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Preface

Because of the availability of powerful computational techniques, new modal-
ity techniques such as Computer-Aided Tomography (CAT), Magnetic Resonance
Imaging (MRI) and others, and because of the new techniques of imaging process-
ing (machine vision), the lives of many patients will be saved, and the quality of
all our lives improved. This marriage of powerful computer technology and medi-
cal imaging has spawned a new and growing generation of young dynamic doctors
who hold PhDs in physics and/or computer science, along with their MDs. In addi-
tion, technologists and computer scientists, with their superb skills, are also deeply
involved in this area of major significance.

This volume covers the subject of medical imaging systems — methods in gen-
eral anatomy, by leading contributors on the international scene. This is one of the
5 volumes on medical imaging systems technology, and together they collectively
constitute an MRW (Major Reference Work). An MRW is a comprehensive treat-
ment of a subject requiring multiple authors and a number of distinctly-titled and
well-integrated volumes. Each volume treats a specific subject area of fundamen-
tal importance in medical imaging. The titles of the respective 5 volumes which
compose this MRW are:

Medical Imaging Systems — Analysis & Computational Methods
Medical Imaging Systems — Modalities

Medical Imaging Systems — Methods in General Anatomy
Medical Imaging Systems — Methods in Diagnosis Optimization

Medical Imaging Systems — Methods in Cardiovascular & Brain Systems

Each volume is self-contained and stands alone for those interested in a specific
volume. However, collectively this 5-volume set evidently constitutes the first multi-
volume comprehensive reference dedicated to the multi-discipline area of medical
imaging.

There are over 130 coauthors of this notable work and they come from 25 coun-
tries. The chapters are clearly written, self-contained, readable and comprehensive
with helpful guides including introduction, summary, extensive figures and exam-
ples with in-depth reference lists. Perhaps the most valuable feature of this work is
the breadth and depth of the topics covered.
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Preface

This volume on “Medical Imaging Systems — Methods in General Anatomy”

includes essential subjects like:

(a)

Medical imaging analysis of the three dimensional (3D) architecture of trabec-
ular bone: Techniques and their applications

Medical image-based preformed titanium membranes for bone reconstruction
Techniques for tracheal segmentation in medical imaging

Knowledge-based system for contouring the spinal cord in computed tomogra-
phy images

From global to local approaches for non-rigid registration

Automated image segmentation: Issues and applications

Techniques in image guided surgery based on integrated rate sensing, segmen-
tation and registration framework methods

Image registration and fusion for interventional MRI-guided treatment of
prostate cancer

Detection and segmentation of Drusen deposits on retina images

The contributors of this volume clearly reveal the effectiveness of the techniques

available and the essential role that they will play in the future. I hope that prac-
titioners, research workers, computer scientists, and students will find this set of

volumes to be a unique and significant reference source for years to come.
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CHAPTER 1

MEDICAL IMAGING ANALYSIS OF THE THREE DIMENSIONAL
(3D) ARCHITECTURE OF TRABECULAR BONE: TECHNIQUES
AND THEIR APPLICATIONS
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toffanin@units.it

FRANCO VITTUR
Department BBCM, University of Trieste
Via Giorgieri 1, 1-34127 Trieste, Italy
vittur@bbem.units. it

The purpose of this chapter is to provide a perspective on the current techniques in
the imaging analysis of the three-dimensional architecture of trabecular bone and their
relevance to the diagnosis of osteoporosis. The emphasis lies on the analysis of images
obtained by high resolution X-ray-based CT and MRI techniques. The description of
these acquisition techniques is followed by a presentation of the most common image
processing methods. Different approaches (morphological, topological, fractal, etc.) used
to derive the main architectural features of trabecular bone are illustrated and discussed.

Keywords: Image analysis; MRI; X-ray tomography; trabecular bone architecture;
structural parameters and models.

1. Introduction

Mechanical support, maintenance of calcium homeostasis and hematopoiesis in the
bone marrow are the main functions of the skeleton. Strength and low weight of the

*Corresponding author.
fPermanent address: Institute of Measurement Science, Slovak Academy of Sciences, Dubravska
Cesta 9, SK-84104, Bratislava, Slovak Republic.
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skeleton are given by a sophisticated spatial distribution of two main kinds of bone:
(a) cortical or compact bone, and (b) trabecular or cancellous bone. The cortical
bone, which contributes about 80% to the skeleton weight, is found principally in
the shafts of long bones. It mainly consists of a number of irregularly spaced, fre-
quently overlapping, cylindrical units, termed Haversian systems.! The trabecular
bone forms about 20% of the skeleton and is found principally at the ends of long
bones, in vertebral bodies and in flat bones. This kind of bone is composed of a
meshwork of trabeculae within which are intercommunicating spaces containing the
bone marrow. Typically, the thickness of the trabecular elements is around 100 pm
in humans. As a consequence of a significantly larger surface area, the trabecular
bone is more metabolically active compared to the cortical bone. Therefore, the
skeleton osteoporotic status can be more easily evaluated through the investigation
of trabecular bone.

In 1994, WHO defined osteoporosis as a systemic skeletal disease characterized
by low bone mass and microarchitectural deterioration of bone tissue, with a conse-
quent increase in bone fragility and susceptibility to fracture.? The disease is usually
developed without any symptoms for several decades while the bone is losing its
sophisticated structure until an osteoporotic fracture occurs as a result of minimal
injury. Most often the osteoporotic fractures of the proximal femur (hip), distal
radius and vertebral bodies arise. These fractures have significant consequences to
the quality of life of the elderly population. It was estimated that in developed coun-
tries about 5-6% of the population suffers from osteoporosis. Up to 1 in 2 women
and 1 in 3 men will sustain an osteoporotic fracture during their lifetime. In the
USA, the total cost for treating all types of osteoporotic fractures was estimated at
$14 billion in 1999.

The bone osteoporotic status is routinely estimated by the bone mineral den-
sity (BMD) parameter based on X-ray measurements (e.g. DXA or QCT measure-
ments). However, a considerable overlap in density measurements between patients
with and those without fractures exists. The variations of density explain around
60% of the bone’s mechanical competence.®* Therefore, it is necessary to find new
reliable methods for the evaluation of the bone osteoporotic status. It was suggested
and experimentally well proven that changes in the trabecular bone structure affect
the bone strength independently of the bone mineral density.® In order to evaluate
the bone structure quality, it is possible either to measure some physical param-
eter, which is affected by the bone structure (e.g. the T3 relaxation constant of
the MR signal, the ultrasound attenuation or velocity, etc.) or directly depict the
three-dimensional structure of the trabecular bone using X-ray or MR tomographic
imaging and analyze its properties.

Imaging of the trabecular bone structure and the analysis of the acquired images
are currently limited by the fact that the thickness of a trabecular element is com-
parable to the highest resolution achievable in vivo by both X-ray and MR imaging
methods. This results in the partial volume blurring. Other artifacts, which further
hamper the bone analysis are characteristic of a given imaging modality.
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2. Image Generation

There are three main approaches to generate 3D trabecular bone images: serial
sectioning techniques, X-ray Computed Tomography (CT) and Magnetic Resonance
Imaging (MRI). Serial sectioning techniques provide high-resolution high-contrast
images but this approach is limited to bone biopsy specimens (is invasive), and
prevents further analysis of the specimen (is destructive). The micro-computed
tomography (1uCT) images may have a resolution similar to the images obtained by
the serial sectioning approach, whereas being completely nondestructive. For small
animals studies, in vivo trabecular bone imaging may be carried out as well. The
in vivo imaging of human skeleton peripheral sites may be performed using dedi-
cated peripheral CT scanners (pQCT) or using clinical whole body MRI scanners
using dedicated coils and imaging protocols.

Because of the different physical principles governing the image generation, each
imaging modality introduces specific artifacts into the processed images. Therefore,
the processing of acquired images and the evaluation of quantitative parameters,
which describe the bone structure, may have different requirements for each imaging
method.

2.1. Histomorphomeitry

The standard procedure to assess structural features of trabecular bone is based
on 2D sections of bone biopsies. Three-dimensional morphological parameters are
derived from the 2D images using stereological methods.® These methods are prone
to error because of the inherently three-dimensional and highly anisotropic nature
of the trabecular bone structure.> Moreover, there is no relation between the con-
nectivity in a random 2D section and the connectivity in 3D space.” The methods,
therefore, do not provide a reliable means to characterize the 3D bone topology.

Early 3D reconstructions were based on tedious and time consuming serial
sectioning techniques, which did not allow routine applications. The introduction
of new computerized methods®® have significantly improved the situation. These
methods, however, require substantial preparation of the samples. The through-
put of automated serial sectioning techniques may be as high as 600 sections per
hour.? With the implementation of the computer numerically controlled (CNC)
milling machine!® thin slices are serially removed from embedded bone specimens
and acquired by a CCD camera. This imaging technique generates high resolution,
three-dimensional models of trabecular bone, in which image resolution is indepen-
dent of specimen size.

The advent of X-ray computed tomography as well as of MRI allows to carry
out the study also in wvivo although a high resolution like that present in histo-
morphometric images is still available only in wvitro. Compared to these imaging
modalities, the main disadvantage of the serial sectioning method is the specimen
destruction in the process of imaging, which prevents the use of the sample for
further measurements, e.g. mechanical testing.
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2.2. X-ray computed tomography

The contrast in X-ray images of the trabecular bone structure originates from the
large difference in the attenuation coefficients between the mineralized bone matrix
and the bone marrow. Apart from the 60-80% greater physical density of the min-
eralized bone compared to soft tissues, this difference can be explained by the
presence of higher atomic number elements, P and Ca, which being only 10% the
number of atoms of the mineralized bone matrix, absorb together more than 90% of
X-ray photons in the range of 20-40keV.!! In the X-ray images, mineralized bone
appears bright while spaces containing the bone marrow are dark since they have
a low attenuation coefficient.

Conventional radiography (Fig. 1) provides 2D projection images of the bone
structure with spatial resolutions up to 40 um at peripheral skeletal sites.'? How-
ever, the relationship between the complicated three-dimensional trabecular bone
architecture and the associated two-dimensional radiographic pattern is not well
understood at present. Results of a study, where plain radiographs were simulated
using 3D uCT images,'® suggest that the information on the average architecture
fabric, i.e. mean intercept length, is contained in 2D images.

3D images with in-plane resolution up to 400 um and slice thickness about 1 mm
can be obtained using clinical whole body CT scanners (Fig. 2).!2 However, this

Fig. 1. Radiograph of the right hand of a healthy volunteer where the trabeculae are not well iden-
tifiable (Courtesy G. Guglielmi — IRCCS Casa Sollievo della Sofferenza, S. Giovanni Rotondo,
Ttaly).
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Fig. 2. CT image of a human vertebral body where the trabeculae are well identifiable. (Courtesy
G. Guglielmi — IRCCS Casa Sollievo della Sofferenza, S. Giovanni Rotondo, Italy).

resolution is not sufficient for the accurate depiction of individual trabeculae. Spe-
cial purpose small gantry CT scanners were built to acquire high-resolution images
(compared to the usual CT scan) of the trabecular bone structure in peripheral
sites of the skeleton (distal radius).!415

The experimental low-dose 3D-QCT system, developed in Zurich by Riiegsegger

16,17 provides images with approximately isotropic resolution of

and coworkers,
about 250 um (reconstructed 3D images had an isotropic voxel size of 170 ym).
This system makes use of a 0.2 x 10.0 mm line-focus X-ray tube and a 10 x 16 chan-
nels 2D detector array allowing the simultaneous assessment of 10 tomographic
images in each measurement cycle. Acquisition of 60 high-resolution slices can be
performed in 10 minutes. Even though at this resolution excessive partial volume
blurring of trabecular elements occurs, sophisticated image processing methods!®
allow the bone structure extraction, visualization and characterization. Further-
more, the system showed an excellent reproducibility.!” Recent advances in the
X-ray detector technology allowed to increase the in vivo resolution of pQCT. A sys-
tem providing images having 100 um isotropic resolution is commercially available
now.'® However, the maximum tolerable radiation dose limits the further increase
of the resolution.
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Much higher resolutions can be reached using pCT scanners dedicated to in vitro
measurements of small bone biopsy samples or to in vivo studies of small animals.
Most of these systems use a fixed X-ray source and a detector array whereas the
specimen is rotated. Among the technical factors affecting the resolution of the CT
scanners are the X-ray source focal spot size, the detector array resolution and the
specimen position with respect to the source and detector.'® The position of the
sample governs its geometrical magnification being projected in the detector plane.
Placing the specimen closer to the X-ray source improves the effective resolution.
However, with this increase of the geometric magnification, the finite size of the
detector array limits the field-of-view of the system and the blurring due to the
X-ray focal spot size increases as well.

Microfocus X-ray tubes with stationary targets are employed in some uCT sys-
tems. X-ray sources with focal spot sizes as small as 5 um are commercially available.
Since the maximum power that can be applied to a stationary target of the microfo-
cus X-ray tube is proportional approximately to the focal spot diameter (because of
the heat removal rate from the target),'® the decrease of the focal spot size reduces
the geometrical blurring of the image at the expense of a lower beam intensity,
which in turn means longer exposure times for a given signal-to-noise ratio.

A linear array of solid-state or gas ionization X-ray detectors are used in clin-
ical scanners. The in-plane spatial resolution is to a large extent determined by
the effective detector width, whereas the slice thickness is determined by the thick-
ness of the beam or by the detector height. In this case, fan beam reconstruction
algorithms are applied to obtain 2D tomographic images. In radiography as well
as in uCT devices this kind of detector is often replaced by a thin scintillating
(or phosphor) layer, optically coupled to a 2D CCD chip. In uCT the 3D images
are reconstructed directly applying a cone beam reconstruction algorithm.?’ An
example is the experimental pCT scanner developed at the Physical Department
of the University of Bologna.?! Here, the scintillating Gd0STb layer is deposited
on the 40 x 20 mm entrance window of a 2:1 glass fiberoptic taper. The small end of
the taper is coupled to a Peltier cooled CCD with 1024 x 512 useful pixels. Exper-
imentally accessed Nyquist cut off of the detection system is at about 161p/mm.!
This system was employed to visualize the structure of cylindrical bone samples
with a diameter of approximately 7 mm.??

A common problem affecting these systems concerns the noise influence on image
quality. In uCT imaging the finite number of X-ray photons emitted by the X-ray
source and the small element sizes of the detector lead to fluctuations of measured
intensity values, which follow the Poisson statistics. In this case, the standard devi-
ation o, about the mean number of X-ray quanta, Ny, falling on a detector element,
is equal to y/Np. The noise distribution in the reconstructed image is often con-
sidered to be close to Gaussian.?? Even in the case when the noise in individual
projections is white, there is more noise at high spatial frequencies than at low
frequencies in the reconstructed image. In fact, the power spectrum depends on the
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reconstruction algorithm actually applied. Analysis of the noise power spectrum
properties in CT images has been described by Kijewski and Judy.?*

Another problem bound to the use of conventional X-ray tubes, which produce
a polychromatic X-ray radiation, is the beam hardening. Beam low-frequencies
absorption occurs while the beam travels through the measured object because of
the energy dependence of X-ray radiation absorption coefficients (the beam becomes
“harder”). As a consequence, the measured CT values tend to be higher near the
edges of the object. Aluminum or copper filter plates!! can be employed to reduce
the spectral width of the X-ray beam selectively, removing the low energies. How-
ever, this results in great loss of the X-ray beam intensity. Software methods for the
reduction of the beam hardening artifacts were developed t00,2%:26 but the applica-
tion of these methods may cause some loss of the information in the reconstructed
images. Because of these limitations, the highest resolution of uCT systems with
microfocus X-ray sources is limited to approximately 10 pym.

Employing synchrotron X-ray source instead of conventional X-ray tubes allows
the acquisition of images with significantly higher resolutions (Fig. 3). Synchrotron
radiation offers the possibility to select X-rays with a small energy bandwith, thus
no beam hardening occurs. Because of the high photon flux of the X-ray beam,
high signal-to-noise can be retained even when the image resolution is increased.
Moreover, the X-ray beam is parallel as opposed to the cone-beam generated by
conventional X-ray sources, thus reducing some image distortions. In trabecular
bone images with a resolution of around 3-5 um features like osteocyte lacunae on

the bone surface and trabeculae microcracks were seen.2?

2.3. Magnetic resonance imaging

Recent efforts have been directed toward quantifying trabecular bone architecture
non-invasively. In particular, MR imaging has emerged as a potential method for
determining both bone density and structure. In trabecular bone images, acquired
by MRI techniques, the structures corresponding to the mineralized bone matrix
appear dark, whereas regions with large brightness values correspond to the inter-
trabecular spaces filled with bone marrow. This contrast originates from the sig-
nificant difference between the transverse (spin-spin) relaxation constants (T5) of
protons present in the bone tissue and those present in the bone marrow, which
consists mainly of water and lipids (fat). Since these molecules are highly mobile
in the bone marrow, their 75 relaxation times are around 30-50ms at 1.5 Tesla.?®
On the other hand, the bone tissue contains about 15% of water molecules (inter-
stitial or bound to collagen or to hydroxyapatite) having a Ty of about 250 us.2”
This proton pool, characterized by very low 75 values, cannot be detected when
liquid-phase proton MRI sequences are used. For this reason, a negative image of
the bone structure is generally produced by MRI.

As a consequence of these different chemical composition, bone and bone mar-
row exhibit a difference in magnetic susceptibility (about 2.5-3ppm). Also this



8 A. P. Accardo et al.

100 200 300

Fig. 3. pCT images of bovine femur explants with an in-plane resolution of 14 pm. (Courtesy
D. Dreossi, ELETTRA Synchrotron Light Source — Trieste, Italy).
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difference is relevant for the analysis of the trabecular bone.?03! In fact, a field
perturbation is induced near the boundary of two materials having different sus-
ceptibility. The effective transverse relaxation time (75) also provides a valuable
physical mechanism for the quantitative assessment of the bone structure.?!:32 The
field distribution is less homogeneous in samples with a large spatial density of
trabeculae compared to those which are less dense. This field inhomogeneity may
introduce severe artifacts in trabecular bone images like an apparent amplification
of trabeculae dimensions if the images are acquired using gradient echo imaging
33,34 Tn this case, the magnetic field spread, induced near the bound-
ary of the bone and marrow, causes a dephasing of the transverse magnetization

sequences.

and thus a severe signal attenuation from the unity volume of the bone marrow
compared to the same volume of the marrow positioned in regions with low field
variation. This artifact can be reduced using the gradient echo imaging sequence
with short echo times, which requires the use of a space encoding gradient system
with high amplitudes and slew rates, and/or partial echo acquisition schemes. Since
the application of the 180° refocusing pulse restores the loss of the phase coherence
caused by the field inhomogeneity, spin echo sequences are not sensitive to this kind
of artifact (Fig. 4). At high fields, the susceptibility artifacts are more pronounced,
requiring wider acquisition bandwidths.

GRADIENT ECHO SEQUENCE
ao
RF | l
Rx d \

Ry —

/N
Rz \ /
ADC [

SPIN ECHO SEQUENCE
| | ap° | | 180°
RF
Rx
N/

Ry —
Ry S\ SN
ADC l I

Fig. 4. Timing diagrams of the standard 2D gradient-echo and spin-echo sequences. RF' = Radio
Frequency transmitter; Rx = slice selection gradient z; Ry = phase encoding gradient y; Rz =
frequency encoding gradient z, also called readout gradient; ADC = Analog to Digital Conversion
and sampling; a® = flip angle between 0° and 90°.
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Another kind of distortion of the trabecular bone images occurs as a direct
consequence of the application of controlled magnetic field gradients, with intensity
linearly varying with some spatial coordinate, necessary for the spatial encoding of
the MR signal. The field distribution in the sample, affected by field inhomogeneity
produced by the susceptibility difference, is further influenced by these gradients. In
the case of spin warp imaging, this results in the apparent shift of spins in the read
gradient direction with consequent image distortions®® and loss of the resolution.
These artifacts can be minimized by the application of stronger read gradients.
However, the increase of the acquisition bandwidth (which is proportional to the
gradient strength) reduces the signal-to-noise ratio.

The resolution of the acquired trabecular bone images is fundamentally limited
by the acceptable signal-to-noise ratio (SNR), since the signal available from each
volume element decreases as the voxel size is reduced. The noise in MR experiments
is typically dominated by the receiver coil thermal noise and by the noise arising
from r.f. field energy losses in the sample (the most significant loss originates
from magnetically-induced eddy currents). In the case of very small bone biopsy
samples, the coil noise dominates over the sample noise and SNR is approximately
proportional to the square of the resonance frequency.?35 For larger samples, the
sample noise becomes more important, and the SNR increases linearly with the
resonance frequency.®

Dedicated coils are applied in order to obtain images with high SNR (e.g. the
quadrature birdcage coil for microimaging of the wrist®"). In fact, the coil sensitivity
increases when the coil diameter is reduced.?3%:38 Therefore, peripheral sites of the
skeleton, which can be positioned into small coils, have to be selected for high-
resolution trabecular bone MRI. The SNR increases with the square root of the
number of accumulations. In the case of in vivo studies, however, the imaging time
cannot exceed 10—20 minutes, therefore, typically no more than two accumulations
can be acquired.

The dominant noise is uncorrelated (white) noise with Gaussian distribution.
The real and imaginary components of the noise signals are not mutually correlated.
In the case of the Cartesian k-space sampling, commonly applied in MRI sequences,
the image is obtained as a 3D Fourier transform of the MR signal. Since the Fourier
transform is an orthogonal linear operation, the noise signal present in both the real
and the imaginary components of the image is still independent, spatially invariant
and Gaussian distributed.¢ It is common, however, to work on magnitude images,
which are obtained as the absolute value of the complex image. The computation
of the absolute value is a nonlinear operation and the noise in the resulting images
is characterized by a Rician distribution.?%:3% The conditional probability that the
measured intensity is I,eqs, given that the actual intensity is I,.¢, is given by

Imeas I2 +Ir2n s Iac Imeas
Pmeas\act(ImeaSU(zct) = ) eXp|:— act 952 £as :|Io< t0'2 ) . (1)
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Here I is the modified zeroth-order Bessel function of the first kind and o is the
standard deviation of the noise in the acquired signal.

The point spread function in MR images acquired with Cartesian k-space sam-
pling is sinc(mz/Ax), with Az representing the voxel size. Since the width of this
function is comparable to the voxel size, it is often assumed for simplicity, that
the point spread is given by a box function equal to 1 in the voxel’s volume and 0
otherwise and the partial volume blurring model is applied in image processing
methods.

It has to be noted, however, that for non-Cartesian acquisition methods (e.g.
Radial MRI??) the noise properties and the point spread function will be different.
The same is true for recently proposed parallel acquisition methods with coil sen-
sitivity encoding (e.g. SENSE), which allow a considerable reduction in scan time
by the use of multiple receiver coils in parallel.*® In this case, the noise signals in
the receiver channels are correlated, and the reconstruction matrix is not unitary.
Consequently, the noise in the resulting image is correlated and the noise level is
spatially variable.#? The noise may become spatially variant also when methods for
the r.f. field inhomogeneity correction are employed.

High field (typically 7 Tesla or more) MR microscopes are used to obtain 3D
high-resolution images of small bone samples (Fig. 5). From these bone samples,

Fig. 5. Spin-echo uMR image of a porcine humer explant obtained at 7.05 Tesla (in-plane reso-
lution of 42 pm).
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usually the bone marrow is removed. One reason for this is the transition of the
hemoglobin in hematopoietic bone marrow from the diamagnetic oxy to the param-
agnetic deoxy state after the contact with air. Therefore, the magnetic properties of
the sample would be changed in comparison to the intact bone. Another rationale
for the marrow removal is the possible presence of air cavities in the sample.?? The
abrupt change of the magnetic susceptibility at the air-marrow boundary would
affect the image appearance significantly. Therefore, the defatted bone structure is
generally refilled with doped water. Images with pixel volumes ranging from 92 x
92 x 92 um3 4 to 47 x 47 x 47 pum3 38 or 42 x 42 x 84 pm?3? were obtained in various
studies. Because of high magnetic fields, the spin echo imaging sequences were pre-
ferred in order to avoid the susceptibility induced trabecular thickness amplification.

Both spin echo and gradient echo imaging sequences are applied in trabec-
ular bone structure studies in various sites of the skeleton in vivo using 1.5T
clinical scanners (Fig. 6). Studies of the calcaneus with nominal resolutions of

Fig. 6. High resolution gradient-echo MR image of the right calcaneus of a young healthy man
obtained at 1.5 Tesla using a two-element experimental microcoil (in-plane resolution 156 x 156 x
500 um?).
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172 %172 x 700 342 or of 195 x 195 x 1000 um? 3 and of the distal radius with res-
olution of 156 x 156 x 500 um?>** were performed. In all of these cases, the gradient-
recalled imaging sequences were applied. It is argued, that gradient echo sequences
can acquire the 3D images of the trabecular bone structure in a considerably less
time than conventional spin echo sequences and, with proper parameters settings,
the image distortions can be reduced.?* However, a modified spin-echo sequence was
proposed (i.e. Fast 3D Large-Angle Spin-Echo — 3D FLASE), which reduces the
imaging time considerably.?® In this case, a large angle excitation pulse is applied,
which inverts the longitudinal magnetization. The subsequent 180° refocusing pulse
restores the inverted longitudinal magnetization. Using this imaging sequence, dis-
tal radius images with resolution 135 x 135 x 350 um® and with SNR ~ 8 were
acquired. A limitation of this imaging technique is the higher r.f. power require-
ment compared to the gradient-recalled steady state acquisition protocols.

For in vivo measurements, the quality of the acquired images and the precision
of the bone architecture analysis can be significantly reduced by the presence of
motion artifacts due to the long time necessary for the acquisition. Several research
groups apply dedicated fixation tools for the immobilization of the studied site (e.g.
foot holder),*>43 which also provide a reproducible positioning for successive scans
of the same subject. Another efficient solution of this problem is the use of navigator
echoes.3” In this case, an additional set of 1D projections of the measured object
in both z- and y-axes (in-plane) in each phase-encoding step is acquired and these
projections are used to correct translational motion. The motion along the z-axis
direction is not compensated, taking into consideration the greater slice thickness
compared to the in-plane pixel size. The shift between the reference and the current
navigator projections is estimated using the least-square approach.

3. Image Processing

Most of the methods which provide the quantitative characterization of the tra-
becular bone structure, require a preliminary image processing involving the binary
segmentation of the acquired image, i.e. assigning the voxels to the mineralized bone
structure or to the intertrabeculae spaces. There are, however, techniques able to
derive architectural parameters from bone volume fraction (BVF) maps, since the
image intensity values are proportional to the bone amount in the corresponding
voxels in the volume. Random and structured noise, partial volume effect (blurring)
and spatial sensitivity variations of the imaging system may make both the voxel
classification and the BVF map estimation a very demanding task.

3.1. Binary segmentation

The most straightforward way to the image voxel classification is by the use of a
simple threshold.2® Voxels with intensity values above the threshold are assigned
to one material phase (e.g. bone in the case of X-ray CT imaging or marrow in the
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Fig. 7. Image intensity histograms presenting one (right) or two (left) peaks. The images were
obtained by pCT and MR imaging systems, respectively.

case of MRI), while those with lower intensities are assigned to the other material
phase. In the case of high-resolution (e.g. 14 x 14 x 14 um3) trabecular bone images
with high signal-to-noise ratio, acquired using the uCT scanners with synchrotron
radiation, the image intensity histogram is clearly bimodal, with two relatively
narrow peaks corresponding to the bone and to the intertrabeculae spaces (Fig. 7).
The threshold may be estimated as a histogram minimum lying between these two
peaks.*® Another simple thresholding scheme was applied to bimodal trabecular
bone images with a resolution of 47 x 47 x 47 um? acquired by xMRI.*® In this case,
the bone sample was immersed in water. Because of the presence of Rician noise,
the water peak is approximately Gaussian, while the bone peak follows the Rayleigh
distribution. The water peak maximum was estimated as the mean intensity value
of the water in intertrabeculae spaces and the threshold was selected to be 50% of
this value (assuming zero signal formed by protons bound in the bone structure).

The beam hardening effect and the noise present in trabecular bone images
obtained using the puCT systems with microfocus X-ray sources, require a more
careful selection of the threshold value, since no significant isolated peaks may
appear in the image histogram. Rossi et al. suggested a threshold estimation based
on the second derivative of the intensity histogram.?! Three thresholds were found
as zeros of the derivative function, the first corresponding to the background, the
second to the marrow peak while the third one was the marrow-bone transition
threshold.
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Estimation of the threshold value may become a nontrivial task, especially in
the case of images acquired in vivo. In this case, because of the noise fluctuations as
well as of the limited spatial resolution, the intensity histogram of images obtained
in vivo does not consist of two separate peaks representing the bone and the bone
marrow. Such a kind of histogram is called monomodal (Fig. 7).

Empirical approaches were applied to the threshold selection in the case of
in vivo MRI images of the calcaneus and the distal radius. Ouyang et al.*® described
a procedure applied to calcaneus images with resolution 195 x 195 x 1000 zm? where
a low intensity value was estimated as the average brightness of three different
regions, manually selected in the processed image. These regions correspond to
air, tendon and cortical bone. The high intensity value was estimated in selected
regions of the bone marrow and subcutaneous fat. The resulting threshold value was
then set to lie between the estimated low and high values, employing an empirical
constant governing the threshold selection.*® This “internal calibration” procedure
served to optimize the threshold value to the scan-to-scan signal and noise variations
due to MR scanner adjustments.

The idea of “internal calibration” was preserved in another segmentation
method, which was applied to distal radius images with resolution 156 x 156 x
700 um?>.** The noise variation was suppressed using a 2D median filter with a ker-
nel of 3 x 3 voxels. The gray scale of the acquired images was reversed to ease the
trabecular network and the cortical rim visualization. The expected mineralized
bone brightness was specified as a mean intensity value in the cortical rim region,
whereas the marrow brightness level was empirically estimated from the trabecular
bone region intensity histogram, assuming that the most frequently occurring pixels
in this region consist of a mixture of trabecular bone and bone marrow. Therefore,
this value was taken as a lower intensity value at which the histogram reached
half of its peak value. The apparent bone volume fraction was estimated assum-
ing the expected intensities of bone and marrow phases and from the computed
mean intensity in the trabecular bone region. The threshold was then selected as
a value, at which the fraction of the number of bone voxels after segmentation to
the total number of voxels in the Region of Interest (ROI) was equal to the appar-
ent bone volume fraction. This standardized method of threshold selection ensured
consistency of the image processing across all the subjects studied.

Since the classification of a voxel, when threshold segmentation schemes are
applied, is based only on its intensity value, this kind of a segmentation algorithm
is sensitive to the presence of noise.*> Various kinds of denoising algorithms may
be applied to suppress the noise variation. Among these, 2D or 3D linear or median
digital filters are the most simple, both causing a significant blurring of the image.
These noise suppression methods may not be suitable in the case, when the voxel
size exceeds the individual trabeculae dimensions (typically in the case of in vivo
imaging). More sophisticated image processing methods, e.g. adaptive digital fil-
ters or nonlinear diffusion filters, may be more effective, especially when taking
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into consideration the spatial anisotropy of the trabecular network as well as the
anisotropy of the image resolution.

Another difficulty bound to the thresholding segmentation approaches is the
sensitivity to intensity inhomogeneities, which can occur in MR images.*> This
may lead to an apparent thickening of the trabeculae or to a loss of thinner tra-
beculae within the same image.** For in vitro studies, a calibration measurement
using a homogenous specimen may be performed to estimate the sensitivity map.3’
However, the coil placement may differ significantly between individual experiments
performed in vivo. In this case, it is necessary to determine the sensitivity maps of
the receiver coils with the definitive set-up in addition to actual imaging protocol*®
or to estimate a sensitivity map by analyzing the local intensity histogram in various
regions of the image.

Besides the thresholding approach, various other segmentation methods are
applied to trabecular bone images. To process images acquired using a periph-
eral CT system having an isotropic voxel size of 170 um, an in-plane resolution of
250 pm and a slice thickness of 480 ym, an edge detection segmentation method was
proposed.'® By this approach, the image is first filtered using a Gaussian filter to
suppress the noise variation. Afterwards, the discrete image is approximated locally
(within a 5 x 5 x 5 neighborhood of a voxel) using a least-square continuous poly-
nomial fit approximation of the discrete CT image. The used 3D cubic polynomial
fit function is defined by 20 coefficients. An orthogonal set of polynomials in the
3D space was found to perform a computationally efficient least square approxima-
tion of the discrete image function. Using this polynomial fit approximation, a voxel
belongs to the step edge (describing a borderline between two regions with different
intensities) only if there is a zero crossing of the second directional derivative within
the immediate volume of the voxel. The fit is analyzed following the direction of
the gradient computed in the origin of the fit coordinate system. Similarly, a voxel
belongs to the roof edge (ridge or valley) only if there is a zero crossing of the first
directional derivative following the direction of maximal second derivative (maxi-
mal curvature). The roof edges approximate the topology of the object, whereas
the step edges are useful to derive the morphometric characteristics of the bone
structure.

A 2D watershed algorithm was applied to process images of human lumbar
vertebras.*” The images were acquired using an experimental high-resolution X-ray
CT system employing a stabilized X-ray source (90kVp) and a linear CCD detector
with 1024 elements (element size 0.225 x 0.5 mm?). The voxel size was 108 x 108 x
300 um?> and the experimentally estimated resolution was about 150 ym within the
slice. The intensities of a given pixel and of the pixels situated in its neighborhood
were compared to decide whether the given pixel lies on a slope or represents a local
maximum. The gray-scale levels of the pixels located on a slope were decreased,
whereas the intensities of local maxima and minima were preserved. The image was
updated iteratively until there was no change and a gray-scale watershed image was
obtained in this way. The next step is the crest lines detection. A set of four masks
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selected four pairs of pixels in the neighborhood of the classified pixel positioned
symmetrically with respect to the central classified pixel. If the intensities of both
neighboring pixels, for some mask, were inferior compared to a chosen percentage
of the classified pixel gray level, the pixel was considered to be on a crest line. The
result is a binary “quasi-skeleton”. The last step performed is the skeleton expansion
in order to include the total area of trabecular bone. This thickening procedure was
performed toward the two sides of the bone component in a direction perpendicular
to the skeleton. An additional contrast criterion was included to ensure adaptability
to variation in gray levels in the original image. Two parameters governing the
segmentation process have to be adjusted by a radiologist expert, comparing the
original and segmented images. One of them is the percentage of the image function
applied in the crest lines detection, the other one governs the contrast criterion in
the thickening procedure. Once adjusted, the processing of the acquired images
becomes entirely automatic. Comparison of this segmentation technique with a
conventional contrast enhancement segmentation method (a modification of the
thresholding approach) showed a higher precision of the watershed transformation
based approach.*”

3.2. Subvoxel methods

The image processing methods described above assign voxels to the mineralized
bone structure or to the intertrabeculae spaces via binary segmentation. Clearly,
this approach leads to a significant information loss when the spatial resolution of
the imaging system is comparable to the dimension of individual trabeculae. Linear
interpolation is a common method applied to increase the apparent resolution of
digital images. In this case, however, the interpolated values remain between the
intensity values of the original image, which contradicts the expectation that the
proportion of voxels having the voxel bone volume fraction values near zero or one
is higher in images with increased resolution.?® Alternative methods were proposed,
which make use of prior information about the properties of the trabecular network
and allow the increment of resolution of the resulting images.

Wu et al. proposed a Bayesian approach to subvoxel tissue classification in MR,
images of trabecular bone.*® In this method, the volume of each voxel was divided
into M subvoxels, which could be assigned to bone or to bone marrow. For the
noise-free image model, it was assumed that the intensity of voxel having the bone
volume fraction v is

I(V) =V Ipone + (1 - V) “Lmarrow (2)

where Ipone = 0 is the intensity of voxels containing only the mineralized bone
whereas a constant nonzero intensity I,,,qrro0w Was assigned to voxels including solely
the bone marrow. A uniform distribution of the voxel bone volume fraction was
expected for boundary voxels. The relation between the intensity distribution in the
image with and without the presence of noise is given by Eq. (1). The parameters
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of the distribution p(I) (proportion of voxels containing only the bone, or marrow,
respectively, and the marrow voxels intensity) as well as the parameter o of the noise
distribution were estimated by a least square fitting of the distribution p(I,eqs) to
the histogram of the processed image. This parameters estimation may be reliable,
however, only in the case when an image having a clearly bimodal histogram is
processed. A more accurate method will be described briefly later in this paragraph.

Each voxel could contain from 0 to M subvoxels, therefore the interval [0, 1] of
voxel bone volume fraction was divided into M + 1 equal length subintervals, each
corresponding to a given number of bone subvoxels in the voxel volume. Know-
ing the relation between the voxel volume fraction and gray scale values I and
Lineas, the conditional probability p(Ieqs|m), where m is the number of subvoxels
assigned to the mineralized bone structure, was estimated. This is equal to the
likelihood that a given voxel with measured gray-scale level I,,.,s contains m bone
subvoxels.

The localization of bone subvoxels within the voxel volume is executed via a
Gibbs prior distribution model (which is related to the Markov random field theory).
The Gibbs probability of the segmented image is the exponential function of a so-
called total energy of the segmented image configuration multiplied by a factor
—1.%% Image configurations having a low total energy are highly probable, whereas
the probability of images having high energy is low. The total energy of the image is
given by the sum of the so-called potentials of local subvoxel configurations. In the
prior image model it was assumed that the potential takes lowest values (meaning a
high probability of the local configuration) when neighboring voxels are assigned to
the same classes (i.e. all of them are assigned to bone or to marrow, respectively). In
this way, the assumptions that a bone subvoxel should be connected to other bone
subvoxels and that the intertrabeculae spaces are interconnected, are incorporated
into the image segmentation process. The amplitudes of potential for different voxel
configurations govern the segmentation method behavior. With the increasing of
these amplitudes, the prior model becomes rigid possibly leading to an overmuch
smooth segmentation (and to a possible loss of smaller details of the bone structure).
Therefore, the value of this parameter has to be optimized.

The product of the image likelihood and prior probability is proportional to the
posterior probability of the resulting image configuration. Finding a global max-
imum of this probability is computationally demanding and, therefore, a “good”
local maximum solution was found using a block Iterative Conditional Mode (block
ICM) algorithm. A performance evaluation of the proposed segmentation method
was carried out using synthetic phantom images. The method was compared with
the maximum likelihood threshold segmentation. The fraction of the misclassi-
fied volume was significantly higher in the case of the threshold segmentation
method compared to the subvoxel approach. It is argued by the authors, however,
that the benefits of the subvoxel classification will vanish when the noise variance

increases.*®
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3.3. BVF map estimation

Hwang and Wehrli*® proposed a method for the bone volume fraction (BVF) esti-
mation in each voxel of trabecular bone MR images acquired in vivo, which showed a
considerable accuracy. The histogram of the BVF in a ROI (equivalent to the noise-
less intensity histogram) is estimated via iterative deconvolution of the processed
noisy image intensity histogram and a bone volume fraction map is computed. The
process of iterative deconvolution is straightforward in the case of Gaussian noise.
The predicted histogram in the presence of noise is expressed as a linear convolution
of the noise distribution and the noiseless intensity histogram estimate in a given
iteration. The difference (error) between the measured and predicted intensity his-
tograms is added to the noiseless histogram estimate to obtain a new approximation.
These steps are repeated iteratively until a good agreement between the predicted
and measured histograms is reached. The problem becomes more complicated in
the case of MR images, characterized by Rician noise distribution and spatial sen-
sitivity inhomogeneities of the imaging system. In this case, the local bone marrow
intensity is estimated as the most commonly occurring intensity greater than the
mean intensity in a selected region surrounding a given location.

Taking into consideration the Rician noise distribution, the maximum likeli-
hood estimate of the voxel intensity in the image without the noise was com-
puted and the intensity shading correction was applied afterwards. The voxels were
sorted in the order of decreasing likelihood of containing bone (order of increasing
image intensity). Additional criteria (e.g. a local connectivity measure, the inten-
sity extremum — minimum or maximum — in the neighborhood of the voxel) were
used to order voxels having the same intensity value. The voxel BVF values were
assigned to each voxel according to the most recent noiseless histogram estimate.
The highest voxel BVF in the noiseless histogram was assigned to the set of vox-
els having the highest likelihood of containing bone. Number of these voxels was
selected according to this histogram. Similarly, the following set of voxels in the
ordered list was assigned to the second highest value of the BVF in the noiseless
intensity histogram, etc. In this way the noiseless image estimate was obtained. The
intensity shading was applied to this image and the intensity histogram was com-
puted. Using the Rician histogram broadening (Eq. (1)) the predicted histogram
of the image in the presence of noise was computed and was compared to the his-
togram of the acquired image. Their difference, however, must not be added to the
noiseless intensity histogram directly, as in the case of deconvolution in the pres-
ence of Gaussian noise. This is due to the asymmetry of the Rician distribution,
meaning that the maximum contribution from some intensity value in the noisefree
histogram may be shifted to some other value in the histogram of the noisy image.
Introducing this weighting of contributions, the difference of the acquired and the
predicted histograms is converted to the error without the presence of noise, which
is, however, still distorted by intensity shading. The latter is corrected by spatially
mapping of this shaded error distribution to the distribution of the noiseless image.
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The error distribution in the noiseless image is added to the noiseless image inten-
sity histogram to obtain the new noiseless image histogram estimate. These steps
are iteratively repeated.

Comparison of the method with a simple thresholding approach showed that
threshold segmentation depending on the threshold selection either falsely discon-
nected trabeculae, or unrealistically inflated the bone volume fraction, whereas the
BVF maps obtained using the described method preserved well the connectivity of
the trabecular network. The error of the estimated BVF, obtained from computa-
tional phantom images, was less than 1% processing, assuming the signal-to-noise
ratio higher than 8 in the processed images.

An extension of this algorithm, which increases the apparent resolution of the
voxel BVF map was proposed later.?® The method employs some empirical assump-
tions, which arise from the prior knowledge about the trabecular bone network
properties. Firstly, it is assumed that smaller voxels are more likely to have BVF
closer to zero or one, compared to voxels having large dimensions. Secondly, because
the bone network is an interconnected structure, bone is expected to be in close
proximity to more bone. The volume of each voxel was divided into eight subvoxels
(resolution was doubled in each direction), and the total BVF of the voxel was
allocated to these subvoxels. The weight of a given subvoxel in this BVF redis-
tribution was computed as a sum of BVF of all voxels adjacent to this subvoxel
divided by a sum of BVF of all voxels surrounding given voxel. The voxel’s BVF
is assigned to subvoxels in the order of decreasing weights. The BVF assigned
to the first subvoxel is given as its weight multiplied by the given voxel’s BVF.
In the case that result is greater than one, the BVF of the voxel is set to one.
The same process is repeated with other subvoxels; their weights, however, are
multiplied by the residual BVF, which is the part of the BVF that was not yet
assigned to some subvoxel. In this way the bone mass in each voxel volume is
strictly conserved.

Comparison of the voxel size in processed images (137 x 137 x 350 ym?) and typ-
ical trabeculae thicknesses and dimensions of intertrabeculae spaces results in the
third assumption: that the occurrence of multiple trabeculae within a single voxel is
highly unlikely. Subvoxels are therefore classified as boundary or central voxel using
the adjacency and connectivity criteria. To be classified as a boundary voxel, the
voxel has to have in its 6- or 4-neighborhood (in the 3D or 2D case, respectively)
at least one voxel not containing the bone. This voxel also must not be critical to
the trabecular network connectivity. The local connectivity measure is based on the
number of disconnected regions in the neighborhood of the voxel, which appear by
temporarily assuming the central subvoxel contains marrow only. Boundary voxel
weights are set to zero and the bone is distributed among subvoxels. Weights of
these subvoxels are set now according to adjacent subvoxels located outside the
voxel. The algorithm of the bone allocation was modified in such a way that bound-
ary subvoxels are not assigned any bone unless the BVF of central subvoxels is
equal to one.
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To compare the accuracy of this method for subvoxel image processing with
trilinear interpolation, computational MR image phantoms were created on the
base of high-resolution (22 x 22 x 22 ym?®) puCT trabecular bone images modeling
the partial volume effect of MR images acquired in vivo. If no noise was added to
the phantom image, using the trilinear interpolation, only 26-50% of voxels were
assigned to the correct BVF, compared to 85-92% of subvoxels using the proposed
method. In the case of SNR ~ 10, using the trilinear interpolation this proportion
decreased to 3-5% of voxels, whereas 82-90% of voxels were assigned to the correct
BVF using the new subvoxel processing method.

4. Structural Parameters and Models

To determine the bone mechanical properties (e.g. bone strength, bone stiffness,
Young’s modulus) methods such as compression and bend testings are used. Never-
theless, two important problems arise with all mechanical studies: first, the mechan-
ical properties have almost never been described completely because they vary with
the loading orientation due to the anisotropy of trabecular bone; second, the results
of tests are only rarely accurate because of the errors and problems in the mea-
surement (see Odgaard” for a review). On the other hand, following the Wolff’s
observations,®® the mechanical properties of trabecular bone are influenced by its
architecture. Thus, analyzing the bone architecture it is possible to study the bone
quality.

Other than density (BMD in particular), able to well predict most of the elastic
properties and strength,®2 trabecular thickness and other parameters like con-
nectivity and anisotropy (i.e. orientation of trabeculae) have been proposed for a
complete description of the trabecular bone architecture. Different approaches (mor-
phological, topological, fractal, etc.), characterized by indices extracted from 2D or
3D images, allow the assessment of these features. For some methods, high correla-
tions (r > 0.84%3:5%; r > 0.76°%; r > 0.97°6) between the parameters evaluated from
3D high resolution images (like ©CT) and those estimated from the corresponding
conventional histological sections were found. Others methods to calculate in a non
destructive way the bone mechanical properties, based on finite element analysis
of bone structure, have also been proposed. Below a description of the most used
methods and indices follows.

4.1. Morphological parameters

A set of morphometric indices such as relative bone volume or bone volume frac-
tion (generally denoted as BV/TV, being BV the Bone Volume and TV the Total
Volume), surface density (BS/BV, being BS the Bone Surface Area), trabecular
thickness (Tb.Th), trabecular separation (Tb.Sp) and trabecular number (Th.N)
is used to characterize the trabecular bone structure describing its morphological
properties. Originally, these quantities characterizing the 3D bone structure were
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calculated in a ROI of 2D images of thin sections of bone biopsies using stereo-
logical methods®”®® and assuming a constant structure model. The bone volume
fraction was set equal to the 2D area fraction of the mineralized bone and the
bone perimeter was measured to estimate the bone surface density. The surface
density was obtained as (2D perimeter)/(tissue area) x k. For isotropic structures
the constant k is 4/, however, in the case of iliac trabecular bone this value is set
to 1.2.5% Furthermore, it was assumed that the trabecular bone structure consists
mainly of interconnecting plates. Applying this, the so-called parallel plate model,
the trabecular thickness is given by Th.Th = 2xBV/BS, trabecular separation by
Tb.Sp = 2% (TV — BV)/BS, and the trabecular number by Th.N = 0.5%xBS/TV
or equivalently by Th.N = 1/(Tb.Sp + Tb.Th). The Tb.Th represents the mean
trabecular plate thickness, Th.Sp is a measure of the mean trabecular plate sep-
aration (measure the thickness of the marrow cavities) and the Th.N is the mean
number of plates traversed by a line of unit length perpendicular to the plates.

The Marching cubes method, proposed by Lorensen and Cline,>® permits to
triangulate the surface of the mineralized bone phase in order to obtain BS in 3D.
In this case, BV can be obtained by approximating with tetrahedrons the volume
limited by the triangulated surface used for BS calculation.%°

For the analysis of 3D trabecular bone images acquired in vitro (resolution
92 x 92 x 92 ym?) using an MR microscope, Hipp et al.*! subsequently proposed
a 3D version of the directed secant algorithm. The three dimensional binarized
image was scanned with an array of uniformly distributed parallel test lines spaced
200 pm apart and the number of test lines intersections with the bone-marrow
interface was determined for 128 randomly oriented rotations of the test line grid.
The Mean Intercept Length (MIL), i.e. the total line length divided by the number
of intersections, for each direction was defined. Apart from the information about
the bone anisotropy, which will be discussed later, morphological parameters were
estimated assuming the parallel plate model, using this analysis of the binary image.
In this case BV/TV is equal to the ratio of the number of voxels that fall within
bone to the total number of voxels in the volume of interest (VOI) and the Th.N is
the number of test line intersections with bone-marrow interface per unit test line
length. Remaining parameters can be computed indirectly using the parallel plate
model assumption.

The resolution of the processed images may significantly affect the morphological
parameters estimates. Kothary et al.5' studied images by modeling the resolution of
trabecular bone images obtained in vivo. Models of MR images having an in-plane
resolution of 100 ym and a slice thickness varying from 100 to 1000 um were derived
from trabecular bone images acquired using the serial milling system and optical
serial reconstruction with resolution 20 x 20 x 20 um3. An image with resolution
240 x 240 x 240 um3 was generated as well to mimic the resolution of in wvivo
trabecular bone CT images. Images were binarized using a threshold segmentation
algorithm and the directed secant algorithm was applied to derive the traditional
morphometric measures using the parallel-plate model. This study showed that the
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increasing of the slice thickness induced a rapid increase of the trabecular thickness,
whereas both trabecular number and trabecular spacing diminished somewhat with
slice thickness. The error of the estimated parameters was dependent on the imaging
plane orientation as well. It was also found that the morphological parameters could
be estimated with higher accuracy from images with resolution 100 x 100 x 500 zm3
compared to images with resolution 240 x 240 x 240 um3. Because of the dependence
on the image resolution, the parameter estimates based on limited resolution images
were denoted as apparent (app BV/TV, app Tb.Th, app Th.N, app Tbh.Sp).**

These morphological parameters, called also standard stereology measures, were
used to quantify the properties of the trabecular bone structure in several studies.
The MRI studies of Ouyang et al.*3 and Majumdar et al.** showed a correlation of
these parameters with age, osteoporotic status and bone mineral density. In the MRI
investigation of Boutry et al. on a cohort of osteoporotic men*? the app BV/TV
and app Th.Sp were proposed as possible predictors of bone fracture risk.

In the work of Hildebrand and Riiegsegger, it was pointed out that due to aging
and disease, trabecular bone may change its structure type from the plate-like to
the rod-like structure continuously.®? Figure 8 shows typical examples of plate and
rod-like structures in different human skeletal sites. When the bone structure does
not correspond to the assumed model, unpredictable errors in estimated parameters
may be induced. Verification of the model assumption is a nontrivial task.” Thus a
series of direct model-independent methods have been proposed.’ 6% For the anal-
ysis of high-resolution x4CT images of trabecular bone (voxel size 14 x 14 x 14 yum?,
spatial resolution 28 ym), Hildebrand and Riiegsegger®® estimate the bone surface
and bone volume using the marching cubes algorithm.?® From these measures, the
values BV/TV and BS/BV follow directly. They define the local thickness in some
point p of a structure as the diameter of the largest sphere, containing the point p
and which is completely inside the structure.®® Trabecular thickness (Tb.Th*) is
determined as the arithmetic mean value of the local thickness taken over all points
in the bone structure. Similarly, measures of the marrow cavities thickness give the
estimate of the trabecular separation (Th.Sp*). Trabecular number is found as the
inverse of the mean distance between the midaxes®* of the observed structure. From
the thickness distribution, other interesting parameters, e.g. the thickness variation,
may be estimated as well.

Within the framework of a BIOMED I project of the European Union,
Hildebrand et al.®* compared model-dependent and their direct estimates of mor-
phological parameters. In their 3D pCT study on a total of 260 human bone biopsies
taken from five different skeletal sites (femoral head, vertebral bodies L2 and L4,
iliac crest and calcaneus) the authors showed that trabecular thickness was system-
atically underestimated with the plate-model assumption (by 17% in the femoral
head having the plate-like structure, and by 30% in the rod-like arranged lumbar
spine). Moreover, the images depicted in this work showed clearly that the bone
structure in the samples of the iliac crest and calcaneus cannot be associated to a
single model. However, the accuracy of the direct method depends on the resolution
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Fig. 8. Examples of plate-like and rod-like trabecular bone structures presented by samples
(about 4 x 4 x 4mm?) of the iliac crest (a, c¢) and the lumbar spine L2 (b, d) in male (a) and
female (b, c, d) subjects. (Courtesy A. Laib, ETH Zurich, Switzerland).

of the image acquisition system used and underestimation of the actual thickness
may be caused by the presence of noise in the acquired images.%?

A thickness independent structure extraction was introduced in the work of
Laib et al.%% to process trabecular bone images acquired in vivo using a special pur-
pose low-dose 3D-QCT system. The nominal resolution of the reconstructed images
was 165 um (isotropic) whereas the actual resolution was about 240 ym. Average
mineral density (Dap) within the trabecular region was measured. Assuming a
constant and known mineral density of fully mineralized bone (1.2 gHA /cm?), the
BV /TV geriv could be derived. 3D ridges (the center points of the trabeculae) were
detected in the acquired images and the mean spacing of the ridges Th.N* was



Imaging Analysis of Trabecular Bone Architecture 25

estimated using the distance transformation. Knowing these two values, the Th.Th
and Tb.Sp parameters could be found similarly as in the directed secant method
using the parallel plate model.

Other model independent 3D parameters were used by Borah et al.%®: Direct
Trabecular Thickness (Dir_Tb.Th, mm), directly measured in the three-dimensional
dataset; Marrow Star Volume (Ma.St.V, mm?) and Percent Bone in Load Direc-
tion (%BoneLD). The Marrow star volume measures the “voids” within the tra-
becular structure, which increase with progressive bone loss. It is derived from
line lengths in random directions measured from random points in the marrow
to trabecular bone. The average cubed length (L3) is used to calculate the mar-
row star volume as 47/3 x (L?). It is a sensitive descriptor to quantify bone loss
either through trabecular thinning or loss of entire trabeculae. The Percent Bone
in Load Direction is a sensitive measure of architectural changes related to the
bone’s alignment in the load direction. The measurement of %Bonel.D can pro-
vide a quantitative estimate of amount of vertical and horizontal trabeculae and
may be a useful indicator of preferential loss of horizontal struts in specimens of
osteoporotic vertebrae.

Another interesting approach to measure the morphology of the trabecular bone
structure was proposed by Hwang et al.%7 In this method, the classification of
voxels into bone and bone marrow (causing a significant information loss specially
when the voxel size is comparable to trabeculae dimensions) is avoided and the
morphological parameters are derived from the voxel bone volume fraction map.
The BVF of a voxel is regarded as the probability that a single randomly chosen
point in the voxel is in bone. Probability of two points in two different voxels
being both in bone is equal to the product of BVF’s of the two voxels. Averaging
this probability through all voxel pairs with a given mutual offset n in a given
direction results in the autocorrelation function (ACF) estimate for given n in
that direction. Because the method was applied to distal radius trabecular bone
specimens, which are approximately transversely isotropic, the transversal (average
through all directions perpendicular to the forearm) and longitudinal ACFs were
estimated. The distance to the second peak of the ACF is the average spacing of
the trabeculae in a given direction. It is discussed, however, that the distance to the
first minimum of ACF is more suitable to characterize the bone properties, since
this quantity is estimated with higher precision due to the finite image size and to
the interpolations required to compute the transverse ACF in different directions.
Based on ACF estimates, parameters such as transverse contiguity and tubularity
(which are not morphological measures) were introduced as well. The transverse
contiguity is defined as the ratio of the probability that a point from a voxel and
a point from one of the voxel’s eight nearest neighbor voxels are both in bone
divided by the probability that two points from the same voxel are both in bone.
Analogously, the tubularity is equal to the probability that two points from adjacent
voxels in the longitudinal direction are both in bone, divided by the probability that
two points from the same voxel are both in bone.
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1.58:69 proposed a model independent method to derive the

Recently, Saha et a
morphometric parameters of the trabecular bone structure in images acquired
in vivo using uCT and pMRI. By analogy with the previously described method,%7
the image binarization is avoided and the 3D BVF map image is analyzed, and
similarly to the direct structure thickness estimation proposed by Hildebrand and
Riiegsegger,53 the local object thickness is given as a distance from the object’s
medial axis to the nearest point not belonging to the object. In this case, how-
ever, the fuzzy distance between these two points is measured. When we consider
a path from one point to another, the length of the path is defined as the integral
of local BVF values along the path, which is, in other words, the amount of the
bone material traversed by the path. There are infinitely many paths from one
point to another, and the fuzzy distance is the infimum of their lengths. When
computing the object thickness, the skeletonization of the object was performed
to obtain the medial axis of the structure. Then the fuzzy distances to the object
borders (voxels having BVF = 0) along this axis are computed. In this method,
Saha and coworkers®8:5? introduce a resolution dependent error correction as well,
considering the digital skeleton representation in a discrete grid. Analysis of the
thickness resolution dependence showed that resampling the 3D pCT images from
22 um to 176 pm (isotropic voxel size) caused only approximately 7% maximum
variation of the derived thickness when the resolution dependent error correction
was applied.%? The direct structure thickness estimates from binarized images are
close to the values estimated using the fuzzy distance at the 22 pum resolution.
However, the method requiring the image binarization fails completely at voxel
sizes greater than mean trabecular bone thickness. Another important property of
the method is the relatively high noise robustness. For a SNR > 5, the noise causes
approximately a 3% error of the estimated thickness, while at lower SNR values,
the thickness becomes significantly underestimated.

4.2. Anisotropy

Another parameter often used to understand the biomechanical properties of bone
and also to optimize sampling strategies for bone histomorphometry is the geo-
metric anisotropy degree (DA) of a structure. The anisotropy corresponds to the
preferential orientation(s) of trabeculae. It is constituted under the influence of
strengths applied to bone and permits to establish resistance to these strengths in
a given preferential direction. A structure is isotropic if it has no preferred orien-
tation or, more rigorously, if the perpendicular to any element of surface has an
equal probability of lying within any element of solid angle. The trabecular bone,
from a single inspection, is obviously anisotropic and DA represents an important
architectural index.

DA can be quantified by different methods. In particular, in 2D, Singh et al.”®
developed a semi-quantitative index based on the existence of several arches of
trabeculae in the femoral neck. Whitehouse®” expressed the difference from isotropy
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Fig. 9. Example of an anisotropic structure (left) in which the MIL result is isotropic. In this
case, the MIL (measured in an arbitrary length measurement) is unable to identify the correct
orientation.

as a polar diagram of the mean intercept length (MIL) between two bone/marrow
interfaces and the angle of orientation. Such a diagram consists of an elliptical plot
in which the ratio of the major and minor axis (eccentricity) indicates the degree of
anisotropy and the angle between the axes indicates the overall orientation relative
to an arbitrarily chosen reference direction. As perfect isotropy is approached, the
ellipse becomes a circle. Whitehouse®” defined the MIL both in bone (MILb) and
marrow (MILm), linked by the relation: MILm = BVF %2« MIL. Since the MIL
results depend entirely on the interface between bone and marrow, surprising effects
could happen, however. In fact, obviously anisotropic structures sometimes may
appear isotropic when examined with the MIL method (Fig. 9).

The theory can be extended to three dimensions by using a second-rank tensor,
of which the quadratic form (or fabric) describes an ellipsoid.”! Cowin™ devel-
oped a formulation of the dependency of mechanical anisotropy upon fabric, which
was based on the assumption that fabric tensor main orientations correspond to
mechanical main orientation and that the material properties of trabecular bone
are isotropic. In the 3D approach, a MIL tensor can be calculated by fitting the MIL
values to an ellipsoid. Since the eigenvectors of the tensor give information about
the direction of the axes of the ellipsoid, and the eigenvalues express the radii of the
ellipsoid, the latter can be used to define the degree of anisotropy, which denotes
the ratio between the maximal and minimal radii of the MIL.

Because the MIL is unable to detect some forms of architectural anisotropy,
volume-based measures were introduced with the volume orientation (VO)
method.”™ The results of using the volume-based measures may also be expressed
as positive definite, second-rank tensors, and consequently they are competitors
for the position of providing the best fabric tensor for Cowin’s structure-mechanics
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relations. The volume-based methods shift the interest of architectural anisotropy
from interface to volume. Three parameters, used as a description of the typical
distribution of trabecular bone volume around a typical point within a trabecula,
were proposed: (1) a local volume orientation, that is the orientation of the longest
intercept through each bone point belonging to a randomly translated point grid
placed on the 3D structure, (2) the star length distribution (SLD) and (3) the star
volume distribution (SVD) which represent the distributions either of the intercept
lengths or of their cube, respectively, through each bone point (of the previous
grid) for several 3D orientations. As compared with other anisotropy measures,
preliminary tests suggest that with the SLD, a more accurate description of the
mechanical properties of porous structures may be obtained. However, due to pos-
sible secondary orientations that become apparent with the SLD, a fabric tensor
must be of rank higher than two in order to properly describe an orthogonal struc-
ture mathematically.™

Another way to estimate anisotropy was developed by Gomberg et al.”> which
proposed the digital topology-based orientation analysis (DTA-O). In this case,
the input is constituted by a 3D BVF image map of the trabecular network, from
which the voxels belonging to plates, identified by means of DTA,7® are extracted
and the local normal surfaces are determined by fitting a plane through the local
neighborhood BVF map. Modeling regional distributions of these vectors by means
of a Gaussian model allows assessment of anisotropy measures, such as mean and
variance of the orientation distribution.

4.3. Rod-plate classification

Some additional methods were proposed to identify the correct model or to classify
trabeculae as either plate-like or rod-like.5%777® An estimation of the plate-rod
characteristic of the structure can be achieved using the structure model index
(SMI), calculated by a differential analysis of a triangulated surface of a structure.52

SMI is defined as
SMI = 6 % (BV * (dBS/dr)/BS?) (3)

where dBS/dr is the surface area derivative with respect to a linear measure r,
corresponding to the half thickness or the radius assumed constant over the entire
structure. This derivative is estimated by a simulated thickening of the structure by
translating the triangulated surface by a small extent in its normal direction and
dividing the associated change of surface area by the length of the extent. For a
structure with both plates and rods of equal thickness, the SMI value is between 0
and 3, depending on the volume ratio between rods to plates, being largest for an
element of circular cross section (i.e. a “rod”) and smallest for a plate. The method
has been used successfully for the characterization of structures derived from pCT
images® but it is not suited for analysis of in vivo images.’

Borah et al.”” proposed the Percent Plate (% Plate) parameter in order to
delineate rods from plates. The measure of plates and rods is obtained by comparing
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the direct (Dir_Th.Th) and model-plate (Th.Th) derived parameters of thickness. If
the entire bone is rod-like, it should have a thickness measure equal to the thickness
derived from the rod model. Likewise, if the bone is all plate-like, it would have a
thickness value equal to the plate model. However, the direct trabecular thickness
measure usually falls between these two extremes; this is due to the fact that some of
the bone structure is plate-like and some rod-like. The %Plate can be calculated as:

%Plate = (2 — (Dir_Tb.Th/Th.Th)) % 100.

It allows a quantitative estimate of the effect of bone resorption on the shape
of the trabeculae.

Stampa et al.”® in their in vivo MRI study on finger phalanges of elderly healthy
volunteers applied to each voxel a 3D plate operator and a 3D rod operator (shape
analysis). The voxel was classified as plate-like when, in an arbitrary 2D slice of a
3D volume, more than six neighboring voxels were bone voxels. Border voxels could
not be plate-like voxels. Similarly, the 3D rod operator classify a voxel as rod-like
when, in an arbitrary 2D slice of a 3D volume, the voxel had two neighboring voxels
aligned with itself. Voxels previously classified as plate-like could not be rod-like.

