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Foreword

Most research in health care is not done by professional researchers, but by
health-care practitioners. This is very unusual; agricultural research is not
done by farmers, and building research is not done by bricklayers. I am told
that it is positively frowned upon for social workers to carry out research,
when they could be solving the problems of their clients. Practitioner-led re-
search comes about, in part, because only clinicians, of whatever professional
background, have access to the essential research material, patients. But it
also derives from a long tradition, in medicine for example, that it is part of
the role of the doctor to add to medical knowledge. It is impossible to succeed
in many branches of medicine without a few publications in medical jour-
nals. This tradition is not confined to medicine. Let us not forget that Florence
Nightingale was known as ‘the Passionate Statistician” and her greatest inno-
vation was that she collected data to evaluate her nursing practice. (She was
the first woman to become a fellow of the Royal Statistical Society and is a
heroine to all thinking medical statisticians.)

There are advantages to this system, especially for evidence-based practice.
Clinicians often have direct experience of research as participants and are
aware of some of its potential and limitations. They can claim ownership of
the evidence they are expected to apply. The disadvantage is that health-care
research is often done by people who have little training in how to do it and
who have to do their research while, at the same time, carrying on a busy
clinical practice. Even worse, research is often a rite of passage: the young
researcher carries out one or two projects and then moves on and does not do
research again. Thus there is a continual stream of new researchers, needing
to learn quickly how to do it, yet there is a shortage of senior researchers to
act as mentors. And research is not easy. When we do a piece of research, we
are doing something no one has done before. The potential for the explorer
to make a journey which leads nowhere is great.

The result of practitioner-led research is that much of it is of poor quality,
potentially leading to false conclusions and sub-optimal advice and treatment
for patients. People can die. It is also extremely wasteful of the resources
of institutions which employ the researchers and their patients. From the
researchers’ point of view, reading the published literature is difficult because
the findings of others cannot be taken at face value and each paper must be
read critically and in detail. Their own papers are often rejected and even
once published they are open to criticism because the most careful refereeing
procedures will not correct all the errors.

When researchers begin to read the research literature in their chosen field,
one of the first things they will discover is that knowledge of statistics is

vii



viii Foreword

essential. There is no skill more ubiquitous in health-care research. Several
of my former medical students have come to me for a bit of statistical advice,
telling me how they now wished they had listened more when I taught them.
Well, I wish they had, too, but it would not have been enough. Statistical
knowledge is very hard to gain; indeed, it is one of the hardest subjects there
is, but it is also very hard to retain. Why is it that I can remember the lyrics
(though not, my family assures me, the tunes) of hundreds of pop songs of
my youth, but not the details of any statistical method I have not applied in
the last month? And I spend much of my time analysing data.

What the researchers need is a statistician at their elbow, ready to answer
any questions that arise as they design their studies and analyse their data.
They are so hard to find. Even one consultation with a statistician, if it can be
obtained at all, may involve a wait for weeks. I think that the most efficient way
to improve health-care research would be to train and employ, preferably at
high salaries, large numbers of statisticians to act as collaborators. (Incidentally,
statisticians should make the ideal collaborators, because they will not care
about the research question, only about how to answer it, so there is no
risk of them stealing the researcher’s thunder.) Until that happy day dawns,
statistical support will remain as hard to find as an honest politician. This book
provides the next best thing.

The authors have great experience of research collaboration and support
for researchers. Jenny Peat is a statistician who has co-authored more than a
hundred health research papers. She describes herself as a ‘research therapist’,
always ready to treat the ailing project and restore it to publishable health.
Belinda Barton brings the researcher’s perspective, coming into health re-
search from a background in psychology. Their practical experience fills these
pages. The authors guide the reader through all the methods of statistical
analysis commonly found in the health-care literature. They emphasise the
practical details of calculation, giving detailed guidance as to the computation
of the methods they describe using the popular program SPSS. They rightly
stress the importance of the assumptions of methods, including those which
statisticians often forget to mention, such as the independence of observations.
Researchers who follow their advice should not be told by statistical referees
that their analyses are invalid. Peat and Barton close each chapter with a list of
things to watch out for when reading papers which report analysis using the
methods they have just described. Researchers will also find these invaluable
as checklists to use when reading over their own work.

I recently remarked that my aim for my future career is to improve the
quality of health-care research. ‘What, worldwide?’, I was asked. Of course,
why limit ourselves? I think that this book, coming from the other side of the
world from me, will help bring that target so much closer.

Martin Bland,
Professor of Health Statistics, University of York,
August 2004



Acknowledgements

We extend our thanks to our colleagues and to our hospital for supporting
this project. We also thank all of the students and researchers who attended
our classes and provided encouragement and feedback. We would also like
to express our gratitude to our friends and families who inspired us and sup-
ported us to write this book. In addition, we acknowledge the help of Dr
Andrew Hayen, a biostatistician with NSW Health who helped to review the
manuscript and contributed his expertise.






Introduction

Statistical thinking will one day be as necessary a qualification for efficient
citizenship as the ability to read and write.
H.G. WELLS

Anyone who is involved in medical research should always keep in mind that
science is a search for the truth and that, in searching for the truth, there is
no room for bias or inaccuracy in statistical analyses or their interpretation.

Analysing the data and interpreting the results are the most exciting stages
of a research project because these provide the answers to the study questions.
However, data analyses must be undertaken in a careful and considered way
by people who have an inherent knowledge of the nature of the data and
of their interpretation. Any errors in statistical analyses will mean that the
conclusions of the study may be incorrect!. As a result, many journals ask
reviewers to scrutinise the statistical aspects of submitted articles and many
research groups include statisticians who direct the data analyses. Analysing
data correctly and including detailed documentation so that others can reach
the same conclusions are established markers of scientific integrity. Research
studies that are conducted with integrity bring personal pride, contribute to a
successful track record and foster a better research culture.

In this book, we provide a guide to conducting and interpreting statistics
in the context of how the participants were recruited, how the study was
designed, what types of variables were used, what effect size was found and
what the P values mean. We also guide researchers through the processes of
selecting the correct statistic and show how to report results for publication
or presentation. We have included boxes of SPSS and SigmaPlot commands
in which we show the window names with the commands indented. We
do not always include all of the tables from the SPSS output but only the
most relevant information. In our examples, we use SPSS version 11.5 and
SigmaPlot version 8 but the messages apply equally well to other versions and
other statistical packages.

We have separated the chapters into sections according to whether data are
continuous or categorical in nature because this classification is fundamental
to selecting the correct statistics. At the end of the book, there is a glossary
of terms as an easy reference that applies to all chapters and a list of useful
Web sites. We have written this book as a guide from first principles with
explanations of assumptions and how to interpret results. We hope that both
novice statisticians and seasoned researchers will find this book a helpful guide
to working with their data.

Xi



xii  Introduction

In this era of evidence-based health care, both clinicians and researchers
need to critically appraise the statistical aspects of published articles in order
to judge the implications and reliability of reported results. Although the peer
review process goes a long way to improving the standard of research litera-
ture, it is essential to have the skills to decide whether published results are
credible and therefore have implications for current clinical practice or future
research directions. We have therefore included critical appraisal guidelines at
the end of each chapter to help researchers to review the reporting of results
from each type of statistical test.

There is a saying that ‘everything is easy when you know how’ — we hope
that this book will provide the ‘know how’ and make statistical analysis and
critical appraisal easy for all researchers and health-care professionals.

References
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CHAPTER 1

Data management: preparing
to analyse the data

There are two kinds of statistics, the kind you look up and the kind you make up.
REX STOUT

Objectives

The objectives of this chapter are to explain how to:

« create a database that will facilitate straightforward statistical analyses
« devise a data management plan

e ensure data quality

» move data between electronic spreadsheets

» manage and document research data

« select the correct statistical test

« critically appraise the quality of reported data analyses

Creating a database

Creating a database in SPSS and entering the data is a relatively simple process.
First, a new file can be opened using the File - New — Data commands at the
top left hand side of the screen. The SPSS data editor has two different screens
called the Data View and Variable View screens. You can easily move between
the two views by clicking on the tabs at the bottom left hand side of the
screen.

Before entering data in Data View, the characteristics of each variable need
to be defined in Variable View. In this screen, details of the variable names,
variable types and labels are stored. Each row in Variable View represents
a new variable. To enter a variable name, simply type the name into the
first field and default settings will appear for the remaining fields. The Tab or
the arrow keys can be used to move across the fields and change the default
settings. The settings can be changed by pulling down the drop box option that
appears when you double click on the domino on the right hand side of each
cell. In most cases, the first variable in a data set will be a unique identification
number for each participant. This variable is invaluable for selecting or tracking
particular participants during the data analysis process.
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The Data View screen, which displays the data values, shows how the data
have been entered. This screen is similar to many other spreadsheet pack-
ages. A golden rule of data entry is that the data for each participant should
occupy one row only in the spreadsheet. Thus, if follow up data have been
collected from the participants on one or more occasions, the participants’
data should be an extension of their baseline data row and not a new row
in the spreadsheet. An exception to this rule is for studies in which controls
are matched to cases by characteristics such as gender or age or are selected
as the unaffected sibling or a nominated friend of the case and therefore the
data are naturally paired. The data from matched case-control studies are used
as pairs in the statistical analyses and therefore it is important that matched
controls are not entered on a separate row but are entered into the same row
in the spreadsheet as their matched case. This method will inherently ensure
that paired or matched data are analysed correctly and that the assumptions
of independence that are required by many statistical tests are not violated.
Thus, in Data View, each column represents a separate variable and each row
represents a single participant, or a single pair of participants in a matched
case-control study, or a single participant with follow-up data.

Unlike Excel, it is not possible to hide rows or columns in either Variable
View or Data View in SPSS. Therefore, the order of variables in the spreadsheet
should be considered before the data are entered. The default setting for the
lists of variables in the drop down boxes that are used when running the
statistical analyses are in the same order as the spreadsheet. It is more efficient
to place variables that are likely to be used most often at the beginning of the
data file and variables that are going to be used less often at the end.

After the information for each variable has been defined in Variable View,
the data can be entered in the Data View screen. Before entering data, the
details entered in the Variable View can be saved using the commands shown
in Box 1.1.

Box 1.1 SPSS commands for saving a file

SPSS Commands
Untitled — SPSS Data Editor
File — Save As
Save Data As
Enter the name of the file in File name
Click on Save

After saving the file, the name of the file will replace the word Untitled at the
top left hand side of the Data View screen. Data entered into the Variable View
can be also saved using the commands shown in Box 1.1. It is not possible to
close a data file in SPSS Data Editor. The file can only be closed by opening a
new data file or by exiting the SPSS program.
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Variable names

If data are entered in Excel or Access before being exported to SPSS, it is a
good idea to use variable names that are accepted by SPSS to avoid having to
rename the variables. In SPSS, each variable name has a maximum of eight
characters and must begin with an alphabetic character. In addition, each
variable name must be unique. Some symbols such as @, # or $ can be used
in variable names but other symbols such as %, > and punctuation marks
are not accepted. Also, SPSS is not case sensitive and capital letters will be
converted to lower case letters.

Types of variables

Before conducting any statistical tests, a formal, documented plan that in-
cludes a list of questions to be answered and identifies the variables that will
be used should be drawn up. For each question, a decision on how each
variable will be used in the analyses, for example as a continuous or cate-
gorical variable or as an outcome or explanatory variable, will need to be
made.

Table 1.1 shows a classification system for variables and how the classifi-
cation influences the presentation of results. A common error in statistical
analyses is to misclassify the outcome variable as an explanatory variable or
to misclassify an intervening variable as an explanatory variable. It is impor-
tant that an intervening variable, which links the explanatory and outcome
variable because it is directly on the pathway to the outcome variable, is not
treated as an independent explanatory variable in the analyses!. It is also im-
portant that an alternative outcome variable is not treated as an independent
risk factor. For example, hay fever cannot be treated as an independent risk
factor for asthma because it is a symptom that is a consequence of the same
allergic developmental pathway.

Table 1.1 Names used to identify variables

Axis for plots, data

Variable name Alternative name/s analysis and tables
Outcome variables Dependent variables (DVs) y-axis, columns
Intervening variables Secondary or alternative y-axis, columns

outcome variables

Explanatory variables Independent variables (IVs) X-axis, rows
Risk factors
Exposure variables
Predictors
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In part, the classification of variables depends on the study design. In a
case-control study in which disease status is used as the selection criterion,
the explanatory variable will be the presence or absence of disease and the out-
come variable will be the exposure. However, in most other observational and
experimental studies such as clinical trials, cross-sectional and cohort studies,
the disease will be the outcome and the exposure will be the explanatory
variable.

In SPSS, the measurement level of the variable can be classified as nominal,
ordinal or scale under the Measure option in Variable View. The measurement
scale used determines each of these classifications. Nominal scales have no
order and are generally category labels that have been assigned to classify
items or information. For example, variables with categories such as male or
female, religious status or place of birth are nominal scales. Nominal scales can
be string (alphanumeric) values or numeric values that have been assigned to
represent categories, for example 1 = male and 2 = female.

Values on an ordinal scale have a logical or ordered relationship across the
values and it is possible to measure some degree of difference between cat-
egories. However, it is usually not possible to measure a specific amount of
difference between categories. For example, participants may be asked to rate
their overall level of stress on a five-point scale that ranges from no stress,
mild stress, moderate stress, severe stress to extreme stress. Using this scale,
participants with severe stress will have a more serious condition than par-
ticipants with mild stress, although recognising that self-reported perception
of stress may be quite subjective and is unlikely to be standardised between
participants. With this type of scale, it is not possible to say that the difference
between mild and moderate stress is the same as the difference between mod-
erate and severe stress. Thus, information from these types of variables has to
be interpreted with care.

Variables with numeric values that are measured by an interval or ratio
scale are classified as scale variables. On an interval scale, one unit on the
scale represents the same magnitude across the whole scale. For example,
Fahrenheit is an interval scale because the difference in temperature between
10 °F and 20 °F is the same as the difference in temperature between 40 °F
and 50 °F. However, interval scales have no true zero point. For example, 0 °F
does not indicate that there is no temperature. Because interval scales have
an arbitrary rather than a true zero point, it is not possible to compare ratios.

A ratio scale has the same properties as nominal, ordinal, and interval scales,
but has a true zero point and therefore ratio comparisons are valid. For ex-
ample, it is possible to say that a person who is 40 years old is twice as old as
a person who is 20 years old and that a person is 0 year old at birth. Other
common ratio scales are length, weight and income.

While variables in SPSS can be classified as scale, ordinal or nominal values,
a more useful classification for variables when deciding how to analyse data
is as categorical variables (ordered or non-ordered) or continuous variables.
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These classifications are essential for selecting the correct statistical test to
analyse the data. However, these classifications are not provided in Variable
View by SPSS.

The file surgery.sav, which contains the data from 141 babies who under-
went surgery at a paediatric hospital, can be opened using the File — Open —
Data commands. The classification of the variables as shown by SPSS and the
classifications that are needed for statistical analysis are shown in Table 1.2.

Table 1.2 Classification of variables in the file surgery.sav

Classification for

Variable label Type SPSS measure analysis decisions

ID Numeric Scale Not used in analyses
Gender String Nominal Categorical/non-ordered
Place of birth String Nominal Categorical/non-ordered
Birth weight Numeric Scale Continuous

Gestational age Numeric Ordinal Continuous

Length of stay Numeric Scale Continuous

Infection Numeric Scale Categorical/non-ordered
Prematurity Numeric Scale Categorical/non-ordered
Procedure performed Numeric Nominal Categorical/non-ordered

Obviously, categorical variables have discrete categories, such as male and
female, and continuous variables are measured on a scale, such as height
which is measured in centimetres. Categorical values can be non-ordered, for
example gender which is coded as 1 = male and 2 = female and place of birth
whichis coded as 1 =local, 2 =regional and 3 = overseas. Categorical variables
can also be ordered, for example, if the continuous variable length-of-stay was
re-coded into categories of 1 = 1-10 days, 2 = 11-20 days, 3 = 21-30 days
and 4 = >31 days, there is a progression in magnitude of length of stay.

Data organisation and data management

Prior to beginning statistical analysis, it is essential to have a thorough working
knowledge of the nature, ranges and distributions of each variable. Although it
may be tempting to jump straight into the analyses that will answer the study
questions rather than spend time obtaining seemingly mundane descriptive
statistics, a working knowledge of the data often saves time in the end by
avoiding analyses having to be repeated for various reasons.

It is important to have a high standard of data quality in research databases
at all times because good data management practice is a hallmark of scientific
integrity. The steps outlined in Box 1.2 will help to achieve this.
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Box 1.2 Data organisation

The following steps ensure good data management practices:

» Use numeric codes for categorical data where possible

« Choose appropriate variable names and labels to avoid confusion across
variables

e Check for duplicate records and implausible data values

* Make corrections

o Archive a back-up copy of the data set for safe keeping

e Limit access to sensitive data such as names and addresses in working
files

It is especially important to know the range and distribution of each vari-
able and whether there are any outlying values or outliers so that the statistics
that are generated can be explained and interpreted correctly. Describing the
characteristics of the sample also allows other researchers to judge the gener-
alisability of the results. A considered pathway for data management is shown
in Box 1.3.

Box 1.3 Pathway for data management before beginning statistical
analysis

The following steps are essential for efficient data management:

¢ Obtain the minimum and maximum values and the range of each vari-
able

e Conduct frequency analyses for categorical variables

« Use box plots, histograms and other tests to ascertain normality of con-
tinuous variables

o Identify and deal with missing values and outliers

e Re-code or transform variables where necessary

e Re-run frequency and/or distribution checks

e Document all steps in a study handbook

The study handbook should be a formal documentation of all of the study
details that is updated continuously with any changes to protocols, manage-
ment decisions, minutes of meetings, etc. This handbook should be avail-
able for anyone in the team to refer to at any time to facilitate consid-
ered data collection and data analysis practices. Suggested contents of data
analysis log sheets that could be kept in the study handbook are shown in
Box 1.4.

Data analyses must be planned and executed in a logical and considered
sequence to avoid errors or misinterpretation of results. In this, it is important
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that data are treated carefully and analysed by people who are familiar with
their content, their meaning and the interrelationship between variables.

Box 1.4 Data analysis log sheets

Data analysis log sheets should contain the following information:

« Title of proposed paper, report or abstract

e Author list and author responsible for data analyses and documentation
 Specific research questions to be answered or hypotheses tested

e Outcome and explanatory variables to be used

« Statistical methods

e Details of database location and file storage names

e Journals and/or scientific meetings where results will be presented

Before beginning any statistical analyses, a data analysis plan should be
agreed upon in consultation with the study team. The plan can include the
research questions that will be answered, the outcome and explanatory vari-
ables that will be used, the journal where the results will be published and/or
the scientific meeting where the findings will be presented.

A good way to handle data analyses is to create a log sheet for each proposed
paper, abstract or report. The log sheets should be formal documents that
are agreed to by all stakeholders and that are formally archived in the study
handbook. When a research team is managed efficiently, a study handbook
is maintained that has up to date documentation of all details of the study
protocol and the study processes.

Documentation

Documentation of data analyses, which allows anyone to track how the re-
sults were obtained from the data set collected, is an important aspect of the
scientific process. This is especially important when the data set will be ac-
cessed in the future by researchers who are not familiar with all aspects of
data collection or the coding and recoding of the variables.

Data management and documentation are relatively mundane processes
compared to the excitement of statistical analyses but, nevertheless, are essen-
tial. Laboratory researchers document every detail of their work as a matter of
course by maintaining accurate laboratory books. All researchers undertaking
clinical and epidemiological studies should be equally diligent and document
all of the steps taken to reach their conclusions.

Documentation can be easily achieved by maintaining a data management
book for each data analysis log sheet. In this, all steps in the data management
processes are recorded together with the information of names and contents
of files, the coding and names of variables and the results of the statistical
analyses. Many funding bodies and ethics committees require that all steps in



8 Chapter1

data analyses are documented and that in addition to archiving the data, both
the data sheets and the records are kept for 5 or sometimes 10 years after the
results are published.

In SPSS, the file details, variable names, details of coding etc. can be viewed
by clicking on Variable View. Documentation of the file details can be obtained
and printed using the commands shown in Box 1.5. The output can then be
stored in the study handbook or data management log book.

Box 1.5 SPSS commands for printing file information

SPSS Commands
Untitled — SPSS Data Editor
File — Open Data
surgery.sav
Utilities — File Info
Output — SPSS Viewer
File — Print
Click OK
(to view File Info on screen, double click on the output on the RHS and use
the down arrow key to scroll down)

The following output is produced:

List of variables on the working file
Name Position

ID ID 1
Measurement Level: Scale
Column Width: 8 Alignment: Right
Print Format: F5
Write Format: F5

GENDER Gender 2
Measurement Level: Nominal
Column Width: 5 Alignment: Left
Print Format: A5
Write Format: A5

PLACE Place of birth 3
Measurement Level: Nominal
Column Width: 5 Alignment: Left
Print Format: A5
Write Format: A5

BIRTHWT Birth weight 4
Measurement Level: Scale
Column Width: 8 Alignment: Right
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Print Format: F8
Write Format: F8

GESTATIO Gestational age 5
Measurement Level: Ordinal
Column Width: 8 Alignment: Right
Print Format: F8.1
Write Format: F8.1

LENGTHST Length of stay 6
Measurement Level: Scale
Column Width: 8 Alignment: Right
Print Format: F8
Write Format: F8

INFECT Infection 7
Measurement Level: Scale
Column Width: 8 Alignment: Right
Print Format: F8
Write Format: F8

Value Label
1 No
2 Yes
PREMATUR Prematurity 8

Measurement Level: Scale

Column Width: 8 Alignment: Right
Print Format: F8

Write Format: F8

Value Label
1 Premature
2 Term
SURGERY Procedure performed 9

Measurement Level: Nominal

Column Width: 8 Alignment: Right
Print Format: F5

Write Format: F5

Value Label
1 Abdominal
2 Cardiac
3 Other

This file information can be directly printed from SPSS or exported from the
SPSS output viewer into a word processing document using the commands
shown in Box 1.6. From a word processing package, the information is easily
printed and stored.
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Box 1.6 SPSS commands for exporting file information into a word
document

SPSS Commands

Output — SPSS Viewer
Click on ‘File Information’ on the LHS of the screen
File — Export

Export Output
Use Browse to indicate the directory to save the file
Click on File Type to show Word/RTF file (*.doc)
Click OK

Importing data from Excel

Specialised programs are available for transferring data between different data
entry and statistics packages (see Useful Web sites). Many researchers use
Excel or Access for ease of entering and managing the data. However, statis-
tical analyses are best executed in a specialist statistical package such as SPSS
in which the integrity and accuracy of the statistics are guaranteed. Importing
data into SPSS from Access is not a problem because Access ‘talks’ to SPSS so
that data can be easily transferred between these programs. However, export-
ing data from Excel into SPSS requires a few more steps using the commands
shown in Box 1.7.

Box 1.7 SPSS commands for opening an Excel data file

SPSS Commands
Untitled — SPSS Data Editor
File — Open — Data
Open File
Click on ‘Files of type’ to show ‘Excel (*.xls)’
Click on your Excel file
Click Open
Opening Excel Data Source
Click OK

The commands shown in Box 1.7 have the disadvantage that they convert
numerical fields to string fields and may lose the integrity of any decimal
places, etc. The data then have to be reformatted in SPSS, which is feasible
for a limited number of variables but is a problem with larger data sets. As an
alternative, the commands shown in Box 1.8 will transport data from Excel to
SPSS more effectively. These commands take a little longer and require more
patience, but the formatting of the data fields and the integrity of the database
will be maintained in SPSS. For numeric values, blank cells in Excel or Access
are converted to the system missing values, that is a full stop, in SPSS.
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Box 1.8 SPSS commands for importing an Excel file

SPSS Commands
Untitled — SPSS Data Editor
File — Open Database— New Query
Database Wizard
Highlight Excel Files / Click Add Data Source
ODBC Data Source Administrator - User DSN
Highlight Excel Files / Click Add
Create New Data Soutrce
Highlight Microsoft Excel Driver (*.xIs)
Click Finish
ODBC Microsoft Excel Setup
Enter a new data name in Data Source Name (and description if required)
Select Workbook
Select Workbook
Highlight xIs file to import
Click OK
ODBC Microsoft Excel Setup
Click OK
ODBC Data Source Administrator - User DSN
Click OK
Database Wizard
Highlight new data source name (as entered above) / Click Next
Click on items in Available Tables on the LHS and drag it across to the
Retrieve Fields list on the RHS / Click Next / Click Next
Step 5 of 6 will identify any variable names not accepted by SPSS (if names
are rejected click on Result Variable Name and change the
variable name)
Click Next
Click Finish

Once in the SPSS spreadsheet, features of the variables can be adjusted in
Variable View, for example by changing the width and column length of string
variables, entering the labels and values for categorical variables and checking
that the number of decimal places is appropriate for each variable. Once data
quality is ensured, a back up copy of the database should be archived at a
remote site for safety. Few researchers ever need to resort to their archived
copies but, when they do, they are an invaluable resource.

The spreadsheet that is used for data analyses should not contain any in-
formation that would contravene ethics guidelines by identifying individual
participants. In the working data file, names, addresses, dates of birth and any
other identifying information that will not be used in data analyses should
be removed. Identifying information that is required can be re-coded and de-
identified, for example, by using a unique numerical value that is assigned to
each participant.
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Missing values

Data values that have not been measured in some participants are called miss-
ing values. Missing values create pervasive problems in data analyses. The se-
riousness of the problem depends largely on the pattern of missing data, how
much is missing, and why it is missing?.

Missing values must be treated appropriately in analyses and not inadver-
tently included as data points. This can be achieved by proper coding that
is recognised by the software as a system missing value. The most common
character to indicate a missing value is a full stop. This is preferable to using
the implausible value of 9 or 999 that has been commonly used in the past. If
these values are not accurately defined as missing values, statistical programs
can easily incorporate them into the analyses, thus producing erroneous re-
sults. Although these values can be predefined as system missing, this is an
unnecessary process that is discouraged because it requires familiarity with
the coding scheme and because the analyses will be erroneous if the missing
values are inadvertently incorporated into the analyses.

For a full stop to be recognised as a system missing value, the variable
must be formatted as numeric rather than a string variable. In the spread-
sheet surgery.sav, the data for place of birth are coded as a string variable.
The command sequences shown in Box 1.9 can be used to obtain frequency
information of this variable:

Box 1.9 SPSS commands for obtaining frequencies

SPSS Commands
surgery — SPSS Data Editor
Analyze — Descriptive Statistics— Frequencies
Frequencies
Highlight ‘Place of birth’ and click into Variable(s)
Click OK

Frequency table

Place of Birth

Frequency Per cent Valid per cent Cumulative per cent
Valid . 9 6.4 6.4 6.4
L 90 63.8 63.8 70.2
(0] 9 6.4 6.4 76.6
R 33 23.4 23.4 100.0
Total 141 100.0 100.0

Since place of birth is coded as a string variable, the missing values are
treated as valid values and included in the summary statistics of valid and
cumulative percentages shown in the Frequency table. To remedy this, the
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syntax shown in Box 1.10 can be used to re-code place of birth from a string
variable into a numeric variable.

Box 1.10 Recoding a variable into a different variable

SPSS Commands
surgery — SPSS Data Editor
Transform — Recode — Into Different Variables
Recode into Different Variables
Highlight ‘Place of birth’ and click into Input Variable — Output Variable
Enter Output Variable Name as place2,
Enter Output Variable Label as Place of birth recoded/ Click Change
Click Old and New Values
Recode into Different Variables: Old and New Values
0ld Value —Value=L, New Value —Value=1/Click Add
0ld Value—Value=R, New Value—Value=2/Click Add
0ld Value —Value=0, New Value —Value=3/Click Add
Click Continue
Recode into Different Variables
Click OK (or ‘Paste/Run—All’)

The paste command is a useful tool to provide automatic documentation
of any changes that are made. The paste screen can be saved or printed for
documentation and future reference. Using the Paste command for the above
re-code provides the following documentation.

RECODE

place

(‘L=1) (‘R'=2) (‘O’=3) INTO place2

VARIABLE LABELS place2 ‘Place of birth recoded’.
EXECUTE .

After recoding, the value labels for the three new categories of place2 that
have been created can be added in the Variable View window. In this case,
place of birth needs to be defined as 1 = Local, 2 = Regional and 3 = Overseas.
This can be added by clicking on the Values cell and then double clicking on
the grey domino box on the right of the cell to add the value labels. Similarly,
gender which is also a string variable can be re-coded into a numeric variable,
gender2 with Male = 1 and Female = 2. After re-coding variables, it is im-
portant to also check whether the number of decimal places is appropriate.
For categorical variables, no decimal places are required. For continuous vari-
ables, the number of decimal places must be the same as the number that the
measurement was collected in.

A useful function in SPSS to repeat recently conducted commands is the Di-
alog Recall button. This button recalls the most recently used SPSS commands
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conducted. The Dialog Recall button is the fourth icon at the top left hand side
of the Data View screen or the sixth icon in the top left hand side of the SPSS
Output Viewer screen.

Using the Dialog Recall button to obtain Frequencies for place2, which is la-
belled Place of birth recoded, the following output is produced.

Frequencies
Place of Birth Recoded

Frequency Per cent Valid per cent Cumulative per cent
Valid Local 90 63.8 68.2 68.2
Regional 33 234 25.0 93.2
Overseas 9 6.4 6.8 100.0
Total 132 93.6 100.0
Missing System 9 6.4
Total 141 100.0

The frequencies in the table show that the recoding sequence was executed
correctly. When the data are re-coded as numeric, the nine babies who have
missing data for birthplace are correctly omitted from the valid and cumulative
percentages.

When collecting data in any study, it is essential to have methods in place to
prevent missing values in, say, at least 95% of the data set. Methods such as
restructuring questionnaires in which participants decline to provide sensitive
information or training research staff to check that all fields are complete at the
point of data collection are invaluable in this process. In large epidemiological
and longitudinal data sets, some missing data may be unavoidable. However,
in clinical trials it may be unethical to collect insufficient information about
some participants so that they have to be excluded from the final analyses.

If the number of missing values is small and the missing values occur ran-
domly throughout the data set, the cases with missing values can be omitted
from the analyses. This is the default option in most statistical packages and
the main effect of this process is to reduce statistical power, that is the ability
to show a statistically significant difference between groups when a clini-
cally important difference exists. Missing values that are scattered randomly
throughout the data are less of a problem than non-random missing values
that can affect both the power of the study and the generalisability of the
results. For example, if people in higher income groups selectively decline to
answer questions about income, the distribution of income in the population
will not be known and analyses that include income will not be generalisable
to people in higher income groups.

In some situations, it may be important to replace a missing value with
an estimated value that can be included in analyses. In longitudinal clinical
trials, it has become common practice to use the last score obtained from the
participant and carry it forward for all subsequent missing values. In other
studies, a mean value (if the variable is normally distributed) or a median
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value (if the variable is non-normal distributed) may be used to replace missing
values. These solutions are not ideal but are pragmatic in that they maintain
the study power whilst reducing any bias in the summary statistics. Other more
complicated methods for replacing missing values have been described?.

Outliers

Outliers are data values that are surprisingly extreme when compared to the
other values in the data set. There are two types of outliers: univariate out-
liers and multivariate outliers. A univariate outlier is a data point that is very
different to the rest of the data for one variable. An outlier is measured by the
distance from the remainder of the data in units of the standard deviation,
which is a standardised measure of the spread of the data. For example, an
1Q score of 150 would be a univariate outlier because the mean IQ of the
population is 100 with a standard deviation of 15. Thus, an IQ score of 150 is
3.3 standard deviations away from the mean whereas the next closest value
may be only 2 standard deviations away from the mean leaving a gap in the
distribution of the data points.

