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Preface

Because of the availability of powerful computational techniques, new modal-

ity techniques such as Computer-Aided Tomography (CAT), Magnetic Resonance

Imaging (MRI) and others, and because of the new techniques of imaging process-

ing (machine vision), the lives of many patients will be saved, and the quality of

all our lives improved. This marriage of powerful computer technology and medi-

cal imaging has spawned a new and growing generation of young dynamic doctors

who hold PhDs in physics and/or computer science, along with their MDs. In addi-

tion, technologists and computer scientists, with their superb skills, are also deeply

involved in this area of major significance.

This volume covers the subject of medical imaging systems — methods in diag-

nosis optimization, by leading contributors on the international scene. This is one

of the 5 volumes on medical imaging systems technology, and together they collec-

tively constitute an MRW (Major Reference Work). An MRW is a comprehensive

treatment of a subject requiring multiple authors and a number of distinctly-titled

and well-integrated volumes. Each volume treats a specific subject area of funda-

mental importance in medical imaging. The titles of the respective 5 volumes which

compose this MRW are:

• Medical Imaging Systems — Analysis & Computational Methods

• Medical Imaging Systems — Modalities

• Medical Imaging Systems — Methods in General Anatomy

• Medical Imaging Systems — Methods in Diagnosis Optimization

• Medical Imaging Systems — Methods in Cardiovascular & Brain Systems

Each volume is self-contained and stands alone for those interested in a specific

volume. However, collectively this 5-volume set evidently constitutes the first multi-

volume comprehensive reference dedicated to the multi-discipline area of medical

imaging.

There are over 130 coauthors of this notable work and they come from 25 coun-

tries. The chapters are clearly written, self-contained, readable and comprehensive

with helpful guides including introduction, summary, extensive figures and exam-

ples with in-depth reference lists. Perhaps the most valuable feature of this work is

the breadth and depth of the topics covered.
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vi Preface

This volume on “Medical Imaging Systems — Methods in Diagnosis Optimiza-

tion” includes essential subjects like:

(a) Robust techniques for enhancement of micro-calcifications in digital

mammography

(b) Techniques in the detection of micro-calcification clusters in digital

mammograms

(c) Fuzzy region growing and fusion methods for the segmentation of masses in

mammograms

(d) ROC methodology and its application in breast cancer diagnosis

(e) Parametric shape reconstruction in inverse problems: Fundamental perfor-

mance bounds and algorithms

(f) Wavelet techniques in region-based digital data compression and their applica-

tion in digital mammography

(g) Techniques in segmenting images with anisotropic spatial resolution and for

tracking temporal image

(h) Functional MRI activity characterization: An estimation and decision theoretic

approach

(i) Techniques for detection of spectral signatures in MR images and their

applications

The contributors of this volume clearly reveal the effectiveness of the techniques

available and the essential role that they will play in the future. I hope that prac-

titioners, research workers, computer scientists, and students will find this set of

volumes to be a unique and significant reference source for years to come.
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CHAPTER 1

ROBUST TECHNIQUES FOR ENHANCEMENT

OF MICROCALCIFICATIONS IN DIGITAL

MAMMOGRAPHY

PETER HEINLEIN

Image diagnost International GmbH
Balanstraße 57, 81541 München, Germany

E-mail: post(at)peter-heinlein.de

We present methods for the enhancement of microcalcifications in breast radiographs.
The result of such an algorithm is a manipulated image where calcifications appear
more clearly. By making these very subtle signs more visible, the radiologist can be
aided in detecting a cancer. This can help to improve both efficiency and accuracy of
the diagnosis.

Our main contribution to enhancement of microcalcifications is the improvement
of the underlying wavelet methods. Based on the continuous wavelet decomposition
we apply a novel method to discretize the continuous wavelet transform. By choosing
discrete wavelet scales that match the size of microcalcifications we obtain contrast
improvements that outperform hitherto used wavelet transforms. We present new results
which indicate that the algorithm is very robust with respect to different mammographic
imaging modalities.

The flexibility of our approach is also demonstrated in applications as detection of
microcalcification and as artifact free image denoising.

Keywords: Robust techniques; digital mammography; microcalcifications.

1. Introduction

Easily interpretable x-ray mammograms have been a clinicians dream for quite a

long time. The recent introduction of dedicated digital review workstations for

mammography starts the departure from conventional film-based reading. This

development opens up new opportunities for medical image processing. Our empha-

sis is on enhancement of features that are relevant for diagnosis.

Breast cancer is the main cause of death for women between the ages of 35 to 55.

Early detection and treatment of breast cancer are the most effective methods of

reducing mortality. Microcalcifications are among the earliest signs of a breast car-

cinoma. Actually, as radiologists point out,17 microcalcifications can be the only

mammographic sign of non-palpable breast disease. Due to the subtle nature of

these microcalcifications these are often overseen in the mammogram. Some ret-

rospective studies state that in up to 40% of the cases unambiguous signs of a

cancer were missed by the reader, with in some cases fatal consequences for the

1



2 P. Heinlein

patient. Thus the reliable detection and classification of microcalcifications plays a

very important role in early breast cancer detection.

Computer assisted detection (CAD), which is reality today, was a first step to

simplify the detection of malignant lesions. Up to now, however, CAD systems just

put markers on suspicious regions. They do not generate a processed image that

might show relevant features more clearly. This restriction is due to two reasons.

First, most mammograms are still film-based, and are read using a lightbox. Thus

commercial CAD systems digitize the film and present markers on a small display

or on a separate printout. Second, for the purpose of detection the image is just

decomposed to generate features for a classifier. The task of enhancement is more

complex, as it also requires an image reconstruction. Only a very sophisticated

reconstruction algorithm can provide images that are still suitable for diagnostic

reading.

Our focus in this article is on providing algorithms for the enhancement of micro-

calcifications in breast radiographs. The result of such an algorithm is a manipu-

lated image where calcifications appear more clearly. By making these very subtle

cancer signs more visible, the radiologist can be aided in detecting a cluster of

calcifications. Further, if the features of the calcifications are made more evident,

the radiologist might be aided in determining whether the calcifications originate

from a benign or a malignant lesion. This can help to improve both efficiency and

accuracy of the diagnosis. Thus enhancement of microcalcifications can efficiently

complement the markers generated by a standard CAD system.10

Considerable research has been undertaken in the development of automated

image analysis methods to assist radiologists in the identification of abnormalities.

In a recent overview article, H. D. Cheng et al.8 gathered more than 120 citations on

the topic of microcalcification detection and classification. Among these techniques,

there are many promising wavelet-based approaches.

Our contribution to enhancement of microcalcifications is the improvement

of the underlying wavelet methods. Based on the continuous wavelet decompo-

sition we apply a novel method to discretize the continuous wavelet transform.

This discretization permits arbitrary scales and orientations while maintaining the

reconstruction property of the continuous transform. It allows to adapt the wavelet

filterbank optimally to the size and shape of microcalcifications. This is the basis

for our microcalcification enhancement algorithm.

We start with a short introduction to the medical background in Sec. 2. It

includes an overview of the available mammographic imaging modalities and intro-

duces the relevant aspects of x-ray image formation.

An overview of known methods for enhancement of microcalcifications is given

in Sec. 3. We explain the role of wavelets for enhancement and we sketch the basic

concept of transform based enhancement.

Section 4 introduces a novel discrete wavelet transform, so called integrated

wavelets. Integrated wavelets provide flexible discrete versions of the contin-

uous wavelet transform (CWT). This idea firstly appeared in an article by
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M. Duval-Destin, M. A. Muschietti and B. Torrésani15 on affine wavelets. We have

generalized the concept and have introduced directional integrated wavelets.20,21

We show that these integrated wavelets can be specifically tailored for analysis

applications where an image reconstruction is needed.

Results of enhancement are presented in Sec. 5. We study in detail the ingredi-

ents of wavelet based enhancement methods. We derive an adapted wavelet from a

model for microcalcifications. Our enhancement operator on wavelet coefficients is

a refinement of known approaches by A. Laine et al.26,27 With integrated wavelets,

we can chose the discrete scales to match the size of the interesting structure.

This yields contrast improvements that outperform hitherto used wavelet trans-

forms by about 5 to 10%. Further, we present new results that indicate that

the algorithm is very robust with respect to different mammographic imaging

modalities.

Finally, Sec. 6 sketches further applications. We present how in the setting of

integrated wavelets directional information can be used to distinguish microcalci-

fications from similar structures. A second application is uncorrelated denoising.

Based on the Morlet reconstruction we introduce a denoising procedure that is not

correlated in space. For example, applied to mass detection in mammograms, we

find that this denoising method does not disturb the local image statistics that we

use for feature extraction.

2. Preliminaries

At first glance, given just a single mammogram, the task of detecting microcalcifi-

cations seems almost easy. But each breast is different in anatomy. Further, there

exist various different microcalcification patterns. To complicate matters even more,

there are several x-ray imaging technologies that each have their own characteristics.

Thus, from the point of view of image analysis, the main challenge of mammo-

graphy is diversity. An algorithm must be reliable under all the varying biometric

and technical parameters. This section provides some background that helps to

understand the challenges an algorithm for enhancement of microcalcifications has

to face.

2.1. Medical background

The earlier a breast cancer is diagnosed, the easier it is to cure it. Microcalcifications

are an early sign of a breast carcinoma. In fact, as S. Heywang-Köbrunner et al.23

point out, microcalcifications can be the only mammographic sign of non-palpable

breast disease. Microcalcifications account for over 50% of all the non-palpable

lesions detected using mammography. For this reason, the reliable detection of

microcalcifications is one of the major goals of mammographic image processing.24

The main reason for x-ray mammography is the fact that other imaging methods

such as magnetic resonance imaging or ultrasound imaging cannot capture and
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Fig. 1. Examples of x-ray mammograms from different modalities. A digitized film with high
spatial resolution but low contrast (left), a digital luminescence radiograph that exhibits strong
noise (center) and a direct digital mammogram with high contrast and low spatial resolution
(right).

visualize microcalcifications. Figure 1 shows mammograms from different imaging

modalities.

Calcification shows up on a mammogram when calcium deposits have collected

in the ducts of the breast. In many cases, calcification can occur without there

being a cancer there. If there is a breast cancer in that area, then the pattern of the

calcium that shows up on the mammogram can have a particular look to it that a

specialist in reading mammograms will recognize.

It is a difficult task to detect microcalcifications in a mammogram with the naked

eye. Studies indicate, compare an overview by U. Bick,7 that in up to 30% of the

cases analyzed the radiologist oversees definite signs of a cancer. In a mammogram,

microcalcifications appear as small spots that are brighter than the surrounding

tissue. They can be very small, actually at the limit of the spatial resolution of the

imaging system. Imaging noise and dense breast tissue can further occlude theses

signs. In a screening scenario the problem of detection is increased by low incidence.

In 100.000 screening cases there are typically no more than 200 cases of cancer.

Basic breast anatomy

The breast is a mound of glandular, fatty and fibrous tissue located over the pec-

toralis muscles of the chest wall and attached to these muscles by fibrous strands.
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A layer of fat surrounds the breast glands and extends throughout the breast. The

actual breast is composed of fat, glands with the capacity for milk production,

blood vessels and milk ducts to transfer the milk from the glands to the nipples.

Normal, non-fat breast tissue is water dense and appears light. Fatty tissue is

practically radio-transparent and appears very dark in a mammogram. The dynamic

range in mammography is large, since there are large variations in breast anatomy.

Individual breast appearance is influenced by the volume of a woman’s breast tissue

and fat, her age, a history of previous pregnancies and lactation, her heredity, the

quality and elasticity of her breast skin, and the influence of hormones. Normal

anatomy on a mammogram will image differently depending on a woman’s weight,

age, presence of surgical scars and presence of superficial or sub-muscular implants,

as well as the amount of fatty tissue in her breasts.

Microcalcifications

Calcifications are small deposits of calcium. They occur in the breast as a result of

secretions within structures that have become thickened and dried. The diameter

of microcalcifications is about 0.05mm up to 1mm.23,24 On a digital image with a

pixel spacing of 0.1mm this equals an area of less than ten pixels. In comparison,

the overall image matrix is about 4.500 × 5.500 pixels.

When microcalcifications indicate breast cancer, they are most frequently

present in clusters of 10 to 100 single findings. Relevant for diagnosis are clus-

ters with at least four findings per square cm. Single findings in a cluster can vary

significantly in shape and size. Microcalcifications that originate from malignant

lesions are typically very small, irregular in shape and size. The average distance of

findings in a cluster is below 1 mm. There are also calcifications that originate from

normal phenomena, for example in blood vessels, or as large deposits of calcium

with diameters of several millimeters. Figure 2 shows a classification for clusters

based on different morphology of individual findings as it was identified by Le Gal.19

This classification helps deciding whether the cluster belongs to a malignant lesion

or a benign process.

2.2. Mammographic imaging modalities

Mammographic images pose a tough challenge for image processing. The images

have poor signal-to-noise ratio. They are blurred by scattered x-ray photon

Fig. 2. Classification of microcalcifications by Le Gal. Classification of microcalcifications in five
classes by Le Gal.19 The probability of a malignant tumor is growing from 0% for Type 1, to 19%,
39%, 59% up to 96% for Type 5. Figure from M. Brady.24
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radiation and by intensifying screen glare. In addition, there is a compromise

between radiation dose and image quality. An x-ray mammogram is a two-

dimensional projection of a three-dimensional anatomical structure. Thus the image

inevitably superimposes tissue regions that are in fact not connected.

Today, there are three different x-ray mammography imaging technologies

available:

• Full field direct digital mammography (FFDM)

• Digital luminescence radiography, also called Computed Radiography (CR)

• Secondary capture of analog film using a film digitizer (Laser or CCD).

Figure 1 shows examples of mammograms from these different technologies.

Due to the fact that direct digital systems are still significantly more expensive

than conventional film-screen based systems, there will be a coexistence of these

three technologies for at least the next decade. This is a grand challenge for image

analysis techniques designed for mammography: For an algorithm to be widely

applicable, it has to perform well on all these image types.

To obtain a digital image from a conventional film, the film is digitized using a

high quality laser scanner with optical densities of 4.0. Recently, novel CCD-based

scanners also provide an acceptable digital image quality. The spacial resolution of

film is about 13 to 15 line pairs per millimeter (LP/mm). Mammography scanners

can digitize at a spacial resolution of 10LP/mm. This corresponds to 50 microns.

A film-based system has as a non-linear transfer function, due to film sensitivity

depending on the dose.

Since structures indicating cancer might be very tiny, image quality require-

ments in digital mammography are extremely high. This was the main reason that

for a long time there has been no adequate digital alternative to conventional film-

screen mammography. Actually, film-screen technology used in conventional mam-

mography is the last remaining non-digital imaging modality used in radiology.

First digital systems were based on the storage of phosphor, so called digital lumi-

nescence or computed radiography (CR). However, at normal dose these systems

have a relatively poor signal-to noise ratio. Higher contrast is an advantage of CR

systems.

Novel direct digital systems for mammography based on silicium or selenium

detectors have been introduced in the last three years. The main advantage of full

field direct digital mammography (FFDM) is high quanta efficiency. This allows for

higher contrast-detail resolution at reduced dose. Further there is a linear relation-

ship between dose and detector signal. This simplifies image processing based on

dose models. Further there is significantly lower noise, because of less processing

steps. A problem is still relatively low spacial resolution of only 5 up to 8 LP/mm.

Thus very small microcalcifications are blurred or can not be detected at all.

Figure 3 shows an example of microcalcifications in digitized film versus a direct

digital mammogram. The example hints the robustness that is required for an

enhancement algorithm to be able to handle both types of images.
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Fig. 3. Spacial resolution. Examples of clearly visible microcalcifications in film digitized at
10LP/mm (a) and in a direct digital mammogram at 5 LP/mm (b). While detail resolution is
better in the digitized mammogram, there is less noise, especially no film grain, in the direct
digital image.

2.3. Image formation

In this section, we give a short explanation of how a digital mammographic image is

generated. From this we develop a model that allows for the relevant imaging effects

relevant for microcalcifications. These effects are noise and unsharp projection as

described by K. Even.16 In Sec. 5.1 we apply this model to design an adapted filter.

Originating from a radiation source, an x-ray beam passes through the com-

pressed breast. An intensifying screen is used as a signal amplifier before the dose

is measured by a flat detector. The x-ray beam is attenuated depending on the

absorption properties of the breast tissue. Calcium absorbs tens of times more

x-ray photons than does other breast tissue. Thus x-ray mammography can make

calcifications visible in the image.

This capability to visualize calcifications at a high spacial resolution is the main

reason why clinicians use x-ray mammography for early breast cancer detection.

Other modalities such as ultrasound and especially MR are better suited to distin-

guish malign tumors from healthy tissue. But they can not visualize microcalcifi-

cations, the earliest signs of cancer.

Main sources for noise are the limited number of x-ray quanta which form a

Poisson-distributed process, film granularity, varying absorption due to changing

energy of the photons on their path through the breast, and random inhomogeneities

in or on the intensifying screen.

Classical x-ray image formation generates geometric distortions. The main effect

is the projection of a three-dimensional anatomical structure onto image plane. This

leads to superimposed tissue regions which can be a difficult source for artifacts. A

magnification V := D/O results from the quotient of the distance from the focal
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spot to the film O and the distance from the focal spot to the object D. This

magnification is about 1.1 to 1.4 for standard systems. The source of the x-ray

beam has a diameter B. For mammography system the focal spot size is typically

0, 36 to 0, 6mm,16,24 the area Br is about 0.01 to 0.2mm.2 As a result there is a

blur U := B(V − 1) of about 0, 001mm and 0, 08mm. microcalcifications have a

diameter of about 0.05 to 1mm, this blur is of almost the same order as the size of

microcalcifications.

3. Method

In the last years, huge effort was spent on the enhancement and detection of

microcalcifications.

It became clear quite early that mammograms cannot be enhanced by “from the

book” global or fix-neighborhood techniques due to their lack of adaptiveness. Most

conventional enhancement techniques enhance not only the microcalcifications but

also the background and noise. H. D. Cheng, X. Cai, X. Chen, L. Hu and X. Lou8

give a good overview of this history.

3.1. Known approaches

Microcalcifications appear at a range of varying sizes. Thus it is natural to approach

this problem by multiscale techniques. Among the more recently developed tech-

niques, most share a feature based approach based on multiscale filterbank decom-

positions. The most successful methods apply filterbanks that are variations of the

standard discrete wavelet transform decomposition.

All authors used digitized film to evaluate their results. Thus evaluation of robust-

ness was limited to that imaging technology. We go one step further, and derive a

method that we evaluated on film as well as on images from direct digital modalities.

H. Yoshida et al.42 apply a discrete wavelet transform (DWT) with dyadic scales.

They multiply every wavelet scale by a weight factor. Then they reconstruct an

image by applying the inverse transform. The weights are determined by super-

vised learning, using a set of training cases. This approach results in an overall

enhancement of edges and structures. There is no coefficient selection scheme in

wavelet domain. Further, the DWT is not translation covariant. Thus if the origin

of the image is shifted, then the result is inherently different.

R. Strickland et al.38 use the discrete wavelet transform (DWT) with biorthog-

onal spline filters. To overcome the restriction of dyadic scales and to adapt the

transform better to microcalcifications they abandon the reconstruction property.

They compute four dyadic scales plus two additional interpolating scales (voices).

On every wavelet scale a binary threshold-operator is applied. The responses of the

individual wavelet scales are then combined by the rule of probability summation.

The output is used as a feature for detection of microcalcifications. Despite being

a very simple algorithm, the detection results of R. Strickland et al. demonstrate

the power of a wavelet-based approach. However, due to the thresholding, there
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is no way to reconstruct an image from the filterbank used. R. Strickland et al.

also develop a matched filter model that we apply in Sec. 5.1 to determine wavelet

functions that are appropriate for detection of microcalcifications.

L. P. Clarke et al.9,34,35 apply a denoising step to the image and then take the

highpass scale of a discrete wavelet transform using spline wavelets. This results in

a general edge detector which finds calcifications but also several other structures

such as film artifacts or lines.

J. K. Kim et al.25 apply several directional Sobel operators. The results are

weighted, depending on local variance, and then are recombined. An important

advantage of this approach is the application of directional features with the capa-

bility to discriminate line-like structures from spot-like structures. Again, here the

common approach is applied, consisting of applying a set of filters, modifying the

coefficients, and recombining the result to an image. Unfortunately, the Sobel oper-

ators do not allow a perfect reconstruction. Thus this method, as is, is not suitable

for enhancement of isolated structures such as microcalcifications. Due to the fact

that the Sobel filters detect edges and are not specific with respect to microcal-

cifications, a preprocessing step to remove film artifacts is needed. This is done

by setting pixels that differ from the neighborhood by values larger than a given

threshold to the neighborhood average. Results of a receiver operating characteristic

(ROC) analysis show, that this preprocessing step is an essential improvement to

the method. The enhancement method of J. K. Kim et al. works fine on a phantom

which consists of pixel size structures. It fails with larger structures, due to the fact

that the Sobel filters are not scalable.

A. Laine et al.26,27 apply several wavelet-type filterbank decompositions such

as the dyadic wavelet transform, also called Mallat-Algorithm, as described in

S. Mallat and W. L. Hwang.29 An adaptive enhancement operator is defined on

the wavelet coefficient scales. A. Laine et al. carefully design the adaptive enhance-

ment operator in a very robust manner. Evaluating the method on phantoms they

obtain good contrast improvement values for irregular structures such as microcalci-

fications. The enhancement operation is defined for each scale separately. However,

A. Laine et al. do not exploit the correlation of wavelet coefficients over scales.

Furthermore, the dyadic wavelet transform does not allow flexibility in the choice

of discrete scales. In Sec. 5.2 we apply a variation of their adaptive enhancement

operator which will be tailored specifically to detect microcalcifications.

There are extensions to the discrete wavelet transform, that allow interpolating

scales, also called voices, as for example described by A. Aldroubi and M. Unser.1

There, the original dyadic wavelet scheme is repeated with auxiliary dilated wavelet

functions. Thereby, for every dyadic scale a0 computed, one obtains additional

scales ai = a0 · 2i/M with i = 0, . . . , M − 1. The drawback of such an approach is

the calculation of a rising number of irrelevant scales: in an iterative scheme one

cannot omit computing intermediate scales. In 1-D signal analysis this may not be

a serious problem. Applied to images such as mammograms, where each scale costs

40 MB of storage, such an approach would be very inefficient.
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3.2. The role of wavelets

For local image enhancement, wavelet-based multiscale methods appear among the

most successful techniques; an observation not limited to the enhancement of mam-

mograms. Why is this the case?

One basic aim in image analysis is to decompose an image into well localized,

interpretable components that make local features in the image easily accessible.

Especially for mammograms, as was pointed out in Sec. 2.3, we need a feature

extraction method that is robust with respect to images coming from different

image sources such as digitized film or direct digital mammography.

A local decomposition of an image can be accomplished by the two-dimensional

continuous wavelet transform (CWT) over the Euclidean group with dilation G :=

R2 ⋊ (R+ × SO(2)). This transform was investigated in depth by J.-P. Antoine,

P. Carette, R. Murenzi and B. Piette.4 The CWT provides an image decomposition

into coefficients that describe the local geometry of the image in terms of scale and

orientation. Further, the continuous wavelet decomposition is flexible with respect

to image resolution as well as the size of the objects of interest.

However, it is not trivial to translate the continuous model into a discrete algo-

rithm. Analyzing the approaches cited above, we find that in most cases limitations

arise from the discrete wavelet transform applied. How can we fix this problem?

Obviously, there is need for a discrete wavelet filterbank that is less restrictive and

provides more flexibility to support model based approaches to enhancement of

microcalcifications.

To discretize means to compute the wavelet coefficient on a discrete subset

of the continuous group only. The resulting discrete transform should retain the

interesting properties of the continuous wavelet transform. For image enhancement

in digital mammography the most important properties are invertibility, translation

covariance and flexibility in the choice of discrete scales.

Invertibility of the transform provides a means to reconstruct the image from

its discrete wavelet coefficient. This implies that there is no information lost in the

decomposition step.

Translation covariance means, that if the original image is shifted, the wavelet

coefficient should also only be shifted. This leads to equidistant sampling of transla-

tions, independent of scales, and forces a redundant transform, compare A. Teolis.39

Details of image structures often exist between commonly used dyadic scales. For

precise localization in scale we thus need flexibility to discretize scale and orientation

depending on the specific problem. The standard discrete wavelet transform (DWT)

only fulfills the first requirement, i. e. invertibility. The dyadic wavelet transform

or Mallat-Algorithm is also translation covariant. But none of the classic discrete

versions of the continuous wavelet transform provide flexibility with respect to scale

and choice of wavelet.

However, this problem can be solved: There is a suitable method, so called inte-

grated wavelets, that was proposed first by M. Duval-Destin, M. A. Muschietti
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and B. Torrésani15 for affine wavelets. We extended their original approach to

wavelet transforms over semidirect product groups G = Rm ⋊ H and provided

an implementation.20,21 An introduction to integrated wavelets is given in Sec. 4.

3.3. Transform based enhancement

It is a classical approach in image processing to transform an image into a rep-

resentation that is more suited for solving a specific problem than working with

its representation on the original coordinate grid. For enhancement of microcal-

cifications in digital mammograms we propose the use of wavelets, especially the

integrated wavelet transform.

The method consists of the following steps: At first, we compute a multireso-

lution decomposition of the image into wavelet coefficients, using an appropriate

wavelet transform WT . Then we define a local enhancement operator E and apply

it to the wavelet coefficients. Finally, we reconstruct the enhanced image using

perfect reconstruction filters generated by a reconstruction operator WT−1.

Our aim is enhancement of microcalcifications in digital mammograms without

introducing artifacts. We show in Sec. 5, that using the integrated wavelet transform

we can improve other methods that were based on dyadic wavelets. The wavelet

plays the role of a matched filter and determines the magnitude of the wavelet

coefficients, especially the points of local extrema. A model based approach leads us

to a Gaussian wavelet that matches the unsharp projection of a microcalcification on

the film plane in a noisy background. The enhancement operation E on the wavelet

coefficients is defined by a heuristic rule. A. Laine et al.27 introduced so called spot

enhancement. As operation on wavelet coefficients we use a refined version.22

Original image Enhanced microcalcifications

Wavelet domain Wavelet domain

�

�

�

�

WTψ WT−1
ψ

E

Enhancement operator

The main components of our enhancement procedure are:

(1) A discrete wavelet transform WT . We apply the integrated wavelet transform

which is a refinement of wavelet based analysis. It allows a flexible and adapted

discretization of scales. This transform is discussed in Sec. 4.

(2) The wavelet ψ. It plays the role of a matched filter and determines the mag-

nitude of the wavelet coefficients, especially the points of local extrema. We

discuss design of the wavelet in Sec. 5.1.
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(3) The enhancement operation E on wavelet coefficients. In Sec. 5.2 we review the

enhancement operator by A. Laine and present refinements using additional

knowledge of the behavior of wavelet coefficients.

The quality of the enhancement result depends on all these ingredients. We discuss

the influence of each ingredient separately.

4. Integrated Wavelet Transform

For analysis we are interested in a decomposition of the image into well-localized

pieces, that make local features in the image easily accessible. The CWT is well

known to be a useful tool for this problem.1,4,5 For example the two-dimensional

continuous wavelet transform of the Euclidean group with dilation R2 ⋊ (R+ ×
SO(2)), studied in detail by R. Murenzi,31 provides the natural affine operations

on images that we use in order to describe the geometry of images. In this section,

we present an invertible discretization of the CWT that provides the flexibility to

pick scales where the image features are located.

The question of reconstruction in signal analysis often seems to be a purely the-

oretical problem. Signal decompositions are typically used to compute features and

no reconstruction is performed. But for the problem of image enhancement recon-

struction is crucial. While the CWT provides a model to design such enhancement

operators, it is the discrete version of the wavelet transform used for implementation

that determines the result of this procedure.

We introduce an approach to discretize the scale parameter by local averaging

of wavelet coefficients. This yields so called integrated wavelets. Integrated wavelets

provide flexible discrete versions of the continuous wavelet transform (CWT). This

idea firstly appeared in an article by M. Duval-Destin, M. A. Muschietti and

B. Torrésani15 on affine wavelets. We extended the technique to wavelet trans-

forms over semidirect product groups20,21 G = Rm ⋊ H . Here we show how to

apply the general theory to images and extend our method to the construction of

directional integrated wavelets.

Our starting point is the continuous wavelet transform defined over the

Euclidean group with dilation G := R2 ⋊ H with dilation group H := R∗
+ × SO(2)

in two dimensions, compare J.-P. Antoine, P. Carette, R. Murenzi and B. Piette.4

SO(2) denotes the group of rotations in the plane. Let g = (b, ρ, a) ∈ G, where

b ∈ R2, a ∈ R∗
+ and ρ ∈ SO(2). For f ∈ L2(R2) we introduce operators

for translation Tbf(x) := f(x − b), dilation Daf(x) := a−1f(a−1x), rotation

Rρf(x) := f
(
ρ−1(x)

)
and involution ψ̃(x) := ψ̄(−x). We write Ug for TbRρDa.

A function ψ ∈ L2(R2) is admissible (or a wavelet), iff

0 <

∫

H

∣∣ψ̂(ω0h)
∣∣2 dµH(h) =: cψ < ∞,
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for some ω0 ∈ R̂2 \ {0}. Here dµH = a−1 da dρ denotes the left Haar-measure

of H . The continuous wavelet transform of f ∈ L2(R2) with respect to a wavelet

ψ ∈ L2(R2) then is defined by

WTψf(g) :=
〈
f,Ugψ

〉
.

Important properties of the continuous wavelet transform are

(i) isometry, i.e. energy conservation:

c−1
ψ ‖WTψf‖2

L2(G) = ‖f‖2
L2(R2),

(ii) a reconstruction formula

f(x) =
1

cψ

∫

R2

∫ ∞

0

∫

SO(2)

WTψf(g)Ugψ(x)dρ
da

a3
db, and

(iii) covariance under translation and dilation,

WTψ ◦ Ug = πg ◦WTψ , g ∈ G,

i.e. if we shift or scale the image, the wavelet coefficient is shifted or scaled but

does not change its structure.a Here π denotes the left regular representation of G.

More details on the construction of continuous wavelet transforms can be found in

H. Führ18 and the book of S. T. Ali, J.-P. Antoine and J.-P. Gazeau.2

The classical approach to construct discrete transforms from the continuous

wavelet transform is by restriction to a discrete subset of G. It leads to a dis-

crete transform such as the dyadic wavelet transform which is based on pairs of

wavelet filters for analysis and synthesis. The drawback of this approach is that

explicit examples of such pairs of filters are only known for dyadic or equidistant

scales. In the case of arbitrarily chosen discrete scales, there exist only slow iterative

schemes to compute the associated reconstruction filters, such as the extrapolated

Richardson or conjugate gradient methods, compare S. Mallat.28

4.1. Integrated wavelets

For precise localization in scale we need freedom to compute scales depending on the

image and the features we are interested in. Geometric scales, as used in pyramidal

decompositions, often are not a natural choice. For example, interesting details

may to be concentrated on a small range of scales. This is exactly the case for

microcalcifications.

aNote that covariance is different from invariance — a property also often demanded from features
for image analysis. An invariant operation S would not change the outcome at all, i.e. S ◦WT =
WT. However, there are several authors who use the term “translation invariance” instead of
“translation covariance”.
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The integrated wavelet transform is a discrete version that provides the flexi-

bility to pick scales where the signal features are located. It is a translation covari-

ant and invertible discretization of the CWT. Thus there exists a reconstruction

formula. Moreover, we show that integrated wavelets also provide directional sensi-

tivity. This feature can be exploited more easily and accurately than compared to

just sampling the CWT.

We discretize the scale parameter by averaging over the wavelet coefficient. We

interpret the continuous wavelet transform as a continuous partition of unity in

Fourier domain generated by the wavelet, formally

f̂(ω) =
1

cψ

(∫

H

∣∣ψ̂(ωh)
∣∣2dµH(h)

)
· f̂(ω) for a. e. ω ∈ R2. (1)

The idea of integrated wavelets is to decompose this partition into discrete blocks.

Therefore we split the integral over H in the admissibility condition into parts. Let

(aj)j∈Z be a decreasing sequence in R∗
+ with limj→−∞ aj = ∞ and limj→∞ aj = 0.

Further, let (Kl)l∈L be a measurable partition of SO(2), with L a discrete index

set. Let ψ ∈ L2(R2) be a wavelet. We define the integrated wavelet Ψj,l ∈ L2(R2)

in Fourier domain by

∣∣Ψ̂j,l(ω)
∣∣2 :=

1

cψ

∫ aj

aj+1

∫

Kl

∣∣D̂aRρψ(ω)
∣∣2 dρ

da

a
, j ∈ Z, l ∈ L, ω ∈ R2. (2)

Then the integrated wavelet transform is defined by

WT I
ψ : L2(R2) → l2(L2(R2 × Z × L)),

f �→ 〈f, TbΨ
j,l〉 = f ∗ Ψ̃j,l(b).

By construction of the integrated wavelet we have
∑

j∈Z,l∈L |Ψ̂j,l(ω)|2 = 1 almost

everywhere. Thus we obtain the isometry
∑

j∈Z,l∈L

∥∥〈f, T•Ψ
j,l〉
∥∥2

= ‖f‖2.

This isometry describes a semi-discrete tight frame. It thus provides a reconstruc-

tion of f in L2-norm by

f(x) =
∑

j∈Z,l∈L

WT I
ψf(x, j, l) ∗ Ψ̃j,l. (3)

Compared to results on the construction of frames by sampling, see for example

S. Mallat,28 we observe that for every wavelet we obtain a reconstruction.20 More-

over, we do not depend on a special choice for the partition of scales.

Examples

As a first example we study the Gaussian wavelet on R2. It is given by ψ(x) :=
1√
2π

(1 − ‖x‖2)e−‖x‖2

, in Fourier domain by ψ̂(ω) = ‖ω‖2e−‖ω‖2/2. The associated
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Fig. 4. Gaussian wavelet ψ in time domain (a) and Fourier domain (b). Integrated Gaussian
wavelet Ψ0, a0 = 1, a1 = 2, in time domain (c) and Fourier domain (d).

integrated wavelet, as given in formula (2), is

∣∣Ψ̂j(ω)
∣∣2 =

1

2

((
(aj‖ω‖)2 + 1

)
e−(aj‖ω‖)2

−
(
(aj+1‖ω‖)2 + 1

)
e−(aj+1‖ω‖)2

)
. (4)

We observe that if we solve the integral in formula (2) explicitly once, then we

can generate integrated wavelets for arbitrary scales from (4) by just changing the

value of aj . Figure 4 illustrates the Gaussian wavelet and a corresponding integrated

wavelet.

As a second example we take the Poisson wavelet on R. It is given by ψ(x) :=

(2π)
−2 (

(1 + ix)−2 + (1 − ix)−2
)
; in Fourier domain ψ̂(ω) = |ω|e−|ω|. The associ-

ated integrated wavelet is

∣∣Ψ̂j(ω)
∣∣2 =

(
1

2
aj+1|ω| +

1

4

)
e−2aj+1|ω| −

(
1

2
aj|ω| +

1

4

)
e−2aj |ω|. (5)

Figure 5 illustrates the Poisson wavelet and a corresponding integrated wavelet.

4.2. Directional wavelets

Theoretically we can choose the wavelet arbitrarily. Unfortunately, for some direc-

tional wavelets it might be difficult or impossible to solve the double integration

over scale and orientation in the definition of the integrated wavelet (2) explicitly.

We use wavelets which are separable in polar coordinates, since they allow explicit
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Fig. 5. Poisson wavelet ψ in time domain (a) and Fourier domain (b). Integrated Poisson
wavelet Ψ0, a0 = 1, a1 = 2, in time domain (c) and Fourier domain (d).

expressions for the integrated wavelet. Let the wavelet ψ ∈ L2(R2) be given by

ψ̂(ω) = µ
(
|ω|
)
η
(
arg(ω)

)
, ∀ω ∈ R̂2,

with functions µ : R → C and η : S1 → C. We obtain the corresponding integrated

wavelet Ψj,l ∈ L2(R2), (j, l) ∈ Z × L, by

∣∣Ψ̂j,l(ω)
∣∣2 =

1

cψ

∫ aj

aj+1

∣∣µ
(
|ωa|
)∣∣2 da

a

∫

Kl

∣∣Rρη
(
arg(ω)

)∣∣2 dρ, ω ∈ R̂2. (6)

Thus we can solve the integrals over scale and orientation separately. Since this class

of wavelets is separable in polar coordinates it is better adapted to the geometric

structure of images than functions separable in cartesian coordinates. The latter

are more adapted to the tensor-product model of images, which is more vulnerable

to producing artifacts.

As an example we construct a polar separable directed integrated wavelet that

is similar to the 2-D directional Cauchy wavelets analyzed by J.-P. Antoine et al.3,6

Starting with the Poisson wavelet, we define the directional wavelet by

ψ̂(ω) := ‖ω‖e−‖ω‖η(arg(ω)), ω ∈ R̂2.

The oriented component η is given by

η(ρ) :=

{
cos2(ρ/α) if ρ ∈ [−απ

2 , απ
2 ],

0 if ρ ∈ [−π, π]\[−απ
2 , απ

2 ].
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Fig. 6. Directional wavelet separable in polar coordinates. Absolute value in time domain (a)
and in Fourier domain (b).

with 0 < α < 1. Thus the support of the wavelet in Fourier domain is restricted to

a convex cone with its top at the origin and opening angle απ. Let Kl = [l1, l2] be

an interval on the circle S1. The directional component of the integrated wavelet

then is given by
∣∣Ψ̂l(ρ)

∣∣2 = Ξ(l1) − Ξ(l2),

with

Ξ(ρ) =





0 if ρ ≤ −απ/2,

α sin(4ρ/α)/32 + α sin(2ρ/α)/4 + 3ρ/8 + 3πα/16 if − απ/2

< ρ < απ/2,

1 if ρ ≥ απ/2.

We obtain the integrated directional wavelet on R2 by Ψ̂j,l(ω) = Ψ̂j(|ω|) Ψ̂l(arg(ω)),

ω ∈ R̂2. Figure 6 shows the directional wavelet in time and Fourier domain.

This wavelet, like the Cauchy wavelet, fulfills the minimality condition given in

J.-P. Antoine et al.6 [Proposition 4.3] and thus has minimal uncertainty with respect

to angular selectivity. We see clearly from Fig. 6(a) the directional selectivity in time

domain. Figure 6(b) displays the optimal angular selectivity in frequency domain

that is steerable by the parameter α.

Our approach emphasizes the wavelet as a template that has directional sensi-

tivity, while the transform is just a generic discrete version of the CWT. One can

simplify the construction, compromising the role of the wavelet and the role of the

transform. Following J.-P. Antoine et al.,4 let us start with an isotropic wavelet ψ,

which generates an isotropic integrated wavelet Ψj . Take a partition of unity on the

circle given by ηx(ρ) := cos2(ρ) and ηy(ρ) := sin2(ρ). Then oriented wavelets Ψj,l

are given in Fourier domain by

Ψ̂j,l(ω) := Ψ̂j
(
|ω|
)
ηl

(
arg(ω)

)
, ∀ω ∈ R̂2, l ∈ {x, y}.
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Fig. 7. Integrated directional filter. (a) Directional Gaussian wavelet in space domain and (b) in
Fourier domain.

These functions are separable in polar coordinates, and thus better adapted to the

geometric structure of images than functions separable in cartesian coordinates.

Figure 7 shows the directional wavelet constructed from the integrated Gaussian

wavelet from Formula (4).

4.3. Discrete algorithm

The key to reconstruction from integrated wavelet coefficients is the partition of

unity in Fourier domain from Eq. (1). Thus it is no surprise that our algorithm for

the integrated wavelet transform is based on computation in Fourier domain.

An algorithm can compute only a finite number of scales. If the integral in

formula (2) also exists over the interval [aj ,∞[, we can define a scaling function that

acts as a low-pass filter. Let ψ ∈ L2(R2) ∩L1(R2) be a wavelet. Under appropriate

conditions,21 we can define a scaling function φ ∈ L2(R2) which is defined by its

Fourier transform as
∣∣φ̂(ω)

∣∣2 :=
1

cψ

∫ ∞

‖ω‖

∫

SO(2)

∣∣D̂aRφψ(ω)
∣∣2 dρ

da

a
. (7)

From this we obtain a simplified partition of unity

∣∣D̂ak
φ(ω)

∣∣2 +

∞∑

j=k

∣∣Ψ̂j(ω)
∣∣2 = 1, for all ω ∈ R̂2. (8)

Up to now, we thought of the signal as a continuous function of R2. For an imple-

mentation we have to work with discrete functions from a space l2(Z2
n) with some

n ∈ N. (l2(Z2
n) can be identified with the space Cn×n.) Let us define a sam-

pling operator S : L2(R2) → l2(Z2
n) by S(f)(k) := f(k − ⌊n/2⌋), 0 ≤ k < n).
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Thus we identify Z2
n with a regular subset of R2 centered around 0. We denote

Hj,l := [aj+1, aj ] × Kl ⊂ H and Hj := [aj+1, aj ] × SO(2). We now define the

discrete integrated wavelet Ψj,l ∈ l2(Z2
n) by equidistant sampling of its continuous

version in Fourier domain. Let F denote the discrete Fourier transform on Z2
n. Fix

j0 ∈ Z. The discrete integrated wavelet transform WT D of f ∈ l2(Z2
n) with respect

to an admissible vector ψ ∈ L2(R2) ∩ L1(R2) is defined by

WT D
ψ f(b, 0) := w0 F−1

(
Ff · SD̂j0φ

)
(b), b ∈ Z2

n,

WT D
ψ f(b, j, l) := wj,l F−1

(
Ff · SΨ̂j,l

)
(b), b ∈ Z2

n, j ≥ j0, l ∈ L.

Here the continuous integrated wavelets Ψj,l are sampled in the Fourier domain.

For the scales to approximate the continuous transform, we introduce weights

wj,l := µH(Hj,l)
−1/2. By linearity of the discrete Fourier transform F we obtain a

reconstruction formula

f(x) = w0
−1
〈
WT D

ψ f(•, 0), TxF−1Sφ̂
〉

l2(Z2
n)

+
∑

j≥j0

∑

l∈L

wj,l
−1
〈
WT D

ψ f(•, j, l), TxF−1SΨ̂j,l
〉

l2(Z2
n)

, x ∈ Z2
n.

This gives a finite filter bank, consisting of (i) the low pass filter which is the scaling

function D̂aj0
φ, (ii) integrated wavelet filters Ψ̂j, j0 ≤ j ≤ j1, and (iii) a high pass

filter given by sampling 1 − Ψ̂j1 . The last filter is not a function in L2(R2), but it

is well defined as function in l2(Z2
n).

This construction has several advantages over the standard dyadic wavelet trans-

form. It allows us to compute arbitrary discrete scales, i.e. we can adapt the scales

aj0 , . . . , aj1 to fit the size of the feature we are interested in. We have further the

flexibility to choose a wavelet, which is adapted to a specific problem.

The computational load of this approach is dominated by the Fourier transform.

To compute J scales we have to compute J +1 Fourier transforms. The same is true

for reconstruction. The typical optimizations are possible. By using real wavelets,

for example, we can compute two scales with only one complex Fourier transform.

In Fig. 8 we give an example of a 1-D signal decomposition using integrated

wavelets.

The signal f is Gaussian. As a wavelet we use the integrated Gaussian.

Figure 8(a) shows the classical dyadic wavelet decomposition, i.e. with scales in

powers of 2. Scales are plotted on logarithmic axis. In Fig. 8(b) we use an irregular

discretization of scales adapted to the expected maximum correlation of the wavelet

with our signal. We can reconstruct the original signal from both, the dyadic and the

irregular decomposition. In both cases we used the same number of 11 scales. With

the adapted discretization we can determine the scale and value of peak correlation

with higher accuracy.
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Fig. 8. Example of the integrated wavelet transform. The figure shows the wavelet transform of a
Gaussian using the integrated Gaussian wavelet. (a) Dyadic wavelet decomposition using scales in
powers of 2. (b) Irregular wavelet decomposition adapted to the expected maximum correlation.
In both cases 11 scales are computed. The signal consists of 1000 samples. Scales are plotted on
a logarithmic axis.

In the case of dyadic scales, specialized algorithms for the affine group exist.

An interesting pyramidal algorithm using convolution in real space is given in

M. A. Muschietti and B. Torrésani.32 The exact integrated filters are replaced

by approximate filters that fulfill a two-scale equation. With this replacement

the authors give up the tight frame condition and eventually the reconstruction

property. Moreover, the algorithm is slow due do computation in time domain.

P. Vandergheynst and J.-F. Gobbers40 extended this algorithm to the 2-D simili-

tude group and improved its performance by operating in the Fourier domain. The

authors state that their algorithm is twice as fast as the standard implementation

of the dyadic wavelet transform, but again they do not provide a reconstruction

formula.

With integrated wavelets we can adapt the discretization of scales dynamically.

In applications there often is prior knowledge about the range of scales that are

the most interesting ones. Specifically, we can adapt the scales to fit the size of

microcalcifications which is well known. We have further the flexibility to choose

the wavelet adapted to the problem of enhancing microcalcifications.

4.4. Extensions to general settings

Let us note that the ideas presented here are valid in a broader context. In the

general setting of wavelet transforms over semidirect product groups G = Rm ⋊ H ,

we replace dilation and rotation by a general dilation group H . Because the opera-

tion of H need not be on all of Rm, we have to replace L2(Rm) with the generalized

Hardy space HV :=
{
f ∈ L2(Rm) ; f̂(ω) = 0 for a. e. ω ∈ R̂m\V

}
defined over an

open H-orbit V := γH for some γ ∈ R̂m.

One can show, compare e.g. H. Führ,18 that in this setting the admissibil-

ity condition is the same as above. Let J be a discrete countable index set. Let

(Hj)j∈J be a partition of H into measurable compact subsets. Then the integrated

wavelet Ψj ∈ HV with respect to a wavelet ψ and (Hj)j∈J is defined in Fourier
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domain by

∣∣Ψ̂j(ω)
∣∣2 :=

1

cψ

∫

Hj

∣∣ψ̂(ωh)
∣∣2 dµH(h), j ∈ J, ω ∈ V. (9)

Because Hj is compact, the integrated wavelet is again admissible. If the wavelet is

band-limited, its integrated wavelet is also band-limited. The results from the spe-

cial case presented above apply also for the general setting. Thus one can construct

tight frames and wavelet frames for general dilation groups with arbitrary choice

of discrete scales.21

The aim is to apply wavelet transforms with other group operations to image

processing problems. Due to lack of a fast implementation, this has been difficult.

However, integrated wavelets and the straightforward implementation derived in

the previous section open up new possibilities, and allows to exploit these wavelet

transforms.

In this section we have introduced integrated wavelets as a refinement of wavelet

transform techniques tailored for difficult multiscale image analysis problems. Inte-

grated wavelets generate adaptable discrete versions of the continuous wavelet

transform (CWT). They provide a reconstruction formula for arbitrary choice of dis-

crete scales and orientation, and they do not restrict us to a limited set of wavelets.

An efficient algorithm based on the FFT provides a straightforward implementa-

tion. With the integrated wavelet transform we do not have to overcome difficulties

resulting from tensor product algorithms but can use appropriate group operations

such as rotation to model our problems.

Especially in medical applications the focus is on extracting features for subtle

pathologies, while the penalty on artifacts introduced by an image manipulation

is particularly high. Here integrated wavelets provide an excellent means to bring

together the precision and the modelling power of the CWT and the practical

requirement for a fast discrete implementation.

5. Enhancement of Microcalcifications

We apply the methods introduced in the last section to real world images. Per-

formance of integrated wavelets with adapted wavelet and adapted discrete range

of scales is compared with the performance of hitherto used dyadic scales and an

edge detection wavelet. Further, we improve the enhancement operation on wavelet

coefficients by introducing a feature which is based on local regularity.

For the following examples we use the image shown in Fig. 9(a). Figure 9(b)

shows an enlarged part of the image that contains a microcalcification cluster. To

compare enhancement results we compute the local contrast of microcalcifications

with respect to a neighborhood. In Fig. 9(c) both microcalcifications and the neigh-

borhood that is used are marked. The local contrast C of microcalcifications of in

an image f with respect to the neighborhood hf is defined by

C(f) :=
E(of ) − E(hf )

E(f)
. (10)
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Fig. 9. Microcalcifications. (a) Digitized film image. (b) Magnified part with microcalcification
cluster. (c) Microcalcification markers and neighborhood used for computation of local contrast.

We set hf to 15× 15 pixels for each calcification. We compute the local contrast on

a normalized image which has the same mean and variance as the original image.

The normalization reduces the dependency of the local contrast from the magnitude

of the lowpass filter and allows better comparison of contrast values.

5.1. Choosing an adapted wavelet

We start with a model for microcalcifications. Microcalcifications MC vary in size

and shape.24 An accepted simplification is to think of them as ellipsoids of diame-

ters between 0.05mm and 1 mm. Projection of such an ellipsoid MC onto the image

plane results in a half-ellipsoid MCProj . Here we assume parallel X-rays. The detec-

tor measures the energy image exp(MCproj). Another aspect is the diameter of the

focal spot which is about the same size as small microcalcifications. This can be

modeled by a convolution with the characteristic function χU of the focal spot, i.e.

MCimage = exp(MCproj) ∗ χU . We approximate MCimage by the Gaussian

φ(x) :=
1√
2π

e−
1
2 |x|2, x ∈ R2.

Figure 10 shows that the Gaussian is a good approximation of the modeled

function. Figure 11 shows an empirical verification on cross sections of microcalci-

fications taken from a mammogram.

We now have a model for microcalcifications. To construct the matched fil-

ter ψ we need a stochastic model N for the background, i.e. the breast tissue.

Let us follow the arguments of R. Strickland and H. Hahn.38 They propose a tex-

ture model N(t) = m(t) + R(t), t ∈ R2, with a nonstationary mean m(t) and a

stationary residuum R. Modelling R as ergodic random process with autocovari-

ance γR(x1, x2) := σ2
Re−α

√
x2
1+x2

2 , (x1, x2) ∈ R2, yields the spectral density function

PRR(ω) = 2σ2
R

α
α2+‖ω‖2 , ω ∈ R̂2. Using the Gaussian as model for microcalcifications
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Fig. 10. Model for microcalcifications. (a) Projection of ellipsoid. (b) Unsharp radiation source.
(c) Image exp(MCProj) of microcalcifications. (d) Convolution with focal spot. (e) Approximation
by Gaussian.

Fig. 11. Cross section of microcalcifications. Average of profiles of sample microcalcifications (•)
and Gaussian fit (+). The image is taken from R. Strickland and H. Hahn.38

we obtain a matched filter ψm by ψ̂m(ω) :=
¯̂
φ(ω)

PRR(ω) = 1
2ασ2

R

e−‖ω‖2/2(α2 + ‖ω‖2),

ω ∈ R̂2. R. Strickland and H. Hahn38 propose a simplification α → 0 based on

results on the Nijmegen mammography database. This yields an approximation

PRR(ω) = ‖ω‖−2. Thus the matched filter is given by

ψ̂(ω) = σ−2
R ‖ω‖2e−‖ω‖2/2. (11)

There is an analogy with a neural network based approach found in D. Rosen et al.36

The template generated by training of the network looks similar to this filter.
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The filter (11) is also an admissible function. We construct the integrated wavelet

filters by applying formula (2). They are given in Fourier domain by

∣∣Ψ̂j,l(ω)
∣∣2 =

1

2

((
a2

j‖ω‖2 + 1
)
e−a2

j‖ω‖2

−
(
a2

j+1‖ω‖2 + 1
)
e−a2

j+1‖ω‖2
)

ηl(arg(ω)), (12)

ω ∈ R̂2, j ∈ J, l ∈ {0, π/2}, with highpass filter

∣∣Ψ̂0(ω)
∣∣2 =

1

2

(
1 −
(
a2
1‖ω‖2 + 1

)
e−a2

1‖ω‖2
)

(13)

and lowpass filter

∣∣Ψ̂|J|(ω)
∣∣2 =

1

2

(
a2
|J|‖ω‖2 + 1

)
e−a2

|J|‖ω‖2

. (14)

A matched filter by itself does generally not allow a reconstruction of the original

signal. In our approach we use the idea of matched filters to construct wavelets. By

this we obtain a wavelet transform, thus an invertible transform. Further, the rich

knowledge of the structure of wavelet coefficients can be exploited.

Some authors tried to detect microcalcifications with wavelets that are typically

used for edge detection, for example spline-wavelets.25,34,41 Figure 12 demonstrates

that our choice of a matched filter wavelet approach yields a significantly more

specific enhancement of microcalcifications than the edge wavelet. In Fig. 12(b) we

observe that edges and line-like structures are ignored by the Gaussian wavelet. The

enhancement operator yields a contrast improvement of 5.62. Contrast improve-

ment with the edge wavelet is 6.04 (Fig. 12(a)). The superior local contrast value

of the edge wavelet results from Gibbs-like phenomena that produce dark trenches
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Fig. 12. Choosing the wavelet. Contrast improvement is 6.04 for the first order spline wavelet (a),
and 5.62 for the Gaussian wavelet (b). Application of the Gaussian wavelet exhibits a significantly
more specific enhancement than with the spline wavelet. The gain factor is set such that differences
between the methods are clearly visible.
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around the calcification. Especially when applied to high resolution mammograms,

the adapted wavelet performs significantly better than edge wavelets. In that case

small edges originate mostly from film noise and defects while calcifications have a

smooth outline. Both wavelets yield comparably contrast enhancement on micro-

calcifications but the choice of a matched wavelet leads to an enhancement more

specific to microcalcifications.

5.2. Enhancement operator

Our aim is enhancement of microcalcifications without introducing artifacts. As

operation on wavelet-coefficients we use a modified version of the spot enhance-

ment introduced by A. Laine et al.27 Our refined version also exploits the wavelet

coefficient decay over scales for better separation of microcalcifications from line

like structures.

The enhancement operates on the integrated wavelet coefficient which is a func-

tion on the grid Γ = Z2
n×J×L with scales J = {0, 1, . . . , jmax} and two orientations

L = {x, y}. For each scale a gain factor Kj is computed. A threshold Tj and a local

measures Mj of the isotropy determine whether this gain is applied to a certain

point.

Let us define the enhancement operation E : l2(Γ) → l2(Γ) on the wavelet

coefficient by

E(F )(b, j, l) :=

{
(1 + S · Kj)Mj(b)F (b, j, l), if Mj(b) > Tj

F (b, j, l), if Mj(b) ≤ Tj,

with F ∈ l2(Γ), (b, j, l) ∈ Γ, 0 < j < jmax and l ∈ L.

The factor S > 0 determines the overall strength of the enhancement. We exploit

information within wavelet scales as well as the wavelet coefficient decay over scales.

Information within scales

The thresholds Tj were determined empirically by A. Laine et al.27 The threshold

Tj depends on the variance of the wavelet coefficient within the scale j.

Tj := 0.5
√

var
(
(F (b, j, l))b∈Z2

n,l∈L

)
, j ∈ J.

Essentially the threshold ignores small wavelet-coefficients that do not correlate

with the matched filter.

The weight Kj is inverse proportional to the variance:

Kj :=
Tmax

Tj
− 1, j ∈ J,

with Tmax := max0≤j≤jmax{Tj}. The weight factors Kj > 1 preserve local scale

maxima.
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We apply the two-directional integrated Gaussian wavelet filters that we have

derived in Sec. 5.1. Let

Mj(b) =
√
|F (b, j, lx)|2 + |F (b, j, ly)|2, (15)

if
√
|F (b, j, lx)|2 + |F (b, j, ly)|2 has a local maximum in b in direction

arg(F (b, j, lx), F (b, j, ly)) of the gradient, and Mj(b) = 0 otherwise. The defini-

tion of Mj is based on the assumption that every spot generates a local scale

maximum on a certain scale. Thus microcalcifications are contained in the set of

local maxima.

Exploiting wavelet coefficient decay

Local regularity is a feature that can be used to distinguish between microcalcifi-

cations and film artifacts such as film defects and scratches on the film. Such film

artifacts produce sharp edges while calcifications have a smoother outline.

The local regularity of a signal can be measured from the decay order of the

magnitude of the corresponding wavelet coefficient over scales, compare S. Mallat

and S. Zhong.30 Figure 13 (top) shows the continuous wavelet analysis of a signal

(bottom) which consists of intersections of four microcalcifications and four film

artifacts. The corresponding maxima-lines are displayed in the center. Solid lines

indicate microcalcifications, dashed lines indicate film artifacts. The gradient of the

magnitude over scales in Fig. 13 (right) is proportional to the decay order of the

wavelet coefficient.

Both, microcalcifications and film artifacts, generate long maxima lines with

large magnitudes. However, they differ in the rate of decay. Maxima lines of film

Fig. 13. Wavelet analysis of intersections. The signal f (top) is a composition of intersections of
three microcalcifications and three film artifacts. From the continuous wavelet coefficient WTψf

(center) we extract maxima lines (bottom). Lines corresponding to film artifacts are dashed, lines
corresponding to microcalcifications solid. Selected amplitudes of maxima lines are plotted on
logarithmic axes (right).
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Fig. 14. Decay of wavelet coefficients. (a) Amplitude of integrated wavelet coefficients of micro-
calcifications (dashed) versus film artifacts (dotted) over four scales. (b) Values from wavelet scales
2 and 4 plotted on the horizontal and vertical axes. Microcalcifications are marked by circles, film
artifacts by stars.

artifacts have lower decay order than those of microcalcifications. This corresponds

to the known lower regularity of film artifacts.

We translate this observation to discrete wavelet scales. Figure 14(a) shows

integrated wavelet coefficients over four scales. Values corresponding to microcalci-

fications are dotted, film artifacts are dashed.

We see that we can still distinguish microcalcifications from film artifacts by

the gradient of amplitudes. Figure 14(b) shows that by comparing coefficients of

only two (properly chosen) scales, microcalcifications can be distinguished from film

artifacts.

T. Netsch33 computed another two-dimensional feature from scale-space. He

uses the extremum over scales together with the value at the extremum. With

this feature he detects microcalcifications properly. However, he points out that he

cannot distinguish between film artifacts and microcalcifications.

To exploit these observations we define the enhancement weight Mj.

Mj(b) :=

{
Mj(b), 2 < S(WTψ(f)(b, .)) < 3,

0 otherwise.
(16)

Here S
(
(j1, . . . , jmax)

)
:=
(∑jmax

k=1 kjk

)
/
(∑jmax

k=1 jk

)
denotes the focal point over

scales. The values 2 and 3 depend on the numbering of scales. They are chosen to

comprise the expected sizes of microcalcifications.

The threshold Mj(b) > Tj is an explicitly constructed classifier. By composing

the features with a logic AND-operator we implicitly construct a partition of the

feature space into rectangular cubes. One can do better by training of a classifier on

these features. Here we only demonstrate the capability of our features to separate

classes.
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5.3. Effect of discretization

We introduced integrated wavelets because of their flexibility in choosing scales

adaptively. Figures 15 and 16 show a comparison of enhancement on dyadic scales

and on an adapted range of scales. In the first case we compute five filters on a

dyadic range. The scales are 0.4, 0.8, 1.6 and 3.2 millimeters. The parameters aj are

given by multiplying these values with the pixel resolution of the image. The pixel

resolution of the images used is 20 pixel per mm. The actual filters are then given

by formulas (12), (13) and (14).
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Fig. 15. Microcalcification Enhancement. Original (a) and result of enhancement (b).
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Fig. 16. Adapted discretization of scales. Magnitude images of enhancement using integrated
Gaussian wavelets. (c) Dyadic discretization. (d) We added two scales in the range relevant for
microcalcifications. Contrast improvement is (c) 5.62 and (d) 6.21.
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For the adapted discretization we compute seven filters on a more dense range of

scales in order to match better with the expected size of calcifications. The adapted

scales are 0.55, 0.8, 1.25, 1.6, 2.1 and 3.2 millimeter.

The magnitude images 16(a) and (b) are normalized to have the same mean

and variance as the original image. There is an arbitrary threshold drawn into

both images. We observe that, when using the integrated wavelet transform, more

microcalcifications appear above the threshold. This is exactly what you can expect

from an adapted algorithm. Contrast improvement in this example is 5.62 for dyadic

scales. Adding more scales in the dyadic range did not improve this result: 0.2 milli-

meter is almost the pixel spacing of the Nijmengen images, thus the corresponding

filter is already sampled at the Nyquist rate, while 6.2 millimeter is by far to large

to respond to microcalcifications.

For the adapted discretization, contrast improvement is 6.21. On average, adapt-

ing the discretization of scales increases the contrast value about 5 to 10%. This

improvement relies only on the adapted discretization. It would have been pos-

sible neither using classical dyadic wavelet frames nor using wavelet frames with

interpolating scales with seven filters only.

5.4. Robustness

As discussed before, a major challenge in digital mammography is that algorithms

are expected to work regardless of the imaging modality. In design of our algorithm

we have carefully chosen robust features, such as scale-adapted integrated wavelets,

that do not depend on pixel spacing or assumptions on image characteristics. We

solved the problem of enhancement for digitized film, because there film-artifacts

and noise are worst.

Our algorithm for enhancement of microcalcifications also has been evaluated on

direct digital images at the Charité university hospital in Berlin by F. Diekmann

et al.11 Direct digital mammograms show less noise and contain practically no

artifacts. Due to other phenomena, mainly due to reduced pixel resolution, micro-

calcifications appear less sharp than in film digitized at high resolution. Figure 17

shows examples of microcalcification clusters in direct digital mammograms. We

have applied the same algorithm as described above to these direct digital images.

Scales were computed for the different image resolution but with the same scheme

as before. Results of the enhancement algorithm are shown in Fig. 18. One can

see that visibility of the calcification cluster in each image segment is improved

significantly. Overall the system performance on direct digital images shows the

same performance as on film. Due to less noise and practically no artifacts from

the imaging process the enhancement algorithm is even more specific to microcal-

cifications. Thus one can actually increase the gain factor which results in a higher

overall contrast gain for direct digital images.

In this section we have presented in detail a method for enhancement of micro-

calcifications in digital mammograms. It improves several components of known
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Fig. 17. Examples for microcalcification clusters in direct digital mammograms.

wavelet-based enhancement algorithms. Due to exploiting the flexibility of the

newly developed integrated wavelets we obtain contrast improvements of about

5 to 10% in comparison to hitherto used wavelet transforms. Integrated wavelets

allow us to pick discrete scales where the image features are located, thus match-

ing the filterbank with the size of the interesting structure. The exact choice of

scales was done manually, following the model of microcalcifications. The algo-

rithm adapts itself automatically to changing image resolution by converting scales

given in millimeter to pixel resolution. We can compute the filterbank for decom-

position and reconstruction directly, without applying slowly converging itera-

tive schemes. Thus for arbitrary choice of scales, the computational load always

depends only on the number of scales. By choosing an adapted wavelet we showed

that enhancement becomes more specific to microcalcifications. The problem of

film artifacts was targeted by using knowledge of the decay order of wavelet

coefficient.
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Fig. 18. Enhancement of microcalcification clusters in direct digital mammograms.

6. Further Applications

6.1. Exploiting directional information for detection

of microcalcifications

The ideas above can also be applied to the detection of microcalcifications. A digital

mammogram (at 5 LP/mm) contains about 2048·2048 = 4.194.304 pixels. Less than

about 20 to 400 pixels correspond to calcifications — if there are any calcifications

present at all. On the other hand, training of a classifier works best when all classes

are of about the same size. This motivates a first pre-classification step. You can

apply a threshold to the enhanced image after removal of the lowpass component.

The threshold is to be chosen in a way that all calcifications appear above the

threshold.

The enhancement algorithm is based on the assumption that microcalcifica-

tions are almost circular and on the use of an appropriate isotropic wavelet to
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(a) (d) (e)

(b) (c)

Fig. 19. Typical structures in a mammogram. (a) image c05c, Nijmegen mammography database
with (b) film artifact, (c) tissue crossing, (d) blood vessel and (e) microcalcification.

detect spot-like structures. Overall this approach yields good results. An in depth

analysis shows that there are difficulties to distinguish microcalcifications from sim-

ilar structures such as film-artifacts, crossings of structured tissue or small line-like

structures that locally fall apart into a series of small spots. On a small scale they all

are spot-like, but they exhibit very different directional behavior on other scales.

We apply the scale-angle representation of the continuous wavelet transform to

measure this distinction. It was first proposed by J.-P. Antoine et al.5,6 For fixed

b ∈ R2 the scale-angle representation is defined as section b×R∗
+ × SO(2) through

the wavelet coefficient WTψf . From this representation one can deduce dominant

directed structures and their corresponding scale.

Figure 19 shows typical structures in a mammogram. Figure 20 shows corre-

sponding scale-angle representations. Figure 20(a) corresponds to a film artifact.

We observe the directed structure on small scales. Figure 20(b) shows a crossing of

tissue forming a spot-like center. We observe four directed structures corresponding

to the tissue. Figure 20(c) corresponds to a directed blood vessel. Figure 20(d) is

calculated at the center of a microcalcification. As predicted from our model, the

scale-angle representation exhibits a strong isotropic structure.

A major disadvantage of using the scale-angle representation directly for this

type of problem is the amount of data to be computed from the continuous wavelet

coefficient. Further, by sampling scales and directions we might miss important

peaks. Thus instead of sampling the CWT, we apply integrated wavelets for the

computation of directional information. First we introduce a measure

R(b, ρ) :=

∫

[aj ,aj+1]

WTψf(b, a, ρ)
da

a
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Fig. 20. Scale-angle representations. The representations correspond to the center of the (a) film
artifact, (b) crossing of tissue, (c) blood vessel and (d) microcalcification from Fig. 19. Brightness
corresponds to the absolute value of the wavelet coefficient. The inner circle corresponds to the
smallest scale.

for directional information at a certain range of scales [aj, aj+1]. For a given point

b it measures the magnitude of directional information in direction ρ on the range

of scales [aj , aj+1] ⊂ R∗
+. For ρ we choose 16 values, i.e. we partition SO(2) by

Kl = [l/16, (l + 1)/16]. With this setting we can compute R from the integrated

wavelet coefficient immediately:

R(b, l) = WT I
ψf(b, j, l).

A single integrated wavelet accumulates all scale information in the chosen range of

scales and the given sector of directions. Further, from the tight frame property we

know that independently of our choice of discrete grid, all directional information is

contained in the integrated wavelet coefficients. With a classical sampling approach
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we would have had to compute values of the CWT at several scales and then

compute the sum over all scales. This would imply the risk to miss information

with to sparse a grid. Thus by using integrated wavelets we save a large amount of

computational load while at the same time obtaining more accurate results.

Microcalcifications typically are isotropic, while line-like structures exhibit

strong periodicity. Irregular structures generate small autocorrelation values. Thus

we compute the autocorrelation function RR for the directional measure R with

respect to the direction ρ:

RR(b, ρ) :=
1

‖R(b, .)‖2

∫

SO(2)

R(b, r)R(b, r + ρ) dr.

Figure 21 shows the autocorrelation function RR for the points b selected in

Fig. 20(a). Large values of RR correspond to periodicity with a period correspond-

ing to the angle they appear. In Figs. 21(a) and 21(c) we observe strong periodicity

at angles 0 and π, corresponding to the line like structure of the film artifact and the

blood vessel. Figure 21(b) shows several small extrema corresponding to the tissue

crossing. Figure 21(d) is almost constant. This corresponds to the approximately

isotropic structure of microcalcifications.

As we observe from the example, the directional information provided by

the wavelet transform can help to distinguish similar structures by analyzing

their anisotropy across several scales and directions. Especially the separation of
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Fig. 21. Autocorrelation function for directional measure. Autocorrelation w.r.t. ρ of the direc-
tional measure R corresponding to the scale-angle representations from Figs. 20(a)–(d).
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microcalcifications from tissue crossings that generate spot-like structures is not

possible with the typical approach with just two filters, that estimates the local

gradient only.

6.2. Denoising of mammograms

Let us close with an other application of the general method. The problems of

enhancement and denoising share the same concept. in both cases one intends

to discriminate between signal and background. For enhancement “signal” is just

microcalcifications. For denoising “background” is the noise. Based on such a dis-

crimination the aim is to modify the image without introducing artifacts.

Artifacts are a major problem of classical denoising algorithms that are based

on wavelet thresholding. Coefficients in wavelet domain correspond to wavelet func-

tions in the signal domain. Thus modification of wavelet coefficients implies adding

copies of the wavelet function to the signal. In standard algorithms these copies are

visible as artifacts. To eliminate this effect, we propose the application of a differ-

ent wavelet reconstruction scheme, based on a variation of integrated wavelets. The

method generates less correlated results than DWT or dyadic wavelet transform

based denoising schemes. The quality is measured by the autocorrelation of the

reconstructed signal.

We find the results better suited for further processing by algorithms that rely on

statistical features. An example from mammographic image analysis is the problem

of mass detection in digital mammograms. One typically starts with a directional

feature extraction method based on local image statistics. Removing the noise can

improve detection of lines that indicate the presence of a spiculated lesion. On the

other hand the preprocessing may not introduce line like artifacts and shall not

change the statistical distribution of directional information. Thus our emphasis

goes beyond smoothing visible artifacts or optimizing the overall SNR. Our aim is

to minimize the correlation that is introduced by the denoising procedure.

The original wavelet thresholding method by D. Donoho and I. Johnstone12 is

based on computation in a wavelet basis. While smooth wavelets produce results

that may look good to the eye, a subsequent operator can be significantly disturbed

by these artifacts. Improved algorithms have been developed that try to reduce this

effect by averaging over a redundant frame decomposition. This technique is often

called cycle spinning. Most recent research is devoted to optimization of the thresh-

old operator, cf. F. Shi and I. W. Selesnick37 or P. L. Dragotti and M. Vetterli.13

An alternative approach for application to piecewise smooth signals with sharp dis-

continuities comes from S. Durand and J. Froment.14 They apply a total variation

minimization approach, but present no rigorous quality analysis of the algorithm.

Morlet reconstruction

Our approach is based on the Morlet reconstruction. The continuous Morlet recon-

struction is well known. Let us first derive the Morlet integrated wavelet transform,
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extending the original ideas from M. A. Muschietti and B. Torrésani32 into a general

framework. All results also hold in the setting of wavelet transforms over semidirect

product groups G = Rm ⋊ H , where H denotes a general dilation group H . We

apply the notation introduced in Sec. 4.

The image of the CWT is a reproducing kernel Hilbert space. The reproducing

kernel allows to choose different functions for decomposition and reconstruction.

Let χ be a reconstruction wavelet, i.e.

0 �=
∫

H

ψ̂(ω0h)χ̂(ω0h) dµH(h) := cψ,χ,

then there is a generalized reconstruction formula

f(x) =
1

cψ,χ

∫

R2

∫

H

WTψf(g)Ugχ(x) dµ(g) (17)

in L2-norm.

There is an extremal case. Formally, one can replace the reconstruction wavelet

in (17) by the Dirac distribution which leads to the Morlet reconstruction

f(x) =
1

kψ

∫

H

WTψf
(
(x, h)

)∣∣det(h)
∣∣−1/2

dµH(h). (18)

For this formula to hold, there is again an admissibility condition. We call ψ ∈
L2(R2) Morlet-admissible, iff

∫

H

|ψ̂(ω0h)|dµH(h) := Kψ < ∞, and

0 <

∫

H

ψ̂(ω0h)dµH(h) := kψ

(19)

for ω0 ∈ R̂2\{0}. For Morlet admissible ψ the reconstruction (18) is valid for all

f ∈ L2(R2) in the weak topology. If ψ ∈ L2(R2) ∩ L1(R2) the reconstruction holds

in L2-norm for all f ∈ L2(R2) with f̂ ∈ L1(R̂2).

The Morlet reconstruction needs no integration over R2. Thus the Morlet recon-

struction is by orders faster than the classical reconstruction. Further, the recon-

struction induces no smoothing of wavelet coefficients. This is the key property to

construct an artifact free denoising algorithm.

Admissibility does not imply Morlet admissibility or vice versa.20 Nevertheless

this is true for most functions: If ψ̂ is bounded in a neighborhood of 0 then Morlet

admissible implies admissible. In the other direction, if ψ̂(0) = 0 and ψ̂ is pointwise

Lipschitz α in 0 for some α > 0, then admissible implies Morlet admissible.

Morlet integrated wavelet transform

From the Morlet reconstruction we can derive the Morlet integrated wavelet trans-

form in a way similar to the definition of integrated wavelets from Sec. 4. The

Morlet reconstruction forces us into a l1-setting. This was presented as the linear

scheme by M. A. Muschietti and B. Torrésani.32
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Let (aj)j∈Z be a strict monotonic decreasing sequence in R∗
+ with limj→−∞ aj =

∞ and limj→∞ aj = 0. Further let (Kl)l∈L be a partition of SO(2) with finite index

set L. For Morlet admissible ψ we define the Morlet integrated wavelet Ψj,l ∈ L2(R2)

in Fourier domain by

Ψ̂j,l(ω) :=
1

kψ

∫ aj

aj+1

∫

Kl

D̂aRρψ(ω)
dρ da

a
. (20)

Morlet admissibility implies a partition of unity in Fourier domain given by
∑

j∈Z

∑

l∈L

Ψ̂j,l(ω) = 1 for a.e. ω ∈ R̂2. (21)

For a given family (Ψj,l)j,l of Morlet integrated wavelets we call

MWTψ : L2(R2) → L2(l1(R2 × Z × L))

f �→ 〈f, TbΨ
j,l〉, b ∈ R2, (j, l) ∈ Z × L.

the Morlet integrated wavelet transformation (MWT).

Condition (19) implies the inequality

1 ≤
∑

j∈Z

∣∣Ψ̂j(ω)
∣∣ ≤ Kψ

kψ
, ω ∈ R̂2.

If we multiply the inequalities with |f̂(ω)| and take the L2-norm, then application

of Parseval’s formula yields the norm inequality

1 · ‖f‖2 ≤
∥∥∥∥∥
∑

j∈Z

∑

l∈L

∣∣〈f, TxΨj,l〉
∣∣
∥∥∥∥∥

2

≤ Kψ

kψ
· ‖f‖2. (22)

This inequality is similar to the one obtained in the case of frames,21 but here we

have one component in l1-norm.

If φ, defined by φ̂(ω) :=
∫∞
1 D̂uψ(ω)du

u , ω ∈ R̂2, is in L1(R2)∩L2(R2), then we

call φ a scaling function. We then obtain from (21) the reconstruction

f(x) = 〈f, TxDj0φ〉 +

∞∑

j=j0

〈f, TxΨj〉, x ∈ R2, (23)

in the weak topology on L2(Rm). Interpreting the sum as limit, the identity also

holds in L2-norm.20,32

For example the Gaussian wavelet ψ(x) := (2π)−
1
2 (1− x2) exp(−‖x‖2), x ∈ R2,

has the associated Morlet integrated wavelet

Ψj(x) = (2π)−
1
2

(
aj

− 1
2 exp(−‖x‖2/2a2

j) − aj+1
− 1

2 exp(−‖x‖2/2a2
j+1)

)
.

The scaling function is φ(x) := (2π)−1/2e−‖x‖2/2.

An implementation for discrete signals can be derived from formula (23) by

sampling the Morlet integrated wavelet Ψj,l in the Fourier domain. Let m ∈ N, and

let J be a finite set of scales. Take f ∈ l2(Z2
m) and a Morlet admissible wavelet
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ψ ∈ L2(R2) ∩ L1(R2). Let F denote the discrete Fourier transform. Then the

decomposition is given by

MWT d
ψ : l2(Z2

m) → l2(l1(Z2
m × J)),

f �→ F−1(Ff · ̂̃Ψj)(b).

There is a perfect reconstruction formula

f(x) =
∑

j∈J

MWT d
ψf(x, j), x ∈ Z2

m.

The Morlet integrated wavelet transform is flexible with respect to choice of discrete

scales.22 Further it is shift-invariant. For operators in wavelet domain we have a

real-time reconstruction of the signal.

Application to image denoising

We adapt the well known results by D. Donoho and I. Johnstone12 on nonparametric

regression in wavelet bases to the Morlet integrated wavelet transform.

The noisy data is a realization of the stochastic process X := f +N with signal f

and additive noise N . Let S := Zm × J and f ∈ l2(l1(S)). Denote s = (x, j) ∈ S.

Further, let ws := wx,j := TxΨj. Let the noise N := (Ns)s∈S be stationary Gaus-

sian with variance σ2. Then the coefficients 〈N, ws〉 are Gaussian random variables

with variance σ2‖ωs‖2
2. We investigate the error of the nonlinear coefficient selection

estimator

X̃ :=
∑

s∈S

〈X, TxΨj〉Θ(x, j), s = (x, j),

with ideal coefficient selection Θ : S �→ {0, 1}. Let M :=
{
s ∈ S ;

∣∣〈f, ωx,j〉
∣∣ ≥

σ‖ωx,j‖2

}
. Then the pointwise error is

〈f, ws〉 − 〈X, ws〉Θ(s) =

{−〈N, ωs〉; s ∈ M,

〈f, ωs〉; s �∈ M.