4.4. Topological parameters

Besides the morphological description of the trabecular bone structure another
detailed analysis of the trabecular network can be achieved from inspection of its
topology. In particular, the connectivity represents the main parameter measuring
topology. It can be quantified by means of various methods. Already on 2D, Pugh
et al.”™ used the trabecular contiguity ratio in order to describe the degree of contact
between particles of granular materials (but trabeculae are not isolated particles
and the application requires counting the missing trabeculae, which is even more
difficult than counting the existing ones). Another suggested index is the trabecular
bone pattern factor,®® which is based on the measurement of the perimeter before
and after a dilation operation. Some other methods based on skeletonization®! pro-
duce results that are expressed as ratios between nodes, termini, cuts, ends and
loops. Other methods for the examination of architectural features are based on
node and strut analysis, which consists of measuring the density of nodes and free
ends (e.g. Mellish et al.®? in 2D), or on a measure of the skeleton length of the
trabecular network. The ridge number density, proposed by Laib et al.®3 achieved
by summing the voxels occupied by the ridge of trabecular elements in a gray scale
image, represents an example of the latter category. This metric, applicable to
in vivo images, was conceived as a measure of trabecular density (somewhat analo-
gous to trabecular number). The Trabecular Fragmentation Index (TFT), introduced
by Chevalier et al.,3* is another parameter derived from 2D images able to measure
the ratio between the length of the trabecular network and the number of discon-
tinuities. Following the authors’ results, a threshold of TFI = 0.195 could separate
between normal and osteoporotic subjects. However, none of these ratios have any
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known relation to 3D connectivity,” thus, from isolated two-dimensional sections,
it is impossible to compute a proper measure of connectivity.

Feldkamp et al.2 were among the first to recognize the inadequacy of two-
dimensional approaches to characterize trabecular bone lattices, and to propose
algorithms for deriving topological quantities from three-dimensional pCT images,
particularly related to the connectivity. Connectivity can be interpreted as the
maximum number of branches that may be removed without breaking the network
into parts. In fact, connectivity measures the degree to which a structure is multi-
ply connected, no matter the shape of the connections. Well-connected trabecular
elements may be thought of as constituting closed loops. If the trabecular bone
is viewed as a node and branch network, then the connectivity is the number of
trabeculae minus one (Eq. (5)).

To measure connectivity, the three-dimensional Euler number, x, was used. For
an open network structure, the Euler number may be calculated from the number
of nodes n and the number of branches b: x = n— b.°7 If in the network at least one
path exists between any two nodes, the quantity 1 — x represents the connectivity.
It is obvious that a well-connected network, such as healthy trabecular bone, has a
large negative Euler number (several thousands in a volume of 1 ¢cm?) that becomes
less negative as connections are broken. A severely osteoporotic bone has a markedly
smaller absolute value of 1 — x. In fact, the connectivity has been frequently refer-
enced as a parameter mostly affected during the progression of osteoporosis.””8> On
a more detailed level, the breaking of a single connection will leave the trabecular
network less well connected, increasing the Euler number by 1, but the addition of
a connection will decrease it by 1. Being the Euler number a topological quantity,
it does not carry information about positions or size of connections nor about the
strength of the material comprising the connections. Hence, it cannot be used alone
as an index of mechanical performance.

Feldkamp et al.?® described a technique to compute the Euler number based
on the inductive method of defining such number for a particular dimensionality
from the definition in the next lower dimension and on a specific property. This
property implies that the Euler number of the union of two sets is equal to the sum
of their individual Euler numbers minus that of the set formed by their intersection.
From the latter condition derives that the connectivity evaluation depends on the
specimen size and the topology of its surfaces: errors tend to decrease as the exam-
ination volume increases. A solution to this problem was proposed by Odgaard and
Gundersen.3¢

Starting from a discrete primitive cube constituting one of the two original solid
binarized structures, the technique considers both the Euler number of a cube as
unity and the cubes as connected only along cube faces. Since a set of two connected
cubes also has an Euler number of unity, the Euler number of a row of cubes is
equal to the number of sets of connected blocks (for further details see Feldkamp
et al.?®). To construct the Euler number of a two- and then of a three-dimensional
array of cubes it is necessary to evaluate the Euler numbers of the constituent
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rows and their intersections at first on a plane and then along the perpendicular
direction. The result does not depend on the direction chosen for the initial rows
and does not require attention to the appearance or disappearance of particles
as the various planes are considered. The technique is very simple to apply for
structures as complex as bone and it is possible to compute the Euler number of
any desired subvolume in order to evaluate the uniformity of the connectivity within
the specimen.

If the 3D dataset is considered as constituted by two different topological objects
(a cluster of connected voxels representing the trabecular bone and another repre-
senting the marrow phase), a more general interpretation of the Euler number is

186,87

possible. In fact, in a 3D structure, the Euler number may be though as a sum

of three elements (Euler-Poincaré formula):
X = B0 — 1+ 2 (4)

where the (’s are the first three Betti numbers, with 50 representing the bone
particles or the # of isolated parts, 51 the connectivity or the # of redundant
connections and (2 corresponding to the marrow cavities fully surrounded by bone
or the # of enclosed cavities.

Under the assumption that a complete bone does not contain isolated pieces
of osseous tissue (i.e. the trabecular bone phase is one fully connected structure,
B0 = 1) and does not have isolated cavities inside osseous tissue (i.e. no cavities
which do not communicate with any marrow or periosteal surface, 32 = 0), this
relationship, in general, reduces to:

x =1—1=1— 4 of trabeculae. (5)

(1 can be evaluated in a global way by means of the Vogel algorithm.®® In this
method, the x value (or Euler-Poincaré characteristic) in n dimensions is derived
from different Euler numbers in n— 1 dimensions. The principle is developed for the
one-dimensional case and, by means of an induction mechanism, the determination
in any dimension is reduced to Euler numbers of zero dimension (i.e. point counts).
The method exploits the concept of the edge correction introduced by Odgaard and
Gundersen®® leading to an unbiased estimation of x value.

Another option, which was developed in parallel to the Odgaard and Gunder-
sen’s algorithm,® is based on the dissector principle®”? consisting of a pair of
closely spaced parallel sections. In this case, a property of the Euler number is
utilized: in fact the Euler number of a 3D structure cannot be represented in a 2D
section but the sum of the changes in the Euler number of the 2D structure seen
in an imaginary plane sweeping through the 3D structure is identical to the Euler
number of the structure irrespective of the direction of the sweep. This character-
istic is the basis of the ConnFEulor estimation principle which uses the difference in
topology between two sections (a dissector). If complete sections through bone are
evaluated, the dissector is a 3D probe which samples a volume of space created by
pairs of parallel sections separated by a known distance.’® Only three events can
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Fig. 10. Schematic representation of the possible events counted by using the ConnEulor princi-
ple: 1 left to 1 right and 2 left to 2 right: appearance of a bridge, i.e. a new connection between two

previously unconnected bone structures; 3 left to 3 right: appearance of a hole; 4 left to 4 right:
appearance of an island, i.e. a new isolated structure.
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occur in terms of changes in the 2D topology of trabecular profiles: a “bridge” (B)
can form (or be broken); a new “island” (I) emerges (or one disappears) and a new
“hole” (H) appears (or one disappears) inside a profile (Fig. 10).

The events occur somewhere between the two sections. In a closed, complete
microstructure, such as trabecular bone, connectivity is equivalent to trabecular
number, because a trabecular element is defined by branching events.”! The final
estimator is:

# of trabeculae/Vref = X(B — H — I)/(2 x hdis * ap * X P) (6)

where hdis is the dissector height, > P is the number of points hitting the reference
space in one section of each dissector using a test system with an associated area
per point of ap.

This algorithm has the advantage that edge effects can be corrected; thus, it
is possible to determine the connectivity of a subset of the whole dataset. Stampa
et al.”® called this the local connectivity. For this calculation, all open ends of
trabeculae touching the cortex were considered to be connected. Moreover, they
defined also a 3D connectivity per unit volume calculated for the whole network,
the three-dimensional connectivity density (GCD). For individual consecutive slices
(including the cortex) of 2-mm thickness perpendicular to the long axis of the pha-
lanx, they also determined the local three-dimensional connectivity density (LCD)
in order to assess the spatial inhomogeneity of connectivity.

A measure of mean trabecular size as well as of the mean spacing between
trabeculae can be obtained from connectivity. The first, defined as mean trabecular
volume,” MTV, is given by:

MTV = (V « TB/TV)/(81 + 1)
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being V' the volume of the specimen and 1 the connectivity. The second, called
mean marrow space volume,” MMSV may be calculated as:

MMSV =V % (1 — TB/TV)/(B1 +1).

The measure of connectivity by means of the Euler number presents some
limitations.”>7® In fact, fracture healing, bone formation and sometimes osteoporosis
as well as the noise present during the segmentation process could produce isolated
“bone” and “marrow” particles violating the topological assumption expressed in
Eq. (5). However, it is possible to consider the complete relation (Eq. (4)) determin-
ing separately 40 and 31 or to remove the noise with a suitable filter.” Neverthe-
less, when the expression in Eq. (4) must be used, many different 3D architectural
structures could have the same Euler value but not necessarily to be topologically
equivalent. Moreover, the first Betti number (1) is inherently insensitive to tra-
becular erosion, which is known to result in the perforation of trabecular bone
plates and disconnection of rod-like trabecular bone.?%2 Therefore, the first Betti
number will decrease from loss of rods, causing a reduction in the number of loops.
However, it would increase as a result of the perforation of plates, which increases
the number of loops. Therefore, the connectivity alone would not necessarily detect
osteoporotic bone erosion.”™ Stampa et al.”™® suggest that together with the connec-
tivity analysis, a shape analysis should also be used in order to classify trabecular
bone as either plate-like or rod-like.

Gomberg et al.”? propose a method, called digital topological analysis (DTA)
that allows the unequivocal determination of the topological class pertaining to
each bone voxel of the 3D trabecular network. The method is based on determin-
ing the connectivity of the neighbors in the 3 x 3 x 3 neighborhood®* of the voxel
examined. The starting point of the analysis is the conversion of the 3D network
to a skeletonized surface representation, which contains 1D and 2D structures only
(i.e. curves and surfaces). The voxels are then assigned to the appropriate topo-
logical class (e.g. curves = rod-like structures, surfaces = plate-like structures, or
junctions) in a three-step approach. The method was validated on synthetic images
demonstrating its relative immunity to partial volume blurring and noise. Surface-
to-curve ratio index is the new introduced parameter that characterizes the network
topology and in the case of 3D MR microimages from distal radius has proved to
be a strong predictor of Young’s modulus.”3

4.5. Fractal dimension

Starting from 2D sections, both from radiographs and single slices of a 3D acquisi-
tion, a different approach can be used to estimate the three-dimensional anisotropy
of the trabecular bone network® and to achieve information pertaining to the poros-
ity and connectivity of trabeculae. This approach exploits the fractal characteristics
of trabecular bone which appear to be correlated with its biomechanical properties.
In particular, the fractal analysis can be used to describe complex shapes,’® includ-
ing the overall roughness texture and the form of individual trabecular profiles.
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Several methods for estimating the fractal dimension (FD) are known and com-
putational ways to obtain it can vary considerably. Box-counting (to obtain the
Kolmogorov dimension), dilatation method for the Minkowski-Bouligand dimen-
sion, sandbox for the mass-radius dimension and Hurst orientation transform®” are
the most used algorithms.??%8 102 However, Majundar et al.'° in their study on
fifty-one human femur specimens used other three different fractal geometry-based
techniques, namely semi-variance, surface area and Fourier transform evaluated
along the three orthogonal projections.

In the box-counting method, a grid consisting of a box size € is superimposed
on the boundary of the trabecular bone network to be quantified. The number of
boxes of a given size £ that contain the boundary point N(e) is computed. This
procedure is repeated for different box dimensions. The FD is the absolute value
of the slope in the linear portion of the plot of the log number of boxes versus the
log box size . Podsiadlo and Stachowiak?” have shown that the Hurst orientation
transform method presents some advantages over the other techniques because it
calculates a two-dimensional FD in all possible directions also providing a measure
of anisotropy. Jiang et al.'°* have found that the Minkowski dimension is a better
measure for characterizing the trabecular bone anisotropy in the X-ray images of
thick specimens.

98 in their investigation on the fractal properties of

Fazzalari and Parkinson
trabecular bone in severe osteoarthritis of the hip identified three straight line seg-
ments on the log-log plot, indicating a FD over three different ranges of scale. The
pivot points, i.e. the box size at which the FD changes, were of similar magnitude
to the trabecular thickness and trabecular separation. Subsequently, in a study
on iliac crest biopsies from sixty-four postmenopausal women, the same authors®’
measured three FDs, which describe the trabecular surface texture (fractal-1), tra-
becular shape (fractal-2) and trabecular arrangement (fractal-3), indicating that
the trabecular bone has a sectional self-similarity. The results showed that fractal-2
was significantly lower in the vertebral crush fracture group than in the nonfracture
group. Recently, Parkinson and Fazzalari'®® found that trabecular bone is effectively
fractal over a defined range of scale (25 pm-4250 ym) and that within this range
there is more than one FD describing spatial structural entities. Since magnifica-
tion, image orientation and threshold settings had little effect on this procedure of
FD estimation, the authors concluded that the FD is a suitable model-independent
method for describing the complex multifaceted structure of trabecular bone.

Majumdar et al.'3 reported that the fractal-based texture analysis of radio-
graphs is technique dependent and the fractal measures correlate better with
trabecular spacing and trabecular number than with the trabecular thickness. More-
over, the FD in addition to BMD improves the prediction of bone strength and
elastic modulus.!03:106

Pothuaud et al.?® examined how FD of two-dimensional trabecular bone pro-
jection images could be related to the three-dimensional trabecular properties such
as porosity (phi) or connectivity per unit volume (Cwv). Significant relationships
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were found between FD, phi and Cv and the authors concluded that the fractal
evaluation of the trabecular bone projection has real meaning in terms of porosity
and connectivity of the 3D architecture.

4.6. Mechanical parameters — finite element modeling
and analysis

To date, invasive and destructive methods have been used to determine different
mechanical properties such as bone strength and stiffness. To study the influence
of density and structural anisotropy on mechanical properties and to predict bone
function under various conditions, different microstructural models of trabecular
bone have been introduced (see Miiller!” for a review) and computational tools,
such as microstructural Finite Element (uFE) modeling and analysis have been
used. Finite Element Modeling (FEM) is the division of a structure or object into
discrete elementary volumetric units that have precise mathematical equations to
describe their mechanical behavior. Structural Finite Element Analysis (FEA) is the
calculation of the mechanical behavior (stress and strain) at any point within the
structure under specific loading conditions thus simulating conventional destructive
mechanical testing. The starting point of every FEM is the three-dimensional data
of the object or structure. For the FE solver, the bone voxels in the data sets have
to be converted into brick elements with a side length generally depending on the
taking site. For example, Ulrich et al.'%7 used a length of 28 um for the lumbar
spine, iliac crest and calcaneus samples and 56 um for the femoral head samples;
Borah et al.”” converted each voxel into a structural hexahedral brick element with
a resolution of 85 um, while Newitt et al.!°® used equally shaped 8-node brick
elements with a mass-compensated meshing technique. Even if the accuracy of the
FE analysis is related to the element size'%” convergence for models with an element
size of <56 um was demonstrated.!t9

Van Lenthe et al.''! assigned the same mechanical properties to each element,
with an arbitrary chosen tissue modulus of 1 GPa and a Poisson’s ratio of 0.3. It
has been found that the tissue anisotropy has a negligible effect on the apparent

127114 and because the analyses are linear elastic, the results can

Young’s moduli,
be scaled to any isotropic tissue modulus with the same Poisson’s ratio. Borah
et al.”7 estimated the tissue modulus of bone to be 5,000 MPa and assigned to the
Poisson’s ratio the 0.3 value. To account for the arbitrary value chosen for tissue
modulus the results were corrected by using suitable factors based on BV fraction
and the measured applied strain. For Newitt et al.,'%® the tissue element properties
were chosen to be linear, elastic and isotropic with a Young’s modulus of 10 GPa
and a Poisson’s ratio of 0.3.

Using pFE technique, huge structural models with more than a million FE
elements can easily result. An iterative FEA solver program can efficiently and
rapidly analyze FE models of this magnitude by using some hypothesis, e.g. by
assuming that each individual element has the same mechanical properties. With
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this approach, all nine orthotropic elastic constants of a bone specimen can be
predicted and experimental artifacts can be eliminated. Stiffness constants such as
Young’s moduli (E'1, E2, E3), Poisson’s ratios (v12, v13, v23) and shear moduli
(G12, G23, G13) can be calculated''® and anisotropy ratios E1/E3, EF2/E3 and
E1/E2 can be derived.

FEA has been used to study bone behavior on a microscopic and macroscopic
level calculating the apparent stiffness of the architecture. By using different strain
and shear deformations, it is possible to simulate mechanical tests with various types
of loading conditions and to calculate the strains within the trabeculae.''> 117 In
this way, it is possible to look inside the bone to see where stresses are localized
and may cause fracture.

In FEA studies, the computational technique must first be validated for the
specific species. In such a validation study, both experimental and computational
analyses must be completed to compare the predicted and actual mechanical prop-
erties. Borah et al.,% in a yuMRI study showed that the computational and exper-
imental values of apparent modulus in the lumbar vertebra of young and mature
minipigs were statistically similar. Furthermore, Ulrich et al.'%7 found a good agree-
ment between the results of compression tests and those of FE analysis of 3D uCT
images of human trabecular bone samples.

Correlation between the obtained Young’s modulus and some structural param-
eters has been examined: Kabel et al.,''® examining 141 specimens taken at var-
ious skeletal sites, found that BV/TV was closely correlated to Young’s modulus
(R? = 0.84-0.94) while Ulrich et al.'*® found that the correlation, at the calcaneus,
was lower (R? = 0.52-0.67). The latter authors also reported a R? of 0.59 with
Th.Sp and of 0.82 with anisotropic index concluding that the BV/TV alone does
not predict enough of the Young’s modulus, while other structural parameters like
MIL or Th.Sp should be used. The prediction and the best parameters changed
with the sample site.

5. Conclusions

Considered the importance of osteoporosis as a social problem, an early diagno-
sis of this pathological status as well as the monitoring of bone quality evolution,
also after pharmacological treatment, is highly desirable. The trabecular bone, as
a consequence of its highest metabolic activity, is the principal tissue involved in
this disease and then it should be primarily investigated and monitored. The tra-
becular bone of various skeletal sites has been examined and its structure has been
shown to vary from plate-like to rod-like according to the location and the disease
state. Because of the limits of the available imaging systems, the proximal femur
and vertebrae, which are the main fracture sites, cannot be routinely investigated.
Thus, other sites such as iliac crest, distal radius and calcaneus have been pro-
posed as surrogate sites for a more accurate examination of the trabecular bone
structure.
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Although BMD is the main determinant of mechanical resistance, several studies
have indicated also a relevant role of bone architecture. Many parameters describ-
ing the characteristics of the bone architecture have been calculated from 2D and
3D images obtained by using different techniques: histomorphometry, radiography,
CT, pCT, MRI and uMRI are those described in this chapter. Each of these tech-
niques present advantages and disadvantages particularly when they are used in
the clinical practice for the evaluation of bone status in osteoporotic and non-
osteoporotic patients. Non-invasiveness, high-resolution, good reproducibility are
the main requirements of an ideal technique for in vivo studies. While pQCT seems
to provide the best resolution in the X-ray field, high-resolution MRI appears to be
the most promising modality, particularly for longitudinal studies since it does not
require exposure of the patient to radiation.

Sophisticated analyses of 2D and 3D images, obtained with the previously men-
tioned techniques, are required in order to accurately estimate the fracture risk. In
this chapter, structural indices derived from trabecular bone images using different
approaches (morphological, topological, fractal, etc.) have been described. Several
studies have shown that a strong correlation between mechanical properties and
some structural parameters exists. The combined use of BMD and some structural
parameters better explains the variance in mechanical properties with respect to
BMD alone. BVF, MIL, trabecular thickness and Euler number seem the most
useful ones. However, the most suitable parameters for a better description of the
3D architecture still need to be defined. A higher image resolution and a possible
parameters selection, validation and standardization are also required.
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CHAPTER 2

MEDICAL IMAGE-BASED PREFORMED TITANIUM
MEMBRANES FOR BONE RECONSTRUCTION

V. PATTIJN, F. GELAUDE*, J. VANDER SLOTENT and R. VAN AUDEKERCKE
Division of Biomechanics and Engineering Design, Katholieke Universiteit Leuven
Celestynenlaan 300C, B-3001 Heverlee, Belgium
Tel.: +82(0)16-82-70-96; Faz: +32(0)16-32-79-9/
tjos.vandersloten@mech.kuleuven. ac. be

The design of a personalized implant with enhanced functionality for a specific clinical
problem, i.e. the reconstruction of weight-bearing bones after tumor resection surgery,
is described. First, the shape of the new implant was determined using CT-scan data
and strength calculations combined with material considerations. It was shown that
a thin preformed titanium shell fitted on the periosteal surface of the bone and fixed
with small screws provided sufficient strength for bone reconstruction in weight-bearing
applications. Experimental tests were performed to determine the membrane thickness,
the surface macro-structure, and the number and diameter of screws required to fix the
implant to the bone, taking into account the loads acting on the bone during normal
daily activities. Then, the bone-implant system was biomechanically evaluated by finite
element analysis. Finally, a personalized titanium membrane was applied for the recon-
struction of a distal femur after en-bloc resection of a juxta-cortical chondroma. This
clinical application shows the feasibility of this new implant as well as its advantages
towards the classical reconstruction methods.

Future research will focus on the expansion of titanium membranes as reconstruction
devices for bone to other applications in the field of bone reconstructive surgery, e.g. large
bone defects (scaffolding), acetabular reconstructions or re-enforcement of osteoporotic
bone, resulting in a more automated image based design and production process.

Keywords: Titanium membrane; tumor surgery; bone reconstruction; rapid prototyping
technology; custom-made implant.

1. Introduction

Large or locally aggressive benign bone tumors frequently occur in the extremities
just adjacent to the joint surface. The surgical treatment consists of two stages:

(1) removal of the tumor and (2) reconstruction of the defect.!
One of the main methods for removing bone tumors is intralesional excision by

curettage.*®> The curettage starts by making a bone window as large as the lesion.
After removing most of the tumor with a spoon and a large curette, a mechanical
power burring of the entire cavity is necessary. Then lavage by fluids cleans away
debris and allows better visualization. Further control of the tumor is sometimes

*Correspondence to: F. Gelaude; frederik.gelaude@mech.kuleuven.ac.be.
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provided by the use of adjuvant agents to extend the tumor kill.% Especially the
removal but also the control of the tumor must be performed very precisely to
decrease the recurrence rate. Two other methods for bone tumor removal are resec-
tion and amputation.” ' These techniques remove, besides the tumor zone, also a
part of the intact bone. The non-limb-saving technique, e.g. amputation, is seldomly
used nowadays.

The reconstruction of the defect depends on the technique used for removing
the tumor. The more drastic the removal, the more difficult the reconstruction will
be. Reconstruction materials as bone grafts or bone graft substitutes are suitable
for small defects in applications with a low loading. When a higher load must be
withstood, then bone cement must be applied or one of the previous reconstruction
materials with the addition of standard osteosynthesis devices. Finally, in the case
of very radical resection or amputation prostheses are needed to reconstruct the
bone and/or the adjacent joint. The choice of the appropriate treatment of each
specific patient is a very complex task for the surgeon. Therefore, an evaluation
and staging of the bone tumor is advisable. The Enneking staging system!? 13
mostly preferred by orthopaedic oncologists and leads to a classification of both
benign and malignant bone tumors in three stages. Each stage has a preferred
treatment and helps the surgeon in choosing the most appropriate treatment for
each specific clinical case. However, the surgeon has a wide variety of reconstruction
techniques to his disposal. There are still some limits with respect to restoring
the structural integrity and the function of the affected bone. Therefore, a new
improved reconstruction method is sought that meets the flaws of the currently
available techniques.

The treatment of bone tumors should try to obtain an ideal reconstruction of
the affected bone, having biological affinity, resistance to infection, and sufficient
strength and durability in order to achieve a long-lasting survival and function of the
affected limb after reconstruction.'* Therefore a novel implant, in particular a pre-
formed titanium membrane, is created (Fig. 1). A membrane is a thin plate that fits

is

on the periosteal surface of the bone and that is fixed with some small screws. This
new implant is tailored to the individual bone geometry and material properties of
the patient, and has enhanced functionality when compared with currently existing
methods for reconstructing a tumor cavity. The use of membranes originates from
reconstruction and mandibular augmentation in dental surgery.!> 7 Membranes
are also applied in cranio-maxillofacial bone reconstructive surgery.8-19

This study will focus on the bone reconstruction after removing a giant cell
tumor.?Y The technique proposed here is probably applicable for bone reconstruc-
tions of other tumoral-benign as well as malignant—defects. However, each specific
application requires preliminary research.

2. Design Process

The design process of a personalized membrane consists of three consecutive steps:
data acquisition, pre-operative planning and reconstruction.
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Fig. 1. Titanium membrane.

Fig. 2. CT image of affected bone and contra-lateral bone.

2.1. Data acquisition

A computed tomography (CT) scan of the affected region of the bone of the patient
is taken, with a slice thickness of about 2mm. The scanned region contains the
tumor and a margin of approximately 20 mm above and below the tumor. Simul-
taneously the same region of the contra-lateral bone is scanned (Fig. 2). The CT
data is imported in the software program Mimics (Materialise NV#). Within this
program, a segmentation of the bone is performed by using a threshold value for
bone and a three-dimensional model of the bone is created (Fig. 3).

2.2. Pre-operative planning

The surgeon indicates the approximate size of the cortical window, which will be
made during surgery to remove the tumor (Fig. 4). He also determines the maximal

#Materialise NV, Technologielaan 15, 3001 Leuven, Belgium.
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Fig. 3. 3D model of distal femur with bone tumor.

Fig. 4. Pre-operative planning: The black line indicates the approximate size of the cortical
window, the white line the maximal outline of the membrane.

outline of the titanium membrane. This is the maximal size he will need to recon-
struct the cortex taking into account (1) the possible per-operative decision of
enlarging the cortical window and (2) a sufficient overlap between the membrane
and the cortex. The maximal size of the membrane is limited by the attachment of
soft tissues, e.g. ligaments and muscles.

2.3. Reconstruction

The reconstruction of the cortical surface in the region affected by the tumor
is a very important step in the design process. It determines the shape of the
membrane that must fit on the bone surrounding the tumor. Three different com-
puter methods to restore the original shape of the cortex in the tumor zone were
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explored: (1) mirror the contra-lateral bone, (2) manual editing in Mimics and
(3) CAD-based technique.

2.3.1. Mirror the contra-lateral bone

The idea of mirroring the intact contra-lateral bone to obtain a good cortical shape
for the affected bone, is based on the assumption that the skeleton is quite sym-
metric. Therefore, the CT images of the intact contra-lateral bone were imported
in Mimics and segmented by using a threshold value for bone. Changing the orien-
tation of the CT images within Mimics, allows the creation of a mirrored model.
Both the mirrored model and the model of the affected bone were exported in
stl-format and imported in the software program Magics (Materialise NVP). The
mirrored model was repositioned to coincide with the model of the affected bone
(Fig. 5). After the export of the mirrored model in the new position in stl-format,
it was imported in the Mimics project of the affected bone. This allowed to check
the fit between the mirrored cortex and the intact cortex of the affected bone
(Fig. 6).

It seems that the human body is not as symmetric as initially thought. Figure 6
shows a bad fit between the mirrored cortical surface and the affected bone, espe-
cially in the direct environment of the tumor. This is due to the fact that the
intact cortical bone around the tumor is also bulging out. In this case, mirror-
ing the contra-lateral bone did not result in a good reconstruction of the corti-
cal surface. The reconstructed surface did not coincide with the original cortical

Translate Part(s)
Relative Translation
dx -12.246 mm
dy -149.662 mm
dz 0 mm

tumour model

Fig. 5. Repositioning of mirrored intact model to coincide with tumor model.

P Materialise NV, Technologielaan 15, 3001 Leuven, Belgium.
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Fig. 6. Mirrored model visualized in Mimics to control the reconstructed surface with respect to
the affected cortical surface.

surface unaffected by the tumor. Moreover, this method will not be of any use
in cases where the images of the contra-lateral bone are not available or where
the contra-lateral bone is not intact (e.g. deformed or affected by a disease). The
advantage of this method is the low time consumption. There is only one extra
segmentation and a repositioning of the contra-lateral bone for control purposes is
needed.

2.3.2. Manual editing in Mimics

The software program Mimics allows to locally adapt the segmentation of an object,
by a drawing and an erasing tool (Fig. 7). The segmentation of the affected bone
was manually edited in each slice to reconstruct the cortical surface at the tumor
zone. Since this operation had to be performed slice by slice it resulted in a wrin-
kled surface (Fig. 8). To obtain a smoother surface, the editing operation must be
repeated. Disadvantageously, this is a very time consuming task that do not assure
the creation of a smooth surface. Nevertheless, this method resulted in a recon-
struction of the cortex at the tumor site, without affecting the shape of the intact
bone around the tumor site. This method has the advantage that it is generally
applicable, since it only uses the CT images of the affected bone.
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drawing tool

Fig. 7. The circular drawing tool within the Mimics software to manually reshape the cortex in
the affected zone.

Fig. 8. Result of the manual reshaping of the cortex.

2.3.3. CAD-based technique

The third reconstruction method started from the segmentation of the affected bone
in Mimics. The contour lines of the segmented bone in each of the CT images were
exported in IGES-format (Fig. 9). These lines were imported in Mechanical Desktop
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Fig. 9. IGES contours of tumor model.

this curve by
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Fig. 10. Editing contours.

(Autodesk, Inc.) and edited by a routine “editcurves”?! developed at the division
BMGOF¢€. This routine allowed the visualization of the contours in five successive
layers. The contour in the middle layer can be adapted by indicating some points
through which the curve must pass. The original curve is cut near the first and the
last indicated point. The part in between is replaced by a curve fitting through the
other indicated points. The already adapted curves in the two underlying layers and
the original curves in the two upper layers are also shown (Fig. 10). After editing

¢Division of Biomechanics and Engineering Design, K.U. Leuven, Celestijnenlaan 300C, 3001
Heverlee, Belgium.
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Fig. 11. Result of reshaping of cortex in CAD environment.

the curves in all the layers, a surface is created through these curves and exported
in stl-format. This stl-surface is imported in the Mimics project of the affected bone
for the comparison of the reconstructed surface with the original affected cortical
surface (Fig. 11).

This CAD-based technique is also a generally applicable method. Moreover, it
results in a smooth surface with an accurate reproduction of the unaffected cortex.
Unfortunately, it requires a manual input, but it is not as time consuming as the
previous method — manual editing in Mimics.

Based on the comparison of these three different reconstruction methods, it
seems that the CAD-based method will be preferred to reconstruct the cortical
surface at the tumor site.

After this reconstruction step a digital description of the reconstructed cortical
surface of the affected bone is available in stl-format.

3. Manufacturing Process

Now that the desired shape of the titanium membrane is set, the membrane has to
be manufactured. Since the titanium membrane is a personalized implant, it has
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a specific shape for each individual patient. Therefore, the manufacturing process
must be suited for the production of individual objects at a limited cost.

The manufacturing process exists in two steps: (1) the production of a physical
model of the reconstructed cortex and (2) the drawing of the titanium membrane
by using the hydroforming technique.

3.1. Physical model

The solid freeform fabrication (SFF) techniques, also called rapid prototyping (RP)
techniques, are well suited for the manufacturing of individual objects with com-
plex shapes. These techniques involve layer-wise fabrication of parts from a CAD
representation without the use of any part-specific tooling. Some of the most widely
used RP processes are stereolithography, three-dimensional printing, selective laser
sintering, laminated object manufacturing, computer aided manufacturing of lam-
inated engineering materials, and fused deposition modeling.??

The stereolithography technique was selected to manufacture a physical model
of the reconstructed cortical surface due to its availability. Stereolithography (STL)
builds a three-dimensional model from liquid photosensitive monomers that solidify
when exposed to ultraviolet light. A highly focused UV laser traces out the first
layer, solidifying the model’s cross-section while leaving excess areas liquid. Then
another layer of resin is coated on top of the cured layer, so the laser can trace the
second layer atop the first. This process of curing and re-coating is repeated until
the part is completed (Fig. 12). Afterwards the solid part is removed and rinsed

XY movable Z moving
UV light source elevator

liquid surface

UV curable

liquid
FORMED
OBJECT

support

Fig. 12. Stereolithography process.
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Fig. 13. Stereolithography model of reconstructed bone.

clean. Supports are broken off and the model is placed in an ultraviolet oven for
complete curing.

Figure 13 shows the stereolithography model of the reconstructed cortical sur-
face of the affected bone.

3.2. Hydroforming process

The hydroforming or Guerin process is a drawing process in which a rubber
diaphragm backed with fluid pressure is used instead of a punch to form a flat metal
sheet into the desired shape by pressing it against a die or mould (Fig. 14).23-24

First the mould for the hydroforming operation must be made. Therefore, the
stereolithography model is positioned by the machine operator and reproduced in
metal powder reinforced epoxyresin by a two step impression technique (Fig. 15).
This mould is then used to press the titanium sheet (Fig. 16).

Hydroforming is a very complex manufacturing process that requires a high
degree of experience and technical knowledge. For instance, the number of steps to
complete the drawing process must be chosen together with the magnitude of the

hia Y
rupber._ / / e
metal ™ _/'\./\_f
sheet ‘mould

Fig. 14. Hydroforming process.
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Fig. 15. Mould.

Fig. 16. Titanium membrane on mould.

fluid pressure. The fluid pressure is a critical parameter; since excessive pressure
leads to tearing of the metal sheet whereas insufficient pressure results in a wrin-
kled surface. Especially for larger parts with a very small thickness, the failure by
wrinkling is more likely. The pressure usually ranges from 30 to 500 bar.?> Despite
these difficulties, hydroforming limits the geometrical and dimensional errors, and
reduces the localized thinning of the sheet. Nevertheless, the hydroforming process
limits the extent of the area on which the titanium sheet can be pressed, i.e. a
curvature over an angle larger than 160° cannot be reached.
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4. Biomechanical Evaluation

A biomechanical evaluation of the novel implant is needed before clinical appli-
cation. Moreover, some implant parameters must still be determined to assure a
sufficient strength and stiffness of the bone reconstructed with a titanium mem-
brane: the membrane thickness, the surface macrostructure, and the number and
type of screws required to fix the membrane to the bone.

These implant parameters will depend on the fact whether the implant is a
temporal or a lasting device. Moreover the type of filling material can have an
influence on the implant parameters. A reconstruction with a titanium membrane
in combination with bone graft aims at bone regeneration. Hence, the membrane
should be designed to provide an optimal mechanical loading for stimulating bone
regeneration on the one hand, and reducing the fracture risk of the bone on the
other hand. In this case, the membrane is a temporal implant that will be removed
once sufficient bone regeneration is diagnosed. When the latter does not occur,
it will be a lasting implant. For a reconstruction with a titanium membrane in
combination with bone cement, the membrane must be designed to only withstand
the loads during normal functioning. The choice of the filling material as well as
the decision whether or not remove the implant in proper time is the responsibility
of the surgeon.

The biomechanical evaluation performed in this study focused on the design of
a lasting implant for the specific case of a giant cell tumor in the proximal tibia.
This case was chosen because of the relatively high occurrence of tumors at this
site and the heavy loads acting on the tibia during normal daily activities. The
latter implies a high fracture risk of the tibia after resection of the tumor and also
high requirements concerning the strength and stiffness of the titanium membrane
to reconstruct the defect.

4.1. In vivo loads on tibia

For the biomechanical evaluation of the titanium membrane used for the recon-
struction of a defect in the proximal tibia, it is important to have an idea of the
loads acting on the tibia during normal daily activities.

Several external forces act on the tibia: e.g. muscle forces, ligament forces, and
joint forces as well as reaction forces. Figure 17 shows the lateral and the medial
view of a model of the knee joint with indication of these force vectors acting on
the proximal tibia.

A number of researcherg2628

made a model of the knee joint to calculate the
forces acting on the tibia. Tables 1 and 2 present an overview of some values mea-
sured or calculated for the tibiofemoral joint forces. The magnitude of these com-
pressive and shear forces depends largely on the type of activity being performed
and on the joint angle. For most of the activities, the compressive tibiofemoral joint
force is an order of magnitude larger than the shear forces. Only for deep flexion
and for the squat exercise, the anterior shear force has the same order of magnitude

as the compressive component.
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Fa : force of the quadriceps femoris

Fn : force of the hamstrings

Fi : force of the illiotibial tract

Fa :force of the pes anserinus

Fac : force of the anterior cruciate ligament
Fec : force of the posterior cruciate ligament
Fme : force of the medial collateral ligament
Ft : joint force of the femur

Fn : joint force of the fibula

Fig. 17. Lateral and medial view of a knee joint model with indication of the forces acting on
the proximal tibia.

Table 1. Tibiofemoral joint force: compressive, anterior shear, and posterior shear with cor-
responding knee angle.?”

Source Activity Knee Com- Knee Ant. Knee Post.
angle pressive  Angle Shear Angle Shear
(®) Force () Force (®) Force
(xBW) (xBW) (xBW)
Ericson et al.  Cycling 60-100 1.2 105 0.05 65 0.05
Morrison Walking 15 3.0 5 0.4 15 0.2
Harrington Walking — 3.5 — — —
Smidt Isom.¢ extension 60 3.1 — — 30 0.4
Isom.¢ flexion 5 3.3 45 1.1 —
Morrison Up stairs 45 4.3 — — 30 0.05
Down stairs 60 3.8 5 0.6 15 0.1
Ellis et al. Rising from chair — 3to 7 — — —
Kaufman Isom.¢ exercise:
60 deg/sec 55 4.0 75% 1.7 25° 0.3
180 deg/sec 55 3.8 759 1.4 25° 0.2
Dahlkvist Squat-Rise 140 5.0 140 3.0 —
et al. Squat-Descent 140 5.6 140 3.6 — —

BW = body weight, a = flexion, b = extension, ¢ = isometric.

A correct implementation of the direction and the attachment points of all the
forces acting on the tibia is very complex. Therefore, the model will be simpli-
fied; only the compressive component of the tibiofemoral joint force acting on the
articular surfaces will be taken into account.

For the biomechanical analysis five frequent loading conditions are chosen:
standing on both legs, walking, stair climbing, getting out of a chair and jump-
ing. The values used for the compressive component of the tibiofemoral joint force
for these different conditions are based on literature and are respectively 0.5, 3, 4,
6, and 24 times body weight.
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Table 2. Tibiofemoral and patello-femoral joint forces during several activities.

Activity Author Tibio- Patello-
femoral  femoral
Level walking Morrison 3.40 0.6
Walking up ramp Morrison 3.97 1.6
Walking down ramp Morrison 3.95 2.6
Ascending stairs Morrison 4.25 1.8
Descending stairs Morrison 3.83 2.9
Getting out of a chair unaided by arms  Seedhom and Terayama 2.80 2.5
Ellis et al. 4.00 3.3
Jumping Smith 24 20

4.2. Ezxperiments

Experimental tests were performed to determine the buckling strength of the mem-
brane, the strength at the perforation holes, and the strength of the screw-bone
fixation. The results of these experiments were evaluated with respect to the loads
acting on the tibia during normal daily activities to determine the following parame-
ters: the membrane thickness, the surface macrostructure, and the number and type
of screws needed to fix the membrane to the bone.

4.2.1. Buckling strength of the membrane

An experimental set-up was made to measure the critical compression load that
initiates the buckling process of the membrane (Fig. 18). Therefore, half cylinders
with a diameter of approximately 70 mm were formed of commercially pure tita-
nium grade 1 with thicknesses of 0.2, 0.3, and 0.5 mm. Besides the cylinders with a

Fig. 18. Set-up to measure the buckling strength of the membrane.
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flat surface, also cylinders with a wave pattern and thicknesses of 0.2 and 0.5 mm
were tested. The membranes were loaded on an INSTRON machine at constant
deformation rate of 1 mm/min. The load was measured as a function of time with a
force cell (INSTRON, type 2511-214) with a range of 25kN. The force versus time
curve showed a few small peaks as the loading progressed and after approximately
120 seconds, i.e. about 2mm impression, a large drop in force occurred (Fig. 19).
At this last peak, the membrane buckled at the middle and always inwards.

Table 3 shows the average buckling forces for the different types of membranes.

The buckling strength was compared with the five loading conditions. To this
end, a transformation of the loading condition into a force acting on the upper edge
of the membrane was made based on the following assumptions:

(1) Only the cortical bone carries the load.
(2) The load is equally distributed over the contour of the tibia.

1.6 A,
1.4 / L
1.2 /
1 /
os A/
7
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Fig. 19. Force versus time curve during buckling test of 0.2 mm thick titanium membrane without
wave pattern.

Table 3. Average and standard deviation of the force that initiates the buck-
ling process of a membrane.

Membrane Average Buckling Standard Number of
Thickness (mm) Force (N) Deviation (N)  Membranes Tested
No wave pattern

0.2 1608 142 3

0.3 4603 167 3

0.5 11196 1325 2
Wave pattern

0.2 3177 246 3

0.5 12433 1924 4
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Fig. 20. Buckling force versus membrane thickness with indication of the different loading
conditions.

(3) The membrane is loaded directly with the percentage of the load that is equal
to the fraction of the membrane width to the tibial perimeter (approximately
100 mm to 240 mm).

(4) An average person with a body weight of 80 kg is assumed.

Figure 20 shows the average buckling strength of the different types of mem-
branes as well as the membrane load for the five loading conditions. A minimal
membrane thickness of 0.5 mm is needed to prevent buckling of the membrane dur-
ing jumping. To exclude the buckling risk during limited daily activities (standing,
walking, stair climbing, and getting out of a chair) a minimal thickness of 0.3 mm
is needed or a wave pattern in case of a membrane of 0.2 mm thick.

4.2.2. Strength at the perforation holes

The maximum force at which the titanium membrane at the perforation sites rup-
tures was measured. The experimental set-up consisted of an INSTRON machine
with a force cell (INSTRON, type 2511-317) with a range of 5kN. The upper part
of a small titanium plate was fixed in a clamp. A cylinder was inserted through a
hole in the lower part of the titanium plate and fixed in another clamp (Fig. 21). A
tensile deformation was applied an a rate of 1 mm/min, and the force was measured
as a function of time.

A cylinder of 4.0mm diameter was inserted through a perforation of 4.2 mm
diameter in a titanium (grade 1) plate of 0.2, 0.3, and 0.5 mm thickness to investi-
gate the influence of the membrane thickness. The influence of the perforation dia-
meter was determined by using a cylinder with 2, 3, 3.5 or 4 mm in combination with
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Fig. 21. Set-up for testing the strength of the perforation holes.

Table 4. Average and standard deviation of the force that initiates
rupture of a perforation hole of 4.2 mm diameter in a titanium mem-
brane of respectively 0.2, 0.3, or 0.5 mm thick.

Membrane Average Standard Number of
Thickness (mm)  Force (N)  Deviation (N)  Membranes Tested

0.2 214 20 5
0.3 362 34 4
0.5 1018 133 5

Table 5. Average and standard deviation of the force that initiates rupture
of a perforation hole of respectively 2.2, 3.2, 3.7 or 4.2mm diameter in a
0.3 mm thick titanium membrane.

Diameter of Average Standard Number of
Perforation Hole (mm) Force (N) Deviation (N)  Membranes Tested

2.2 280 15 2
3.2 323 30 6
3.7 357 62 4
4.2 367 24 4

a 0.3mm thick titanium (grade 1) plate with perforation diameters of respectively
2.2, 3.2, 3.7, or 4.2mm.

Tables 4 and 5 give the average forces at which the perforation sites ruptured for
the different cases. The average rupture force for a perforation of 4.0 mm diameter
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is exponentially correlated with the membrane thickness according to the equation
y = 75.791e51836% <yith a correlation coefficient R? of 0.98. There was no correlation
observed between the average rupture force and the diameter of the perforation hole
for a titanium membrane of 0.3 mm thick.

4.2.3. Strength of screw-bone fixation

The load on the tibia, which is mainly a vertical compression, is transmitted partly
to the titanium membrane through the screws by transverse forces. Therefore, it
is important to know the maximal transverse load a screw can withstand without
failing, i.e. breaking of the surrounding bone or breaking of the screw itself. The
strength of the screw-bone fixation was experimentally determined for three types
of screws: a mono-cortical screw of 2.7mm diameter and 16 mm length, a mono-
cortical screw of 3.5 mm diameter and 18 mm length, and a trabecular screw of
4.0mm diameter and 28 mm length. A steel plate was screwed onto the cadaver
tibia. The diameter of the perforation in the steel plate was 0.2mm larger than
the screw diameter. The tibia was positioned so that the screw was approximately
horizontal and the plate vertical. An INSTRON machine applied a compressive load
on the plate, hence a transverse load on the screw (Fig. 22). This test occurred at a
constant deformation rate of 1 mm/min to avoid the effect of the deformation rate
on the resulting measurement.?? Five cadaver tibiae were available, in which each
screw type was tested once or twice.

Fig. 22. Set-up for testing the strength of the screw-bone fixation: a screw is fixed in the cadaver
bone and transversely loaded.
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Table 6. Average and standard deviation of transverse load that a screw
can withstand without failing.

Type of Screw Average  Standard Number
Force Deviation  of Screws
(N) (N) Tested
Cortical screw: 2.7 mm diameter 305 184 9
16 mm length
Cortical screw: 3.5 mm diameter 420 257 10
18 mm length
Trabecular screw: 4.0 mm diameter 640 136 7

28 mm length

Table 6 presents the average transverse load measured for the three types of
screws. The failing of the screw-bone fixation was always due to a fracture of the
surrounding bone and not to a fracture of the screw itself. The trabecular screws
are preferred due to the high load they can withstand.

4.2.4. Conclusion

Based on the experimental tests, it can be concluded that a bone reconstructed with
a non-wave-formed titanium membrane of 0.3 mm thickness is able to withstand
the loads occurring during limited daily activities. Compressive loads up to 6 times
body weight are allowed. Jumping loads are forbidden, which would mean that the
patient is not allowed to sport or dance.

The choice of a membrane without wave pattern was not only based on the
fact that this provides already sufficient strength. A membrane with a wave-formed
texture at the outer and the inner side would restrict the surgeon in the choice of the
extent of the cortical window in the operating theatre. The area of the membrane
with the wave pattern determines the minimal magnitude and moreover the exact
position of the cortical window. In the case of a membrane with waves only at
the periosteal side, there is no per-operative restriction, but there may be some
discomfort for the patient. On the one hand, the membrane could be very near the
skin and hence the outer wave pattern could be felt by the patient. On the other
hand, the membrane could be covered by muscles, which would lead to shearing
of those muscles over the waved titanium membrane. A membrane without wave
texture is preferred, since it has a smooth surface and it mimics the shape of the
original bone. Moreover the design and the production of a smooth membrane are
easier than those of a membrane with wave pattern.

The buckling strength was compared with the loads acting on the tibia of an
average person during main daily activities, being standing, walking, stair climb-
ing, and getting out of a chair. Average values of the tibial joint force during these
activities were found in literature. The tibial joint force consists of a large com-
pressive component and a rather small shear component. Therefore, only the large
compressive force was taken into account. Moreover, it was assumed that this force
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was totally applied to the cortical rim. In reality the load is distributed over the
tibial joint surface by the menisci, so the trabecular bone carries a part of the load.
This means that the loads taken as reference for the evaluation of the buckling
strength were overrated.

Trabecular screws with a diameter of 4.0 mm and a length of 28 mm are chosen
to fix the implant, due to the high load they can withstand before failure of the
screw-bone fixation. For this type of screw and for a titanium membrane of 0.3 mm
thickness, the force that initiates failure of the screw-bone fixation is less critical
than the force that starts rupture of the titanium membrane. According to the
values for the latter force and the maximum load the membrane should withstand,
i.e. the compression load that acts on the knee while standing up from a chair
(6 times body weight), the number of trabecular screws of 4.0 mm diameter needed
to fix the membrane onto the bone was chosen. For a person of 80kg, a load of
2400 N acts on the titanium membrane, assuming that the load is fully carried by
the cortex and half of the tibial cortical perimeter is replaced by the membrane. The
critical force for rupturing the membrane is approximately 367 N, hence making it
necessary to use at least seven screws to fix the membrane.

4.3. Finite element analyses

A further evaluation of the global concept, i.e. a tibia with proximal defect recon-
structed with a titanium membrane, was performed by finite element analyses.
This is necessary to have an idea of the stresses occurring in both the bone and the
membrane during daily activities. These stresses must be limited to prevent either
fracture of the bone or failure of the implant. Moreover, stress shielding must be
avoided. The stresses in the bone must be above a certain lower bound to prevent
bone loss.

4.3.1. Finite element models

A dry human cadaver tibia was selected to use as an example for the finite element
modeling. First, the outer surface of the dry tibia was measured with a 3D digital
coordinate measurement system. An orthopaedic surgeon (1.5.9) made a cortical
window in the proximal tibia and resected the major part of the trabecular bone
to simulate a cavity remaining after removing a giant cell tumor in the proximal
tibia. Further, a CT scan with a 1 mm slice thickness was made of the dry tibia
with the simulated tumor cavity. Based on these data, the following finite element
models were made:

e the intact tibia;

e the tibia with the simulated tumor cavity;

dIgnace Samson, M.D., K.U.Leuven, UZ Pellenberg, Department of Orthopaedic Surgery,
Weligerveld 1, 3212 Pellenberg, Belgium.
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Fig. 23.  Succeeding steps to create a finite element model.

the tibia reconstructed with bone cement;
the tibia reconstructed with a titanium membrane of 0.2 mm thick;
the tibia reconstructed with a titanium membrane of 0.3 mm thick; and

the tibia reconstructed with a titanium membrane of 0.5 mm thick.

Figure 23 shows the general flowchart for creating the finite element models. The
first step is the acquisition of the inner and outer geometry of the bone. Therefore,
the CT images of the bone were acquired and imported in the software program
Mimics. After segmentating the cortical and trabecular bone, the inner and outer
contours of these segmented structures were exported in IGES-format. Based on
these, IGES-contours solid and 3D free from surface models were created within the
software program Unigraphics (EDS). The creation of the outer surface of the intact
tibia did not follow this scheme. Therefore, the point cloud resulting from the 3D
digital coordinate measurement was imported in Unigraphics and used to create a
surface model. Further, the solid models were meshed with the solid mesher by using
tetrahedral elements and the surface models with a shell mesher using quadrilateral
elements. Finally, these models were imported in Mentat (MSC.Software Corpora-
tion) for the finite element analysis.

To approximate a real tibia as good as possible a variable cortical thickness
was modeled (Fig. 24). Therefore, it was necessary to use solid elements for the
cortical mesh. The elements of choice for the cortex were 3D 20-node brick elements.
These isoparametric, arbitrary hexahedral elements use triquadratic interpolation
functions to represent the coordinates and the displacements. Hence, the strains
have a linear variation within the element. The trabecular bone was built with 3D
10-node tetrahedron elements. This is a second-order isoparametric tetrahedron,
which allows for an accurate representation of the strain. It has three translational
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Fig. 24. Half of the intact tibia model with variable cortical thickness 7.

degrees of freedom and uses four-point integration. The titanium membrane was
meshed using also hexahedral elements. The filling material PMMA was built with
two types of elements. The part that filled the cavity in the trabecular bone was
made with tetrahedron elements, whereas the part that filled the cortical window
used hexahedral elements.

For reason of simplicity, linear elastic isotropic properties were assigned to all
materials. Table 7 represents the values used for the Young’s modulus and the
Poisson ratio. This simplification is justified since the effect of different reconstruc-
tion techniques will be analyzed by comparison, and since the fact that only com-
pressive loads are applied to the models.

The boundary conditions applied to the finite element models were the loads,
the simulation of embedding of the model to the environment, the types of contact
between the different materials, and the simulation of the screw fixation.

The tibial joint force was applied as a pressure equally distributed over the
entire articular surface. For a more easier implementation, the articular surface was
cut, hence the surface load could be applied on a flat surface. The cortical and the

Table 7. Material properties used for the finite element

analyses.

Material Young’s Modulus (MPa)  Poisson Ratio
Cortical bone 13700 0.3
Trabecular bone 1370 0.3
Titanium 110000 0.33

PMMA 2000 0.3
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Table 8. Loads applied for the finite element analyses.

Loading Condition Tibiofemoral Joint Force (N)®  Equivalent Face Load (MPa)®
Standing 400 0.1197
Walking 2400 0.7183
Stair climbing 3200 0.9577
Getting out of a chair 4800 1.4365
Jumping 19200 5.7461

a : for a body weight of 80 kg.
b : for an articular surface with an area of 3341.4 mm?2.

trabecular bone in this plane are directly loaded with an equally distributed face
load. The five selected loading conditions were simulated. The compressive compo-
nent of the tibiofemoral joint force of these loading conditions was transformed into
an equivalent face load (Table 8). Therefore, a person with a body weight of 80kg
was assumed.

The distal part of the tibia was completely fixed to the environment; neither
translation or rotation were allowed.

To oblige the materials to have the same displacement, a glue contact was
applied between the PMMA and the trabecular bone, and between the PMMA
and the cortical bone. This choice was made since PMMA penetrates into the
pores of the bone. PMMA binds at a macroscopic level with trabecular bone and
at a microscopic level with cortical bone. A touching contact was used between the
titanium membrane on the one hand and the cortical bone or the PMMA on the
other hand. This type of contact allows the materials to slide over each other, but
inhibits the penetration into each other.

The screws to fix the membrane onto the bone were not modeled as in reality to
limit the size of the finite element model and for calculation purposes. Therefore,
the screws were modeled as tie-nodes by adding a link. This means that the nodes
of the titanium membrane at the position of the screws were assumed to have the
same displacement as the nodes on the cortical bone where the screws were inserted.
The membranes were fixed with seven screws, hence seven links were added.

4.3.2. Results

For each of the six models the five loading conditions were simulated and the equiva-
lent Von Mises stress was calculated. Histograms were made of the Von Mises stress
in all the nodes belonging to a type of material (i.e. cortical bone, trabecular bone,
PMMA, or titanium) for each model and for each loading condition. The median
was taken as a representative value for the average stress, since it is not influenced
by the absolute values of the inaccurate peak stresses resulting from the contact
types and the modeling of the screw fixation.

For the loading condition “getting out of a chair” the histograms of the Von
Mises stresses in respectively cortical and trabecular bone of the six models are
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Fig. 25. Histograms of the Von Mises stresses in the cortical bone of the six models for the
loading condition “getting out of a chair”, with indication of the median value (MPa).

shown in Figs. 25 and 26. For the same loading condition, Fig. 27 shows the his-
tograms of the Von Mises stress in PMMA and in titanium. These histograms were
representative for all five loading conditions.

Tables 9-11 represent the values of the median of the Von Mises stress in respec-
tively cortical bone, trabecular bone, PMMA and titanium for the five loading
conditions.

As expected, in both cortical and trabecular bone higher stresses were observed
for the cavity model than for the intact model, for each of the five loading conditions.
The distribution of the stresses was different for these two models. The histograms
of the stresses in the intact model showed a relatively small distribution, whereas
the histograms of the stresses in the cavity model showed a wider distribution with
a large extension towards high stress values. This was more pronounced for the
stresses in trabecular bone than those in cortical bone. Analysis of the maximal
stress values revealed that these were averagely 5.5 (range 2.6 to 9) times higher
than those in the intact model. For the trabecular bone, the maximal strength
was exceeded in each loading case, whereas for cortical bone only in the last two
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Fig. 26. Histograms of the Von Mises stresses in the trabecular bone of the six models for the
loading condition “getting out of a chair”, with indication of the median value (MPa).

cases (getting out of a chair and jumping). Reconstruction of the tibia with a
tumor defect is certainly needed to lower the risk of fraction during normal daily
activities.

The two different reconstruction techniques, i.e. PMMA as a filling material
and a titanium membrane for reconstruction of the cortical window, showed an
equal median stress value in cortical bone as the intact model. The maximal stress
values in cortical bone were for both reconstruction techniques lower than those
calculated for the cavity model. Only the PMMA reconstruction lead to similar
stress distributions and approximately equal median stress values in trabecular bone
as the intact model. The reconstructions with a titanium membrane showed similar
stress distributions and approximately equal median stress values in trabecular bone
as the cavity model. Nevertheless, the maximal stress values in trabecular bone were
lower for the models reconstructed with a titanium membrane than for the cavity
model. These differences could be explained by the fact that both reconstruction
techniques restored the cortical window, but only the PMMA reconstruction filled
the cavity in the trabecular bone.
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Fig. 27. Histograms of the Von Mises stresses in PMMA and in titanium for the loading condition
“getting out of a chair”, with indication of the median value (MPa).

Table 9. Median value of the Von Mises stress in cortical bone (MPa).

Standing  Walking Stair Getting Out  Jumping
Climbing of a Chair

Intact 0.9087 5.3272 7.0894 10.5626 42.0528
Cavity 1.1505 6.8006 9.0320 13.4559 53.8030
PMMA 1.0099 5.3752 7.0792 10.5251 41.8574
Titanium 0.2 0.8752 5.2109 6.9462 10.4108 42.0065
Titanium 0.3 0.8883 5.0336 6.6937 9.9953 39.5729
Titanium 0.5 0.9396 5.3313 7.0778 10.5350 42.0026

Analysis of the stresses in the PMMA filling material showed that the median
stress value is a little bit higher than the corresponding value in trabecular bone, but
much lower than the corresponding value in cortical bone. Only for the first loading
condition (standing) the maximal stress is within the in vivo allowed working stress
(14-17MPa) in bone cement.3 There is a considerable risk of fracture of the bone
cement.
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Table 10. Median value of the Von Mises stress in trabecular bone (MPa).

Standing  Walking Stair Getting Out  Jumping
Climbing of a Chair

Intact 0.1117 0.6638 0.8846 1.3268 5.2967
Cavity 0.1281 0.7597 1.0116 1.5168 6.0671
PMMA 0.1176 0.6592 0.8765 1.3103 5.2253
Titanium 0.2 0.1255 0.7472 0.9963 1.4939 5.9727
Titanium 0.3 0.1251 0.7279 0.9700 1.4543 5.8087
Titanium 0.5 0.1260 0.7337 0.9768 1.4656 5.8433

Table 11. Median value of the Von Mises stress in PMMA and titanium (MPa).

Standing Walking Stair Getting Out Jumping

Climbing of a Chair
PMMA 0.2331 0.9463 1.2509 1.8708 7.4638
Titanium 0.2 8.5380 50.5401 67.2393 100.6514 405.0290
Titanium 0.3 7.3218 36.1553 47.5035 69.8829 266.6067
Titanium 0.5 6.6794 27.6383 36.4939 53.7374 202.8965

The stresses in the titanium membrane were much higher than those in the
cortical and the trabecular bone. A significant decrease of the median stress value in
titanium was observed for an increase in thickness from 0.2mm to 0.3 mm. Further
increase in thickness with 0.2 mm gave rise to a smaller gain in median stress values
in the titanium. Comparison of the stress distributions shows that the larger the
thickness of the membrane, the smaller the stress distribution and the extension
towards high stress values. For all the loading cases except jumping the median
stress values were lower than the yield strength of the five grades of commercially
pure (cp) titanium (Table 12). When also considering the jumping load only cp
titanium grade 4 and 5 have a yield strength higher than the median stress value.
The maximal stress values (when excluding the peak stresses around the screw links)
in a titanium membrane of 0.3 mm thick were lower than respectively 700 MPa for
jumping and 200 MPa for the other four loading conditions.

In conclusion, it seems obvious that when dealing with a large tumoral defect,
reconstruction is needed to reduce the fracture risk of the bone. The above results
show that a reconstruction with a titanium membrane reduces the stresses in the

Table 12. Mechanical properties of cp titanium grade 1 to 5.

Titanium  Yield Strength  Tensile Strength ~ Young’s Modulus

Grade MPa MPa GPa
1 200 290-410 105
2 270 390-540 105
3 350 460-590 105
4 410 540-740 105
5 890 930 115
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cortical bone to the level of those in the cortex of an intact bone, and also lowers the
maximal stresses in the trabecular bone in comparison to those in a bone without
any reconstruction. A minimal membrane thickness of 0.3 mm is needed to limit
the stresses in the membrane itself during normal daily activities (except jumping).

5. First Clinical Application

The titanium membrane was first clinically applied for the specific case of a juxta-
cortical cartilaginous tumor in the left distal femur, since this was the first clinical
case presented at that time by the surgeon (I.S.). It was considered justified to
apply the design parameters derived from the biomechanical study on the proximal
tibia to this clinical case because of the following reasons.

(1) The specific example of the giant cell tumor in the proximal tibia does not
prejudice the general relevance of the results with regard to the screw-bone and
the screw-metal interface. These are in fact applicable to all reconstructions in
epiphyseal areas of long bones.

(2) The loads acting on the distal femur are comparable with those acting on the
proximal tibia. The physical loads on the femur and the tibia are both mainly
axially directed and are of the same magnitude. Therefore, the reconstruction
of both proximal tibia and distal femur can be simplified to a tube with rein-
forcement of the outer wall.

(3) The major function of the titanium membrane for the clinical case of the low-
grade chondrosarcoma of the distal femur is containment of the filling material.

A male competition swimmer of 18 years complained about pain at the medial
side of the left knee. A tumoral process at the posterior-medial side of the distal
metaphysis of the femur was found. Figures 28 and 29 show respectively a frontal

Fig. 28. Frontal and lateral radiograph.
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Fig. 29. MR image.

and lateral radiograph and a MR image taken four months before surgery. Due to
both the benign character of this tumoral process and the young age of the patient,
it is preferable to fill the cavity remaining after tumor resection with bone graft.
The large size of this juxta-cortical chondroma on the one hand and its position
on the other hand, make the reconstruction of the bone defect with bone graft and
conventional methods very difficult. Therefore, the surgeon (I.S.) decided to use
a personalized titanium membrane in combination with bone graft to reconstruct
the femoral bone. A major function of the titanium membrane was to prevent the
risk of drifting of the bone graft into the knee joint, which would lead to major
problems for the patient. Another advantage was the possibility of compressing the
bone graft to ensure a good filling of the cavity. Hence, a better contact of the filling
material to the walls of the cavity is achieved, which enhances the remodeling of
the bone graft.

A membrane was designed and manufactured according to the procedure given
in Secs. 2 and 3. Based on the design constraints conforming to the biomechanical
evalution and including a safety factor, a thickness of 0.4 mm was chosen for the
titanium membrane. Because 0.4 mm thick titanium was not available when the
clinical case was presented, a titanium sheet of 0.5 mm thick was selected. After-
wards the membrane was reduced to a thickness of 0.4 mm by chemical etching.
This was also performed to remove impurities from the membrane resulting from
the hydroforming process. The titanium membrane covered a maximum area around
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the tumor. The maximum size of the membrane was determined by the limits of the
hydroforming process and hence avoided any restriction of the surgeon during the
surgery. Besides the titanium membrane, also a transparent membrane in Perspex
was made on the same mould as a trial model for per-operative use.

The day before surgery, the titanium membrane, the Perspex trial model, the
metal scissors to trim the membrane to the exact size, and the punch tool to punch
the screw holes were gas sterilized.

The surgery started with making a medial incision to expose the left distal
femur. After drilling some holes and chiselling the cortical bone, the tumor was
resected en-bloc. Before reconstruction, the remaining tumor cavity was rinsed.
Firstly, the titanium membrane was placed onto the bone to control the fit and
to check whether the membrane could be used. This evaluation being positive,
the transparent membrane was used to check the overlap. The contour of this
Perspex membrane was trimmed to the desired shape and the positions for the
screws were marked. This transparent membrane was placed on top of the titanium
membrane and the outer contour was drawn onto the titanium membrane. The
titanium membrane was cut with the metal scissors to the marked shape, and the
holes for the screws were punched. Allogenous morselized bone grafts mixed with
physiological fluid were pressed in the cavity. Because of the posterior position of
the cavity these bone grafts fell out the cavity. Therefore the titanium membrane
was filled with bone grafts and placed onto the bone. The holes for the screws
were drilled and tapped in the bone through the punch holes in the membrane.
Seven screws were used to fix the membrane to the bone. Figures 30 and 31 show
respectively the per-operative result and the immediate post-operative radiographs.
These show that the membrane fits perfectly in the remaining cortical bone and
that the membrane is well fixed with the screws.