A multivariate outlier is a case that is an extreme value on a combination of
variables. For example, a boy aged 8 years with a height of 155 cm and a weight
of 45 kg is very unusual and would be a multivariate outlier. It is important to
identify values that are univariate and/or multivariate outliers because they
can have a substantial influence on the distribution and mean of the variable
and can influence the results of analyses and thus the interpretation of the
findings.

Univariate outliers are easier to identify than multivariate outliers. For a
continuously distributed variable with a normal distribution, about 99% of
scores are expected to lie within 3 standard deviations above and below the
mean value. Data points outside this range are classified as univariate out-
liers. Sometimes a case that is a univariate outlier for one variable will also be
a univariate outlier for another variable. Potentially, these cases may be mul-
tivariate outliers. Multivariate outliers can be detected using statistics called
leverage values or Cook’s distances, which are discussed in Chapter 5, or Ma-
halanobis distances, which are discussed in Chapter 6.

There are many reasons why outliers occur. Outliers may be errors in data
recording, incorrect data entry values that can be corrected or genuine val-
ues. When outliers are from participants from another population with dif-
ferent characteristics to the intended sample, they are called contaminants.
This happens for example when a participant with a well-defined illness is
inadvertently included as a healthy participant. Occasionally, outliers can be
excluded from the data analyses on the grounds that they are contaminants
or biologically implausible values. However, deleting values simply because
they are outliers is usually unacceptable and it is preferable to find a way to
accommodate the values without causing undue bias in the analyses.

Identifying and dealing with outliers is discussed further throughout this
book. Whatever methods are used to accommodate outliers, it is important
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that they are reported so that the methods used and the generalisability of the

results are clear.

Choosing the correct test

Selecting the correct test to analyse data depends not only on the study design
but also on the nature of the variables collected. Tables 1.3-1.6 show the types
of tests that can be selected based on the nature of variables. It is of paramount
importance that the correct test is used to generate P values and to estimate the
size of effect. Using an incorrect test will inviolate the statistical assumptions
of the test and may lead to bias in the P values.

Table 1.3 Choosing a statistic when there is one outcome variable only

Number of times

Type of measured in
variable each participant  Statistic SPSS menu
Binary Once Incidence or prevalence Descriptive statistics;
and 95% confidence Frequencies
interval (95% Cl)
Twice McNemar's chi-square Descriptive statistics;
Kappa Crosstabs
Continuous Once Tests for normality Non-parametric tests;
1 sample K-S
Descriptive statistics; Explore
One sample t-test Compare means;
One-sample t-test
Mean, standard deviation Descriptive statistics; Explore
(SD) and 95% ClI
Median and inter-quartile Descriptive statistics; Explore
(1Q) range
Twice Paired t-test Compare means;

Three or more

Mean difference and
95% ClI

Measurement error

Mean-versus-differences
plot

Intraclass correlation
coefficient

Repeated measures ANOVA

Paired-samples t-test

Compare means;
Paired-samples t-test

Compare means;
Paired-samples t-test

Graphs; Scatter

Scale; Reliability Analysis

General linear model;
Repeated measures




Table 1.4 Choosing a statistic when there is one outcome variable and one explanatory variable

Type of outcome  Type of explanatory  Number of levels of the
variable variable categorical variable Statistic SPSS menu
Categorical Categorical Both variables are binary Chi-square Descriptive statistics; Crosstabs
Odds ratio or relative risk Descriptive statistics; Crosstabs
Logistic regression Regression; Binary logistic
Sensitivity and specificity Descriptive statistics; Crosstabs
Likelihood ratio Descriptive statistics; Crosstabs
Categorical Categorical At least one of the variables  Chi-square Descriptive statistics; Crosstabs
has more than two levels Chi-square trend Descriptive statistics; Crosstabs
Kendall’s correlation Correlate; Bivariate
Categorical Continuous Categorical variable is binary ~ ROC curve Graphs; ROC curve
Survival analyses Survival; Kaplan-Meier
Categorical Continuous Categorical variable is Spearman’s correlation Correlate; Bivariate
multi-level and ordered coefficient
Continuous Categorical Explanatory variable is Independent samples t-test Compare means; Independent-samples t-test
binary Mean difference and 95% CI  Compare means; Independent-samples t-test
Continuous Categorical Explanatory variable has Analysis of variance Compare means; One-way ANOVA
three or more categories
Continuous Continuous No categorical variables Regression Regression; Linear

Pearson’s correlation

Correlate; Bivariate
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Table 1.5 Choosing a statistic for one or more outcome variables and more than one explanatory variable

Type of outcome
variable/s

Type of explanatory
variable/s

Number of levels of
categorical variable

Statistic

SPSS menu

Continuous—only
one outcome

Continuous—only
one outcome

Continuous—only
one outcome

Continuous—
outcome measured
more than once

No outcome
variable

Both continuous and
categorical

Categorical

Both continuous and
categorical

Both continuous and
categorical

Both continuous and
categorical

Categorical variables are
binary

At least one of the
explanatory variables has
three or more categories

One categorical variable has
two or more levels

Categorical variables can
have two or more levels

Categorical variables can
have two or more levels

Multiple regression

Two-way analysis of variance

Analysis of covariance

Repeated measures analysis
of variance
Auto-regression

Factor analysis

Regression; Linear

General linear model; Univariate

General linear model; Univariate

General linear model; Repeated measures
Times series; Auto-regression

Data reduction: Factor

18
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Table 1.6 Parametric and non-parametric equivalents

Parametric test Non-parametric equivalent SPSS menu

Mean and standard Median and inter-quartile Descriptive statistics; Explore
deviation range

Pearson’s correlation Spearman’s or Kendall’s Correlate; Bivariate

coefficient correlation coefficient

One sample sign test Sign test SPSS does not provide this option

but a sign test can be obtained by
computing a new constant variable
equal to the test value (e.g. 0 or
100) and using non-parametric test;
2 related samples with the outcome
and computed variable as the pair

Two sample t-test Wilcoxon rank sum test Non-parametric tests; 2 related
samples

Independent t-test Mann-Whitney U or Non-parametric tests; 2

Wilcoxon Rank Sum test independent samples

Analysis of variance Mann-Whitney U test Non-parametric tests; K independent
samples

Repeated measures Friedmans ANOVA test Nonparametric tests; K independent

analysis of variance samples

Sample size requirements

The sample size is one of the most critical issues in designing a research study
because it affects all aspects of interpreting the results. The sample size needs
to be large enough so that a definitive answer to the research question is
obtained. This will help to ensure generalisability of the results and precision
around estimates of effect. However, the sample has to be small enough so
that the study is practical to conduct. In general, studies with a small sample
size, say with less than 30 participants, can usually only provide imprecise and
unreliable estimates.

Box 1.11 provides a definition of type I and type II errors and shows how
the size of the sample can contribute to these errors, both of which have a
profound influence on the interpretation of the results.

In each chapter of this book, the implications of interpreting the results in
terms of the sample size of the data set and the possibilities of type I and type
II errors in the results will be discussed.

Golden rules for reporting numbers

Throughout this book the results are presented using the rules that are rec-
ommended for reporting statistical analyses in the literature®>—>. Numbers are
usually presented as digits except in a few special circumstances as indicated
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Box 1.11 Type I and type II errors

Type I errors
o are false positive results

Type II errors
o are false negative results

reach statistical significance

« occur when a statistical significant difference between groups is found
but no clinically important difference exists
o the null hypothesis is rejected in error

 a clinical important difference between groups does exist but does not

o the null hypothesis is accepted in error
o usually occur when the sample size is small

in Table 1.7. When reporting data, it is important not to imply more precision
than actually exists, for example by using too many decimal places. Results
should be reported with the same number of decimal places as the measure-
ment, and summary statistics should have no more than one extra decimal
place. A summary of the rules for reporting numbers and summary statistics

is shown in Table 1.7.

Table 1.7 Golden rules for reporting numbers

Rule

Correct expression

In a sentence, numbers less than 10 are
words

In a sentence, numbers 10 or more are
numbers

Use words to express any number that
begins a sentence, title or heading. Try and
avoid starting a sentence with a number

Numbers that represent statistical or
mathematical functions should be expressed
in numbers

In a sentence, numbers below 10 that are
listed with numbers 10 and above should be
written as a number

Use a zero before the decimal point when
numbers are less than 1

In the study group, eight participants did
not complete the intervention

There were 120 participants in the study

Twenty per cent of participants had diabetes

Raw scores were multiplied by 3 and then
converted to standard scores

In the sample, 15 boys and 4 girls had
diabetes

The P value was 0.013

Continued
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Rule

Correct expression

Do not use a space between a number and
its per cent sign

Use one space between a number and its
unit

Report percentages to only one decimal
place if the sample size is larger than 100

Report percentages with no decimal places
if the sample size is less than 100

Do not use percentages if the sample size is
less than 20

Do not imply greater precision than the
measurement instrument

For ranges use ‘to’ or a comma but not ’-’ to
avoid confusion with a minus sign. Also use
the same number of decimal places as the
summary statistic

P values between 0.001 and 0.05 should be
reported to three decimal places

P values shown on output as 0.000 should
be reported as <0.0001

In total, 35% of participants had diabetes

The mean height of the group was 170 cm

In the sample of 212 children, 10.4% had
diabetes

In the sample of 44 children, 11% had
diabetes

In the sample of 18 children, 2 had diabetes

Only use one decimal place more than the
basic unit of measurement when
reporting statistics (means, medians,
standard deviations, 95% confidence
interval, inter-quartile ranges, etc.) e.g.
mean height was 143.2 cm

The mean height was 162 cm (95% Cl 156 to
168)

The mean height was 162 cm (95% Cl 156,
168)

The median was 0.5 mm (inter-quartile
range —0.1 to 0.7)

The range of height was 145 to 170 cm

There was a significant difference in blood
pressure between the two groups (t = 3.0,
df = 45, P = 0.004)

Children with diabetes had significantly
lower levels of insulin than control
children without diabetes (t = 5.47,
df =78, P < 0.0001)

Formatting the output

There are many output formats available in SPSS. The format of the frequen-
cies table obtained previously can easily be changed by double clicking on the
table and using the commands Format — TableLooks. To obtain the output in
the format below, which is a classical academic format with no vertical lines
and minimal horizontal lines that is used by many journals, highlight Aca-
demic 2 under TableLooks Files and click OK. The column widths and other
features can also be changed using the commands Format — Table Properties.
By clicking on the table and using the commands Edit — Copy objects, the table
can be copied and pasted into a word file.
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Place of Birth Recoded

Frequency Per cent Valid per cent Cumulative per cent

Valid Local 20 63.8 68.2 68.2
Regional 33 234 25.0 93.2
Overseas 9 6.4 6.8 100.0
Total 132 93.6 100.0

Missing System 9 6.4

Total 141 100.0

SPSS help commands

SPSS has two levels of extensive help commands. By using the commands
Help — Topics — Index, the index of help topics appears in alphabetical order.
By typing in a keyword, followed by enter, a topic can be displayed. Listed
under the Help command is also Tutorial, which is a guide to using SPSS, and
Statistics Coach, which is a guide to selecting the correct test to use.

There is also another level of help that explains the meaning of the statistics
shown in the output. For example, help can be obtained for the above fre-
quencies table by doubling clicking on the left hand mouse button to outline
the table with a hatched border and then single clicking on the right hand
mouse button on any of the statistics labels. This produces a dialog box with
What's This? at the top. Clicking on What’s This? provides an explanation of the
highlighted statistical term. Clicking on Cumulative Percent gives the explana-
tion that this statistic is the per cent of cases with non-missing data that have
values less than or equal to a particular value.

Notes for critical appraisal

When critically appraising statistical analyses reported in the literature, that is
when applying the rules of science to assess the validity of the results from a
study, it is important to ask the questions shown in Box 1.12. Studies in which

Box 1.12 Questions for critical appraisal

Answers to the following questions are useful for checking the integrity

of statistical analyses:

» Have details of the methods and statistical packages used to analyse the
data been reported?

o Are the variables classified correctly as outcome and explanatory vari-
ables?

e Are any intervening or alternative outcome variables mistakenly treated
as explanatory variables?

e Are missing values and outliers treated appropriately?

o Is the sample size large enough to avoid type II errors?
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outliers are treated inappropriately, in which the quality of the data is poor or
in which an incorrect statistical test has been used are likely to be biased and
to lack scientific merit.
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CHAPTER 2

Continuous variables:
descriptive statistics

It is wonderful to be in on the creation of something, see it used, and then walk away
and smile at it.
LADY BIRD JOHNSON, U.S. FIRST LADY

Objectives

The objectives of this chapter are to explain how to:

» test whether a continuous variable has a normal distribution

» decide whether to use a parametric or non-parametric test

e present summary statistics for continuous variables

o decide whether parametric tests have been used appropriately in the literature

Before beginning statistical analyses of a continuous variable, it is essential to
examine the distribution of the variable for skewness (tails), kurtosis (peaked
or flat distribution), spread (range of the values) and outliers (data values
separated from the rest of the data). If a variable has significant skewness
or kurtosis or has univariate outliers, or any combination of these, it will not
be normally distributed. Information about each of these characteristics deter-
mines whether parametric or non-parametric tests need to be used and ensures
that the results of the statistical analyses can be accurately explained and inter-
preted. A description of the characteristics of the sample also allows other re-
searchers to judge the generalisability of the results. A typical pathway for be-
ginning the statistical analysis of continuous data variables is shown in Box 2.1.

Box 2.1 Data analysis pathway for continuous variables

The pathway for conducting the data analysis of continuous variables is

as follows:

o conduct distribution checks

o transform variables with non-normal distributions or re-code into
categorical variables, for example quartiles or quintiles

o re-run distribution checks for transformed variables

o document all steps in the study handbook

24
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Statistical tests can be either parametric or non-parametric. Parametric tests
are commonly used when a continuous variable is normally distributed. In
general, parametric tests are preferable to non-parametric tests because a
larger variety of tests are available and, as long as the sample size is not very
small, they provide approximately 5% more power than rank tests to show a
statistically significant difference between groups!. Non-parametric tests can
be a challenge to present in a clear and meaningful way because summary
statistics such as ranks are less familiar to many people than summary statis-
tics from parametric tests. Summary statistics from parametric tests such as
means and standard deviations are always more readily understood and more
easily communicated than the equivalent rank statistics from non-parametric
tests.

The pathway for the analysis of continuous variables is shown in Figure 2.1.

Normal »| Parametric tests
/ distribution
Continuous Yes
data
Non-normal » Transform to
distribution normality
No Non-parametric

tests

Figure 2.1 Pathway for the analysis of continuous variables.

Skewness, kurtosis and outliers can all distort a normal distribution. If a
variable has a skewed distribution, it is sometimes possible to transform the
variable to normality using a mathematical algorithm so that the outliers in
the tail do not bias the summary statistics and P values, or the variable can
be analysed using non-parametric tests.

If the sample size is small, say less than 30, outliers in the tail of a skewed
distribution can markedly increase or decrease the mean value so that it no
longer represents the centre of the data. If the estimate of the centre of the
data is inaccurate, then the mean values of two groups will look more alike or
more different than the central values actually are and the P value to estimate
their difference will be correspondingly reduced or increased. It is important
to avoid this type of bias.

Exploratory analyses

The file surgery.sav contains data from 141 babies who were referred to a
paediatric hospital for surgery. The distributions of three continuous variables
in the data set that is birth weight, gestational age and length of stay can be
examined using the commands shown in Box 2.2.
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Box 2.2 SPSS commands to obtain descriptive statistics and plots

SPSS Commands
surgery — SPSS Data Editor
Analyze — Descriptive Statistics — Explore
Explore
Highlight variables Birth weight, Gestational age, and Length of stay and
click into Dependent List
Explore
Click on Statistics
Explore: Statistics
Click on Outliers
Click Continue
Explore
Click on Plots
Explore: Plots
Boxplots — Factor levels together (default)
Descriptive — untick Stem and leaf (default), tick Histogram and tick
Normality plots with tests
Click Continue
Explore
Click on Options
Explore: Options
Missing Values — tick Exclude cases pairwise
Click Continue
Explore
Click OK

In the Options menu in Box 2.2, Exclude cases pairwise is selected. This op-
tion provides information about each variable independently of missing val-
ues in the other variables and is the option that is used to describe the en-
tire sample. The default setting for Options is Exclude cases listwise but this
will exclude a case from the data analysis if there is missing data for any
one of the variables entered into the Dependent List. The option Exclude cases
listwise for the data set surgery.sav would show that there are 126 babies
with complete information for all three continuous variables and 15 babies
with missing information for one or more of the three variables. The in-
formation for these 126 babies would be important for describing the sam-
ple if multivariate statistics that only includes babies without missing data
are planned. The characteristics of these 126 babies would be used to describe
the generalisability of a multivariate model but not the generalisability of the
sample.
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Explore

Case Processing Summary

Cases
Valid Missing Total
N Per cent N Per cent N Per cent
Birth weight 139 98.6% 2 1.4% 141 100.0%
Gestational age 133 94.3% 8 5.7% 141 100.0%
Length of stay 132 93.6% 9 6.4% 141 100.0%

The Case Processing Summary table shows that two babies have missing
birth weights, eight babies have missing gestational age and nine babies have
missing length of stay data. This information is important if bivariate statistics
will be used in which as many cases as possible are included. The Descriptives
table shows the summary statistics for each variable. In the table, all statistics
are in the same units as the original variables, that is in grams for birth weight,
weeks for gestational age and days for length of stay. The exceptions are the
variance, which is in squared units, and the skewness and kurtosis values,
which are in units that are relative to a normal distribution.

Descriptives

Statistic Std. error

Birth weight Mean 2463.99 43.650

95% confidence Lower bound 2377.68

interval for mean Upper bound 2550.30

5% trimmed mean 2452.53

Median 2425.00

Variance 264 845.7

Std. deviation 514.632

Minimum 1150

Maximum 3900

Range 2750

Inter-quartile range 755.00

Skewness 0.336 0.206

Kurtosis -0.323 0.408
Gestational age Mean 36.564 0.1776

95% confidence Lower bound 36.213

interval for mean Upper bound 36.915

5% trimmed mean 36.659

Median 37.000

Continued
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Descriptives (Continued)

Statistic Std. error

Variance 4.195

Std. deviation 2.0481

Minimum 30.0

Maximum 41.0

Range 11.0

Inter-quartile range 2.000

Skewness —0.590 0.210

Kurtosis 0.862 0.417
Length of stay Mean 38.05 3.114

95% confidence Lower bound 31.89

interval for mean Upper bound 44.21

5% trimmed mean 32.79

Median 27.00

Variance 1280.249

Std. deviation 35.781

Minimum 0

Maximum 244

Range 244

Inter-quartile range 21.75

Skewness 3.212 0.211

Kurtosis 12.675 0.419

Normal distribution

A normal distribution such as the distribution shown in Figure 2.2 is classically
a bell shaped curve, that is bilaterally symmetrical. If a variable is normally
distributed, then the mean and the median values will be approximately equal.

If a normal distribution is divided into quartiles, that is four equal parts,
the exact position of the cut-off values for the quartiles is at 0.68 standard
deviation above and below the mean. Other features of a normal distribution
are that the area of one standard deviation on either side of the mean as shown
in Figure 2.2 contains 68% of the values in the sample and the area of 1.96
standard deviations on either side of the mean contains 95% of the values.
These properties of a normal distribution are critical for understanding and
interpreting the output from parametric tests.

If a variable has a skewed distribution, the mean will be a biased estimate of
the centre of the data as shown in Figure 2.3. A variable that has a classically
skewed distribution is length of stay in hospital because many patients have
a short stay and few patients have a very long stay. When a variable has a
skewed distribution, it can be difficult to predict where the centre of the data
lies or the range in which the majority of data values fall.
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For a variable that has a positively skewed distribution with a tail to the
right, the mean will usually be larger than the median as shown in Figure 2.3.
For a variable with a negatively skewed distribution with a tail to the left, the
mean will usually be lower than the median because the distribution will be a
mirror image of the curve shown in Figure 2.3. These features of non-normal
distributions are helpful in estimating the direction of bias in critical appraisal
of studies in which the distribution of the variable has not been taken into
account when selecting the statistical tests.
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There are several ways of testing whether a continuous variable is normally
distributed. Many measurements such as height, weight and blood pressure
may be normally distributed in the community but may not be normally dis-
tributed if the study has a selected sample or a small sample size. In practice,
several checks of normality need to be undertaken to gain a good understand-
ing of the shape of the distribution of each variable in the study sample. It is
also important to identify the position of any outliers to gain an understanding
of how they may influence the results of any statistical analyses.

The proximity of the mean to the median can indicate possible skewness.
A quick informal check of normality is to examine whether the mean and
the median values are close to one another. From the Descriptives table, the
differences between the median and the mean can be summarised as shown
in Table 2.1. The per cent difference is calculated as the difference between
the mean and the median as a percentage of the mean.

Table 2.1 Comparisons between mean and median values

Per cent
Variable Mean — median difference Interpretation
Birth weight 2464.0 — 1.5% Values almost identical,
2425.0=39.0¢g suggesting a normal distribution
Gestational age 36.6 — 37.0 = 1.1% Values almost identical,
-0.4 month suggesting a normal distribution
Length of stay 38.1 - 27.0= 29.1% Discordant values, with the mean
11.1 days higher than the median indicating

skewness to the right

In Table 2.1, the differences between the mean and median values of birth
weight and gestational age are small, suggesting a normal distribution but
the large difference between the mean and median values for length of stay
suggests that this variable has a non-normal distribution.

An inherent feature of a normal distribution is that 95% of the data values
lie between —1.96 standard deviation and +1.96 standard deviations from
the mean as shown in Figure 2.2. That is, most data values should lie in the
area that is approximately two standard deviations from the mean. Thus, a
good approximate check for normality is to double the standard deviation of
the variable and then subtract and also add this amount to the mean value.
This will give an estimated range in which 95% of the values should lie. The
estimated range should be slightly within the actual range of data values, that
is the minimum and maximum values. The estimated 95% range for each
variable is shown in Table 2.2.

For birth weight and gestational age, the estimated 95% range is within or
close to the minimum and maximum values from the Descriptives table. How-
ever, for length of stay, the estimated 95% range is not a good approximation
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Table 2.2 Calculation of 95% range of variables

Calculation of range Estimated Minimum and
Variable (mean + 2 SD) 95% range maximum values
Birth weight 2464 + (2 x 514.6) 1434 to 3494 1150 to 3900
Gestational age 36.6 + (2 x 2.0) 32.6 t0 40.6 30.0to 41.0
Length of stay 38.1 + (2 x 35.8) -33.5to0 109.7 0 to 244

of the actual range because the estimated lower value is invalid because it is
negative and the estimated upper value is significantly below the maximum
value. This is a classical indication of a skewed distribution. If the two estimated
values are much less than the actual minimum and maximum values, as in
this case, the distribution is usually skewed to the right. If the two estimated
values are much higher than the actual minimum and maximum values, the
distribution is usually skewed to the left.

A rule of thumb is that a variable with a standard deviation that is larger
than one half of the mean value is non-normally distributed, assuming that
negative values are impossible?. Thus, the mean length of stay of 38.1 days
with a standard deviation almost equal to its mean value is an immediate alert
to evidence of non-normality.

Skewness and kurtosis

Further information about the distribution of the variables can be obtained
from the skewness and kurtosis statistics in the Descriptives table. In SPSS, a
perfectly normal distribution has skewness and kurtosis values equal to zero.
Skewness values that are positive indicate a tail to the right and skewness
values that are negative indicate a tail to the left. Values between —1 and +1
indicate an approximate bell shaped curve and values from —1 to —3 or from
+1 to +3 indicate that the distribution is tending away from a bell shape. Any
values above +3 or below —3 are a good indication that the variable is not
normally distributed.

The Descriptives table shows that the skewness values for birth weight and
gestational age are between —1 and 1 suggesting that the distributions of these
variables are within the limits of a normal distribution. However, the high
skewness value of 3.212 for length of stay confirms a non-normal distribution
with a tail to the right.

A kurtosis value above 1 indicates that the distribution tends to be pointed
and a value below 1 indicates that the distribution tends to be flat. As for
skewness, a kurtosis value between —1 and +1 indicates normality and a
value between —1 and —3 or between +1 and +3 indicates a tendency away
from normality. Values below —3 or above +3 indicate certain non-normality.
For birth weight and gestational age, the kurtosis values are small and are not
a cause for concern. However, for length of stay the kurtosis value is 12.675,
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which indicates that the distribution is peaked in a way that is not consistent
with a bell shaped distribution.

Further tests of normality are to divide skewness and kurtosis values by
their standard errors as shown in Table 2.3. In practice, dividing a value by its
standard error produces a critical value that can be used to judge probability.
A critical value that is outside the range of —1.96 to 4+1.96 indicates that a
variable is not normally distributed. The critical values in Table 2.3 confirm
that birth weight has a normal distribution with critical values for both skew-
ness and kurtosis below 1.96 and gestational age is deviating from a normal
distribution with values outside the critical range of +1.96. Length of stay is
certainly not normally distributed with large critical values of 15.22 and 30.25.

Table 2.3 Using skewness and kurtosis statistics to test for a normal distribution

Critical value Critical value

Skewness (SE) (skewness/SE) Kurtosis (SE) (kurtosis/SE)
Birth weight 0.336 (0.206) 1.63 —0.323 (0.408) -0.79
Gestational age —0.590 (0.210) —2.81 0.862 (0.417) 2.07
Length of stay 3.212 (0.211) 15.22 12.675 (0.419) 30.25

Extreme values and outliers

By requesting outliers in Analyze — Descriptive Statistics — Explore, the five
largest and five smallest values of each variable and the case numbers or data
base rows are shown in the Extreme Values table. Outliers and extreme values
that cause skewness must be identified. However, the values printed in the
Extreme Values table are the minimum and maximum values in the data set
and these may not be influential outliers.

Extreme Values

Case number Value

Birth weight Highest 1 5 3900
2 54 3545

3 16 3500

4 50 3500

5 141 3500

Lowest 1 4 1150
2 103 1500

3 120 1620

4 98 1680

5 38 1710

Continued
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Case number Value
Gestational age Highest 1 85 41.0
2 11 40.0
3 26 40.0
4 50 40.0
5 52 40.0°
Lowest 1 2 30.0
2 79 31.0
3 38 31.0
4 4 31.0
5 117 31.5
Length of stay Highest 1 121 244
2 120 211
3 110 153
4 129 138
5 116 131
Lowest 1 32 0
2 33 1
3 12 9
4 22 1
5 16 1

20nly a partial list of cases with the value 40.0 are shown in the table of upper extremes.

Statistical tests of normality

By requesting normality plots in Analyze — Descriptive Statistics — Explore, the
following tests of normality are obtained:

Tests of Normality

Kolmogorov-Smirnov?® Shapiro-Wilk
Statistic df Sig. Statistic df Sig.
Birth weight 0.067 139 0.200* 0.981 139 0.056
Gestational age 0.151 133 0.000 0.951 133 0.000
Length of stay 0.241 132 0.000 0.643 132 0.000

*This is a lower bound of the true significance.
aLilliefors significance correction.

The Tests of Normality table provides the results of two tests: a Kolmogorov—
Smirnov statistic with a Lilliefors significance correction and a Shapiro-Wilk
statistic. A limitation of the Kolmogorov—Smirnov test of normality with-
out the Lilliefors correction is that it is very conservative and is sensitive to
extreme values that cause tails in the distribution. The Lilliefors significance
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correction renders this test a little less conservative. The Shapiro-wilk test
has more statistical power to determine a non-normal distribution than the
Kolmogorov—Smirnov test’. The Shapiro-Wilk test is based on the correlation
between the data and the corresponding normal scores and will have a value
of 1.0 for perfect normality.

A distribution that passes these tests of normality provides extreme con-
fidence that parametric tests can be used. However, variables that do not
pass these tests may not be so non-normally distributed that parametric tests
cannot be used, especially if the sample size is large. This is not to say that
the results of these tests can be ignored but rather that a considered de-
cision using the results of all the available tests of normality needs to be
made.

For both the Shapiro-Wilk and Kolmogorov—Smirnov tests, a P value less
than 0.05 indicates that the distribution is significantly different from normal.
The P values are shown in the column labelled Sig. in the Tests of Normality
table. Birth weight marginally fails the Shapiro-Wilk test but the P values for
gestational age and length of stay show that they have potentially non-normal
distributions. The Kolmogorov—Smirnov test shows that the distribution of
birth weight is not significantly different from a normal distribution with a P
value greater than 0.2. However, the Kolmogorov—Smirnov test indicates that
the distributions of both gestational age and length of stay are significantly
different from a normal distribution at P < 0.0001.

These tests of normality do not provide any information about why a vari-
able is not normally distributed and therefore, it is always important to obtain
skewness and kurtosis values using Analyze — Descriptive Statistics — Explore
and to request plots in order to identity any reasons for non-normality.

Normality plots

Finally, from the commands in Box 2.2, descriptive and normality plots were
requested for each variable. All of the plots should be inspected because each
plot gives very different information.

The histograms show the frequency of measurements and the shape of the
data and therefore provide a visual judgement of whether the distribution
approximates to a bell shape. Histograms also show whether there are any
gaps in the data, whether there are any outlying values and how far any
outlying values are from the remainder of the data.

The normal Q-Q plot shows each data value plotted against the value that
would be expected if the data came from a normal distribution. The values
in the plot are the quantiles of the variable distribution plotted against the
quantiles that would be expected if the distribution was normal. If the vari-
able was normally distributed, the points would fall directly on the straight
line. Any deviations from the straight line indicate some degree of non-
normality.
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The detrended normal Q-Q plots show the deviations of the points from
the straight line of the normal Q-Q plot. If the distribution is normal, the
points will cluster randomly around the horizontal line at zero with an equal
spread of points above and below the line. If the distribution is non-normal,
the points will be in a pattern such as J or an inverted U distribution and the
horizontal line may not be in the centre of the data.

The box plot shows the median as the black horizontal line inside the box
and the inter-quartile range as the length of the box. The inter-quartile range
indicates the 25™ to 75" percentiles, that is the range in which the central
25% to 75% of the data points lie. The whiskers are the lines extending from
the top and bottom of the box. The whiskers represent the minimum and
maximum values when they are within 1.5 times above or below the inter-
quartile range. If values are outside this range, they are plotted as outlying or
extreme values.

Any outlying values that are between 1.5 and 3 box lengths from the upper
or lower edge of the box are shown as open circles, and are identified with
the corresponding number of the data base row. Extreme values that are more
than three box lengths from the upper or lower edge of the box are shown as
asterisks. Extreme and/or outlying values should be checked to see whether
they are univariate outliers (Chapter 3). If there are several extreme values at
either end of the range of the data or the median is not in the centre of the
box, the variable will not be normally distributed. If the median is closer to
the bottom end of the box than to the top, the data are positively skewed. If
the median is closer to the top end of the box, the data are negatively skewed.

In Figure 2.4 the histogram for birth weight shows that this distribution is
not strictly bell shaped but the normal Q-Q plot follows an approximately
normal distribution apart from the tails, and the box plot is symmetrical with
no outlying or extreme values. These features indicate that the mean value
will be an accurate estimate of the centre of the data and that the standard
deviation will accurately describe the spread.

In Figure 2.5 the histogram for gestational age shows that this distribution
has a small tail to the left and only deviates from normal at the lower end of
the normal Q-Q plot. The box plot for this variable appears to be symmetrical
but has a few outlying values and one extreme value at the lower end of the
data values.

