in which the low-spatial frequencies are acquired dur-

ing the peak of the arterial enhancement, have been found to produce good image
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contrast while suppressing the appearance of veins.14,15 This strategy is particularly

important for imaging of the carotid artery where there is a very short time interval

(about 8 seconds) between the arrival of the contrast media in the carotid artery

and the return of the contrast through the jugular vein.16 In comparison, the time

for acquisition of the complete image may exceed 20 seconds for a high-resolution

scan. In a commercially available Elliptical centric protocol, for example, image

acquisition takes approximately 30 seconds using a resolution (number of sample

points) of Nx = 256, Ny = 183 and Nz = 36 and a repetition rate (TR) of 5.6msec

(total imaging time is Ny×Nz×TR).17 The elliptical centric acquisition method-

ology requires that the start of the image acquisition is exactly synchronized with

the arrival of the bolus of the contrast media. Methods for synchronization include

the use of either a test bolus or so-called fluoroscopic or real-time triggering.18–20

An alternative approach to the acquisition of contrast-enhanced MRA is to

acquire the images in a repetitive manner that does not require synchronization with

the arrival of the contrast bolus. One method for rapid and repetitive acquisition of

MRA is the so-called Time-Resolved Imaging of Contrast Kinetics (TRICKS).21 In

this methodology, a temporal frame-rate of as high as 2 seconds can be obtained.

The high frame rate is largely achieved by acquiring only a selective set of the spatial

frequencies during each time frame with more frequent sampling of the low-spatial

frequencies that are known to contribute the most to the image contrast.

Currently, contrast-enhanced MRA is performed with contrast media which is

only effective for arterial imaging during its first pass through the arteries. For

these contrast media the concentration rapidly declines after the first pass due to

uptake within tissue and clearance by the kidneys. However, a new class of contrast

media, known as blood-pool agents, maintain a high concentration in the blood

over long periods of time and allow for imaging of the vasculature under steady-

state conditions.22 One limitation of this approach is that veins have equal intensity

when imaged under steady-state conditions and significantly complicate the image

interpretation.

3. Radiological Studies

A number of radiological studies have been carried out to validate contrast-

enhanced MRA. The most recent of these studies have involved the use of either

a test bolus or fluoroscopic (real-time) imaging for determining the arrival of

the contrast bolus. Butz et al. compared detection of severe carotid stenosis

(> 70% diameter reduction) using contrast-enhanced MRA with detection using

Digital Subtraction Angiography (DSA) in 50 consecutive patients.23 The MRA

was acquired at high resolution (0.88mm slice thickness, 160 × 512 matrix) with

elliptical centric k-space ordering and the acquisition was triggered fluoroscopically.

They found a sensitivity of 95.6% and a specificity of 90.4%.

U-King-Im et al. evaluated contrast-enhanced MRA for 167 consecutive patients

against DSA.24 Patients were selected for the MRA based on Doppler ultrasound
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examination. Images were acquired at high resolution (0.8 mm slice thickness,

256 × 256 matrix) using elliptical centric k-space ordering. The acquisition was

triggered based on the timing of a test bolus. They found a sensitivity of 93.0% and

a specificity of 80.6%. However, they attribute significant portion of the disagree-

ment between MRA and DSA to variability in interpretation of both the MRA

and DSA. The inter-observer agreement was assessed for the three readers and

the kappa statistic ranged from 0.85 to 0.88 for DSA and 0.86 to 0.88 for MRA.

Young et al. determined the limits-of-agreement (Bland-Altman) of DSA interpre-

tation to be ±23%.25 Similar results were obtained by Cosottini et al. in a study of

92 patients.26 They found a sensitivity of 97% and specificity of 82% for detection

of severe stenosis of the internal carotid artery.

Huston et al. compared the effectiveness of Elliptical centric contrast-enhanced

MRA versus DSA for 98 carotid arteries from 50 patients.27 MRA was evaluated

with respect to the ability to detect stenoses of 70% or greater diameter reduction.