Fig. 30. Per-operative view of titanium membrane fixed onto the femoral bone.
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A

Fig. 31. Immediate post-operative X-rays.

Since the titanium membrane was designed and produced pre-operatively, the
normal procedures in the operating theatre were not complicated. Moreover, there
were no restrictions to the surgeon regarding the removal of the tumor because
a per-operative fine-tuning of the shape and punching of the screw holes were
possible.

Three months post-operative CT images showed bone regeneration, starting
from the intact trabecular bone in the middle of the distal femur. However at the
anterior-medial side a radiolucent line was seen at the border between trabecular
bone and bone graft, which indicated a formation of soft tissue instead of bone. Six
months post-operative there was no obvious change in bone regeneration visible
when compared with the three months post-operative result. The patient has an
excellent functioning of the bone-implant system without any restriction.

In conclusion, the first clinical use of this personalized titanium membrane for
tumor reconstruction showed the feasibility of this new implant as well as its advan-
tages towards the classical reconstruction techniques. The personalized shape of the
membrane leads to a perfect fit of the membrane on the patient’s bone. The use of
a titanium membrane has a large intra-operative flexibility: the membrane is easily
shaped to its final size and the screw holes for the fixation are easily punched during
the surgery. Moreover, the membrane allows a good filling of the tumor cavity and
holds the filling material in place; there is no risk of drift of the material. Finally,
the membrane has a sufficient strength and stiffness to allow normal loading of
the affected bone. These conclusions cannot be generalized, since they are based
on one clinical trial. Further research on large numbers of reconstructions with a
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personalized titanium membrane is needed to validate the general applicability as
well as the clinical reliability.

6. Conclusions and Future Perspectives

The aim of this research was the design of a personalized implant with enhanced
functionality for the reconstruction of weight-bearing bones after tumor resection
surgery. First, the clinical problem as well as the different surgical treatments were
discussed. Nevertheless, the surgeon has a wide variety of reconstruction techniques
to his disposal; there are still some limits with respect to the restoration of the struc-
tural integrity and the function of the affected bone. To overcome the flaws of the
current treatment methods, the use of a membrane, i.e. a thin preformed plate fitted
on the periosteal surface of the bone and fixed with some small screws, is proposed.
Titanium is chosen as a bio-compatible material, since it has the best behavior
with respect to the material requirements and it allows radiographic follow-up. The
design process as well as the manufacturing process of the titanium membrane were
determined. The biomechanical fitting of the titanium membrane was performed for
the specific case of a giant cell tumor in the adult proximal tibia. Experimental tests
and finite element analyses were performed. These revealed the need for an 0.3 mm
thick membrane (without wave pattern) for the reconstruction of a proximal tibial
bone to assure withstanding of the loads occurring during daily activities. Finally,
the titanium membrane was clinically used for the reconstruction of a distal femur
after en-bloc resection of a juxta-cortical chondroma. This clinical application shows
the feasibility of this new implant as well as its advantages towards the classical
reconstruction methods.

e The personalized shape of the membrane leads to a perfect fit of the membrane
on the periosteal surface of the patient’s bone.

e The membrane is highly adaptable during surgery; the membrane is easily shaped
to its final size and the screw holes for fixation are easily punched during the
surgery.

e The membrane allows a good filling of the tumor cavity and assures the contain-
ment of the filling material.

e The bone reconstructed with a titanium membrane has a sufficient strength and
stiffness to withstand the loads occurring during normal daily activities.

Personalized titanium membranes are a commercially attractive reconstruction
method if the clinical outcome is equal or better than obtained with a classical
reconstruction technique and the incidence of the anomaly in population is relatively
high. Additionally a membrane must be low cost and swiftly to obtain.

In maxillo-facial and dental surgery personalized titanium membranes are
already successfully applied (cranioplasty, bone augmentation,...). On the con-
trary, the conclusions presented for the tumor reconstruction of a weight-bearing
bone are based on a single clinical application, and probably do not apply to any
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case. A large clinical study is needed to confirm these conclusions in general and
to validate the clinical reliability of a reconstruction with a personalized titanium
membrane.

The scope of future research should be the expansion of titanium membranes
such as reconstruction devices for bone to other applications in the field of
orthopaedics, e.g. trauma surgery, maxillofacial surgery, .... The shortcomings of
the currently used reconstruction techniques in the different medical fields must
be evaluated to define the areas with the highest need of improvement, hence the
areas in which the use of personalized implants is essential for an optimal post-
operative functioning. For example, titanium membranes offer perspectives in the
field of tissue engineering, a recently fast evoluting research that focuses on bio-
logical solutions for medical problems. For bone defects, regeneration of bone is
the objective. Scaffolds, i.e. porous structures in which bone cells are embedded
to start the growth of bone tissue are placed in the bone cavity. The mechani-
cal parameters of the scaffold must be adapted to result in a load pattern of the
bone cells that stimulates bone growth. Most currently available scaffolds are too
weak to ensure the reconstruction of weight-bearing bones. Titanium membranes,
as temporary fixation device, in combinations with scaffolds could be an elegant
solution. A possible application for such a combination membrane-scaffold is the
reconstruction of a large segmental bone defect in the metafysis of a long bone, i.e.
regions of high shape complexity wherein standard equipment (plates, nails, cages,
bone grafts, ...) is difficult to position and would lead to stress shielding of the
surrounding bone. Other applications for personalized titanium membranes are the
shelling of the debris from a comminutive fracture in the proximity of a joint and
reconstruction of the acetabulum in revision total hip arthroplasty.

The use of titanium membranes for tumor surgery on a regular basis is not yet
possible due to the non-efficient design- and production process. First the design
process of the membrane, i.e. creating the personalized shape, is a highly man-
ual process due to the lack of computer aided design methods to reconstruct the
cortical bone. Consecutive design steps such as data acquisition, filtering and recon-
struction of contours are in se similar for different types of bones, and therefore
an integrated design environment can be created. With the patient’s anatomical
data from the CT images, the environment automates the pre-operative planning
and proposes a reconstruction to the surgeon while checking the feasibility of the
implant placement. Expanding the application field of membranes to other types of
bones implicates that new types of bone defects are introduced to the environment
and therefore new procedures must be added to the environment. For example, a
complete fracture of a long bone — compared to a tumor cavity — demands a
registration of the bone pieces before reconstruction is initiated. The positioning of
the fixation screws is another example. An outline of the possible screw placements
on the membrane which can be calculated from thickness information in the CT
images, can lower the insertion time during surgery, especially when connecting
multiple bones (e.g. revision total hip arthroplasty).
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Second, the production process needs a number of steps. A rapid prototyping
model of the reconstructed bone is made, and afterwards reproduced in metal pow-
der reinforced epoxyresin to be used as a mould. The hydroforming process is based
on the experience of the machine operator; the more experienced the operator, the
less trials are needed. The limits of the hydroforming process must be studied, since
these determine the variation in producible shapes of membranes. If these are too
limited further research is needed towards other manufacturing processes; if not,
the manufacturing process should be optimized by e.g. using a rapid prototyping
model as mould for the hydroforming process, and simulating the hydroforming in
advance to reduce the number of trials.

The personalized titanium membranes designed in this study show major advan-
tages for the reconstruction of load-bearing bones. Hence, further research to allow
its commercialization and to expand their use in the medical field is of great value.
Also the non load-bearing applications such as maxillofacial reconstructive surgery
(e.g. cranioplasty) can benefit from an efficient design- and production environment.
The latter will lower the threshold to actually choose for a membrane.
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The evaluation of the upper respiratory airway obstruction is of significant importance,
as its physiological effects on ventilation rapidly evolve to secondary body malfunctions.
Given the nature and location of the lesions, the invasive handling of the condition with
direct bronchoscopy is undesirable; an imaging approach based on computed tomog-
raphy is preferred. Objective and quantitative evaluation of the obstruction therefore
requires the application of image processing and analysis techniques. The majority of
research conducted for airway segmentation and analysis from tomographic views has
relied on region-based procedures. However, the specific problem of automatic tracheal
segmentation can be approached with a continuous edge detection perspective, taking
advantage of the high contrast that exists between the interior of the airway and its
surrounding tissue. This chapter reviews the state-of-the-art procedures for respiratory
airway segmentation and describes an active contour-based approach for this task.

Keywords: Tracheal segmentation; active contours; active surfaces; cubic splines;
stenosis; CT images.

1. Human Airway Assessment from Medical Images

The respiratory system is of vital importance for human beings, given that it
performs, among others, the ventilation function. Ventilation corresponds to the
fundamental physiological process of gas exchange between the external medium
surrounding the subject and his/her own internal medium, which is aimed at the
maintenance of the acid-base equilibrium. This is why the signs or symptoms of an
airway obstruction deserve immediate attention to prevent generalized secondary
body malfunctions. According to published World Health Organization statistics,
respiratory diseases and infections correspond to mortality indexes of 6.5% and 6.7%
respectively*!; from here the importance of accomplishing an early and precise diag-
nosis of the aforementioned affections. In the particular case of mild or moderate
tracheal stenosis, it is not uncommon to confuse its associated signs and symptoms

*Corresponding author.
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with those related to other kinds of respiratory complications such as asthma or
chronic bronchitis. It is for this reason that an accurate and objective detection
becomes necessary to decrease the chances of false diagnosis, thus promoting the
selection of an adequate treatment on time.

1.1. Airway anatomy and physiology

Structurally, the respiratory apparatus is conformed of a connected, continuous
series of conducts spanning the head, neck and thorax. These pipes provide access
to physical paths along which the atmospheric air permeates to the blood stream,
in a process named gas exchange. According to their body location, the respiratory

airways are classified in two large-scale categories:'”

e Upper Airways, comprising the nose, nasal cavity, paranasal sinus, nasopharynx,
pharynx.
e Lower Airways, including the trachea, tracheobronchial system and lungs.

The geometry of the human airway tree follows a bipodial branching, where a
parent pipe divides into two or three child branches. This pattern has important
effects on the distribution of air flow in the lung. The child branches’ diameter
gradually decreases to reach approximately 1 to 2mm at the bronchi level.*” The
trachea is itself divided in two distinct portions: (i) an extra-thoracic or proximal
component, extending from 2 to 4cm in length, beginning from the lower border
of the cricoid cartilage and down to the thoracic entrance, projecting from 1 to
3cm above the suprasternal nodule, and (ii) an intra-thoracic or distal extension
that corresponds to the next 6 to 9 cm, reaching a total length of 10 to 13 cm. The
cross-sectional diameter of the trachea in men lies between 13 and 25 mm, while in
women this diameter varies from 10 to 21 mm. Figure 1 shows a schematic depiction
of the respiratory airway structure, emphasizing the trachea and main bronchi.

From a transversal perspective, the internal layer of the trachea is mainly a
covering epithelium (mucous), followed by a layer of connective tissue, where the
tracheal glands are immersed; the next tissue layer is formed by a C-shaped carti-
lage (tracheal cartilage). The posterior open ends are complemented with smooth
muscle. Tracheal distensibility and elasticity help in supporting the heart, because
the upper bronchi or tracheal branches are interlaced with the pulmonary arteries
that connect with it.'7

1.2. General airway pathology and tracheal lesions

The incidence of laryngeal and tracheal obstructive lesions has increased in recent
years; on one hand, it is observed that central airway lesions have become more
common mainly due to traffic accidents, and on the other, the interventional use
of inflatable tracheal probes and controlled mechanical ventilation have originated
new kinds of airway trauma at the mucous and C rings. Tobacco consumption and
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Fig. 1. Schematic display of the prominent anatomical components of the respiratory airway
system.

air pollution have also lead to a rise in the incidence of upper airway carcinoma.'6:33

Miller suggests the following classification for tracheal conditions that are poten-

tially obstructive:'6

e developmental alterations, comprising vascular anomalies, congenital glottic
stenosis or angiomas;

infection;

trauma-related, which represent the most common case;

presence of foreign objects, with a large incidence in children; and

neoplasy, whose symptoms might be confused with those of diffuse obstructive

disease and treated as asthma.

Other idiopathic respiratory ailments exist that could present obstructive-like
symptoms, such as osteoplastic tracheopathy (related to cartilaginous projections
within the tracheal lumen), relapsing polychondritis (associated with rheumatoid

arthritis), or lupus erythtematosus.*®
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Tracheal stenosis is defined as a reduction of the transversal diameter of the
trachea.”! Most cases of stenosis are developed below the sternal vertex, and thus
cannot be observed in neck radiographs. In many cases, bronchoscopy represents
the most appropriate assessment method for determining the location and extent of
the lesion; however, the procedure requires anesthesia and, in severe cases, further
airway obstruction can be induced, requiring emergency procedures.®® There are
limitations in the detection of tracheal stenosis through the application of functional
tests, given that spirometry is basically insensitive to mild or moderate cases. The
ratio of forced expiratory flow at 50% of vital capacity versus forced inspiratory
flow at the same level has been used as a characteristic index in chronic obstruction
of the upper airways, although its confidence has been questioned. The flow-volume
plot is useless for obstructions below 8 mm, and fails in obstruction detection even
in the presence of clear radiological evidence.5!

The clinical signs of tracheal stenosis (like strident respiratory sounds and short-
ness of breathing) can hide the etiology of the condition. Chronic bronchitis and
asthma have signs that appear within the stenotic signs. Symptom-free, resting
cases of mild or moderate stenosis are hard to identify, and will be approached
in most cases as if they were diffuse pulmonary illnesses or chronic bronchitis. In
these cases, bronchoscopy and computed tomography imaging are useful diagnostic
procedures. In cases of surgical therapy, the technique must be adjusted to the local-
ization and extension of the lesion.??:! Acoustic analysis of stridency and acoustic
rhinometry'! have also been used in an attempt to measure airway volumes and to
locate an obstruction and estimate its extent. Such a procedure has been proven
sensitive and useful along the respiratory cycle, while being non-invasive and of fast
realization; however, in the evaluation of severe stenosis, a 20% over-estimation of
the stenotic area has been observed.5!

1.3. Image-based airway exploration techniques

The use of lateral neck radiographs has been proved useful in the detection of
upper tracheal deformities, but intrathoracic stenosis cannot be observed in this
modality. Antero-posterior neck exposures during the emission of the “i” sound
usually deliver an excellent detail of the trachea up to the carina. However, only 60%
of the tracheal stenoses are detected through conventional X-ray imaging. These
images suffer from structural superposition (occlusion), rendering 3D analysis of
the airway tree difficult to achieve. Linear tomography might be useful to estimate
the extension of the lesion although its spatial resolution is poor. These problems
are overcome with computed tomography.*?

X-ray tomographic images allow the detailed visualization of the contrast
between the interior of the airways and the bronchial or tracheal wall, along with
the rest of the surrounding airway tissue. Because of this, it is possible to esti-
mate, with significant precision, not only the geometry of the pipe section, but
the thickness and integrity of the walls and how this condition influences the gas
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exchange process. Additionally, if this imaging technique is combined with dynamic
breathing maneuvers such as Miiller and Valsalva, the respiratory compromise
under maximal efforts can be evaluated. The X-ray tomographic techniques most
frequently used in obstruction assessment include high-resolution, helicoidal and
micro-tomography. 13:15,18,21,24,32,38,39,44,48,54,64,65

In a clinical report, LoCicero et al. show the results, on eleven patients, of a
multi-planar study with helicoidal tomography and the associated 3D reconstruc-
tion. They describe the usefulness of the technique and state that different view-
points of the tracheobronchial tree can be delivered.?! Mogavero et al. conclude on
the excellent anatomical definition quality obtained form such as 3D reconstruction,
when observing two cases of central airway pathologies, a tumor in the carina and
a post-surgical bronchial stenosis. Their procedure facilitated the confirmation of
previous diagnosis and the design of the therapeutic approach for the patients.?”
Similar findings have been reported by Sagy et al. for five cases of intrathoracic
airway obstruction in children, employing, once again, helicoidal tomography and
3D reconstruction of the airway.*”

Recently, magnetic resonance imaging has been applied to obtain mono- and
multi-spectral image stacks with contrast agents for the assessment of the airway
condition.!:2:29:36,63 Tp particular, this technique provides excellent information
from the surrounding mediastinum, but still remains second to X-ray tomography in
current clinical applications. Software systems have been introduced for interactive
X-ray tomography analysis for airway identification and measurement.'2:%6

In contrast with all the above, there is little doubt that the technique providing
the most diagnostic certainty for airway occlusion cases is direct bronchoscopy.
Nonetheless, it is stressed here that its invasive condition represents a major defect,
yielding a preference for image-based approaches.

2. Airway Segmentation Techniques

Image analysis is one of the most relevant applications of digital image processing.
Usually, the goal of the analysis is the decomposition of the observed scene in basic
information elements, well identified or classified, that would allow the construction
of assertions on the studied phenomenon. In the case of medical images, the partic-
ular objective is to provide the medical specialist with information support for diag-
nosis or prognosis of a given disease. Respiratory illnesses as those discussed herein
are no exception: bronchitis, emphysema, presence of foreign objects, stenosis, sleep
apnea and asthma have been studied using image processing techniques.2!>44:48,59

Several methods have been designed and developed with the intention of pro-
ducing a realistic representation of the airway tree for diverse applications. Some
of them follow an automatic or semi-automatic approach for the final tree recon-
struction, based solely in the raw image information; in other cases, processed infor-
mation from the images has been combined with the use of mathematical models
that allow the refinement of the anatomical reconstruction of the airway structure
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and the formulation of functional physiological models of air conduction through
the system.'® For instance, Summers and Cebral show that virtual bronchoscopy
provides useful data to perform aerodynamic calculations in anatomical models.??

A frequent application in the field of respiratory imaging is virtual airway nav-
igation, such as virtual bronchoscopy,2®:°3
assist the specialist with non-invasive diagnosis, or in the training of future special-
ists in the operation and interpretation of the bronchoscope and its images. Along
this line, research efforts are focused both to the achievement of a more realistic

which is more and more required to

3D representation and to the definition of soft navigation trajectories, related to
the construction of the tracheobronchial tree axis.?¢:4? Kiraly and Higgins present
a robust method to compute the central axes of a branching tubular structure,
which is based on a detailed multi-stage refinement of a computed skeleton of a
pre-segmented 3D image. Geometric properties of an assumed tubular model are
used in the refinement.?6 Higgins et al. propose the registration of real images
from a bronchoscope with those obtained from virtual bronchoscopy, for an aug-
mented reality scenario that would be useful in providing views of hardly observed
perspectives.2! Three-dimensional reconstruction of the airway tree is also useful
in the morphological analysis of a particular obstruction at the time of diagnosis.
Moreover, the possibility of a time-course evaluation of the progress of the lesion
in a specific subject, or the comparison of measures among a population, provides
the medical community with better elements for the research in respiratory disease
and population analysis.*2:%? In the specific case of tracheal stenosis, lesion charac-
terization is as relevant as its 3D representation. The construction of longitudinal
profiles of the airway transverse area leads to the elaboration of airflow models, as
has been applied in the evaluation of the obstructive sleep apnea syndrome.%?

For the development of the aforementioned applications, image segmentation
is a fundamental component. Image segmentation refers to the algorithmic pro-
cedure through which an image under study is divided in disjoint regions that
uniquely respond to a pre-established criterion, measure or property. If such a mea-
sure of aggregation is selected without the intervention of an expert or operator,
the segmentation approach is considered automatic; if any of the parameters of
the process requires the specialist’s experience to be defined, the segmentation is
carried out in a semi-automatic or supervised way.”29:46 The airway tree can be
extracted from computed tomography images using manual identification; however
interactive analysis is difficult due to time requirements and so, development of
automated approaches is necessary to achieve clinical utility of quantitative airway
studies.*> In some cases, manual segmentation by experts has been performed,
only with the purpose of validating semi-automatic or automatic segmentation
algorithms.313,59,65

Segmentation methods, in general, can be classified into two major groups:
region-based or edge-based. While the former has been heavily used in airway
imaging applications, edge-based methods are feasible and convenient in specific
cases such as tracheal segmentation. The following paragraphs briefly review both
perspectives.



Techniques for Tracheal Segmentation 85

2.1. Region-based segmentation

This segmentation approach basically consists of the search of homogeneous char-
acteristics of neighboring image pixels, so that meaningful aggregations can be
constructed. The property used for differentiating one image region from another
directly determines the specific properties of the segmentation; typical property
choices are statistical, intensity-based, textural, etc.20:46

Region segmentation applications to thoracic computed tomography (CT) for
airway detection have been carried out through gray level thresholding, as described
in reports by Sagy et al.*” and Mogavero et al.3” Both present clinical cases eval-
uated with helicoidal CT aimed to 3D airway reconstruction. Segmentation of the
regions of interest is performed with the adjustment of a user-selectable threshold
over the gray levels, combined with a connectivity criterion. Niethammer et al.%°
introduced a system for the segmentation of pulmonary parenchyma based also on
a thresholding criterion, established for lung contour definition and parenchymal
vessel removal. In their study, the segmented images are superimposed with a perfu-
sion image for combined analysis. Throughout the more recent reports on CT-based
airway segmentation,®28:43:53:62 a1 intensive use of automatic, 3D region-growing
techniques for region-based segmentation is clearly observed.

Park et al.*3 propose a fuzzy logic approach for individual pixel labeling on
preprocessed individual CT slices. Primary paths, either corresponding to airways
or vessels, are first segmented from individual CT slices by performing intensity-
based region-growing and top-hat filtering. Candidate pixels are then classified, as
forming or not part of an airway, with the evaluation of fuzzy features such as
spatial adjacency, degree of presence of a nearby wall around the path and local
gray level intensity. Finally, the airway tree is constructed from the binarized stack
through shape interpolation along the z-axis. On a related paper, Liu et al. use
the fuzzy connectedness technique to segment upper airways and their surrounding
tissues from magnetic resonance image stacks.?’

Summers et al.>®%® describe a segmentation process for helicoidal CT in the
context of virtual bronchoscopy, based on a 3D region-growing scheme with fixed
threshold and an additional criterion of distance to the region seed; this last con-
sideration allows their method to avoid the wrong segmentation of parenchymal
voxels located around the bronchial ramification zones. In their clinical evaluation
over fourteen subjects, a comparison of airway diameter measures, both from the
virtual model and from direct measurement on the CT images, showed an average
difference of around 0.5 mm. In the paper by Wood et al.,5? the determination of
the central axis of the airway is performed by iterative region-growing, where the
distance to the seed is also utilized: the centroid of the voxels that have the same
distance to the region seed is computed as an estimate of the central axis loca-
tion at different scales. Linear adjustment of estimated centroid locations is then
used to refine the position. After obtaining the complete model of the bronchial
tree, the authors could perform diverse measures of branch length, ramification
angle and pipe diameters; estimation errors in the order of 2 mm or 5°, respectively
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were obtained. It is suggested that the vascular tree could also be segmented, by
adequately adjusting the region-growing algorithm parameters.

Chiplunkar et al.® also describe an adaptive variation of the 3D region-growing
scheme. As the individual selection of a region seed for each bidimensional slice had
proven effective for better segmentation, their method was aimed at the substitution
of manual seed selection by an adaptive approach. The growth threshold is adjusted
after consideration of local image information and the knowledge of gray level rela-
tionships among voxels located at the airway wall, the pulmonary parenchyma, and
air zones. Further, information from previous slices is considered for the segmenta-
tion of a new slice along the stack, by computing an initial threshold estimate from
local gray level information around the estimated tracheal centroid. Seed localiza-
tion at every slice is also obtained adaptively from previous estimates along the
stack. This segmentation method was tested on high-resolution CT images, and
validated against the manual selection of seeds and growth thresholds. Results
showed that the automatic segmentation procedure generally underestimated the
cross-section area with respect to the expert’s estimate, while the centroid local-
ization error, down to the fourth generation of branches, was established at around
0.75 mm.

Two powerful reasons for the extended adoption of the region-growing segmen-
tation approach are its algorithmic simplicity and its yield of continuous airway
borders for area profile evaluations. However, two underlying problematic issues
could also be mentioned. First, the methods remain sensitive to image noise or
structural detail that may induce the loss of pixel/voxel contiguity. Second, most
implementations consume significant amounts of computational resources, which
eventually becomes a practical limitation for clinical usage. Such inefficiency has
been reported in a comparison between the region-growing technique and an edge
detection approach using a derivative of Gaussian filter in thoracic CT.%! The results
from both methods were compared against an expert’s selection of airway borders
and no statistically significant differences were observed.

2.2. FEdge-based segmentation

Segmentation through edge detection has the purpose of defining the boundaries
among different anatomical structures. Various edge segmentation procedures are
based on the convolution of the original image with a local kernel with specific
properties. Popular kernel choices are those based on the magnitude of the gradient
operator (Sobel, Prewitt, Roberts), or those using a Laplacian or derivative of

1.6:35 Other methods further incorporate a priori information from

Gaussian kerne
image models to enhance edge localization.

One particularity of the filtering approaches to edge segmentation is that the
contours produced as output are not necessarily continuous, a condition that is
highly desirable when estimating the cross sectional area profiles for tracheal

obstruction evaluation. As an alternative, the method of edge segmentation through
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active contours (snakes) generates a continuous edge, out of diverse image charac-
teristics that are combined with a pre-established dynamical model.?

2.3. Hybrid methods

Another perspective in airway characterization, that combines techniques as
those previously described with the analysis of gray level profiles along a spe-
cific image line (halfmax) in high-resolution CT images has been introduced by
Reinhardt, Hoffman, and Sonka.?2:4%:50 Precise intra-thoracic airway measurements
are achieved by modeling the scanner response and, with the aid of a reference air-
way model with circular cross sections, iteratively optimizing the estimates of the
real airway geometry. With this approach, the authors have established that the
scanner spread function has a biasing effect over the geometric estimates in airways
with small cross section. The halfmax approach assumes that the image plane is per-
pendicular to the central axis of the airway, a condition that is not always satisfied.
Segmentation of the major airways is carried out by region-growing, and extended
with a rule-based scheme for the secondary tree. For the latter, a pixel-based feature
vector is defined, including gray level, distance to the airway wall, and an adjacency
measure. Regions are labeled as airway or non-airway by thresholding the confidence
values of a fuzzy classifier. The 3D airway tree is finally constructed by the union
of all the airway-labeled regions that are connected within a 3D neighborhood of
the primary tree voxels. Refinements to the approach, presented by Chabat et al.,”
extend the reference airway model to elliptical sections, which improves the geo-
metric descriptions and supports a strategy for automated bronchi detection.
Aykcac et al?® have introduced a full-tree segmentation procedure based on
morphological operations aimed at identifying candidate airway structures, that
are later combined with transitive closures over an adjacency graph. Pretreux et al.
provide another mathematical morphology approach for the estimation of bronchial
caliber in high-resolution CT,** while Fan et al. take a topological-morphological
strategy for tree reconstruction.!'* A constructive model perspective is suggested by
Brown et al.**> incorporating a priori knowledge of the anatomical structures of
the airway tree. Analyzed portions of a thoracic CT image (described in terms of
gray level, volume, shape, and location) are confronted with model primitives using
an inference machine based on a semantic network. Ad hoc image preprocessing
is used for feature extraction, a condition which heavily impacts the efficiency of
the semantic segmentation. Alternatively, Law et al. take advantage of a genetic
algorithm for optimizing a region growing segmenter.?” Finally, Sorantin et al.!
present an assessment of tracheal stenosis in 3D images, where segmentation of the
laryngo-tracheal tract is carried out using fuzzy connectedness and a 3D dilation
using a small 3D structuring element, with further manual refinement of the tract
contour, if required. The 3D morphological skeleton of the tract is obtained through
topology-preserving thinning, and used as a reference to compute a cross-sectional
area profile along its extension. A comparison between the localization of stenosis
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with the proposed method versus the diagnosis with direct endoscopy indicated a
match in 92% of the studied cases.

3. Trachea Segmentation with Active Models

Even though most of the reports on airway segmentation utilize the region-based
paradigm, the problem of automatic tracheal segmentation from CT images can
be approached with a continuous edge detection perspective, taking advantage of
the high contrast that exists between the interior of the airway and its surrounding
tissue. For example, Swift et al. utilize the active contour method to determine
the airway boundary for central axis estimation, a piece of information that is
necessary for the definition of navigation trajectories in virtual endoscopy. These
authors report favorable results from their methodology, when applied in normal
and stenotic cases, stressing the speed and efficiency of their approach in contrast
to other methods such as halfmax.7%8

The following section introduces a tracheal segmentation method, constructed
over active contour or surface models based on a cubic splines interpolation. Such a
model conveys an analytical description for the entire extent of the contour or sur-
face, imposing smoothness and continuity characteristics on the adjusted solution.
3D rendering of the segmented airway path from neck and thorax CT scans using
the proposed method is validated in regard to its possible use as a diagnostic tool
for the characterization of tracheal stenosis. The details related to the validation of
the method are presented elsewhere.5?

3.1. Active contour model for trachea segmentation

In the original active contour model of Kass et al.,? the discrete formulation of the
energy functional is given by the sum of internal and external energy terms for the
N contour segments as

N

:nake = Z (Eint (Z) + Eext (Z))
i=1
In agreement with this model, it is shown in the following that an analytical

formulation based on natural cubic splines interpolation is possible, and that a
closed-form expression for the internal energy term can thus be derived, avoiding
the classical use of finite difference approximations. The active contour or snake
energy term is:

Esnake( ) - Eint( )+ Eext( )
N

Zm MWosi ()| + D" Bi(s)|vhi(s)] (1)

Foalt) = G 10
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where
v discrete contour represented by a set of control points
N number of control points
vgi(8) contour segment between the ith and (i + 1)th

control points, parametrized on s
a(s), B(s) weights of internal energy term

G bidimensional derivative of Gaussian with fixed
parameters 4 and X

I(v) image intensity values evaluated on the contour v

y weight of external component of energy

* bidimensional convolution operator.

Every segment vg;(s) can be interpolated with cubic splines, over a subset
{Vin=1,- .., Vinta} of control points as:

-1 3 =3 1 V-1
1 3 -6 3 0 Vi
Vem(s) = =[s* s* s 1] x X (2)
6 2 3 6 -1 Vit
o 6 0 0 Vin42
or equivalently,
1
vsm(s)ZESxMxvm. (3)

From Eq. (3), the first and second derivatives of the contour with respect to
parameter s can be computed as:

1

Ve (8) = 6[382 25 1 0] x M x vy,
1

vgm(s)=6[65200] X M X v, .

Using Eq. (4) in (1), it follows that

Bunata(v) — z (

2
3522s1o}xwa

+ Bi(s) é[65200] x M x v;

) =G+ Il (5)

The derivative of Egpqke (5) with respect to a point Vj, on the contour, evaluated
at the start of every segment (s = 0), is:
8Esnake 8]-;Jint (U) 8Elext (U) 8]-;Jint (U)

= = —~F
VL v, T on o, F@
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where (subscripts for a and 8 omitted for simplicity):

8Eint(v) 1 1 1
—— = —V._3(2 —Vi_2(—9 36 —Vi_1(—18a — 144
v, 3Vk 3( 04)+3Vk 2(—9a + ﬁ)+3 —1(—18a B)

1 1
+ ng (50a + 216ﬂ) + ngJrl(—].SOé — 1445)

+3Vira(~90 -+ 360) + Viss(20) ()
and F(v) represents the derivative of the external energy component (|G * I(v)]),
which is the derivative of the image gradient magnitude calculated with a Canny
filter with fixed parameters p and 3.6

If the internal energy parameters o and 3 in Eq. (6) are held constant, it is
possible to calculate a matrix A that includes the simultaneous adjustment of the
whole control point set. The expression for the gradient of the objective function
(5) would then be:

VEsnake = AQ - ’7F (7)

where v is a vector containing the set of control points, F' is the vector of the
external force evaluated in v, and the A matrix format is:

50a + 2168 —18a — 1443 —9a + 3603 20 0
N —18a — 1448 50+ 2163 —18a — 1443 —9a+368 2a 0
—18a— 1448  —9a + 3683 201 0 0
0 2 —9a +368 —18a — 14473

0 20 —9a + 363
. (8)

20 —9a+ 368 —18a — 1448 50« + 2160

Given that (8) is a singular matrix,” the minimization procedure for (5) has to
be implemented as an iterative search for the optimal contour. With this purpose,
a normalized gradient descent optimization is used. The final expression for the
iterative procedure is:

(_VEsnake)
||VEsnake H
Al —yF?)
M TA® —AF(u@)]

y(t"l‘l) e y(t) + /’L

oD = (0

where p represents the gradient descent step.
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In summary, the trachea segmentation procedure for CT scans described imple-
ments the following algorithm:

Perform contour initialization (see section 3.3 below)
While contour variation is greater than a given tolerance level
Perform contour interpolation based on cubic splines and
resample to select N new control points
With the new set of control points, evaluate (7)
Perform an iteration step, evaluating (9)
Calculate the contour variation from previous iteration
Perform a final contour interpolation

3.2. Extension to active surfaces

A general formulation for surface interpolation using a natural cubic splines basis,
can be expressed in the following way:

2 2
Vij(s;7) = > Y Pyt Bi(s,7) (10)
m=—1[=—1

where Py, j4i is a control point and B, (s,r) is a bi-dimensional spline basis
function.

Expression (10) indicates that patch interpolation requires a 4 x 4 mesh of
control points, as shown in Fig. 2.

The bi-dimensional basis functions are built through the tensorial product of
the corresponding one-dimensional basis function, that is

Bi(s,1) = b (s)by(r) .

The one-dimensional interpolation (3) was described as a matrix product
between the parametric vector (s), the coefficients matrix (M) and an array of four
neighboring control points v,,, incorporating the cubic splines basis. For the surface
model (10), the bidimensional basis functions are built through the tensorial prod-
uct of the corresponding one-dimensional basis functions as By, (s,7) = by, ($)bi(r).
Thus, it is possible to implement the cubic splines interpolation procedure as a vari-
ation of a Kronecker product of the vectors described in (3). Let v;(s) and v;(r) be
the analytical forms of the interpolation of the segments ¢ and j in a corresponding
contour, then:

vi(s) = [s% 5% s 1] x M x " =sxMxP;

vi(r) = [ r? r 1] x M x =rxMxP;
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Vij patch to interpolate

Pi+2J+2

Fig. 2. Control points for active surface interpolation.

evaluating the Kronecker product between v;(s) and v;(r), we have:

vi(8)T @v;(r) = [s x M x P;]T @ [r x M x Py]
= [PI x (s xM)"] @ [r x M x P]

= [P xM" xs"] @ [r x M x P,]. (12)

Then, the final expression for the surface interpolation is:

2 2
Vol = 32 3 PrmssaBon(s)

m=—1l=—1

[MT X [ST ® I‘] X M]rmu X [Pij]column (13)

= [M"SrM]you X [Pijlcotumn
-1 3 =2 0 33 32 s 83
1 3 -6 -3 6
61-3 3 6 0 sr3  sr? sros
1 0 -1 0 :
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61-2 -3 6 -1
0 0 6 011, .0
P11 P1j P11 Pioijye
y P P ; P P jt2
Pit15-1 Piq1j P41 Pigjee
Pitaj-1 Piyaj Pipog1 Piv2ge2 ]| pmn
where:
Vij(s,r) patch to interpolate
M interpolation coefficients matrix
Sr parametric matrix (s,r), which is twice differentiable
with respect to the parameters
P;; matrix of neighboring control points.
The general equation of the active surface energy is:
E(v) = Eint(v) + Eext(v)
Vi |I? Vi ||? OVij
1nt Zwu,lo 3 7" 8” +wij,01 (377') ‘ 8;‘] + wij,ll(svr) 87"8”8
8‘/7;j Vi
+wij20(s,7) ’ D52 + wij02(8,7) a2
Eext(v) = =7 |G+ 1(v) (14)

where G represents a 3D derivative of Gaussian kernel with fixed parameters p and

>, and * is the 3D convolution operator.

Every surface V;;(s,r) can be described analytically using expression (13), and
its derivatives can be calculated from the derivatives of the parametric matrix Sr

as follows:

v, |I? oS
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2
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As in the 2D case, it is necessary to find the surface that nulls the first deriva-

tive of the energy term. Proceeding as in Eq. (7), the resulting expression for the
gradient is:

] X [Pij]column
Tow

VE(P;) = ArouwP, VE(P;) (15)

ij column
where A is the internal energy matrix containing the w;; parameters of the model,
F (P“ ) is the external energy evaluated at the augmented matrix of control points,
P{;, corresponding to:
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Proceeding as in the 2D case, the energy optimization method is a normal-

ized gradient descent, although now modified with a momentum term to stabilize

convergence. The iterative equation for the surface upgrading is:

A, o,P¢ vF(ng)

||A‘7'OU)

,U(tJrl) _ U(t) _ J column

+n Apt (16)
j column -7 ( U) ||
where Ay(t)] is a momentum term, representing the difference between the calcu-
lated surfaces in iterations ¢t — 1 and ¢ and 7 is the corresponding term weight.

3.3. Model initialization
3.3.1. Active contours

It is well known that the gradient descent method is highly sensitive to the initial
conditions. To provide the procedure with an adequate starting point, the initial
set of control points is obtained from the outcome of a Canny edge detection filter®
with kernel size of 3 x 3 pixels and parameters y = 0 and 02 = 1. Given that this
operator is the same one utilized for the estimation of the external energy term for
the snake, we assume that an initial contour obtained in this way will be close to
the desired image border.

Not all the pixels from the detected edge are used for the initial contour, because
the initialization would remain sensitive to detection noise. In order to avoid this
problem, a thresholding criteria, relative to the maximum intensity of pixels over
the detected edge, is first applied to extract initialization candidates. Then all



Techniques for Tracheal Segmentation 95

Otiginal Image Borders Map .
Canrmy Op -“H"‘-.D |r |
 ——— i 3= ) i .y
' = 5
N

Threshalding
Caordinates fransformation

) €1
.ff. ll. rezampling

Intial Set of
Control Points

\? J- T Tr -4 3

[nitial Set
Candidates

Fig. 3. Initial contour definition procedure.

candidates are subject to a spatial distribution test, that finally selects the N control

points. For the trachea segmentation application, given the closely circular nature of

the contours, the spatial distribution test consists of a rectangular-polar coordinate

transformation, an angular sort relative to the center of mass of the candidate set,

and equally-distributed angular sub-sampling. The procedure is shown in Fig. 3.
The proposed segmentation method is based on the following hypothesis:

(1) @ and g8 in Eq. (1) remain constant; and
(2) the control points are regularly spaced.

In order to ensure the second assumption, it is necessary to interpolate the set
of control points to M locations (M > N) and then perform re-sampling to build
a new uniformly spaced set at every iteration.

3.3.2. Active surfaces

For the 3D case, the initial volume is formed from the CT image stack, and cor-
respondingly, a 3D Canny convolution kernel is employed (u = 0, 3 = 021 = 3I)
with kernel size of 5 x 5 x 3 voxels. The difference in length for the third coordinate
is due to the anisotropy of voxels, that is, the difference of spatial resolution in the
(x,y) plane versus the z dimension. The volume is convolved with the 3D Canny
kernel and the detected borders are processed slice by slice in the same way as in
the 2D case described before. Because the control point set has to be organized
into a 3D mesh defining the active surface, all the resulting 2D discrete contours
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are spatially matched to minimize the distance between pairs of control points in
adjacent slices, in order to define four-sided square facetes with minimum torsion.

3.4. Performance evaluation

Convergence of active contour models to the desired image border is dependent
on various factors such as the set of initial control points, the noise level and the
optimization strategy selected, which in the case described consists of a normal-
ized gradient descent algorithm to perform the energy minimization iterations.
This standard procedure is guaranteed to linearly converge to a local minimum
of the objective function, given that an adequate step constant is provided.'® As
the proposed initialization procedure sets the starting contour close to the border
of interest, it is expected that the solution will converge to it, under controlled noise
conditions. This is also true for the reference method by Kass et al.,2? however, as
the interpolation model imposes smoothness and continuity restrictions to the con-
tour, the approach is capable of recovering from eventual spurious control points,
as shown in Fig. 4. For the case shown in this figure, the initialization procedure
sets some of the initial control points at the lung wall boundary, and the solution
by Kass et al. converges to the wrong contour, while the proposed approach attains
the correct result, even for different step constants. Nonetheless, as is the case for
the other active contour models available, severe noise conditions degrade the qual-
ity and correctness of the boundary estimates. Linear convergence of the proposed
procedure is evident from the results as expected. Moreover, the reference method
converges faster, although to a worse solution under the same conditions.

Figure 5 shows the original images and the 3D rendering of the segmented
trachea from one CT stack, along with the tracheal perimeter, equivalent circular
cross-section area, and tracheal axis profiles, derived from the adjusted model infor-
mation. Figure 6 presents the corresponding information for a different case. The
severity of the lesion for this case is evident, as well as its localization and extension
along the tracheal structure.

4. Conclusions

An alternative formulation for active contour and surface models has been pre-
sented. It is based on the inclusion of explicit analytical expressions for the contour
or surface derivatives in the internal energy description associated to the active
model. These expressions are constructed from an interpolation of the desired con-
tour using natural cubic splines. Further, the application of such formulation to the
problem of trachea segmentation in neck-thorax CT studies has been discussed, in
the spirit of recovering quantitative information for the diagnostic description of
tracheal stenosis.

The proposed procedure improves over the reference methods (Kass et al.,?3
Cohen et al.'?) in the sense that it generates a geometrically better estimate, with
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(a)

()

Fig. 4. Convergence analysis. (a) Initial contour. (b) Final contour by Kass et al. procedure.
(c) Final contour by Valdés et al. procedure. (d) Mean Contour Difference (MCD) along iterations
for (b). (e) MCD along iterations for (c).
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Fig. 4. (Continued)

good localization. Another relevant aspect of the proposed model is that in general
it shows a tendency to smooth the contour or surface estimates. As long as the
density of control points around a particular image region is large, the smoothing
effect is minimized for the estimate in that zone. However, the larger the set of
control points, the higher the computational cost of the adaptation procedure,
which could yield the method impractical. Unfortunately it is hard to determine an
optimal density of control points for an irregular surface, that is, one that contains
intermixed portions of low and high curvature. A basic assumption of the reference
active contour models and the one presented here is that the control points are
equally spaced. This condition has to be relaxed in order to locally adjust the density
of control points with some guided procedure that takes into account the geometry
of the regions being analyzed. Work in this sense has recently been developed by
Lobregt et al.,?0 Marin et al.* or Valdés et al.%°

An issue always present in the active model applications is the definition of
the initial model. For the present method, the initialization is carried out by sam-
pling an edge enhanced version of the scan image that is obtained from filtering
with a Canny detector. This sampling, together with a radial sorting procedure
worked adequately for cases in which the contours are geometrically regular and
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convex (such as the trachea in axial CT scans), even in situations of severe steno-
sis. However, if the model is applied to another structure, most surely a different
initialization procedure would have to be designed.

Given the adequate localization properties of the Canny detector, the contour is
initialized close to the borders of interest, and therefore close to the minimum of the
objective function. Further, the analytical derivatives of this function are also avail-
able through the model for direct numerical evaluation. These conditions relax the
requirements for the optimization procedure, and therefore a simple approach like
the gradient descent taken here is justified, not ignoring that a more efficient proce-
dure might be devised. There is a tradeoff between linear (slower) convergence and
the quality of the resulting contour estimate: the reference procedure?® converges
faster, but the interpolation-based model provides systematically better contours.
The expected clinical usefulness of the procedure pushes this tradeoff towards the
use of the proposed model.

Regarding the clinical application of the proposed segmentation method, the
results yield a 3D mesh model of the trachea that is adequate for rendering and
manipulating in a visualization system. From the model, cross-sectional area and
perimeter profiles can be constructed in order to provide quantitative information
for the assessment of the lesions being investigated. Implied in these measurements
is the need for a calibration procedure based on a tomographic phantom.
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Accurate planning of radiation therapy entails the definition of treatment volumes and a
clear delimitation of normal tissue of which unnecessary exposure should be prevented.
The spinal cord is a radiosensitive organ, which should be precisely identified because
an overexposure to radiation may lead to undesired complications for the patient such
as neuronal dysfunction or paralysis. In this chapter, a knowledge-based approach to
identifying the spinal cord in computer tomography images of the thorax is presented.
The approach relies on a knowledge-base which consists of a so-called anatomical struc-
tures map (ASM) and a task-oriented architecture called the plan solver. The ASM
contains a frame-like knowledge representation of the macro-anatomy in the human tho-
rax. The plan solver is responsible for determining the position, orientation and size of
the structures of interest to radiation therapy. The plan solver relies on a number of
image processing operators. Some are so-called atomic (e.g. thresholding and snakes)
whereas others are composite. The whole system has been implemented on a standard
workstation. Experimental results performed on 23 patients show that the approach is
reliable in spinal cord segmentation.

Keywords: Spinal cord; image interpretation; knowledge representation; medical imag-
ing; radiotherapy.

1. Introduction

Radiotherapy is an important ingredient in the often complex treatment proce-
dures that are initiated in order to suppress different kinds of malignant tumors.
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The purpose of radiation therapy is to eradicate the tumor while minimizing the
damage caused to the surrounding healthy tissues. The spinal cord is an extremely
radiosensitive vital organ which should be spared as much as possible. A certain
amount of exposure to radiation can induce a number of undesired neurological
complications in the spinal cord (e.g. paralysis).”!7:2% The risk of such serious com-
plications implies much smaller dosage tolerances for the spinal cord than for the
tumor.

Successful radiotherapy relies on a precise planning and a thorough implemen-
tation of the radiation procedure. One of the problems of radiotherapy planning
addressed here, is that it requires that the different tissues of interest, including the
tumor and the surrounding (vital) organs, are to be located with high accuracy.
At present, radiation therapy is being planned by a radiologist and a radiothera-
pist in concert, based on a careful analysis of a Computed Tomography (CT) scan
that covers the tumor and the surrounding tissues. The current planning procedure
entails the manual delineation of the spinal cord in each separate slice followed
by an automatic reconstruction performed by the image analysis workstation that
is connected with the CT-scanning device. Despite the existence of several semi-

8,14 automatic

automatic approaches for the planning of repetitive radiotherapy,
detection of the spinal cord in CT images remains an unresolved problem. A factor
that complicates the analysis further is the occasional partial appearance of the
spine around the spinal canal (Fig. 1).

Tumors are heterogeneous lesions, which exhibit growth patterns that are unique
to each patient. As a consequence, the CT images cannot be acquired according to a
standardized protocol but are subject to much inter-patient variation, e.g. compared
with mammograms??

numbers in Europe and North America. This rather high amount of variation in our

or standard thorax radiographs®* that are acquired in large

image material impedes the application of a standard low-level image processing
technique. For an image processing algorithm to be successful in our application,
it should be flexible and also transparent to the radiologist and radiotherapist. A
flexible approach can better cope with a high amount of inter-patient variation.
Transparency of the image processing algorithms ensures that the experts can take
over the image analysis, in case the automatic approach fails to give the desired
result. To cope with the requirements of flexibility and transparency, we present
a knowledge-based approach to automatic image analysis. The basic components
of our system are the so-called Anatomical Structures Map (ASM)? and the Plan
Solver, a task-oriented module that controls the sequence in which the subtasks
are performed. The ASM and the Plan Solver are designed such that they capture
parts of the anatomical and procedural knowledge that is currently being used for
manual image interpretation.

The chapter is structured as follows. First, existing approaches to knowledge-
based image interpretation are discussed. Then, we consider different archetypes
of knowledge that are presently used to solve the spinal cord detection problem.
Subsequently, we give a detailed description of the knowledge-based architecture
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(b)

Fig. 1. The two types of slices: (a) spinal canal completely surrounded by bone, (b) spinal canal
partially surrounded by bone.

consisting of the anatomical structures map and the plan solver. Following this
description, the low-level (atomic) image operators are described in detail. In the
experimental section, we report the results obtained by applying our approach to
the CT images obtained from 23 patients before they underwent radiation therapy.
The chapter ends with a discussion of the results and issues for future research.

2. Knowledge Guided Image Processing
2.1. Image acquisition and interpretation

In clinical routine, the radiotherapist performs a request containing the questions
which should be resolved by the radiological examination (e.g. Where is the tumor
located? How far is it from the spine? Are there other healthy tissues that will be
exposed to radiation?).
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The image acquisition is performed according to a standard protocol, which
contains general guidelines of how CT images should be obtained for the planning
of radiotherapy. The details of an acquisition are chosen such that the tumor of
the particular patient is visualized in the best possible way. In general, a number
of aspects should be taken into account in order to acquire CT images in such a
way that the relevant findings can be established. Wegener3® points out that there
is a strong relationship between what region, organ or lesion is examined and how
the image should be acquired, including imaging parameters (slice thickness, slice
interval, scanning time), and contrast administration (presence/type of contrast
agent, injection speed, concentration).

After CT images have been acquired, the interpretation is performed by a radiol-
ogist and a radiotherapist in concert. The image assessment relies on both morpho-
logical and densitometric findings. Grimnes mentions a number of general aspects
that influence the interpretation of CT images:'6

e the typical size and shape of the objects (organs);

e the variation in size and shape of the objects;

e the expected Hounsfield Unit (HU) value range associated with each tissue;
e the variation in the HU value range associated with each tissue;

e typical response of an organ to the contrast tracer that is used;

e organs and blood may change their expected HU range in light of disease;
e biological variation;

[ ]

and social context.

The radiological analysis results in a synthesis of the clinical data by relevant
findings that were present in the CT images, while taking the above mentioned
aspects into account. The ultimate goal of any computer system for image inter-
pretation should be to produce such an image synthesis, either automatically or in
an interactive manner, e.g. through a dialogue with the radiologist.

2.2. Existing approaches to knowledge-based image interpretation

The literature on computer-based image interpretation describes a large number
of architectures, systems and approaches. Among the conventional approaches for
image interpretation, some focus on architectural aspects of the scene (the spa-
tial configuration composed by the objects that are present);3> in other approaches
an extensive knowledge base and an advanced reasoning strategy form the major
components.?”-31:38 Probabilistic systems were also developed for knowledge-guided
image interpretation.2?:22:33 Several blackboard and other knowledge-based sys-
tems were developed specifically for the interpretation of medical images: The
ERNEST system has been developed for the interpretation of scintigraphic images
and MR images.??> The system VIA-RAD?? applies four diagnostic strategies,
obtained from the radiological domain, to perform image interpretation. Brown
et al.? present a knowledge-based system for lung detection in CT images. A system
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for object recognition in CT images of the brain is presented in Ref. 26. An
architecture has been developed for the interpretation of abdominal CT images.'?
A task-based architecture to the interpretation of MR images of the brain is intro-
duced by Gong et al.'®

In computer-based systems for the interpretation of medical images, one or more
of the following archetypes of knowledge may be modeled:'!

e structural knowledge, which can contain information about the physical world
(human anatomy, e.g. normal structures such as lungs, spinal canal, lamina, spinal
cord, body contour, etc.);

e dynamic knowledge, which can contain information about possible normal and
abnormal processes (human physiology and pathology);

e procedural knowledge, which divides a request (e.g. image synthesis) into a
sequence of subtasks that can be performed by specific image processing
algorithms.

In some applications, a satisfactory image synthesis can be obtained from solely
one type of knowledge. For example, in perfusion analysis of bone tumors dynamic
knowledge is sufficient for making a distinction between viable tumor and necrosis.'?
In other applications, all three types of knowledge may be a prerequisite for a suc-
cessful image synthesis. Spinal cord detection and subsequent planning of radio-
therapy rely primarily on structural knowledge components: where is the tumor
located, the spine, etc. and on the procedural knowledge that is needed to describe
how the CT images should be analyzed.!2?

2.3. Knowledge representation in medical image analysis

We will present an approach for semi-automatic image interpretation that uses
a knowledge base to link different low-level image processing algorithms. For a
solution of the problem addressed — spinal cord detection — a combination of
structural and procedural knowledge suffice, because the pathologic growth process
of the tumor does not have to be taken into account. This demarcation implies
that our knowledge base should contain medical knowledge about organs and pos-
sible pathologic structures, i.e. components of the tumor. The knowledge-base is
used to guide the image interpretation but also to specify the parameters of these
algorithms. The model presented is inspired by frame'® systems. Each anatomical
structure is represented as a prototype, and its properties as slots as explained in
greater detail later.

2.3.1. Structural knowledge

The core of our system is the so-called anatomical structures map (Fig. 2). (ASM),
which was presented earlier in Ref. 3. A set of properties (related to shape, position,
densitometric ranges) is used to characterize each of the normal structures, the
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Fig. 2. Relationships in the Anatomical Structures Map — Plan Solver. The ASM presents rela-
tionships between structures, and the Plan Solver describes segmentation methods and associated
parameters. The connections between structures and the corresponding segmentation methods are

also presented.

organs, bones and the vascular system, that are represented in the ASM. The spatial
arrangement of these objects is represented as a semantic network. A very simple
grammar was also introduced that makes it feasible to express the semantic relations
that pertain to our application, (see Table 1).

2.3.2. Procedural knowledge

The structural knowledge base is merged with a task oriented architecture, the
plan solver, which contains the procedural knowledge that is needed to perform
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Table 1.

Relation Description

isInside Objectl isInside Object2 < allmost all the pixels of Objectl
are included in Object2

isSurrounded Objectl isSurrounded Object2 < allmost all the pixels of
Object]l are included in Object2, and Objectl is the only object
which respects Objectl isInside Object2

isAtMedialAxis Objectl isAtMedialAzis Object2 < the center of Objectl is
approximately the same as the center of Object2

isNeighbor Objectl isNeighbor Object2 <> the Objectl has a common
border with Object2

isAtLeft Objectl isAtLeft Object2 <> allmost all the pixels of Objectl
are at the left border of Object2

isAtRight Objectl isAtRight Object2 < allmost all the pixels of Objectl

are at the right border of Object2

the image interpretation. The involved clinicians make use of so-called reference
objects (e.g. body or lungs as in Fig. 3) to direct their focus of attention. Although
the architecture of the plan solver was originally inspired by the approach followed
by the involved clinicians, the task-based structure also makes it possible to recog-
nize complex objects while benefiting from more simple (basic) object detections.
Algorithms developed for the recognition of complex objects use so-called reference
objects to set their initial configuration or constrain the final solution.

The task oriented architecture is responsible for running the plan solver, which
dispatches a task, e.g. detect spinal canal, into sub-tasks.'®> Which sub-task should
be dispatched, depends on so-called reference objects. Object, is reference object
for Object, if:

e there is a direct, spatial relation between Object, and Object, (e.g. isNeighbor,
1sInside).

e Object, has an segmentation algorithm that does not depend on Object,. Hence,
Object, can be detected without any knowledge of Object,.

When the plan-solver is called with the request Find Object,, it identifies the sub-
tasks that should be performed in order to fulfill the request, i.e. which objects
are reference objects to Object,. The list with reference objects found is the list
with the sub-tasks to be performed. The task-planner module relies on a global
positioning system (along the axes z,y, ), (Fig. 4) that maps each of the detected
organs to world coordinates.

3. Anatomical Structures Map

The anatomical structures map establishes a number of spatial relations between the
objects that are typically distinguished in the CT images used for the planning of
radiotherapy in our clinic (see Fig. 5). The architecture of the anatomical structures
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Fig. 3. Samples of reference objects.

map lends its inspiration from frame systems, a well-known concept in the artificial
intelligence literature. We choose to represent the anatomical information in 2D
slices. More specifically, the ASM represents spatial relations between the typical
objects (e.g. spine, lamina and tumor) as well as the general category of each
object: bone, air and tissues (see Fig. 2). We discern these particular categories
for the following reasons. Objects belonging to the first two categories have either
a very low or a very high HU level (e.g. the air compartment in a lung versus,
e.g. bones). For these two types of objects, a threshold-based technique is in most
cases sufficient for a reliable segmentation result. Tissues (e.g. organs), on the other
hand, cannot be identified by thresholding within a specific HU range. For objects
belonging to this third category, a reliable segmentation needs to be based on two
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Fig. 4. Contours detected for spinal cord detection. First Body contour is detected, than Lamina,
follow by Spinal Canal and finally Spinal Cord. Vertebra is added for clarity.

kinds of information: the localizations of the already detected reference objects and
the results of texture segmentation.

The main object represented is the body contour, which comprises all the other
organs. It has a so-called independent segmentation scheme as it is possible to detect
the body by a basic image processing algorithm, in this case by thresholding.

The structures that are more difficult to segment include the spine, the lamina,
the ribs and the spinal canal. The spine contains mainly bone so it has a very high
HU and thresholding is used to detect it. All the sub-parts of the spine consist of
mainly bone cortex so a threshold method is also used to detect these objects. The
spinal canal consists mainly of tissue but is completely surrounded by the spine,
i.e. Spinal Canal IsInside Spine. We use a region growing scheme to segment it,
mainly because the border of the spinal canal has a high contrast compared with
the surrounding bone (difference HU bone — tissue).

Finally, we represent the lung information, the ribs and any lung tumors.

4. Plan Solver

The ASM helps to partition a request (e.g. locate spine) into subtasks and further
into atomic image processing tasks that are performed by dedicated routines. This
hierarchical partitioning takes place in the plan solver module, which links the
spatial relations in the anatomical structures map (see Fig. 5) with the atomic image
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processing algorithms. The plan solver uses an inheritance scheme to determine the
appropriate segmentation approach for a particular object or tissue (see Fig. 2). An
object connected with another (basic) object by an isA relationship inherits the
segmentation method of that basic object.

We make a distinction between different types of atomic segmentation methods
that are used for object recognition in our application: the threshold-based methods
(for the bones in this case, but also for the lungs in the context of lung tumors
detection) and region-based methods (for the spinal canal in this case).

For the threshold-based methods, it is important to restrict the area to which
they are applied. This is accomplished by using so-called reference objects. Refer-
ence objects are specified by the following relations in the anatomical structures
map: isAtLeft, isAtRight, isInside and isSurrounded by a recursive top-down
search.

For region based approaches, the reference objects are found between the objects
with the relationship isNeighbor or isVertical Axis. When a certain sub request
Find Object, is dispatched, the plan solver tries to fulfill the request choosing the
appropriate segmentation methods. These are either specified directly (for certain
organs like the spinal canal, which is detected by region growing), or indirectly by
inheritance from the reference objects by the relationship isA. Depending on the
chosen segmentation method, the reference objects are found.

The functionality of the plan solver is illustrated by two example requests: Find
Lamina and Find Spinal Canal. The first object Lamina does not have its own dedi-
cated segmentation methods so Lamina is found by the inheritance structure based
on the link isA. Spine also does not have its own dedicated segmentation method.
Finally, Lamina isA Bone has a thresholding segmentation method attached. As
Lamina is connected by the link isA to bone via Spine, Lamina is segmented by
thresholding. The inference mechanism proceeds by looking for the objects linked
to Lamina by the relation isInside. The only object where Lamina is inside, is the
body (body contour), which this way becomes a reference object for Lamina. So
the task Find Lamina has as sub-tasks: Find Body Contour and thresholding, the
latter takes place only inside the Spine.

In the second example, Find Spinal Canal, a dedicated segmentation method is
specified: region-based segmentation. So we are looking for the objects which could
give us a starting point for the region growing algorithm. Thus, we are looking for
the objects connected with relationships isNeighbor, isAtVertical Axis, which
are Body Contour and Lamina. Body contour has its own segmentation scheme,
which is why it is the reference object for the Spinal Canal. The Lamina, as it is
presented earlier, has as reference object Body Contour, which does not involve the
Spinal Canal. So the Lamina is the second sub-task for the task Find Spinal Canal.
The general architecture is presented in Fig. 6.

The Algorithm 1 connects the image processing part with the knowledge-base,
using the task oriented architecture (presented in Fig. 6).
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Algorithm 1 DetectContourUsingASM

Require: the structure X to be found
Ensure: the contour of the structure X
1: Search X in the list with the anatomical structures represented in ASM
2: if X not found then
3:  exit with failure
4: else
5. if SegmentationType(X) = RegionBased then
6: RefObjList « Structures Connected by isNeighbor, isVertical Axis
7. else
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8: RefObjList <« Structures Connected by isAtLeft, isAtRight, isInside,
isSurrounded

9: end if

10: for VX, € RefObjList do

11: DetectContourUsingASM(Xj;)

12: end for

13:  Detect X using X; € RefObjList

14: return X

15: end if

5. The Use of Snakes

In cases where the general schema fails, because the spinal canal is not completely
surrounded by bone, the system uses a snake-based method.

Snakes were introduced in the literature by Kass,?! and formulated as an energy-
minimizing spline. Given the spline v(s) = (z(s), y(s)), he defined the energy func-
tion (where s is the pathlength normalized to [0,1]):

Etotal — A Eint(v(s)) + Eimage (U(S)) + Econ(v(s)) dS (1)

where Fj, represents the internal energy of the spline, composed of a first-order
term controlled by «(s), which makes the snake act like a membrane, and the
second-order term controlled by (3(s), making the snake to act like a thin plate.

B = (a(s)|vs(s)” + B(s)[vss (5)[*) /2. (2)
Eimage 1s given by:
Eimage - _|VI(:L'7 y)|2 (3)

so that the snake is attracted by the contours with large gradients.

Finally FE.,, defines to the external constraint forces given by the user. The
problem of initialization of the snake is solved by using the result obtained in the
previous slice. The curvature estimation plays an essential role.

To approximate the curvature, the finite difference are used. If v;(x;,y;) is a
point on the contour, the following approximations are used:

dvi
ds

2
~ v, — Ui—1|2 = (x; — ﬂfz‘—1)2 + (yi — yi—1)2

and
d2 (3
ds?

R~ |vim1 — 20; + U7:+1|2 = (zio1 — 22 +2i1)® + (i1 — 2y + yir1)?

In respect to these considerations, we choose a Greedy strategy as in Ref. 37.
The technique is shown in Algorithm 2. The input consists of the set of points
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which represent the contour to be modified. It improves the quality of the contour
using intensity properties of the image. For each point a new location is found in
a neighborhood (windows of size w). The new point location is the neighbor which
optimizes the energy function.

The algorithm stops when either a specified number of iterations is done, or when
the number of point positions changed is sufficiently small. After every iteration,
the 3 coefficients (which control the curvature term in the energy function) are
computed to detect the corners.

To find the optimum position for a point in its neighborhood Algorithm 3 is
used. In each surrounding point the energy function is approximated. The point
where the energy is minimal, is chosen as the new position for the ith point. A
number of initial parameters for the snakes needs to be specified, which will control
the behavior of the snake. These parameters are usually determined by practical
experiments.

Algorithm 2 Snake segmentation

Require: Image I, snakes parameters «,  window size w, contour v, nrPoints
Ensure: the contour v modified

1: G « ComputeGradient([)

2: Vi = 1,nrPoints f(i) « 1

3: finish «— false

4: while NOT finish do

5: for ¢ =1 to nrPoints do
6: ModifyPoint (i, newX, newY,q, 3, w)
T v(i) «— (newX, newY)
8: Evaluate/3()
9: end for
10: if ConditionsFinishOk() then
11: finish «— true
12: end if

13: end while
14: return v

Algorithm 3 Modify a point on the snake

Require: Image I, the image gradient G, point i to be modified, snakes
parameters «, (3, v, window size w, contour v, nrPoints
Ensure: newX and newY for the i*” point
1: maxEcont «— ComputeEcontMax (i, w)
2: mazx Eeyry — ComputeEcurvMax (i, w)
3: maxGradient — ComputeMaxGradient (i, w)
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: distance «— m Zj |[v; — vjtal]

:newX «— 0

:newY «— 0

s minBioiar — BIG.VALUE

: for V (k,1) € wXw do

Boou (i, 1) «— 1istence (01

10:  Eeyro(i, k,1) «— ComputeCurvature(vj, k, 1)
11: Ecurv(ika) — ETYLLZ;UiE(ZI?i)

12: Eimage(i,kJ) — _G(ivkvl)

13: Etotal —a- Econt(i, k7 l) + ﬂ(l) ' Ecurv (iv k? l) +v- Eimage (i’ k’ l)
14: if Etotal < minEtotal then

15: newX «— k

16: newY <« 1

© 0N D U

17: minEtotal — Etotal
18: end if
19: end for

20: return newX and newY

6. 3D Processing

Our approach is based on 2D processing of each slice from a CT scanner. It uses
local information found in the current slice, and /or information from adjacent slices.
The 3D structures are reconstructed from the series of contours obtained in the
sequence of slices. This method is similar to the one used now by radiotherapists and
radiologists. They detect the first slice where the anatomical structure of interest
can be precisely detected. Then, they navigate through the slices to outline the
organ of interest, using the contours and information from adjacent slices.