In contrast, in Figure 2.6 the histogram for length of stay has a marked
tail to the right so that the distribution deviates markedly from a straight line
on the normal Q-Q plot. On the detrended normal Q-Q plot, the pattern is
similar to a U shape. The box plot shows many outlying values and multiple
extreme values at the upper end of the distribution. Some of the outlying and
extreme values overlap each other so that it is difficult to identify the cases. By
double clicking on the box plot, the plot will be enlarged in the Chart Editor and
the case numbers can be seen more clearly. By clicking on the case numbers,
the display option can be altered so that the outliers and/or extreme values
can be identified by their ID or case number.
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Detrended normal Q—-Q plot of birth weight
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Detrended normal Q-Q plot of gestational age

21
o
o o
o o o
0.0 = o o
© o
£
o) [=]
=2 -2
£ o
c
S -4
8
>
)]
D [=]
_6 4
o o
-8 . . _ . _ .
30 32 34 36 38 40 42
Observed value
Box plot of gestational age
421
o5
40+
38+
36+
=
34+
(@]
324 o7
017
(@]
*2
30+
28
133

Gestational age

Figure 2.5 Continued



40

Chapter 2

Frequency

Expected normal

Histogram
801

60 1

»~
o
x

20 +
Std. dev = 35.78
Mean = 38.1
N=132.00

0.0 40.0 80.0 120.0 160.0 200.0 240.0
20.0 60.0 100.0 140.0 180.0 220.0

Length of stay

Normal Q-Q plot of length of stay

24

-3

100 0 100 200
Observed value

Figure 2.6 Plots of length of stay.

300



Continuous variables 41

Detrended normal Q—Q plot of length of stay
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Kolmogorov-Smirnov test

In addition to the above tests of normality, a Kolmogorov—-Smirnov test can

be obtained as shown in Box 2.3.

SPSS Commands
surgery — SPSS Data Editor

Variable List

Click on Options
One-sample K-S: Options

Click Continue

Click OK

Test Distribution - tick Normal (default)

One-Sample Kolmogorov-Smirnov Test

Analyze — Non parametric Tests — 1-Sample K-S
One-Sample Kolmogorov-Smirnov Test
Highlight Birth weight, Gestational age, Length of stay and click into Test

Missing Values — tick Exclude cases test-by-test (default)

Box 2.3 SPSS commands to conducting a one sample of normality

NPar Tests

One-Sample Kolmogorov-Smirnov Test

Birth weight Gestational age Length of stay

N 139 133 132
Normal parameters®® Mean 2463.99 36.564 38.05

Std. deviation 514.632 2.0481 35.781
Most extreme Absolute 0.067 0.151 0.241
Differences Positive 0.067 0.105 0.241

Negative —0.043 —0.151 —0.202
Kolmogorov-Smirnov Z 0.792 1.741 2.771
Asymp. sig. (two-tailed) 0.557 0.005 0.000

2Test distribution is normal.
bCalculated from data.

The P values for the test of normality in the One-Sample Kolmogorov—
Smirnov Test table are different from Kolmogorov—Smirnov P values obtained
in Analyze — Descriptive Statistics — Explore because the one-sample test shown
here is without the Lilliefors correction. Without the correction applied this
test, which is based on slightly different assumptions about the mean and the
variance of the normal distribution being tested for fit, is extremely conserva-
tive. Once again, the P values suggest that birth weight is normally distributed
but gestational age and length of stay do not pass this test of normality with

P values less than 0.05.
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Table 2.4 Summary of whether descriptive statistics and plots indicate a normal
distribution

Skewness
Mean- Mean + and Critical Overall
median  2SD kurtosis values K-S test Plots decision
Birth weight Probably Yes Yes Yes Yes Probably Yes
Gestational age  Yes Yes Yes No No Probably Yes
Length of stay  No No No No No No No

Deciding whether a variable is normally distributed

The information from the descriptive statistics and normality plots can be sum-
marised as shown in Table 2.4. In the table, Yes indicates that the distribution
is within normal range and No indicates that the distribution is outside the
normal range.

Clearly, the results of tests of normality are not always in agreement. By con-
sidering all of the information together, a decision can be made about whether
the distribution of each variable is normal enough to justify using parametric
tests or whether the deviation from normal is so marked that non-parametric
or categorical tests need to be used. These decisions, which sometimes in-
volve subjective judgements, should be based on all processes of checking for
normality.

Table 2.4 shows that parametric tests are appropriate for analysing birth
weight because this variable is normally distributed. The variable gestational
age is approximately normally distributed with some indications of a small
deviation. However the mean value is a good estimate of the centre of the
data. Parametric tests are robust to some deviations from normality if the
sample size is large, say greater than 100 as is this sample. If the sample size
had been small, say less than 30, then this variable would have to be perfectly
normally distributed rather than approximately normally distributed before
parametric tests could be used.

Length of stay is clearly not normally distributed and therefore this variable
needs to be either transformed to normality to use parametric tests, analysed
using non-parametric tests or transformed to a categorical variable. There are
a number of factors to consider in deciding whether a variable should be
transformed. Parametric tests generally provide more statistical power than
non-parametric tests but if a parametric test does not have a non-parametric
equivalent then transformation is essential. However, transformation can in-
crease difficulties in interpreting the results because few people think naturally
in transformed units. For example, if length of stay is transformed by calcu-
lating its square root, the results of parametric tests will be presented in units
of the square root of length of stay and will be more difficult to interpret and
to compare with results from other studies.
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Transforming skewed distributions

Various mathematical formulae can be used to transform a skewed distribution
to normality. When a distribution has a marked tail to the right hand side,
a logarithmic transformation of scores is often effective*. The advantage of
logarithmic transformations is that they give interpretable results after being
back-transformed into original units’. Other common transformations include
square roots and reciprocals®. When data are transformed and differences in
transformed mean values between two or more groups are compared, the
summary statistics will not apply to the means of the original data but will
apply to the medians of the original data®.

Length of stay can be transformed to logarithmic values using the com-
mands shown in Box 2.4. The transformation LG10 can be clicked in from the
Functions box and the variable can be clicked in from the variable list. Either
base e or base 10 logarithms can be used but base 10 logarithms are a little
more intuitive in that 0 = 1 (10°), 1 = 10 (10'), 2 = 100 (10?), etc. and are
therefore a little easier to interpret and communicate. When using logarithms,
any values that are zero will naturally be declared as invalid and registered as
missing values in the transformed variable.

Box 2.4 SPSS commands for computing a new variable

SPSS Commands
surgery - SPSS Data Editor
Transform — Compute
Compute Variable
Target Variable = LOS2
Scroll down Functions and highlight LG10 (numexpr) and click the arrow
next to Functions
Click Length of stay from the Variable list to obtain Numeric Expression =
LG10 (lengthst)
Click OK

On completion of the logarithmic transformation, an error message will ap-
pear in the output viewer of SPSS specifying any case numbers that have been
set to system missing. In this data set, case 32 has a value of zero for length
of stay and has been transformed to a system missing value for logarithmic
length of stay. If there are only a few cases that cannot be log transformed,
the number of system missing values may not be important. However if many
cases have zero or negative values, a constant can be added to each value to
ensure that the logarithmic transformation can be undertaken’. For exam-
ple, if the minimum value is —2.2, then a constant of 3 can be added to all
values. This value can be subtracted again when the summary statistics are
transformed back to original units.
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Whenever a new variable is created, it must be labelled and its format must
be adjusted. The log-transformed length of stay can be re-assigned in Vari-
able View by adding a label ‘Log length of stay’ to ensure that the output is
self-documented. In addition, the number of decimal places can be adjusted
to an appropriate number, in this case three. Once a newly transtormed vari-
able is obtained, its distribution must be checked again using the Analyze —
Descriptive Statistics — Explore commands shown in Box 2.2, which will provide
the following output.

Explore

Case Processing Summary

Cases
Valid Missing Total
N Per cent N Per cent N Per cent
Log length of stay 131 92.9% 10 7.1% 141 100.0%

The Case Processing Summary table shows that there are now 131 valid
cases for log-transformed length of stay compared with 132 valid cases for
length of stay because case 32, which had a zero value, could not be trans-
formed and has been assigned a system missing value.

Descriptives

Statistic Std. error

Log length of stay Mean 1.4725 0.02623

95% confidence Lower bound 1.4206

interval for mean Upper bound 1.5244

5% trimmed mean 1.4644

Median 1.4314

Variance 0.090

Std. deviation 0.30018

Minimum 0.00

Maximum 2.39

Range 2.39

Inter-quartile range 0.3010

Skewness —0.110 0.212

Kurtosis 4.474 0.420

The Descriptives table shows that mean log length of stay is 1.4725 and

the median value is 1.4314. The two values are only 0.0411 units apart,
which suggests that the distribution is now much closer to being normally
distributed. Also, the skewness value is now closer to zero, indicating no
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significant skewness. The kurtosis value of 4.474 indicates that the distribu-
tion remains peaked, although not as markedly as before. The values for two
standard deviations below and above the mean value, that is 1.4725 4+ (2 x
0.3) or 0.87 and 2.07 respectively, are much closer to the minimum and max-
imum values of 0 and 2.39 for the variable.

Following transformation there is no need to request information of extreme
values because the same data points are still the extreme points.

Dividing skewness by its standard error, that is —0.110/0.212, gives the
critical value of —0.52, indicating a normal distribution. However, dividing
the kurtosis by its standard error, that is 4.474/0.42, gives the critical value
of 10.65, confirming that the distribution remains too peaked to conform to
normality. In practice, peakness is not as important as skewness for deciding
when to use parametric tests because deviations in kurtosis do not bias mean
values.

Tests of Normality

Kolmogorov-Smirnova? Shapiro-Wilk
Statistic df Sig. Statistic df Sig.
Log length of stay 0.097 131 0.004 0.916 131 0.000

aLilliefors Significance Correction.

In the Tests of Normality table, the results of the Kolmogorov—Smirnov and
Shapiro-Wilk tests indicate that the distribution remains significantly different
from a normal distribution at P = 0.004 and P < 0.0001 respectively.

The histogram for the log-transformed variable shown in Figure 2.7 con-
forms to a bell shape distribution better than the original variable except for
some outlying values in both tails and a gap in the data on the left. Such
gaps are a common feature of data distributions when the sample size is
small but they need to be investigated when the sample size is large as in
this case. The lowest extreme value for log length of stay is a univariate out-
lier. Although log length of stay is not perfectly normally distributed, it will
provide less biased P values than the original variable if parametric tests are
used.

Care must be taken when transforming summary statistics in log units back
into their original units®. In general, it is best to carry out all statistical tests
using the transformed scale and only transform summary statistics back into
original units in the final presentation of the results. Thus, the interpretation of
the statistics should be undertaken using summary statistics of the transformed
variable. When a logarithmic mean is anti-logged it is called a geometric mean.
The standard deviation (spread) cannot be back transformed to have the usual
interpretation although the 95% confidence interval can be back transformed
and will have the usual interpretation.
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Detrended normal Q—-Q plot of log length of stay
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Summarising descriptive statistics

In all research studies, it is important to report details of the characteristics
of the study sample or study groups to describe the generalisability of the
results. For this, statistics that describe the centre of the data and its spread are
appropriate. Therefore, for variables that are normally distributed, the mean
and the standard deviation are reported. For variables that are non-normally
distributed, the median and the inter-quartile range are reported.

Statistics of normally distributed variables that describe precision, that is
the standard error and 95% confidence interval, are more useful for compar-
ing groups or making inferences about differences between groups. Table 2.5
shows how to present the characteristics of the babies in the surgery.sav data
set. In presenting descriptive statistics, no more than one decimal point greater
than in the units of the original measurement should be used®.

Table 2.5 Baseline characteristics of the study sample

Distribution in sample

Characteristic N Mean (SD) or median (IQ range)
Birth weight 139 2464.0 g (SD 514.6)

Gestational age 133 36.6 weeks (SD 2.0)

Length of stay 132 27.0 days (1Q range 21.8 days)

Testing for normality in published results

When critically appraising journal articles, it may be necessary to transform a
measure of spread to a measure of precision, or vice versa, for comparing with
results from other studies. Computing a standard deviation from a standard
error, or vice versa, is simple because the formula is

Standard error (SE) = Standard deviation (SD)//n

where 7 is the sample size.

Also, by adding and subtracting two standard deviations from the mean, it
is possible to roughly estimate whether the distribution of the data conforms
to a bell shaped distribution. For example, Table 2.6 shows summary statistics
of lung function shown as the mean and standard deviation in a sample of
children with severe asthma. In this table, FEV; is forced expiratory volume
in one second and it is rare that this value would be below 30%, even in a
child with severe lung disease.

Table 2.6 Mean lung function values of two study groups

%predicted normal value Active group Control group P value

FEV; (mean =+ SD) 37.5+16.0 36.0 £ 15.0 0.80

In the active group, the lower value of the 95% range of per cent predicted
FEV; is 37.5% — (2 x 16.0)%, which is 5.5%. Similarly the lower value of
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95% range for the control group is 6.0%. Both of these values for predicted
FEV, are implausible and are a clear indication that the data are skewed, that
the standard deviation is not an appropriate statistic to describe the spread of
the data and that parametric tests cannot be used to compare the groups.

If the lower estimate of the 95% range is too low, as in Table 2.6, the mean
will be an overestimate of the median value. If the lower estimate is too high,
the mean value will be an underestimate of the median value. In Table 2.6,
the variables are significantly skewed with a tail to the right hand side. In
this case, the median and inter-quartile range would provide more accurate
estimates of the centre, of the differences between the groups and spread of
the data and non-parametric tests would be needed to compare the groups.

Notes for critical appraisal

Questions to ask when assessing descriptive statistics published in the literature
are shown in Box 2.5.

Box 2.5 Questions for critical appraisal

The following questions should be asked when appraising published re-

sults:

e Have several tests of normality been considered and reported?

e Are appropriate statistics used to describe the centre and spread of the
data?

e Do the values of the mean £2 SD represent a reasonable 95% range?

o If a distribution is skewed, has the mean of either group been underes-
timated or overestimated?

o If the data are skewed, have the median and inter-quartile range been
reported?
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CHAPTER 3

Continuous variables:
comparing two independent
samples

Do not put faith in what statistics say until you have carefully considered what they
do not say.
WILLIAM W. WATT

Objectives

The objectives of this chapter are to explain how to:

e conduct an independent two-sample parametric or non-parametric test

« assess for homogeneity of variances

« interpret effect sizes and 95% confidence intervals

« report the results in a table or a graph

« critically appraise the analysis of data from two independent groups in the
literature

Comparing the means of two independent samples

A two-sample f-test is a parametric test used to estimate whether the mean
value of a normally distributed outcome variable is significantly different
between two groups of participants. This test is also known as a Student’s
t-test or an independent samples ¢-test. Two-sample ¢-tests are classically used
when the outcome is a continuous variable and when the explanatory variable
is binary. For example, this test would be used to assess whether mean height
is significantly different between a group of males and a group of females.

A two-sample ¢-test is used to assess whether two mean values are similar
enough to have come from the same population or whether their difference
is large enough for the two groups to have come from different populations.
Rejecting the null hypothesis of a two-sample ¢-test indicates that the differ-
ence in the means of the two groups is large and is not due to either chance
or sampling variation.

The assumptions that must be met to use a two-sample z-test are shown in
Box 3.1.

51
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Box 3.1 Assumptions for using a two-sample z-test

The assumptions that must be satisfied to conduct a two-sample ¢-test are:

« the groups must be independent, that is each participant must be in one
group only

o the measurements must be independent, that is a participant’s measure-
ment can be included in their group once only

o the outcome variable must be on a continuous scale

o the outcome variable must be normally distributed in each group

The first two assumptions in Box 3.1 are determined by the study design. To
conduct a two-sample ¢-test, each participant must be on a separate row of
the spreadsheet and each participant must be included in the spreadsheet once
only. In addition, one of the variables must indicate the group to which the
participant belongs.

The fourth assumption that the outcome variable must be normally dis-
tributed in each group must also be met. If the outcome variable is not nor-
mally distributed in each group, a non-parametric test or a transformation of
the outcome variable will be needed. However, two-sample ¢-tests are fairly
robust to some degree of non-normality if the sample size is large and if there
are no influential outliers. The definition of a ‘large’ sample size varies but
there is common consensus that ¢-tests can be used when the sample size of
each group contains at least 30 to 50 participants. If the sample size is less
than 30, if outliers significantly influence one of the distributions or if the
distribution is non-normal, then a two-sample ¢-test should not be used.

One- and two-tailed tests

When a hypothesis is tested, it is possible to conduct a one-tailed (sided) or a
two-tailed (sided) test. A one-tailed test is used to test an effect in one direction
only (i.e. mean; > mean,) whereas a two-tailed test is used to decide whether
one mean value is smaller or larger than another mean value (i.e. mean; #
mean,). In the majority of studies, it is important to always use a two-tailed
test. If a one-tailed test is used, the direction should be specified in the study
design prior to data collection. As shown in Figure 3.1, a two-tailed test halves
the level of significance (i.e. 0.05) in each tail of the distribution.

Assuming that the null hypothesis of no difference between population
means is true and pairs of samples were repeatedly compared to each other,
in 95% of the cases the observed ¢ values would fall within the critical 7 value
range and differences would be due to sampling error. Observed ¢ values that
fall outside this critical range, which occurs in 5% of the cases, represent an
unlikely ¢ value to occur when the null hypothesis is true, therefore the null
hypothesis is rejected.

For a two-tailed test, 2.5% of the rejection region is placed in the positive tail
of the distribution (i.e. mean; > mean;) and 2.5% is placed in the negative tail
(i.e. mean; < mean,). When a one-tailed test is used, the 5% rejection region
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Rejection
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Figure 3.1 Statistical model and rejection regions for a two-tailed ¢-test with P = 0.05.

is placed only in one tail of the distribution. For example, if the hypothesis
mean; > mean, was being tested, the 5% rejection region would be in the
positive end of the tail. This means that for one-tailed tests, P values on the
margins of significance are reduced and that the difference is more likely to be
significant. For this reason, one-tailed tests are rarely used in health research.

Homogeneity of variance

In addition to testing for normality, it is also important to inspect whether the
variance (the square of the standard deviation) in each group is similar, that is
whether there is homogeneity of variances between groups. If the variance is
different between the two groups, that is there is heterogeneity of variances,
then the degrees of freedom and ¢ value associated with a two-sample ¢-test are
calculated differently. In this situation, a fractional value for degrees of free-
dom is used and the ¢-test statistics is calculated using individual group vari-
ances. In SPSS, Levene’s test for equality of variances is an automatic part of the
two-sample ¢-test routine and the information is printed in the SPSS output.

Effect size

Effect size is a term used to describe the size of the difference in mean values
between two groups relative to the standard deviation. Effect sizes are im-
portant because they can be used to describe the magnitude of the difference
between two groups in either experimental or observational study designs.
The effect size between two independent groups is calculated as follows:

Effect size = (Mean, — Mean;)/SD

where SD denotes the standard deviation.
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Effect sizes are measured in units of the standard deviation. The standard
deviation around each group’s mean value indicates the spread of the mea-
surements in each group and is therefore useful for describing the distance
between the two mean values. If the variances of the two groups are homoge-
neous then the standard deviation of either group can be used in calculating
the effect size!. If there is an experimental group (i.e. a group in which a treat-
ment is being tested) and a control group, the standard deviation of the control
group should be used. If the sample size of the control group is large, the stan-
dard deviation will be an unbiased estimate of the population who have not
been given the treatment. When the sample size is small or when there is
no control group, the pooled standard deviation, which is the average of the
standard deviations of the two groups, is used. The pooled standard deviation
is the root mean square of the two standard deviations and is calculated as:

SD;2 + SD,?2
Pooled standard deviation = \/[%;”]

where SD; = standard deviation of group 1 and SD, = standard deviation of
group 2.

An effect size of 0.2 is considered small, 0.5 is considered medium and
0.8 is considered large?. Effect size is generally interpreted assuming that the
two groups have a normal distribution and can be considered as the average
percentile ranking of the experimental group relative to the control group.
Therefore, an effect size of 1 indicates that the mean of the experimental
group is at the 84" percentile of the control group'.

Figure 3.2 shows the distribution of a variable in two groups that have mean
values that are one standard deviation apart, that is an effect size of 1 SD.

Mean 1 Mean 2

3 =2 - 0 1 2 3 4 5
Standard deviations

Figure 3.2 Mean values of two groups that are one standard deviation apart.
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Study design

Two-sample ¢-tests can be used to analyse data from any type of study de-
sign where the explanatory variable falls into two groups, e.g. males and fe-
males, cases and controls, and intervention and non-intervention groups. For
a two-sample z-test, there must be no relation or dependence between the
participants in each of the two groups. Therefore, two-sample ¢-tests cannot
be used to analyse scores from follow-up studies where data from a partici-
pant are obtained on repeated occasions for the same measure or for matched
case-control studies in which participants are treated as pairs in the analyses.
In these types of studies, a paired ¢-test should be used.

It is important to interpret significant P values in the context of the size of
the difference between the groups and the sample size. The size of the study
sample is an important determinant of whether a difference in means between
two groups is statistically significant. Ideally, studies should be designed and
conducted with a sample size that is sufficient for a clinically important differ-
ence between two groups to become statistically significant.

If a small effect size and/or a lower level of significance is used, then a
large sample size will be needed to detect the effect with sufficient power?.
When designing a study, a power analysis should be conducted to calculate the
sample size that is needed to detect a pre-determined effect size with sufficient
statistical power. If the sample size is too small, then type II errors may occur,
that is a clinically important difference between groups will not be statistically
significant. The influence of sample size can make the results of statistical tests
difficult to interpret. In addition to specialised computer programs, there are
a number of resources that can be used to calculate sample size and assess the
power of a study (see Useful Web sites).

In many studies, the two groups will have unequal sample sizes. In this
situation, a two-sample ¢-test can still be used but in practice leads to a loss
of statistical power, which may be important when the sample size is small.
For example, a study with three times as many cases as controls and a total
sample size of 100 participants (75 cases and 25 controls) has roughly the
same statistical power as a balanced study with 76 participants (38 cases and
38 controls)>. Thus, the unbalanced study requires the recruitment of an extra
24 participants to achieve the same statistical power.

Research question

The data file babies.sav contains the information of birth length, birth weight
and head circumference measured at 1 month of age in 256 babies. The babies
were recruited during a population study in which one of the inclusion criteria
was that the babies had to have been a term birth. The research question and
null hypothesis are shown below. Unlike the null hypothesis, the research
question usually specifies the direction of effect that is expected. Neverthe-
less, a two-tailed test should be used because the direction of effect could be
in either direction and if the effect is in a direction that is not expected, it is
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usually important to know this especially in experimental studies. In this ex-
ample, all three outcome measurements (birth length, birth weight and head
circumference) are continuous and the explanatory measurement (gender) is
a binary group variable.

Questions: Are males longer than females?
Are males heavier than females?
Do males have a larger head circumference than females?

Null hypothesis: ~ There is no difference between males and females in
length.
There is no difference between males and females in
weight.
There is no difference between males and females in head
circumference.

Variables: Outcome variables = birth length, birth weight and head

circumference (continuous)
Explanatory variable = gender (categorical, binary)

The appropriate statistic that is used to test differences between groups is the
t value. If the ¢ value obtained from the two-sample ¢-test falls outside the ¢
critical range and is therefore in the rejection region, the P value will be small
and the null hypothesis will be rejected. In SPSS, the P value is calculated so
it is not necessary to check statistical tables to obtain ¢ critical values. When
the null hypothesis is rejected, the conclusion is made that the difference
between groups is statistically significant and did not occur by chance. It is
important to remember that statistical significance does not only reflect the
size of the difference between groups but also reflects the sample size. Thus,
small unimportant differences between groups can be statistically significant
when the sample size is large.

Statistical analyses

Before differences in outcome variables between groups can be tested, it is
important that all of the assumptions specified in Box 3.1 are checked. In the
data file babies.sav, the first assumption is satisfied because all the males are
in one group (coded 1) and all the females are in a separate group (coded 2).
In addition, each participant appears only once in their group, therefore the
groups and the measurements are independent. All three outcome variables
are on a continuous scale for each group, so the fourth assumption of the out-
come variable being normally distributed must be tested. Descriptive statistics
need to be obtained for the distribution of each outcome variable in each
group rather than for the entire sample. It is also important to check for uni-
variate outliers, calculate the effect size and test for homogeneity of variances.
It is essential to identify outliers that tend to bias mean values of groups and
make them more different or more alike than median values show they are.
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Box 3.2 shows how to obtain the descriptive information for each group in
SPSS.

Box 3.2 SPSS commands to obtain descriptive statistics

SPSS Commands
babies — SPSS Data Editor
Analyze— Descriptive Statistics— Explore
Explore
Highlight Birth weight, Birth length, and Head circumference and click
into Dependent List
Highlight Gender and click into Factor List
Click on Plots
Explore: Plots
Boxplots — Factor levels together (default setting)
Descriptive — untick Stem and leaf (default setting), tick Histogram and
tick Normality plots with tests
Click Continue
Explore
Click on Options
Explore: Options
Missing Values — tick Exclude cases pairwise
Click Continue
Explore
Click OK

The Case Processing Summary table indicates that there are 119 males and
137 females in the sample and that none of the babies have missing values for
any of the variables.

Explore

Case Processing Summary

Cases
Valid Missing Total
Gender N Percent N Percent N Percent
Birth weight (kg) Male 119 100.0% 0 .0% 119 100.0%
Female 137 100.0% 0 .0% 137 100.0%
Birth length (cms) Male 119 100.0% 0 0% 119 100.0%
Female 137 100.0% 0 .0% 137 100.0%
Head circumference Male 119 100.0% 0 .0% 119 100.0%
(cms) Female 137 100.0% 0 .0% 137 100.0%
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Descriptives

Gender Statistic  Std. error
Birth weight (kg) Male Mean 3.4430 0.03030
95% confidence Lower bound  3.3830
interval for mean Upper bound  3.5030
5% trimmed mean 3.4383
Median 3.4300
Variance 0.109
Std. deviation 0.33057
Minimum 2.70
Maximum 4.62
Range 1.92
Inter-quartile range 0.4700
Skewness 0.370 0.222
Kurtosis 0.553 0.440
Female Mean 3.5316 0.03661
95% confidence Lower bound  3.4592
interval for mean Upper bound  3.6040
5% trimmed mean 3.5215
Median 3.5000
Variance 0.184
Std. deviation 0.42849
Minimum 2.71
Maximum 4.72
Range 2.01
Inter-quartile range 0.5550
Skewness 0.367 0.207
Kurtosis —-0.128 0.411
Birth length (cm) Male Mean 50.333 0.0718
95% confidence Lower bound  50.191
interval for mean Upper bound  50.475
5% trimmed mean 50.342
Median 50.500
Variance 0.614
Std. deviation 0.7833
Minimum 49.0
Maximum 51.5
Range 2.5
Inter-quartile range 1.000
Skewness -0.354 0.222
Kurtosis —0.971 0.440
Female Mean 50.277 0.0729
95% confidence Lower bound  50.133
interval for mean Upper bound  50.422

Continued
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Gender Statistic  Std. error

5% trimmed mean 50.264

Median 50.000

Variance 0.728

Std. deviation 0.8534

Minimum 49.0

Maximum 52.0

Range 3.0

Inter-quartile range 1.500

Skewness -0.117 0.207

Kurtosis —1.084 0.411
Head circumference Male Mean 34942 0.1197
(cm) 95% confidence Lower bound  34.705

interval for mean Upper bound  35.179

5% trimmed mean 34.967

Median 35.000

Variance 1.706

Std. deviation 1.3061

Minimum 31.5

Maximum 38.0

Range 6.5

Inter-quartile range 2.000

Skewness -0.208 0.222

Kurtosis 0.017 0.440

Female Mean 34.253 0.1182

95% confidence Lower bound  34.019

interval for mean Upper bound  34.486

5% trimmed mean 34.301

Median 34.000

Variance 1.914

Std. deviation 1.3834

Minimum 29.5

Maximum 38.0

Range 8.5

Inter-quartile range 1.500

Skewness —0.537 0.207

Kurtosis 0.850 0.411

The first check of normality is to compare the mean and median values pro-
vided by the Descriptives table and summarised in Table 3.1. The differences
between the mean and median values are small for birth weight and relatively
small for birth length and for head circumference.

Information from the Descriptives table indicates that the skewness and
kurtosis values are all less than or close to 1, suggesting that the data are



Table 3.1 Testing for a normal distribution

Skewness/SE Kurtosis/SE

Gender Mean - median Skewness (SE) (critical value) Kurtosis (SE) (critical value)
Birth weight Male 0.013 0.370 (0.222) 1.67 0.553 (0.440) 1.26

Female 0.032 0.367 (0.207) 1.77 —0.128 (0.411) —0.31
Birth length Male —-0.167 —0.354 (0.222) —1.59 —0.971 (0.440) —2.21

Female 0.277 —0.117 (0.207) -0.57 —1.084 (0.411) -2.64
Head Male —0.058 —0.208 (0.222) —-0.94 0.017 (0.440) 0.04
circumference Female 0.253 —0.537 (0.207) —2.59 0.850 (0.411) 2.07

09
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approximately normally distributed. Calculations of normality statistics for
skewness and kurtosis in Table 3.1 show that the critical values of kurtosis/SE
for birth length for both males and females are less than —1.96 and outside the
normal range, indicating that the distributions of birth length are relatively flat.
The head circumference of females is negatively skewed because the critical
value of skewness/SE is less than —1.96 and outside the normal range. Also,
the distribution of head circumference for females is slightly peaked because
the critical value of kurtosis/SE for this variable is outside the normal range
of +1.96.

From the Descriptives table, it is possible to also compute effect sizes and
estimate homogeneity of variances as shown in Table 3.2. The effect sizes
using the pooled standard deviation are small for birth weight, very small
for birth length and medium for head circumference. The variance of birth
weight for females compared to males is 0.109:0.184 or 1:1.7. This indicates
that females have a wider spread of birth weight scores, which is shown by
similar minimum values for males and females (2.70 vs 2.71 kg) but a higher
maximum value for females (4.62 vs 4.72 kg). For birth length and head
circumference, males and females have similar variances with ratios of 1:1.12
and 1:1.1 respectively.

Table 3.2 Effect sizes and homogeneity of variances

Difference in Effect Maximum and Variance
means and SD size (SD) minimum variance ratio
Birth weight 3.443 — 3.532/0.38 —-0.23 0.184, 0.109 1:1.7
Birth length 50.33 — 50.28/0.82 0.06 0.728,0.614 1:1.2
Head circumference 34.94 — 34.25/1.35 0.51 1.914, 1.706 1:1.1
Tests of Normality
Kolmogorov-Smirnov?® Shapiro-Wilk
Gender Statistic df Sig. Statistic df Sig.
Birth weight (kg) Male 0.044 119 0.200* 0.987 119 0.313
Female 0.063 137 0.200* 0.983 137 0.094
Birth length (cm) Male 0.206 119  0.000 0.895 119 0.000
Female 0.232 137 0.000 0.889 137 0.000
Head circumference Male 0.094 119 0.012 0.977 119 0.037
(cm) Female 0.136 137 0.000 0.965 137 0.001

*This is a lower bound of the true significance.
aLilliefors significance correction.

The Tests of Normality table shows that the distribution of birth weight for
males and females is not significantly different from a normal distribution
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and therefore passes the test of normality. However, both the Kolmogorov—
Smirnov and Shapiro—-Wilk tests of normality indicate that birth length and
head circumference for males and females are significantly different from a
normal distribution.