The optimal L2-error ε of the estimator X̃ is

ε := E
(∥∥f − X̃

∥∥2
)

(22)

≤ E



∥∥∥∥∥
∑

j∈J

∣∣〈f, wx,j〉 − 〈X, wx,j〉Θ(x, j)
∣∣1
∥∥∥∥∥

2

2




=
∑

x∈Zm

E



(∑

j∈J

min
{∣∣〈f, wx,j〉

∣∣,
∣∣〈N, wx,j〉

∣∣
})2




≤
∑

x∈Zm



( ∑

j∈MC

∣∣〈f, wx,j〉
∣∣
)2

+
∑

j∈M

σ2‖wx,j‖2


 .

Thus the optimal error is comparable to the error in the case of orthonormal bases.
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The same reasoning as above applies to attenuation estimators. For Morlet-

reconstruction we set

Ỹ :=
∑

s∈S

Θa

(
〈X, ws〉

)

with hard-threshold or soft-threshold operator Θa. Then for threshold Ts :=

σ‖ωs‖
√

2 ln |S| and |S| > 3 the average approximation error satisfies

ε = E
(
‖f − Ỹ ‖2

)
≤ cJ

(
2 ln |S| + 1

)

·


σ2 +

∑

x∈Zm



( ∑

j∈MC

∣∣〈f, wx,j〉
∣∣
)2

+
∑

j∈M

σ2‖wx,j‖2




 .

Results on non-stationary denoising hold in the same way.

We have computed the signal to noise ratio (SNR) for several test-images. The

results confirm the above theoretical estimation: The SNR improvement between

the DWT and MWT is just 5 to 10% apart. Sometimes the MWT is better, more

often the DWT has larger SNR.

To measure the quality of the denoising algorithm with respect to artifacts we

apply the algorithm to pure noise. We use the soft threshold operator because it is a

continuous operator in wavelet domain and thus does not introduce discontinuities.

The noise is stationary Gaussian. We apply the threshold 3σ‖Ψj‖2. The low-pass

filter is set to zero because it would dominate the autocorrelation result with its

low frequency waves.

In Fig. 23 we compare results for the DWT, the dyadic wavelet transform and

the Morlet integrated transform. Artifacts in the DWT and dyadic WT are obvious.

The DWT, as a basis transform, shows a well centered autocorrelation. Main flaws

come from the tensor-product construction. The dyadic WT exhibits far ranging

(a) Mammogram (b) Dyadic WT vs. Morlet WT

Fig. 22. Denoising applied to digital mammogram. The dyadic WT introduces artificial direc-
tional lines. With the Morlet WT there just remain spikes from large realizations of the noise.
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Fig. 23. Example of denoising using different wavelet transforms. (a) Pure Gaussian noise. Appli-
cation of the DWT exhibits correlation along axes (b) which is expressed in checkerboard arti-
facts (c). The Dyadic WT is correlated over scales (d), the wavelet clearly visible at varying
scales (e). The Morlet-reconstruction is uncorrelated (f). No artificial structure is added to the
image (g).

correlation that comes from the averaging over coefficients. In contrast the MWT

is almost uncorrelated by construction.

In Fig. 22 we compare results for a mammogram with a spiculated mass. While

the dyadic WT introduces artificial directional lines, with the Morlet-WT there just

remain spikes from large realizations of the noise. The statistical feature that we
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Fig. 23. (Continued)

use to determine the presence of a spiculated mass is not disturbed and performs

well on the Morlet denoised image.

7. Conclusion

We have presented a method for enhancement of microcalcifications in digital mam-

mograms. It is based on application of the integrated wavelet transform. This trans-

form provides a reconstruction formula for arbitrary choice of discrete scale and

orientation. In exploiting this flexibility we obtain contrast improvements of about

5 to 10% in comparison to hitherto used wavelet transforms. The algorithms have

been positively evaluated on direct digital images at the Charité University Hospi-

tal in Berlin, Germany.11 The enhancement algorithms have been implemented in

a digital mammography review workstation developed by Image diagnost, Munich,

Germany.
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CHAPTER 2

TECHNIQUES IN THE DETECTION

OF MICROCALCIFICATION CLUSTERS

IN DIGITAL MAMMOGRAMS
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In this chapter we provide a review of some state-of-the-art techniques in detection
of microcalcification (MC) clusters in digital mammograms. Clustered MCs can be an
important early indicator of breast cancer, a leading cause of death in women. Computer
aided diagnosis (CAD) systems have been developed in recent years for providing a
“second reader” opinion in breast cancer diagnosis. In this review we focus on those
most recently published computer techniques for MC detection. Based on the underlying
image-processing methods used, we divide these techniques into four categories: (1) basic

image enhancement, (2) multiscale decomposition, (3) stochastic modeling, and
(4) machine learning. For each category we begin with an overview of the different existing
methods, and then provide an in-depth description of one or two representative methods.
We also present some numerical results to illustrate these representative methods. In the
end we furnish some evaluation results to demonstrate the performance of these methods.

Keywords: Microcalcification; digital mammograms; computer-aided detection; image
processing.

1. Introduction

Breast cancer is presently a leading cause of death among women in developed

countries. According to the American Cancer Society (ACS), an estimated 215,990

new cases of invasive breast cancer are expected to occur among women in the U.S.

during 2004, and approximately 41,110 women are anticipated to die from breast

cancer in the same year. Moreover, breast cancer is second only to lung cancer in

mortality rates.1 Research has shown that the key to successfully treating breast

cancer is early detection. The five-year survival rate for the disease is nearly five

times as great when it is diagnosed in its early stage (96 percent) as opposed to its

later stages (20 percent).1

45
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Mammography currently provides the most effective strategy for early detection

of breast cancer. The sensitivity of mammography is approximately 90%.2 However,

complicated by the presence of a wide variety of structures, accurate reading of

mammograms is very difficult. Some breast cancers produce changes in the mam-

mogram that are subtle and difficult to recognize. It has been reported that 10–30%

of lesions are misinterpreted during routine screening of mammograms. One study

has found that those interpretation errors (e.g. the radiologist sees the cancer, but

thinks it is benign) account for 54% of the missed cancers.3 Furthermore, it is

very difficult to mammographically distinguish benign lesions from malignant ones.

Between 2 and 10 women are biopsied for every cancer detected.4,5 This low speci-

ficity results in a relatively large interobserver variability that can lead to malignant

lesions not being biopsied and benign lesions being biopsied.6 Unnecessary biopsy is

often cited as one of the “risks” of screening mammography. Surgical, needle-core,

and fine-needle aspiration biopsies are expensive, invasive, and traumatic for the

patient.

There has been a great deal of research in the last 15 years focused on developing

computer aided diagnosis (CAD) tools7 for detection and diagnosis of breast cancer.

This intensive research has resulted in several FDA approved commercial systems

which aim to play the role of a virtual “second reader” by highlighting suspicious

areas for further review by the radiologist.8,9

The computerized secondary review is expected to be a valuable tool in breast

cancer detection. In fact, studies have shown that 12–19.5% of breast cancers missed

would be detected with the use of such CAD systems.10,11 Such detection is a crucial

precursor for accurate diagnosis of cancer (i.e. the differentiation between malignant

and benign cases).12

In this chapter, we provide an overview of computer techniques reported in

recent years in the literature for detection of microcalcifications (MCs) in mam-

mograms. Clustered microcalcifications (MCC) can be an important indicator of

breast cancer. They appear in 30–50% of mammographically diagnosed cases.13

MCs are tiny calcium deposits that appear as small bright spots in mammograms.

As an example, Fig. 1 shows a craniocaudal-view mammogram containing a MC

cluster, where individual MCs are indicated by circles.

Individual MCs are sometimes difficult to detect because of the surrounding

breast tissue, their variation in shape (from granular to rod shapes), orientation,

brightness and diameter size (typically, 0.05–1mm).13 Round or oval shapes are

probably of benign origin, while malignant lesions usually have irregular boundaries.

Due to this difficulty, they could be easily overlooked by radiologists.

The rest of the chapter is organized as follows: In Sec. 2, we review some of

the basics in mammography and computer-aided diagnosis (CAD). In Sec. 3, we

provide a review of various techniques for detection of MC clusters. This is followed

in Sec. 4 by a discussion on a set of evaluation results using several representative

methods. Finally, we draw conclusions in Sec. 5.
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Fig. 1. Left : A craniocaudal view mammogram; Right : expanded view showing clustered micro-
calcifications (MCs). MCs are small granule-like deposits of calcium, and appear as bright spots
in a mammogram.

2. Basics of Mammography and Computer Aided Diagnosis

2.1. Mammography

Mammography is a medical imaging technique that is based on x-ray examination

of the breast. The resulting x-ray images are called mammograms (e.g. Fig. 1).

Typically, the breast is imaged from two different angles: mediolateral oblique view

(MLO) and cranio-caudal view (CC). This procedure has been proven to be an

effective tool in reducing mortality due to breast cancer.

As in any other x-ray examination, the quality of the mammograms depends

on the attenuation of the different tissues. Generally, a clear separation between

normal and cancerous tissues is not perfect. In older women, such a separation is

more noticeable due to the diminishing of glandular tissue.

2.2. Breast abnormalities

There are two types of lesions that could be observed in mammograms;13 the first

type is localized density of tissue called mass, and the second one appears as bright

spots of calcium deposits that are called microcalcifications (MCs). Clusters of

MCs (MCC) can be an important early indicator of breast cancer. The likelihood of

malignancy is considered to be high if the MCs show a large degree of polymorphism

and branching. Most such malignant MCs arise in ductal carcinoma.

MCs could be found within the ducts, alongside ducts, in the lobular acini, in

vascular structures, in the interlobular stroma, in fat, or in skin. Depending on
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their etiology and location they could be punctuate, branching, linear, spherical,

fine, coarse, cylindrical, smooth, jagged, regular in size or shape, or heterogeneous.

The characteristics of MCs have been extensively studied in the literature over

the past 30 years, these efforts had led to the establishment of the Breast Imaging

Reporting and Data System (BI-RADS) lexicon by the American College of Radi-

ology (ACR) in 1993.14 Interested readers are referred to the ACR publications1

for more details.

2.3. Computer-aided detection of microcalcification clusters

We show in Fig. 2 a block diagram to illustrate the building blocks in a typical

computer-aided framework for MCC detection. In the block diagram, a mammo-

gram image is first digitized, either from film or from a digital detector, with a reso-

lution that could range from 30–200µm and 10–16 bits per pixel. A region of interest

(ROI) of the image could be selected for processing. In most techniques the image

is enhanced prior to detection for the purposes of improving contrast and reducing

noise by using techniques such as histogram equalization or digital filtering. This

is followed by a detection algorithm for identifying the MCs from the image. The

detected individual MCs are then grouped into clusters by a clustering algorithm.

The performance by a computer-aided detection algorithm is typically evalu-

ated by means of free-response receiver operating characteristics (FROC) curves.15

An FROC curve is an extension of the classical receiver operating characteristics

(ROC)16 curve. It is a plot of the correct detection rate (i.e. true-positive fraction)

achieved by a classifier versus the average number of false positives per image varied

over the continuum of the decision threshold. FROC is considered as an extension of

ROC in that it also takes into account the correct localization of the detected clus-

ters. An FROC curve provides a comprehensive summary of the trade-off between

detection sensitivity and specificity.

In the literature, there also exist several other strategies for the evaluation of

detected clustered MCs, and therefore caution should be taken when comparing the

published results of different algorithms.17

It should be mentioned in passing that there exists a large body of work on

methods for classification or differentiation of benign from malignant MCs for

the purpose of computer-aided diagnosis;12 in addition, there also exists work on

computer-aided detection and diagnosis of masses.18 However, this chapter focuses

only on detection of MCs.

Digitized

Image
Preprocessing Detection or

Segmentation
Clustering Evaluation

Fig. 2. Generic block diagram for MCC detection.
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3. Techniques for Detection of Microcalcification Clusters (MCCs)

Computer-assisted mammography has been the subject of extensive research over

the past two decades and several review articles have been written on this

subject.19–23 In this chapter we focus on methods for detection of MCs, partic-

ularly those reported most recently in the literature. Due to the large volume of

existing work, it is not possible to describe each method in detail. Instead, we adopt

the following approach: based on the underlying image-processing methods used,

we organize the detection techniques into four major categories. Within each cat-

egory, we first provide a summary of existing methods in the literature, and then

give an in-depth description of one or two representative methods. Furthermore, we

will also present some numerical results to illustrate these representative methods

whenever it is useful.

Based on our initial review of some 200 recent journal articles related to the

topic of CAD systems for MCC detection, we selected among them 39 articles for

our review in this chapter. Our selection was based on the following criteria: the

MCC detection methods in these articles all involved image processing techniques,

and were reported with results from clinical mammogram data. We categorize these

detection methods into the following four categories: (1) basic image-enhancement,

(2) multiscale decomposition, (3) stochastic modeling, and (4) machine learning. A

summary of selected techniques in these categories is given in Table 1.

As pointed out above, such categorization of the different techniques is purely

based on the underlying image-processing methods employed, and is by no means

intended to be exclusive. Some of the techniques can be easily found to belong to

more than one category. For example, a neural network approach may use wavelet-

based features as input. However, we find it appropriate for the presentation of

the material. Finally, and most importantly, this review is mainly intended for

pedagogical purposes, and is not intended to be comprehensive (as several rather

comprehensive reviews already exist).

3.1. Basic image enhancement techniques

Methods in this category are motivated by the fact that MCs tend to be brighter

than their surroundings. The basic idea is to first employ image enhancement meth-

ods to improve the contrast of MCs, and then apply thresholding to separate them

out. Specifically, Karssemeijer24 applied adaptive histogram equalization for MC

detection. Morrow et al.25 applied a region based enhancement method, wherein

Table 1. Summary of selected MCC detection techniques.

Category Number of publications Percentage

Image enhancement 22 56%
Multiscale decomposition 4 10%
Stochastic model 8 21%
Machine learning 5 13%
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adaptive region growing was applied to identify MC regions, and the image contrast

was computed for each region with respect to the background. Chan et al.26 used

unsharped masking, in which a mammogram image was first lowpass filtered and

then subtracted from its original; this process was equivalent to highpass filtering,

where high frequency features such as MCs and edges were emphasized and slowly

varying background tissues were suppressed. Dengler et al.27 developed a method

based on the difference of Gaussians (DoG), and applied morphological operators to

extract the shape features of the detected MCs. Bankman et al.28 applied “region

growing” in conjunction with active contours, where the seed points were selected

as the local maxima found by an edge detection operator.

An exemplary method in this category is the filtering approach developed by

Nishikawa et al.29 The method is based on a difference image technique followed

by morphological post-processing. It applies two linear filters, whose coefficients

are given in Fig. 3. The first filter (i.e. matched filter) enhances the MCs while the

second filter (i.e. box-rim filter) suppresses them. The “difference image” is obtained

by subtracting the suppressed image from the enhanced one. In practice, the two

filters are combined into a single linear filter. This is followed by morphological

erosion such that very small signals (less than 3 pixels in area) that are likely

caused by random noise are eliminated.

To illustrate these steps, we show in Fig. 4 some results obtained with this

technique. Figure 4(a) is a sample ROI image, where MC locations are identified

by circles; Fig. 4(b) is the difference image obtained with filtering, where MCs are

visibly enhanced and background tissues are suppressed; Fig. 4(c) is the thresholded

result, where only the brightest 2% of the pixels in Fig. 4(b) are shown; Fig. 4(d)

is the result after morphological erosion.

In summary, the advantage of image enhancement techniques lies in their sim-

plicity and computational efficiency. However, they are often highly susceptible to
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0.75 0.75 0.75
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0.125 0 0 0 0 0 0 0 0.125
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0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125
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Fig. 3. The two filters used in the image difference technique: (a) the matched filter, and (b) the
box-rim filter.
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Fig. 4. Illustration of the image difference method: (a) a sample ROI with 29 MCs, (b) difference
filtering output, (c) output after thresholding (brightest 2% of the pixels), and (d) result after
morphological erosion.

errors, because under-enhanced regions will increase the false negative rate, (i.e.

missing detection of true MCs), while over-enhancement will increase the false pos-

itive rate, (i.e. normal tissues being detected as MCs23).

3.2. Multiscale decomposition methods

Methods in this category are based on the fact that the bright MC spots are differ-

ent in frequency content from their surrounding background. In particular, Nitsch

and Peitgen30 applied multiscale analysis using the Laplacian-of-Gaussian filter.
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By varying the width of the filter, the mammogram image was transformed into

different scales. The response of the filter was thresholded to detect MCs.

Perhaps the most popular techniques in this category are those based on the

use of wavelet transforms. Yoshida et al.31 used a decimated wavelet transform and

the difference image technique for the detection of MCs; the wavelet transform was

applied as an enhancement technique to improve the visibility of MCs by recon-

structing mammograms from selected subbands, namely, subbands 2 and 3. On

the other hand, Strickland and Hahn32,33 used undecimated biorthognal wavelet

transforms and optimal subband weighting for detecting and segmenting clustered

MCs. The undecimated wavelet transform has the advantage of being translation

invariant.

Below we provide a detailed explanation of the undecimated wavelet transform

approach by Strickland and Hahn. The wavelet transform uses biorthognal basis of

length four. It functions as a bank of multi-scale matched filters under the assump-

tion that the MCs can be represented on average by a 2-D circular Gaussian shape

of which the width varies along the different scales. Four-octave decomposition is

used along with two voices inserted between octaves 2-3 and 3-4 to account for the

coarse approximation of the Gaussian shape model. Optimal weighting is applied to

the detail subbands using a Fisher discriminant. At each pixel location x a feature

vector is formed by:

v(x) = [v1(x), v2(x), . . . , v2N+1(x)]T , (1)

where N is the number of octaves (total of 6: 4 scales plus 2 voices), and the

components are given by:

v2j−1(x) = dj
LH(x) + dj

HL(x)

v2j(x) = dj
HH(x), 1 ≤ j ≤ N

v2N+1(x) = sN
LL(x)

, (2)

where dj
LH(x) + dj

HL(x) is the summation of the vertical and the horizontal details

at octave j, dj
HH(x) is the diagonal detail, and sN

LL(x) is the approximation at the

last octave. The linear discriminant function is given by:

f(x) = wT v(x), (3)

where the parameters wT are obtained during the training phase to maximize the

separation between the two classes.

In Fig. 5 we show some results to illustrate these steps. Figure 5(a) is a sample

ROI, where MCs are marked by circles; Fig. 5(b) is the output of the Fisher dis-

criminant. In Fig. 6 we show the undecimated subbands corresponding to the 3rd

octave, where the MCs are visibly enhanced.

In summary, the multiscale decomposition methods tend to be more robust than

simple image-enhancement techniques. However, it relies on the assumed models for

the MC (e.g. approximating it by the Gaussian shape), which may not be always

accurate due to the wide variation in the morphology of MCs.
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Fig. 5. Illustration of wavelet based detection: (a) a sample ROI with 5 MCs, and (b) the final
Fisher discriminant output.

3.3. Stochastic model methods

Methods in this category aim to directly exploit the statistical difference between

MCs and their surroundings. Namely, MCs are known to exhibit strong local spatial

correlations, which could be used to separate them from the surrounding tissues.

Gurcan et al.34 proposed an approach based on higher order statistics, wherein it

was conjectured that areas with no MCs would have a Gaussian like distribution

and areas with MCs would have non-zero skewness (3rd moment) and kurtosis

(4th moment), of which both are zero for a Gaussian distribution. In this approach,

a mammogram image was first processed using a subband filterbank decomposi-

tion. The bandpass subimage was divided spatially into nonoverlapping blocks. The

higher order statistics were then computed for each block in the bandpass subimage

to detect the MCs.

Karssemeijer and Veldkamp35,36 developed a method based on Bayesian esti-

mation using a Markov random field (MRF) to segment MCs. In this approach, an

MRF is defined for modeling the pixels in a mammogram image. The MRF model is

specified by the conditional probability distribution of the label at each pixel given

its gray level and the labels of its neighboring pixels. With a Gaussian distribution

assumed for the fluctuation of gray levels due to noise, this conditional probability

is modeled as

log P [xi = k|yi,ni] ∝−α(k) + βg(k) − (yi − µl)
2

2σ2
l

, (4)

where xi is the label of pixel i(k = 0 for background and k = 1 for MC, respectively),

yi is the gray level of pixel i, ni denotes the labels of its neighboring pixels, α(k)

is an offset value, g(k) is the number of neighbors with label k, β is a parameter
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Fig. 6. The 3rd octave subbands of the image in Fig. 5(a).

used to model the a priori knowledge that neighboring pixels likely have the same

labels, µl and σl are the respective mean and standard deviation for each of the

two classes. The neighborhood used for ni consists of the four nearest neighbors of

pixel i. The pixel label xi is estimated by maximizing the conditional probability

in (4), that is,

x̃i = argmax
k

{logP [xi = k|yi,ni]}. (5)

The maximization in (5) is performed using an iterative procedure known as

estimation by iterated conditional modes (ICM). It is noted that this maximization

requires an initial estimate of the labeling. This can be obtained by initially setting

g(k) to zero. Interested readers are referred to Karssemeijer and Veldkamp35,36 for

more details.
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3.4. Machine learning methods

Methods in this category aim to learn dependencies from data.37 In the context of

MC detection, it is a binary classification process, where the goal is to determine

whether an MC is present at a pixel location or not. There are two machine learning

models frequently used in the literature: one is based on neural networks (NN), and

the other is based on support vector machines (SVMs).

3.4.1. Neural networks (NN)

Neural networks represent a powerful technique that has been applied successfully to

model many human decision-making tasks. In particular, because of their adaptive

and learning capabilities, neural networks have been applied to solve a variety of

pattern recognition problems.38 Feedforward neural networks have been widely used

for MC detection and classification.39–41 As an example, we describe below a two-

stage network approach by Yu and Guan,42 where wavelet components, gray-level

statistics, and shape features were used to train the network, which was formed by

a cascade of two separate 3-layer feedforward neural networks.

The first stage of the network by Yu and Guan was used to segment out the

potential MC pixels in a mammogram image. It had 6 neurons in the hidden layer.

At each pixel location x, the input feature vector was formed by

v(x) = [v1(x), v2(x), v3(x), v4(x)]T , (6)

where v1(x), v2(x) were wavelet features constructed from the second and the

third subbands, respectively, v3(x) was the median contrast, and v4(x) was the

normalized gray level value within a window of M ×M centered at x. The wavelet

transform was based on Daubechies’ orthogonal wavelet of length four.

After the first neural network was trained, its output was thresholded to generate

a binary map of potential MCs. The threshold value was selected empirically during

the training phase such that the majority of MCs appeared in the binary map. A set

of 15 features based on shape and texture, chosen by a sequential backward selection

procedure, was used to train the second neural network to detect the final individual

MCs. The second neural network had 8 neurons in the hidden layer. The input fea-

tures were: (1) area of the object, (2) compactness of the object (perimeter2/area),

(3) standard deviation of the gray-level values in the object, (4) elongation (ratio

of the major to the minor axis of the best fitted ellipse), (5) foreground-background

difference, (6) the 4th shape moment, (7) the 5th invariant moment. Features 8–15

are second-order histogram features, which include: (8) correlation, (9) variance,

(10) contrast, (11) entropy, (12) sum entropy, (13) inverse difference moment,

(14) difference ratio, and (15) angular second moment.

In Fig. 7 we show some results to illustrate this two-stage network approach.

Figure 7(a) shows a sample ROI with MCs marked by circles, Fig. 7(b) shows the

output by the first neural network, and Fig. 7(c) shows the output by the second

neural network.
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Fig. 7. Illustration of the two-stage neural network approach: (a) a sample ROI with 13 MCs,
(b) output of the first network, and (c) output of the second network.

3.4.2. Support vector machine (SVM)

SVM is a universal constructive learning procedure based on statistical learning

theory.43 It can be applied both in the context of classification (e.g. detection

of MCs) and in the context of regression. In classification, the main idea of this

technique is to separate the classes with a hyperplane that maximizes the margin

between them (Fig. 8). It is an implementation of the structural risk minimization

principle, which aims to minimize the bound on the generalization error of a model

rather than minimizing the mean square error over the data set. The discriminant

function in SVM is characterized by a subset of the training samples known as
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Fig. 8. Support vector machine classification with a hyperplane that maximizes the separating
margin between the two classes (indicated by data points marked by ‘X’s and ‘O’s). Support
vectors are elements of the training set that lie either within the margin or on the boundary
hyperplanes of the two classes.

support vectors si:

f(x) =

ls∑

i=1

αiyiK(si,x) + αo, (7)

where ls is the number of support vectors, yi are the training decisions, K(·, ·) is a

kernel function satisfying Mercer’s conditions,43 and αi are coefficients determined

by quadratic programming.

Bazzani et al.44 proposed a method for MC detection based on multiresolution

filtering analysis and statistical testing, in which an SVM classifier was used to

reduce the false detection rate. In our own work,45 we developed an SVM approach

for detection of MCs in mammogram images, wherein an SVM classifier was trained

through supervised learning to determine whether an MC is present or not at any

location under consideration in a mammogram. Below we describe this approach in

detail.

In our approach, we define the input pattern x to the SVM classifier to be a

small M ×M pixel window centered at the location of interest. This is based on the

fact that individual MCs are well localized in a mammogram; therefore, to detect

whether an MC is present at a given location in a mammogram, we can simply

examine the image content surrounding that location.

The window size is chosen to be large enough to contain most MCs, but small

enough to avoid potential interference from neighboring MCs. A small window size

is also desirable for computational efficiency. In our study, the mammograms used

were digitized at a resolution of 0.1mm/pixel, and we chose M = 9.
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Fig. 9. The mammogram in Fig. 1 after preprocessing with a highpass filter. The inhomogeneity
of the background has been notably mitigated.

It is important to note, as can be seen in Fig. 1, that the background in a

mammogram is not homogeneous. To ensure that the input patterns to the SVM

classifier are somewhat uniform throughout the mammogram, we preprocessed the

mammogram by applying a sharp high-pass filter to it. This filter was designed as

a linear-phase FIR filter with 3-dB cutoff frequency ωc = 0.125 and length 41. As

an example, we show in Fig. 9 the result after filtering the mammogram in Fig. 1

with this filter. It appears to be effective in mitigating the impact of inhomogeneity

of the background.

For the determination the parameters in the SVM function in (7), a set of train-

ing mammograms was used. For each MC location in the training set mammogram,

a window of M ×M image pixels centered at its center of mass was extracted; the

vector formed by this window of pixels, denoted by xi, was then treated as an input

pattern for the “MC present” class (yi = +1). “MC absent” samples were collected

(yi = −1) similarly, except that their locations were selected randomly from the set

of all “MC absent” locations in the training mammograms. In this procedure no

window in the training set was allowed to overlap with any other training window.

The reason for using only a random subset of “MC absent” examples was that there

were too many “MC absent” examples to be used at once practically. The SVM

parameters were estimated using a multi-fold cross validation procedure, in which

it was concluded that a radial basis function performed best.

We show in Fig. 10 some examples of the support vectors obtained for both MC

and non-MC image windows. For comparison, some randomly selected examples

from the training set are also shown. Note that the support vectors appear to be

the difficult-to-classify, “borderline” cases; i.e. the MC support vectors are MCs

that could be easily mistaken for background regions, and the non-MC support

vectors are background regions that appear like MCs.
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Fig. 10. Examples of 9×9 image windows and support vectors. Image windows with and without
microcalcifications (MCs) are shown at top-left and bottom-left, respectively. Support vectors
representing the “MC present” and “MC absent” classes of image windows are shown at top-
right and bottom-right, respectively. Note that the support vectors (SVs) represent the borderline
examples from each class that are difficult to categorize (“MC present” SVs could be mistaken for
“MC absent” image regions; “MC absent” SVs might be mistaken for MCs). The support vectors
shown are for the case of a SVM with Gaussian kernel.

A difficult problem in training a classifier for MC detection is that there are a

very large number of image locations where no MC is present, so that the training

set for the “MC absent” class can be impractically large. Thus, there arises an

issue of how to select the training examples so that they well represent the class

of “MC absent” locations. To solve this problem, we proposed a technique called

successive enhancement-learning (SEL) to select the training examples. SEL selects

iteratively the “most representative” MC-absent examples from all the available

training images while keeping the total number of training examples small. The

steps of SEL are illustrated in Table 2.

We show in Fig. 11 some results to illustrate the SVM approach. Figure 11(a)

shows a sample ROI with MCs marked by circles; Fig. 11(b) shows the SVM out-

put. Note that the image in Fig. 11(a) is a particularly difficult case because of

the apparent similarity between the MCs and the background. Nevertheless, the

SVM output successfully highlights the presence of MCs, reducing false alarm

detection.
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Table 2. Successive enhancement learning algorithm.

1. Extract an initial set of training examples from the available training

images(e.g., through random selection).

Let Z = {(x1, y1), (x2, y2), . . . , (xl, yl)} denote this resulting set of training

examples.

2. Train the SVM classifier

f(x) =
ls
P

i=1
αiyiK(si,x) + αo with Z.

3. Apply the resulting classifier f(x) to all the mammogram regions (except

those in Z) in the available training images and record the "MC absent"

locations that have been misclassified as "MC present".
4. Gather N new input examples from the misclassified "MC absent" locations;

update the set Z by replacing N "MC absent" examples that have been

classified correctly by f(x) with the newly collected "MC absent" examples.

5. Retrain the SVM classifier with the updated set Z.
6. Repeat Steps 3-5 until convergence is achieved.

3.5. Other methods

In addition to the methods described in the four categories above, there also exist

other interesting approaches. Li et al.46 developed a technique, in which the image

background was modeled by fractals, which resulted in enhanced MC detection in

the difference between the original and the modeled image.

Cheng et al.47 proposed a fuzzy logic approach, wherein a mammogram image

was transformed into a fuzzified image according to the maximum fuzzy entropy

principle. This was based on the fact that mammograms have some degree of fuzzi-

ness such as indistinct borders, ill-defined shapes, and different densities. Geomet-

rical statistics were then used to measure the nonuniformity of different regions. To

further reduce the FP fate, a curve detector was employed to remove those line-like

or curve-like irrelevant breast structures.

4. Evaluation Studies and Discussions

In the literature the different MC detection methods were often developed using

different mammogram data sets, and were evaluated using different performance

criteria. Thus, it becomes extremely difficult to compare these methods directly

based on their respectively reported results. Here we present a set of evaluation

results of the different methods, which was obtained in the development of our

SVM approach.45

In our study we used a data set provided by the Department of Radiology at

the University of Chicago. This data set consisted of 76 clinical mammograms, all

containing multiple MCs. These mammograms were of dimension 1000×700pixels,

with a spatial resolution of 0.1mm/pixel and 10-bit grayscale. Collectively, there

are a total of 1120MCs in these mammograms, which were identified by a group of

experienced mammographers.
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Fig. 11. Illustration of the SVM approach: (a) a sample ROI with 19 MCs, and (b) SVM classifier
output.

The data set was divided randomly into two separate sets, each consisting of

38 images. One set was used exclusively for training purposes (required in the case

of SVM, wavelet, and neural network-based methods) and the other set was used

exclusively for testing of all methods.
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The evaluation was performed using FROC curves generated in accordance with

a criterion recommended by Kallergi et al.17 for identifying MC clusters. Specifically,

a group of objects classified as MCs is considered to be a true positive (TP) cluster

only if: (1) the objects are connected with nearest-neighbor distances less than

0.2 cm, and (2) at least three true MCs are detected by the algorithm within an

area of 1 cm2. Likewise, a group of objects classified as MCs is labeled as a false

positive (FP) cluster if the objects satisfy the cluster requirement but contain no

true MCs. Such a criterion has been reported to yield more realistic performance

than several other alternatives.

Besides our SVM approach, the following four methods for MC detection were

also considered: (1) the image difference technique (IDTF) by Nishikawa et al.,29

(2) the difference of Gaussians (DoG) method by Dengler et al.,27 (3) the wavelet-

decomposition based (WD) method by Strickland and Hahn,32,33 and (4) the

two-stage multi-layer neural network (TMNN) method by Yu and Guan.42 These

methods were chosen to represent the different categories of methods that we

reviewed above, with the exception of the stochastic model methods. However, in Yu

and Guan42 a comparison of TMNN with the stochastic method by Karssenmeijer35

was provided using the Nijmegen database, where superior performance by TMNN

was demonstrated.

The performance of these different methods is summarized in Fig. 12 with FROC

curves. As can be seen, the SVM classifier offered the best detection result. In

addition, the proposed SEL scheme further improved the correct detection rate. In

particular, it achieved a sensitivity of approximately 85% when the false detection

rate was at an average of one FP cluster per image.

We note that the FROC results in Fig. 12 for WD and IDTF are very similar to

those described in the original reports of these methods. For the DoG method (for

which no FROC information was given in its original report), the detection rate is

close to that of the IDTF when the FP rate is around two FP clusters per image.

This is not surprising because both methods operate under a similar principle (the

detection kernels in both cases behave like a band-pass filter).

In addition, the FROC results indicate that the TMNN method outperforms

the other three methods we compared (WD, IDTF, and DoG) when the FP rate is

above one FP cluster per image. The numerical FROC results we obtained for the

TMNN are somewhat different from those in its original report. There are several

possible explanations: (1) the mammogram set used was different, (2) the detection

criterion for MC clusters used in performance evaluation was different; and (3) in

the original work42 the MC clusters used for training were also included in testing.

Finally, we demonstrate in Fig. 13 that even the method of defining MC clusters

has an influence on the FROC curves, making it difficult to compare reported

results in the literature when they were derived using various criteria. The results in

Fig. 13 were obtained when the nearest-neighbor-distance threshold for MC cluster

detection was increased from 0.2 cm to 0.5 cm. In particular, the sensitivity of the

SVM approach increased to as high as 94% while the FP rate remains at one FP
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Fig. 12. FROC comparison of the different methods tested. A higher FROC curve indicates
better performance. The best performance was obtained by a successive learning SVM classifier,
which achieves 85% detection rate at a cost of one FP cluster per image. The nearest neighbor
distance threshold used for cluster detection is 0.2 cm.
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Fig. 13. FROC comparison of the different methods tested. The nearest neighbor distance thresh-
old used for cluster detection is 0.5 cm.
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cluster per image. Note that, while different criteria may affect the numerical FROC

results, the relative ordering of performance of the methods is preserved.

5. Conclusions

Clustered microcalcifications are important features for early detection of breast

cancer. In this chapter, we provided an overview of a number of state-of-the-art

computerized methods for detection of MCs in mammograms, ranging from meth-

ods based on simple image enhancement, multiscale decomposition, or stochastic

modeling, to those based on machine learning. While those methods based on image

enhancement are simple and can offer reasonably good performance, more sophisti-

cated methods based on machine learning tend to be more accurate at the expense

of increased computational complexity. Despite recent advances in this field, com-

puterized MC detection is still far from being perfect.
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The segmentation of regions of interest in medical images is, in general, a difficult prob-
lem. Methods proposed for a specific application are usually not applicable to images

in other applications. In particular, defining criteria to determine precisely the bound-
aries of masses in mammograms is a difficult task. The problem is compounded by the
fact that most malignant tumors possess fuzzy boundaries with a slow and extended
transition from a dense core region to the surrounding less-dense tissues.

We present two segmentation methods that incorporate fuzzy concepts. The first
method determines the boundary of a mass or tumor by region growing after a pre-
processing step based on fuzzy sets to enhance the region of interest (ROI). Contours
provided by the method have demonstrated good match with the contours drawn by
a radiologist, as indicated by good agreement between the two sets of contours for
47 mammograms. The second segmentation method is a fuzzy region growing method
that takes into account the uncertainty present around the boundaries of tumors. The
difficult step of deciding upon a crisp boundary is obviated by the method. Measures of
inhomogeneity computed from the pixels present in a suitably defined fuzzy ribbon have
indicated potential use in classifying the masses and tumors as benign or malignant,
with a sensitivity of 0.8 and a specificity of 0.9.

In view of the difficulty in the detection of masses and tumors in mammograms, we
explore the combined use of multiple segmentation approaches. We present an abstract
concept of information fusion based on a finite automaton and fuzzy sets to integrate and
evaluate the results of multiple image segmentation procedures. We give examples on
how the method can be applied to the problem of mammographic image segmentation,
combining the results of region growing and closed-contour detection techniques. We
also describe a measure of fuzziness to assess the agreement between a segmented region
and a reference contour. Application of the fusion technique to breast tumor detection in
mammograms indicates that the fusion results agree with the reference contours provided
by a radiologist to a higher extent than the results of the individual methods.

Keywords: Fuzzy region growing; segmentation; fusion method; breast masses;

mammograms.
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1. Medical Image Segmentation

Although a radiologist typically begins an examination of a given medical image

by scanning it in its entirety, diagnostic features of interest often manifest in local

regions. It is not common for a disease to alter an image over its entire extent. In the

context of a breast cancer screening program, the radiologist would scan the entire

mammographic image(s) presented, and search for abnormal features that could be

associated with disease; more attention would then be paid to specific regions of

interest (ROIs). In a diagnostic application, the radiologist would concentrate on

the region of suspected abnormality, and examine its characteristics to decide if the

region exhibits signs related to a particular disease. In the situation of computer-

aided diagnosis (CAD), an important role for image processing is to detect the ROIs

for the specific application considered.1,2 After the ROIs are detected, the sub-

sequent steps could relate to objective characterization and classification of the

regions. The following list provides a few examples of ROIs in medical images:

• Calcifications in mammograms.

• Lung nodules in X-ray images of the chest.

• Tumors and masses in mammograms.

• The white matter, the gray matter, the cerebro-spinal fluid, and the corpus cal-

losum in magnetic resonance (MR) images of the head (brain).

• The liver and the kidneys in computed tomography (CT) images of the abdomen.

An image segmentation algorithm is a procedure that divides an image into its

constituent parts or ROIs. Segmentation is an essential step before image analysis,

pattern recognition, or diagnostic classification. Two major approaches to image

segmentation are based on the detection or analysis of the following characteristics

of images:

• Discontinuity — changes in gray level; edges.

• Similarity — homogeneity of the internal parts of an object.

Commonly used approaches to image segmentation are based upon edge detec-

tion, gray-level thresholding, region growing, and region splitting/merging. Depend-

ing upon the nature of the given image and the ROI, one could attempt to detect

the edges of the ROI, or attempt to a grow region to span the ROI. In some cases,

an ROI may include several disjoint components that may need to be matched

and connected, or analyzed as a group. The results of methods as above could be

labelled as “crisp” regions in the sense that a pixel either belongs to the region or

does not belong to the region.

The abundance of reports on medical image segmentation available in the liter-

ature indicates that the problem is a difficult one: it is not possible to generalize the

problem or any potential solution proposed for a specific application. More often

than not, the ROI may not be clearly defined: even an expert radiologist may not

be able to “segment” the ROI by cutting the part of interest from the image in
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a definitive manner. However, in practice, a radiologist is not required to identify

the precise boundaries of an ROI: it is adequate to identify the general area of

the abnormality and give a diagnostic decision. This practical aspect suggests a

path that is different from the traditional sequence of steps toward image analy-

sis as described above: we may allow imprecision in the definition of the ROI —

that is, allow it to be “fuzzy” — and arrive at the diagnostic decision using sub-

sequent procedures that derive features by taking into account the lack of precise

boundaries of the ROI. In this chapter, we shall explore methods based upon fuzzy

sets and fuzzy fusion for the segmentation of masses and tumors in mammograms,

and demonstrate how features may be derived from fuzzy regions to discriminate

between benign masses and malignant tumors.

2. Breast Cancer and Mammography

Breast cancer is one of the leading causes of death from cancer among women.

Early diagnosis can increase the chances of survival. Although mammography is

being used for breast cancer screening,3,4 analysis of masses and tumors on mam-

mograms is, at times, difficult because developing signs of cancer may be minimal

or masked by superimposed tissues, making their visual detection and analysis dif-

ficult. Additional diagnostic procedures may be recommended when the original

mammogram is equivocal.

Computer-aided image analysis techniques have the potential to improve the

diagnostic accuracy of mammography, and reduce the use of adjunctive procedures,

morbidity, as well as health-care costs. Computer analysis can facilitate the enhance-

ment, detection, characterization, and quantification of diagnostic features such as

the shapes of calcifications and masses, the growth of tumors into surrounding tis-

sues, and distortion caused by developing densities.5 Annotation of mammograms

with objective measures may assist radiologists in diagnosis.6

Various segmentation algorithms have been presented in the literature to extract

tumor regions from mammographic images (refer to recent papers by Rangayyan

et al.7,8 and Mudigonda et al.9,10 for reviews on this topic). In general, the reported

segmentation techniques attempt to define precisely an ROI, such as a tumor or

a mass. However, it is difficult to define a criterion to obtain precise regions on

mammograms. The problem is complicated by the fact that most malignant tumors

possess fuzzy boundaries with slow and extended transition from a dense core region

to the surrounding tissues. Very few works consider the uncertainty present around

the ROI boundaries.11,12

Computer-aided detection of breast masses is a challenging problem requiring

sophisticated techniques due to the low contrast and poor definition of their bound-

aries. Classical segmentation techniques attempt to define precisely the ROI, such

as a calcification or a mass. Shen et al.13 proposed thresholding and multitolerance

region growing methods for the detection of potential calcification regions and the

extraction of their contours. Karssemeijer,14 Laine et al.,15 and Miller and Ramsey16
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proposed methods for tumor detection based on scale-space analysis. Zhang et al.17

proposed an automated detection method for the initial identification of spiculated

lesions based on an analysis of mammographic texture patterns. Matsubara et al.18

described an algorithm based on an adaptive thresholding technique for mass detec-

tion. Kupinski and Giger19 presented two methods for segmenting lesions in digi-

tal mammograms: a radial-gradient-index-based algorithm that considers both the

gray-level information and a geometric constraint, and a probabilistic approach.

The difference among the methods lies in the utility function to determine the final

lesion area. However, defining criteria to realize precisely the boundaries of masses

in mammograms is difficult.

An alternative to address this problem is to represent tumor or mass regions by

fuzzy sets.20 The most popular algorithm that uses the fuzzy-set approach is the

Fuzzy C-Means (FCM) algorithm.12,21,22 The FCM algorithm uses iterative opti-

mization of an objective function based on weighted similarity measures between the

pixels in the image and each cluster center. The segmentation method of Chen and

Lee12 uses FCM as a preprocessing step in a Bayesian learning paradigm realized

via the expectation-maximization algorithm for edge detection and segmentation of

calcifications and masses in mammograms. However, their final result is based on

classical segmentation to produce crisp boundaries. Sameti and Ward11 proposed

a lesion segmentation algorithm using fuzzy sets to partition a given mammogram.

Their method divides a mammogram into two crisp regions according to a fuzzy

membership function and an iterative optimization procedure to minimize an objec-

tive function. If more than two regions are required, the algorithm can be applied

to each region obtained using the same procedure. The authors presented results

of application of the method to mammograms with four levels of segmentation.

In this chapter, we describe two segmentation methods that incorporate fuzzy

concepts.23–25 The first method determines the boundary of a tumor or mass by

region growing after a preprocessing step based on fuzzy sets to enhance the ROI.23

The method is simple and easy to implement, always produces closed contours, and

has yielded good results even in the presence of high levels of noise. The second

segmentation method is a fuzzy region growing method that takes into account the

uncertainty present around the boundaries of tumors.24 The method produces a

fuzzy representation of the ROI, and preserves the uncertainty around the bound-

aries of tumors. We demonstrate the potential use of features derived from the

results of segmentation in pattern classification of the regions as benign masses or

malignant tumors.

Given the difficult nature of the problem of detection of masses and tumors in a

mammogram, the question arises if the problem could benefit from the use of mul-

tiple approaches: How may we combine the results of several approaches — which

may be considered to be complementary — so as to obtain a possibly better result?

In generic terms, image segmentation may be defined as a procedure that groups

the pixels of an image according to one or more local properties.26 A property of pix-

els is said to be local if it depends only on a pixel or its immediate neighborhood (for

example, gray level, gradient, and local statistical measures). Techniques for image
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segmentation may be divided into two main categories: those based on the discon-

tinuity of local properties, and those based on the similarity of local properties.27

The techniques based on discontinuity are simple in concept, but generally produce

segmented regions with disconnected edges, requiring the application of additional

methods (such as contour following). Techniques based on similarity, on the other

hand, depend on a seed pixel (or a seed subregion) and on a strategy to traverse

the image for region growing. Because different segmentation methods explore dis-

tinct, and sometimes complementary, characteristics of the given image (such as

contour detection and region growing), it is natural to consider combinations of

techniques that could possibly produce better results than any one technique on

its own. Although cooperative combination of results of segmentation procedures

can offer good results, there are very few publications devoted to this subject.28–34

This is partly due to the difficulty in simultaneously handling distinct local prop-

erties, and due to the limitations of the commonly used Boolean set operations in

combining different image segmentation results.

Using the theory of fuzzy sets, it is possible to define several classes of fusion

operators that generalize Boolean operators. We describe a general fusion operator,

oriented by a finite automaton, to combine information from different sources.35,36

In particular, we apply the idea to the problem of mammographic image segmen-

tation for the detection of breast tumors, combining results obtained via contour

detection and region growing. The final fuzzy set can classify pixels with more

certainty, and preserve more information than either of the individual methods.

The results are evaluated using a measure of agreement with reference to the con-

tours of the tumors drawn independently by an expert radiologist specialized in

mammography.

3. Preprocessing Based Upon Fuzzy Sets

A mass or tumor typically appears on a mammogram as a relatively dense region,

whose properties could be characterized using local density, gradient, texture, and

other measures. A set of such local properties could be used to define a feature

vector of a mass ROI and/or a pixel belonging to the ROI. Given a feature vector,

a pixel whose properties are similar to those represented by the feature vector of the

mass could be assigned a high intensity. If the properties do not match, the pixel

intensity could be made low. At the end of such a process, pixels in and around

the ROI will be displayed according to their degree of similarity with respect to

the features of the mass ROI. We describe a method based on fuzzy set theory to

achieve such a preprocessing step.

A fuzzy set can be defined by assigning to each possible element in the set X a

value representing its grade of membership in the fuzzy set.37,38 This grade corre-

sponds to the degree with which the element is similar to or compatible with the

concept represented by the fuzzy set. Let Γ : X → L be a membership function

that maps X into L, where L denotes any set that is at least partially ordered.

The most commonly used range of values for membership functions is the unit real
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interval [0, 1]; we will use this interval in the present work. Crisp sets can be seen

as a particular case of fuzzy sets where Γ : X → {0, 1}, i.e. the range includes only

the discrete values 0 and 1.

The enhancement of an ROI may be achieved by defining an appropriate mem-

bership function that evaluates the similarity between the properties of the pixel

being considered and those of the ROI itself, given by the feature vector. In this

procedure, the original image is mapped to a fuzzy set according to the membership

function, which:

• assigns a membership degree equal to 1 to those pixels that possess the same

properties as the mass ROI;

• represents the degree of similarity between the features of the mass ROI and

those of the pixel being considered;

• is symmetric with respect to the difference between the features of the ROI and

those of the pixel being considered; and

• decreases monotonically from 1 to 0.

We may consider the mean intensity of a seed region, identified by the user,

as the ROI feature. A membership function with the characteristics cited above,

illustrated in Fig. 1, is given by the function Γ(p) = 1
1+β|A−B| , where p is the

pixel being processed, A is the feature vector of the mass (gray level in this work),

B is the feature vector of the pixel being analyzed, and β defines the opening of

the membership function. For large β, the opening is narrow and the function’s

behavior is strict; for small β, the opening is wide, and the function presents a

more permissive behavior.

The fuzzy set obtained by the method described above represents pixels whose

properties are close to those of the mass with a high membership degree; the

1

Fuzzy Membership Degree

0
Difference between the feature vector of the ROI 

and that of each pixel of the original image

Fig. 1. Fuzzy membership function for preprocessing. Reproduced with permission from D.
Guliato, R. M. Rangayyan, W. A. Carnielli, J. A. Zuffo, and J. E. L. Desautels, “Segmenta-
tion of breast tumors in mammograms using fuzzy sets”, Journal of Electronic Imaging, 12(3):
369–378, 2003. � SPIE and IS&T.
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Fig. 2. Original version of a 700×700-pixel portion of a mammogram with a spiculated malignant
tumor. Pixel size = 62.5 µm. Reproduced with permission from D. Guliato, R. M. Rangayyan,
W. A. Carnielli, J. A. Zuffo, and J. E. L. Desautels, “Segmentation of breast tumors in mammo-
grams using fuzzy sets”, Journal of Electronic Imaging, 12(3): 369–378, 2003. � SPIE and IS&T.

opposite case results in a low membership degree. The membership degree may

be used as a scale factor to obtain gray levels and display the result as an image.

The contrast of the ROI in the resulting image depends upon the parameter β.

Figures 2 and 3 show a 700 × 700-pixel portion of a mammogram with a

spiculated malignant tumor and the result of fuzzy-set-based preprocessing with

β = 0.007, respectively. It is seen from the image in Fig. 3 that the pixels in the

tumor region (the bright area in the upper-left part of the image) have higher val-

ues than the pixels in the other parts of the image, indicating a higher degree of

similarity with respect to the ROI or seed region. The membership values decrease

gradually across the boundary of the tumor, as expected, due to the malignant

nature of the tumor in this particular case. Note, however, that a few other spa-

tially disconnected regions on the right-hand side of the image also have high values;

these regions can be eliminated by further processing, as described in Sec. 4.1.

4. Fuzzy Segmentation Based Upon Region Growing

Region growing is an image segmentation technique that groups pixels or subre-

gions into larger regions according to a similarity criterion.39 Statistical measures

appear to be good tools for defining homogeneous regions. The success of image

segmentation is directly associated with the choice of the measures and a suitable

threshold. Various region growing algorithms based on statistical measures have
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Fig. 3. Fuzzy-set-based ROI enhancement with β = 0.007 for the image in Fig. 2. Reproduced
with permission from D. Guliato, R. M. Rangayyan, W. A. Carnielli, J. A. Zuffo, and J. E. L.
Desautels, “Segmentation of breast tumors in mammograms using fuzzy sets”, Journal of Elec-
tronic Imaging, 12(3): 369–378, 2003. � SPIE and IS&T.

been presented in the literature.13,27,40,41 In particular, mean and standard devi-

ation measures are often used as parameters to control region growing; however,

these measures are highly influenced by extreme pixel values. As a consequence,

the final shape of the region grown depends upon the strategy used to traverse the

image. Furthermore, the algorithm could present unstable behavior, i.e. different

pixels with the same values that are rejected at an earlier stage may be accepted

later on in the region growing method. It is also possible that the stopping condi-

tion is not reached when the gray level in the image increases slowly in the same

direction as that of the scanning or traversal strategy. Besides, traditional region

growing methods represent the ROI by a classical set, defining precisely the region’s

boundary. In such a case, the transition information is lost and the segmentation

task becomes a critical stage in the image analysis system.

In the following sections, we describe two image segmentation methods: the first

based on classical region growing with the fuzzy-set preprocessed image, and the

second based on fuzzy region growing using statistical measures in homogeneity

criteria. The problems discussed so far are overcome by both methods.

4.1. Detection of mass boundaries by classical region growing

with fuzzy-set preprocessed images

The boundary of the mass ROI may be obtained by performing region growing

upon the fuzzy-set preprocessed image. The pixel values in the preprocessed image
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represent membership degrees of pixels with respect to the ROI as defined by the

seed region. To perform contour extraction, the region growing algorithm needs a

threshold value and a seed region that lies inside the ROI (mass).

The region growing process starts with the seed region. Four-connected neigh-

boring pixels that are above the threshold are labelled as zero, the neighbors of

the pixels labelled as zero are inspected, and the procedure continues. If the con-

nected pixel is less than the threshold, it is labelled as one, indicating a contour

pixel, and its neighborhood is not processed. The recursive procedure continues

until all connected pixels fail the test for inclusion in the region. A post-processing

step is included to remove isolated pixels and regions that lie within the outermost

contour.

The algorithm is simple and easy to implement, and will always produce closed

contours. The method has been evaluated with a number of synthetic test images as

well as medical images such as CT and nuclear medicine images, and has produced

good results even in the presence of high levels of noise. Figure 4 shows the results

of the method with a synthetic image for three representative combinations of

parameters. The three results exhibit a good degree of similarity and illustrate the

Fig. 4. Illustration of the effects of seed pixel and threshold selection on fuzzy-set preprocessing
and region growing: (a) Original image (128×128 pixels) with additive Gaussian noise, with σ = 12
and signal-to-noise ratio (SNR) = 2.66; (b) Seed pixel (60, 60) and threshold = 0.82; (c) Seed
pixel (68, 60) and threshold = 0.85; (d) Seed pixel (68, 80) and threshold = 0.85. Reproduced with
permission from D. Guliato, R. M. Rangayyan, W. A. Carnielli, J. A. Zuffo, and J. E. L. Desautels,
“Segmentation of breast tumors in mammograms using fuzzy sets”, Journal of Electronic Imaging,
12(3): 369–378, 2003. � SPIE and IS&T.
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Fig. 5. Contour extraction by fuzzy-set preprocessing and region growing for the mammogram in
Fig. 2 with a spiculated malignant tumor; see also Fig. 3. The black line represents the boundary
drawn by a radiologist (shown for comparison). The white line is the contour extracted by the
region growing method. β = 0.007, threshold = 0.63. Reproduced with permission from D. Guliato,
R. M. Rangayyan, W. A. Carnielli, J. A. Zuffo, and J. E. L. Desautels, “Segmentation of breast
tumors in mammograms using fuzzy sets”, Journal of Electronic Imaging, 12(3): 369–378, 2003.
� SPIE and IS&T.

robustness of the method in the presence of noise. (Each result of segmentation

shown in this chapter was obtained by using a single seed pixel.)

Figure 5 shows the contour extracted for the mammogram in Fig. 2 with a spicu-

lated malignant tumor. Figure 6 shows a part of mammogram with a circumscribed

benign mass. Figure 7 shows the result of enhancement of the mass ROI using fuzzy-

set-based preprocessing, and Fig. 8 shows the corresponding contour obtained. The

images with the results of segmentation are superimposed with the contours given

by the region growing method in white; the contour in black is the boundary drawn

independently by an experienced radiologist, shown for comparison.7

4.2. Fuzzy region growing

We now describe a fuzzy region growing algorithm to obtain mass regions in mam-

mograms. An adaptive similarity criterion is used for region growing, with the mean

and the standard deviation of the pixels in the region being grown as control param-

eters. The region is represented by a fuzzy set to preserve the transition information

around boundary regions.

The algorithm starts with a seed pixel or region that lies inside the ROI and

spreads by adding to the region 8-connected pixels that have similar properties.
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Fig. 6. Original version of a 1,024 × 1,024-pixel portion of a mammogram with a benign
mass. Pixel size = 50 µm. Reproduced with permission from D. Guliato, R. M. Rangayyan,
W. A. Carnielli, J. A. Zuffo, and J. E. L. Desautels, “Segmentation of breast tumors in mam-
mograms using fuzzy sets”, Journal of Electronic Imaging, 12(3): 369–378, 2003. � SPIE and
IS&T.

Fig. 7. Fuzzy-set-based ROI enhancement with β = 0.007 for the image in Fig. 6.
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Fig. 8. The white line shows the contour extracted by the closed-contour detection method for
the mammogram in Fig. 6. The black line represents the boundary drawn by a radiologist (shown
for comparison). Reproduced with permission from D. Guliato, R. M. Rangayyan, W. A. Carnielli,
J. A. Zuffo, and J. E. L. Desautels, “Segmentation of breast tumors in mammograms using fuzzy
sets”, Journal of Electronic Imaging, 12(3): 369–378, 2003. � SPIE and IS&T.

The homogeneity of the region is evaluated by calculating the mean (µ), standard

deviation (σ), and the coefficient of variation CV = σ/µ. CV gives a measure of

inhomogeneity of the region, and allows one to compare different regions.

Let ∆µmax, ∆CVmax, and β be the control parameters for region growing. ∆µmax

specifies the maximum allowed difference between the value of the pixel being ana-

lyzed and the mean of the subregion already grown. ∆CVmax indicates the desired

degree of homogeneity between two subregions. β defines the opening of the mem-

bership function.

Let p be the next pixel to be analyzed and I(p) be the value of p. Let µ and σ be

the mean and the standard deviation of the region already grown. The segmentation

algorithm is executed in two steps:

(1) Comparison 1: |I(p) − µ| ≤ ∆µmax

If this condition is not satisfied, then the pixel is labelled as rejected. If the

condition is satisfied, p is temporarily added to the subregion and µnew and

σnew are calculated.

(2) Comparison 2: |σ/µ − σnew/µnew| ≤ ∆CVmax

If the condition is satisfied, then p must definitely be added to the subregion

labelled as accepted, and µ and σ must be updated, i.e. µ = µnew and σ = σnew.
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If the condition is not satisfied, p is added to the subregion with the label

accepted with restriction, and µ and σ are not modified.

Comparison 2 given above analyzes the distortion (in terms of CV ) that the

pixel p can produce if added to the subregion. At the beginning of the procedure,

the region includes all the pixels in the seed region, and the standard deviation

is set to zero. While the standard deviation of the region being grown is zero, a

special procedure is executed for Comparison 2: |σ/µ − σnew/µnew| ≤ 2∆CVmax.

The parameter ∆CVmax works as a filter that avoids the possibility that the mean

and standard deviation measures suffer undesirable modification during the region

growing procedure. Furthermore, the algorithm processes pixels in expanding con-

centric squares around the seed region, evaluating each pixel only once; these steps

provide stability to the algorithm.

We now define a fuzzy membership function that maps the pixel values of the

region resulting from the procedure described above to the unit interval [0, 1] based

upon the mean of the region. Pixels that are close to the mean will have a high mem-

bership degree, and, in the opposite case, a low membership degree. The desirable

characteristics of the membership function are:

• the membership degree of the seed pixel or seed region must be 1;

• the membership degree of a pixel labelled as rejected must be 0;

• the membership function must be as independent of the seed pixel or region as

possible;

• the membership degree must represent the proximity between a pixel labelled as

accepted or accepted with restriction and the mean of the resulting region;

• the function must be symmetric with respect to the difference between the mean

and the pixel value; and

• the function must decrease monotonically from 1 to 0.

The membership function Γ used in the present work is illustrated in Fig. 9,

where a = |mean seed region + standard deviation seed region − µ| and b =

∆µmax; in this expression, µ is the mean of the region obtained by the preceding

region growing procedure. The value of a pixel p is mapped to the fuzzy membership

degree Γ(p) as follows:

if |I(p) − µ| ≤ a then Γ(p) = 1

else if |I(p) − µ| > b then Γ(p) = 0

else Γ(p) = 1/{1 + β[|I(p) − µ|]}.
The method has been tested on several synthetic images with various levels

of noise. Figure 10 illustrates three representative results of the method with a

synthetic image and different seed pixels. The results do not differ significantly,

indicating the low effect of noise on the method.

The fuzzy region provided by the method for the malignant tumor case shown

in Fig. 2 is illustrated in Fig. 11. Figure 12 shows the fuzzy region obtained for the
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Fig. 9. Fuzzy membership function for region growing, where a = |mean seed region +
standard deviation seed region − µ|, and b = ∆µmax. Reproduced with permission from D.
Guliato, R. M. Rangayyan, W. A. Carnielli, J. A. Zuffo, and J. E. L. Desautels, “Segmentation of
breast tumors in mammograms using fuzzy sets”, Journal of Electronic Imaging, 12(3): 369–378,
2003. � SPIE and IS&T.

Fig. 10. Illustration of the effects of seed pixel selection on fuzzy region growing: (a) Original
image (128×128 pixels) with Gaussian noise, with σ = 12 and SNR = 2.66; (b) Seed pixel (60, 60),
∆µmax = 18, ∆CVmax = 0.007, β = 0.01; (c) Seed pixel (68, 60), ∆µmax = 18, ∆CVmax = 0.007,
β = 0.01; (d) Seed pixel (68, 80), ∆µmax = 18, ∆CVmax = 0.007, β = 0.01. Reproduced with
permission from D. Guliato, R. M. Rangayyan, W. A. Carnielli, J. A. Zuffo, and J. E. L. Desautels,
“Segmentation of breast tumors in mammograms using fuzzy sets”, Journal of Electronic Imaging,
12(3): 369–378, 2003. � SPIE and IS&T.
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Fig. 11. Result of fuzzy region growing for the tumor displayed in Fig. 2, with ∆µmax = 45,
∆CVmax = 0.01, β = 0.07. The contour drawn by the radiologist is superimposed for comparison.
Reproduced with permission from D. Guliato, R. M. Rangayyan, W. A. Carnielli, J. A. Zuffo, and
J. E. L. Desautels, “Segmentation of breast tumors in mammograms using fuzzy sets”, Journal of
Electronic Imaging, 12(3): 369–378, 2003. � SPIE and IS&T.

benign mass case shown in Fig. 6. Good agreement between the fuzzy regions and

the contours drawn by the radiologist (also shown in Figs. 11 and 12 for comparison)

was obtained for most of the cases tested.

5. Classification of Masses Using the Results of Segmentation

An interactive graphical interface has been developed in Java, using an object-

oriented architecture with controller classes, to integrate the programs that apply

the segmentation methods, implemented in the C language, to mammographic

images.42 Some of the features of the interface are fast and easy upgradability, porta-

bility, and threads to support parallelism between tasks. The interface is ergonomic,

easy to use, and includes online help. The interface integrates procedures to detect

contours using fuzzy preprocessing and region growing, extract fuzzy regions using

fuzzy region growing, compute statistical parameters, and classify masses and

tumors as benign or malignant. The interface also provides access to basic image

processing procedures including zooming in or out, filters, histogram operations,

the Bezier method to manipulate or revise contours, and image format conversion.

The following subsections provide the results of classification obtained

with 47 mammograms, including circumscribed/spiculated and benign/malignant
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Fig. 12. Result of fuzzy region growing for the benign mass displayed in Fig. 6. The contour
drawn by the radiologist is superimposed for comparison. Reproduced with permission from
D. Guliato, R. M. Rangayyan, W. A. Carnielli, J. A. Zuffo, and J. E. L. Desautels, “Segmen-
tation of breast tumors in mammograms using fuzzy sets”, Journal of Electronic Imaging, 12(3):
369–378, 2003. � SPIE and IS&T.

masses from the Mammographic Image Analysis Society (MIAS, UK) database

(http://www.wiau.man.ac.uk/services/MIAS/MIAScom.html) and cases from the

Foothills Hospital, Calgary. The dataset includes 22 benign masses and 25 malig-

nant tumors. All diagnoses were proven by pathological examination of resected

tissue, i.e. biopsy. The mammograms were digitized to a spatial resolution of 50 µm

in the case of the MIAS images and 62.5 µm in the case of the Foothills Hospital

images, and quantized to the range 0 − 255 in gray scale. Contours of the masses

were drawn by a radiologist on digital images independent of the present study,

with no additional information made available.7 The contours drawn by the radi-

ologist were used for reference (as the “gold standard”) to evaluate the results of

segmentation.

5.1. Results of classical region growing with fuzzy-set

preprocessed images

For the study described in this chapter, we manually selected the seed pixel and

threshold value for each case; the threshold values varied between 0.57 and 0.90 for

the images used. The same value of the membership function parameter β = 0.007

was used to process all the images in the study. In most of the cases analyzed, the

boundaries obtained closely matched those drawn by the radiologist.
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Fig. 13. The probability of malignancy derived from the parameter DCV . Reproduced with
permission from D. Guliato, R. M. Rangayyan, W. A. Carnielli, J. A. Zuffo, and J. E. L. Desautels,
“Segmentation of breast tumors in mammograms using fuzzy sets”, Journal of Electronic Imaging,
12(3): 369–378, 2003. � SPIE and IS&T.

In order to derive a parameter for discriminating between benign masses and

malignant tumors, the following procedure was applied.42 A morphological erosion

procedure with a square structuring element of size equal to 25% of the shorter

dimension of the smallest rectangle containing the contour was applied to the con-

tour, so that the core of the ROI was separated from the boundary. A parameter

labelled as DCV was computed from the fuzzy-set preprocessed image, by taking

the difference between the coefficient of variation of the entire ROI and that of the

core of the ROI. A high value of DCV represents an inhomogeneous ROI, which

could be indicative of a malignant tumor. The probability of malignancy based

upon DCV was computed using the logistic regression method; the result is illus-

trated in Fig. 13. Several cut points were analyzed with the curve; the cut point of

0.02 resulted in all 22 benign masses and 16 out of the 25 malignant tumors being

correctly classified, yielding a high specificity of 1.0 but a low sensitivity of 0.64.

The result of segmentation depends upon the choice of the seed to start region

growing and the threshold. Automatic selection of the seed pixel or seed region

is a difficult problem that requires further work. The threshold could be derived

as a function of the statistics (mean, standard deviation, etc.) of the fuzzy-set

preprocessed image; we are conducting further work to explore this possibility.

5.2. Results of fuzzy region growing

The fuzzy region growing method was applied to the 47 test images maintaining the

same values of β = 0.07 and ∆CVmax = 0.01, and by varying only the parameter

∆µmax. The values of the parameters were selected by comparing the results of

segmentation with the contours drawn by the radiologist. The ∆µmax parameter

ranged from 5 to 48 for the 47 masses and tumors analyzed.
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In order to derive parameters for pattern classification, we analyzed the char-

acteristics of a fuzzy ribbon, defined as the connected region whose pixels possess

membership degrees less than unity and separate the tumor core from the back-

ground, as illustrated in Fig. 14. Shape factors of mass contours and measures

of edge sharpness and texture have been previously proposed for the purpose of

classification.7–10,43 However, important information is lost in analysis based on

crisply defined contours: the uncertainty present in and/or around the ROI is not

considered. In this work, we evaluate the potential use of statistical measures of

each segmented fuzzy region and of its fuzzy ribbon as tools to classify masses as

benign or malignant. Observe that the fuzzy ribbon of the tumor in Fig. 14 is darker

than that of the benign mass in Fig. 15. This is due to the fact that, in general,

malignant tumors possess ill-defined boundaries, whereas benign masses are well-

circumscribed. Based upon this observation, we computed the coefficient of varia-

tion CVfr of the membership values of the pixels lying only within the fuzzy ribbon,

and the ratio η of the number of pixels with membership degree less than 0.5 to the

total number of pixels within the fuzzy ribbon. It is expected that the fuzzy ribbons

of malignant tumors will possess higher CVfr and η than those of benign masses.

Discrimination between benign masses and malignant tumors with the param-

eter η had no statistical significance. The probability of malignancy curve based

Fig. 14. The fuzzy ribbon of the fuzzy region shown in Fig. 11, for the malignant tumor shown
in Fig. 2. Reproduced with permission from D. Guliato, R. M. Rangayyan, W. A. Carnielli,
J. A. Zuffo, and J. E. L. Desautels, “Segmentation of breast tumors in mammograms using fuzzy
sets”, Journal of Electronic Imaging, 12(3): 369–378, 2003. � SPIE and IS&T.
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Fig. 15. The fuzzy ribbon of the fuzzy region shown in Fig. 12 for the benign mass in Fig. 6.
Reproduced with permission from D. Guliato, R. M. Rangayyan, W. A. Carnielli, J. A. Zuffo, and
J. E. L. Desautels, “Segmentation of breast tumors in mammograms using fuzzy sets”, Journal of
Electronic Imaging, 12(3): 369–378, 2003. � SPIE and IS&T.

Fig. 16. The probability of malignancy derived from the parameter CVfr . Reproduced with
permission from D. Guliato, R. M. Rangayyan, W. A. Carnielli, J. A. Zuffo, and J. E. L. Desautels,
“Segmentation of breast tumors in mammograms using fuzzy sets”, Journal of Electronic Imaging,
12(3): 369–378, 2003. � SPIE and IS&T.
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upon CVfr is illustrated in Fig. 16. The cut point of 0.18 resulted in the correct

classification of 20 out of the 25 malignant tumors and 20 out of the 22 benign

masses processed, leading to a sensitivity of 0.8 and a specificity of 0.9.

The difficult step of deciding upon a crisp boundary has been obviated in the

region growing method by using measures of inhomogeneity computed from the

pixels present in a suitably defined fuzzy ribbon. The method is thus capable of

assisting in not only identifying a mass ROI, but also in classifying the region as

benign or malignant.

6. Elementary Concepts of Fusion Operators

A fusion operator over fuzzy sets is formally defined as a function h : [0, 1]n → [0, 1],

where n ≥ 2 represents the number of sources of input information. Fusion oper-

ators may be classified according to their behavior into three classes: conjunctive,

disjunctive, and compromise operators,38,44 as follows:

• An operator is said to be conjunctive if h(a1, a2, . . . , an) ≤ min{a1, a2, . . . , an},
where ai ∈ [0, 1]. Conjunctive operators are those that represent a consensus

between the items of information being combined. They generalize classical inter-

section, and agree with the source that offers the smallest measure while trying

to obtain simultaneous satisfaction of its criteria. We can say that conjunctive

operators present a severe behavior.

• An operator is said to be disjunctive if h(a1, a2, . . . , an) ≥ max{a1, a2, . . . , an}.
Disjunctive operators generalize classical union. They agree with the source that

offers the greatest measure, and express redundancy between criteria. We can say

that they present a permissive behavior.

• An operator is said to be a compromise operator if min{a1, a2, . . . , an} ≤
h(a1, a2, . . . , an) ≤ max{a1, a2, . . . , an}. Compromise operators are those that

produce an intermediate measure between items of information obtained from

several sources. They present cautious behavior.

Bloch45 presents a classification scheme that describes a fusion operator in more

refined terms not only as conjunctive, disjunctive, or compromise, but also according

to its behavior with respect to the information values being combined (input val-

ues): Context-Independent Constant-Behavior (CICB) operators that maintain the

same behavior independent of the input variables; Context-Independent Variable-

Behavior (CIVB) operators, whose behavior varies according to the input variables;

and Context-Dependent (CD) operators, whose behavior varies as in the previous

case, taking into account also the agreement between and the reliability of the

sources.

We describe a class of fusion operators that generalize CD operators, taking into

consideration different degrees of confidence in the sources, specific knowledge, and

spatial context while operating with conceptually distinct sources.



Segmentation of Masses in Mammograms 87

7. Considerations in the Fusion of the Results of Complementary

Segmentation Techniques

Figure 17 illustrates a schematic overlay of two segmentation results obtained by

two complementary techniques — region growing represented by a fuzzy set Sr, and

closed-contour detection represented by a fuzzy set Sc — for the same ROI. The

straight line within Sr indicates a possible artifact. The two results of segmentation

are not the same: different segmentation algorithms may produce different results

for the same ROI. A fusion operator designed to aggregate these entities should

produce a third entity that takes into consideration the inputs and is better than

either input on its own. To realize this, the fusion operator must be able to identify

regions of certainty and uncertainty during its execution.

Considering a pixel p being analyzed, let ΓSr
(p) be the membership degree of p,

such that Sr = ΓSr
: I → [0, 1], where I is the original image. Also, let ΓSc

(p) be

the membership degree of p, such that Sc = ΓSc
: I → [0, 1]. It is important to

note that ΓSc
(p) is zero when the pixel p is inside or outside of Sc, and that ΓSc

(p)

possesses a high value when p is on the contour represented by Sc. Similarly, ΓSr
(p)

is high when p belongs to the region with high certainty, or is low when p does

not belong to the region with high certainty; a value near 0.5 indicates a high level

of uncertainty of membership. With respect to the fusion operator, four situations

may be identified considering the position of p (see Fig. 18):

(1) p belongs to the intersection of Sr and Sc [i.e. ΓSr
(p) is high and ΓSc

(p) is

zero]. In this case the pixel p belongs to the final segmentation result with a

high membership degree. The sources agree with respect to the inclusion of the

pixel p in the final result. This is a case of certainty.

(2) p does not belong to Sr or belongs to Sr with a low membership degree, and is

inside Sc [i.e. ΓSr
(p) is low or zero and ΓSc

(p) is zero]. In this case the sources

disagree with respect to the inclusion of the pixel p in the final result. This is

a case of uncertainty.

S r

Sc

Fig. 17. Superimposition of the results of two complementary segmentation techniques. The
circular region Sr represents the result of region growing. The square box Sc represents the
result of contour detection. Reproduced with permission from D. Guliato, R. M. Rangayyan,
W. A. Carnielli, J. A. Zuffo, and J. E. L. Desautels, “Fuzzy fusion operators to combine results
of complementary medical image segmentation techniques”, Journal of Electronic Imaging, 12(3):
379–389, 2003. � SPIE and IS&T.
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S r
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Fig. 18. The four different situations treated by the fusion operator. Reproduced with permission
from D. Guliato, R. M. Rangayyan, W. A. Carnielli, J. A. Zuffo, and J. E. L. Desautels, “Fuzzy
fusion operators to combine results of complementary medical image segmentation techniques”,
Journal of Electronic Imaging, 12(3): 379–389, 2003. � SPIE and IS&T.

(3) p belongs to the contour line of Sc [i.e. ΓSc
(p) is high] and does not belong to Sr

[i.e. ΓSr
(p) is low or zero]. As in Item 2 above, this is an uncertainty situation.

However, although the inputs are different from those presented in Item 2, the

result of the fusion operator is expected to represent uncertainty.

(4) p belongs to Sr [i.e. ΓSr
(p) is high] and is outside of Sc [i.e. ΓSc

(p) is zero].

Here again we have an uncertainty case. Observe that although the inputs are

similar to those in Item 1 above [i.e. ΓSr
(p) is high and ΓSc

(p) is zero], the

result of the fusion operator is expected to be different.

We can conclude from the discussion above that a practically applicable fusion

operator should be composed of a number of basic fusion operators, and that the

spatial position of the pixel being analyzed is an important item of information

that should be used in determining the basic fusion operator to be applied to the

pixel. Based on these observations, we present a general fusion operator oriented by

a finite automaton, where the finite set of states of the automaton is determined by

the spatial position of the pixel being analyzed, and where the transition function

(to be defined in Sec. 8) depends on the strategy used to traverse the image.

An important question to be considered in fusion is the reliability of the sources

(original segmentation results). The result of the fusion operator depends on how

good the original segmentation results are. Whereas parameters are included in the

definitions of the operators to represent the reliability of the sources, it is assumed

that the parameters will be determined using other methods.

8. Fusion Operators Based on Finite Automata

We define now a general notion of fusion operators based on finite automata that

are inductively defined from a finite set of basic fusion operators. Formally, a fusion

operator oriented by a finite automaton that aggregates n sources may be defined

as an ordered pair 〈H, M〉, where38:

(1) H = {h1, h2, . . . , hk} is a finite set of basic fusion operators, where hi are

functions that map [0, 1]n → [0, 1], n ≥ 2.
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qi qj

b

a

Fig. 19. Graphical representation of the transition function given by δ(qi, a) = qj and
δ(qi, b) = qi. Reproduced with permission from D. Guliato, R. M. Rangayyan, W. A. Carnielli,
J. A. Zuffo, and J. E. L. Desautels, “Fuzzy fusion operators to combine results of complementary
medical image segmentation techniques”, Journal of Electronic Imaging, 12(3): 379–389, 2003.
� SPIE and IS&T.

(2) M = (Q,Σ, δ, q0, F ) is a finite automaton, where:

(a) Q is a finite set of states,

(b) Σ is a finite input alphabet,

(c) δ is a transition function that maps Q × Σ → Q, where × is the Cartesian

product operator,

(d) q0 ∈ Q is an initial state, and

(e) F ⊂ Q is the set of final states.

In our particular case, the alphabet Σ is given by a finite collection of labels

associated with the Cartesian product of finite partitions of the interval [0, 1]. For

example, suppose that, coming from different motivations, we are dividing [0, 1]

into two finite partitions P1 and P2, where P1 divides the values between “low”

and “high”, and P2 between “good” and “bad”. Our alphabet may be composed as

Σ = {0, 1, 2} representing, for example, the combinations (low, good), (low, bad),

and (high, good), respectively. Observe that we are not necessarily using the whole

set of possibilities.

The interpretation of the transition function δ of a finite automaton is the

following: δ(qi, a) = qj is a valid transition iff the automaton can go from the state

qi to qj through the input a. Sometimes, qi and qj could be the same. If there is a

transition from the state qi to qj through the input a, then there is a directed arc

from qi to qj with the label a in the graphical representation (transition diagram)

of the specific automaton; see Fig. 19.

9. Application of the Fusion Operator to Image Segmentation

We now present a specific application of the fusion operator to the problem of

image segmentation. The fusion operator is designed to combine the results obtained

from two segmentation techniques that explore complementary characteristics of the

image: in our case, one is based on region growing (described in Sec. 4.2), and the

other is based on closed-contour detection (described in Sec. 4.1).23–25 The result

of fusion obtained is a fuzzy set that represents the agreement or disagreement

between the input sources.35,36

Let Sr (based on region growing) and Sc (based on closed-contour detection)

represent the two segmented images to be combined, as shown in Fig. 17. The
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process starts with a seed pixel selected by the user. The seed pixel must belong

to the intersection Sr ∩ Sc. We suppose that Sr and Sc are each endowed with a

reliability measure (given by a number in the interval [0, 1]).