Algorithm 4 is used for 3D structures. Let X be the object to be determined.
First, we try to find the first contour of the object X in the medical examination.
For this purpose, we use a 2D general procedure based on ASM and plan for a
task, presented in Fig. 6. This procedure is used in all the slices until the contour
found is reported to be correctly identified. The task of deciding whether or not
a contour is correctly identified is performed by the VerifyCandidate procedure.
For each structure represented in ASM, a procedure is available. It classifies a region
detected as being or not being a certain structure. Specific information about the
size, intensity, and position is used. A rule-based mechanism decides the correctness
of the detection algorithm.

Once a contour is correctly detected in slice k, the algorithm goes into the slices
i, 9 = k—1,1. In a slice i, the contour from the slice ¢ + 1 is modified using a
snake-based algorithm (lines 11-16).

The system continues analysis in the slices &+ 1,nrTotalSlices. In each
slice first the 2D method based on ASM (DetectContourUsingASM) is used.
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The procedure used to determine if the contour detected in slice i (i =
k + 1,nrTotalSlices) is correct also uses the contour obtained in the slice ¢ — 1.
The properties of the contour ¢ should not be too different to those of the contour
i — 1. Again, when the DetectContourUsingASM procedure fails, the snakes
algorithm is used.

7. Problems Solved Using the ASM Approach

Two classes of problems have been solved using this approach. The first one is
the detection of organs at risk in radiotherapy planning® (e.g. spinal cord). The
second class of problems we solved is the detection of Clinical Volume Targets in
radiotherapy treatment. In our case, lungs have been chosen for study because
of the large number of patients who have lung cancer. Lung tumor detection on
CT images has been an active field in recent years. Most of the methods focus on
nodule identification. The method developed here goes further and another type of
metastases, situated at the lung borders, is also detected. The results are published
in Refs. 5 and 6. In this chapter, we focus on spinal cord segmentation, one of the
most common tasks performed in oncology departments. Details are presented in
the following sections.

Algorithm 4 3D detection of structure X

Require: set of 2D slices in the examination, nr'TotalSlices
Ensure: the list with X contour identified in all the slices of the exam,
ListXContours

: SetActiveSlice(1)

: XC «— DetectContourUsing ASM(X)

k—1

: while NOT VerifyCandidat(X) do

k—k+1

SetActiveSlice(k)

XC «— DetectContourUsingASM(X)

: end while

. [*in the slice k, X is identified*/

: ListX Contours(k) «— XC

:for j=k—1to1do

SetActiveSlice(j)

XCNew «— ModifyUsingSnake (X'

XC — XCNew

ListX Contours(j) «— XC

: end for

: XC « ListXContours(k)

e o T e O O T T
NS TRy 2o
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18: for i = k + 1 to nrTotalSlices do

19:  SetActiveSlice(i)

20: XCNew <« DetectContourUsingASM(X)

21: if NOT VerifyCandidat(X, XC, XCNew) then

22: /*X not correctly identified with ASM, so use snakes*/
23: XCNew «+— ModifyUsingSnake (XC)

24: end if

25: XC «— XCNew

26: ListXContours(i) — XC

27: end for

8. Spinal Cord Segmentation

For the spinal cord, the occasional partial appearance of spine around the spinal
canal complicates the delineation of its contour. The same 2D segmentation scheme
cannot be used in all of the slices. In this section, we first present the 2D segmen-
tation of the spinal cord, which is based on the anatomical structures map and the
plan solver, applied to the slices in which the spinal canal is completely surrounded
by spine. Subsequently, the procedure responsible for the detection of the 3D spinal
canal contour detection process is described. Finally, the methods used in the case
of the failure of the standard procedures method (in the slices where the spinal
canal is not completely surrounded by spine) are presented (i.e. snakes).

8.1. 2D spinal cord detection based on the ASM

For the task of identifying the spinal cord contour in a slice, the plan solver is
dispatched. Its sub-tasks rely on information from the ASM. Figure 7 illustrates how
the spinal cord is being detected by our knowledge-based approach. The structures
that aid the detection of the spinal cord are body contour, a region of the spine
(called the lamina), and the spinal canal (see also Fig. 4).

8.1.1. Body contour identification

The transition between the body (contour 1 in Fig. 4) and the outside air is very
strong, which makes it rather straightforward to find the contour around the thorax.
Moreover, the body is generally the only object in the image. The pixels with a
gradient exceeding a threshold value € are likely to form part of the border between
body and air. Based on a correlational analysis of the HU histograms of the body
and air in a pilot study, the value of € is found. Algorithm 5 is used to delineate
the contour around the body.

Because of its importance (all of the other structures are Inside the body con-
tour), the body contour identification is a sub-task which is performed for every
main task.
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Fig. 7. Plan for a task: the scheme used for spinal cord segmentation.

Algorithm 5 Body Contour Identification

Require: Image 1
Ensure: the abdomen contour
1: compute the gradient of the image using a Sobel-like operator;
2: in the middle column of the image, search the first pixel which has the
gradient higher than a threshold «;
3: this is the first point on the body contour;
4: starting from this point, follow in the clock-wise direction the high gradient,
until it reaches the first point of the contour.
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8.1.2. Lamina identification

The lamina contour (Contour 2 in Fig. 4) uses body contour as a reference object. In
the ASM, the segmentation scheme associated with the lamina is a threshold oper-
ation. The threshold operator is applied to the pixels that occur inside the body
contour. The lamina has a very high HU range (650-1200 HU). This is not the
only structure with such a high intensity range. Other structures like the sternum
and the scapula might also be detected by the application of a threshold operator.
By restricting the threshold operator to a smaller region of the abdomen (cen-
tered at the medial axis), thresholding, in most cases, finds the lamina accurately.
Algorithm 6 detects the lamina based on the ASM and is a specialization of the gen-
eral Algorithm 1. The bounding box of the abdomen ((left, top), (right, bottom))
is used. As the spine is in the middle of the abdomen region and in its inferior half,
the threshold window is: ((middle Abdomen — wX, W), (middle Abdomen +
wX, bottom)).

All the pixels having the intensity value in lamina range interval are selected
(lines 5-11). Multiple regions can be found. Those having an area larger than a
minimal threshold and being positioned on the vertical axis of the abdomen are
considered to be candidates for lamina (lines 12-25). Finally, the lowest candidate
situated in the abdomen is considered to be lamina, conforming to the medical
atlases (lines 26-30).

8.1.3. Spinal canal detection in 2D

The contours of the lamina and the body contour are used to detect the spinal
canal (Contour 3 in Fig. 4). There is a strong transition from the lamina to the
spinal canal (large HU difference bone—tissue). Consequently, a region growing
algorithm is used?. Two problems are related to the region growing algorithm. First,
the homogeneity of the pixel intensities in the region may not be guaranteed. To
cope with this problem, a histogram-based method?® is combined with the a priori
knowledge about the typical HU range of the spinal canal. A pilot experiment has
been performed to find the optimal range of HU values.

A second problem is how to set the seed point — the starting point of the region
growing algorithm — automatically. This is accomplished by using the relative
locations between body contour, lamina, and in relation to the spinal canal. More
specifically, the spinal canal and the spine have the same medial axis (represented
by the relationship isAtMedialAxis). So, by detection of the lamina (which is
isInside the spine), the position of the seed point is obtained (being on the medial
axis and above the top limit of the lamina). Algorithm 7 is used after Algorithm 6
detects lamina-based on the ASM. Algorithm 1 is again a specialized of Algorithm 1.
The seed point is found (lines 7-13) using a smaller window inside the abdomen
as a search space (at the vertical axis of the abdomen, near the lamina). The seed
pixel intensity value should be in the tissue range. The gradient information is used
to detect the border between bone (lamina) and tissue (spinal canal) which is very
high. Finally, a region growing algorithm is used.
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8.1

The problem of spinal cord detection (Contour 4 in Fig. 4) reduces to finding the
maximal inscribed circle in the polygon that represents the spinal canal (see also
Fig. 8). The problem is solved by computing the medial axis of the polygon using
efficient algorithm (complexity O(n log m)), which was presented in Refs. 18

an

N. Archip et al.

4. Spinal cord detection in 2D

and 24.

Algorithm 6 Segment Lamina

Require: Image I, image size N, the abdomen contour
Ensure: true, if the lamina contour can be identified and in this case the

— = = =
Qe

14:
15:
16:
17:

18:
19:
20:
21:
22:
23:
24

25
26

27:

28

29:

lamina contour and false, otherwise;

: found «— false
:R(i,j)=0,Yi,j=1...N
: ((left, top), (right, bottom)) <« the bounding box of the abdomen contour
: middle AbdomenX «— left + M
: for i = middle AbdomenX — wX to middle AbdomenX + wX do
for j = top + W to bottom do
if (i, j) € [val MinLamina,val MaxLamina] then
R(i,j) =1
end if
end for
: end for

: for i = middleAbdomenX — wX to middle AbdomenX + wX do
for j = top + bottomf_wp to bottom do
if R(i,j) =1 then
build the contour of the region R; starting from (i, j)
middleCandidate — le ft(R;) + w
if air(R;) > airc AND |middleCandidate — middle AbdomenX| < e
then
add R; to the list L with candidates for the lamina
end if
for V(k,l)InsideR; do
R(i,j) =0
end for
end if
end for
: end for
2if ||L| | = 0 then
found «— false
: else
found «— true
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30:  LaminaContour = R; € L with R;.Y min.
31: end if
32: return found

Algorithm 7 Spinal Canal Segmentation

Require: Image I, the body contour BC, the lamina contour LC
Ensure: true, if the SC can be identified and in this case the SC contour and
false, otherwise;

1: ComputeGradient G of the image 1
2: ((left, top), (right, bottom)) < the bounding box of the LC
3: ((la, ta), (ra, ba)) < the bounding box of the abdomen
4: XS; = la + rezte
5:YS; =top+ W
6: found «— false
7: for SearchX = XS; — wX to XS; + wX AND not found do
8: for SearchY =Y S; —wY to YS; + wY AND not found do
9: if I(SearchX, SearchY’) € [valMinSC,valMaxSC] AND
G(SearchX, SearchY) < € then
10: found «— true
11: end if
12:  end for
13: end for

14: if NOT found then

15:  return false

16: else

17: SCContour «— StartRegionGrowing(SearchX, SearchY)
18:  return true AND SCContour

19: end if

8.2. 3D spinal canal detection

The problem of 3D spinal canal detection is based directly on the procedure for
spinal canal detection in 2D, presented in Sec. 8.1.3. However, this scheme cannot
be applied successfully to all slices because the spinal canal is not always sur-
rounded by the spine. Instead, the algorithm for 3D spinal canal detection first
identifies the spinal canal in each slice using Algorithm 8. Algorithm 8 is a special-
ization of Algorithm 4. The first step is to apply the 2D algorithm presented in the
previous section to identify the spinal canal in the first slice. It uses no information
about whether the spinal canal is surrounded completely by bone. A procedure ver-
ifies whether the spinal canal was identified correctly (line 4). This procedure uses
information about the position, the intensity and the area of the region detected
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X
4

Fig. 8. Maximum inscribed circle in the spinal canal polygon.

by the 2D algorithm. If the algorithm failed to identify the spinal canal correctly
in the first slice (see Fig. 9), the same 2D algorithm is applied to the next slices
(lines 4-8) until it succeeds in finding the contour of the spinal canal in as many
slices as possible.

Once a contour around the spinal canal has been found, the algorithm uses it
as reference in the neighboring slices in two ways. First, it can be used to verify
the candidate contour for the spinal canal in the immediately adjacent slices (lines
14,28). The second way is to use a spinal canal contour as information to guide the
segmentation scheme in the adjacent slice (in case the 2D algorithm fails to correctly
identify the spinal canal — lines 13,27). These two modalities of using a contour
already identified are presented in the next section. In the £’th slice, the contour of
the spinal canal is detected (line 10). The 3D algorithm proceeds from the k—1 — 1
and k + 1 — nrlotalSlices slices, applying the 2D detection algorithm. In case of
failure, it chooses one of the alternative methods presented in the next section. The
evolution of the algorithm in two consecutive slices is illustrated in Fig. 11.
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() (d)

Fig. 9. The two types of slices: (a) spinal canal completely surrounded by bone; (b) the method
based on ASM works well for this type of slice; (c) spinal canal partially surrounded by bone;
(d) the method based on ASM fails for this type of slice.

Two procedures are used to check the results of the spinal cord detection algo-
rithms. The first one (line 4), VerifyCandidateSpinalCanal (SCC), uses the a priori
knowledge about spinal canal region: position, area, intensity, and shape. If the
properties of the candidate respect the pre-defined parameters of our model, the
region is recognized as spinal canal, otherwise it is rejected.

The second procedure (line 14), VerifyCandidateSpinalCanal (SCC, SCCNew),
uses a contour obtained in an adjacent slice, against which it verifies the properties
of the new contour detected in the current slice. If the differences between the two
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Algorithm 8 3D detection of spinal canal

Require: set of 2D slices in the examination, nrTotalSlices
Ensure: a list (ListSCContours) of spinal canal contours (SCC) identified
in all slices of the examination

1: SetActiveSlice(1)
2: SCC « DetectSpinalCanalContourUsingASM()
3: k1
4: while NOT VerifyCandidateSpinalCanal(SCC) do
5 k—k+1
6: SetActiveSlice(k)
7 SCC «— DetectSpinalCanalContourUsingASM()
8: end while
9: /*in the slice k, spinal canal is identified*/
10: ListSCContours(k) — SCC
11: for j=k—1to1do
12:  SetActiveSlice(j)
13:  SCCNew <« DetectSpinalCanalContour(SCC)
14: if NOT VerifyCandidateSpinalCanal(SCC,SCCNew) then
15: /*spinal canal not correctly identified so use snakes™/
16: SCCNew «— ModifyUsingSnake (SCC)
17:  end if
18: SCC «— SCCNew
19:  ListSCContours(j) «— SCC
20: end for
21: SCC « ListSCContours(k)
22: for i = k + 1 to nrTotalSlices do
23:  SetActiveSlice(i)
24: SCCNew « DetectSpinalCanalContourUsing ASM()
25: if NOT VerifyCandidateSpinalCanal(SCCNew,SCC) then
26: /*spinal canal not correctly identified with ASM*/
27: SCCNew «— DetectSpinalCanalContour(SCC)
28: if NOT VerifyCandidateSpinalCanal(SCC,SCCNew) then
29: /*spinal canal not correctly identified so use again snakes*/
30: SCCNew «— ModifyUsingSnake (SCC)
31: end if
32: end if
33: SCC «+— SCCNew

34:  ListSCContours(i) « SCC
35: end for
36: return ListSCContours
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contours with respect to: position, area, intensity and shape are smaller than a set
of pre-specified ranges, the new candidate contour is recognized as being the spinal
canal.

8.3. When segmentation of the spinal canal fails

In case the general scheme based on ASM and plan for a task fails to detect an
appropriate contour around the spinal canal, the system backtracks and uses either
a region-based method or snakes. Both use the (already approved) contour around
the spinal canal detected in an adjacent slice for initialization.

8.3.1. Finding the spinal canal by region growing

Occasionally, the general scheme for detection of the spinal canal fails because
it cannot identify the lamina region, even when the spinal canal is completely
surrounded by bone cortex. In these cases, a region-based segmentation technique
works well and is applied to the slice (lines 13, 27). The problem is to find the seed
point for the region growing process.

We use the center of gravity of the spinal canal region identified in an adjacent
slice (as in Fig. 10), thereby assuming spatial continuity of the spinal canal. To
compute the center of gravity of a region given by a function f, moments (m,,) are
used which are defined for the continued case as:

Mpg = / / 2Py f(x,y)dx dy with p,q=0,1,2,... (4)

Fig. 10. The spinal cord contour and its gravity center.
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and for the discrete case as:

Mg = 3> i*50f(i,§) withp,q=0,1,2,....
i g

Thus the center of gravity is defined as:
mi __ mgo1

T=—— and y=——.
moo moo

8.3.2. The use of snakes

In the case where the general scheme fails to detect the spinal canal, for example
because the spinal canal is not completely surrounded by spine (see Fig. 9), the
system uses a snake-based method.?!

8.4. Experimental results

The experimental data consists of 23 patient examinations performed with a Picker
CT medical scanner. The slice thickness is 3mm, and the interslice distance is
3mm. The data was provided by La Chauz de Fonds Hospital (Switzerland). The
radiologists and radiotherapists of La Chaux de Fonds Hospital also helped with
the clinical interpretation of these images. After the CT examination, each patient
underwent radiotherapy in the hospital. Our population consisted of 9 male and
14 female patients. Their ages varied from 37 to 79 years with a mean of 58 years
and a median of 59 years. The number of CT slices per exam varied from 9 to 97
with a mean of 45 slices and a median of 38 slices. The images were obtained from
a CT scanner from Picker and were acquired with a slice thickness of 3mm and an
inter-slice distance of 3 mm.

We distinguished four types of contour: spinal cord, spinal canal, lamina and
body contour. Whereas the computational time is straightforward to compute,
medical expertise is needed to assess the contours that were found by our system.
A radiologist skilled in radiotherapy planning was asked to accept or reject each
contour in each slice among all 23 patients. In our case, evaluation was performed
using a visual inspection of the contours projected on the CT image slices. The
radiologist decides for each of the contours obtained with our system whether it is
acceptable or not.

In Figs. 11 and 12, the different steps implied by the spinal cord segmentation
are illustrated.

8.4.1. Accuracy

In Table 2, results of the experiments on the real clinical data are shown. The
accuracy is percentage of the slices in the exam in which the radiologist agreed that
the particular contour was located correctly. In Exam 1, for example, 91.9% of the
contours were located around the spinal cord with a sufficient precision.
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(b)

Fig. 11. The algorithm for spinal cord identification (a) in the first slice identify the body contour
(b) find a lamina (c) using the bone part identified, find the seed for the Region Growing, which
identifies the spinal canal (d) apply Minimum Inscribed Circle to find the spinal cord (e) propagate
the spinal canal contour in the next slice and improve it using snakes (f) apply again Minimum
Inscribed Clircle to find the spinal cord.
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Contour

(d)

Fig. 11. (Continued)
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(f)

Fig. 11. (Continued)
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ody Contour

(©) ()

Fig. 12. The algorithm for spinal cord identification in the case when the images are affected by
abnormalities (right lung not visible) (a) in the first slice identify the body contour (b) find a spine
part (c) using the bone part identified, find the seed for the Region Growing, which identifies the
spinal canal (d) apply Minimum Inscribed Circle to find the spinal cord (e) The process continues
in the next slice.

The average accuracy of the spinal cord contours among all patients is 91.7%,
the average accuracy per slice lies within the range of 80% to 100%. The spinal
canal is more difficult to detect. The average detection accuracy among all patients
is 85.3%, the average accuracy per slice lies within the range of 60% to 100%.
The lamina is the most difficult structure to detect for our approach. The average
accuracy among the 23 patients is 72.1%, and the range is 33% to 100%. Finally,
the body contour is located correctly in all slices among all 23 patients. The body
is easy to detect because of the sharp transition from the surrounding air to human
tissue.
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()

Fig. 12. (Continued)

Among these four structures, the accuracy of each contour is correlated for the
spinal canal and spinal cord (0.594). The correlation coefficients between the other
types of contours are all below 0.15.

In general, when contours were detected wrongly, the major cause was the misla-
beling of the neighboring reference objects, such as the spinal canal. The problems,
in most cases, arise in CT exams where the standard acquisition protocol has not
been followed such that one or more unexpected objects (e.g. arms) were present
in the slice. The presence of such objects affects the symmetry of the body.

8.5. Computational cost

Our algorithms are implemented on a PC Windows machine, with processor Pen-
tium IIT 500 MHz, 512 MB RAM. As presented in Table 2, the spinal cord detection
is done in one second per slice. The worst case is when the snakes are used in all
the slices. The interactivity is minimal and might consist only of human correction
of the errors in a couple of slices. These times are not recorded.

In the ASM, about 10 different structures are represented so the query process
performed by the plan solver terminates quickly. The most time-consuming routine
is the snake algorithm, which optimizes the location of the contour by minimizing
the total energy. All other routines are performed in less than a second per slice
(0.3-0.5 seconds) in our current application. The snake algorithm is only applied
to slices where the spinal cord is not surrounded by the spinal canal. This happens
in about half of the slices.

9. Discussion

The major contribution of this chapter is to demonstrate that a top-down
knowledge-based system can provide flexible interpretation of CT images. Our



Table 2.
Sp. Cord Sp. Canal Lamina Body Contour
Medical No. of Age
Exam ID Slices (years) Sex Succ. Texec Succ. Texec Succ. Texec Succe. Texec
Ezxzam 1 37 68 F 91.9% 65s 91.89% 62s 48.64% 42s 100% 34s
Ezxam 2 87 60 M 94.26% 153s 93.10% 148s 98.85% 92s 100% 73s
Exam 3 27 58 F 88.89% 40s 85.18% 39s 74.07% 25s 100% 18s
Ezam /4 70 62 M 91.43% 108s 90% 105s 62.85% 68s 100% 528
Ezam 5 87 59 F 93.11% 177s 89.65% 173s 82.75% 112s 100% 90s
Ezxam 6 15 61 M 86.7% 31s 80% 30s 100% 16s 100% 13s
Ezxam 7 31 50 F 93.55% 62s 87.09% 59s 80.64% 25s 100% 18s
Ezam 8 9 54 F 100% 12s 100% 12s 100% Ts 100% 53
Ezxam 9 22 51 F 95.45% 558 95.45% 55s 77.27% 17s 100% 13s
Exam 10 97 53 F 92.78% 135s 91.75% 132s 77.31% 83s 100% 61s
Ezxzam 11 38 48 F 92.10% 61s 84.21% 57s 78.94% 38s 100% 32s
Exam 12 22 68 F 95.45% 34s 81.81% 33s 90.90% 18s 100% 14s
Ezxzam 13 20 52 F 95% 38s 60% 38s 80% 16s 100% 11s
Ezam 14 75 63 M 80% 1258 62.66% 122s 45.33% 78s 100% 60s
Ezxam 15 22 66 F 95.45% 35s 90.90% 35s 86.36% 20s 100% 14s
Exam 16 50 37 F 88% 99s 82% 98s 76% 48s 100% 37s
Exam 17 18 43 F 88.88% 28s 88.88% 27s 83.33% 17s 100% 13s
Ezxam 18 55 62 M 98.18% 94s 92.72% 93s 40% 45s 100% 32s
Ezam 19 83 70 M 93.97% 141s 90.36% 139s 36.14% 86s 100% 69s
Ezam 20 45 64 M 95.55% 72s 86.67% 70s 33.33% 45s 100% 35s
Ezam 21 40 56 F 87.5% 69s 80% 68s 95% 43s 100% 34s
Exzam 22 44 79 M 84.09% T7s 79.54% 76s 54.54% 43s 100% 33s
Exam 23 37 55 M 86.48% 66s 78.37% 64s 56.75% 44s 100% 358
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system can cope with a large amount of inter-patient variation. Not only is the
size and shape of the tumor unique to each patient, also, the acquisition param-
eters of the CT scan vary considerably. The ASM is a means to represent, in
a compact form, important fragments of the anatomic knowledge that is used
by a radiologist while interpreting the CT images. The plan solver contains the
procedural knowledge: how to detect particular anatomical structures one-by-one.
The knowledge-based architecture often makes it possible to cope with exceptional
conditions which occur in a specialized clinic. Even if our approach fails, it is pos-
sible for the radiologist to “take over” and correct the wrongly placed contours of,
for example, the lamina. Moreover, it is possible to identify the cause(s) of failure
because of the transparent knowledge-based architecture.

The major drawback of our approach is the time it takes to formalize the
anatomical and procedural knowledge that is needed to implement the ASM and
the plan solver. This problem is well-known in the field of expert systems and has
been called the knowledge elicitation bottleneck. Although the ASM may partly be
reused, for example for automatic interpretation of MR images of the thorax, reverse
engineering would be required to tailor the plan solver such that it applies the appro-
priate atomic (segmentation) algorithms. It is clear that a different image modality
will, in general, require different low-level operators to find the same anatomic struc-
tures. We furthermore wish to add that the rather confined macro-anatomy of the
human thorax makes it well-suited for representation in a frame-like hierarchical
representation scheme such as the ASM. Representation of other regions, e.g. the
human vascular system would be more difficult.

A final question addresses the transferability of the developed method to other
hospitals. The DICOM (Digital Imaging and Communications in Medicine) stan-
dard (is used by our system). With the DICOM standard, the use of HU should
work in a hospital with well-calibrated CT scanners. About the features of the
system, probably the most important one is the use of a knowledge-based image
processing philosophy keeping in mind that relying solely on the classical image pro-
cessing algorithms is insufficient for detecting automatically anatomical structures
in CT images. Another important aspect of this approach is the way the 3D pro-
cessing is performed, resembling the procedure performed by the radiologist.

10. Summary and Conclusions

Radiotherapy of malignant tumors located in the vicinity of the spinal cord requires
very accurate planning to avoid causing unnecessary damage in this vital organ.
The spinal cord is a highly radiosensitive organ; even moderate doses of radiation
can cause different complications such as paralysis of the patient. In this chapter,
we present a knowledge-based approach to the interpretation of CT images. The
approach is based on two closely linked knowledge bases: the anatomical struc-
tures map and the plan solver. The former represents structural (static) knowledge
of the macro anatomy in the human thorax. The latter represents the procedural
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knowledge — the scripts — that are used for the detection of the different objects
of interest. The plan solver combines atomic and composite image processing oper-
ators using an inheritance scheme. Which (composite) operators inherit an atomic
operator, say a snake algorithm, is derived from the anatomical structures map.

The knowledge-based approach was implemented on a standard PC. The system
was subsequently validated on CT image data from 23 patients who were to undergo
radiotherapy. The plan solver was used to locate the following four kinds of objects:
the spinal cord, the spinal canal, the lamina and the body (outer thorax). The
highest accuracy was obtained for the body contour, which was located correctly
in all slices among the 23 patients. The spinal cord was located with an accuracy
of 92%, the spinal canal with an accuracy of 85% and the lamina with an accuracy
of 72%.

The major advantage of our knowledge-based system, compared with state-of-
the-art low-level solutions, lies in its transparency and its flexibility. The system
is transparent to the radiologist because parts of his/her medical knowledge are
represented in the anatomical structures map and the plan solver. Transparency
makes it easier to take over from the system in case the identification of the objects
fails. Flexibility is required because the scan protocol varies among the patients,
depending on the location and size of the tumor.
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A major issue in neuroscience is to carry out the cartography of cerebral functions
under normal and pathological conditions. The establishment of such functional maps
motivates the investigation of the anatomy-function relationship and the development
of registration methods that map data collected from different modalities and from
different subjects. In such a process of anatomical and functional fusion, the modeling of
the cortical ribbon, especially of anatomical and functional landmarks such as sulci, is of
great interest. An increasing number of methods have been proposed to solve this inter-
individual image fusion problem. These methods are generally divided into two groups:
“photometric” or global methods, that rely on the matching of voxels having the same
luminance, and “geometric” or local methods that rely on the matching of appropriate
landmarks. Another alternative to both methods is to use hybrid registration schemes
in order to find a mid-way between the global and local approaches, taking advantage
of the automaticity of the global one and the regional accuracy of the local one. In this
chapter, we describe a typical example of each of these approaches. First, we present
a global deformable registration method using image intensities. Second, we use a non-
linear local registration framework and third, an hybrid approach able to locally control
global deformations by sparse geometric landmarks. Finally, we propose a comparative
evaluation methodology of registration frameworks on anatomical and functional data.

Keywords: 3D cerebral imaging; anatomical and functional atlases; cortical sulci;
spatial normalization; nonlinear registration; cortical constraints; statistical shape
model; evaluation.

1. Introduction

One objective of cognitive or clinical neuroscience is to carry out the cartogra-
phy of cerebral functions under normal and pathological conditions. Researches are
currently performed to find correlations between brain anatomical structures, essen-
tially sulci and gyri, where neuronal activation takes place, and cerebral functions,
as assessed by recordings obtained by means of various neuroimaging modalities,
such as positron emission tomography (PET), functional magnetic resonance imag-
ing (fMRI), electro-encephalography (EEG) and magneto-encephalography (MEG).
One of the major issues related to the establishment of these functional maps is
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the mapping of data collected from different modalities and from different sub-
jects. This matching generally relies on an anatomical substrate, usually viewed
by the means of magnetic resonance images (MRI). MRI allows to obtain some
3D precise representations of cerebral anatomy and to easily visualize the cerebral
cortex and its components gyri and sulci, place of (supposed) presence of many
studied cognitive functions. Recent improvements in image processing techniques,
such as segmentation, registration, delineation of the cortical ribbon, modeling of
anatomical structures and multi-modality fusion, make possible this ambitious goal
of neuroscientists. Several arguments point out the interest of modeling cortical
ribbon, especially sulci, in a process of anatomical and functional fusion:

e Cortical sulci serve as landmarks associated to major functional regions.

e Cortical sulci can be used as landmarks and so as a support for inter-individual
fusion processes.

e Cortical sulci can help for the labeling of cortical structures (gyri for instance).

e Cortical sulci can be used as indices to some functional organizations.

An increasing number of methods have been proposed to solve this inter-
individual image fusion problem. The reader could refer to Ref. 74 for an overall
survey on that subject. These methods are generally divided into two groups:

(1) “photometric” methods, that rely generally on the matching of voxels having
the same luminance, and

(2) “geometric” methods that rely on the extraction and matching of appropriate
landmarks.

Geometric methods (also called local methods) dramatically depend on the extrac-
tion of features. They are generally valid near these features only, but can be very
precise around the features of interest, especially due to the tight control of the
topology preservation through the matching stage of the corresponding features.
The application of the computed transformation, away from these features, is per-
formed by using interpolation functions, e.g. splines, radial basis functions, etc.

In contrast, photometric methods (also called global, intensity-based or iconic
methods) use the entire image intensities information and automatically estimate
transformations with high degrees of freedom in an automatic way, though using
highly complex optimization schemes to solve the matching problem. Intensity-
based methods are more dedicated to automatic procedure, require in principle
less preprocessing (e.g. segmentation) and less a priori information derived from
human expertise. This explains why photometric methods have become so popular.
In addition, it has been proved very efficient in the particular context of rigid
multimodal fusion.'?%

Another alternative to both methods is to use hybrid registration schemes in
order to find a mid-way between the global and local approaches, taking advantage
of the automaticity of the global one and the regional accuracy of the local or
geometric one.
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Fig. 1. Methodological framework for non-rigid registration in neuroimaging using local, global
and hybrid registration methods.

Diagram in Fig. 1 summarizes this problem and illustrates how these three
classes of methods can be compared based on a similar framework. The first phase
consists in collecting anatomical and functional information. Then, the “Local Reg-
istration” consists in extracting structures of interest (sulci here) and to model them
in 3D. These structures are then aligned on the basis of a local referential, i.e. a
reference related to the studied sulci, to allow a statistical analysis of the varia-
tions in form and position of these structures. The statistical model is interpretable
via its mean shape and its principal modes of deformation. Functional activations
of the various subjects can then be combined in this mean statistical space by
using an interpolation basis function in order to compute statistics of activation
disparities. This methodology can then be compared with the “Global Deformable
Registration” or the “Hybrid” frameworks.

Despite the large literature in this domain, very few works have been done
so far, to propose an evaluation framework in order to compare objectively the
performances of different deformable registration methods on the same database
of subjects. Recently, an evaluation framework of photometric methods has been
proposed,%° based on global and local measures of the quality of the registration
especially focusing on cortical regions where functional recordings generally take
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place. Even though there are still limitations in such evaluation framework, con-
clusions of this study should entice investigators to study more carefully the real
impact of the methods they use when performing inter-individual anatomical and
functional brain mapping.

This chapter will describe and compare these three classes of methods. It is
organized as follows: Section 2 presents a typical example of such global deformable
registration method using image intensities.®! As said before, in order to improve
the performance of such global registration methods, a non-linear local registra-
tion framework (a geometric method) can be set up, capable to account for local
deformations around local landmarks, e.g. cortical features, and capable to extend
the estimated deformation field to nearby functional activation (in this case MEG
dipoles, but could be fMRI or others).? This method is presented and discussed in
Sec. 3. A third alternative in this framework is to use an hybrid approach able to
locally control global deformation field (computed from photometric information)
by sparse landmarks, i.e. geometric information. This method is presented and dis-
cussed in Sec. 4. At last, a comparative evalution of these registration frameworks
is performed on anatomical and functional data in Sec. 5.

2. Global Registration Approaches
2.1. Introduction
In our point of view, global registration approaches have two main characteristics:

e They are dense approaches in the sense that a deformation vector is defined for
each point of the discrete lattice.

e The estimation of the deformation field relies on a criterion or measure that is
defined globally, that is to say identical for each point of the discrete lattice. How-
ever, the measure can express the locality (image derivatives or image moments
for instance).

Global registration methods have been developed to handle complex defor-
mations such as soft tissue deformation, evolution of lesions over time, mat-
ter appearance or dissipation and so on. More particularly, these methods have
received particular attention for the development of electronic brain atlases. These
atlases have emerged by overcoming some limitations of traditional paper-based
atlases.44:53,66,80,85,114 Non_rigid inter-subject registration methods have been
developed in order to account for the inter-subject variability.3°

This section will propose a rapid survey of global registration methods and will
then describe the Romeo method, which is a robust elastic registration based on
optical flow.

2.2. A brief survey of global registration methods

Registration is a very active field of research and numerous methods have been
proposed. This section does not intend to propose an exhaustive list of methods
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but to present generic and up-to-date methods. The interested reader will refer to
Refs. 16, 51, 52, 71, 74, 79, 116, 120, 127 for a complete survey on this subject.
Methods can generally be classified according to the following criteria:

e Features that will be matched. This includes both the dimension of the data
(classically from 2D to 4D) as well as the homologous structures that are chosen
for matching.

e Transformation type. The transformation type can be rigid, affine, projective,
etc. This item also includes the transformation domain: local or global. A trans-
formation is called “global” when the modification of one parameter affects the
entire image.

e The similarity measure. The similarity models the interaction between the data
(features used for matching defined above) and the variables to be estimated
(parameters of the transformation for instance).

e The regularization. The regularization can be implicit (regularized transforma-
tion model for instance) or explicit (first-order regularization for instance).

e The optimization method. Once the registration problem has been formalized,
the optimization plays a crucial role in estimating the registration variables.

We have chosen here to present the following registration methods: methods that
derive from the laws of continuum mechanics; methods that use cross-correlation;
the demon’s method; methods based on optical flow and finally methods that esti-
mate jointly an intensity correction and a geometrical transformation.

2.2.1. Models based on continuum mechanics

Considering two MR images of two different subjects, the estimation of a “plausible”
transformation must be sought. The notion of a “plausible” transformation in this
context being particularly difficult to state, some authors have proposed to comply
with the laws of continuum mechanics, either elastic (see Sec. (a)) or fluid (see

Sec. (b)).

(a) Elastic models

Elastic models have been introduced by Broit'®> and extended by Bajcsy
and Kovacic.>*  These models are nowadays used by  various
authors.34,36,46,50,90,91,102,104,123 The estimated deformation field should basically

obey the rule of Navier equation:
uV2u+ (A + p)V(div(u)) +F =0 (1)

where w is the deformation field to estimate, A and p are the Lame coefficients
and F is the sum of forces that are applied on the system. The problem is to
specify the forces F' that will lead to a correct registration. Bajcsy proposes to
compute these forces so as to match the contours.* Davatzikos®® and Peckar®® do
not compute any forces but segment the brain surface and the ventricles using two
different methods. The matching of these surfaces provides boundary conditions



148 1. Corouge et al.

that make it possible to solve the problem. These two approaches are therefore
sensitive to segmentation errors.
The use of elastic methods raises the following questions:

e What should be the values of Lame coefficients? The choice of these coefficients
influences the deformation. Earliest work proposed that A = 0 but it appears
nowadays to be a limitation.

e This modeling cannot handle large deformations. As a matter of fact, the equation
of Navier is only valid for small displacements. To solve this problem, two kinds
of approaches can be used. A rigid registration can provide a good initialization,
e.g. Bajesy? uses principle inertia axes and Davatzikos3® uses the stereotaxic
space. Another way”’ is to solve the problem iteratively using a multiresolution
approach.

e The topology of present structures will be preserved. This may be interesting in
some applications but more questionable when matching brains of different sub-
jects. Ono® has shown that cortical structures are not topologically equivalent
among subjects indeed.

(b)  Fluid models

Following the same inspiration as elastic models, Christensen and Miller?? pro-
pose to compute a deformation that obeys the rule of fluid mechanics (equation
of Navier-Stokes). The major difference with the elastic modeling is the fact that
the fluid continuously “forgets” about its initial position. Large displacements and
complex motions are therefore much easier to handle. The equation of Navier-Stokes
can be written as:

%—mm(aﬁ)mﬁp:o 2)

where v is the fluid viscosity, « its speed and p'its pressure. This equation is highly
non-linear (cross-terms) and its resolution is complex, leading to large computation
times. Christensen imposes the constraint that the Jacobian be positive,?? leading
to an homeomorphic transformation.

Christensen and Johnson?? have extended the registration approach to introduce
the reversibility constraint. Given two subjects A and B, the method jointly esti-
mates transformation from A to B and from B to A. The inverse consistency error
is zero when the forward and reverse transformations are inverses of one another.
Furthermore, the transformations obey the rules of continuum mechanics and are
parameterized by Fourier series.

Bro-Nielsen'? has proposed an improvement to solve the following partial dif-
ferential equation:

Lv = pVo(@) + A+ p)div(v) = f(z, u(x)) (3)

where u is the displacement and v the instantaneous speed. For a small time change,
internal forces are constant and the equation is linear. While Christensen uses a
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finite element scheme, Bro-Nielsen considers the impulse response associated with
operator L. The solution is then expressed as linear combinations of eigenvectors
of operator £. This decreases significantly the computation time.

Wang and Staib!'?? have also proposed two methods that obey the rule of con-
tinuum mechanics. The methods respect the properties of elastic solids or viscous
fluids. A statistical shape information (sparse set of forces) is mixed with a lumi-
nance information (dense set of forces within a Bayesian framework).

2.2.2. Correlation

Cross-correlation is a widespread similarity measure. It has been used by popular
methods such as ANIMAL?? and Gee et al.’® ANIMAL uses a multiresolution
strategy to estimate local linear transformations that maximizes cross-correlation.
At a resolution level o, the regularization is based on the statement that the norm
of displacement vectors should not exceed o. Collins et al.?® has extended ANIMAL
so that sulcal constraints can be taken into account in the registration process.

Gee, first interested in mechanical models,”® adopted a statistical Bayesian
framework.*® Let us note Ir the reference volume, Ir the target volume, z =
{IR, Ir} the data and u the deformation field. The problem is then to minimize the
cost functional:

P(z|u) o< exp — {/erT S(Ir(z), Ir(z + u(m)))dm} (4)

where S is the similarity measure that has been chosen to be cross-correlation. The
regularization follows either a membrane model P(u) oc A [ (u2 + ui)dm or a thin
plate model P(u) o< A [ (u2, + 2uiy + uzy)dm Gee also made it possible to incorpo-
rate landmark points in the registration process. If the transformation X matches p;
with p}, the associated potential is: P(Z = (p;, p})|6 = X) o exp —ﬁHX(pi)—p;HQ.
This probabilistic approach is useful to mix mechanical regularization, photomet-
ric similarity and landmark matching. It also make it possible to experiment and
compare different kinds of regularization.*’

Cachier et al.'® have proposed the Pasha algorithm where the local correlation
coefficient is used. This coefficient can be efficiently computed using convolutions
with a Gaussian window function. The regularization is a mixture of competitive

and incremental regularization using quadratic energies.

2.2.3. Demons

Thirion has proposed a method well known as the Demon’s algorithm.''? At each
demon’s location, forces are computed so as to repulse the model toward the data.
The force depends on the polarity of the point (inside or outside the model), the
image difference and gradients. For small displacements, it has been shown that
the demon’s method and optical flow are equivalent. The method is alternated:
computation of forces and regularization of the deformation field by a Gaussian
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smoothing. The choice of the smoothing parameter is therefore important. The
Demon’s algorithm has been successfully used by Dawant et al.37

Cachier and Pennec®® have shown that the Demon’s method can be viewed as
a second-order gradient descent of the SSD (Sum of Squared Differences). This
amounts to a minmax problem: maximization of similarity and regularization of
solution.

2.2.4. Displaced frame difference and optical flow

The displaced frame difference (DFD) measures the difference between voxel
intensities. It can be used either directly!:86-121 or linearized (known as optical
flow).41:62:107 The DFD is known to be highly non-linear whereas optical flow is
linear. However, optical flow is only valid for small displacements and can esti-
mate motion only in the direction of image gradient (aperture problem). In both
cases, this similarity will not be valid if luminance is not conserved (this may
happen because of image acquisition, acquisition systems or parameters, MR inho-
mogeneities, etc).

Close to mechanical approaches, Song and Leahy'°” and Devlaminck*!' have pro-
posed to estimate the optical flow with a mechanical regularization. More specifi-

107

cally, when images are density images, the luminance is directly related to a physical
quantity and the mass conservation hypothesis may be introduced to constraint the
estimation in a plausible way.?3:107

In the field of cardiac imaging, Reissmann et al.?® have proposed to use the neu-
ractive pyramid to register images using the optical flow. The elastic grid that is the
kernel of the deformation deforms so as to reject the discontinuities at boundaries
of the grid. The minimization is therefore alternated between the deformation and
the optimal shape of the grid.

The SPM spatial normalization approach? estimates warps by matching each
skull-stripped image to the skull-stripped reference. Registration involves minimiz-
ing the mean squared difference between the images, which had been previously
smoothed by convolving with an isotropic 8mm FWHM Gaussian kernel. The non-
rigid deformation is modeled by a linear combination of low-frequency cosine trans-
form basis functions.? Displacements in each direction are parameterized by 392
basis function coefficients, making a total of 1176 parameters in total. Regulariza-
tion is obtained by minimizing the membrane energy of the warps.

Vemuri'?! also uses the optical flow but models the deformation as a combina-
tion of splines similarly to Ref. 108. Finally, Musse et al.3® describe a hierarchical
method to estimate the deformation using the SSD (Sum of Squared Differences)
criterion. The solution is sought as a combination of spines functions that ensure

the regularity of the solution.

2.2.5. Joint estimation of intensity and geometric transformations

Many artifacts can modify the luminance of an MR image. One of them is the
inhomogeneity of the magnetic field for instance.%®> As a consequence, the hypothesis
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of luminance conservation might not be valid anywhere. One solution consists in
using robust estimators to get rid of inconsistent data. Another solution consists in
jointly estimating an intensity correction and a spatial transformation.*®»48:54
Gupta and Prince®® propose an affine correction model for tagged MR: f(r +
dr,t + dt) = m(r,dr,t,dt)f(r,t) + c(r,dr,t,dt). The optical flow equation then
becomes:
P, ) + Vf(e,t) - Ule,t) = f(r,1) 8””‘(;’” - 80(8‘;’ . (5)
The equation is solved in a variational framework using a first-order
regularization.
Friston*® and Feldmar®® propose to embed the intensity correction and the
spatial transformation in the same cost functional:

C(f,g) = Z (Io(f(M;)) — g(I1(M;), M;))? (6)

M;€i1

where f is the 3D transformation and g is the intensity correction. Feldmar general-
izes this approach and considers 3D images as 4D surfaces. The criterion becomes:

C(f,g) = Y d((f(x;),9(x;5,45)), CPup(f(x;), 9(x;, 1)) (7)
(,15)

where z; is the point of intensity i¢; and CP,p is the function that renders the
closest point. In this sense, this method is a generalization of the Iterative Closest
Point (ICP) algorithm. Functions f and g can be modeled according to the applica-
tion. For instance, for an intra-subject monomodal registration, f is rigid and g is
the identity. For inter-subject registration, f can be a combination of radial basis
functions and f should correct acquisition artifacts.

2.3. Romeo: Robust multigrid elastic registration based
on optical flow

2.3.1. Introduction

We consider the registration problem as a motion estimation problem, which has
been studied by different authors.? 9,25,62,67.88,103 Qyur 3D method performs a non-
linear multi-modality registration of MRI acquisition of different subjects. The sim-
ilarity measure incorporates robust estimators whose utility is twofold: on the one
hand we want to limit the influence of the acquisition noise, on the other hand we
want to cope with possible modifications of structures’ topology.®®

Many tasks in computer vision may be expressed as the minimization of a cost
function. The optimization is often difficult to achieve, because the cost function
is non-convex and because the optimization involves a very large number of vari-
ables. Therefore efficient iterative multigrid (or multilevel) approaches have been
developed®®-#! and applied in motion estimation??® and in early vision.!!!

To take into account large deformations, we use a multiresolution optimiza-
tion scheme. Besides, at each resolution level, we use a multigrid minimization to
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accelerate the algorithm and improve the quality of the estimation. Within this
hierarchical approach, we designed an adaptive partition of the volume to refine
the estimation on the regions of interest and avoid useless efforts elsewhere. An
anatomical segmentation of the cortex is introduced and used in two ways: at each
resolution level, we initialize the partition as an octree subdivision based on the seg-
mentation, and the segmentation mask is used in the subdivision criterion which
controls the refinement of the estimation.

2.3.2. General formulation

The optical flow hypothesis, or brightness constancy constraint, introduced by Horn
and Schunck,%? assumes that the luminance of a physical point does not vary much
between the two volumes to register. It amounts to zeroing the so-called DFD
(Displaced Frame Difference):

fls +ws,t1) = f(s,t2) =0 (8)

where s is a voxel of the volume, t; and o are the indexes of the volumes (temporal
indexes for a dynamic acquisition, indexes in a database for multi-subject regis-
tration), f is the luminance function and w the expected 3D displacement field.
The DFD may not be valid everywhere, because of noise and intensity inhomo-
geneities of MR acquisition. The robustness of the registration process with respect
to acquisition artifacts will be discussed later on, in Secs. 2.3.4 and 2.3.6.

Generally, a linear expansion of this equation is preferred: V f(s,t) - ws + fi(s,1)
= 0: where V f(s,t) stands for the spatial gradient of luminance and f;(s,t) is the
voxelwise difference between the two volumes. The resulting set of undetermined
equations has to be complemented with some prior on the deformation field. Using
an energy-based framework (which can be viewed either from the Bayesian point of
view, or from the one of the regularization theory), the registration problem may be
formulated as the minimization of the following cost function:

Uw; f) =Y [Vf(s,0)-ws+ fils. ) +a Y lws —w,|? (9)

seS (s,ryec

where S is the voxel lattice, C is the set of neighboring pairs with respect to a given
neighborhood system V on S ({(s,r) € C < s € V(r)), and « controls the balance
between the two energy terms. The first term captures the brightness constancy
constraint, thus modeling the interaction between the field (unknown variables) and
the data (given variables), whereas the second term captures a simple smoothness
prior. The weaknesses of this formulation are known:

(a) Due to the linearization, the optical flow constraint (OFC) is not valid in case
of large displacements.

(b) The OFC might not be valid in all the regions of the volume, because of the
acquisition noise, intensity non-uniformity in MRI data, and occlusions.
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(¢) The “real” field is not globally smooth and it probably contains discontinuities
that might not be preserved because of the quadratic smoothing.

To cope with the (b) and (c¢) limitations, we replace the quadratic cost by robust
functions. To face the problem (a), we use a multi-resolution plan and a multi-grid
strategy to improve the minimization at each resolution level.

We have here introduced a simple regularization term that makes almost no
assumption on the estimated deformation field. One could imagine choosing differ-
ent regularizations for the different brain tissues, but that involves specific assump-
tions on the “real” deformation that we do not address in this chapter. However,
the introduction of a robust estimator on the regularization term enables to take
into account possible discontinuities on the border of structures having different
physical properties.

2.3.3. Rigid registration step

Given two images with potentially large displacement, it seems first reasonable to
estimate a rigid transformation. This step is performed by estimating a rigid trans-
formation that maximizes mutual information.?”-'?? Given two images A and B,
considered as discrete random variables, let us note pa(a) and pg(b) their respec-
tive marginal probability distribution, and pa, g(a,b) the joint distribution. Mutual
information I(A, B) is then defined as:?7-122

I(A, B) = ;pA 5(a,b)log, % = H(A)+ H(B)— H(A,B)  (10)
with
ZPA )logy(pa(a))
and
H(A, B) E;pAB a,b) logy(pa,p(a,b)). (11)

In some particular cases, such as brain images for instance, it is possible to define
a reference coordinate system which takes into account some information about the
scene (such as resolution of pixels/voxels, orientation of axes, etc.). In such cases,
the two volumes to be registered are mapped in this reference coordinate system
and the rigid transformation is expressed in this coordinate system. If this a priori
information is not available, the rigid transformation is estimated in the coordinate
system attached to the data.

The registration is performed through a multiresolution optimization scheme
(construction of a pyramid of volumes by successive isotropic Gaussian filtering
and subsampling in each direction).’®:°% At each resolution level, the similarity
I(A,T(B)) is maximized with respect to the parameters of the transformation
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using a Powell’s algorithm.?® We calculate the joint histogram on the overlapping
part of A with T(B) by partial volume interpolation, the latter being known to
provide a smoother cost function.

2.3.4. Robust estimators

Cost function (9) does not make any difference between relevant data and inconsis-
tent data, nor between neighboring pairs where the field is smooth and neighboring
pairs where the field is discontinuous. Therefore, we introduce robust functions®?
and more precisely two robust M-estimators,'? the first one on the data term and
the second one on the regularization term. We do not describe in details the prop-
erties of robust M-estimators, referring the reader to Refs. 10 and 83 for further

explanations. The cost function (9) can then be modified as:

Ulw: /)= p(Vf(s.t) ws+ fils.t) +a Y palws —wel).  (12)

seS (s,ryec

10,21

According to some properties of robust M-estimators, it can be shown

that the minimization of U (see Eq. (9)) is equivalent to the minimization of an
*

augmented function, noted [:

0 (w.6,6: ) = 3 6.(VF(s.0) - wa + fuls. ) +1(52)
seSs
+a > Ballws —wel? +v2(Ber) (13)
(s,ryeC

4

where 05 and [, are auxiliary variables (acting as “weights”) to be estimated.
This cost function has the advantage to be quadratic with respect to w. It also
shows clearly that, when a discontinuity gets larger, the contribution of the pair of
neighbors is limited by the reduction of the associated weight (35,.. The minimizers
of U7 with respect to the auxiliary variables are obtained in closed form.!?:2! The
overall minimization of such function consists in an alternated weights computation
and quadratic minimizations with respect to w.

2.3.5. Multiresolution incremental computation of the optical flow

In cases of large displacements, we use a classic incremental multiresolution
procedure.®43 (
sive Gaussian smoothing and subsampling in each direction.!” For each direction

see Fig. 2). We construct a pyramid of volumes {f*} with succes-

i = {z,y,z},d; is the spatial resolution of a voxel (the spatial resolution of MR
acquisition is around Imm, depending on the system). We perform a Gaussian
filtering using the recursive implementation proposed in Ref. 39 with a stan-
dard deviation of 2d; in direction 7, in order to satisfy Nyquist’s criterion. This
implementation allows to perform infinite impulse response filtering at a constant
computation cost.
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At the coarsest level, displacements are reduced, and cost function (13) can
be used because the linearization hypothesis becomes valid. For the next resolu-
tion levels, only an increment dw” is estimated to refine the estimate @" obtained
from the previous level. We perform the registration from resolution k. until res-
olution ky (in general ky = 0). This is done using cost function (12) but with
V k(s t) £ Vfk(s + ", ty) and fE(s,t) £ fE(s + @" 1) — f¥(s,t) instead of
V fE(s,t) and fF(s,t).

To compute the spatial and temporal gradients, we construct the warped vol-
ume f¥(s + w",t5) from volume f¥(s,t,) and the deformation field @", using tri-
linear interpolation. The spatial gradient is hence calculated using the recursive
implementation of the derivatives of the Gaussian.?® At each voxel, we calculate
the difference between the source volume and the reconstructed volume, and the
result is filtered with a Gaussian to construct the temporal gradient. As previ-
ously, these quantities come from the linearization of the constancy assumption
expressed for the whole displacement fu? + dwfj. The regularization term becomes
Z(s,r}GC pQ(Hﬁ’I: + dw]: - {Uf - dwﬁ”)

2.3.6. Multigrid minimization scheme

(a) Motivations

The direct minimization of Eq. (13) is intractable. Some iterative procedure has
to be designed. Unfortunately, the propagation of information through local inter-
action is often very slow, leading to an extremely time-consuming algorithm. To
overcome this difficulty (which is classical in computer vision when minimizing a
cost function involving a large number of variables), multigrid approaches have been
designed and used in the field of computer vision.*3:33:111 Multigrid minimization
consists in performing the estimation through a set of nested subspaces. As the
algorithm goes further, the dimension of these subspaces increases, thus leading to
a more accurate estimation. In practice, the multigrid minimization usually con-
sists in choosing a set of basis functions and estimating the projection of the “real”
solution on the space spanned by these basis functions.

(b) Description
At each level of resolution, we use a multigrid minimization (see Fig. 3) based
on successive partitions of the initial volume.®3 At each resolution level k, and at
each grid level ¢, corresponding to a partition of cubes, we estimate an incremental
deformation field dw”¢ that refines the estimate ﬁ)k, obtained from the previous
resolution levels. This minimization strategy, where the starting point is provided
by the previous result — which we hope to be a rough estimate of the desired
solution — improves the quality and the convergence rate as compared to standard
iterative solvers (such as Gauss-Seidel).

At grid level ¢, 2y = {=Z,,n = 1--- Ny} is the partition of the volume B into
N¢ cubes Z,,. At each grid level £ corresponds a deformation increment Ty, that
is defined as follows: A 12-dimensional parametric increment deformation field is
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Fig. 3. Example of multiresolution/multigrid minimization. For each resolution level (on the left), a multigrid strategy (on the right) is performed.

For legibility reasons, the figure is a 2D illustration of a 3D algorithm with volumetric data.
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estimated on each cube =, hence the total increment deformation field dw** is
piecewise affine. At the beginning of each grid level, we construct a reconstructed
volume with the target volume f*(s,t5) and the field estimated previously (see
Sec. 2.3.5). We compute the spatial and temporal gradients at the beginning of
each grid level and the increment deformation field dw®* is initialized to zero. The
final deformation field is hence the sum of all the increments estimated at each grid
level, thus expressing the hierarchical decomposition of the field.

Contrary to block-matching algorithms, we model the interaction between the
cubes (see Sec. 2.3.7) of the partition, so that there is no “block-effects” in the
estimation. At each resolution level k, we perform the registration from grid level
. until grid level £;. Depending on the application, it may be useless to compute
the estimation until the finest grid level, i.e. £ = 0.

(c) Adaptative partition

To initialize the partition at the coarsest grid level /., we consider a segmentation
of the brain obtained by morphological operators. After a threshold and an erosion
of the initial volume, a region growing process is performed from a starting point
that is manually chosen. A dilatation operation allows us to end up with a binary
segmentation. At grid level {., the partition is initialized by a single cube of the
volume size. We iteratively divide each cube as long as it intersects the segmentation
mask and as long as its size is superior to 23‘. We finally get an octree partition
which is anatomically relevant.

When we change from grid level, each cube is adaptively divided. The subdivi-
sion criterion depends first on the segmentation mask (we want a maximum preci-
sion on the cortex), but it also depends on the local distribution of the variables d
(see Eq. (13)). More precisely, a cube is divided if it intersects the segmentation
mask or if the mean of 5 on the cube is less than a given threshold. As a matter of
fact, ds indicates the adequation between the data and the estimated deformation
field at voxel s. Therefore, this criterion mixes an indicator of the confidence about
the estimation with a relevant anatomical information.

2.3.7. Parametric model

We now introduce the deformation model that is used. We chose to consider an
affine 12-parameter model on each cube of the partition. That kind of model is
quite usual in the field of computer vision but rarely used in medical imaging. If a
cube contains less than 12 voxels, we only estimate a rigid 6-parameter model, and
for cubes that contain less than 6 voxels, we estimate a translational displacement
field. As we have an adaptive partition, all the cubes of a given grid level might not
have the same size. Therefore we may have different parametric models, adapted
to the partition.

At a given resolution level k and grid level ¢, 2, = {E,,n =1--- Nj,} is the
partition of the volume into Vi, cubes =,,. On each cube Z,,, we estimate an affine
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displacement defined by the parametric vector @ﬁ;f: Vs = (z,y,2) € Zp,dwy =
P,OF* with

1 2z y 2 00 0000 0O
P=(0 0 0 01 2z y 2 0 0 0 0]. (14)
00 00O O0O0OO0O0OTI1 2y =z
A neighborhood system V** on the partition =y, ; derives naturally from V: Vn, m €

{1+ Ny}, m € VEEn) & 3s € Z,, Ir € E,\r € V(s). C being the set of
neighboring pairs on S*, we must now distinguish between two types of such pairs:
the pairs inside one cube and the pairs between two cubes:
Vne{l---Nps}, (s,7)e€CeoscE,, rcZ, and r € V(s).
Vne{l---Ngs}, VYme Vi),
(s,ryeCl,,emeVin), s€cZ,,rcZ, and r € V(s).
For the sake of concision, we will now drop the resolution index k. With these
notations, the cost function (13) becomes:

0
U (044", 85w, fY)

Ny
=3 3 S VITPOY + fils, )] + 1(5)

n=1se=,

o | Y Y Bl ws PO — (w, + POL) P+ (B)

n=1 | meVt(n) (s,r)€CE,,

+ay | Y Bulltws + P6y) = (we + PO +2(65,) | - (15)

n=1|(s,r)ecy

Considering the auxiliary variables of the robust estimators as fixed, one can
easily differentiate the cost function (15) with respect to any © and get a linear
system to be solved. We use a Gauss-Seidel method to solve it for its implementation
simplicity. However, any iterative solver could be used (solvers such as conjugate
gradient with an adapted preconditioning would be for example more efficient). In
turn, when the deformation field is “frozen”, the weights are obtained in a closed
form.19-2! The minimization may therefore be naturally handled as an alternated
minimization (estimation of ©f and computation of the auxiliary variables). Con-
trary to other methods (minmax problem like the demons’ algorithm for instance),

that kind of minimization strategy is guaranteed to converge,?!:38:84

i.e. to converge
toward a local minimum from any initialization.

Moreover, the multigrid minimization makes the method invariant to intensity
inhomogeneities that are piecewise constant. As a matter of fact, if the intensity
inhomogeneity is constant on a cube, the restriction of the DFD on that cube is
modified by adding a constant. As a consequence, minimizing the cost function (15)

gives the same estimate, whenever the cost at the optimum is zero or a constant.
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3. Local Registration Approaches
3.1. Introduction

In this section, we describe the local registration approach illustrated in Fig. 1. It
is designed to register 3D anatomical and functional data, i.e. data from various
subjects acquired via various modalities, like magnetic resonance imaging (MRI)
for anatomical data, magneto-encephalography (MEG) or functional magnetic reso-
nance imaging (fMRI) for functional data, etc. While anatomical imaging visualizes
brain morphology, tissues, ..., functional imaging enables the localization of cere-
bral activity. They thus provide additional information which can be exploited to
give a functional cartography of the human brain, or to construct anatomical and
functional atlases,**:80:116 such atlases being particularly expected to account for
the inter-individual variability. Their constitution requires to collect a database
from which anatomical information and functional information will be extracted,
then to design registration techniques between distinct subjects in order to com-
pare them. As introduced in Sec. 1, global registration methods (see Sec. 2) and
local registration approaches are fundamentally different and lead to probalistic
atlases defined in different spaces. In contrast to classic global methods, local or
geometric approaches explicitly exploit anatomical information by matching par-
ticular anatomical structures and are expected to be precise in the vicinity of these
structures.

Our local approach is qualified “local” since it considers a particular anatomical
structure, e.g. cortical sulci, and it uses a local coordinate frame, intrinsic to the
considered structure. It handles the inter-subject variability via a statistical shape
model of these anatomical structures of interest. Shape models not only represent

31,82 Relying on a statistical

the shape of an object but also the way it can vary.
approach, they achieve model and data adequation through a learning stage, and
capture the variability within a class of objects. Although shape models are gener-
ally used for segmentation purposes, we have investigated their use in the context of
anatomo-functional normalization. We present a generic inter-individual functional
mapping scheme to register multi-subjects functional data with respect to anatomi-
cal constraints, i.e. cortical sulci, and to express them in a coordinate system linked
to the sulci anatomical model. We assume that a part of functional inter-subject
variability is encoded in anatomical variability and that sulci are relevant landmarks
for functional analysis.””>99,124

Some previous studies argue in favor of an anatomo-functional correlation. Brod-
mann’s cytoarchitectonic cortical cartography'* shows a correspondence between
some cytoarchitectonic areas and some functional areas. For example, visual areas
of occipital cortex correspond to Brodmann’s areas 17, 18 and 19; somatosensory
areas correspond to areas 1 and 3 while motor areas correspond to areas 4 and 6.
This map also shows that some limits of cytoarchitectonic areas correspond to a
sulcus, suggesting that some sulci could be anatomical limits for an a priori localiza-

tion of some functional areas. Thus, the central sulcus separates the somatosensory
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cortex from the motor cortex. If this link is obvious for some primary areas, it
becomes questionable when considering associative areas. For some primary areas,
a functional cartography could have been established in both animals and humans.
A study by Welker and Seidenstein on somatosensory areas of racoons'?® demon-
strates a correspondence between various cutaneous territories and the sulco-gyral
anatomy. A sulcus, if it exists, systematically separates the cortical representation
of two tactiles receptors, i.e. the cortical representation of a specific receptor can-
not be interrupted by a sulcus. Conversely, two cortical representations of distinct
receptors are not systematically separated by a sulcus. This experiment suggests
that the presence of a sulcus in one subject implies a local functional cartography
valid for all the subjects, included those who do not have this sulcus. In humans, the
cartography of motor and somatosensory areas by Penfield and Rasmussen®? shows
a topological correspondence between bodily parts and their cortical representa-
tion: two corporal neighboring areas project onto two cortical neighboring areas.
This property is known as “somatotopy”. Such properties also hold for the visual
cortex and are called “properties of retinotopy”. A part of the retina is represented
in an ordered way on the cortical surface. The auditive cortex benefits from similar
properties which are then called “tonotopy”.

Accordingly, under the hypothesis of an anatomo-functional correlation, it
appears sensible to consider cortical sulci as relevant anatomical landmarks for
functional analysis. The proposed registration method is fully based on anatomical
features and it is applied only on functional data located in a spatial neighborhood
of these anatomical features. The registration process jointly uses the anatomical
shape model and an interpolation scheme based on thin-plate splines.!!:12

Section 3.2 describes the construction of the statistical model of cortical sulci,
performed by learning from a set of shapes. In Sec. 3.3, we introduce the interpo-
lation scheme and the way it can be combined with the statistical shape model for
the local and non-linear registration of functional activations.

3.2. Statistical shape model for cortical sulci

Cortical sulci are anatomical structures whose shape may vary widely from individ-
ual to individual. We propose to model these structures by learning the variability
inherent to a training set. The resulting model is related to what is commonly
called a Point Distribution Model (PDM).3! Our methodology proceeds in four
steps: extraction of the features of interest, definition of an appropriate data rep-
resentation, effective construction of the training set — which implies to establish
correspondences between the learning shapes — and application of a statistical
analysis. Here we have chosen a parametric data representation and designed a
matching scheme based on the definition of a local coordinate system, from which
we derive correspondences. We subsequently apply a Principal Component Analysis
(PCA) to achieve a compact and meaningful representation of cortical sulci shapes
and of their variations.
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3.2.1. Eztraction of cortical sulci

(a) Brief survey

Approaches for cortical sulci segmentation differ by the techniques used, but espe-
cially by the way authors consider a sulcus. For instance, a sulcus can be assimilated
to its external trace, to a sulcal area or sulcal basin, or to a surface. Note that prior
to sulci extraction usually takes place brain segmentation. A survey about such
brain segmentation methods can be found in Ref. 26.