The histograms shown in Figure 3.3 indicate that the data for birth weight
of males and females follow an approximately normal distribution with one or
two outlying values to the right hand side. The box plots shown in Figure 3.3
indicate that there is one outlying value for males and two outlying values for
females that are 1.5 to 3 box lengths from the upper edge of the box. Both
groups have outlying values at the high end of the data range that would tend
to increase the mean value of each group. To check whether these outlying
values are univariate outliers, the mean of the group is subtracted from the
outlying value and then divided by the standard deviation of the group. This
calculation converts the outlying value to a z score. If the absolute value of the
z score is greater than 3, then the value is a univariate outlier*. If the sample
size is very small, then an absolute z score greater than 2 should be considered
to be a univariate outlier?.

For the birth weight of males, the outlying value is the maximum value of
4.62 and is case 249. By subtracting the mean from this value and dividing by
the standard deviation thatis ((4.62 — 3.44)/0.33), a z value of 3.58 is obtained
indicating that case 249 is a univariate outlier. This score is an extreme value
compared to the rest of the data points and should be checked to ensure that
it is not a transcribing or data entry error. Checking shows that the score was
entered correctly and came from a minority ethnic group. There is only one
univariate outlier and the sample size is large and therefore it is unlikely that
this outlier will have a significant influence on the summary statistics. If the
sample size is large, say at least 100 cases, then a few cases with z scores greater
than the absolute value of 3 would be expected by chance?.

If there were more than a few univariate outliers, a technique that can
be used to reduce the influence of outliers is to transform the scores so that
the shape of the distribution is changed. The outliers will still be present on
the tails of the transformed distribution, but their influence will be reduced®.
If there are only a few outliers, another technique that can be used is to change
the score for the outlier so it is not so extreme, for example by changing
the score to one point larger or smaller than the next extreme value in the
distribution”®.

For illustrative purposes, the case that is a univariate outlier for birth weight
of males will be changed so that it is less extreme. Using the Analyze — Descrip-
tive Statistics — Explore commands and requesting outliers as shown in Box 2.2
the next extreme value is obtained, which is case 149 with a value of 4.31.
If a value of 1 were added to the next extreme value this would give a value
of 5.31, which would be the changed value for the univariate outlier, case
249. However, this value is higher than the actual value of case 249, therefore
this technique is not suitable. An alternative is that the univariate outlier is
changed to a value that is within three z scores of the mean. For birth weight
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Figure 3.3 Plots of birth weight by gender.
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of males, this value would be 4.43 thatis (0.33 x 3) + 3.44. This value is lower
than the present value of case 249 and slightly higher than the next extreme
value, case 149. Therefore, the value of case 249 is changed from 4.62 to 4.43.
This information should be recorded in the study handbook and the method
recorded in any publications.

After the case has been changed, the Descriptives table for birth weight
of males should be obtained with new summary statistics. This table shows
that the new maximum value for birth weight is 4.43. The mean of 3.4414 is
almost the same as the previous mean of 3.4430, and the standard deviation,
skewness and kurtosis values of the group have slightly decreased, indicating
a slightly closer approximation to a normal distribution.

Descriptives

Gender Statistic  Std. error
Birth weight (kg) Male Mean 3.4414 0.02982
95% confidence Lower bound  3.3824
interval for mean Upper bound  3.5005
5% trimmed mean 3.4383
Median 3.4300
Variance 0.106
Std. deviation 0.32525
Minimum 2.70
Maximum 4.43
Range 1.73
Inter-quartile range 0.4700
Skewness 235 0.222
Kurtosis .028 0.440
Female Mean 3.5316 0.03661
95% confidence Lower bound  3.4592
interval for mean Upper bound  3.6040
5% trimmed mean 3.5215
Median 3.5000
Variance 0.184
Std. deviation 0.42849
Minimum 2.71
Maximum 4.72
Range 2.01
Inter-quartile range 0.5550
Skewness 0.367 0.207
Kurtosis -0.128 0.411

For the birth weight of females, cases 131 and 224 are outlying values and

are also from the same minority ethic group as case 249. Case 131 is the
higher of the two values and is the maximum value of the group with a value
of 4.72, which is 2.77 standard deviations above the group mean and is not
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a univariate outlier. Therefore, case 224 is not a univariate outlier and the
values of both cases 131 and 224 are retained.

Another alternative to transforming data or changing the values of uni-
variate outliers is to omit the outliers from the analysis. If there were more
univariate outliers from the same minority ethnic group, the data points could
be included so that the results could be generalised to all ethnic groups in the
recruitment area. Alternatively, all data points from the minority group could
be omitted regardless of outlier status although this would limit the general-
isability of the results.

The decision of whether to omit or include outlying values is always difficult.
If the sample was selected as a random sample of the population, omission of
some participants from the analyses should not be considered.

The histograms shown in Figure 3.4 indicate that birth length of males and
females does not follow a classic normal distribution and explains the kurtosis
statistics for males and females in the Descriptives table. The birth length of
both males and females has a narrow range of only 49 to 52 cm as shown
in the Descriptives table. The histograms show that birth length is usually
recorded to the nearest centimetre and rarely to 0.5 cm (Figure 3.4). This
rounding of birth length may be satisfactory for obstetric records but it would
be important to ensure that observers measure length to an exact standard
in a research study. Since birth length has only been recorded to the nearest
centimetre, summary statistics for this variable should be reported using no
more than one decimal place.

The box plots shown in Figure 3.4 confirm that females have a lower median
birth length than males but have a wider absolute range of birth length values
as indicated by the length of the box. This suggests that the variances of each
group may not be homogeneous.

The histograms for head circumference shown in Figure 3.5 indicate that the
data are approximately normally distributed although there is a slight tail to
the left for females. This is confirmed by the box plot in Figure 3.5 that shows
a few outlying values at the lower end of the distribution, indicating that a
few female babies have a head circumference that is smaller than most other
babies in the group. The smallest value is case 184 with a head circumference
of 29.5, which has a z score of 3.44 and is a univariate outlier. The next smallest
value is case 247 with a value of 30.2, which has a z score of 2.93. There is
only one univariate outlier, which is expected in this large sample as part of
normal variation. It is unlikely that this one outlier will have a significant
impact on summary statistics, so it is not adjusted and is included in the data
analyses. The maximum value for head circumference of females is case 108
with a value of 38, which has a z value of 2.71 and is not a univariate outlier.

Finally, after the presence of outliers has been assessed and all tests of nor-
mality have been conducted, the tests of normality can be summarised as
shown in Table 3.3. In the table, ‘yes’ indicates that the distribution is within
the normal range and ‘no’ indicates that the distribution is outside the normal
range.
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Figure 3.4 Plots of birth length by gender.
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Table 3.3 Summary of whether descriptive statistics indicates a normal distribution in
each group

Mean - Overall
median Skewness Kurtosis K-Stest Plots decision
Birth weight Males Yes Yes Yes Yes Yes Yes
Females Yes Yes Yes Yes Yes Yes
Birth length Males Yes Yes No No No Yes
Females Probably Yes No No No Yes
Head Males Yes Yes Yes No Yes Yes
circumference  Females Probably No No No Yes Yes

Based on all checks of normality, the birth weight of males and females
is normally distributed so a two-sample ¢-test can be used. The distribution
of birth length of males and females has a flat shape but does not have any
outliers. While birth length of both males and females has some kurtosis, this
has less impact on summary statistics than if the data were skewed. The vari-
able head circumference is normally distributed for males but for females has
some slight skewness caused by a few outlying values. However, the mean and
median values for females are not largely different. Also, in the female group
there is only one outlier and the number of outlying values is small and the
sample size is large, and a ¢-test will be robust to these small deviations from
normality. Therefore, the distribution of each outcome variable is approxi-
mately normally distributed for both males and females, and a two-sample
t-test can be used to test between group differences.

Two-sample t-test

A two-sample ¢-test is basically a test of how different two group means are in
terms of their variance. Clearly, if there was no difference between the groups,
the difference to variance ratio would be close to zero. The ¢ value becomes
larger as the difference between the groups increases in respect to their vari-
ances. An approximate formula for calculating a ¢ value, when variances are
equal is:

1= (x1 —x2)//(sp>/m + 557/ 12)

where x is the mean, s,? is the pooled variance and # is the sample size of
each group. Thus, ¢ is the difference between the mean values for the two
groups divided by the standard error of the difference. When variances of
the two groups are not equal, that is Levene’s test for equality of variances is
significant, individual group variances and not the pooled variance are used
in calculating the ¢ value. Box 3.3 shows the SPSS commands to obtain a two-
sample ¢-test in which the numbered coding for each group has to be entered.
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Box 3.3 SPSS commands to obtain a two-sample ¢-test

SPSS Commands
babies — SPSS Data Editor
Analyze — Compare Means — Independent Samples T Test
Independent-Samples T-Test
Highlight Birth weight, Birth length and Head circumference and click into
Test Variable(s)
Highlight Gender and click into Group Variable
Click on Define Groups
Define Groups
Enter coding: 1 for Group 1 and 2 for Group 2
Click Continue
Independent-Samples T-Test
Click OK

T-Test

Group Statistics

Std. error

Gender N Mean Std. deviation mean
Birth weight (kg) Male 119 3.4414 0.32525 0.02982

Female 137 3.5316 0.42849 0.03661
Birth length (cm) Male 119 50.333 0.7833 0.0718

Female 137 50.277 0.8534 0.0729
Head circumference Male 119 34.942 1.3061 0.1197
(cm) Female 137 34.253 1.3834 0.1182

The first Group Statistics table shows summary statistics, which are identical
to the statistics obtained in Analyze — Descriptive Statistics — Explore. However,
there is no information in this table that would allow the normality of the
distributions in each group or the presence of influential outliers to be assessed.
Thus, it is important to always obtain full descriptive statistics to check for
normality prior to conducting a two-sample z-test.

In the Independent Samples Test table (p. 70), the first test is Levene’s test
of equal variances. A P value for this test that is less than 0.05 indicates that
the variances of the two groups are significantly different and therefore that
the ¢ statistics calculated assuming variances are not equal should be used.
The variable birth weight does not pass the test for equal variances with a
P value of 0.007 but this was expected because the statistics in the Descriptives
table showed a 1:1.7, or almost two-fold, difference in variance (Table 3.2).
For this variable, the statistics calculated assuming variances are not equal is
appropriate. However, both birth length and head circumference pass the test



Independent Samples Test

Levene’s test for

t-test for equality of means

95% confidence
interval of the

equality of variances i difference
Sig. (Two- Mean Std. error
F Sig. t df tailed) difference difference Lower Upper
Birth weight (kg) Equal variances
assumed 7.377 0.007 —1.875 254 0.062 —0.0902 0.04812 —0.18498 0.00455
Equal variances
not assumed —1.911 249.659 0.057 —0.0902 0.04721 —0.18320 0.00277
Birth length (cm) Equal variances
assumed 2.266 0.133 0.538 254 0.591 0.055 0.1030 —0.1473 0.2581
Equal variances
not assumed 0.541 253.212 0.589 0.055 0.1023 —0.1461 0.2569
Head Equal variances
circumference assumed 0.257 0.613 4.082 254 0.000 0.689 0.1689 0.3568 1.0221
(cm) Equal variances
not assumed 4.098 252.221 0.000 0.689 0.1682 0.3581 1.0208
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of equal variances and the differences between genders can be reported using
the ¢ statistics that have been calculated assuming equal variances.

For birth weight, the appropriate ¢ statistic can be read from the line Equal
variances not assumed. The t statistic for birth length and head circumference
can be read from the line Equal variances assumed. The t-test P value indicates
the likelihood that the differences in mean values occurred by chance. If the
likelihood is small, that is less than 0.05, the null hypothesis can be rejected.
For birth weight, the P value for the difference between the genders does not
reach statistical significance with a P value of 0.057. This P value indicates
that there is a 5.7%, or 57 in 1000, chance of finding this difference if the two
groups in the population have equal means.

For birth length, there is clearly no difference between the genders with a P
value of 0.591. For head circumference, there is a highly significant difference
between the genders with a P value of <0.0001. The head circumference
of female babies is significantly lower than the head circumference of male
babies. This P value indicates that there is less than a 1 in 1000 chance of this
difference being found by chance if the null hypothesis is true.

Confidence intervals

Confidence intervals are invaluable statistics for estimating the precision
around a summary statistic such as a mean value and for estimating the mag-
nitude of the difference between two groups. For mean values, the 95% con-
fidence interval is calculated as follows:

Confidence interval (CI) = Mean % (1.96 x SE)

where SE = standard error.

Thus, using the data from the Group Statistics table provided in the SPSS
output for a z-test, the confidence interval for birth weight for males would
be calculated as follows:

95% confidence interval = 3.441 £ (1.96 x 0.0298) = 3.383, 3.499

These values correspond to the 95% confidence interval lower and upper
bounds shown in the Descriptives table. To calculate the 99% confidence inter-
val, the critical value of 2.57 instead of 1.96 would be used in the calculation.
This would give a wider confidence interval that would indicate the range in
which the true population mean lies with more certainty.

The confidence intervals of two groups can be used to assess whether there
is a significant difference between the two groups. If the 95% confidence
interval of one group does not overlap with the confidence interval of another,
there will be a statistically significant difference between the two groups. The
interpretation of the overlapping of confidence intervals when two groups are
compared is shown in Table 3.4.
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Table 3.4 Interpretation of 95% confidence intervals

Relative position of confidence intervals Statistical significance between groups
Do not overlap Highly significant difference
Overlap, but one summary statistic is not Possibly significant, but not highly

within the confidence interval for the other

Overlap to a large extent Definitely not significant
Group I - i
Group 1T A e
Group I1I - ; 4
0 5 10 15 20 25 30

Mean value of group with 95% CI

Figure 3.6 Interpretation of the overlap between 95% confidence intervals.

Figure 3.6 shows the mean values of an outcome measurement, say per
cent change from baseline, in three independent groups. The degree of over-
lap of the confidence intervals reflects the P values. For the comparison of
group I vs III the confidence intervals do not overlap and the group means are
significantly different at P < 0.0001. For the comparison of group I vs II, the
confidence intervals overlap to a large extent and the group means are not
significantly different at P = 0.52. For the comparison of group II vs III, where
one summary statistic is not within the confidence interval of the other group,
the difference between group means is marginally significant at P = 0.049.

In the data set, babies.sav the means and confidence intervals of the out-
come variable for each group can be summarised as shown in Table 3.5.
The overlap of the 95% confidence intervals confirms the between group
P values.

Finally, in the Independent Samples Test table, the mean difference and its
95% confidence interval were also reported. The mean difference is the abso-
lute difference between the mean values for males and females. The direction
of the mean difference is determined by the coding used for gender. With
males coded as 1 and females as 2, the differences are represented as males —
females. Therefore, this section of the table indicates that males have a mean
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Table 3.5 Summary of mean values and interpretation of 95% confidence intervals

Mean (95% Cl) Mean (95% CI)

Males Females Overlap of CI  Significance
Birth weight 3.44 (3.38, 3.50) 3.53 (3.46, 3.60) Slight P =0.06
Birth length 50.3 (50.1, 50.5) 50.3 (50.1, 50.4) Large P =0.59
Head circumference 34.9 (34.7, 35.2) 34.3 (34.0, 34.5) None P < 0.0001

birth weight that is 0.0902 kg lower than females but a mean birth length that
is 0.055 cm longer and a mean head circumference that is 0.689 cm larger
than females.

Obviously, a zero value for mean difference would indicate no difference
between groups. Thus, a 95% confidence interval around the mean difference
that contains the value of zero, as it does for birth length, suggests that the
two groups are not significantly different. A confidence interval that is shifted
away from the value of zero, as it is for head circumference, indicates with
95% certainty that the two groups are different. The slight overlap with zero
for the 95% confidence interval of the difference for birth weight reflects the
marginal P value.

Reporting the results in a table

The results from two-sample ¢-tests can be reported as shown in Table 3.6.
In addition to reporting the P value for the difference between genders, it is
important to report the characteristics of the groups in terms of their mean
values and standard deviations, the effect size and the mean between group
difference and 95% confidence interval. Except for effect size, these statistics
are all provided on the SPSS ¢-test output.

Table 3.6 Summary of birth details by gender

Mean
Males Females Effect difference
Mean (SD) Mean (SD) size (SD) and 95% ClI P value
Birth weight (kg) 3.44 (0.33) 3.53(0.43) -0.23 —0.09 (-0.18, —0.003) 0.06
Birth length (cm) 50.3 (0.78) 50.3 (0.85) 0.06 0.06 (—0.15, 0.26) 0.59
Head circumference 34.9 (1.31) 34.3(1.38) 0.51 0.69 (0.36, 1.02) <0.0001

(cm)

The P values show the significance of the differences, but the effect size
and mean difference give an indication of the magnitude of the differences
between the groups. As such, these statistics give a meaningful interpretation
to the P values.
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Reporting results in a graph

Graphs are important tools for conveying the results of research studies. The
most informative figures are clear and self-explanatory. For mean values from
continuous data, dot plots are the most appropriate graph to use. In sum-
marising data from continuous variables, it is important that bar charts are
only used when the distance from zero has a meaning and therefore when
the zero value is shown on the axis.

Box 3.4 shows how to draw a dot plot with error bars in SPSS.

Box 3.4 SPSS commands to draw a dot plot

SPSS Commands

babies — SPSS Data Editor
Graphs — Error Bar

Error Bar
Click Simple
Click Define

Define Simple Error Bar: Summaries for Groups of Cases
Highlight Birth weight and click into Variable
Highlight Gender and click into Category Axis
Click OK

The commands in Box 3.4 can then be repeated for birth length and head cir-
cumference to produce the graphs shown in Figure 3.7. Note that the scales on
the y-axis of the three graphs shown in Figure 3.7 are different and therefore
it is not possible to compare the graphs with one another or combine them.

However, in each graph shown in Figure 3.7, the degree of overlap of the
confidence intervals provides an immediate visual image of the differences be-
tween genders. The graphs show that female babies are slightly heavier with a
small overlap of 95% confidence intervals and that they are not significantly
shorter because there is a large overlap of the 95% confidence intervals. How-
ever, males have a significantly larger head circumference because there is no
overlap of confidence intervals. The extent to which the confidence intervals
overlap in each of the three graphs provides a visual explanation of the P
values obtained from the two-sample z-tests.

Drawing a figure in SigmaPlot

For publication quality, the differences between groups can be presented in a
graph using SigmaPlot. In the example below, only the data for head circum-
ference are plotted but the same procedure could be used for birth weight
and length. First, the width of confidence interval has to be calculated using
the Descriptives table obtained from Analyze — Descriptive Statistics — Explore.

Width of 95% CI = Mean — Lower bound of 95% CI
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Figure 3.7 Dot plots of birth weight, birth length and head circumference by gender.
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Thus, the width of the confidence interval for head circumference is as

follows:

Width of 95% CI = 34.94 — 34.71 = 0.23 (males)
= 34.25 — 34.02 = 0.23 (females)

The numerical values of the mean and the width of the 95% confidence
interval are then entered into the SigmaPlot spreadsheet as follows and the
commands in Box 3.5 can be used to draw a dot plot as shown in Figure 3.8.

Column 1 Column 2
34.94 0.23
34.25 0.23

Box 3.5 SigmaPlot commands for drawing a dot plot

SigmaPlot Commands
SigmaPlot — [Data 1*]
Graph — Create Graph
Create Graph — Type
Highlight Scatter Plot, click Next
Create Graph —Style
Highlight Simple Error Bars, click Next
Create Graph — Error Bars
Symbol Values = Worksheet Columns (default), click Next
Create Graph — Data Format
Highlight Single Y, click Next
Create Graph — Select Data
Data for Y = use drop box and select Column 1
Data for Error = use drop box and select Column 2,
Click Finish

36 1

o

34 A

Head circumference (cm)

Figure 3.8 Mean head circumference
at 1 month by gender. 33 - Males

Females
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Once the plot is obtained, the graph can be customised by changing the
axes, axis labels, graph colours, etc. using options under the menu Graph —
Graph Properties.

Alternatively, the absolute mean differences between males and females
could be presented in a graph. Birth length and head circumference were
measured in the same scale (cm) and therefore can be plotted on the same
figure. Birth weight is in different units (kg) and would need to be presented
in a different figure.

The width of the confidence intervals is calculated from the mean difference
and lower 95% confidence interval of the difference, as follows:

Width of 95% CI for birth length = 0.055 — (—0.147) = 0.202
Width of 95% CI for head circumference = 0.689 — 0.357 = 0.332

These values are then entered into the SigmaPlot spreadsheet as follows:

Column 1 Column 2
0.055 0.202
0.689 0.332

Box 3.6 shows how a horizontal scatter plot can be drawn in SigmaPlot to
produce Figure 3.9. The decision whether to draw horizontal or vertical dot
plots is one of personal choice; however, horizontal plots have the advantage
that longer descriptive labels can be included in a way that they can be easily
read.

Box 3.6 SigmaPlot commands for horizontal dot plot

SigmaPlot Commands
SigmaPlot — [Data 1*]
Graph — Create Graph
Create Graph — Type
Highlight Scatter Plot, click Next
Create Graph — Style
Highlight Horizontal Error Bars, click Next
Create Graph — Error Bars
Symbol Values = Worksheet Columns (default), click Next
Create Graph — Data Format
Highlight Many X, click Next
Create Graph — Select Data
Data for X1 = use drop box and select Column 1
Data for Error 1 = use drop box and select Column 2
Click Finish




78 Chapter 3
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Figure 3.9 Mean difference in body length and head circumference between males
and females at 1 month of age.

Rank based non-parametric tests

Rank based non-parametric tests are used when the data do not conform
to a normal distribution. If the data are clearly skewed, if outliers have an
important effect on the mean value or if the sample size in one or more of the
groups is small, say between 20 and 30 cases, then a rank based non-parametric
test should probably be used. These tests rely on ranking and summing the
scores in each group and may lack sufficient power to detect a significant
difference between two groups when the sample size is very small.

The non-parametric test that is equivalent to a two-sample ¢-test is the
Mann-Whitney U test, which the Wilcoxon rank sum produces the same
result as W test. The Mann—-Whitney U test is based on the ranking of mea-
surements from two samples to estimate whether the samples are from the
same population. In this test, no assumptions are made about the distribution
of the measurements in either group.

The assumptions for the Mann-Whitney U test are shown in Box 3.7.

Box 3.7 Assumptions for Mann—Whitney U test to compare two inde-
pendent samples

The assumptions for the Mann—-Whitney U test are:
o the data are randomly sampled from the population
» the groups are independent, that is each participant is in one group only

Research question

The spreadsheet surgery.sav, which was used in Chapter 2, contains the data
for 141 babies who attended hospital for surgery, their length of stay and
whether they had an infection during their stay.

Question: Do babies who have an infection have a longer stay
in hospital?
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That there is no difference in length of stay between

babies who have an infection and babies who do not
have an infection

Variables:

Outcome variable = length of stay (continuous)

Explanatory variable = infection (categorical,

binary)

Statistical analyses

Descriptive statistics and the distribution of the outcome variable length of
stay in each group can be inspected using the commands shown in Box 3.2
with length of stay as the dependent variable and infection as the factor.

Infection

Descriptives

Infection Statistic Std. error

Length of stay No Mean 33.20 3.706

95% confidence Lower bound 25.82

interval for mean Upper bound 40.58

5% trimmed mean 28.25

Median 22.50

Variance 1098.694

Std. deviation 33.147

Minimum 0

Maximum 244

Range 244

Inter-quartile range 19.75

Skewness 4.082 0.269

Kurtosis 21.457 0.532

Yes Mean 4552 5.358

95% confidence Lower bound 34.76

interval for mean Upper bound 56.28

5% trimmed mean 40.36

Median 37.00

Variance 1492.804

Std. deviation 38.637

Minimum 11

Maximum 211

Range 200

Inter-quartile range 28.50

Skewness 2.502 0.330

Kurtosis 7.012 0.650

Continued
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Tests of Normality

Kolmogorov-Smirnov?® Shapiro-Wilk
Infection Statistic df Sig. Statistic df Sig.
Length of stay No 0.252 80 0.000 0.576 80 0.000
Yes 0.262 52 0.000 0.707 52 0.000

aLilliefors significance correction.

The Descriptives table shows that the mean and median values for length
of stay for babies with no infection are 33.20 — 22.50, or 10.70 units apart and
45.52 — 37.00, or 8.52 units apart for babies with an infection. The variances
are unequal at 1098.694 for no infection and 1492.804 for infection, that
is a ratio of 1:1.4. The skewness statistics are all above 2 and the kurtosis
statistics are also high, indicating that the data are peaked and are not normally
distributed. The P values for the Kolmogorov—Smirnov and the Shapiro—-Wilk
tests are shown in the column labelled Sig. and are less than 0.05 for both
groups, indicating that the data do not pass the tests of normality in either
group.

The histograms and plots shown in Figure 3.10 confirm the results of the
tests of normality. The histograms show that both distributions are positively
skewed with tails to the right. The Q—Q plot for each group does not follow the
line of normality and is significantly curved. The box plots show a number of
extreme and outlying values. The maximum value for length of stay of babies
with no infection is 6.36 z scores above the mean, while for babies with an
infection the maximum value is 4.28 z scores above the mean.

The normality statistics for babies with an infection and babies without an
infection are summarised in Table 3.7, with ‘no’ indicating that the distribution
is outside the normal range.

For both groups, the data are positively skewed and could possibly be trans-
formed to normality using a logarithmic transformation. Without transforma-
tion, the most appropriate test for analysing length of stay is a rank based
non-parametric test, which can be obtained using the commands shown in
Box 3.8.

The Mann—-Whitney U test is based on ranking the data values as if they were
from a single sample. For illustrative purposes, a subset of the data, that is the
first 20 cases in the data set with valid length of stay are shown in Table 3.8.
Firstly, the data are sorted in order of magnitude and ranked. Data points that
are equal share tied ranks. Thus, the two data points of 13 share the ranks of
7 and 8 and are rated at 7.5 each. Similarly, the four data points of 17 share
the ranks from 17 to 20 and are ranked at 18.5 each, which is the mean of the
four rankings. Once the ranks are assigned, they are then summed for each
of the groups.

In SPSS, the mean rank and the sum of the ranks are calculated for each
group. In the Ranks table all cases are included. The sum of ranks and mean
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ranks gives a direction of effect but because the data are ranked, the dimen-
sion is different from the original measurement and is therefore difficult to
communicate. The Mann-Whitney U and the Wilcoxon W that are obtained
from SPSS are two derivations of the same test and are best reported as the
Mann-Whitney U test. The Test Statistics table shows that the P value for
the difference between groups is P = 0.004 which is statistically significant.
The asymptotic significance value is reported when the sample size is large, say
more than 30 cases, otherwise the Exact button at the bottom of the command
screen can be used to calculate P values for a small sample.

The difference between the groups could be reported in a table as shown in
Table 3.9.

Histogram
For INFECT = No
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Figure 3.10 Plots of length of stay by infection.
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Normal Q-Q plot of length of stay
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Table 3.7 Summary of statistics to assess whether data are within normal limits or
outside normal range

Mean - Shapiro-Wilk Overall
Group  median  Skewness  Kurtosis test K-S test  Plots  decision
No No No No No No No No
Yes No No No No No No No

Box 3.8 SPSS commands to obtain a non-parametric test for two inde-
pendent groups

SPSS Commands
surgery — SPSS Data Editor
Analyze — Nonparametric Tests — 2 Independent Samples
Two-Independent-Samples Test
Highlight Length of stay into Test Variable List
Highlight Infection into Grouping Variable
Test Type tick Mann-Whitney U (default setting)
Click on Define Groups
Two Independent Samples: Define Groups
Groupl =1
Group 2 =2
Click Continue
Two-Independent-Samples Test
Click OK

NPar Tests
Mann—-Whitney Test

Ranks
Infection N Mean rank Sum of ranks
Length of stay No 80 58.88 4710.00
Yes 52 78.23 4068.00
Total 132

Test Statistics®

Length of stay

Mann-Whitney U 1470.000
Wilcoxon W 4710.000
z —2.843
Asymp. sig. (two-tailed) 0.004

° Grouping variable: infection.
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Table 3.8 Ranking data to compute non-parametric statistics

ID Length of stay Infection group Rank Group 1 Rank Group 2

32 0 1 1

33 1 1 2

12 9 1 3

16 11 1 4.5

22 11 2 4.5

28 12 2 6

20 13 1 7.5

27 13 1 7.5

10 14 1 10.5

11 14 1 10.5

24 14 1 10.5

25 14 2 10.5

14 15 1 14.5

19 15 1 14.5

23 15 2 14.5

30 15 1 14.5

13 17 1 18.5

15 17 1 18.5

17 17 1 18.5

21 17 2 18.5
Sum of ranks 156 54
N 15 5
Mean 10.5 10.8

Another approach to non-normal data is to divide the outcome variable into
categorical centile groups as discussed in Chapter 7. Decision about whether to
use non-parametric tests, to transform the variable or to categorise the values
requires careful consideration. The decision should be based on the size of the
sample, the effectiveness of the transformation in normalising the data and
the ways in which the relationship between the explanatory and outcome
variables is best presented.

Notes for critical appraisal

Questions to ask when assessing descriptive statistics published in the literature
are shown in Box 3.9.

Table 3.9 Length of stay for babies with infection and without infection

Infection absent Infection present P value

Number
Length of stay 80 52
Median and 1Q range 22.50 (19.75) 45.52 (37.00) 0.004
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Box 3.9 Questions for critical appraisal

The following questions should be asked when appraising published re-
sults:

e are any cases included in a group more than once, for example are any
follow-up data treated as independent data?

e is there evidence that the outcome variable is normally distributed in
each group?

o if the variance of the two groups is unequal, has the correct P value,
that is the P value with equal variances not assumed, been reported?

e are the summary statistics appropriate for the distributions?

o are there any influential outliers that could have increased the difference
in mean values between the groups?

e Are mean values presented appropriately in figures as dot plots or are
histograms used inappropriately?

e are mean values and the differences between groups presented with
95% confidence intervals?
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CHAPTER 4

Continuous variables: paired
and one-sample ¢-tests

A statistician is a person who likes to prove you wrong, 5% of the time.
TAKEN FROM AN INTERNET BULLETIN BOARD

Objectives

The objectives of this chapter are to explain how to:

e analyse paired or matched data

e use paired t-tests and one-sample t-tests

* interpret results from non-parametric paired tests

« report changes or differences in paired data in appropriate units

In addition to two-sample (independent) ¢-tests, there are also two other
t-tests that can be used to analyse continuous data, that is paired ¢-tests and
one-sample (single sample) z-tests. All three types of ¢-test can be one-tailed
or two-tailed tests but one-tailed z-tests are rarely used.

A paired ¢-test is used to estimate whether the means of two related mea-
surements are significantly different from one another. This test is used when
two continuous variables are related because they are collected from the same
participant at different times, from ditferent sites on the same person at the
same time or from cases and their matched controls'. Examples of paired study
designs are:

e data from a longitudinal study

o measurements collected before and after an intervention in an experimental
study

o differences between related sites in the same person, for example limbs, eyes
or kidneys

o matched cases and controls

For a paired ¢-test, there is no explanatory (group) variable. The outcome of
interest is the difference in the outcome measurements between each pair or
between each case and its matched control, that is the within-pair differences.
When using a paired ¢-test, the variation between the pairs of measurements
is the most important statistic and the variation between the participants, as
when using a two-sample -test, is of little interest. In effect, a paired ¢-test is
used to assess whether the mean of the differences between the two related
measurements is significantly different from zero.