The fusion operator is given by OP = 〈H, M〉, where H = {h1, h2, . . . , h6} is a

collection of six basic fusion operators (that take into consideration the reliability

measures of the sources, as explained below), and M is a finite automaton that

governs the actions of the operator.

9.1. Description of the basic fusion operators

for image segmentation

In the following description of the basic fusion operators, the parameters Cr and Cc

range within the interval [0, 1] and denote the reliability measures of the sources

Sr and Sc, respectively. The parameters are used to indicate the influence that a

given source should have on the final result of the fusion operation: the higher the

value, the larger is the influence of the source. Methods need to be developed to

derive automatically suitable values for these parameters.

The result of each basic fusion operator should give us information about the

agreement among the sources being analyzed. The absence of conflict is represented

by a membership degree equal to 1 or 0, i.e. both the sources agree or do not agree

with respect to the membership of the given pixel in the ROI. Maximal conflict

is represented by membership degree equal to 0.5; in this case, the sources do not

agree with respect to the membership of the given pixel. Intermediate membership

degrees denote intermediate degrees of agreement.

Let pij be the jth pixel of the segmented image Si and ΓSi
(pij) be the mem-

bership degree of the pixel pij , where i ∈ {r, c}, j = 1, 2, . . . , m, and m is the total

number of pixels in the image Si. (Note that we are using only one index j to

represent the position of a pixel in an image.) Then, the basic fusion operators are

defined as follows:

(1) h1 = max{ΓSr
(prj) ∗ Cr, Cc, 0.5}

This is a disjunctive operator that associates with the pixels in Sr ∩ Sc new

membership degrees taking into account the source with the greater reliability

measure (see h1 in Fig. 20).

(2) if max(Cr, Cc) ≤ 0.5

then h2 = 0.5

else if (Cr ≤ 0.5)

then h2 = ΓSc
(pcj) ∗ Cc

else if (Cc < 0.5)

then h2 = ΓSr
(prj) ∗ Cr

else h2 = 1/(Cr + Cc) ∗ {ΓSr
(prj) ∗ Cr + ΓSc

(pcj) ∗ Cc}
This is a compromise operator that acts on the pixels belonging to the transition

region between the interior and the exterior of the result of contour detection

(see h2 in Fig. 20).
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Fig. 20. The regions where the six basic fusion operators are applied are indicated by
{h1, h2, h3, h4, h5, h6}. Reproduced with permission from D. Guliato, R. M. Rangayyan,
W. A. Carnielli, J. A. Zuffo, and J. E. L. Desautels, “Fuzzy fusion operators to combine results
of complementary medical image segmentation techniques”, Journal of Electronic Imaging, 12(3):
379–389, 2003. � SPIE and IS&T.

(3) if max(Cr, Cc) ≤ 0.5

then h3 = 0.5

else if (Cr ≤ 0.5)

then h3 = Cc

else if (Cc ≤ 0.5)

then h3 = ΓSr
(prj) ∗ Cr

else h3 = 1/(Cr + Cc) ∗ {ΓSr
(prj) ∗ Cr + Cc}

This is a compromise operator that acts on the pixels lying outside the result of

region growing and belonging to the interior of the result of contour detection

(see h3 in Fig. 20).

(4) if max(Cr, Cc) ≤ 0.5

then h4 = 0.5

else if (Cr ≤ 0.5)

then h4 = 0

else if (Cc ≤ 0.5)

then h4 = ΓSr
(prj) ∗ Cr

else h4 = 1/(Cr + Cc) ∗ {ΓSr
(prj) ∗ Cr + [1 − C0.5

c ]2}
This is a compromise operator that acts on the pixels lying outside the result of

contour detection and belonging to the interior of the result of region growing

(see h4 in Fig. 20). Artifacts within the region growing result (as indicated

schematically by the line segment inside the circle in Fig. 20) are rejected by

this operator.
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(5) h5 = max{ΓSr
(prj) ∗ Cr, ΓSc

(pcj) ∗ Cc, 0.5}
This is a disjunctive operator that acts on the transition pixels lying in the

intersection Sr ∩ Sc (see h5 in Fig. 20).

(6) if max(Cr, Cc) ≤ 0.5

then h6 = 0.0

else if (Cr ≤ 0.5)

then h6 = 0.0

else if (Cc ≤ 0.5)

then h6 = ΓSr
(prj) ∗ Cr

else h6 = min{ΓSr
(prj) ∗ Cr, [1 − Cc]}

This is a conjunctive operator that acts on the exterior of Sr ∪ Sc and deter-

mines a limiting or stopping condition for the operator (see h6 in Fig. 20).

9.2. Description of the finite automaton for fuzzy fusion

The finite automaton M = (Q,Σ, δ, q0, F ) in OP is defined by:

(1) Q = {a, b, c} is a set of finite states, where

(a) state a indicates that the pixel being analyzed belongs to the interior of the

contour,

(b) state b indicates that the pixel being analyzed belongs to the contour,

(c) state c indicates that the pixel being analyzed belongs to the exterior of

the contour; see Fig. 21.

S

S

r

c

a

b

c

Fig. 21. The three states of the automaton. Reproduced with permission from D. Guliato,
R. M. Rangayyan, W. A. Carnielli, J. A. Zuffo, and J. E. L. Desautels, “Fuzzy fusion opera-
tors to combine results of complementary medical image segmentation techniques”, Journal of
Electronic Imaging, 12(3): 379–389, 2003. � SPIE and IS&T.
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(2) Σ = {I1, I2, I3, I4} is a finite input alphabet.

Let π1 and π2 be two finite partitions of [0, 1], where π1 = π2 = {high, low}.
We can choose the classes high and low as follows:

low = [0, 0.5),

high = [0.5, 1.0];

pij is in the interval high if ΓSi
(pij) ≥ 0.5 for j = 1, 2, . . . , m, and

pij is in the interval low if ΓSi
(pij) < 0.5 for j = 1, 2, . . . , m,

where pij , i ∈ {r, c}, and j = 1, 2, . . . , m, identify the ith source and the jth

pixel; and ΓSi
(pij) is the membership degree of the pixel pj in Si.

The finite input alphabet Σ is produced by the function µ : π1×π2 → Σ, where:

• µ(high, low) = I1: the pixel being analyzed presents a high membership degree

in the region-growing segmentation result and a low membership degree in the

closed-contour detection result. This input, as discussed in Sec. 7, represents a

certainty or uncertainty situation depending on the spatial position of the pixel

being analyzed; see Fig. 22.

• µ(high, high) = I2: the pixel being analyzed presents a high membership degree

in the region-growing segmentation result and a high membership degree in the

closed-contour detection result. This indicates an intersection case; see Fig. 22.

• µ(low, high) = I3: the pixel being analyzed presents a low membership degree

in the region-growing segmentation result and a high membership degree in the

closed-contour detection result. This indicates an uncertainty case; see Fig. 22.

• µ(low, low) = I4: the pixel being analyzed presents a low membership degree

in the region-growing segmentation result and a low membership degree in the
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Fig. 22. The four possible input values {I1, I2, I3, I4} for the fusion operator. The short line seg-
ments with the labels I2 and I3 represent artifacts in the segmentation result. Reproduced with
permission from D. Guliato, R. M. Rangayyan, W. A. Carnielli, J. A. Zuffo, and J. E. L. Desautels,
“Fuzzy fusion operators to combine results of complementary medical image segmentation tech-
niques”, Journal of Electronic Imaging, 12(3): 379–389, 2003. � SPIE and IS&T.
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Fig. 23. Transition diagram that governs the actions of the fusion operator. Reproduced with
permission from D. Guliato, R. M. Rangayyan, W. A. Carnielli, J. A. Zuffo, and J. E. L. Desautels,
“Fuzzy fusion operators to combine results of complementary medical image segmentation tech-
niques”, Journal of Electronic Imaging, 12(3): 379–389, 2003. � SPIE and IS&T.

closed-contour detection result. This indicates an uncertainty case if the pixel

belongs to the interior of the contour; in the opposite case, this indicates a stop-

ping or limiting condition of the fusion operator; see Fig. 22.

(3) The transition diagram δ of M is shown in Fig. 23.

The transition diagram illustrates the situations when the basic fusion operator

is executed. The analysis begins with a pixel that belongs to the intersection

of the two segmentation results. The first input must be of type I1; the ini-

tial state of the automaton is a, which corresponds to the fact that the pixel

belongs to the interior of the contour. The analysis procedure is first applied

to all the pixels inside the contour. While the inputs are I1 or I4, the oper-

ators h1 or h3 will be applied and the automaton remains in state a. When

an input of type I2 or I3 arrives, the automaton goes to state b to inform

the analysis process that the pixel being processed is on the boundary given

by the contour detection method. At this stage, all the pixels on the contour

are processed. While the inputs are I2 or I3 and the operators h5 or h2 are

applied, the automaton will remain in state b. If, while in state b, the input

I1 or I4 occurs (and the operator h4 or h6 is applied), the automaton goes

to state c, indicating that the pixel being analyzed is outside the contour.

All the pixels outside the contour are processed at this stage. Observe that,

depending upon the state of the automaton, different fusion operators may be

applied to the same inputs. As indicated by the transition diagram in Fig. 23,

all of the pixels in the interior of the contour are processed first; all of the

pixels on the contour are processed next, followed by the pixels outside the

contour.

(4) q0 ∈ Q, with q0 = {a} as the initial state.

(5) F = {c} is the set of final states, where F ⊆ Q. In the present case, F has only

one element.
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Fig. 24. Illustration of the region and contour segmentation results to be aggregated: (a) Classical
region segmentation result. (b) Classical contour segmentation result.

9.3. Behavior of the basic fusion operators

The fusion operator oriented by finite automaton described here can combine sev-

eral results of segmentation, two at time. The result yielded by the fusion operator

is a fuzzy set that identifies the certainty and uncertainty present in and among

the inputs to the fusion process. It is expected that maximal certainty will be rep-

resented by a membership degree equal to 1 or 0 (i.e. the pixel being analyzed

certainly belongs to, or does not belong to, the final segmentation result). When

the individual segmentation results disagree with respect to a pixel belonging or

not belonging to the final result, or when both the sources do not present sufficient

reliability, the fusion operator yields a membership degree equal to 0.5 to represent

a situation with maximal uncertainty. Other situations are represented by member-

ship degrees ranging in the intervals (0, 0.5) and (0.5, 1) depending on the evidence

with respect to the membership of the analyzed pixel in the ROI and the reliability

of the sources.

We present below illustrative studies on the behavior of the basic fusion oper-

ators described in Sec. 9.1, taking into consideration a limited set of entries. We

consider both region and contour segmentation results represented by the clas-

sical Boolean set, i.e. the membership degree of the pixels inside of the region

or belonging to the contour segmentation result is 1, and 0 otherwise, as shown

in Fig. 24.

The starting condition of the fusion operator based on finite automaton is the

state a and the entry 1. The starting pixel must lie in the intersection of Sr and Sc

(see Figs. 20, 21, and 23). The basic fusion operator to start the procedure is h1 =

max{ΓSr
(prj) ∗Cr, Cc, 0.5}. Table 1 provides explanatory commentaries describing

the behavior of h1 for several values of the reliability parameters and inputs from

the two sources. Table 2 presents the behavior of the fuzzy fusion operator including

all of the basic operators h1, h2, h3, h4, h5, and h6, according to a given reliability.

Figure 25 illustrates the fuzzy fusion results after the application of the fuzzy fusion

operator to each situation presented in Table 2.
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Table 1. Behavior of the basic fusion operator h1. Reproduced with permission from D. Guliato,
R. M. Rangayyan, W. A. Carnielli, J. A. Zuffo, and J. E. L. Desautels, “Fuzzy fusion operators to
combine results of complementary medical image segmentation techniques”, Journal of Electronic
Imaging, 12(3): 379–389, 2003. � SPIE and IS&T.

Cr ΓSr
(prj) Cc ΓSc

(pcj) h1 Comments

1.0 1.0 1.0 0.0 1.0 p belongs to the ROI with maximal certainty

1.0 1.0 0.0 0.0 1.0 result depends on the source with the higher reliability

0.0 1.0 1.0 0.0 1.0 result depends on the source with the higher reliability

0.8 1.0 1.0 0.0 1.0 source Sc presents the higher reliability

0.8 1.0 0.8 0.0 0.8 result depends on the source with the higher reliability

0.2 1.0 0.8 0.0 0.8 result depends on the source with the higher reliability

Table 2. Behavior of the basic fusion operators.

Cr Cc h1 h2 h3 h4 h5 h6

1.0 1.0 1.0 0.5 0.5 0.5 1.0 0.0

1.0 0.0 1.0 0.0 0.0 1.0 1.0 0.0

0.0 1.0 1.0 1.0 1.0 0.0 1.0 0.0

0.8 1.0 1.0 0.56 0.56 0.44 1.0 0.0

0.8 0.8 0.8 0.5 0.5 0.5 0.8 0.0

0.2 0.8 0.8 0.8 0.8 0.0 0.8 0.0

10. Application of Fuzzy Fusion to the Segmentation

of Breast Masses

The result of fusion of the contour and the region obtained for the malignant

tumor shown in Fig. 2, given in Figs. 5 and 11, respectively, is provided in Fig. 26.

Figure 27 shows the result of fusion for the benign mass displayed in Fig. 6, with

the corresponding contour and fuzzy region shown in Figs. 8 and 12, respectively.

The results have been superimposed with the corresponding contours drawn by an

expert radiologist for comparison. Contours of tumors were drawn by the radiologist

on digital images, independent of the present study, with no additional information

made available.7

Figure 28 shows a 700×700-pixel portion of another mammogram with a spicu-

lated malignant tumor. Figures 29 and 30 show the detected contour and the fuzzy

region that preserves the transition information around the boundary, respectively.

Figure 31 shows the result of fusion of the ROIs represented in Figs. 29 and 30.

It should be observed that the fusion results reduce the uncertainty present in

the interior of the regions, and also reduce the certainty of the boundaries. The

features of the results of the individual segmentation procedures have contributed

to the fusion results, allowing the postponement of a crisp decision (if necessary)

on the ROI or its boundary to a higher level of the image analysis system.
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Fig. 25. Illustration of the effects of applying the fuzzy fusion operator, according to Table 2, to
the schematic results of segmentation represented in Fig. 24: (a) Cr = 1.0, Cc = 1.0 ; (b) Cr = 1.0,
Cc = 0.0; (c) Cr = 0.0, Cc = 1.0; (d) Cr = 0.8, Cc = 1.0; (e) Cr = 0.8, Cc = 0.8; (f) Cr = 0.2,
Cc = 0.8.

11. Evaluation of the Results of Segmentation and Fusion

Using a Measure of Fuzzyness

In order to evaluate the results of the fusion operator, we compare the degree of

agreement between the reference contour given by an expert radiologist and each

segmentation result: contour segmentation, region-growing segmentation, and the

result of their fusion. We aggregate the reference contour and a segmentation result

using the fusion operator concept presented in Sec. 9. (When the result of contour

detection was combined with the contour drawn by the radiologist, the former

was converted into a region, because the fusion method is designed to accept a

contour and a region as the inputs.) As discussed earlier, the fusion operator yields

a fuzzy set which represents the certainty and uncertainty identified during the

aggregation procedure. The maximal certainty occurs when Γ(p) = 0 or Γ(p) = 1,

where Γ is the membership degree of the pixel p. The maximal uncertainty occurs

when Γ(p) = 0.5. In the former case, the information sources agree completely

with respect to the pixel p; in the latter, the information sources present maximal

conflict with respect to the pixel p. Intermediate values of the membership degree

represent intermediate degrees of agreement among the information sources. Thus,

if we quantify the uncertainty presented by the fusion result, we can evaluate the
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Fig. 26. Result of the fusion operator applied to the segmented regions in Figs. 5 and 11 related
to the malignant tumor shown in Fig. 2, with Cr = 1.0, Cc = 1.0. The contour drawn by
the radiologist is superimposed for comparison. Reproduced with permission from D. Guliato,
R. M. Rangayyan, W. A. Carnielli, J. A. Zuffo, and J. E. L. Desautels, “Fuzzy fusion operators to
combine results of complementary medical image segmentation techniques”, Journal of Electronic
Imaging, 12(3): 379–389, 2003. � SPIE and IS&T.

degree of agreement among two different information sources. In order to quantify

the uncertainty, we present a measure of fuzzyness.

11.1. Measure of fuzzyness

In general, a measure of fuzzyness is a function

f : F(X) → R+, (1)

where F(X) denotes the set of all fuzzy subsets of X . For each fuzzy set A of X ,

this function assigns a nonnegative real number f(A) that characterizes the degree

of fuzzyness of A. The function f must satisfy the following three requirements:

• f(A) = 0 iff A is a crisp set;

• f(A) assumes its maximal value iff A is maximally fuzzy, i.e. all of the elements

of A are equal to 0.5; and

• if set A is undoubtedly sharper (i.e. has more certainty) than set B, then

f(A) ≤ f(B).

There are different ways of measuring fuzzyness that satisfy all of the three

essential requirements.38 We have chosen to measure fuzzyness in terms of the
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Fig. 27. Result of the fusion operator applied to the segmented regions in Figs. 8 and 12, for the
benign mass shown in Fig. 6, with Cr = 1.0, Cc = 1.0. The contour drawn by the radiologist is
superimposed for comparison. Reproduced with permission from D. Guliato, R. M. Rangayyan,
W. A. Carnielli, J. A. Zuffo, and J. E. L. Desautels, “Fuzzy fusion operators to combine results
of complementary medical image segmentation techniques”, Journal of Electronic Imaging, 12(3):
379–389, 2003. � SPIE and IS&T.

distinctions between a set and its complement. Indeed, it is the lack of distinction

between a set and its complement that distinguishes a fuzzy set from a crisp set. The

implementation of this concept depends on the definition of the fuzzy complement.

We will employ the standard complement, where Ā(x) = 1 − A(x), for all x ∈ X .

Choosing the Hamming distance, the local distinction between a given set A and

its complement is measured by

|A(x) − {1 − A(x)}| = |2A(x) − 1|, (2)

and the lack of local distinction is given by

1 − |2A(x) − 1|. (3)

The measure of fuzzyness, f(A), is then obtained by adding the local measurements:

f(A) =
∑

x∈X

{1 − |2A(x) − 1|}. (4)

The range of the function f is [0, |X |]: f(A) = 0 iff A is a crisp set; f(A) = |X |
when A(x) = 0.5 for all x ∈ X .
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Fig. 28. Original version of a 700 × 700-pixel portion of a mammogram with a spiculated malig-
nant tumor. Pixel size = 62.5 µm. Reproduced with permission from D. Guliato, R. M. Rangayyan,
W. A. Carnielli, J. A. Zuffo, and J. E. L. Desautels, “Fuzzy fusion operators to combine results
of complementary medical image segmentation techniques”, Journal of Electronic Imaging, 12(3):
379–389, 2003. � SPIE and IS&T.

11.2. Evaluation of the results of segmentation using

the measure of fuzzyness

In order to compare the result obtained by a method for segmentation with the

corresponding contour of the mass drawn by the radiologist, we aggregated the

result of segmentation with the reference contour using the fuzzy fusion method

described above. The result of fusion was evaluated by a normalized measure of

fuzzyness computed as

f̄(A) =

∑
x∈X{1 − |2 A(x) − 1|}

|X | , (5)

where A is a fuzzy set representing the result of aggregation, X is the set of pixels

representing the entire image frame, and A(x) is the degree of membership of the

pixel x in X . The denominator in the expression above normalizes the measure

with respect to the area of the result of fusion, resulting in a value in the range

[0, 1], with zero representing perfect agreement and unity indicating no intersection

between the two inputs.

Results of contour extraction by classical region growing with fuzzy-

set preprocessed images: The agreement between the results of segmentation

and the contours drawn by the radiologist was measured objectively by computing
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Fig. 29. The white line shows the contour extracted by the closed-contour detection method for
the mammogram in Fig. 28. The black line represents the boundary drawn by a radiologist (shown
for comparison). Reproduced with permission from D. Guliato, R. M. Rangayyan, W. A. Carnielli,
J. A. Zuffo, and J. E. L. Desautels, “Fuzzy fusion operators to combine results of complementary
medical image segmentation techniques”, Journal of Electronic Imaging, 12(3): 379–389, 2003.
� SPIE and IS&T.

the measure of fuzzyness as in Eq. 5. The values obtained for the 47 mammograms

tested were in the range (0.13, 0.85), with the mean and standard deviation being

0.42 and 0.17, respectively. The measure of fuzzyness was less than 0.5 for 34 out

of the 47 cases. In most cases where the measure of fuzzyness was greater than 0.5,

the segmented region was smaller than, but contained within, the region indicated

by the contour drawn by the radiologist.

Regardless of the agreement in terms of the measure of fuzzyness, it is important

to note that, for a spiculated lesion, there is no definite number of spicules that

would characterize the lesion as malignant. The segmentation and fusion methods

captured the majority of the spicules in the cases analyzed, providing sufficient

information for diagnosis, according to the analysis of the results performed by an

expert radiologist; see Sec. 5.1 for the results of pattern classification of masses.

Results of fuzzy region growing: The fuzzy regions obtained for the 47 mam-

mograms tested were compared objectively with the corresponding contours drawn

by the radiologist, by computing the measure of fuzzyness as in Eq. 5. The values

were distributed over the range (0.098, 0.82), with the mean and standard devia-

tion being 0.46 and 0.19, respectively. The measure of fuzzyness was smaller than

0.5 in 27 of the 47 cases analyzed. Regardless of this measure of agreement, it was
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Fig. 30. Result of fuzzy region growing for the tumor displayed in Fig. 28. The contour drawn
by the radiologist is superimposed for comparison. Reproduced with permission from D. Guliato,
R. M. Rangayyan, W. A. Carnielli, J. A. Zuffo, and J. E. L. Desautels, “Fuzzy fusion operators to
combine results of complementary medical image segmentation techniques”, Journal of Electronic
Imaging, 12(3): 379–389, 2003. � SPIE and IS&T.

found that the fuzzy regions segmented contained adequate information to facili-

tate discrimination between benign masses and malignant tumors, as described in

Sec. 5.2.

11.3. Evaluation of the results of fuzzy fusion using

the measure of fuzzyness

In order to realize an objective evaluation of the results of fusion, we used the

contour drawn by an expert radiologist as the reference. For each mammogram,

the reference contour drawn by the expert radiologist was combined, using the

fusion operator, with each of the results obtained by contour detection, fuzzy region

growing, and the fusion methods, denoted by RSc, RSr, and RFr, respectively. We

applied the fusion operator with the reliability measures both equal to unity (i.e.

Cr = Cc = 1.0) for the two information sources being combined in each case.

When the result of contour detection was combined with the contour drawn by the

radiologist, the former was converted into a region (because the fusion method is

designed to accept a contour and a region as the inputs).

Considering the results shown in Figs. 29, 30, and 31, the measures of fuzzyness

obtained were f(RSc) = 14,774.00, f(RSr) = 14,245.85, and f(RFr) = 9,710.82,

respectively, using Eq. 4. The aggregation or fusion of the two segmentation results
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Fig. 31. Result of the fusion operator applied to the segmented regions in Figs. 29 and 30, with
Cr = 1.0, Cc = 0.9. The original image of the tumor is displayed in Fig. 28. The contour drawn
by the radiologist is superimposed for comparison. Reproduced with permission from D. Guliato,
R. M. Rangayyan, W. A. Carnielli, J. A. Zuffo, and J. E. L. Desautels, “Fuzzy fusion operators to
combine results of complementary medical image segmentation techniques”, Journal of Electronic
Imaging, 12(3): 379–389, 2003. � SPIE and IS&T.

presents less uncertainty than either, yielding a better result as expected. The

corresponding measures for the results in Figs. 8, 12, and 27 are f(RSc) = 8,096.00,

f(RSr) = 9,223.73, and f(RFr) = 7,905.44, respectively. A smaller value of f(RFr)

for the result of fusion than the same measure for the results of contour and region

segmentation [shown as f(RSc) and f(RSr), respectively, in Table 3] indicates that

the fusion result is better than the other two.

The methods were tested with 14 mammographic images of biopsy-proven cases;

see Table 3. The values of Cc and Cr used to obtain the results of fusion for the

14 mammograms are also listed in the table. Note, however, that Cc and Cr were

maintained equal to unity when computing the measure of fuzzyness with respect

to the contour drawn by the radiologist for all the cases. In 11 cases, the fusion

operator yielded improvement over the original results. There was no improvement

by fusion in three of the cases: in one of these cases, both segmentation results

were not accurate, and in the other two, the fuzzy region segmentation was much

better than the result of contour segmentation (based upon visual comparison with

the reference contour drawn by the radiologist). The results obtained provide good

evidence that the fusion operator obtains regions with a higher degree of certainty

than the results of the individual segmentation methods. Evaluation of the effect
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Table 3. Measures of fuzzyness for the results of segmentation and fusion for
14 mammograms. Reproduced with permission from D. Guliato, R. M. Rangayyan,
W. A. Carnielli, J. A. Zuffo, and J. E. L. Desautels, “Fuzzy fusion operators to com-
bine results of complementary medical image segmentation techniques”, Journal of
Electronic Imaging, 12(3): 379–389, 2003. � SPIE and IS&T.

Mammogram Cr , Cc used to f(RSc) f(RSr) f(RFr) Fusion result
get fusion result is better

spic-s-1 1.0, 0.9 14,774.00 14,245.85 9,710.82 yes

circ-fb-010 1.0, 1.0 8,096.00 9,223.73 7,905.44 yes

spx111m 1.0, 1.0 5,130.00 9,204.63 4,680.67 yes

spic-fh0 1.0, 0.6 28,938.00 23,489.54 21,612.45 yes

circ-x-1 1.0, 0.8 6,877.00 2,990.71 3,862.76 no

spic-fh2 0.8, 1.0 45,581.89 38,634.00 34,969.52 yes

circ-fb-005 1.0, 1.0 26,176.00 34,296.26 25,084.75 yes

circ-fb-012 1.0, 0.9 16,170.00 15,477.88 12,693.21 yes

spic-db-145 1.0, 0.9 8,306.00 7,938.23 7,658.20 yes

circ-fb-025 1.0, 0.6 56,060.00 44,277.83 49,093.39 no

spic-fb-195 1.0, 1.0 11,423.00 12,511.86 10,458.00 yes

spic-s-112 1.0, 0.6 31,413.00 17,784.31 12,838.99 yes

spic-s-401 1.0, 0.6 13,225.00 11,117.99 11,195.90 no

circ-fb-069 1.0, 1.0 46,835.00 53,321.57 38,832.50 yes

of the fusion operator on the accuracy of the classification of the tumors as benign

or malignant will be performed in our future projects.

12. Discussion and Conclusion

We have described a method for the extraction of the boundaries of breast masses in

mammograms using a fuzzy-set-based preprocessing step to enhance the mass ROI

and a region growing procedure. Contours provided by the method have demon-

strated good agreement with reference contours drawn by a radiologist. Previous

attempts to apply region growing methods directly to mammographic images of

masses had failed; the success of the approach presented here lies in preprocessing

the images using fuzzy set theory to obtain the membership degrees of the pixels

in a mass ROI.

A survey of the current medical image processing literature indicates growing

interest in interactive user-guided segmentation methods. The methods presented

in this chapter are being used in an interactive procedure for the segmentation of

medical images. We are working on the development of procedures to determine the

seed region and optimal values for the parameters used in the methods (β, the

threshold for contour detection, ∆µmax, and ∆CVmax). An automatic method that

has been recently proposed to detect breast masses and tumors10 may be used

to provide seed regions and statistical parameters for the segmentation methods

described in the present work. We intend to extend the definition of the mass



Segmentation of Masses in Mammograms 105

feature vector used in the fuzzy-set-based preprocessing step to include the use of

more properties of the mass ROI, such as local gradient, texture, and variance.

The fuzzy region growing algorithm works with greater stability than others

using the same approach owing to the fact that the region growing procedure checks

all pixels within a given distance from the seed for inclusion in the region before

enlarging the scope of search for further region growing. The algorithm uses the new

acceptance concept of accepted with restriction, which avoids undesirable fluctua-

tions in the statistics of the region being grown. The fuzzy segmentation techniques

represent the ROI by fuzzy sets instead of crisp sets as in classical segmentation.

The results of the fuzzy approach agree well with visual perception, especially at

transitions around the boundaries of the ROIs. The fusion approach allows the post-

ponement of the decision regarding a crisp boundary of an ROI to a higher level of

image analysis; the approach may even obviate the need to obtain a crisp boundary

if discriminant features can be derived from the fuzzy regions, as demonstrated in

this work.

We have demonstrated the application of fuzzy segmentation to the problem of

identification of breast masses in mammograms. The fuzzy nature of the transition

of a malignant tumor from its core region to the surrounding tissues is preserved

by the membership values in the fuzzy region. Parameters computed from the seg-

mented regions have shown potential use in classification of the regions as benign

or malignant, with a sensitivity of 0.8 and a specificity of 0.9. We are exploring the

potential use of shape factors of mass contours as well as measures of edge sharpness

and texture7–10,43 to improve the accuracy of classification. Further work on the

optimization of the procedures and the classification of a larger database of masses

is in progress.

We have also introduced the concept of a fuzzy fusion operator oriented by a

finite automaton that is designed to combine different sources of information using

a set of basic fusion operators. We have applied a particular operator — based

on six basic operators guided by a specific finite automaton — to the problem of

mammographic image segmentation for the detection of breast tumors, in order to

improve the results obtained a priori by two different image segmentation tech-

niques. The same operator has been used to derive a degree of agreement of each

result with a reference contour given independently by an expert radiologist. The

results obtained present good evidence that the fusion operator can provide regions

with a higher degree of certainty than the results of the individual segmentation

methods. Procedures need to be developed to determine appropriate values of the

reliability measures (Cc and Cr in the present work) for each method; one possi-

ble approach to determine their values would be to use measures of accuracy of the

sources of information being fused (in the present study, the methods that provided

the contour and the region).

We would like to emphasize that the fusion operator described is an abstract

notion that generalizes the concept of most of the fusion operators presented in

the literature. It should be possible to extend the method to the fusion of multiple
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contours and regions. The measure of fuzzyness may also be applied to compare the

results of segmentation with a “gold standard” reference contour or region provided

by a radiologist. The methods should be applicable to the segmentation of ROIs in

several types of medical images.
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ROC analyses are common in medical decision making because they produce a visual
index and because of the ease with which they can be applied to machine learning and
data mining. In the last two decades ROC curves have been used excessively to explore
the relationship between the sensitivity and the specificity of a variety of diagnostic
systems. This paper presents techniques for ROC analysis of a diagnostic system and
discusses ways of improving the accuracy of ultrasound image diagnoses through a com-
bination of computer-generated features, a patient’s age, and a radiologist’s diagnosis.
The application of an ROC to the specific case of identifying breast cancer lesions is
shown to significantly decrease false positive while maintaining a high degree of true
positive diagnoses.

Keywords: ROC; breast cancer diagnosis.

1. Introduction

Receiver Operating Characteristics (ROC) curve is a statistical method that eval-

uates the accuracy of a dichotomous classification scheme. The ROC curve shows

the tradeoff between the detection probability and the false-alarm probability of a

detection system, or in medical terms, the tradeoff between the true-positive and

false-positive of a diagnosis system. One objective of an ROC analysis is to identify

a classification scheme which will maximize classification accuracy, i.e. achieve an

acceptable tradeoff between positive hits and false alarms.1,2 A second objective of

an ROC analysis is as a means of comparison between classifiers. The efficacy of a

classifier can be measured by the area under the ROC curve. Generally speaking,

111
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a classifier is better when its ROC curve is more to the top left, showing more true

positive and less false positive rates.

Performance analysis based on ROC curves has been used in many classifica-

tion studies.3–5 In this paper we demonstrate the usage of ROC analysis for the

evaluation of a breast cancer diagnosis system. ROC analysis was used to quantify

the discriminatory properties of eighteen different features and their combinations.

The ROC summary index, Az, and its confidence interval, (β − α), were estimated

based on the approach developed in Gefen et al.6

Mammography is currently the preferred way to screen for breast cancer. But

this method is not perfect, as benign lesions are still found in a high proportion

of women with positive mammographic tests. Ultrasonic imaging is another tech-

nique which is widely used as a diagnostic modality because of its non-ionizing and

non-invasive nature combined with its low cost. But a radiological visual inspection

of an ultrasound imaging of the breast on its own is of limited diagnostic value.7

A definitive diagnosis can be achieved through biopsy, but such a procedure is an

expensive and highly traumatic procedure for the patient. Thus, improving screen-

ing methods is an imperative.

In this chapter we present a case study that demonstrates an ROC analysis that

was used to improve the accuracy of ultrasound diagnoses through a combination

of computer-generated features, patient age, and diagnosis by a radiologist. The

desired goal was to achieve a reduction in the number of biopsies that result in a

benign diagnosis. Decreasing the degree of false positive diagnoses while maintaining

a high degree of true positive fraction can prevent unnecessary biopsies.

The case study presented here first examines the individual performance of

each feature, in which the characteristics of each feature are reviewed and the

efficacy of each feature is evaluated. Second, the features are fused using linear

and quadratic discriminant functions in order to improve the overall classifica-

tion performance. Performance evaluation results show that feature fusion leads to

improved performance over any single feature. The performance of this combined

set of features is then shown to be significantly better than a radiologist’s pre-biopsy

decision.

2. ROC Methodology

2.1. Classification systems

Classification is a common operation whenever a decision needs to be made auto-

matically. In a classification system a set of features that embodies information

regarding the state or category of a certain pattern is analyzed, where a pattern

refers to any type of data that can be measured about the object being investigated.

Classification is applied in many types of applications that involve pattern recogni-

tion. For example, voice recognition analyzes the audio signal and identifies spoken

words. Another example is in the manufacturing industry where a classifier decides
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if a component in an assembly line has a defect and should be removed or not. And

in medical diagnostic systems, classification deals with a decision regarding the

presence or the absence of a disease or whether, for instance, a lesion is malignant

or benign. This study focuses on a binary classifier that uses a set of features that

are derived from a given pattern; a binary classifier makes a True or False decision.

In general, several stages take place when designing a supervised classifier. These

steps consist of features generation, features selection, classifier design, and classifier

evaluation.

The first step is to define what type of features should be extracted from a given

pattern. A vector of these features: x = [x1, x2, . . . , xl] is then derived from each

given sample of the pattern. Useful features are those that best characterize the

class that a sample pattern best represents. Good feature vectors, when applied

to pattern samples, will generate points in the feature space that will be spatially

separable into the different classes. On a practical level, it is also desirable that

these features be efficiently computable, especially in applications where real-time

performance is required.

However, there are often too many available features, and so it is necessary to

select a subset of features. Working with a limited number of features is desirable

not only because of computation time constraints but, most importantly, in order

to assure classifier generality. A minimum ratio between the training dataset size

and the number of features should be maintained in order to prevent an over-fitting

of the classifier parameters to the specific training dataset. (Usually a ratio of 10–20

is recommended.) Since increasing the training set is often not possible, keeping a

relative low number of features is essential. Moreover, it can be shown statistically

that based on random noise alone, a large number of even unrelated parameters

will result in a good classification.

Nevertheless, although two features may result in a good discrimination when

considered separately, sometimes there will not be a significant improvement when

considered together. This may be because the two features are correlated and there-

fore add little new additional information when combined. In statistical terms this is

called multi-colinearity. Statistical methods to reduce the number of features, while

retaining as much as possible of their combined class discriminatory information,

are discussed by Theodoridis and Koutroumbas.8

Next, the classifier is designed with respect to some optimality criterion. With a

supervised classifier, the classifier parameters are computed based on a training set

of patterns in which the true class membership is known. In general, this feature

space is divided into class regions that are separated by hyperplanes (in the linear

case) or surfaces (in the nonlinear case). A classifier receives as input a vector

of object features. Based on its location in the feature space, the object is then

classified. When only two classes are involved, the classifier maps (fuses) a vector

of features into one scalar value. This scalar is then compared against a threshold.

If it is above the threshold, the associated pattern is classified as belonging to a

certain class. Otherwise, the pattern is classified as the other class.
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Figure 1 shows the general stages involved in classifier design and evaluation.

The feature vectors XTraining
[Nxl] are computed for the given training sample set

ITraining
i=1,...,N , where N is the size of training set and l is the number of features.

Next, the classifier parameters, C(XTraining
[Nxl] ), are estimated. In the testing phase a

testing sample set, ITesting
i=1,...,M , is used to compute a new feature vector, that in turn

is fed into the classifier. The classifier then makes a classification, i.e. a decision

regarding the class membership of each testing sample. Commonly-used perfor-

mance measures can now be computed, as described in the below, for a diagnostic

system.

Each time a decision is made by the classifier there are four possible outcomes:

(i) There is a disease and the system classifies the pattern as positive — True

Positive (TP).

(ii) There is a disease and the system classifies the pattern as negative — False

Negative (FN).

(iii) There is no disease and the system classifies the pattern as negative — True

Negative (TN).

(iv) There is no disease and the system classifies the pattern as positive — False

Positive (FP).

These outcomes can be represented in a contingency table as shown in Fig. 2.

Decision

(Yes/No)

Training

[Nxl ]X
Training

i =I , . . . ,N1

Testing

[Nxl ]X

)( [Nxl ]
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][
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Fig. 1. Classifier design (the training phase) and classifier evaluation (the testing phase).
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Fig. 2. Contingency table.
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Two commonly-used metrics, derived from the contingency table, are the sensi-

tivity and the specificity of a classification system. The system sensitivity, defined

as the true positive rate (detection probability), is:

PTP =
TP

TP + FN
≡ TP

P
.

The system specificity is the true negative rate

PTN =
TN

FP + TN
≡ TN

N

or 1 − PFP , where PFP is the false positive rate (false-alarm probability)

PFP =
FP

FP + TN
≡ FP

N
.

A classification system must balance between its detection rate and its false-

alarm rate. In some procedures achieving the highest possible detection rate is

desirable, even if this high detection rate comes at the expense of a high false-alarm.

In these cases, treating a patient for a falsely detected disease may be tolerated. In

other procedures, the risk and cost involved in treatment call for a system with a

low false-alarm rate, sometimes even at the expense of a lower detection rate.

Other metrics, such as the precision

TP

TP + FP
,

and the accuracy

TP + TN

P + N
,

are also used in the literature to evaluate the performance of a diagnostic system.

2.2. ROC estimation

The ROC shows the detection rate, PTP , as a function of the false-alarm rate PFP .

Figure 3 shows the ROC curves of different classifiers — α0, α1, α2, and α3. Each

point on the ROC curve represents a different classifier detection threshold. In one

extreme case where PTP = PFP = 0, the classifier detection threshold is so high

that it always makes a “negative” decision. In this case, if there is a disease, it

will not be detected. Nonetheless, no false alarms will be made either. In the other

extreme case where PTP = PFP = 1, the threshold is so low that a positive decision

will always be made. Here, if there is a disease it will always be detected, but even

if there is no disease the alarm will be raised. Obviously, both extremes are not

good. A good classifier should have a detection rate close to one, PTP ⇒ 1, and a

false alarm close to zero, PFP ⇒ 0. In practice, however, there is always a tradeoff

between PTP and PFP . Based on the specific application requirements, the tradeoff

point on the ROC curve between these two parameters can be chosen to set the

threshold accordingly.
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PTP

α3

α2A3

α1

A2 α0

A1

A0

PFP

Fig. 3. Receiver Operating Characteristic (ROC) depicting the detection rate, PTP , as a function
of the false-alarm PF P .

Another important service an ROC curve provides is a means to statistically

compare classifiers. The area under the ROC curve, Az, is commonly used as a

summary index; the closer this area is to one, the better the classifier is. A classifier

with an Az = 0.5 is as good as a random guess. Note, however, that it is possible

for a classifier to have a smaller Az than another classifier and still have a lower

PFP for the same PTP .

In this study an empirical ROC curve and an Az were generated as follows.

The empirical ROC was evaluated by: (1) pooling the feature data of malignant

and benign cases, (2) sorting the feature data in ascending order, and (3) varying

a threshold while classifying the data that are above the threshold as positive and

data that are below the threshold as negative. Thus, for each threshold the True

Positive Fraction (TPF) and the False Positive Fraction (FPF) define a point on the

ROC curve. Once the ROC curve was given, the area underneath it was computed

to estimate Az.
3

3. Imaging Methods

The challenges that engineers face in the research and development of medical imag-

ing system are manifold. One of these challenges is to devise an imaging modality

that will detect tumors and determine whether they are malignant or benign accu-

rately at its early stages. In addition, it is also beneficial if these modalities are

non-invasive and not painful. Especially in the case of breast cancer, the comfort

and safety of patients during breast imaging and biopsy is imperative in order not

to discourage participation in periodic screening and diagnosing.

Various imaging methods have been developed and proven useful for breast

cancer detection. These methods include X-ray mammography, ultrasound imaging
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(UI), magnetic resonance imaging (MRI), T-Scan, and nuclear medicine imaging

(NMI). While X-ray mammography is the only modality that is approved for breast

cancer screening by the U.S. Food and Drug Administration (FDA), UI, MRI,

T-Scan, and NMI are recognized as complementary procedures to mammography

in the diagnosis of breast cancer. Other imaging methods such as computerized

thermal imaging are currently undergoing clinical testing to prove their efficacy as

adjacent tools to mammography.

3.1. Mammography

X-rays, discovered by Wilhelm Konrad Roentgen in 1895, for which he won the

first Nobel Prize for physics in 1901, have been in medical use since 1896.9 By

the 1970s the first mammography imaging systems that utilized X-rays to image

breast tissues were manufactured. These systems have been vastly improved in the

last decade, with the ratio between image quality and radiation dose reduced to a

negligible risk level, considering the benefits of early breast cancer detection.

Replacing the film cassette with a digital receptor in the mammography system

without reducing the image quality opened up many new options. Having the image

displayed almost immediately on a computer screen significantly shortens exami-

nation time, allows for real-time stereotactic biopsy, enables remote and prompt

consultation with other physicians, and brings about the benefits of digital infor-

mation such as the ability to electronically manipulate images to enhance, magnify,

archive and retrieve them.

While digital mammography at this stage cannot match the spatial resolution of

standard mammography, which is crucial for the detection of small abnormalities,

its better contrast emphasizes abnormalities. To date, studies that compared digi-

tal mammography to standard film mammography showed no significant statistical

difference between the two modalities. For example, Bick et al.10 compared the per-

formance of a full-field digital mammography system (GE Senographe 2000D) with

standard mammography and found that all abnormalities, including both masses

and microcalcifications (often associated with early-stages of breast cancer) visible

on standard film mammograms, were at least equally well visible with digital mam-

mograms. However, to fully estimate the impact of digital mammography on breast

cancer diagnosis, more cases from both technologies need to be compared.11

3.2. MRI

Breast magnetic resonance imaging (MRI) is a promising complementary method

to mammography screening. MRI is effective in imaging dense breast tissue, in

evaluating the extent of breast cancer, in staging and treating breast cancer, and in

disease tracking after treatment. MRI uses powerful magnetic fields and radio waves

to create images, such as of the breast. The main component of most MRI systems

is a large cylindrical magnet. During the examination, a radio signal is turned on

and off, and, subsequently, some of the energy is absorbed by different molecules
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in the body, and some is echoed from the body. These echoes are continuously

measured by the MRI scanner. A digital computer reconstructs these echoes into

images.

One of the benefits of MRI is that it can easily acquire direct views of the breast

in almost any orientation. In contrast, mammography requires re-orientation of the

breast and of the mammography system for each view. In an MRI, a contrast

material is usually injected into a vein in the arm before the examination in order

to improve the quality of the images by providing a contrast medium.

Although MRI could be a significant supplementary tool to mammography in

the diagnosis of breast cancer, there are still hurdles an MRI must overcome before it

gains wider acceptance. While mammography can image calcifications, MRI cannot

image these tiny calcium deposits. Also, MRI cannot always distinguish between

cancerous and non-cancerous abnormalities, which may result in unnecessary breast

biopsies. MRI screening is also more expensive, costing about ten times as much as

mammogram screening, and more time consuming, taking three times as much time

as it takes a mammogram. On the other hand, there are abnormalities that can be

found with an MRI but that may not be visible with mammography or ultrasound,

especially in the dense tissues of the breast, making an MRI guided biopsy system

necessary. Currently, breast screening with an MRI is performed mostly at research

centers and to augment the capabilities of standard mammography and breast

ultrasound.

3.3. Ultrasound imaging

Breast ultrasound uses high-frequency waves to image the breast. High-frequency

waves are transmitted from a transducer through the breast. The sound waves echo

off the breast; this echo is picked up by the transducer and then translated by

a computer into an image that is displayed on a computer monitor. The ultra-

sound unit contains a control panel, a display screen, and a transducer (resembling

a microphone or computer mouse). Before the examination begins the patient is

instructed to lie on a special table. The ultrasound technologist covers the part of

the breast that will be imaged with a gel. The gel lubricates the skin and helps the

transmission and reception of the sound waves.

When the examination begins, the radiologist glides the transducer over the

breast. The transducer emits sound waves and picks up the echoes. The computer

then analyzes these echoes and displays an image. The shape and intensity of the

echoes depend on the density of the breast tissue. If a fluid-filled cyst is imaged,

most of the sound waves will pass through the cyst and emit faint echoes. However,

if a solid tumor is imaged, the sound waves will bounce off the tumor and the pattern

of echoes will be translated by the computer into an image that the radiologist will

recognize as indicating a solid mass. An ultrasound exam usually lasts between

20 and 30 minutes, but may take longer if the operator has difficultly finding the

breast abnormalities being examined.
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The advantage of ultrasound is in its high contrast image. But this comes at

the cost of poor spatial resolution. Because of this, ultrasound imaging is used

mostly as a supplement to mammography. Once a suspected lesion has been found

with screening mammography, ultrasound is a useful tool, for instance to further

explore if it is a cyst or a mass. Ultrasound is a non-expensive and non-invasive

method that allows for a maximum degree of freedom of viewing orientation. This

makes it a very efficient tool for imaging when a specific region is investigated or

when guided biopsy is necessary. However, the disadvantage of ultrasound is that

it is a subjective imaging method in which the quality of analysis depends on the

sonographer’s experience.

For example, Fig. 4 shows saggital (a) and horizontal (b) views of a Fibroade-

noma (benign tumor) and saggital (c) and horizontal (d) views of an Invasive Ductal

Carcinoma. Prior to biopsy, the first lesion was judged to be malignant while the

second lesion was indeterminable.

4. Diagnosis of Breast Cancer

Considerable research has been devoted to examining the use of ultrasound for the

diagnosis of breast lesions. In addition to the use of radiological interpretation,

a number of research groups have been reporting advances on the development

in automatic classifiers. A research group from the Department of Surgery at the

China Medical College and Hospital in Taichung, Taiwan, and from the Department

of Computer Science and Information Engineering at the National Chung Cheng

University is conducting research on systems that diagnose based on correlation,

texture, and morphological features derived from manually segmented ultrasono-

graphic images.12−15 Chen et al.12 used digital ultrasonography to differentiate

between benign and malignant solid breast nodules. An autocorrelation feature

vector was extracted from an ROI that was located by a physician. The classifier in

use in that study was a Learning Vector Quantization (LVQ) neural network. The

evaluation method used was the k-fold holdout method. Results from 52 malignant

and 88 benign cases produced an Az of 0.9560 with a standard deviation of 0.0183

for k = 10.

Horsch et al.16,17 proposed an algorithm for mass segmentation on ultrasound

images. Horsch et al.16 compared their proposed automatic delineation of a mass

with a manual evaluation. An ROC analysis of the two classifiers’ performance

was done. The input of the linear discriminant classifier in use had four computer-

generated features. Results from 94 malignant and 306 benign cases were an Az of

0.90 for manual delineation and an Az of 0.87 for automatic delineation.

Chou et al.18 report on a system that computes features from a tumor’s

boundary based on stepwise logistic regression. Kitaoka et al.19 report using

histogram-based features for benign-malignant differentiation. Lefebvre et al.20

report a sensitivity of 95% at a specificity of 80% for benign-malignant differen-

tiation using three features computed from a region in the vicinity of the tumor
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Fig. 4. Saggital (a) and horizontal (b) views of a fibroadenoma (benign tumor) and saggital
(c) and horizontal (d) views of an Invasive ductal carcinoma. Prior to biopsy, the first lesion was
judged to be malignant while the second lesion was indeterminate.
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boundary. Shivaramakrishnan et al.21 used Haralick’s22 texture features, and found

that they could increase specificity by providing a better characterization of solid

lesions. The above research projects used conventional envelope images as the input

to analysis. In contrast, in our case study the digitized RF data which contains

amplitude and phase information is also given.

4.1. Classification — A case study

This case study classifies breast masses into malignant and benign tumors using

three classes of features: (1) RF-signal-based features, (2) morphological features,

and (3) auxiliary features. The study evaluates the discriminatory properties of each

of these features and of a fused version of them. Fusion is done by linear and nonlin-

ear classifiers. The human subject study presented here was approved by the Insti-

tutional Review Board of Thomas Jefferson University Hospital. Female patients

who were scheduled for biopsy of a presumed solid breast mass were recruited

for the study. Patients were scanned by a radiologist using the UM9 HDI system

(Phillips, Bothell, WA, USA). The scans were obtained using the L10-5 ultrasonic

transducer. The focal zone on the transmitted pulse was set to the center of each

solid mass. The system used dynamic focusing on the received signal. Transmission

frequencies, between 6–8MHz, were determined by the depth of penetration.

RF data, used for the extraction of the RF-signal-based features, were sampled

at 20MHz with 12 bits quantization after applying analog time-gain control (TGC).

Prior to processing, data were normalized. Data normalization is an amplitude

scaling operation that accounts for gain changes in the RF data that had occurred

as the receiving end aperture was dynamically expanded from a few elements at

skin-line to a maximum of 128 elements. With normalization, data are scaled to

compensate for this apparent depth-dependent change in gain.

The morphological features were computed in the vicinity of lesion boundaries

and interiors using the envelope images. The lesion boundaries were manually out-

lined from the RF signal envelop image. A sample RF signal envelop image with

192 scanlines and 1367 RF sample points per scanline is shown in Fig. 5. The resolu-

tion of one data sample is 0.2mm (across scanlines) and 0.04mm (along scanlines).

Along with each RF image, the center of the lesion and the rectangle that encloses

the lesion’s boundary were given (as indicated manually by the radiologist). The

smallest lesion area was enclosed by a rectangle of a 4mm lateral by 4mm axial,

while the largest lesion area was enclosed by a rectangle of a 24mm lateral by 8 mm

axial dimension. Orthogonal views of each mass were imaged. The feature values

from different images of the mass were averaged to result in one representative

feature value.

Study materials consisted of digitized RF ultrasound scans of mass breast

lesions containing 39 positive (malignant) and 125 negative (benign) cases, as

determined through pathology. The pathological results were composed of a vari-

ety of histopathological diagnostic categories. Eighteen features, F1 through F18,

were considered. Features F1 through F8 were RF-signal-based and were computed
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Fig. 5. RF signal envelope image with 192 scanlines and 1367 RF points per scanline. The
resolution of one data sample is 0.2mm across scanlines and 0.04mm along scanline. The center
of the lesion and the rectangle enclosing its boundary were determined manually by a radiologist.

Table 1. Tissue characterization features.

Features Description

RF-signal-based F1-F2 Nakagami model
Features F3-F6 Generalized Spectrum model

F7-F8 PowerLaw Shot Noise model

Morphological F9 Mass boundary contrast
Features F10 Mass orientation

F11 Mass circularity
F12 Mass compactness
F13 Shape roughness
F14 Mass boundary variation
F16 Tumor Boundary Roughness (TBR)

Auxiliary Features F17 Patient’s age
F18 Radiologist Diagnosis - LOS

directly from the RF scans. Features F9 through F16 were morphological features

that were computed from the envelope image. Features F17 and F18 are auxiliary

features, age and the radiologist’s pre-biopsy decision regarding the presence of

disease, respectively. Table 1 lists the eighteen features analyzed in this study.

4.2. RF-signal-based feature

Previous research examining the Nakagami distribution of the envelope of backscat-

tered echo has determined its ability to classify benign and malignant lesions in
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B-scan images of breast tissue.23 The Nakagami distribution for the envelope R of

the backscattered echo is given as

f(r) =
2mmr2m−1

Γ(m)Ωm
exp

(−m

Ω
r2

)
u(r).

where u(·) is the unit step function, Γ(·) is the gamma function, m is the Nakagami

parameter indicating the statistics of the envelope, and Ω is a scaling parameter of

the average energy in the backscattered echo. These parameters were normalized so

that they would be insensitive to operator-gain settings, time-gain-compensation

settings, and machine-dependent effects. Techniques of frequency diversity and com-

pounding have been investigated for performing this normalization.24

Briefly, frequency diversity was created by splitting the spectrum of the

backscattered echo using two bandpass filters of second order and at a bandwidth of

1 MHz. The center frequencies of the filters were set at 5.75MHz and 6.75MHz. The

quadrature demodulated envelopes of the frequency diverse signals had a Nakagami

distribution with non-identical parameters: m1, Ω1, m2, and Ω2. After the creation

of diversity in the frequency domain, compounding was performed by combining

the envelopes of the frequency-diverse signals through a weighted summation as

Reff =

√
m1

Ω2
R1 +

√
m2

Ω1
R2

where Reff is the compounded envelope and R1 and R2 are the envelopes of the

frequency diverse signals. The analytical expressions for the parameters of the

Nakagami distributed compounded envelope, namely meff and Ωeff , were derived as

meff ≈ m1 + m2

Ωeff = m1
Ω1

Ω2
+ m2

Ω2

Ω1
+ 2

Γ(m1 + 0.5)Γ(m2 + 0.5)

Γ(m1)Γ(m2)
.

The details of the derivation process are given in Dumane and Shankar24 where it

is shown that the parameters meff and Ωeff are insensitive to scaling and are there-

fore normalized. These parameters were estimated based on data sample extracted

from the tumor interior ROI (see Fig. 6). The analysis window size was of 20 scan-

lines (4 mm) and 100 RF points per scanline (4 mm). Concatenation of the data

segments yielded 2000 sample points available for parameter estimation. In order

to avoid correlation among the samples, which might have been caused due to over

sampling during data collection, every other sample was chosen to perform the

estimation.

Another set of features was derived with the Generalized Spectrum (GS)

method.25−27 GS is defined over the bi-frequency plane by:

G(f1, f2) = E[Y (f1)Y
∗(f2)],

where E[·] is the expected value operator, Y (fi) is the spectral component of a local

RF segment at frequency fi, and superscript * indicates a complex conjugate. For
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Fig. 6. The location of the three ROIs: Tumor Front-Edge ROI, Tumor Interior ROI, and Tumor
Back-Edge ROI.

a stationary random process G(f1, f2) = 0 whenever f1 �= f2. In other words, the

off-diagonal values of GS are a measure of the non-stationarity of the signal. The

GS was estimated from Discrete Fourier Transform (DFT) segments of the RF data

along the axial direction: the outer products of the DFT segments were averaged

over an analysis window. Two normalization methods were used to mitigate the

effects of attenuation. The energy-normalized GS (EGS) was computed by scaling

the DFT of the segment to unit energy. The system-normalized GS (SGS) was

computed by scaling all DFT values to unit magnitude. The EGS preserves the

spectral magnitude while SGS preserves only the spectral phase patterns.

The GS of each window was used to compute several features from the Collapsed

Average (CA) of the GS, defined as

Ĉ(h) =
1

M(h)

∣∣∣∣∣
∑

m−n=h

Ĝ(n, m)

∣∣∣∣∣,

where Ĝ(n, m) is the discrete GS estimate, M(h) is the number of GS off-diagonal

elements satisfying m − n = h, and h is an index for the frequency difference

corresponding to each off-diagonal in the bi-frequency plane. The CA reflects con-

sistencies in the phase patterns of the spectrum due to non-stationarities.

The analysis windows were 2mm lateral by 4 mm axial (10 by 100 samples).

Three rectangular ROI were selected for each breast mass. These ROI captured the

tumor anterior boundary, the tumor interior, and the tumor posterior boundary
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(see Fig. 6). All ROI in the dataset were larger than the analysis window so that

multiple windows were applied within the ROI with a 50% overlap in both the

lateral and axial directions. This led to numerous estimates of the feature. The

reported feature for each ROI was the value at the 75 percentile in magnitude (75%

order statistic).

Both simple (F3 and F4) and complex features (F5 and F6) were examined.

Simple features are single quantities extracted from the CA estimate that relate

to a specific dominant scatterer property within the analysis window. Complex

features are formed by linearly combining several simple features. Further details

concerning these features’ extraction can be found in Ref. 28.

Previous research suggested that a Power-Law Shot Noise (PLSN) model for

the ultrasound RF echo might also discriminate between malignant and benign

masses.29–31 This model is applicable when (1) the tissue is considered as a collec-

tion of Poisson point scatterers that are embedded in a uniform medium, and when

(2) the attenuation of the pulse envelope can be assumed to be power-law decaying.

The power-law exponent β is related to tissue attenuation. Hence, the RF echo, r(t),

modeled as the sum of all reflections, is the backscattered signal that is received by

the transducer,

r(t) =
∑

i

ai(t − ti)
−νu(t − ti) cos(ωc(t − ti) + φi)

where t is the time of observation, ti’s are the times of occurrence of independent

reflections that are assumed to be random events taken from a non-homogeneous

Poisson point process of rate λ(t), ωc is the center frequency of the transducer, u(t)

is the unit step function, ai is the envelope amplitude, and φi is a random phase.

Thus, the generalized power spectrum of both the in-phase, rs(t), and quadrature

rc(t), components of the RF echo follows 1/fβ behavior with β = 2(1 − ν):

S(f) = λE[a2]Γ2(β/2)(2πf)−β

where Γ(·) is the gamma function, and E[a2] denotes the expected value of the

square of the random amplitude a. Expressions for the power spectrum of the

envelope were derived in Kutay et al.,31 where, through numerical evaluation, they

were shown to have a power-law form with exponent βenv. This result has also been

justified based on extensive simulations.31

The following procedure was followed in order to estimate βc, βs, and βenv. The

quadrature rc(t), the in-phase, rs(t), and the envelop |r(t)| data were computed

from the RF echo signal, r(t), as follows:

rc(t) = cos(ωct)r(t) + sin(ωct)r̂(t)

rs(t) = cos(ωct)r̂(t) − sin(ωct)r(t)

|r(t)| =
√

r2
c (t) + r2

s(t)
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where r̂(t) is the Hilbert transform of r(t). Periodograms of rc(t), rs(t), and |r(t)|
were calculated, and estimates β̂c, β̂s, and β̂env were found from these using:

(β̂, Â) = argmin
β,A


µ

∫ f2

f1
(log(S(f)) + β log(f) − log A)2d(log f)∫

log(S(f))2d(log f)

+ (1 − µ)

∫ f2

f1
(S(f) − A/fβ)2 df∫

S(f)2 df




where S(f) is the periodogram spectrum estimation, µ is a weight parameter (set

to 0.1) and [f1f2] is the frequency band over which the matching is performed. More

details regarding the estimation of the spectral exponents βc, βs, and βenv can be

found in Kutay et al.31,32

The following process was followed in order to accommodate for depth localiza-

tion and long data records. Analysis windows of 75 by 12 samples (2.4mm lateral

and 3 mm axial) were extracted. Samples were appended one to another to form a

record of 900 samples. This appended sample was then used for signature extrac-

tion. Sixty overlapping windows were examined inside each tumor interior ROI.

β ≡ (βc + βs)/2, and βenv were computed for each one of these windows. Features

F7 and F8 are the mean values of β and βenv across these sixty windows.

4.3. Morphological features

When a radiologist examines a tumor, among other things, he or she considers

its sonographic characteristic. The Breast Ultrasound Lexicon Subcommittee of

an Expert Working standardized descriptors to characterize sonographic features

of breast masses.33 Based on this characterization, several morphological features

were studied here to examine if they could automatically discriminate between

benign and malignant lesions.

Mass shape can be used to characterize the type of the tumor. Spherical or

globular lesions are likely to be simple cysts while elliptical tumors may be Fibroade-

nomas. On the other hand, if the tumor shape is undefined (neither circular nor ellip-

tic) it may be invasive carcinoma. The circularity of the boundary of a mass can be

evaluated by the ratio between the mean radial distance (the distance between the

center-of-mass and points on the boundary) and its standard deviation — µr/σr.
34

In addition, the mass orientation may indicate that a mass is Fibroadenomas, for

instance when its long axis parallels the skin. The characteristic of a mass boundary

is also indicative regarding its nature. Usually a benign tumor shows a well defined

interface between mass and tissue. The likelihood of malignancy increases as the

mass boundary becomes less well defined. A thick indistinct echogenic rim may

indicate an invasive cancer. Computing the contrast along the boundaries provides

a feature that reflects the mass interface attribute.22

In general, the more irregular the shape of the mass is, the more likely it is to be

a malignant tumor. Simple cysts typically have a smooth and regular shape, while



128 S. Gefen, O. Tretiak and D. Gefen

invasive cancer may have irregular margins, spiculations, and microlobulations.

These characteristics can be quantified, for instance by computing the compact-

ness of the mass, the ratio between the square mass perimeter, and mass area.35

The shape’s roughness can also indicate shape regularity, which is the difference

between the fourth and second normalized moments of inertia of radial distance.35

Another feature that measures shape smoothness is the standard deviation of the

radial distance.22 Finally, Tumor Boundary Roughness (TBR), which is the pro-

portion of radial lines that are being crossed by more than one boundary point,

may also indicate a malignant tumor.35

4.4. Auxiliary features

The chance of getting breast cancer increases as a woman grows older. A woman

over the age of 60 is at the greatest risk. Therefore, using age as a feature could

contribute significantly to diagnosis accuracy. A second feature in this class is the

radiologist’s decision. Accounting for this, the images were reviewed retrospectively

by an experienced radiologist in order to determine the Level of Suspicion (LOS).

The LOS feature takes discrete values on a 1–5 scale: 1 (normal), 2 (benign), 3 (inde-

terminate), 4 (probably malignant), and 5 (malignant). The characteristics of each

mass used to determine the LOS included shape, margination, echogencity, internal

homogeneity, presence of shadowing, calcification, and architectural distortion.

4.5. Classifiers and diagnosis analysis

Each of the features above can be used independently to perform diagnosis. But a

fusion of all the features or a subset of them can improve the discriminatory capa-

bility as compared with each single feature considered independently. Classifiers are

one way of doing this. Classifiers map a vector of features into a single represen-

tative scalar value. In this case study, a linear classifier and a quadratic classifier

were considered.8 The linear discriminant function defined as

fl = v · x + w

(and also referred to as the Fisher’s discriminant function). The quadratic discrim-

inant function defined as

fq = (x − mn)T C−1
n (x − mn) − (x − mp)

T C−1
p (x − mp)

where x is the observation vector (feature vector), v = 2(mp − mn)TC−1, and

w = mT
nC−1mn−mT

p C−1mp. mpand mn are the means of the observation vectors

for the positive and negative cases, respectively. Cp and Cn are the covariance of

the observation vector for the positive and for the negative cases, respectively; and

C is a combination of Cp and Cn weighted by the a priori probabilities, Pp and

Pn. The a priori probabilities were estimated based on the positive and negative

case frequencies: Pp = Np/(Np + Nn) and Pn = Nn/(Np + Nn).
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When estimating the above means and covariance of the observation data, the

case study analysis allowed for the possibility of a partial dataset. A partial dataset

occurs when some feature values are not present in all the feature vectors. Typically,

an incomplete dataset is allowed when features may be rejected because of either

technical or situational reasons (outliers).

Following is the description of the estimation computation of mp, mn, Cp, and

Cn under this condition of an incomplete dataset. Let S be the full set, either a

positive or a negative case set, of N observation vectors. Let Si be the subset of

observation vectors for which the ith feature is present. Similarly, let Sij be the

subset of observation vectors for which the ith feature and the jth feature are

present. Thus: Sij = Si ∩ Sj . The sample mean and sample covariance can then be

computed from the incomplete dataset as follows:

m̂i =
1

Ni

∑

n∈Si

xi,n Ni = O(Si)

Ĉij =
1

Nij − 1

∑

n∈Sij

(xi,n − m̂i)(xj,n − m̂j); Nij = O(Sij).

Next, when computing the discriminant function, either linear or quadratic, in the

equations above, only the portions of m̂p, m̂n, Ĉpand Ĉn that corresponded to

the feature values which were available in the feature vector being classified, were

substituted.

The next step was to evaluate the classifier’s output. An ROC curve was used

for performance evaluation. The summary diagnostic performance index is the area

under the ROC curve. In performance evaluation based on the empirical ROC, the

confidence interval of Az, (β −α) was estimated by using a bootstrap technique.36

One thousand sets of positive and negative case data were formed by sampling with

replacement from the experimental set. The empirical ROC and Az for each set was

then calculated. The 95% confidence interval for Az was derived from this collection

of measurements by finding the minimum interval [α, β] for which PAz
(α ≤ Az <

β) = 0.95.

Though the estimated area under the empirical ROC is an unbiased estimate of

Az when the sample features are statistically independent,3 this is not the case for

estimates of discriminant function performances when the same samples are used

for testing and training. Two techniques were used to monitor the bias: the resubsti-

tution method, which has an optimistic bias (estimated Az higher than the actual),

and the leave-one-out method, which has a pessimistic bias.37 In resubstitution, the

same set of cases is used for training (computing classifier parameters) and for test-

ing (estimating the ROC). In a leave-one-out analysis a subset of all but one case

is used for training. The classifier output, fl or fq, is then computed for the case

that was taken out. This analysis is repeated for all the cases. The result is a gener-

ated table of statistics that are used for the ROC analysis. Both the resubstitution
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and leave-one-out methods were embedded in the bootstrap procedure to obtain

confidence intervals for Az.

4.6. Experimental results

The individual features and the combined subsets of individual features were evalu-

ated to determine their capability to distinguish between malignant and benign

cases. When fusing a set of features into a single representative feature, using

a discriminant function, the case study analysis examined four different cases:

(1) linear discriminant with resubstitution, (2) linear discriminant with leave-one-

out, (3) quadratic discriminant with resubstitution, and (4) quadratic discriminant

with leave-one-out.

Table 2 shows the results for the RF-signal-based features, containing the esti-

mate Az, its 95% confidence interval, [α-β], and the FPF at a TPF of 97.5%. The

reported values were calculated with both empirical ROC and with a bootstrap.

The observed values of Az range from 0.61 to 0.91. The values of FPF range from

0.91 to 0.32. Table 3 shows the results of a fusion of all the RF-signal-based features.

It can be seen that when employing a linear classifier and when using a resubstitu-

tion (leave-one-out) analysis method the Az is 0.96 (0.94). The confidence intervals

in this case show a substantial overlap. The corresponding values for the quadratic

classifier are 0.97 (0.87) and the union of the confidence intervals ranges from 0.79

to 1. This indicates that even though the performance of the quadratic classifier

may be superior, it is impossible at this stage to prove this with the available study

population.

The performance of both classifiers exceeds that of the individual features. For

instance, based on the leave-one-out analysis, the linear classifier has Az in the

Table 2. Az and confidence interval, (β-α), for individual RF-signal based features.

F1 F2 F3 F4 F5 F6 F7 F8

Az 0.75 0.73 0.61 0.76 0.91 0.84 0.85 0.85
α 0.63 0.62 0.46 0.63 0.85 0.74 0.79 0.78
β 0.85 0.83 0.74 0.88 0.97 0.93 0.91 0.91

FPF (TPF = 0.975) 0.83 0.80 0.91 0.90 0.32 0.69 0.58 0.63

Table 3. Az and confidence interval, (β-α), for combined RF-signal based
features (F1–F8).

Linear classifier Quadratic classifier

Resub. Leave-one-out Resub. Leave-one-out

Az 0.96 0.94 0.97 0.87
α 0.94 0.91 0.95 0.79
β 0.99 0.98 1.00 0.95

FPF (TPF = 0.975) 0.16 0.22 0.26 0.89
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range of 0.91 to 0.98 at a significance level of 0.05. The benefit of fusion is espe-

cially evident when considering the reduction in FPF. The probability of performing

a biopsy on a benign tumor ranges between 32% and 91% for independent RF-signal

based features. Nevertheless, when combining the features with a linear classifier

and applying resubstitution (leave-one-out), the probability for applying unneces-

sary biopsy is reduced to 16% (22%).

Similarly, Table 4 shows the results for classification when based on morpholog-

ical features. In this case Az ranges between 0.54 and 0.7. For the linear classifier,

the resubstitution and leave-one-out Az are 0.78 and 0.74. The corresponding values

for the quadratic classifier are 0.83 and 0.65. At least with the data in this case

study, it is apparent that the morphological features, independently or combined,

are inferior to the RF-signal-based features. Table 5 shows the results of a fusion

of all the morphological features.

The results of classification based on the auxiliary features are shown in Tables 6

and 7. Table 6 shows that based on the patient’s age the classification yields an Az

of 0.81. Classification based on a radiologist’s diagnosis yields an Az of 0.85. The

fusion of the two features results in an Az of 0.9 (0.86), in the case where linear

Table 4. Az and confidence interval, (β-α), for morphological features.

F9 F10 F11 F12 F13 F14 F15 F16

Az 0.70 0.66 0.54 0.56 0.63 0.57 0.59 0.55
α 0.60 0.56 0.42 0.44 0.53 0.45 0.51 0.44
β 0.81 0.76 0.64 0.68 0.74 0.67 0.72 0.65

FPF (TPF = 0.975) 0.92 0.92 0.94 0.96 0.96 0.93 0.92 0.95

Table 5. Az and confidence interval, (β-α), for combined morphological
features (F9–F16).

Linear classifier Quadratic classifier

Resub. Leave-one-out Resub. Leave-one-out

Az 0.78 0.74 0.83 0.65
α 0.69 0.63 0.75 0.51
β 0.88 0.85 0.91 0.76

FPF (TPF = 0.975) 0.9 0.95 0.73 0.96

Table 6. Az and confidence interval,
(β-α), for auxiliary features.

F9 F10

Az 0.81 0.85
α 0.72 0.77
β 0.89 0.93

FPF (TPF = 0.975) 0.76 0.79
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Table 7. Az and confidence interval, (β-α), for combined auxiliary features
(F17–F18).

Linear classifier Quadratic classifier

Resub. Leave-one-out Resub. Leave-one-out

Az 0.90 0.86 0.90 0.89
α 0.83 0.81 0.84 0.81
β 0.96 0.95 0.96 0.96

FPF (TPF = 0.975) 0.73 0.79 0.71 0.82

Table 8. Az and confidence interval, (β-α), for combined features (F5–F8,
F17, F18).

Linear classifier Quadratic classifier

Resub. Leave-one-out Resub. Leave-one-out

Az 0.97 0.97 0.98 0.96
α 0.95 0.94 0.97 0.92
β 1.0 0.99 1.0 0.99

FPF (TPF = 0.975) 0.28 0.34 0.11 0.51

classifier with resubstitution (leave-one-out) is used, and an Az of 0.9 (0.89) when

a quadratic classifier with resubstitution (leave-one-out) is used.

Finally, fusion of a subset of the features presented above was analyzed. A subset

of features with Az > 0.8 was selected (F5–F8, F17, F18). Table 8 shows the results.

References

1. J. P. Egan, Signal Detection Theory and ROC Analysis (Academic Press, New York,
1975).

2. J. A. Swets, R. M. Dawes and J. Monahan, in Scientific American (2000), pp. 82–87.
3. D. Bamber, The area above the ordinal dominance graph and the area below the

receiver operating characteristic graph, Journal of Mathematical Psychology 12 (1975)
387–415.

4. C. E. Metz, ROC methodology in radiologic imaging, Investigative Radiology 21

(1986) 720–733.
5. B. S. Garra et al., Quantitative ultrasonic-detection of parenchymal structural-change

in diffuse renal-disease, Investigative Radiology 29 (1994) 134–140.
6. S. Gefen et al., ROC analysis of ultrasound tissue characterization classifiers for breast

cancer diagnosis, IEEE Transaction on Medical Imaging 22 (2003) 170–177.
7. D. B. Kopans, Breast Imaging (Lippincott Raven, Philadelphia - New York, 1997).
8. S. Theodoridis and K. Koutroumbas, Pattern Recognition (Academic Press, 1999).
9. A. Thomas, The invisible light, Journal of The Radiology History and Heritage Char-

itable Trust 15 (2001).
10. U. Bick, F. Diekmann, S. Grebe, B. Hamm and L. Charit’e, in ECR (Germany, 2000).
11. P. Malhotra et al., in SPIE (University of South Florida, 2002).
12. D. R. Chen, R. F. Chang and Y. L. Huang, Computer-aided diagnosis applied to US

of solid breast nodules by using neural networks, Radiology 213 (1999) 407–412.



ROC Methodology in Breast Cancer Diagnosis 133

13. D. Chen, R. Chang and Y. Huang, Breast cancer diagnosis using self-organizing map
for sonograpy, Ultrasound in Med. & Bio. 26 (2000) 405–411.

14. D. Chen et al., in Seminars in Ultrasound, CT, and MR (2000), pp. 308–316.
15. D. Chen, W. Kuo, R. Chang, W. Moon and C. Lee, Use of the bootstrap technique

with small training sets for computer-aided diagnosis in breast ultrasound, Ultrasound
in Med. & Bio. 28 (2002) 897–902.

16. K. Horsch, M. L. Giger, L. A. Venta and C. J. Vyborny, Automatic segmentation of
breast lesions on ultrasound, Med. Phys. 28 (2001) 1652–1659.

17. K. Horsch, M. Giger, L. Venta and C. Vyborny, Computerized diagnosis of breast
lesions on ultrasound, Med. Phys. 29 (2002) 157–164.

18. Y. Chou et al., Stepwise logistic regression analysis of tumor contour features for
breast ultrasound diagnosis, Ultrasound in Med. & Bio. 27 (2001) 1493–1498.

19. F. Kitaoka et al., Internal echo histogram examination has a role in distinguish-
ing malignant tumors from benign masses in the breast, Clinical Imaging 25 (2001)
151–153.

20. F. Lefebvre, M. Meunier, F. Thibault, P. Laugier and G. Berger, Computerized ultra-
sound B-scan characterization of breast nodules, Ultrasound in Med. & Bio. 26 (2000)
1421–1428.

21. R. Sivaramakrishna, K. Powell, M. Lieber, W. Chilcote and R. Shekhar, Texture
analysis of lesions in breast ultrasound images, Computerized Medical Imaging and
Graphics 26 (2002) 303–307.

22. R. Haralik, A measure of circularity of digital figures, IEEE Trans. Systems, Man
Cybernetics SMC-3 (1974) 453–465.

23. P. M. Shankar et al., Classification of ultrasonic B mode images of breast masses
using the Nakagami distribution, IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 48

(2001) 569–580.
24. V. A. Dumane and P. M. Shankar, Use of frequency diversity and Nakagami statistics

in ultrasonic tissue characterization, IEEE Trans. Ultrason., Ferroelect., Freq. Cont.
48 (2001) 1139–1146.

25. K. D. Donohue, F. Forsberg, C. W. Piccoli and B. B. Goldberg, Analysis and clas-
sification of tissue with scatterer structure templates, IEEE Trans. on Ultrasonic,
Ferroelectrics and Frequency Control 46 (1999) 300–310.

26. K. D. Donohue and L. Huang, in IEEE Proceedings of International Conference on
Acoustics, Speech and Signal Processing (Salt Lake City, UT, 2001).

27. K. D. Donohue, L. Huang, T. Burks, F. Forsberg and C. W. Piccoli, Tissue classifica-
tion with generalized spectrum parameters, Ultrasound in Medicine and Biology 27

(2001) 1505–1514.
28. L. Huang, K. D. Donohue, V. Genis and F. Forsberg, Duct detection and wall spacing

estimation in breast tissue, Ultrasonic Imaging 22 (2000) 137–152.
29. A. P. Petropulu, T. Golas and G. Viswhanathan, in IEEE Int. Symp. on Time-Freq.

Time-Scale Anal. (Pittsburgh PA, 1998).
30. A. P. Petropulu, J. C. Pesquet, X. Yang and J. Yin, Power-law shot noise and its

relationship to long-memory α-stable processes, IEEE Truns. on Sig. Process. 48

(2000) 1883–1892.
31. A. M. Kutay, A. P. Petropulu and C. W. Piccoli, On modeling biomedical ultrasound

RF echoes using a power-law shot noise model, IEEE Trans. Ultrason. Ferroelect.
Freq. Contr. 48 (2001) 953–968.

32. A. M. Kutay, A. P. Peropulu and C. Piccoli, Tissue characterization based on the
power-law shot noise model, to appear in Pattern Recognition Letters (2002).



134 S. Gefen, O. Tretiak and D. Gefen

33. C. R. B. Merritt, B. B. Goldberg and E. B. Mendelson, Breast Imaging Reporting
and Data System: Ultrasound (Thomas Jefferson University Hospital, Philadelphia),
pp. 1–21.