They found that the estimate of the severity of the stenosis depends on the method

of interpretation of the MRA. When the Maximum Intensity Projection (MIP)

was used for interpretation, the sensitivity and specificity was 93.3% and 85.1%

respectively. When the interpretation was carried out based on obliquely reformat-

ted images, the sensitivity and specificity were 83.3% and 97.0%. They also found

that the accuracy of interpretation could not be improved by the use of a multiple

regression model that incorporated interpretation based on both the MIP rendering

and the obliquely reformatted images. Comparison of measurements from DSA and

MRA using MIP and source images is shown in Fig. 3.

Hathout et al. evaluated contrast-enhanced MRA for 22 patients who under-

went MRA and DSA.28 They found that at the 95% confidence level, using

MRA to predict the stenosis measured by DSA there is at least a variability of

±13.6%. This inaccuracy could be attributed, in part, to variability in interpreta-

tion of DSA.

Morasch et al. evaluated contrast-enhanced MRA for 29 patients who underwent

both DSA and endarterectomy.29 The stenosis of the internal carotid artery was

Fig. 3. Relationship between DSA and contrast-enhanced MRA measurements of the degree of
stenosis using the MIP (left) and the source images (right). Reproduced with permission from
J. Huston et al., Radiology Volume 218, 2001.
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measured in terms of the reduction in the cross-sectional area of the vessel from

a reformatted image in a plane orthogonal to the vessel axis. The area reduction

was compared with both the percent stenosis from DSA and the area reduction as

measured from the endarterectomy specimen that was resected en bloc. A strong

correlation was obtained between the minimum cross-sectional area obtained with

contrast-enhanced MRA and imaging of the surgical specimen (R = 0.9) and there

was no statistically significant difference between the minimum cross-sectional area

measured with MRA and from imaging of the surgical specimen (p = 0.61).

A more basic issue relates to the value of precision in the measurement of DS of

the ICA; it is not entirely clear what degree of precision is necessary for MRA of the

ICA. On the one hand, the cutoff level for deciding whether a patient should undergo

medical or surgical treatment is itself imprecise with reports of various cutoffs from

50% to 70%.3,30 However, Rothwell et al. show that different approaches should be

taken for patients with 50–69% stenosis compared with patients with stenoses of

70% or greater.31

4. Physical Studies

Fundamental limitations of contrast-enhanced MRA have been identified in phan-

tom studies and with mathematical modeling. These studies have focused on the

effects of the time-varying concentration of the contrast media during the acqui-

sition and on the effects of highly heterogeneous blood velocity. The time-varying

concentration of the contrast media has the effect of selectively enhancing certain

spatial frequencies within the MRA image.32 Mis-timing of the acquisition can

degrade the image by introducing blurring and a ringing artifact.33,34 Fain et al.

show that even for optimal timing of the image acquisition, the elliptical centric

k-space acquisition has the same effect as a low-pass filter since the low-frequency

components of the image are acquired at the peak of the concentration of the

contrast media.35 The spatial filtering can be described in terms of the Full-Width-

at-Half-Max (FWHM) of the point spread function (psf). Based on this analysis,

the maximal isotropic image resolution that can be obtained with a repetition time

(Tr) of 6.5msec and a total acquisition time of 50 seconds is about 1.0mm.

Extreme heterogeneity of the blood velocity causes a loss of MR signal due to

the “dephasing” of the magnetic spins within a given voxel.36 This effect is observed

both at the neck of the stenosis and immediately distal to the stenosis.37,38 The

spin dephasing at the neck of the stenosis can be attributed to laminar flow with

high shear rates while the spin dephasing distal to the stenosis can be attributed to

turbulent or complex flow. Mitzuzaki et al. found, in a vessel model, that significant

spin dephasing can occur even with 50% stenosis under physiologically realistic flow

conditions. However, the effect was minimal for a high concentration of the contrast

media (2mmol/l) and when using a short echo time (1.4msec). Townsend et al.

found that spin dephasing can cause the vessel stenosis to be severely overestimated,

in a flow-through model of the carotid bifurcation with approximately an 80%
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stenosis.39 This effect may have been exaggerated due to the relatively large section

thickness employed. That study also showed that for this flow-through model, a

TOF MRA acquisition provided a significantly more accurate visualization of the

stenosis than did the contrast-enhanced MRA.