86
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For related measurements, the data for each pair of values must be entered
on the same row of the spreadsheet. Thus, the number of rows in the data
sheet is the same as the number of participants when the outcome variable is
measured twice for each participant or is the number of participant-pairs when
cases and controls are matched. When each participant is measured on two
occasions, the effective sample size is the number of participants. In a matched
case-control study, the number of case-control pairs is the effective sample size
and not the total number of participants. For this reason, withdrawals, loss of
follow-up data and inability to recruit matched controls reduce both power
and the generalisability of the paired ¢-test because participants with missing
paired values have to be excluded from the analyses.

Assumptions for a paired t-test

Independent two-sample ?-tests cannot be used for analysing paired or
matched data because the assumption that the two groups are independent,
that is data are collected from different or non-matched participants, would be
violated. Treating paired or matched measurements as independent samples
will artificially inflate the sample size and lead to inaccurate analyses.

The assumptions for using paired ¢-tests are shown in Box 4.1.

Box 4.1 Assumptions for a paired z-test

For a paired ¢-test the following assumptions must be met:

 the outcome variable has a continuous scale

o the differences between the pairs of measurements are normally dis-
tributed

The data file growth.sav contains the body measurements of 277 babies
measured at 1 month and at 3 months of age.

Questions: Does the weight of babies increase significantly in a 2-month
growth period?
Does the length of babies increase significantly in a 2-month
growth period?
Does the head circumference of babies increase significantly in
a 2-month growth period?

Null The weight of babies is not different between the two time

hypotheses: ~ periods.
The length of babies is not different between the two time
periods.
The head circumference of babies is not different between the
two time periods.

Variables: Outcome variables = weight, length and head circumference
measured at 1 month of age and 3 months of age (continuous)
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The decision of whether to use a one- or two-tailed test must be made
when the study is designed. If a one-tailed z-test is used, the null hypothesis
is more likely to be rejected than if a two-tailed test is used (Chapter 3). In
general, two-tailed tests should always be used unless there is a good reason
for not doing so and a one-tailed test should only be used when the direction
of effect is specified in advance?. In this example, it makes sense to test for
a significant increase in body measurements because there is certainty that a
decrease will not occur and there is only one biologically plausible direction of
effect. Therefore a one-tailed test is appropriate for the alternate hypothesis.

To test the assumption that the differences between the two outcome vari-
ables is normally distributed, the differences between measurements taken at
1 month and at 3 months must first be computed as shown in Box 4.2.

Box 4.2 SPSS commands to transform variables

SPSS Commands
growth — SPSS Data Editor
Transform — Compute
Compute Variable
Target Variable = diffwt
Numeric Expression = Weight at 3mo — Weight at Imo
Click OK

By clicking on the Reset button in Compute Variable all fields will be reset to
empty and the command sequence shown in Box 4.2 can be used to compute
the following variables:

diffleng = Length at 3mo — Length at 1mo, and

diffhead = Head circumference at 3mo — Head circumference at 1mo

Once the new variables are created, they should be labelled and have the
number of decimal places adjusted to be appropriate. The distribution of these
differences between the paired measurements can then be examined using
the commands shown in Box 4.3 to obtain histograms. While only histograms
have been obtained in this example, in practice a thorough investigation of all
tests of normality should be undertaken using Analyze — Descriptive Statistics —
Explore and other options discussed in Chapter 2.

Box 4.3 SPSS commands to obtain frequency histograms

SPSS Commands
Graphs — Histogram
Histogram
Variable = Weight 3mo-1mo
Tick box ‘Display normal curve’
Click OK
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The command sequence in Box 4.3 can then be repeated with the variables
Length 3m-1mo and Head 3mo-1mo to produce the histograms shown in
Figure 4.1. The histograms indicate that all three difference variables are fairly
normally distributed with only a slight skew to the right hand side. A paired
t-test will be robust to these small departures from normality because with

277 babies the sample size is large.
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Mean = 1.72
N=277.00
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Figure 4.1 Histograms of differences between babies at 1 month and 3 months for

weight, length and head circumference.

The SPSS commands to conduct a paired samples ¢-test to examine whether
there has been a significant increase in weight, length and head circumfer-
ence are shown in Box 4.4. By holding down the Ctrl key, two variables
can be highlighted and clicked over simultaneously into the Paired Variables

box.
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SPSS Commands
growth — SPSS Data Editor

Paired-Samples T-Test

— head3m)
Click OK

Box 4.4 SPSS commands to obtain a paired samples ¢-test

Analyze — Compare Means — Paired-Samples T Test

Highlight Weight at 1mo (Variable 1) and Weight at 3mo (Variable 2) and
click over into the Paired Variables box (weightlm — weight3m)

Highlight Length at 1mo (Variable 1) and Length at 3mo (Variable 2) and
click over into the Paired Variables box (lengthlm — length3m)

Highlight Head circumference at lm (Variable 1) and Head circumference
at 3mo (Variable 2) and click over into the Paired Variables box (headlm

t-test

Paired Samples Statistics

Std. Std. error
Mean N deviation mean
Pair 1 Weight at 1 mo (kg) 4.415 277 0.6145 0.0369
Weight at 3 mo (kg) 6.131 277 0.7741 0.0465
Pair 2 Length at 1 mo (cm) 54.799 277 2.3081 0.1387
Length at 3 mo (cm) 61.510 277 2.7005 0.1623
Pair 3 Head circumference 37.918 277 1.3685 0.0822
at 1 mo (cm)
Head circumference 41.039 277 1.3504 0.0811
at 3 mo (cm)
Paired Samples Correlations
N Correlation Sig.
Pair 1 Weight at 1 mo (kg) & 277 0.768 0.000
Weight at 3 mo (kg)
Pair 2 Length at 1 mo (cm) & 277 0.703 0.000
Length at 3 mo (cm)
Pair 3 Head circumference 277 0.746 0.000

at 1 mo (cm) & Head

circumference at 3 mo (cm)

The Paired Samples Statistics table provides summary statistics for each vari-
able but does not give any information that is relevant to the paired ¢-test. The
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Paired Samples Correlations table shows the correlations between each of the
paired measurements. This table should be ignored because it does not make
sense to test the hypothesis that two related measurements are associated with
one another.

Paired Samples Test

Paired differences

95% confidence

interval of
the difference
Std. Std.error Sig. (Two-
Mean deviation Mean Lower  Upper t df  tailed)
Pair 1 Weightat 1 mo (kg) —1.717 0.4961 0.0298 —-1.775 -1.658 —57.591 276 0.000
— weight at 3 mo (kg)
Pair 2 Length at Tmo (cm) — —6.710 1.9635 0.1180 —6.943 -6.478 —56.881 276 0.000
length at 3 mo (cm)
Pair 3 Head circumference —3.121 0.9697 0.0583 —3.236 —3.006 —53.565 276 0.000

at 1 mo (cm) — head
circumference at
3 mo (cm)

The Paired Samples Test table provides important information about the
t-test results. The second column, which is labelled Mean, gives the main
outcome statistic, that is the mean within-pair difference. When conducting
a paired f¢-test, the means of the differences between the pairs of variables
are computed as part of the test. The only way to control the direction of the
mean differences is by organising the order of variables in the spreadsheet. In
the data set, weight at 1 month occurs before weight at 3 months, so it is not
possible to obtain a paired samples ¢-test with weight at 3mo as Variable 1 and
weight at 1mo as Variable 2 unless the data set is re-organised.

The mean paired differences column in the table indicates that at 1 month,
babies were on average 1.717 kg lower in weight, 6.71 cm smaller in length
and 3.121 cm smaller in head circumference than at 3 months of age. These
mean values do not answer the research question of whether babies increased
significantly in measurements over a 2-month period but rather answer the
question of whether the babies were smaller at a younger age.

The 95% confidence intervals of the differences, which are calculated as
the mean paired differences £+ (1.96 * SE of mean paired differences), do
not contain the value of zero for any variable which also indicates that the
difference in body size between 1 and 3 months is statistically significant. The
t value is calculated as the mean differences divided by their standard error.
Because the standard error becomes smaller as the sample size becomes larger,
the ¢ value increases as the sample size increases for the same mean difference.
Thus, in this example with a large sample size of 277 babies, relatively small
mean differences are highly statistically significant.

The P values provided in the Paired Samples Test table are for a two-tailed
test, so they have to be adjusted for a one-sample test by halving the P value.
In this example, the P values are <0.0001 so that halving them will also
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render a highly significant P value. The P values (one tailed) from the paired
t-tests for all three variables indicate that each null hypothesis should be re-
jected and that there is a significant increase in body measurements between
the two time periods. By multiplying the mean difference values by —1, to
obtain the mean difference in the correct direction (i.e. weight at 3 months —
weight at 1 month), babies over a 2-month period were significantly heavier
(+1.72kg, P < 0.0001), longer (+6.71 cm, P < 0.0001) and had a larger head
circumference (+3.12 cm, P < 0.0001). As with any statistical test, it is im-
portant to decide whether the size of mean difference between measurements
would be considered clinically important in addition to considering statistical
significance.

Non-parametric test for paired data

A non-parametric equivalent of the paired ¢-test is the Wilcoxon signed rank
test, which is also called the Wilcoxon matched pairs test and is used when
lack of normality in the differences is a concern or when the sample size is
small. The Wilcoxon signed rank test is used to test whether the median of
the differences is equal to zero.

An assumption of the Wilcoxon signed rank test is that the paired differ-
ences are independent and come from the same continuous and symmetric
population distribution. This test is relatively resistant to outliers. However,
the number of outliers should not be large relative to the sample size and the
amount of skewness should be equal in both groups. When the sample size is
small, symmetry may be difficult to assess.

In this test, the absolute differences between paired scores are ranked and
difference scores that are equal to zero, that is indicate no difference between
pairs, are excluded from the analysis. Thus, this test is not suitable when a
large proportion of paired differences are equal to zero because this effectively
reduces the sample size.

If the difference values in the growth.sav data set did not have a normal
distribution, the Wilcoxon signed rank test could be obtained using the SPSS
commands in Box 4.5.

Box 4.5 SPSS commands to conduct a non-parametric paired test

SPSS Commands
growth — SPSS Data Editor
Analyze — Nonparametric Tests — 2 Related Samples
Two Related Samples
Click on Weight at 1mo (Variable 1) and click on Weight at 3mo
(Variable 2)
Click on the arrow to place variables under Test Pair(s) List (weightlm —
weight3m)
Click on Length at Imo (Variable 1) and click on Length at 3mo
(Variable 2)




head3m)
Click Options

Tick Quartiles

Click Continue
Two Related Samples

Click OK

Two-Related-Samples: Options

Test Type = tick Wilcoxon (default setting)
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Click on the arrow to place variables under Test Pair(s) List
(lengthIm — length3m)

Click on Head circumference at lmo (Variable 1) and click on Head
circumference at 3mo (Variable 2)

Click on the arrow to place variables under Test Pair(s) List (headlm —

NPar tests

Descriptive Statistics

Percentiles
N 25th 50th (median) 75th

Weight at 1 mo (kg) 277 4.000 4.350 4.815
Length at 1 mo (cm) 277 53.000 54.500 56.500
Head circumference 277 37.000 38.000 39.000
at 1 mo (cm)

Weight at 3 mo (kg) 277 5.550 6.040 6.680
Length at 3 mo (cm) 277 59.500 61.500 63.500
Head circumference 277 40.000 41.000 42.000

at 3 mo (cm)

Instead of providing information about mean values, this non-parametric
test provides the median and the 25" and 75" percentile values as summary
statistics. These are the summary statistics that would be used in box plots or
reported in tables of results.

Wilcoxon Signed Rank Test

Ranks
N Mean Rank Sum of Ranks
Weight at 3 mo (kg) — Negative ranks 02 0.00 0.00
weight at 1 mo (kg) Positive ranks 277b 139.00 38503.00
Ties o¢
Total 277

Continued
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Ranks continued

N Mean Rank Sum of Ranks

Length at 3 mo (cm) — Negative ranks od 0.00 0.00
length at 1 mo (cm) Positive ranks 277¢ 139.00 38503.00

Ties of

Total 277
Head circumference Negative ranks 09 0.00 0.00
at 3 mo (cm) — Head Positive ranks 2770 139.00 38503.00
circumference at 1 Ties o'
mo (cm)

Total 277
2Weight at 3 months (kg) < Weight at 1 month (kg)
bWeight at 3 months (kg) > Weight at 1 month (kg)
¢Weight at 1 month (kg) = Weight at 3 months (kg)
dLength at 3 months (cm) < Length at 1 month (cm)
¢Length at 3 months (cm) > Length at 1 month (cm)
fLength at 1 month (cm) = Length at 3 months (cm)
9Head circumference at 3 months (cm) < Head circumference at 1 month (cm)
hHead circumference at 3 months (cm) > Head circumference at 1 month (cm)
iHead circumference at 1 month (cm) = Head circumference at 3 months (cm)
Test StatisticsP

Head

Length at

3 months (cm)
— length at

1 month (cm)

circumference

at 3 months (cm) —
head
circumference

at 1 month (cm)

Weight at

3 months (kg) —

weight at

1 month (kg)
z —14.427°
Asymp. sig. 0.000
(two-tailed)

—14.4382
0.000

—14.4702
0.000

2Based on negative ranks.

bWilcoxon signed ranks test.

The P values that are computed are based on the ranks of the absolute
values of the differences between time 1 (1 month) and time 2 (3 months).
The number of negative ranks where time 1 is lower than time 2 is compared
to the number of positive ranks where time 1 is higher than time 2 with the
zero ranks omitted. In this test the summary statistics are given the opposite
direction of effect to the paired ¢-test and, in this case, give the correct direction

of effect.

The Ranks table indicates that, as expected, no babies have a negative rank
that is a lower measurement at 1 month than at 3 months. The table also
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shows that there are no ties, that is no babies with the same difference scores.
Although this table does not provide any useful information for communicat-
ing the size of effect, it does indicate the correct direction of effect. The test
statistics with a P value of <0.0001 for all variables show that there has been a
significant increase in all measurements from 1 month (baseline) to 3 months.
Because the data are fairly normally distributed, both the parametric test and
the non-parametric test give the same P values.

The results of this non-parametric test would be reported as for a paired
t-test except that the median differences rather than the mean differences
would be reported and, if required, the inter-quartile range and the z score
would be reported rather than the standard deviation and the paired ¢ value.

Standardising for differences in baseline measurements

With paired data, the differences between the pairs are sometimes not an
appropriate outcome of interest. It is often important that the differences are
standardised for between-subject differences in baseline values. One method
is to compute a per cent change from baseline. Another method is to calculate
the ratio between the follow-up and baseline measurements. It is important
to choose a method that is appropriate for the type of data collected and that
is easily communicated.

For babies” growth, per cent change is a simple method to standardise for
differences in body size at baseline, thatis at 1 month of age. The syntax shown
in Box 4.6 can be used to compute per cent growth in weight, length and head
circumference.

Box 4.6 SPSS commands to compute per cent changes

SPSS Commands
growth — SPSS Data Editor
Transform — Compute
Compute Variable
Target Variable = perwt
Numeric Expression = (Weight at 3mo — Weight at Imo) * 100/
Weight at 1mo
Click Paste
Syntaxl — SPSS Syntax Editor
Run — All

The syntax can then be repeated to compute:

Perleng = (Length at 3mo - Length at 1mo)*100/Length at 1mo, and
Perhead = (Head circumference at 3mo - Head circumference at 1mo)*100/

Head circumference at 1mo
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The paste and run commands list the transformations in the syntax window
as shown below. This information can then be printed and stored for docu-
mentation. Once the computations are complete, the new variables need to
be labelled in the Variable View window.

COMPUTE perwt = (weight3m — weightlm)*100/weight1m.
EXECUTE.

COMPUTE perlen = (length3m — length1m)*100/length1m.
EXECUTE.

COMPUTE perhead = (head3m — headlm)*100/head1m.
EXECUTE.

An assumption of paired ¢-tests is that the differences between the pairs
of measurements are normally distributed, therefore the distributions of the
per cent changes need to be examined. Again, the distributions should be
fully checked for normality using Analyze — Descriptive Statistics — Explore as
discussed in Chapter 2. The histograms shown in Figure 4.2 can be obtained
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Figure 4.2 Histograms of per cent change in weight, length and head circumference.
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using the commands shown in Box 4.3. The histograms for per cent change in
weight and head circumference have a small tail to the right, but the sample
size is large and the tails are not so marked that the assumptions for using a
paired ¢-test would be violated.

Single-sample t-test

The research question has now changed slightly because rather than con-
sidering absolute differences between time points, the null hypothesis being
tested is whether the mean per cent changes over time are significantly differ-
ent from zero. With differences converted to a per cent change, there is now a
single continuous outcome variable and no group variable. Thus, a one-sample
t-test, which is also called a single-sample ¢-test, can be used to test whether
there is a statistically significant difference between the mean per cent change
and a fixed value such as zero.

A one-sample test is more flexible than a paired ¢-test, which is limited to
testing whether the mean difference is significantly different from zero. One-
sample ¢-tests can be used, for example, to test if the sample has a different
mean from 100 points if the outcome being measured is IQ or from 40 hours
if the outcome measured is the average working week. A one-sample ¢-test
is a parametric test and the only assumption is that the data, in this case per
cent increases, are normally distributed.

Computing per cent changes provides control over the units that the changes
are expressed in and their direction of effect. However, if the differences com-
puted in Box 4.2 were used as the outcome and a one-sample ¢-test was used
to test for a difference from zero, the one-sample ¢-test would give exactly the
same P values as the paired ¢-test although the direction of effect would be
correctly reversed.

For the research question, the command sequence shown in Box 4.7 can be
used to compute a one-sample t-test to test whether the per cent changes
in weight, length and head circumference are significantly different from
Zero.

Box 4.7 SPSS commands to conduct a one-sample ¢-test

SPSS Commands
Growth — SPSS Data Editor
Analyze — Compare Means — One-Sample T Test
One-Sample T Test
Highlight the variables Percent change in weight, Percent change in length
and Percent change in head circumference and click into the Test
Variable(s) box
Test Value = 0 (default setting)
Click OK
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t-test

One-Sample Statistics

Std. error
N Mean Std. deviation mean
Per cent change in weight 277 39.7264 12.9322 0.7770
Per cent change in length 277 12.2980 3.7413 0.2248
Per cent change in head 277 8.2767 2.7115 0.1629

circumference

The One-Sample Statistics table gives more relevant statistics with which to
answer the research question because the mean within-participant per cent
changes and their standard deviations are provided. The means in this table
show that the per cent increase in weight over 2 months is larger than the per
cent increase in length and head circumference.

One-Sample Test

Test value =0

95% confidence
interval of the

difference
Mean

t df  Sig. (two-tailed) difference Lower Upper
Per cent change in 51.126 276 0.000 39.7264 38.1968 41.2561
weight
Per cent change in 54.708 276 0.000 12.2980 11.8555 12.7406
length
Per cent change in 50.803 276 0.000 8.2767 7.9559 8.5974

head circumference

In the One-Sample Test table, the ¢ values are again computed as mean dif-
ference divided by the standard error and, in this table, are highly significant
for all measurements. The highly significant P values are reflected in the 95%
confidence intervals, none of which contain the zero value. The outcomes
are now all in the same units, that is per cent change, and therefore growth
rates between the three variables can be directly compared. This was not pos-
sible before when the variables were in their original units of measurement.
This summary information could be reported as shown in Table 4.1. In some
disciplines, the ¢ value is also reported with its degrees of freedom, for ex-
ample as t (276) = 51.13 but because the only interpretation of the ¢ value
and its degrees of freedom is the P value, it is often excluded from summary
tables.
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Table 4.1 Mean body measurements and per cent change between 1 and 3 months in

277 babies
1 month 3 months Per cent increase P value
Mean (SD) Mean (SD) and 95% ClI
Weight (kg) 4.42 (0.62) 6.13 (0.77) 39.7 (38.2, 41.3) <0.0001
Length (cm) 54.8 (2.3) 61.5(2.7) 12.3(11.9, 12.7) <0.0001
Head circumference (cm) 37.9(1.4) 41.0 (1.4) 8.3(7.9, 8.6) <0.0001
Research question

The research question can now be extended to ask if certain groups, such as
males and females, have different patterns or rates of growth.

Questions:

Null hypothesis:

Variables:

Over a 2-month period:

- do males increase in weight significantly more than
females?

- do males increase in length significantly more than
females?

- do males increase in head circumference significantly
more than females?

Over a 2-month period:

- there is no difference between males and females in
weight growth.

- there is no difference between males and females in
length growth.

- there is no difference between males and females in
head circumference growth.

Outcome variables = per cent increase in length,

weight and head circumference (continuous)

Explanatory variable = gender (categorical, binary)

The research question then becomes a two-sample ¢-test again because there
is a continuously distributed variable (per cent change) and a binary group
variable with two levels that are independent (male, female). The SPSS com-

mands shown in Bo
output.

t-test

Group Statistics

X 3.3 in Chapter 3 can be used to obtain the following

Std. error
Gender N Mean Std. deviation mean
Per cent change in weight Male 148 42.0051 13.2656 1.0904
Female 129 37.1121 12.0676 1.0625

Continued
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Group Statistics continued

Std. error
Gender N Mean Std. deviation mean
Per cent change in length Male 148 12.6818 3.3079 0.2719
Female 129 11.8577 4.1533 0.3657
Per cent change in head Male 148 8.2435 2.5066 0.2060
circumference Female 129 8.3147 2.9385 0.2587

The means in the Group Statistics table show that males have a higher
increase in weight and length than females but a slightly lower increase in
head circumference. These statistics are useful for summarising the magnitude
of the differences in each gender.

In the Independent Samples Test table (opposite), Levene’s test of equality of
variances shows that the variances are not significantly different between gen-
ders for weight (P = 0.374) and head circumference (P = 0.111). For these
two variables, the Equal variances assumed rows in the table are used. However,
the variance in per cent change for length is significantly different between
the genders (P = 0.034) and therefore the appropriate ¢ value, degrees of
freedom and P value for this variable are shown in the Equal variances not
assumed row. An indication that the variances are unequal could be seen in
the previous Group Statistics table, which shows that the standard deviation
for per cent change in length is 3.3079 for males and 4.1533 for females. An
estimate of the variances can be obtained by squaring the standard devia-
tions to give 10.94 for males and 17.25 for females, which is a variance ratio
of 1:1.6.

Thus, the Independent Samples Test table shows that per cent increase in
weight is significantly different between the genders at P = 0.002, per cent
increase in length does not reach significance between the genders at P =
0.072 and per cent increase in head circumference is not clearly not different
between the genders at P = 0.828. This is reflected in the 95% confidence
intervals, which do not cross zero for weight, cross zero marginally for length
and encompass zero for head circumference.

Presenting the results

The growth patterns for weight are different between genders and therefore it
isimportant to present the one-sample ¢-test results for each gender separately.
If no between-gender differences were found, the summary statistics for the
entire sample could be presented. In this case, one-sample ¢-tests are used to
test whether the mean per cent increase is significantly different from zero
for each gender. This can be achieved using the Split File option shown in Box
4.8. After the commands have been completed, the message Split File On will
appear in the bottom right hand side of the Data Editor screen. The advantage
of using Split File rather than Select Cases is that the output will be automatically
documented with group status.



Independent Samples Test

Levene’s test for
equality of variances

t-test for equality of means

95% confidence interval
of the difference

Sig. (Two- Mean Std. error
F Sig. t df tailed) difference difference Lower Upper
Per cent Equal 0.792 0.374 3.193 275 0.002 4.8930 1.53240 1.87633 7.90976
change variances
in weight assumed
Equal 3.214 274.486 0.001 4.8930 1.52247 1.89583 7.89025
variances
not
assumed
9 Per cent Equal 4.518 0.034 1.837 275 0.067 0.8241 0.44873 —0.05928 1.70748
change variances
in length assumed
Equal 1.808 243.779 0.072 0.8241 0.45569 —0.07350 1.72170
variances
not
assumed
9 Percent Equal 2.561 0.111 —-0.217 275 0.828 —0.0711 0.32717 —0.71521 0.57294
change variances
in head assumed
circum-
ference
Equal —0.215 253.173 0.830 —0.0711 0.33074 —0.72248 0.58021
variances
not

assumed
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Split

Chapter 4

SPSS Commands
growth — SPSS Data Editor

Data — Split File
File

Click Compare groups

Box 4.8 SPSS commands to compare gender means

Highlight Gender and click over into ‘Groups Based on’

Click OK

The one-sample ¢-test for each gender can then be obtained using the com-
mands shown in Box 4.7 to produce the following output.

t-test

One-Sample Statistics

Std. error
Gender N Mean Std. deviation mean
Male Per cent change in weight 148 42.0051 13.2656 1.0904
Per cent change in length 148 12.6818 3.3079 0.2719
Per cent change in head 148 8.2435 2.5066 0.2060
circumference
Female Per cent change in weight 129 37.1121 12.0676 1.0625
Per cent change in length 129 11.8577 4.1533 0.3657
Per cent change in head 129 8.3147 2.9385 0.2587
circumference
One-Sample Test
Test value = 0
95% confidence
interval of
Sig. the difference
(Two- Mean
Gender t df tailed) difference Lower Upper
Male Per cent change in 38.522 147 0.000 42.0051 39.8502 44.1601
weight
Per cent change in 46.640 147 0.000 12.6818 12.1445  13.2192
length
Per cent change in 40.010 147 0.000 8.2435 7.8363 8.6507

head
circumference

Continued
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Test value =0

95% confidence

interval of
Sig. the difference
(Two- Mean
Gender t df tailed) difference Lower Upper
Female Per cent 34.929 128 0.000 37.1121 35.0098 39.2144
change in
weight
Per cent 32.426 128 0.000 11.8577 11.1342 12.5813
change in
length
Per cent 32.138 128 0.000 8.3147 7.8027 8.8266
change in
head cir-
cumference

The One-Sample Statistics table gives the same summary statistics as ob-
tained in the two-sample t-test but gives a P value for the significance of the
per cent change from baseline for each gender and also gives the 95% con-
fidence intervals around the mean changes. Another alternative to obtaining
summary means for each gender is to use the commands shown in Box 4.9,
but with the Split File option removed.

Box 4.9 SPSS commands to obtain summary mean values

SPSS Commands
growth — SPSS Data Editor
Data — Split File
Split File
Click Analyze all cases, do not create groups
Click OK
growth — SPSS Data Editor
Analyze — Compare Means — Means
Means
Click variables for weight, length, head circumference at 1 month
(weightlm, lengthlm, headlm) and at 3 months (weight3m, length3m,
head3m) and all three percent changes (perwt, perlen, perhead) into the
Dependent List box
Click Gender over into the Independent List box
Click OK




Means
Report
Per cent
Head Head Per cent Per cent change in
Weightat Length at circumference Weightat Lengthat circumference changein changein head
Gender 1mo(kg) 1mo(cm) at1mo (cm) 3mo(kg) 3 mo(cm) at3 mo (cm) weight length circumference
Male Mean 4.534 55.249 38.259 6.389 62.218 41.393 42.0051 12.6818 8.2435
N 148 148 148 148 148 148 148 148 148
Std. deviation 0.6608 2.5636 1.3252 0.7829 2.6185 1.1411 13.26558 3.30790 2.50656
Female Mean 4.278 54.283 37.526 5.836 60.698 40.632 37.1121 11.8577 8.3147
N 129 129 129 129 129 129 129 129 129
Std. deviation 0.5269 1.8539 1.3160 0.6507 2.5704 1.4575 12.06764 4.15334 2.93850
Total Mean 4.415 54.799 37.918 6.131 61.510 41.039 39.7264 12.2980 8.2767
N 277 277 277 277 277 277 277 277 277
Std. deviation 0.6145 2.3081 1.3685 0.7741 2.7005 1.3504 12.93223 3.74134 2.71147

oL
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The Report table completes the information needed to report the results as
shown in Table 4.2. Although a one-tailed P value is used for the significance
of increases in body size, a two-tailed P value is used for between-gender
comparisons.

Table 4.2 Mean body measurements and per cent change between 1 and 3 months
in 148 male and 129 female babies

P value for P value for

change difference
1 month 3 months  Per cent change from between
Mean (SD) Mean (SD) and 95% ClI baseline genders

Weight (kg)  Male 4.53(0.66) 6.39(0.78) 42.0(39.9,44.2) <0.0001 0.002
Female 4.28(0.53) 5.84(0.65) 37.1(35.0,39.2) <0.0001

Length (cm) Male  55.2(2.6) 62.2 (2.6) 12.7 (12.1, 13.2) <0.0001 0.072
Female 54.3(1.9) 60.7 (2.6) 11.9(11.1, 12.6) <0.0001

Head Male 38.3(1.3) 41.4 (1.1) 8.2 (7.8, 8.7) <0.0001 0.828
circumference Female 37.5(1.3) 40.6 (1.5) 8.3 (7.8, 8.8) <0.0001
(cm)

When plotting summary statistics of continuous variables, the choice of
whether to use bar charts or dot points is critical. Bar charts should always
begin at zero so that their lengths can be meaningfully compared. When the
distance from zero has no meaning, mean values are best plotted as dot points.
For example, mean length would not be plotted using a bar chart because no
baby has a zero length. However, bar charts are ideal for plotting per cent
changes where a zero value is plausible. The results can be plotted as bar
charts in SigmaPlot by entering the data as follows and using the commands
shown in Box 4.10. The means for males are entered in column 1 and the 95%
confidence interval width in column 2. The values for females are entered in
columns 3 and 4. The column titles should not be entered in the spreadsheet
cells.

Column 1 Column 2 Column 3 Column 4
42.0 2.1 37.1 2.1
12.7 0.6 11.9 0.6

8.2 0.4 8.3 0.4

Box 4.10 SigmaPlot commands for graphing per cent change results

SigmaPlot Commands
SigmaPlot — [Data 1]
Graph — Create Graph
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Create Graph — Type

Highlight Horizontal Bar Chart, click Next

Create Graph —Style
Highlight Grouped Error Bars, click Next

Create Graph — Error Bars
Symbol Values = Worksheet Columns (default), click Next

Create Graph — Data Format
Highlight Many X, click Next

Create Graph — Select Data
Data for Set 1 = use drop box and select Column 1
Data for Error 1 = use drop box and select Column 2
Data for Set 2 = use drop box and select Column 3
Data for Error 2 = use drop box and select Column 4

Click Finish
C— Males
Head Wz Females
circumference [ W

Length

Weight =

T T T T 1

0 10 20 30 40 50

Percentage (%) increase in body size

Figure 4.3 Per cent increase in growth from age 1 to 3 months.

The plot can then be customised by changing the axes, fills, labels etc in
Graph — Graph Properties menus.

Notes for critical appraisal

Questions to ask when assessing statistics from paired or matched data are
shown in Box 4.11.
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Box 4.11 Questions for critical appraisal

The following questions should be asked when appraising published re-
sults from paired or matched data:

Has an appropriate paired z-test or single sample test been used?

Do the within-pair differences need to be standardised for baseline dif-
ferences, that is presented as per cent changes or ratios?

Are the within-pair differences normally distributed?

If summary statistics are reported, are they in the same units of change
so that they can be directly compared if necessary?

Have rank based non-parametric tests been used for non-normally dis-
tributed differences?

Have descriptive data been reported for each of the pair of variables in
addition to information of mean changes?

References
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CHAPTER 5

Continuous variables:
analysis of variance

I discovered, though unconsciously and insensibly, that the pleasure of observing and
reasoning was a much higher one that that of skill and sports.
CHARLES DARWIN.