34. L. Shen, R. M. Rangayyan and J. E. Desautels, Application of shape analysis to
mammographic calcifications, IEEE Trans. on Medical Imaging 13 (1994) 263–274.

35. J. A. Mann, All measuring of the roughness of interfaces, Chemometrics Intel. Lab.
Systems 12 (1991) 169–180.

36. B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap (Chapman & Hall,
1993).

37. K. Fukunaga, Introduction to statistical Pattarn Recognition (Academic Press, 1990).



CHAPTER 5

PARAMETRIC SHAPE RECONSTRUCTION IN INVERSE

PROBLEMS: FUNDAMENTAL PERFORMANCE

BOUNDS AND ALGORITHMS

JONG CHUL YE

Department of BioSystems
Korea Advanced Institute of Science and Technology (KAIST)

373-1 Gusong-Dong, Yuseong-Gu, Daejeon 305-701, Korea

jongcye@biosys.kaist.ac.kr

We address the problem of estimating object boundaries from noisy measurements in
inverse problems, when the boundaries are parameterized by a finite number of unknown
variables. We review the existing reconstruction algorithms from different imaging
modalities and discuss fundamental performance bounds of the parametric approaches
using Cramér-Rao lower bounds and asymptotic global confidence regions.
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1. Introduction

The problem of estimating object boundaries from noisy measurements is encoun-

tered in applications such as computed tomography (CT), image deconvolution,

synthetic aperture radar (SAR), and nonlinear inverse scattering. If there exist

sufficient number of measurements, the boundary can be extracted directly from

the reconstructed images. However, in many applications there is generally insuffi-

cient information to recover details of the boundary. This situation is typical of an

ill-posed image reconstruction problem.

In such problems, the boundary is represented mathematically as a curve in

R2 (or a surface in R3) and is often parameterized by a finite number of unknown

variables. Such a parametric formulation (for instance using B-splines1 or Fourier

descriptors2,3) is a first step towards constructing a stable boundary estimation

algorithm. This type of parametrization imposes smoothness on the reconstructed

boundary and provides the basis for, e.g. an efficient maximum likelihood estimation

algorithm.

Several estimation algorithms have been investigated for different imaging

modalities. Kirsch formulated the inverse acoustic scattering problems in parametric

framework and implemented Gauss–Newton type estimation algorithms to estimate

the target boundaries.4 Zheng and Doerschuck investigated 3-D viral reconstruction

from averaged Fourier transform magnitude by parameterizing the virus structure

with spherical harmonics.39 Most recently, Schmid et al. formulated the parametric

135
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reconstruction problem in a more general framework such that they can simulta-

neously estimate both parameter and the model orders.40 In all these approaches,

superior reconstruction of the boundaries have been obtained even from severely

under-sampled measurement data.

The superior reconstruction performance of the parametric formulation has been

also theoretically verified by computing the fundamental bounds — the Cramér–

Rao lower bound (CRB).5 The CRB provides an unbeatable performance limit for

any unbiased estimator, and hence can be used to investigate the fundamental limits

of parameter estimation problems, or as a baseline for assessing the performance of a

specific estimator.6 The CRB can be used for optimum design of the measurement

system, e.g. by selecting sampling points to minimize a functional of the CRB

matrix, such as its trace or determinant.7 While CRB’s are available for estimation

of signal parameters such as target location,8–11 direction-of-arrival (DOA),7,12–14

and size and orientation of a scatterer,11,15,16 only recently has this type of analysis

been conducted for estimation of target shapes in general inverse problems.5,17

The CRB’s computed for shape estimation can also be used to compute a global

uncertainty region around the boundary,17 providing an easily interpreted geometric

display of boundary uncertainty. A related idea has been applied to tomographic

reconstruction by Hanson et al.18 using Monte-Carlo simulations, which are limited

to a particular estimator and time-consuming to construct. In contrast, the global

confidence region can be easily and quickly constructed using the CRB covariance

matrix, even before the construction of an estimator is attempted.

This chapter is organized as follows. Section 2 formulates the parametric shape

estimation problem formally and introduces some real applications. In Sec. 3, we

briefly review the existing maximum likelihood parametric shape estimation algo-

rithms. Section 4 discusses importance of the Cramér–Rao lower bound and the

global confidence regions to evaluate the fundamental performance of parametric

shape estimation, and Sec. 5 derives the general formula of the domain derivatives —

the essential mathematical tools for fundamental performance analysis. Section 6

extends our theory to an object composed of multiple domains. The CRB is then

computed for several illustrative examples in Sec. 7. Conclusions are presented

in Sec. 8.

2. The Shape Estimation Problem

Consider a real-valued image f consisting of a constant-valued 2-D object and a

known background density f2(x, y):

f(x, y) =

{
f1, (x, y) ∈ D

f2(x, y), (x, y) ∈ R2\D
. (1)

The intensity f1 and region D are unknown, whereas f2(x, y) is known for all

(x, y) ∈ R2. This scenario models an object of constant but unknown intensity and
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unknown shape, partly occluding (or replacing) a known background. This situation

arises in applications requiring the imaging of localized changes or anomalies in a

reference object, or the imaging of objects on a homogeneous background. The

object is thus completely defined by its image value f1 and its boundary Γ = ∂D.

The support set D need not be a connected region, so the formulation includes the

case of multiple objects.

2.1. Parametric boundary model

Since the estimation of Γ from a limited number of noisy samples is generally an

ill-posed inverse problem, a possible remedy is to represent the boundary Γ as a

known function with a finite number of unknown parameters:

Γ = {s(u; φ), u ∈ I}, (2)

where φ = (φ1, . . . , φK) ∈ RK is an unknown parameter vector, and I ⊂ R an

interval. Because object boundaries correspond to closed contours, I is a closed

interval, and s(u; φ) a periodic function of u, with period equal to the length |I|.
In particular, we use the series expansion model

s(u; φ) = [x(u; φ), y(u; φ)]T =

K∑

i=1

φibi(u), u ∈ I, (3)

where bi(u) ∈ R2 is the i-th basis function. Parameterizations such as Fourier

descriptors (FD),2,3 B-splines1 and wavelet descriptors19,20 are special cases of this

model and have been widely used for shape representation.

Throughout the paper, we assume that the boundary Γ is a 1-manifold in R2, or

of class C1. In practice, this regularity condition is not too restrictive and implies

that the boundary Γ is sufficiently smooth without any cusps and crossings. Equiv-

alently, a parametrized-manifold s(u), u ∈ I should be continuously differentiable

with respect to u, its inverse should be continuous to avoid any crossing, and

ẋ(u)2+ ẏ(u)2 �= 0 for all u ∈ I to prevent any cusps, where ẋ(u) and ẏ(u) denote the

derivatives of the x and y components of s(u) with respect to u. These regularity

conditions are in addition to the earlier condition that s(u), u ∈ I be periodic with

period |I|.
Under the series expansion model (3), in order to satisfy these regularity condi-

tions, the basis function bi: I → R2, i = 1, . . . , K should be continuously differen-

tiable. The conditions for avoiding intersecting boundaries and cusp are, however,

more difficult to impose for each basis function bi, because these are global proper-

ties contributed by the linear combination of all basis functions. Therefore, we will

assume that the parameters φi, i = 1, . . . , K are chosen such that the resultant

boundary Γ = {s(u; φ), u ∈ I} does not have crossings and cusps.
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2.2. Forward problem

Let g = Hf be a general linear integral transformation of f , defined by

g(s, t) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)h(x, y, s, t) dx dy, (s, t) ∈ Ω (4)

where h : R2 × Ω → R is a known kernel, and Ω a subset of R2. We assume that

f and h satisfy appropriate conditions so that g is well defined. For example, one

such set of conditions is that f is bounded, and h(·, ·, s, t) is absolutely integrable

for any (s, t) ∈ Ω. Examples of the linear operator (4) are as follows.

2.2.1. Computed tomography

Consider tomographic reconstruction from line-integral projections or the samples

of the 2-D Radon transform. The Radon transform g of a 2-D function f , is defined

as the collection of line integrals of f along lines, indexed by these lines’ angle s

from the x-axis and at distance t from the origin:

g(s, t) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)δ(x cos(s) + y sin(s) − t) dx dy,

−∞ < t < ∞, 0 ≤ s < π, (5)

where δ(·) is the Dirac impulse. The function f is assumed to be such that (5) is

well-defined.21

This reconstruction problem (and several variations thereof21) is of interest in

numerous applications,22 of which medical x-ray CT is the best known. It also arises

in non-destructive evaluation of metal castings for the presence of cracks or bubbles,

or monitoring nuclear reactor cores. In geophysics it may be an appropriate model

for estimating the shape of an underground reservoir.

2.2.2. Fourier imaging

The second problem we consider is Fourier imaging.23,24 This problem arises

in applications such as synthetic aperture radar (SAR),25,26 diffraction tomog-

raphy (DT),8 magnetic resonance imaging (MRI),27 and other image formation

modalities.23 In Fourier imaging, measurements are samples of the 2-D Fourier

transform:

g(s, t) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y) e−j2π(sx+ty)dx dy, (s, t) ∈ R2. (6)

The same sufficient conditions as in the computed tomography problem are applica-

ble to the Fourier imaging problem too. As in the tomography problem, the known

background f2(x, y) in these applications may be obtained from baseline reference

scans. For example, in the case of transient change detection (response to a stim-

ulus in functional MRI, or the appearance of a target in SAR) an accurate image

of the static background f2(x, y) may be easily obtained, because of the essentially
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unlimited time available for data acquisition. In other applications, such as imaging

on a sky background, a constant background may be assumed.

2.2.3. Deconvolution

The last problem we consider is deconvolution — a ubiquitous problem in all areas

of science and engineering. Suppose the image f(x, y) of (1) is blurred with a

shift-invariant point spread function h(x, y). The noiseless blurred image g(x, y)

is given by

g(s, t) = (h ∗ ∗f)(s, t) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)h(s − x, t − y) dx dy,

(s, t) ∈ Rf ⊂ R2 (7)

where ∗∗ is the 2-D convolution, and Rf denotes the image domain, respectively.

For the convolution g(s, t) to be well defined, it is sufficient that one of f and h

be bounded and the other absolutely integrable, which is satisfied in all practical

applications. For instance, if the point spread function is Gaussian with width

parameter ν, then (7) takes the form

g(s, t) =

∫ ∞

−∞

∫ ∞

−∞

1

2πν2
e−

(s−x)2+(t−y)2

2ν2 f(x, y) dx dy. (8)

Deconvolution is a key problem in imaging systems and seismic inversion.23 As

in the other imaging problems, the known background f2(x, y) in these applica-

tions may be obtained from baseline reference scans. For example, in the case of

change detection in an optical surveillance problem, an accurate image of the static

background f2(x, y) may be easily obtained from the previous scenes.

3. Parametric Shape Estimation Algorithms

3.1. Maximum likelihood estimation

Suppose g(s, t) is sampled at a finite number M of positions {sm, tm}M
m=1. The

estimation problem we consider is to estimate the object boundary Γ from noisy

measurements {ym}M
m=1 of the samples gm = g(sm, tm), m = 1, . . . , M . The mea-

surement model is specified by a conditional probability density function (pdf)

pY |g(y|g), where y = [y1, . . . , yM ]T denotes a particular realization of the random

vector Y and g = [g1, . . . , gM ]T is the noise-free sample vector. In view of the

parametric representation (2) and (3) of the object, we denote the m-th noise-free

sample g(sm, tm) by gm = gm(θ), where

θ = [f1, φ1, . . . , φK ]T (9)

in order to show explicitly the dependence on the unknown parameter vector. Then,

the statistics of Y can be described by

pY |g(y|g) = pY |g(θ) (y|g(θ)) , (10)
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which we denote, for brevity, by p(y|θ). Note that this formulation includes the

case where the observation involves a nonlinear transformation of g. For example,

in low dose X-ray imaging or positron emission tomography, the measurement ym

is Poisson distributed with rate λm = λT exp(−gm).

Now, for a given k, one can determine the maximum likelihood parameter esti-

mation of the parameters, θ̂, as the solution of the following optimization problem:

θ̂ = arg max
θ∈Rk+1

log p(y|θ) (11)

where log p(y|θ) is the log-likelihood function.

In order to implement (11), Schmid et al.40 invoked the function fminunc.m from

MATLAB optimization toolbox. This function performs an unconstrained nonlinear

optimization based on a quasi-Newton method. Initial experiments have shown that

the algorithm exhibits instabilities: it is sensitive to initial guess, especially for

low signal-to-noise ratio (SNR). In this case, the algorithm often results in a self

intersecting boundary. To avoid the problem, they proposed to include an additional

penalty term in (11) that penalizes rough boundaries:

θ̂ = arg max
θ∈Rk+1

[
log p(y|θ) + λ

∫

I

(
[ẋ(u)]2 + [ẏ(u)]2

)1/2
dt

]
, (12)

where λ is the regularization parameter. Consider a sequence of regularization prob-

lems in the form of (12) parameterized by a sequence of parameters λl gradually

diminishing to zero. Under this setting, the solution to the problem in (12) con-

verges to the solution of the non-regularized problem in (11), as λl → 0. They

implemented the procedure described above recursively, that is, the solution to the

optimization problem (12) with larger λ is used as an initial guess to the optimiza-

tion problem with a smaller value of λ. They showed that this lead to a stable

solution and helps avoid the self intersecting boundaries.

3.2. Complexity regularized estimator

One hidden, but important, assumption of the maximum likelihood estimation

framework (11) is that the “optimum” model order K is known a priori. However,

in real application scenario, the correction model order K usually needs to be esti-

mated from the data. Hence, the remaining problem, is to determine the “correct”

order K of the parametric boundary model (3). In general, increasing K, allows

to capture increasing spatial detail in the represented boundary. However, with

limited and noisy data, increasing K beyond a certain point leads to diminishing

returns, because of increase in the estimation error of more parameters from a fixed

amount of data. Thus, once the parametric model has been picked for boundary,

regularization reduces to selection of the model order K.
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Schmid et al.40 used Rissanen’s MDL criterion to determine the optimum model

order K. The MDL criterion is stated as follows:

K̂(y) = arg max
K=1,2,...

[
log p(y|θ(k+1)) + L(θ(k+1))

]
(13)

where L(θ(k+1)) is the penalty term equal to the code length of k + 1 dimensional

parameter vector θ(k+1).

A variety of coding scheme can be considered to describe the penalty term in

(13). Under the practical condition of a large sample size, the description length

of each parameter can be approximated by 1/2 logM , with M being the number

of data samples. Assuming that every model parameter is equally penalized, this

leads to L(θ(k+1)) ∼ k + 1/2 logM . Schmid et al. showed that the model order

estimation using (13) showed a good trade-off between bias and variance of shape

estimation.40

4. Fundamental Performance Limit for Parametric Shape Estimation

4.1. The Cramér–Rao inequality

As shown in (11), given data y and its statistical description by p(y|θ), the shape

reconstruction problem has been reduced to a statistical parameter estimation prob-

lem. As is well-known, the variance of an unbiased estimator of θ is subject to a

fundamental limit — the Cramér–Rao lower bound (CRB). Moreover, under appro-

priate regularity conditions, the maximum likelihood estimator (MLE) achieves the

CRB asymptotically.6 Hence, the CRB is not only a lower bound, but is also useful

for predicting the large sample or high SNR performance of the MLE, or other

asymptotically efficient estimators. The accuracy of the shape estimate can in turn

be assessed from the accuracy of the parameter estimate. In particular, one can

then construct global confidence regions for the object boundary.17

Here, we first concentrate on the derivation of a procedure for computing the

CRB. According to the Cramér–Rao inequality, subject to some regularity condi-

tions on the conditional pdf pY |θ, the (K + 1) × (K + 1) covariance matrix of the

estimation error θ̂ − θ for the unknown parameter θ is bounded from below as6

Cov(θ̂ − θ) ≥ Cθ
△
= (Iθ)−1, (14)

for any unbiased estimate θ̂ of θ. Here, the matrix inequality notation A ≥ B

indicates that A−B is positive semidefinite, with A and B being Hermitian positive

semidefinite matrices. In (14), the Fisher information matrix, Iθ , is the (K + 1) ×
(K + 1) matrix

Iθ = E
[
∇θ ln p(y|θ)∇T

θ
ln p(y|θ)

]
(15)

where ln p(y|θ) is the log-likelihood function, and ∇θ denotes gradient with

respect to θ.
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For any pdf p(y|θ) for which the Fisher information matrix is well-defined, it

follows from the chain rule that the entries of Iθ in (15) are (possibly nonlinear)

functions of gm(θ) and the derivatives ∂gm(θ)
∂θi

, i = 1, . . . , K + 1, m = 1, . . . , M .

For examples, if the noisy measurement Ym is a Gaussian random variable with

mean gm(θ) and variance σ2
m, under the additional assumption of independence of

measurements at different locations, the (i, j)-th element of the Fisher information

matrix is given by

(Iθ)i,j =
M∑

m=1

1

σ2
m

∂gm(θ)

∂θi

∂gm(θ)

∂θj
, i, j = 1, . . . , K + 1, (16)

whereas for the complex circular Gaussian noise with mean zero and variance

E|Ym − gm|2 = 2σ2
m we have

(Iθ)i,j =
M∑

m=1

1

σ2
m

Re

[(
∂gm(θ)

∂θi

)∗
∂gm(θ)

∂θj

]
, i, j = 1, . . . , K + 1, (17)

where Re[·] denotes the real part and the superscript ∗ denotes the conjugation.

While (16)–(17) appear simple, techniques for computing the derivatives{∂gm(θ)
∂θi

}
for models of the form (4) and (2)–(3) have not been studied in the liter-

ature, except for special cases.11,16,28 In Sec. 5, we will develop a general technique

to compute those quantities in a generic linear inverse problem.

4.2. From CRB’s to global confidence regions

In practice, because s(u; θ) describes the geometry of an object, one is interested in

assessing the quality of estimates of s(u; θ) in easily interpreted geometric terms.

Rather than the quality of estimates of θ itself, what is needed is a global quality

measure for the entire boundary {ŝ(u; θ), ∀ u ∈ I}. The CRB Cθ computed by the

techniques of this chapter can be used as described in Ref. 17, to construct small-size

global confidence regions in the asymptotic regime where the estimate is unbiased,

efficient, and Gaussian.

More specifically, under appropriate regularity conditions,29,30 the maximum-

likelihood estimator (MLE) of (11) is asymptotically unbiased, efficient and

Gaussian-distributed (or best asymptotically normal (BAN))

θ̂ ∼ N (θ,Cθ) (18)

where the (K+1)×(K+1) covariance matrix Cθ = E[θ̂−θ][θ̂−θ]T is the inverse of

the Fisher information matrix. Examples of asymptotics in the observation model

include collecting an infinite number of snapshots, or an increasing number of sensor

elements, with independent sensor noise realizations.



Parametric Shape Reconstruction in Inverse Problems 143

Similar properties apply to smooth functions of θ such as s(u; θ). In particular,

by the invariance property of the MLE, the asymptotic distribution of s(u; θ̂) is

likewise BAN

s(u; θ̂) ∼ N (s(u; θ),Cs(t)) (19)

where the 2 × 2 covariance matrix

Cs(u) = E[s(u; θ̂) − s(u; θ)][s(u; θ̂) − s(u; θ)]T (20)

is given by

Cs(u) = [∇θs(u; θ)]
T
Cθ[∇θs(u; θ)] = B(u)TCθB(u) (21)

where

B(u) = ∇θs(u; θ) ∈ R(K+1)×2 (22)

is the gradient of s(u; θ) with respect to θ. In the remainder of the paper, we assume

the appropriate regularity conditions are satisfied, and the estimator operates in

the asymptotic regime, so that the distribution (18) can be used.

For a fixed u, according to classical estimation theory,29 a confidence region for

at confidence level α ∈ [0, 1] is any subset of R2 such that

Pr{s(u) ∈ Ûβ(u)} = α. (23)

While there are infinitely many choices of Ûβ(u) for each specified α, Wilks and

Daly32 showed that the smallest size confidence region on the average (because is

random) is

Ûβ(u) = {x ∈ R2 : (x − ŝ(u))
T

C−1
s (u) (x − ŝ(u)) ≤ β2} (24)

for an appropriate β such that Pr{χ2
2 ≤ β2} = α, where Cs(u) is the covariance

matrix for s(u; θ̂) given by (21), and χ2
2 denotes the chi-square distribution with

two degrees of freedom. For each u, Ûβ(u) is an ellipse centered on the boundary

point ŝ(u).

It is now desired to construct a global confidence region Ûβ for the entire function

{s(u), ∀u ∈ I}. A possible design is obtained by moving Ûβ(u) along the boundary

Ûβ =
⋃

u∈I

Ûβ(u). (25)

The region Ûβ forms a tube around the estimated boundary ŝ(u). Because ŝ(u)

is a random process, Ûβ is a random set. One important quantity for the global
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confidence analysis is to find a method to calculate the global confidence level for

the so-formed confidence region Ûβ

γ
△
= Pr{s(u) ∈ Ûβ , ∀u ∈ I}. (26)

Clearly, γ is smaller than the probability in (23). Another important probability of

theoretical interest is

Pr{ŝ(u) ∈ Uβ, ∀u ∈ I}. (27)

where ŝ(u) is the estimate of s(u), and the deterministic confidence region Uβ is

defined as

Uβ =
⋃

u∈I

Uβ(u). (28)

where

Uβ(u) = {x ∈ R2 : (x − s(u))
T

C−1
s (u) (x − s(u)) ≤ β2}. (29)

Again, the region Uβ is a tube, but this time centered around the true boundary.

While the probability in (26) is the a posteriori probability that the true shape lies

in a confidence region generated around the MLE, the a priori probability in (27)

focuses on predicting the fundamental uncertainty region for any asymptotically

normal and efficient estimator. Therefore, in general they are different, and both

are useful in practice.

The probabilities (26) and (27) are difficult to compute owing to the overlaps of

individual ellipses Ûβ(u) (resp., Uβ(u)) for all u ∈ I. We therefore wish to determine

lower bounds on (26) and (27) that are reasonably tight. Proposition 1 provides one

such tight lower bound.

Proposition 1. Suppose C
1/2
θ

B(u) has full column rank, and

A(u) = C
1/2
θ

B(u)B(u)TC
1/2
θ

. (30)

Then, we have the following two inequalities:

Pr{ŝ(u) ∈ Uβ , ∀u ∈ I} ≥ 1 − (1 + κ0β)e−
β2

2 (31)

Pr{s(u) ∈ Ûβ , ∀u ∈ I} ≥ 1 − (1 + κ0β)e−
β2

2 (32)

where the constant κ0 is given by

κ0 =

∫

I

(
trace

{
P†

AȦA†A†ȦP†
A

}

2π

)1/2

du (33)

where A† denotes the pseudo-inverse of A; Ȧ denotes the derivative of A(u) with

respect to u; and P†
A denotes the projection on the orthogonal complement of the

range space of A.

Proof. See Ref. 17.
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Such lower bounds are useful since one can generate somewhat larger confidence

regions, and still guarantee the required probability that the shape lies within that

region. We illustrate the construction of such confidence regions in the numerical

examples.

5. The Domain Derivatives for Linear Inverse Problems

Combining (1) and (4) and separating the contribution of the domain D from the

integral in (4), we obtain

gm(θ) = c(sm, tm) +

∫

D

Z(sm, tm, x, y)dx dy

△
= J(D)(sm, tm), 1 ≤ m ≤ M, (34)

where

c(sm, tm) =

∫

R2

f2(x, y)h(x, y, sm, tm)dx dy (35)

Z(sm, tm, x, y) = (f1 − f2(x, y))h(x, y, sm, tm). (36)

Our goal is to compute the derivatives ∂gm(θ)/∂θi. The idea is to proceed

using a two-step approach akin to the chain rule: (i) find the change (deformation)

of D(θ) produced by an infinitesimal change in θi; (ii) then find the change in∫
D

ZdS produced by the corresponding infinitesimal deformation of D. Because D

is represented by its boundary Γ(θ) in our parametrization, it is more convenient

to consider the corresponding deformations of Γ(θ). The first step is easy. In view

of (2)–(3), a change in θi to θi + t produces the deformed boundary

Γt = Γ + tbi = {z|z = s(u) + tbi(u), u ∈ I}, (37)

where bi is the i-th basis function in the linear model (3) and s(u) is the parametric

representation of boundary given by (3).

The second step thus requires to compute the change in
∫

D
ZdS produced by

deformation of Γ to Γt for infinitesimal t. This is known as the domain derivative

or the shape derivative, and has been studied extensively in structural mechanics.33

Using Proposition A.1 in Appendix A, we have

∂gm(θ)

∂θi
=

∫

I

(f1 − f2[x(u), y(u)])h[x(u), y(u), sm, tm]bT
i (u)n(u)τ(u)du, (38)

where

τ(u) =
√

ẋ(u)2 + ẏ(u)2 =

∥∥∥∥∥
M∑

i=1

θiḃi(u)

∥∥∥∥∥ , (39)

ḃi(u) denotes the derivative of bi with respect to u, and ‖ ·‖ denotes the Euclidean

norm. In (38), the outer-normal vector n at (x(u), y(u)) is given by

n(u) =
1

τ(u)

[
ẏ(u)

−ẋ(u)

]
=

∑M
i=1θi[ḃ

y
i (u),−ḃx

i (u)]T∥∥∑M
i=1 θiḃi(u)

∥∥ (40)
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and so

bT
i n =

∑M
j=1θj

(
bx
i ḃy

i − by
i ḃ

x
i

)

∥∥∑M
i=1 θiḃi

∥∥ , (41)

where bx
i and by

i denote the x and y components of bi, respectively.

The derivative with respect to θK+1(= f1) is given by

∂gm(θ)

∂θK+1
=

∂gm(θ)

∂f1
=

∫

D

h(x, y, sm, tm) dx dy. (42)

The following alternative expression, involving a 1D instead of an area integral, is

obtained using Green’s theorem:
∫

D

h(x, y, sm, tm)dx dy =
1

2

∫

I

(∫ x(u)

0

h(z, y(u), sm, tm) dz

)
ẋ(u)τ(u)du

− 1

2

∫

I

(∫ y(u)

0

h(x(u), z, sm, tm)dz

)
ẏ(u)τ(u)du. (43)

This expression is particularly convenient when the boundary is parameterized by

(42). Even when it cannot be evaluated in closed form, its numerical evaluation

requires, in general, less computation for given accuracy than that for the area

integral in (42).

An important though somewhat expected observation that follows from (38),

is the following. Although the measurements ym, and in fact the existence of the

transforms that define them, often depend on all of the background f2, the Fisher

information matrix only depends on the values of the background f2 on the bound-

ary Γ of the domain D.

5.1. Computed tomography

For computed tomography problem, (38) can be further simplified by exploiting the

properties of the delta function. Combining (4), (5), and (38) it follows that

∂gm(θ)

∂θi
=

∫

I

δ(Fm(u))G(u)du (44)

where δ(·) denotes the Dirac impulse and

Fm(u) = x(u)cos(sm) + y(u)sin(sm) − tm (45)

G(u) = (f1 − f2[x(u), y(u)])bT
i (u)n(u)τ(u). (46)

Note that in (44) if the equation Fm(u) = 0 has no solution on I, the integral

is trivially zero. However, when Fm(u) = 0 does have a solution, multiple such

solutions may exist, all contributing to the integral. Lemma 2 provides the formula

for the integral accounting for all these contributions.

Lemma 2. Let functions F : I → R be continuously differentiable and G : I → R

be continuous, where I ⊆ R. Suppose furthermore F (u) has L isolated roots ul ∈ I,



Parametric Shape Reconstruction in Inverse Problems 147

l = 1, . . . , L such that F (ul) = 0 and F ′(ul) �= 0. Then, if F does not have roots on

boundary points of I, or if I is a closed interval and F periodic on I with period

equal to its length |I|, we have

∫

I

δ(F (u))G(u)du =

L∑

l=1

G(ul)

|F ′(ul)|
, (47)

where δ(·) is the Dirac delta function, F ′ denotes the derivative of F, and | · | is the

absolute value.

Proof. See Appendix B.

Now we apply Lemma 2 to (44). Let L(m) denote the number of solutions of

Fm(u) = 0, and um
l ∈ I denote the l-th such solution, i.e. (by (45))

x(um
l ; θ)cos(sm) + y(um

l ; θ)sin(sm) − tm = 0. (48)

Refering to Fig. 1, we identify um
l ∈ I as the l-th intersection of the boundary Γ

with the line indexed by (sm, tm). Using Lemma 2 and (48), we have

∂gm(θ)

∂θi
=

L(m)∑

l=1

∆f(um
l )bi(u

m
l )T n(um

l )τ(um
l )

|cos(sm)ẋ(um
l ) + sin(sm)ẏ(um

l )| , i = 1, . . . , K, (49)

where

∆f(um
l ) = f1 − f2(x(um

l ), y(um
l )). (50)

By (42), the derivative with respect to f1 is given by

∂gm(θ)

∂θK+1
=

∂gm(θ)

∂f1
=

∫

D

δ(x cos(sm) + y sin(sm) − tm)dx dy, (51)

which is a line integral projection of the indicator function of the domain D. Refer-

ing again to Fig. 1, this quantity equals the sum of the lengths of the chords formed

by the intersection of the line parameterized by (sm, tm) with the domain D. The

y

x

sm

tm

( x(u1
m), y(u1

m) )

( x(u2
m), y(u2

m) )

( x(u3
m), y(u3

m) )

( x(u4
m), y(u4

m) )

Fig. 1. A set of
˘`

x(um
l

), y(um
l

)
´¯L(m)

l=1
of line-boundary intersections for a tomography problem.



148 J. C. Ye

lengths can be computed by solving the appropriate equations (48) to find the inter-

section of the line parameterized by (sm, tm) with the parametrized boundary. The

Fisher information matrix is then obtained by substituting (49) and (51) into (16).

6. Partitioned Density with Multiple Boundaries

6.1. Partitioned density

This section extends our previous results to more general image configurations than

(1), which assumes f is constant over D. Suppose the image can be partitioned into

two disjoint regions,

f(x, y) =

{
f1(x, y), (x, y) ∈ D

f2(x, y), (x, y) ∈ R2\D
, (52)

where the background image f2(x, y) is known, and the unknown domain D is a

union of sub-domains Dj , j = 1, . . . , L:

D =
L⋃

j=1

Dj. (53)

Each boundary Γj = ∂Dj is parameterized as

Γj = {sj(u; θj) : u ∈ I = [0, 2π)}, (54)

where θj ∈ RKj denotes a separate unknown parameter vector. Thus, the entire

domain D is parameterized by the parameter vector θ = [θT
1 , . . . ,θT

K ]T of dimension

K =
∑L

j=1 Kj . In general, the sub-domains Dj need not be disjoint, hence the

domain D can be further partitioned into P disjoint regions:

D =

P⋃

k=1

Ωk, Ωj ∩ Ωk = ∅, j �= k. (55)

Furthermore, for each sub-domain Dj , there exists an index set Q(j) ⊂ {1, · · · , P}
such that

Dj =
⋃

k∈Q(j)

Ωk. (56)

We require f1(x, y) to be constant over each set Ωk:

f1(x, y) =

P∑

k=1

fk
1 χΩk

(x, y) (57)

where χΩk
denotes the indicator function of the set Ωk, and fk

1 is a constant. The

partitioned density model (57) is quite general and can also serve an approximation

to continuous densities.
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6.2. Computation of the CRB

Combining the object model (52) and the measurement equation (4), we can rep-

resent g(x, y) with respect to each domain Dj :

g(s, t) =

∫

Dj

f1(x, y)h(x, y, s, t)dx dy

+

∫

R2\D

f2(x, y)h(x, y, s, t)dx dy

+

∫

D\Dj

f1(x, y)h(x, y, s, t)dx dy. (58)

From the partitioned density in (57), we define:

f1,j(x, y) =
∑

k∈Q(j)

fk
1 χΩk

(x, y) (59)

f1,jc(x, y) =
∑

k∈{1,...,P}\Q(j)

fk
1 χΩk

(x, y). (60)

Using (58), (59) and (60), we then have

∂g(θ)

∂θ
(j)
i

= δJ(D,b
(j)
i ) =

∫

Γj

Zj〈b(j)
i ,n〉dΓ, (61)

where θ
(j)
i and b

(j)
i denote the i-th element of θj and the corresponding basis

function, respectively, and

Zj(x, y, s, t) = (f1,j(x, y) − f1,jc(x, y))h(x, y, s, t). (62)

Furthermore, the derivative with respect to the pixel value fk
1 is given by

∂g(θ)

∂fk
1

(s, t) =

∫

Ωk

h(x, y, s, t)dS. (63)

7. Numerical Examples

7.1. Estimation of tumor on MRI scan of human brain

We now turn to a more realistic imaging problem motivated by image reconstruction

from sparse Fourier samples.34–37 Consider the 128 × 128 MRI scan of a human

brain with a tumor in Fig. 2(a). The image has 256 gray levels and was taken from

a Harvard University medical database.38 We parameterize the boundary of the

tumor using Fourier descriptors (FD)2,3:

x(u) = a0 +

L∑

i=1

(ai cos(iu) + aL+i sin(iu))

y(u) = b0 +
L∑

i=1

(bi cos(iu) + bL+i sin(iu)), (64)
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where L = 15. In order to overcome the ambiguity due to the starting point of

the contour, in (64) the constraint aL+1 = b1 is imposed.5 Hence, the resulting

parameter vector θ is:

θ = [a0, a1; · · · a2L; b0, b2, . . . ; b2L]T ∈ R4L+1. (65)

The tumor is assumed to have constant intensity.

Suppose that 64 uniformly spaced Fourier samples are taken. This corresponds

to 64/(1282) = 0.4% of the Nyquist sampling rate that would be required to avoid

spatial aliasing for this 128×128 image. Suppose furthermore we have a full reference

MRI scan of the healthy brain, and know a priori the intensity of the tumor, and the

number of FD coefficients. Then, the imaging problem can be formulated as shape

estimation of the tumor on the known background. Note that in this simulation

the known background image has inhomogeneous density, and the boundary of the

tumor is not star-shaped. Using the techniques described in Sec. 5, we calculated

the CRB for the unknown FD coefficients.

The CRB matrix Cθ is 61 × 61, and even its 61-element diagonal is unwieldy,

and hard to interpret. Instead we have applied the global confidence region tech-

nique of Ref. 17 to the example of Fig. 2(a) and used the computed Cθ to compute,

in turn, the 98% asymptotic global confidence region, which is readily visualized.

Consider an example where the Fourier samples are corrupted with additive com-

plex Gaussian noise with a standard deviation σ equal to 20% of the rms value of

the noise-free measurements. (We denote the corresponding signal-to-noise-ratio by

SNR = 5.) Fig. 2(b) illustrates the resulting asymptotic global confidence region,

in which asymptotically any unbiased estimate of the boundary will lie with 98%

probability. This bound suggests that accurate estimates are possible even at low

Fig. 2. (a) MRI scan of a human brain with tumor, (b) 98% global confidence region (indicated
by the black region) for the boundary estimate using Fourier data corrupted by complex Gaussian
additive noise at SNR = 5.
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sampling rates, if we have a parametric description of the tumor shape and know

both the density of the tumor and the MRI scan of the healthy brain.

7.2. Estimating boundaries of synthetic phantom

Now we discuss the fundamental performance limit for estimating partitioned den-

sities. Consider the 128×128 simulated phantom in Fig. 3(a). The phantom consists

of four circular boundaries Γj , j = 1, . . . , 4 (for the disks Dj , j = 1, . . . , 4), which

are parameterized by:

sj(u; θj) =

[
xj

yj

]
+ rj

[
cos(u)

sin(u)

]
, j = 1, . . . , 4. (66)

where θj = [rj , xj , yj]
T . The true values of the parameters are given by:

θ1 =




0.80

0

0


 , θ2 =




0.76

0

−0.02


 , θ3 =




0.21

−0.20

0.35


 , θ4 =




0.21

0

−0.45


 (67)

For this problem, D3, D4 ⊂ D2 ⊂ D1, and the domain D =
⋃4

j=1 Dj is partitioned

as follows:

D =

4⋃

k=1

Ωk (68)

where

Ω1 = D1 \ D2, Ω2 = D2 \ (D3 ∪ D4), Ω3 = D3, Ω4 = D4. (69)

The partitioned image f1(x, y) in the domain D is piecewise constant and given by

f1 = χΩ11 + 0.2χΩ12 + 0.4χΩ13 + 0.4χΩ14 , (70)

Fig. 3. (a) Synthetic phantom image; (b) direct Fourier inversion using 1024 uniformly spaced
Fourier samples.
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where the intensities for each domain Ωk

f = [1, 0.2, 0.4, 0.4] (71)

can be estimated in case a priori knowledge of them are not available.

The first imaging example is again image reconstruction from sparse Fourier

samples.34–37 Suppose, that 1024 uniformly spaced Fourier samples are taken, which

corresponds to 1024/(128× 128) = 6.25% of the Nyquist rate. Direct Fourier inver-

sion (Fig. 3(b)) exhibits strong aliasing artifacts. Suppose we know a priori that

the image consists of four circles. Then, the imaging problem can be formulated as

the estimation of the center locations and the radii of each region, and the CRB for

the unknown parameter vectors can be obtained using the techniques described in

the previous section. The resulting CRB is a 12 × 12 matrix (12 parameters) and

is rather difficult to interpret. We therefore do not show it explicitly.

We have applied the asymptotic global confidence region technique to the exam-

ple of Fig. 3(a) and computed the 95% asymptotic global confidence region for an

example where the Fourier samples are corrupted with additive complex Gaussian

noise at SNR = 10 dB. First we assume that intensity (71) is known. Fig. 4(a)

illustrates the resulting asymptotic global confidence region, in which asymptot-

ically any unbiased estimate of the boundary will lie with 95% probability. This

bound suggests that accurate estimates are possible even under at low sampling

rates, if we have a priori knowledge of the number of domains and their densities.

In addition, Fig. 4(a) tells us that the estimates of small region boundaries are more

uncertain while the boundaries of large regions can be estimated very accurately. In

Fig. 4(b), we also computed the 95% global confidence regions assuming unknown

intensity. Interestingly, the uncertainty contribution from the unknown pixel values

are not so significant that we can obtain nearly the same global confidence regions.

The second imaging example is a computed tomography problem. Under the

same boundary parameterization (66), if each x-ray always crosses the object

Fig. 4. Illustration of 95% global confidence regions for parametric estimation of the boundaries
of the object in Fig. 3 from 1024 uniformly spaced Fourier samples and samples with additive
complex Gaussian noise at SNR = 10 dB assuming (a) known pixel values, and (b) unknown pixel
values, respectively.
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boundary twices, then the derivatives of gm(θ) with respect to θj = [rj , xj , yj]
T

are given by

∂gm(θ)

∂rj
= ∆fj

(
2∑

l=1

1∣∣sin
(
sm − ul

m,j

)∣∣

)
(72)

∂gm(θ)

∂xj
= ∆fj

(
2∑

l=1

cos
(
ul

m,j

)
∣∣sin
(
sm − ul

m,j

)∣∣

)
(73)

∂gm(θ)

∂yj
= ∆fj

(
2∑

l=1

sin
(
ul

m,j

)
∣∣sin
(
sm − ul

m,j

)∣∣

)
, (74)

where ul
m,j is computed by:

rj cos
(
ul

m,j − sm

)
= tm − xj cos(sm) − yi sin(sm). (75)

Suppose furthermore that the Radon transform is sampled uniformly both in angle

s and in radial direction t with Na and Nr samples, respectively, such that the

total number of samples is Nr × Na = 1024. We again use the asymptotic global

confidence region technique and compute the 95% asymptotic global confidence

region for the same synthetic phantom example. Here we assume that the Radon

transform samples are corrupted with additive Gaussian noise at SNR = 27 dB.

Figures 5(a) and 5(b) illustrate the resulting asymptotic global confidence

regions for Nr = Na = 32 assuming both known and unknown intensities, respec-

tively. As observed in Fig. 5(a), the boundary estimates of the large regions are

nearly perfect while the boundary estimates of the small regions suffer from some

uncertainty. If a priori knowledge of intensities of (71) is not available, the uncer-

tainty of the boundary estimates increase as shown in Fig. 5(b). Especially, the

uncertainties of the boundaries of the thin ring surrounding the object increase

Fig. 5. Illustration of the 95% global confidence regions for parametric estimation of the bound-
aries of the object in Fig. 3 from 1024 uniformly spaced Radon samples with sampling parameters
of Na = Nr = 32 with additive real Gaussian noise at SNR = 27dB assuming (a) known pixel
values, and (b) unknown pixel values, respectively.
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Fig. 6. Illustration of the 95% global confidence regions for parametric estimation of the bound-
aries of the object in Fig. 3 from 1024 uniformly spaced Radon samples with sampling parameters
of Na = 16 and Nr = 64 with additive real Gaussian noise at SNR = 27dB assuming (a) known
pixel values, and (b) unknown pixel values, respectively.

significantly. Note the single wide confidence region in Fig. 5(b) for the two bound-

aries of the thin ring surrounding the object. This is the union of the individual

regions for each of the concentric circles. Compared to Fig. 5(a), we can deduce

that the uncertainty of the outer ring estimate is mainly due to the uncertainty of

the image value inside the narrow ring. Therefore, the single wide confidence region

should be interpreted as uncertainty of the location of the ring as whole rather than

suggesting that the outer boundary will be estimated to be interior to the inner

boundary of the ring with some probability.

However, if we increase the radial and decrease the angular sampling rates such

that Nr = 64 and Na = 16, accurate estimation of boundaries can be achieved for

both known and unknown intensities as shown in Figs. 6(a) and 6(b). Note that

both boundaries of the outermost ring can be nearly perfectly estimated while the

other uncertainty regions are significantly reduced compared to those in Figs. 5(a)

and 5(b). Apparently, radial resolution is more important than angular resolution in

this example. As observed from this discussion, the CRB and the global confidence

region analysis can be used to design the optimal sampling pattern.

The last imaging example is a deconvolution problem with circular Gaussian

point spread function given by (8). We again assume that 1024 uniformly spaced

samples are taken from blurred image. Under the same boundary parameteriza-

tion (66), the 95% global confidence regions are illustrated in Figs. 7(a) and 7(b)

for both known and unknown intensities, with Gaussian width parameter ν = 0.2.

These figures show that a priori knowledge of the intensities greatly improves the

estimation performance. We also computed the global confidence region for a dif-

ferent value of the width parameter, in Figs. 8(a) and 8(b). Comparing Figs. 7(a)

and 8(a) reveals that, as might be expected, a smaller width parameter ν (less

blurring) generally gives better boundary estimation performance. This trend is

broken however, for sufficiently small ν (little or no blurring), as shown in Fig. 8(b)
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Fig. 7. Illustration of the 95% global confidence regions for parametric estimation of the bound-
aries of the object in Fig. 3 from 1024 uniform samples of blurred image with Gaussian point
spread function at real Gaussian noise level of SNR = 15 dB and Gaussian point spread function
width parameters given by ν = 0.2 assuming (a) known pixel values, and (b) unknown pixel values,
respectively.

Fig. 8. Illustration of the 95% global confidence regions for parametric estimation of the bound-
aries of the object in Fig. 3 from 1024 uniform samples of blurred image with Gaussian point spread
function at real Gaussian noise level of SNR = 15dB assuming known pixel values. Gaussian point
spread function width parameters are given by (a) ν = 0.4 and (b) ν = 0.00165, respectively.

as compared to Fig. 7(a), where the uncertainty in the boundary of one of the inner

circles is larger for less blurring.

The apparent paradoxical behavior, where “better measurements” appear to

lead to “worse estimates” can be explained in the following way. If ν is much

smaller than the distance between the sampling points (or their majority) and the

object boundaries, then the measurements become essentially decoupled from the

boundaries. Small changes in the boundary will only produce vanishing changes in

the measurement. This leads to large values of the CRBs on the boundary estimates,

and to the wide associated confidence regions. These results provide a bound and

asymptotic performance prediction for unbiased estimators. Better estimates may

be provided by biased estimators (e.g. by bracketing the boundary position between
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the sampling points), but their performance is not bounded or predicted by the CRB

and associated confidence regions.

8. Conclusions

This chapter has reviewed parametric shape reconstruction algorithms and intro-

duced a general method to compute Cramér–Rao bounds and the asymptotic global

confidence regions for parametric shape estimation in linear inverse problems, such

as computed tomography, Fourier imaging, deconvolution, and etc.

Although the imaging map is linear, the dependence of the measurements on

the shape of the object, as described by its boundaries, is highly nonlinear. If object

boundaries are parameterized using a finite number of unknown parameters, supe-

rior reconstruction can be obtained even under highly limited samples. Furthermore,

such superior performance can be theoretically verified by computing Cramér–Rao

bounds and the asymptotic global confidence region as described in this chapter.

Our approach is quite general and can be easily adapted to the particular form

of any linear inverse problem with possibly nonlinear observations.
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Appendix A. The Domain Derivative

Combining the object model (1) and the noise-free measurement equation (4) yields

g(s, t) = f1

∫

D

h(x, y, s, t)dx dy

+

∫

R2\D

f2(x, y)h(x, y, s, t)dx dy, (s, t) ∈ Ω. (A.1)

Equation (A.1) then defines a mapping J : {D} → {g} from the set of domains

{D}, or equivalently, boundaries {Γ}, to the space of functions {g}. This mapping

admits the general form:

g = J(D) = f1

∫

D

Z1 dS +

∫

R2\D

Z2 dS = c +

∫

D

Z dS, (A.2)

where dS = dx dy, Z1, Z2, and Z = f1Z1 −Z2 are known functions on R2, D is the

unknown object support, and c =
∫

R2Z2 dS is a function independent of D.
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Given our parametrization of the boundary, we can rewrite (A.2) to display

explicitly the dependence on θ,

g(θ) = J [D(θ)] = c +

∫

D(θ)

Z dS. (A.3)

One essential step required to compute ∇θg(θ) is produced by the functional

changes
∫

D
ZdS with respect to the deformation of Γ to Γt for infinitesimal t (see

(37)). This is known as the domain derivative or the shape derivative, and has been

studied extensively in structural mechanics.33

Proposition A.1. Let D = D(θ) be a domain with boundary Γ of class C.1 Sup-

pose the boundary Γ is deformed as in (37). Then, the domain function (A.3) is

shape differentiable with respect to boundary deformation bi, with domain deriva-

tive with respect to parameter θi:

∂g

∂θi
= δJ(D;bi) =

∫

I

Z(u)
(
bT

i n
)
(u)τ(u)du, i = 1, . . . , K, (A.4)

where Z(u)
△
= Z[s(u)], τ(u) =

√
ẋ(u)2 + ẏ(u)2 where ẋ(u) and ẏ(u) are the deriva-

tives of the components of s(u) = [x(u), y(u)]T , and n denotes the outer-normal

vector of Γ.

Proof. See Ref. 41.

Appendix B. Proof of Lemma 2

For any ǫ > 0, define

Uǫ =
⋃

i

(ui − ǫ, ui + ǫ).

Then, because the integrand is identically zero on I\Uǫ,

∫

I

δ (F (u))G(u)du =

L∑

i=1

∫ ui+ǫ

ui−ǫ

δ (F (u))G(u)du. (B.1)

Next, because the roots are isolated, F continuously differentiable and F ′(ui) �= 0,

ǫ > 0 can be chosen such that ui is the only root of F (u) and F ′(u) �= 0 for u ∈
(ui−ǫ, ui+ǫ), for all i. It follows that F (u) is strictly monotone for u ∈ (ui−ǫ, ui+ǫ),

and has an inverse Hi(α) = u, with α = F (u), and Hi(0) = ui. We can therefore

use the change of variables α = F (u),
∫ ui+ǫ

ui−ǫ

δ (F (u))G(u)du =

∫ F (ui+ǫ)

F (ui−ǫ)

δ(α)G (Hi(α))
dα

F ′(Hi(α))
(B.2)

=

∫ bi

ai

δ(α)G(Hi(α))
dα

F ′(Hi(α))
, (B.3)

where, because of the continuity of F and its monotonicity on the interval u ∈
(ui − ǫ, ui + ǫ), ai = F (ui − ǫ) < 0 and bi = F (ui + ǫ) > 0 if F ′(ui) > 0, with
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opposite signs otherwise. Using the sifting property of δ(·) we obtain
∫ ui+ǫ

ui−ǫ

δ (F (u))G(u)du =
G(Hi(0))

|F ′ (Hi(0)) | =
G(ui)

|F ′(ui)|
. (B.4)

Subtituting (B.4) into (B.1) concludes the proof.
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Mammography is the most effective method for the early detection of breast cancer. How-
ever, the high-resolution requirements associated to preserve small-size or low-contrast
lesions have limited the widespread use of digital mammography and have hindered
the use of computers as a second opinion in the detection of this disease. Data com-
pression provides an important and viable solution to this problem. In this chapter we
describe region-based methods for wavelet compression that represent the state-of-the-

art in image compression performance. We begin by reviewing means for coding regions
of interest with higher fidelity than the background through scaling of the correspond-
ing sets of wavelet coefficients, including the JPEG2000 Maxshift method. Then, we
describe briefly the SPIHT (Set Partitioning in Hierarchical Trees) image compression
algorithm and its particular ROI (region of interest) adaptation, called OBSPIHT, to
digital mammography. Next, we present a quantitative comparison of OBSPIHT, SPIHT,
and JPEG2000 in the compression of the breast region. As we will see, the results indi-
cate that region-based compression methods are clearly superior to regular methods for
digital mammography. An extensive clinical study that ensued to compare OBSPIHT
with JPEG2000 will show that the radiologically important features are well preserved
even at substantial compression ratios.

Keywords: Digital mammography; wavelet techniques.

1. Mammography and Breast Cancer Detection

Breast cancer represents a leading cause of cancer death among women in devel-

oping countries. Despite that this disease represents a sanitary problem of great

importance, the risk factors associated to breast cancer are not much modifiable or

susceptible of primary prevention. Today, the efforts for the treatment of breast can-

cer are aimed toward establishing a diagnostic decision as early as possible. Breast

cancer survivor success is strongly related to the stage of cancer at diagnosis. The

earlier the breast cancer could be detected, the greater the possibility of treatment

161
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success and the fewer women that would die or suffer unnecessary mutilation. For

this reason, the secondary prevention, early detection, plays a fundamental role in

the control of this disease.1

It has been shown that the most effective method for the detection of breast

tumors before they manifest clinical symptoms is mammography. However, the lack

of methodological procedures for predicting those women susceptible of suffering

the disease has lead to run breast cancer screening programs that evaluate asymp-

tomatic populations using mammography. Therefore, mammography has become

the medical image modality used as a screening and diagnostic tool for the detection

of breast cancer.

2. Digital Mammography

The main advantage of digital medical imaging systems is the possibility of split-

ting the acquisition, processing and display processes into separate stages, and

offering the possibility of independently improving each stage. Digital image for-

mat allows a more efficient health care environment that integrates the hospital

information system (HIS), which manages demographic and clinical history of the

patients with the picture archiving and communication system (PACS). Moreover,

digital medical imaging permits the utilization of advanced applications such as

computer-aided detection (CAD) schemes to assist radiologists in the detection of

radiological features that could point to different pathologies. Medical images in

digital format constitute an obligatory requisite toward the implementation of tel-

eradiology, offering the possibility of a second opinion consultation from an expert.

These advantageous features favor the replacement of conventional screen film imag-

ing by digital technology in radiology departments.

As other image modalities, mammography benefits from the digital format.

However, small changes in the performance of an image modality used for screen-

ing tasks will affect a considerable number of individuals if the screening population

is large. This fact has motivated that the commercialization of digital mammogra-

phy devices require more extensive testing than any other x-ray technique for only

diagnostic purposes.2 Currently, there are four full-field digital mammography sys-

tems approved for clinical use by the U.S. Food and Drug Administration (FDA).3

Each of these systems is based in different detector technologies: the FCR 5000MA

Computed Radiography for Mammography (Fuji Medical Systems, Stamford, CT,

USA), the SenoScan Full-Field Digital Mammography System (Fischer Imaging

Corporation, Denver, CO, USA) that uses CCD (charged couple device) technol-

ogy, the Senographe 2000D (GE Medical Systems, Milwaukee, WI, USA) that uses

flat-panel detectors based on amorphous silicon, and the Lorad Selenia Full Field

Digital Mammography System (Hologic Inc., Bedford, MA, USA) based in amor-

phous selenium technology. There is also a direct x-ray acquisition system based on

silicon dioxide detector under clinical trials, the Sectra MicroDose Mammography

system (Sectra, Linköping, Sweden).
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However, the main advantage of conventional mammography is the image qual-

ity obtained at low cost. For this reason, the widespread use of digital mammogra-

phy devices has been conditioned to evaluate whether the digital modality provides

a better diagnostic performance over the conventional technology. Research works

carrying out comparative studies have shown that digital mammography systems

significantly improve detection of subtle lesions such as microcalcifications, visual-

ization of low-contrast details or dense breast parenchymal tissue, and definition of

skin.4–9 Another study comparing detection of breast cancer using hard copy images

or soft copy images displayed on a high-resolution monitor found no significant dif-

ferences in diagnostic interpretation or reporting speed between both modalities.10

The image processing methods included in digital mammography systems permit

filtering, contrast enhancement, or other types of digital image manipulation that

avoids repeating any mammogram with inadequate quality,11 in contrast to conven-

tional techniques where images are rejected in case of poor contrast or under/over

radiation exposure. Those encouraging results promise the implementation of the

digital technology in mammography in the near future.

3. Wavelet Compression in Digital Mammography

Transition from conventional to digital mammography also depends on two param-

eters of importance: the spatial and grey-level resolutions. Both pixel size and pixel

depth are factors that critically affect the visibility of small-low contrast objects

or signals, which often are relevant information for diagnosis. They must provide a

diagnostic accuracy in digital images equivalent to that of conventional films.

For instance, it has been shown that isolated clusters of microcalcifications are

one of the most frequent radiological features of asymptomatic breast cancer. A

careful search for the clustered microcalcifications that may herald an early-stage

cancer should be done on all mammograms.1 Microcalcifications frequently appear

as small sized-low contrast radiopacities.12 Because of this, a typical mammogram

must be digitized at a resolution of about 4000 × 5000 pixels with 50µm spot

size and 12 bits, resulting in approximately 40Mb of digital data.13 These high-

resolution requirements also retard the implementation of digital mammography

systems due to the increase in processing, transmission time and storage capac-

ity cost associated with these high-resolution images. It is clear that advances in

technologies for transmission or storage are not sufficient to solve this problem.

Efficient data-compression schemes to reduce digital data have been investigated as

an important and viable solution to this problem.

In medical image compression, and generally in data compression, the wavelet

transform (see Appendix) emerged as a tool for new compression methods that

outperformed the existing techniques mainly based on the discrete cosine trans-

form (DCT).14–16 Studies applying wavelet-based methods on medical images

reported better qualitative performance than the DCT-based JPEG (Joint Pho-

tographic Experts Group) standard for image compression.17–19 With time, the
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wavelet transform became a technique frequently used when compressing medical

images.20,21 In digital mammography, research studies are analogously presented

evaluating DCT22–26 and wavelet compression techniques,27,28 both reversible or

lossless (exact reconstruction of the original image after compression) and irre-

versible or lossy (some information is lost during the compression process) methods.

More recently, embedded wavelet methods appeared with the possibility of pro-

gressive encoding of digital images.29,30 These embedded methods are appropri-

ate for applications such as telemammography, transmitting a first approximation

of the mammogram and progressively increasing the pixel accuracy until a radi-

ologist could diagnose with the reconstructed image quality achieved. Methods

such as the well-known SPIHT (Set Partitioning in Hierarchical Trees) and the

new emerging standard for still image compression, the JPEG2000, are embed-

ded techniques based on the wavelet transform that have been applied to digital

mammography.31–34

However, lossless techniques provide only modest reduction in file size. In images

of high-resolution format used in screening programs as digital mammography,

significant reduction of transmission and storage costs is mainly obtained using

irreversible compression methods, although with detriment to the quality of the

reconstructed image.

4. Evaluation of Compression Methods in Digital Mammography

Although some controversy still exists about the use of lossy compression in medical

imagery, the U.S. Food and Drug Administration (FDA) allows medical image

management devices to use irreversible compression if it is guaranteed that the

information loss does not affect diagnostic performance. Research studies need to be

performed, since the particular compression ratio that would be acceptable depends

on the radiological features of the medical image modality and the compression

technique used.20 Some evaluation studies have determined that loss of information

does not compromise diagnostic interpretation when compression rates are limited

to certain ranges.24,26,31,34–37

4.1. FDA and ACR-NEMA specifications for medical

image compression

The FDA demands that medical management device manufacturers identify any

standard data compression scheme used for image communications and storage.

When those devices use non-standard compression methods, such algorithms should

be described in detail, while providing any available technical report. In either case,

standard and non-standard methods, manufacturers should specifically state the

compression ratios to be employed.38

Following FDA specifications, the operating instructions of medical image

management devices utilizing irreversible methods should include description of

compression effects and examples of the resulting image quality after the loss of
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information. Moreover, all images compressed with an irreversible method should

be labeled with the compression ratio used. Manufacturers should conduct labora-

tory tests for communications and storage devices using non-standard irreversible

image compression techniques. For such devices, the normalized mean square error

should be reported for each compression level employed by the device.

Teleradiology is defined by the American College of Radiology (ACR) as the

electronic transmission of radiological images from one location to another for the

purposes of interpretation and/or consultation.39 The ACR Technical Standard for

Teleradiology allows the use of reversible and irreversible data compression tech-

niques to increase transmission speed and reduce storage requirements. Always

under the supervision of a qualified physician, it is possible to utilize any compres-

sion ratio but the loss of information should not significantly decrease the image

quality for clinical diagnostic purposes.

4.2. Quantitative evaluation

The evaluation of a compression method can be specified by different measures

such as the distortion introduced, the memory requirements for its execution, the

relative complexity and speed of the algorithm, the compression ratio, etc.

For example, the compression ratio (which is defined as the quotient between

the number of bits necessary to represent the original image and the number of bits

needed for the compressed image) determines the level of compression achieved by

the method. Another common measure for reporting compression performance is

the average number of bits required to represent a single sample of the compressed

image. This is generally referred to as compression rate, which is measured in bits

per pixel (bpp). Both compression ratio and the rate of the compression method

are related by the expression:

Compression Ratio =
rate of the original image

rate of the compressed image
(1)

Another important issue is to establish the quality of the reconstructed image,

i.e. the distortion introduced in the compression process. As the compression ratio

increases, the quality of the resulting image is degraded. A parameter for measuring

the degree of distortion introduced is the peak signal-to-noise ratio (PSNR), which

is often measured in a logarithmic scale

PSNR([dB]) = 10 log10

(
A2

MSE

)
(2)

where A is the peak amplitude of the original image, and MSE is the mean squared-

error between the original and the reconstructed image:

MSE = DMSE (X − X̂) =
1

N

N∑

n=1

(xn − x̂n)2 (3)

with xn and x̂n the original and the reconstructed image samples, respectively, and

N the number of samples in each image.
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Both PSNR and MSE are the most common parameters used for measuring the

image quality of reconstructed images after compression. Although these parameters

could be of limited value for medical images, the FDA demands to measure and

report the normalized mean squared error (defined as the MSE normalized by the

variance of the original image) for each compression factor utilized by those medical

management devices using lossy compression methods.38

4.3. Qualitative evaluation

In digital mammography (and in general in digital medical imaging), the evaluation

of a lossy compression method must consider whether the information loss is diag-

nostically significant for the specific clinical issue to be addressed. It is therefore

necessary to investigate and determine the compression range where the compres-

sion method can be used without significant degradation of the medical image

quality for human or machine interpretation.

4.3.1. Important radiological signs in digital mammography

The detection of primary radiological signs of breast cancer in compressed digital

mammograms must be evaluated for determining whether it is possible to compress

a digital mammogram before using it for diagnosis. In mammography, clusters of

microcalcifications and masses are the most relevant radiological signs indicating

the presence of breast cancer:

(i) Microcalcifications are small deposits of calcium with size between 0.1 and

2.0mm. They can appear isolated or gathered in clusters (Fig. 1). While in

most cases individual microcalcifications are not clinically significant, clustered

microcalcifications appear in 30%–50% of breast cancers.1 Malignancy of micro-

calcifications is mainly determined based on their radiological characteristics,

such as type of clustering, number of microcalcifications within the cluster,

their distribution, size or shape.

Identification and analysis of microcalcifications are difficult tasks for radi-

ologists. Most of the difficulty is due to their irregular shape, their variation

in size, and the inhomogeneous background of the parenchymal tissue in which

Fig. 1. Mammogram region containing several clusters of microcalcifications.
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Fig. 2. Mammogram region containing a malignant mass with speculated shape and a benign
mass of rounded shape.

they are located, resulting in a poor contrast of the microcalcifications with

the surrounding structures. Because of their clinical relevance and potential

subtlety, detection of microcalcifications has been a primary focus of attention

for the radiology community.40

(ii) Masses are three-dimensional structures that may represent a localizing sign of

breast cancer. Malignant masses usually have spiculated or ill-defined margins

and irregular shapes. Spiculated and ill-defined margins are due to the infiltra-

tive process of the tumour in the tissue. On the other, benign masses are usually

characterized for having sharp, well-defined margins and they generally present

round regular shapes. In many cases, malignant masses are embedded in the

glandular tissue, so that their contrast with the surrounding is very low. The

detection of masses in mammograms is difficult because of their low contrast,

and their variation in shape and size (Fig. 2).

The high image quality requirements for the detection of these important radiologi-

cal signs in breast cancer have made digital mammography one of the medical image

modalities where compression applications need to be evaluated with more care.

4.3.2. Evaluation experiments

First developed in statistical decision theory, Receiver Operating Characteristic

(ROC) analysis is widely used to evaluate and compare the performance of diag-

nostic techniques in medical imaging.41 In an ROC experiment, an observer or

radiologist views a group of images and rates each image (typically in a 5-point or
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continuous rating scale) according to his/her confidence about the presence (pos-

itive) or absence (negative) of a specified disease or radiological sign. Observer

responses yield an ROC curve plotting sensitivity (the fraction of actually-positive

cases correctly classified as positive) versus 1-specificity (the fraction of actually-

negative cases incorrectly classified as positive). The area under the ROC curve is

used as an objective measure of performance of the combination image modality and

observer in detecting the disease or radiological sign. However, ROC experiments

are limited to binary decisions, without considering signal location.

There are currently three generalizations of the ROC methodology to overcome

this limitation, each requiring a different task of the observer for collecting detection

and localization data. The Localization ROC (LROC) approach only permits zero

or one signal per image and forces the observer to make a location response of a sus-

picious region even if the observer considers the image as negative.42 In the region

of interest (ROI) approach to location-specific ROC analysis,43–45 the observer is

forced to localize the signal within a quadrant or region of the image. This experi-

ment imposes a reading paradigm different from the clinical practice. Alternatively,

in the Free-response ROC (FROC) experiment,46,47 the observer determines the

number of responses or suspicious regions per image and localizes them, assigning

a rate for each response. The FROC paradigm allows any number of signals per

image, which appears to be a closer representation of the search strategy followed

by radiologists in clinical practice.

The performance of radiologists reading digital mammograms reconstructed

after compression can be investigated by means of these observer performance

studies. Evaluation of a compression method is performed comparing the figures

of merit (for example, the areas under the curve) obtained from the analysis of the

collected data for each radiologist when using original digital mammograms and

digital mammograms reconstructed after compression.

5. Studies in Wavelet Compression of Digital Mammography

In the literature, there are some research works evaluating lossy compression in

digital mammography with computer-aided detection (CAD) systems or observer

performance studies.

Good et al. applied the old standard JPEG to sixty digital mammograms, eval-

uating the performance of eight observers in the detection of masses and clusters

of microcalcifications by ROC (Receiver Operating Characteristic) analysis.24 In a

similar study, Zheng et al.26 assessed the performance of a CAD system in the detec-

tion of primary signs of breast cancer in 952 digital mammograms reconstructed

after JPEG compression. Both studies obtained no statistical difference in results

for detecting masses, but a significant difference was found for the detection of

clusters of microcalcifications when using compressed images.

As wavelet transform emerged as a more effective technique for image com-

pression than JPEG, other evaluation studies appeared in the literature apply-

ing wavelet-based methods to digital mammography.31,37 Kocsis et al.37 assessed
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the detection of clusters of microcalcifications in sixty-eight mammograms com-

pressed with a public domain wavelet-based method. Four observers were included

in their ROC study obtaining that a visually lossless threshold is found at 40:1.

Perlmutter et al.31 evaluated fifty-seven digital mammograms compressed with the

SPIHT (Set Partitioning In Hierarchical Trees) algorithm. In their work, a designed

protocol simulating clinical practice was used to assess whether lossy compression

yields differences to fundamental decisions made in screening. Although not based

in accuracy of lesion detection, sensitivity and specificity were calculated for each

observer and compression level, concluding that no statistical significant differences

existed between analog or digital originals and compressed mammograms at 80:1

compression ratio.

In the last years, the JPEG2000 compression standard, based on wavelet trans-

form, has emerged providing new features with promising applications in medical

image compression. The JPEG2000 standard has been evaluated in digital mam-

mography. Sung et al.33 have assessed JPEG2000 at several compression ratios in

twenty low-resolution digitized mammograms. They included three radiologists in

the ROC study and determined no differences in lesion detectability with ratios

up to 20:1. Suryanarayanan et al.34 have investigated the effect of JPEG2000 in

ten contrast-detail phantoms containing circular gold disks of different diameter

(0.1–3.2mm) and thickness (0.05–1.6µm). The phantoms were acquired in a clin-

ical full-field digital mammography system and compressed at different ratios (10,

20, and 30:1). They included seven observers in the study, finding no significant

difference in perception up to 20:1 except for the disks of 1mm of diameter.

6. Region-based Wavelet Compression of Medical Images

Encoding of arbitrarily shaped regions inside an image at different quality levels

can help to develop medical image compression methods that focus on those regions

that are important for diagnostic purposes. Such methods provide the possibility of

adequately compressing the regions with diagnostic relevance with better quality

than the rest of the image.

Generally, in region-based compression methods the whole image is transformed

(for example using the wavelet transform) and those coefficients associated to the

region of interest are coded at higher precision (up to lossless) than the rest of

the image. After segmenting the image into important regions (automatically or

manually), coding of only ROI-related coefficients can be accomplished either after

a certain compression bit rate of the entire image has been reached,48 or before the

information associated to the background,49 as in the region-based coding meth-

ods of the JPEG2000 standard: the Maxshift method and a general-scaling based

method.50,51

The growing interest in manipulating visual objects in digital images or video

has led to new region-based or object-based wavelet coding techniques, which

describe the images in terms of arbitrary contours and image samples inside the

contour, coding them separately.52,53 These new techniques apply shape-adaptive
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wavelet transformation only to the image samples inside the object of interest54

instead of the full image, as does the region-based methods in JPEG2000. Then, the

object shape information is coded (lossless or lossy) before the pixels of the object.

According to the technique used for coding the shape information, the object-based

coding methods are classified into block-based or contour-based techniques. In the

first, a binary image representing the object shape is encoded as in a conventional

image coding method. In the latter, the shape information coding is performed

along the edge or contour of the object. Among the contour-based techniques, a

chain code55 is one of the most frequently used methods for lossless coding of the

object shape information. In this method, instead of encoding the absolute posi-

tion of each contour point, the relative position between two consecutive points is

encoded. Therefore, an initial point in the contour object and the necessary links

following this point to describe the contour of the object are enough for reconstruct-

ing the object shape.

6.1. JPEG2000 Maxshift ROI coding

In the Maxshift ROI coding adopted in JPEG2000 Part-1,56,57 an entire image

is transformed and only the coefficients associated with the region of interest are

scaled up through a particular number of bit-shifts (called scaling value s) given by

the largest number of non-empty magnitude bit-planes of the coefficients (Fig. 3a).

The bit-planes of coefficients are encoded plane by plane to let the ROI have higher

fidelity than the rest of the image. For lossless coding of the region of interest, it is

necessary to code those surrounding coefficients that take part in the reconstruction

of the sample image values within the ROI. Figure 4 shows an example in one

Fig. 3. Coefficients bit-shifting in ROI coding: (a) Maxshift ROI, (b) scaling-based ROI method,
and (c) object-based coding with shape-adaptive wavelet transform. The wavelet coefficients sur-
rounding the ROI that are needed for the reconstruction of the image samples within the ROI are
marked with dark hatch.
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x1x0 x2 x3 x4 x6x5 x7 x8 x10 x11x9 x12

l6l5l0 l2 l3 l4

object backgroundbackground

l1 h6h5h0 h2 h3 h4h1

high-pass
subband

object object

Additional coefficients for lossless coding of the object
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x13
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Fig. 4. The inverse wavelet transform with the reversible 5/3 wavelet filter. Additional coefficients
that are needed for the reconstruction of the image samples within the object are marked with
dark hatch.

dimension of filtering corresponding high-pass and low-pass subbands using the

reversible 5/3 wavelet filter57 to reconstruct the image samples by

x2n = ln −
⌊

hn−1 + hn + 2

4

⌋
(4)

x2n+1 = hn +

⌊
ln + ln+1

2

⌋
(5)

Considering the inverse wavelet transform described above, it can be seen in

Fig. 4 that coefficients l5, h1 and h5 as well as the coefficients within the object

are necessary to reconstruct samples from x4 to x9, where xi, li and hi represent

values of an image sample, a low-pass subband coefficient and a high-pass subband

coefficient, respectively. The additional coefficients depend on the filter length and

the wavelet decomposition depth.

One of the advantages of this method is that it does not need to transmit

the shape information and just sends the scaling value s, because the decoder can

identify the wavelet coefficients scaled up just by comparing each coefficient with

a threshold 2s. However, with the code stream associated with the most signifi-

cant s bit-planes, the object cannot be exactly decoded since the decoder cannot

distinguish coefficients within the object from coefficients surrounding the object.58

6.2. JPEG2000 scaling-based ROI coding

In the scaling-based ROI coding adopted in JPEG2000 Part-2,59 the entire image is

transformed and the coefficients associated with the region of interest (within and

around the region) are scaled up by a certain number of bit-shifts, as illustrated

in Fig. 3(b). Then, the bit-planes of coefficients are encoded from most to least

significant plane. Specifying the scaling value can control the difference of image

quality between the ROI and the rest of the image. Although JPEG2000 Part-2

specifies scaling-based ROI coding only for rectangular or elliptic areas, the concept

of this technique can be easily extended to encode regions of arbitrary shape. In the
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scaling-based ROI coding, shape information has to be transmitted to the decoder

unlike the Maxshift ROI method. Therefore, in scaling-based ROI coding, the object

can be exactly decoded by discarding all of the background. But at the background

surrounding the object, the additional coefficients still might cause unwanted effects

at an early stage of progressive coding.58

6.3. Object-based coding with shape-adaptive wavelet transform

Object-based approaches are being studied as a new video coding paradigm,53,60

in which only the image samples within an object are transformed using a shape-

adaptive discrete wavelet transform,54,61 the object shape information is addition-

ally sent to the decoder, and the resulting coefficients are encoded. Such a coding

paradigm may be more easily applied to still images where the object or objects

are fixed in shape and position, being non-deformable and motionless. With this

technique, the coding can be done to any desired accuracy and will not affect pixels

outside the object. Figure 3(c) illustrates that scaling up coefficients only within

the ROI does not involve scaling of adjacent background pixels, so that there are

no undesirable effects in the background or the ROI.

The object-based coding of an image requires to apply a two-dimensional wavelet

transform to a region with arbitrary shape and to efficiently encode the resulting

wavelet coefficients. A two-dimensional region with arbitrary shape is comprised of

several rows and columns of varying lengths. In a separable two-dimensional wavelet

transform, transformation of rows in place is followed by transformation of the

resulting columns of coefficients in place. So, for arbitrary-shaped regions, several

one-dimensional wavelet transforms of different lengths must be enacted. Figure 5

shows an example of shape-adaptive discrete wavelet transform for a single row of

pixels, in which only the hatched samples are transformed and both edges of the

segment are extended by the symmetric extension. Different types of extensions,

subsampling strategies, and known single coefficient padding, explained in Refs. 54

and 61 are needed to ensure reversibility for any data length (odd or even) and any

starting position within a row or column. Note that, in a shape-adaptive wavelet

x1x0 x2 x3 x4 x6x5 x7 x8 x10 x11x9 x12

.. x6 x5 x4 x6x5 x7 x8 x8 x7x9 .

l2 l3h2 h3 l4 h4

extension extension

transform

object backgroundbackground

Fig. 5. One-dimensional shape-adaptive wavelet transform with symmetric extension.
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transform, object and background pixels are never mixed together in filtering and

that the number of resulting transform coefficients is exactly the same as the number

of pixels in the region, unlike the two previous ROI methods.

6.3.1. Object-Based Set Partitioning In Hierarchical Trees (OBSPIHT)

The SPIHT (Set Partitioning In Hierarchical Trees) method has been adapted for

encoding arbitrarily shaped regions inside an image according to their importance

or diagnostic relevance. This object-based adaptation of SPIHT, called OBSPIHT,

applies a shape-adaptive wavelet transformation only to those pixels belonging to

the region of interest instead of the whole image. Then, OBSPIHT uses a chain

code method to transmit the shape information of the ROI. Finally, OBSPIHT

progressively encodes only the wavelet coefficients associated to that region.

6.3.1.1. The Set Partitioning In Hierarchical Trees method

The SPIHT is an efficient wavelet-based embedded coding algorithm developed by

Said and Pearlman,30 which is representative of the state-of-the-art in image com-

pression. This coding method is an extension and improvement over the Embedded

Zerotree Wavelets (EZW) algorithm developed by Shapiro.29

The SPIHT method takes advantage of the spatial self-similarity across sub-

bands inherent of the image wavelet transform, i.e. there are wavelet coefficients

in different subbands of the transformed image that represent the same spatial

localization in the original image. Studies in the literature have successfully applied

SPIHT to lossy compression of medical images.31,32,36

When the distortion measure is MSE as in Eq. (3), it is invariant to the wavelet

transform, i.e.

DMSE (X − X̂) = DMSE (C − Ĉ) =
1

N

N∑

n=1

(cn − ĉn)2 (6)

where C and Ĉ represent the image after wavelet transformation and the wavelet

transformed image reconstructed by the decoder, respectively. Therefore, to yield

the largest distortion reduction at any compression ratio, the wavelet coefficients

with larger magnitudes have to be transmitted first, as they have a larger content

of information (here, the term information is interpreted to point out how much

the distortion can be reduced after decoding that part of the bitstream).

In order to achieve a progressively refined reconstructed image with minimum

reconstruction error (embedded method), SPIHT utilizes a bit-plane transmission

scheme where wavelet coefficients are partially ordered according to its binary rep-

resentation (analogous to its magnitude):

⌊log2 cn⌋ ≥ ⌊log2 cn+1⌋ ≥ · · · , n = 1, . . . , N (7)
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and transmits first the most significant bits of the most important coefficients. The

partial ordering by magnitude of wavelet coefficients is due to sequential compar-

isons of coefficient magnitudes to a set of decreasing thresholds: given k, a threshold

value 2k is set with the purpose of identifying those wavelet coefficients such that:

| cn| ≥ 2k, k = k0, k0 − 1, k0 − 2, . . . (8)

Those coefficients with higher magnitude than a given threshold are called signifi-

cant respect to that threshold value. The initial threshold k0 is chosen verifying:

2k0 ≤ | cn| < 2k0+1, ∀ cn. (9)

With the aim to efficiently determine significant coefficients with respect to a

given threshold, SPIHT uses a Set Partitioning Sorting Algorithm that partitions

the wavelet transform coefficients into sets that are significant or insignificant with

respect to the current threshold. This Sorting Algorithm considers that, given a set

of coefficients U , then:

if max
cn∈U

{|cn|} ≥ 2k : then U is a significant test

otherwise : U is insignificant set
(10)

In case U is labelled as insignificant, all coefficients within U are insignificant, being

unnecessary to sort these coefficients. Otherwise, a fixed rule is used to partition U
into new subsets where the test is applied again for determining their significance.

If one of the new subsets is labelled as insignificant, no more assessment is done.

In the other hand, if the subset is significant, the partition procedure is recursively

applied until the significant coefficients are determined.

The specific initial sets and partitioning rules of the SPIHT exploit the spa-

tial self-similarity across subbands inherent in wavelet transformed images, and the

fact that coefficients at low-resolution subbands are expected to have higher magni-

tudes than coefficients at high-resolution subbands. SPIHT considers that wavelet

coefficients belonging to similar spatial orientation are organized into descendant

trees, spanning wavelet subbands from the lowest spatial frequency (at the root) to

the highest frequency subbands (at the leaves). In this tree-structure, called spatial

orientation tree, each node corresponds to a wavelet coefficient and its descendants

are those of the same spatial orientation in the next subband level. In the initial

set grouping, the highest level of the decomposition pyramid is divided into blocks

of 2 × 2 coefficients in which each coefficient, except for the upper left one, rep-

resents the root of a hierarchical tree: the upper-right coefficient is the root of the

hierarchical tree in the LH subbands; the lower-left coefficient of the HL subbands;

and the lower-right coefficient of the HH subbands (see Fig. 6). If a coefficient is

insignificant with respect to a given threshold, all its descendants are likely to be

insignificant with respect to the same threshold.