Caunce et al.?° consider a sulcus as its external trace. From a brain segmenta-
tion, a set of points is automatically located on the sulcal fissures of the cortical
envelop by mathematical morphology techniques. This representation being estab-
lished for a set of sulci over a subject database, a Point Distribution Model (PDM)3!
is built. A point-to-point correspondence is performed by an Iterative Closest Point
(ICP) algorithm which integrates local geometric constraints to improve its perfor-
mance. New instances are then segmented via an Active Shape Models (ASM)3!
procedure. Tao et al.''° also use an unidimensional sulci representation but prefer
a spherical cortex representation. The curves standing for the sulci are manually
extracted and projected on the unit sphere thus leading to a parametric representa-
tion of sulci. A statistical model dedicated to the segmentation of new sulci is then
built on this unit sphere. Such representations appear somehow reductive to study
the cortical inter-individual variability. They do not account for the buried cortical
part which represents at least two thirds of the cortex. Royackkers et al.'0!
represent sulci as curves following their external traces but add a depth information
in each point of the curve. Moreover, additional characteristics, such as position,
continuity, length, orientation, describe the sulcus. However, a more complete rep-
resentation of the cortical buried part can be obtained.

Rettmann et al.”® propose a cortical representation into sulcal and gyral regions.
Sulcal areas describe a “U” or a “V” corresponding to the inner walls of the cor-
tical folds. The segmentation is performed by a watershed algorithm relying on a
geodesic distance. The problem of sursegmentation, i.e. one region is segmented

also

into several distincts areas, implied by this kind of algorithms is solved by a fusion
step of the obtained regions. The identification of the segmented sulci is manually
done at the end of this segmentation process. This approach is related to Refs. 72
and 73, where a structural description of the cortical topography is sought. This
work assumes that the inter-individual sulcal variability decreases with depth. The
sulci are represented by a set of sub-structures named “sulcal basins” which are
volumetric regions defined as concavities in the white matter surface. Their extrac-
tion is performed by a region growing-like algorithm. According to the authors,
removing grey matter accentuates the sulci in depth and leads to a better sulci
localization.

An alternative to model the deep part of the cortex is the modeling of sulci by
their median surface. This approach additionally leads to an easier visualization in
three dimensions. Vaillant et al.,''” seek a parametric representation of this surface.
An active model is initialized on the external trace of the sulcus and evolves towards
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its fundus. The external traces are determined by the minimum of principal curva-
ture of the external brain surface parameterized beforehand.?® The model evolves
according to two forces which drive it toward the fundus while constraining it
onto the median surface. Another median surface extraction method is proposed
in Refs. 40 and 97. It is based on curvature and crest lines notions and computes
these characteristics on a continuous approximation of the original volume; it thus
avoids the prior brain segmentation step. Aiming at a fine structural description

1.76 propose a segmentation of sulci into topo-

of the cortical network, Mangin et a
logical elementary surfaces based on the classification proposed by Malandain.”™
These surfaces are then sur-cut at level of possible connexions of sulcal roots. This
segmentation is integrated to a complex automatic labeling system based on the
joint use of neuronal networks for learning and Markov fields for recognition.”® %

The method we use to extract cortical sulci® takes into account the deep cortical

topography and provides a parametric representation of sulci, as “ribbons”.

(b) The “active ribbon” method
Sulci are extracted from MRI volumes by a method now known as the “active
ribbon” method,% which leads to a parametric representation of the median surface
of the sulcus. This latter is considered as the surface from the fundus of the sulcus
towards the outside of the brain and pseudo-normal to the external envelop of the
brain. Preprocessing steps aim first at defining a region of interest (ROI) consisting
of the union of gyri and sulci. Roughly, this ROI is obtained by first, segmenting
the brain and second, by classifying the tissues into three classes: white matter,
grey matter and cerebro-spinal fluid.%® On the basis of this partition, a differential
geometry operator, the L,, operator,’” is used to distinguish between sulci and
gyri. This is a curvature extractor well adapted to a surface such as the cortex,
since positive curvature characterizes the top of a gyrus, whereas negative curvature
characterizes the bottom of a sulcus. After skeletonization, this sulci/gyri partition
results in the superficial topography of the cortex, i.e. in the external traces of
the sulci. These external traces then serve to initialize an active model extracting
the surface of interest. The point is that the dimension of the active model changes
from 1D (active curve) to 2D (active surface). In fact, a set of potentials are defined
such that the initial curve, located at the surface of the brain, evolves toward the
bottom of the sulcus. The set of successive positions of this 1D curve initializes an
active surface which, once optimized, describes the median surface of the sulcus.
The choice of parameterization has been fixed on a cubic B-spline surface, which is
well adapted to free form object modeling.

The identification of cortical sulci is performed manually: after the skeletoniza-
tion step, external traces are labeled by an expert. Note that Le Goualher et al.
propose an automatic atlas-based labeling procedure in Ref. 70.

3.2.2. Representation of cortical sulci

We thus obtain a parametric representation of the shapes of interest through
B-spline modeling. The spline, parameterized by its curvilinear abscissae u and
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v, is described by nbp sample points and nbc = nbc_u * nbc_v control points where
nbc_u (resp. nbc_v) is the number of control points in the direction associated with
parameter u (resp. v). Parametric direction u represents the length of the sulcus
and direction v its depth. The number of sample points, nbp, is obtained by regu-
larly sub-dividing the curve initialized on the external trace of the sulcus into 1 mm
intervals and remains constant all along the segmentation process. The number of
control points, nbc, is determined according to the finesse and smoothing degree
desired for the representation. For a fine representation, the ratio nbe/nbp, called
smoothing factor, will be equal or close to 1. The smaller this ratio, the smoother
the surface. In practice, the smoothing factor has been chosen to nbe/nbp = 1/24,
which is a trade-off between surface smoothing and segmentation quality.

A sulcus can be represented by the sample points of the spline modeling its
median surface or by its control points. Having one of this representation, the other
one can be easily obtained:

c=Bp (16)

where B is the spline matrix, ¢ contains the sample points coordinates and p
contains the control points coordinates. Giving nbe control points and knowing the
spline matrix completely defines the sulcal surface. The main advantage to use
control points is their ability to represent the surface in a more compact way than
sample points while guaranteeing an equivalent representation.

3.2.3. Building the training set

The construction of the training population P consists in defining a random obser-
vation vector x € RP whose realizations are the instances of P, i.e a set of compa-
rable parameters that describes the instances of P. To do so, we design a matching
scheme which leads to a point-to-point correspondence. First, we rigidly align all
the shapes in a common coordinate system. We propose a local approach based on
the definition of an intrinsic coordinate system to the shape “sulcus”, on which the
alignment is performed by a local rigid registration. Using a local scope leads to an
independence towards global structures such as a brain reference for instance. Then
we resample all the aligned shapes so that they have the same number of points,
and eventually we establish point-to-point correspondences.

(a) Intrinsic coordinate system and local rigid registration
Initially, each sulcus is expressed in the image coordinate system, which differs from
one subject to another. The principle is to express each sulcus in its own coordinate
system, built so that it is common to all sulci. We call it a “local coordinate system”
or “intrinsic coordinate system”. Its construction is based on the inertia axis of the
sulcal surface defined by the nbp sample points.

Let us consider a sulcus S. Let R(O,u,v,w) be the image coordinate system
in which it is initially expressed and Rs(Os, us, vs, W) its local coordinate system.
Axes ug, vs and wg are defined as the axes of inertia of the sulcal surface, and
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are determined so that ug follows the length of the sulcus, v its depth and wyg is
normal to the “sulcal plane”. This discrimination between the three axes is first
carried out by considering that us (resp. vs) is the “most collinear” inertia axis
with the nbc_u (resp. nbc_v) pseudo-parallel directions, each of them being defined
by the two extremities of a sulcus’ line in direction u (resp. v). The ambiguity on
the direction of these vectors is raised since the sulci are always extracted in one
same direction, from their external trace until their fundus. Then wg is obtained
by the vector product: wg = (ug A vg). The origin Oy is the center of mass of the
sulcus. Note that this latter may not lie on the surface.

To express the sulci in R4, we determine, for each sulcus, the matrix M defining
the change of basis from the local coordinate system R towards the image coordi-
nate system R(O,u,v,w). Let R and t be the rotation matrix and the translation
vector of the inverse change of basis M~! (i.e. from R towards Rs). Then, in
homogeneous coordinates:

M= Rt where R = (ug vs wg ) and t = OO, . (17)
0001
Since R is orthogonal:
RT —RTt
M_(OOO 1 > (18)

The rigid transformation defined by the matrix M, defines the local rigid registra-
tion process, which will henceforth be called LR. It is computed for each subject
and applied to the associate sulcus. Applying this rigid transformation to all the
points of each sulcus aligns the training set with respect to the local coordinate
system. Note that no homothety is performed in this LR method. In fact, as the
image data is acquired to the same scale, the inter-individual size variation can thus
be captured in the shape model.

(b) Resampling

In order to define each instance of the training set by a same number of points,
cortical sulci are resampled. The parametric representation of the sulcal surface
facilitates this resampling on each axis.

Contiguous sulci. If all the sulci in P are contiguous, the instance described with
the maximum number of points, nbpyqz, is sought. Each other shape is oversampled
with nbpmq: sample points. In theory, this resampling modifies the discrete shape
of the surface. However, taken into account the high initial sampling (1 mm step)
and the performed oversampling, initial shapes are preserved in practice.

Interrupted sulci. In other cases, we have to deal with interrupted sulci. If all
the sulci in P are interrupted and described with the same number of segments, we
resample each segment as described in the contiguous case. This is possible since
each segment is labeled, for example inferior/superior for the precentral sulcus or
anterior/posterior for the temporal sulcus.
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Fig. 4. Resampling and matching of two sulci, with one of them interrupted.

If P contains both contiguous and interrupted sulci as illustrated in Fig. 4, we
proceed to a “proportional resampling”. For the sake of concision, we consider only
interrupted sulci in two pieces ¢ and j, with depth p; and p; and with length I;
and [;. The depth of a contiguous £ sulcus is denoted p; and its length {;. Then:

e let p,, be the maximal depth over the training set P, p,, = maxp{p;, p;, pr}. We
oversample the instances of P so that they are described by p,,, sample points on
the depth axis;

o let I,, be the maximal length over the training set, l,,, = maxp{l; +{;, ;. }. Then,

— if I, = l; + 1}, each contiguous sulcus k is sampled by a factor of ll—i to reach
a length of 1,,,
— otherwise, for each interrupted sulci, its two segments are oversampled by a

l’NL
factor of e

This method is generalizable to sulci having more than two segments.

(¢) Matching

The instances of the training set being aligned in Rs and properly resampled,
the associate set of control points is computed for each sulcus. The point-to-point
correspondence between two sulci A and B is performed as follows: each control
point of sulcus A is paired with the control point of sulcus B having the same
curvilinear abscissae.
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Figure 4 illustrates this matching scheme in the case where an interrupted sulcus
is homologous to a contiguous sulcus.

(d) Discussion
The matching scheme we propose relies on two assumptions:

(1) a correspondence between two cortical sulci, moreover from two distinct sub-
jects, with different topology, has sense; and

(2) such a correspondence can be established from the parameterization of the
shape “sulcus”.

Its anatomical, functional, physiological, etc. relevance cannot be guaranteed. Other
approaches have been proposed but they suffer from the same uncertainties. Thus,
Chui et al.?* propose a Robust Point Matching (RPM) algorithm leading to a
point-to-point correspondence between sulcal points. Caunce et al. use an ICP-
like algorithm, Collins et al.?® use a Chamfer distance to define correspondences

1.8 rely on the curvature of the external traces

between sulci while Vaillant et a.
of the sulci. The heterogeneity of these different techniques highlights the lack of
anatomical and/or functional knowledge to rely on in order to establish the “cor-
rect” correspondence between cortical sulci from different subjects. Either based on
curvature, or on distance metrics, or on parameterization, all these techniques are
somehow arbitrary. To get rid off this arbitrary part, it should rely on an under-
lying “physiological” model that would guide the correspondence or at least that
would define what is a “right” correspondence. To date and to our knowledge, such
a model is still unknown. Cytoarchitectonic information might provide some hints
for such purposes but this kind of microscopic information remains unaccessible
in vivo with current scanners. Derived from the shape representation, our matching
scheme has the advantage to be simple and to lead to a coherent training population
for the statistical analysis.

3.2.4. Statistical analysis of deformations

The statistical analysis of the training set leads to a modeling of cortical sulci and
of their variations. The model captures the shape variability observed within the
training set. As a matter of fact, the statistical analysis reveals the main modes of
variation relative to a reference shape, which is the mean shape over the training
set in our case. We use a principal component analysis (PCA) which enables the
representation of data on a new orthogonal basis, and which eliminates information
redundancy. Moreover, this analysis allows modal approximation, performed by
retaining the most significant modes.

Let P be the training population made up of N elements, x; € P a shape, X
the mean shape on P, C the covariance matrix. A shape x; ;—1...n, is represented
by the vector of control points of the spline which models the median surface of the
sulcus:

Xi = (i), Yiy» Ziys o> Ti, s Yins 20 )T with n = nbe. (19)
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The mean shape, used as the reference shape, and the covariance matrix are
given by:

_ 1
X = NZX% (20)

N
1 v _
C= N E_l dx;dx; with dx; = x; — X. (21)

Diagonalizing the covariance matrix C provides the new modal basis ®:
C = ®ADT where A = diag(\1,..., A3p) with A\; > Xo > > X3, (22)

Then any shape x can be written: x = X+ ®b where b = (by, ..., b3,)" is the vector
of modal amplitudes of deformation and (—®b) corresponds to the deformation
vectors from each point of x towards the mean shape. Since the eigenvalue ); is the
variance explained by the i*" mode, a large part of the variability can be explained
by retaining only the first m modes. The value m is chosen so that >\, \;, the
variance explained by the first m modes, represents a desired proportion, p, of the
whole variance Ap; that is to say m is such that Z}—Tl/\ ~ p where A\p = E?Zl Ai-
Retaining only m modes achieves a modal approximation:

X=X+ Pmbm (23)

bm = P’ (x — X) (24)

where ®, is a submatrix of ® containing the first m eigenvectors of C, thus defining
the modal approximation basis. The vector by, = (b1, ..., b,)" represents a shape
in the m-dimensional space defined by the principal components. The analysis is
convenient since by, provides a compact shape representation (m < 3n). However,
b, must be constrained in order to represent an “allowable” shape, i.e. a shape
consistent with the learnt shapes. Given the assumption that the distribution of
vectors x; is gaussian, the range of variability of each b; ;—1...mm, is typically such as:

=3/ < b < 43V (25)

Given the assumption x; ~ N (X, C), b; ~ N (0, ;) and so P(b; < 3v/\;) = 99.7%.
Thus, (25) can be considered as a representativity condition of the class of objects
of interest.

3.3. Deformation field and non-linear registration

The deformation field (—®p,by,) obtained between a given sulcus and the mean
sulcus can be extended to the vicinity of the considered sulcus by using an appro-
priate interpolation, the thin-plate spline interpolation in our case.'!*42:100 Tt can
then be applied to any object lying in a spatial neighborhood of this sulcus. We
take advantage of this deformation field extension to register sparse functional data
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(MEG dipoles in our case) located in the left central sulcus area towards a coordi-
nate system relative to the mean left central sulcus.

3.3.1. Interpolation using the thin-plate spline method

The use of thin-plate spline interpolation for registration purposes in medical imag-
ing was first proposed by Bookstein. In Ref. 11, he proposes an algebraic approach
to describe deformations specified by two sets of corresponding points. This method
provides an interpolation function f which maps one of the two sets of correspond-
ing points, the source set, onto the other one, the target set. Moreover, function f
is defined everywhere in Euclidean space, and particularly in a neighborhood of the
source points set so that it can be applied to any point in the source space to find
its homologous point in the target space.

Let P = {Pi(zi,vyi,2i),s = 1,...,n} be the set of source points in Euclidean
space, and V = {V; = (2},y.,2}),i = 1,...,n} the set of target points. The set P
describes a shape x, expressed by X + ®y,by, according to our model. Let r;; =
| P; — Pj| be the Euclidean distance between two source points P; and P;. Then the
function f is the sum of two terms: an affine part which represents its behavior at
infinity, and a second part which is asymptotically flat:

f(x,y,z) =a1 + azx + ayy +azz+ ZwJU(|P] - (Z‘,y,Z)D (26)

=1
where

e the basis function U is the fundamental solution of the biharmonic equation
A%2U = §(0,0), § being the Kronecker function. It can be shown!'? that the
equation of a thin uniform metal plate originally flat and now bent by vertical
displacements is directly related to the biharmonic equation. In 3D, the function
U is U(r) = |r| (whereas U(r) = r?Inr in 2D and U(r) = |r|® in 1D);

e the coefficients a = (a1, a4, ay,a.)" and w = (wy,ws, ..., w,)" are obtained by
solving the linear system:

Iz y1 o=

where P = | @ (27)

Kw+Pa=v
Piw =0

1 =, yn 2n

K is a n x n matrix, whose general term is (U(73;))1<i,j<n, and v is the vector
of one coordinate of the target set (e.g. v = (2},..., ), which implies that (26)
must be expressed for f,(x,v, 2), fy(z,y,2) and f.(z,y, 2)).

Function f is computed from a sulcus shape x and the mean shape X, these
two shapes being defined by their control points and matched point-to-point as
described in Sec. 3.2.3. The shape x is regarded as the source set and the mean shape
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as the target set. The deformation field (—®py,bm) between x and X is then repre-
sented by the elements of (w | a) and corresponds to the restriction of f to x. But, it
is henceforth defined also outside the source shape x. We can then apply it to points
in the vicinity of the source shape x to register them towards the mean shape X.

3.3.2. Specification of the vicinity of a sulcus

Function f is defined on R3, but has to be applied only in the vicinity of the
constraint. In fact, we are interested in propagating the deformation all over the
“influence range” of the sulcus of interest, but not all over the brain. Therefore it
is desirable to explicitly limit the influence of the thin-plate spline interpolation to
a pre-defined neighborhood of the concerned sulcus, which in practice would be the
adjacent gyri. This can be achieved by defining a parallelepipedic bounding volume,
V', specifying the neighborhood. However, in order to preserve the continuity of the
transformation, we define a “fuzzy volume” through which the deformation will
cancel itself out in a continuous way. This fuzzy volume can be described through
a function, p.,, defined as:
py R —R
X = (z,y,2) = py, @)1y, (y)-1y, (2)

where functions y,, have the following properties:

(28)

e defined on R,

C?, i.e. twice differentiable and the second order derivative is continuous,
decreasing on R,

even (this last property is sufficient when working in the local space),

3t € R™ such that ! (t) = 0, p!/ being the second order derivative of ., ;

where V,,, V}, and V, specify the limits of the bounding box in directions z, y and
z. For example, if V, = [~t,,t;] then p, will be chosen such that yiy (tz) = 0.

Given such a y, function, let a point X = (z,y,2) € R® and Xy = (z¢,yy, 2¢)
be its image point by the thin-plate spline interpolation limited to one neighborhood
V. Then,

Xj = F(X)-pay (X) + Xopty (X) (20)

where p1, =1 —pu,, .
Figure 5 gives examples of possible functions ., :

1
1 R, D (t) =
(1) ¥t € R, 4D(0) = 1y >0
1 if0<|t|<a
1 1 IT a+b
2) Vte R, uP ={ = - Zgin | —— - ifq < |t| <
(2) 0 5~ 35 |y |t] 5 ifa<<l|t|<b
0 if b <t

with @ and b € Rt such that a < b
12
(3) Vt € R, ugf)(t):e k>0
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Fig. 5. Examples of x4, functions. From top to bottom: u&,l) (inverse) such that u&,l) (20) = 0;

ug) (sinus) such that ug) ”(40) =0 u(?) (exponential) such that ug’) ”(30) =0.

We have simulated a set of source and target points (see Fig. 6(a), and computed
the f function corresponding to these two sets. Figure 6(b) shows the result of the
application of f on the whole grid. Although the deformation weakens far from the
constraint, it remains influent. Conversely, Figs. 6(c) and 6(d) illustrate the effect
of the application of a restriction of f to a specified neighborhood; Fig. 6(c) via
a door function, Fig. 6(d) via one p,, function. The limitation of the deformation
via a door function is efficient, but does not preserve the continuity. On the other
hand, the restriction of the extrapolation to the vicinity of the constraint via one
,, function is effective and continuity preserving, as can be seen in Fig. 6(d).

The “fuzzy bounding box” will play a role if data out of the vicinity of the
sulcus have to be treated or if deformation fields from different sulci are desired to
be used for example. The choice of 11, as well as the tune of the limits of the box is
incumbent upon an expert. However, some single rules can be designed depending
on the application. For instance, one could define ¢, as the thickness of a gyrus
and thus consider adjacent gyri as the vicinity of the sulcus, or one could define ¢,
as the “mid-thickness” of a gyrus, where the mid-thickness of a gyrus could be half
the distance between the gravity centers of its two bounding sulci (like central and
postcentral sulci for the postcentral gyrus for example).

4. Hybrid Registration Approaches

In this section, we present a unified framework for non-rigid registration of brains,
combining a global registration approach and sparse constraints. In this case, we
explicitly use it with cortical sulci constraints. The section is organized as follows:
we first discuss related work and then detail the hybrid registration method.

4.1. Related work

The cooperative approaches (photometric methods based on intensity and geomet-
ric methods based on landmarks) have received recently a growing attention.

Gee et al.*® have proposed a Bayesian unified framework to this problem but
without experimentations on real 3D data. Actually, the problem is to find a
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Fig. 6. (a) Simulated data: circles are source points, asterisks are target points and points rep-
resent the initial grid; (b) The initial grid is deformed by applying the f function computed from
the sets of source and target points; (c) The application of the f function is restricted thanks to
a non-continuous function (a door function); (d) The application of the f function is restricted

(2))

v .

thanks to a continuous function (the sinus function, i.e. u

transformation that more or less conserves the topology of the brain while being
able to adapt to local topological variations. For instance, a cortical sulcus may be
present in one segment for one subject while being split in three parts for a sec-
ond one, or even absent for a third subject. These variations can even be observed
between two hemispheres of a single subject.

Many applications where brain warping is needed face this problem. There are
some strong arguments to control non-rigid matching of brain data by local cor-
tical landmarks. The evaluation on real data have shown first the inadequacies of
methods using only image intensities,”® and also the benefits of incorporating local
cortical constraints.

Collins et al.28:30

investigated the introduction of sulcal constraints, which have
been introduced on the basis of a Chamfer distance between corresponding sulci of

the source and target volumes. However, sulcal constraints have been introduced
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without any specific formal framework, only the orthogonal projection of a sulcus
onto its correspondent is used. Following the same idea, Vaillant et al.''® use cortical
constraints for non-rigid registration. The 3D registration is viewed as a deforma-
tion of a surface on which the sulcal constraints are defined like curves, on the
brain outer surface. The elastic registration tries to match points with similar cur-
vatures, which is a questionable assumption. This approach is rather similar to the
one proposed in Ref. 113, where the surface deformation takes only into account
the sulcal constraints detected on the brain external surface. Chui et al.2* propose
the Robust Point Matching (RPM) algorithm, which explicitly incorporates sparse
constraints. The sulcal points are manually extracted by an expert, and are inte-
grated in a minimization algorithm which first seeks a global affine transformation,
then a piecewise affine one. More recently, Cachier et al.'® proposed a demons-like
algorithm which incorporates matching of sulcal roots. Hartkens et al.'?® proposed
to integrate points and surfaces in a multimodal non-rigid registration algorithm.
Johnson and Christensen®* presented a consistent 2D thin-plate-spline registration
method where manually-detected landmarks and intensity cooperate to compute
the registration.

4.2. Definition of the sparse constraint

Once cortical sulci are extracted using the method described previously (see
Sec. 3.2.1), we define the sparse constraint, which will be used to drive the reg-
istration process. We define the constraint as a sparse deformation field.

4.2.1. Matching sulci

For the registration of a subject A toward a subject B, we consider the homologous
sulci between these two subjects. We then apply the resampling and matching
scheme presented in Secs. (i) and (j). On the kernel of the constraint sulci of the
source volume, we thus define a sparse constraint deformation field.

From Fig. 4, the curvilinear abscissa of point My along the sulcus 0 length is
%, given that this curvilinear abscissa is normalized between 0 and 1. At My, the
constraint field corresponding to the sulci matching is not contiguous.

4.2.2. Sparse constraint deformation field

In every case, we finally obtain two sulci each described by N control points.
The sulcus of the source volume is described by a set of control points S; =
{CL...CN}, and the homologous sulcus in the target volume is described by
Sy = {Ck...CN}. For each point Si, a constraint field can be explicitly com-
puted: Vk € {1...N},w§ = CEC%. Let us note S. = S; the kernel of the sparse
constraint field.

Contrary to the matching approaches based on a distance measure (Chamfer,
ICP), this algorithm matches explicitly all sulci points. This matching procedure is
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questionable, since we do not know if it is anatomically plausible. Is it necessary to
explicitly match the sulci extreme points? How to manage the sulci interruptions?
In absence of anatomical assumptions, and at a primer stage, we have chosen this
cortical mapping process. At the end of this process, we obtain a constraint field
w*®, which is defined on the support of source volume.

In order to reduce the sensitivity of the constraint field to sulci segmentation
errors, we perform a non isotropic regularization of the field. This can be linked to
a 3D adaptation of the Nagao filtering.8” The field is smoothed with an anisotropic
filter that considers voxels belonging to the kernel of the sparse constraint field. We
perform the smoothing for a given number of iterations. At each step, a median
filtering of the field is performed. The median filtering of the field is equivalent
to a median filtering on each coordinate. This non-linear filtering is performed
only for sulcal points (therefore, the kernel for the convolution is adaptive). As a
consequence, the smoothed sparse constraint field is defined at the same points as
the original field.

In the following, the proposed approach considers the existence of a constraint
field w®, which is not, in principle, strictly limited to the incorporation of sulcal
constraints. Additional landmarks, of various dimensionality, can be introduced
within the same formalism.

4.3. Integration of sparse constraints

The sparse deformation field w® must be integrated in the formulation of the reg-
istration problem. As in Ref. 49, this information is incorporated as a third energy
term. The cost function thus becomes:

U(w; fv wc) = Z[Vf(svt) "Ws + ft(svt)F +a Z st - wTHQ
seS (s,ryec

+a ) flws — w? (30)

SES.

where af is a parameter that balances the weight of the sparse constraint.

The matching of local structures might not be correct for all the points. As a
matter of fact, there might be some segmentation errors, and these points should
not be used as a hard constraint. Furthermore, it might not be anatomically cor-
rect to assume a one-to-one correspondence between the landmarks. Therefore, we
introduce a robust estimator 13 on the local constraint term. The cost function is
modified as:

Uw,6,6:.0) = 6,(Vf wi+ f)* o > Bulllws —w, )

ses (s,ryecC

+a Y yo(llws — will)? +1(5s) + 2(Ber) + Pa(ys) . (31)

sES.
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The sparse constraint and the associated robust function introduce two new
external parameters, a¢ and 3. We have chosen a® > «, so that the constraint is
largely taken into account.

The minimization scheme is unchanged, with respect to our previous work.>®
We alternate between estimating the weights of the robust functions and estimating
the deformation field. Once the weights are estimated and “frozen”, the multigrid
estimation of the field is performed through an iterative Gauss-Seidel scheme.

The local constraint has a relative spatial influence for two reasons. Firstly, the
standard regularization term propagates the local constraint because the minimiza-
tion is alternated. Additionally, the multigrid minimization, described in details in
our previous work®® makes it possible to estimate a deformation model on specified
cubes. This propagates the local constraint to a large group of voxels that compose
the cube.

5. Experiments and Results

We have designed a comparative evaluation framework on anatomical and func-
tional data to assess the quality of registration methods. So far, the evaluation
framework has been applied to eight global registration methods.?”>5%-69 In this sec-
tion, we consider the three proposed methods, i.e. the Romeo method (see Sec. 2.3),
the non-linear local method (see Sec. 3) and the hybrid registration method (see
Sec. 4), and two other classic global registration methods for comparison purposes.
Evaluation is based on a set of meaningful anatomical and functional criteria. We
assume that anatomical landmarks can be superimposed between individuals and
that global registration methods should align these anatomical features. Since a
major issue associated with registration is the matching of anatomy and function
between individuals, we focus on the matching of cortical structures, i.e. grey and
white matter, gyri and sulci. Besides, we test the ability of each method to register
functional data and subsequently to reduce the functional inter-subject variabil-
ity. The underlying assumption is that the functional inter-subject variability can
broadly be decomposed into an anatomical variability, which might be estimated
with registration methods, and a residual functional variability. To be objective,
the evaluation must rely on features independent from the similarity used to drive
the registration process.

5.1. Data

We have acquired a database of 18 subjects, male, age 35 4+ 10, right handed and
healthy. Each subject underwent a T1-magnetic resonance (MR) SPGR 3D study
(GE 1.5T system, sagittal slices). The raw MR data have been linearly interpolated
so that the voxel resolution is isotropic (the voxel resolution is 0.9375mm, except
for four subjects where the resolution is 0.976562 mm). For all subjects, the volume
size is 256 X 256 x s where s is the number of slices and is subject specific.
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Fig. 7. Extracted sulci on the left hemisphere of one subject. From top to bottom: the superior
frontal sulcus, the precentral sulcus, the central sulcus, the lateral sulcus and the superior temporal
sulcus.

Additionally, for each subject and each hemisphere, six major sulci have been
extracted from MR volumes by the “active ribbon” method (see Sec. (g)). They
are: precentral sulcus, central sulcus, postcentral sulcus, superior frontal sulcus,
superior temporal sulcus and lateral sulcus. An illustration of such extracted sulci
for one subject is given in Fig. 7.

The functional data to register are MEG dipoles corresponding to a somatosen-
sory activation of right hand fingers (thumb, index, little finger) performed by 15
volunteers out of the 18 subjects database. MEG current dipoles have been recon-

105 and selected by choosing the most

structed using a spatiotemporal algorithm,
significant one in the 45+ / — 15ms window. Thus, three dipoles, one per finger, are
available for each of the 15 volunteers. The somatosensory paradigm chosen here
is a very simple well-known one and is thus convenient to this evaluation, since

our objective is not to explain complex physiological processes but rather to study
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the behavior of such registration methods. The considered dipoles are expected
to follow a somatotopic organization. First, they must be located in the left cen-
tral sulcus area, and more precisely in the back of the central sulcus, i.e. in the
post-central gyrus. Second, they must be identically ordered on the gyrus through
the database, i.e. from the little finger to the thumb via the index according to the
head-foot direction. Despite the simplicity of the protocol, reconstruction of the
sources in MEG,'% and MEG/MRI registration,'%® remain challenging tasks and
the position of the MEG dipoles can be marred with errors. As a consequence, some
of the dipoles are obviously mislocalized, like those situated at the wrong side of
the sulcus for example. Dipoles belonging to gyri adjacent to the central sulcus are
considered to be in the vicinity of the central sulcus.

5.2. Methods

Our comparative evaluation framework considers five global methods and three
local methods. The five global registration methods are:

e MI, a global rigid method based on maximization of mutual information.27-122

e PS, the Talairach Proportional Squaring!?® which is a global piecewise affine
registration method. An affine transformation is computed on each of the 12 sub-
volumes defined by the Talairach Proportional Squaring.

e S, the Statistical Parametric Mapping (SPM) which is a template-based
deformable registration.!

e R, the non-linear global “Romeo” registration method described in Sec. 2.3.

e H, the hybrid registration method presented in Sec. 4.

An arbitrary subject is chosen as the reference subject (see Fig. 10, top left). Given
one method, every subject (source image) is registered to the reference subject
(target image) so that all the registration results can be compared in the same
reference frame. All extracted features can then be deformed toward the reference
frame by the computed deformation field or transformation.

The three local registration methods are:

e LR, the local rigid method described in Sec. (h). This method is defined by a
change of basis and registers each dipole, initially expressed in its image coordi-
nate system, into the local system R;.

e NLL, the non-linear local method described in Sec. 3.3. Dipoles are first regis-
tered into R by the method LR. The statistical shape model of the left central
sulcus is built as explained in Sec. 3.2. The training set, the obtained mean shape
as well as the cumulative variance percentage and the variations along the first
mode can be observed in Figs. 8 and 9. For each subject S, the extended defor-
mation field (w | a) between x, the left central sulcus of S, and X, the mean left
central sulcus is computed and applied to each of the three dipoles of S. We
present two tests differing by the number of modes, m, used in the construction
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(b) ()

Fig. 8. Statistical shape model of the left central sulcus. The training set consists of 18 left
central sulci. Directions of the axes are as follows: x = foot-head, y = toward the outside of the
brain, z = anteroposterior. (a) Side view of the training set aligned in the local coordinate system,
Rs; (b) Side view of the mean left central sulcus; (¢) Variations of the first mode around the mean
sulcus, —3v/A1 < b1 < +3v/X1. The synthesized shapes are superimposed and a color is attributed
to each of them.

of the deformation field (—®,,b,y,) and so in the reconstruction of sulcus x:

— The first one is performed with all the modes (m = 17) and the method NLL
is then called NLL1.

— The second one is performed with only the five most significant modes of
variation (m = 5). The method NLL is then called NLL2.

Note that the local methods are only applied on functional data (see Sec. 5.4).

5.3. Ewvaluation on anatomical data

The five global registration methods are assessed on anatomical data according
to a set of criteria. In case of dense features, i.e. tissues, the evaluation criteria
measure overlap after registration and are referred to as “global measures”. In
case of sparse features, i.e. cortical sulci, the evaluation criteria measures distances
between features after registration and are referred to as “local measures”.
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Fig. 9. Percentage, 7p, of cumulative variance according to the number of modes retained for left
and right hemisphere; 7, = > ; A\j /A7 x 100. The training set consists of 18 left central sulci.

5.3.1. Global measures

Global measures estimate how deformed source volumes overlap with the target
volume. Three criteria are defined:

e Average volume. The average volume of deformed volumes is compared to the ref-
erence volume by visual observation. The mean square error between the average
volume and the brain segmentation mask of the reference subject is computed.
This criterion is partly related to the similarity measures used in each method
but PS.

e Overlap of grey matter (GM) and white matter (WM) tissues. For each subject,
grey and white matter are deformed toward the reference subject by the defor-
mation field or transformation corresponding to each method and a trilinear
interpolation. A total performance measure assesses the overlap.'?

e Correlation of Lvv. Correlation between deformed Lvv of each subject and the
Lov of the reference subject is computed. The Lvv operator?” has a very precise
interpretation: it can be demonstrated that, when limited to the cortical region
of interest, the crest of a gyrus corresponds to a negative value of the Lvv while
a deep fold like a sulcus corresponds to its positive part.

Figure 10 shows sagittal cut-planes through the average volumes as well as the
mean square errors, while Table 1 gives tissue overlap and Lvv correlation.

5.3.2. Local measures

Local measures focus on anatomical sparse features and especially estimate how well
cortical sulci are matched after registration. Visual observation is first performed.
Figure 11 shows how the left central sulci of the 17 subjects deform toward the
left central sulcus of the reference subject. Beyond visualization, we investigate two
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Reference subject

PS, MSE: 1064 S, MSE: 956

R, MSE: 624 H, MSE: 506

Fig. 10. Average volume. For each method (MI, PS, S, R and H), the average volume over the
17 deformed subjects can be compared to the reference subject (top left). The mean square error
(MSE) between average and reference volumes is also given for each method.



From Global to Local Approaches for Non-Rigid Registration 181

Table 1. Tissue overlap and Lvv correlation. For each method,
mean and standard deviation of these measures (overlap is
expressed in percent) are computed over the database of sub-
jects.

Methods ~ GM Overlap WM Overlap  Correlation of Lvv

MI 88.8£0.13 87.5+£0.17 0.01 +0.001
PS 93.5 +£0.06 95.1 +0.04 0.16 £ 0.003
S 94.1 £0.06 95.7 £ 0.04 0.25 +0.003
R 93.9 £ 0.07 95.2 +0.07 0.32 £ 0.008
H 93.5 £ 0.05 95.3 £0.05 0.27 £ 0.004

Method PS Method S

Method R Method H

Fig. 11. Visualization of left central sulci deformed toward the reference subject. Central, pre-
central and postcentral sulci of the reference subject are represented in lighter grey, with the
precentral sulcus at the top of each picture and the postcentral sulcus at its bottom. Darker grey
sulci are the sulci deformed by each method (MI, PS, S, R and H).

measures that reflect more or less the global positioning of sulci on the one hand
and the similarity of shapes on the other hand:

e Distance between registered sulci and reference sulcus. The control point-to-
control point distance between a deformed sulcus and the corresponding sulcus
of the reference subject is computed and averaged over all the sulci and all the
subjects to provide a compact dissimilarity measure between sulci deformed by
each method and the corresponding reference sulcus. Results are given in Table 2.

e Statistical shape analysis of registered sulci. For each sulcus, e.g. left central
sulcus, a principal component analysis is applied on the set of deformed sulci.
The reference shape is this time the reference sulcus (instead of the mean shape,
see Sec. 3.2.4). We consider the trace of the covariance matrix, it reflects the
dispersion of the registered sulci with respect to the corresponding reference
sulcus. For each method, Table 2 compares the traces for three different sulci:
left central sulcus, left frontal superior sulcus and left lateral sulcus.
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Table 2. Local measures. First column: average distance (in voxels)
over all sulci and all subjects, between registered sulci and the corre-
sponding sulcus of the reference subject. Three left columns: trace of
the covariance matrix (divided by the number of subjects) for three
sulci: left central sulcus, superior temporal sulcus and lateral sulcus.

Method  Mean Distance  Central  Superior Frontal Lateral

MI 11.5 621 622 1373
PS 10.7 510 859 1233
S 8.7 475 589 930
R 10.8 655 682 1052
H 1.2 87 132 119

5.3.3. Discussion

According to the first global criterion, we distinguish methods MI and PS on the
one hand and methods S, R and H on the other hand, with method H perform-
ing even better. Methods PS, S, R and H appear quite similar in terms of tissue
overlap while method MI gives the poorest results. Conversely, none of this method
produces satisfactory results in regards to the correlation of Lvv. Accordingly, with
respect to global measures, we note a difference in favor of non-linear global meth-
ods versus rigid methods. This observation might suggest that performance depends
on the degrees of freedom of the estimated transformations. Indeed, the ranking of
the methods according to their degrees of freedom and to these results would be
more or less the same, with MI and PS on the one side, and S, R and H on the
other side.

More surprisingly, local measures cannot reveal the superiority of one global
method over the others, though method S performs slightly better. As expected,
method H which integrates cortical constraints in the registration process gives
significantly better results.

5.4. Fwvaluation on functional data

The five global methods and the three local methods are now compared in their abil-
ity to register functional data. In contrast with the previous section on anatomical
data, the used functional data, i.e. MEG dipoles, are not involved in the registra-
tion process. In other words, this part of the evaluation is completely independent
of the registration process.

We design several criteria to assess the quality of the registration. This one
is mainly measured in terms of dipole dispersion since registration methods are
expected to reduce dissimilarities within the original data.

We observe in Fig. 12 that the dipoles after registration with the reference sulcus
superimposed for global and hybrid methods, and with the mean sulcus superim-
posed for local methods. Methods MI, PS and R show quite similar dispersion while
methods S and H display reduced dispersion. Compared to the LR method, method
NLL gathers the dipoles around the plane of the mean sulcus.
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Method MI Method PS Method S Method R

Method H Method LR Method NLL1 Method NLL2

Fig. 12. Registration of MEG dipoles corresponding to a somatosensory activation of the little
finger by each method. The visualized sulcus represents the left central sulcus of the reference
subject for global and hybrid methods (MI, PS, S, R and H) whereas it represents the left central
mean sulcus as local methods for local methods (LR, NLL1 and NLL2).

It is possible to numerically assess these observations by computing the covari-
ance matrix and its determinant which provides objective measures of the 3D
dispersion of the registered dipoles. These results are presented in Table 3. The
determinant indicates the smallest dispersion for method NLL. We note that PS
and S perform the best among the global methods, but they are outcast by the
hybrid method which significantly reduces the dispersion in comparison with the
unconstrained method R.

The flattening in the z direction by NLL method could be expected since the
deformation is normal to the mean sulcus plane in this coordinate system. The
observed anatomical deformation between the two sulci is indeed more impor-
tant along this axis and the NLL method is specifically designed to interpolate
it between the two sulci. With a limited number of modes (method NLL2), the
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Table 3.  Determinant of the covariance matrix of MEG dipole
localizations for somatosensory activations (thumb, index fin-
ger, little finger) after global registration methods: MI, PS, S,
R, hybrid registration method: H and local registration meth-
ods: LR, NLL1 and NLL2.

Methods MI PS S R

Thumb 175873 65201 79000 119487
Index finger 241181 112660 125000 245742
Little finger 268867 98649 220048 270147
Methods H LR NLL1 NLL2
Thumb 33387 217671 6439 30793
Index finger 73612 292114 13479 45125
Little finger 62647 343260 18735 91921

observed dipole dispersion, in accordance with the determinant of the covariance
matrix, is larger than with all the modes (method NLL1), but still lower than
with LR method. This shows the interest and the relevance of a compact shape
representation and this can be particularly useful to treat larger databases. Using
only five modes in the construction of (—®,byy,) can be considered as an approxi-
mation regularized by the training. This keeps the “principal shape” of the sulcus
characterizing the subject and discards atypical features of the database. These fea-
tures may result from processing errors (like non-systematic segmentation errors)
as well as from real non-typical shape features present in the training set.

The assumption underlying this study, stating that a part of the functional
inter-subject variability is encoded in the anatomical variability, also states that
a part is decorrelated from the anatomy and cannot be reduced with an anatom-
ical matching. The results show that methods integrating anatomical constraints
like the hybrid method H or methods fully based on anatomical constraints like
the non-linear local method NLL indeed reduce the initial functional inter-subject
variability. The residual variability we can observe results from this irreducible vari-
ability plus, of course, the errors deriving from the preprocessing stages (multimodal
registration, dipoles reconstruction, etc).

We state a significant difference between the hybrid and local methods and
the global methods. The case of the PS method, which distinguishes itself from
the other global methods, may be explained since method PS is by construction
relevant and precise in the central region (it in fact relies on the location of the
anatomical points AC-PC). To highlight the significant difference observed between
the global methods and methods H and NLL we may note that global methods rely
more on luminance information than on anatomical information, whereas the H and
NLL methods explicitly use, partly or fully, anatomical constraints.

6. Conclusion

This chapter has described and evaluated one example of each registration type:
global, local and hybrid.
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The global method relies on a dense robust 3D estimation of the optical flow
with a piecewise parametric description of the deformation field. It uses an effi-
cient minimization framework, both multiresolution and multigrid with robust esti-
mators. This optimization scheme is not limited to the estimation of the optical
flow, but may as well be adapted to other similarity measures, leading to differ-
ent registration applications. The adaptative partition of the volume accelerates
the algorithm and improves the estimation in the regions of interest, tissues for
instance.

The local method jointly relies on a modeling of anatomical landmarks and
on a consistent way of extending their deformations in the vicinity of their initial
support. The statistical modeling consists in learning the variability inherent to a
training set and it is applied to relevant anatomical landmarks: the cortical sulci. It
provides a compact and precise description of sulci shapes and of their variations.
Such a model is independent from a reference subject, since it is relative to a local
coordinate system linked to a mean shape. Under the assumption that inter-subject
functional variability is partly encoded in anatomical variability, we have presented
an original and consistent framework to extend the matching of cortical sulci in
the vicinity of the sulci, thus enabling functional activations in MEG dipoles form,
to be merged in this single local coordinate system. This registration framework is
general and not restricted to MEG data.

The hybrid method takes advantage of both a photometric registration method
and a landmark-based method. It naturally adapts to the energy-based formalism
of the global method by adjoining the local sparse constraints. Similarly to the local
method, we have chosen to incorporate sulcal constraints, since sulci are relevant
brain cortical landmarks from an anatomical and functional point of view.

These three methods have been evaluated in a comparative framework in terms
of their ability to register anatomical data, on the basis of global and local measures,
and on their ability to register functional data. The efficiency of the global method
has been proven in regards to global anatomical features, such as grey and white
matter. As expected, the local method has been revealed more precise to register
sparse functional activations located in the vicinity of the cortical landmarks, and
it has been shown to significantly reduce the observed functional inter-subject vari-
ability. As the hybrid framework is concerned, we have demonstrated the benefit of
introducing sulcal constraints for the registration of cortical areas. Moreover, com-
pared to the global method, this framework significantly improves the registration
of functional data.

Registration is a key issue in many neurosciences and neuroclinical applications.
It contributes to jointly apprehend the various image data, e.g. data from multi-
modalities and/or from multi-subjects, and subsequently to improve their exploita-
tion for clinical needs. It is particularly involved in tasks such as: group analysis,
cross-population studies, anatomical and/or functional atlas building for normal
and diseased populations. Global, local and hybrid approaches can address these
issues at different levels. For example, global approaches will be more dedicated for
large group analysis not requiring a particular focus on specific brain areas whereas
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local approaches will be more precise for a particular brain structure of interest
study or for a functional search in a specific brain area.

Future research directions could focus on a further development of statistical

models built by variability learning. Indeed, such models can be used as an a priori
knowledge on the sought transformation in each of the three presented cases and
should therefore benefit to applications such as group analysis.
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The explosive growth in medical imaging technologies has been matched by a
tremendous increase in the number of investigations centered on the structural and
functional organization of the human body. A pivotal first step towards elucidating the
correlation between structure and function, accurate and robust segmentation is a major
objective of computerized medicine. It is also a substantial challenge in view of the wide
variety of shapes and appearances that organs, anatomical structures and tissues can
exhibit in medical images.

This chapter surveys the actively expanding field of medical image segmentation.
We discuss the main issues that pertain to the remarkably diverse range of proposed
techniques. Among others, the characteristics of a suitable segmentation paradigm, the
introduction of a priori knowledge, robustness and validation are detailed and illustrated
with relevant techniques and applications.

Keywords: Medical imaging; segmentation; review; segmentation paradigm; a prior:
knowledge; robustness; validation.

1. Introduction

Imaging technologies have undergone fast paced developments since the early days
of anatomy. Magnetic resonance imaging (MRI), computer-assisted tomography
(CT), positron emission tomography (PET) and an increasing number of other
techniques (see Fig. 1) now permit precise analysis of post-mortem tissue and non-
invasive exploration of living organisms. They can elucidate the structures of organs
and cells, observe and help understand their function, and give clinicians the means

to monitor their dysfunctions, or assist in the removal of pathologies.
A deeper understanding of both the anatomical characteristics of the tissues

and organs of the human body (or, more precisely, of the sub-structures we dis-
tinguish within them) and of their inter-relationships is crucial in diagnostic and
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Fig. 1. A collection of imaging modalities: (a) MR image of the human brain, (b) digital mam-
mogram, (c) myelin-stained histological section of the human visual cortex, (d) PET image of the
human brain, (e) CT scan of the chest.

interventional medicine. The need, shared across many levels of description, for
such correlation between structure and function is exemplified by the vast number

of studies analyzing cortical structures (in populations with a particular disease,'2”

through the developmental cycle!® or comparing normal and diseased subjects'®?),

quantifying tissue loss, gain or structure volumes,?® %

176,185

or aiming for automated

diagnosis of disease, among others.
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Fig. 1. (Continued)

While qualitative analysis may sometimes be sufficient for diagnosis, quantita-
tive analysis for which segmentation and labeling are absolute prerequisites, is nec-
essary for a variety of applications: longitudinal monitoring of disease progression or

72,157 6,78:90 radiotherapy
38,193

remission,
treatment planning
Even so, accurate segmentation of anatomical structures and tissues in medical

pre-operative evaluation and surgical planning,
131 or statistical analysis of anatomic variability.
images is especially challenging, given the wide variety of shapes, sizes and appear-
ances they can present. Still the delineation process calls for high precision as the
quality of the analysis generally depends on how accurately the various structures
are identified. For instance, given the corpus callosum’s key role as the primary cor-
tical projection system, regional analysis of its structure is important in assessing
several neurological disorders (Alzheimer’s disease, vascular dementia, dysplasias).
Nonetheless, subtle variations in shape, relative to a mean callosal delineation, are
observed between and within patient and control groups, and this makes it difficult
to detect and classify abnormal structural patterns. As a result, intense debate still
rages on whether different callosal regions undergo selective changes in each of these
disease processes and whether these are systematic differences in neuropsychiatric
disorders such as autism or schizophrenia. These controversies may be alleviated
by precise and reliable segmentations, applied to large image databases.
Segmentation has traditionally been tackled by human operators. However the
many drawbacks of manual delineation (lack of reproducibility, a priori biases, lack
of sufficient resources to handle ever-growing databases) favor the use of automated
methods. Nonetheless, to reach the desired accuracy, many difficulties must be
overcomed: input images may be noisy, poorly contrasted and full of “decoys” (many
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structures are similar in shape or intensity), the target structures may be highly
variable in geometry, etc.

We propose in this chapter an overview of the ever-expanding palette of auto-
mated segmentation techniques applied to biomedical images. Remarkably, the
diversity of the developed techniques is more than matched by the variety of the
objectives (disease diagnosis, surgical planning, atlas building, etc), of the segmen-
tation targets and of the input imaging modalities, with substantially different
hypotheses and requirements for each of them. Rather than arbitrarily privileging
a particular outlook over another, we discuss the main issues associated with these
application-specific parameters, and the constraints they entail. More algorithm- or
application-oriented taxonomic reviews are available elsewhere.!4:32,117,138,180,224
A brief account of relevant techniques accompanies the discussion of the issues. A
detailed summary of each method or application would be beyond the scope of this
chapter. Instead, we provide a generic description of the main algorithmic classes
and more specifically discuss their interactions with the issues we have identified.

We begin with some reflections on the definition of segmentation. Section 3
then characterizes the input images from which organs and structures must be
segmented, most especially in terms of dimensionality. We also introduce the com-
monly used radiological modalities referred to in this chapter, considering the dif-
ficulties they create for segmentation techniques. The selection of an appropriate
segmentation paradigm, which depends on the envisaged application and the imag-
ing modality, is examined in Sec. 4. We analyze how the flexibility, locality and
continuity of the model impact the segmentation performance. Section 5 discusses
the introduction of a priori knowledge and medical expertise to guide the segmenta-
tion process towards more probable shapes. We then comment on the robustness of
segmentation techniques in Sec. 6 where the difficult matters of initialization and
the trade-off between genericity and application-specificity are emphasized. Vali-
dation is discussed in Sec. 7. We analyze its inherent contradictions (lack of true
gold-standard due to inter/intra operator variability, conflicting error measures,
application specificity) and how they bear on issues raised so far. Finally, Sec. 8
comments on the future of medical segmentation and the underexplored territories
of semi-automated and manually-assisted segmentation.

2. Segmentation Criteria

Biomedical images, being digital pictures, are organized collections of values linked
via a chain of treatments and sensors to some underlying physical measures (radia-
tion absorption, acoustic pressure, radiofrequency responses, etc). These measures
are related to the physical characteristics of the imaged tissues (density, chemical
composition, cellular architecture). In that respect, these images are a means to
analyze otherwise undecipherable raw measurements. The necessity to understand
the measured values then becomes that of extracting meaningful information from
the associated images, that is, to establish a relationship between the acquired data
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and the associated physiological phenomena. Segmentation is the first step on the
path towards understanding these complex inter-relationships.

Irrespective of the envisioned application, segmentation essentially consists of
partitioning the input image into a number of disjoint regions, so as to satisfy
in each region a given criterion. This criterion may be derived from the intensity
distribution of the underlying voxels in the image, or from the morphology of the
region, among other choices.

The first difficulty in designing an adequate criterion is characterizing the objec-
tives of the segmentation process, which may vary quite subtly from one application
to the next and often depend on the object being segmented. For instance, the seg-
mentation accuracy required to construct anatomical atlases (built by averaging
the shapes of several segmented instances of the structures in the atlas) may be
somewhat less than that required to quantify gray matter loss in a neurological
study.!”? Indeed, missing the true boundary between gray and white matter might
significantly bias the analysis in the latter case, whereas the errors introduced by
the atlas shape averaging process are often as significant as those of a standard
segmentation step. Therefore, even though correctly dealing at the criterion level
with partial volume effect voxels (voxels to which multiple tissues contribute, which
result in blurred edges at the surface of structures) may not be so crucial for atlas
building, it is pivotal for accurate quantification of subtle tissue changes.

The second difficulty is linked to estimating the effects of noise and of the
plethora of artifacts that plague the input images (bias fields, projection errors, vari-
ability in tracer uptake times, etc). Together with more structure-specific param-
eters (contrast with respect to surrounding tissues, shape variability), these are
bound to influence the choice of a segmentation criterion, most especially in terms
of its leniency and permissiveness (and false positives and negatives).

In turn, the characteristics of the chosen criterion will affect the efficiency of the
optimization or evolution process to which most segmentation applications can be
reduced (see Sec. 6.3). Evaluating this efficiency, that is, assessing the performance
of the segmentation system, is however particularly difficult in the absence of a
satisfactory ground truth (we comment on this validation issue in Sec. 7).

2.1. Hard segmentation

From a mathematical point of view, image segmentation is an injective process
that maps sets of voxels (low-level numerical bits of information) to annotated
regions (high-level semantic information). These annotations may be actual labels
(in reference to some dictionary of labels) or simply ordinal numbers to differentiate
the regions.

More formally, let I be an input image, defined by its value (usually a scalar
intensity value, but sometimes a real-valued vector or even a tensor) at each point
of its domain Q. Let w be a non-empty subset of 2. Then let A be a predicate (the
above mentioned criterion restricted to a single target organ or structure) which
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assigns the value true or false to w. A segmentation of image I for predicate A is a
partition of Q into n disjoint non-empty subsets {wi}?:1 such that:

o Vi, 1<i<n, A(w;) = true; and
o Vi j, 1<i,j<n,i#j, ANw; Uw;) = false.

For example, in thresholding approaches (see Sec. 4.2.2), perhaps the simplest image
segmentation approach, regions in I are defined by creating a partition of the image
intensities.'®0 If we restrict I to take values in [0, 1], a choice for A could be:

A Q — {true, false}

true ifVaecw, I(z)>46
w
false otherwise

where 6 € [0,1] is a threshold, usually determined from the image intensity his-
togram (see Fig. 2).

Note that A often relies on a neighborhood of w; to assign it a boolean value
(see Sec. 4.2): in other words, it is not a uniformity predicate.

2.2. Soft segmentation

Fuzzy segmentation®! generalizes this predicate to a membership function, provid-
ing an efficient means to deal with partial volume effects.

Given a set of K tissue or target classes C' = {c1,...,cx}, K membership
functions are designed: V k € [1, K], py : Q — [0, 1], subject to the constraint

K
Ve, Z,uk(x)zl.
k=1
They represent the contribution of each tissue (i.e. volume fraction) at every voxel
in the input image.

A number of fuzzy clustering techniques have been developed to automate the
computation of these membership functions.'®® In the context of brain tissue seg-
mentation, these classes may represent gray matter, white matter or cerebrospinal
76,137 Probability densities can also be substituted for fuzzy

membership functions within a classical a posteriori maximization/expectation-
| 97,212

fluid for example.

maximization framewor

191,193 wwhich directly use proba-

Yet, apart from probabilistic and fuzzy atlases
bility densities of tissue memberships, most clinical applications require the actual
boundaries of the segmentation targets to be accurately determined. Consequently,
suitable cut-off and thresholds have to be selected to turn soft segmentations into

hard ones, a non-trivial problem in itself.

3. Input Data

Each imaging modality comes with a specific set of characteristics (structural or
functional measures, actual spatial and temporal resolution, effective field of view,
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Fig. 2. The corpus callosum (c.c) and its neighbors in a T'1-weighted MRI section (a) and their
associated intensity distributions (b).

signal to noise ratio, etc) and sheds a different light on the studied pathology or
organ. Ideally, segmentation algorithms should be fed images acquired from the
full battery of existing modalities: MRIs to act as anatomical references, histologic
sections for precise pathological tissue analysis, PET/SPECT or functional MRI
data to reveal metabolic or functional relationships, etc. However, practical consid-
erations beg for compromises to be found. Imaging resources may be unavailable
(not only are radiological machines very expensive, but each acquisition is also
costly), there may be potential health hazards linked to the invasiveness of data
acquisition (X-ray CT or PET radiations must be used with caution, histology is a
post-mortem analysis), etc. Often, the availability of a set of imaging modalities will
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determine the medical objectives which can be reasonably achieved. Conversely, the
envisaged applications (or standard diagnostic protocols) condition the acquisition
of appropriate modalities. In any case, segmentation systems have to be designed,
or adapted, accordingly.

3.1. Image characteristics

Since biomedical images are located at the interface between physical measure-
ments and human cognitive processes (namely, image interpretation and analysis),
their characteristics are intimately linked to those of both the imaging equipment
that acquired them and of the mathematical model that allows their algorithmical
manipulation. These two sets of features are intricately related. For instance, while
X-ray films are inherently continuous in space, segmentation systems manipulate
them as a discrete set of pixels, once digitized. Conversely, most deformable model
approaches (simplex meshes,®' medial representations,'#? etc see Sec. 4) operate
on discrete input images, such as MRIs or CT scans, represented as continuous
functions by using interpolation techniques, thereby achieving sub-voxel accuracy.
Images can then be considered either as continuous functions observed at a con-
tinuous or discretized positions in space, or as a set of discrete intensity values
organized on a regular or irregular lattice. They may also be treated as observa-
tions of a random vector (where each component is a random variable associated
to a site in a lattice) or even as the realization of a stochastic process (for Markov
random field approaches).

As much a characteristic of the input images as one of the conceived applications,
dimensionality (the dimension of the space in which the segmentation algorithm
operates) may also significantly affect the choice, implementation and behavior of a
segmentation system. For instance, in one of the corpus callosum statistical variabil-

190 only the mid-sagittal sections of the input MRI’s

ity studies mentioned above,
were selected for delineation, whereas Narr et al.'®7 used 3 additional 1 mm thick
slices on each side. Clearly, even if a fairly simple 2D algorithm should be sufficient
to automate the callosal segmentations in the first case, the segmentation of actual
surfaces would be better handled in a true 3D segmentation system in the second
case: the callosal surface obtained would be smoother and more globally coherent
than those resulting from concatenating successively segmented 2D sections.
Incidentally, while some modalities are inherently 3D (MR for instance, even
though images are acquired slice by slice), or inherently 2D (histological slices),
others are so only artificially. X-ray images for instance are 2D projections of a
3D object; conversely, CT scans are 3D volumes reconstructed from a series of 2D
projections (see Fuchs et al.5! for a review). Projections often make for more dif-
ficult segmentations as the target boundaries of structures may be substantially
distorted and the contours of other organs may be intercepted by the projection
and may pollute the image, further umpairing precise target localization. Further-
more, 3D reconstruction induces many artifacts which may reduce the signal to
noise ratio.%%:%9 Note that 2D segmentation techniques are sometimes applied to
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7:101 This could be for complexity reasons (real-time

3D data, one 2D slice at a time.
constraints, limited memory resources), and algorithmic reasons (thresholding tech-
niques, for instance, are not affected by the dimensionality of the data space as they
do not rely on neighborhood considerations: only the intensity at the considered
voxel is taken into account) or application-oriented reasons (the corpus callosum
may be easier to segment in a series of coronal slices on each side of the mid-sagittal
plane than in a 3D MRI taken as a volume).

A hybrid dimensionality case, brain cortex parcellation deals with the segmen-
tation of patches on 2D surfaces folded in 3D space (2D manifolds) and often

152,160,195

requires specialized segmentation systems where the expected geometry

and topology of the manifolds have to be woven into the contour-finding algorithms.

3.2. Modalities

We consider in this chapter only the most commonly used radiological modalities.
107 and Sprawls!™ provide in-depth introductions to the underlying phys-
ical phenomena.

Arguably the most common modality, radiography encodes in each voxel of the
generated image the accumulated density of the structures intercepted by a beam of
ionizing radiations (X-rays). This is a fast acquisition process which yields a particu-
larly high contrast between hard structures (such as bones) and soft tissues (organs).
Unfortunately, radiography is also substantially invasive, suffers from the projec-
tion issues mentioned above (poor localization, decoy structures), and provides only
limited information about soft tissues. In the related fluoroscopy, a contrast agents
is injected into the patient and a moving X-ray beam enables the observation of
structures in vivo and in real time. Among other applications, digital mammogra-
phy has proved invaluable for the early detection of tumors and microcalcification

Macovski

clusters. In view of the poor contrast of structures in breast images, the robust
detection of tumors is more important than the accuracy of their segmentation.

Another X-ray-based modality, computed tomography (CT) alleviates most of
the projection issues of planar radiography. It provides excellent soft tissue constrast
and allows the 3D visualization of deep internal structures.

In ultrasound imaging, high frequency sound waves replace the ionizing radia-
tions of radiographic techniques. The sound waves emitted by a transducer moved
over the patient skin by an operator, are reflected back to the transducer at the
interfaces between the traversed organs or tissues. An image of the variations of
accoustic impendance can subsequently be reconstructed. Ultrasound systems are
completely non-invasive, operate in real time and allow multi-planar imaging. Their
low cost has ensured a wide dissemination. They can observe static organs and follow
their dynamic evolution. They are, however, plagued with high level of speckling.
Furthermore, bones and air act as opaque screens and prevent the visualization of
deep structures.

The modality of choice for segmentation systems, magnetic resonance imaging
(MRI) records the radio-frequency signal emitted by the protons of water molecules
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after excitation by a strong magnetic field. It provides excellent soft tissue contrast
(most especially as it can be tuned by using an appropriate pulse sequence), high
signal-to-noise ratio and good spatial resolution (commonly 1 mm?) to the detriment
of the temporal resolution, unfortunately (20 minutes for a standard examination).
Besides, a number of intensity inhomogeneities and artifacts'%?:17! complexify the
segmentation task. A large number of dedicated overviews are available.!4:32.224

In scintigraphy, radioisotopes are injected into the patient and a series of cameras
correlate the emitted beams to reconstruct a 3D map of increased or decreased
activity. It is an inherently functional modality, which unfortunately suffers from
poor spatial resolution.

4. Segmentation Paradigm

A segmentation paradigm encompasses under a single umbrella the many consid-
erations about the nature of the segmentation application (statistical variability
analysis, CAD, tumor tracking), the associated operational constraints, the algo-
rithmic class of the selected segmentation technique and its working hypotheses,
among others. As such, it depends on the envisioned application and on the imaging
modality employed. For instance, segmentation of gray and white matter in a cere-
bral MRI induces vastly different constraints from that of a vertebrae in an X-ray
of the vertebral column, in terms of target topology, prior knowledge, choice of tar-
get representation, signal to noise ratio, and dimensionality of the input data. The
selection of an adequate segmentation paradigm is therefore pivotal as it affects how
efficiently the segmentation system can deal with the target organ or structure, and
conditions its accuracy and robustness. We detail below the foremost compromises
and parameters that should shape an educated choice.

4.1. Bottom-up versus top-down

Reminiscent of the bipolar character of the couple image/application, segmentation
involves extracting from the input image the relevant features (texture patches,
edges, etc) associated with the target structure and immersing these into a higher-
order model of the target (surface mesh, m-rep, etc). These are then passed to
the application for analysis. Not surprisingly, this dual nature is reflected in the
dichotomy between feature-extraction algorithms (bottom-up) and model-based
approaches (top-down).

Bottom-up strategies can usually be decomposed into three stages: first, fea-
tures are extracted, then they are grouped into several regions or contours, which,
finally, serve to identify the structure’s boundaries. However, since these techniques
usually consider only local neighborhoods without a higher order comprehension of
the nature of the image,* they are prone to generating invalid outlines. For instance,

2That is, they operate on values attached to the image voxels without necessarily establishing a
relationship with the reality that they represent.
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in edge detection, all extracted contours do not correspond to the boundaries of the
target structure: some of them may merely follow decoys or noise artifacts. These
problems are rooted in the inherently numerical nature of the data manipulated
by these low-level model-free algorithms, and aggravated by the underconstrained
nature of the segmentation of highly variable structures. As such, image-level seg-
mentation techniques (region growing, edge detection, etc) tend to operate ade-
quately only under substantial expert guidance.