Objectives

The objectives of this chapter are to explain how to:

e decide when to use an ANOVA test

run and interpret the output from a one-way or a factorial ANOVA
understand between-group and within-group differences

classify factors into fixed, interactive or random effects

test for a trend across the groups within a factor

perform post-hoc tests

build a multivariate ANCOVA model

report the findings from an ANOVA model

test the ANOVA assumptions

A two-sample ¢-test can only be used to assess the significance of the difference
between the mean values of two independent groups. To compare differences
in the mean values of three or more independent groups, analysis of variance
(ANOVA) is used. Thus, ANOVA is suitable when the outcome measurement
is a continuous variable and when the explanatory variable is categorical with
three or more groups. An ANOVA model can also be used for comparing the
effects of several categorical explanatory variables at one time or for comparing
differences in the mean values of one or more groups after adjusting for a
continuous variable, that is a covariate.

A one-way ANOVA is used when the effect of only one categorical variable
(explanatory variable) on a single continuous variable (outcome) is explored,
for example when the effect of socioeconomic status, which has three groups
(low, medium and high), on weight is examined. The concept of ANOVA can
be thought of as an extension of a two-sample ¢-test but the terminology
used is quite different. A factorial ANOVA is used when the effects of two
or more categorical variables (explanatory variables) on a single continuous
variable (outcome) are explored, for example when the effects of gender and
socioeconomic status on weight are examined.

108
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An analysis of covariance (ANCOVA) is used when the effects of one or
more categorical factors (explanatory variables) on a single continuous vari-
able (outcome) are explored after adjusting for the effects of one or more con-
tinuous variables (covariates). A covariate is any variable that correlates with
the outcome variable. For example, ANCOVA would be used to test for the
effects of gender and socioeconomic status on weight after adjusting for height.

For both ANOVA and ANCOVA, the theory behind the model must be re-
liable in that there must be biological plausibility or scientific reason for the
effects of the factors being tested. In this, it is important that the factors are
independent and not related to one another. For example, it would not make
sense to test for differences in mean values of an outcome between groups
defined according to education and socioeconomic status when these two
variables are related. Once the results of an analysis of variance are obtained,
they can only be generalised to the population if the data were collected from
a random sample, and a significant P value cannot be taken as evidence of
causality.

Building an ANOVA model

When building an ANOVA or ANCOVA model, it is important to build the
model in a logical and considered way. The process of model building is as
much an art as a science. Descriptive and summary statistics should always
be obtained first to provide a good working knowledge of the data before
beginning the bivariate analyses or multivariate modelling. In this way, the
model can be built up in a systematic way, which is preferable to including
all variables in the model and then deciding which variables to remove from
the model, that is, using a backward elimination process. Table 5.1 shows the
steps in the model building process.

Table 5.1 Steps in building an ANOVA model

Type of analysis SPSS procedure Purpose

Univariate analyses Explore Examine cell sizes
Obtain univariate means
Test for normality

Bivariate analyses Crosstabulations Ensure adequate cell sizes
One-way ANOVA Estimate differences in means and
homogeneity of variances
Examine trends across groups within

a factor
Multivariate analyses Factorial ANOVA Test several explanatory factors or adjust
ANCOVA for covariates

Test normality of residuals
Test influence of multivariate outliers
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Assumptions for ANOVA models

The assumptions for ANOVA, which must be met in all types of ANOVA mod-
els, are shown in Box 5.1.

Box 5.1 Assumptions for using ANOVA

The assumptions that must be met when using one-way or factorial

ANOVA are as follows:

o the participants must be independent, that is each participant appears
only once in their group

« the groups must be independent, that is each participant must be in one
group only

o the outcome variable is normally distributed

o all cells have an adequate sample size

o the cell size ratio is no larger than 1:4

o the variances are similar between groups

o the residuals are normally distributed

o there are no influential outliers

The first two assumptions are similar to the assumptions for two-sample
t-tests and any violation will invalidate the analysis. In practice, this means
that each participant should appear on one data row of the spreadsheet only
and thus will be included in the analysis once only. When cases appear in the
spreadsheet on more than one occasion then repeated ANOVA should be used
in which case the ID numbers are included as a factor.

When an ANOVA is conducted, the data are divided into cells according to
the number of groups in the explanatory variable. Small cell sizes, that is cell
sizes less than 10, are always problematic because of the lack of precision in
calculating the mean value for the cell. The minimum cell size in theory is
10 but in practice 30 is preferred. In addition to creating imprecision, low cell
counts lead to a loss of statistical power. The assumption of a low cell size ratio
is also important. A cell size imbalance of more than 1:4 across the model
would be a concern, for example when one cell has 10 cases and another cell
has 60 cases and the ratio is then 1:6.

It may be difficult to avoid small cell sizes because it is not possible to predict
the number of cases in each cell prior to data collection. Even in experimental
studies in which equal numbers can be achieved in some groups, drop-outs
and missing data can lead to unequal cell sizes. If small cells are present,
they can be re-coded into larger cells but only if it is possible to meaningfully
interpret the re-coding.

Both the assumptions of a normal distribution and equality of the variance
of the outcome variable between cells should be tested before ANOVA is con-
ducted. However, as with a ¢-test, ANOVA is robust to some deviations from
normality of distributions and some imbalance of variances. The assumption
that the outcome variable is normally distributed is of most importance when
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the sample size is small and/or when univariate outliers increase or decrease
mean values between cells by an important amount and therefore influence
perceived differences between groups. The main effects of non-normality and
unequal variances, especially if there are outliers, are to bias the P values.
However, the direction of the bias may not be clear.

When variances are not significantly different between cells, the model is
said to be homoscedastic. The assumption of equal variances is of most impor-
tance when there are small cells, say cells with less than 30 cases, when the
cell size ratio is larger than 1:4 or when there are large differences in variance
between cells, say larger than 1:10. The main effect of unequal variance is to
reduce statistical power and thus lead to type II errors. Equality of variances
should be tested in bivariate analyses before running an ANOVA model and
then re-affirmed in the final model.

One-way ANOVA

A one-way ANOVA test is very similar to a two-sample ¢-test but in ANOVA
the explanatory variable, which is called a factor, has more than two groups.
For example, a factor could be participants’ residential area with three groups:
inner city, outer suburbs and rural. A one-way ANOVA is used to test the null
hypothesis that each group within the factor has the same mean value.

The ANOVA test is called an analysis of variance and not an analysis of
means because this test is used to assess whether the mean values of different
groups are far enough apart in terms of their spread (variance) to be considered
significantly different. Figure 5.1 shows how a one-way ANOVA model in
which the factor has three groups can be conceptualised.

If a factor has four groups, it is possible to conduct three independent two-
sample ¢-tests, that is to test the mean values of group 1 vs 2, group 3 vs 4

Group 1 Group 2 Group 3

Frequency

Mean1 Mean 2 [\ Mean 3

Grand mean
Figure 5.1 Concept of an ANOVA model.
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and group 1 vs 4. However, this approach of conducting multiple two-sample
t-tests increases the probability of obtaining a significant result merely by
chance (a type I error). The probability of a type I error not occurring for each
t-test is 0.95 (i.e. 1 —0.05). The three tests are independent, therefore the
probability of a type I error not occurring over all three tests is 0.95 x 0.95 x
0.95, or 0.86. Therefore, the probability of at least one type I error occurring
over the three two-sample ¢-tests is 0.14 (i.e. 1 — 0.86), which is higher than
the P level set at 0.05.! A one-way ANOVA is therefore used to investigate
the differences between several groups within a factor in one model and to
reduce the number of pairwise comparisons that are made.

Within- and between-group variance

To interpret the output from an ANOVA model, it is important to have a
concept of the mathematics used in conducting the test. In one-way ANOVA,
the data are divided into their groups as shown in Figure 5.1 and a mean for
each group is computed. Each mean value is considered to be the predicted
value for that particular group of participants. In addition, a grand mean is
calculated as shown in Table 5.2. The grand mean which is also shown in
Figure 5.1, is the mean for all of the data and will only be the average of the
three group means when the sample size in each group is equal.

Table 5.2 Means computed in one-way ANOVA

Group; Group; Groups Total sample

Group mean; Group mean; Group means Grand mean

The ANOVA analysis is then based on calculating the difference of each par-
ticipant’s observed value from their group mean, which is regarded as their
predicted value, and also the difference from the grand mean. Thus, the fol-
lowing calculations are made for each participant:

Within-group difference = group mean — observed measurement

Between-group difference = grand mean — observed measurement

The within-group difference is the variation of each participant’s measure-
ment from their own group mean and is thought of as the explained variation.
The between-group difference is the variation of each participant’s measure-
ment from the grand mean and is thought of as the unexplained variation.
An important concept in ANOVA is that the within-group differences, which
are also called residual or error values, are normally distributed.

In calculating ANOVA statistics, the within-group differences are squared
and then summed to compute the within-group variance. The between-group
difterences are also squared and then summed to compute the between-group
variance. The effect of squaring the values is to remove the effects of negative
values, which would balance out the positive values.
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The F value is calculated as the mean between-group variance divided by
the mean within-group variance, that is the unexplained variance divided by
the explained variance. Thus, the F value indicates whether the between-
group variation is greater than would be expected by chance. The higher the
F value, the more significant the ANOVA test because the groups (factors)
are accounting for a higher proportion of the variance. Obviously, if more of
the participants are closer to their group mean than to the grand mean, then
the within-group variance will be lower than the between-group variance
and F will be large. If the within-group variance is equal to the between-
group variance, then F will be equal to 1 indicating that there is no significant
difference in means between the groups of the factor.

If there are only two groups in a factor and only one factor, then a one-way
ANOVA is equivalent to a two-sample ¢-test and F is equal to #2. This relation-
ship holds because ¢ is calculated from the mean divided by the standard error
(SE) in the same units as the original measurements whereas F is calculated
from the variance, which is in squared units.

Research question

The spreadsheet weights.sav contains the data from a population sample of
550 term babies who had their weight recorded at 1 month of age. The babies
also had their parity recorded, that is their birth order in their family.

Question: Are the weights of babies related to their parity?

Null hypothesis: ~ That there is no difference in mean weight between groups
defined by parity.

Variables: Outcome variable = weight (continuous)

Explanatory variable = parity (categorical, four groups)

The first statistics to obtain are the cell means and cell sizes. The number of
children in each parity group can be obtained using the Analyze — Descriptive
Statistics — Frequencies command sequences shown in Box 1.9.

Frequency table
Parity
Cumulative
Frequency Per cent Valid per cent per cent

Valid Singleton 180 32.7 32.7 32.7

One sibling 192 34.9 34.9 67.6

two siblings 116 211 21.1 88.7

three or more siblings 62 1.3 1.3 100.0

Total 550 100.0 100.0

The Frequency table shows that the sample size of each group is large in
that all cells have more than 30 participants. The cell size ratio is 62:192 or 1:3
and does not violate the ANOVA assumptions. Thus, the ANOVA model will
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be robust to some degrees of non-normality, outliers and unequal variances.
However, it is still important to validate the ANOVA assumptions of normality
and equal variances between groups. An awareness of any violations of these
assumptions before running the model may influence how the results are
interpreted, especially if any P values are of marginal significance. A small
cell with a small variance compared to the other groups has the effect of
inflating the F value, that is of increasing the chance of a type I error. On
the other hand, a small cell with large variance compared to the other groups
reduces the F value and increases the chance of a type II error.

Summary statistics and checks for normality can be obtained using the
Analyze — Descriptive Statistics — Explore command sequence shown in Box 2.2
in Chapter 2. In this example, the dependent variable is weight and the fac-
tor list is parity. The plots that are most useful to request are the box plots,
histograms and normality plots.

Descriptives

Parity Statistic Std. error
Weight (kg)  Singleton Mean 4.2589 0.04617

95% confidence Lower bound 4.1678

interval for mean Upper bound 4.3501

5% trimmed mean 4.2588

Median 4.2500

Variance 0.384

Std. deviation 0.61950

Minimum 2.92

Maximum 5.75

Range 2.83

Inter-quartile range 0.9475

Skewness 0.046 0.181

Kurtosis —0.542 0.360
One sibling Mean 4.3887 0.04277

95% confidence Lower bound 4.3043

interval for mean Upper bound 4.4731

5% trimmed mean 4.3709

Median 4.3250

Variance 0.351

Std. deviation 0.59258

Minimum 3.17

Maximum 6.33

Range 3.16

Inter-quartile range 0.8350

Skewness 0.467 0.175

Kurtosis 0.039 0.349
Two siblings  Mean 4.4601 0.05619

95% confidence Lower bound 4.3488

Continued
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Parity Statistic Std. error

interval for mean Upper bound 4.5714

5% trimmed mean 4.4525

Median 4.4700

Variance 0.366

Std. deviation 0.60520

Minimum 3.09

Maximum 6.49

Range 3.40

Inter-quartile range 0.8225

Skewness 0.251 0.225

Kurtosis 0.139 0.446

Weight (kg) Three or more Mean 4.4342 0.06798

siblings 95% confidence Lower bound 4.2983

interval for mean Upper bound 4.5701

5% trimmed mean 4.4389

Median 4.4450

Variance 0.287

Std. deviation 0.53526

Minimum 3.20

Maximum 5.48

Range 2.28

Inter-quartile range 0.7100

Skewness —0.029 0.304

Kurtosis —0.478 0.599

The Descriptives table shows that means and medians for weight in each
group are approximately equal and the values for skewness and kurtosis are all
between +1 and —1 suggesting that the data are close to normally distributed.
The variances in each group are 0.384, 0.351, 0.366 and 0.287 respectively.
The variance ratio between the lowest and highest values is 0.287:0.384 which

is 1:1.3.

Tests of Normality

Kolmogorov-Smirnova?

Shapiro-Wilk

Parity Statistic df Sig. Statistic df Sig.

Weight (kg) Singleton 0.038 180 0.200* 0.992 180 0.381
One sibling 0.065 192 0.049 0.983 192 0.018
Two siblings 0.059 116 0.200* 0.990 116 0.579
Three or more 0.070 62 0.200* 0.985 62 0.672
siblings

*This is a lower bound of the true significance.
aLilliefors significance correction.
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The Kolmogorov—Smirnov statistics in the Tests of Normality table suggest
that the data for singletons, babies with two siblings, and babies with three
or more siblings conform to normality with P values above 0.05. However,
the data for babies with one sibling do not conform to a normal distribution
because the P value of 0.049 is less than 0.05. Again, this is a conservative test
of normality and failure to pass it does not always mean that ANOVA cannot
be used unless other tests also indicate non-normality.

The histograms shown in Figure 5.2 confirm the tests of normality and show
that the distribution for babies with one sibling has slightly spread tails so that

Histogram
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Figure 5.2 Plots of weight by parity.
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Histogram
For PARITY = two siblings
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Histogram
For PARITY = three or more siblings

Frequency

Std. dev = .54
Mean = 4.43
N=62.00
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Figure 5.2 Continued

it does not conform absolutely to a bell shaped curve. The normal Q-Q plots
shown in Figure 5.2 have small deviations at the extremities. The normal
Q-Q plot for babies with one sibling deviates slightly from normality at both
extremities. Although the histogram for babies with three or more siblings is
not classically bell shaped, the normal Q—Q plot suggests that this distribution
conforms to normality.
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Normal Q-Q plot of weight (kg)
For PARITY = Singleton
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Figure 5.2 Continued

The box plotsin Figure 5.2 indicate that there are two outlying values, one in
the group of babies with one sibling and one in the group of babies with two
siblings. It is unlikely that these outlying values, which are also univariate
outliers, will have a large influence on the summary statisticc and ANOVA
result because the sample size of each group is large. However, the outliers
should be confirmed as correct values and not data entry or data recording
errors. Once they are verified as correctly recorded data points, the decision
to include or omit outliers from the analyses is the same as for any other
statistical tests. In a study with a large sample size, it is expected that there
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will be a few outliers (Chapter 3). In this data set, the outliers will be retained
in the analyses and the extreme residuals will be examined to ensure that
these values do not have undue influence on the results. The characteristics
of the sample that need to be considered before conducting an ANOVA test
and the features of the data set are summarised in Table 5.3.

Table 5.3 Characteristics of the data set

Characteristic

Independence Yes
Smallest cell size 62
Cell ratio 1:3
Variance ratio 1:1.3
Approximately normal distribution in each group Yes
Number of outlying values 2
Number of univariate outliers 2

Running the one-way ANOVA

After the assumptions for using ANOVA have been checked and are validated,
a one-way ANOVA can be obtained using the SPSS commands shown in Box
5.2.

Box 5.2 SPSS commands to obtain a one-way ANOVA

SPSS Commands
weights — SPSS Data Editor
Analyze — Compare Means — One-Way ANOVA
One-Way ANOVA
Highlight Weight and click over into Dependent List
Highlight Parity and click over into Factor
Click on Post-hoc
One-Way ANOVA: Post Hoc Multiple Comparisons
Tick LSD, Bonferroni and Duncan, click Continue
One-Way ANOVA
Click on Options
One-Way ANOVA: Options
Tick Descriptive, Homogeneity of variance test, Means Plot, click Continue
One-Way ANOVA
Click OK
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One way

Descriptives

Weight (kg)

95% confidence

interval for mean

Std. Std. Lower Upper
N  Mean deviation error bound bound Minimum Maximum

Singleton 180 4.2589 0.61950 0.04617 4.1678 4.3501 2.92 5.75
One sibling 192 4.3887 0.59258 0.04277 4.3043 4.4731 3.17 6.33
Two siblings 116 4.4601 0.60520 0.05619 4.3488 4.5714 3.09 6.49
Three or more 62 4.4342 0.53526 0.06798 4.2983 4.5701 3.20 5.48
siblings
Total 550 4.3664 0.60182  0.02566 4.3160 4.4168 2.92 6.49

The summary statistics in the Descriptives table produced in a one-way
ANOVA are identical to the statistics obtained using the command sequence
Analyze — Descriptive Statistics — Explore. The descriptive statistics provided by
the ANOVA commands show useful summary information but do not give
enough details to check the normality of the distributions of weight in each
group.

Test of Homogeneity of Variances

Weight (kg)
Levene statistic df1 df2 Sig.
0.639 3 546 0.590

Homogeneity of variances is a term that is used to indicate that groups have
the same or similar variances (Chapter 3). Thus, in the Test of Homogeneity
of Variances table, the P value of 0.590 in the significance column, which is
larger than the critical value of 0.05, indicates that the variance of each group
is not significantly different from one another.

ANOVA
Weight (kg)

Sum of squares df Mean square F Sig.
Between groups 3.477 3 1.159 3.239 0.022
Within groups 195.365 546 0.358
Total 198.842 549
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The ANOVA table shows how the sum of squares is partitioned into between-
group and within-group effects. The average of each sum of squares is needed
to calculate the F value. Therefore, each sum of squares is divided by its
respective degree of freedom (df) to compute the mean variance, which is
called the mean square. The degrees of freedom for the between-group sum
of squares is the number of groups minus 1, that is 4 — 1 = 3, and for the
within-group sum of squares is the number of cases in the total sample minus
the number of groups, that is 550 — 4 = 546.

In this model, the F value, which is the between-group mean square divided
by the within-group mean square, is large at 3.239 and is significant at P =
0.022. This indicates that there is a significant difference in the mean values
of the four parity groups.

The amount of variation in weight that is explained by parity can be calcu-
lated as the between-group sum of squares divided by the total sum of squares
to provide a statistic that is called eta squared as follows:

Eta’ = Between-group sum of squares/Total sum of squares
= 3.477/198.842
=0.017

This statistic indicates that only 1.7% of the variation in weight is explained
by parity. Alternatively, eta? can be obtained using the commands Analyze—
Compare Means— Means, clicking on Options and requesting ANOVA table and
eta. This will produce the same ANOVA table as above and include eta? but
does not include a test of homogeneity or allow for post-hoc testing.

Post-hoc tests

Although the ANOVA statistics show that there is a significant difference in
mean weights between parity groups, they do not indicate which groups are
significantly different from one another. Specific group differences can be as-
sessed using planned contrasts, which are decided before the ANOVA is run
and which strictly limit the number of comparisons conducted?. Alternatively,
post-hoc tests, which involve all possible comparisons between groups, can
be used. Post-hoc tests are often considered to be data dredging and there-
fore inferior to the thoughtfulness of planned or a priori comparisons>. Some
post-hoc tests preserve the overall type I error rate, but for other post-hoc
tests the chance of a type I error increases with the number of comparisons
made.

It is always better to run a small number of planned comparisons rather than
a large number of unplanned post-hoc tests. Strictly speaking, the between-
group differences that are of interest and the specific between-group compar-
isons that are made should be decided prior to conducting the ANOVA. In
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addition, planned and post-hoc tests should only be requested after the main
ANOVA has shown that there is a statistically significant difference between
groups. When the F test is not significant, it is unwise to explore whether
there are any between-group differences?.

A post-hoc test may consist of pairwise comparisons, group-wise compar-
isons or a combination of both. Pairwise comparisons are used to compare the
differences between each pair of means. Group-wise comparisons are used to
identify subsets of means that differ significantly from each other. Post-hoc
tests also vary from being exceedingly conservative to simply conducting to
multiple ¢-tests with no adjustment for multiple comparisons. A conservative
test is one in which the actual significance is smaller than the stated signif-
icance level. Thus, conservative tests may incorrectly fail to reject the null
hypothesis because a larger effect size between means is required for signifi-
cance. Table 5.4 shows some commonly used post-hoc tests, their assumptions
and the type of comparisons made.

Table 5.4 Types of comparisons produced by post-hoc tests

Pairwise
Requires equal Group-wise comparisons
Post-hoc test group sizes subsets with a95% CI
Equal variance assumed

Conservative tests

Scheffe No Yes Yes

Tukey’s honestly significant difference (HSD) Yes Yes Yes

Bonferroni No No Yes
Liberal tests

Student-Newman-Keuls (SNK) Yes Yes No

Duncan Yes Yes No

Least significance difference (LSD) Yes No Yes

Equal variance not assumed

Games Howell No No Yes
Dunnett’s C No No Yes

The choice of post-hoc test should be determined by equality of the vari-
ances, equality of group sizes and by the acceptability of the test in a partic-
ular research discipline. For example, Scheffe is often used in psychological
medicine, Bonferroni in clinical applications and Duncan in epidemiological
studies. The advantages of using a conservative post-hoc test have to be bal-
anced against the probability of type IT errors, that is missing real differences*°.
In the ANOVA test for the weights.sav data, the following post-hoc compar-
isons were requested:
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Post-hoc tests

Multiple Comparisons
Dependent Variable: Weight (kg)

95% confidence

interval
Mean
difference Std. Lower Upper
(1) Parity (J) Parity (1-J) error Sig. bound bound
LSD Singleton One sibling —0.1298* 0.06206 0.037 -0.2517 —0.0078
Two siblings —0.2011* 0.07122 0.005 -0.3410 -0.0612
Three or —0.1752* 0.08809 0.047 -0.3483 —0.0022
more siblings
One sibling Singleton 0.1298* 0.06206 0.037 0.0078 0.2517
Two siblings  —0.0714 0.07034 0.311 -0.2096  0.0668
Three or —0.0455 0.08738 0.603 —0.2171 0.1261
more siblings
Two siblings  Singleton 0.2011* 0.07122 0.005 0.0612  0.3410
One sibling 0.0714 0.07034 0.311 —-0.0668 0.2096
Three or 0.0259 0.09410 0.783 —-0.1590 0.2107
more siblings
Three or Singleton 0.1752* 0.08809 0.047 0.0022 0.3483
more siblings
One sibling 0.0455 0.08738 0.603 —0.1261 0.2171
Two siblings —0.0259 0.09410 0.783 -0.2107 0.1590
Bonferroni Singleton One sibling —0.1298 0.06206 0.222 —-0.2941 0.0346
Two siblings —0.2011* 0.07122 0.029 -0.3897 -0.0126
Three or —0.1752 0.08809 0.283 —0.4085 0.0580
more siblings
One sibling Singleton 0.1298 0.06206 0.222 —-0.0346 0.2941
Two siblings —0.0714 0.07034 1.000 -0.2577 0.1149
Three or —0.0455 0.08738 1.000 -0.2769  0.1859
more siblings
Two siblings  Singleton 0.2011* 0.07122 0.029 0.0126  0.3897
One sibling 0.0714 0.07034 1.000 -0.1149 0.2577
Three or 0.0259 0.09410 1.000 -0.2233  0.2751
more siblings
Three or Singleton 0.1752 0.08809 0.283 -0.0580  0.4085
more siblings
One sibling 0.0455 0.08738 1.000 -—0.1859 0.2769
Two siblings  —0.0259  0.09410 1.000 —0.2751 0.2233

*The mean difference is significant at the 0.05 level.
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The Multiple Comparisons table shows pairwise comparisons generated us-
ing the least significance difference (LSD) and Bonferroni post-hoc tests. The
LSD test is the most liberal post-hoc test because it performs all possible tests
between means. This test is not normally recommended when more than
three groups are being compared or when there are unequal variances or cell
sizes. With no adjustments made for multiple tests or comparisons, the results
of the LSD test amount to multiple ¢-testing and has been included here only
for comparison with the Bonferroni test.

The Multiple Comparisons table shows the mean ditference between each
pair of groups, the significance and the confidence intervals around the differ-
ence in means between groups. SigmaPlot can be used to plot the LSD mean
differences and 95% confidence intervals as a scatter plot with horizontal error
bars using the commands shown in Box 3.6 to obtain Figure 5.3. This figure
shows that three of the comparisons have error bars that cross the zero line
of no difference, and the differences are not statistically significant using the
LSD test. The remaining three comparisons do not cross the zero line of no
difference and are statistically significant as indicated by the P values in the
Multiple Comparisons table.

2 vs 3+ siblings - |_._E_|
1 vs 3+ siblings - |_E_|
1 vs 2 siblings |_E_|
0 vs 3+ siblings T |_E_|
0 vs 2 siblings —
0 vs 1 sibling - |_E_|
_(;,6 —(;.4 —(;.2 0?0 012 oi 4

Mean between-group difference (kg)

Figure 5.3 Between-group comparisons with no adjustment for multiple testing.

The Bonferroni post-hoc comparison is a conservative test in which the
critical P value of 0.05 is divided by the number of comparisons made. Thus,
if five comparisons are made, the critical value of 0.05 is divided by 5 and the
adjusted new critical value is P = 0.01. In SPSS the P levels in the Multiple
Comparisons table have already been adjusted for the number of multiple
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comparisons. Therefore, each P level obtained from a Bonferroni test in the
Multiple Comparisons table should be evaluated at the critical level of 0.05.

By using the Bonferroni test, which is a conservative test, the significant
differences between some groups identified by the LSD test are now non-
significant. The mean values are identical but the confidence intervals are
adjusted so that they are wider as shown in Figure 5.4. The 95% error bars
show that only one comparison does not cross the zero line of difference
compared to three comparisons using the LSD test.

2 vs 3+ siblings F = !
1 vs 3+ siblings - F = !
1 vs 2 siblings 1 F = |
0 vs 3+ siblings ] : - |
0 vs 2 siblings - F = I
0 vs 1 sibling |—|——|
—(;.6 —0I.4 —(;.2 0?0 012 Oj4

Mean between-group difference (kg)

Figure 5.4 Between-group comparisons using Bonferroni corrected confidence
intervals.

Homogeneous subsets
Weight (kg)
Subset for alpha = 0.05
Parity N 1 2
Duncan?®® Singleton 180 4.2589
One sibling 192 4.3887 4.3887
Three or more siblings 62 4.4342
Two siblings 116 4.4601
Sig. 0.104 0.403

Means for groups in homogeneous subsets are displayed.

2Uses harmonic mean sample size = 112.633.

bThe group sizes are unequal. The harmonic mean of the group sizes is
used. Type | error levels are not guaranteed.
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The Duncan test shown in the Homogeneous Subsets table is one of the
more liberal post-hoc tests. Under this test, there is a progressive comparison
between the largest and smallest mean values until a difference that is not
significant at the P < 0.05 level is found and the comparisons are stopped.
In this way, the number of comparisons is limited. The output from this test
is presented as subsets of groups that are not significantly different from one
another. The between-group P value (0.05) is shown in the top row of the
Homogenous subtests table and the within-group P values at the foot of the
columns. Thus in the table, the mean values for groups of singletons and
babies with one sibling are not significantly different from one another with
a P value of 0.104. Similarly, the mean values of groups with one sibling,
two siblings, or three or more siblings are not significantly different from one
another with a P value of 0.403. Singletons do not appear in the same subset
as babies with two siblings or with three or more siblings which indicates that
the mean weight of singletons is significantly different from these two groups
at the P < 0.05 level.

The means plot provides a visual presentation of the mean value for each
group. The means plot shown in Figure 5.5 indicates that there is a trend for
weight to increase with increasing parity and helps in the interpretation of the
post-hoc tests. It also shows why the group with one sibling is not significantly

4.51

4.4+

Mean of weight (kg)

4.3+

4.2
Singleton One sibling 2 siblings 3 or more siblings

Parity

Figure 5.5 Means plot of weight by parity.
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different from singletons or babies with two siblings or with three or more
siblings, and why singletons are significantly different from the groups with
two siblings or with three or more siblings.

If the means plot shown in Figure 5.5 was to be published, it would be
best plotted in SigmaPlot with 95% confidence intervals around each mean
value included to help interpret the between-group differences. Also, the line
connecting the mean value of each group should be removed because the four
groups are independent of one another.

Trend test

The increase in weight with increasing parity suggests that it is appropriate to
test whether there is a significant linear trend for weight to increase across
the groups within this factor. A trend test can be performed by re-running the
one-way ANOVA and ticking the Polynomial option in the Contrasts box with
the Degree: Linear (default) option used. As the polynomial term implies, an
equation is calculated across the model.

One way
ANOVA
Weight (kg)
Sum of Mean
squares  df square F Sig.
Between (Combined) 3.477 3 1.159 3.239 0.022
groups Linear term  Unweighted 1.706 1 1.706 4768  0.029
Weighted 2.774 1 2.774 7.754  0.006
Deviation 0.703 2 0.351 0.982 0.375
Within groups 195.365 546 0.358
Total 198.842 549

If each of the parity cells had the same number of cases then the unweighted
linear term would be used to assess the significance of the trend. However,
the cell sizes are unequal and therefore the weighted linear term is used. The
table shows that the weighted linear term sum of squares is significant at the
P = 0.006 level indicating that there is a significant trend for mean weight to
increase as parity or the number of siblings increases.

Reporting the results

In addition to presenting the between-group comparisons shown in Fig-
ure 5.3, the results from the one-way ANOVA can be summarised as shown in
Table 5.5. When describing the table it is important to include details stating
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that weight was approximately normally distributed in each group and that
the group sizes were all large (minimum 62) with a cell size ratio of 1:3 and
a variance ratio of 1:1.3. The significant difference in weight at 1 month be-
tween children with different parities can be described as F = 3.24, df = 3,
546, P = 0.022 with a significant linear trend for weight to increase with in-
creasing parity (P = 0.006). The degrees of freedom are conventionally shown
as the between-group and within-group degrees of freedom separated with
a comma. Although the inclusion of the F value and degrees of freedom is
optional since their only interpretation is the P value, some journals request
that they are reported.

Table 5.5 Reporting results from a one-way ANOVA

Parity N Mean (SD) F (df) P value P value trend
Singletons 180 4.26 (0.62) 3.24 (3, 546) 0.022 0.006

One sibling 192 4.39 (0.59)

Two siblings 116 4.46 (0.61)

Three or more siblings 62 4.43 (0.54)

When designing the study, only one post-hoc test should be planned and
conducted if the ANOVA was significant. If the Bonferroni post-hoc test
had been conducted, it could be reported that the only significant differ-
ence in mean weights was between singletons and babies with two siblings
(P = 0.029) with no significant differences between any other groups.