Each time the algorithm finds a node cn whose set of descendants is signif-

icant, the tree-based partitioning rule decomposes this set into the four isolated

offspring coefficients and all the descendants of the offspring (granddescendants),
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OFFSPRINGS

GRANDDESCENDANTS

Fig. 6. Spatial orientation tree in the SPIHT coding algorithm.

as shown in Fig. 6. The magnitude test is then applied to the new five subsets. If

the granddescendant subset of coefficient cn is determined as significant, the tree-

based partitioning rule decomposes it into the four subsets of descendants of the

offspring of cn. This process continues until all significant coefficients with respect

to the current threshold are identified. A more detailed description of the SPIHT

algorithm is found in the original paper.30

7. Region-based Compression Methods for Digital Mammography

Compression of digital mammography would benefit from the possibility of deter-

mining several regions with different importance within an image before compres-

sion. For example, an expert radiologist or a CAD system can determine regions

inside the mammogram containing primary radiological signs of breast cancer, such

as clusters of microcalcifications and masses, as a preliminary step in a compres-

sion scheme for digital mammography. These areas can be compressed at a different

ratio than the rest of the breast and, furthermore, the radiological background can

be discarded.

Encoding techniques, such as OBSPIHT, permit the compression of multiple

regions with precise bit rate control yielding different quality levels within the

image. The feature of multiple quality levels is also provided in the general scaling-

based method of the ROI coding mode supported in the JPEG2000, but it is not

permitted in the Maxshift method.51 In scaling-based methods, control of bit rate

in ROI regions, although supported, but not specified in JPEG2000, would be

inordinately cumbersome to implement. The standard JPEG2000 has also avoided
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the overhead associated with the encoding of the shape information defining only

rectangular and ellipse regions, although principles of the general scaling-based

method can be extended to handle regions with arbitrary shape. However, a scaling

coefficients procedure, especially in multiple regions, may require downward scaling

of the background due to precision limitations. In that case, the least significant

bitplanes are lost, causing additional quality degradation of the background.50

We present a region-based adaptation of SPIHT to digital mammography.32

7.1. OBSPIHT adapted to digital mammography

In a typical digitized mammogram much of the area in the image corresponds to the

radiological background pixels rather than to tissue pixels. The radiological back-

ground does not provide useful information for diagnosis. To optimize compression

in digital mammograms it is important to code the least information about back-

ground as possible. Detecting the breast border in the image, the OBSPIHT method

can be applied considering the breast as the object of interest.

7.1.1. Mammogram segmentation

An automatic method is used for detecting the breast border62: (1) two cut-off grey

levels are established to eliminate artefacts and get an homogenous background;

(2) the thresholded image is smoothed; (3) five reference points, (x1, y1), (x2, y2),

(x3, y3), (x4, y4), and (x5, y5), are automatically selected dividing the breast into

three regions; (4) the breast border is detected with a tracking algorithm establish-

ing that a point (xi, yi), belongs to the breast border if the grey level value, f(x, y),

of its nine previous image samples verify the condition:

f(xi−9, yi−9) < f(xi−8, yi−8) < · · · < f(xi−3, yi−3) ≤ f(xi−2, yi−2)

≤ f(xi−1, yi−1) ≤ f(xi, yi).
(11)

The tracking process is applied along different directions depending on the breast

region. In region I the algorithm searches the breast border from left to right; in

region II from top to bottom; and finally in region III from right to left (Fig. 7).

The detection algorithm is relaxed such that the breast border obtained is always

external to the real border.

Calculating the slope of the breast border in the reference points (x1, y1) and

(x2, y2), the detected border is enlarged until it reaches the edge of the digital image.

Hence, the breast region where the relevant information for diagnosis is included is

completely determined within a closed contour. This contour permits to construct

a binary mask determining the breast region within the image (Fig. 8). This mask

is used in the next stages of the object-based compression method.

7.1.2. Contour coding

In our implementation, a two-link chain coding method presented in Ref. 63 is

applied for coding the breast border. This two-link chain coding uses a contour
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Fig. 7. Closed contour determined in the segmentation process. Reference points dividing the
breast into three regions are also shown.

Fig. 8. Breast border detection in a digital mammogram and generation of binary mask deter-
mining the region to be compressed.

lattice for representing the shape of the breast region and obtaining a more effi-

cient coding of its contour. The contour lattice is formed by the half-pixel positions

between two neighbouring pixels in the horizontal (+) and vertical (o) directions

of the digital mammogram. The binary mask determining the breast region is rep-

resented on the basis of this structure as links between two points on the contour

lattice (Fig. 9).

Since the breast has a smooth border, given a point of the contour lattice on the

breast border, the number of the next possible links can be limited. This results in
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pixel belonging to the mammogram

pixel outside the mammogram

intermediate position in the horizontal direction

intermediate position in the vertical direction

Fig. 9. Closed contour determined in the segmentation process. Reference points dividing the
breast into three regions are also shown.

a reduction of the number of bits necessary to represent the border of the mammo-

gram region.

7.1.3. Region-based discrete wavelet transform

The shape-adaptive discrete wavelet transform used to adapt OBSPIHT to digi-

tal mammograms, called region-based discrete wavelet transform (RBDWT), was

proposed by Barnard.61

The binary mask obtained during the segmentation process specifies the region

within the image where the RBDWT will be applied, in that case the breast region.

Using separable wavelet filters, the two-dimensional RBDWT is achieved applying

one-dimensional arbitrary length signal transform by rows and then by columns on

the samples inside the image object. Efficient signal extensions allow decomposi-

tion up to an arbitrary level for arbitrary length signals with perfect reconstruction

property. Moreover, the same number of wavelet coefficients than image samples

will represent the signal after transformation.61 The one-dimensional signal seg-

ments inside the arbitrary shape do not all start at an even- or odd-numbered

position inside the row or column. Therefore, a proper subsampling strategy in

the filtering process has to be chosen to preserve the spatial correlation within the

image object. Depending on the parity of the segment length and the parity of the

position at which the segment starts in the row or column, there are four classes

of signal segments inside the object, which require different signal extension and

subsampling.61
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(a) (b)

Fig. 10. Decomposition of the binary mask. (a) The original binary mask is divided in blocks of
2× 2 pixels, each sample in the block corresponds to a submask; (b) the decomposed binary mask
is split into four submasks (LL,LH,HL and HH), analogously to the wavelet subbands.

Once the breast region is decomposed up to the first level, it is necessary to

determine the wavelet coefficients in the LL subband where the RBDWT must be

applied again to obtain the next decomposition level. This information is provided

by decomposing the binary mask analogously to the wavelet subband decomposition

of the image, as it is shown in Fig. 10. The LL submask specifies the region within

the transformed object where the RBDWT will be applied again. The pyramidal

decomposition of the binary mask can continue to get the required decomposition

level of the breast region.

A 5-level dyadic decomposition of the breast region inside the mammogram was

obtained with the two-dimensional RBDWT method using 9-tap/7-tap biorthogo-

nal filters64 (Fig. 11).

7.1.4. Coding of the wavelet coefficients

The binary mask provides the shape information needed for extending the conven-

tional SPIHT algorithm. With the pyramidal shape mask constructed as it has been

explained in Sec. 7.1.3, the nodes belonging to the breast region in each subband

are known.

Figure 12 shows how the set partitioning produces branches to subsets falling

outside the breast region. In the object-based extension, before the coding of the

wavelet coefficients, the nodes and child branches outside the image object are

pruned. During the coding process, no information about nodes and branches out-

side the breast region is transmitted.63



180 M. Penedo and W. A. Pearlman

Fig. 11. The binary mask of Fig. 8 decomposed up to the five level.

coefficient INSIDE the object with

All its descendants INSIDE the

object

LL1 LH2

HL1 HH2

HL3 HH3

HL1 HH1

LH2 LH1

coefficient OUTSIDE the object

with descendants INSIDE the

object

valid parent-child relation

cut-off parent-child relation

coefficient INSIDE the object with

descendants INSIDE the object

coefficient OUTSIDE the object

with All its descendants

OUTSIDE the object

Fig. 12. Set Partitioning rules for the OBSPIHT coding method adapted to digital mammograms.

8. Studies in Region-based Wavelet Compression

for Digital Mammography

In Refs. 24, 26, 31, 37, optimization of the compression process is obtained identify-

ing the least rectangular area containing the breast region and compressing it to a

different degree than the rest of the image. Recently, the object-based modification

of the SPIHT method, OBSPIHT, has been adapted to digital mammography and
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presented in Ref. 32. This region-based method compresses only the breast region

inside the mammographic image. Quantitative evaluation of OBSPIHT showed an

improvement in compression efficiency when using region-based methods compared

to original SPIHT or JPEG2000. Qualitative evaluation of OBSPIHT in digital

mammography has also been carried out, comparing results with the new standard

JPEG2000.65 Compression ratios up to 80:1 can be obtained with both methods

without decreasing the diagnostic accuracy of digital mammograms for detecting

important radiological signs.

8.1. Example of quantitative evaluation

The quantitative study evaluates the adaptation to digital mammography of the

region-based coding method OBSPIHT by means of the PSNR (peak signal-to-

noise ratio). The OBSPIHT has been compared to SPIHT and the JPEG2000 when

compressing the full digital mammogram and the image with the radiological back-

ground previously set to zero. The former quantifies the performance improvement

of region-based over full-image techniques; the latter is a comparison to a candidate

region-based technique.

8.1.1. The data set

Five single-view conventional mammograms containing clusters of microcalcifi-

cations and masses, all biopsy proven, were used in this study. Mammograms

were digitized with a commercially available laser film digitizer (LUMISCAN 85,

Lumisys Inc.; CA, USA) at a resolution of 4,096 horizontal × 5,120 vertical pixels

(50µm/pixel). The optical density range, from 0.03 to 4.1, was digitized to 12 bits

precision, which provided 4,096 gray levels per pixel.

8.1.2. Numerical quality evaluation

Lossy compression performance of the OBSPIHT was evaluated at different rates

(0.1, 0.2, 0.4, 0.6, 0.8, and 1.0 bpp) on the set of five digital mammograms by means

of the PSNR. The coding results were compared with those obtained applying

the original SPIHT algorithm and the standard JPEG200066 on the whole image.

OBSPIHT was also compared to SPIHT and JPEG2000 applied to the same set

of images with the background previously fixed to a constant value of zero. With

these pre-processed images, both algorithms encode the breast region before the

background pixels resulting, for this study, in similar implementations to that of

OBSPIHT.

The SPIHT algorithm was utilized with the irreversible 9/7 biorthogonal filters64

and with the reversible S+P filter67 to examine lossy to lossless coding. Similarly,

JPEG2000 was applied using the 5/3 reversible and the 9/7 irreversible filters.a

aJPEG2000 Verification Model Software 8.5, ISO/IEC JTC1/SC29/WG1 N1894, 2000.



182 M. Penedo and W. A. Pearlman

Table 1. Average PSNR (dB) at various rates for all mammograms included in the study.

RATE OBSPIHT 9/7 S+P 9/7 5/3 9/7 9/7 5/3
SPIHT SPIHT JPG2K JPG2K SPIHTroi JPG2Kroi JPG2Kroi

0.1 48.22 46.37 46.41 46.91 46.46 47.89 48.33 48.06

0.2 50.64 47.81 47.84 48.39 47.92 50.38 50.97 50.62
0.4 54.77 49.79 49.45 50.08 49.44 54.49 55.35 54.93
0.6 58.80 50.95 50.75 51.27 50.69 58.48 59.58 58.90
0.8 63.16 51.92 51.78 52.38 51.76 62.81 64.04 62.97
1.0 67.57 52.86 52.93 53.44 52.64 67.04 68.36 67.50

In order to compare region-based to full-image coding methods, the PSNR mea-

surements for all methods were calculated within the breast region where the object-

based coding method was applied.

8.1.3. Results and discussion

On average, the region-based coding method OBSPIHT obtained better results in

terms of PSNR than normal SPIHT and JPEG2000 for all bit rates tested (see

Table 1). In fact, the average distortion achieved at around 0.6 bpp (26.7:1) with

SPIHT or the standard JPEG2000 corresponds to a compression rate of 0.2 bpp

(80:1) with OBSPIHT, making clear the improvement obtained with the object-

based compression technique. The SPIHT and JPEG2000 methods applied to the

images with background set to zero, which we call SPIHTroi and JP2Kroi, proved to

be quite competitive in PSNR with the object-based coding method applied to the

mammogram region. Actually, on average, the object-based method always intro-

duced less distortion than SPIHTroi, but JP2Kroi was sometimes slightly better

than OBSPIHT and SPIHTroi.

Magnified regions of interest containing a cluster of microcalcifications are shown

in Fig. 13. Although the reconstructed ROIs are at the same rate, more rice artifacts

are visible with general compression methods (SPIHT and JPEG2000) compared

to the region-based OBSPIHT and the JP2Kroi methods (Fig. 13).

In this evaluation, OBSPIHT exhibited much higher quality in the breast region

at the same compressed file size than full-image compression methods as SPIHT

and the standard JPEG2000. Moreover, the SPIHTroi and JP2Kroi, both anal-

ogous to scaling-based compression methods applied to the breast region, were

competitive in PSNR to OBSPIHT. Although they do not provide the possibility

of encoding multiple regions of interest within the image, as the OBSPIHT. These

results showed that region-based methods for digital mammography represent an

improvement in compression efficiency from full-image methods.

8.2. Example of qualitative evaluation

In this study we assessed the effects of the OBSPIHT method on the detection of

clusters of microcalcifications and masses on digitized mammograms, comparing
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Fig. 13. (a) Originial ROI containing a cluster of microcalcifications; the same ROI is shown:
(b) after OBSPIHT compression at 0.4 bpp, (c) after 9/7 SPIHT compression at 0.4 bpp, (d) after
9/7 JPEG2000 compression at 0.4 bpp, (e) after 9/7 JPEG2000 compression at 0.4 bpp of the
preprocessed image with background set to zero (JP2Kroi). Rice artefacts are shown with general
compression methods (c) and (d).
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results with the full-image JPEG2000. The observer performance study took place

at the Laboratory for Radiological Image Research at the University of Santiago

de Compostela, Spain.

8.2.1. The data set

A total of 112 single-view conventional mammograms were used in this study. Of the

112 cases, 28 contained one or two clusters of microcalcifications, 19 mammograms

contained one mass, 17 contained both signs and 48 were normal cases. The images

presented a total of 54 clusters of microcalcifications (32 determined as malignant)

and 36 masses (24 determined as malignant), all biopsy proven. The subtlety of

the radiological signs was ranked by an experienced radiologist, not included as a

reader in the study, on a four-level scale: 2 of the clusters were rated as obvious to

detect, 21 as relatively obvious, 23 as subtle, and 8 as very subtle; 9 of the masses

were rated as obvious to detect, 3 as relatively obvious, 16 as subtle and 8 as very

subtle.

All images were digitized with a commercially available laser film digitizer

(LUMISCAN 85, Lumisys Inc.; CA, USA) at a resolution of 4,096 horizontal ×
5,120 vertical pixels (50µm/pixel). The optical density range, from 0.03 to 4.1, was

digitized to 12 bits precision, which provided 4,096 gray levels per pixel.

Each digitized mammogram was compressed at 0.4 and 0.2 bpp (respectively,

40:1 and 80:1 compression ratios) and then decompressed using the region-based

method OBSPIHT and the standard JPEG2000.

8.2.2. Observer performance study

After reconstruction, a total set of 560 digital mammograms in five compression

levels was obtained: 112 original digitized uncompressed, 112 compressed at 40:1

with JPEG2000, 112 compressed at 80:1 with JPEG2000, 112 compressed at 40:1

with OBSPIHT, and 112 compressed at 80:1 with OBSPIHT. All images were

printed onto film with a high resolution DICOM printer (SCOPIX LR5200-P; Agfa-

Gevaert, Mortsel, Belgium).

The 560 images were randomly assigned to 16 reading sets, avoiding repetition

of the same image from any modality within the same set. Five radiologists with

different degrees of experience in mammography, ranging from 10 to 12 years, par-

ticipated in the study reviewing all images. Images were viewed on a standard light

box under conditions of low ambient lighting. Readers could use a magnifying glass.

Image sets and images within each set were presented in a different random order

for each observer. The observers were told that cases were negative or had at least

one biopsied lesion (cluster of microcalcifications, defined as five or more signals

within a region of 1 cm2 of area,1 or mass). Observers were required to identify the

location and extension of any cluster of microcalcifications or mass, and to record

a level of confidence for each finding in a four-point FROC (Free-response Receiver
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Operating Characteristic) rating scale: level 4, radiological sign definitely present;

level 3, probably present; level 2, possibly present; and level 1, questionable. An

independent expert mammographer established the truth location (as the distance

in millimeters from a reference point) and extension (delimited with the closest con-

tour surrounding it) of each finding, reviewing the patient’s radiology and pathology

reports. Following the methods of Kallergi et al.,68 when an observer read an image

and pointed a detected area approximately no more than four times and at least

the 50% of the true area, the case was scored as a true-positive detection.

Since an observer saw each image five times during the FROC experiment (orig-

inal uncompressed + four compressed versions), a time limit of 20 seconds per film

was imposed on the observers to avoid learning effects. An assistant recorded the

responses of the observers and removed the images from the light box when the

time limit was exceeded. At least one week elapsed between each reading session to

further reduce learning effects.

8.2.3. Statistical data analysis

Data for the 2,800 observations (5 modalities× 5 readers× 112 cases) were evaluated

with the Jackknife Free-response Receiver Operating Characteristicb (JAFROC)

analysis method.69 In addition to allowing location of an abnormality to be acc-

ounted for the scoring, the method permits multiple responses and multiple lesions

per image. This method uses as a figure of merit θ, which is defined as the probability

that a lesion is rated higher than a false positive on a normal image. Recent extensive

validation studies on simulated data sets have shown that the JAFROC method can

yield substantially greater statistical power than the ROC method.69,70

8.2.4. Results and discussion

Tables 2–4 show the values of the FROC figure of merit (θ) quantifying the perfor-

mance of the observers in the detection of clusters of microcalcifications, masses,

and both radiological signs with the different image modalities tested: uncompressed

digitized images, images compressed at 40:1 and 80:1 with OBSPIHT, and images

compressed at 40:1 and 80:1 with JPEG2000. JAFROC analysis determined that

differences between the five modalities were insignificant at the 5% level, for clus-

ters of microcalcifications (F-stat = 0.2554; p = 0.9026), masses (F-stat = 0.3400;

p = 0.8478) and both radiological signs detection tasks (F-stat = 0.1217; p =

0.9747).

Figure 14 shows a region containing a subtle cluster of microcalcifications from

an uncompressed image, and the same region after irreversible compression using

OBPIHT and JPEG2000 at 40:1 and 80:1. In Fig. 15, an uncompressed region

bThe JAFROC software used in this study is available for download from the web site
http://jafroc.radiology.pitt.edu.
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Table 2. FROC figure of merit (θ) values quantifying observer performance in
the detection of clusters of microcalcifications for all compression methods and
ratios included in the study.

READER ORIGINAL JPEG2000 JPEG2000 OBSPIHT OBSPIHT
40:1 80:1 40:1 80:1

1 0.83 0.80 0.77 0.79 0.79
2 0.85 0.88 0.82 0.83 0.84
3 0.82 0.86 0.91 0.91 0.87
4 0.74 0.72 0.74 0.73 0.77
5 0.75 0.78 0.73 0.78 0.74

Average 0.80 0.81 0.80 0.81 0.80

Table 3. FROC figure of merit (θ) values quantifying observer performance in
the detection of masses for all compression methods and ratios included in the
study.

READER ORIGINAL JPEG2000 JPEG2000 OBSPIHT OBSPIHT
40:1 80:1 40:1 80:1

1 0.81 0.85 0.82 0.86 0.86
2 0.69 0.67 0.76 0.69 0.71
3 0.85 0.78 0.86 0.81 0.88
4 0.82 0.81 0.78 0.80 0.77
5 0.87 0.85 0.82 0.85 0.786

Average 0.81 0.79 0.81 0.80 0.82

Table 4. FROC figure of merit (θ) values quantifying observer performance in
the detection of both radiological signs clusters of microcalcification and masses,
for all compression methods and ratios included in the study.

READER ORIGINAL JPEG2000 JPEG2000 OBSPIHT OBSPIHT
40:1 80:1 40:1 80:1

1 0.72 0.73 0.72 0.75 0.73
2 0.72 0.73 0.74 0.72 0.70
3 0.76 0.74 0.82 0.80 0.77
4 0.68 0.68 0.65 0.66 0.66
5 0.74 0.75 0.71 0.73 0.74

Average 0.72 0.73 0.73 0.73 0.72

containing a subtle mass and the corresponding regions after lossy compression

with OBSPIHT and JPEG2000 at 40:1 and 80:1 are shown. In both examples,

radiological signs are well preserved even at 80:1 compression.

The main conclusion from this analysis is that lossy compression at 80:1 using

the OBSPIHT and the JPEG2000 can be used without decreasing the detection

accuracy of important mammographic signs. However, as shown in the quantita-

tive evaluation,32 the region-based method OBSPIHT improves compression perfor-

mance within the breast region compared to the standard JPEG2000 applied to the
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Fig. 14. Region of interest containing a cluster of microcalcification: (a) original region, (b) same
region compressed at 40:1 with OBSPIHT, (c) at 40:1 with JPEG2000, (d) at 80:1 with OBSPIHT,
and (e) at 80:1 with JPEG2000.

whole image. The compression efficiency of the region-based method OBSPIHT over

a full-image method as the standard could be more perceptible when using high-

resolution monitors with image visualization tools (such as window/level adjust-

ments, pan and zoom functions, or rotating and flipping images) for displaying the

digital mammographic study.
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Fig. 15. Region of interest containing a subtle mass: (a) original region, (b) same region com-
pressed at 40:1 with OBSPIHT, (c) at 40:1 with JPEG2000, (d) at 80:1 with OBSPIHT, and (e) at
80:1 with JPEG2000.

9. Concluding Remarks

The emerging region-based wavelet compression methods are very suitable for

medical imaging providing the possibility of compressing several regions at dif-

ferent quality levels according to their diagnostic relevance. We have seen, as

a first approximation, how to adapt state-of-the-art ROI compression methods,

such as OBSPIHT, to compress only the breast region in a digital mammogram.

Application of the region-based method OBSPIHT to several regions within the

digital mammogram is straightforward. An expert radiologist or an automatic CAD

(computer-aided detection) system can determine these regions beforehand.

The importance of digital mammography in the screening and diagnosis of breast

cancer requires to evaluate extensively any compression method that would be



Region-Based Digital Data Compression: Digital Mammography 189

applied to this image modality. The validation for the clinical practice of a region-

based compression method for digital mammography should be based on research

studies such as the presented in this chapter. Our results showed that detection

of important radiological signs is not degraded, even at substantial compression

rates. The OBSPIHT compression method could be used in digital technologies

such as PACS and telemammography, reducing storage and transmission costs and

facilitating digital mammography as a medical imaging modality.

This evaluation, however, does not establish the upper limit where the com-

pression technique can be used so far without losing relevant information. Further

assessment of the region-based compression method for its application with com-

puterized detection of radiological signs of breast cancer or evaluating compressed

images on high-resolution display workstations should also be carried out.
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A. Appendix

In this section a brief background on wavelet analysis is introduced. General prin-

ciples and further details of wavelet theory are explained in Ref. 71.

A.1. The wavelet transform

The wavelet transform (WT) decomposes a signal f over wavelet functions obtained

as translations u and dilations s of a mother wavelet function ψ of zero average:

Wf(u, s) =

∫ +∞

−∞
f(t)

1√
s
ψ∗
(

t − u

s

)
dt. (A1)

Shifting the translation u and scale s parameters, the wavelet transform, unlike the

Fourier Transform, provides a time-frequency representation of the signal. That

powerful characteristic led the WT to become a technique used for non-stationary

signals in several applications, including biomedicine.16 Additionally, sampling the

translation and scale parameters as u = 2jn and s = 2j, it is possible to construct
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a discrete orthogonal wavelet basis holding the signal details necessary to obtain a

finer resolution representation of the signal, which is related with a multiresolution

representation.

In a multiresolution approximation, approaches of a signal at different resolu-

tions are determined with a discrete orthogonal basis obtained as dilations and

translations of a scaling function φ. This multiresolution representation is com-

pletely specified by a discrete conjugate mirror filter h. It has been demonstrated

that an orthogonal wavelet basis is constructed with a mother wavelet ψ, which

is derived from φ and h, providing the detailed information lost when passing the

signal to a coarser resolution representation. The orthogonal wavelet is designed

with a conjugate mirror filter g given by:

g[n] = (−1)1−n h[1 − n]. (A2)

A signal f at a scale 2j is then represented in a coarse resolution as:

f =

+∞∑

n=−∞
aj+1[n]φj+1,n +

+∞∑

n=−∞
dj+1[n]ψj+1,n (A3)

where aj+1[n] = 〈f, φj+1,n〉 and dj+1[n] = 〈f, ψj+1,n〉 are the approximation coeffi-

cients and the wavelet coefficients of f at a coarse resolution, respectively.

The fast implementation of the discrete wavelet transform is computed with a

filter bank, which decomposes the signal with these conjugate mirror filters h and g,

respectively low and high pass filters, and subsamples the output by 2 (Fig. A1).

Extension to multiple dimensions is easily obtained with separable wavelet filters,

which extracts signal details at different scales and orientations, applying conjugate

mirror filters along each dimension. A schematic diagram of the wavelet decompo-

sition of an image is shown in Fig. A2.

In a wavelet-based lossy compression method, the original image is first trans-

formed and once in the wavelet domain, coefficients are quantized (represented

with a less number of bits, which incurs in a loss of information) and entropy coded

(coded with the minimum number of bits required), obtaining a compressed file.

The decompression procedure inverts all this steps in reverse order, obtaining the

Fig. A1. Fast implementation of the one-dimensional wavelet transform: decomposition of ai is
computed with a cascade of filtering followed by a factor 2 downsampling (↓2); reconstruction
of ai is done by inserting zeros between samples of ai+1 and di+1, filtering and adding up the
output.



Region-Based Digital Data Compression: Digital Mammography 191

First decomposition level

N/2 x N/2

Original Image

NxN

Original Image Transformed Image

 COLUMNS

ROW

h

h

g

g

2

2

h 2

h 2

2

2

g 2

h

g

2

h 2

2

g 2

g 2

Second decomposition level

N/4 x N/4

ROW

COLUMNS

Fig. A2. Schematic diagram of the decomposition two-dimensional dyadic wavelet transform. In
the original image, first each row is filtered and subsampled by 2, then, each column is filtered
and subsampled by 2. Four subimages are obtained, called wavelet subbands, referred to as HL,
LH, HH (high frequency subbands), and LL (low frequency subband). The LL subband is again
filtered and subsampled to obtain four more subimages. This process can be repeated until the
desired decomposition level.

reconstructed image, which is not exactly the original image due to the quantiza-

tion step. Further performance improvement is obtained with embedded techniques,

which combine in the compression process the quantization and coding strategies

that add in characteristics of the wavelet decomposition, such as the SPIHT algo-

rithm and the JPEG2000. These coding methods utilize a bit-plane coding tech-

nique to produce a bitstream that can be truncated at any point (equivalent to

stopping the compression process at a desired compression rate), whereupon the

image can be reconstructed with the minimum distortion.

Numerical studies have shown that the 9/7 biorthogonal filters provide the best

distortion rate performance for wavelet-based lossy compression of images.64,71,72
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Three-Dimensional segmentation and tracking of anatomical organs is widely used for
diagnosis of diseases and planning of surgical interventions. However, these are difficult
tasks due to the complexity and variability of the anatomic shapes, sampling artifacts
and noise. Moreover, 3D medical image modalities provide voxel datasets in which the
sampling is normally uniform along each axis though the voxels themselves tend to have
anisotropic resolution. Where 3D image data sets have no isotropic spatial resolution,
features cannot be extracted in 3D, and therefore a slice-to-slice framework is more
adequate.

Deformable models have been developed for segmentation and tracking. In this work
two active contour approaches are reviewed and applications include automatic contour-
ing of organs and tracking of organ motion. The first active contour is devoted to tackle
segmentation tasks where the desired features of the object of interest could slightly
change from slice to slice, while the second active contour is dedicated to tracking tasks
where the features of the object of interest do not change from frame to frame, but the
shapes do. The segmentation approach aims to learn and update the best discriminants
from one slice to the next. The tracking approach, however, assumes well established
goal features and intends to reach them as fast as possible.

Keywords: Segmentation; tracking of anatomical organs.

1. Introduction

An important property of 3D medical images is that they are discrete samples of

an object at a finite number of voxels in three dimensions. A medical image might

be made of a single slice, a series of parallel slices with uniform spacing, a series of

slices with varying spacing and/or orientation, or volumes. But multislice images

can also be made up of non-parallel slices. For example, the majority of ultrasound

images are acquired with a free-hand transducer. If the transducer is moved in a

controlled way or tracked, the relative positions of the frames can be recorded, and

a three-dimensional dataset obtained.

The process of forming a discrete image from a continuous object is called

sampling. In some modalities of medical image, data are acquired from an entire
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volume, but usually, a stack of individual slices is acquired. The gap between the

centre of adjacent samples in a given direction is the sampling interval, which is

often anisotropic. For instance, the sampling interval in the through-slice direction

in tomographic images is often larger than in the slice plane.

A 3D image typically has a large number of voxels and is very compute inten-

sive for processing such as segmentation and tracking. While the raw image can

be readily displayed as 2D slices, 3D analysis and visualization requires explicitly

defined object boundaries, especially when creating 3D surface models. For exam-

ple, to create a 3D rendering of a human brain from a MR image, the brain needs

to be identified first within the image and then its boundary marked and used for

3D rendering. Image segmentation identifies the attributes of voxels and defines

the boundaries for voxels that belong to the same group. Additionally, measure-

ments and quantitative analysis for parameters such as area, perimeter, volume and

length, can be computed when object boundaries are defined.

In medical imaging, the subject being imaged has three spatial dimensions, but

it also changes with time. For instance, clinicians use ultrasound imaging to gen-

erate real-time movies of left ventricular motion to assess if a heart is functioning

well. To automatically derive quantitative measures of heart function is a challenge

because cardiac ultrasound image sequences are noisy and good images difficult to

acquire. Tracking is the task of estimating the position of an object along a tem-

poral sequence. In medical image analysis, techniques for segmenting of anisotropic

spatial sequences and for tracking of temporal sequences, usually, come close. In

that context, the goal of segmentation is to find out the boundaries of one or more

target objects along the spatial sequence of slice images, meanwhile tracking is

aimed to follow the movement of one or more objects from the same point of view.

Where spatial proximity can be assumed in a 3D anisotropic sequence, the appear-

ance of two adjacent slice images is similar, and the same happens along a temporal

sequence if the steps in time are not too long.

Because of the importance of identifying objects from an image, there have

been extensive research efforts on image segmentation and tracking for the past

decades. A number of image segmentation/tracking methods have been developed

using fully automatic or semi-automatic approaches for medical imaging and other

applications.

Before introducing a brief revision of segmentation/tracking techniques we

report a final reason for performing a slice to slice processing rather than deal-

ing with the whole bulk of data.

1.1. Scene versus object based interpolation

Usually, 3D medical image modalities provide voxel datasets in which the sampling

is normally uniform along each axis (256 × 256 × 124 for a typical MR image

volume), though the voxels themselves tend to have anisotropic resolution (e.g.

0.8 mm × 0.9 mm × 2 mm). The third dimension is often treated differently from
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the first two, so a 3D image is commonly treated as a sequence of 2D images. In

general, it is safe to say that high image quality can often be achieved only at the

expense of patient throughput, and a difficult decision is the selection of the most

appropriate tradeoff between quality and throughput.

Algorithms for volume analysis are often based on filtering techniques which

presume isotropy. Interpolation is required whenever the acquired image data are

not at the same level of discretization as the level that is desired. For an appropriate

medical treatment it is necessary that the data at requested locations are recon-

structed as precisely as possible taking into account not only the characteristics of

a 3D signal conveying the data but also the topological properties of the explored

structures. Interpolation algorithms can broadly be divided into two categories:

image-based and shape-based.

The simplest image based interpolation method involves linearly interpolat-

ing the grey values in the slices to fill in the grey values in the missing slices.

However, artifacts (diffuse contours and grey level discontinuities) are produced

when the contour locations on two adjacent slices shift considerably. To reduce

these artifacts, higher order functions have been proposed to perform interpola-

tion. Several approaches are based on the matching between feature points on dif-

ferent slices, and then the intermediate slices are generated from the interpolation

of locations and values of matched points.19 Figure 1 illustrates an image based

interpolation.

From the beginning shape-based algorithms required a description of objects

to be interpolated. The first approaches were based on contour interpolation of

the 2D segmented regions. Raya and Udupa47 proposed an interpolation of dis-

tance fields computed from binary slices. The method consists of first segmenting

the given image data into a binary image, converting the binary image into a dis-

tance map from the slice boundary, and then interpolating between each pair of

adjacent distance maps. The zero-valued voxels define the object boundaries. Turk

and O’Brien60 proposed a method which combines the generation of distance func-

tions (contour description) and the interpolation between these two functions into

a single step. Given two shapes in the plane, a set of boundary and normal con-

straints are generated for each shape, and instead of using each set of constraints

separately to create the two different 2D implicit functions, the method embeds all

the constraints in 3D and invokes 3D variational interpolation to create a single

scalar-valued function in 3D.

Although image-based filters have received a lot of attention in the visualization

community, there is repeated evidence in the literature of the superior performance

of shape-based over scene-based interpolation techniques.

Figure 2 illustrates a shape-based interpolation of a femur in a anisotropic 3D

CT image sequence. The figure in the top shows the voxels of bone regions after

eliminating other tissue voxels. It can be noted the anisotropic sampling. The figure

at the bottom shows the geometric reconstruction of the femur after shape based

interpolation of the stack of femur contours along the slices.
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Fig. 1. Image based interpolation: (Upside) slices location and the correspondence between two
feature points on two slices between which several slices are interpolated to reach isotropic reso-
lution. (Bottom) Original slice-i, four intermediate interpolated slices and original slice-i − 1.

Fig. 2. Shape based interpolation: (Upside) segmentation. (Bottom) Interpolation between
contours.
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1.2. Segmentation and tracking

Three-Dimensional segmentation of anatomical organs is widely used for diagno-

sis of diseases and planning of surgical interventions. However, the segmentation

of medical images is a difficult task due to the complexity and variability of the

anatomic shapes, sampling artifacts and noise.

Despite the capabilities of the different medical imaging modalities, it is difficult

to develop automated or semiautomated methods to extract object surfaces from

image data. Edge-based methods allow delineation of regions through the location

of their contours, typically as points of high gradient. However, this approach has

two major difficulties. First, the threshold value to achieve effective edge detection

varies from slice to slice, leading to significant errors. Second, it has a high sensibility

to noise, particularly between regions with small contrast, and needs gap closing

methods to link edges belonging to the same boundary.

Image segmentation by thresholding provides binary images composed by

regions that identify objects segregated from the background. Greyscale thresh-

olding works well when images have uniform regions and contrasting background.

Its major drawback is the lack of local adaptability, voxels of the same tissue may

exhibit different intensities between slices and even within the same slice. It is gen-

erally necessary to postprocess the image using mathematical morphology,2 and/or

combining thresholding with region growing.70

Region-based methods yield parts of the image which meet the requirements

of a given uniformity criterion. One of the most widely used techniques in this

category is region-growing. In its simplest form, the method starts with a small

region and then examines its neighbourhood in order to decide whether or not they

have similar features. If they do, then they are grouped together to form a new

bigger region. It has two drawbacks: first, post-processing is usually required to

cope with infra- and over-segmentation, generally applying domain knowledge;13,54

and second, it also suffers from bad location of boundaries.

Regardless what segmentation method is used, automated methods often can-

not generate perfect object boundaries. The difficulty of segmentation is an

aspect of global/local duality. Consideration of local features can lead to over-

segmentation, and erroneous fusions (infra-segmentation) can be obtained using

only global features. To tackle the problem of obtaining a tradeoff between

infra/over-segmentation, (local) edge information and (global) homogeneity infor-

mation must be combined during image segmentation.9,38,45,68 Moreover, a mean-

ingful segmentation must take into account high level descriptions of the objects.8

Region-based segmentation can be improved by introducing knowledge about

the domain. As a matter of example, we describe a rule-based approach for region

growing whose scheme is sketched in Fig. 3.41 The system was developed for the

segmentation of CT image sequences and has two main blocks: low level (extracts

low level features) and high level (performs region growing by using domain knowl-

edge). The system has also two memories: data base (input, output, intermediate
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Fig. 3. Global scheme of a knowledge-based region growing system.

results, etc.), knowledge domain (rules, strategies, etc.). The system begins to carry

out a low level presegmentation by means of a neural network classifier. Then,

regions and their features are organized in a region adjacency graph (RAG), where

the nodes contain region features and the weighted arcs represent the size of the

shared contours. After the presegmentation, the high level stage works directly

over the RAG. It begins with the selection of growing kernels of bone areas and

completes the recognition of the bone structures by applying rules for the merg-

ing and the splitting of regions. The growing process is driven by a set of fuzzy

rules that embodies criteria as compactness, closure, spatial closeness and distance

to a model. Given the 3D continuity of the bone structure, shape and location

of bone in each slice are similar to those in the previous slice. So, the bone con-

tour delineated in the previous slice is considered as a model for the current slice.

The process starts by defining an area of interest (AOI) by means of the dilation

of the model mask. Regions whose centroid are out of this area are discarded.

From the remaining regions, the most dense ones are chosen as the growing kernels

(the higher the intensity, the higher the probability of belonging to the bone). All

these tasks are carried out by the block Area/Region Of Interest. The bone grow-

ing is performed by the combined action of two blocks Region Merger and Object

Analizer, which decide on the merging of regions to bone kernels, and the
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incorporation of new bone kernels respectively. The process iterates until a stop

criterion, derived from the measurement of matching between objects and mod-

els, is achieved in the Evaluation And Control block. If different structures appear

overlaid, then a splitting process, guided by edge information (low level), has to

be carried out. Edge information is obtained combining the outputs of an edge

operator with several scales (Iσ1 , . . . , Iσn
) and taking into account the shape and

location of the model (constraints imposed by the knowledge on the domain). The

system has a special sub-block for edge focusing and scale space analysis.

Deformable models approaches provide a simplest and more effective alterna-

tive to rule-based systems. Deformable models stand out from other segmentation

techniques due to their ability to interpret sparse features and link them to obtain

object contours. An exhaustive summary of the application of deformable models

to medical images can be found in the work by McInerney and Terzopoulos.31

Deformable models have been developed for segmentation and tracking. In this

paper two active contour approaches will be reviewed and applications will include

automatic contouring of organs and tracking of organ motion. The first active con-

tour technique is devoted to tackle segmentation tasks where the desired features

of the object of interest could slightly change from slice to slice, while the second

active contour technique is dedicated to tracking tasks where the features of the

object of interest does not change from frame to frame, but the shape does. The

segmentation approach aimed to learn and update the best discriminants from one

slice to the next. The tracking approach, however, assumes well established goal

features and intends to reach them as fast as possible.

2. Segmentation by Active Contours

A deformable model is an energy minimization method, where the energy func-

tional is defined in terms of intrinsic shape attributes (internal energy) and desired

image features (external potential).23 The external potential originates forces that

attract the model to specific image features while the internal energy causes stress

forces that try to maintain model continuity and smoothness. When a minimum is

reached the geometric deformation finishes. Therefore, the model evolves from its

initial location to approach the nearest energy minimum, which maybe does not

correspond to the desired object surface.

Although the classical edge-oriented deformable contour models have demon-

strated high efficiency in the segmentation of biomedical structures, they are not

free of limitations. Since the classical snakes are based on gradient information, they

share some limitations of edge detectors. Ronfard48 proposed a new deformable

model which uses no edge information, but local computations around contour

neighbourhoods (region information). Statistical models of object and background

regions are used to push the model towards border points. Region information can

provide clues to guide the evolution where gradient information vanishes (homo-

geneous areas). This method was proposed for the case of step-edges but cannot
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distinguish boundaries between objects of similar features. Ivins and Porril proposed

a related approach where a snake is driven by a pressure force that is a function

of the statistical characteristics of image data.21 The model expands until it finds

pixels that lie outside user-defined limits relative to the statistical characteristics of

a seed region; when these limits are crossed the pressure force is reversed to make

the model contract.

Region features present the advantage of being less sensitive to noise. Their

inconveniences reside in that the change of the pixel characteristics that suggest

the presence of a contour remains diluted in the global character of the region

features. This frequently provokes the undesired merging of regions. This problem

can be alleviated with gradient/edge information. Chakraborty et al.6 proposed a

deformable boundary finding approach that integrates region and edge information

for the segmentation of homogeneous structures surrounded by a single background.

This approach must know a priori which regions belong to the object of interest.

This idea was also extended to 3D.56

A unifying framework which generalizes the deformable model, region growing,

and prior matching approaches was proposed by Zhu et al.71 The method combines

local and global information, and local and global optimization. It can be applied

both for obtaining global segmentation of images and finding individual regions.

Several researchers augmented snake-like models with prior information about

typical mean shapes and normal variations.12,55 A number of researchers have incor-

porated knowledge of object shape using deformable shape templates. We can find

in the literature statistical-based approaches, which preferably attract the curve

towards image features consistent with their trained shapes4,6,12,34,55,67 and/or

grey level appearance. Turk and Pentland59 have used principal component analysis

to segment face images in terms of a set of basis functions. Paragios and Deriche39

have proposed geodesic active contours based on a supervised statistical modeling,

which combine a priori knowledge about the desired boundary, and the exterior

and interior region properties. Yezzi et al.65 have presented active contours with a

natural use of global and local information to segment regions distinguishable by a

given set of statistics. Some authors consider the full appearance (shape and grey

level) of the object.25,26

The model-based segmentation could be stated as a two (no necessarily disjoint)

phases: registration and free form deformation. On one hand, registration describes

a transformation with far less degrees of freedom than the free form deformations.

Therefore, their ability to represent shape variations is less important than the

free form deformation. On the other hand, because of their restricted degrees of

freedom, they tend to be more robust than free form deformations. So, the first is

better for describing global shape and location, and the second is better in detecting

fine details.

The integration of the selection of features, and their scales, in a statistical

framework is the most convenient approach to relate the segmentation technique

to the specific segmentation task. Our approach combines the selection of the best
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scale, for the fine local fitting, with a multiscale approach to cope with cases where

there is a big change in contour location from one slice to the next slice.

When deformable models are applied to 3D medical data, two kinds of seg-

mentation are possible: 21
2D (slice by slice) and 3D. Initialization is simpler for

2 1
2D segmentation, since it is applied just to the first slice. Each slice is initialized

with the result of the previous one. When processing slice sequences, the contour in

the previous slice can be used as the initial deformation state in the present slice.

The construction of the object surface is usually carried out by stacking the con-

tours obtained from the 2D segmentation of each CT slice and connecting adjacent

contours using polygons.

Manual edition of initial 3D surfaces is very laborious, and the automatic or

semiautomatic initialization is usually more complex than the 2D counterpart. In

deformable model literature we can find different approaches to cope with the initial-

ization problem in 3D. Some approaches are based on the manual or semiautomatic

selection of anchor points. Among them is the imposing of interactive constraints

in the form of springs and volcanoes,23 and the method of Neuenschwander et al.,35

that allows the user to fix a set of seed points and their normal vectors, which

cannot be changed during deformation.

Some authors propose multiple initialization through several seed models. Dur-

ing the deformation process, several initial models will merge and the superfluous

ones should be removed.58 Important decisions have to do with: the number and

location of initial seed models, the stopping criteria of the seed growing process,

and choosing one result among the final models.

Fully automatic initialization can be achieved by matching the object in the

image with a prototype, as done by Bajcsy and Kovacic3 who used brain atlases in

their specific-purpose initialization techniques. There are several problems with the

deformable atlas approach: the technique is sensitive to initial positioning of the atlas,

and the presence of neighbouring features may also cause matching problems. One

solution is to use image preprocessing in conjunction with the deformable atlas.51

Moreover, the length of the objects to be segmented can vary significantly, so

the use of 3D a priori models can be very complex.

As a counterweight to the low robustness due to the usual low accuracy in

initialization, deformable surface models have the power to ensure smoothness and

coherence in 3D shapes. However, where 3D image data sets have no isotropic

spatial resolution, features cannot be extracted in 3D, and therefore a slice-to-slice

framework is more adequate.

2.1. Enhancement of desired feature-points

The success of any active contour is based on the discrimination and spatial conti-

nuity of the image features used to guide the curve. Obtaining correct result of the

segmentation is intricately tied to the type of the sought features and the criteria

used for discriminating between the extracted features.22
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Usually, image features are not selected in accordance with the specific organ

and image modality; thus too many feature points that do not belong to the organ

of interest are enhanced, while other important ones go unnoticed. Several authors

proposed the combination of different image features depending on the application

domain and the objects to be segmented.4,67 However, the best way of selecting

and integrating different features remains an open problem. The feature space must

be capable of representing all image features of interest. To achieve such a broad

description, we propose employing a bank of Gaussian derivative filters. Numerous

physiological measurements support the theory that receptive field profiles can be

modelled by Gaussian filters of various widths and their partial derivatives.17,24,66

From a mathematical point of view, it has been proven that the complete family

of scale-space Gaussian kernels defines a sufficient Cartesian family for complete

determination of local image structure.16

A very important issue concerns the construction of an irreducible set of differ-

ential invariants in a fixed N-jet (the set of partial derivatives up to Nth order). This

irreducible set should provide optimal tools to measure the amount of featureness at

a certain position for any generic image configuration.36 We consider the problem

of constructing an optimal subspace of the complete feature space, where a certain

part of the object boundary better discriminates from others. For example, it is

well-known that to discriminate texture patterns only second Gaussian derivatives

are needed.29

Another important issue which must be addressed is the selection of filter scales.

In general, an optimal single scale does not exist. One alternative lies in searching

for the best local scale, but it depends on the imaging modality and the specific

image feature.15,57 Multiscale analysis is usually used when there exists no clear

way to choose the right scale. The decisions of how many scales should be used and

how to combine them are the main issues of this approach.42

Knowledge propagation is essential in expanding single slice processing into

volume-based efforts, both in time and accuracy. Essentially, knowledge gained

from processing previous slices, can be used as a guideline for decisions in next

slices.

We represent the snake curve by means of a cubic B-spline, and therefore each

snaxel (snake control point) influences four curve segments. For each snaxel, we

define a contour patch as the central part of its four curve segments of influence,

avoiding the overlap between adjacent contour patches. Each snaxel moves in accor-

dance with the energy accumulated along its contour patch.

The statistical discriminant snake (STD-snake) has a triple objective: to obtain a

general representation of any contour class in terms of a set of features, to determine

the optimum discriminant for each desired contour part and to deform towards the

target object boundary.

To make the snake discriminant, each snaxel must be able to distinguish between

its corresponding contour target and other structures. The discriminant snake

should learn the more relevant features for each specific segmentation problem,
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Fig. 4. From feature space to classification vector for each contour part.

and generalize the classical approach that only uses gradient information. For each

desired contour part, a set of samples is obtained and then a supervised learning

aimed at the maximization of the between-class scattering of image features, is

accomplished. We define a parametric potential that depends on the features of

each part of the target boundary. By parametric we mean that each snaxel sees the

image features in a different way, because each one is aimed to fit different object

boundary parts.

Figure 4 illustrates the learning process carried out for each contour part. The

features of the target contour part and the complementary class are extracted

from the training contour and background. Then, Fisher linear discriminant anal-

ysis (FLDA) gives the optimal discriminant. During the optimization process each

snaxel will evolve guided by its discriminant. The following sections describe in

detail these steps.

2.2. Image features learning

We use a bank of Gaussian filters to extract the image features. Since the

directional derivative operator is steerable, each filter Gd(x, y, σ, φ) of degree d

and orientation φ can be synthesized by interpolating d + 1 basis functions{
Gd(x, y, σ, θk)

}d

k=0
.18 We define G as the D-jet filter bank with Σ scales: σ ∈
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{20, 21, . . . , 2Σ−1}. The size of the bank of filters is a function of D and Σ:

N = dim(G) = Σ

D∑

d=0

(d + 1) =
Σ

2
(D2 + 3D + 2). (1)

Our bank of filters contains derivatives up to degree three, because variance of

higher-order filters can be expected to approach that of image noise, and tend to

be highly correlated to the outputs of lower order filters.46 The impulse responses

of the Gaussian filters are given by:

G0(x, y, σ) =
1

2πσ2
exp

{
−1

2

[
x2 + y2

σ2

]}
,

G1(x, y, σ, θ1) = R
((

− x

σ2

)
G0(x, y, σ)

)θ1

,

G2(x, y, σ, θ2) = R

((
− 1

σ2
+

x2

σ4

)
G0(x, y, σ)

)θ2

,

G3(x, y, σ, θ3) = R

((
3x

σ4
− x3

σ6

)
G0(x, y, σ)

)θ3

,

where the superscript in Gd(·) represents the derivative degree, and R(·)θd repre-

sents a rotation of an angle θd ∈ { kπ
d+1 |k = 0, 1, . . . , d}.

The convolution of G with the image I allows the generalized description of edge,

ridge, valley or whatever image intensity features. We define a multivalued feature

P as the result of this convolution:

P : R2 → RN

I → G ∗ I.

The image potential will refer to what each snaxel interprets on this multivalued

feature.

Each snaxel will give different relevance to each component of the feature

vector P. In that sense, we shall talk about variable (parametric or locally defined)

external energy. To determine the relative importance of each component of the fea-

ture vector, a supervised learning is performed. The algorithm starts with a set of N

sample feature vectors on object contour and non object contour {s1, s2, . . . , sN},
si ∈ RN . For each contour patch k, each multivalued feature sj is assigned to one

of two classes {Ck, C̄k}, contour k and the complementary class respectively.

Then a FLDA provides the optimal linear discriminant for each patch k that

maps the original N -dimensional space into a 1-dimensional space. The FLDA is a

recognized method to analyze the separation ability between classes {Ck, C̄k} in the

feature space and it can demonstrate the separation ability from the original feature

data directly if the underlying distributions of the observations are multivariate
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normal.14 The Fisher discriminant function is a scalar function:

F (P) = WT · P + α,

where P ∈ RN is the multivalued feature, W ∈ RN is a vector that projects the

features of each pixel into the reduced feature space R, and α is a constant that

determines the border between classes.

The optimal projection WCk
for each contour patch Ck is defined as the one

which maximizes the ratio of the between-class to the within-class scatter of the

projected samples:

WCk
= arg max

W

|WT SBk
W |

|WT SWk
W |

where

SBk
= NCk

(µCk
− µ)(µCk

− µ)T + NC̄k
(µC̄k

− µ)(µC̄k
− µ)T

SWk
=
∑

sj∈CK

(µCk
− sj)(µCk

− sj)
T +

∑

sl∈C̄k

(µC̄k
− sl)(µC̄k

− sl)
T

are the between-class SBk
and within-class SWk

scatter matrices; being NCk
and

NC̄k
the number of samples in class Ck and C̄k respectively; µCk

and µC̄k
are

their mean feature vectors, and µ is the mean vector over all samples. WCk
is the

SWk
-generalized eigenvector of SBk

with the largest corresponding eigenvalue.

If SWk
is nonsingular we can obtain a conventional eigenvalue problem by writing

WCk
= S−1

Wk(µCk
− µC̄k

).

Before computing WCk
, it is necessary to prevent the existence of a singular SWk.

To this purpose, principal component analysis (PCA) is firstly performed on all

training samples. FLDA was proven to be equivalent to PCA plus FLDA for small

sample size problems.64 In these problems, the number of training samples is less

than the dimension of the feature vector, thereby the within-class scatter matrix

is singular. As a result, we obtain Wpca as a matrix of dimension dG × m formed

by the m most important eigenvectors of the scatter matrix ST of the full set of

samples. PCA is then followed by FLDA, to obtain the best discriminant, VCk
, for

each contour part Ck:

WT
Ck

= WT
k fldaW

T
pca

Wk flda = arg max
W

|WT WT
pcaSBk

WpcaW |
|WT WT

pcaSWk
WpcaW | .

Finally, we can write the optimal projection as:

WCk
= Wpca

(
WT

pcaSWk
Wpca

)−1
WT

pca(µCk
− µC̄k

), (2)

where WCk
maximizes the ratio between-class/within-class discrimination, and µCk

is the mean feature vector of the patch k.
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The discriminant for each patch k consists of the classifier vector WCk
and the

class centre αCk
of the samples of patch k in the feature space:

αCk
= WT

Ck
· µCk

.

We define a component of the local external energy of the snake in terms of the

distance DCk
from the image features P in the current location of the snake to the

desired contour features:

DCk
=
(
αCk

− WT
Ck

P
)a

. (3)

In a previous paper43 we have used a value a = 2 which defines a squared Euclidean

distance, however it is more interesting to define an odd function because the sign

of the score αCk
− WT

Ck
P is important: high positive value classifies a data into

the complementary class, however a high negative value classifies a data into the

same class, but no exactly the learned feature, and a value around zero represents a

good matching. Therefore, it is convenient to penalize more strongly high positive

scores than the symmetric negative ones. The function must have the minimum in

0, and this behavior can be achieved with values in (1.5+n, 2.5+n) with n integer.

Figure 5 represents the behaviour of the function f(x) = xa parameterized by a. In

our experiments we use the value a = 1.6.

We give an explicit expression for the external energy and forces in Sec. 2.4.

Each snaxel j learns different contour types (WCj
, αCj

) in slice i − 1, and

therefore each snaxel interprets in different way the image features P in slice-i. This

behaviour of our method is illustrated in the synthetic example of Fig. 6. Figure 6(a)

contains a synthetic image of two circles on a white background. Figures 6(b), (c)

correspond to the initial contour and final fitting of the snake guided by the clas-

sifiers (one per contour patch) in the multivalued feature space. Figs. 6(d), (e)

contain the components of the multivalued feature for two scales and derivatives

up to degree three. Figure 6(f) shows the image potentials as are seen by each

snaxel.

In a slice to slice segmentation it can be assumed that corresponding features

in two adjacent slices will be close in the cross-sectional plane. So, we add to the

expression of the local external energy the knowledge about the distance from the

location of the centre of the learned contour, as follows:

ECk
= DCk

+ b(1 − e−d2
k), (4)

where b is a normalization constant and d2
k is a measure of the distance from an

image point to the location of the centre of the learned contour patch.

A real example in the field of the medical images is showed in Fig. 7, where

alternating colours on the training contour represent different contour patches.

Figures 7(b–e) represent the distances (in feature space) to contour classes placed

on the west, east, north and south sides of the training contour. As is desirable, the

minimum of each distance map is around each learning contour class, and there is

a maximum in the diametrically opposed part of the contour.
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Fig. 5. Distance measure as a function of parameter a.

2.3. Continuity and regularization of classification vectors

In general, features smoothly vary along the boundary of an object in a medical

image. If the contour is densely sampled, smooth variation of the classifiers can be

expected to occur along the learning contour. Figure 8 illustrates this hypothesis.

It contains the representation of components of the classification vector along the

internal contour of a coronary vessel in an intravascular ultrasound (IVUS) image.

As can be seen, the features and the components of the classification vectors (Wij)

vary smoothly along the sequence of contour patches.

If the inter-slice resolution is close to the intra-slice resolution, the similarity

between adjacent slices will be high, which will allow us to learn the contour features

in a slice and use it to segment an adjacent slice. Figure 9 shows the continuity of

the classifiers between adjacent slices in a CT image sequence of femur.

We assume that features vary smoothly along the object surface (inter- and

intra-slices) to improve the robustness of the learning process. Due to possible

mislocation of snaxels at the beginning of the learning step, some spurious contour

configurations could be learned. We introduce a regularizing process which increases
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(a) (b) (c)

(d)

(e)

(f)

Fig. 6. Training contour and patch numbering (a); initial contour (b); final contour (c); filter
responses for scales σ = 1, 4 (d,e); distance map to the different contour classes of the top left
circle, top left map correspond to patch 1 and bottom right map correspond to patch 8 (f).
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Fig. 7. Selected patches (b, c, d, e) on the training contour (a); and distance maps generated by
the discriminants of each learned contour patch (b–e).

the continuity of the classification vector, and makes the learning step more robust.

In this process, the classifier of each contour patch p is regularized taking into

account its direct neighbour classifiers:

W ′
Cp

= ζpWCp
+

1 − ζp

2
(WCp−1 + WCp+1), (5)

α′
Cp

= ζpαCp
+

1 − ζp

2
(αCp−1 + αCp+1),

where the superscripts indicate new values, and ζp ∈ [0, 1] is a regularizing param-

eter. From the regularized classifiers, we define a continuous classification function

as follows:

W (s) =

N−1∑

p=0

W ′
Cp

ϕp(s)

where ϕ is considered in terms of finite-element nodal shape functions. For linear

functions:

ϕp(s) =

{
|u(s) − up|, if u ∈ [up−1, up+1]

0, otherwise
,
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Fig. 8. Components of the classifier along the patches of the learning contour. In Wij , i ∈

[0, 1, 2, 3] indexes derivative degree and j indexes orientation (θi ∈ { jπ

i+1
| j = 0, 1, . . . , i}), and

each line corresponds to a different scale.

where u(s) represents the contour curve and up are the nodal points assuming

uniform knots (|uj − uj+1| = 1) of the same curve.

To correct erroneous vectors without seriously affecting their neighbours, we

compute parameter ζp as follows:

ζp = max{WT
Cp

WCp−1 , W
T
Cp

WCp+1}. (6)



Segmenting and Tracking Image Sequences 213

0 10 20 30 40
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Patch

W
e
ig

h
t

Zero–order derivative and σ =1 

slice 1 
slice 2 

0 10 20 30 40
−0.4

−0.2

0

0.2

0.4
First derivative and σ =2 

Patch

W
e
ig

h
t

0 10 20 30 40
−0.06

−0.04

−0.02

0

0.02

0.04

0.06
Second derivative and σ =4 

W
e
ig

h
t

Patch

0 10 20 30 40
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15
Third derivative and σ =16 

Patch

W
e
ig

h
t

Continuity of the classifier among adjacent slices 

Fig. 9. Continuity of the classifiers among adjacent slices for different derivatives and scales.

Provided that classifiers are normalized, ζp is the cosine of the angle between both

vectors:

WT
Cp

· WCp±1 = |WT
Cp

| · |WT
Cp±1

| cos∠WCp ,WCp±1

|WT
Cp

| = |WT
Cp±1

| = 1 ⇒ WT
Cp

· WCp±1 = cos∠WCp ,WCp±1

where ∠·,· denotes the angle between vectors. If ζp takes values close to 1 it means

that classifier WCp
has at least one similar neighbour classifier, so it is not greatly

smoothed. This prevents that contours with real sharp changes smooth severely,

and only erroneous vectors are significantly corrected.

In Fig. 10 one can see the 0, 1st and 3rd derivatives with respect to the coordi-

nate x in the classifiers of snake patches (p = 0, . . . , 45). Note that different weights

form a continuous function of the internal parameter of the snake curve. In patches

35 and 37 smoothing of the weights is observed after applying Eqs. (5) and (6).
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Fig. 10. Learned and regularized components of the parametric classifier.

2.4. STD-Snake implementation issues

Let C(s) =
∑

i ViBi(s) be a B-spline representation of the curve, where Vi are the

control points and s is the curve parameter. The total energy can be written32:

Etotal(C) =

∫ 1

0

(Eint(C(s)) + Eext(C(s)))ds

=

∫ 1

0

(
ω1

∣∣∣∣
∂C(s)

∂s

∣∣∣∣
2

+ ω2

∣∣∣∣
∂2C(s)

∂s2

∣∣∣∣
2

+ Eext(C(s))

)
ds

=
∑

j


ω1

(∑

i

Vi
∂Bi(sj)

∂s

)2

+ ω2

(∑

i

Vi
∂2Bi(sj)

∂s2

)2

+ Eext(C(sj))


 .

We define the external energy as a function of image features and the training

contour classes. For a point in the patch k, the external energy is:

Eext(C(sj)) =
(
αCk

− WT
Ck

P(C(sj))
)a

+ b
(
1 − e−d2

k

)
. (7)
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We are looking for control points Vi, i = 0, . . . , N that minimize the total energy,

i.e. that satisfy:

∂Etotal

∂Vl
= 0, ∀ l ∈ {0, . . . , N}.

These equations can be written in a matrix form similar to the classical snake:

AbV + G = 0, (8)

where the stiffness matrix Ab for B-spline snakes is still a banded matrix and G

plays a role equivalent to forces in the classical snake. The i-th element of G is:

Gi =
∑

j

Bi(sj)∇
((

αCk
− WT

Ck
P(C(sj))

)a
+ b(1 − e−d2

k)
)

. (9)

The solution of the segmentation problem is found in an iterative and incremental

way:

Vt+1 = (Ab + γI)−1(γVt + G(Ct)),

where γ is the damping parameter that determines the convergence rate and is

equal to 1 in our implementation. The method is incremental because it begins

with the highest scale components of the classification vector, incorporates a new

scale after convergence, and finishes with all the scales. The weights corresponding

to the scales that are not being considered are set to zero. In each incremental step

the algorithm iterates until all the control points stop evolution or oscillate.

As the number of control points increases the delineations of convoluted shapes

improve. However, when the number of control points is increased the size of the

patches decreases and discrimination power decreases. We found that a distance of

about 5 pixels between adjacent control points worked well in all tested examples.

To maintain these distances we augmented the algorithm with a reparameterization

capability during the deformation process.

3. Evaluation of the Segmentation Approach

In order to validate the method we have tested STD-snake on organs from different

imaging modalities. First, we are going to show some properties of our approach

with respect to classical implementations, and afterwards we will show a comparison

to expert tracings.

3.1. Comparison to classical snakes

We are going to compare the method with classical snakes to both prove the advan-

tages of our method and to justify the choices made. We will begin by showing the

advantages of using multiple scales and a continuous classifier, and will finish by

demonstrating the ability of our method to describe and learning different image

features.
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3.1.1. Integration of multiple scales

The use of multiple scales has two objectives: first, the greater the scale, the wider

the spatial effect of the potential. Hence high scales allow large displacement of the

snake contour to reach the desired object. Second, multiple scales greatly reduce

the number of local minima.

Figure 11 shows an example that illustrates this property of the multiscale

vector. We have computed the distance map generated by the classification vectors

over all the image. Figure 11(b) shows the computed distance map using only the

lowest scale in the classification vector, and Fig. 11(c) contains the distance map

computed by the multiscale classification vector. As can be seen in Fig. 11(d), (e) the

approximate gaussian shape of the histogram has lesser variance and higher mean

distance in Fig. 11(e) than in Fig. 11(d). This means that the number of convex

components in the distance map diminishes and there are less potential minima in

Fig. 11(c) (multiscale) than in Fig. 11(b) (single scale). In all the examples shown

in this work, we used scale parameters with values σ = 1, 2, 4, 8.

3.1.2. Continuous classifier

The definition of a classifier that continuously varies along the contour has several

advantages. One of them is the capability of filtering noise in the learned classifiers

without excessive smoothing.

In Fig. 12 the regularized classifier is compared to simple average. The contour

of a rectangular object against a background is learned in a synthetic binary image.

The contour presents sharp changes in features (the filter weights change signifi-

cantly in corners) which is in harmony with a square wave shape of the first and

third derivatives. Simple constant average (ζp = 0.5, ∀ p) blurs the sharp changes,

while the new regularizing process preserves them (the learned and regularized val-

ues agree). Figures 12(c), (d) show the final fitting for both cases and Fig. 12(e)

shows two samples of the smoothed and the regularized components of the classifier

along the contour.

The continuous classifier also allows us to add new control points to fit to concave

shapes. After convergence, the algorithm tests the distance between adjacent control

points; when this distance is greater than two times the initial distance a new control

point is introduced. If new control points were added the optimization would be

done again. The smoothed continuous classifier allows the snake to track changes

in shape and texture features along the image sequence.

Figure 13 illustrates this ability: Fig. 13(a) contains a binary synthetic image

where the object contour is learned, Fig. 13(b) shows the initial curve and Fig. 13(c)

contains the final curve. If few contour patches are considered, erroneous fitting is

achieved (Fig. 13(c)), but relying on the continuity of the classification vector, more

control points can be dynamically introduced to allow a correct fitting (Fig. 13(d)).

Figs. 13(e–g) show the inverse case (deformation in the opposite direction).

The classical snake has the well known difficulty in segmenting concave objects

due to the curve is equally attracted by different contour configurations (Fig. 14).
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Fig. 11. Training contour: MR Image of the knee joint (a); distance map images generated by
the classifier of the contour patch placed in the middle top of the bone contour in (a) considering:
only the smallest scale (b), all the scales used in learning phase (c); histograms for the distance
map: for single scale (d), and all scales (e).

As a consequence, the curve falls in a zone of equal distance to different contour

configurations and stabilizes far from the desired contour. Figure 14(d) shows the

final fitting reached with classical snake where alternating colours of contour patches

allow us to see that contour patches near to concavities increase in size because they

are attracted by the ends of concavities.

Several methods have been proposed in the literature to cope with this prob-

lem. A well illustrated example about the behavior of traditional snakes in the
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Fig. 12. Learned contour (a); initial contour (b); final contour using smoothed (average) classifiers
(c); final contour using regularized classifiers (d); average (ζp = 0.5) and regularized (preserving
real sharp changes) components of the continuous classifier for the rectangle contour (e).

presence of concavities and revision of previous proposed solutions can be found in

Neuenschwander et al.,35 and Xu and Prince.63 We think that our approach is more

general in the sense that it handles non-convex shapes in a natural way, and has

the ability to adapt to concave contours due to the selectivity of external energy

and the smoothness of the discriminant function (classifier) along the contour.

The discriminant snake allows the tracking of contours with some abrupt

changes in shape or texture through slices. Figure 15 illustrates this property in a

CT femur slice. Figure 15(a) shows the learning contour where alternating colours

indicate different contour patches. Between this slice and the next one, a sharp

change exists around the pointed patch; Fig. 15(e) shows the profiles normal to the

pointed patch in the two adjacent images. However, the potential minimum for the
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Fig. 13. Training contour (a); initial contour (b); intermediate contour (c); final contour after
interpolation (d); training contour (e); initial contour (f); final contour (g).

Fig. 14. Initial contour (a); edges (b); classical distance map (c); fitting of the classical snake in
black over the inverted potential (d).

corresponding patch in the next slice is in the correct place as Fig. 15(b) shows.

Figure 15(c) contains the translation of learning contour in the previous slice to the

next slice, and Fig. 15(d) shows the correct final delineation.

3.1.3. Generalized description of features

Our snake does not have a predefined goal, but it learns the desired contour features

for each specific segmentation problem. Moreover, each snake patch searches for its
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Fig. 15. Training contour (a); energy image generated by the classifier of the pointed patch in
the following slice bf (b); initial contour (c) and final fitting (d). Corresponding profiles normal to
the pointed patch (e).

specific contour class, which avoids ambiguities in the event of there existing several

neighbouring objects.

Figure 16(a–d) illustrates the second capability. Figure 16(a) contains the orig-

inal image and Fig. 16(b) shows the contour used for a supervised learning of
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Fig. 16. Original image (a); learned contour (b); initial contour and final contour for a moderately
distant slice (c, d); initial contour and final contour for a very distant slice (e, f).
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different parts of the external cortical bone of femur in an CT image. To show the

robustness of our proposal we consider another slice (non adjacent to that) which

has different contour configuration (texture and contrast). We use the classifica-

tion vector in the previous slice, but with the initial contour deformed, and placed

between two bones, see Fig. 16(c). Figure 16(d) represents the final contour fitted

to the bone of interest by our method. Although the initial contour is not close

to the final contour and the characteristics of the contour are different, the snake

found the contour more similar to the learned one, and this provided a good result.

Different parts of the cortical bone have different filter responses, hence they belong

to different classes and the snake moves towards the desired contour even in the

case of nearby objects.

If the texture features and the geometry changes dramatically then the segmen-

tation fails. Figure 16(e) shows the learned contour in Fig. 16(b) over the slice to

be segmented. The final result shown in Fig. 16(f) is incorrect because the learned

contour and the actual contour of interest are very different. In a normal medical

image sequence the distances between adjacent slices are short so we can hope not

to find such strong changes.

Now, we are going to show the ability to learn different features by segmenting

medical images (from several modalities) where the desired object contours have

different characteristics.

Figure 17 shows the segmentations of a set of slices where a considerable change

in contour shape takes place. The full sequence is made up of 60 slices with a

distance between slices of 5 mm. This is a typical case where the 3D image has

not the same resolution in all the spatial dimensions, and therefore, a multislice

segmentation approach is the best option. The supervised learning takes place in

the first slice and converged active contours and updated classifiers are propagated

from slice to slice. The snake is capable of following texture and shape changes. Note

that the new approach naturally fits convoluted shapes. Moreover, the new external

energy eliminates ambiguities between internal-external contours and contours of

nearby structures. Figure 2 shows the 3D reconstruction of the femur.

We also apply our method to MR images. Figure 18 shows three samples of

the segmentations of a sequence of 15 MR images of the distal femur. In these

images contour has mostly the appearance of an intensity valley, unlike CT images

where the contour features are mainly edges. Figure 2 shows the 3D reconstruction

obtained from the segmentation.

The next imaging modality that we consider is the IVUS in two different cases:

abdominal aorta (AA) and coronary vessel. In these images the contours have less

contrast and the signal to noise ratio is higher. Figure 19 illustrates the segmentation

of a sequence of IVUS images of the abdominal aorta of a pig. This figure contains

the first image with the initial training contour, and other intermediate ones of

a sequence made up of 100 slices. Classifiers are learned in the first slice and the

deformed contour is carried to the next slice. Afterwards, the classifiers are again

updated and transferred together with the final contour to the next slice. Although



Segmenting and Tracking Image Sequences 223

Fig. 17. CT images of slices 35–40.
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Fig. 18. MR images of the distal femur.

there are several different contours nearby, the snake fits the learned one. The

reconstruction of the 3D surface derived from the segmentation is also shown.

4. Tracking by Active Contours

The snake model was the first of a plethora of mathematical formulations that

have been proposed mainly for both segmenting and tracking problems. Among

them, level-set techniques5,28 are the more suitable method to track moving objects.

While the snakes are physically motivated and represent the contours explicitly as

parameterized curves in a Lagrangian formulation, level-set approaches are implicit,

intrinsic, parameter free and can manage topological changes in the moving tar-

get. Nevertheless almost all of them have in common high computational require-

ments which might limit their use in tracking tasks needing fast time response. This

inconvenience is alleviated by the development of new strategies for the numerical
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Fig. 19. Initial training contour, several slice segmentation examples, and the reconstructed
internal surface of the abdominal aorta of a pig.
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simulation of the equations which govern the dynamic of the curve evolution which

usually lead towards a compromise between processing speed and flexibility in the

contour evolution.1,4,40,52,72

The so-called pixel-level snakes (PLS) appeared originally intended to resolve

the high computational cost inherent to the classical active contour techniques,

mainly, in tracking temporal sequences. They are based on a pixel-level discretiza-

tion of the contours and on a massively parallel computation on every contour

cell which lead to a high speed processing without penalizing the efficiency of the

contour location.61 They represent a topographic and iterative active contour tech-

nique where the contours are explicitly represented and evolve guided by local

information. In the context of PLS, the active contours are represented as sets

of 8-connected activated pixels, i.e. black pixels in a binary image called contour

image. This binary image has the same dimensions as the original image containing

the objects to be segmented and tracked. The contour evolution consists on an iter-

ative process of activation and deactivation of the contour pixels based on binary

and local morphological operations extended along the four cardinal directions. The

goal after each cycle (four iterations, one for each cardinal direction) is to obtain

new well-defined contours slightly shifted and/or deformed in order to come closer

and fit themselves to the boundaries of the objects of interest.

PLS can be conceptually defined based on three different modules which interact

dynamically as depicts Fig. 20:

(1) A module responsible for extracting the information to guide the contour evolu-

tion. This includes the computation of the internal potential, pressure (balloon)

potential, and the combination with the external potential derived from image

features.

(2) A module dedicated to the contour evolution. This performs an iterative pixel-

to-pixel shift of the contours driven by the guiding information.

(3) A module undertaken to handle the possible collisions between contours and to

change or preserve the topology of the contour as required.

In the following the working of these building blocks are described in detail.

4.1. Guiding information extraction

Guiding forces compel the contours to move towards the desired image features.

These forces derive from potential any P (x, y) defined in the image space:

F = −∇P (x, y) =

(
− ∂P

∂x
,−∂P

∂y

)
=
(
Fx, Fy

)
. (10)

PLS is one example of the general technique of matching a deformable model to

an image using energy minimization. Each pixel on the starting contour, subjected

to some curvature constraints, moves into alignment with the nearest salient fea-

ture in an image. The direction of the movement coincides with the direction of

the decreasing potential. In a pixel-level iterative technique only the sign of both
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Fig. 20. Flow diagram of the PLS algorithm showing the main modules and their iterations. The
contour image is externally provided only for the first iteration (dashed line).

components of the guiding forces is actually needed. Therefore, given a direction

of processing the guiding information should be the sign of the component of the

guiding forces along that direction. These operations are performed in the so-called

guiding force extraction module (GFE). Therefore:

OUTGFE(NORTH) = −OUTGFE(SOUTH) = sgn(Fy),

OUTGFE(EAST ) = −OUTGFE(WEST ) = sgn(Fx),

The derivation of the components of the guiding forces from the potential fields

is approached by a directional gradient estimation based on Sobel-type operators

(D Gr). The sign of these forces are subsequently extracted by a thresholding oper-

ation (Fig. 21).

Therefore, the output of this GFE module will represent a binary map with

activated pixels in those locations where the potential is decreasing along the direc-

tion under study. Figure 22 illustrates the operations in the GFE module by means

of an example of contour evolution based on external potential. The sign of force

components indicates the way of movement of each pixel on the deformable model

along the given direction.

The external potential should be defined in such a way that the boundaries of the

object of interest coincide with the minima in the image potential. The exact feature

that defines an object boundary is strongly dependent on the particular application
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Fig. 21. Flow diagram for the guiding force extraction from the potential fields. Pext, Pint and
Pbal makes reference to external, internal and balloon potential respectively. The constants kext,
kint and kbal weight the influence of each term.
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Fig. 22. (Up): Guiding force extraction (GFE) from an external potential. Lower potential is
represented by lower intensity. By means of directional gradients the component of the guiding
forces for each direction is obtained. (Bottom): Several snapshots of the contour evolution.
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and represents an a priori knowledge that incorporates the PLS algorithm. Typical

potential terms are11:

Pl = ±Gσ ∗ I(x, y),

where I is the intensity image, Gσ represents a Gaussian filter with a scale param-

eter σ. This potential attracts the curve to line features described by high or low

intensity points after convolution with a Gaussian smoothing to mitigate the unde-

sired effect of noise;

Pg = −|∇Gσ ∗ I(x, y)|,

where ∇Gσ represents a Gaussian derivative filter with a scale parameter σ, and

attracts the curve to intensity edges; and

Pe = −e−d(u(s))2 ,

where d(u(s)) is the distance to the closest boundary point, which pushes the con-

tour to the edge points of an edge map. An edge map is an image of contours,

usually defined by zero-crossings in a Laplacian filtered image.

In addition, PLS incorporates internal regularizing constraints and balloon

potential. The formers ensure that the model remains smooth limiting the amount

that they can bend. The equivalent term of the internal potential in classical

approaches depends on the tension and the flexion of the contour and it may

be measured as a function of distances among adjacent points according to the

considered discretization. This approach cannot be directly included in the PLS

formulation because the contour is not defined as a predetermined number of dis-

cretization points but as a set of black pixels of a binary image, and its evolution is

based on the activation and deactivation of pixels belonging to this contour image.

However the desired smoothing effect can be obtained by assigning higher potential

values to those pixels in the contour image situated out of the contour cavities,

with respect to those situated inside. One way to perform this internal potential

estimation (IPE) is by means of a recursive low-pass filtering or diffusion operation

acting on the contour image.61 Therefore, directional gradient operation acting on

diffused contour image will originate positive internal forces which push the con-

tour to reduce the local curvature and therefore to smooth the contour shape. This

approach recalls the thin-plate energy in parametric deformable model strategies or

the regularizing term in the implicit formulations. This idea is illustrated in Fig. 23,

where one contour is guided by only this kind of internal forces. A directional gra-

dient operation will originate forces proportional to the local curvature which guide

the contour evolution in order to regularize its shape. It is well known that a planar

closed contour whose evolution relies only on the local curvature will adopt a cir-

cular shape and finally will collapse. This behaviour is observed with the proposed

internal potential estimation which demonstrates the curvature dependence of our

approach.