5. Computational Algorithms for Measurement of Stenosis

Quantification of DS from the MRA image is an important aspect of imaging of

the carotid artery. A variety of computational algorithms have been proposed for

quantifying DS. These algorithms will be reviewed in detail below.

5.1. Delineation of the vessel centerline

One computational approach to measurement of the DS is to first delineate the ves-

sel centerline. The vessel centerline is potentially useful since it can serve as geomet-

rical reference for detection of the boundaries of the vessel. Several approaches have

emerged for delineation of the vessel centerline from MRA or other 3D angiography.

One approach to delineation of the vessel centerline is based on a differential

geometry model. This model was first proposed by Aylward et al.40 ,41 In this model,

the vessel is considered to have a tubular shape that appears in the image such that

the image becomes progressively more intense towards the center of any given vessel

in MRA. This assumption of the vascular intensities is valid for smaller vessels

in MRA due to the partial volume effect and can be imposed on larger vessels

by blurring the image, for example, by convolution with a Gaussian kernel. The

central axis of such tubular shapes can be modeled as ridges in the hyper-surface

representing the image. Such ridges can be defined in a rigorous manner in terms

of the eigenvalues of the Hessian matrix.42 For an image, f , the Hessian is defined

as follows:

H =





∂2f

∂x2

∂2f

∂x∂y

∂2f

∂x∂z

∂2f

∂y∂x

∂2f

∂y2

∂2f

∂y∂z

∂2f

∂z∂x

∂2f

∂z∂y

∂2f

∂z2





. (1)

Since f is a discrete function, the Hessian is formed using Gaussian derivatives.

The Gaussian derivatives are defined by convolution:

∂2I

∂a∂b
≡ Kab ∗ f, (2)

where Kab is the discrete kernel sampled from the second partial derivatives of a

normalized Gaussian, G(x, y, z, σ):

G(x, y, z, σ) =
1√

(2πσ2)3
e−(x2+y2+z2)/(2σ2). (3)
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The scale factor, σ, dictates the size of the vessel for which the centerline can be

accurately located using this model. In this model, for points on the central axis the

two smallest eigenvalues, λ1 and λ2 are less than zero. The eigenvectors, v̂1 and v̂2

corresponding to the two smallest eigenvalues define a plane that is orthogonal to

the vessel axis. In this plane, the image intensity is a local maxima and thus, the

projection of the gradient of the image onto either of v̂1 or v̂2 has a small magnitude.

v̂1 · ∇f ∼= 0 and v̂2 · ∇f ∼= 0. (4)

Under this assumption of the intensity structure in the vascular image, the vessel

directionality at the center of the vessel is an eigenvector of the Hessian matrix that

corresponds to the largest eigenvalue. Aylward et al.40,41 develop a vessel-tracking

algorithm based on this centerline model.

Alternatively, the vessel centerline can be enhanced based on the differential

geometry model.43 The filter is based on the behavior of the eigenvalues of the

Hessian in response to various structures. Given an ordering of the eigenvalues, in

this case:

|λ1| ≤ |λ2| ≤ |λ3| , (5)

line-like structures, for example, produce two eigenvalues that are negative (assum-

ing that the vessel is bright) and have a large magnitude:

λ1 ≈ 0 and λ2, λ3 ≪ 0. (6)

Alternatively, a bright plate-like structure, for example, has two small eigenval-

ues and one large negative eigenvalue:

λ1, λ2 ≈ 0 and λ3 ≪ 0. (7)

A disciminant function, V (x, y, z, σ), can thus be constructed from the eigenval-

ues of the Hessian that is maximal for line-like structures. As indicated, the function

is dependent on the scale, σ, of the Gaussian kernel used for obtaining the Hessian.