If Duncan’s post-hoc test had been conducted, it could be reported that ba-
bies with two siblings and babies with three or more siblings were significantly
heavier than singletons (P < 0.05). However, babies with one sibling did not
have a mean weight that was significantly different from either singletons
(P = 0.104) or from babies with two siblings, or with three or more siblings
(P = 0.403).

Factorial ANOVA models

A factorial ANOVA is used to test for differences in mean values between
groups when there are two or more factors, or explanatory variables, with
two or more groups each included in a single multivariate analysis. In SPSS,
factorial ANOVA is accessed through the Analyze — General Linear Models —
Univariate command sequence. The term univariate may seem confusing in
this context but in this case refers to there being only one outcome variable
rather than only one explanatory factor.

In a factorial ANOVA, the data are divided into cells according to the number
of participants in each group of each factor stratified by the other factors.
The more explanatory variables that are included in a model, the greater the
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likelihood of creating small or empty cells. The cells can be conceptualised as
shown in Table 5.6. The number of cells in a model is calculated by multiplying
the number of groups in each factor. For a model with three factors that have
three, two and four groups respectively as shown in Table 5.6, the number of
cellsis 3 x 2 x 4, or 24 cells in total.

Table 5.6 Cells in the analysis of a model with three factors (three-way ANOVA)

FACTOR 1 Group 1 Group 2 Group 3

FACTOR 2 Group 1 Group 2 Group 1 Group 2 Group 1 Group 2

FACTOR 3

Group 1 mq1 m 1,1 m2 m 2,1 m3n m ;31
2 m2 m a2 ma22 ma.2.2 m32 ma;32
3 maa3 maa3 mi2;3 ms23 m3;3 ma;33
4 m 1,4 ma4 m 2,4 m2o4 m 134 m234

In factorial ANOVA, the within-group differences are calculated as the dis-
tance of each participant from its cell mean rather than from the group mean
as in one-way ANOVA. However, the between-group differences are again
calculated as the difference of each participant from the grand mean, that is
the mean of the entire data set. As with one-way ANOVA, all of the differences
are squared and summed, and then the mean square is calculated.

Fixed factors, interactions and random factors

Both fixed and random effects can be incorporated in factorial ANOVA mod-
els. Factorial ANOVA is mostly used to examine the effects of fixed factors
which are factors in which all possible groups are included, for example males
and females or number of siblings. When using fixed factors, the differences
between the specified groups are the statistics of interest.

Sometimes the effect of one fixed factor is modified by another fixed factor,
that is it interacts with it. The presence of a significant interaction between
two or more factors or between a factor and a covariate can be tested in a
factorial ANOVA model. The interaction term is computed as a new variable
by multiplying the factors together and then included in the model or can be
requested on an SPSS option.

Factors are considered to be random when only a sample of a wider range
of groups is included. For example, factors may be classified as having random
effects when only three or four ethnic groups are represented in the sample
but the results will be generalised to all ethnic groups in the community. In
this case, only general differences between the groups are of interest because
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the results will be used to make inferences to all possible ethnic groups rather
than to only the groups in the sample.

It is important to classify groups as random factors if the study sample was
selected by recruiting, for example, specific sports teams, schools or doctors’
practices and the results will be generalised to all sports teams, schools or
doctors’ practices or if different sports teams, schools or doctors’ practices
would be selected in the future. In these types of study designs, there is a
cluster sampling effect and the group is entered into the model as a random
factor.

The classification of factors as fixed or random effects has implications for
interpreting the results of the ANOVA. In random effect models, any unequal
variance between cells is less important when the numbers in each cell are
equal. However, when there is increasing inequality between the numbers
in each cell, then differences in variance become more problematic. The use
of fixed or random effects can give very different P values because the F
statistic is computed differently. For fixed effects, the F value is calculated as
the between-group mean square divided by the error mean square whereas for
random effects, the F value is calculated as the between-group mean square
divided by the interaction mean square.

Research question

Differences in weights between genders can be tested using a two-sample
t-test and differences between different parities were tested in the previous
example using a one-way ANOVA. However, maternal education status (Year
10 school, Year 12 school or university) in addition to gender and parity can
be tested together as explanatory factors in a three-way ANOVA model. These
factors are all fixed factors.

Question: Are the weights of babies related to their gender, parity or
maternal level of education?

Null hypothesis: ~ That there is no difference in mean weight between groups
defined according to gender, parity and level of education

Variables: Outcome variable = weight (continuous)
Explanatory variables = gender (categorical, two groups),
parity (categorical, four groups) and maternal education
(categorical, three groups)

The number of cells in the ANOVA model will be 2 (gender) x 3 (maternal
education) x 4 (parity), or 24 cells. First, the summary statistics need to be
obtained to verify that there are an adequate number of babies in each cell. This
can be achieved by splitting the file by gender which has the smallest number
of groups and then generating two tables of parity by maternal education as
shown in Box 5.3.
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Box 5.3 SPSS commands to obtain cell sizes

SPSS Commands
weights — SPSS Data Editor
Data — Split File
Split File
Tick ‘Organise output by groups’
Highlight Gender and click into ‘Groups Based on’ box
Click OK
weights — SPSS Data Editor
Analyze — Descriptive Statistics — Crosstabs
Crosstabs
Highlight Maternal education and click into Rows
Highlight Parity and click into Columns
Click OK

Gender = male

Maternal Education * Parity Crosstabulation

Count
Parity
Three or more
Singleton  Onesibling  Two siblings  siblings Total
Maternal year 10 15 40 26 17 98
education  year12 22 16 8 4 50
Tertiary 55 42 22 8 127
Total 92 98 56 29 275
2Gender = male.
Gender = female
Maternal Education * Parity Crosstabulation
Count
Parity
Three or more
Singleton  Onesibling  Two siblings  siblings Total
Maternal year 10 24 36 21 19 100
education  year 12 19 15 13 2 49
Tertiary 45 43 26 12 126
Total 88 94 60 33 275

aGender = Female.
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The Crosstabulations tables show that even with a large sample size of 550
babies, including three factors in the model will create some small cells with
less than 10 cases and that there is a large cell imbalance. For males, the cell
size ratio is 4:55, or 1:14, and for females the cell size ratio is 2:45, or 1:23.
Without maternal education included, all cell sizes as indicated by the Total
row and Total column totals are quite large. To increase the small cell sizes, it
would make sense to combine the groups of two siblings and three or more
siblings. This combining of cells is possible because the theory is valid and
because the one-way ANOVA showed that the means of these two groups
are not significantly different from one another. By combining these groups,
the smallest cells will be larger at 8 + 4 or 12 for males and 13 + 2 or 15 for
females. The cell ratios will then be 12:55, or 1:4.6 for males and 15:45, or 1:3
for females. The ratio for males is close to the assumption of 1:4 and within
this assumption for females.

To combine the parity groups, the re-code commands shown in Box 1.10
can be used after removing the Split file option as shown in Box 5.4.

Box 5.4 SPSS commands to remove split file

SPSS Commands

weights — SPSS Data Editor
Data — Split File
Tick ‘Analyse all cases, do not create groups’
Click OK

The SPSS commands to obtain summary means for parity and maternal
education in males and females separately are shown in Box 5.5.

Box 5.5 SPSS commands to obtain summary means

SPSS Commands
weights — SPSS Data Editor
Analyze — Compare Means — Means
Means
Highlight Weight and click into Dependent List
Highlight Gender, Maternal education and Parity recoded (3 levels),
click into Independent List

Click OK
Means
Weight (kg) * Gender
Weight (kg)
Gender Mean N Std. deviation
Male 4.5923 275 0.62593
Female 4.1405 275 0.48111

Total 4.3664 550 0.60182
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Weight (kg) * Maternal Education

Weight (kg)

Maternal education Mean N Std. deviation
Year10 4.3529 198 0.55993
Year12 4.4109 99 0.69464
Tertiary 4.3596 253 0.59611

Total 4.3664 550 0.60182

Weight (kg) * Parity Recoded (Three Levels)

Weight (kg)

Parity re-coded (Three levels) Mean N Std. deviation
Singleton 4.2589 180 0.61950

One sibling 4.3887 192 0.59258

Two or more siblings 4.4511 178 0.58040

Total 4.3664 550 0.60182

The Means tables show mean values in each group for each factor. There is
a difference of 4.59 — 4.14, i.e. 0.45 kg between genders, a difference of 4.41 —
4.35, i.e. 0.06 kg between the highest and lowest maternal education groups
and a difference of 4.45 — 4.26, i.e. 0.19 kg between the highest and lowest
parity groups. These are not effect sizes in units of the standard deviations
so the differences cannot be directly compared. In ANOVA, effect sizes can
be calculated but the number of groups and the pattern of dispersion of the
mean values across the groups need to be taken into account®. However, the
absolute differences show that the largest difference is for gender followed by
parity and that there is an almost negligible difference for maternal education.
The effect of maternal education is so small that it is unlikely to be a significant
predictor in a multivariate model.

The summary statistics can also be used to verify the cell size and variance
ratios. A summary of this information validates the model and helps to inter-
pret the output from the three-way ANOVA. The cell size ratio when parity
is re-coded into three cells has been found to be adequate. The variance ra-
tio for each factor, for example for parity, can be calculated by squaring the
standard deviations from the Means table. For parity, the variance ratio is
(0.58)2:(0.62)% or 1:1.14.

Next, the distributions of the variables should be checked for normality us-
ing the methods described in Chapter 2 and for one-way ANOVA. The largest
difference between mean values is between genders, therefore it is important
to examine the distribution for each gender to identify any outlying values
or outliers. In fact, the distribution of each group for each factor should be
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checked for the presence of any outlying values or univariate outliers. The
output is not included here but the analyses should proceed in the knowl-
edge that there are no influential outliers and no significant deviations from
normality for any variable in the model.

The commands for running a three-way ANOVA to test for the effects of
gender (two groups), parity (three groups) and maternal education (three
groups) on weight and to test for a trend for weight to increase with increasing
parity are shown in Box 5.6.

Box 5.6 SPSS commands to obtain a three-way ANOVA

SPSS Commands
weights — SPSS Data Editor
Analyze — General Linear Model — Univariate
Univariate
Highlight Weight and click into Dependent Variable
Highlight Gender, Maternal education and Parity recoded (3 levels) and
click into Fixed Factor(s)
Click on Model
Univariate: Model
Click on Custom
Under Build Term(s) pull down menu and click on Main effects
Highlight gender, education and parityl and click over into Model
Sum of squares: Type I1I on pull down menu (default)
Tick Include intercept in model (default), click Continue
Univariate
Click on Contrasts
Univariate Contrasts
Factors: Highlight parityl
Change Contrasts: pull down menu, highlight Polynomial, click Change,
click Continue
Univariate
Click on Plots
Univariate: Profile Plots
Highlight gender, click into Horizontal Axis
Highlight parityl, click in Separate Lines, click Add, click Continue
Univariate
Click on Options
Univariate: Options
Highlight gender, education and parityl and click into ‘Display
Means for’
Tick ‘Compare main effects’
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Confidence interval adjustment: LSD (none)(default)
Click Continue

Univariate
Click OK

Univariate analysis of variance

Tests of Between-Subject Effects
Dependent Variable: Weight (kg)

Type lll Sum
Source of Squares df Mean square F Sig.
Corrected model 32.6132 5 6.523 21.346 0.000
Intercept 9012.463 1 9012.463 29494.120 0.000
GENDER 28.528 1 28.528 93.361 0.000
EDUCATIO 0.604 2 0.302 0.989 0.373
PARITY1 4.327 2 2.164 7.080 0.001
Error 166.229 544 0.306
Total 10684.926 550
Corrected total 198.842 549

@R squared = 0.164 (adjusted R squared = 0.156).

A three-way ANOVA shown in the Tests of Between-Subject Effects table
is similar to a regression model. In the table, the first two rows show the
Corrected Model and Intercept and indicate that the factors are significant
predictors of weight. The corrected model sum of squares divided by the cor-
rected total sum of squares, that is 32.613/198.842 or 0.164, is the variation
that can be explained by the model and is the R squared value shown in the
footnote. This value indicates that gender, maternal education and parity to-
gether explain 0.164 or 16.4% of the variation in weight. This is considerably
higher than the 1.7% explained by parity only in a previous model.

The F values are the within-group mean square divided by the error mean
square. The F values for the three factors show that both gender and parity are
significant predictors of weight at 1 month with P < 0.0001 and P = 0.001
respectively, but that maternal educational status is not a significant predictor
with P = 0.373. After combining two of the parity groups and adjusting for
gender differences in the parity groups, the significance of parity in predicting
weight has increased to P = 0.001 compared with P = 0.022 obtained from
the one-way ANOVA previously conducted.

The sums of squares for the model, intercept, factors and the error term
when added up manually equal 9244.764. This is less than the total sum
of squares of 10 684.926 shown in the table, which also includes the sum of
squares for all possible interactions between factors in the model, even though
the inclusion of interactions was not requested.
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Contrast Results (K matrix)
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Dependent
variable
Parity recoded (three levels)
Polynomial contrast® Weight (kg)
Linear Contrast estimate 0.157
Hypothesised value 0
Difference (estimate — hypothesised) 0.157
Std. error 0.042
Sig. 0.000
95% confidence interval Lower bound 0.074
for difference Upper bound 0.240
Quadratic Contrast estimate —0.025
Hypothesised value 0
Difference (estimate — hypothesised) —0.025
Std. error 0.040
Sig. 0.542
95% confidence interval Lower bound -0.104
for difference Upper bound 0.055

@Metric = 1.000, 2.000, 3.000.

The polynomial linear contrast in the Contrast Results table shows that
there is again a significant trend for weight to increase with parity at the
P < 0.0001 level. The subscript to this table indicates that the outcome is
being assessed over the three parity groups, that is the groups labelled 1, 2
and 3. The quadratic term is not relevant because there is no evidence to
suggest that the relationship between weight and parity is curved rather than
linear, and consistent with this, the quadratic contrast is not significant.

Estimated Marginal Means

Estimates
Dependent Variable: Weight (kg)

95% confidence interval

Gender Mean Std. error Lower bound Upper bound
Male 4.603 0.035 4.535 4.672
Female 4.148 0.035 4.079 4.216

The Estimated Marginal Means table shows mean values adjusted for the
other factors in the model, that is the predicted mean values. Marginal means
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Pairwise Comparisions
Dependent Variable: Weight (kg)

95% Confidence Interval

Mean for Difference®

difference
() gender (J) gender (1-)) Std. error  Sig.? Lower bound  Upper bound
Male Female 0.456* 0.047 0.000 0.363 0.548
Female Male —0.456* 0.047 0.000 —0.548 —0.363

Based on estimated marginal means.

*The mean difference is significant at the 0.05 level.

a Adjustment for multiple comparisions: least significant difference (equivalent to no adjust-
ments).

Univariate Tests
Dependent Variable: Weight (kg)

Sum of squares df Mean square F Sig.
Contrast 28.528 1 28.528 93.361 0.000
Error 166.229 544 0.306

The F tests the effect of gender. This test is based on the linearly independent pairwise com-
parisions among the estimated marginal means.

that are similar to the unadjusted mean values provide evidence that the model
is robust. If the marginal means change by a considerable amount after adding
an additional factor to the model, then the added factor is an important con-
founder or covariate. The significance of the comparisons in the Pairwise Com-
parisons table is based on a ¢ value, that is the mean difference/SE, for the dif-
ference in marginal means without any adjustment for multiple comparisons.

In this model, the marginal means are adjusted for differences in the dis-
tribution of parity and maternal education in the two gender groups. The
standard errors are identical in the two groups because the pooled data for
all cases are used to compute a single estimate of the standard error. For this
reason, it is important that the assumptions of equal variance and similar cell
sizes in all groups are met. The marginal mean for males is 4.603 kg compared
to a mean of 4.592 kg in the unadjusted analysis, and for females is 4.148 kg
compared to 4.141 kg in the unadjusted analysis. Thus, the difference be-
tween genders in the adjusted ANOVA analysis is 0.456 kg compared with a
difference of 0.452 kg that can be calculated from the previous Means table.

Pairwise comparisons for maternal education and parity were also requested
although they have not been included here.

The Profile plot shown in Figure 5.6 indicates that the relative values in
mean weights between groups defined according to parity are the same for
both genders. In the plot, if the lines cross one another this would indicate
an interaction between factors. However, in Figure 5.6, the lines are parallel
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which indicates that there is no interaction between gender and parity. Inter-
actions are discussed in more detail in Chapter 6.

Estimated marginal means of weight (kg)
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Figure 5.6 Profile plot of marginal means of weight by gender and parity.

Reporting the results

The results from the three-way ANOVA can be presented as shown in Table 5.7.

Table 5.7 Mean weights of babies at 1 month of age by gender, parity and maternal

education
Weight (kg) P value
N Mean (SD) F (df) P value trend
Gender
Males 275 4.59 (0.63) 93.36 (1, 544) <0.0001 -
Females 275 4.14 (0.48)
Parity
Singletons 180 4.26 (0.62) 7.08 (2, 544) 0.001 <0.0001
One sibling 192 4.39 (0.59)

Two or more siblings 178 4.45 (0.58)
Maternal education
Year 10 school 198 4.35 (0.56) 0.99 (2, 544) 0.373 —
Year 12 school 99 4.41 (0.69)
Tertiary education 253 4.36 (0.60)
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The results could be described as follows: ‘Table 5.7 shows the unadjusted
mean weights of babies at 1 month of age by group. The F and P values were
derived from a three-way ANOVA. The cell size was within the assumption
of 1:4 for females and close to this assumption for males and the variance
ratio was less than 1:2. There was a significant difference in weight between
males and females and between groups defined according to parity, but not
between groups defined according to maternal education status. A polynomial
contrast indicated that the linear trend for weight to increase with parity was
significant at P < 0.0001. Pairwise contrasts showed that the difference in
marginal means between males and females was 0.46 kg (95% CI 0.36, 0.55).
In addition, the difference in marginal means between singletons and babies
with one sibling was statistically significant at —0.14 kg (95% CI —0.25, —0.03,
P =0.015) and the difference between singletons and babies with two or
more siblings were statistically significant at —0.22 kg (95% CI — 0.34, —0.11,
P < 0.0001). Profile plots indicated that there was no interaction between
gender and parity’.

Analysis of covariance

Analysis of covariance (ANCOVA) is used when it is important to examine
group differences after adjusting the outcome variable for a continuously dis-
tributed explanatory variable (covariate). The ANCOVA analysis first produces
a regression of the outcome on the covariate and then adjusts the cell means
for the effect of the covariate. Adjusting for a covariate has the effect of reduc-
ing the residual (error) term by reducing the amount of noise in the model.
As in regression, it is important that the association between the outcome and
the covariate is linear. In ANCOVA, the residual terms are the distances of
each individual from the regression line and not from the cell mean, thus the
residual distances are smaller than in ANOVA.

The assumptions for ANCOVA are identical to the assumptions for ANOVA
but the additional assumptions shown in Box 5.7 must also be met.

Box 5.7 Additional assumptions for ANCOVA

The following assumptions for ANCOVA must be met in addition to the

assumptions shown in Box 5.1 for ANOVA:

o the measurement of the covariate is reliable

o if there is more than one covariate, there is low collinearity between
covariates

o the association between the covariate and the outcome is linear

» there is homogeneity of the regression, that is the slopes across the data
in each cell are the same as the slope in the total sample

o there is no interaction between the covariate and the factors

e there are no multivariate outliers

In building the ANCOVA model, the choice of covariates must be made
carefully and should be limited to covariates that can be measured reliably.
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Few covariates are measured without any error but unreliable covariates lead
to a loss of statistical power. Covariates such as age and height can be measured
reliably but other covariates such as reported hours of sleep or time spent
exercising may be subject to significant reporting bias.

Itis also important to limit the number of covariates to variables that are not
significantly related to one another. As in all multivariate models, collinearity,
that is a significant association or correlation between explanatory variables,
canresultin an unstable model and unreliable estimates of effect, which can be
difficulttointerpret.Ideally, the correlation (r)between covariates should be low.

Research question

Weight is related to the length of a baby and therefore it makes sense to
use ANCOVA to test whether the significant differences in weight between
gender and parity groups are maintained after adjusting for length. In testing
this, length is added into the model as a covariate. The SPSS commands for
running an ANCOVA model are shown in Box 5.8. Maternal education has
been omitted from this model because the previous three-way ANOVA showed
that this variable does not have a significant relationship with babies’ weights.

Box 5.8 SPSS commands for obtaining an ANCOVA model

SPSS commands
weights — SPSS Data Editor
Analyze — General Linear Model — Univariate
Univariate
Click on Reset
Highlight Weight and click into Dependent Variable
Highlight Gender and Parity recoded (3 levels) and click into Fixed Factors
Highlight Length, click into Covariate(s)
Click on Model
Univariate: Model
Click on Custom
Under Build Term(s) pull down menu and click on Main effects
Highlight gender, parityl and length and click over into Model
Sum of squares: Type I1I on pull down menu (default)
Tick Include intercept in model (default), click Continue
Univariate
Click on Contrasts
Univariate Contrasts
Factors: Highlight parity1
Change Contrast: pull down menu, highlight Polynomial, click Change,
click Continue
Univariate
Click on Options
Univariate: Options




142 Chapter 5

Click Continue
Univariate
Click OK

Highlight gender and Parityl, click into ‘Display Means for’
Tick ‘Compare main effects’
Confidence interval adjustment: using LSD (none)(default)

Tests of Between-Subject Effects
Dependent Variable: Weight (Kg)

Type Il sum
Source of squares df Mean square F Sig.
Corrected model 111.164°2 4 27.791 172.747 0.000
Intercept 20.805 1 20.805 129.322 0.000
GENDER 8.378 1 8.378 52.074 0.000
PARITY1 1.929 2 0.965 5.996 0.003
LENGTH 79.155 1 79.155 492.024 0.000
Error 87.678 545 0.161
Total 10684.926 550
Corrected total 198.842 549
2R squared = 0.559 (adjusted R squared = 0.556).
Custom Hypothesis Tests
Contrast Results (K matrix)
Dependent
variable

Parity re-coded (three levels) -
Polynomial contrast® Weight (kg)
Linear Contrast estimate 0.098

Hypothesised value 0

Difference (estimate — hypothesised) 0.098

Std. error 0.030

Sig. 0.001

95% confidence interval Lower bound 0.039

for difference Upper bound 0.157
Quadratic Contrast estimate —0.035

Hypothesised value 0

Difference (estimate — hypothesised) —0.035

Std. error 0.029

Sig. 0.238

95% confidence interval Lower bound —0.092

For difference Upper bound 0.023

@Metric = 1.000, 2.000, 3.000.
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The Tests of Between-Subject Effects table shows that by adding a strong
covariate, the explained variation has increased from 16.4% to 55.9% as in-
dicated by the R square value. All three factors in the model are statistically sig-
nificant but parity is now less significant at P = 0.003 compared to P = 0.001
in the former three-way ANOVA model. These P values, which are adjusted
for the covariate, are more accurate than the P values from the previous one-
way and three-way ANOVA models. The Contrast Results table shows that the
linear trend for weight to increase with increasing parity remains significant,
but slightly less so at P = 0.001.

Estimated Marginal Means

Estimates
Dependent Variable: Weight (kg)

95% confidence interval

Gender Mean Std. error Lower bound Upper bound
Male 4.494° 0.025 4.445 4.542
Femal 4.238° 0.025 4.190 4.287

2Covariates appearing in the model are evaluated at the following values: length
(cm) = 54.841.

Pairwise Comparisons
Dependent Variable: Weight (kg)

95% confidence interval

Mean for difference®

difference
() gender (J) gender (1 —)J) Std. error  Sig.? Lower bound  Upper bound
Male Female 0.255* 0.035 0.000 0.186 0.325
Female Male —0.255* 0.035 0.000 —-0.325 —0.186

Based on estimated marginal means.

*The mean difference is significant at the 0.05 level.

2 Adjustment for multiple comparisons: least significant difference (equivalent to no adjust-
ments).

Univariate Tests
Dependent Variable: Weight (kg)

Sum of squares df Mean square F Sig.
Contrast 8.378 1 8.378 52.074 0.000
Error 87.678 545 0.161

*The F tests the effect of gender. This test is based on the linearly independent pairwise
comparisons among the estimated marginal means.

When there is a significant covariate in the model, the marginal means are
calculated with the covariate held at its mean value. Thus, the marginal means
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are predicted means and not observed means. In this model, the marginal
means are calculated at the mean value of the covariate length, that is 54.841
as shown in the footnote of the Estimates table. In this situation, the marginal
means need to be treated with caution because they may not correspond with
any situation in real life where the covariate is held at its mean value and is
balanced between groups. In observational studies, the marginal means from
such analyses often have no interpretation apart from group comparisons.

Testing the model assumptions

It is important to conduct tests to check that the assumptions of any ANOVA
model have been met. By re-running the model with different options, statis-
tics can be obtained to test that the residuals are normally distributed, that
there are no influential multivariate outliers, that the variance is homoge-
neous and that there are no interactions between the covariate and the fac-
tors. Here, the assumptions are being tested only when final model is obtained
but in practice the assumptions would be tested at each stage in the model
building process. The SPSS commands shown in Box 5.9 can be used to test
the model assumptions.

Box 5.9 SPSS commands for testing the model assumptions

SPSS Commands
weights — SPSS Data Editor
Analyze — General Linear Model — Univariate
Univariate
Click on Reset
Highlight Weight and click into Dependent Variable
Highlight Gender and Parity recoded (3 levels) and click into Fixed Factors
Highlight Length, click into Covariate(s)
Click on Model
Univariate: Model
Click on Custom
Under Build Term(s) pull down menu and click on Main effects
Highlight gender, parityl and length and click over into Model
Pull down menu, click on All 2-way
Highlight gender, parityl and length, click over into Model
Sum of squares: type III on pull down menu (default)
Tick Include intercept in model (default), click Continue
Univariate
Click on Save
Univariate: Save
Under Predicted Values tick Unstandardized
Under Residuals tick Standardized
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Under Diagnostics tick Cook’s distances and Leverage values
Click Continue
Univariate
Click on Options
Univariate Options
Tick on Estimates of effect size, Homogeneity tests, Spread vs level plot
Residual plot, and Lack of fit, click Continue
Univariate
Click OK

Univariate analysis of variance

Levene's Test of Equality of Error Variances®
Dependent Variable: Weight (kg)

F df1 df2 Sig.

1.947 5 544 0.085

Tests the null hypothesis that the error variance
of the dependent variable is equal across groups.
?Design:

Intercept+GENDER+PARITY 1+LENGTH+GENDER *
PARITY1+GENDER * LENGTH+PARITY1 * LENGTH

In Levene’s Test of Equality of Error Variances table, Levene’s test indicates
that the differences in variances are not significantly different with a P value
of 0.085. If the P value had been significant at < 0.05, regression would be
the preferred method of analysis. Other options would be to halve the critical
P values for any between-group differences say to P = 0.025 instead of P =
0.05. This is an arbitrary decision but would reduce the type I error rate. A
less rigorous option would be to select a post-hoc test that adjusts for unequal
variances.

Tests of Between-Subject Effects
Dependent Variable: Weight (kg)

Type lll sum Partial eta
Source of squares df Meansquare F Sig. squared
Corrected model 114.7422 9 12.749 81.862 0.000 0.577
Intercept 18.697 1 18.697 120.056  0.000 0.182
GENDER 2.062 1 2.062 13.237  0.000 0.024
PARITY1 0.898 2 0.449 2.884 0.057 0.011
LENGTH 73.731 1 73.731 473.425 0.000 0.467
GENDER * PARITY1 0.230 2 0.115 0.739 0.478  0.003

Continued
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Type Ill sum Partial eta
Source of squares df Mean square  F Sig. squared
GENDER * LENGTH 2.434 1 2.434 15.631 0.000 0.028
PARITY1 * LENGTH 0.793 2 0.397 2.547 0.079 0.009
Error 84.099 540 0.156
Total 10684.926 550
Corrected total 198.842 549

2R squared = 0.577 (adjusted R squared = 0.570).

The Sig. column in the Tests of Between-Subject Effects table shows that
gender and length are significant predictors of weight with P < 0.0001 and
that parity is a marginal predictor with P = 0.057. However, there is a signifi-
cant interaction between gender and length at P < 0.0001 although there are
no significant interactions between gender and parity (P = 0.478) or parity
and length (P = 0.079).

When interactions are present in any multivariate model, the main ef-
fects of the variables involved in the interaction are no longer of interest
because it is the interaction that describes the relationship between the vari-
ables and the outcome. However, the main effects must always be included
in the model even though they are no longer of interest. The interaction be-
tween gender and length violates the ANCOVA model assumption that there
is no interaction between the covariate and the factors. In this case, regression
would be the preferred analysis. Alternatively, the ANCOVA could be con-
ducted for males and females separately although this will reduce the precision
around the estimates of effect simply because the sample size in each model is
halved.

In the Tests of Between-Subject Effects table, an estimate of partial eta
squared is reported for each effect. This statistic gives an estimate of the pro-
portion of the variance that can be attributed to each factor. In ANCOVA, this
statistic is calculated as the sum of squares for the effect divided by the sum
of squares for the effect plus the sum of squares for the error. These partial
eta squared values for each factor can be directly compared but cannot be
added together to indicate how much of the variance of the outcome variable
is accounted for by the explanatory variables.

Lack of Fit Tests
Dependent Variable: Weight (kg)

Source Sum of squares  df Mean square  F Sig. Partial eta squared
Lack of fit ~ 20.907 114 0.183 1.236  0.070 0.249
Pure error  63.192 426 0.148

The lack of fit test divides the total variance into the variance due to the
interaction terms not included in the model (lack of fit) and the variance in
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the model (pure error). An F value that is not significant as in this table at
P = 0.070 indicates that the model cannot be improved by adding further in-
teraction terms, which in this case would have been the three-way interaction
term between gender, parity and length. However, any significant interaction
that includes the covariate would violate the assumption of the model.

It is important to examine the variance across the model using a spread-vs-
level plot because the cell sizes in the model are unequal. The spread-vs-level
plot shows one point for each cell. If the variance is not related to the cell
means then unequal variances will not be a problem. However, if there is
a relation such as the variance increasing with the mean of the cell, then
unequal variances will bias the F value.

The Spread-vs-Level plot shown in Figure 5.7 indicates that the standard
deviation on the y-axis increases with the mean weight of each gender and
parity cell as shown on the x-axis. However, the range in standard deviations
is relatively small, that is from approximately 0.45 to 0.65. This ratio of less
than 1:2 for standard deviation, or 1:4 for variance, will not violate the ANOVA
assumptions.

Spread vs. Level plot of weight (kg)
71

Spread (standard deviation)

3.8 4.0 4.2 4.4 46 4.8
Level (mean)

Groups: Gender * Parity recoded (3 levels)

Figure 5.7 Spread (standard deviation) by level (mean) plot of weight for each gender
and parity group.

If the variances are widely unequal, it is sometimes possible to reduce the
differences by transforming the measurement. If there is a linear relation be-
tween the variance and the means of the cells and all the data values are posi-
tive, taking the square root or logarithm of the measurements may be helpful.
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Transforming variables into units that are not easy to communicate are last
resort methods to avoid violating the assumptions of ANOVA or ANCOVA.
In practice, the use of a different statistical test such as multiple regression
analysis may be preferable because the assumptions are not as restrictive.

Testing residuals: unbiased and normality

One assumption of ANOVA and ANCOVA is that the residuals are unbiased.
This means that the differences between the observed and predicted val-
ues for each participant are not systematically different from one another.
If the plot of the observed against predicted values, as shown in the centre
of the top row, were funnel shaped or deviated markedly from the line of
identity, which is a diagonal line across the plot, this assumption would be
violated.