When not subject to image forces a deformable model shrink until collapsing to

a point due to the unbalancing effect of internal forces. Also, it is feasible that the
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IPE

Internal Potential

Contour

Fig. 23. (Upside) Generation of the internal potential for the PLS. Lower potential is represented
by lower intensity. (Bottom) Several snapshots of the contour evolution guided by the only internal
forces.

deformable model remains trapped by sparse weak features far away the desired

object boundary. Proceeding towards the avoiding of these problems, the so-called

balloon forces have been introduced.11 The incorporation of these forces can help the

deformable model to trespass spurious isolated weak image edges and counteract

their tendency to collapsing to point in the absence of image forces. The balloon

forces can be expressed as follows:

F = k1n(s), (11)

where n(s) is the unit vector normal to the curve u(s) and k1 is a constant which

controls the strength of inflation or deflation, depending on the sign of k1. The

addition of a pressure term reduces the sensitivity of active contours to initialization

and spurious features. However, in each run of the method, it has to be decided

whether an inflationary or deflationary force is required.

Both implicit and pixel-level active contours can easily incorporate this kind

of guiding terms. The implicit models implement them as geometric-independent

advection terms.37 The pixel-level snakes can effectively inflate or deflate the

deformable model by the definition of a new potential field:

Pbal(x, y) = sbal ∗ ξ(x, y), (12)
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Fig. 24. Generation of inflating/deflating potentials for the PLS. Lower potential is represented
by lower intensity.

where ξ(x, y) > 0 if (x, y) belongs to the set of locations enclosed by an active

contour. Otherwise, ξ(x, y) < 0. sbal = +1 defines an inflating potential and sbal =

−1 a deflating potential. Therefore in the discrete image space the balloon forces

Fbal = −∇Pbal(x, y) can be approached by finite differences. The implementation

of the balloon potential is mainly supported by means of a weighted hole filling

operation as illustrates Fig. 24. A directional gradient operation originates forces

guiding the contour evolution outwards (inflation) or inwards (deflation).

The global potential from which the guiding forces of the contour evolution are

extracted will be a combination of the previously described potentials:

P (x, y) = kintPint(x, y) + kextPext(x, y) + kbalPbal(x, y), (13)

where the parameters kext, kint and kbal weigh the contribution of the external

potential and the a priori knowledge on shape and feature strengths of the objects

to be tracked. There is no exact rule to determine the influence of each kind of

potential field. Nevertheless the search of the parameter values can be based on

some general hints. Usually the external potential should have the higher influence

in the global potential because it contains the information of the image under

processing. However, a low value for kint can produce protuberances in the contour

shape, which increase the internal potential and thus compensate the initial weak

influence of this kind of potential. Therefore a low weight for the internal potential

is usually preferred. Finally the influence of the balloon potential is often required

to guide the contour evolution when the external potential is too weak. Therefore

the kbal value should be clearly lower than kext. On the other hand its relation with

the internal potential depends on the nature of the balloon potential. The internal

potential enforces the deflating potential and counteracts the inflating potential.
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4.2. Contour evolution

The contour evolution is based on iterative operations of expansion and thinning

along the four cardinal directions conducted by the binary map from GFE. For each

direction of processing, the contours are shifted one pixel along it by the directional

contour expansion (DCE) module depicted in Fig. 25. The resulting binary image

is combined with the output of the GFE module by a logical AND which keeps

activated only those shifted contour pixels whose locations coincide with activated

pixels in the GFE output. Finally, the combination of the result with the original

contour image by a logical OR will produce a binary image with the contours

expanded, or dilated, only in those locations where the guiding forces are positive

along the current direction of processing.

The expanded contour image is processed in the directional contour thinning

(DCT) module composed by the following operations (see Fig. 25): After DCT(1)

those contour pixels which are frontier along the processing direction are deacti-

vated. This leads to thinned contours but with possible breakpoints. Steps DCT(2)

and DCT(3) act on areas with opposite slope in order to reactivate those pixels

(deactivated in DCT(1)) needed to restore the continuity of the contour.61 The

outcomes of these three operations are combined by logical OR operations which

results in a binary image containing well-defined contours slightly shifted and/or

deformed based on the guiding information. DCT implements the morphological hit

and miss operations which obey the rules portrayed in Fig. 26 only for the North

(DCE output)

Active contour

DCT1

DCT2

OR

DCT3

OR

Control of evolution

SHIFT

AND

OR
Active
contour

AND NOT

Fig. 25. Flow diagram containing the operations to be performed in DCE and DCT modules.
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Operation NoYes

= ON = don’t care= OFF

Fig. 26. Patterns and local rules for the morphological operations of the directional contour
thinning along the North direction. The first column labels the operation. The second column
refers to the pattern to be satisfied.

direction. Given a pixel, if the configuration of its neighbouring cells coincides with

the pattern then the new pixel value should be that indicated in the third column.

Otherwise it should be that in the four column. For the processing along the other

three cardinal directions the patterns should be suitably rotated.

4.3. Topologic transformations

Segmentation and tracking by means of active contours are highly effective for

matching boundaries provided the initial deformable models are close to the objec-

tive. However, sometimes the number of objects in the scene does not coincide with

the number of initial contours into the contour image. This can be because of a bad

initiation process due to insufficient information about the domain, or the topology

of the same object changes from one frame to the next (branching), or two objects

overlap. In these situations the collision between different contours (or different

parts of the same contour) may occur. Pixel-level snakes, due to their characteristics

of evolution and their nonparametric nature, can handle these changes of topology

by simple inspections of the contour map. This capability notably increases the

number of tasks where the PLS can be applied. Topologic transformations can be

approached by PLS in different ways. One of the most efficient is based on implicit

deformable models where contours are implicitly defined as wavefronts of propagat-

ing waves.62 In this framework, when two deformable models (or two parts of the

same deformable model) collide, the collision points no longer belong to the set of

contour pixels. Therefore, changes in topology are handled implicitly by updating
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Fig. 27. Flow diagram of the operations to manage changes in contour topologies.

the borders of the regions enclosed by the deformable model. The transformation

is performed by the three operations indicated in Fig. 27. The regions are obtained

from the contours by means of a hole filling operation (H F) followed by a one-step

morphological opening (OPEN). In the last step the region boundaries are obtained

by a binary edge detection (EDGE) recovering the deformable model.

Figure 28 illustrates the capabilities of our method to manage topologic trans-

formations. In this case study the target are the blood vessel contours. Retinal

blood vessel morphology can be an important indicator for many diseases such as

diabetes, hypertension and arteriosclerosis, and the measurement of geometrical

changes in veins and arteries can be applied to a variety of clinical studies.69 The

figure contains several snapshots of the evolution of deformable models along blood

vessels from a retinal angiography image. The contour evolution was guided by the

combination of the intensity image (kext = 0.7) and inflating potential (kbal = 0.3).

As it can be seen the delineation of blood vessels entails the evolution along narrow

cavities and several changes of topology.

Based on the commented strategy topologic transformations can be performed.

Nevertheless, there are some practical applications where the contour topology

should be preserved.20 An example is illustrated in Fig. 29, showing the results

of segmenting a sequence of computed tomography images of proximal tibia and

fibula. For each slice image, the initial contours correspond with the outcomes of

the segmentation of the previous slice image. The aim of the segmentation is to

delineate the outer side of cortical bones as a previous step to the 3D reconstruc-

tion of the knee. The width and the high density of the cortical bone and also

the clear separation between tibia and fibula make the segmentation in the distal

part non complex. As we approach the proximal part of the tibia and fibula, the

thickness of the cortical bone decreases and the proximity between the bones is

reduced. When knee injuries are considered problems of bone loss, cortical bone

narrowness, malformations, etc., can be found. This translates into badly defined

external contours of the bones, little separation between the internal and external

contour of the cortical bone and the proximity between tibia and fibula, making
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Fig. 28. Example of segmentation of blood vessel in an angiogram of retina from several initial
contours. The sequence goes from left to right and top to bottom.
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Fig. 29. Example of segmentation on a CT image sequence corresponding to the proximal part of
the tibia and the fibula. The topologic transformations impede to correctly define both structures.
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the segmentation process particularly difficult. Taking this into account we have

approached the segmentation of tibia and fibula simultaneously. As it can be seen

in Fig. 29 a topologic merging of the two evolving contours impedes to distinguish

the tibia and the fibula frontiers. This situation changes in higher slices where both

bones becomes again separated provoking a new topologic transformation.

In order to avoid undesired changes in the contour topology those locations

where contour collision may appear should be pre-estimated. This can be per-

formed easily with PLS because the contours evolve as the effect of activation and

deactivation of pixels in the contour image. Thus, the contours move pixel to pixel

which allow to foresee the contour locations and shapes in the next iteration. The

collision point detection (CPD) is carried out mainly by a simple pattern recog-

nition which takes as input the binary contour image and returns a binary image

with white pixels in those locations where a collision between contours can appear

in the next iteration. Therefore, by the projection of this binary map onto the out-

put of the GFE module, the pixel activation can be avoided on those conflictive

locations and consequently the contour collision will be prevented. Figure 30 shows

the flow diagram with the operations to be performed in CPD. These are described

as morphological hit and miss operations. Figure 31 shows the patterns and rules

to be fulfilled in the processing along North direction. Given a pixel, if the con-

figuration of its neighbouring cells coincides with the pattern then the new pixel

value should be that indicated in the third column. Otherwise it should be that in

AND

CPD1

CPD2

CPD5

NORORScpd

OR

Contour
Image

Evolution
control

GFE output

CPD3

OR

CPD4

OR

Fig. 30. Flow diagram of the operations to preserve changes in the contour topology. The param-
eter scpd is a switch which enables (logical ‘1’) or disables (logical ‘0’) the CPD action.
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Fig. 31. Patterns and local rules for the morphological operations of the collision point detection
along the North direction. The first column labels the operation. The second column refers to the
pattern to be satisfied.

the four column. For the processing along the other three cardinal directions the

patterns should be suitably rotated.

In a physical context, the effect of this operation is equivalent to the genera-

tion of an infinite potential barrier between contour pieces to avoid the collision.

Figure 32 shows the same example as Fig. 29 but preserving the contour topology

by the action of the CPD module.

4.4. PLS implementation issues

PLS algorithm consists of simple local dynamic convolutions, morphological hit and

miss and simple arithmetic and logical operations. Therefore it meets the require-

ments to be implemented onto simple instruction multiple data (SIMD) processor

arrays, particularly on those architectures based on the cellular neural network

(CNN) concept10 like the CNN Universal Machine (CNNUM).49 CNN constitutes
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Fig. 32. Example of segmentation of tibia and fibula when avoiding topological merging of
contours.
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Table 1. Execution time of all major
processing modules in the PLS algo-
rithm extracted from the implementa-
tion on the ACE4K.

Module Iteration Cycle

GFE 250 µs 1000 µs

DCE 60 µs 240 µs

DCT 160 µs 640 µs

CPD 300 µs 1200 µs

TP - 760 µs

BPE - 750 µs

IPE - 40 µs

Maximum 3820 µs

a class of recurrent locally coupled array of identical and simple processing elements.

Since the coupling between processing elements is exclusively local, the hardware

complexity does not increase with the array size. This has made the hardware imple-

mentation of a considerable number of processing elements into a chip feasible.27,44

The projection of the PLS-algorithm onto CNN structures permits to exploit

the characteristics of massively parallel processing of this kind of architectures. This

fact guarantees a fast computation making the pixel-level snakes a valid tool for

those applications needing fast time response like the segmentation and tracking of

moving objects.

The described PLS-algorithm has been implemented and tested on a 64 × 64

CNNUM chip (ACE4K27).62 In Table 1, the execution times for each module of the

algorithm in Fig. 20 are gathered.

Note that the estimation of the internal and balloon potentials (IPE and BPE)

are actually required only once per cycle (one cycle represents four iterations, one for

each cardinal direction). Furthermore the topologic transformations can be checked

once per cycle or even less since the changes of topology are correctly performed

in any time after the collision between contours. On the other hand, the action of

modules TP and CPD is never required at the same time. The maximum time in

Table 1 makes reference to the more expensive case in processing time, i.e. that

one including CPD but not TP. Therefore the implemented algorithm requires less

than 4ms to complete one cycle running on the 64 × 64 CNNUM chip. We have

observed that in real time applications like video object segmentation and tracking

less than ten iterations per frame are usually needed. Therefore, even with the full

version of the algorithm the speed processing of 25 frame/s is feasible.

In order to illustrate the capabilities of PLS in segmentation and tracking of

moving structures we have approached the automatic tracing of the boundaries of

the human left ventricle (LV) from sequences of ultrasound (US) echocardiography

images. The aim of the operation is to segment and track the contour of the left

ventricle from frames as a previous step of the determination of the ventricular

volume and the wall motion in different stages of the cardiac cycle. The tracing

of LV boundaries from 2D US images sequences covering the entire cardiac cycle
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Fig. 33. Two consecutive frames in a 2D US image sequence.

allows quantitative interpretation of LV contraction dynamics. Furthermore, the

3D motion estimation and reconstruction of cardiac chambers can be efficiently

approached from the emergent 3D rotational echocardiography.50 Following, we

will show segmentation results from both 2D a 3D US image data.

The proximity between the boundaries of the heart chambers in two consecutive

frames depends on the frame rate of the US image acquisition process and the

cardiac cycle of the patient. Nevertheless, usually they are close enough to make

suitable the use of active contour techniques in this kind of application.7,33 Figure 33

shows two consecutive frames corresponding two a 2D sequence with 15 frames per

cardiac cycle.

The proximity between boundaries of interest in two consecutive frames allows

the control of the active contour based on only local information. The contour

evolution is guided by a combination of external potential (kext = 0.5) from the US

images together with internal potential (kint = 0.025) to keep smooth the contour

shape. In order to implement the complete system in the ACE4K chip, the external

potential is derived from an inverted version of the current frame filtered by a local

diffusion which reinforces the evolution towards high intensities, combined with the

result of a diffused edge detection onto this image which encourages the contour

evolution towards edges (Fig. 34).

Therefore by using as initial contour the result from the previous processed

frame it is possible to fit it to the boundaries of the chamber in the current frame

(Fig. 35).

This approach is valid for intermediate frames but not for the first frame of

the sequences. For the first frame an inflating potential (kbal = −0.2) is considered

to put one initial seed situated into the left ventricle, close to the boundaries of

interest (Fig. 36).

Figures 37 and 38 show experimental results from the on chip implementation

of the PLS algorithm, corresponding to the tracking of the human left ventricle

from 2D and 3D sequences of US echocardiography images.
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Fig. 34. External potential estimate for the contour location in US image of the human left
ventricle. kfil and kdif are constants which weigh the influence of the filtered image and the image
resulting from the diffused edge detection.

Fig. 35. Processing on an intermediate frame. The initial contour on the left (from the previous
frame) and the final contour on the right.

To validate the left ventricular boundary tracking the experimental results have

been compared with the contours delineated by cardiology specialists. Though the

validation is subjective, this seems to be the best method to give a qualitative

and quantitative assessment of the algorithm performance. Figure 39 shows the

experimental results from the on-chip implementation together with the manually

delineated contours from a US image sequence. Figure 40 shows the area comparison

(Hamming metric) along with a correlation analysis (linear regression) of the hand-

traced and the computed contours. This comparison allows to observe that the

dynamics of the left ventricle is captured and that there is a close match between

the contour areas which is at the same order as the intervariability of the human

observers.62
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Fig. 36. Processing on the first frame in a echocardiography image sequence. The initial contour
on the left (from the previous frame) and the final contour on the right.

Fig. 37. Contour tracking of a human left ventricle from four 2D ultrasound sequences corre-
sponding to different orientation planes. (Upside) Apical two chamber view. (Middle) Apical four
chamber view. (Bottom) Parasternal short axis view.

5. Evaluation of the Tracking Approach

The good performance of a particular technique of active contour is strongly depen-

dent not only on the particular application but also the parameters which define

the method. Thus, for instance, given a parametric model, the successful of the

process will strongly depends on:

(1) the external potential terms considered and the weighing of these,

(2) the arrangement of the initial contours more or less close to the objective,

(3) the number of vertices of discretization and the techniques of numerical simu-

lation (B-splines, finite elements, etc.),
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Fig. 38. Contour tracking in 3D ultrasound echocardiography. The sequence goes from left to
right and top to bottom.

Fig. 39. Example of contour tracking of a human left ventricle from a sequence of 3D US echocar-
diography images. (Upside) Contours manually delineated by cardiology specialists. (Bottom)
Contours delineated with the on-chip implemented algorithm.

(4) the technique used for the energy minimization (solving the associated

Lagrange equations, simulated annealing, neural networks, dynamic program-

ming, genetic algorithms, etc.), etc.

On the other hand, even though the input data have been established, the result

obtained does not justify the suitability of a model respect to another since there
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Fig. 40. (Upside) Area Comparison of the hand-traced and estimated contours for a complete
3D US image sequence. (Bottom) Error function (the area difference relative to the hand-traced
area) and the output of a correlation (linear regression) analysis.

is no condition test which can be considered as general. In fact, there will be sit-

uations where a technique will be more suitable than other due to its particular

characteristics. As a consequence, we consider a quantitative comparison based on

simulation with different techniques onto a determined image database has not
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much relevance. However, the global characteristics of the parametric and implicit

models as well as of the pixel-level snakes are in more or less degree complemen-

tary, such as a qualitative comparison of their features could help to determined

the application field of each kind of model. Particularly, we will focus on character-

istics as control capacity, flexibility, processing speed, precision, convergence and

robustness.

5.1. Control vs flexibility

The parametric models allow a high control of the mobility by means of the

guiding energies as well as by the establishment of a manual control onto local

characteristics.23 In addiction, they provide a better control of the contour defor-

mation in terms of stiffness and elasticity allowing also to penalize deformations

going far of a priori reference shape. These characteristics make the parametric

models particularly suitable for tasks supported on a previous knowledge on the

application domain and the accuracy of the initial model. Besides, they present

low flexibility such as they cannot approach the segmentation of highly irregular

objects with deep and narrow cavities and/or protuberances. Furthermore, they

usually cannot handle the topologic transformations required when the number of

objects into the scene is different to the number of active contours. This precludes

their application where the number of the interesting regions and their approx-

imate locations are not known in advance. There are strategies as the so called

topologically-adaptable snakes (T-snakes30), derived from the parametric models

which permit to perform topologic transformations and to reach irregular contour

shapes. This is achieved by iterative processes of evaluation and reparameterization.

However, since the energy estimation is strongly dependent on the parameteriza-

tion, it changes in each of the intermediate reparameterization steps. This certainly

makes feasible to reach tubular shapes but at the expense of a penalization of the

energy estimation.

The implicit deformable models are characterized by a high flexibility in the

contour evolution, allowing to reach highly irregular shapes or making topologic

transformations in a natural form. However they present difficulties to impose con-

strains and specific control terms (propagation speed, suitable stop criteria, etc.)

because of the higher dimensionality of the embedding hipersurface and the implicit

definition of the contour model.

Finally, the pixel-level snakes are situated midway between parametric and

implicit models. Moreover, due to their high level of discretization and the charac-

teristics of evolution (pixel to pixel) they can handle topologic transformations by

operations perfectly integrated and accessible in the evolution process. This also

allows to control the topologic transformations by preventing the collision between

contours in a simple way. Pixel level snakes can also delimit objects with cavities

and protuberances keeping a high control of the contour shape due to the definition

of deformation potential terms based on the locally measured curvature.
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5.2. Speed vs precision

Among the techniques based on numerical simulations there are mainly two factors

which determine the time required for an active contour to reach stability. One of

this is the number of steps needed to reach the final solution, strongly dependent on

the initial model. The another factor is the number of vertices on which the model

is discretizated (or the embedding surface in the implicit formulations) and which

determine to a great extent the precision of the output. A number of approaches

reduce the time of evolution at the expense either of limiting the space of variation

of the contours or the number of vertices of the discretization, which lead to a lack

of precision.

Concerning the parametric models, the computing time must be also multi-

plied by the number of contour models being considered. Computing time into the

implicit formulations is independent on the number of the involved contours, how-

ever the higher complexity of these procedures, leads to search alternatives which

also constrain their precision.53

The pixel level snakes are discretiz to pixel level and can be projected on mas-

sively parallel SIMD architectures. This allows to associate each pixel of the contour

image to one single processing element which interacts with those associated to the

neighbouring pixels. Thus the computational cost is detached from the number of

point of discretization of the domain. However, the size of the images to be processed

is linked to the capability of integration of processing elements into a single chip.

5.3. Convergence vs robustness

The convergence of an active contour towards stable location and shape must be

guaranteed. To this end, in the conventional active contour techniques the dis-

cretization level in both space (image domain), and time (iteration step), must be

suitable to avoid oscillations. On one hand, the finer the discretization, the more

guarantees of convergence, but at expenses of higher sensitivity to local minima.

On the other hand, the higher the iteration step (or the rougher the discretization

of the spatial variable) the lesser possibilities to be anchored in a local minimum,

but at expenses of a higher instability of the final solution.

Concerning the pixel-level snakes the spatial and temporal variables are fixed to

the minimum level which guarantees a stable final solution. However this makes the

pixel-level snakes more sensitive to the local minima and then more dependent on

the initiation and the guiding information. This sensitivity is partially attenuated

by a higher range of movement and the non-parametric nature of the model in such

a way that the number of evolution points is not predetermined.

6. Conclusions

Active contours are widely acknowledged techniques for the segmentation and track-

ing on a variety of medical images. They can integrate knowledge from different
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sources (shape and appearance models, statistics about region and boundary fea-

tures, motion estimation, etc.), however, the inter- and intra-patient variability, and

the different imaging modalities impede the arriving of a unique general method to

tackle all these problems. Each approach has its strengths and weaknesses, but the

synergetic integration of different abilities is still challenging. Some image analysis

tasks need a good delineation of object contours, while others have the main goal

of fast following of objects through image frames. Therefore, active contours should

be customized for each domain tasks.

The two active contours we have described here, were designed with different

goals in mind. The first active contour technique is devoted to tackle segmentation

tasks where the desired features of the object of interest could slightly change from

slice to slice, while the second active contour technique is dedicated to tracking

tasks where the features of the object of interest do not change from frame to

frame, but the shape does. The segmentation approach aimed to learn and update

the best discriminants from one slice to the next. The tracking approach, however,

assumes well established goal features and intends to reach them as fast as possible.

Different applications should demand different abilities.
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Characterizing the response of the brain to a stimulus based on functional MRI data is
a major challenge due to the fact that the response time delay or shift of the brain may
be different from one stimulus phase to the next and from voxel to voxel. To enhance
detectability, this work introduces the use of a curve evolution approach that provides
separate estimates of the response time shifts at each phase of the stimulus on a voxel-
by-voxel basis. The approach relies on a parsimonious but simple model that is nonlinear
in the time shifts of the response relative to the stimulus, and linear in the gains. To
effectively use the response time shift estimates in a subspace detection framework, we
implement a robust hypothesis test based on a Laplacian noise model. The algorithm
provides a voxel-by-voxel functional characterization of the brain’s response. The results
based on experimental data show that response time shift estimates, when properly
implemented, enhance detectability without sacrificing robustness to false alarms or
false positives. The chapter also discusses the implications of Laplacian noise model. One
such implication is that the simple response model adopted is optimal in the context of
a subspace learning problem formulation. Another implication relates to the simple form
of the Laplacian detector that enables analysis on the design aspects of stimulus signal.

Keywords: Functional MRI data; robust detection; Laplacian noise; learning stimulus;
design of stimulus.

1. Introduction

Since its introduction in the early 1990’s,a functional magnetic resonance imaging

(fMRI) has become an invaluable tool to the neuroscience community by permitting

the non-invasive analysis of many perceptual, behavioral, and cognitive activities in

the human brain.5,70,82–85 Using correlates between experimental stimuli and the

resulting observed functional responses, these studies have provided considerable

insight into purported physical locations of processing centers, propagation of neural

aPortions of this chapter are based on previously published work,23,25,27,28 with permission,
�IEEE, 2002–2004.
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activity, and the effects of neurodegenerative diseases, to name just a few. Because

of the importance of establishing correlations between stimulus and response, the

purpose of this paper is to provide a statistical framework within which such cor-

relations may be established in a robust fashion.

Of primary interest to this paper are the detection, estimation, and localization

of human cerebral hemodynamic response to repetitive and well-controlled stimuli

using blood oxygenation level dependent (BOLD) MRI signals. In this context, the

scope of this chapter excludes the related notions of perfusion and diffusion MR

imaging.29,76,105

The challenges in rigorously characterizing fMRI response signals are significant

due to several factors. First, the signal changes are very low in magnitude, typically

a few percent of the baseline signal. Second, there is an unknown time delay between

the presentation of the stimulus and the observed response. Third, adaptation may

occur over time, altering the baseline of the response. Fourth, the waning focus of

the subject over time also alters the nature of the observed response. Fifth, neural

signals are transient, propagating from loci to loci, thus the temporal nature of the

imaging process plays an important role.

In addition to the above challenges, one issue that has not been addressed in

past research is that of unknown interference, meaning signals that are of unknown

origin or whose characteristics have not been determined. It is naturally preferable

to learn the interference characteristics so as to determine its presence and account

for it at the detection stage. Learning, however, may not always be an option, as for

instance sufficient data may not be available. The work in this chapter addresses this

issue as well; in fact as we will state later in this section, unknown interference is one

issue that has motivated the development by Desai and Mangoubi25–28 of the new

robust or game theoretic detection methodology applied to fMRI in this chapter.

The way an experimenter deals with all these factors is to first make appropriate

assumptions about the characteristics and properties of these confounding factors,

and utilize a model to capture their essence. Thus the choice of a model within

which the BOLD signal is to be processed and interpreted is an important issue,

but is one that is often done on an ad hoc basis, or is done implicitly.96 These models

make assumptions about the stimulus, the response, the noise, and spatio-temporal

correlation characteristics, the interference, and the hemodynamic delays.

In this chapter, we seek to characterize the deviation from average over a neigh-

borhood response so as to capture the finer variations, both in time and from voxel

to voxel. We do so in a hierarchical fashion. In the first step we learn the transient

characteristics at each voxel that exploits both the spatial and temporal correlations

of the transient. Next, in the second step, we determine the steady state response

characteristics voxel by voxel, and a decision is made as to whether each voxel

responds to the stimulus or not. The transient and steady state characteristics are

captured by a parsimonious yet simple response model. This model is compatible

with the Laplacian noise model selected for robust detection, which is executed

using a newly developed methodology that is insensitive to unknown interference.

We now state our approach towards each of these steps.
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1.1. Objectives

The chapter presents an estimation and decision theoretic formulation of the fMRI

detection problem that has two objectives:

• Sensitivity to the response signal, in particular sensitivity at voxels where the

response’s magnitude is small, and simultaneously,

• Robustness or insensitivity to learned and unlearned interference, meaning inter-

ference or structured noise that may be learned, such as cardiac effects, as well as

interference that has not been learned either for lack of data or for other reasons.

Of importance here are errors due to wrong models or unmodeled effects.

As mentioned previously, these objectives have motivated the development of

new methodologies for robust or game theoretic signal detection, learning, and esti-

mation. This methodology, developed by Desai and Mangoubi25–28 for addressing

the challenges in fMRI, is more general than the statistical detection and subspace

learning methodologies that are based on the Gaussian noise assumption. In partic-

ular, the subspace detectors25,28 applied to fMRI23 and described in this chapter,

generalize the conventional Gaussian based ones in, for instance Refs. 98, 99.

The fMRI application in this chapter is based on the work in Ref. 23. The results

described in Sec. 8 compare the new methodology to the Gaussian based ones. A

peek at Fig. 4 shows that the new methods detect more responding voxels, while

simultaneously producing less false alarms.

Although it is always dangerous to segregate the computational from the cog-

nitive or physiological problem, comprehensive treatments of the physics of mea-

surements, the various explanations of physiological phenomena, and the clinical

application of fMRI, are beyond the scope of this chapter. The physics and physi-

ology of fMRI measurements are explained in Refs. 64, 80, 79.

It is our view, however, that an understanding of fMRI applications is a pre-

requisite for any useful work in the signal processing aspects of that field. In fact,

the subtleties and challenges found in the various applications motivated the novel

aspects of the methodologies we present. We describe these applications in Sec. 2,

where we attempt to provide a context for understanding important processing

issues. Specifically, we sketch a breadth of issues that are addressed and the BOLD

properties that are sought, rather than pursuing an exhaustive review of applica-

tions. We also provide a large number of references for the application of fMRI,

many of which have guided our thinking. But first we outline the key aspects of the

chapter’s technical approach.

1.2. Key analytical aspects of hierarchical approach

The novel features of this methodology have theoretical implications in statistical

detection theory, and, beyond fMRI, in many cases hold promises for other appli-

cations such as radar, sonar, biochemical sensing, etc. Some of these features are

given below.
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1.2.1. Models and subspace learning

We provide a simple yet parsimonious model that describes the fMRI stimulus

response. This model, which assumes that the response resides in a binary subspace,

meaning a subspace spanned by a vector consisting of binary elements, or +1 and

−1, is described in Sec. 4.2, and has several advantages:

• It permits the estimation of the response magnitude, and more importantly, the

response time shift at each individual voxel and at each phase of the stimulus. The

gains capture the steady state behavior of the response, while the shifts capture

the transient behavior. Voxel wise estimation of gain and time shift parameters

enhances the sensitivity of the detection, particularly at voxels where the response

may not be as strong.

• Though simple, the model is under some noise assumptions, specifically under

the Laplacian noise model assumption, the optimal choice in the sense that it

is the optimal solution to the subspace learning problem where no parametric

dependency constraints are explicitly imposed. This is described in Sec. 9.1. The

Laplacian noise model has a fatter tail, and provides more robustness.

• The model has implications for fMRI signal design as well, since the distribu-

tions of the binary elements can be easily selected so as not only to enhance

detectability, but also help minimize the impact of interference with partially

known spectral characteristics; an important concern when dealing with small

signal to noise and interference ratio (SNIR) applications such as fMRI. The

signal design implications are described in Sec. 9.2.

1.2.2. Parametric estimation

Our curve evolution variational approach to the response time-shift parameter esti-

mation (Sec. 6), which generalizes the work in Ref. 100, accounts for the temporal

and spatial continuity, meaning the correlation both in time and across voxels, of

the shift parameter. The result is an enhancement in sensitivity, or in our case

the ability to more accurately estimate the shift parameters. It also allows for the

adoption of cost terms that lend themselves to a Laplacian stochastic noise model

interpretation.

1.2.3. Robust non-Gaussian signal detection

The newly developed robust non-Gaussian detection methodology, which is a min-

max or game theoretic generalization of the Gaussian noise based χ2, t, and F

subspace detectors of Ref. 98, 99, is described in Sec. 7 for the fMRI problem.25,28

Its advantages are:

• It is valid for a large class of non-Gaussian detection problems. Thus, by changing

one parameter, the designer has more choice of noise modeling flexibility.
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• For the Generalized Gaussian model, it provides easily implementable expressions

for the detectors. The Generalized Gaussian model embraces a large family of

density functions, including the Gaussian, Laplacian, and Uniform.

• It is robust not only to interference signals that are known, but also those that

are totally unknown and have not been learned or are difficult to learn prior to

conducting the experiment. Again, this reduces the false alarm rate in fMRI.

1.2.4. The role of the Laplacian noise density function

From the above, we see that the Laplacian noise model plays an important role in

our approach. Specifically, (1) it is compatible with the binary element subspace

model selected in the sense that it simplifies the learning process26,27 (See Sec. 9.1),

(2) the curve evolution approach for shift parameter estimation involves Laplacian

associated cost terms (1-norm), and (3) forms the basis of the robust detectors of

Sec. 7 which, as for instance Fig. 4 shows, provide enhanced detection and reduced

false alarm performance when compared to conventional Gaussian based detectors.

1.3. Organization of the Chapter

Section 2 discusses the applications of fMRI. In Sec. 3, we provide an overview of

our approach, while in Sec. 4 we describe more formally our approach to the fMRI

modeling, estimation, and detection problems. The same section presents in details

the stimulus response model. Section 5 explains the logic behind some aspects of

our approach. The model time shift parameter estimation problem is formulated

and solved in Sec. 6. A robust detection paradigm is formulated and explored in

Sec. 7, and results are provided in Sec. 8. Further stimulus signal design, theoretical

generalizations and implications are given in Sec. 9. Finally, Sec. 10 offers some

conclusions.

2. Applications of Functional MRI

Before delving into these applications, it is worthwhile to first consider what exactly

is being measured by the fMRI signal. One significant assumption underlying the

use of BOLD is that, upon presentation of a stimulus, the subsequent changes

observed in the MRI signal of the brain can be uniquely attributed to that stimulus.

This signal is measured by observing the differences between a brain at rest and a

stimulated brain undergoing some activity which is attributed to that stimulus. In

this context, activity is characterized by increased metabolism and the increased

demand for oxygen. The control and elimination of extraneous stimuli so as to yield

a statistically significant and reproducible BOLD signal is a critical component of

any fMRI experimental design.

To observe BOLD fMRI, T2-weighted images are generally used. This is

because while oxygenated blood (i.e. oxyhemoglobin) is diamagnetic (essentially
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non-magnetic), deoxyhemoglobin is paramagnetic, thus giving rise to shorter

T2-signals, hence deoxyhemoglobin appears darker in T2* MR images.b In response

to a stimulus, there is a corresponding increase in the amount of oxygenated

hemoglobin within the microvasculature, which displaces the amount of deoxyhe-

moglobin and alters the ratio of oxy- to deoxy-hemoglobin. As such, the observed

fMRI signal is not the direct result of increased inflow, but instead is an indirect

result of the decrease in the amount of deoxyhemoglobin that gives rise to dark

MRI signals. Yet the displacement of deoxyhemoglobin is only the result of chain

of events: a cascade of biochemicals are released in response to stimulation, leading

to increases in blood flow, blood volume, and oxygen consumption.14,32,34,39 As

such, the observed fMRI signal represents a complex choreography of a multitude

of molecular and physiological events.

Functional MRI has been widely applied to a number of clinical areas. The pur-

pose of this section is to convey the breadth of these applications without being

exhaustive. In broad terms, the application areas can be divided into: (i) mapping

of regions of the brain responsible for perception in Sec. 2.1, (ii) understanding

the complex neuroanatomy responsible for cognition and emotion in Sec. 2.2, and

(iii) elucidating mechanisms of neurological degeneration and disorders in Sec. 2.3.

Since our intent is to highlight the applications of fMRI without devoting too

much attention to neuroanatomy, those desiring a more extensive treatment of

neuroanatomy can refer to, for instance, Refs. 64, 80, 113.

2.1. Perception

Many of the earliest human fMRI studies focused on mapping the regions of the

brain responsible for perception, most commonly of the visual system.83,70 These

early studies confirmed the role that the primary visual cortex (V1 region) plays

during photic stimulation experiments. The V1 region, located at the posterior

pole of the occipital lobe, and the nearby V2 and V3 regions, were shown to behave

retinotopically via fMRI experiments on patients with defects or lesions in these

regions.60 Other studies have shown specialized regions for color processing,49 facial

image processing,52,89 and directional sensitivity.17 Abnormalities in visual informa-

tion processing have also been implicated in dyslexia patients, where fMRI played

a crucial role in identifying differences in visual-stimulation brain activation pat-

terns when compared to normal subjects.20,36,48,55 Others have studied migraines

and the visual illusion known as aura that precede migraines in approximately 20%

of migraine sufferers, and confirmed the characteristic retinotopic progression of

migraine aura using fMRI.48 Collectively, these studies point to the retinotopic,

distributed, and specialized nature of human visual information processing. Com-

prehensive and critical reviews of human visual information processing can be found

in Refs. 55, 65, 112.

bReaders desiring a more fundamental introduction to MRIs can refer to, for example Refs. 64, 79.
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Functional MRI has also been used to examine other forms of sensory percep-

tion. A series of studies has been undertaken to compare differences in regions of

brain activation between normal and hyposmia (those with a reduced sense of smell)

subjects, as well as hyposmia subjects treated with theophyline for six months.74,75

These olfactory perception studies confirmed the presence of two types of hyposmia,

and demonstrated the role of the frontal cortex in directing olfaction processing to

other areas of the brain, such as the temporal and cingulated regions. These studies

additionally examined the neuroanatomical relationship between odor recognition

and odor memory. The same group of researchers also looked at the sense of taste,

and concluded that taste and smell are localized in different parts of the brain.56 A

comprehensive overview of the neuroanatomical structure and function of the olfac-

tory system, as derived from different imaging modalities and analysis techniques,

can be found in Ref. 67.

The identification of the regions of the brain responsible for pain is a complex

task. One study utilized noxious hot (46-deg C) and cold (5-deg C) stimulation

to the dorsum (backside) of the left hand, and identified numerous structures of

the brain that were activated, including mid-brain regions thalamus, basal ganglia,

and insula, as well as cortical regions cingulate, somatosensory, premotor/motor

cortices, prefrontal and inferior parietal cortex.110 The same study also found that

most regions were activated bilaterally, but generally with stronger activation con-

tralateral to the stimulus.110 The involvement of the somatosensory cortices SI and

SII has been controversial, due to inconsistent results. In an attempt to reconcile

some of these inconsistencies, one study identified differences in activation patterns

between painful heat and non-painful tactile (brush) stimuli.16 This study found

that both groups of subjects activated the SI and SII regions, but the activation

showed different peak patterns and time constants. In particular, brush-evoked

stimuli showed a consistent, single-peak response at 10-sec, while the heat-evoked

response showed two peaks, with the dominant second peak occurring at 17-sec after

stimulation,16 and appears to confirm the persistent nature of the heat-induced

pain reported by many subjects. These studies point to the complex nature of our

response to pain, and raise many questions about how such experiments control for

confounding variables.19

2.2. Cognition

Language also involves complex interplay among various regions of the brain. The

localization of language centers is well established in the history of science — in

the mid 1800’s, Paul Broca encountered a patient who was able to understand but

unable to form speech, subsequent to the patient’s death Broca identified a lesion

in the inferior frontal gyrus and established the central role of that region to speech.

Other scientists of the time, such as Carl Wernicke, similarly found another localized

area of the brain responsible for language by noting the relationship between dam-

aged posterior superior temporal region and speech comprehension.47 The advent
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of fMRI has enabled much finer delineations of functional subregions within Broca’s

region, Wernicke’s region, as well as other areas.

In one study, differences between overt and covert speech (i.e. between mentally

thinking of a word versus verbalizing a word) were examined. This study found

that although similar regions were activated (with the exception that overt speech

involved various motor regions), regions activated by overt speech yielded higher

magnitude responses.86 In another study, the encoding of semantic information

was investigated.22 This study found that specific regions within the left inferior

prefrontal cortex showed increased activity during semantic encoding as compared

to non-semantic encoding. Furthermore, the same study established the “priming”

effect — repeated semantic encodings showed decreased activation. Yet another

aspect of language is the characterization of semantic versus syntactic information

processing. By using syntactically correct but semantically meaningless sentences

(so called “Jabberwocky” sentences), one study found that some areas of the brain

(such as area 44) are active regardless of the semantic or syntactic nature of the

stimuli, whereas other areas (such as temporal lobes) showed differential activation

depending on whether the task at hand was a semantic or a syntactic one.41

While fMRI has been useful in studying different aspects of language, the

complex nature of language and language processing has necessitated increasingly

sophisticated experimental paradigms.8 The same can also be said of a related

aspect of cognition — memory. In one study examining activation differences

between deep- and shallow-encodings (where shallow-encodings result in low lev-

els of recognition success but high retrieval effort and deep-encodings result in

high recognition success and low retrieval effort), many common areas of activa-

tion between deep- and shallow-encodings were found. The study also found that

bilateral anterior insular regions and a left dorsal prefrontal region were more active

after shallow-encoding, while right anterior prefrontal cortex was most active during

successful retrieval after deep-encoding.11 Another study found the that posterior

medial temporal lobe is associated with episodic encoding, although inconsisten-

cies between fMRI and positron emission tomography (PET) were found.97 In yet

another study designed to examine familiarity during retrieval, subjects are asked

whether they (a) recollect seeing a word, (b) whether they experience familiarity

in the absence of recollection, or (c) whether they did not remember seeing it pre-

viously. Cases (a) and (b) showed enhanced responses in left prefrontal and left

parietal cortices, while the opposite pattern was observed in bilateral temporoc-

cipital regions and amygdala. Furthermore, case (a) showed enhanced response in

anterior left prefrontal, left parietal, and posterior cingulated regions.57 (The inter-

ested reader can refer to Ref. 12 for a comprehensive review of the neuroscience

surrounding memory.) Collectively, these results point to the contribution of fMRI

to understanding the encoding and retrieval of memory, and the localized and dis-

tributed nature of cognitive processing within the human brain.

Just as language and memory have benefited from the objectivity provided

by fMRI studies in the past decade, so has the study of emotions evolved from
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subjective attributes to objective neuroanatomy. For example, fear is associated

with the amygdala,50,73 although others have questioned the specificity of such

responses, as well as the role other regions of the brain, such as the insular region,

play in fear.116 Using patients with focal brain damage, one study mapped the

regions of the brain responsible for recognition of faces containing emotions.1 The

role of the retrosplenial cortex in responding to emotionally salient stimuli, as well

as its involvement in episodic memory, has also been examined.77 The brain acti-

vation patterns of eight obsessive-compulsive disorder subjects with contamination

preoccupation were examined, and one study found disgust-inducing tasks activated

the right insula and parahippocampal regions.101 The emotional “high” resulting

from a reward has also been examined, both using drugs such as cocaine9 and using

monetary rewards.10 Recently, a meta-analysis of 55 PET and fMRI studies was

performed; this study categorized emotions into five states (happy, fear, anger, sad-

ness, disgust) and examined the level of agreement among them as to the regions of

the brain responsible for these emotions.87 This meta-analysis provides consensus

on the regions that have been strongly correlated with each of these five emotional

states.

2.3. Neurodegeneration and disorders

In addition to advancing our knowledge of neuroanatomical structures responsible

for various perceptive and cognitive functions, a significant application of fMRI is

to aid in the characterization of neurodegneration, as well as diagnosis of various

neurological disorders and mental illnesses.

When examining neurodegeneration in memory or cognitive tasks, it is impor-

tant to distinguish such changes from normal age-related alterations. It has been

shown that neither the BOLD signal shape nor the hemodynamic response functions

are affected by age. However, older subjects show significantly reduced signal-to-

noise ratio in the BOLD signal when compared to younger subjects, using fMRI

images of the primary sensorimotor cortex during a simple reaction time task.33

Another study found age-related correlations in both signal intensity and the num-

ber of activated voxels within the sensorimotor cortex during a finger-tapping

experiment.58 In yet another study, the rise time of the BOLD signal was found to

correlate with age.108 (See Ref. 32 for a review of age-related fMRI studies.) These

studies established the baseline from which comparisons can be made between neu-

rodegeneration and aging. For example, in a face-name association experiment,

fMRI activities in the hippocampal formation, medial parietal, and posterior cin-

gulated regions were found to be significantly different between Alzheimer’s and

normal elderly subjects.106 Interestingly, in another experiment in which drugs are

used to induce memory impairment, drugs with purported different mechanisms

of action yielded very similar fMRI responses. Specifically, the drug lorazepam

is believed to bind to γ-aminobutyric acid (GABA) receptors and impair mem-

ory by enhancing the inhibitory influence of GABAergic neurons, while the drug
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scopolamine is a potent antagonist of the muscarinic acetylcholine receptor and

believed to impair memory by blocking cholinergic transmission.107 Thus while

fMRI is sensitive to memory impairments and neurodegeneration effects, it does

not appear to be sensitive to the mechanisms underlying the impairment.

The importance of characterizing normality, and subsequently deviations from

normality, is highlighted in the study of attention-deficit hyperactivity disorder

(ADHD), since ADHD is considered a learning disability for school-age children, and

imaging studies are performed on their still-developing brains. One MRI study found

numerous imaging anomalies associated with pediatric ADHD subjects, including

reduced volumes of the total brain, superior prefrontal, right superior prefrontal,

and other regions.59 Functionally, ADHD has been associated with dysfunction in

arousal, behavioral inhibition, and attention systems, perhaps as a result of struc-

tural abnormalities in frontostriatal regions of the brain.35,51 Schizophrenia has

similarly been linked to both structural and functional deviations — hippocampal

volume reductions has consistently been associated with schizophrenia subjects,

and to a lesser degree in first-degree relatives of schizophrenic probands.54 Func-

tionally, it has been demonstrated that abnormal levels of hippocampal activity

occur at rest, during auditory hallucinations, and during memory retrieval tasks.54

While functional neuroimaging has contributed to the understanding of schizophre-

nia, this mental disorder is highly complex in nature, with potential genetic and

environmental components, as well as many non-specific biomolecular markers.88 It

will likely be some time before the mechanism of this disorder is fully understood.

It has been hypothesized that interpersonal and social interactions require the

recognition of faces.111 As such, it is not surprising that people with autism may

show differences in face-recognition processing when compared to normals.37 This

has been shown experimentally with fMRI. Working with high-functioning autism

and Asperger syndrome subjects, one study found that face recognition experiments

significantly greater activation of the right inferior temporal gyri and less activation

of the right fusiform gyrus as compared to the control group.102

2.4. Summary of applications

In this section we have taken a cursory view of the numerous and disparate ways

in which fMRI is utilized to address compelling scientific and clinical questions.

It should be apparent that while significant differences may exist among experi-

mental paradigms or image acquisition methods, the fundamental fMRI parame-

ters researchers utilize to characterize regional activation and abnormalities remain

similar: statistical significance of the activated voxels, the regions of the brain

associated with these voxels, the hemodynamic delays associated with activation,

and the magnitude of the activation. In the context of the methodology intro-

duced in this paper, we have attempted to capture these parameters in a rigorous

way, so as to enable the detection of even smaller changes with higher statistical

significance.
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3. Approaches

A major analytical challenge with the analysis of fMRI data stems from the fact

that the observable changes in signal intensity due to changes in the concentration

of deoxyhemoglobin are noisy and small; only a few percentage points. As such,

considerable research efforts deal with the statistical analysis of fMRI signals col-

lected during experiments when the brain is subjected to stimuli. The objective is

to determine whether temporal signal changes at a voxel are due to noise or an indi-

cation that the voxel is responding to the stimulus. One of the earlier efforts is that

of Bandetini et al.,4 who used cross-correlation between the measured time series,

after estimation and removal of effects other than the stimulus, and estimates of

the expected response signal. Cox et al.18 provide statistics such as those in Ref. 4,

but recursively computed for real time implementation, and examine the threshold

selection issue. In Ref. 69, Kim and Ugurbil formulate parametric Student t and

non-parametric Kolmogorov–Smirnov hypothesis tests to classify voxels into two

classes, responding and not responding. In Refs. 42, 43, Friston et al. use time-

series methods based on generalized linear models (GLM) for the same purpose,

including estimation of hemodynamic response. In a similar vein in other early and

continuing work, linear estimation and identification methods have been applied by

Worsley et al. in for instance Refs. 114, 115.

Other statistical work includes that of Solo et al.,103,104 Nan and Nowak,81

Ardekani et al.,3 Kershaw et al.,68 Purdon and Weisskoff,91 and Genovese et al.44

In Refs. 103, 104, prior information is used to model the impulse response and

the hemodynamic response delay, with regularization added as a constraint to take

advantage of the spatial correlation of the brain response. The approaches in Refs. 3,

68, 81 account for the fact that some regions of the brain may be responding

to activities not related to the experiment being conducted. Responses to these

activities are assumed to lie in a separate subspace, often called the interference

subspace. The hypothesis tests compare the measurement components in each of

the response subspace and this separate subspace, which if not known a priori, is

learned from the experimental data.

3.1. Our Approach

Our objective in this chapter is to develop methods that improve the detectability of

responding voxels, thus providing enhanced fMRI activation maps. Specifically, we

focus on learning the characteristics of the response to the stimulus from the exper-

iment’s data. In particular we focus here on estimating the time varying response

time shifts separately at each phase of the stimulus on a voxel-by-voxel basis. Esti-

mating the time shifts can be shown to have a significant impact on enhanced

detectability in low signal to noise regions; errors in the estimate of phase time

shifts can lead to errors in the relative orientation of the signal subspace inside the

measurement space.
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Work on estimating response time shifts include that of Lange and Zeger71

and Glover,46 where the hemodynamic response function (HRF) is modeled as a

gamma function, whose parameters are estimated by nonlinear regression. Another

approach based on nonlinear regression, by Purdon et al.92 Methods that assume

periodic stimuli are found in the work of Thierry et al.109 An underlying assumption

in the above work is that the delay is constant within the same region.

One important difference between the approach suggested here and those men-

tioned is that in our underlying HRF model, which is motivated by data on

responses to visual stimuli, the time shift is allowed to vary not only at each voxel,

but at each phase shift as well. The suggested approach consists of the following

steps: (1) modeling the stimulus response with the time shifts as a parameter based

on Laplacian subspace learning theory, (2) estimating the response time shifts at

each voxel, and (3) implementing an appropriate, meaning a robust Laplacian,

matched filter detection test.

We use a binary stimulus time response model for our matched filter. We account

separately at each voxel for the variation in time of the response time shifts from

one stimulus phase to the next. To do so, we adopt a simple time varying stimulus

response model that is parametrized by the gain and phase varying time shifts.

The time shift parameters enter the response model in a nonlinear fashion. The

parsimonious yet simple response model captures the essence of the temporally

and spatially non-constant characteristics of the actual response signal, and can

therefore handle periodic as well as aperiodic signals.

To estimate the time shifts, we use the curve evolution100 approach to image

smoothing and segmentation prior to applying a constant false alarm rate (CFAR)

detector.25,99 This nonlinear variational estimation approach has been applied in

Ref. 90 to structural MRI, makes use of the response’s spatio-temporal correlation

and yields the response time shifts separately for each on-off phase of stimulus

and at each voxel. The power of the curve evolution approach makes it possible to

overcome the complication involved with their estimation for each phase change of

the stimulus and at each voxel.

While detectability of responding voxels improves with the introduction of time

shifts, we unavoidably incur a simultaneous penalty of enhanced false alarms; a well

known attribute of all tests where model parameters are estimated. We therefore

need to adopt additional measures where we can reduce the false alarms associated

with a Gaussian noise model based CFAR detector, while maintaining the improved

detectability that the estimation of response time shifts provides. We explore here

an alternative CFAR detector, specifically one that replaces the Gaussian noise

model with a Laplacian one. Like the Gaussian, the Laplacian density function is

unimodal and symmetric about the mean. Its tail event probabilities are, however,

larger than those of the Gaussian density function, meaning that it assigns a higher

probability to intervals of large values, and thus one of the potential causes of

increased false alarms. We then formulate a matched subspace detection test that

is appropriate for non-Gaussian noise, specifically the robust detection test derived



Functional MRI Activity Characterization and its Applications 263

by Desai and Mangoubi in Ref. 25, on a voxel by voxel basis. In the presence

of non-Gaussian noise, this test protects against modeling errors and unlearned

physiological effects. Finally, using image comparison in Fig. 4, we demonstrate that

with the Laplacian robust CFAR detector, the enhanced detectability obtained by

virtue of estimating the response shift or delay is achievable while maintaining a

reduced level of false alarms; no additional postprocessing such as spatial smoothing

or background masking, etc., is needed.

3.1.1. Summary of the approach

Figure 1 captures the approach. The diagram in (a) describes the measurement

model (Sec. 4) and its components — stimulus response (Sec. 4.2), learned and

unlearned non-stimulus response and noise (Sec. 4.3). The diagram in (b) illustrates

the stimulus response model and its parameters (defined in Sec. 4.2). The diagram

in (c) describes how the algorithm processes the measurement (Sec. 5): the temporal

characterization (Sec. 6.1) provides estimates for the response time shifts at each

stimulus phase transition before the robust detection test (Sec. 7) is implemented

to obtain the spatial or functional characterization (Sec. 8) of the brain response.

4. The Measurement Model

4.1. Measurement components

When stimulating signals are sent to the brain, some areas respond to the stimulus,

while others do not. Our objective is to determine, using hypothesis testing and a

sequence of MR images of the brain taken while the brain is receiving the stimulating

signals, the probability that the observed change at each voxel is due to the stimulus.

Let Ω represent a discrete two-dimensional region for which a time sequence of

image measurements are available. We assume that Ω contains but is not limited to

an entire two-dimensional slice of the brain. We note that though our development

and implementation is two-dimensional, our approach is applicable to the three-

dimensional case as well. Let i ∈ Ω be a discrete voxel location. The input signal

at time step k over a discrete-time interval [1, K] at each voxel i is assumed to

be a known sequence of on/off step functions of equal magnitude. We base our

hypothesis test on a measurement vector xi at each voxel i that consists of different

components: the response to the stimulus, ri, the response to known or learned

non-stimulus effects, rℓi, the response to unlearned effects, rui, and the noise ni.

Thus, we have at each time step k

xi[k] = ri[k] + rℓi[k] + rui[k] + ni[k] ∀k ∈ [1, K], i ∈ Ω (1)

or, in vector notation,

xi = ri + rℓi + rui + ni ∀i ∈ Ω. (2)

The above model is illustrated in Fig. 1. We will first discuss the various com-

ponents of the model, then describe our approach, also illustrated in Fig. 1.
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Fig. 1. The detection model and the architecture. The diagram in (a) describes measurement
model (Sec. 4) and its components — stimulus response (Sec. 4.2), learned and unlearned non-
stimulus response and noise (Sec. 4.3). The diagram in (b) illustrates the stimulus response
model and its parameters (defined in Sec. 4.2). The diagram in (c) describes how measurements
are processed: The temporal characterization (Sec. 6.1) provides estimates for the response time
shifts at each stimulus phase transition before the robust detection test (Sec. 7) is implemented to
obtain the spatial or functional characterization (Sec. 8) of the brain response. �2002, IEEE.23
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4.2. The stimulus response model, ri

An underlying assumption in Sec. 4.2 is that the stimulus response signal time pat-

tern is similar to the stimulus time pattern, except that it is shifted in time and

modulated by a gain. The actual response is generally more complex, but the time

shifts are intended to capture the transient behavior, which may be anticipatory,

and to capture transport delays, while the gains capture the steady state behav-

ior. As explained in Ref. 26 and Sec. 9.1, our choice of stimulus response model

complements our choice of Laplacian noise model, described shortly in Sec. 4.3.

Specifically, if we were to formulate a subspace learning problem in the presence of

Laplacian noise without imposing parametric dependency on the form or orienta-

tion of the subspace, then the optimal subspace estimate is represented by a vector

whose elements are binary valued, such as +1 and −1. This is exactly the type of

model we describe in this section.

In our parametric subspace estimation problem here, where again we assume the

binary form, the time shifts and the gains are the two parameters to be estimated.

In this study, the gains are assumed constant in time at each voxel, but vary from

voxel to voxel. The time shifts vary from voxel to voxel and, in particular, they also

vary from response phase to response phase. In previous work, the gains and shifts

are also unknown, and spatially varying time delays are studied and explained by,

for instance, Lange and Zeger,71 and Solo et al.103 These authors, as mentioned in

the introduction, assume that the time shifts at a given voxel are constant, while

we do not. Time delays are allowed to vary because they have a dominant role in

identifying the signal response subspace. For example, for a 66 sample signal of 6 on

and 7 off phases in a one-dimensional signal space, a misclassification consisting of

a delay of one sample at each phase would yield a response space that is separated

by 51 degrees from the actual response space.

As mentioned earlier, the input signal at time step k over a discrete-time interval

[1, K] at each voxel i is assumed to be a known sequence of on/off step functions

of equal magnitude. It models the on and off phases of stimulus with onset of the

jth phase, j = 1, . . . , J , given by ktr[j] as shown in Fig. 1(b). The subscript “tr” is

for transition.

We assume a simple two-parameter linear, time varying response model; a

shifted version of the stimulus signal that is modulated by a gain. The change

in response at the ith voxel due to a unit step applied at time k0 is then modeled as

ri[k] = θih [k − k0 − λi[k0]] , ri[1] = 0, (3)

where θi and λi[k0] represent the gain and time delay, respectively, and h[k] is a

unit step function defined as h[k] = 1 for k ≥ 0 and zero otherwise. We assume

that the time of response onset k0 + λi[k0] occurs after step k = 1.

We can obtain in vector notation the following response model for the alternating

on and off stimulus signal of Fig. 1(b),

ri = a (λi) θi (4)
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where λi is the vector of individual phase delays of length J , the number of phases,

while the vectors ri and a(λi) are of length K. The vector a(λi) is given by

a(λi) = [δ[1]ebi
[1], δ[2]ebi

[2], . . . , δ[J ]ebi
[J ]]′ (5)

where the superscript ′ denotes the transpose. Here each ebi
[j] is a row vector of ones

whose length equals the number of time steps of the response in the jth stimulus

phase. Specifically, ebi
[j] is a vector of 1’s of length Ti[j], where

Ti[j] = ktr[j+1]−ktr[j]+λi[j+1]−λi[j], λi[1] = 0, ktr[J+1] = λi[J+1] = K. (6)

We also have

δ[j] =

{
1 if on phase

0 if off phase
. (7)

For example, if ktr[2] = 6 and ktr[3] = 10, and λi[2] = 2, λi[3] = 1 for a voxel i,

then the stimulus u = a(0) and a(λi) would respectively start as

u = [ 0 0 0 0 0 0 1 1 1 1 0 0 . . . ]′

a(λi) = [ 0 0 0 0 0 0 0 0 1 1 1 0 . . . ]′
.

The simple two-parameter step response model of Eq. (4) therefore implies that the

response at each voxel i ∈ Ω is a K×1 vector residing in a one-dimensional subspace

parametrized by the response time shifts λi, and whose magnitude is scaled by the

gain θi. Estimating the gain completely fixes the stimulus response vector.

We note that the above model is a generalization of the box-car shaped HRF

used in early fMRI work by Bandetini.4 More generally, the one-dimensional sub-

space model a(λi) is one that embraces many shapes associated with hemodynamic

responses and thus introduces additional degrees of freedom. Further, since the

model is time domain and not frequency domain based, it can accommodate ape-

riodic signals as well.

In Sec. 9, we provide a more general response model, where we allow the gain

magnitudes to vary from phase to phase. As mentioned earlier, we also briefly

describe an attractive feature of the on-off response model. Specifically, as shown in

Ref. 26 for subspace learning in the presence of Laplacian noise, where no parametric

dependency constraints are imposed on either the form or the orientation of the

subspace, this model form naturally obtains as it is the optimal subspace estimate.

4.3. The measurement model, xi

In addition to the stimulus response, the measurement vector may also include

responses to other known or learned interference, unknown or unlearned effects,

and random noise, as Fig. 1(a) shows.
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4.3.1. Learned non-stimulus effects, rli

By learned interference, we mean that we have determined the subspace where they

reside. In addition to bias, this can include low frequency drift phenomena such as

a ramp, or cardiac and breathing effects. These effects, if not specified a priori,

can be learned, for instance, over a larger group of voxels assuming local spatial

stationarity; an aspect of the fMRI problem we do not address in this study. We

denote by Bi the learned non-stimulus effect matrix of dimension K × M whose

columns span an M -dimensional subspace of the K dimensional measurement space

at voxel i. Some columns of Bi, such as those representing drift phenomena, may

be the same for many or all voxels. Thus, our learned response model is given by

rℓi = Biφi ∀i ∈ Ω (8)

where φi is an unknown parameter vector representing the strength of the learned

interference. Again we do not deal in this paper with the learning aspect of the

fMRI problem; we simply assume that the matrix B is known and has been learned

a priori.

4.3.2. Unlearned effects, rui

We designate as unlearned effects those effects that we did not learn, or ignore

in the model. Unlearned effects can be due to undersampling, modeling errors,

errors in learning of physiological effects, unforeseen or ignored phenomena, etc.

One can only unambiguously see this unlearned component in the space orthogonal

to the stimulus and learned effect subspaces. Therefore, the presence of these effects

can only be inferred from the component of the measurement that lies in the null

space of the space jointly spanned by the columns of a(λi) and Bi. This null space

contains those unlearned effects that are decoupled from the subspaces spanned by

the columns of a and B. We denote the subspace of unlearned effects by Ui(λi) and

we assume it is spanned by the columns of the K × (K − M − 1) matrix Ui(λi).

Thus we have

rui = Ui(λi)ψi ∀i ∈ Ω (9)

where ψi represents the unlearned interference strength, and needs to be estimated

as well.

4.3.3. The noise, ni

The noise is a K × 1 random vector modeled as

ni = σivi

where σi is an unknown scalar that represents the time-invariant voxel dependent

standard deviation, and vi is a K × 1 random vector of zero mean and unit covari-

ance whose elements are independent and identically distributed. We explicitly show
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the time invariant voxel dependent standard deviation σi in the equations of the

hypothesis test to emphasize the fact that the covariance is unknown as well. We

will consider two density functions for vi, the Gaussian and the Laplacian. As men-

tioned in the introduction, we consider a Laplacian distribution model for the noise

because the heavy tailed nature of the Laplacian has been shown in other appli-

cations to provide additional robustness to modeling errors.66 Aside from robust-

ness considerations, the noise itself may be Laplacian, or generally non-Gaussian.53

We note that in other work,7,45 non-Gaussianity is dealt with at the analysis or

thresholding level, as opposed to the decision statistic synthesis level, as done here.

The theory of non-Gaussian subspace learning is developed in Ref. 25. Moreover,

Descombes et al.,31 and Everitt and Bullmore,38 use non-Gaussian density func-

tions for spatial processing, whereas we focus on temporal processing. We also note

that our independent noise assumption may be an idealization, as the noise may

well be spatially or temporally correlated. Temporal correlations are considered by

Purdon and Weisskoff91 and Worsley et al. in Ref. 114.

4.3.4. The overall measurement model, xi

Based on the above, our measurement model (Fig. 1) for a responding voxel i has

the following form

xi = ri + rℓi + rui + ni

= a(λi)θi + Biφi + Ui(λi)ψi + σivi ∀i ∈ Ω. (10)

The unknown parameters in the above model are again the response shift

parameter λi, the voxel’s response magnitude θi, the learned interference strength

vector φi, the unlearned interference strength vector ψi, and the noise standard

deviation σi. The measurement is linear in all these parameters, except for the λi’s,

which enter the model in a nonlinear fashion. We note that, with the parametriza-

tion of the signal subspace a(λi), we are lifting the assumption that the stimulus

response subspace is known a priori. We also note that our stimulus response sub-

space is only one dimensional, though we provide a more general extension to the

subspace of piecewise continuous functions in Sec. 9, albeit preferably under some

constraints on parameters to reduce the attendant increase in false alarms. Finally,

not all measurement components in Eq. (10) need be simultaneously present; the

actual measurement model depends on the hypotheses of the detection test that is

posed, as we explain in Sec. 7.

5. Model Parameter Estimation: Time Shift (λ’s) versus Gain (θ’s)

The linear parameters θ will be estimated in a robust generalized likelihood ratio

test framework in Sec. 7. In that section, the estimation of the gain θ is imbedded

in the derivation of the detector’s statistics, and there is no need for an explicit

expression.25–28
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As noted in Fig. 1, we tackle the detection and gain parameter estimation issue

only after curve evolution is used for estimation of the λi’s. We now explain the

motivation behind this two-step hierarchical approach.

The spatial correlation in the stimulus response time shifts can be signifi-

cant among responsive voxels. Therefore, when estimating those shifts, we need

an approach that takes into account their spatial continuity. The curve evolution

approach is particularly attractive for this purpose. We mention three advantages:

(1) it can segment the image into regions in space and time, and simultaneously

smooth only within regions, (2) the resulting time shift estimates λ̂i this method

leads to are relatively less sensitive to low frequency phenomena such as bias and

ramp, and (3) we do not need to be concerned with implementing constraints on

other parameters such as the gain.

We do not, however, need the curve evolution method for obtaining the stimu-

lus response gains because, at least when compared to the time shifts, their spatial

continuity is not as consistent, for reasons such as partial volume effects. Moreover,

the curve evolution approach does not easily accommodate parameter constraints

should these prove necessary, such as when they are assumed to be constant. The

relative inconsistency of the spatial continuity of the gains and the possible need

to impose constraints on them leads us to formulate voxel specific hypothesis tests.

Moreover, characterization of the stimulus response lends itself readily to the impo-

sition of constraints on the gains, either explicitly, or implicitly through our choice

of response model.

The next section describes the use of curve evolution to estimate the response

time shifts, while Sec. 7 describes the voxel-by-voxel hypothesis test used in func-

tional characterization.

6. Response Time Shift (λ’s) Estimation

Our objective here is to temporally characterize the stimulus response subspace

parameters λi, ∀i ∈ Ω to enhance detectability of response to stimulus. To do so,

we use the curve evolution100 approach to the simultaneous smoothing and seg-

mentation of a time sequence of images. As mentioned earlier, this approach is

particularly adept at exploiting the possible spatial correlation among neighboring

responding voxels.

6.1. Curve evolution

The stimulus response model and the hypothesis test is presented in the previous

section in discrete time and discrete space. The reason for this choice is that our

measurements are in discrete time and space to begin with. To present our varia-

tional problem, however, we will switch to the continuous time and space domains,

both because the continuous formulation provides more conceptual insight and,

in any case, Shah’s original formulation100 is continuous. For implementation, the

resulting necessary conditions are of course discretized.
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For the continuous domain formulation, we consider the image region Ω intro-

duced in Sec. 4 to be a discretization of a continuous region, which we denote

Ωc ⊂ R2, with elements s ∈ Ωc. Likewise, the time variable k in the time interval

[1, K] is a discretization of a continuous time variable t ∈ T ≡ [t0, tf ]. The analog

of our measurement vectors xi, i ∈ Ω will be the functions xc(s, t), respectively, for

s ∈ Ωc, t ∈ T . In the approach of Ref. 100, we have two unknown space and time

varying functions, ζ ≡ ζ(s, t) and ν ≡ ν(s, t), where ζ(s, t) represents the piecewise

smooth model of xc, meaning the image field, and ν(s, t) represents points in Ωc×T

with significant change in the measurement. Both ζ and ν are to be estimated so

as to minimize the energy cost functional E(ζ, ν), given by

E(ζ, ν) =

∫∫

Ωc×T

(
(1 − ν)2(α1‖∇sζ‖ + α2|ζt|) + β|ζ − xc|

+
ρ

2

(
‖∇sν‖2 + ν2

t

)
+

ν2

2ρ

)
dsdt (11)

where α1, α2, β, and ρ are constants representing the chosen weights on the accom-

panying cost components, ∇ denotes the gradient operator, and ζt, νt denote partial

derivatives with respect to time for the functions ζ and ν respectively. The term

‖∇sζ‖ and ‖∇sν‖ represent, respectively, the magnitude or Euclidean norm of the

gradient of ζ and ν with respect to the spatial variable s at the point s, t.

The first term in the above functional provides smoothness in the space and time

domains at all interior points of a region where ν ≪ 1, the second term is for data

fidelity, the third term provides smoothness in both domains for the edge field, while

the fourth term is intended to penalize the excessive presence of edges.90,100 Note

that the measurement fidelity cost term |ζ−xc| is based on the 1-norm; a stochastic

interpretation of which can be associated with Laplacian measurement noise.

We note again that the variational formulation just given is independent of

both the input stimulus and our choice of response and measurement models in the

hypothesis test. It also can provide a segmented image in space and time, with the

regions in space and time between edges and the edges themselves smoothed, but,

as we explained in the previous section, we choose to use it to extract estimates of

the response time shifts.

6.2. The gradient descent equations

The Euler equations that are the necessary conditions associated with the mini-

mization of the energy functional of Eq. (11) can be solved by the gradient descent

method. If ς is the rate of descent variable, then the gradient descent equations are

given by

∂ζ

∂ς
= −2(α1|ζt|〈∇sν,∇sζ〉 + α2‖∇sζ‖νtζt)

+ (1 − ν)‖∇sζ‖|ζt|
(
α1

〈
∇s,

∇sζ

‖∇sζ‖

〉
+ α2

∂

∂t

(
ζt

|ζt|

))

− β

1 − ν
‖∇sζ‖|ζt|

ζ − xc

|ζ − xc|
(12)
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∂ν

∂ς
= ∇2

sν − ν

ρ2
+

2

ρ
(1 − ν)(α1‖∇sζ‖ + α2|ζt|) (13)

with conditions on the boundary ∂Ωc and ∂T given by

∂ζ

∂η

∣∣∣∣∣
∂Ωc

= 0;
∂ν

∂η

∣∣∣∣∣
∂Ωc

= 0;
∂ζ

∂t

∣∣∣∣∣
∂T

= 0;
∂ν

∂t

∣∣∣∣∣
∂T

= 0; (14)

where η is the direction normal to ∂Ωc. In the above equations, 〈·, ·〉 denotes the

dot product and ∇2
s is the Laplacian.

The solutions to the above equations, ζ̂ and ν̂, provide estimates for the mea-

surement and edge strength signals at each voxel location. Since ν ∈ [0, 1],90,100

it can be interpreted as the probability that a particular voxel is an edge voxel.

If we look at the history of the measurement signal at each voxel, the discretized

solution to the above gradient descent equations thus provides us with sufficient

information to estimate the time of significant shifts in the measurement signals,

meaning the λi’s. We chose to determine the time shifts at each phase transition

and for each voxel based on applying likelihood considerations to the data over an

interval surrounding each transition. Specifically, the transition point is allowed to

shift from its nominal position in the stimulus within a certain range, and the like-

lihood function is calculated for each shifted position. Finally, we note again that

the solution to the above problem makes no use of the response or measurement

model introduced in the previous section.

6.3. Results of shift estimation

Figure 2(a) shows, for a particular responsive voxel, bands representing on and off

phases of the stimulus signal, and the measurement signal, while Fig. 2(b) shows the

same measurement signal as in (a) (dashed), and the measurement signal estimate

(solid) from the curve evolution approach. We see that the estimate of the measure-

ment signal is deblurred between phase transitions, as the model of Eq. (4) dictates.

The plots in (c) show the measurement signal and time shifted on and off bands of

the measurement signal. Note the ability of the curve evolution approach to pre-

serve sharp discontinuities in time, making it possible to obtain accurate estimates

of the response time shifts, as can be seen from the placement of the bands with

respect to the actual measurement in (c). We note that Eq. (12) is hyperbolic100 in

the direction of the gradient of ζ, and is therefore capable of creating “shocks” or

sharp discontinuities.

Figure 3 shows the average delay times, or the difference between the transition

times of the measurement signal and the stimulus signal, for all active voxels for

13 phase transitions. In this experiment, all the time shifts are delays. The variation

in average delays shown in Fig. 3 underlines the importance of estimating individual

delay times at each transition.
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(a) Stimulus off (gray) and on (white) bands and

measurements (solid).

(b) Measurements (dashed) and curve evolution response

signal estimate (solid).

(c) Time shifted off (gray) and on (white) bands of stimulus

Response phase estimates (based on curve evolution processing).

Fig. 2. Temporal characterization of the brain response. Plots in (a) show actual measurements
for a voxel with a significant response to an external stimulus with bands showing the onset and
time duration of on (white) and off (gray) phases of the stimulus. Response to stimulus is delayed
with variable delays at each phase transition. In (b), the dashed curve shows the measurement of
(a) along with its estimate (solid) from the curve evolution approach based processing. Estimate
is seen to be piece-wise constant with sharp transitions, a characteristic that readily leads to the
estimation of the time shifts at each phase transition of the input stimulus. Information of (c) is
analogous to that of (a) with a difference. The bands represent now the estimated on/off phases
of the voxel response and not of the input stimulus and band boundary placement is seen to be
at the middle of the measurement transitions as desired from modeling considerations. �2002,
IEEE23.
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1.8

1
Delay 

in

samples

0
1 2 3 4 5 6 7 8 9 10 11 12 13

Stimulus phase number

Fig. 3. Shifts in response in sample times for thirteen phases. Off to on (shaded) and on to off
(dark) phase transitions, are averaged over most active voxels. The figure shows that the delay
time can be different from phase to phase. �2002, IEEE23.

6.4. Summary of response time shifts

The time shift estimates enable the determination of the subspaces for stimulus

response. The Temporal Characterization referred to in the first block of Fig. 1c is

thus accomplished. We are ready to proceed to the final step of our hierarchical

algorithm, labeled Functional Characterization in the second block of Fig. 1c.

7. The Robust Detection Test

We first formulate the problem for general signal subspaces in Sec. 7.1.25 When the

subspaces are spanned by vectors that are binary valued, such as +1 or −1, the

detectors possess a special structure, which we describe in Sec. 7.4.28

7.1. Robust hypothesis test formulation

We pose a hypothesis test at each voxel i ∈ Ω, where the null hypothesis Hi0 states

that the voxel is not responding, while the alternate hypothesis Hi1 states that it

is. Specifically,

Hi0: xi = Ui(λi)ψi + Biφi0 + σi0vi0, Ui(λi) = N ([a(λi) Bi]) (15)

Hi1: xi = a(λi)θi + Biφi1 + σi1vi1. (16)
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In effect, we are testing whether the response, separately at each voxel i, is due to

the unlearned effects, meaning θi = 0, or to the stimulus, meaning ψi = 0. This test

is robust to unlearned interference because it explicitly accounts for the presence of

unlearned interference in the hypothesis Hi0. The robust test uses a game theoretic

approach.25 We also note that in the statistics literature, the term robust hypothesis

testing often refers to work by, for instance, Huber62 that specifically addresses the

issue of statistical outliers. Also, in detection work related to the broader domain of

dynamic plants, robustness is usually with respect to plant model and noise model

uncertainties for example by Mangoubi.78 Both these methodologies are motivated

by different applications than the approach presented here.

Our choice of this test is data driven and is intended to reduce false alarms that

arise in the presence of non-Gaussian noise with a nominal test where Ui (λi) = 0

in hypothesis Hi0. We note that in the Gaussian case, our robust test yields the

F -statistic.

Moreover, when the noise is Gaussian, we do not need to explicitly account for

the presence of unlearned interference, meaning that we can set ψi ≡ 0 and obtain

a statistic whose ROC performance is equivalent to that of the F -statistic. But this

equivalence obtains only in the Gaussian case, and only for CFAR tests, as we explain

in detail in Ref. 25 When the noise is Laplacian, a test where we set ψi = 0 a priori

will yield a different statistic with different performance characteristics than a test

where ψi is estimated from the data. The difference between the effects on the output

images of a Laplacian and a Gaussian noise model is illustrated in Fig. 4 of Sec. 8.

7.2. The robust detectors for general subspaces

We now provide expressions for the Generalized likelihood ratio (GLR) robust detec-

tors that obtain from the test of Eqs. (15–16) for different density functions. We

note that in these detectors, the estimate of the gain and noise variance parameter,

are implicitly imbedded in the final expression for the robust detection’s statistic,

and no explicit expression is needed. Derivations as well as other and more general

detectors are found in Ref. 25.

7.2.1. Gaussian detector

For the Gaussian case, the Generalized likelihood ratio based F -distributed statistic

is used. At each voxel i ∈ Ω, we have

Fi(xi; λ̂i) =
x′

iP((I−PBi
)a(λ̂i))

xi/L

x′
iPUi(λ̂i)

xi/(K − L − M)
(17)

where, for an arbitrary matrix W , the projection matrix is given by PW ≡
W (W ′W )

−1
W ′, with the superscript ′ indicating a matrix transpose operation,

and L = 1, the dimension of the response space a(λ̂i). Since the signal response

space is one-dimensional, this statistic is closely related to a two-sample t test. We

note that the early works of Bandetini4 and Cox,18 which makes use of box-car

HRF’s, relies on statistics that are related to the t statistic as well.



Functional MRI Activity Characterization and its Applications 275

(a) Robust Gaussian CFAR

detector with no time delay estimation

(b) Robust Gaussian CFAR

detector with  time delay estimation

(c) Robust Laplacian CFAR

detector with  time delay estimation

22 voxels with

45 voxels with

p(H1X) >0.95

35 voxels with

A posteriori probability of detection

with time delay estimation:

0.2667(Gaussian): 0.99996 (Laplacian)

A posteriori probability of detection

with time delay estimation:

0.997(Gaussian): 0.00003 (Laplacian)

Stimulus on

Stimulus off

p(H1X) >0.95

p(H1X) >0.95

Fig. 4. Detectors’ outputs. The image in the LHS of (a) is the output of a detector based on a
Gaussian noise model, with response time shift or delay set to zero. On the RHS is the a posteriori
probability map. In (b), response time shifts estimates are introduced: additional voxels are classified
as responding. In the image in (c), the Laplacian noise model replaces the Gaussian one: some of
the voxels declared in (b) as responding are withdrawn, while others are added. On the RHS of
the images in (b) and (c) are the time responses of two different voxels. The plots indicate that
the Laplacian detector correctly classified the two voxels, while the Gaussian detector did not. A
close examination of all voxels’ time response indicated that the Laplacian detector incorporating
response time shift estimates is more accurate than a Gaussian one.�2002, IEEE23.
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7.2.2. Laplacian detector

When the noise is Laplacian, we consider the generalized likelihood ratio statistic

for the test of Eqs. (15) and (16). When the signal space is one-dimensional such

as a(λ̂i), this statistic is25

Λi(xi, λ̂i) =
|x′

i(I − PBi
)a(λ̂i)|

‖(I − PBi
)a(λ̂i)‖∞ ‖xi − a(λ̂i)θ̂i − Biφ̂i1‖1

(18)

where for an arbitrary scalar α, |α| denotes its absolute value, and for an arbitrary

vector β with elements βj , j = 1, . . . , J , ‖β‖∞ ≡ maxj |βj | is the infinity norm of β,

and ‖β‖1 ≡∑J
j=1 |βj | is the 1-norm β. Finally, θ̂i and φ̂i1 are maximum likelihood

estimates of the gains θi and φi1, respectively, when the noise is Laplacian. We note

that the computation of Λi in Eq. (18) involves searches for maximum likelihood

estimates, but with the increasing power of computers, the required computation

is a doable task.