The scale-dependence is removed by finding the maximal value of the discriminant

function across all scales:

Vmax(x, y, z) = max
σmin≤σ≤σmax

V (x, y, z, σ). (8)

The results for application of this filter to MRA of the carotid are shown in Fig. 4.

This vessel-enhancement function was adapted by van Bemmel et al. for delin-

eation of the vessel centerline.44 In the proposed method, the centerline is a

minimum-cost path between proximal and distal points along the vessel, identi-

fied by the user, where the cost of a path, Cpath, is sum of the reciprocal of the

intensities of the enhanced image intensity at each point, p, along the path.

Cpath =
∑

p∈ path

1

Vmax(p)
. (9)

Such a cost function can be minimized using Dijkstra’s shortest-path algorithm.45
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Fig. 4. MIP rendering of contrast-enhanced MRA before (left) and after (right) application of
centerline filter derived from eigenvalues of Hessian (Eq. (8)). Reproduced with permission from
Frangi et al., Magn. Reson. Med. 45(2), 2001.

Vessel directionality can also be determined based on a moment-of-inertia model

developed by Hernández-Hoyos et al.46 In this model, a physical moment of inertia

is calculated for a given region of the image where the image intensity is considered

to be a physical density. The inertia of the given region, or cell, in the image is

described by the physical inertia matrix:

I =




Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz



 . (10)

The diagonal elements of the matrix are moments of inertia and the non-diagonal

elements are products of inertia. For example:

Ixx =
∑

x j∈S(x j ,r)

f(x j)(y
2
j + z2

j ), (11)

and

Ixy = −
∑

x j∈S(x j ,r)

f(x j)xjyj . (12)

S(x j , r) is the set of points in a spherical region centered at x j with a radius of r.

f(x j) is the image intensity and is analogous to physical density.

Similar analysis of the eigenvalues, as was applied to the Hessian, can be used

to obtain the vessel directionality. In this case, the eigenvector associated with the

smallest eigenvalue of this matrix corresponds to the vessel directionality, provided

that the given region is centered on the vessel. The vessel centerline can then be

extracted by tracking along the vessel from a point at the center of a vessel identified

by the user. The vessel centerline is tracked by prediction-estimation process. The
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Fig. 5. Two-step process for vessel tracking based on prediction (left) and correction (right).
Reproduced with permission from Hernandez-Hoyos et al., Radiographics, 22(2), 2002.

tracking proceeds in an iterative manner. In the first stage of each iteration, the

extension of the centerline is predicted based on the moment-of-inertial analysis. In

the next stage, an estimate of the vessel center is then derived from the predicted

vessel center. The estimate of the vessel center takes into account the center-of-mass

at the predicted vessel center and the smoothness constraints on the centerline. The

concept of this algorithm is illustrated in Fig. 5.

Another approach to delineation of 3D vessel centerlines is that of skeletoniza-

tion. The concept of skeletonization is that central axes of objects in images can be

extracted by progressively stripping away the outer layers of pixels until only the

centerlines remain. The concept of skeletonization applies most directly to binary

images. Methods for obtaining curvilinear skeletons from 3D binary images include

those of Lee et al.,47 Ge et al.,48 and Siddiqi et al.49 Skeletonization can also be

applied to gray-scale images. In this case, the order in which pixels or voxel are

removed from the image is determined by the image intensity of the pixel or voxel

subject to constraints for preserving the topology of the object. Thus, the resulting

centerline tends to fall along the ridge with the maximal image intensity. Methods

for skeletonization of 2D gray-scale images include those of Arcelli and Ramella50