On the other hand, high-level model-based approaches (top-down strategies)
operate on semantic concepts (shape, appearance, relative position with respect to
surrounding structures, etc) associated with a representation of the actual segmen-
tation target, extracted from the image. They are linked to the interpretation and
understanding of the input data and can overcome many of these limitations.” As
such, top-down strategies provide a convenient framework to include a priori knowl-
edge and medical expertise (see Sec. 5). Briefly, they also consist of three stages:
model building (based on prior knowledge or on structures segmented a priori),
model initialization (initialization of the parameters that control the model’s shape,
position, etc), and model matching (adaptation of the parameters to the input
image). By considering the target boundaries as a whole, they become a lot more
robust to noise and imaging artifacts than bottom-up techniques. Unfortunately,
they are also potentially less accurate. Indeed, the reference a priori models which
act as shape, intensity, or distance constraints effectively prevent the segmenta-
tion of what they identify as noisy or invalid contours. When these correspond to
actual noise, robustness is increased. However, when they correspond to the true
contours of the target structure, accuracy decreases (Section 6 comments on this
trade-off between accuracy and robustness, which also relates to locality, flexibility
and continuity).

Often, a segmentation system will implement a mixture of bottom-up and top-
down approaches, either explicitly'® or implicitly (as with deformable models, see
Sec. 4.3).

4.2. Locality

Locality refers to the extent of the neighborhoods around the voxels of the input
image considered by the segmentation process. It is inherently linked to the
segmentation strategy discussed above. Namely, very local techniques are usually
considered bottom-up approaches (the size of the neighborhood being too small for

bIncidentally, whereas model-based approaches usually require a training set of segmented con-
tours as an input, low-level feature extraction is generally performed without reference to an
a priori contour model. Such distinction between the problem of contour modeling and that of
edge extraction is characteristic of Marr’s vision paradigm.’'* The interest of that dichotomy lies
in its ability to decompose the segmentation problem into independent and manageable tasks.
Unfortunately, it may also result in a unidirectional and somewhat irreversible cascade of errors.
Furthermore, due to image noise and the image projection process, local model-free edge extraction
is an ill-posed problem with no unique solution.!4?
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an actual model to be used) whereas global techniques are ideally suited for intro-
ducing shape or appearance models. Local segmentation methods tend to be very
fast, owing to the small number of parameters considered at each voxel.” In the
absence of a model, they are more accurate (immune as they are from constraints
linked to the geometrical arrangement of voxels or to their intensity distribution)
but they are also more sensitive to noise and inhomogeneities. Conversely, larger
neighborhoods increase noise robustness at the expense of accuracy.

In the absence of high-level models, local techniques are effectively a special
case of classification algorithms. Segmentation then consists in deciding, for every
voxel in the input image, whether or not it belongs to the target structures, based
on attributes (intensity values, geometric descriptors or other statistics) collected
in its immediate neighborhood.

On the other end of the locality spectrum, we find most of the model-based
(top-down) approaches. These use the maximum amount of information that can
be gathered from the underlying image to fit the parameters of the models they
rely on and to guide the segmentation process (the considered neighborhood is then
often extended to the voxels in the vicinity of the entire model surface, or even to
the whole image).

After a generic description of voxel classification methods, we detail more specific
local approaches in Sec. 4.2.2. The main global techniques, deformable models and
atlas warping approaches are discussed later in Secs. 4.3 and 5.2.

4.2.1. The classification paradigm

Classification techniques associate every voxel in the input image with a unique
label, or class, where classes are built from the voxel attributes®® (usually, one class
per segmentation target, plus a “non-target” class). In the simplest general case,
voxels are classified independently of each other as the criteria employed, often
based on distances between attribute vectors, and do not take into account their
geometric arrangements. As such, classification is really only a pre-processing step.
Connected components must be extracted from the classification map to effectively
segment the input image.

From a pattern recognition point of view, classification techniques aim to parti-
tion the multidimensional feature space formed by the voxel attributes. This could
be a supervised or unsupervised process.

Supervised classification. Supervised methods consist of two phases: a training
phase in which a learning set of a priori segmented structures help adjust the classi-
fier parameters, and a classification phase where a previously unknown input image
is processed with the trained classifier. A large number of supervised techniques are
available in the literature (see Duda and Hart®® for a review).

In view of the difficulty of modeling the probability distribution of the target
voxel attributes, non-parametric techniques, which make no hypothesis about the
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class distributions, have proved popular. Nearest-neighbor classifiers for example
assign a voxel to the same class as the voxel in the training set which is closest
in terms of attribute distance (often, the class of the learning set voxel with the
closest intensity). A generalization of this straightforward approach, a k-nearest-
neighbor classifier”™ assigns classes based on a majority vote of the k closest voxels
in the learning set. Parzen window techniques extend the majority vote to a rectan-
gular or spherical neighborhood of the attribute space centered on the considered
voxel.

When the distribution of the attribute values is better behaved, parametric
classifiers may increase the segmentation performances.’® Often, voxel attributes
are assumed to be drawn from a mixture of Gaussian distributions, as with the
maximum likelihood classifier (Bayes method). Training such a classifier requires
estimating the means and standard deviations of the Gaussian distributions and
their mixing coefficients from the learning set of a prior: segmented structures. In
the classification phase, voxels are then assigned to the classes which maximize the
posterior probability.

Unsupervised classification. When no a priori learning set is available to train
the classifier, unsupervised classification (clustering) become a more suitable alter-
native. In the absence of an initial parameter fitting phase, clustering techniques
often maintain, for each class, a model of the characteristics of their attribute dis-
tribution. These models are iteratively updated during the classification process,
which usually alternates between classification and model fitting. The training phase
is consequently distributed over the entire course of the classification phase.

The unsupervised version of the k-nearest-neighbor algorithm, the k-means clus-
tering algorithm®" models each class by its mean attribute vector and partitions
the voxels in the input image by assigning them to the class whose mean is clos-
est. By introducing fuzzy membership functions into the classification step, the
fuzzy c-means algorithm® allows for a soft segmentation of the input image. A
parametric unsupervised technique, the expectation-maximization algorithm (EM)
assumes a Gaussian mixture model for the voxel attributes and iterates between
the computation of the posterior probabilities associated to each class and the max-
imum likelihood estimation of the model parameters (means, covariances, mixing
coefficients).!'? Note that unsupervised techniques are often more sensitive to the
initial values of their parameters than supervised classifiers.?*

Feature selection. Often, the voxel intensity alone is considered as an attribute.
However, when multiple attributes are available, an “optimal” subset of attributes,
as discriminating as possible, must be selected while keeping the number of
selected attributes reasonably small. This selection task (also called feature
reduction) is a fundamental problem in statistical pattern recognition. Indeed,
reducing the number of attributes saves computing resources by discarding
irrelevant or redundant features. It also alleviates the effects of the so-called
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curse of dimensionality,®> which links the ratio: sample size (in the learning
set) /dimensionality of the feature vector to the classification performances.®

Given an objective function, which evaluates the performance of the classifier
on an a priori set of measurements, the feature selection problem then boils down
to a search problem in the combinatorial space defined by the voxel attributes.
Trying out, in a brute force manner, every possible combination of features can be
prohibitively costly when the number of attributes is high (although, as argued by
Cover,*? traversing the entire search space is the necessary condition to an optimal
selection). Specific sub-optimal selection strategies have therefore been suggested
in the literature. They either rely on a priori knowledge about the classification
problem at hand to discard features, or use generic optimization heuristics when
no domain-specific information is available (or when it is too difficult to exploit).
Algorithms as diverse as stochastic annealing, genetic algorithms, max-min pruning,
principal component analysis or neural network node pruning have been introduced
(see Jain et al.®* for a taxonomy of feature selection algorithms).

Applications. In view of the tremendous shape and topological variability of the

human cortex, brain tissue segmentation in MRI is a natural application for clas-

102 The many intensity inhomogeneities and bias fields men-

71,103,137,158

sification techniques.
tioned in Sec. 3.2 tend to favor unsupervised clustering approaches
even though a priori intensity models of the cerebral tissues may also prove
adequate.?3:22 However, due to its highly convoluted morphology, the gray matter
ribbon comprises a large proportion of partial volume effect voxels in typical T1-
weighted MRIs. There are often better handled by fuzzy approaches.??:1%¢ Classi-
fiers are also ideally suited to extract lesions and tumors in digital mammography>°
or in MRI3! using a combination of intensity and texture attributes.

4.2.2. A few classification approaches

We detail in this section three commonly used classification techniques in decreas-
ing order of locality (thresholding, region growing and Markov random fields) and
briefly comment on more exotic classification techniques at the end.

Thresholding. As far “left” as could be on the locality spectrum, thresholding
algorithms (see Sankur et al.,'%3 Sahoo et al.1°
do not consider any neighborhood in the image per se: the classification is based
solely on comparing the voxel’s intensity and an intensity threshold that is set in
advance, or determined globally from the intensity histogram of the input image. A
partition of the input image is therefore obtained by partitioning the image inten-
sities. When the histogram is multi-modal, several thresholds can be computed.

or Lee et al.”% for broad overviews)

¢Namely, when the dimensionality of the feature space increases, more parameters must be esti-
mated, which enhances the risk of overfitting the model: adding new descriptors then usually first
increases the classification performance, which attains a peak value, before decreasing as more
descriptors are added (overfitting phenomena).
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As could be expected from a local technique, the effectiveness of a thresholding
algorithm depends on the contrast between the target structure or tissue and
the surrounding ones. Several improvements have been made to increase the seg-
mentation robustness. In Lee et al.?® for instance, connectivity constraints were
added to separate regions that would otherwise be incorrectly merged. A number
of local histogram thresholding techniques are also available (iterative Bayesian
classification,!'? dynamic thresholding,'?% etc).

Thresholding techniques have been mostly applied to the segmentation of digital
mammograms, either as a first-stage segmentation tool to provide a second-stage

81,147 o1 to determine with enhanced accuracy

classifier with candidate pathologies,
the location of masses in previously pathologically labeled images.”® Highly con-
trasted structures such as bones in CT%%:227 or the cavities of the left ventricle
in cardiac MR®%:170 can also readily be segmented by thresholding techniques. In

l.,226

Zimmerand et a ovarian cysts were extracted from ultrasound images with an

attribute vector consisting of intensity and texture descriptors.

Region growing. The simplest form of neighborhood information is exploited by
region growing approaches that rely on the hypotheses that adjacent pixels have
similar characteristics, and in particular, comparable intensity values. Region grow-
ing is then an iterative process that produces connected regions. First, a number
of seeds are selected in the input image to form single voxel regions. Then, at each
iteration, the neighboring voxels of those in the regions are tested against a simi-
larity criterion and those that pass the test are added to the corresponding region.
This process is repeated until no more voxels can be added or until a stopping con-
dition is satisfied. Among the many similarity criteria, usually based on features
computed on the regions, we find geometric ones (convexity, size, shape of region)
and radiometric ones (intensity, texture).” However, the fundamental assumption
of feature consistency makes region growing techniques very sensitive to noise and
imaging artifacts. Homotopic region growing techniques!!! have been developed to
constrain the shape of the regions in the face of the potential topological changes
(holes, fusion of previously disconnected regions, etc) induced by imaging inhomo-
geneities. Furthermore, the placement of the initial seeds is particularly difficult to
automate (although seed-invariant approaches are available?°”) and depends on the
segmentation application (see Sec. 6.2).

In view of its many drawbacks, region growing, like thresholding techniques,
often require post-processing. Its main applications are segmenting tumors and
lesions in digital mammography%®:°? or in MRI.'#% Figure 3 shows four steps of the
segmentation of a human hippocampus with a heavily regularized region growing
algorithm initialized with two seeds.

Markov Random Fields. A favored means to model images in the presence
of noise and artifact,” Markov random fields (MRF) are particularly well-suited
to capturing local intensity and textural characteristics of images as they provide
a consistent way to model context-dependent entities such as image voxels and
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(a) (b)

Fig. 3. Four steps of the region growing segmentation of a human hippocampus from a 1mm?3

T1-weighted MRI of the head.

correlated features.? 4 They rely on the assumption that the intensity of any given
voxel partially dependent on those of its neighbors (that is, that neighbor voxels
belong to the same class, or that they must belong to an a priori defined class, e.g.
voxels from the amygdala class are not allowed to be posterior to voxels from the
hippocampus class). In the context of medical image segmentation, the hypothesis
becomes that of a low probability for a single voxel of a given class to occur inside
an homogeneous group of voxels from another class.

A defining characteristic of an MRF system is the shape and size of the neigh-
borhood system imposed on the voxels of the input image. Inside these neighbor-
hoods, cliques (subset of sites in which every pair of distinct sites are neighbors)
are often used to define the conditional MRF distributions that characterize the
mutual influences between pixels and textures.

In accordance with the Hammersley-Clifford theorem,'® an MRF can also be
represented by a Gibbs distribution

P(z) = Z7te V@

where Z = Y eV is the so-called partition function that acts as a normal-
izing constant, and U(x) is the associated energy function, which is usually much
easier to manipulate.



Automated Image Segmentation: Issues and Applications 211

In this framework, segmentation consists of estimating a label process A from
the realization of a voxel process II. Rather than directly modeling P(A = A|II = p),
a Bayesian approach is generally used to compute the conditional probability from
a fixed probability law imposed on A and an estimation of P(II = p|A = \). A can
then be iteratively approximated by maximizing this a posterior: probability, which
boils down to minimizing the compound energy U associated with the MRF model.
Among the many optimization approaches, we find iterated conditional modes'?
and stochastic simulated annealing.%*

In spite of their high computational demands, MRF techniques have been suc-
cessfully applied to a variety of medical image segmentation tasks. Their ability to
handle local inhomogeneities and topologically complex voxel arrangements makes
them ideally suited for brain tissue segmentation in MRI."®'13 Other MRI appli-

159 and magnetic resonance

cations include knee image labeling,?® cortical sulci
angiograms segmentation.?’C MRF texture models have proved useful in the seg-
mentation of lung in chest radiographs,?*® bones in CT'?® and, of course, patho-
logical masses in digital mammography.2¢:57-101

Exotic classifiers. In addition to the above mentioned techniques, less standard
classification approaches are also available.®® Neural network, in particular, are
worth detailing.

Artificial neural networks (ANN) are mathematical tools that mimic the densely
interconnected and parallel structure of the brain, and the adaptive biological pro-
cesses of the nervous system, both in terms of learning and of information pro-
cessing. They are composed of a large number of processing elements (so-called
neurons) linked together by weighted connections (analogous to synapses). Each
neuron receives activation signals from other neurons and outputs a non-linear
function of the weighted sum of these activations. This nonlinear mapping function
(¢) is called the activation function. A commonly used activation function is the
sigmoid function (hyperbolic tangent for instance). Output from a neuron neuron;
is then written as:

neuron;(z) = ¢(wiz) + wip

where z is the d; dimensional vector of input signals, w; is the weight vector (or
vector of synaptic weights), and w; o is a constant bias.

A neural network is then a graph of interconnected neurons, whose connectivity
matrix defines the connection pattern. Given a learning set of labeled samples,
training an ANN then essentially consists of modifying the weights of its neurons
so as to minimize the overall difference between the output values of the network
and the target values from the learning set. The most popular learning technique
is the so-called back-propagation algorithm, which is based on a straightforward
gradient descent technique. Various more sophisticated learning techniques have
been developed. Please refer to Ref. 214 for a broad overview.

Neural networks have been mostly used to segment tissues and structures
in MR images.'# 195,208,216 Ta]] ¢t 7! also used them to segment tumors and
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(b)

ROI

ROI

Fig. 4. Neural classification of corpus callosum, caudate nucleus and hippocampus: (a) input
MRI; (b) extracted structures (after thresholding of classification map) with true outlines super-
imposed. The classifier was trained and applied only to the unshaded regions of interests (ROI).

edema. They can also be employed as a pre-processing stage for other segmentation
algorithms.?%: 140,204 Figure 4 displays the classification results for three cortical
structures (corpus callosum, caudate nuclei and hippocampus) obtained with the
two stage neural network presented in Pitiot et al.'3"

4.3. Flexibility

In this chapter, flexibility stands for (1) the actual geometrical and topological flex-
ibility of the segmentation process and of the underlying shape or intensity models
if available, as well as (2) their combined expressivity, that is, their ability to rep-
resent a variety of shapes and appearances with a minimal number of parameters.
Because of their high accuracy, local techniques (classification approaches in partic-
ular) are geometrically and topologically very flexible. Clearly, their locality enables
them to segment arbitrarily complex arrangements of voxels. However, they are not
compact in that they often require as many parameters as there are voxels in the
input image to represent the extracted structure or tissue.

We submit that the use of a segmentation model is a necessary condition to
achieve true flexibility. We therefore focus our discussion of this issue on deformable
models, and in particular on how they are formulated: explicitly or implicitly.
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Deformable models!!?

are model-based (top-down) segmentation approaches
that evolve parametric surfaces or curves in fashions inspired by mechanics and
physics.4 They are characterized both by their surface representation (continuous
or discrete, explicit or implicit) and by their evolution law, which determines the
space of available shapes (see Montagnat et al.!?3 for a thorough taxonomy). Once
initialized reasonably close to the segmentation target (in terms of position and
of shape), they often deform via iterative relaxation of a compound functional E.

Classically, E is made up of three terms:

e an internal (or regularization) energy Finternar Which characterizes the possible
deformations of the deformable surface;

e an image coupling energy Fjmnqage Which couples the model to the image; and

e a constraint energy Feonstraint Which regroups the various available constraints
(shape, appearance, etc).

We get:
E=o- Einternal + ﬂ . Eimage + v Econstraint

with «, 3, v € R.

Typically, the internal energy measures the amount of bending and stretching
undergone by the deformable model as it evolves. A large number of image forces
are also available.'?* They can be based on the gradient of the input image,'? on

142 on intensity profiles,?” etc.

a smoothed version of its associated edge-image,

Alternatively, the evolution of the deformable model can be controlled by a
dynamic equation within a Lagrangian framework (following the reasoning detailed
in Sec. 6.3), or within a Bayesian probabilistic framework.*!”

When the deformable surface is described by coordinate functions that depend
on a vector of shape parameters, the model is explicit. Alternatively, implicit for-
mulations model the surface with implicit equation. At a glance, explicit parametric
models are the most frugal in terms of parameters, while implicit models, level sets
or atlas registration (see Sec. 5.2), win the palm of flexibility.

Explicit parametric models are especially interesting in medical image segmen-
tation for the following reasons. First, as detailed below, they can adequately
handle the various discontinuities that sampling artifacts and noise create on
the boundaries of the target structures. Also, they compactly describe a wide
variety of shapes while minimizing the overall number of parameters or mask-
ing these behind a small and easily manageable set of physical principles. They
often provide a local, if not global, analytical model of the structure once seg-
mented, which makes it easier to analyze subsequently. Finally, a priori knowledge
about the shape, location, or appearance of the target structure can guide the

deformation process: deformable models are then the framework of choice to mix

dAs the name indicates, deformable models generally behave like elastic bodies, within a
Lagrangian dynamics framework.
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bottom-up constraints computed from the input images with a priori top-down
medical knowledge.

Despite these advantages, explicit models raise several practical concerns, most
of which are linked to the somewhat delicate balance between the contributions of
the internal and external forces or energies. Clearly, as image coupling forces may
drive the models towards the wrong boundaries (especially in the absence of prior
knowledge constraints), the regularization constraints must limit the geometrical
flexibility of the models. The extent of this limitation is not trivial to determine
a priori, and will often depend on the variability of the segmentation target and
on the input image characteristics. As a result, explicit models often exhibit signifi-
cant difficulties in reaching into concave boundaries. Balloon forces,®> gradient vec-

217 122

tor flow*!” or dynamic structural changes (subdivision of model basis functions,

densification of control points in regions which undergo dramatic shape changes?°!

142) “are a few of the

or which are too far from the closest potential boundary
many techniques developed to control the accuracy of the segmentation scheme and
address this restriction. Furthermore, most models cannot accommodate topologi-
cal changes since these are usually not coded into the model parameters. Still, a few
topologically flexible approaches are available in the literature that can adapt the

52,109,118,164,201,215 Tipally,
b

topology of the deformable surface as it evolves. they are

also notoriously sensitive to initialization (we tackle this particular issue in Sec. 6.2).

A popular implicit formulation, level sets model deformable surfaces!®’
a higher dimensional signed function whose zero level corresponds to the actual
surface. From the desired properties of the surface evolution process, an adequate
flow equation can be derived for the embedding signed function.

Initially proposed by Sethian and Osher!3%:167 to track moving interfaces in
fluid mechanics and combustion simulations, level sets alleviate both the parameter
granularity issue of explicit approaches (namely, which sampling strategy to choose
to parameterize the deformable surface) and their difficulties in handling topological
changes. Their main drawbacks are linked to their inherently implicit formulation,
which makes it difficult to analyze the segmented surface, once extracted from
the input image, in the form of an unstructured set of voxels. It also makes it
substantially awkward to incorporate prior medical expertise into them. Finally, like
explicit models, they are quite sensitive to initialization. Other implicit formulations
include algebraic surfaces,'®* superquadrics'® and hyperquadrics.?*

Not surprisingly, deformable models (explicit and implicit) have been mostly

applied to the segmentation and tracking of anatomical structures.
45,63

using

Aside from the cerebral cortex and the ventricles,'® they have been widely

employed in the segmentation of most of the deep gray cortical structures (corpus

144,202 140,168

callosum, %292 hippocampus, caudate nuclei, etc). A natural segmen-

tation target in X-ray images, the extraction of bones has also proved amenable to

the use of deformable surfaces.!34:186:220 Goft tissue organs such as the liver,52:12°

the kidney,®8 the stomach'!? or the heart?®>118:165 have also been targeted.
Because of their dynamic nature, deformable models have been immensely pop-

ular in motion tracking applications, most especially in ultrasound images.'08 121
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(b)

Fig. 5. Four types of deformable models: (a) simplex mesh of ventricles; (b) m-rep of hippocam-
pus (courtesy of Pizer et al.); (c) B-spline representation of the mid-sagittal slice of the corpus
callosum; (d) level-set of vertebra (courtesy of Leventon et al.).

Finally, they have also been applied to the delineation of a variety of lesions and
tumors: brain tumors in MRL"7 cysts in ultrasound breast images,?'” etc. Please
refer to McInerney et al.''” for additional applications and Fig. 5 for an illustration.

4.4. Continuity

In view of the various irregularities that sampling artifacts or noise induce along
the target contours in the input image, boundary continuity is another constraint
that substantially affects the analysis of the segmented target. For instance, sta-
tistically comparing the shape variability of anatomical structures across diseased
populations or between normal subjects and disease groups,'?” or computing an
average pattern of gray matter growth across a population of patients,'”
more easily and accurately performed when continuous surfaces (discrete meshes
in these cases) are used to represent the target tissues or structures instead of the
unstructured and quite probably topologically complex sets of voxels that level
set techniques would produce.® This allows noisy and possibly sparse local image
features to be structurally linked inside a coherent and compact model.

is much

eNote that, as demonstrated in Leventon et al.1%0 or Golland et al.,7 average anatomical shapes

can still be computed from level set representations by averaging their associated distance maps.
However, this approach makes the strong assumption, that pixels at the same location across
the set of level set segmentation are homologous which certainly does not hold when topolog-
ical changes occur, even when relaxed by the influence of the diffusion factor of the distance
computation.
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Use of a continuous segmentation model (deformable models, for instance) in
conjunction with a continuous representation of the image space (via interpolation
techniques”®) also enables sub-voxel accuracy. This is especially interesting when
the radius of the target structure is not large with respect to the resolution of
the input image (for example, for the segmentation of small lesions in MRI, or of
organs in standard 2 x 2 x 4mm PET scans). The segmentation results are however
particularly difficult to validate in this case as little to no information is available
to compare, inside each voxel, the location of the segmented contours to those of
the actual structures.

On the other hand, continuity can be a hindrance to accurate segmentation. For
instance, the quantification of cortical gray matter loss in Alzheimer disease!®® does
not require that voxels classified as gray matter form a single connected component.
Ensuring the extraction of the cortical gray layer by a single continuous surface or
by a single voxel connected component would only prevent difficult to reach regions
from being segmented. As an illustration, the inferior horns of the human brain
ventricles are connected to the rest of the lateral ventricles via a group of partial
volume voxels that are exceedingly difficult to segment in standard 7T1-weighted
1 mm? resolution MRIs (to the point where a lot of manual delineation protocols
will just exclude them for fear of introducing an artificially high shape variability).
Consequently, a region growing approach initialized with seeds inside the main body
of the ventricles only would most probably stop at the PVE voxels and discard
the inferior horns altogether. Likewise for deformable model techniques, the image
coupling energy, often linked to the image gradient, would most likely prevent the
model from reaching as far as the inferior horns. Clearly, this difficulty would not
impede other classification techniques even though these might incorrectly exclude
some of the PVE voxels. Similar considerations apply to the segmentation of the
tail of the caudate nucleus in brain MRI (Fig. 7).

4.5. Surface versus volume

Aside maybe from the cortical gray matter layer which can be handled as a surface
in typical 1 mm? resolution brain MRIs, most segmentation targets correspond to
actual anatomical volumes, and behave like deformable solids. When the target
boundaries have to be extracted from a single static image though, choosing between
a surface or a volume representation is arguably a mere matter of taste since most
of the features of volume segmentation systems useful on static images have their
counterparts in surface segmentation systems and vice versa. However, in dynamic
segmentation cases (organ tracking, for instance) much can be gained by using
a volumetric framework within which physiologically or anatomically motivated
constraints between structures or tissues are more easily incorporated.

Volumetric approaches are especially interesting in cardiac motion tracking appli-

117,136,166

cations as they can model the thick-walled left ventricles as a whole instead

of requiring difficult to synchronize endocardial and an epicardial surface models.
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For these dynamic segmentation problems (which are often functional in nature),
volumetric biomechanical models''%:132 could help increase the overall robustness,
owing to their ability to encode the dynamics of the shape, appearances and relative
positions of structures in an anatomically accurate and mechanically plausible way.

Undoubtedly, the choice of a surface or volume representation is in part dictated
by how easily the extracted segmentation target can be analyzed in the envisaged
application (average shapes are more easily computed on sets of surfaces than vol-
umes, tissue loss is often simpler to assess from sets of voxels, etc) and in part
determined by the characteristics of the target itself embedded inside the input
image (volumetric frameworks have typically proved more efficient than dual surface
approaches in preventing thick walls from collapsing in the presence of heavy noise).

5. Expert Knowledge (a priori Information)

However variable in shape and appearance the target structures or tissues may be,
their general morphology, contrast and relative position with respect to surrounding
tissues and neighborhood structures is often known. In view of the many intensity
inhomogeneities and the plethora of artifacts and decoys present in the input image,
this a priori medical knowledge is an invaluable tool in the search for the best
trade-off between accuracy and robustness. In addition to facilitating the actual
segmentation process, shape, appearance and position models can also significantly
assist the subsequent analysis of the segmented target. Clearly, compact models are
more easily interpreted and compared (between themselves or against statistically
built average models and modes of variation) than tediously long lists of vertices
or voxels.

The available corpus of medical information can be leveraged in essentially two
ways: implicitly (computationally) and explicitly. Given a learning set of a priori
segmented instances of the segmentation target, implicit knowledge algorithms have
to automatically discover the relationships and functional dependencies of the var-
ious parameters of the model. However, explicit information about the target is
often available, in the form of medical expertise. For instance, the relative positions
of most of the deep gray nuclei in the brain is fairly consistent across individuals,
anatomical structures do not usually intersect, etc. From these observations, a series
of rules can be derived to better drive the segmentation process. Broadly speaking,
explicit knowledge approaches can be seen as a special case of implicit knowledge
algorithms where the additional medical expertise provides short cuts in the search
for the target structure or tissue.

As mentioned earlier, model-based (top-down) methods are more amenable to
the introduction of medical knowledge. Nonetheless, bottom-up techniques such as
thresholding and region growing can also benefit from intensity models built from
a priori observations.

We review below a selection of approaches organized according to the type
of knowledge that they model: shape and appearance in Sec. 5.1 and position in
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Sec. 5.2. In each case, we propose a number of implicit and explicit knowledge
techniques.

5.1. Modeling shape and appearance
5.1.1. Implicit models

Even though a given structure can present a wide variety of forms, the notion of
biological shape seems reasonably well explained by a statistical description over a
large population of instances. Consequently, statistical approaches have attracted
considerable attention.?:41:175 A deformable model is then constrained not only by
the number of degrees of freedom imposed by its geometric representation, but also
in that it must be a valid instance of the shape model. Developed by Cootes and
Taylor,*! active shape models are represented by both a set of boundary/landmark
points and a series of relationships established between these points from the dif-
ferent instances of the training set. New shapes are modeled by combining in a
linear fashion the eigenvectors of the variations from the mean shape.'®® These
eigenvectors encode the modes of variation of the shape, and define the charac-
teristic pattern of a shape class. The shape parameter space serves as a means to
enforce limits and constraints on the admissible shapes, and insure that the final
extracted shape presents some similarity with the shape class, as established from
the training set. Many variants have been presented in the literature.’%:29° They
either introduce more constraints or decrease the control over admissible shapes.
In particular, active appearance models?® incorporate both a statistical model of
the shape of the target, and a description of the statistical distribution of the gray-
level intensities of the structure. A similar PCA approach was applied to the signed
functions embedding level set representations in Leventon et al.'%

1.'7 introduced the medical representation as a model of biological

Blum et a
growth and a natural geometry for biological shapes. Pizer et al.'*3 derived a sam-
pled medial model. Joshi et al.®% used it within a Bayesian framework to incorporate
prior knowledge of anatomical variations. A multi-scale medial representation was
used to build the template examples needed to obtain prior information about the
geometry and shape of the target anatomical structure. Within this framework,
the anatomical variability of a structure corresponds to the distribution of the
admissible transformations of the shape model. Medial representations are how-
ever difficult to build for non-symmetrical shapes and are notoriously plagued by
topological difficulties.

Staib et al.'™ used a similar Bayesian scheme to control the coefficients of an
elliptic Fourier decomposition of the boundary of a deformable template. They
introduced a likelihood functional, which encoded the spatial probability distribu-
tion of each model, to be maximized under a Bayesian framework. The distribution
of the model parameters was derived from a learning set of instances of the target
object, and served to constrain the deformable template towards the most likely
shapes. Székely et al.'®? added an elastic property to a Fourier decomposition to cre-
ate elastically deformable Fourier surface models. A mean shape and its associated
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modes of variation were extracted via statistical analysis of a learning set of Fourier
decomposed instances of the target structure. The elastic fit of the mean model in
the shape space was used as a regularization constraint.

Styner et al.'™ combined a fine-scale spherical harmonics boundary description
with a coarse-scale sampled medial description. The SPHARM description, intro-
duced by Brechbiihler?® is a global, fine scale parameterized description which rep-
resents shapes of spherical topology. It uses spherical harmonics as a basis function.
Styner’s medial models were computed automatically from a predefined shape space
using pruned 3D Voronofi skeletons to determine the stable medial branching topology.

Metaxas et al.'2? devised deformable superquadrics which combined the global
shape parameters of a conventional superellipsoid with the local degrees of freedom
of a membrane spline. The relatively small number of parameters of the superel-
lipsoid captured the overall shape of the target structure while the local spline
component allowed flexible shape deformation in a Lagrangian dynamics formu-
lation. Vemuri et al.?%3 used the properties of an orthonormal wavelet basis to
formulate a deformable superquadric model with the ability to continuously trans-
form from local to global shape deformations. Such model can continuously span a
large range of possible deformations: from highly constrained with very few param-
eters, to underconstrained with a variable degree of freedom. Here again, a Bayesian
framework biased the deformable models towards a range of admissible shapes.

Poupon et al.'*® proposed the use of 3D moment invariants as a way to embed
shape distributions into deformable templates. They devised a framework capable
of dealing with several simultaneously deforming templates, thanks to their fairly
low updating cost, with the goal of segmenting deep grey nuclei in 3D MRI. The
remarkable stability of the invariant moments allowed them to study the anatomical
variability of the deep gray nucleir in brain MRI.

A given instance of the target structure may not always exhibit homogeneous
intensity distribution along its boundaries. Yet, the intensity may be locally char-
acteristic. The intensity profile, computed along the border of the structure models,
then provides an efficient means to introduce a priori knowledge. Cootes et al.,”
for instance, modeled the statistical distribution of the intensity profile on each side
of the structure surface. The mean profile, established from a structure learning set,
was compared against the image data to determine the cost of a particular configu-
ration of the model and guide the segmentation process. Brejl et al.?! used a some-
what similar border appearance model to automatically design cost functions that
served as a basis for the segmentation criteria of edge-based segmentation methods.

Note that most of these statistical or Bayesian approaches require that corre-
spondences between the shapes in the learning set be available a priori, a non-trivial

problem in itself,33:46,48,59,89,141,192,196,209

5.1.2. Ezxplicit models

An even larger variety of explicit knowledge techniques is available in the literature.
These approaches tend to be more heterogeneous as they usually combine shape
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and intensity descriptions in the same framework. Often, explicit information is
complemented or generalized by implicit information (for instance, a purely explicit
position rule can be made more robust as a fuzzy condition, which however intro-
duces non-explicit elements: the « parameter of the cut-off, the amount of diffu-
sion, etc).

Since the seminal work on spring loaded templates by Fischler et a
explicit knowledge approaches have been proposed in the literature to incorporate
computationally extracted medical expertise about the shape or appearance of a

1.,°% many

structure.
Early work frequently relied on highly specific hand-crafted models. Yuille

1221

et a chose to use circles and parabola to retrieve eye and mouth patterns in face

pictures. Noticing the elliptical shape of the vertebra in axial cross section images

104 ysed deformable ellipsoidal templates to extract their

of the spine, Lipson et al.
contours. These methods present the advantage of providing a very economical
description of the shape in terms of the number of required parameters but lack
genericity in that a new model with new parameters has to be developed with each
new object.

Even though ASM can handle disconnected shapes it is easier to partition a
complex shape (i.e. the vertebral column), into simpler and more manageable ele-
ments (the vertebrae). Nothing this, Bernard et al.!? devised a two-level hierar-
chical scheme to model both the shape and the topology of the resulting complex
model. Each individual structure was controlled by its own ASM, subject to an
overall global ASM encoding the relative positions and orientations of the set of
components.

Amit and Kong? used a complex graph of landmarks, automatically chosen from
the input images as a topological model, to guide the registration process of X-ray
images of the hand. A dynamic programming algorithm was used on decomposable
subgraphs of the template graph to find the optimal match to a subset of the
candidate points.

As it can represent and merge uncertain or imprecise statements, fuzzy the-
ory is particularly well-suited to model shape. Among others, Chang et al. devel-
oped a fuzzy-controlled rule-based system capable of segmenting MR images of
diseased human brains into physiologically and pathologically meaningful regions
by incorporating expert knowledge about both brain structures and lesions. They
used the distance between pixels and the ventricular boundary as a fuzzy prop-
erty of periventricular hyperintensities to help diagnose the studied disease. Barra
and Boiré!! used information fusion to combine medical expertise with fuzzy maps
of morphological, topological, and tissue constitution data to segment anatomical
structures in brain MRIs. For instance, they encoded expert information about
the relative position of two structures as a fuzzy distance map. Wen et al.?'3 used
fuzzy-embedded human expert knowledge to evaluate the confidence level of two
matching points using their multiple local image properties such as gradient direc-
tion and curvature. Studholme et al.'”” merged region labeling information with
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classic iconic image registration algorithm via information fusion to align MR, and
PET images of the pelvis.

When anatomic knowledge can be captured by a series of simple positional,
geometric or intensity rules, expert systems provide a convenient framework to
assist in segmentation tasks. Ardizzone® for instance developed a descriptive lan-
guage to express the geometric features and spatial relationships among areas of
images. Reference 115 also used a rule-based system to organize and classify fea-
tures (such as brightness, area, neighborhood, etc) for regions that had been auto-
matically extracted via region growing and they segmented scalp, gray and white
matter, CSF and strokes. In Brown et al.,?? lung boundaries were segmented in
chest X-ray images by matching an anatomical model to the image edges using
parametric features guided by a series of rules. Li et al.'%! described a knowledge-
based image interpretation system to segment and label a series of 2D brain X-ray
CT-scans. Their model contained both analogical and propositional knowledge on
the brain structures, which helped interpret the image primitive information pro-
duced by different low-level vision techniques. Finally, Poupon et al.'*? used 3D
moment invariants to embed shape distributions in deformable templates. They
devised a framework that could deal with several simultaneously deforming tem-
plates, with a fairly low updating cost, to segment deep gray nuclei in 3D MRI.
We presented in Pitiot et al.'4” an expert-knowledge guided system which evolved,
in parallel, a number of deformable models (one per target structure). These evo-
lutions were supervised by a series of rules and meta-rules derived from a priori
analysis of the model’s dynamics and from medical experience. The templates were
also constrained by knowledge on the expected textural and shape properties of the
target structures (caudate nuclei, ventricles, corpus callosum and hippocampus in
T1-weighted MRIs).

5.2. Position

Often, the positions (and shapes) of nearby anatomical structures are not inde-
pendent of each other. For instance in the human brain, the caudate nuclei are
juxtaposed to the lateral ventricles, so any change in the shape or position of
one will affect the other. Information about the respective position of structures
can then dramatically help the segmentation process. Positional knowledge can be
either relative (with respect to neighborhood structures) or absolute (with respect
to an anatomical atlas or standardized coordinate system).

5.2.1. Distance constraints

Relative positional knowledge often takes the form of distance constraints. In Barra
and Boiré!! for instance, fuzzy logic was used to express both distance and posi-

197 series of parametric

tional relationships between structures. In Tsai et al.,
models, built via principal component analysis of multiple signed distance functions,

enabled the concurrent segmentation of anatomical structures, via minimization of



222 A. Pitiot et al.

a mutual information criterion. Inter-object distance constraints were also used
in Yang et al?'® where a maximum a posteriori estimator for anatomical shapes
helped constrain the evolution of level set functions.

In Pitiot et al.,'*® we also chose distance maps as they can model distance
constraints accuratly and robustly (guaranteeing non-intersection, for instance).
Given a deformable model IT° (a simplex mesh®!), we wished to impose on it a dis-
tance constraint with respect to another model IT'. We first computed the distance
map D' associated with a discrete sampling of IT'. We used a classical Chamfer
map'? algorithm to compute a signed distance map, positive outside the discrete
sampling of II! and negative inside. At each vertex P? of II°, we then computed a
“distance force” fiistance Whose magnitude depended on the value of the distance
map at the considered vertex. We derived two types of constraints. For some pairs
of structures, we wanted the force to attract the vertex, along the direction of the
gradient of the distance map, up to an exact distance diqrget 0f the target mesh: For
other pairs, we only wished to enforce that this same vertex remained at distance
greater than dyq,rget (to prevent intersections between structures for instance). Note
that these forces could also be applied to a subset of the mesh vertices (so-called
“zones”) to enforce more local constraints.

5.2.2. Atlas warping

A hybrid shape/position explicit knowledge approach, atlas registration or
warping®36:183 enables the concurrent segmentation and labeling of several target
structures. Prior anatomical expertise about the shape, orientation and position
of the target structure is projected onto a 3D atlas, usually modeled as an elasti-
cally (or fluidly) deformable object, to be used as anatomical reference. Segmenting
the target structures then boils down to registering the a priori labeled atlas to
the input image. In effect, this transforms a model-to-region matching problem (the
initial segmentation task) into an intensity to intensity matching one (iconic reg-
istration of two images). As a result, the effectiveness of the process relies on the
assumption that the actual target structures in the input image are only marginally
different in shape, orientation and location from the ones in the atlas, a reasonable
hypothesis in non pathological cases.

Atlas techniques usually consists of two phases. First, the atlas is initialized over
the input image with a rigid or affine registration algorithm.%:3 Then, a non-linear

29,36,44,162 Not sup-

registration stage corrects for the finer anatomical differences.
prisingly, the main drawbacks of this approach are classical registration issues. To
begin with, a poor linear initialization will undoubtedly yield an even worse non-
linear registration. Second, because of their tessellated nature, biomedical images
are packed with decoy structures which look surprisingly close to the target ones
and may fool the registration process. Finally, because of the high variability of the
segmentation targets, the non-linear registration process may not be flexible enough

to adapt the atlas contours to the convoluted boundaries of the actual structures, all
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the more since the regularization parameters of the non-linear registration have to
be kept fairly high to prevent warping to incorrect boundaries and to avoid produc-
ing self-intersecting boundaries. One way to alleviate this issue is to restrict atlas
registration to only the initialization step of the segmentation process (see Sec. 6.2).
Another work-around consists in using preprocessing techniques. In'®! for instance,
3D edge detection and a series of morphological operators were used to extract from
the input MR images the main cortical sulci. These helped increase the convergence
speed of the atlas warping procedure by providing a smooth representation of the
cortical surface.

Atlas warping has been mostly applied to the segmentation of cerebral struc-
tures in MR images of the brain.'% Aside from the segmentation per se, it also
provides a standard reference space in which to study the morphometric properties

of structures and organs.*7-8°

6. Robustness

A segmentation system can arguably never be robust enough, as exemplified by
the variety of techniques discussed in the literature to cope both with the high
variability of the target structures and with the noise characteristics of the input
images. However, as already mentioned above, increased robustness often comes at
a cost, that of decreased accuracy. As always, trade-offs have to be found, which
we discuss in this section, along with the two main robustness factors: initialization
(Sec. 6.2) and the optimization framework (Sec. 6.3).

6.1. Generic versus specific

In the absence of a single segmentation algorithm capable of effectively handling
all segmentation applications with satisfactory accuracy and robustness, most seg-
mentation approaches have to deal with the delicate balance between genericity and
specificity. On the one hand, generic techniques perform reasonably well over a large
number of applications, mostly due to a high robustness to noise and imaging arti-
facts. On the other hand, application-specific methods are more accurate, the use
of adapted prior knowledge increases their robustness and they can deal optimally
with artifacts associated with the images they have been specifically trained on. In
between these extremes, application-tailored approaches provide the user with the
means to adapt an otherwise generic segmentation technique to the application at
hand. For instance, the statistical shape constraint techniques we reviewed in Sec. 5
effectively adapt generic deformable model formulations to segment specific target
structures (or a specific class of target structures).

Specialization is all the more attractive since several optimization tricks can be
applied to improve the segmentation performance and speed when the application
is restricted to a limited domain. In motion tracking!!” for instance, the bound-
aries of the segmentation target extracted at a given time may serve to initialize
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the segmentation of the same target at the next time instant, a tactic that relies
on the assumption that the target exhibits only small changes in shape and posi-
tion between time instants. Although initially developed in the context of computer
vision,®® 187 the most popular motion tracking application is probably the analysis
of the dynamic behavior of the human heart, the left ventricle in particular.''” The
multi-channel capabilities of MR systems also motivate the increasing specializa-
tion of algorithms. Indeed, a variety of MR pulse sequences are available, where
each sequence yield a different distribution of the tissue contrast characteristics. In
the event where a segmentation system should be applied to images acquired with
the same sequence on a single scanner, a careful study of the imaging character-
istics of the sequence would most probably favor a combination of highly specific
bottom-up strategies and specifically tailored generic approaches. Conversely, it is
sometimes possible to determine the optimal pulse sequence for a particular seg-
mentation target or application.'®173 The optimized MR acquisition processes are
then specifically tuned to maximize the contrast between the tissues underlying the
segmentation target and their surroundings, thereby facilitating the segmentation
process.

Furthermore, real time issues and other resource constraints (CPU power, mem-
ory occupation) may severely impede the adaptation of a segmentation system from
one application to another. Sophisticated model-based techniques are not particu-
larly fast for instance and must be optimized in speed at the expense of great efforts
if they are to be used in the surgical arena.?'®

At any rate, segmentation systems will most probably require a large amount
of specialization to become fully automated.

6.2. Initialization

As discussed throughout this chapter, the amount of noise present in the input
images, the intensity inhomogeneities and imaging artifacts that plague them and
the variability of the segmentation targets all contribute to a poorly structured
and highly non-convex space that the segmentation system must traverse in search
for the target’s boundaries. Most approaches would only lead to weak sub-optimal
solutions (where the deformation model adapts to noise or decoys or maybe only
follows parts of the desired boundaries) if the search space were not drastically
reduced by assuming that a good approximation to the solution was available. This
can be either in the form of a set of pose parameters (position, orientation, scale)
or shape and appearance descriptors.

Various approaches have been presented in the literature to overcome this
robustness issue. Some are specific to a particular segmentation technique (his-
togram peak detection for region growing for instance), others (such as atlas regis-
tration) are applicable across a wider ranger of segmentation strategies.

Classification techniques often require ad hoc initializations. When only lim-
ited a priori knowledge about the characteristics of the target voxel attributes is
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available, in PET tumor or lesion detection applications for instance, the salient
peaks in a histogram of the voxel attribute values can be used to seed region grow-
ing algorithms. Other techniques ensure relative insensitivity to seed position.206
Note that the closely related split and merge algorithms effectively avoid this seed
positioning difficulty.!?6-112:133 On the other hand, when the intensity characteris-
tics of the target structure or tissue can be statistically estimated, they can help
initialize the various Gaussian means, variances and mixing coefficients of EM and
Bayesian classification approaches, to ensure better classification performance.®”

In view of their inherent complexity, model-based approaches are certainly even
more sensitive to initial parameters. As pointed out by Xu and Prince,?!” the ini-
tial distance between the model and the target structure (both in terms of actual
Euclidean distance and of morphological difference) and the ability to reach into
concave boundaries are the two key difficulties of parametric deformable models.
These have been tackled by numerous authors. Blake et al.'® for instance imple-
mented a coarse to fine strategy, the Graduated Non-Convexity Algorithm, where a
scalar parameter controlled the amount of “local” convexity. To resolve the issue of
the capture range of the segmentation target within a highly cluttered and tessel-
lated environment, the models can also be initialized at a number of locations and
evolved in sequence: the deformed model with the best final match is then selected.
In Pitiot et al.,**? a hybrid evolutionary algorithm controlled a family of deformable
templates that were evolved simultaneously to explore the search space in a robust
fashion. A pre-processing stage involving filtering, thresholding or morphological
techniques may also be useful.??3

Yet another series of techniques utilizes linear or non-linear registration to ini-
tialize the deformable models or the seed points of region growing approaches or
level set methods reasonably close to their expected positions.'6?

In Pitiot et al.,'*? we selected an MRI brain dataset for its “standard” appear-
ance (the reference MRI), and the target structures were carefully segmented in
it (see Fig. 6(a)) following established anatomic delineation protocols. Given an
input MRI to be processed, the first step consisted of registering the reference MRI
to it with a non-linear registration algorithm with an elastic prior (the MAMAN
algorithm??*). The transform obtained was then applied to the meshes segmented
in the reference MRI. These transformed meshes served as initial guesses for the
segmentation of the target structures (Fig. 6(b)).

6.3. Optimization scheme

While the segmentation model determines the structure of the space of extracted
shapes (see Sec. 4), the optimization scheme conditions the ability of the model to
traverse this space in search of the correct boundaries.

Most of the segmentation approaches we have mentioned in this chapter can be
cast as an optimization problem whereby the search for the target boundaries corre-
sponds to the search for the global minimum of a given functional. The difficulties
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Fig. 6. (a) Reference MRI with manually delineated structures and (b) reference MRI registered
to an input MRI and initialized structures.

linked to the choice of a suitable segmentation criterion (which we identified in
the introduction to Sec. 2) carry over to the determination of an adequate objec-
tive function. Namely, the remarkable variability in shape and appearance of the
segmentation targets, the intensity characteristics of the input images (noise distri-
bution, artifacts, contrasts between structures, etc) and the varying objectives of
the envisioned applications all contribute to the burden of an appropriate design.
However in return, formulating the segmentating process as an optimization prob-
lem clearly states its objective: finding the global minimum of the functional.f

As with deformable models, the objective function to be minimized can be
thought of as an energy, or as a sum of energies E = ). E;. A necessary condition
to minimize E is the zero crossing of its first derivative: V(E) = 0, which effectively
can be read as a balance of forces (with one force per energy component).

When it is not possible to minimize FE in a static or algebraic way, either theoret-
ically or practically, a dynamical system can be built whose evolution to equilibrium
yields the same minimum.'?4 An estimation of the target boundaries can then be
obtained iteratively. In fact, it is sometimes easier to directly design the laws of

fIn view of the somewhat irregular nature and lack of convexity of the landscape of the optimization
functional, it would be illusory to expect that the global minimum would effectively coincide with
the target boundaries, if it can be found at all. Yet, in practice, the many a priori knowledge
constraints and a priori information imposed on the segmentation process increase the probability
that a good approximation of the true boundaries coincides with a reachable local minimum not
too far away from the global one.
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Fig. 7. Anatomically correct caudate nucleus (continuous and dotted black line) and manually
segmented caudate nucleus (continuous black line) as obtained from most delineation protocols: the
caudate tail (dotted line) is explicitly cut to reduce delineation variability. The nearby ventricles
and corpus callosum are rendered in light gray.

evolution that control such a system, most especially when some of its terms do
not derive from an energy, as is often the case with medical knowledge-based con-
straints. An added benefit is the offered possibility to converge towards the local
minimum closest to the initial position. This proves useful in semi-automated seg-
mentation systems where a manual estimate of the target boundary can be refined
automatically.

However invaluable they can be in increasing the robustness to noise and imaging
artifacts, these shape or appearance models induce a poorly structured optimization
space when they serve as constraints on the deformation process. The matter is
made worse by the high variability of the segmentation target and the tessellated
nature of medical images. All in all, we are left with a very difficult minimization
problem.

Several algorithms have been developed to remedy this difficulty,”** most of
them coarse-to-fine strategies. In a multiscale framework!2®:187 for instance, the
segmentation is first performed on a smoothed downsampled version of the input
image and successively refined at higher resolutions. With multiresolution tech-
niques (pyramidal schemes), the segmentation model itself is subjected to changes
182 octree-
and dynamic mesh decimation in Lotjonen et al.1%%).

124

in resolution (multi-scale pyramid of basis functions in Székely et al.,
spline in Széliski et al.,'8!
Among other optimization strategies, dynamic programming was used by Amini
et al? or Coughlan et al.*? to increase the spectrum of the search for the
global minima. Poon et al.'*® selected simulated annealing, owing to its ability

to reach the global minimum and to incorporate non-differentiable constraints.
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In Pitiot et al.,'*Y most of the parameters controlling the segmentation process
were dynamically modified, along with the deformation of the models. The overall
robustness was increased without sacrificing too much accuracy by dynamically con-
trolling the balance between the two and adapting it to the segmentation problem
at hand.

7. Validation

Characterizing, both qualitatively and quantitatively, the performances of an auto-
mated segmentation system is all the more pivotal since the available algorithms
have only limited precision and accuracy. In other words, since segmentation
approaches make compromises, the validity of the underlying assumptions must be
checked against the envisaged applications. Yet, medical image segmentation vali-
dation is still an open problem plagued with challenges and conflicting objectives.

The foremost difficulty stems from the absence of ground truth. Given the cur-
rent resolution of the most common imaging modalities and the artifacts that afflict
them, even human operators cannot establish the actual boundaries of the segmen-
tation targets from the acquired data with sufficient accuracy. The availability of
physical or simulated phantoms®”-17® partially alleviates that issue, but their limited
sophistication prevents them from accurately modeling either the large anatomi-
cal complexity of organs and structures (for physical phantoms) or the full flavor
of imaging characteristics (noise, inhomogeneities, partial volume effects) both in
normal and pathological cases (for simulated phantoms).

Often, the target boundaries extracted by an automated algorithm are compared
against those manually delineated by a series of experts, under the assumption that
the expert delineations are a good approximation of the actual boundaries. However,
as demonstrated by many intra- and inter- operator variability results,27:129,154,228
manual segmentation accuracy is often poor when target structures are difficult
to segment, sometimes to the point where the manual delineation protocols must
explicitly discard certain anatomical parts from the target structures to limit the
delineation variability and avoid introducing spurious outlines (as an illustration,
the segmented caudate nuclei reported in Pitiot et al.'*? have a very short tail, and
the inferior horns of the ventricles are missing; see also Fig. 7). Approaches to estab-
lish the true boundary from a series of manual delineations are being investigated.?!!

What is more, the modus operandi of the validation studies must be adapted
to the objectives of the application for which the structures are segmented in the
first place. For instance, longitudinal studies typically rely more on reproductibility
than actual accuracy: systematic segmentation biases may be tolerable so long as
the segmentation targets are outlined consistently across a large population of input
images. The ability to adequately handle pathological cases is also an application
parameter that may influence the design of a segmentation approach. Consequently,
although assessing the behavior of a system tuned for standard cases on pathological
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data is certainly informative, it would seem unfair to penalize it on such a ground.
Clearly, as mentioned above, the increased robustness yielded by introducing prior
medical knowledge is often counterbalanced by decreased accuracy, especially with
shape models that tend to forbid the segmentation of non-standard boundaries.
The variety of segmentation objectives is clearly reflected in the diversity of
validation metrics (see Zhang??? for a broad overview). Some authors use vol-
53:82 o1 ratios of misclassified voxels,”® others the Hausdorff distance
between contours.%® Agreement measures have also been developed??® as a means

ume overlap,

to draw a most probable decision from a set of expert ones. Unfortunately, from
a practical point of view, how accurately and easily a given validation metrics can
be implemented often depends on the chosen segmentation model. This also intro-
duces errors in the quantitative validation. For instance, the computation of the
Hausdorff distance between two continuous curves or surfaces runs into quantiza-
tion problems as the curves must be discretized. Furthermore, manual outlines are
often obtained in the form of a set of voxels, at a somewhat coarse resolution for
most radiographical modalities, which is again likely to introduce artificial errors
in the validation measures.

All in all, a consensus still has to emerge as to which validation strategy to
apply in each case.

8. Concluding Remarks

With the advent of increasingly powerful and gradually less invasive modalities,
medical imaging has become an invaluable tool for clinical use as well as research
applications. While the quest for even better acquisition techniques continues, the
attention of the medical imaging community has now shifted to the extraction
of meaningful anatomical and physiological information out of the ever growing
databases of medical images. Before the function, morphology or inter-relationship
of organs, structures and tissues can be fully investigated, these must be isolated,
that is segmented, from their embedding images. Mirroring the great variety of
modalities and medical or research objectives, an even larger variety of segmentation
systems has therefore been, and is still being, developed.

Yet, accurate and robust segmentation remains a challenge beset by a number
of issues that we discussed throughout this chapter. Clearly, in view of the com-
plexity of the segmentation problem, there are no general prescriptions for selecting
a “good” segmentation method. This choice must not only be driven by the char-
acteristics of the input image (imaging artifacts, signal-to-noise ratio, contrast of
the segmentation target with respect to surrounding image features, etc) but also
by the possible usage constraints (algorithmic complexity with respect to available
memory/CPU resources, time limits if real-time applications are envisioned, etc)
and of course by the downstream treatments that follow this segmentation step
(diagnosis, morphometric analysis, shape recognition, etc).
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However helpful automated segmentation systems could be in replacing manual
operators, their limited accuracy and, more importantly, their inadequate robust-
ness still prevent their widespread application.

In a research environment where time is less of a premium than the quality
of the overall analysis, the parameters of a segmentation system can always be
set to specifically fit the requirements of the envisoned application, in terms of
accuracy or robustness. Furthermore, the segmentation results can be, and usually
are, thoroughly checked before the actual analysis takes place. Even so, the rapid
growth of image databases presses the need for fully automated tools. Because of
the sheer size of the image collections to be processed, database applications are
more forgiving with regard to the shortcomings of segmentation systems. Clearly,
invaluable information can always be extracted even when the algorithm employed
suffer from statistical biases, as long as these are consistent.

In a clinical setting though, time is a precious resource that has to be managed
tightly. To be useful, a segmentation system must exhibit maximum accuracy with
the standard “out of the box” set of parameters. To gain physicians’ trust, it must
also be sufficiently robust not to require any exhaustive and tedious quality checking
phase.

To achieve this long-term goal, substantial progress is still to be made. In the
meantime, semi-automated segmentation is likely to remain the favored means to
assist in the labor intensive tasks of medical imaging analysis. By assisting man-
ual operators rather than replacing them, partial automation effectively decreases
the segmentation burden without compromising the trust placed in the quality of
the final results. Semi-automated delineation tools that can complete delineations
based on prior shape knowledge, atlas registration assisted segmentation systems,
or expert system controlled segmentation approaches that communicate with the
operator to attract his attention to potential problems, are set to obtain an increas-
ing share of the limelight.
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Image-guided surgery (IGS) is a technique for localizing anatomical structures on the
basis of volumetric image data and for determining the optimal surgical path to reach
these structures, by the means of a localization device, or probe, whose position is tracked
over time. The usefulness of this technology hinges on the accuracy of the transformation
between the image volume and the space occupied by the patient anatomy and spanned
by the probe. Unfortunately, in neurosurgery this transformation can be degraded by
intra-surgical brain shift, which often measures more than 10 mm and can exceed 25 mm.
We propose a method for characterizing brain shift that is based on non-rigid surface
registration, and can be combined with a constitutively realistic finite element approach
for volumetric displacement estimation.

The proposed registration method integrates in a unified framework all of the stages
required to estimate the movement of the cortical surface in the operating room: model-
based segmentation of the pre-operative brain surface in magnetic resonance image data,
range-sensing of the cortex in the OR, range-MR rigid transformation computation, and
range-based non-rigid brain motion estimation. The brain segmentation technique is an
adaptation of the surface evolution model. Its convergence to the brain boundary is the
result of a speed term restricted to white and grey matter voxels made explicit by a
classifier, and the final result is post-processed to yield a Closest Point Map of the brain
surface in MR space. In turn, this Closest Point Map is used to produce the homologous
pairs required to determine a highly efficient, 2D spline-based, Iterative Closest Point
(ICP) non-rigid surface registration. The baseline for computing intra-operative brain
displacement, as well as the initial starting point of the non-rigid ICP registration,
is determined by a very good rigid range-MR transformation, produced by a simple
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procedure for relating the range coordinate system to that of the probe, and ultimately
to that of the MR volume.

Keywords: Image guidance; brain shift; level set models; non-rigid surface registration;
range-sensing.

1. Introduction
1.1. Preliminaries: Image-guided surgery

Image-guided surgery (IGS) describes a class of techniques for localizing anatomical
structures on the basis of volumetric image data and for determining the optimal
surgical path to reach these structures. With the advent of tomographic image
volumes produced by computed tomography (CT) and magnetic resonance (MR),
it has become possible to elaborate a 3D image model of the patient, whose internal
coordinate system (“image space”) can be related to that of a localization device
spanning the physical space occupied by the patient (“patient space”). Brain IGS
applications include the treatment of movement and convulsive disorders and of
arteriovenous malformations as well as the biopsy, surgical resection, radiotherapy
and brachytherapy of tumors (for a survey, see Ref. 48).

The image model typically consists of the tomographic volume itself, displayed
in tri-planar view format, as illustrated in Fig. 1, and may include triangulated
anatomical boundary surfaces identified from the tomographic scan and rendered
onto a computer screen. The position of the point of interest within the 3D image
model is conveyed on the basis of:

e the choice of tri-planar view of the underlying tomographic data and the position
of the cursor overlaid on each plane as well as

e the position of a rendered virtual pointer overlaid at the appropriate position
and orientation on the displayed anatomical surfaces.

There are two broad categories of localization technique, frame-based?' and
frameless,>"4451 with the latter increasingly more prevalent and illustrated in
Figs. 1(b) and (c). Frameless localization is generally characterized by a handheld,
tracked pointing device, consisting of a probe and perhaps a probe-holder, whose
coordinates are calculated with respect to a reference object, which is generally
affixed to a Mayfield clamp immobilizing the head. Assuming that the geometry
relating the probe tip to the probe holder is known, and following a registration
procedure that maps image space to the physical space spanned by the tracked probe,
the anatomical position of the probe tip is reflected by that of the 3D image cursor
at all times. Frameless localization also uses landmarks for determining the image-
patient transformation which are extrinsic to the localization device; i.e. fiducials
glued to the scalp or imbedded in the skull.

The usefulness of image-guided surgery hinges on the accuracy of the trans-
formation between the image and patient spaces. This accuracy is dependent on
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Fig. 1. Image-guided surgery: (a) 3D image model of patient as presented in typical commercial
IGS system, namely in tri-planar and 3D view formats, courtesy of Lahbib Soualmi of the Montreal
Neurological Institute; frameless localization devices: (b) the FARO arm, during probe calibration,
and (c) the Northern Digital Polaris optical tracking system.
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two conditions:

e first, an accurate initial registration, which in turn presumes accurate tracking
equipment,?®46 distortion-free MR/CT data! and accurate and consistent fidu-
cial localization;2%49:61 and

e second, a static relationship between patient and image model.

The most important source of error in IGS is the violation of the assumption of
static anatomy, caused by intra-surgical brain shift. The amount of intra-surgical

-
38,45 often measures more than

brain shift, as documented by numerous authors
10mm and can exceed 25mm, and can be abscribed to “the progressive sinking
and displacement of the cortical surface as a result of cortico-spinal fluid drainage
and progressive mesial displacement of the brain due to gravity”.?

Existing methods for characterizing brain shift in general exploit either a com-
bination of sparse cortical surface displacement data and biomechanical model,3?:42
or a combination of volumetric displacement information from tomographic data,
namely intra-operative ultrasound!® or MRI,?° with some form of volumetric inter-
polation. Several authors have proposed realistic finite element (FE)2%42 or mass-

spring®? models of the brain.

1.2. A new approach to estimating brain shift

In this chapter, we propose a method for characterizing brain shift that is based on
non-rigid surface registration, and can be combined with a constitutively realistic
finite element approach for volumetric displacement estimation.?42:52 As shown
in Fig. 2, our registration method integrates in a unified framework all of the
stages required to estimate the movement of the cortical surface in the operating
room (OR):

e semi-automatic identification (segmentation) of relevant anatomical surfaces
within the MRI volume;

e range-sensing of the exposed brain surface in the OR;

e computation of the range-MRI transformation, based on a calibration procedure
and sensor base tracking; and

e non-rigid motion tracking, over time, of the range image of the brain.

Our philosophy for characterizing brain shift is based on the fast acquisition and
processing of dense displacement information, using a sensor that could easily be
deployed to, and retracted from, a scanning position, with an appropriate mounting
framework. This perspective is dictated by the spatially and temporally under-
determined nature of non-rigid motion estimation. In addition, the semi-automatic
surface identification stage presented here can be explicitly integrated with meshing
software to make a finite element model patient-specific with little user interaction.
Finally, a range-sensor is less expensive than both ultrasound and intra-operative
MR, as well as easier to use.
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with a FE-based volumetric displacement estimation stage.

faobung popinr) ab6DW] L0f U0LDWIIST YIS UIDLT

67T



250 M. A. Audette et al.

Our brain segmentation technique is an adaptation of surface evolution
models.'?36 Its convergence to the brain boundary is the result of a speed term
restricted to white and gray matter voxels made explicit by a classifier,'® and the
final result is post-processed to yield a Closest Point Map of the brain surface in
MR space. In turn, this Closest Point Map is used to produce the homologous pairs
required to determine a highly efficient, 2D spline-based, Iterative Closest Point
(ICP)®3! non-rigid surface registration. In particular, given an initial range-MR
transformation, this Map associates with each MR voxel the label of its closest brain
surface point, so that for any transformed cortical range point coinciding with that
voxel, its closest MR homologue is immediately looked up. Finally, the baseline for
computing intra-operative brain displacement, as well as the initial starting point
of the non-rigid ICP registration, is determined by a very good rigid range-MR,
transformation, produced by a simple procedure for relating the range coordinate
system to that of the probe, and ultimately to that of the MR volume. For a survey
of anatomical surface registration techniques, the reader is referred to Ref. 4.