7.2.3. The a posteriori probability of detection

Tabulated values for the F -statistic distribution are readily available for the null

hypothesis when no unlearned effects are present. Tables for the statistic of Λi of

Eq. (18), however, are not available. For this reason, and for ease of comparison

of performance using the Gaussian and Laplacian noise models, we instead use the

a posteriori probabilities for characterizing the response. Specifically, we have for

the Laplacian and Gaussian case, respectively,

pℓi(H1|xi) =
Λi

1 + Λi
(19)

pgi(H1|xi) =

(
1 +

(
K − L − M

L

1

Fi

)K/2
)−1

. (20)

We emphasize that the a posteriori probability of detection is introduced here so as

to provide a common basis for comparing response maps provided by different detec-

tors. They are not used as a basis for threshold selection. A data adaptive approach

for threshold selection based on false discovery rate is developed by Benjamini and

Hochberg.7

7.3. Generalization of the t and F statistics for Generalized

Gaussian (GG) noise

The family of Generalized Gaussian densities is a large family of densities, of which

the Gaussian and the Laplacian are but two members. For an arbitrary random

variable x, this density function is given by

p(x) =

(
p

2ωΓ(1/p)

)
exp − ‖x − m‖p

p

ωp
(21)
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where m, ω, and p are, respectively, the location, width, and shape parameters of

the density functions. The Gaussian density function obtains with p = 2, while the

Laplacian one obtains with p = 1.25,28

The detectors given above for the Gaussian and the Laplacian noise density

functions are but two members of the large Generalized Gaussian (GG) family of

detectors.25 The GG family of detectors are generalizations of the well known t and

F statistics. Specifically, in the absence of known interference and when p = 2, all

the detectors above have the same performance as the CFAR detectors based on

the t and F Gaussian based statistics.25,99 One implication is that the t and F

statistics are robust to interference whose subspace is completely unknown.

In the next section, we provide expressions for these detectors for binary

subspaces,28 the model we assume for our fMRI response and known interference.

These expressions are simpler and more computationally efficient than those for

general subspaces.

7.4. Specific subspaces: binary valued subspaces and

Generalized Gaussian detectors

We now illustrate the simplifications that obtain when we consider the case where a

has binary valued elements +1 or −1, and b represents a bias vector whose elements

are 1. We rearrange the elements of a as follows

a =
[
1′

K+
,−1′K−

]′
(22)

where 1K+ and 1K− are column vectors of 1’s with length K+ and K− respectively.

Naturally K = K+ + K−, and the rearranged x can be compatibly partitioned as

x = [x+, x−].

With U also compatibly partitioned as U = [U+, U−], and defining ζ+ = θ + φ1

and ζ− = −θ + φ1, the robust test is then rewritten as follows

H0 : x =

[
1K+

−1K−

]
φ0 +

[
U+

U−

]
ψ0 +

[
ω0v0+

ω0v0−

]
(23)

H1 : x =

[
1K+ζ+

−1K−ζ−

]
+

[
ω1v1+

ω1v1−

]
(24)

where ω0 and ω1 are the Generalized Gaussian width parameters (Eq. (21)) under

hypothesis H0 and H1 respectively, and are proportional to the noise standard devi-

ations σ0 and σ1, respectively, introduced in Eqs. (15–16). The special structure of

the likelihood ratio detectors have been derived in terms of ρ0 and ρ1, the residuals

for hypotheses H0 and H1, respectively, that are implicitly defined in Eqs. (27–26).

Specifically, for an arbitrary Generalized Gaussian noise with shape parameter p,

we have for the case where both gains and noise variance are unknown, the GLR

decision statistic28

λp =
‖ρ0p‖p

‖ρ1p‖p
(25)
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where

‖ρ1‖p
p = ‖x − aθ̂p − bφ̂1p‖p

p

= ‖x+ − 1K+ ζ̂+,p‖p
p + ‖x− − 1K− ζ̂−,p‖p

p (26)

and

‖ρ0‖p = ‖x − bφ̂0p‖p
p

=
|x̄+ − x̄−|
‖δ‖1/p

q−1

(27)

where δ = [1/K+, 1/K−].

It may be observed that the two-dimensional subspace spanned by a and b

possesses the special separability structure shown in Eq. (24). Such a structure

leads to detectors that are computationally efficient,28 as also can be seen from

Eq. (26). Moreover, the simplicity of Eqs. (26) and (27) has significant implications

for signal design, and we discuss these in Sec. 9.2.

8. Results

Our objective here is to examine the simultaneous effect of the various enhanced

detectability and robustness features we discuss above using experimental fMRI

data. We compare images and a posteriori probability maps. We caution that the

empirical observations we offer are relative and subjective, as no ground truth for

the functional characterization of the brain is available.

8.1. Data

Functional MRI measurements were taken on a normal, 27-year-old male subject.

Imaging was performed using a 1.5 Tesla General Electric Signal scanner with an

ANMR, Inc. retrofit for echo-planar imaging. Asymmetric spin echo imaging was

performed with a TR = 2500ms, TE = 50ms, Offset = 30ms. Images are acquired

with 3.125mm in-plane resolution and 7 mm slice thickness. The subject alternately

views a flashing checkerboard (7Hz. flicker rate) and a stationary fixation point. A

total of 66 images was taken. In our implementation, the learned effect matrix B

in Eq. (10) has one column to account for the presence of measurement bias.

8.2. Image and a posteriori probability comparison

For the images on the LHS of Fig. 4, brain voxels in gray have an a posteriori

probability of response P (H1|x) lower than 0.95, equivalent under the Gaussian

noise assumption to an F statistic value of 69.97 with degrees of freedom 1 and 64

(Eq. (17)). We emphasize again that the a posteriori probability P (H1|x) is used

here to facilitate comparison between images output by various detectors, and is

not suggested for threshold selection. A surface probability plot is shown in the
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RHS of the image of Fig. 4(a). The intensity of the gray voxels in the brain images

corresponds to the structural MR image for the same subject. Bright voxels are

those that have an a posteriori probability of response larger than 0.95 in the surface

probability plots shown in (b). The brightness of these voxels are proportional to

their actual probability.

8.2.1. Gaussian detector, no shift estimation

For the image in Fig. 4(a), a Gaussian noise model is assumed and a nominal time

shift of zero is used for all voxels and all phases. The conditions for the image in

Fig. 4(b) are the same as those for the image in (a) of the same figure, except that

the response time shift or delay estimates as given by the curve evolution approach

are included. The algorithm is seen to be more sensitive since 45 voxels in (b)

have p(H1|x) > 0.95, characterized in this discussion as “responding” for the sake

of comparison, versus only 22 in (a). At many of the added voxels, the response

gain is weaker, and our ability to detect them is due to the sensitivity of the curve

evolution approach to discontinuities, and its ability to localize these in time.

8.2.2. Gaussian detector, with shift estimation

It is clear, however, that at least one of the voxels that are additionally charac-

terized in Fig. 4(b) as “responding” is a false alarm, specifically, the one falling

outside the brain area. This is an indication of the vulnerability of the Gaussian

based detector to false alarms. This Gaussian detector of Fig. 4(b) has assigned an

a posteriori probability of response of p(H1|x) = 0.997 to this voxel. The response

measurement time history of this voxel is provided on the RHS of the brain image

in (b). The white bands indicate the on phases of the stimulus signal, and the

gray band indicates the off phases. A close examination of the time response shows

clearly that the measurement signal of the voxel outside the brain does not indicate

a response. Though it is obvious that we have a false alarm from the fact that the

voxel is located outside the brain, this example serves to emphasize that, were a

non-responding voxel located inside the brain to provide a similar time response,

within bias and scale factor, a false alarm would have been declared by the Gaussian

detector corresponding to Fig. 4(b).

8.2.3. Laplacian detector, with shift estimation

The image in Fig. 4(c) replaces the Gaussian noise model with a Laplacian one.

As a result, there are only 35 instead of the previous 45 “responding” voxels as 13

of the “responding” voxels in (b) are now eliminated, and 3 new ones are declared

“responding”. For example, the voxel outside the brain discussed earlier has been

assigned an a posteriori probability of response of p(H1|x) = 0 versus a value of

0.997 for the same probability assigned by the Gaussian detector in (b). This is a

possible indication that the Laplacian detector is less vulnerable to false alarms. At
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the same time, there are indications that the Laplacian detector can also be more

sensitive to responding voxels. Consider for instance the voxel whose time response

is shown next to Fig. 4(c). The Laplacian detector assigns a p(H1|x) greater than

0.999, declaring the voxel responding, while the Gaussian detector corresponding

to Fig. 4(b) assigns a value of 0.267 only, declaring it non-responding, as does the

Gaussian detector corresponding to the image in Fig. 4(a) which does not use the

time response estimates. A look at the response time history, however, indicates

that we have a stimulus response at the voxel.

8.2.4. Detector comparison

A meticulous visual examination of the response time history of each voxel in the

collected data indicates that of the three brain images in Fig. 4, the one in (c),

output by a Laplacian detector that incorporates the time shift or delay estimates

provided by curve evolution, is the most reliable one. Moreover, the differences in

the number of responding voxels is not trivial. Of the two detectors incorporating

the response time shifts or delays, the Laplacian detector (Fig. 4c) identifies 20%

less responding voxels than the Gaussian one (Fig. 4b). Also, the same Laplacian

detector identifies more than 50% additional responding voxels than the Gaussian

detector (Fig. 4a) that does not incorporate response time shifts. A possible expla-

nation for the reduction in false alarms when the Laplacian noise model is assumed

may lie in the large probability that this density function assigns to tail events,

when compared to the Gaussian density function. There is therefore less need to

rely on post-processing, such as background masking, etc. to reduce the number of

possible false alarms.

Finally, we note that though our model in the B matrix of Eq. (10) allows

for incorporating physiological effects, etc., we did not include them. If correctly

learned, including these effects would enhance performance, but we do not expect

inclusion of such effects would change the conclusion as far as the relative perfor-

mance of the detectors discussed above is concerned.

9. Learning, Signal Design, and Generalizations

In this section we discuss several generalizations and implications of our choice

of subspace and noise models. In Sec. 7.4 we presented, for the case of binary

valued subspaces, detectors with a special structure that is computationally efficient

and easier to employ for analysis such as signal design. In Secs. 9.1 and 9.2, we

summarize the relevance of binary valued subspaces to two additional problems

relevant to fMRI: subspace learning,26 and signal design,28 respectively. We also

discuss other generalizations in Sec. 9.3. Specifically, in Sec. 9.3.1, we generalize

the response model of Sec. 4.2, and in Sec. 9.3.2, we introduce the problem of gain

constraints. Robust detection in the presence of additional types of constraints on

signals and interference are summarized in Sec. 9.4. Finally, additional observations

are given in Sec. 9.5.
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9.1. Learning: Laplacian noise and binary subspaces

In Secs. 6, we estimated or identified the shift parameter of the stimulus response

model. This was a parametric approach to determining the subspace, meaning that

the form of the subspace, in our case the binary valued form presented in Sec. 4.2,

was assumed a priori, and the only unknowns were the shift parameters.

The binary form of the subspace relies on an essential result regarding learn-

ing in the presence of Laplacian noise,26,27 which we restate without derivation.

Specifically, in an optimal subspace learning problem formulation no parametric

dependency constraints are explicitly imposed on either the form or the orientation

of the subspace, meaning on the form of the vector a in Eq. (10). With such a

formulation, when the noise is Laplacian, the form of the subspace that obtains is

exactly the form that we have assumed. In other words, the optimal subspace is

one spanned by a vector whose elements assume binary values of equal magnitude

only, such as +1 and −1.

The implication is that there is no loss of generality when assuming a binary

form, provided the noise is Laplacian. This result justifies the binary model of

Sec. 4.2, where only the shift parameters need to be estimated.

If the noise is not Laplacian, however, then the binary form of the subspace is no

longer necessarily optimal. One can still use the data to determine the entire sub-

space’s form, and not just the shift parameter vectors λ associated with the assumed

structure of the subspace. Such subspace learning is applicable when sufficient data

is available. In the absence of sufficient data, subspace learning requires assumptions

of spatial stationarity of the response over a suitable neighborhood, thus enabling

estimation of an average response subspace a of Eq. (10). As mentioned in the intro-

duction, variability of the response magnitude, varying time delays, adaptation over

time of the subject to the stimulus, and the transient nature of the response involv-

ing propagation from loci to loci, are all aspects of non stationarity that add to the

difficulties of learning.

We provide a formulation of the subspace learning problem below.

9.1.1. Maximum likelihood subspace learning

Consider the multidimensional subspace model

x = Aθ + Bφ + n (28)

where both A and B may have more than one column. We assume that B is known,

but A, θ, and φ are unknowns to be determined. Using the maximum likelihood

approach for a sequence of N observations xi, i = 1, . . . , N , we have under the

assumption that the noise vectors ni are independent,

max
A

max
θ1,...,θN

max
φ1,...,φN

N∏

i=1

p(xi − Aθi − Bφi). (29)
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The approach of Eq. (29) is the conventional one, where a function of the residuals

x−Aθi −Bφi, i = 1, . . . , N is minimized. An alternate approach is to estimate A⊥,

the space orthogonal to the signal space A by minimizing, instead of maximizing,

the likelihood function with respect to A⊥,

min
A⊥

max
θ⊥1,...,θ⊥N

max
φ1,...,φN

N∏

i=1

p(xi − A⊥θ⊥i − Bφi). (30)

We now restrict our attention to the Generalized Gaussian class of noise density

functions of Eq. (21). Again, since no component of A residing in the interference

space spanned by the columns of B can be estimated, we will restrict our search

for A⊥ in the space orthogonal to the combined column space of [A, B]. Thus, after

taking the log, we have the log-likelihood maximization with respect to A⊥ and

minimization with respect to the θ⊥i’s, and the φi’s, i = 1, . . . , N ,

max
A⊥

min
θ⊥1,...,θ⊥N

min
φ1,...,φN

N∑

i=1

‖(xi − A⊥θ⊥i − Bφi‖p
p. (31)

We will refer to the two minimization problems in Eq. (31) as the projection

problem, while the maximization with respect to A⊥ will be denoted the learn-

ing problem.

Defining the residual

ηi = xi − A⊥θ⊥i − Bφi

and choosing matrix Ā such that

span(Ā) = Null Space of [A⊥, B]

we are led to an equivalent problem

max
Ā

min
η1,...,ηN

N∑

i=1

‖ηi‖p
p (32)

subject to the constraints

Ā′ηi = Ā′xi, i = 1, . . . , N (33)

Ā′B = 0. (34)

Note that the above equation implies that

Ā = (I − PB)A (35)

where PB = B(B′B)−1B′ is the projection matrix onto the range space of B. We

consider this problem further in Ref. 27.

Finally, as mentioned earlier, when the noise is Laplacian with p = 1, and the

subspace Ā is one dimensional, the maximizing subspace vector consists of binary

elements +1 or −1.26
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9.2. Signal design: implications of binary subspaces

The special forms and the parametric dependencies that the detectors exhibit when

the signal of interest is binary has implications for signal design. Specifically, we see

from the previous section that the likelihood ratio expressions for all four detectors

is a function of K+ and K−, or the size of the signal’s positive and negative “parts”

as explained in Sec. 7.4, but not of their distribution in time. A question then arises

as to what is the effect of the parameters K+ and K− on the detector’s performance.

We first consider the case when the noise is Gaussian. As mentioned in Sec. 5, the

detector λ2,ru is equivalent in performance to a t statistic with K − 2 degrees of

freedom and noncentrality parameter µ given by

µ =
2θ

σ
K
√

ǫ(1 − ǫ)

where ǫ = K+/K is a measure of the asymmetry of the binary signal a. The

noncentrality parameter µ, and hence the probability of detection for any given false

alarm probability, is maximized with ǫ = 1/2 when the signal is symmetric, meaning

K+ = K−. For this reason, a symmetric signal offers superior ROC performance.

This can be explained by the fact that in the Gaussian case, it is only possible to

estimate the component of the signal residing in the space orthogonal to that of the

bias. When the signal is symmetric, it resides entirely in that space, since a′b = 0,

and the bias does not degrade the estimate. In the case of an arbitrary Generalized

Gaussian noise, meaning any shape parameter p, the objective would be to maximize

the residual ρ0’s p norm in terms of ǫ. This maximum obtains for ǫ = 1/2, meaning

when the signal is symmetric as well. Figures 5 and 6 illustrates, for Laplacian

noise, the detector’s performance as a function of the symmetry index ǫ.

Finally, we note that there are sufficient degrees of freedom for a given ǫ to

choose the signal waveform, and these degrees of freedom can be exploited for per-

formance robustness with respect to expected interference sources that are only

vaguely characterized. For instance, aperiodicity may be employed when interfer-

ence is known to be periodic, as is the case for instance for the cardiac related

interference effects when performing fMRI.

9.3. Response model generalizations

9.3.1. A more general response model

We provide a more general response model, and describe how we arrive at the

response model of Sec. 4. The general model accommodates the temporal variability

of not only the duration periods of on and off phases, but also of the gains and

response time shifts that occur at a time scale larger than the time scale of stimulus

phase variation. In short, the model can be used for a finer characterization of

the voxel’s responsiveness. In particular, we can use it for detecting anomalous

responses, the presence of low frequency drift effects, etc. On the other hand, more

detailed models lead to over-parametrization and associated problems, as well as
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Fig. 5. ROC curves for various levels of asymmetry. A symmetric signal (K+ = K− = 6)
provides superior ROC performance, as shown here for the CFAR Laplacian detector λ1,ru, but
note that symmetric signals are not necessarily periodic. �2004 IEEE.28

increased false alarms, alleviation of which by ad hoc and non-ad hoc measures

becomes a difficult task. We first generalize the unit step response model of Eq. (3)

so as to accommodate phase varying gains. Specifically,

r[k] = r[1] + θ [k0] h[k − k0 − λ[k0]]. (36)

Then, for input stimuli of the type shown in Fig. 1, usage of Eq. (36) leads to

r[k] = r[1] +
J∑

j=2

θ[j]δ[j]h[k − ktr[j] − λ[j]], k = 1, . . . , K. (37)

where δ[j] is as defined in Eq. (7). We assume the initial phase j = 1 is an off phase.

We note that the subscript i representing the voxel is dropped. The above stimulus

response model allows for piecewise constant response to an on-off stimulus pattern

with time varying on and off phase durations. More precisely, we can simplify the

time dependency of Eq. (37) in terms of a smaller number of phase dependent

variables as follows

r[k] = ϑ[j], k ∈ {jth phase of response} (38)
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Fig. 6. Probability of detection vs. level of symmetry in signal design. A symmetric signal (K+ =
K−) provides superior ROC performance. The results shown are for a Laplacian CFAR detector,
or λ1,ru. �2004 IEEE.28.

where

ϑ[j] = ϑ[1] +

j∑

ℓ=2

θ[ℓ]δ[ℓ], j = 2, . . . , J, ϑ[1] = r[1]. (39)

The jth phase of response is identified once time shifts are determined. In vector

notation, we can rewrite Eq. (38) as

r = A(λ)θ (40)

where r and θ are now the response and gain vectors of length J , respectively. Thus,

θ = [r[1], θ[2], . . . , θ[J ]]′. (41)

The K × J response matrix A is given by the row partitioning

A = [A′[1], . . . , A′[J ]]′ (42)

where A[j], j = 1, . . . , J, is of dimension T [j]× J and is given by

A[j] = eb[j]χ[j]
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with eb[j] a column vector of ones of length T [j] as given by Eq. (6), and χ[j] a row

vector of length J whose ℓth element is given by

χ[ℓ] =





1 if ℓ = 1

(−1)ℓ if 2 ≤ ℓ ≤ j

0 otherwise.

The above model implicitly assumes that the shifts λi(j), j = 2, . . . , J are small

relative to the duration of neighboring stimulus phases j − 1 and j, such that the

following constraints are not violated:

(1) Time shift localization. We constrain each stimulus response time shift to occur

within the time interval of adjacent stimulus phases. Specifically, we require for

j = 2, . . . , J ,

ktr[j − 1] < ktr[j] + λ[j] < ktr[j],

where, by definition ktr[1] = 1 and ktr[J + 1] = K.

(2) Time shift precedence. This constraint is expressed as

ktr[j − 1] + λ[j − 1] < ktr[j] + λi[j]

where, by definition λ[1] = 0.

We note that the relaxation of constraints on response model parameters gen-

erally leads to increases in both the probabilities of detection and false alarm. False

alarms can arise due to the presence of non-stimulus drift effects with frequencies

lower than those of the stimulus response. This can lead to temporal variability

in the response, particularly in the gain parameters. Relaxation of constraints can

lead to including these effects in the estimation of the response model parameters.

If unmodeled low frequency effects are bounded, however, then the probability of

detection would increase without an equally large increase in the probability of false

alarm if we properly specify the bounded gain magnitude variations between phases.

Limiting the relaxation of constraints on the parameters to the extent where it is

physically justifiable is crucial to restricting false alarms, particularly if the dimen-

sion of the response subspace is greater than one.

9.3.2. Response models with gain constraints

The stimulus response models of Eqs. (37) and (40) can be specialized to give

simpler models, including the one we describe in Sec. 4 and implement in Sec. 8.

Specifically, we can impose the following constraints on the response gains:

(1) Polarity. The polarity constraints require a positive gain, or θ(j) ≥ 0, which

implies from Eq. (37) that the on and off stimuli respectively lead to an increase

and decrease in the response.

(2) Time invariant response gains. There are two cases, one where symmetry

obtains between on and off phase gains, meaning the on response gains are
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equal to the off response gains, and the other case, where the on and off phase

response gains are asymmetric, meaning they are unequal.

(a) Symmetric on and off gain responses:

The gain’s magnitude, which can be different for different voxels, are never-

theless constrained to be the same from one phase to the next, or θ[j] = θ̄.

This implies from Eq. (37) that the overall amplitude of response is equal

to r[1] for off phases and θ̄ + r[1] for on phases.

(b) Asymmetric on and off gain responses:

If we allow for unequal amplitudes for the on and off response phases with

θ[j] = θ̄ for on phases, and θ[j] = θ̄ + mr for off phases, then an additional

term appears in Eq. (4) to give

r = a(λ)θ + ermr (43)

where er is given by

er = [er[1], . . . , er[J ]]

and represents a piecewise constant staircase function, with

er[j] = −int

[
j − 1

2

]
eb[j]

where int[w] is the largest integer smaller than or equal to w.

Under the assumptions of polarity and symmetric response time invariant gains,

we have the response model of Eq. (4). Under the assumptions of polarity and

asymmetric response time invariant gains, we are led to an additional term to the

same response model involving a piecewise constant staircase term. It should be

noted that the staircase term is different from a secular ramp term that may arise

from non-stimulus effects.

9.4. Robust detection with additional model constraints

We have considered in this chapter robust detection that takes into account possi-

ble presence of interference where we make an assumption about the relative ori-

entation of the subspace in which interferencce can lie with respect to the response

subspace. Alternate type of partial characterization of interference may be available

and incorporated in the design of the robust detector. One such example of par-

tial characterization is bounds on the magnitude of the inteference that may reside

in the signal subspace as well. Algorithms for robust detection in the presence of

constrained magnitude interference have been earlier developed and successfully

demonstrated on the failure detection and identification of flight sensors for NASA

F8 fly-by-aircraft,24 and to the M.I.T. nuclear reactor.95 Further developments are

found in Ref. 94. Additional more general design considerations in the context of

min-max approach to robust detection to uncertainties in the different components

of the model have been developed,26 and in particular for signal subspaces.93



288 M. Desai, R. Mangoubi and H. Pien

9.5. Additional observations

Potentially beneficial modifications of our approach include:

• Noise density function. Regarding the choice of density functions, we have seen

in Sec. 7 that the Gaussian and the Laplacian are two members of a larger family

of parametric distributions. The effect of this parameter value on detection is

discussed in Ref. 25.

• A posteriori model learning. Once the detection test results are available, they

can be used for improving the models used. For instance the matrices a(λ), B,

and other parameters in Sec. 4 can be updated. Moreover, this learning could be

used to construct priors for follow on testing and processing.

The above generalizations would not alter the proposed approach in a signifi-

cant way. Regarding a posteriori model learning (the second bullet above), we note

that in a general context functional MRI is concerned with how various parts of

the brain function. One challenge with which we deal here is the problem of esti-

mating the probability that each voxel in the brain responds to a particular class of

stimuli. Another challenge, which we do not directly address, is the estimation of

the temporal and spatial nature of the response variation. This is the focus of other

work such as that of Solo.103,104 The two problems just mentioned are related in

that the solution of one is of help with the other, and one can iterate between the

two. For instance, the relative amplitude characteristics of on and off responses can

be further examined for the presence of anomalous response, low drift, etc, using

a more general response model than used here. Since we focus in this work on the

functional characterization aspect of the problem, we only examine the difference

between the average of responses during on and off phases as a first step of what

would be an iterative procedure.

10. Conclusion

The fMRI detection problem is particularly challenging due to the low signal to

noise and interference ratio at hand. To address this challenge, it is important

to capture the variations in the transient and steady state characteristics of the

response both in time and from voxel to voxel. The chapter addresses the accompa-

nying modeling, estimation, and detection challenges in a hierarchical fashion that

addresses separately the transient and steady state characteristics. This is facili-

tated by the adoption of a simple response model parametrized by the response

gains and the time shifts, usually delays. The gains are intended to capture the

response’s steady state behavior, while the time shifts capture the transport delays

and the transient behavior. We estimate both the gains, which vary from voxel to

voxel but are constant for each voxel, and the shifts, which vary spatially from voxel

to voxel and temporally from phase to phase of stimulus.

The transient characteristics are learned at each voxel using the curve evo-

lution approach to the image segmentation problem, which provides temporal

characterization and detects the presence of low contrast edges that may be blurred
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in the images. The approach permits the exploitation of the spatial correlation

of transient characteristics. The transient characteristics are estimated first prior

to learning the steady state characteristics, and implementing a robust matched

subspace detection test based on a Laplacian noise model. The test functionally

characterizes the response to produce the a posteriori probability that each voxel

is responding.

We note that the robust detection test we formulate enables the derivation,

based on likelihood ratio considerations, of a decision statistic for the large class

of Generalized Gaussian density functions. The new statistic is analogous to the t,

F -statistic used for subspace based detection when the noise is Gaussian.

The results indicate that accounting for response time shifts in a simple response

model produces enhanced images of the response’s likelihood; more responding

voxels are attributed a higher probability of stimulus response. Furthermore, the

use of the time shift estimates in a robust detection test based on a Laplacian

noise model reduces the number of potential false alarms without having to resort

to spatial smoothing or background masking. In our view, the proposed features

are an attempt to simultaneously address the two critical challenges of enhanced

detectability and reduced false alarms.

The chapter also provides various implications of Laplacian noise models. One

such implication is that in the presence of such noise, the simple response model

adopted implies no loss of generality as it is the optimal choice. Another implication

relates to the simple form of the Laplacian detector that enables analysis on the

design aspect of stimulus signal.

Finally, the fMRI problem motivated the newly developed robust non-Gaussian

detection approach that offered superior detection and false alarm performance

when compared to traditional Gaussian approaches. This new approach is a theo-

retical and practical contribution to signal detection in other applications as well,

such as radar and sonar.
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CHAPTER 9

TECHNIQUES FOR DETECTION OF SPECTRAL SIGNATURES

IN MR IMAGES AND THEIR APPLICATIONS
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This chapter presents two major hyperspectral imaging techniques, orthogonal subspace
projection (OSP) and constrained energy minimization (CEM), which have recently
found success in spectral signature detection in magnetic resonance (MR) images. Unlike
classical image classification techniques which are primarily designed on a pure pixel
basis, the proposed OSP and CEM are mixed pixel classification techniques which esti-
mate abundance fractions of different material substances assumed to be present in the

image data so as to achieve classification. Three scenarios are considered for MR image
classification based on different levels of object information provided a priori. The OSP
is applied to the case that the complete prior object knowledge is known compared to the
CEM which is used for the case that only desired object knowledge is given while other
knowledge can be discarded. When no prior object knowledge is available, the OSP is
extended to an unsupervised OSP (UOSP), which obtains the necessary object knowl-
edge directly from the image data in an unsupervised manner for OSP classification.
In order to demonstrate the utility of these three scenarios in MR image classification,
a series of experiments are conducted and compared to the commonly used c-means
method for performance evaluation. The results show that both OSP and CEM are
promising and effective spectral techniques for MR image classification.

Keywords: Magnetic resonance image; orthogonal subspace projection; constrained
energy minimization.
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1. Introduction

Nuclear magnetic resonance (NMR) can be used to measure the nuclear spin den-

sity, the interactions of the nuclei with their surrounding molecular environment and

those between close nuclei, respectively. It produces a sequence of multiple spectral

images of tissues with a variety of contrasts using three magnetic resonance param-

eters, spin-lattice (T1), spin-spin (T2) and dual echo-echo proton density (PD).

By appropriately choosing pulse sequence parameters such as echo time (TE) and

repetition time (TR), a sequence of images of specific anatomic areas can be gen-

erated by pixel intensities that represent characteristics of different types of tissues

throughout the sequence. Additionally, the spectral correlation among the image

sequence also produces information that spatial correlation cannot provide. As a

result, magnetic resonance imaging (MRI) becomes a more useful image modality

than X-ray computerized tomography (X-CT) when it comes to analysis of soft

tissues and organs since the information about T1 and T2 offers a more precise

picture of tissue functionality than that produced by X-CT.1,2

Over the past years many computer-assisted diagnostic (CAD) methods have

been reported in the literature3–20 such as PCA,6 eigenimage analysis,7−12 neural

networks,13–16 fuzzy c-means methods,17−18 hybrid methods,19 knowledge-based

techniques,20 etc. For example, eigenimage filtering-based approach has shown a

promise in segmentation and feature extraction. Hybrid methods combine imaging

processing and model-based techniques to improve segmentation. Knowledge-based

techniques further allow one to make more intelligent classification and segmenta-

tion decisions. As an alternative, neural networks are also proposed to demonstrate

their superior performance in segmentation of brain tissues to classical maximum

likelihood methods.

Most recently, remote sensing image processing techniques have been also

explored where two hyperspectral image processing techniques, orthogonal sub-

space projection (OSP) and constrained energy minimization (CEM) have been

shown promise in applications of MR image classification.21−24 Unlike traditional

image classification methods which are pure pixel-based techniques, the OSP25–27

and CEM25,27–30 are mixed pixel classification techniques which consider an image

pixel as a pixel linearly mixed by several substances resident in the pixel. The

classification is then carried out by the estimated abundance fractions of these

substances present in the pixel. These remote sensing image processing-based tech-

niques have changed the way that classical image processing techniques classify MR

images where an image pixel is assumed to be a pure pixel and the classification

is primarily performed on the basis of spatial correlation. The OSP was developed

based on the fact that the prior knowledge about the spectral signatures of differ-

ent tissues such as white matter (WM), gray matter (GM), cerebral spinal fluid

(CSF) is known so that an image pixel in an MR image can be modeled as a linear

mixture of these signatures from which each of the signatures can be classified in

accordance with their estimated abundance fractions. One of major drawbacks from
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which the OSP suffers is the requirement of the complete prior knowledge about the

spectral signatures of interest in MR images. In order to resolve this dilemma, two

approaches have been proposed to mitigate this issue. One is to make the OSP unsu-

pervised so that the required signature knowledge can be obtained directly from

the data. The resulting OSP is called an unsupervised OSP (UOSP).22 In this case,

there is no need of knowing signatures a priori as required by the OSP. The other is

to only focus on the knowledge of the spectral signature of interest, while discard-

ing all other information such as background information. One such an approach,

referred to as the constrained energy minimization (CEM) was investigated.23 In

this chapter, we revisit these techniques for MR image classification. In particular,

we will investigate their strengths and weaknesses in the sense of different levels of

information provided a priori.

The remainder of this chapter is organized as follows. Section 2 describes the

OSP approach. Section 3 presents the CEM approach. Section 4 extends the OSP to

an (UOSP). Section 5 briefly describes the c-means method and a modified version

of the c-means method for comparison. Sections 6 and 7 conduct a series of computer

simulations and real MR image experiments respectively to evaluate performance

of OSP, CEM and UOSP in classification performance and also compare the results

to those produced by the CM method. Section 8 concludes some comments.

2. Orthogonal Subspace Projection (OSP)

The OSP technique was originally developed for hyperspectral image classification.26

It models an image pixel as a linear mixture of finite number of known signatures

assumed to be present in the image. More specifically, suppose that L is the number of

spectral bands (channels). In our case, an MR image sequence is actually a collection

of co-registered L spectral bands. So, an i-th image pixel in an MR image sequence

can be considered as an L-dimensional pixel vector. Let r be an L × 1 column pixel

vector in a hyperspectral image where the bold face is used for vectors. Assume that

there is a set of p targets of interest present in the image and m1,m2, . . . ,mp are

their corresponding signatures. Let M be an L × p target signature matrix denoted

by M = [m1m2 · · ·mp] where mj is an L × 1 column vector represented by the

signature of the j-th target resident in the image scene. Let α = (α1, α2, . . . , αp)
T

be a p×1 abundance column vector associated with r, where αj denotes the fraction

of the j-th signature mj present in the pixel vector r. Then the spectral signature

of r can be represented by the following linear mixture model

r = Mα + n (1)

where n is noise or can be interpreted as either a measurement error or a model

error.

Equation (1) assumes that the knowledge of M must be given a priori. Without

loss of generality we further assume that d = mp is the desired target signature to



300 C. C. Chen et al.

be detected or classified and U = [m1m2 · · ·mp−1] is the undesired target signature

matrix made up of the remaining p− 1 undesired target signatures in M. Then, we

rewrite (1) as

r = dαp + Uγ + n (2)

where γ is the abundance vector associated with U. Model specified by (2) will

be referred to as OSP-model since it is the first model proposed to separate the

desired target signature d from the undesired target signatures in U. This allows us

to design the following orthogonal subspace projector, denoted by P⊥
U to annihilate

U from r prior to classification

P⊥
U = I − UU# (3)

where U# =
(
UT U

)−1
UT is the pseudo-inverse of U. Applying P⊥

U in (3) to (2)

results in

P⊥
Ur = P⊥

Udαp + P⊥
Un. (4)

Equation (4) represents a standard signal detection problem. If the signal-to-noise

ratio (SNR) is chosen as the criterion for optimality, the optimal solution to (4) is

given by a matched filter Md defined by

Md

(
P⊥

U r
)

= κdT P⊥
Ur (5)

where the matched signal is specified by d and κ is a constant. Setting κ = 1 in (5)

yields the following OSP filter δOSP(r)26

δOSP(r) = dT P⊥
Ur =

(
dT P⊥

Ud
)
αp + dT P⊥

Un. (6)

The OSP specified by (6) only detects the abundance fraction which does not

reflect true abundance fraction of the desired target signature d. In order to reliably

estimate the abundance fraction of d a least squares OSP, δLSOSP(r), given by31−33

δLSOSP(r) =
(
dT P⊥

Ud
)−1

dT P⊥
Ur =

(
dT P⊥

Ud
)−1

δOSP(r) (7)

where the constant
(
dT P⊥

Ud
)−1

is included in (7) to account for the least-squares

estimation error.31–33

3. Constrained Energy Mimization (CEM)

Assume that ri = (ri1, ri2, . . . , riL)
T

is the i-th image pixel vector with rij repre-

senting the pixel of the i-th pixel vector in the j-th spectral band. Suppose that{
r1, r2, . . . , rN

}
is a set of all image pixel vectors in an MR image sequence where

N is the total number of pixels in the image. Let d be the spectral signature of an

object of interest. The goal is to design a finite impulse response (FIR) linear filter

specified by an L-dimensional vector w = (w1, w2, . . . , wL)
T

that passes the desired

signature d by constraining its direction while minimizing its output energy that are

caused by signal source vectors with directions other than the constrained direction.
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More specifically, let yi denote the output of the designed FIR filter resulting

from the i-th MR image pixel ri. Then yi can be expressed by

yi =
L∑

l=1

wlril = wT ri = rT
i w. (8)

The average filter output energy resulting from
{
r1, r2, . . . , rN

}
is given by

1

N

[
N∑

i=1

y2
i

]
=

1

N

[
N∑

i=1

(
rT

i w
)T (

rT
i w
)
]

= wT

[
1

N

(
N∑

i=1

rir
T
i

)]
w = wT RL×Lw

(9)

where RL×L = 1
N

[∑N
i=1 rir

T
i

]
is the auto-correlation sample matrix of the MR

image sequence. So, the CEM filter is one solving the following linearly constrained

optimization problem

min
w

{
wTRL×Lw

}
subject to dTw = 1. (10)

The solution to (10) is given by25,27–30,32

wCEM =
R−1

L×Ld

dT R−1
L×Ld

. (11)

Substituting the optimal weight given by (11) for w in (1) yields the CEM filter

which implements a detector, δCEM(r) on an image pixel vector r and is given by

δCEM(r) =
(
wCEM

)T
r =

(
R−1

L×Ld

dT R−1
L×Ld

)−1

r =
dT R−1

L×Lr

dTR−1
L×Ld

. (12)

As we can see from (12), when r = d, δCEM(d) = 1 which satisfies the constraint

in (10). In this case, the r is considered to be the desired object pixel and will be

extracted by the CEM filter. Despite that the primary task of the CEM filter is

object detection, as demonstrated in the experiments it can perform as a classifier

by detecting different types of objects, one at a time. In this case, separate images

are produced for each type of targets.

A comment is noteworthy. The value of δCEM(r) resulting from (12) represents

the estimated abundance fraction of the object signature d contained in the image

pixel r. So, unlike most spatial-based classification methods that can be considered

as label (class)-assignment techniques, the CEM filter detects a desired object by

estimating its abundance fraction using (10). As a result, the image generated by

the CEM filter is generally gray scale where the gray level value of each image

pixel reflects the detected amount of the abundance fraction of the desired object

present in the pixel. The object detection is then performed based on the resulting

gray scale image and classification is carried out by detecting the desired objects

in separate images.



302 C. C. Chen et al.

4. Unsupervised Orthogonal Subspace Projection (UOSP)

The automatic target generation process (ATGP) was previously developed to find

potential target pixels that can be used to generate a signature matrix used in an

orthogonal subspace projection (OSP) approach. It is one of two processes used in

the automatic target detection and classification algorithm (ATDCA).33–34

The ATGP repeatedly makes use of (3) to find target pixel vectors of interest

from the data without prior knowledge regardless of what types pixels of these

targets. It can be briefly described as follows. Assume that t0 is an initial target

pixel vector. The ATGP begins with the initial target pixel vector t0 by applying

an orthogonal subspace projector P⊥
t0

specified by (3) with U = t0 to all image

pixel vectors. It then finds a target pixel vector, denoted by t1 with the maximum

orthogonal projection in the orthogonal complement space, denoted by 〈t0〉⊥ that

is orthogonal to the space, 〈t0〉 linearly spanned by t0. The reason for this selection

is that the selected t1 generally has the most distinct features from t0 in the sense

of orthogonal projection because t1 has the largest magnitude of the projection in

〈t0〉⊥ produced by P⊥
t0

. A second target pixel vector t2 can be found by applying

an orthogonal subspace projector P⊥
[t0t1] with U = [t0 t1] to the original image and

a target pixel vector that has the maximum orthogonal projection in 〈t0, t1〉⊥ is

selected as t2. The above procedure is repeated over and over again to find a third

target pixel vector t3, a fourth target pixel vector t4, etc. until a certain stopping

rule is satisfied. In this paper, the stopping rule is determined by the number of

target pixel vectors required to generate, p which is predetermined a priori. Using

the p as a stopping criterion, the ATGP can be implemented in the following steps.

Automatic Target Generation Process (ATGP)

(1) Initial condition:

Select an initial target pixel vector of interest denoted by t0. In order to ini-

tialize the ATGP without knowing t0, we select a target pixel vector with the

maximum length as the initial target t0, namely, t0 = arg
{
maxr rT r

}
, which

has the highest intensity, i.e. the brightest pixel vector in the image scene. Set

k = 1 and U0 = [t0]. (It is worth noting that this selection may not be neces-

sarily the best selection. However, according to our experiments it was found

that the brightest pixel vector was always extracted later on, if it was not used

as an initial target pixel vector in the initialization.)

(2) At k-th iteration, apply P⊥
t0

via (3) to all image pixels r in the image and

find the k-th target tk generated at the k-th stage which has the maximum

orthogonal projection as follows.

tk = arg

{
max

r

[(
P⊥

[t0Uk−1]r
)T(

P⊥
[t0Uk−1]r

)]}
(13)

where Uk−1 = [t1t2 · · · tk−1] is the target matrix generated at the (k − 1)st

stage.
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(3) Stopping rule:

If k < p − 1, let Uk = [Uk−1tk] = [t1t2 · · · tk] be the k-th target matrix, go to

Step 2. Otherwise, continue.

(4) At this stage, the ATGP is terminated. The resulting target matrix is Up−1,

contains p − 1 target pixel vectors as its column vectors, which do not include

the initial target pixel vector t0.

As a result of the ATGP, the final set of target pixel vectors produced by

the ATGP at step 4 is the final target set which comprises p target vectors,

{t0, t1, t2, . . . , tp−1} = {t0} ∪ {t1, t2, . . . , tp−1} which were found by repeatedly

using (13). Now, by virtue of the ATGP, we can extend the OSP for (6) to an unsu-

pervised OSP (UOSP) which produces its own signature matrix M = [t0t1 · · · tp−1]

for (1) that is obtained directly from the image and is made up of the p target

pixel vectors t0, t1, t2, . . . , tp−1 generated by the ATGP. The implementation of

the UOSDP can be briefly summarized as follows.

UOSP Algorithm

(1) Preset the p, number of signatures of interest.

(2) Apply the ATGP to generate p target signatures, t0, t1, t2, . . . , tp−1.

(3) Form a desirable signature matrix M = [t0t1 · · · tp−1] for (1).

(4) Due to the unavailability of prior knowledge of signatures, the LSOSP classifier,

δLSOSP(r) described by (7) must be applied to classify each of p signatures

t0, t1, t2, . . . , tp−1. In other words, the LSOSP classifier must be performed

p times to classify all the p signatures. In this case, in order to classify the

j-th signature tj , the d and U in δLSOSP(r) are specified by tj and Uj =

[t0 · · · tj−1tj+1 · · · tp−1].

5. C-Means Methods

In order to evaluate performance of the CEM approach, the widely used c-means

(CM) method35 (also known as k-means36) is used for comparative analysis. The

reason to select the CM method is two-fold. One is that it allows us to generate

background signatures in an unsupervised manner for classification. Another is

that it is basically a spatial-based pattern classification technique. As opposed to

the CEM approach that only classifies objects of interest, the CM method classifies

all MR image pixel vectors including background pixel vectors into pattern classes.

The CM method to be implemented here for experiments has two versions. One

is completely unsupervised, also referred to as ISODATA,35−36 which will be used

to compare with the unsupervised OSP since both require no prior knowledge about

the MR images to be processed. The other is a modified version of CM, referred to

as MCM, which will be used to compare the CEM with the desired object knowledge

provided a priori. In the latter case, the MCM method includes into its clustering

procedure the same knowledge of objects of interest that is required by the CEM
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approach. The detailed implementation of the CM method can be described as

follows.

CM (ISODATA) Method

1. Initialization:

Determine the number of pattern classes, c and randomly select p class means

µ
(k)
i for 1 ≤ i ≤ c and let k = 0.

2. At the k ≥ 0 iteration, compute the distance of each sample pixel vector from

all class means, µ
(k)
i for 1 ≤ i ≤ c and assign the sample vector to the class

whose mean has the shortest distance to the sample vector.

3. Compute the means of the reclustered sample vectors for each class, µ̂
(k)
i for

1 ≤ i ≤ c.

4. If there is any mean changed, that is µ̂
(k)
i �= µ

(k)
i for some 1 ≤ i ≤ c, let

µ
(k)
i ← µ̂

(k)
i and k ← k + 1. Go to step 2. Otherwise, the obtained

{
µ

(k)
i

}c

i=1

are the desired class means and the algorithm is terminated.

In order to include the desired object knowledge into the clustering process

described in the above CM method, let the spectral signatures of p objects of

interest be denoted by
{
di

}p

i=1
where di is the spectral signature of the i-th object.

A modified CM (MCM) method can be further developed as follows.

MCM Method

1. Initialization:

Determine the number of pattern classes, c ≥ p and let
{
µ

(k)
i

}c

i=1
be their

corresponding class means. Let the first p class means are fixed at µ
(k)
i = di

for 1 ≤ i ≤ p and all other class means
{
µ

(k)
i

}c

i=p+1
are selected randomly, but

must be different from the
{
di

}p

i=1
which already selected for

{
µ

(k)
i

}p

i=1
. Set

k = 0.

2. At the k ≥ 0 iteration, compute the distance of each sample pixel vector from

all class means,
{
µ

(k)
i

}c

i=1
and assign the sample vector to the class whose mean

has the shortest distance to the sample vector.

3. For each class i with p + 1 ≤ i ≤ c, recompute its class mean by averaging the

sample vectors in the class, denoted by µ̂
(k)
i .

4. If there is any mean changed, that is µ̂
(k)
i �= µ

(k)
i for some p + 1 ≤ i ≤ c, let

µ
(k)
i ← di for 1 ≤ i ≤ p and µ

(k)
i ← µ̂

(k)
i for p + 1 ≤ i ≤ c. Let k ← k + 1 and

go to step 2. Otherwise, the obtained
{
µ

(k)
i

}c

i=1
are the desired class means

and the algorithm is terminated.

It should be noted that the knowledge of
{
di

}p

i=1
is given a priori. There-

fore, the first p class means are fixed during iterations. However, the class means,{
µ

(k)
i

}c

i=p+1
are regenerated at each iteration by the MCM method in an unsu-

pervised manner using the minimum distance as a criterion. These generated class
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means are considered to be signatures of unknown signal sources, which are not

provided by prior knowledge and may include background signatures.

Since the CM and MCM methods are unsupervised pattern classification tech-

niques, one of its weaknesses is the determination of c, i.e. the number of pattern

classes. If c is too small, the number of c pattern classes may not well represent

the data, in which several distinct classes may be merged into one class. If c is too

large, the number of c pattern classes may over-represent the data, in which a class

may be forced to be broken up into several classes. The CEM resolves this dilemma

by performing object classification without using any information other than that

provided by
{
di

}p

i=1
. As a result, has an advantage over the CM, MCM and UOSP

methods in the sense that it does not require the knowledge of c.

6. Computer Simulations for Phantom Experiments

In this section, we present a series of experiments based on computer-generated

phantom images. These phantom image experiments enable us to conduct a quan-

titative study and error analysis for various methods presented in this chapter. A

set of computer simulations was performed to conduct a quantitative study and

performance analysis of the OSP, CEM and UOSP in comparison with the CM

and MCM methods described in Section IV with number of classes p = c = 4

representing four classes of WM, GM, CSF and image background of interest. The

computer-generated phantom images used for simulations are shown in Fig. 1 which

have five bands, each of which was made up of six overlapped ellipses with their

spectral signatures shown in Fig. 2.

(c) band 3 (b) band 2 (a) band 1

(d) band 4 (e) band 5 

Fig. 1. Five bands of phantom images used for simulations.
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Fig. 2. GM, WM, CSF and BKG spectral signatures.

These ellipses represent structure areas of three interesting cerebral tissues cor-

responding to gray matter (GM), white matter (WM) and cerebral spinal fluid

(CSF). From the periphery to the center are background (BKG), GM, WM and

CSF simulated by the signatures given in Fig. 2. The gray level values of these

areas in each band were simulated in such a fashion that these values reflect the

average values of their respective tissues in real MR images shown in Fig. 3.

Table 1 tabulates the values of the parameters used by the MRI pulse sequence

and the gray level values of the tissues of each band used in the experiments.

(a) (b) (c)

(e)(d)

Fig. 3. Five band real brain MR images used for experiments. (a) TR/TE = 2500 ms/25ms;
(b) TR/TE = 2500ms/50 ms; (c) TR/TE = 2500ms/75 ms; (d) TR/TE = 2500 ms/100 ms;
(e) TR/TE = 500 ms/11.9ms.
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Table 1. Gray level values used for the five bands of the
test phantom in Fig. 1.

Band # MRI Parameter GM WM CSF

Band 1 TR/TE = 2500 ms/25ms 207 188 182
Band 2 TR/TE = 2500 ms/50ms 219 180 253
Band 3 TR/TE = 2500 ms/75ms 150 124 232
Band 4 TR/TE = 2500 ms/100ms 105 94 220
Band 5 TR/TE = 500ms/11.9 ms 95 103 42

A zero-mean Gaussian noise was added to the phantom images in Fig. 1 so as to

achieve different levels of signal-to-noise ratios (SNR) ranging from 5db to 20 db.

Despite the fact that such MR phantom images may be unrealistic, they only serve

as a purpose for illustration of the proposed CEM, OSP and UOSP techniques and

demonstration of its advantages.

One of unique features of the remote sensing image processing techniques pre-

sented in this chapter is that the produced images are fractional abundance images,

each of which shows the estimated abundance fractions of a particular spectral sig-

nature assumed to be present in the MR image. As a result, these fractional abun-

dance images are generally gray scale as opposed to the class-map images produced

by classical image classification techniques. In other words, the former is classified

by soft decisions compared to the latter classified by hard decisions. In order to

convert a soft decision to a hard decision, a thresholding technique is needed. In

what follows, we describe one thresholding method developed in Ref. 37.

6.1. Abundance percentage thresholding method

Since the fractional abundance images are real-values, we first normalize the abun-

dance fractions of these images to the range of [0, 1]. More specifically, let r be the

image pixel vector and α̂1(r), α̂2(r), . . . , α̂p(r) are the estimated abundance frac-

tions of α1, α2, . . . , αp present in the r. Then for each estimated abundance fraction

α̂j(r) its normalized abundance fraction, α̃j(r) can be obtained by

α̃j(r) =
α̂j(r) − minr α̂j(r)

maxr α̂j(r) − minr α̂j(r)
. (14)

Suppose that a% is used for the cut-off abundance fraction threshold value. If

the normalized abundance fraction of a pixel vector is greater than or equal to a%,

then the pixel is detected as the desired object pixel and will be assigned by a “1”;

otherwise, the pixel is assigned by a “0”, in which case the pixel does not match

the desired object signature. Using (14) with a% as the cut-off threshold value to

threshold a fractional abundance image is referred to as a% thresholding method.

6.2. 3-D ROC analysis

By virtue of the above a% threshold method, we can actually tally the number

of pixels detected in its generated fractional abundance images. This subsection
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further develops a 3-D ROC analysis based on a%. First of all, let
{
di

}p

i=1
be a set

of objects of interest, which we would like to classify. We define N(di), ND(di) and

NF(di) to be the total number of pixels specified by the i-th object signature di,

the total number of pixels that are specified by the object signature di and actually

detected as the di, and the total number of false alarm pixels that are not specified

by the object signature di but detected as the di respectively. For example, the

desired object signature di can be chosen to be one of GM, WM or CSF. Using

the definitions of N(di), ND(di) and RF(di) we further define the detection rate

RD(di), false alarm rate RF(di) for di and mean detection rate RD, mean false

alarm rate, RF by

RD(di) =
ND(di)

N(di)
(15)

RF(di) =
NF(di)

N − N(di)
(16)

and

RD =

p∑

i=1

RD(di)p(di) (17)

RF =

p∑

i=1

RF(di)p(di) (18)

where N is the total number of pixels in the image and p(di) = N(di)/
∑p

i=1 N(di).

It is worth noting that the mean detection rate RD defined by (17) is the average of

detection rates over the detected objects. In order to classify p objects
{
di

}p

i=1
, we

must calculate its mean detection rate. Similarly, the mean false alarm RF defined

by (18) is the average of false alarm rates over the detected objects. Using (15–

18) each fixed a% produces a pair of RD and RF. As a consequence, varying a%

from 0% up to 100% generates a set of pairs (RD, RF) where each pair results

from a particular a% being used as a cutoff threshold value. In this case, we use

an approach proposed in Ref. 33 and 38 to plot a 3-D ROC curve based on three

parameters, (RD, RF,a%), where the (x, y)-coordinate corresponds (RF, a%) and

z-axis is specified by RD. By means of such a 3-D ROC curve we can further plot

three 2-D curves of (RD, RF), (RD, a%) and (RF, a%) where the 2-D curve of (RD,

RF) can be viewed as the traditional ROC curve.39

6.3. Phantom image experiments

Now we can use this 3-D ROC curve along with three 2-D curves to analyze the

performance of five different methods, OSP, CEM, UOSP, CM and MCM meth-

ods with different SNRs in classification of GM, WM and CSF. Since these five

methods require different levels of object information, their performance will be

different. In this case, a fair comparison among these five methods may be difficult.
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The experiments presented in this section only demonstrate advantages and disad-

vantages of each of these five methods.

In our experiments, the number of classes was assumed to be 4, i.e. c = 4. The

spectral signatures of GM, WM, CSF and background (BKG) used as prior knowl-

edge for the OSP and CEM provided by Fig. 2. When the OSP was implemented,

the signature matrix M consisted of four signatures, GM, WM, CSF and BKG.

When the CEM was implemented, only the desired signature d was selected to be

one of the three GM, WM and CSF signatures to be detected. Similarly, when the

MCM method was implemented, the p = 1 and µ
(k)
1 was always fixed at the desired

signature d during the course of iterations, i.e. µ
(k)
1 = d. Since the UOSP and

CM method generate the signatures of GM, WM, CSF and BKG directly from the

data, no prior knowledge about the GM, WM, CSF and BKG is required for both

of them. Figures 4–8 show the results of the OSP, CEM, MCM method, UOSP and

CM method in classification of GM, WM and CSF respectively.

As we can see from Figs. 4–8, it is difficult to conduct a comparative analysis

since the fractional abundance images in Figs. 4–5 and 7 produced by the OSP,

CEM and UOSP are gray scale compared to the images produced by the CM

and MCM methods in Figs. 6 and 8 which are class maps, but not gray scale

images. Therefore, we first analyze performance among the three hyperspectral

image processing techniques, OSP, CEM and UOSP in terms of 3-D ROC curves in

(c) CSF(b) WM(a) GM 

Fig. 4. Classification results of GM, WM and CSF produced by the OSP.

(a) GM  (c) CSF(b) WM

Fig. 5. Classification results of GM, WM and CSF produced by the CEM.
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(a) GM (c) CSF(b) WM

Fig. 6. Classification results of GM, WM and CSF produced by the MCM method.

(a) GM (c) CSF(b) WM

Fig. 7. Classification results of GM, WM and CSF produced by the UOSP.

(a) GM (c) CSF(b) WM

Fig. 8. Classification results of GM, WM and CSF produced by the CM method.

Figs. 9–11, then calculate their mean classification rates in Tables 2–3 which will be

further compared to the classification rates produced by the CM and MCM methods

in Tables 4–5. Finally, a summary of performance evaluation in classification among

these five methods is provided in Table 6.

In order to produce 3-DROCcurves for the gray scale fractional abundance images

in Figs. 4, 5 and 7, we applied the a% threshold method to these images. Figures 9–11

show their 3-D ROC curves and their associated 2-D curves for SNR = 5 db, 10 db,

15 db and 20db respectively where figures labeled by (a)–(d) are 3-D ROC curves of

(RD, RF, a%), 2-D curves of (RD, RF), (RD, a%) and (RF, a%) respectively.
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Fig. 9. 3-D ROC and 2-D curves produced by OSP from Fig. 4.
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Fig. 10. 3-D ROC and 2-D curves produced by CEM from Fig. 5.
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Fig. 11. 3-D ROC and 2-D curves produced by UOSP from Fig. 7.
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Table 2(a). Classification result of GM, WM, and CSF by OSP
for the case of SNR = 5db with a% chosen to be 5%, 20%, 25%,
30%, 35%, 40%, 45%, and 50%.

OSP a(%) N ND NF RD(%) RF(%)

GM 5% 9040 9040 56493 100.00 100.00
20% 9040 9038 56299 99.98 99.65
25% 9040 9030 55723 99.89 98.63
30% 9040 9005 53948 99.61 95.49
35% 9040 8925 49896 98.73 88.32
40% 9040 8719 42501 96.45 75.23
45% 9040 8284 30618 91.64 54.20
50% 9040 7488 12107 82.83 21.43

WM 5% 8745 8745 56786 100.00 99.99

20% 8745 8738 56389 99.92 99.29
25% 8745 8696 55675 99.44 98.04
30% 8745 8571 53834 98.01 94.79
35% 8745 8267 48614 94.53 85.60
40% 8745 7654 33820 87.52 59.55
45% 8745 6694 19431 76.55 34.22
50% 8745 5336 9098 61.02 16.02

CSF 5% 3282 3282 62253 100.00 100.00
20% 3282 3282 61768 100.00 99.22
25% 3282 3282 60551 100.00 97.26
30% 3282 3282 58067 100.00 93.27
35% 3282 3282 48732 100.00 78.28
40% 3282 3282 21340 100.00 34.28
45% 3282 3282 10128 100.00 16.27
50% 3282 3281 3532 99.97 5.67

As shown in Figs. 9(a), 10(a) and 11(a), the 3-D ROC curves are the performance

of a classifier as a function of three parameters RD, RF, a%, whereas the 2-D curves

of (RD,RF) in Figs. 9(b), 10(b) and 11(b) provide the mean detection rate of a

classifier versus the mean false alarm rate. It should be noted that the 2-D curves

of (RD,RF) in Figs. 9(b), 10(b) and 11(b) were plotted in the ranges of RD =

[0.7, 1] and RF = [0, 0.4] for visual inspection. According to the 2-D curves in

Figs. 9(b), 10(b) and 11(b), the OSP, CEM and UOSP performed extremely well

when SNR = 15dB and 20 dB. Then its performance was degraded when SNR was

decreased. Additionally, the 2-D curves of (RD,a%) and (RF,a%) in Figs. 9(c–d),

10(c–d) and 11(c–d) indicate how a threshold value of a% affected the performance

of the OSP, CEM and UOSP. Figures 9(c), 10(c) and 11(c) show that the 2-D curves

of (RD,a%) of the OSP and UOSP behaved similarly and their RD dropped in a

very wide range with a% increased to from 30% to 90% compared to the 2-D curves

of (RD,a%) of the CEM where the RD dropped very rapidly with a% increased to

from 30% to 60%. Figures 9(d), 10(d) and 11(d) also demonstrates similar results

but the differences among these four SNRs were more visible. It clearly shows that

how the RF of the OSP, CEM and UOSP filter were affected by different SNRs.
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Table 2(b). Classification result of GM, WM, and CSF by CEM
for the case of SNR = 5db with a% chosen to be 5%, 20%, 25%,
30%, 35%, 40%, 45%, and 50%.

CEM a(%) N ND NF RD(%) RF(%)

GM 5% 9040 9040 56470 100.00 99.95
20% 9040 9040 31480 100.00 55.72
25% 9040 9040 14664 100.00 25.96
30% 9040 9026 11249 99.85 19.91
35% 9040 8896 8598 98.41 15.22
40% 9040 8150 4806 90.16 8.51
45% 9040 6328 1905 70.00 3.37
50% 9040 3551 377 39.28 0.67

WM 5% 8745 8745 56780 100.00 99.98

20% 8745 8745 54305 100.00 95.62
25% 8745 8745 45698 100.00 80.47
30% 8745 8740 20278 99.94 35.71
35% 8745 8669 9016 99.13 15.88
40% 8745 8150 4534 93.20 7.98
45% 8745 6682 1876 76.41 3.30
50% 8745 4015 440 45.91 0.77

CSF 5% 3282 3282 62221 100.00 99.95
20% 3282 3282 17074 100.00 27.43
25% 3282 3282 1907 100.00 3.06
30% 3282 3282 109 100.00 0.18
35% 3282 3282 1 100.00 0.00
40% 3282 3280 0 99.94 0.00
45% 3282 3236 0 98.60 0.00
50% 3282 2687 0 81.87 0.00

In order to further provide quantitative analysis, we calculated the classification

rates produced by these three techniques, OSP, CEM and UOSP for SNR = 5dB

in Table 2(a–c) and 20 dB in Table 3(a–c) where the cutoff threshold value of a%

was chosen to be 5%, 20%, 25%, 30%, 35%, 40%, 45% and 50%. Since the cases of

SNR = 10db and 15 db could be conducted similarly, their results are not included

here. From Table 2(a–c) and Table 3(a–c), we can see that the CEM performed

better than the OSP and UOSP when the a% is small. When the a% increased, the

false alarm rate of the CEM also increased significantly. As a result, its classification

was deteriorated rapidly. Interestingly, it was not true for the OSP and UOSP, in

which case they actually performed better than the CEM. Nevertheless, the overall

mean classification rates produced by the CEM were still better than those produced

by the OSP and UOSP as demonstrated in Table 6.

It is interesting to compare the results in Table 2(a–c) and Table 3(a–c) to the

results obtained by the traditional classification methods, CM and MCM methods.

Table 4 and Table 5 tabulate the classification results of the CM and MCM methods

for comparison. As we can see, the MCM method performed much better than the

CM method.



Detection of Spectral Signatures in MR Images 319

Table 2(c). Classification result of GM, WM, and CSF by UOSP
for the case of SNR = 5db with a% chosen to be 5%, 20%, 25%,
30%, 35%, 40%, 45%, and 50%.

UOSP a(%) N ND NF RD(%) RF(%)

GM 5% 9040 9040 56495 100.00 100.00
20% 9040 9039 56371 99.99 99.78
25% 9040 9020 55957 99.78 99.05
30% 9040 8982 54519 99.36 96.50
35% 9040 8861 50305 98.02 89.04
40% 9040 8532 41021 94.38 72.61
45% 9040 7929 26699 87.71 47.26
50% 9040 6856 12073 75.84 21.37

WM 5% 8745 8745 56789 100.00 100.00

20% 8745 8733 56578 99.86 99.63
25% 8745 8698 56216 99.46 98.99
30% 8745 8604 55397 98.39 97.55
35% 8745 8374 53681 95.76 94.52
40% 8745 7805 50015 89.25 88.07
45% 8745 6858 43927 78.42 77.35
50% 8745 5518 30673 63.10 54.01

CSF 5% 3282 3282 62221 100.00 99.95
20% 3282 3282 59843 100.00 96.13
25% 3282 3282 53431 100.00 85.83
30% 3282 3282 27776 100.00 44.62
35% 3282 3282 10916 100.00 17.54
40% 3282 3282 3166 100.00 5.09
45% 3282 3282 752 100.00 1.21
50% 3282 3282 124 100.00 0.20

Since 2-D curves of (RD,RF) is similar to the 2-D ROC curve commonly used

in detection theory, we can calculate the area under the 2-D curve of (RD,RF)39

to quantitatively study the overall performance of the OSP, CEM and UOSP. The

first three rows of Table 6 tabulate the mean classification rates calculated from the

areas under 2-D curves of (RD,RF) in Figs. 9(b), 10(b) and 11(b). The last two rows

of Table 6 also tabulate the classification results of the MCM and CM methods for

SNR = 5dB, 10 dB, 15 dB, 20 dB. It should be noted that no ROC curves can be

generated by the MCM and CM methods since the both MCM and CM methods

are labeling processes and each SNR results in a fixed point specified by one and

only one pair (RD,RF).

7. Real MR Image Experiments

In this section, real magnetic resonance (MR) images were used for experiments

which allow us to assess its utility and effectiveness in medical diagnosis. They

are shown in Fig. 3 and were acquired from ten patients with normal physiol-

ogy and no intensity inhomogeneity correct method was applied to the MR image

data. Band 1 in Fig. 3(a) is the PD-weighted spectral image acquired by the pulse
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Table 3(a). Classification result of GM, WM, and CSF by OSP
for the case of SNR = 20db with a% chosen to be 5%, 20%, 25%,
30%, 35%, 40%, 45%, and 50%.

OSP a(%) N ND NF RD(%) RF(%)

GM 5% 9040 9040 56490 100.00 99.99
20% 9040 9040 51725 100.00 91.56
25% 9040 9040 41060 100.00 72.68
30% 9040 9040 21287 100.00 37.68
35% 9040 9040 5840 100.00 10.34
40% 9040 9040 1173 100.00 2.08
45% 9040 9039 239 99.99 0.42
50% 9040 9038 28 99.98 0.05

WM 5% 8745 8745 56775 100.00 99.97

20% 8745 8745 53526 100.00 94.25
25% 8745 8745 43669 100.00 76.89
30% 8745 8745 23953 100.00 42.18
35% 8745 8745 8522 100.00 15.01
40% 8745 8745 1930 100.00 3.40
45% 8745 8745 283 100.00 0.50
50% 8745 8740 26 99.94 0.05

CSF 5% 3282 3282 61834 100.00 99.33
20% 3282 3282 21 100.00 0.03
25% 3282 3282 0 100.00 0.00
30% 3282 3282 0 100.00 0.00
35% 3282 3282 0 100.00 0.00
40% 3282 3282 0 100.00 0.00
45% 3282 3282 0 100.00 0.00
50% 3282 3282 0 100.00 0.00

sequence TR/TE = 2500ms/25ms. Bands 2, 3 and 4 in Fig. 3(b–d) are T2-weighted

spectral images were acquired by the pulse sequences TR/TE = 2500ms/50ms,

TR/TE = 2500ms/75ms and TR/TE = 2500ms/100ms respectively. Band 5

in Fig. 3(e) is the T1-weighted spectral image acquired by the pulse sequence

TR/TE = 500ms/11.9ms. The tissues surrounding the brain such as bone, fat, skin,

were semiautomatically extracted using interactive thresholding and masking.40

The slice thickness of all the MR images are 6mm and axial section were taken

from GE MR 1.5T scanner. Before acquisition of the MR images the scanner was

adjusted to prevent artifacts caused by the magnetic field of static, radio frequency

and gradient. All experiments presented in this chapter were performed under super-

vision of and verified by experienced neuroradiologists.

In many MRI applications, the three cerebral tissues, GM, WM and CSF are

of major interest where their knowledge can be generally obtained directly from

the images. In the following experiments, the spectral signatures of GM, WM and

CSF used for the CEM were extracted directly from the MR images and verified by

experienced radiologists. The number of classes was assumed to be 4, i.e. c = 4. In

analogy with computer simulation experiments in Sec. 6, these signatures were used

as prior knowledge for the OSP and CEM. When the OSP was implemented, the
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Table 3(b). Classification result of GM, WM, and CSF by CEM
for the case of SNR = 20db with a% chosen to be 5%, 20%, 25%,
30%, 35%, 40%, 45%, and 50%.

CEM a(%) N ND NF RD(%) RF(%)

GM 5% 9040 9040 56465 100.00 99.95
20% 9040 9040 16962 100.00 30.02
25% 9040 9040 3651 100.00 6.46
30% 9040 9040 464 100.00 0.82
35% 9040 9039 15 99.99 0.03
40% 9040 9019 0 99.77 0.00
45% 9040 8623 0 95.39 0.00
50% 9040 6275 0 69.41 0.00

WM 5% 8745 8745 56756 100.00 99.94

20% 8745 8745 27183 100.00 47.87
25% 8745 8745 5326 100.00 9.38
30% 8745 8745 362 100.00 0.64
35% 8745 8745 10 100.00 0.02
40% 8745 8719 1 99.70 0.00
45% 8745 8139 0 93.07 0.00
50% 8745 5189 0 59.34 0.00

CSF 5% 3282 3282 59741 100.00 95.96
20% 3282 3282 0 100.00 0.00
25% 3282 3282 0 100.00 0.00
30% 3282 3282 0 100.00 0.00
35% 3282 3282 0 100.00 0.00
40% 3282 3282 0 100.00 0.00
45% 3282 3282 0 100.00 0.00
50% 3282 2411 0 73.46 0.00

signature matrix M consisted of signatures of GM, WM and CSF plus a signature

extracted from the background. When the CEM was implemented, the desired

signature d was selected to be one of the three GM, WM and CSF signatures to be

detected. Similarly, the MCM method was implemented, the p = 1 and µ
(k)
1 was

always fixed at d during iterations, i.e. µ
(k)
1 = d.

Following the same manner conducted for MR phantom image experiments, we

used five images in Fig. 3(a–e) with the desired object signatures specified in Fig. 2.

Figures 12(a–c), 13(a–c), 14(a–c), 15(a–c) and 16(a–c) show the classification results

of the OSP, CEM, MCM method, UOSP and CM method for GM, WM and CSF

where the images labeled by (a), (b) and (c) were the classification maps for GM,

WM and CSF. As noted, the MCM and CM methods were not stable due to its

nature in unsupervised learning. When each time both methods were implemented,

different classification maps were generated. The results in Figs. 14 and 16 were

obtained by averaging five runs of implementation of the MCM and CM methods.

Note that when the MCM method proposed in Sec. 5 was implemented, the desired

object signature was designated as one specific class and this class was fixed during

its unsupervised clustering.
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Table 3(c). Classification result of GM, WM, and CSF by UOSP
for the case of SNR = 20 db with a% chosen to be 5%, 20%, 25%,
30%, 35%, 40%, 45%, and 50%.

UOSP a(%) N ND NF RD(%) RF(%)

GM 5% 9040 9040 56490 100.00 99.99
20% 9040 9040 52675 100.00 93.24
25% 9040 9040 43626 100.00 77.22
30% 9040 9040 26005 100.00 46.03
35% 9040 9040 7400 100.00 13.10
40% 9040 9040 1347 100.00 2.38
45% 9040 9039 271 99.99 0.48
50% 9040 9037 40 99.97 0.07

WM 5% 8745 8745 56760 100.00 99.95

20% 8745 8745 54450 100.00 95.88
25% 8745 8745 53699 100.00 94.56
30% 8745 8745 53063 100.00 93.44
35% 8745 8745 47535 100.00 83.70
40% 8745 8745 25960 100.00 45.71
45% 8745 8745 7809 100.00 13.75
50% 8745 8745 1005 100.00 1.77

CSF 5% 3282 3282 61859 100.00 99.37
20% 3282 3282 21 100.00 0.03
25% 3282 3282 0 100.00 0.00
30% 3282 3282 0 100.00 0.00
35% 3282 3282 0 100.00 0.00
40% 3282 3282 0 100.00 0.00
45% 3282 3282 0 100.00 0.00
50% 3282 3282 0 100.00 0.00

Table 4. Classification result of GM, WM, and CSF by
CM method for SNR = 5db and 20 db.

SNR N ND NF RD(%) RF(%)

GM 5 db 9040 0 4886 0.00 8.65
20 db 9040 0 0 0.00 0.00

WM 5 db 8745 1376 5 15.74 0.01
20 db 8745 8745 8504 100.00 14.97

CSF 5 db 3282 3282 16404 100.00 26.35
20 db 3282 3282 536 100.00 0.86

Table 5. Classification result of GM, WM, and CSF by
MCM method for SNR = 5db and 20 db

SNR N ND NF RD(%) RF(%)

GM 5db 9040 8708 6277 96.33 11.11
20 db 9040 9040 7489 100.00 13.26

WM 5db 8745 8517 6201 97.39 10.92
20 db 8745 8745 9285 100.00 16.35

CSF 5db 3282 2941 4003 89.61 6.43
20 db 3282 3166 4001 96.47 6.43
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Table 6. The mean dclassification rates calculated from the areas
under 2-D curves of (RD, RF) in Figs. 9(b), 10(b), 11(b).

SNR = 5db SNR = 10 db SNR = 15db SNR = 20db

OSP 0.8621 0.9638 0.9984 1.0000
CEM 0.9806 0.9895 0.9995 1.0000
UOSP 0.8027 0.9607 0.9987 1.0000
CM 0.5628 0.5926 0.7586 0.7356
MCM 0.9572 0.9830 0.9889 0.9945

(a) GM (c) CSF(b) WM

Fig. 12. Classification results of GM, WM and CSF produced by OSP.

(a) GM (c) CSF(b) WM

Fig. 13. Classification results of GM, WM and CSF produced by CEM.

(a) GM (c) CSF(b) WM

Fig. 14. Classification results of GM, WM and CSF produced by the MCM method.
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(a) GM (c) CSF(b) WM

Fig. 15. Classification results of GM, WM and CSF produced by UOSP.

(a) GM (c) CSF(b) WM

Fig. 16. Classification results of GM, WM and CSF produced by the CM method.

In the MR phantom image experiments conducted in Sec. 6, Gaussian noise

was simulated to achieve various SNR for quantitative analysis. Unfortunately, a

quantitative study will be difficult for the above real MR image experiments for

the following two reasons. One is that it requires reliable techniques to estimate

noise in the MR images. This has been a challenging issue in signal and image

processing41−42 and beyond the scope of this chapter. The OSP, CEM and UOSP

generate gray scale abundance fractional images for MR image classification which

provide radiologists with gray level information for their visual interpretation. Such

qualitative information is useful for medical diagnosis, but will be lost if gray scale

images are converted to binary images by thresholding. In addition, it is nearly

impossible for radiologists to identify all the pixels in real MR images for quanti-

tative study as the way we did for phantom images where we knew exactly what

class to which each pixel belonged. As a consequence, no quantitative analysis was

conducted for the real MR image experiments.

8. Conclusions

This chapter presents applications of three hyperspectral image processing tech-

niques, Orthogonal Subspace Projection (OSP), Constrained Energy Minimization

(CEM) and Unsupervised OSP (UOSP) to MR image classification. These tech-

niques require different levels of information that can be used for various scenarios in



Detection of Spectral Signatures in MR Images 325

different applications.33 Unlike classical image classification techniques which per-

form classification based on spatial correlation on a pure pixel basis, the proposed

techniques are designed to explore spectral characteristics of signatures of interest

so as to achieve better classification. Most importantly, the resulting images are not

traditional class-map images, but rather fractional abundance images which only

show signatures of interest with various gray scales, each of which is proportional

to the abundance fraction of a particular signature contained in an image pixel

vector. In order to evaluate their performance, the classical 2-D ROC analysis is

also extended to a 3-D ROC analysis which is based on three parameters, detection

rate, false alarm rate and abundance fraction percentage. This 3-D ROC analysis

is a new concept and has not been explored in medical diagnosis. It is particularly

useful for MR image classification by including signature abundance fractions as

a third dimension in ROC curves where spectral information can be characterized

separately from spatial information.
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The recent development of image analysis and visualization tools allowing explicit 3D
depiction of both normal anatomy and pathology provides a powerful means to obtain
morphological descriptions and characterizations. Shape analysis offers the possibility of
improved sensitivity and specificity for detection and characterization of structural dif-
ferences and is becoming an important tool for the analysis of medical images. It provides
information about anatomical structures and disease that is not always available from
a volumetric analysis. In this chapter we present our own shape analysis work directed
to the study of anatomy and disease as seen on medical images. Section 2 presents a
new comprehensive method to establish correspondences between morphologically dif-
ferent 3D objects. The correspondence mapping itself is performed in a geometry- and
orientation-independent parameter space in order to establish a continuous mapping
between objects. Section 3 presents a method to compute 3D skeletons robustly and
show how they can be used to perform statistical analyses describing the shape changes
of the human hippocampus. Section 4 presents a method to approximate individual
MS lesions’ 3D geometry using spherical harmonics and its application for analyzing
their changes over time by quantitatively characterizing the lesion’s shape and depicting
patterns of shape evolution.

Keywords: Shape analysis; shape correspondence; parameterization; spherical harmonics;
skeletons; medial representations.

1. Introduction

The advent of fast three-dimensional (3D) magnetic resonance imaging (MRI) has

enabled the routine acquisition of high spatial resolution digital representations of
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anatomy in vivo. The recent development of image analysis and visualization tools

allowing explicit 3D depiction of both normal anatomy and pathology provides a

powerful means to obtain morphological descriptions and characterizations.