and Salari and Siy.51

An algorithm for skeletonization of the 3D gray-scale image has been developed

by Yim et al.52,53 This algorithm is based on Ordered Region Growing (ORG),

a process for obtaining optimal paths between pairs of points in the image. The

optimization criteria is the following: Any segment of an ORG path, PORG , has

a minimum intensity greater than or equal to that of any alternative path, Palt,

between the same two points.54

min
{

Y
pORG∈PORG

f(p
ORG

)
}
≥ min

{
Y

palt∈Palt
f(p

alt
)
}

, (13)

where f(x) is the image intensity. ORG is initialized by placement of a point,

s0, at a proximal location on a vessel of interest. An iterative growth process

then takes place; new points are incorporated into the growth region, Rn, that
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Fig. 6. Gray-scale skeletonization of vascular structures based on Ordered Region Growing algo-
rithm that produces acyclic graph (right) from the image (left). Vessel axes are extracted by
identification of proximal and distal points along vessel (arrows).

are adjacent to the point of maximum intensity, sn, on the boundary, Bn, of the

growth region, Gn.

sn = arg max
x∈Bn

{f(x)},

Gn = Neighbors{sn}\Rn.
(14)

The parent-child relations developed by ORG are represented by a directed

acyclic graph (DAG) as shown in Fig. 6. A path from any point in the image to

the point of initialization of the ORG is found by simply tracing the upstream path

through the DAG. This algorithm for delineation of paths in the gray-scale image

has been shown to be analogous to a thinning process.

5.2. Vessel surface reconstruction

Methods for reconstruction of the carotid artery surface have primarily employed

the Geometric Deformable Model (GDM) approach. GDM methods segment objects

in an image through a deformation process in which an initial approximation to the

object shape is deformed to accurately represent the object shape. The deformation

is driven by the image intensity structure and by constraints on the surface smooth-

ness. Typically, the deformation process also preserves the topology such that, for

example, holes or bifurcations of the object are neither created nor destroyed.

The GDM was introduced by Kass et al. in the context of segmentation of

objects in 2D images.55 Active contours, as the algorithm was called, produces

an optimal segmentation of an image by minimization of an “energy” functional.

The energy functional is defined with respect to properties of a parametric curve

C : [0, 1] → R2.

E(C) =

∫ 1

0

Eimage(C(u)) + Einternal(C, u)du. (15)
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The image energy reflects the strength of the edges in the image and is

defined as:

Eimage(x, y) = −‖∇(Gσ ∗ f(x, y))‖ , (16)

where Gσ represents the Gaussian function with a space constant of σ and f rep-

resents the image-intensity function. The internal energy reflects the smoothness of

the curve and is defined as:

Einternal(C, u) =
α

2

∥∥∥∥
dC

du

∥∥∥∥
2

+
β

2

∥∥∥∥
d2C

du2

∥∥∥∥
2

. (17)

In practice, the curve can be represented as a set of n discrete nodes, C discrete:

{0, 1, . . . , n} → R2. For discrete curves that are parametrized by the node index,

finite differences correspond to the first and second derivatives of the curve that

are used to construct the internal energy:

dC

du
→ Ci+1 − Ci−1

2
, (18)

d2C

du2
→ Ci+1 − 2Ci + Ci−1. (19)

The active contour solution is then obtained in the following manner. First, an

initial curve is obtained manually, that is an approximation of the object bound-

ary. That curve then deforms in a manner so as to successively lower the energy

functional. Mechanical analogies can be used to produce the desired deformation,

where each node is considered to be a particle under the influence of elastic forces,

bending forces and forces derived from the image.

A method for reconstruction of the carotid artery surface has been proposed

by Frangi et al. based on a Tensor-Product B-Spline (TPBS) surface model.56 The

surface model is formed from B-spline basis functions that are parametrized by the

circumferential and longitudinal position:

W (v, u) =

q∑

j=0

r∑

k=0

Njl(u)Nkm(v)P jk, (20)

where P jk are the control points, Njl(u) is the jth B-spline periodic basis func-

tion of order l, Nkm(v) is the kth B-spline non-periodic basis function of order m.

u and v are parameters describing the circumferential and longitudinal posi-

tions, respectively. The parametrization is derived from the central axis of the

vessel.