The rest of this chapter presents details of our method for computing the brain
surface displacement as follows. Section 2.1 examines how laser-based range-sensing
can provide 3D brain shape data in the operating room, as well as presents our pro-
cedure for computing the rigid transformations which relates the range coordinate
system with the probe and MR coordinates systems. Next, the non-rigid registra-
tion of a time sequence of range images of the brain, to estimate the intra-surgical
cortical surface displacement over time, is the subject of Sec. 2.3. Finally, the iden-
tification of the cortex in the MR volume is addressed in Sec. 2.4. This section
discusses our contributions to making surface evolution models better adapted to
identifying the brain surface and to post-processing the brain surface in order to
improve the efficiency of the the subsequent registration with range data. Our val-
idation study and a discussion of each stage is then presented in Sec. 3.

2. Materials and Methods

2.1. Laser range-sensing and calibration-based
range- MR transformation

In order to characterize brain shift, one must first find a simple-to-use, robust
means of measuring the 3D shape of the brain exposed in the OR. We have chosen to
measure the external surface shape, rather than use a tomographic method, because
of the ease of use of a surface tracking and FE approach. Moreover, tomographic
studies have indicated that much of the brain movement is concentrated near the

15,38 50 that a good characterization of

brain surface exposed by the craniotomy,
the volumetric displacement function is possible with a surface tracking and FEM
approach. Even in the presence of deep structure motion, our assumption is that
brain shift is not discontinuous over brain depth, that the combination of surface

motion and of a realistic biomechanical model (in both constitutive properties and
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boundary conditions) will accurately predict this motion, and that the effect of
tissue resection can be assessed independently.®!

Laser-based range-sensing is the industrial standard for quickly and accurately
acquiring dense, quantitative information on 3D shape. Figure 3(a) illustrates the
dense shape characterization of the cortical surface achievable with this technology.
It is worth noting that other 3D surface shape estimation methods could have been
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Fig. 3. (a) Range image of the left hemisphere of a human brain. (b) Range to MR transformation
geometry, illustrating the range, probe and MR referentials and the sequence of procedures for
relating them to each other.
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used, such as shape-from-stereo, particularly if integrated with a binocular surgical
microscope. Moreover, there are two registration problems that are relevant to our
method for characterizing brain shift: relating range data to MR data, and track-
ing the non-rigid cortical motion over time implicit in the time sequence of range
images. The first problem could perhaps have been solved by computing the MR-
range transformation on the basis of a fully autonomous registration of cranial
skin surfaces produced by the two modalities. However, our technique, inspired by
Comeau’s ultrasound-to-MR registration method, % uses the tracked probe to estab-
lish this transformation, as illustrated in Fig. 3(b). It features a calibration stage
that relates the internal range coordinate system to external plates, featuring milled
divots, bolted to the range-sensor, a sensor base tracking stage that determines the
range-probe transformation in the OR, and an IGS patient registration stage, whose
MR-probe transformation is finally multiplied by the range-probe transformation
to relate the range and MR coordinate systems.

2.2. Laser range-sensing

The three-dimensional coordinates of the exposed cortical surface are computed
by a commercial range-sensor made by Vitana Corp.®” (Ottawa, Canada), based
on the Canadian National Research Council’s Biris design.” This sensor uses both
laser-based triangulation and defocusing techniques to estimate range. The sensor
is mounted on a commercial linear positioner, produced by Intelligent Actuator.??
The range-sensing configuration is featured in Fig. 4(a).

Laser-based triangulation involves projecting a thin ray of laser light onto an
object, capturing the reflected light by a charge-coupled device (CCD), and inferring
depth from the pixel position of the image point and from the geometric relation-
ship between the position of the laser source and the CCD, as shown in Fig. 4(b).
Moreover, the Biris sensor allows the laser light to pass through a mask featuring
two apertures at a predetermined distance d apart, rather than one, as shown in
Fig. 4(c). The sensor sees two laser spot images at p; and po, instead of one. Tri-
angulation in this sensor is implemented by considering the average position of the
two spots p = %. Moreover, defocusing allows the range value to be determined
independently from the space p2 — p1 between the two laser spot images (for details,
see Ref. 9). Finally, this sensor dispenses with one sweep axis by optically spreading
the ray into a laser plane. The intersection of this plane with the imaged object
instantaneously produces a 2D range-map of a “slice” of the surface, or laser profile,
on the CCD. The final range profile coincides with depth z evaluated across all 256
CCD columuns.

A 3D surface is then obtained by linearly sweeping the sensor in a direction
normal to the laser plane, across the anatomy of interest, while taking range profiles
at regular intervals. The final 3D surface is composed of 256 such range profiles.
The coordinate y is given by the linear positioner, and it is orthogonal to the x — z
plane spanned by the range profile. Finally, the sensor possesses a depth of field
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P D Laser 232 Laser

Fig. 4. Biris laser range-sensing geometry: (a) range-sensor and positioner configuration in the
laboratory, (b) triangulation; (¢) defocusing.

of 135 mm and a field of view of 100-120 mm, which translates to a pixel accuracy
of 0.4-0.5mm along = and of 0.5 mm along z. The regular sampling nature of the
CCD and the constant-rate data acquisition along the y-axis result in the collection
of uniformly spaced samples.

2.2.1. A procedure for relating range to MR space

The baseline for cortical movement is implemented by computing the rigid-body
transformation between range and MRI spaces and applying this transformation to
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the identified cortex surface in the scan. In the literature, computing an arbitrarily
large transformation between two surfaces is generally approached with features
based on the differential geometry of the surfaces,??®® or global descriptions!'!»2°
of surface shape. However, an autonomous registration procedure would have to
rely on a small skin patch, surrounded by surgical draping, and neither kind of
approach would likely be sufficiently discriminating. Our technique uses the 1GS
tracked probe to establish the position in probe space, and ultimately in MR space,
of the sensor base, coinciding with a configuration of milled holes in two external
plates bolted to the sensor. All that is needed to complete the picture is a cal-
ibration procedure to relate the sensor base to the sensor internal reference. An
important point to be made here is that a very accurate range-MR transforma-
tion is achievable from the automatic detection of implanted fiducials,*%:°® but we
chose to proceed otherwise because of the practice at our institute of not using
implantable fiducials.

The geometry of the calibration, sensor base tracking and IGS registration is
seen in greater detail in Figs. 5 and 6. The objective of the overall procedure is to
find a way to relate range coordinates to MRI coordinates. The goal of the calibra-
tion, which can take place outside the OR and is illustrated in Figs. 5(a), (b) and 6,
is to relate the inner range-sensor reference to the milled divots on its outer side-
plates, or sensor base. The goal of the sensor base tracking, as shown in Fig. 5(c),
is to establish the position of these sensor base points in probe coordinates at time
t, in the OR, and use this information along with the calibration results to relate
the inner range-sensor reference to probe space. The probe-image transformation,
produced by the IGS patient registration, can then be used to relate range to MR,
coordinates, as featured in Fig. 5(d). To simplify the formalism adopted for this
section, we use the letters R, P and M to designate range, probe and MR coordi-
nates, while ¢, and ¢, correspond to time instants coinciding with calibration and
the intervention in the OR.

The calibration procedure (refer to Figs. 5 and 6) consists of the following steps,
assuming that the sensor is brought to home position, y = 0:

(1) Linear positioner calibration. The y-coordinate is calibrated with a long plate
featuring a row of machined divots at a 10 mm +.01 mm spacing.

(2) Range-sensing of a “wedding cake” non-coplanar calibration tool, featuring an
array of milled holes of 2 mm radius.

(3) Automatic identification of hemispherical pits p%’;“ within the range image of
sensor calibration tool by template matching.*”

(4) Probe-space identification of pits in the tool, p%é“, by insertion of the
probe tip.

(5) Registration of range pits p?’;ﬁ“ with probe-space coordinates of the pits p%;“,
producing a probe-range transformation Tﬁ”ff at time t..>

(6) Probe-space identification of sensor base poinis, i.e. the 9 milled divots in the
outer side-plates bolted to the sensor: pg’f;.
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Fig. 5. Range to MRI transformation computation. At ¢ = t., the calibration procedure first

relates range to probe space (a), then determines the sensor base points in range space (b). (c)
Sensor base tracking determines sensor base points in probe space at ¢t = t, and finds the range-
probe transformation in the OR. (d) The final step uses this and the probe-MR transformation

to map range to MR.
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()

Fig. 6. Illustration of calibration procedure: (a) calibration plate and sensor, (b) range image
of calibration plate, displayed as a gray-level; (c) detected pits in range image; (d) range images
comprising a 2-level calibration procedure.

(7) Apply probe-range transformation to sensor base points:
R Rit. Pt
Pz, = Tp} Py (1)

relating the sensor base points to the range referential.
Steps (2) to (5) can be repeated at more than one positions for the calibration
plate, as illustrated in Fig. 6(d), with the sensor home position remaining static.

The sensor base tracking procedure in the OR at ¢, is as follows:

entify the location of pits in sensor side-plates in probe space, to characterize
1) Identify the locat t de-plat b to cl t
the new sensor base position: pg’j“.
atch probe-space pits with the points p ; to determine the probe reference-
2) Match prob its with tl ints g ; to determine tl be ref

. . Pt, ¢ . . .
range transformation T} ,° for the configuration at time ¢,.
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Finally, the range data comprising surface Sp are then related to MRI-space
anatomical surfaces by considering the IGS probe-MRI and the probe-range trans-
formations:

M _ M Pt, R _ M R
XSpto = LPt, TR, XS5t = LR,t, XS5, - (2)

The final result can be further refined with a rigid-body Iterative Closest Point
registration, based on the skin surface identified in MR/CT data, and imaged in
the OR by the range-sensor. The sensor base tracking procedure steps 1 and 2
can be performed in less than a minute, together with the range data acquisition,
following the deployment of the sensor to a scanning position. The deployment of
the sensor, on a locking articulated arm or on a programmable robot, could also
be achieved within a minute or so, although the prototype described here was not
tested in the OR. A dense 256 x 256 grid of range points, referred to MR space, is
therefore achievable in considerably less time than it takes to manually acquire a
sparse, probe-based cloud of cortical surface points.

2.3. Surface non-rigid displacement estimation
2.3.1. Motivation and overview of non-rigid cortical motion estimation

Brain shift at the exposed cortical surface, measured with respect to the rigidly
transformed pre-operative brain surface identified in MRI, can be characterized as
non-rigid surface motion captured by the initial range image, as well as those dis-
placements captured in subsequent range images. This surface motion is estimated
with a non-rigid Iterative Closest Point®3! registration technique. ICP techniques
start from a rough initial alignment between two surfaces S4 and Sp, and itera-
tively use the set of closest point pairs between the two surfaces to determine a
new incremental transformation. The incremental transformation T} correspond-
ing to the kth iteration is then applied to one of the surfaces (which may already
be transformed), namely Tj_1S5p, gradually improving its alignment with S4. In
most applications, the transformation T} consists of an incremental rotation Ry
and translation ty.

In our non-rigid registration application, T; may also represent a 2D local
piecewise polynomial function: a smoothing surface spline. The choice of a surface
spline-based ICP technique is justified by its suitability to non-rigid motion estima-
tion, in contrast with approaches based on features and global shape. Moreover, this
technique is better suited than an active surface model to tracking an open range
image.*> The main drawback of such an iterative technique is the requirement of
a rough initial alignment, but this is provided by the range-MR transformation
procedure.

Prior to providing implementation details of our registration, we present a new
elastically deformable brain-shaped” validation phantom, as shown in Fig. 7, made
from Polyvinyl Alcohol Cryogel (PVA-C).'3 PVA-C is a relatively wiscous liquid,
which upon freezing and thawing, becomes an elastic solid. Furthermore, PVA-C
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Fig. 7. Elastic PVA-C brain phantom.

can produce material properties comparable to values published in the literature for
gray and white matter.° This phantom rests on a support plate of plexiglass (usable
within an MR scanner), and features a moving assembly consisting of a small disk
and rod, also of plexiglass, imbedded within the elastic material. The movement of
this imbedded disk, in response to changes in the position of set-screws, triggers
material deformation.

2.3.2. ICP homologous pairs by look-up: The closest point map

The iterative registration technique proposed here bears comparison to that of

31,53 which is characterized by the preprocessing, with an

Lavallée and Szeliski,
octree-based distance map, of the volume spanning one of the surfaces, to accelerate
its registration with the second surface. When a second surface falls within the
mapped volume, each point on it inherits a distance value to its closest homolog
of the first surface. Because this preprocessing produces a distance map, but does
not provide homologous pairs, the subsequent registration must still resort to an
optimization method to determine the best transformation.

In contrast, our method incorporates a processing stage applied to the identified
brain surface in the MRI volume, based on a propagative distance-to-surface algo-
rithm called the Fast Marching (FM) method,* and which is modified to produce a
Closest Point Map® as well. The Fast Marching method is used to compute distances
from a given surface, such as shown in Fig. 8(a) for tri-planar images of the elastic
brain phantom. The Closest Point Map is an adaptation of this method, whereby
the label of the closest surface point, from which the distance is computed, is also
stored. Moreover, as shown in Sec. 2.4, the FM method is also used to initialize
the surface model with which we identify the outer brain surface. In other words,
the same numerical estimation framework serves to both improve the efficiency of
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Fig. 8. (a) Distance and (b) Closest Point Maps computed from the surface of the elastic phantom
(white), and shown in tri-planar views, mapped to a gray-level. In (b) ambiguous voxels, possessing
more than one closest surface point, are shown in black.

the registration and to initialize the brain segmentation algorithm. To every voxel
in MRI space, the Closest Point Map associates the label of the brain (or phantom)
surface point closest to it. This concept is shown in Fig. 8(b) for tri-planar images of
the elastic brain phantom, with labels mapped to a gray-level and with ambiguous
voxels (more than one closest point) identified in black.

The characterization of non-rigid motion becomes much more efficient if its
starting point is a dense set of homologous pairs, as opposed to a distance map which
imposes a costly minimization at each ICP iteration. Each rigid transformation
iteration can exploit a closed-form computation method,® any of which requires
explicit point-pairs, not distances between them. Each non-rigid iteration can also
make use of a dense vector displacement function obtained by look-up, and as
will be seen in the next section, a highly efficient numerical scheme for smoothing
this function with surface splines. The justification for emphasizing computational
efficiency here is two-pronged: clinical acceptability and the inherent temporal under-
determination in estimating non-rigid motion.

2.3.3. Modeling non-rigid surface displacement with 2D recursive
spline filtering

The regular spacing of the range data is exploited by using extremely efficient
recursive smoothing splines®® to smooth the vector displacement field. These sur-
face splines express the fitting of interpolating, smoothing or approximating splines
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as recursive filters, provided that the data samples exist at regular positions. As
mentioned earlier, this is the case for the range surface points.

For this work, we adopt a smoothing spline approach, whose first stage is a
convolution with a smoothing kernel®

SUZ) =1/ (BY(Z) + N~Z +2 - Z7)"F) (3)

56 p is the order

where B}(Z) is the indirect B-spline transform given by Unser,
of the spline fitting and A is the regularization parameter of the smoothing. This
stage produces B-spline coefficients and is followed by a convolution with the indi-
rect transform B}(Z) to yield the smoothed output. The filters can simply be
cascaded to implement smoothing in 2D. A first-order fit is chosen, i.e. n = 1, to
limit overshoots due to a higher-order continuity constraint. This first-order recur-
sive IIR filter can be broken down into factors in Z and Z~!, and implemented
as separate anti-causal and causal filters respectively, which translates into local
operations involving the current and immediately neighboring pixels, independently
of the smoothing parameter A\ (for further details, see Ref. 56). The effect of \ is
illustrated in Fig. 9.

In order to make the non-rigid motion estimation well-behaved, the registration
features the following stages:

o A rigid registration stage: a series of instantaneous rigid ICP iterations. This
stage is halted when the registration error is no longer reduced significantly.

o A non-rigid registration stage: a series of non-rigid ICP iterations where the
smoothing parameter A is initially set very high, and is gradually lowered as the
process iterates, progressively resolving finer-level motion detail.

2.3.4. Special considerations for range-MR non-rigid surface registration

Each non-rigid registration iteration may require some additional consideration, in
comparison to a rigid-body stage, as illustrated in Figs. 10 to 13. At some pixels in
the range-sensor CCD, a low signal can occur, resulting in a gap or an unreliable
range point. Such a low signal value can be detected from the z-value or intensity
profile of the range image and pruned. Furthermore, because the range data are
somewhat denser than the MR-based cortical surface points, the range-MR, homol-
ogous pairs are many-to-one. Consideration of all of the homologous pairs would
lead to an erroneous tangential displacement component. This issue suggests refin-
ing these many-to-one homologous pairs, resulting in a set of mutually closest pairs,
followed by a proximity-weighted displacement propagation. In the neighborhood
of gaps, the non-rigid motion estimation is more reliant on this displacement prop-
agation. While it is geometrically feasible for a voxel to have more than one clos-
est surface point, simple disambiguation and validation of each homologous pair

2Note: here Z relates to the Z-transform.
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Fig. 9. Illustration of recursive spline filter response, given an input consisting of a sum of a
ramp and 7 harmonic sinusoids, as A decreases from 128 to 0.5.
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Fig. 10. Range data featuring unreliable, low-signal pixels which are identified and eliminated
from further consideration.

W ity

Fig. 11. Dealing with many-to-one range-MR matches arising from unequal data density (MR
points in white, range points in black). Top: true surface displacement Dg; second row: displace-
ment field implicit in many-to-one homologous pairs; third row: disambiguation by pruning all
but mutually closest homologous pairs; and bottom: distance-weighted propagation.
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et B

Fig. 12. Multiple or spurious MR closest point: disambiguation from continuous displacement
assumption, by neighborhood estimate.

are possible, based on the assumption of continuous displacement.3” This test is a
comparison between the displacement vector determined by each homologous pair,
and an average displacement computed from neighboring points.

Finally, the result of the procedure described so far is a forward range-MR
transformation TN, composed of a final multiplicative rigid transformation T% .
which is the product of successive ICP transformation matrices,? followed by an
additive spline-based non-rigid displacement function T% nt

x’Rﬂ; = T%[ (xR,;) = T%n (T%{TXR@) where

T%],r = T%’I",K e T%r,l and T%n (X) = T%],nL e (T%I,mKJrl (X)) .

(4)

The indices K and L indicate the final iterations of rigid (multiplicative) and non-
rigid (additive) ICP registration. In turn, the following recursive expression further
defines the [th non-rigid transformation

T%n,l(x) =d, (x+ 61171) +TRrni-1 (5)

where d; represents the smoothed displacement at iteration [, evaluated at a trans-
formed range point. In other words, the method described so far maps the range
surface data {xp,;, where xg; € Sg} to MR space, in a manner that conforms to
the pre-operative MR cortical surface data {xar,; where xps; € Sar}-

What is needed to characterize brain shift, however, is the inverse transforma-
tion Tff which non-rigidly maps the pre-operative MR brain surface data xus,;
to conform to the intra-operative cortical range data. The inverse transformation
of TH is the negative of the overall range-MR non-rigid vector displacement field

bHomogeneous coordinates reduce the application of successive rigid body transformations to a
sequence of matrix multiplications.'”
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Fig. 13. Generating the MR-range transformation T]}E[ from T%. Top: overall rigid range-MR
transformation TJI\% ; middle row: overall non-rigid range-MR displacement T%n. Bottom: the
non-rigid and rigid components of the transformation which maps the MR brain surface to the
range image are as follows: Tfl ,, is the negative of T]éfn, and Tﬁ{r is the transpose of Tgr

applied to pre-operative MR data, followed by the application of the inverse, or
transpose, of the overall range-MR rigid-body transformation, as shown in Fig. 13:

x’Mj TExnm,; = Tf\{“Tﬁn (xa;)  where ©)

-1 T
TJ\I 71( ) = TR ,,( ) and Tf\t;[,,r = T%Ir = T%Ir
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The computation of the inverse transformation in this manner pre-supposes the
smoothness of the forward non-rigid mapping, in a manner sufficient for the inverse
to be well-defined, and the absence of significant occlusions.

2.4. Model-based brain surface segmentation

Currently, the traditional technique for identifying anatomical surfaces in IGS is a
labor-intensive slice-by-slice approach where a “seed” is selected, corresponding to
the tissue type of interest, and a software program identifies the rest of the contigu-
ous voxels which are of similar intensity.?* The contiguous labeled voxels within
these slices together comprise a volume of interest, coinciding with brain tissue
for example, the outer surface of which constitutes the boundary of interest. In
contrast, a semi-automatic segmentation technique in general requires far less user
interaction, has better reproducibility than a manual approach, can incorporate
prior knowledge into the model to avoid common pitfalls, and can easily process
image volume information in a fully three-dimensional manner. Surface models can
be categorized into those based on an explicit representation and on a physical equi-
librium between virtual internal properties of the model and image-based external

26,54

forces, and those based on the evolution of an implicit surface expressed as a

partial differential equation in time, which imbeds the problem into one defined over

12,36 (

the complete image domain for a survey, see Ref. 43). We adopt a surface evo-

lution model because of its topological adaptability and simple formulation in 3D.

2.4.1. Surface evolution model with classifier-based speed term

The anatomical surface identification technique presented here is known as a surface
evolution model,*23¢ which is characterized by imbedding the identification of a 3D
surface S into the evaluation of a function ¥ whose domain spans the image volume:

{X € R% such that S(t) = X : U(X,t) =0}. (7)
OV AA
N = F(z,y,2)| VY] {dw(w) —l—u} +VF-VU (8)

where div(V¥/||VT||) represents the mean curvature H of an isosurface of the
function W. This model features a diffusive smoothing term ||V ||div (VI/||VT]]),
a hyperbolic motion term ||[V¥|lv, and two image terms: a speed function F' and a
doublet term VF - VU which serve to bind the evolving surface to the anatomical
boundary of interest. Moreover, the model is initialized by one or more initial user-
defined surfaces {¥(X,0) = 0} which fully contain, or are fully contained by, the
anatomical boundary.

The model evolves in a manner which nudges the zero-level isosurface
{¥(X,t) =0} inwards or outwards until the image terms bind it to the bound-
ary. The imbedding function W is initialized as a signed distance map from the
initial user-defined surface(s). For the sake of efficiency, we restrict the computa-
tion of our model to a narrow band,! whereby the model is computed only within



266 M. A. Audette et al.

a thin volumetric shell close to the evolving {W¥(t) = 0} isosurface. As mentioned
earlier, we choose the Fast Marching (FM) technique in order to compute distances
from the {U(X,?) = 0} isosurface, to initialize U(X,t) over its whole domain and
to restrict the computation to a narrow band near the {¥(X,¢) = 0} isosurface.

In most existing implementations of surface evolution models, the speed term
is a function of the image gradient, i.e.

1
F= =
L+ ([ VI(z,y,2)|"

9)

where typically n = 1,2 or 3 and I(x, y, z) is usually a Gaussian-filtered image (MR)
volume. However, this approach has some limitations when it comes to identifying
the brain surface, such as a lack of T'1 contrast between gray matter and the sagittal
sinus and between gray matter and muscle tissue, possibly entailing a bleeding effect
outside the brain surface. To alleviate this problem, the model is endowed with
higher-level anatomic information, namely by first running a Minimum Distance
(MD) tissue classification algorithm'® on the image volume(s), and to compute
a speed function which restricts the surface model to expand only within voxels
classified as white matter (WM) and certain gray matter (GM) voxels, according
to the following discrete relation:

F(z,y,z) =1.0if {(x,y,2) € WM} or {(z,y,2) € GM and near WM}
= 0 otherwise. (10)

Other classification techniques were considered, but the MD technique performs
well with a small training set (the presence of pathology may preclude warping a
large, generic training data set to patient data) and with 7T'1-weighted data alone.
Tissue classification is the thrust of ongoing research of ours® and is a complex issue
in itself, particularly if it must cope with pathological data and with a relatively
small set of training points. While it would appear feasible to simply consider the
outside surface of GM points (with the Marching Cubes algorithm?? for example)
in practice, false GM positives that are iso-intense with GM (e.g. muscle) do arise
and would undermine such an approach, particularly if only 71 data were available.
The classifier-based surface model also offers an elegant means of integrating multi-
spectral data, such as T'1-, T2- and PD-weighted MR, if available.

2.4.2. Surface model implementation

Our implementation is a two-stage procedure which first identifies the outer WM
boundary, then, based on a flexible coupling implemented with the WM/GM Dis-
tance Function (WDF), the outer brain surface is identified with the position of the
WM boundary as a constraint. The effect of this coupling on the speed term com-
putation is illustrated in Fig. 14. One advantage of our method over more rigidly

134,59

coupled surface models is that it will tolerate embedded pathologies. Moreover,

the threshold that limits the motion of the brain surface through GM voxels varies
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(c) (d) Initial surface

WM boundary Outer Brain surface

Fig. 14. 'WM/GM surface coupling: (a) WDF mapped to a gray-level intensity with WM contours
in white; (b) speed function based on WM or GM tissue classes from T'1 alone; (c) speed function,
as in (b), but excluding GM voxels exceeding WDF shown in (a). (d) Surface model applied to
ICBM subject 00100.

according to spherical coordinates, so that the coupling between white and gray
matter takes into account prior assumptions about the thickness of gray matter,
which is much thinner in the cerebral cortex than in the cerebellum or lower frontal
area, for example.
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The surface model computation culminates in a post-processing of the outer
brain surface to produce a Closest Point Map, for the subsequent non-rigid registra-
tion with the intra-operative range-based surface. This is simply the Fast Marching
method applied not to computing a distance map from the evolving {¥(X,¢) = 0}
isosurface within a narrow band, but to computing distance and closest point label
from the final brain surface everywhere in the volume. As a result of its propagative
nature,*® the FM algorithm is easily modified not only to estimate the distance of a
surface to any vozel in the image volume, but also to store the identity of the par-
ticular surface point which is closest. The motivation for using the FM algorithm is
its computational efficiency and adaptability for storing Closest Point labels. How-
ever, there exist other methods for estimating distances which could serve the same
purpose.

3. Validation and Discussion
3.1. Validation of the range-MR transformation procedure

Validation of all procedures involved in relating range to MR is based on the skin
phantom shown in Figs. 15 and 16. This phantom features 12 glued-on torus-shaped
fiducials, which are visible under both CT and MR. Since the phantom was solid
and contained a metallic core, its construction precluded a study based on Magnetic
Resonance imaging, and we employed a CT validation. The dimensions of the CT
voxels are 0.89 mm in the x and y directions, and 1 mm in z. The localizing device
used in this study is a FARO arm,%! discussed in Sec. 1. The overall range-CT trans-
formation makes use of the prior IGS probe-CT transformation based on 7 pairs of
fiducials {x%, < x% .} accessible in probe space. The IGS transformation results

(a) (b) (c)

Fig. 15. (a) Skin phantom. 7 homologous point pairs used for left (b) and right (c) side studies:
CT space (light gray) and probe space fiducials transformed to CT space (white), overlaid on
outer skin phantom voxels.
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100

y(mm) (MBI space),

(d)

Fig. 16. Range-CT transformation results (trial 1): (a)—(b) left side: (a) range data transformed
to CT space overlaid on CT data; (b) CT (gray) and transformed range space (white) fiducials;
(¢)—(d) right side: (c) transformed right side range data overlaid on CT data; (d) CT space and
transformed range space fiducials.

for the left and right side studies are characterized by errors of 1.4 mm and 1.6 mm
respectively. The validation study consists of a comparison of

o computed CT fiducial positions: manually identified fiducials in the range image,
transformed to CT space with the procedure presented here, against
e manually identified fiducial positions in CT.
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Table 1. Trial results for calibration and sensor base tracking procedure. Rigid body transfor-
mation by least-squares and by robust regression, with and without ICP refinement based on
the skin identified in CT and range spaces. The value €,ms represents the RMS error (in mm)
between CT fiducial positions and their homologues in the range image transformed to CT space
by Tg};ge. The value dgy,s is the RMS distance (in mm) between the transformed range points
and the CT skin surface. The symbols ||[t¢]| and ¢ indicate the magnitude of the translation and
rotation between the sensor base positions at t. and t,.

Left Side Study

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5
ILOE] (mm)/0QF (deg) 293.4/11.0 139.1/11.1 201.6/12.9 265.5/53.8 167.0/14.4

least squares €rms (Mm) 2.48 2.48 2.98 2.57 1.99
dgyrf (mm) 0.97 0.88 0.99 0.79 0.61

robust €rms (mm) 2.01 2.41 4.31 2.69 1.74
dgur s (mm) 0.91 0.91 1.53 1.01 0.67

least squares, ICP  €rms (mm) 2.44 2.47 2.71 2.57 2.09
dgyr s (mm) 0.46 0.47 0.47 0.47 0.46

robust, ICP €rms (mm) 2.11 2.16 3.90 2.51 2.01
dgur s (mm) 0.46 0.46 0.49 0.46 0.45

Right Side Study
ILQE] (mm)/0QF (deg) 266.7/1.5  141.9/1.0  231.1/2.7 243.5/43.8 191.2/24.4

least squares €rms (mm) 2.14 2.48 3.39 2.43 2.19
dgyry (mm) 0.97 0.52 0.89 0.91 0.63

robust €rms (Mm) 2.11 3.08 5.40 2.71 3.08
dgyrf (mm) 0.66 0.92 1.65 0.86 0.72

least squares, ICP  €rpms (mm) 2.12 2.12 2.92 2.33 2.13
dsurf (mm) 0.41 0.41 0.45 0.42 0.41

robust, ICP €rms (Mm) 2.20 2.49 4.27 2.42 2.78
dgyrf (mm) 0.41 0.40 0.45 0.41 0.40

While an automatic localization of the fiducials in both spaces may have been
desirable, to do so reliably was difficult to achieve, due to self-occlusion in the
range data.

Table 1 sums up the average values for disparities between identified and com-
puted fiducial positions in CT space for the left and right side studies.

Also featured in Table 1 is a description of the magnitude of the transformation
between the two sensor base positions at t. and at ¢, (during validation), from
side-plate probe measurements. The transformation is expressed as two values: the
magnitude of the calibration-OR translation vector |[t2]| in mm and the angle of
rotation A2 in degrees, about the rotation axis.

These results are encouraging and they are consistent with the localization tech-
nology used for implementing the IGS registration. In particular, Rohling® noted

“Recall that a rotation can be expressed in terms of Euler Symmetric Parameters, i.e. as an axis
of rotation (kz, ky, k) and an angle of rotation 6 about this axis (see Ref. 17, pp. 55-56).



Brain Shift Estimation for Image Guided Surgery 271

that the FARO estimates distances to within 0.5 mm, whereas the Optotrak is gen-
erally within 0.15mm, and Alp et al. have shown that torus-shaped fiducials are
identified less precisely than other fiducials.2 Nevertheless, the goal of this proce-
dure should be to achieve a characterization of the range-MR transformation to the
nearest millimeter.

These results can be interpreted in the context of the formal relationship
between the fiducial localization error (FLE) and the target registration error (TRE)
explored by Maurer, Fitzpatrick et al.*® Furthermore, Langron and Collins,? based
on prior work of Sibson,’® showed that fiducial registration errors (FRE) add in
quadrature. A lower bound on the final TRE of the calibration and sensor base
tracking procedure can be estimated on the basis of the FLE or TRE associated with
each step. Assuming a unity TRE ~ T LE relationship (for the sake of simplicity), a
probe FLEp of 0.5mm,*® and a range FLER ~ /(0.5% 4+ 0.52 + 0.52) = 0.86 mm,
where a value of 0.5mm is also presumed for the y-axis (due to limitations of the
linear positioner calibration procedure), we assess the accuracy of the calibration
plate localization as 4/(0.5%2 4+ 0.86%) ~ 1.0mm. The accuracy with which the sen-
sor base divots can be located with respect to the range reference at t., is then

(1.02 4+ 0.52) = 1.12mm. The accuracy of the sensor base tracking procedure,
from ¢, to t,, is given by:

TRER p1, ~ FLEpp, ~ /(1.122 + 0.52) &~ 1.22mm. (11)

If one factors in the TRE of the probe-CT transformation, which for this study is
in the 1.5 mm range, then a reasonable lower bound for the final TRE is

TREg e, = \/(TRE}_p, +TRE} ) ~ /(12221 157 ~ 193 mm. (12)

This value is compatible with the values observed in Table 1, particularly for a
torus-shaped fiducial. Further analysis of these results indicates that the accuracy
of the registration does not improve appreciably with robust statistics or with a
subsequent skin-based ICP registration, and that there does not appear to be a
correlation between the registration error and the size of the transformation.> The
former finding suggests that the homologous pairs appear to preclude a severe
outlier, as well as underscores the importance of their geometric configuration,*’
since the systematic removal of information by the robust method tends to make
the registration degrade. The latter finding is consistent with most of registration
error being tangential to the surface. One explanation could be a FLE in the range
data which is more important than the first thought. A pixel error of (d4,dj) in
the fiducial localization results in a localization error whose largest components
are along rr and yg, for a brain surface which for all intents and purposes is
normal to zp.
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3.2. Non-rigid registration validation

3.2.1. Validation study with brain shift simulation by realistic
elastic brain phantom

In order to assess non-rigid surface tracking, the set-screws under the phantom sup-
port plate are tightened, triggering a deformation of up to 15mm at the top, and
the phantom surface is then imaged by the range-sensor. A rough manual alignment
is provided, based on finding the points on the MR surface corresponding to the
corners of the range domain and adding a vertical offset. The gradual improvement
of the registration of the range and MR surfaces of the elastic phantom, over suc-
cessive iterations and progressively more local characterization, can be illustrated
as follows.

e Distance statistics: average and standard deviation values computed from the
distance between homologous pairs, as shown in Fig. 17.

e Spatial distribution of the distance between two surfaces: this distance function
can easily be visualized as a gray-level point whose position is that of a sur-
face point in range or MR space and whose gray-level is based on a distance-
gray scale, as in Fig. 18. The top and bottom halves of this figure respectively

log10 of distance average vs iteration k log10 of distance standard deviation vs iteration k
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Fig. 17. Statistics of distances between homologous points, assuming an overall transformation
T]}‘{ (based on expressions 4 evaluated up to iteration K = k or L = k) applied to range points:
(a) logio of distance average; (b) logio of distance standard deviation.
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(¢) forward final non-rigid: k=73 A= 0.5

(b) forward final rigid: k = 14
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(f) inverse final non-rigid: £ = 73 A = 0.5

(e) inverse final rigid: & = 14

Fig. 18. Forward and inverse transformation results, featuring initial, final rigid and final non-
rigid transformations. The gray-level scheme of the data indicates the distance between the range
to MR brain surfaces. (a)—(c): Forward-transformed range data: medium gray (lighter than MR
data): d < 0.5mm, light gray: 0.5 < d < 2.0 mm, white: d > 2.0mm. (d)—(f): Inverse-transformed
MR data; logarithmic scale: black corresponds to —1.0 (0.1 mm) and white to 1.3 (20 mm).

illustrate the forward and inverse transformation results, including the rough
manual starting point, the final rigid transformation, and the final non-rigid
transformation.

e 2D slice illustration: a qualitative illustration of the surface registration as it
evolves over k and progressively more local characterization is provided by the
consideration of any given 2D slice of the range image, such as shown in Fig. 19
for the slice yp = 79.2.
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Fig. 19. Inverse transformation results, featuring initial, final rigid and final non-rigid transfor-
mations, for the slice yg = 79.2 (j = 192). Shown here are homologous range points and MR
brain points mapped back to range space according to Tﬁ[ i and projected to the xg — zg plane.

3.2.2. Validation study with an analytical displacement applied to an
anthropomorphic digital brain surface

This validation study of the non-rigid surface registration procedure compares the
vector displacement function applied to synthetic range image of the brain, obtained
from an anthropomorphic digital phantom, with the displacement computed by
the registration procedure. As shown in illustration 20, the clinical situation is
simulated by taking a patch of the known brain surface of this phantom, of isotropic
1 mm sampling (refer to Collins!* for further details), and interpolating it in order
to replicate the density of the range-sensor CCD. To each synthetic range image
obtained in this manner, we apply a “downward” analytical displacement function
consisting of a constant plus a slowly varying sinusoid. This study features two
synthetic range images, as shown in Fig. 20: a top patch, isolated from the most
distal brain surface points of the phantom in a well-centered square area, whose
displacement is essentially proximal, as well as a left patch, from the left-most
brain surface points in a similarly well-centered square area, whose displacement
is towards the right. A measure of the accuracy of the registration procedure is
then computed from the vector difference between the pre-deformation synthetic
range patch, and the post-deformation, post-registration range patch. Figure 21
and Table 2 illustrate the gradual improvement in displacement estimation, over
successive iterations. The deformation function is of the type

d=ds =[A+ Beos(2nf(x1 — Z1)) cos(2m f (2 — T2))] T3 (13)
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Fig. 20. Two synthetic range images overlaid on original phantom brain surface data, from which
they were obtained by interpolation.

where x1 and x5 coincide with z and y for the top patch study, and with y and z
for the left patch study. The period of the sinusoid is chosen to be approximately
the width of the patch, and a few combinations of A and B are documented in
Table 2. At the finer scales, small improvements in surface-to-surface distances
may no longer be reflected in an improvement in the displacement estimation, and
there is a risk that spline-based motion characterization could warp the surface too
aggressively, essentially unfolding the sulci. To alleviate this risk, the progression of
the motion characterization from coarse to fine is gradual, and each non-rigid iter-
ation is in fact a composition of a rigid-body iteration and a spline-based non-rigid
motion characterization. As a consequence, the iterative minimization of surface-
to-surface distance correlates well with the minimization of the error in a non-rigid
displacement estimation.

Estimation error statistics of the analytical deformation study are presented in
Table 2, along with the distance between two surfaces. In all cases, the final non-rigid
registration provides, on average, displacement estimation on the order of 1 mm or
less. Nevertheless, this error is significantly larger than the final surface-to-surface
distance. Given that the average distance between the two surfaces is relatively
small, much of the displacement error is likely to be orthogonal to the direction
of the true displacement. In no way is any assumption of a strong gravitational
component exploited in the deformation estimation, because even if the movement
were exclusively downward, one could not assume that the sensor x — y axis were
normal to the “downward” direction. Therefore, attempting to model the movement
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(a) (b)

Fig. 21. Analytical deformation results: (a) top study and (b) left study. Top row: initial defor-
mation A + Bcos(27wf(z1 — z1,c)) cos(2mf(z2 — x2,c)), where A = 15mm and B = 5mm; middle
row: final rigid registration; bottom row: final non-rigid registration. Medium gray (lighter than
MR data) signifies that the deformation is estimated with error < 1.0mm, light gray: 1.0 mm <
error < 2.0mm, and white: error > 2.0 mm.

exclusively along z would not characterize it adequately. However, the assumption
of a dominant downward component is manifested in the validation displacement
function which is along z for the top patch study, and along x for the left patch
study. The anomalous result of the second top patch study stems from an early exit
of the rigid registration stage, which could be prevented by more tolerant logic,
but even then the non-rigid stage, consisting of a sequence of compositions of rigid
transformation and spline-based displacement, provided reasonable results.
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Table 2. Analytical deformation statistics. Left column: deformation parameters (in mm, mm and
mm 1), as per expression (13). Middle column: magnitude of vector difference between estimated
and analytical displacement (at the start, after the final rigid iteration and after the final non-rigid
iteration). Right column: distance between mutually closest points of the synthetic range and MR
surfaces.

Deformation Parameters Estimation Error (mm) Inter-Surface Distance (mm)
Left Patch Start Rigid  Nonrigid Start Rigid Nonrigid
A=5 B=5 f=1/80 42+22 14406 07+02 36+x54 0.7+£0.3 0.09+0.01
A=10 B=5 f=1/80 93+21 16+05 08+02 4.0+122 0.84+0.3 0.09+0.01
A=15 B=5 f=1/80 14.14+2.0 18+06 09+0.3 3.7+£139 0.8+0.3 0.08+0.01
A=5 B=5 f=1/60 33+32 1.7+£09 09+03 30+38 0904 0.09+0.01

Top Patch Start Rigid Nonrigid Start Rigid Nonrigid

=5 B=5 f=1/80 52421 12406 06+02 24+25 0.74+0.3 0.10£0.01
=10 B=5 f=1/80 106+23 9.1+23 1.0+05 28+45 0.8+£0.3 0.09£0.01
=15 B=5 f=1/80 158+25 16+04 06+02 29+55 0.8+0.3 0.09+0.01
=5 B=5 f=1/60 41+£32 15+10 0.7+03 22+18 08+04 0.10£0.01

In view of the final non-rigid results in the bottom row of Fig. 21, the spatial dis-
tribution of the points, many of whose estimation error lies between 1.0 and 2.0 mm,
suggests a possible limitation of using an Iterative Closest Point scheme to model
brain deformation. The estimation is better at ridges and peaks, coinciding with
gyri, and conversely is worse in crevasses coinciding with sulci, as well as in sloped
areas. One possible interpretation is that the closest point pair constitutes a good
homologous set when the surface normals at both points are roughly aligned with
the true direction of the deformation, as is the case with anatomically equivalent
points from a gyrus. However, a sulcus is characterized by a crevasse surrounded by
points on a slope: for a given crevasse point on surface A, the closest point is likely
to be on a slope, rather than the corresponding crevasse point on surface B. This
geometric limitation is also why the ICP method cannot resolve motion having a
strong component tangential to the either surface normal. For example, while this
method can resolve a radial increase in scale of a spherical surface, it cannot deal
with a pure rotation.

3.2.3. Nonrigid registration validation conclusions

This section featured innovations related to the validation of non-rigid registra-
tion, through the use of a constitutively realistic brain-shaped deformable phan-
tom, whose deformation is triggered from within, and an analytical deformation
function applied to a synthetic cortical range surface, obtained by interpolating the
surface coinciding with the outer gray matter boundary of the digital head phan-
tom. The registration results are consistent with other, less efficient ICP techniques,
characterized by a gradual reduction of the distance between two surfaces.

The study based on a known deformation suggests that overall the ICP regis-
tration technique accurately estimates non-rigid motion, but performs slightly less
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well in highly sloped areas, such as those in the deep recesses of sulci. This consider-
ation leads to a refinement of the ICP method similar to that proposed by Feldmar
and Ayache,!? where only those points which are both close in space and of similar
shape are considered homologous. However, it is less obvious how to adapt this
shape-based approach to a Closest Point Map.

3.3. Surface model validation

The accuracy of our surface-based brain shift estimation framework presupposes
an accurate brain segmentation algorithm. We have validated the brain surface
identification technique presented so far with a quantitative approach based on
realistic synthetic data, where ground truth is known, and qualitative tests with
in vivo subject data. The latter data comes in the form of healthy subject scans
obtained from the ICBMY database, as well as Montreal Neurological Institute
(MNTI) patient scans featuring pathologies. This validation is presented in Ref. 5.

The quantitative validation stage presented in this section makes use of two soft-
ware tools which were developed at the MNI: a MRI simulator specifically designed
and implemented by Kwan et al.3% for the purpose of image analysis evaluation, and
a high-resolution, volumetric, anthropomorphic digital brain phantom elaborated
by Collins et al.'* In turn, the healthy-subject digital phantom is the starting point
for a second phantom featuring pathological tissue.'® The accuracy of the segmen-
tation of the brain surface within simulated T'1-weighted MR data can be assessed
from the known boundary of the brain within the digital phantom, as shown in
Fig. 22 (for more details, see Ref. 5).

The evolution of the zero-level isosurface, from spheres imbedded in white mat-
ter, through the white matter boundary, to the outer brain surface, is illustrated for
healthy subject 00100 from the ICBM database in Fig. 14. Other examples, featur-
ing real patient data with pathologies present, appear in Fig. 23. These examples
represent the worse case, from a classification standpoint: T'1 data considered alone,
as one would expect the tissue discrimination ability of the classifier to improve with
the consideration of T2 and PD-weighted data.

This section presented a brief overview of the validation study of our surface
evolution model. Our study makes use of data from real subjects both healthy and
with pathologies, as well as synthetic data with simulated pathological tissue. One
point not discussed so far is that the model as currently implemented assumes a
voxel-based boundary, in particular because the FM technique employed at the
time used a voxel-based surface as a starting point. However, FM techniques for
triangulated surfaces have since been published, and it should be feasible to adapt
the Closest Point Map computation to triangulated surfaces as well. This improve-
ment would be significant, as it would produce a Distance and Closest Point Map
of a surface established with sub-voxel accuracy. The overall accuracy of the surface

dInternational Brain Mapping Consortium.
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Fig. 22. Surface model behavior with synthetic pathological data: (a) original pathological phan-
tom and (b)—(e) brain surface identified with surface model, from simulated 7T'1-weighted scan:
(b) tri-planar view; (¢) rendered view; (d) distribution of distance between brain surface in scan
and phantom brain boundary; (e) error between brain surface identified in scan and underlying
brain boundary in phantom, shown as gray-level plot: avg. = 0.68 £ 0.51 mm.

tracking method proposed here is dependent on the accuracy of all its constituent
stages, so that an overall objective of 1 mm presupposes segmentation accuracy well
within 1 mm, which in turn will probably only accrue from a sub-voxel, triangulated
method.
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(®)

Fig. 23. Surface model behavior with real pathological T'1-weighted data; (a)—(c) patient 1:
(a) classification results, featuring 7 classes; (b) tri-planar view; (c) rendered view; (d)—(f) patient
2: (d) classification results, featuring 7 classes; (e) tri-planar view; (f) rendered view.

4. Conclusion

This chapter addressed the problem of intra-surgical brain deformation, and
suggested a non-rigid surface registration framework for characterizing this defor-
mation. The objective of this framework was to produce a smoothed, dense
vector displacement function from the undeformed preoperative brain surface, semi-
automatically identified in MR data, to the exposed intra-operative brain surface
characterized with a laser range-sensor and referred to the MR coordinate system.
This vector displacement function could then be interpolated everywhere in the
brain volume, on the basis of an ulterior volumetric, constitutively realistic FE
model.
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Furthermore, the methods proposed here were conceived from assumptions
based on practical clinical requirements. First, the semi-automatic method for iden-
tifying the brain surface in MR should be able to cope with the presence of imbedded
pathology, even very large tumors. Next, the 3D surface capture and surface regis-
tration methods should be fast, producing results virtually at the instant they are
required in the OR, with no user intervention except to initiate the processes. And
finally, the method for relating the MR and range spaces must function despite
the presence of large swaths of surgical draping, possibly occluding one or more
intra-surgical fiducials, which suggests a calibration-based solution.

The underlying assumption of this chapter is that an accurate volumetric dis-
placement characterization is possible with a displacement map at the exposed
cortical surface and with a suitable finite-element model. The documented use of
volumetric FE models, with sparse surface displacement data and with surface
models fit to intra-operative MR data, suggests that at the very least, the accurate
volumetric estimation of intra-surgical brain displacement with this framework is
highly feasible. A future validation study which would support this hypothesis is the
comparison of the position of beads imbedded in our elastic brain-shaped phantom,
as detected within a MR volume, against the position predicted on the basis of a sur-
face registration and volumetric interpolation approach. Furthermore, the method
presented here is entirely compatible with the integration of probe-based informa-
tion about the volume of resected tissue,”’ whose interaction with the finite-element

brain model could be inspired from cutting models used in surgical simulation.3®
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We are investigating interventional MRI (iMRI) guided radiofrequency thermal ablation
for the minimally invasive treatment of prostate cancer. Nuclear medicine can detect
and localize tumor in the prostate not reliably seen in MRI. We intend to combine the
advantages of functional images such as nuclear medicine SPECT with iMRI-guided
treatments. Our concept is to first register the low-resolution SPECT with a high res-
olution MRI volume. Then by registering the high-resolution MR image with live-time
iMRI acquisitions, we can, in turn, map the functional data and high-resolution anatomic
information to live-time iMRI images for improved tumor targeting. For the first step,
we used a three-dimensional mutual information registration method. For the latter,
we developed a robust slice-to-volume (SV) registration algorithm with special features.
The concept was tested using image data from three patients and three volunteers. The
SV registration accuracy was 0.4 mm + 0.2 mm as compared to a volume-to-volume reg-
istration that was previously shown to be quite accurate for these image pairs. With
our image registration and fusion software, simulation experiments show that it is quite
feasible to incorporate SPECT and high resolution MRI into the iMRI-guided minimally
invasive treatment procedures.

Keywords: Image registration; image fusion; interventional magnetic resonance imaging
(iMRI); nuclear medicine; image guided therapy; minimally invasive treatment; radiofre-
quency thermal ablation.

1. Introduction

We use an interventional magnetic resonance imaging (iMRI) system to guide min-
imally invasive treatments, including the radiofrequency (RF) thermal ablation of
abdominal cancers.! ® The iMRI system consists of a 0.2T, clinical C-arm open
MRI scanner, an in-room RF-shielded liquid crystal monitor, an MR compatible
mouse, a foot pedal, and a RF device. We are currently investigating the exten-
sion of these techniques to the treatment of prostate cancer. Since MRI does not
reliably show prostate tumors, we intend to incorporate nuclear medicine or MR
spectroscopy images with higher sensitivity for detecting and localizing prostate
tumors.*> We will first register the low-resolution functional images with a high-
resolution MRI volume.®” Then by registering the high-resolution MR volume
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with live-time iMRI acquisitions, we can, in turn, map the functional data and
high-resolution anatomic information to live-time iMRI images for improved tumor
targeting. As discussed later, since live-time iMRI is used for device guidance, the
accuracy requirements for registering these supplemental images might be less strict
than required in some other applications.

We previously described a rigid body volume-to-volume (VV) registration
method for the pelvic and prostate MR images that was accurate when images
were acquired under similar conditions.® We used bony landmarks and three-
dimensional (3D) centroids of segmented prostates to evaluate VV registration. For
volume pairs acquired over a short time span from a supine subject with legs flat
on the table, registration accuracy of both the prostate centroid (typically < 1 mm)
and bony landmarks (average 1.6 mm) was on the order of a voxel (= 1.4mm). The
centroid error was slightly smaller because the prostate was at the volume center
and rotation errors had less effect on it. The localization error in finding 3D points
from bony landmarks is probably greater than that of finding centroids of relatively
large prostate volumes where segmentation errors average out. We obtained some-
what larger prostate registration errors of about 3.0 mm when volume pairs were
obtained under very different conditions that would be avoided in patient studies,
e.g. legs flat and legs raised.

To incorporate image data from other sources in a live-time iMRI procedure, we
intend to register two-dimensional (2D) slice images quickly acquired on the iMRI
scanner in live-time with a previously acquired MR volume. We call this slice-to-
volume (SV) registration. Because of our success with VV prostate registration,
we can determine SV accuracy by comparing results to VV registration for volume
pairs having low VV registration error.

To incorporate an image volume from another modality, it can be registered with
the full MR volume. Thus, to incorporate SPECT in an iMRI procedure, we will
first register the SPECT image volume with a high-resolution MR, volume; then,
when we register iMRI slice images to the high-resolution MR volume, we can also
map them to the SPECT functional image data. If this procedure is successful,
then a variety of potential visualization tools can help the physician appropriately
localize and apply treatments. The live-time iMRI images will be used for guidance,
and very probably any small misregistration errors can be mentally corrected by
the physician. To possibly improve the slice-to-volume (SV) registration step, we
intend to use MR images acquired with similar pulse sequences.

The application of SV registration to iMRI-guided treatment of prostate cancer
raises several challenges. First, a single slice has much less voxels than an entire
volume for voxel based matching. Second, iMRI images often have lower signal to
noise ratio (SNR) than diagnostic MR images because of the emphasis on fast imag-
ing and because of the typically lower field strength of open iMRI magnets. Third,
the normal prostate is a small organ; when healthy, it measures only ~ 3.8 cm in its
widest dimension.? The small prostate is located below the much larger bladder that
can change its shape and size during imaging. Fourth, the non-homogenous receive
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coil response can change from one imaging session to the next. Finally, times for
registration and algorithm robustness are of particular concern for this treatment
application.

Previously reported methods for SV registration were mainly applied to the
brain for applications of functional MRI,'® postmortem pathology studies,'! and
anatomical modeling.'? Voxel-based methods, particularly those based upon mutual
information (MI), are robust, require no segmentation that can be prone to error,
are suitable for multi-modality registration, and are highly accurate for many
applications.?®10:13715 However, the MI method has the problem of interpola-
tion artifacts, which can be especially serious in the case of down sampling in
a multi-resolution approach.'® Other similarity measures such as the correlation
coefficient (CC) can reduce the presence of local minima.!”

In the next sections, we will report algorithms and results for the slice-to-volume
registration between an iMRI thick slice and a high-resolution MRI volume, the
three-dimensional registration of SPECT and high resolution MRI volumes, and
the fusion of the three modalities for potential applications in iMRI-guided thermal
ablation of the prostate.

2. Registration Algorithm
2.1. Similarity measurements

We used two similarity measures, mutual information and correlation coefficient, in
our registration. Suppose one image R is the reference, and the other F is floating.

Their mutual information MI(R, F) is given below.'®

PRF (Ta f)

MI(R,F) = T}f:pm(r, ) log ) pr(])

The joint probability prr (7, f) and the marginal probabilities pr(r) of the reference
image and pp(f) of the floating image, can be estimated from the normalized joint
intensity histogram. The correlation coefficient CC(R, F) is given below.'?

_ 2 (B() - BR0)ES) -F()
VX (R(r) = R(r)2 X (F(f) = F(f))?

Here R(r), F(f) denote the average intensities of the reference and floating images

CC(R, F)

and the summation includes all voxels within the overlap of both images.

We compared the two similarity measures at different resolutions in order to
determine their suitability for SV registration. At 1/4 resolution, we resampled
images so as to give 1/4 number of the voxels along each linear dimension. At full
resolution, we used the full number of voxels. In Figs. 1 and 2, we plot the two
similarity measures as a function of two translation parameters. After two typical
high-resolution MR. volumes were registered,® values were plotted with the origin
as the optimal transformation. We calculated CC and MI values while moving
the simulated iMRI image relative to the high-resolution MR image along coronal
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Fig. 1. Similarity functions are plotted as a function of translations at the lowest resolution in the
multi-resolution registration process. Two high-resolution MRI volumes were registered. From the
optimal parameters, we computed the similarity of the simulated iMRI and MRI images as a func-
tion of translations along the coronal (anterior-posterior) and sagittal (left-right) axes. MI is plot-
ted in (a) and (c); CC is plotted in (b) and (d). Graphs (a) and (b) are three-dimensional (3D) plots
for translations along the coronal and sagittal axis. Graphs (c) and (d) are two-dimensional (2D)
plots for translations about the coronal axis. The small insets in (c¢) and (d) are magnified curves
showing noise having local maxima in (c). A false global maximum for MI occurred at 425 voxels.
Images are from volunteer S2, and they are down sampled by 1/4 along each linear dimension,
giving a distance between voxel centers of ~ 5.5 mm.

(anterior-posterior) and sagittal (left-right) axes. The simulated iMRI image was
obtained as described later in Sec. 3.4.

Features of MI and CC demonstrate their suitability at high and low resolutions,
respectively. At 1/4 resolution, CC surfaces are much smoother than MI, which is
noisy and contains many local maxima as shown in Fig. 1(a) and Fig. 1(c). In
fact, there is a false global maximum at +25 voxels. At full resolution, Figs. 2(a)
and 2(c) shows that MI has a much sharper peak than CC, but once again there is
high frequency noise in the MI curves, far from the optimum, that gives rise to local
maxima that must be avoided. From these figures, we infer that CC is better at
low resolution and MI is better at full resolution, when one is close to the optimum
value. As described next, our registration algorithm makes use of these features.

2.2. Slice-to-volume registration algorithm with special features

The algorithm includes special features to improve robustness for registration of MR
prostate images. Suppose the iMRI image slice is the reference slice, the matching
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Fig. 2. Similarity functions are plotted as a function of translations at full resolution. Many
details are given in the legend of Fig. 1. Again, MI is plotted in (a) and (c); CC is plotted in (b)
and (d). MI in (a) and (c) has a much sharper peak than CC in (b) and (d). The voxel is isotropic
with 1.4mm on a side. Image data are the same used in Fig. 1.

slice extracted from the high-resolution MRI volume is the reformatted slice, and
the final reformatted slice is the registered slice. We use a multi-resolution approach
and perform registration from low to high resolution. We use CC at the two lower
resolutions because it gives fewer local maxima and because it can be calculated
faster than MI. We use MI at full resolution because of its peaked surface. To avoid
local maxima, we include a restarting feature where registration is restarted with
randomly perturbed parameters obtained from a uniform distribution about the
initial transformation values at the current resolution being used. The algorithm
restarts until the absolute CC is above a threshold of 0.5 as determined later or
the maximum number of restarts is reached. Absolute CC is used rather than MI
because it has a well-defined range between 0 and 1 and because it provides an
independent check of the MI result at the highest resolution.

We record all important results following an optimization cycle including the
CC and/or MI values and the transformation parameters. At the end of processing
at a lower resolution, we always select the transformation parameters having the
maximum CC value. We then scale the translation parameters appropriately and
assign the new parameters to be initial values at the next higher resolution. At the
highest resolution, MI instead of CC is the similarity measure, and we select the
final transformation parameters to be those having the maximum MI value.
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Additional algorithm details are now described for slice-to-volume registration
algorithm. For registration, we use rigid body transformation (three translations
and three rotations) and trilinear interpolation. For optimization, we use the down-
hill simplex method of Nelder and Mead?® or the Powell method.?! Optimization
of similarity ends either when the maximum number of calculations is reached
(typically 500) or the fractional change in the similarity function is smaller than
a tolerance (typically 0.001). The input MRI volume is a 3D MR acquisition giv-
ing 256 x 256 x 128 nearly isotropic voxels over a field of view covering the whole
pelvis. We create isotropic voxels of about 1.4 mm on a side using 3D linear inter-
polation. We use IDL (Interactive Data Language, Research System Inc., USA) as
the programming language.

Typical parameter values are now described. We use an initial guess assuming
an identity transformation, i.e. all initial translation and rotation parameters are
zero, because the patient is normally oriented approximately the same way from
one scan to the next. We set the maximum numbers of restarts at 10, 5, and 3,
from low to high resolution, respectively.

2.3. Registration of SPECT and high-resolution MRI volume

The mutual information algorithm was used to register MRI and SPECT vol-
ume images because of its ability to align multi-modality images.!® Registration
of SPECT and MR images is challenging because the two image types have dif-
ferent spatial resolutions and image features. The radiotracer used for SPECT
imaging was ProstaScint® (Cytogen Corporation, Princeton, NJ), a monoclonal
antibody that binds to prostate-specific membrane antigen (PSMA). Before regis-
tration, both SPECT and MRI volumes were resized using trilinear interpolation
to create volumes matrix of 128 x 128 x 128 with 3 mm isotropic voxels, a voxel size
between that of the two scans. The standard parameter set for automatic registra-
tion included: 256 intensity levels for each volume, the entire 2D joint histogram,
the full field of view of 128 x 128 x 128 voxels for both volumes, and no masking or
cropping of either volume. Phantom data were preprocessed in a similar fashion.

3. Experimental Methods
3.1. High-resolution MR image acquisition

High-resolution MRI volumes were acquired using a 1.5 T Siemens MRI system
(Magnetom Symphony, Siemens Medical Systems, Erlangen, Germany). An 8-
element phased-array body coil was used to ensure coverage of the prostate with a
uniform sensitivity. Typically two anterior and two posterior elements were enabled
for signal acquisition. We used two different MR sequences.

First, we used a 3D rapid gradient echo sequence (PSIF) designed to acquire the
spin-echo component of the steady state response, rather than the free induction
decay. The spin echo component forms immediately prior to the RF pulse; it is
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shifted toward the prior RF pulse through appropriate gradient waveform design.
The sequence with 9.4/5.0/60 (TR/TE/flip) yields 160 x 256 x 128 voxels over a
219 x 350 x 192-mm rectangular FOV and 1.4 x 1.4 x 1.5-mm voxels oriented to give
the highest resolution for transverse slices. There is over sampling at 31% in the
slice direction to reduce aliasing artifacts. The acquisition time is 4 min and 15 sec.
This sequence gave excellent image contrast for the prostate and its surroundings.
It was used to acquire volumes for three volunteers.

Second, we used a 3D RF spoiled gradient echo steady state pulse sequence
(FLASH) with TR/TE/flip parameters of 12/5.0/60 which give 256 x 256 x 128
voxels over a 330 x 330 x 256-mm field of view (FOV) to yield 1.3 x 1.3 x 2.0-mm
voxels oriented to give the highest resolution for transverse slices. The acquisition
time is 5min and 38sec. This sequence is good for pelvic imaging but is not ideal
for the prostate. It was used to acquire volumes for five patients.

When acquiring high-resolution MR, volumes, volunteers laid supine in a man-
ner similar to the diagnostic position in routine MR scanning. Between volume
acquisitions, volunteers got up from the MR table, stretched, and walked around
to ensure that they would assume a different position when they laid back on the
table. The coil array was centered on the prostate. We acquired three volumes from
each of the three volunteers. For five patients, we acquired nine MRI volumes and
each patient with at least one volume.

3.2. Interventional MRI image acquisition

We acquired iMRI images using a clinical 0.2 T C-arm open MR scanner (Siemens
Open Symphony, Erlangen, Germany) modified for interventional MRI procedures
and in this paper referred to as the iMRI system. We used a two-dimensional PSIF
with 15.2/7.4/45 (TR/TE/FA) for image slice acquisitions. The iMRI slices were
128 x 128 with in-plane pixel size of 2.8 x 2.8 mm and with effective slice thickness
of 5mm.

We acquired iMRI images under the conditions simulating the treatment appli-
cation. The volunteer was supine, and his legs were supported at 30°-60° relative
to the horizon and separated in a “V” with an angle of 60°-90° between two legs.
This is similar to the lithotomy position used in prostate therapies, and it should
provide access for needle insertion in brachytherapy or RF thermal ablation. We
call this the treatment position. For each of three volunteers, we acquired 50 iMRI
image slices covering the prostate. They included 30 transverse, 10 coronal, and 10
sagittal image slices. We call these images “actual” iMRI images to differentiate
them from “simulated” images as described in Sec. 3.4.

3.3. SPECT image acquisition

The study included five patients with either high Gleason scores (> 5) from biopsy
or rising PSA level (>10mcg/L, prostate specific antigen) or palpation staging
beyond stage T'1. After patient eligibility was established, patients gave informed
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consent. The Institutional Review Board of the University Hospitals of Cleveland
approved the imaging protocol.

Approximately four days after injecting 5 mCi ProstaScint®, the abdominal and
pelvic regions were scanned using a two-head Siemens E.CAM+ camera (Siemens
Medical System, Inc., Hoffman Estates, Illinois, USA). ProstaScint® is an [In-111]-
labeled monoclonal antibody capromab penditide (111In MoAb 7E11.C5) used for
imaging prostate cancer. The evening before scanning, patients performed a bowel
prep with Fleet R Prep Kit #3 (Fleet Pharmaceuticals, Lynchburg, VA). Images
were acquired with a medium energy collimator and 15% energy window. The acqui-
sition parameters included a step-and-shoot motion, a 128 x 128 pixel matrix for
each projection, an imaging time of 25 sec per stop, and a total of 120 stops over a
full 360° rotation. The field of view of was 53.3 x 38.7cm?. The Ordered Subsets
Expectation Maximization (OSEM) algorithm was used for image reconstruction.*3
SPECT images consisted of 4.795 x 4.795 x 4.795-mm isotropic voxels. Each patient
had one SPECT scan of the pelvis.

To analyze and validate registration of high-resolution MRI and SPECT under
a controlled situation, an acrylic phantom of the pelvis and lower abdomen was
used. Spheres of proportional size representing portions of the bladder, acetabula,
rectum, and the prostate gland were placed in appropriate positions in the torso
phantom. The spheres of acetabulum were filled with potassium phosphate. Other
spheres were filled with water. The torso phantom was filled with a small amount
of copper sulfate dissolved in deionized water. The SPECT scan was conducted
after injecting all spheres with [In-111]-DTPA at relative concentrations compara-
ble to those detected in human scans. The water in the torso was given a back-
ground activity of 1 nCi/ml such as to mimic the background in human SPECT
scans.