Shape analysis offers the possibility of improved sensitivity and specificity for

detection and characterization of structural differences. A number of approaches

for characterizing shape and shape changes have been developed. These methods

differ in the underlying representation of shape, in the type of shapes that may be

modeled, and in their capacity to differentiate shape changes. Different shape anal-

ysis methods have been proposed for a variety of clinical applications. A landmark

based shape analysis has been applied to study the effect of different diseases on

brain structures. For this landmark-based approach, shape is defined as the informa-

tion about the landmark configuration that remains unchanged under adjustment of

position, orientation or scale.1 Landmarks are manually located on the surface of the

studied structures seen on magnetic resonance (MR) images. These landmarks are

used to create an average shape of the studied structures, which is later compared

to each individual structure deriving displacement maps that are helpful to visual-

ize group differences and to discriminate among clinically meaningful categories.2,3

This approach has been widely used for the study of brain structures in schizophre-

nia. Buckley et al.2 studied the ventricular dysmorphology in schizophrenia,

DeQuardo et al.3 analyzed ventricular enlargement during first-episode schizophre-

nia, while Tibbo et al.4 studied the corpus callosum shape in male patients with

schizophrenia. In a different study landmarks were used to analyze the shape of the

corpus callosum and subcortical structures in the fetal-alcohol-affected brain.1

Other shape analysis methods based on MR images have also been applied to the

study of different brain structures related studies. All of these shape analysis meth-

ods are regularly applied after the corresponding segmentation and registration of

the images. Velakoulis et al.5 defined the shape of the hippocampus as the volume of

contiguous slices and use it to analyze both, the overall and the behind of the head

of the hippocampus volume loss in chronic schizophrenia. Levitt et al.6 studied the

correlation between the shape of the caudate nucleus and cognition in neuro-naive

schizotypal personality disorder. In that study, they generated a 3D rendering of

the caudate nucleus and estimated a shape index using the ratio between the sur-

face area and the volume of the caudate nucleus, which indicate how much a given

shape differs from a sphere. Hogan et al.7 studied Hippocampal shape analysis in

epilepsy and unilateral mesial temporal sclerosis. They used a color scale showing

degrees of outward and inward deviation of each studied hippocampus coregistred

to a previously generated average hippocampus. Posener et al.8 also analyzed the

shape of the hippocampus but in cases of depression, by superimposing a trian-

gulated mesh of the hippocampus on a hippocampus template and representing

the displacement of each graphical point in the mesh by a vector. Sowell et al.9

extracted the cortical surface from the MR images and created a 3D mesh-like

render in order to analyze brain surface abnormalities in children, adolescents and

young adults with prenatal alcohol exposure. They also assessed the relationship

between cortical gray matter density on the brain surface and brain shape. The
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shape analysis was point-by-point radial distance estimation between each individ-

ual cortical 3D surface and an average 3D cortical surface model. Zilles et al.10

analyzed the inter-subject variability of hemispheric shape and defined gender and

inter-ethnic differences between the hemispheric shape of male and female European

and Japanese brains. They constructed a mean brain model from all brains and for

each sample, and later measured the distance between each voxel at the surface of

an individual brain and the corresponding surface voxel of the mean brain. The vari-

ability was displayed as a function of the standard deviations of the mean absolute

distances between all voxels of the mean brain surface and all the corresponding

surface voxels of all individual brains. Studholme et al.11 examined a method for

the analysis of Jacobian determinant maps capturing local anatomical size differ-

ences. They applied this method to the study of dementia in Alzheimer’s disease

and aging by capturing shape differences between an individual and a reference

anatomy or between repeated scans of an individual.

Shape analysis has also been used as a tool to develop or further improve some

image segmentation and registration algorithms. Pizer et al.12 constructed a sta-

ble efficiently calculable measure of shape and other geometric object properties

and applied it in a uniform method for segmentation and recognition of image

objects, object-based registration, and object shape measurement. Tsai et al.13

derived a model-based, implicit parametric representation of the segmenting curve

and calculated the parameters of this implicit model to minimize the region-based

energy function for medical image segmentation. Goldberg-Zimring et al.14 pro-

posed an algorithm for the two-dimensional (2D) segmentation of multiple sclerosis

(MS) lesions based on the assumption that MS lesions have a relatively circular

shape. After an initial global thresholding of the images, for each detected seg-

ment a shape index and the average intensity inside the region of interest was

estimated. This shape index indicating the closeness of each segment to a circu-

lar shape was used together with the average intensity value as the input for an

artificial neural network in order to discriminate between MS lesions and detected

artifacts.

While most of shape analysis techniques have taken the advantage of MRI and

its high resolution and quality images, this kind of analysis can be applied to studies

based on any kind of medical images. For example, Christodoulou et al.15 developed

an algorithm for the automated characterization of carotid plaques recorded from

high-resolution ultrasound images. Carotid plaques were characterized based on

extracted texture features and shape parameters such as the X and Y coordinates

maximum length, area, perimeter, and the relation perimeter2/area.

In this chapter we present our own shape analysis work directed to the study of

anatomy and disease as seen on medical images. Section 2 presents a new compre-

hensive method to establish correspondences between morphologically different 3D

objects. Section 3 presents a method based on the 3D skeleton to study the effect

of aging on the human Hippocampus, and Sec. 4 presents a method to approximate

MS lesions’ 3D geometry using spherical harmonics (SH), and to analyze MS lesions

changes over time.
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2. Shape Correspondence

2.1. The correspondence problem

Longitudinal and cross-sectional studies of anatomical shape and structures in clin-

ical images have become a common task in diagnosis, treatment evaluation, surgical

planning and exploratory clinical research.

Such morphometric analysis of medical images often requires a one-to-one map-

ping, or correspondence, between anatomic structures in two or more different but

not disparate image sets. So the structures of interest will be similar but mor-

phologically different, such as when a changing structure is imaged over time,

e.g., in dynamic cardiac imaging,16,17 the study of disease progression,18,19 or the

measurement of local changes in response to therapy.20 Cross-sectional analysis

includes the study of anatomic shape variation between normal and pathological

structures,21–23 and non-rigid alignment of a standardized anatomic atlas to indi-

vidual data sets.24,25 In many of these cases, the principal challenge of a correspon-

dence search is that a unique solution for matching points on dissimilar objects does

not necessarily exist. Thus, the problem also entails the definition of “allowable” or

“probable” correspondences according to basic physical constraints or application-

specific knowledge.

This section presents a new comprehensive method to establish correspondences

between morphologically different 3D objects. Similarities between shape features

guide the correspondence and constraints imposed on a global optimization prevent

physically unrealizable matches. The correspondence mapping itself is performed

in a geometry- and orientation-independent parameter space in order to establish a

continuous mapping between objects. We will present this in three parts: the first

describes the concept of shape description by parameterization via SH, the second

contains the definition of “Parameter Space Warping” and the third shows example

applications of this technique.

2.2. Shape parameterization

The representation of 3D shapes is a well-recognized challenge in computer vision.

Parametric models have received particular attention, because they provide concise

and robust representations of shape properties well suited to object comparison.

A rough classification of object descriptors distinguishes between local and global

representations, with respect to composition, and between implicit and explicit rep-

resentations with respect to formulation.

Local representations describe the object by a connected series of primitives,

such as planar polygons, edges etc., whereas global representations use a single

(parametric) function in a global object-oriented coordinate system.

An implicit representation postulates a given relationship, which all points

belonging to the object must satisfy. The equation (x/a)2 + (y/b)2 + (z/c)2 = 1,

for example, is an implicit representation of an ellipsoid in Cartesian coordinates
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[x, y, z], whereas [x, y, z]T = [a cos(θ) cos(φ), b cos(θ) sin(φ), c sin(θ)]T is an explicit

representation of the same ellipsoid, using spherical coordinates (θ, φ).

An essential advantage of using a parametric description for shape comparison

is that it reduces the dimensionality of the domain, i.e. for a 3D object we step from

ℜ3 → ℜ2, i.e., a 3D object is represented by a 2D parameter space, a 2D curve is

represented by a 1-dimensional (1D) parameter space, etc. Hence we invest extra

work in creating an explicit description of the object, but then have the benefit of

a much smaller domain, which gives us a reduced search/optimization space.

Obviously, the mapping of an object geometry onto such a reduced parameter

space critically determines the quality of its description. In other words, how we map

the geometry will determine how useful the parameter space will be in representing

the object’s topology. If we choose our parameter space unwisely, the mapping can

become very hard to do and we may have to deal with complicated constraints

and boundary conditions (BC). It is advantageous, therefore, to choose a map

that is topologically equivalent, i.e., a space that complies with the intrinsic BC of

the data. BC not addressed by the geometry of the parameter space will have

to be formulated explicitly as external constraints, eventually complicating the

description and especially the mutual comparison of parameterized objects. For

example, the mapping of closed contours and surfaces is useful in a parameter

space with an inherent periodicity, like a circle or sphere, respectively, compared to

a planar map like the unit square.

2.2.1. Shape parameterization: spherical mapping

Spherical harmonics (SH) are discussed here as basis functions to represent the

object surface in parameter space. Because different regions with varying size and

shape are to be compared in the correspondence search, it is important that the

object representation fulfill the requirement of equidistant sampling, which means

that sampled points should all be approximately the same distance from each other.

In terms of a 3D object mapping, this is formulated as an equal-area (homologic)

mapping of the object onto the unit sphere. Such a mapping demands that the size

of an objects representation on the sphere is proportional to its original, size. For

example, a region occupying 20% of the object surface should also cover 20% of the

map area, in this case 20% of the unit sphere.

Generally, a homologic spherical mapping will require an optimization of some

kind. For the examples shown here, a method developed by Brechbühler et al.26 was

used. This method starts from an initial, continuous mapping onto the unit sphere,

obtained from solving the Dirichlet problem ∇2θ = 0 and ∇2φ = 0 for latitude θ

(Fig. 1) and longitude φ, respectively, with boundary conditions θNP = 0, θSP = π,

where NP and SP are two arbitrary object points that are mapped to the sphere’s

north pole and south pole, respectively. Finally, longitude must obey an additional

periodicity constraint φ(t + 2π) = φ(t), which is the equivalent of the geographical

“dateline”.
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Fig. 1. Example of the spherical mapping in two stages: first, an initial mapping is obtained by
solving the Dirichlet problem, with two points selected as north an south-pole as the boundary
conditions (left). A second step then runs an optimization that seeks a homologic mapping, i.e.
distributes all sample points equally over the sphere without overlaps or excessive distortions
(right). The latitude ranges from 0 to π. The object shape is one lateral ventricle obtained from
brain MRI. NOTE: A color version of this book chapter is available from the authors.

Thus, there are two sets of partial differential equations to solve, one for lati-

tude θ, and another for longitude φ. This initial spherical projection is then subject

to an additional optimization to create an isotropic distribution of the object surface

area onto the sphere.26

2.2.2. Parameterization: spherical harmonics

Once a spherical map is obtained, a parameterization of the object surface x is

given as a SH series:

x(θ, φ) = [x, y, z]T =

H∑

l=0

l∑

m=−l

al,mY m
l (θ, φ) (1)

al,m ≈ 4π

N

N∑

i=1

xiY
m
l (θi, φi). (2)

The SH function Y m
l itself is the solution of the Laplace equation in spherical

coordinate system (θ, φ), i.e. Y m
l forms a set of basis functions over the surface of

the unit sphere. The integers l and m refer to the angular and azimuthal quantum

numbers, respectively, with l > 0 and −l ≤ m ≤ l, often also referred to as order l

and level m, respectively.

Y m
l (θ, φ) =

√
2l + 1

4π

(l − m)!

(l + m)!
Pm

l (cos θ)eimφ. (3)

Pm
l are the associated Legendre polynomials, defined by the differential

equation:

Pm
l (x) =

(−1)m

2kl!
(1 − x2)m/2 dl+m

dxl+m
(x2 − 1)l. (4)

A recursive algorithm for their computation is given in Ref. 27. A graphical

representation of Y m
l is shown in Fig. 2, for the four lowest harmonics (l < 4).
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Fig. 2. Graphical representation of the four lowest spherical harmonics, with value of Y m
l

shown
in bright and dark as negative and positive extrema, respectively. A world map is superimposed
to convey the notion of a spherical map. NOTE: A color version of this book chapter is available
from the authors.

2.2.3. Parameterization: shape characteristics

Once a parameterization is obtained, we can derive shape characteristics easily from

the explicit description. We use these characteristics to build a criterion function

that drives the correspondence search. In other words, the criterion function evalu-

ates the quality of a correspondence mapping between two objects, based on mea-

sures that capture similarity of shape.

Differential surface features for this shape characterization are obtained directly

from the analytical representation.28 This has the distinct advantage that higher

derivatives are not corrupted by noise, as direct measures from the geometry would

be. If we denote the partial derivatives of the Cartesian coordinates x (Eq. (1))

with subscripts as ∂x
∂θ ≡ xθ,

∂x
∂φ ≡ xφ, ∂2x

∂θ∂φ ≡ xθφ etc. then the surface normal, for

example, is given by the cross-product:

n =
xθ × xφ

|xθ × xφ|
. (5)

The scalar coefficients of the first (E, F, G) and second (e, f, g) fundamental

form are calculated as dot-products:

E = xθ · xθ, F = xθ · xφ, G = xφ · xφ,

e = xθθ · n, f = xθφ · n, g = xφφ · n.
(6)



336 D. Goldberg-Zimring et al.

Once these are obtained, the principal curvatures κ (the extrema of normal

curvature),28 are derived from the solutions λ1, λ2 to the quadratic equation:

(Fg − Gf )λ2 + (Eg − Ge)λ + Ef − Fe = 0

which yields the principal curvatures:

κi =
e + 2fλi + gλ2

i

E + 2Fλi + Gλ2
i

, i = 1 . . . 2. (7)

Since we are interested in shape comparison rather than descriptive shape analy-

sis, we seek a curvature descriptor with a large and smooth dynamic range. Neither

Gaussian nor mean curvature, however, tend to have these properties. In the spirit

of polar/spherical transformations, a good and sensitive measure can be obtained

by transforming the principal curvatures κ1, κ2 into polar space, which yields a

term called the “local shape index” c.29 Unlike the curvatures above, this measure

is decoupled from object size, which is what we want for shape comparison, i.e. we

seek a relative rather than an absolute curvature measure:

c = − 2

π
· tan−1

(
κ1 + κ2

κ1 − κ2

)
. (8)

The transformation into polar space yields a size independent curvature mea-

sure, and a further normalization yields a “rank-order” measure especially suited

for object comparison, i.e. we seek to match the “most convex” region of object 1

with the equivalent region of object 2, without postulating that the actual curvature

values necessarily be the same.

ĉ =
2c − max(c) − min(c)

max(c) − min(c)
. (9)

2.2.4. Parameterization: uniform spherical sampling

When we sample our parametric object description (Eq. 1), it is important that we

do so in a uniform manner, i.e. we want sample points equidistantly distributed.

This may not be an issue for rendering purposes, but becomes relevant for auto-

mated comparison, since we do not know a priori which region of an object matches

another.

In Fig. 3 we show two examples of a spherical sampling in polar space. If we

were to sample the spherical coordinate latitude in constant steps, we would end

up with an overrepresentation near the poles.

This can be avoided by using a set of precomputed spherical meshes, with res-

olutions matching the object size (Fig. 4).

2.2.5. Parameterization: shape scale space

Having a frequency-based parametric description also provides us with an elegant

way of creating a scale space of shape, i.e. a simple, yet robust way of controlling

the level of shape detail. This we will use as part of the optimization. By increasing
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(a) (b)

Fig. 3. A uniform sampling of longitude and latitude (a) results in an over-representation of the
area near the poles of the sphere. An equidistant sampling is shown in (b). The effect becomes
apparent with appropriate scaling of the latitude axis, i.e. plotting cos(latitude).

Fig. 4. Example of sphere tessellations providing homogeneous sampling of the spherical parame-

ter space. Such sphere sets can be precomputed and stored to provide sampling of object geometry
at multiple resolution levels.

Fig. 5. Example of shape evolution by modulating spherical harmonic frequency. Using the prinic-
ipal two harmonics (2.0) results in an ellipsoid, representing the principal axes of the object.
Increasing the number of harmonics provides an elegant way to control the level of shape detail.
A continuous and smooth shape space is obtained from a geometric series of fractional harmonics,
as indicated by the numbers beneath each rendering. NOTE: A color version of this book chapter
is available from the authors.

the level H of the highest harmonic used in the object description, we gradually

increase the global level of shape detail. Figure 5 shows the shape development

with increasing harmonics H , on a rendering of a lateral ventricle. This continuous

scale space provides an ideal platform for a multi-resolution approach to the opti-

mization involved in object matching, i.e. the surface over multiple harmonics H

shows a coherent landscape suitable for gradient-descent optimization. The ana-

lytical derivation of these differential values assures a high degree of accuracy and

robustness. Unlike derivatives computed directly from discrete sample points, they

are insensitive to noise and sampling density.
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A continuous scale-space is obtained from the discrete frequency descriptions

above by linear or exponential interpolation, i.e., by defining “rational harmon-

ics”. A “2.38-harmonic object”, for example, is created by adding 38% of the 3rd-

harmonic to the 2-harmonic (H = 2) representation, i.e., xH=2.3 = (1−0.38)xH=2 +

0.38 · xH=3. Note that the changes in geometry by incrementing H grow smaller

with larger H , i.e. the change of surface detail encoded by the harmonics is a geo-

metric rather than an algebraic series, as shown in Fig. 5.

The optimization in the Parameter Space Warping (PSW) concept thus executes

a form of shape tracking. We begin the optimization with a low-harmonic descrip-

tion, where correspondences are trivial (e.g. comparing two ellipsoids). We then

gradually increase the level of detail and track correspondences through this scale

space of shape. This provides a powerful and robust mechanism for the automated

optimization involved.

2.3. Correspondence: parameter space warping

The final goal of a correspondence matching between two parameterized objects, in

this context, is to establish a mapping between their respective parameter spaces

ψ1 and ψ2, rather than between the object geometries x1, x2 themselves. In other

words, by comparing parametric object representations, we create a de facto separa-

tion between object geometry and topology, which, as we will see, is an ideal premise

to solve the correspondence problem. The desired mapping consists of a transform

ψ1 → ψ̃1, and the quality of the mapping is summarized in a criterion/cost function

J [r1(ψ̃1), r2(ψ2)]. The transform ψ1 → ψ̃1 that minimizes J thus provides a corre-

spondence mapping which has x1, sampled with parametric coordinates, ψ̃1, and x2,

sampled with its original parametric coordinates ψ2. You may visualize the trans-

form ψ1 → ψ̃1 as a motion of the points x1 constrained to the surface of object 1.

Because this transform is non-rigid and applied to parameter space, we denote this

process as “parameter space warping” (PSW).30 This is illustrated in Fig. 6.

Imagine two corresponding subregions of the objects being compared. Those

regions will be mapped onto a contiguous area in parameter space. Because of the

morphological difference between the two substructures, their parametric represen-

tation will differ not only in position, but also in size and shape. The objective of the

PSW is to align these corresponding regions by virtue of a spatial transformation

applied to the parameter space. Formally, the PSW is modeled as:

ψ̃ = ψ + △ψ = ψ +

K∑

k=1

bk · Bk(ψ). (10)

In choosing an appropriate basis function Bk(ψ) for this modulation, it is natural

to follow the topology of the parameter space itself, i.e. since our parameter space

is the unit sphere ψ = (θ, φ), we choose again spherical harmonics as basis function

for the PSW: Bk = Y m
l . Thus we take advantage of the intrinsic constraints of the

spherical basis functions.
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Fig. 6. Parameter Space Warping (PSW) concept: The spherical map of the left ventricle is
deformed by the transform ∆ψ so that the cost function (J) measuring the structural differences
between the objects is minimized. The function ri(ψ) defines the geometry, the function ∆ψ maps
one parameter space onto the other and the cost function J describes the shape similarity between
the geometry. After the transform ∆ψ, corresponding points of the two objects should also be in
the same position on the sphere. For details see also Ref. 30.

We do not modulate longitude and latitude directly, however, to avoid the sin-

gularities at the poles of the spherical coordinate system, where longitude is not

defined (recall that when standing at the North Pole, every direction is south and

no direction is east). Instead we introduce a virtual degree of freedom and formulate

the PSW in Cartesian coordinates:

ρ̃ = ρ + △ρ =




x

y

z


+

k∑

l=1

l∑

m=−l




bx
l,m

by
l,m

bz
l,m


Y m

l (11)

with bx
l,m, by

l,m, bz
l,m as the coefficients. Thus, the shifting of sphere surface points is

now expressed separately for each Cartesian coordinate. Directional preferences are

removed by the additional degree of freedom (DOF) introduced. We compensate

this virtual DOF with an additional constraint to keep the points on the sphere,

i.e., by forcing |ρ̃| = 1. This can be implemented explicitly within the optimization,

or implicitly by re-normalization, i.e. by projecting the points back onto the unit

sphere:

ρ̃ =
ρ + △ρ

|ρ + △ρ| . (12)

An example of two different objects, their respective spherical maps and corre-

sponding regions is shown in Fig. 7.
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Fig. 7. Example of object correspondence between two different shapes x1 and x2 (two lateral
ventricles obtained from brain MRI), and their corresponding spherical maps Ψ1 and Ψ2 (with
world contours superimposed to convey the notion of a spherical map). Note that corresponding
regions will differ on the map not only in position, but also in size and shape, which is why a
non-rigid parameter space warp ∆Ψ must be applied to the map to establish congruence. NOTE:
A color version of this book chapter is available from the authors.

2.3.1. Structural criterion function

The similarity criterion function J should be a cost function that captures our

understanding of a good correspondence. Since our emphasis is on morphological

equivalence, we choose a J that models instances of structural similarity, but others

could also be used, such as instances of deformation energy,31 purely statistical

measures like mutual information,32 or the distance to explicit landmarks.23,33

In following a structural paradigm, we design our cost function as a super-

position of three components, representing Euclidian point-to-point distance JD,

differences in surface normal direction JN , and curvature JC , summed over the

object surface:

JD =
1

Nd2
0

∑

N

|x1 − x2|2

JN =
1

N π

∑

N

cos−1(n1 · n2)

JC =
1

4N

∑

N

|ĉ1 − ĉ2|2.

(13)

The indices 1 and 2 denote the two objects being compared. N is the number of

sample points (Fig. 4) used. Object geometry is represented by the vectors x1, x2

from the SH series in Eq. (1), the surface normal vectors n1,n2 from Eq. (5), and

the normalized curvature values ĉ1, ĉ2 from Eq. (9). Whereas the components JN

and JC range from [0,1], the distance term JD, is normalized to [0,1] by an external

reference length d0, for example: d0 = maxN (|x1−x2|). This makes all components

of J bounded within the interval [0,1].



Studying Anatomy and Disease in Medical Images Using Shape Analysis 341

Finally, we combine the three components with an empirical weight vector w =

[wD, wN , wC ]T , with
∑

wi = 1. The final scalar cost is then given by: J = w ·
[JD, JN , JC ]T .

Different applications are likely to use different weights and thus bias the crite-

rion function toward features that demonstrate the greatest stability for the given

morphology. For example, shape comparisons among objects of greatly varying size

would emphasize intrinsic measures like curvature and normal direction rather than

Euclidian distance.

2.4. Application: anatomic labeling by atlas warping

This is an example application of the PSW concept above to the problem of auto-

mated atlas-based anatomical parcellation, or anatomical labeling. We take a pre-

labeled atlas of subject A and warp it into congruence with subject B, thereby

obtaining an estimate of the location, shape and size of the anatomical structures

of subject B. In other words, we transfer the anatomical parcellation from A to B,

by virtue of extrapolating correspondences between structures delineated in both

subjects. This 3D warping is driven by correspondences derived between individual

structures, as outlined above. For more details see Ref. 34.

The strategy to deform an atlas image to match a sample geometry also provides

estimates for structures that cannot be segmented directly at all, due to lack of

image resolution or contrast. The atlas warp applies knowledge we have regarding

the shape differences between the two subjects, and extrapolates it in a structurally

feasible manner to parts of the anatomy we have no direct segmentation of. In other

words, individual segmentation results for two different structures may be useful in

finding a third, where the atlas serves as a model to incorporate a priori knowledge

about the “relational” arrangement of anatomical structures.

Figure 8 shows an example of warping a pre-labeled atlas with major lobe par-

cellation to a different subject anatomy. This was accomplished by finding explicit

Fig. 8. Example application of correspondence driven atlas warping for automated anatomical
parcellation. The lobar anatomy of a subject is automatically delineated into frontal, temporal,
parietal, occipital and insular lobe and the cerebellum, by virtue of warping a pre-labeled atlas
of another subject (not shown) into congruency.34 NOTE: A color version of this book chapter is
available from the authors.
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correspondences between three sub-structures: the brain surface, the lateral ventri-

cles (both left and right) and the inter-hemispheral midline surface, using the PSW

concept.30 These correspondences were then used to drive an image warp based on

multi-quadrics, aligning the atlas with the subject.34

3. Skeletons and Medial Representations

Medial models have been successfully used in medical image analysis in a number of

contexts, see Refs. 12, 35 for some recent applications. Applying these methods in

3D presents an additional challenge because only a small class of computationally

reliable algorithms exists. Nevertheless, Styner and Gerig36 have recently developed

a framework where spherical harmonics along with a coarse-scale sampled medial

description are used to represent the shape of anatomical structures of the brain in

particular the hippocampus and the lateral ventricles. A key idea is that the medial

primitive can be used to describe the most prominent medial sheet and to provide

an intrinsic frame of reference by which different data sets can be registered.

In this section, we present our own methodology based on the 3D skeleton to

study the effect of aging on the hippocampus.37 After reviewing the definition and

some of the properties of the skeletons, we briefly present a method to compute

them robustly and show through an example how they can be used to perform

statistical analyses describing the shape changes of the hippocampus.

3.1. Definition and properties

There are several definitions of skeletons in the literature, some of which are equiv-

alent. We focus on the most common, popularized by Blum,38 which is based on

the notion of grassfire.

Definition 1. The skeleton (axis in 2D, surface in 3D) of X, Sk(X), is the set of

points of X simultaneously reached by grassfires initiated from at least two different

points of the boundary of X. This is equivalent to the set of points of X for which

there are at least two closest points of the boundary of X, in the sense of Euclidean

distance.

Definition 2. The skeleton transform of an object X, ST(X), is the skeleton Sk(X)

together with the distance function, defining for each point in Sk(X) the shortest

distance to the boundary of X.

An example 2D object and its skeleton are shown in Fig. 9. We now review some

properties of the skeleton.

Property 1. Invariance under translation and rotation: Sk(X) is invariant under

translation and rotation. Given a translation or a rotation g Sk(g(X)) = g(Sk(X)).

This is a crucial property, as most shape analysis applications require at least

invariance to translations and rotations.
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Fig. 9. The 2D skeleton of an elephant shape.

Property 2. Reversibility: given Sk(X) and the minimum distance r at each point

of Sk(X), it is possible to recover the object. X is the union of the balls centered at

Sk(X) of radius r.

In other words, the set Sk(X) together with its associated distance function is

equivalent to the set X. The skeleton and its radius information is thus a complete

representation of the object.

Property 3. Thickness: The interior of Sk(X) is empty.

The skeleton is at least one dimension lower than the object. It consists of

curves and points in 2D and of surfaces, curves and points in 3D. Thus it provides

a compact representation of the object.

Property 4. Homotopy: It is important that the “essential structure” of the object

be preserved in the skeleton. For example in 2D, the skeleton and the object should

have the same number of connected components and the same number of holes.

This idea of “topological equivalence” is called Homotopy. Intuitively, it would seem

natural that the skeleton and the object are homotopy equivalent; however, proving

this is a rather difficult task. Recently, Lieutier39 claimed to have a proof that any

open bounded subset of Rn and its skeleton are of the same homotopy type. It

is possible, as we will later on to ensure digital homotopy equivalence between a

digital 3D object and its digital skeleton.

3.2. Computational technique

Computing skeletons is a challenging problem, as there is no simple technique that

can detect the local maxima of the Euclidean distance transform and ensure all the

mathematical properties of the skeleton (reversibility, compactness and homotopy

equivalence). A number of algorithms have been developed in order to achieve this

task, but only a few have been successful.40–42

In this section, we review the work of Siddiqi et al.,43 which we believe is robust

and accurate, and can thus be used as the basis for our hippocampus study.



344 D. Goldberg-Zimring et al.

3.2.1. Hamilton Jacobi skeletons

We now review the algorithm on which the subsequent analysis of hippocampus

shape is based. For details we refer the reader to Ref. 43. Consider the grassfire flow

∂S

∂t
= N (14)

acting on a closed 3D surface S, such that each point on its boundary is moving

with unit speed in the direction of the inward normal N . The shocks of this equa-

tion correspond to the location of the skeleton. They also correspond to the local

maxima in the Euclidean distance function of the initial surface.

Let D be the Euclidean distance function to the initial surface S0.
44 The discrim-

ination of medial from non-medial surface points can be approached by computing

the average outward flux of the vector field ∇D at a point q. This quantity is

given by

AOF (q) =

∫

∂R

〈∇D, No〉dS

area(∂R)
(15)

where dS is a surface area element of the bounding surface ∂R of a volume R and

No is the outward normal at each point on the surface. It can be shown that as

the volume shrinks to a point not on the medial surface, the average outward flux

approaches zero. In contrast, when the volume over which it is computed shrinks

to a medial surface point, the average outward flux approaches a strictly negative

number.45 Thus, it is an effective way for distinguishing between these two cases.

This calculation is used to guide a thinning process in a cubic lattice, while taking

care to preserve the object’s homotopy type.

3.2.2. Preserving homotopy

A point is simple if its removal does not disconnect the object, create a hole, or

create a cavity. We are interested in detecting those points, as their removal will

not change the homotopy type of the object. Malandain et al.40 have introduced a

topological classification of a 3D point in a cubic lattice by computing two numbers:

• C: the number of 26-connected components of the object 26-adjacent to x.

• C∗: the number of 6-connected components of the background 6-adjacent to x.

Further, they have shown that if C = 1 and C∗ = 1, the point is simple,

hence removable. Our basic strategy now is to guide the thinning of the object

by the average outward flux measure computed over a very small neighborhood.

Points with the most negative average outward flux are the strongest medial surface

points. The process is stopped when all surviving points are not simple, or have an

average outward flux below some chosen (negative) value, or both. Unfortunately,

the result is not guaranteed to be a thin set, i.e., one without an interior. This last

constraint can be satisfied by defining an appropriate notion of an endpoint in a
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Fig. 10. A 3D model of a dinosaur and its skeleton.

cubic lattice. In R3, if there exists a plane that passes through a point x such that

the intersection of the plane with the object includes an open curve which ends at

x, then x is an end point of a 3D curve, or is on the rim or corner of a 3D surface.

This criterion can be discretized easily to 26-connected digital objects by examining

9 digital planes in the 26-neighborhood of x.46 The thinning process proceeds as

before, but the threshold criterion for removal is applied only to endpoints. An

example 3D object and its skeleton are shown in Fig. 10.

3.3. Hippocampus and aging: an example study

3.3.1. Hippocampus data

In a previously published analysis,47 the left and right hippocampus were manually

segmented from T1-weighted MR images from 80 normal healthy subjects. These

subjects included 39 healthy men and 41 healthy women in the age range of 18 to

42 years (mean age 25.4 + / − 5.6 years). The MRI data for each subject was first

corrected for image intensity non-uniformity48 and linearly registered to a standard

brain-based coordinate system known as stereotaxic space.49

Quantitative analysis of the original label volumes derived from the MR images

revealed an overall hemispheric difference with the right hippocampus being bigger

than the left (4300 vs. 4072mm3, p < 0.001). Furthermore, there was a correlation

with age in the group of men for both left and right hippocampus (Spearman’s

Fig. 11. Left: a sagittal view of the hippocampus within the brain. Right: 3D model of the
corresponding hippocampus.
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r = −0.44, p < 0.005) that was not apparent in the group of women (r = 0.01,

p > 0.20). However, it was not possible to determine whether the observed differ-

ences were due only to a volume reduction or were associated with the overall shape

of the hippocampus as well. The medial surface algorithm presented here extends

the possibilities for analysis, allowing for the investigation of shape differences in

the hippocampus between men and women. We chose to focus this analysis on the

radius function of the medial surface of the hippocampus, which indicates the local

width of this structure at different locations in the medial temporal lobe.

3.3.2. Methodology

First, we observed that across the entire data set of hippocampuses, only one main

medial sheet in the skeleton was necessary to accurately represent the object. In

fact, reconstructing the object with the medial sheet alone accounts for 99% of the

overall volume of the original object. We thus chose to focus only on this sheet. Our

approach is to use the medial sheet with its associated distance (also called radius)

function as a measure of local thickness of the hippocampus. Hence, by comparing

these sheets with respect to gender or age, one can get important information about

possible shape changes in the hippocampus.

In order to perform a meaningful statistical analysis, a correspondence between

the medial sheet of the different individual hippocampuses must be established. One

approach is to associate each medial sheet with a common coordinate frame by fit-

ting a coarsely sampled medial model to it, as suggested by Styner and Gerig.36

Whereas this leads to a one to one correspondence between the sheets, the deforma-

tion each medial manifold has to undergo to fit the common frame may itself intro-

duce shape changes, particularly when there is a variation in medial manifold shapes

across the data set. Our approach is to first flatten the 3D sheet onto a 2D plane and

then try to establish a correspondence through linear alignment on the 2D plane.

The flattening is inspired by early work on the map making problem.50,51 Let

there be N points in l-D that are to be flattened so that they lie in m-D, with

l > m. Let dd ij be the geodesic distance between points xi = (xi1, xi2, . . . , xil)

and xj in l-D and dij be the geodesic distance between the corresponding points

yi = (yi1, yi2, . . . , yim) and yj in m-D. Sammon50 defines an error function Er

based on dd ij and dij , which represents how well the m-space configuration fits the

points in l-space:

Er =
1

c

∑

i

∑

j

(dd ij − dij )
2

dd ij

(16)

where c =
∑

i

∑
j ddij . One is essentially left with the task of moving the points

yi in order to minimize Er, which can be solved using a standard gradient descent

strategy.

The next challenge of the registration process and probably the most difficult

is to establish a correspondence between each individual flattened sheet. When a
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Fig. 12. The different stages of our radius map generation. The medial sheet (b) of the hip-
pocampus (a) is first extracted then flattened (c), realigned and the radius function mapped onto
it (d).

one to one mapping is not required, one can align the 2D shapes by translating and

rotating each individual in a common coordinate frame using their centroid and

principal directions. This method is not optimal and can lead to serious artifacts if

the 2D sheets do not have similar shape. Nevertheless, our data set is very consistent

and there are little differences in shape between the different 2D manifolds, which is

why we feel principal directions are sufficient to register the 2D flattened manifolds.

Figure 12 presents the output of the different stages of the method: medial

surface computation, flattening of the medial sheet and mapping of the radius

function on the realigned flattened medial manifold.

3.3.3. Statistics

The flattening of the medial surfaces derived from the original hippocampus labels

resulted in two dimensional maps, with each point on the map referring to the

medial surface radius as a height function (Fig. 12(d)). These maps could then be

employed for further statistical analysis keeping in mind that the signal-intensity

information contained in the 2D maps at each point refers to the local width of the

original hippocampus. A pixel-based regression was used to localize statistically sig-

nificant shape differences that are correlated with age. This regression was estimated

at each pixel location in the 2D map. In order to detect regions that are signifi-

cantly different (i.e., where the differences are above chance), it was necessary to



348 D. Goldberg-Zimring et al.

Fig. 13. An example regression map, the bar represent the t-value, p < 0.05 significance is reached
for |t| > 3.2. NOTE: A color version of this book chapter is available from the authors.

Fig. 14. Linear regressions to examine the effects of age on the radius maps. NOTE: A color
version of this book chapter is available from the authors.

correct for multiple comparisons and local spatial correlation. We used the random

field theory of Worsley et al.52 to determine the t-value threshold that indicates

statistically significant differences, given a selected level of alpha-error. Given the

number of subjects, data resolution, pixel size and area of search region, the critical

t-value for a 2-tailed alpha significance level of p < 0.05 after correcting for multiple

comparisons is |t| > 3.2. Figure 13 shows an example regression map.

3.3.4. Results and discussion

Figure 14 illustrates the effects of age on the hippocampus radius maps in both the

left and the right hemispheres. Within the group of women, a positive regression

with age occurs in the middle of the structure, rather than towards the rim as was

observed with the support maps. This positive regression appears as two clusters

in the areas adjacent to the head and tail of the hippocampus, almost exclusively

in the right hemisphere. In the left hemisphere, a small region of positive regression

appears in the lateral part of the hippocampus tail. Due to the conservative t-value

threshold, these results also fail to reach significance. Within the group of men,
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an almost opposite picture emerges. Here, the results show a consistent pattern of

negative regression with age in the right hemisphere, towards the lateral rim of the

structure in the area adjacent to the head of the hippocampus. Also, a streak of

negative regression can be observed in the posterior portion along the lateral rim,

in the area adjacent to the tail of the hippocampus. A similar pattern, although

less strong, can be observed in the left hemisphere.

Using quantified hippocampus volumes from a recently developed segmentation

protocol,53 we observed a gender-specific age-related volume decline in a healthy pop-

ulation of men and women in early adulthood.47 The current study implementing the

method of hippocampus shape analysis based on medial surfaces is able to comple-

ment and extend the previously observed findings. First, a decrease in radius in the

group of men could be observed, which was most prominent in the lateral rim of

the hippocampus structure. This finding provides evidence for the previously stated

hypothesis that the observedvolumedecline of the hippocampus with age in the group

of men is due to shrinkage of the hippocampus in areas adjacent to the ventricles.

We suggest that this new methodology complements current approaches in struc-

tural MRI research, allowing investigations of thus far neglected aspects. It is a pre-

requisite of most investigations in MRI to first try to minimize shape differences

between target regions via linear or nonlinear transformations to maximize compara-

bility between them. By doing so, the researcher is then able to compare quantitative

aspects of the target, like thickness of the cortical mantle, gray-matter density of spec-

ified regions of the brain, etc. However, pre-existing quantitative differences between

subjects in target regions, such as the radius of the hippocampus as described here,

will in most cases not be detected using these standard approaches. The results of the

current study suggest that it is worthwhile to investigate these aspects, since shape

differences might occur before differences in volume start to appear.

4. Shape Analysis Over Time in Multiple Sclerosis Lesions

Multiple Sclerosis (MS) is a demyelinating disease affecting principally young

adults’ brain and spinal cord, and MRI is the most reliable imaging technique

for evaluation and assessment of MS lesions. MS is a dynamic disease, presenting

both active and chronic lesions. Disease activity monitored by MRI was reported to

be 5–10 times higher than the clinical neurological changes,54–57 with MRI evidence

suggesting that disease activity can be identified in as many as 30% of patients who

appear to be in clinical remission.58

The geometry and pattern of evolution of individual MS lesions reflect the com-

plex pathological chain of events that often culminate in the structural damage

of axons and their myelin sheath. MS lesions present a considerable variability in

shape and size between patients and even for the same patient. Active lesions are

prone to changes in size and shape over time. While the volumetric changes of MS

lesions over time have been documented to some extent,59–61 almost no attention

has been devoted to understanding the nature of changes in MS lesion shapes.
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Analysis of temporal changes in MS patients by brain MRI includes counting

the number of lesions, and assessment of lesion area and/or volume. An assessment

of disease activity can be obtained from measurements of the number and volume of

new or active lesions, and changes in older lesions.62–64 Shape analysis of MS lesion

and their changes over time could lead to better understanding of the pathogenesis

of MS. However, quantitative characterization of MS lesion geometry is a compli-

cated task. Although most of MS lesions present a rather spherical or ellipsoidal

shape, complex shapes can also be found.65

In this section, first we present our own work on the approximation of MS lesions’

3D geometry using spherical harmonics, based on the information taken from the

contour points of the lesions, which were segmented from MR images.66 Second,

we present a straight application of our method for analyzing the changes in MS

lesions over time by quantitatively characterizing the lesion’s shape and depicting

patterns of shape evolution in individual lesions.67

4.1. Characterization of the individual MS lesions’ 3D geometry

using SH

The characterization of the individual MS lesions’ 3D geometry is based on the use

of sets of MS lesion contours segmented from MR images. In order to obtain the

same number of points in all traced contours belonging to each individual lesion,

the contour lines are interpolated and resampled using the Akima interpolation

method.68 Later, the points of each contour are arranged in such a way that the

first point of each contour is the most extreme point on the right-hand side. In

order to have φ, the azimuthal coordinate starting in 0 and ending at 2π for all the

contours, the rest of the points are then registered in a counterclockwise direction.

Thus, at the end of this stage each traced lesion is represented by a set of digi-

tized contours with a predefined standard structure. The application and optimiza-

tion procedures of the interpolation and arrangement are explained in more detail

in Ref. 66.

When MS patients are studied using axial MR images using a 3mm slice thick-

ness with no gap, lesions commonly extend only into 1–3 consecutive slices; therefore

an additional preparatory stage is needed in order to constrain the solution along

the direction perpendicular to the axial plane. In this stage, we estimate a sagittal

and a coronal contour and added them to the available axial contours to obtain

the SH approximation of the lesions’ 3D surface and its corresponding coefficients.

The sagittal and coronal contours are obtained by applying the Akima interpola-

tion method68 to data points (from the axial contours) located on these planes and

two additional points extrapolated from the contour’s center of gravity. These two

points are needed to ensure that the lesion size will not exceed the distance between

the last contoured image plane and the image plane that followed it. The final sets of

contours obtained for each lesion are arranged according to their respective spatial

orientation, yielding a 3D cluster of data points.
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Using these cluster of data points expressed in spherical coordinates, we esti-

mated the corresponding Y m
l (θ, φ) followed by the coefficients al,m, which define

the estimated surface x(θ, φ) of Eq. (1). Then we obtained a new set of data points

that cover the entire 3D space (i.e., θ in the range [0, π], and φ in the range [0, 2π])

and the corresponding Y m
l (θ, φ) are again estimated. Finally, x(θ, φ) is recalculated

using the obtained coefficients al,m. Consequently, a complete 3D lesion surface is

obtained, with known coordinates expressed in terms of R, θ, and φ at each point.

We analyze the changes in MS lesions’ size/volume and the changes in the indi-

vidual lesion shape by using the polynomial coefficients that describe the estimated

surfaces. For the analysis, a space rotation invariant set of indices “Il”
69 is estimated

using:

Il =

l∑

m=−l

|al,m|2 (17)

where l = 0, 1, 2, . . . , H. The obtained Il indices are then normalized to the value

of I0 of the baseline position (i.e., Il/ |a0,0|2). The index I0 comprises only a0,0,

which is the general average radius of the approximated surface. Thus, I
(1/2)
0 is

proportional to the average radius of the shape and I
(3/2)
0 is proportional to the

volume defined by the average radius. Thus, the variations in I0 represent the

changes in size/volume. Unlike I0, which express global changes, the Il>0 indices

express more local changes in the 3D SH surface shape. As l increases, the Il indices

characterize more localized changes.

4.2. Detection of shape changes over time using SH

4.2.1. MS imaging data

Brain MRI images were acquired from a 38-year-old man presenting a relapsing-

remitting course of MS. The subject completed a 12-month imaging study consisting

in 24 scans, the first eight weeks on a weekly basis, biweekly for the next 16 weeks,

and then once monthly until the completion of one year.

MR image acquisition was done on a 1.5-T Signa System (GE Medical Systems,

Milwaukee, WI). The acquired sets of images included proton density (PD) and

T2-weighted images obtained using two interleaved dual-echo (Time to Echo =

30 and 80msec) long time to repeat (3000msec) spin-echo sequences (VEMP =

variable-echo multi-planar). Contiguous 3 mm thick axial sections covered the whole

brain from the foramen magnum to the higher convexity with an in-plane voxel size

of 0.94 mm × 0.94 mm (24-cm field of view with a 256 × 256 acquisition matrix).

Signal-to-noise ratio (SNR) in the second echo was improved using a variable

receiver bandwidth technique. Standard flow compensation was achieved using first-

order gradient moment nulling. Spins were saturated in an 8-mm thick slab inferior

to the imaging volume in slice-selective direction. Scan duration was kept at 11 min-

utes and 36 seconds using the half-Fourier technique.
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4.2.2. Image registration and segmentation

As the acquired MRI scans provided comprehensive volumetric coverage of the

head, it was not necessary to achieve precise repositioning of the patient in the MR

scanner at subsequent examinations. Rather, we registered the 23 subsequent sets of

images to the set of images obtained at the first scan by applying the maximization

of mutual information algorithm proposed by Viola and Wells.70

We applied an automatic multistep segmentation procedure to the registered PD

and T2-weighted images. First, a region of interest is defined for all the scans by

outlining the intercranial cavity (ICC) mask, which contains the brain parenchyma

and cerebrospinal fluid (CSF). Later, each pixel in the images is assigned to one

of the following four categories: white matter, grey matter, CSF, or lesion. This

classification is performed by combining the self-adaptive expectation-maximization

algorithm described by Wells et al.71 with a template driven segmentation,72,73

where anatomic knowledge is provided by nonlinear projection of a brain model

(template) onto the images of a patient’s brain. This technique has shown to have

high reproducibility and accuracy of lesion volume measurements with respect to

the outlines provided by expert radiologists.74

4.2.3. Analysis of changes in the lesion’s 3D geometry

We approximated the 3D geometry of the segmented MS lesions using SH. In order

to allow a systematic analysis of the changes in the SH coefficients, each individual

lesion has to be approximated using the same order (l) at all time points. We

observed that the choice of l must be set according to the ratio of lesion size to

image resolution in order to avoid distortions in the estimated 3D surface. Because

of the changes in size, the lesions do not extend into the same number of planes

over time. Therefore, l is selected to be equal to the minimal number of axial slices

in which the lesion extended at all time points.

After approximating the 3D geometry of the lesions, we estimate the Il indices

(Eq. (17)) for each lesion in each time point. The mean amplitude of the oscillations

of the changes in the normalized Il indices is estimated using the mean discrete total

variation75 (MDTV ), which is calculated by approximating the signal derivative by

a finite difference over the sampling distance:

MDTVl =

∑N

t=1
|Il(t) − Il(t + 1)|

N
(18)

where t is the time index and N +1 is the total number of time points. The MDTV

does not vary linearly with respect to changes in lesions size/volume.

4.3. Results

From the sets of registered and segmented images, 10 individual lesions were iden-

tified and analyzed. For a complete reference to this study see Ref. 67. A general
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Table 1. Average MDTV (%)
for the normalized Il indices for
all the lesions over time.

Il MDTV (%)

I0 24.8± 22.1
I1 12.0± 8.2
I2 25.1± 19.5
I3 7.5± 3.6
I4 3.3± 0.4

analysis of the obtained MDTV values reveals that in four of the analyzed lesions

the MDTV values for I0 were higher than for the other normalized Il indices (i.e.,

I1−I3), indicating larger changes in lesions’ size/volume than in the lesions’ shape.

However, for the remaining six analyzed lesions, the MDTV for at least one of the

normalized Il indices that represent changes in shape (i.e., I1 − I4) were higher

than for I0. Half of those six lesions had an MDTV for I2 between 1.4 and 2.6 times

higher than for I0. The fourth lesion, presented an MDTV for I1 1.8 times higher

than I0, while for the fifth lesion, the MDTV for I1 − I3 were between 2.3 and 8.0

times higher than I0. Finally for the sixth lesion, the MDTV for I1 − I2 were 2.1

and 3.1 times higher than I0, respectively. The average of the estimated MDTV

(in %) for the normalized Il indices for all the lesions over time are summarized in

Table 1.

In Fig. 15 we depict the 3D reconstructions of one of the lesions in all time

points. The corresponding values of its shape indices are depicted in Fig. 16. This

lesion appeared about six weeks after the beginning of the study. The size of the

lesion increased, reaching its maximum about three weeks later. This finding is also

quantitatively indicated in Fig. 16 by the large value of I0 on day 64. Following

this climax, the lesion shrank, initially at a rapid rate and then at a more moderate

rate. The changes in size were associated with some changes in shape.

The 3D reconstructions at the 24 time points of an additional lesion are depicted

in Fig. 17. This lesion seems to engulf two overlapping lesions, one extending in

a vertically and the second diagonally. Over time, the upper part of the lesion

decreases, while the lower part has almost no variation. Accordingly, it can be

graphically noted in Fig. 18 that for this lesion, the MDTV values were higher for

I1 and I2 than for I0.

4.4. Discussion

The results obtained from the analysis of the in vivo MS lesions show oscillat-

ing changes in both size/volume and shape even within a short period of time.

Figures 15 and 16, provide a clear example where a lesion grows substantially

within a short period of time with the volumetric increase accompanied by changes

in shape. However, there are also cases (e.g., Figs. 17 and 18) in which changes
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Fig. 15. 3D reconstructions of one of the analyzed lesions in all time points. This lesion appeared
in the set of images at time point number 7. Note the rapid increase in its size, which peaked at
day 64, and then the slow decrease in size that was associated with some changes in the lesion’s
shape. The bar of the 3D reconstructions represents the displacement (in voxels) for each time
point from the first time point in which the lesion appeared. NOTE: A color version of this book
chapter is available from the authors.
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Fig. 16. The temporal patterns for the shape indices corresponding to lesion depicted in Fig. 15.
The pattern is dominated by the rapid change in the lesion’s size/volume indicated by the large
values for I0 at the early time points. Marked changes in I2 are noted as well. NOTE: A color
version of this book chapter is available from the authors.
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Fig. 17. The 3D reconstructions at the 24 time points of another MS lesion. This lesion seems
to engulf two overlapping lesions, one extending vertically and the other diagonally. Over time,
the upper part of the lesion decreases, while the lower part presents smaller variations, causing
larger changes in the lesion’s shape than in its size/volume. The bar of the 3D reconstructions
represent the displacement (in voxels) for each time point from the first time point in which the
lesion appeared. NOTE: A color version of this book chapter is available from the authors.

in the lesions’ shape are larger than the changes in size/volume. Moreover, the

analysis of the MDTV as indicated in Table 1, shows that the changes in shape,

especially those represented by the MDTV for I2 (related to ellipsoidal shapes) are

comparable to the changes in size/volume. By studying these lesions, it can be sug-

gested that changes in shape are indicative of the lesion’s activity and that shape

changes may be utilized as a tool for exploration of characteristic patterns of lesion

development.

In summary, a method for studying temporal changes in individual MS

lesion geometry is presented. The method provides a quantitative analysis for
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Fig. 18. The temporal patterns for the shape indices corresponding to the lesion depicted in
Fig. 17. The large changes in the lesion’s shape are manifested mainly by the changes in the
values for I2, which in this case had the largest MDTV values. NOTE: A color version of this
book chapter is available from the authors.

characterizing MS lesion size/volume and shape over time. This method may be

applied for monitoring lesion’s activity and for a systematic study of lesion evolution

in pursuit of characteristic mechanisms during the life cycle of MS lesions.

5. Summary

Shape analysis is becoming an important tool for the analysis of medical imaging

data providing information about anatomical structures and disease that is not

always available from a volumetric analysis. Future developments and improvements

of shape analysis techniques will allow a more accurate quantitative estimation,

representation and visualization of the changes in anatomy and diseases.

An accurate analysis of the changes in shape will eventually become particularly

useful in diverse applications. For example studies for the discrimination between

groups of subjects (e.g., healthy vs. unhealthy, unhealthy presenting different symp-

toms, etc) based on the shape and/or evolution of anatomical structures, analysis of

lesion evolution by tracking temporal changes associated with certain diseases. We

also believe that shape analysis will also become an important tool in the decision-

making process for image-guided surgery.

Acknowledgments

This work was partially supported by grant NIH-R21MH067054 (DGZ, SKW),

National Multiple Sclerosis Society Award No. RG 3478A2/2 (DGZ, SKW),

Whitaker Foundation Research Grant NSF ITR 0426558 (SKW), grant NIH-

P41RR13218 (SKW), a Research grant from CIMIT (SKW), National Multiple

Sclerosis Society Pilot Research Program PP0540 (DSM), grant NIH-R01 MH50740

(SB) and the VA Research Enhancement Award Program REAP (SB).



Studying Anatomy and Disease in Medical Images Using Shape Analysis 357

Section 2 is based on work done in collaboration with Dr. E. Fisher at

the Department of Biomedical Engineering in the Cleveland Clinic Foundation,

Cleveland, Ohio.

Section 3 is based on work done in collaboration with K. Siddiqi, J. Pruessner

and D. L. Collins of McGill University. The medical data was aquired at Montreal

Neurological Institute. We are grateful to P. Dimitrov and J. Zhang for providing

the examples of 2D and 3D skeletons.

Section 4 is based on a Ph.D. thesis supervised by Dr. H. Azhari from the

Department of Biomedical Engineering at the Technion-Israel Institute of Technol-

ogy, Haifa, Israel and Dr. A. Achiron from the Multiple Sclerosis Center at Sheba

Medical Center, Tel Hashomer, Israel.

References

1. F. L. Bookstein, P. D. Sampson, A. P. Streissguth and P. D. Connor, Geometric
morphometrics of corpus callosum and subcortical structures in the fetal-alcohol-
affected brain, Teratology 64 (2001) 4–32.

2. P. F. Buckley, D. Dean, F. L. Bookstein, L. Friedman, D. Kwon, J. S. Lewin,
J. Kamath and C. Lys, Three-dimensional magnetic resonance-based morphometrics
and ventricular dysmorphology in schizophrenia, Biol. Psychiatry 45 (1999) 62–67.

3. J. R. DeQuardo, M. S. Keshavan, F. L. Bookstein, W. W. Bagwell, W. D. Green,
J. A. Sweeney, G. L. Haas, R. Tandon, N. R. Schooler and J. W. Pettegrew, Landmark-
based morphometric analysis of first-episode schizophrenia, Biol. Psychiatry 45 (1999)
1321–1328.

4. P. Tibbo, P. Nopoulos, S. Arndt and N. C. Andreasen, Corpus callosum shape and
size in male patients with schizophrenia, Biol. Psychiatry 44 (1998) 405–412.

5. D. Velakoulis, G. W. Stuart, S. J. Wood, D. J. Smith, W. J. Brewer, P. Desmond,
B. Singh, D. Copolov and C. Pantelis, Selective bilateral hippocampal volume loss in
chronic schizophrenia, Biol. Psychiatry 50 (2001) 531–539.

6. J. J. Levitt, C. F. Westin, P. G. Nestor, R. S. Estepar, C. C. Dickey, M. M. Voglmaier,
L. J. Seidman, R. Kikinis, F. A. Jolesz, R. W. McCarley and M. E. Shenton, Shape
of caudate nucleus and its cognitive correlates in neuroleptic-naive schizotypal per-
sonality disorder, Biol. Psychiatry 55 (2004) 177–184.

7. R. E. Hogan, R. D. Bucholz and S. Joshi, Hippocampal deformation-based shape
analysis in epilepsy and unilateral mesial temporal sclerosis, Epilepsia 44 (2003)
800–806.

8. J. A. Posener, L. Wang, J. L. Price, M. H. Gado, M. A. Province, M. I. Miller,
C. M. Babb and J. G. Csernansky, High-dimensional mapping of the hippocampus in
depression, Am. J. Psychiatry 160 (2003) 83–89.

9. E. R. Sowell, P. M. Thompson, S. N. Mattson, K. D. Tessner, T. L. Jernigan,
E. P. Riley and A. W. Toga, Regional brain shape abnormalities persist into ado-
lescence after heavy prenatal alcohol exposure, Cereb. Cortex 12 (2002) 856–865.

10. K. Zilles, R. Kawashima, A. Dabringhaus, H. Fukuda and T. Schormann, Hemispheric
shape of European and Japanese brains: 3-D MRI analysis of intersubject variability,
ethnical, and gender differences, Neuroimage 13 (2001) 262–271.

11. C. Studholme, V. Cardenas, A. Maudsley and M. Weiner, An intensity consistent
filtering approach to the analysis of deformation tensor derived maps of brain shape,
Neuroimage 19 (2003) 1638–1649.



358 D. Goldberg-Zimring et al.

12. S. M. Pizer, D. S. Fritsch, P. A. Yushkevich, V. E. Johnson and E. L. Chaney, Seg-
mentation, registration, and measurement of shape variation via image object shape,
IEEE Trans. Med. Imaging 18 (1999) 851–865.

13. A. Tsai, A. Yezzi, Jr., W. Wells, C. Tempany, D. Tucker, A. Fan, W. E. Grimson and
A. Willsky, A shape-based approach to the segmentation of medical imagery using
level sets, IEEE Trans. Med. Imaging 22 (2003) 137–154.

14. D. Goldberg-Zimring, A. Achiron, S. Miron, M. Faibel and H. Azhari, Automated
detection and characterization of multiple sclerosis lesions in brain MR images, Magn.
Reson. Imaging 16 (1998) 311–318.

15. C. I. Christodoulou, C. S. Pattichis, M. Pantziaris and A. Nicolaides, Texture-based
classification of atherosclerotic carotid plaques, IEEE Trans. Med. Imaging 22 (2003)
902–912.

16. P. Clarysse, D. Friboulet and I. E. Magnin, Tracking geometrical descriptors on 3-D
deformable surfaces: Application to the left-ventricular surface of the heart, IEEE
Trans. Med. Imaging 16 (1997) 392–404.

17. A. Matheny and D. B. Goldgof, Use of three- and four-dimensional surface harmonics
for rigid and nonrigid shape recovery and representation, IEEE Trans. Pattern Anal.
Machine Intel. 17 (1995) 967–981.

18. M. S. Keshavan, G. L. Haas, C. E. Kahn, E. Aguilar, E. L. Dick, N. R. Schooler,
J. A. Sweeney and J. W. Pettegrew, Superior temporal gyrus and the course of early
schizophrenia: Progressive, static, or reversible? J. Psychiatr. Res. 32 (1998) 161–167.

19. E. H. Aylward, Q. Li, O. C. Stine, N. Ranen, M. Sherr, P. E. Barta, F. W. Bylsma,
G. D. Pearlson and C. A. Ross, Longitudinal change in basal ganglia volume in
patients with Huntington’s disease, Neurology 48 (1997) 394–399.

20. R. Kikinis, C. R. Guttmann, D. Metcalf, W. M. I. Wells, G. J. Ettinger, H. L. Weiner
and F. A. Jolesz, Quantitative follow-up of patients with multiple sclerosis using MRI:
Technical aspects., J. Magn. Reson. Imaging 9 (1999) 519–530.

21. M. Miller, A. Banerjee, G. Christensen, S. Joshi, N. Khaneja, U. Grenander and
L. Matejic, Statistical methods in computational anatomy, Stat. Meth. Med. Res. 6

(1997) 267–299.
22. G. Subsol, N. Roberts, M. Doran, J. P. Thirion and G. H. Whitehouse, Automatic

analysis of cerebral atrophy, Magnetic Resonance Imaging 15 (1997) 917–927.
23. P. M. Thompson, C. Schwartz, R. T. Lin, A. A. Khan and A. W. Toga, Three-

dimensional statistical analysis of sulcal variability in the human brain., J. Neurosci.
16 (1996) 4261–4274.

24. A. C. Evans, D. L. Collins and C. J. Holmes, Computational approaches to quantifying
human neuroanatomical variability, in Brain Mapping — The Methods, eds. A. W.
Toga and J. C. Maziotta (Academic Press, San Diego, CA, 1996), pp. 343–361.

25. J. C. Gee, On matching brain volumes, Pattern Recognition 32 (1999) 99–111.
26. C. Brechbühler, G. Gerig and O. Kubler, Parametrization of closed surfaces for 3-D

shape description, Computer Vision and Image Understanding 61 (1995) 154–170.
27. W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Spherical Har-

monics, in Numerical Recipes in C — the art of scientific computing, Vol. 2nd edn.
(Cambridge University Press, Cambridge, MA, 1992), pp. 252–254.

28. W. C. Graustein, Differential Geometry (Dover Publications Inc., New York, 1966).
29. J. J. Koenderink, The local shape index, in Solid Shape (MIT Press, Cambridge, MA,

1990), pp. 319–324.
30. D. Meier and E. Fisher, Parameter space warping: Shape-based correspondence

between morphologically different objects, IEEE Trans. Med. Imaging 21 (2002)
31–47.



Studying Anatomy and Disease in Medical Images Using Shape Analysis 359

31. F. L. Bookstein, Landmark methods for forms without landmarks: Morphometrics of
group differences in outline shape, Med. Image Anal. 1 (1996) 225–243.

32. A. Rangarajan, H. Chui and J. S. Duncan, Rigid point feature registration using
mutual information, Med. Image Anal. 3 (1999) 425–440.

33. P. Thompson and A. W. Toga, Surface-based technique for warping three-dimensional
images of the brain, IEEE Trans. Med. Imaging 15 (1996) 402–417.

34. D. S. Meier and E. Fisher, Atlas-based anatomic labeling in neurodegenerative disease
via structure-driven atlas warping, J. Neuroimaging 15 (2005) 16–26.

35. P. Golland, W. E. L. Grimson and R. Kikinis, Statistical shape analysis using fixed
topology skeletons: Corpus callosum study, presented at IPMI, 1999.

36. M. Styner and G. Gerig, Medial models incorporating object variability for 3D shape
analysis, presented at IPMI, Davis, CA, USA, 2001.

37. S. Bouix, J. Pruessner, D. L. Collins and K. Siddiqi, Hippocampal shape analysis
using medial surfaces, presented at MICCAI, Utrecht, The Netherlands, 2001.

38. H. Blum, Biological shape and visual science. I, J. Theor. Biol. 38 (1973) 205–287.
39. A. Lieutier, Any open bounded subset of Rn has the same homotopy type than its

medial axis, presented at Eighth ACM symposium on Solid modeling and applications,
Seattle, Washington, USA, 2003.

40. G. Malandain, G. Bertrand and N. Ayache, Topological segmentation of discrete sur-
faces, Int. J. Computer Vision 10 (1993) 183–197.

41. M. Naf, O. Kubler, R. Kikinis, M. E. Shenton and G. Szekely, Characterization and
recognition of 3D organ shape in medical image using analysis using skeletonization,
presented at IEEE Workshop on Mathematical Methods in Biomedical Image Anal-
ysis, San Francisco, CA, USA, 1996.

42. D. Attali, G. S. di Baja and E. Thiel, Skeleton simplifications through non-significant
branch removal, Image Processing and Commun. 3 (1997) 63–72.

43. K. Siddiqi, S. Bouix, A. Tannenbaum and S. W. Zucker, Hamilton–Jacobi skeletons,
Int. J. Computer Vision 48 (2002) 215–231.

44. G. Borgefors, Distance transformation in arbitrary dimensions, CVGIP 27 (1984)
321–345.

45. P. Dimitrov, J. N. Damon and K. Siddiqi, Flux invariants for shape, presented at
CVPR, Madision, Wisconsin, USA, 2003.

46. C. Pudney, Distance-ordered homotopic thinning: A skeletonization algorithm for 3D
digital images, Computer Vision and Image Understanding 72 (1998) 404–413.

47. J. C. Pruessner, D. L. Collins, M. Pruessner and A. C. Evans, Age and gender pre-
dict volume decline in the anterior and posterior hippocampus in early adulthood,
J. Neurosci. 21 (2001) 194–200.

48. J. G. Sled, A. P. Zijdenbos and A. C. Evans, A nonparametric method for automatic
correction of intensity nonuniformity in MRI data, IEEE Trans. Med. Imaging 17

(1998) 87–97.
49. D. L. Collins, P. Neelin, T. M. Peters and A. C. Evans, Automatic 3D intersubject reg-

istration of MR volumetric data in standardized Talairach space, J. Comput. Assist.
Tomogr. 18 (1994) 192–205.

50. J. W. Sammon, A nonlinear mapping for data structures analysis, IEEE Trans. Comp.
C-18 (1969) 401–409.

51. E. L. Schwartz, A. Shaw and E. Wolfson, A numerical solution to the generalized
mapmakers problem: Flattening nonconvex polyhedral surfaces, IEEE Trans. Pattern
Anal. Machine Intel. 11 (1989) 1005–1008.

52. K. J. Worsley, J. B. Poline and A. C. Evans, Characterization to response of PET
and fMRI data using multivariate linear models, Neuroimage 6 (1998) 305–319.



360 D. Goldberg-Zimring et al.

53. J. C. Pruessner, L. M. Li, W. Serles, M. Pruessner, D. L. Collins, N. Kabani, S. Lupien
and A. C. Evans, Volumetry of hippocampus and amygdala with high-resolution MRI
and three-dimensional analysis software: Minimizing the discrepancies between labo-
ratories, Cereb Cortex 10 (2000) 433–442.

54. L. Truyen, Magnetic resonance imaging in multiple sclerosis. A review, Acta Neurol.
Belg. 94 (1994) 98–102.

55. C. J. Wallace, T. P. Seland and T. C. Fong, Multiple sclerosis: The impact of MR
imaging, AJR Am. J. Roentgenol 158 (1992) 849–857.

56. M. Colosimo, A. Amatruda and R. P. Cioffi, Magnetic resonance imaging in multiple
sclerosis: An overview, Ital. J. Neurol. Sci. 13 (1992) 113–123.

57. D. W. Paty, Magnetic resonance imaging in the diagnosis and follow-up of patients
with multiple sclerosis, Ital. J. Neurol Sci. 13 (1992) 125–131.

58. S. Wiebe, D. H. Lee, S. J. Karlik, M. Hopkins, M. K. Vandervoort, C. J. Wong,
L. Hewitt, G. P. Rice, G. C. Ebers and J. H. Noseworthy, Serial cranial and spinal cord
magnetic resonance imaging in multiple sclerosis, Ann. Neurol. 32 (1992) 643–650.

59. M. Filippi, A. Campi, V. Martinelli, B. Colombo, G. Scotti and G. Comi, Brain and
spinal cord MR in benign multiple sclerosis: A follow-up study, J. Neurol. Sci. 143

(1996) 143–149.
60. C. R. Guttmann, R. Kikinis, M. C. Anderson, M. Jakab, S. K. Warfield, R. J.

Killiany, H. L. Weiner and F. A. Jolesz, Quantitative follow-up of patients with multi-
ple sclerosis using MRI: Reproducibility, J. Magn. Reson. Imaging 9 (1999) 509–518.

61. H. L. Weiner, C. R. Guttmann, S. J. Khoury, E. J. Orav, M. J. Hohol, R. Kikinis
and F. A. Jolesz, Serial magnetic resonance imaging in multiple sclerosis: Correlation
with attacks, disability, and disease stage, J. Neuroimmunol 104 (2000) 164–173.

62. G. Edan, D. Miller, M. Clanet, C. Confavreux, O. Lyon-Caen, C. Lubetzki, B. Brochet,
I. Berry, Y. Rolland, J. C. Froment, E. Cabanis, M. T. Iba-Zizen, J. M. Gandon,
H. M. Lai, I. Moseley and O. Sabouraud, Therapeutic effect of mitoxantrone combined
with methylprednisolone in multiple sclerosis: A randomised multicentre study of
active disease using MRI and clinical criteria, J. Neurol. Neurosurg. Psychiatry 62

(1997) 112–118.
63. D. W. Paty and D. K. Li, Interferon beta-1b is effective in relapsing-remitting multiple

sclerosis. II. MRI analysis results of a multicenter, randomized, double-blind, placebo-
controlled trial. UBC MS/MRI Study Group and the IFNB Multiple Sclerosis Study
Group, Neurology 43 (1993) 662–667.

64. M. Rovaris, G. Comi, M. A. Rocca, J. S. Wolinsky and M. Filippi, Short-term brain
volume change in relapsing-remitting multiple sclerosis: Effect of glatiramer acetate
and implications, Brain 124 (2001) 1803–1812.

65. D. Mc Alpine, N. D. Compston and C. E. Lumsden, Multiple Sclerosis (E & S
Livingston London, 1998).

66. D. Goldberg-Zimring, H. Azhari, S. Miron and A. Achiron, 3-D surface reconstruction
of multiple sclerosis lesions using spherical harmonics, Magn. Reson. Med. 46 (2001)
756–766.

67. D. Goldberg-Zimring, A. Achiron, C. R. Guttmann and H. Azhari, Three-dimensional
analysis of the geometry of individual multiple sclerosis lesions: Detection of shape
changes over time using spherical harmonics, J. Magn. Reson. Imaging 18 (2003)
291–301.

68. A. Akima, A new method of interpolating and smooth curve fitting based on local
procedures, Assoc. Comput. Mach. 17 (1970) 589–602.

69. D. Goldberg-Zimring, A. Achiron, S. K. Warfield, C. R. Guttmann and H. Azhari,
Application of spherical harmonics derived space rotation invariant indices to the



Studying Anatomy and Disease in Medical Images Using Shape Analysis 361

analysis of multiple sclerosis lesions’ geometry by MRI, Magn. Reson. Imaging 22

(2004) 815–825.
70. P. Viola and W. M. Wells, Alignment by maximization of mutual information, Int. J.

Computer Vision 24 (1997) 137–154.
71. W. M. Wells, III, W. E. L. Grimson, R. Kikinis and F. A. Jolesz, Adaptive Segmen-

tation of MRI data, IEEE Trans. Med. Imaging 15 (1996) 429–442.
72. S. Warfield, J. Dengler, J. Zaers, C. R. Guttmann, W. M. Wells, 3rd, G. J. Ettinger,

J. Hiller and R. Kikinis, Automatic identification of gray matter structures from MRI
to improve the segmentation of white matter lesions, J. Image Guid. Surg. 1 (1995)
326–338.

73. S. K. Warfield, A. Robatino, J. Dengler, F. A. Jolesz and R. Kikinis, Nonlinear regis-
tration and template driven segmentation, in Brain Warping, ed. A. W. Toga, (Aca-
demic Press, San Diego, USA, 1999), pp. 67–84.

74. X. Wei, S. K. Warfield, K. H. Zou, Y. Wu, X. Li, A. Guimond, J. P. Mugler, 3rd,
R. R. Benson, L. Wolfson, H. L. Weiner and C. R. Guttmann, Quantitative analysis
of MRI signal abnormalities of brain white matter with high reproducibility and
accuracy, J. Magn. Reson. Imaging 15 (2002) 203–209.

75. S. A. Mallat, A Wavelet Tour of Signal Processing (Academic Press, New York, 1999).



This page intentionally left blankThis page intentionally left blank



INDEX

active contour, 195
ADHD, 260

admissible, 12
aging, 345

agreement, 90

a posteriori probability of detection, 276
artifact, 87, 91, 93

Asperger syndrome, 260

atlas warping, 341
autism, 260

automatic target generation process
(ATGP), 302

automaton, 88, 94, 95

benign mass, 69, 76, 77, 82–85, 96, 99

binary stimulus, 262
binary valued subspaces, 277

BOLD, 252
Boolean set, 95

bootstrap, 130

breast cancer, 68, 69, 112
breast masses, 69, 96

breast tumors, 71

C-means (CM) method, 297–299, 303

carcinoma, 127
cellular neural network (CNN), 238

cerebral spinal fluid (CSF), 298, 306

classification of masses, 81
classification system, 112

closed contours, 75
closed-contour detection, 87, 93, 101

clustered microcalcifications, 46

coefficient of variation, 78, 83, 84
cognition, 257

complexity regularized estimator, 140

compromise operator, 86, 90, 91
computer-aided diagnosis, 68

computer-assisted diagnostic (CAD), 298

computer-generated features, 112

confidence interval, 112
conflict, 90

conjunctive operator, 86, 92

consensus, 86

constrained energy minimization (CEM),
297–300, 324

contingency table, 114
continuous wavelet transform, 10, 12

contour detection, 71, 78, 87, 89

contour extraction, 75, 76

Cramér–Rao bound (CRB), 141

crisp set, 72, 99

curve evolution, 255, 262, 269

3D medical image, 195

3-D Receiver operating characteristics
(3-D ROC), 307, 308, 310, 311, 313,
315, 317, 325

deconvolution, 139

degree of similarity, 72, 73

deoxyhemoglobin, 256

detectability, 254

detection, 255

diamagnetic, 255
difference image technique, 50

digital mammography, 117, 162–164, 166,
168, 175, 176, 180, 188

dilation, 12

discrete integrated wavelet, 19

discrete integrated wavelet transform, 19
disjunctive operator, 86, 90, 92

domain derivatives, 145

enhancement operation, 25

estimation, 253, 255

F subspace detectors, 254

false alarms, 253

False Negative (FN), 114

False Positive (FP), 114
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false positive (FP) cluster, 62

False Positive Fraction (FPF), 116

feature vector, 71

FFDM, 6

Fibroadenomas, 127

finite automata, 88

finite automaton, 88–90, 92

finite states, 92

fisher information matrix, 142

fisher’s discriminant function, 128

Fourier imaging, 138

free-response receiver operating
characteristics (FROC) curves, 48

frequency diversity, 124

fusion operator, 86–90, 93–96, 105

fuzzy fusion, 69, 92, 95–97

fuzzy membership function, 79, 80

fuzzy region growing, 76, 80, 81, 83, 101,
102

fuzzy ribbon, 84, 85

fuzzy segmentation, 73

fuzzy set, 69–71, 76, 82, 86, 87, 89, 95, 98

fuzzyness, 98, 100

gain constraints, 286

game theoretic, 254

Gaussian, 255

Gaussian detector, 274

Gaussian noise, 75, 80

generalized Gaussian detectors, 277

generalized spectrum (GS), 124

global confidence region, 142

graphical interface, 81

gray matter (GM), 298, 306

Hamming distance, 99

hemodynamic delays, 252

homogeneity, 78

hyperspectral imaging, 297–299, 309, 324

hyposmia, 257

inhomogeneity, 78, 86

integrated wavelet, 14

integrated wavelet transform, 14

interference, 252

involution, 12

JPEG2000 Maxshift, 170

JPEG2000 scaling-based ROI coding, 171

Laplacian, 255

Laplacian density, 262

Laplacian detector, 276

Laplacian noise, 252

learning, 253, 280

leave-one-out method, 129

Level of Suspicion (LOS), 128

limiting condition, 94

linear classifier, 128

linear discriminant function, 128

logistic regression, 83

magnetic resonance (MR), 297, 319

magnetic resonance image/imaging
(MRI), 117, 298, 319, 329

malignant tumor, 69, 76, 83, 84, 96, 98,
100

mammograms, 68

mammography, 47, 69, 112

Markov random field, 53

mass, 47, 68

matched filter, 262

matched filter detection, 262

maximum likelihood, 281

maximum likelihood estimation (MLE),
139

MDL, 141

measure of fuzzyness, 98–102, 104

measurement model, 266

medial representations, 329

membership degree, 72, 79, 84, 87, 90, 93,
95, 97

membership function, 71, 79

microcalcifications, 5

min-max, 254

modeling, 255

modified C-means (MCM) method, 304

Morlet integrated wavelet transformation,
37

Morlet reconstruction, 36

Morlet-admissible, 36

morphological erosion, 83

multi-scale matched filters, 52

multiple sclerosis, 349

Nakagami distribution, 123

Neurodegeneration, 259

non-Gaussian, 262

non-Gaussian detection, 254
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non-stimulus effects, 267
nuclear medicine imaging (NMI), 117

OBSPIHT, 173, 176
olfactory perception, 257
optimal, 254
orthogonal subspace projection (OSP),

297–299, 302, 324
oxyhemoglobin, 255

paramagnetic, 256
parameter space warping, 338
parameterization, 329
parametric boundary, 137
partitioned density, 148
pattern classification, 84
pattern recognition, 112
Paul Broca, 257
perception, 256
pixel-level snakes (PLS), 226
PLS-algorithm, 240
Power-Law Shot Noise (PLSN), 126
probability of malignancy, 83–85

quadratic classifier, 128
quadratic discriminant function, 128

Radon transform, 138
receiver operating characteristics (ROC)

curve, 111
redundancy, 86
region growing, 68, 71, 73, 76, 78, 82, 87,

89, 93
region-based discrete wavelet transform,

178
region-based segmentation, 199
region-based Wavelet Compression, 169,

180, 188
reliability, 88, 90, 95, 102
response model, 283
response time shift, 254
resubstitution method, 129
robust detection, 252
robust detection test, 273
robust hypothesis, 273
robust Laplacian, 262
ROC analysis, 112
rotation, 12

segmentation, 68, 87, 89, 195
sensitivity, 83, 86

sensitivity of the detection, 254

shape analysis, 329

shape correspondence, 329

shape estimation, 136

shift estimation, 271

signal design, 254, 280

signal detection, 253

similarity criterion, 73, 76

skeletons, 329

skeletons and medial representations,
342

sparse Fourier samples, 149

spatio-temporal correlation, 252

specificity, 83, 86

spherical harmonics, 329

statistical detection, 253

statistical discriminant snake
(STD-snake), 204

stimulus, 252

stimulus response model, 265

stimulus signal design, 255

stopping condition, 92

subspace learning, 254

successive enhancement-learning, 59

summary index, Az, 112

supervised classifier, 113

support vector machines, 55

support vectors, 57, 58

t, 254

t and F statistics, 276

T-Scan, 117

T2-weighted, 255

temporal characterization, 272

the wavelet transform, 189

time shift localization, 286

time shift precedence, 286

time shifts, 262

tracking, 195

transition, 90, 92, 96, 105

transition diagram, 94

transition function, 88, 89

transition information, 74, 76

translation, 12

True Negative (TN), 114

True Positive (TP), 114

true positive (TP) cluster, 62

True Positive Fraction (TPF), 116

tumor, 68, 81
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ultrasonic imaging, 112
ultrasound imaging (UI), 116
unbiased estimate, 141
uncertainty, 84, 87, 88, 93–97, 103
uniform, 255
unlearned effects, 267
unsupervised orthogonal subspace

projection (UOSP), 297, 299, 302, 303,
324

wavelet, 12
wavelet compression, 163, 168
Wernicke, 258
white matter (WM), 298, 306

χ2, 254
X-ray mammography, 116