The energy functional for this surface model is analogous to that of Active

Contours:

EW = EW
external + γ̄W

s · ĒW
stretching + γ̄W

b · ĒW
bending , (21)

where the vectors γ̄W
s and γ̄W

b determine the relative weights of the stretching and

bending energies. Since, in this case, the surface model is continuous in nature, the



Measurement of Carotid Artery Stenosis from MRA 343

internal energy of the surface can be defined in an analytical manner:

ĒW
stretching =

1

S

∫ 1

0

∫ 2π

0

(
‖Wv‖2

‖Wu‖2

)
‖Wv × Wu‖ dv du, (22)

ĒW
bending =

1

S

∫ 1

0

∫ 2π

0




‖Wvv‖2

2 ‖Wvu‖2

‖Wuu‖2



 ‖Wv × Wu‖ dv du, (23)

where S represents the surface area of the model and subscript notation is used to

indicate first and second partial derivatives of W .

The B-spline GDM was evaluated in flow-though vascular phantoms represent-

ing stenotic carotid arteries and for MRA of patients with carotid artery disease.57

The B-spline GDM tended to over-estimate the lumenal diameter for all image

acquisition methods including 2D Time-Of-Flight (TOF) MRA, 3D TOF MRA,

3D Phase-Contrast (PC) angiography and for contrast-enhanced MRA. In partic-

ular, the overall average error in the diameter measurement (our calculation from

published data) was +0.28 ± 0.44 mm for contrast-enhanced MRA from images

with an in-plane resolution of 1.0mm. The B-spline GDM was also evaluated for

contrast MRA of 19 carotid arteries in comparison with digital subtraction angiog-

raphy. The B-spline GDM measurement of the DS was significantly more correlated

with the DSA than either of the observers (our calculation of the statistical signif-

icance based on the published correlation coefficients).

GDM’s for the carotid artery have also been developed based on the level-sets

method for shape representation. In the level-set approach, a surface is defined in

an implicit manner as a zero-level set:

Γ = {ξ ∈ R3 |ϕ(ξ) = 0}, (24)

where ϕ is the so-called embedding function. Optimization of the surface can, again,

be obtained by a deformation process. In this case, deformation of the surface is

produced by an evolution of the embedding function that is governed by:

∂ϕ(x̄, t)

∂t
+ F ‖∇ϕ(x̄, t)‖ = 0, (25)

where F is a force derived from smoothing constraints and the local image intensity

structure. Evolution of the embedding function of this form produces an evolution

of the level-set surface where the velocity of the surface is proportional to the force

in the direction normal to the surface, N̂ , that is applied to it:

∂Γ(t)

∂t
= F · N̂ . (26)

The process of deforming or evolving the surface can be produced by an equiv-

alent process of evolution of the embedding function. As with other GDM’s, the

level-set evolution produces a surface that is both smooth and aligned with image

edges. Lorigo et al. proposed a level-sets GDM for vascular surface reconstruction in

which smoothing is only applied based only on the minor principal curvature of the
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surface, presumably corresponding to curvature of the vessel axis. It is appropriate

to discount the major principal curvature when performing the smoothing, since the

major principal curvature is typically the circumferential curvature and should be

allowed to assume high values to allow for narrow vessels.58 Van Bemmel et al. pro-

pose a level-sets GDM in which the embedding function is initialized based on the

vessel centerline determined by the method described in the previous section.59 The

vessel edge is defined using the Full-Width-at-Half-Max (FWHM) criteria, with

the local maxima derived from the vessel centerline. This GDM also only considers

the minor principal curvature for smoothing of the surface.

The level-sets GDM of van Bemmel et al. was evaluated for measurement of the

DS in 15 carotid arteries from contrast-enhanced MRA. In this study, the DS was

defined as the percent reduction in the cross-sectional area in the stenotic region

relative to the normal region distal to the stenosis. Measurements of the DS by the

GDM were found to be consistent with measurements made by three physicians

with expertise in interpretation of MRA. The difference between the GDM mea-

surement of the stenosis and the mean of the measurements made by the experts

was 0.8 ± 8.7%. The results from four of the cases in this study are shown in Fig. 7.