3.4. Simulation of iMRI image slices

In experiments, we used high-resolution MRI volumes to simulate iMRI image slices,
which are thicker, noisier, and degraded by receive coil inhomogeneity. Clinically, we
typically use an iMRI slice thickness of 4.0-6.0 mm. We used trilinear interpolation
to create isotropic high-resolution MRI volumes with voxel size of 1.4 x 1.4 x 1.4 mm.
From the isotropic high-resolution MRI volume, we averaged three 1.4 mm adjacent
thin slices to create a 4.2 mm thick slice. MR noise in a magnitude is described by
the Rician distribution.?? At SNR values of greater than approximately five, the
noise can be approximated as being Gaussian white noise.?? We measured typical
signal and noise values on our iMRI system using a homogenous phantom, and vol-
unteer images in the region of the prostate with methods described elsewhere.?4 2
In all cases, image SNR was greater than 10 in all tissues including the prostate.
With this justification, we added Gaussian noise to the simulated iMRI image slices
either to match the measured SNR or to give much greater noise to further stress
registration. We report noise experiments using the SNR of the simulated image
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Fig. 3. High-resolution MR images, simulated and actual iMRI image slices. Images on the left
column, (a), (d) and (g), are the original high-resolution MR images from the 1.5T scanner
in the transverse, coronal, and sagittal planes, respectively. Images in the middle column are
the corresponding, simulated thick iMRI images with noise added to give SNR = 15 and with
sensitivity fall off from a belt coil. Images on the right panel are actual iMRI slices (0.2 T scanner)
from similar spatial locations. The actual iMRI slices seem blurred because of nearly doubled pixel
size. Images are from volunteer S2.

A

Fig. 4. Geometry of solenoidal receive coil. Model parameters are defined in the figure. The axial
line is along the cranial-caudal direction of the patient.

slices. Figure 3 shows high-resolution MR images as well as simulated and actual
iMRI image slices.

We simulated receive coil inhomogeneity from a belt coil used in our clinical
iMRI acquisitions. The coil is modeled as a solenoid with parameters shown in
Fig. 4. Coil parameters are a, the radius of the coil, 2¢g, the length of the coil,
I, the current, g, the permeability of free space, n, the turns, and the z-axis, the
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axis along the center line of the coil. The magnetic field in the zy plane can be
approximated as26:

Hom 1
(Bl)ay = 775
Ty 2 [G,Q +92]1/2

The z-component of the field is given by?7:
nl
(B1), = %(cos aq + cos )

where the definition of the angles c; and a are given in Fig. 4. The magnetic field
is highest at the coil center and falls off along the axial direction. According to the
Biot-Savart law,2® this model also accounts for the spatial sensitivity of the coil to
MR signal sources. Figure 5 shows a coronal image with simulated inhomogeneity
along the axis (head-foot) direction.

Because a needle will often be present during an iMRI intervention, we tested the
effect of simulated needles on registration. We used artifact sizes from a previous
report on the effects of pulse sequence design and magnetic field orientation on
needle artifacts in MR-guided biopsy and aspiration.? Figure 6 shows sagittal
images with and without a simulated needle artifact. The simulated artifacts in
Fig. 6(b) appeared as straight noisy bars 2-mm in width.

Fig. 5. Simulated signal changes due to receive coil inhomogeneity. The original image (a) is
acquired using a phased array coil on a conventional 1.5 T MRI system. Using a belt coil model
with a diameter of 350 mm and a width of 50 mm, the simulated iMRI image is shown in (b). The
image intensity is highest at the center and decreases along the axial direction.
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Fig. 6. Synthetic image with simulated needle artifact. Image (a) is the sagittal slice acquired
from the 0.2 T iMRI system without a needle artifact. Image (b) is obtained from image (a) with a
simulated needle artifact (white arrow) for an RF needle probe inserted into the prostate. Images
are from volunteer S3.

3.5. Registration experiments
3.5.1. Registration experiments using simulated i{MRI images

We used 12 pairs of high-resolution MR, volumes to perform registration experi-
ments. For each volume pair, we extracted data from one volume to simulate thick
iMRI image slices; and then we registered the simulated image slices to the other vol-
ume. We desire an iMRI slice image acquisition method that gives robust, accurate
registrations and is relatively insensitive to acquisition parameters. Hence, we per-
formed experiments to determine the dependence on slice orientation (transverse,
Sagittal, and coronal), on slice position relative to the prostate (above, centered,
and below), on image noise from fast imaging techniques, and on the inhomogeneous
sensitivity response from a belt coil.

3.5.2. Registration experiments using actual tMRI image slices

We also performed two types of SV registration experiments using the actual iMRI
images. First, we registered actual iMRI image slices with high-resolution (1.5T
system) MR, volumes and visually evaluated results. For each volunteer, there were
three high-resolution MR volumes and 50 iMRI image slices giving 150 SV registra-
tion experiments, and a total of 450 experiments. Second, we registered thick slices
simulated from the volume of image data obtained on the iMRI scanner with the
corresponding high-resolution (1.5T scanner) MR volume. In this case, we com-
pared results to VV registration obtained by registering the volume from the iMRI
system with the high-resolution volume (1.5 T scanner). We investigated the effect
of iMRI slice thickness by averaging 1-10 contiguous image slices to create a thick
slice and registering it to the high-resolution volume. The original actual iMRI vol-
umes have a slice thickness of 1.4 mm and in-slice dimensions of 1.3 x 1.3 mm. We
used trilinear interpolation to create isotropic actual iMRI volumes with voxel size
of 1.3 x 1.3 x 1.3mm. Thus, thick slices simulated from actual iMRI volumes are
1.3mm to 13 mm.
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3.5.3. Registration experiments of SPECT and high-resolution MRI

A number of technical issues were examined for MI registration of MRI and
ProstaScint® SPECT prostate images. Firstly, MRI acquisition, by varying the MR
imaging pulse sequence, various structures can be emphasized or suppressed. Sev-
eral different acquisition sequences were tested and its effect on registration accu-
racy and robustness was determined. Secondly, because of the different dynamic
ranges between MR and SPECT images, intensity scaling was studied for its effect
on registration. This is prompted by a recent study showing that scaling images
to 16 gray levels gives better results than 256 gray levels when registering mus-
cle fiber images.** Thirdly, because of the sparseness in the histogram, the use
of a portion or a section rather than the full joint histogram was evaluated. This
effectively restricted the registration to particular intensity ranges. Fourthly, the
multi-resolution approach was examined for its ability to expedite the automated
search algorithm. Fifthly, the use of spatial masking was investigated to see whether
it facilitates the registration of partially overlapping volumes. In all cases, registra-
tion experiments were performed with and without these modifications to determine
their effect on the success of registration. Success was determined by comparing the
results of these experiments to those of manual registration of the same images as
described in the next section. Experiments with these parameters should provide
insight into improving registration of MR and SPECT prostate images. We per-
formed registration experiments using the SPECT and MRI image volumes from
five patients.

3.6. Registration evaluation
3.6.1. Visual inspection

We evaluated registration experiments by visual inspection. We used RegViz, a
program created in IDL in our laboratory with multiple visualization and analysis
methods. First, we manually segmented prostate boundaries in image slices and
copied them to corresponding slices. This enabled visual determination of the over-
lap of prostate boundaries over the entire volume. Second, color overlay displays
were used to evaluate overlap of structures. One image was rendered in gray and
the other in the “hot-iron” color scheme available in IDL. To visualize potential dif-
ferences, it was quite useful to interactively change the contribution of each image
using the transparency scale. Third, we used a sector display, which divided the ref-
erence and registered images into rectangular sectors and created an output image
by alternating sectors from the two input images. Even subtle shifts of edges would
be clearly seen.

3.6.2. Volume-to-volume registration standard

Our standard evaluation method for slice-to-volume registration was to compare SV
and VV registration. The VV registration accuracy was previously evaluated.® For
volume pairs acquired over a short time span from a supine subject with legs flat on
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the table, prostates were well aligned and prostate centroid displacements were typi-
cally < 1mm. The registration accuracy as determined from displacements of pelvic
bony landmarks was 1.6 mm =+ 0.2 mm. This error might be overestimated because
it includes the uncertainty of locating the bony landmarks. From our success with
VV prostate registration, we decided that we could obtain SV accuracy by compar-
ing to VV registration for those volume pairs having low VV registration error.

To compare SV and VV registration results, we defined a rectangular volume
of interest (VOI) just covering the prostate over which to calculate registration
error. To voxels within the VOI, we applied the transformations obtained by the
VV and by SV registrations. We then calculated the 3D displacements between the
transformed voxels. The mean voxel distance over the VOI was used as our metric
of SV registration error. For the evaluation of algorithm robustness, we defined
the SV registration as being successful when the mean 3D displacement was less
than 2.0 mm.

3.6.3. Ewvaluation of SPECT and MRI registration

The success of computer registration of SPECT and MRI volumes was determined
by comparing results to manual registration. Manual registration was done by two
board-certified nuclear medicine radiologists blinded to the automatic registration
results. Manual registration was done using a software package with a graphical
user interface (GUI) developed in—house, which allows graphical manipulation of
volumes with six degrees of freedom in a rigid body registration. A color overlay
was used to assess registration quality.

Two radiologists with a nuclear medicine specialty aligned the image volumes,
and whenever there was a discrepancy, they reached a consensus for a single trans-
formation. This painstaking cross-validation was a time-consuming process and cer-
tainly would not be a routine procedure, but the results served as the gold standard
for the automated method. We defined a successful automatic registration to be
obtained when all displacements were < 2 voxels (6 mm) in the z, y, and z directions
and angle differences were < 2 degree for all angles about each of the three axes.

Although manual registration is difficult and somewhat operator dependent, it
is the only acceptable option for an independent registration on the patient SPECT
and MRI volumes. Skin fiducials would be of limited value in the pelvis, and there
are no good identifiable point anatomical landmarks in the SPECT images.

We simulated the iMRI-guided procedures using our image registration and
fusion software that are specially designed for this application. Before treatment,
we acquired SPECT and high resolution MRI volumes from the same patients.
Second, we registered the two images and transferred the pair of aligned data sets
to a workstation that was used for the slice to volume registration. Third, we
connected the workstation to the iMRI scanner and obtained iMRI image slices
from the scanner. Fourth, we performed the slice to volume registration. Finally,
the software created fused images of the three modalities as would be done for
image guidance. All registrations and image fusions are automatic.
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4. Results
4.1. Registration results with simulated iMRI images

As described in Sec. 3.4, we obtained relatively low noise, high-resolution MR, images
and simulated SV registration results. These data sets allowed us to test effects
of noise and receive coil inhomogeneity in a controlled fashion. And, because we
had substantial previous experience showing the accuracy of VV registration under
comparable conditions, we could easily determine SV error by comparing results to
VV registration.

In Fig. 7, the sector display shows a simulated image slice registered with a high-
resolution image volume. The simulated image slice was obtained at a transverse
orientation near the center of the prostate. The sector display shows close alignment
at this position. Other transverse images were also well aligned indicating that the
registration was successful in three dimensions.

Fig. 7. Sector display showing quality of SV registration. Transverse slices are shown for sim-
ulated iMRI (a) and high-resolution MRI (b) images. In the sector display (c), a checker board
pattern is created where image sections from (a) and (b) are alternated. Square sections from (a)
are made brighter in order to show the boundaries. As indicated by the arrows, the boundaries
of bones and other structures are continuous across the sections indicating excellent registration.
The prostate registered very well.
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We determined SV registration results for slices near the prostate in the three
standard orthogonal orientations. Comparing to VV, mean and standard deviation
registration errors across 12 volume pairs and 60 SV registration experiments were
0.4mm + 0.2mm, 0.5mm + 0.2mm, and 2.6 mm =+ 1.6 mm for transverse, coronal
and sagittal slices covering the prostate, respectively. Transverse slices worked best
because they contain many relatively rigid anatomical structures (See Fig. 3). We
further found that transverse slices centered on the prostate produced better results
than those above or below the prostate. Image slices above included the deformable
bladder that could give an inconsistent structure from one volume to the next.
Image slices below the prostate mainly contained muscle and fatty regions from
the hips that could deform, again giving inconsistent image data. Coronal slices
worked next best. Sagittal slices gave the largest error because they contained a
large portion of the deformable bladder and rectum.

Simulation experiments showed SV registration to be very insensitive to noise.
We performed over 150 registration experiments with noise added to give SNR’s
ranging from 20 to 5. Using the slice configurations recommended above (transverse
slices near the prostate center), we obtained 100% successful registrations (an error
< 2.0mm) for SNR’s ~ 10, a value much worse than the clinical SNR value of ~ 25
on our iMRI system.

Receive coil inhomogeneity also had little effect on registration. Registration
again was 100% successful for all volume pairs under all receive coil configurations,
even when the coil for the slice acquisition was displaced up to 200 mm towards the
head from the prostate center, the position of the coil for the volume acquisition.

4.2. Registration results with actual :MRI tmages

Figure 8 shows results for an SV registration of actual iMRI image slices with a
high-resolution MR volume. The contours overlap and overlay images show that the
prostate matches very well. Other visual inspection techniques also demonstrate
excellent registration. Note that a single iMRI image was used to produce this
registration result.

Figure 9 shows SV registration error as a function of slice thickness. As described
previously, we first registered each volume from the iMRI scanner with the corre-
sponding high-resolution MRI volume (1.5 T scanner) using rigid body voxel-based
registration® and used the result as the gold standard for calculating the SV error.
Each thick slice image was obtained by averaging several contiguous slices from the
actual iMRI volume. As the slice thickness increases from 1 x 1.3 mm to 4 X 1.3 mm,
the registration error decreases, possibly because of improved signal to noise ratio
and/or because of the inclusion of more features. Error increases with thicker slices,
probably because of the inconsistency of image features between the thick slice and
more finely sampled volume.

In Fig. 10, we evaluated SV registration for thick slices at different orientations.
The evaluation method was the same as that used in Fig. 9, and the slices were 5 mm
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Fig. 8. Images after SV registration of actual iMRI slices from a 0.2 T open MR system. Image (a)
is a transverse slice from a high-resolution MR volume (1.5 T scanner). The prostate is segmented
and magnified in image (b). Image (c) is the actual iMRI slice (0.2 T scanner). Images (c) and (b)
are displayed together in an overlay in image (d), and the white rectangular region is magnified in
image (e). The segmented prostate boundary from the high resolution MR image is copied to the
actual iMRI image where it closely matches the prostate in the actual iMRI image slice indicating
excellent registration.
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Fig. 9. SV registration using images with different slice thickness. The error metric is the average
voxel displacement between the SV and VV registrations. Plotted are mean errors as well as
standard deviation from a rectangular VOI surrounding the prostate. One typical data sets of
high-resolution MRI volume and actual iMRI slices of volunteer S1 are used for the registration
experiments. For each thickness, ten registration experiments were conducted using 10 different
simulated iMRI transverse slices that intersected the prostate with different distances. Thick iMRI
slices were obtained by averaging 1-10 iMRI image slices.
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Fig. 10. SV registration error and robustness for iMRI images in the three standard orientations.
In (a), registration error relative to V'V registration is plotted as a function of image slice orienta-
tion. In (b), success rate is also plotted as a function of orientation where registration is successful
when the error is < 2.0 mm. For volunteer S2, one high-resolution volume and one volume from
the iMRI scanner were used in these experiments. Data were extracted from the iMRI volume
to simulate iMRI slices with a thickness of about 5 mm. Fifteen transverse, coronal, and sagittal
slices from the prostate center were used for SV registration, respectively.

thick and intersected the volume near the prostate center. Results were consistent
with those from the previous simulation experiments. Transverse slices worked best
with an average VOI displacement of only 1.1 mm + 0.7mm and a success rate of
100%. The coronal images gave a reasonable average error, but the success rate
dropped to 86%. The sagittal orientation gave the worst result.

Needle artifacts had little effect on the SV registration. In each of the 30 exper-
iments, we registered a high-resolution volume with an actual iMRI image slice
containing or not containing a simulated needle artifact. Visual inspection, the cor-
relation coefficient and mutual information values of registered images showed little
effect of the needle artifact. The success rate was 100% in both cases.

4.3. Registration results of SPECT and high-resolution
MRI volumes

An example of a successful automatic registration is shown in Fig. 11. All anatomical
features including the bone marrow in the femur and pubic symphysis are well
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Fig. 11. Registration results of patient data. The top three images show corresponding registered
SPECT, high resolution MRI, and simulated iMRI images, respectively. The bottom three windows
show the fused images of the three modalities, from left to right, iMRI/MRI, SPECT/MRI, and
SPECT/iMRI, respectively.

aligned in the color overlay. This MR-SPECT volume pair and four others were
successfully registered according to the criteria defined earlier. Standard algorithm
parameters (Sec. 2.3) were used with the lower-left quadrant of the joint histogram
used for calculating MI. Successful image registration was obtained with images
from three patients. There were four other MR-SPECT volume pairs obtained from
two other patients that were not successfully registered with our program. In all
the four cases, the MR images were not acquired using our final, optimized MR
sequence (Sec. 3.1). When we used the optimized sequence with full anatomical
coverage, registration was always successful. We believe that automated SPECT-
MRI registration will be feasible on many patients’ images.

We now report the registration results of SPECT and high resolution MRI
images of the phantom. Registrations of the phantom images were carried out by
displacing the aligned image pair with known rotation and translations. All orien-
tations, axial, sagittal, and coronal, were successfully registered. Other experiments
showed that intensity scaling and multi-resolution could not improve the registra-
tion ability for both phantom and human data.

4.4. Image fusion and visualization

We created image registration and fusion software for the potential applications in
iMRI-guided procedures. In Fig. 12, we demonstrate the image fusion visualization
software in a simulation of clinical usage. SPECT and high resolution MR images
were acquired, transferred to a workstation, and registered prior to the “simulated”
procedure. We then simulate acquiring thick iMRI slices, register them to the high
resolution volume, and prepare the visualization in Fig. 12. In this figure, one can see
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Fig. 12. Simulation experiments with phantom using registration and fusion software. The top
three windows from left to right show corresponding registered SPECT, high resolution MRI, and
iMRI images, respectively. The bottom three windows from left to right show the fused images,
iMRI/MRI, SPECT/MRI, and SPECT/iMRI, respectively. Other buttons and sliders control the
configuration and registration.

all. The registered images are shown in the three windows at the top line (Fig. 12).
After registration, the program creates fused images as displayed at the bottom.

4.5. Algorithmic robustness and implementation

The slice-to-volume registration algorithm was quite robust for transverse slices cov-
ering the prostate. Using simulated iMRI slices from high-resolution MRI volume
pairs of four volunteers, the algorithm never failed for any transverse slice cover-
ing the prostate. In addition, the final registration result was insensitive to initial
guesses within a very large range, [—60, +60] mm for translations and [—20, +20]
degrees for rotations. With the restarting algorithm, we even successfully registered
slices as much as 80 mm from the optimum. This working range should be quite
sufficient for clinical applications where we can ensure good starting values. Using
the pelvic bones as markers and device localization methods,?? we should be able
to position the prostate within about 4+ 20 mm in the imaging field. In addition, the
patient normally lies supine in the MR bed with very little rotation (< + 5 degrees).
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Using CC and MI at different resolutions was an important feature that
increased robustness. MI registrations at low resolution sometimes gave false max-
ima (Figs. 1(a) and 1(c)), and only 60% success was achieved when MI was used at
all resolutions. The interpolation artifacts at low resolutions often caused failures
and required more restarts.'® CC performed well and gave fewer local maxima at
the lower resolutions (Figs. 1(b) and 1(d)), but MI was more accurate than CC
at the highest resolution due to the sharper peak of the MI surface (Figs. 2(a)
and 2(c)).® Our registration algorithm thus combined advantages from the two
similarity measures.

The multi-resolution approach improved algorithmic robustness and speed.
When we used only MI at full resolution, registration was 70% successful com-
pared to the 100% of the full algorithm. This failure of MI was also reported by
others.'®17 The multi-resolution approach enabled the program to quickly approach
the final value because of the reduced number of calculations at low resolutions. For
a typical image pair, iterations at 1/4 resolution were approximately 4 and 25 times
faster than that at 1/2 and full resolution respectively.

Restarting was important for image pairs with large translations and/or rota-
tions from the optimum. In our experience with over 800 slice-to-volume registration
experiments, restarting occurred in about 5% of them. For an example pair with
an 80 mm displacement, the number of restarts was 3, 1, and 0 at 1/4, 1/2, and
full resolutions, respectively. Without restarting, we found that registrations some-
times failed in cases of volumes with a large mismatch of 54 mm and high noise. The
algorithm was insensitive to the CC threshold for restarting. When we decreased
the threshold from 0.8 to 0.5 with an interval of 0.05, we found little change in the
number of restarts and no change in the final registrations. We set the threshold at
0.5 to avoid only the most obvious local maxima.

We now describe some aspects of the implementation. The time for an SV reg-
istration was typically about 15sec on a Pentium IV, 1.8 GHz CPU, with 1 Gbytes
of memory. The algorithm was written in IDL and could probably be made much
faster in a lower level language such as C. A call to the Simplex optimization typi-
cally resulted in 50 to 105 similarity evaluations before the tolerance value (0.001)
was reached. The simplex optimization method worked about 1.5-2.0 times faster
than the Powell method in our implementation. We used the Simplex method for
our experiments in this study.

5. Discussion and Conclusion
5.1. Applicability for iMRI guidance

This preliminary study has shown promising algorithmic results for bringing nuclear
medicine, functional images into the interventional MRI suite. Automatic registra-
tion of SPECT and MRI volumes was always successful with “good” MRI vol-
umes obtained using the optimized acquisition sequence and covering all anatomy
of interest. Slice-to-volume automatic registration was even more successful with
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highly accurate, robust registration obtained. Putting these two steps together, a
patient’s SPECT images can be registered to a high resolution MRI volume prior
to an iMRI procedure; live-time iMRI slice images can be registered to the MRI
volume; and, finally, one can then display the live-time iMRI slice image with the
appropriately reformatted, fused image from the SPECT and high resolution MRI
image volumes.

The required registration accuracy is lowered because live-time images are avail-
able. The live-time iMRI image obtained in the plane of the advancing needle will
always be used for guiding a needle for intervention or biopsy. The corresponding
fused SPECT-MRI and/or high resolution MRI images will be used as a planning
guide. With proper visualization tools, interventional radiologists should be able
to mentally account for small registration errors. In addition, there is often image
evidence of cancer in MR prostate images that can perhaps be identified with the
aid of the functional images. Such MR-visible lesions can then become the markers
for tumor targeting. Any potential gross registration errors should be easily recog-
nized resulting in a failure to include the functional image data in the iMRI suite
but not in a catastrophic misguidance of the therapy needle.

To minimize registration error, we recommend that image data are obtained
under comparable conditions by keeping a similar posture and by taking clinical
measures to reduce rectal and bladder filling. Warping registration method may be
useful to correct significant deformations at the expense of additional complexity,
time, and possibly robustness.3%:3°

Finally, we believe that it is quite feasible to include previously acquired nuclear
medicine SPECT images and high-resolution MRI data into iMRI-guided minimally
invasive treatment procedures. We are beginning to explore this application in ani-
mal experiments.

5.2. Robustness of slice-to-volume registration

Despite complications such as image noise, receive coil inhomogeneity, a limited
number of voxels, and needle artifacts, slice-to-volume voxel-based registration can
be quite robust and accurate. For transverse slices covering the prostate, registration
results agreed very favorably with volume-to-volume results. Below, we further
discuss the algorithm and its practicality.

There are probably several reasons why mutual information does not work well
at low resolution. First, the similarity curve is noisy with periodic oscillations from
the so-called interpolation artifact®'6 that is accentuated at reduced resolutions.3°
As a result, there are many local maxima in Figs. 1(a) and 1(c) that can trap
the optimization; and a similar result was reported for brain registration.'® In
additional experiments, we decreased the number of bins for both images to 256,
128, 64 and 32 and plotted mutual information values as a function of translation.
With a larger number of bins, we got no discernable effect of bin size. When the
number of bins was reduced to 32, the MI surface was degraded. Others showed that
Gaussian blurring of images before registration did not improve performance at low
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resolutions and that there was little difference between standard and normalized
mutual information.*® Second, when images are of low resolution and there is only a
small region of overlap, the mutual information function can even contain incorrect
global maxima®” as found in Fig. 1(a). This false result was obtained at very large
displacements where the slice to volume overlap was reduced. This occurs because
MI is not only a function of how well the images match in the overlap, but also
by how much information is provided by the two images in the overlap.3132:35 Ag
shown above, using both mutual information and correlation coefficient at different

resolutions was an important feature that increased robustness.

5.3. Registration accuracy

Essentially, we found that SV is of similar accuracy to VV registration, with an
average voxel displacement difference of only 0.4 mm in the prostate for the sim-
ulated images and about 1 mm for actual iMRI image data. Hence, the accuracy
of the best SV method is essentially the same as that previously reported for VV
registration.®

More analysis of registration error is possible. The overall registration error of
placing a SPECT image with a live-time iMRI image depends upon both SPECT-
MRI and MRI-MRI slice-to-volume errors. The slice-to-volume registration error
for voxels near the prostate is ~1.4mm, as argued elsewhere.*!*¥> The SPECT-
MRI registration error is larger than the SV registration as would be expected
from the low resolution and reduced number of features with SPECT. The error
is comparable to the uncertainty of manual registration (&6 mm and 42 degrees).
(After all, that is how we specified the requirements for “acceptability.”) Despite
such uncertainty, ProstaScint SPECT images have been routinely registered with
CT and MR images at our institution to use for diagnostic studies of prostate
cancer. Hence, we predict the overall error for registering live-time iMRI slices to
SPECT to be dominated by the SPECT /high-resolution MRI error.

The automatic slice-to-volume registration provides sufficient accuracy for many
potential iMRI applications. As compared to a typical SPECT and/or iMRI slice
thickness of >3.0mm, SV registration is quite accurate. MR spectroscopy also is
done at limited resolution. If one were to use functional or high-resolution MR
images directly for targeting, the requirements for registration accuracy would be
great. However, fused image data will not be used blindly. Rather, these visualiza-
tions will be used as a guide. Physicians will always use the live-time iMRI images
for needle guidance. With the aid of visualization tools, they should be able to
account for small registration errors.

We recommend that image data are obtained under comparable conditions by
keeping a similar posture and by taking clinical measures to reduce rectal and
bladder filling. We see no reason to suspect that SV registration will be inaccurate
when such conditions are met. When images were acquired under much different
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conditions, such as legs flat and legs raised, rigid body registration could result in
prostate centroid errors as much as 3.4 mm. Another effect may be the tissue defor-
mation from insertion of the RF needle. From our previous experience observing
in vivo needle insertion in both animal models and clinical trials with real-time
MRI, the amount of tissue deformation that occurs with insertion of a sharp bevel
tip needle is minimal and transient in tissues with normal interstitial pressure. In
certain lesions, such as cysts or necrotic tumor, persistent deformation is possible;
however, we can see such deformations in the live-time interventional MRI images
and very probably mentally correct the registered, fused images. We previously
reported a warping registration method®®3° that can correct deformations at the
expense of additional complexity, time, and possibly robustness.

5.4. Practicality and application

The registration experiments presented here provided fairly comprehensive tests for
the potential application in iMRI-guided RF thermal ablation of the prostate. Sim-
ulation provided an efficient way to extensively evaluate registration performance.
The algorithm was extremely robust to noise levels, far beyond those encountered
in clinical iMRI applications. Similarly, the inhomogeneity seen with a belt coil was
not problematic for transverse images, probably due to coil inhomogeneity simply
scaling the grayscale values, an operation that should not affect MI or CC sim-
ilarity measures. Needle artifacts had little effect, probably because they occupy
relatively few voxels. The actual iMRI images acquired under more realistic con-
ditions further tested practicality. Images from the iMRI system contained more
noise and had less contrast than those from the 1.5 T scanner. Registration quality
was comparable to that of simulation experiments. Registration time can probably
be improved considerably using optimized C code rather than IDL. If registration is
done in the background in a seamless way, the time for registration is probably quite
acceptable. Although we normally used T2-weighted image pairs, the registration
worked well for pairs of T'1-weighted and T2-weighted images.

We conclude that the automatic slice-to-volume registration algorithm is quite
robust for transverse image slices covering the prostate and that the registration
provides sufficient accuracy to aid image-guided therapy. From previous reports of
MR-PET or MR-SPECT registration accuracy,®” it appears feasible to combine
functional images to aid iMRI-guided procedures. We are beginning to explore this
application in animal experiments.
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Computer assisted prognosis and diagnosis of retinal diseases gained the interest of
many researchers during the last years. Much attention has been drawn on Age-related
Macular Degeneration (AMD), which is the leading cause of irreversible vision among
the elderly in developed countries. Assessment of the risk for the development of AMD
requires reliable detection and quantitative mapping of retinal abnormalities that are
considered as precursors of the disease. Typical signs for the latter are the so-called
drusen that appear as abnormal white-yellow deposits on the retina. Segmentation of
these features using conventional image analysis methods is quite complicated mainly
due to the non-uniform illumination and the variability of the pigmentation of the back-
ground tissue. This chapter presents a brief overview of the area and a novel segmen-
tation algorithm for the automatic detection and mapping of drusen in retina images
acquired with the aid of a digital Fundus camera. We employ a modified adaptive his-
togram equalization, namely the MultiLevel histogram FEqualization (MLE) scheme, for
enhancing local intensity structures. For the detection of drusen in retina images, we
develop a novel segmentation technique, the Histogram-based Adaptive Local Thresh-
olding (HALT), which extracts the useful information from an image without being
affected by the presence of other structures. We provide experimental results from the
application of our technique to real images, where certain abnormalities (drusen) have
slightly different characteristics from the background. The performance of the algorithm
is established through statistical analysis of the results. This analysis indicates that
the proposed drusen detector gives reliable detection accuracy in both position and
mass size.

Keywords: Age-related macular degeneration; drusen detection; segmentation algorithm;
quantitative mapping of retinal abnormalities.

1. Introduction

Age-related macular degeneration (AMD) is the leading cause of irreversible vision
loss among the elderly in developed countries. Many studies have confirmed that
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the presence of the drusen, identified as gray-yellow deposits that build up in or
around the macula of the retina, represents a significant risk factor for the develop-
ment of visual loss from AMD.2810:27 Drusen are deposited by-products of rod and
cone metabolism located just beneath the Retinal Pigment Epithelial (RPE) cell
layer.* It is believed that they may signal the presence of an altered pathophysiol-
ogy of the retinal pigment epithelium and consequently they may be a marker for
the degree of diffused RPE dysfunction in patients with AMD.® The existing strong
indications for the correlation between AMD and drusen development characteris-
tics suggest that the clinical assessment of the latter might have predictive value in
determining if and when a patient will suffer visual loss from AMD. Additionally,
it could facilitate the development of efficient, fast and accurate clinical tests for
the evaluation of the effectiveness of different treatment modalities.

Routinely, drusen characteristics are evaluated by inspecting the retina with
the aid of an optical imaging apparatus known as Fundus camera. In some cases
and in order to assist the evaluation of features of diagnostic importance, slides
or digital images of the retina are submitted to medical centers, where special-
ized professionals assess the drusen characteristics. In other clinical studies, this
assessment is performed with the aid of comparisons with standard photographs
or with templates.?1217:27:28 While the use of such procedures provides impor-
tant data toward the standardization of the diagnostic procedure, their precision is
relatively low.

Besides the subjectivity and the lack of reproducibility, visual assessment is
not efficient in analyzing and classifying complex morphological patterns. Drusen
vary in size from a few microns in diameter to large confluent complexes, which
may extend to hundreds or even thousands of microns.!® Moreover, their color
appearance varies notably even within the same eye, depending on the amount of
the deposited by-products beneath the RPE in each spatial location. Their color
appearance is also affected by the color of the overlaid RPE, which also varies as a
function of the location within the same eye, while it is strongly affected by several
factors such as blood vasculature, race etc. The appearance of the retinal features
is also degraded by the non-uniform transfer function of the illumination-imaging
optics of the Fundus camera. These variables affect randomly the perceived contrast
between drusen and background, which makes the attempt for the automatic drusen
extraction a demanding image analysis task.

The contribution of image processing to the diagnosis of pathologies related to
the eye may be divided into the following three groups: image enhancement, mass
screening and monitoring of the disease. Image enhancement is generally needed
due to the poor contrast and the noisy nature of the acquired images. Contrast
enhancement and noise reduction may aid the human interpretation of the images
and provide a meaningful first step towards automatic analysis of the fundus images.
Mass screening is very important for the early diagnosis and treatment of several
retinal diseases. Treatment would be more efficient if an early diagnosis could be
attained. Monitoring is related to the assessment of the evolution of the disease that
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has to be made by experts in order to evaluate the efficiency of new therapeutics
or observe the development of specific symptoms.

1.1. State of the art

The problem of fully- or semi-automated drusen detection has received consider-
able attention over the last decade by various research groups.'''6:2! However,
acceptable performance is still an issue mainly due to the inability to compensate
satisfactorily for factors that result in poor contrast among various retinal features.
Drusen segmentation can actually be seen in an abstract level as a two-stage prob-
lem. Detection of the optic disk is the first important stage, since the disk shares
similar attributes, in terms of brightness, color and contrast with the drusen. Addi-
tionally, correct identification of the optical disk can be seen as a landmark and
it can be used for registration purposes when different retinal images of the same
patient are to be compared. Its diameter is usually employed as a reference length
for measuring distances and sizes. The second step is the detection of other retinal
features including drusen or exudates in general.

Most of the recent research focuses on the simultaneous detection of optic disk
and possible exudates, since these two procedures are complementary. In Ref. 29,
the optic disk is localized exploiting its gray level variation. The approach seems
to work well if there are only few exudates present that appear bright and well
contrasted. Although not recent, the work of Tamura et al.>' and Akita et al.3°
are representative of possible approaches towards detecting the disk. In Ref. 31,
an area threshold is used to detect the optic disk. The final contours are detected
by the circular Hough transform. This approach is time consuming and relies on
conditions that are not always met. A different approach is proposed by Akita
et al.3° They localize the disk by backtracking the vessels to their origin. This is
one of the safest ways to localize the disk but it has to rely on successful vessel
detection. In Mendels et al., morphological filtering techniques and active contours
are used, while in Walter et al.,>? an area threshold is combined with the watershed
transformation in order to find the desired boundary of the disk.

Osareh et al.®> propose a method to identify exudates automatically that also
partially extracts the optic disk as candidate exudate region due to color similar-
ity. This method is based on color normalization, contrast enhancement and color
segmentation based on Fuzzy C-Means (FCM) clustering. This partial localiza-
tion of the optic disk requires further processing to isolate it. In Osareh et al.,3*
the selection of candidate optic disk regions amongst the exudates is performed
via boundary analysis and the optic disk centre and radius are estimated using
minimum boundary arc lengths. This has been shown to work well, but relies on
the local contrast enhancement that has been introduced in Osareh et al.?® Their
method amplifies noise, particularly in areas of only a few features. Shin et al.?8
propose an automated but supervised Fundus image analysis technique. They are
facing the problems of retinal images (non-uniform illumination, poor contrast) in



314 R. Konstantinos et al.

two algorithmic steps, namely preprocessing and segmentation. Their segmentation
scheme analyzes each pixel of the preprocessed image as part of a square area vary-
ing in size from 20 to 100 pixels. Skewness greater than a threshold signifies the
presence of drusen. The main drawback of this technique is the requirement of close
supervision by experts to achieve adequate accuracy and robustness.

Motivated by the work in Shin et al.,?® Rapantzikos et al.3%37 expanded
histogram-based operators and improved the accuracy of drusen detection moving
towards an unsupervised tool for the detection and mapping of AMD symptoms.
They examine several enhancement techniques and propose a robust multilevel
scheme that can effectively operate without supervision. In the segmentation step,
the local histograms’ shape is thoroughly analyzed by employing more descriptors
than the skewness alone, so as to derive robust and accurate thresholding results
through the Histogram Adaptive Local Thresholding (HALT) operator. Morpho-
logical operators are applied afterwards to compensate for possible deficiencies.
The purpose of this chapter is to analyze and test a complete system based on
Rapantzikos et al.,>” for the detection of drusen and illuminate several aspects of
the whole process.

The chapter proceeds as follows. Section 2 reviews conventional adaptive con-
trast enhancement and segmentation algorithms and establishes a novel scheme for
image enhancement. Section 3 introduces the HALT operator for drusen detection
as the main contribution of this chapter and considers step by step the application
of the proposed AMD detection algorithm. Section 4 discusses the experimental
results on representative images of macular degeneration and the conclusions are
presented in Sec. 5.

2. Processing Tools and Methods
2.1. I'mage enhancement

Drusen are roughly distinguished visually from their background by means of
their brightness, morphology and yellowish color. However, the color by itself does
not convey consistent information for discrimination. Thus, in order to evaluate
the contribution of color to the characterization of the symptoms, an experimen-
tal analysis was initially performed considering the RGB (Red-Green-Blue), HSI
(Hue-Saturation-Intensity), CMYK (Cyan-Magenta-Yellow-Black), G/R & R/B
(Green/Red, Red/Blue bands) and CIElab color spaces. Several references for color
processing can be found that use different color bands for enhancement purposes.
We studied drusen visibility in various color spaces and concluded that the gain in
visual improvement is less than or almost the same as that of the green band of the
RGB space. In this space the red band provides information for reflectance in the
image and therefore is strongly affected by the non-uniform illumination, whereas
the blue band contains almost no useful information for drusen. The green band is
more informative and less affected from the overall variation of illumination. Our
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empirical observations also agree with the selection of the green channel,?6 as the
channel with the maximum contrast. Another issue related to illumination concerns
the normalization of surfaces to light exposure and reflection. When irregular sur-
faces are illuminated, the amount of light reflected back to the camera from each
region is a function of its orientation with respect to the source of light and the cam-
era. The shape irregularity of the retina produces variable shading across the field of
view when illuminated with a bright source, as in the Fundus camera.?% For illumi-
nation compensation, a simple technique such as homomorphic filtering®* provides
good results and is recommended for our application domain. A more complicated
finite element analysis of light distribution is computationally inefficient.

Following the illumination compensation, the next processing step aims at
enhancing the contrast of the retina’s image. Towards this direction, histogram
equalization and its adaptive versions are quite promising, since they can spread
out the modes of a histogram. Rapantzikos et al.?®37 use histogram equalization
as the core of the enhancement method. Global histogram techniques, like contrast
stretching and histogram equalization are widely used to achieve contrast enhance-
ment. Although they are simple to implement, global schemes are affected by the
overall distribution in the image and they only stretch illumination differences that
are widely spread within the image. Actually, they only separate strong concen-
trations in the histogram distribution of the image as demonstrated in Fig. 1(b).
Such techniques are more effective in our case when applied in small windows as
local transforms after the non-uniform illumination compensation. Such enhance-
ment operators may be used in a hierarchical form so as to stretch local histogram
distributions and enhance the contrast of the image by taking into consideration
both global and local variations.

In order to standardize the enhancement of retina images and overcome the
need for selecting different parameters for each image considered, a MultiLevel
histogram Equalization (MLE) technique is developed that is based on sequential
application of histogram equalization. In fact, MLE is a multilevel (hierarchical)
scheme that progresses from the entire image to smaller regions defined via win-
dows. Due to the expected intensity similarity in small areas, the windows consid-
ered are non-overlapping. Compared with a sliding window approach, this scheme
results in smaller computational complexity and larger speed of operation, without

Fig. 1. (a) Original window containing one relative large drusen; (b) Histogram equalization using
the entire window; (c¢) Histogram equalization using a smaller window inside the drusen’s area.
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compromising on the local enhancement ability owing to its multilevel nature. A
potential problem could arise using windows that are small enough to fit inside
a drusen’s region. Similar to adaptive histogram modification algorithms, it can
produce non-desirable misleading contrast variations within a drusen, as shown in
Fig. 1(c). This problem is only experienced when using small windows and forms
the opposite drawback (over-enhancement) from that of global techniques. To avoid
such effects, we limit the size of windows considered up to the expected size of any
drusen in the image.

Considering all these constraints, the MLE enhancement algorithm proceeds as
follows: The first stage of equalization uses a window equal to the size of the image
(global). The second stage splits the image into nine non-overlapping windows and
applies the same operation to each sub-block of the previous result. At any stage ¢,
a window w’ is segmented and the segments are labeled as to estimate the mean
size of the drusen involved. This window is further processed by nine smaller non-
overlapping windows if and only if it involves smaller drusen. More specifically the
algorithm proceeds to the 41 stage for a specific window w? if the size of the
largest label in w’ is smaller than 1/9*® the size of w’.

An example of the MLE operation is presented in Fig. 2. The first “pass” is
responsible for enhancing the brightest parts of the image, including small, bright
drusen and central parts of larger drusen (Fig. 2(c)). However, vague anomalies and
dark areas that belong to spread drusen must be further enhanced, in order to be
detected. The second stage of equalization, as shown in Fig. 2(d), contributes in
generating more distance between those “hidden” anomalies and their surround-
ing areas. In our application we always proceed to the second stage of equaliza-
tion. Nevertheless, due to the relatively large drusen experienced in all images
tested, further window splitting and enhancement is not necessary. Figures 2(e)
and 2(f) demonstrate the additional enhancement achieved by the second stage
of MLE.

2.2. Threshold-based drusen detection: histogram properties

Segmenting the drusen in the enhanced image is an intriguing task. Parts of the
drusen are difficult to distinguish from the background because of brightness simi-
larities; especially when encountering drusen near to vessels. In order to efficiently
address the problem of region segmentation, two general approaches are widely
used, namely the stochastic classification®? of pixels into object classes and the his-
togram thresholding for clustering similar-intensity pixels into compact objects. In
this work, we adopt the second approach, i.e. histogram-based thresholding, and
particularly focus on the analysis of local histogram as a stochastic mixture density
that models small-included objects within the background distribution. This anal-
ysis leads to the definition of the HALT operator, presented in detail in the next
section. The HALT operator as a region-based threshold selection scheme fits well
with the region-based MLE approach developed for enhancement.
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Fig. 2. (a) Original image; (b) image after non-uniform illumination compensation; (c) first
level of histogram equalization (global) applied to entire image; (d) second level of histogram
equalization applied to regions of previous result; (e) enlarged section of upper left corner in (c);
(f) enlarged section of upper left corner in (d).

The observed value of a random variable (such as pixel intensity) can provide
significant information with respect to the stochastic distribution of the variable. In
fact, under the ergodicity assumption, statistical measures of the distribution can
be accurately inferred from the sample measures as the size of the observed data
increases.'® The statistics that can be easily computed from the observations (data
set) of a random variable fall into several categories, with the most important being
the following:

(a) Measures of central tendency — statistics that describe the center of the data,
including the mean, the median and the mode.

(b) Measures of spread — statistics that describe the dispersion of the data, includ-
ing the variance, standard deviation, range, and inter-quartile range.

(¢) Measures of shape — statistics that compare the shape of the data to that of a
normal distribution, including the skewness and kurtosis.

The mean, median and mode are normally close to each other. These three
statistics measure the center of the data in somewhat different ways. The mean is
the value that minimizes the mean square distance from the data set. The median
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is the value that minimizes the absolute distance and the mode is the one that
minimizes the H, (norm) distance from the data set. The case that these statistics
are very close to each other indicates that the data is probably symmetric. As the
distribution of the data becomes skewed, the sample mean moves away from the
sample median in the direction of the longer tail. Generally, the sample mean is
affected by extreme values (outliers), while the median tends to stay with the main
body of the data.”??? Thus, the median is often located in between the mode and
the mean of a distribution.

A measure of the center of a distribution is much more useful if there is a
corresponding measure of dispersion that indicates how the distribution is spread
out with respect to the center.!'8:25 For the median, a natural measure of dispersion
can be obtained from the lower and upper quartiles. The lower quartile is the value
that integrates 1/4 of the data set and the upper quartile is the value at 3/4 of the
data set. For the mean value these limits are usually obtained at the 10% and the
90% of the cumulative distribution.

Distinguish between background and drusen regions by means of thresholding
the local histogram can be achieved by exploiting the above statistics. Our goal is
to separate the drusen, without being affected by intensity variations caused by ves-
sels, noise and uncompensated non-uniform illumination. Zooming into each local
intensity area reveals different shapes of the histogram for each of these regions and
different relative distributions of the drusen and the background. Thus, in order
to determine an efficient threshold for each neighborhood, the local histogram in
terms of its central tendency, symmetry and shape tendency is taken into consider-
ation. More specifically, the symmetry of a distribution via two quotients is consid-
ered. The first quotient, namely the |mean — median| difference, is a first measure
of symmetry based on local statistics, as indicated before. The second quotient,
namely the |mean — mode| difference, is chosen as a measure of histogram’s main
lobe spread. If both of them are small, smaller than 1/30y, then the distribution is
considered symmetric. Otherwise, the distribution is labeled asymmetric.

Subsequently, the skewness in conjunction with the kurtosis are used as mea-
sures of the histogram’s tendency. Let b and P(b) denote the variable (intensity)
and its distribution (histogram), with o;, and b representing its standard deviation
and mean, respectively. Skewness is defined as Sg = aig 5;01 (b — b)3P(b) and kur-

tosis as Sk = — [ 52_01 (b—0b)*P(b)] — 3. A distribution is skewed if one of its tails
is longer than tbhe other. Positive skew indicates a long tail in the positive direc-
tion, while negative skew indicates a long tail in the negative direction. Kurtosis is
based on the size of a distribution’s tails. Distributions with relatively small tails
(sharp-peaked, Sk > 0) are called “leptokurtic”; those with large tails (flat-topped,
widely spread, Sk < 0) are called “platykurtic”. A distribution with the same kur-
tosis as the normal distribution (Sx = 0) is called “mesocurtic”. These measures
can increase the confidence with which drusen (outliers on the assumed normal dis-
tribution of the background) are detected and they are used in the definition of the
HALT operator, which is analyzed and tested within the context of the next section.
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3. Methodology for Drusen Detection — HALT Operator

This section outlines a complete algorithm for automatic segmentation and detec-
tion of drusen based on the previous analysis. The algorithmic steps are shown
in Fig. 3 and explained in the following. The homomorphic filter is applied at the
front end of the algorithm to compensate for illumination irregularities. The second
step involves the enhancement operation that is responsible for stretching intensity
differences characterizing drusen and background. The MLE approach succeeds in
enhancing most drusen, being insensitive to small brightness variations that are
caused e.g. from remaining non-uniform illumination and noise. Small and bright
drusen are extracted successfully, whereas large and spread drusen that tend to be
darker near the edges are also identified.

As aresult of the previous operators, sharp abnormalities in intensity (candidate
drusen) are strongly enhanced and differentiated from the background. Such intense
drusen can be readily detected by thresholding techniques. A global threshold is
capable of removing darker parts that belong to the drusen’s surrounding areas
(background). For this purpose the global Otsu’s'®25 thresholding technique is
employed. A single threshold, however, cannot identify small intensity differences
that often discriminate vague abnormalities hidden in bright background areas.
Thus, a two-stage histogram thresholding approach is designed. The first stage
applies the global Otsu threshold to provide an initial segmentation map. This
level of thresholding cannot discriminate vague abnormalities hidden in the local
regions of background. It only detects and preserves regions of evident abnormalities
that are crisply separated from their background, as well as background regions
mixed with vague abnormalities. The second stage of thresholding that refines the
segmentation map operates on a local level defining a different threshold for each
local region of interest. For this particular stage, a novel local thresholding operator
(HALT) is designed and analyzed by Rapantzikos et al.>” and is described in this
section. The HALT operator checks the local histogram for general symmetry or
asymmetry and uses shape tendency indicators for assessing regions as drusen or
actual background.

A morphological dilation operator precedes the HALT operator. The morpho-
logical dilation (disk shaped structuring element, 3-pixels in diameter) expands the
regions that are not removed by global thresholding. If this expansion occurs in
background areas, there is no serious effect, since the following segmentation step
is capable of removing these expanded regions completely. The main advantage of
dilation is appreciated in areas that contain only one or two large drusen with-
out background, where direct application of any local threshold would completely
eliminate the drusen area. The morphological expansion reconstructs some of the
background and recovers different intensity areas in the local histogram. In other
words, it forces better distinction between bright areas and their darker surround-
ings at the corresponding local histogram. To achieve this operation, the dilation
operator is embedded into the global thresholding operator, such that the overall
global thresholding mask is obtained by dilating the initial threshold mask of the
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Otsu operator. Thus, the dilation is applied on the binary map of thresholded
drusen areas to expand their extent.

The HALT operator applies different thresholds to regions of the image, depend-
ing on the properties of the corresponding histogram. As in the case of the MLE
operator, the image is split into nine non-overlapping windows, where the HALT
operator is applied. If needed, each window is further split into nine sub-windows,
in order to refine the segmentation. Within each window, the HALT operator checks
the statistics of local histogram and assigns the appropriate threshold. The back-
ground is composed of a noise process superimposed on a deterministic smoothly
varying terrain. A symmetric Gaussian distribution efficiently characterizes this
overall background process. Using the ergodicity assumption, any realization of the
stochastic process or any acquired image from this process is also characterized by
this Gaussian distribution. Thus, in case of a window in pure background regions,
it is expected that by thresholding the distribution at its cumulative 90% level and
preserving only values above this 90% threshold, we preserve only isolated pixels
randomly distributed along the spatial extent of the image. These pixels are easily
removed by median filtering. A symmetric distribution, however, may not always
characterize background alone but can also characterize certain combinations of
drusen and background distributions. This case requires thorough examination. By
similar means, a positively skewed distribution indicates the presence of drusen
influencing the higher part of the intensity distribution. Otsu’s threshold is most
appropriate in this case; if there is strong evidence that drusen is the cause of this
positive influence. Negatively skewed distributions are most likely to describe areas
of background, since drusen abnormalities affect the higher end of the histogram
(bias towards bright values). So, by setting 90% as a threshold would also remove
such regions.

Organizing these potential distributions, the HALT operator first classifies the
local histogram into two distinct cases, depending on its symmetry properties, as
described by the two symmetry quotients in Sec. 2.2. Subsequently, the appropriate
threshold is determined according to the measures of spread and shape, as follows:

(a) Histogram totally or almost symmetric (Table 1)

e A totally symmetric gray level distribution signifies areas that are mainly occu-
pied by background regions. However, small drusen may be present, so setting
the point of 90% of the cumulative distribution as threshold would be adequate
to remove background and preserve compact anomalies.

e The class of platykurtic distributions may be misleading. Generally, symmetric
distributions signify background areas. Nevertheless, the platykurtic feature sig-
nifies interaction of distributions that jointly preserve symmetry. For example, if
background and symptoms’ gray levels are normally and equally distributed, the
total histogram still appears symmetric. In this case, to avoid removal of drusen,
Otsu thresholding is employed.
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Table 1. The HALT operator in symmetric distributions.

Skewness
Kurtosis <0 ~0 >0

Platykurtic Mainly background Possible combination of U
U two or more distributions Otsu
90% (3
Otsu
Mesokurtic Mainly background Mainly background and Drusen and background
U maybe some drusen or are hard to distinguish
90% just large drusen (one U
distribution) Application of HALT in
U smaller regions
90%
Leptokurtic Mainly background Almost constant Can signify the case of
U background only a small portion of
90% 2 drusen: segment small
90% drusen of high intensity
U
90%

e In the case of sharp-peaked (leptokurtic) almost symmetric histograms we observe
high concentration of pixels around the mean value. These regions appear with
almost uniform background. Such leptokuric background distributions may only
allow the existence of small drusen as outliers that do not alter the general unifor-
mity of intensities. Using Otsu thresholding, that is obtaining a threshold value
close to mean, would retain anomalies and a large part of the background. Alter-
natively, setting 90% as threshold would remove background areas and retain, if
existing, small compact drusen areas.

e The case of a mesokurtic and positively skewed histogram requires particular
attention. The mesokurtic characteristic most likely arises from the background
distribution. The positive skewness indicates interaction with another distribu-
tion, which is observable but not as significant as to alter drastically the back-
ground statistics. This second distribution is detected at high intensity values
indicating the existence of object(s), whose intensity however interacts with that
of the background. Thus, the direct segmentation of object and background may
be inefficient. Using Otsu’s threshold may leave large areas of the background,
whereas using the 90% threshold may delete a good portion of the object’s struc-
ture. Thus, an additional step of local thresholding is used, which is actually
the application of HALT method focused on smaller areas of the first level’s
region. This helps in obtaining better distinction of anomalies and background
at corresponding second level histograms.

(b) Histogram totally or almost asymmetric (Table 2)

e A positively skewed distribution of this class notifies the presence of many small or
a few large drusen. In fact, bright gray levels that generally characterize anomalies
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Table 2. The HALT operator in asymmetric distributions.

Skewness
Kurtosis <0 ~0 >0

Platykurtic Mainly background Drusen are present Drusen & background are
J J almost equally distributed
90% Otsu U
Otsu
Mesokurtic Mainly background  Drusen & background Mainly drusen
4 are almost equally U
90% distributed Otsu
i
Otsu
Leptokurtic Mainly background Mostly background, less Drusen & background
4 drusen [}
90% i} Otsu
Otsu

dominate the histogram. Otsu thresholding is best suited to this case, since the
distinction of bright and darker areas (background) is obvious.

e An asymmetric non-skewed distribution signifies the presence of drusen. This dis-
tribution results as a combination of similar distributions, characterizing back-
ground and abnormalities (drusen). Thus, Otsu thresholding is appropriate for
segmenting the drusen in such regions.

The exact process for selecting the threshold in the HALT operator is outlined in
Tables 1 and 2. The HALT operator is succeeded by a median filter that eliminates
sparse pixels that cause false “alarms” during presence of anomalies. In this way,
the HALT preserves as drusen only those pixels that appear compactly distributed
into regions. The median filter is necessary to remove sparse pixels preserved by
the application of the 90% threshold in background regions.

The block-wise application of the HALT operator may produce undesirable seg-
mentation results when a region’s histogram appears to be almost symmetric (small
skew and mesokurtic). Applying a 90% threshold on this region’s histogram, fol-
lowed by a median filter, may preserve isolated bright groups of pixels. If these small
bright areas are very close to each other, then they possibly belong to the same
larger drusen and must be expanded so as to capture the entire drusen region.
A morphological closing with a small structuring element (disk shaped, 3-pixels
in diameter) applied locally within such regions can join together the neighbor-
ing groups of pixels into a single drusen. It is emphasized here that this selective
expansion process is only applied on small sub-blocks of the image that possess
symmetric small skewed and mesokurtic histogram, as have been identified by the
HALT operator. The proposed algorithm for drusen detection and segmentation is
summarized in detail in Fig. 3.

In order to demonstrate the efficiency of the HALT approach over the localized
Otsu'® and the Shin et al.2® methods for threshold selection, two representative
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Fig. 3. Proposed algorithm for the detection of anomalies in human eye’s retina.

(b)

Fig. 4. (a) Image with large dense drusen; (b) image with small sparse drusen.

examples are shown. One with large drusen dominating extensive areas (Fig. 4(a))
and one with few small and vaguely defined drusen (Fig. 4(b)). Both images are
enhanced using multilevel histogram equalization (MLE) and then thresholded
using local Otsu,'® Shin et al.?6 and HALT techniques. A median filter is applied
afterwards to remove isolated pixels. The results are presented in Fig. 5.

Otsu’s localized thresholding scheme works well in regions dominated by drusen
(brighter areas), since the distinction between them and the background is evident.
This is demonstrated in Fig. 5(a), where drusen at the central part of the image
are correctly distinguished from the surrounding areas. However, the algorithm is
strongly affected by regions that do not contain abnormalities, like those regions at
the sides of the image. Due to remaining effects of non-uniform illumination, parts
of these regions are brighter and are misclassified as anomalies. Figure 5(b) brings
out another disadvantage of the local Otsu scheme. Vaguely defined drusen, which
are either small or located inside bright background regions are not segmented. The
algorithm detects the most obvious drusen (two of them are easily conceived), but
fails to isolate and detect “hidden” anomalies; arrows indicate some of those.?%
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The segmentation of Shin et al. (Figs. 5(c) and 5(d)) tends to spread and over-
estimate the area of drusen especially around vessels. Although the most obvious
drusen of the first image are detected by this method, supervision is required in
order to remove many incorrectly segmented areas. Using the same parameters in
the second test image, this method produces the result of Fig. 5(d) expressing an
inability to accurately isolate small and vaguely defined drusen. It is emphasized
here that the Shin et al.’s?® technique can give improved results with a proper
selection of its parameters for each image. This need for parameter selection specif-
ically for each test image renders the method inappropriate for the automatic and
unsupervised segmentation of drusen.

On the contrary, the HALT technique removes most of the background in both
cases, as shown at Figs. 5(e) and 5(f). Even the most hard-to-see drusen are seg-
mented without loosing their actual size and shape. Some sparse false negatives
generated by the existence of noise can be easily removed through simple median
filtering. Notice that the parameters of our algorithm are set once and remain fixed
for the ensemble of images tested.

4. Results

We tested our algorithm using a set of 23 images, acquired by the Fundus camera.
Eight pairs of them were actually captured from the left and right eye of patients.
We focused in the central part of the retina by defining a rectangle at the right
or left side of the optical nerve (right or left eye respectively). Figure 6 presents
examples of gray-scale versions (green band) of the original color images. Drusen
show up as bright blobs, but it is evident that the automatic extraction of these
pathological features is difficult, since drusen vary strongly in shape and size and
they tend to spread (varying brightness) around their location. Additionally, small
bright regions of the background tend to create larger areas that can be mistaken
as large drusen. The results of the proposed algorithm for the detection of defect
regions (drusen) inside the human retina are presented in this section.

Figure 7 demonstrates the detection potential of the proposed algorithm on
three representative images from the available set of retinal images; one image with
small and large drusen, a second one with large drusen and a third one with small
sparse drusen. The segmentation results are more than satisfactory since in all cases
the background areas are segmented out and the symptoms are almost correctly
isolated. A qualitative evaluation from experts is presented at the end of the current
section. Figure 8 presents step-by-step the results and shows the effectiveness and
robustness of the proposed operators.

Another example of an image that requires expansion of some regions after the
HALT operator is shown at Fig. 9. This image contains large drusen that consist of
bright and darker parts. In Fig. 9(b) it is obvious that after the HALT we are left
with areas that must be joined together or expanded, so as to recover missing parts
of anomalies. As shown in Fig. 9(c), after the proposed morphological closing the
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Fig. 6. Examples of test images.

upper areas that appeared “cracked” are joined together and form a single region
that covers almost entirely the actual anomaly area.

A hard to enhance image is shown in Fig. 10. The presence of noise is strong,
as it is detected at background regions. In addition, large drusen do not differ
sufficiently from the background. Except the circular bright drusen, all others are
noisy and intermixed with surrounding areas. Even in this case, our algorithm
detects correctly all small drusen and loses only few parts of larger ones, which
appear at the central part of Fig. 10(c).

In general, the presence of vessels and their interaction in intensity with drusen
pose serious problems even in manual drusen detection. The proposed algorithm
overcomes this problem and does not experience false detection, in the entire test
set of images. This is due to the appropriate consideration of features in local areas
that can separate drusen from vessel distributions. Overall, the proposed algorithm
performs quite efficiently in the entire set of macular degeneration images tested.
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Fig. 7. Results of drusen extraction in retinas of (a)—(c) different persons. The first row shows
the original images and the second row presents the segmented ones.

This set of images covers a wide range of possible drusen sizes and formations,
including vague, non-canonical shaped and thin blobs.

In order to provide a statistical analysis of the algorithm’s performance, we asked
for experts’ assistance in determining the actual drusen areas. Notice that all images
reflect actual test cases without any prior information on the status and extent
of AMD. Thus, for testing the algorithm’s classification (drusen versus normal
background) against an “actual” state, we are based on clinical evaluations per-
formed by the experts. Two experts have extensively studied the retinal images
and all the areas that are considered drusen by the doctors have been manually
segmented. Their intersections, i.e. the areas that are classified as drusen by both
experts, are considered as “true” drusen areas. Thus, our statistical tests give pri-
ority to “correct detection” than to “false alarm”. Statistical measures, such as
the rate of true positive detection (sensitivity or TPR), false positive detection
(1-specificity or FPR) and false negative detection (FNR) have been computed
(Table 3), in order to establish the performance of the algorithm. As mentioned
before, we tested our algorithm using a set of 23 images. 8 pairs of them were actu-
ally captured from the left and right eye of patients (indicated by a, b in Table 3).
The sensitivity and specificity of the algorithm exceed 96% for almost all test cases.
Only in one case the sensitivity falls around 88% due to noise (test case corresponds
to Fig. 10). The FNR statistic reveals that the algorithm underestimates drusen
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Fig. 8. Results of each step of our proposed algorithm: (a) original image; (b) non-uniform illumi-
nation correction; (c¢) enhancement; (d) global thresholding; (e) morphological dilation; (f) HALT
and median filtering.

Fig. 9. (a) original image; (b) HALT and median filtering; (c¢) expansion of problematic areas.

areas in this case. The overall performance of the proposed algorithm on the entire
set of images tested is presented in the last row of Table 3.

Further demonstrating the efficiency of the proposed algorithm, the results are
subtracted from the original images, so that the detected regions appear black. Parts
of the drusen that are not detected should appear bright, retaining their original
gray level. Figure 11 illustrates the experts’ comments on representative cases. The
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() (b) (©)

Fig. 10. (a) original image; (b) HALT and median filtering; (c) expansion of problematic areas.

Table 3. Statistical analysis of the results.

Image % Sensitivity (TPR) % Specificity (1-FPR) % FNR

la 96.54 100 3.46
1b 100 100 0
2a 100 98.86 0
2b 100 99.75 0
3a 98.51 99.64 1.49
3b 100 99.77 0
4a 100 100 0
4b 100 99.52 0
5a 88.27 100 11.73
5b 100 100 0
6a 100 97.87 0
6b 100 98.95 0
Ta 99.44 97.94 0.56
b 99.09 99.14 0.91
8a 100 100 0
8b 100 99.78 0
9a 97.86 98.82 2.14
10a 96.15 99.19 3.85
11a 100 98.64 0
12a 97.6 100 2.4
13a 100 100 0
14a 100 96.42 0
15a 100 100 0
Overall 98.846 99.317 1.154

areas inside the solid lines are underestimated (in size), while those inside dotted
lines are overestimated. Overestimation is experienced mainly at the borders, due
to the different lighting model from the center to the edges of the image. These
false-alarm areas can be easily rejected by the doctor inspecting the results and do
not pose any problems to the early detection of AMD cases. In general, the drusen
of interest in AMD examination are located inside or around the macula, the central
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Fig. 11. Evaluation of problems judged by experts. Solid lines represent area underestimation
and dotted lines represent overestimation.

part of the eye. In these areas, our proposed methodology does not produce false
alarms.

Underestimation of drusen areas is a more severe problem. It should be empha-
sized that the underestimation of area experienced in some cases does not imply
complete miss of the drusen, but only partial segmentation of it. In these cases,
our methodology provides a diagnosis aid for indicating drusen presence for further
examination by the doctor, who will anyway be responsible for reaching the final
diagnosis.

5. Conclusions

This chapter considers histogram-based techniques for the problem of automatic
AMD evaluation. The detection of anomalies in human eye’s retina is a biomedi-
cal problem appropriate for image processing and automated segmentation, whose
solution is intended to help the ophthalmologists in their decision making process.
Use of the proposed detector may reduce false negatives and give reliable detection
accuracy in both position and mass size.

We introduce and test a histogram-based enhancement technique (MLE), which
uses histogram equalization as its core operator and a histogram-based segmenta-
tion technique (HALT) to segment areas that differ slightly from their background
regions. Furthermore, we establish an unsupervised and non-parametric method
for drusen extraction and consider its effectiveness through several examples. The
proposed method is able to detect actual drusen in various cases tested. Even in
hard-to-diagnose cases, where many small and vague drusen exist, our method suc-
ceeds in isolating them from the background. The proposed algorithm extends the
work in Shin?® towards the development of robust, unsupervised detection and
reliable quantitative mapping of drusen abnormalities.
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