A physics-based GDM has been developed for vascular surface reconstruction by

Yim et al. referred to as an Isosurface Deformable Model (IDM).60 In this approach

to surface reconstruction, the surface deformation is governed by mechanical inter-

actions within the surface mesh and between the surface mesh and the image. The

behavior of this GDM can also be described in terms of the minimization of an

energy functional as follows:

E = Eimage + α Estretching + β Ebending , (27)

where α and β are the relative weight constants of the stretching and bending

energies respectively and:

Eimage = −
∑

v∈V

∥∥(K̄ ∗ f)|v · n̂v

∥∥ , (28)

Estretching =
∑

v∈V

∥∥n̂v ×
(
xv − xave

(
Nvertices(v)

))∥∥ , (29)

Ebending =
∑

t∈T

∥∥n̂v × n̂ave

(
N triangles(t)

)∥∥ , (30)

where:

V is the set of vertices in the surface mesh

T is the set of triangles in the surface mesh

K̄ is the convolution kernel that represents the gradient of the Gaussian

xv is the position of the vertex

n̂v is the unit vector in the direction normal to the surface at a given vertex

f is the image intensity function

I is the identity matrix

Nvertices is the set of adjacent vertices
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Fig. 7. Segmentation of contrast-enhanced MRA using the level-sets algorithm of van Bemmel
et al. Each vessel is shown in MIP rendering before (left part of pair) and after (right part of pair)
level-sets segmentation. Reproduced with permission from van Bemmel et al., Magn. Reson. Med.
51(4), 2004.

N triangles is the set of adjacent triangles

xave is the mean position of a set of vertices

n̂ave is the unit vector in the direction of the mean of a set of vectors.

The surface mesh, as the name this model suggests, is based on an isosurface

constructed using the Marching Cubes algorithm.61 The IDM has been evaluated for

the measurement of the DS in 10 carotid arteries from contrast-enhanced MRA.62

In this study, the DS was quantified from the surface reconstruction by applying

the distance transform to the reconstructed surface and then determining the ORG

centerline of the vessel from the distance transform. The value of the distance
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Fig. 8. Segmentation of contrast-enhanced MRA using the IDM. Each MRA is shown in MIP
rendering (left part of pair) and shaded-surface display based on IDM segmentation (right part of
pair).

transform along the centerline is then considered to be the vessel radius at that

point. Measurement of the DS by the IDM was consistent with measurement of

the DS by two observers (r = 0.8836). The IDM also significantly reduced inter-

observer variability in the measurement of the DS (p = 0.006). The results of IDM

segmentation are shown for four cases in Fig. 8.

6. Summary

Evaluation of carotid artery stenosis with contrast-enhanced MRA has been found

to be reliable and accurate in a number of clinical studies. However, MRA is still

very much an evolving technology. Significant prospective improvements in quan-

tification of carotid artery stenosis using computational methods have begun to

emerge, as have been discussed in detail in the preceding sections. These computa-

tional methodologies offer the promise of reducing or removing subjectivity in the

measurement of carotid artery stenosis as well as reducing the level of expertise nec-

essary for interpretation of carotid MRA. These methodologies may also facilitate
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the adaptation of alternative criteria for characterization of arterial stenoses such

as percent reduction in lumenal area, that are more appropriate for characterization

of lumenal shape from 3D imagery.

The computational algorithms, discussed in the preceding sections, may already

be sufficient for clinical use in quantification of carotid artery stenosis, although

certainly improvements in computational speed and the degree of automation are

desirable. However, the accuracy of the measurement of carotid stenosis using compu-

tational technology remains the primary consideration for clinical acceptance. Thus,

more thorough demonstration of such accuracy must be addressed in clinical studies.
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