Using the commands in Box 5.9 the matrix plot shown in Figure 5.8 can be
obtained. This plot shows that the observed and predicted values have a linear
relationship with no systematic differences across the range. In addition, the
negative and positive residuals balance one another with a random scatter
around a horizontal centre line.

Dependent variable: Weight (kg)

o O

[=]
o

Observed

Predicted

Std. residual

Model: Intercept + GENDER + PARITY1 + LENGTH + GENDER*PARITY1 + G

LENGTH + PARITY1*LENGTH

Figure 5.8 Matrix plot of observed and predicted values by standardised residuals for
weight.
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The assumption that the residuals, that is the within-group differences, have
anormal distribution can be tested when running the ANOVA model. It is im-
portant that this assumption is met especially if the sample size is relatively
small because the effect of non-normally distributed residuals or of multivari-

ate outliers is to bias the P values.

When residuals are requested in Save as shown in Box 5.9, the residual for
each case is created as a new variable at the end of the spreadsheet. Thus,
the distribution of the residuals can be explored in more detail using standard
tests of normality in Analyze — Descriptive Statistics — Explore as shown in Box
2.2 in Chapter 2, with the new variable Standardised Residual for weight as

the dependent variable.

Descriptives

Statistic Std. error
Standardised Mean 0.0000 0.04229
residual for 95% confidence Lower bound —0.0831
WEIGHT interval for mean Upper bound 0.0831
5% trimmed mean 0.0014
Median —0.0295
Variance 0.984
Std. deviation 0.99177
Minimum —2.69
Maximum 3.16
Range 5.85
Inter-quartile range 1.3246
Skewness 0.069 0.104
Kurtosis 0.178 0.208
Extreme Values
Case number Value
Standardised residual Highest 1 256 3.16
for WEIGHT 2 101 3.08
3 404 3.03
4 32 2.80
5 447 2.73
Lowest 1 252 —2.69
2 437 —2.48
3 311 -2.37
4 35 -2.37
5 546 —-2.34
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Tests of Normality

Kolmogorov-Smirnov? Shapiro-Wilk
Statistic df Sig. Statistic df Sig.
Standardised residual 0.020 550 0.200* 0.995 550 0.069

for WEIGHT

*This is a lower bound of the true significance.
aLilliefors significance correction.

The descriptive statistics and the tests of normality show that the standard-
ised residuals are normally distributed with a mean residual of zero and a
standard deviation very close to unity at 0.992, as expected. The histogram
and normal Q-Q plot shown in Figure 5.9 indicate only small deviations from
normality in the tails of the distribution.

For an approximately normal distribution, 99% of standardised residuals
will by definition fall within three standard deviations of the mean. Therefore,
1% of the sample is expected to be outside this range. In this sample size of 550
children, it would be expected that 1% of the sample, that is five children,
would have a standardised residual outside the area that lies between —3
and +3 standard deviations from the mean. The Extreme Values table shows
that residual scores for three children are more than 3 standard deviations
from the mean and the largest standardised residual is 3.16. The number of
outliers is less than would be expected by chance. In addition, all three outliers
have values that are just outside the cut-off range and therefore are not of
concern.

Identifying multivariate outliers:
Leverage and discrepancy

To identify multivariate outliers, statistics such as leverage and discrepancy for
each data point can be calculated. Leverage measures how far or remote a data
point is from the remaining data but does not indicate whether the remote
data point is on the same line as other cases or far away from the line. Thus,
leverage does not provide information about the direction of the distance from
the other data points’. Discrepancy indicates whether the remote data point
is in line with other data points. Figure 5.10 shows how remote points or
outliers can have a high leverage and/or a high discrepancy.

Cook’s distances are a measure of influence, that is a product of leverage and
discrepancy. Influence measures the change in regression coefficients (Chap-
ter 6) if the data point is removed®. A recommended cut-off for detecting
influential cases is a Cook’s distance greater than 4/(n — k — 1), where n is the
sample size and k is the number of explanatory variables in the model. In this
example, any distance that is greater than 4/(550 — 3 — 1), or 0.007, should
be investigated. Obviously the larger the sample size the smaller the cook’s
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Histogram

801

Frequency

Std. dev = .99
Mean = 0.00
N = 550.00

R R I S R N N TN N L S 4
e‘%\e%\{)\y{%\)@%\s S @6\%\9@%96

Standardised residual for WEIGHT

Normal Q-Q Plot of Standardized Residual for WEIGHT

Expected Normal

-3 -2 - 0 1 2 3 4
Observed Value
Figure 5.9 Plots of standardised residuals by weight.

distance becomes. Therefore in practice, Cook’s distances above 1 should be
investigated because these cases are regarded as influential cases or outliers.
A leverage value that is greater than 2(k + 1)/n, where k is the number of
explanatory variables in the model and # is the sample size, is of concern.
In the working example, this value would be 2 x (3 + 1)/550, or 0.015. As
with Cook’s distance, this leverage calculation is also influenced by sample size
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Figure 5.10 Distribution of data points and outliers.

and the number of explanatory variables in the model. In practice, leverage
values less than 0.2 are acceptable and leverage values greater than 0.5 need
to be investigated. Leverage is also related to Mahalanobis distance, which is
another technique to identify multivariate outliers when regression is used®
(Chapter 6).

Cook’s distances can be plotted in a histogram using the SPSS commands
shown Box 5.10. These commands can be repeated for leverage values.

Box 5.10 SPSS commands to examine potential multivariate outliers

SPSS Commands

weights — SPSS Data Editor
Graphs — Histogram

Histogram
Highlight Cook’s distance for weight, click into Variable
Click OK

The plots shown in Figure 5.11 indicate that there are no multivariate out-
liers because there are no Cook’s distances greater than 1 or leverage points
greater than 0.2.

Deciding whether points are problematic will always be context specific
and several factors need to be taken into account including sample size and
diagnostic indicators. If problematic points are detected, it is reasonable to
remove them, re-run the model and decide on an action depending on their
influence on the results. Possible solutions are to re-code values to remove
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their undue influence, to recruit a study sample with a larger sample size if
the sample being tested is small or to limit the generalisability of the model.

Reporting the results

If the model assumptions had all been met, the results of the final ANCOVA
model could be reported in a similar way to reporting the three-way ANOVA.
The statistics reported should include information to assure readers that all
ANCOVA assumptions had been met and should include values of partial eta
squared to convey the relative contribution of each factor to the model. Other
statistics to report are the total amount of variation explained and the signifi-
cance of each factor in the model.

In the present ANCOVA model, because there was a significant interaction
between factors, it is better to analyse the data using regression as described
in Chapter 6.

Notes for critical appraisal

There are many assumptions for ANOVA and ANCOVA and it is important
that all assumptions are tested and met to avoid inaccurate P values. Some
of the most important questions to ask when critically appraising a journal
article in which ANOVA or ANCOVA is used to analyse the data are shown in
Box 5.11.

Box 5.11 Questions for critical appraisal

The following questions should be asked when appraising published re-

sults from analyses in which ANOVA or ANCOVA has been used:

» Have any repeated measures been treated as independent observations?

o Is the outcome variable normally distributed?

e Does each cell have an adequate number of participants?

o Are the variances between cells fairly similar?

o Are the residuals normally distributed?

o Are there any outliers that would tend to inflate or reduce differences
between groups or that would distort the model and the standard errors,
and therefore the P values?

¢ Does the model include any unreliable covariates or covariates that do
not have a linear relationship with the outcome?

o If there is an increase in means across the range of a factor, has a trend
test been used?

o Have tests of homogeneity and collinearity been included?

o Would regression have been a more appropriate statistical test to use?

e Dothe P valuesreflect the differences between cell means and the group
sizes?
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CHAPTER 6

Continuous data analyses:
correlation and regression

Angling may be said to be so like mathematics that it can never be fully learnt.
IZAAK WALTON (1593-1683)

Objectives

The objectives of this chapter are to explain how to:

explore a linear relation between two continuous variables

interpret parametric and non-parametric correlation coefficients
build a regression model that conforms to satisfies assumptions of regression
assumptions

use a regression model as a predictive equation

include binary and dummy group variables in a multivariate model
plot regression equations that include binary group variables

include more than one continuous variable in a multivariate model
test for collinearity and interactions

identify and deal with outliers and remote points

explore non-linear fits for regression models

critically appraise the literature when regression models are reported

Correlation coefficients

A correlation coefficient describes how closely two variables are related, that
is the amount of variability in one measurement that is explained by an-
other measurement. The range of a correlation coefficient is from —1 to +1,
where +1 and —1 indicate that one variable has a perfect linear association
with the other variable and that both variables are measuring the same entity
without error. In practice, this rarely occurs because even if two instruments
are intended to measure the same entity both usually have some degree of
measurement error.

A correlation coefficient of zero indicates a random relationship and the
absence of a linear association. A positive coefficient value indicates that both
variables increase in value together and a negative coefficient value indicates
that one variable decreases in value as the other variable increases. It is im-
portant to note that a significant association between two variables does not
imply that they have a causal relationship. Also, a correlation coefficient that

156
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is not significant does not imply that there is no relationship between the
variables because there may be a non-linear relationship such as a curvilinear
or cyclical relationship.

Correlation coefficients are rarely used as important statistics in their own
right. An inherent limitation is that correlation coefficients reduce complex
relationships to a single number that does not adequately explain the relation-
ship between the two variables. Another inherent problem is that the statistical
significance of the test is often over-interpreted. The P value is an estimate of
whether the correlation coefficient is significantly different from zero so that a
small correlation of no clinical importance can become statistically significant,
especially when the sample size is large. In addition, the range of the data as
well as the relationship between the two variables influences the correlation
coefficient.

There are three types of bivariate correlations and the type of correlation
that is used to examine a linear relation is determined by the nature of the
variables.

Pearson’s correlation coefficient (r) is a parametric correlation coefficient that
is used to measure the association between two continuous variables that are
both normally distributed. The correlation coefficient (r) can be squared to
give the coefficient of determination (r2), which is an estimate of the per cent
of variation in one variable that is explained by the other variable.

The assumptions for using Pearson’s correlation coefficient are shown in
Box 6.1.

Box 6.1 Assumptions for using Pearson’s correlation coefficient

The assumptions that must be satisfied to use Pearson’s correlation coef-

ficient are:

e both variables must be normally distributed

 the sample must have been selected randomly from the general popu-
lation

 the observations are independent of one another

o the relation between the two variables is linear

e the variance is constant over the length of the data

If the assumption of random selection is not met, the correlation coefficient
does not describe the true association between two variables that would be
found in the general population. In this case, it would not be valid to generalise
the association to other populations or to compare the r value with results from
other studies.

Spearman’s p (rho) is arank correlation coefficient that is used for two ordinal
variables or when one variable has a continuous normal distribution and the
other variable is categorical or non-normally distributed. When this statistic
is computed, the categorical or non-normally distributed variable is ranked,
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that is sorted into ascending order and numbered sequentially, and then a
correlation of the ranks with the continuous variable that is equivalent to
Pearson’s r is calculated.

Kendall’s T (tau) is used for correlations between two categorical or non-
normally distributed variables. In this test, Kendall’s 7 is calculated as the
number of concordant pairs minus the number of disconcordant pairs divided
by the total number of pairs. Kendall’s tau-b is adjusted for the number of
pairs that are tied.

Research question

The spreadsheet weights.sav, which was used in Chapter 5, contains the data
from a population sample of 550 term babies who had their weight recorded
at 1 month of age.

Question: Is there an association between the weight, length and
head circumference of 1 month old babies?

Null hypothesis: That there is no association between weight, length and
head circumference of babies at 1 month of age.

Variables: Weight, length and head circumference (continuous)

All three variables of weight, length and head circumference are continuous
variables that have a normal distribution and therefore their relationships to
one another can be examined using Pearson’s correlation coefficients. Before
computing any correlation coefficient, it is important to obtain scatter plots
to obtain an understanding of the nature of the relationships between the
variables. Box 6.2 shows the SPSS commands to obtain the scatter plots.

Box 6.2 SPSS commands to obtain scatter plots between variables

SPSS Commands
weights — SPSS Data Editor
Graphs — Scatter
Scatterplot
Click on Matrix and click on Define
Scatterplot Matrix
Highlight Weight, Length, Head circumference, click over into Matrix
Variables
Click OK

The matrix in Figure 6.1 shows each of the variables plotted against one
another. The number of rows and columns is equal to the number of variables
selected. Each variable is shown once on the x-axis and once on the y-axis to
give six plots, three of which are mirror images of the other three. In Figure 6.1,
the scatter plot between weight and length is shown in the middle box on the
top row, the scatter plot between weight and head circumference is in the
right hand box on the top row, and the scatter plot between length and head
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Weight (kg)

Length (cm)

Head circumference
(cm)

Figure 6.1 Scatter plot of weight by length by head circumference.

circumference is in the third column of the middle row. All scatter plots in
Figure 6.1 slope upwards to the right indicating a positive association between
the two variables. If an association was negative, the scatter plot would slope
downwards to the right.

The plots shown in Figure 6.1 indicate that there is a reasonable, positive
linear association for all bivariate combinations of the three variables. It is clear
that weight has a closer relationship with length than with head circumfer-
ence in that the scatter around the plot is narrower. Box 6.3 shows the SPSS
commands to obtain the correlation coefficients between the three variables.
Normally only one type of coefficient would be requested but to illustrate the
difterence between coetficients, all three are requested in this example.

Box 6.3 SPSS commands to obtain correlation coefficients

SPSS Commands
weights — SPSS Data Editor
Analyze — Correlate — Bivariate
Bivariate Correlations
Highlight Weight, Length, Head circumference, click over into Variables
Under Correlation Coefficients, tick Pearson (default), Kendall’s tau-b and
Spearman
Under Test of Significance, tick Two-Tailed (default)
Click OK
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Correlations

Correlations

Head
circumference

Weight (kg) Length (cm) (cm)
Weight (kg) Pearson correlation 1 0.713** 0.622**
Sig. (two-tailed) . 0.000 0.000
N 550 550 550
Length (cm) Pearson correlation 0.713** 1 0.598**
Sig. (two-tailed) 0.000 . 0.000
N 550 550 550
Head circumference Pearson correlation 0.622** 0.598** 1
(cm) Sig. (two-tailed) 0.000 0.000 .
N 550 550 550

**Correlation is significant at the 0.01 level (two-tailed).

A comparison of the Pearson correlations (r values) in the Correlations
table shows that the best predictor of weight is length with an r value of
0.713 compared to a weaker, but moderate association between weight and
head circumference with an r value of 0.622. Head circumference is related
to length with a slightly lower r value of 0.598. Despite their differences in
magnitude, the correlation coefficients are all highly significant at the P <
0.0001 level emphasising the insensitive nature of the P values for selecting
the most important predictors of weight.

Non-parametric Correlations

Correlations

Head
Weight Length  circumference
(kg) (cm) (cm)
Kendall's Weight (kg) Correlation coefficient 1.000 0.540** 0.468**
tau_b Sig. (two-tailed) 0.000 0.000
N 550 550 550
Length (cm) Correlation coefficient ~ 0.540** 1.000 0.454**
Sig. (two-tailed) 0.000 0.000
N 550 550 550
Head circumference Correlation coefficient ~ 0.468** 0.454** 1.000
(cm) Sig. (two-tailed) 0.000 0.000
N 550 550 550

Continued
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Head
Weight Length circumference
(kg) (cm) (cm)

Spearman’s Weight (kg) Correlation coefficient ~ 1.000 0.711*  0.626™
rho Sig. (two-tailed) . 0.000 0.000
N 550 550 550
Length (cm) Correlation coefficient  0.711*  1.000 0.596**
Sig. (two-tailed) 0.000 . 0.000
N 550 550 550
Head circumference Correlation coefficient  0.626**  0.596**  1.000
(cm) Sig. (two-tailed) 0.000 0.000
N 550 550 550

**Correlation is significant at the 0.01 level (two-tailed).

In the Non-parametric Correlations table, Kendall’s tau-b coefficients are
all lower than the Pearson’s coefficients in the previous table but Spearman’s
coefficients are similar in magnitude to Pearson’s coefficients.

The influence on r values when using a selected sample rather than a ran-
dom sample can be demonstrated by repeating the analysis using only part
of the data set. Using Analyze — Descriptive Statistics — Descriptives shows that
length ranges from a minimum value of 48.0 cm to a maximum value of 62.0
cm. To examine the correlation in a selected sample, the data set can be re-
stricted to babies less than 55.0 cm in length using the commands shown in
Box 6.4.

Box 6.4 SPSS commands to calculate a correlation coefficient for a subset
of the data

SPSS Commands
weights — SPSS Data Editor
Data — Select Cases
Select Cases
Tick ‘If condition is satisfied” — Click on ‘If” box
Select Cases: If
Highlight Length and click over into white box
Type in ‘<55’ following length
Click Continue
Select Cases
Click OK

When Select Cases is used, the line numbers of cases that are unselected
appear in Data View with a diagonal line through them indicating that they
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will be excluded from any analysis. In addition, a filter variable to indicate the
status of each case in the analysis is generated at the end of the spreadsheet
and the text Filter On is shown in the bottom right hand side of the Data View
screen.

To examine the relationship between the variables for only babies less than
55.0 cm in length, Pearson’s correlation coefficients can be obtained using the
commands shown in Box 6.2.

Correlations

Correlations

Head
circumference
Weight (kg) Length (cm) (cm)

Weight (kg) Pearson correlation 1 0.494** 0.504**
Sig. (two-tailed) . 0.000 0.000
N 272 272 272
Length (cm) Pearson correlation 0.494** 1 0.390**
Sig. (two-tailed) 0.000 . 0.000
N 272 272 272
Head circumference Pearson correlation 0.504** 0.390** 1
(cm) Sig. (two-tailed) 0.000 0.000 .
N 272 272 272

**Correlation is significant at the 0.01 level (two-tailed).

When compared with Pearson’s r values from the full data set, the corre-
lation coefficient between weight and length is substantially reduced from
0.713 to 0.494 when the upper limit of length is reduced from 62 cm to
55 cm. However, the top centre plot in Figure 6.1 shows that the relationship
between weight and length in the lower half of the data is similar to the total
sample. In general, r values are higher when the range of the explanatory
variable is wider even though the relationship between the variables is the
same. For this reason, only the coefficients from random population samples
have an unbiased value and can be compared with one another.

Once the correlation coefficients are obtained, the full data set can be rese-
lected using the command sequence Data — Select Cases — All cases.

Regression models

Regression models are used to measure the extent to which one or more
explanatory variables predict an outcome variable. In this, a regression model
is used to fit a straight line through the data, where the regression line is
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the best predictor of the outcome variable using one or more explanatory
variables.

There are two principal purposes for building a regression model. The most
common purpose is to build a predictive model, for example in situations in
which age and gender are used to predict normal values in lung size or body
mass index (BMI). Normal values are the range of values that occur naturally
in the general population. In developing a model to predict normal values,
the emphasis is on building an accurate predictive model.

The second purpose of using a regression model is to examine the effect
of an explanatory variable on an outcome variable after adjusting for other
important explanatory factors. These types of models are used for hypothesis
testing. For example, a regression model could be built using age and gender
to predict BMI and could then be used to test the hypothesis that groups with
different exercise regimes have different BMI values.

The mathematics of regression are identical to the mathematics of analy-
sis of covariance (ANCOVA). However, regression provides more information
than ANCOVA in that a linear equation is generated that explains the relation-
ship between the explanatory variables and the outcome. By using regression,
more information about the relationships between variables and the between-
group differences is obtained. Regression can also be a more flexible approach
because some of the assumptions such as those relating to cell and variance
ratios are not as restrictive as the assumptions for ANCOVA. However, in
common with ANCOVA, it is important to remember that regression gives a
measure of association at one point in time only, that is, at the time the mea-
surements were collected, and a significant association does not infer causality.

Although the mathematics of regression are similar to ANOVA in that the
explained and unexplained variations are compared, some terms are labelled
differently. In regression, the distance between an observed value and the
overall mean is partitioned into two components — the variation about the
regression, which is also called the residual variation, and the variation due to
the regression’. Figure 6.2 shows how the variation for one data point, shown
as a circle, is calculated.

The variation about the regression is the explained variation and the vari-
ation due to the regression is the unexplained variation. As in ANOVA, these
distances are squared and summed and the mean square is calculated. The F
value, which is calculated as the regression mean square divided by the resid-
ual mean square, ranges from 1 to a large number. If the two sources of
variance are similar, there is no association between the variables and the F
value is close to 1. If the variation due to the regression is large compared to
the variation about the regression, then the F value will be large indicating a
strong association between the outcome and explanatory variables.

When there is only one explanatory variable, the equation of the best fit for
the regression line is as follows:

y=a+ bx
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Figure 6.2 Calculation of the variation in regression.

where ‘y’ is the value of the outcome variable, ‘x” is the value of the explana-
tory variable, ‘a’ is the intercept of the regression line and ‘b’ is the slope of
the regression line. When there is only one explanatory variable, this is called
a simple linear regression.

In practice, the slope of the line, as estimated by ‘b’, represents the unit
change in the outcome variable ‘y” with each unit change in the explanatory
variable ‘x’. If the slope is positive, ‘y” increases as ‘x” increases and if the slope
is negative, ‘y’ decreases as ‘x” increases. The intercept is the point at which
the regression line intersects with the y-axis when the value of “x’ is zero. This
value is part of the regression equation but does not usually have any clinical
meaning. The fitted regression line passes through the mean values of both
the explanatory variable ‘x” and the outcome variable ‘y’.

When using regression, the research question must be framed so that the ex-
planatory and outcome variables are classified correctly. An important concept
is that regression predicts the mean y value given the observed x value and
the error around the explanatory variable is not taken into account. There-
fore, measurements that can be taken accurately, such as age and height,
make good explanatory variables. Measurements that are difficult to mea-
sure accurately or are subject to bias, such as birth weight recalled by parents
when the baby has reached school age, should be avoided as explanatory
variables.

Assumptions for regression

To avoid bias in a regression model or a lack of precision around the estimates,
the assumptions for using regression that are shown in Box 6.5 must be tested
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and met. In regression, mean values are not compared as in ANOVA so that
any bias between groups as a result of non-normal distributions is not as prob-
lematic. Regression models are robust to moderate degrees of non-normality
provided that the sample size is large and that there are few multivariate out-
liers in the final model. In general, the residuals but not the outcome variable
has to be normally distributed. Also, the sample does not have to be selected
randomly because the regression equation describes the relation between the
variables and is not influenced by the spread of the data. However, it is im-
portant that the final prediction equation is only applied to populations with
the same characteristics as the study sample.

Box 6.5 Assumptions for using regression

The assumptions that must be met when using regression are as follows:

Study design

 the sample is representative of the population to which inference will
be made

« the sample size is sufficient to support the model

« the data have been collected in a period when the relationship between
the outcome and the explanatory variable/s remains constant

« all important explanatory variables (covariates) are included

Independence
o all observations are independent of one another
o there is low collinearity between explanatory variables

Model building

« the relation between the explanatory variable/s and the outcome vari-
able is approximately linear

o the explanatory variables correlate with the outcome variable

e the residuals are normally distributed

« the variance is homoscedastic, that is constant over the length of the
model

o there are no multivariate outliers that bias the regression estimates

Under the study design assumptions shown in Box 6.5, the assumption that
the data are collected in a period when the relationship remains constant
is important. For example, in building a model to predict normal values for
blood pressure the data must be collected when the participants have been
resting rather than exercising and participants taking anti-hypertensive med-
ications should be excluded. It is also important that all known covariates are
included in the model before testing the effects of new variables added to the
model.
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The two assumptions of independence between observations and explana-
tory variables are important. When explanatory variables are significantly re-
lated to each other, a decision needs to be made about which variable to
include and which variable to exclude.

The remaining assumptions about the nature of the data can be tested when
building the model. In this chapter, the assumptions are tested after obtaining
a parsimonious model but in practice the assumptions should be tested at each
step in the model building process.

Research question

Using the spreadsheet weights.sav, regression analysis can be used to answer
the following research question:

Question: Can body length be used to predict weight at 1 month
of age?

Null hypothesis: That there is no relation between length and weight at
1 month.

Variables: Outcome variable = weight (continuous)

Explanatory variable = length (continuous)

The SPSS commands to obtain a regression equation for the relation be-
tween length and weight are shown in Box 6.6.

Box 6.6 SPSS commands to obtain regression estimates

SPSS Commands

weights — SPSS Data Editor
Analyze — Regression — Linear

Linear Regression
Highlight Weight, click into Dependent box
Highlight Length, click into Independent(s) box
Method = Enter (default)
Click OK

Regression

Model Summary

Adjusted Std. error of
Model R R square R square the estimate
1 0.7132 0.509 0.508 0.42229

@Predictors: (constant), length (cm).
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ANOVAP

Model Sum of squares df Mean square F Sig.

1 Regression 101.119 1 101.119 567.043 0.000°
Residual 97.723 548 0.178
Total 198.842 549

2Predictors: (constant), length (cm).
bDependent variable: weight (kg).

In linear regression, the R value in the Model Summary table is the mul-
tiple correlation coefficient and is the correlation between the observed and
predicted values of the outcome variable. The value of R will range between 0
and 1. R can be interpreted in a similar way to Pearson’s correlation coefficient.
In simple linear regression, R is the absolute value of Pearson’s correlation co-
efficient between the outcome and explanatory variable.

The R square value is the square of the R value, that is 0.713 x 0.713,
and is often called the coefficient of determination. R square has a valuable
interpretation in that it indicates the per cent of the variance in the outcome
variable that can be explained or accounted for by the explanatory variables.
The R square value of 0.509 indicates a modest relationship in that 50.9% of
the variation in weight is explained by length. The adjusted R square value
is the R value adjusted for the number of explanatory variables included in
the model and can therefore be compared between models that include dif-
ferent numbers of explanatory variables. The standard error of the estimate
of 0.42229 is the standard error around the outcome variable weight at the
mean value of the explanatory variable length and as such gives an indication
of the precision of the model.

In the ANOVA table, the F value is calculated as the unexplained variation
due to the regression divided by the explained variation about the regression,
or the residual variation. Thus, F is the regression mean square of 101.119
divided by the residual mean square of 0.178, or 568.08. The resulting F value
of 567.043 in the table is slightly different as a result of rounding errors and
is highly significant at P < 0.0001 indicating that there is a significant linear
relation between length and weight.

Coefficients?

Unstandardised Standardised
coefficients coefficients
Model B Std. error Beta t Sig.
1 (Constant) —5.412 0.411 —13.167 0.000
Length (cm) 0.178 0.007 0.713 23.813 0.000

2Dependent variable: weight (kg).
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The Coefficients table shows the unstandardised coefficients that are used
to formulate the regression equation in the form of y = a + bx as follows:

Weight = —5.412 + (0.178 x Length)

Because length is the only explanatory variable in the model, the standardised
coefficient, which indicates the relative contribution of a variable to the model,
is the same as the R value shown in the first table. The ¢ values, which are
calculated by dividing the beta values (unstandardised coefficient B) by their
standard errors, are a test of whether each regression coefficient is significantly
different from zero. In this example, both the constant (intercept) and slope of
the regression line are significantly different from zero at P < 0.0001 which
is shown in the column labelled ‘sig’. For length, the square of the ¢ value is
equal to the F value in the ANOVA table, thatis the square of 23.813 is equal to
567.043.

Regression equations can only be generalised to samples with the same
characteristics as the study sample. Thus, this regression model only describes
the relation between weight and length in 1 month old babies who were term
births because premature birth was an exclusion criterion for study entry. The
model could not be used to predict normal population values because they
are not from a random population sample, which would include premature
births. However, the model could be used to predict normal values for term
babies.

Plotting the regression

The commands shown in Box 6.7 can be used to obtain a scatter plot, plot the
observed values of weight against length and to draw the regression line with
prediction intervals.

Box 6.7 SPSS commands to obtain a scatter plot

SPSS Commands
weights — SPSS Data Editor
Graphs — Interactive — Scatterplot
Create Scatterplot
Highlight Length, hold left hand mouse button and drag into x-axis box
Highlight Weight, hold left hand mouse button and drag into y-axis box
Click on Fit
Pull down menu under Method and highlight Regression
Prediction Lines: tick Mean and Individual
Click OK

In Figure 6.3, the 95% mean prediction interval around the regression line is
a 95% confidence interval, that is the area in which there is 95 % certainty that
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Figure 6.3 Scatter plot of weight on length with regression line and 95% confidence

interval.

the true regression line lies. This interval band is slightly curved because the
errors in estimating the intercept and the slope are included in addition to the
error in predicting the outcome variable?. The error in estimating the slope in-
creases as the difference between the predicted value and the actual value of
the explanatory variable increases, resulting in a curved 95% confidence band
around the sample regression line. In Figure 6.3, the 95% confidence interval
is narrow as a result of the large sample size.

The 95% individual prediction interval is the larger band around the regres-
sion line in Figure 6.3. This interval in which 95% of the data points lie is the
distance between the 2.5 and 97.5 percentiles. This interval is used to predict
normal values. Clearly, any definition of normality is specific to the context
but normal values should only be based on large sample sizes, preferably of at
least 200 participants>.

Multiple linear regression

A regression model in which the outcome variable is predicted from two or
more explanatory variables is called a multiple linear regression. Explanatory
variables may be continuous or categorical. For example, it is common to use
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height and age, both of which are continuous variables, to predict lung size
or to use age and gender, a continuous and a categorical variable, to predict
BMI. For multiple regression, the equation that explains the line of best fit,
i.e. the regression line, is

y=a+bixy+ baxs+ bsxs+ - -

where ‘a’ is the intercept and ‘b;” is slope for each explanatory variable. In
effect, by, by, b5, etc. are the weights assigned to each of the explanatory vari-
ables in the model. In multiple regression models, the coefficient for a variable
can be interpreted as the unit change in the outcome variable with each unit
change in the explanatory variable when all of the other explanatory variables
are held constant.

Multiple regression is used when there are several explanatory variables that
predict an outcome or when the effect of a factor that can be manipulated is
being tested. For example, height, age and gender could be used to predict
lung function and then the effects of other potential explanatory variables
such as current respiratory symptoms or smoking history could be tested. In
multiple regression models, all explanatory variables that have an important
association with the outcome should be included.

Multiple linear regression models should be built up gradually through a se-
ries of univariate bivariate, and multivariate methods. In multiple regression,
each explanatory variable should ideally have a significant correlation with
the outcome variable but the explanatory variables should not be significantly
correlated with one another, that is collinear. Models should not be over-fitted
with a large number of variables that increase the R square by small amounts.
In over-fitted models, the R square may decrease when the model is applied
to other data.

Decisions about which variables to remove or include in a model should be
based on expert knowledge and biological plausibility in addition to statistical
considerations. These decisions often need to take cost, measurement error
and theoretical constructs into account in addition to the strength of associa-
tion indicated by R values, P values and standardised coefficients. The ideal
model should be parsimonious, that is comprising of the smallest number of
variables that predict the largest amount of variation.

Once a decision has been made about which explanatory variables to test in
amodel, the distribution of both the outcome and the continuous explanatory
variables should be examined using methods outlined in Chapter 2, largely
to identify any univariate outliers. Also, the order in which the explanatory
variables are entered into the model is important because this can make a
difference to the amount of variance that is explained by each explanatory
variable, especially when explanatory variables are significantly related to each
other?.

There are three different methods of entering the explanatory variables that
is standard, stepwise or sequential®. In standard multiple regression, called the



Continuous data analyses 171

enter method in SPSS, all variables are entered into the model together and
the unique contribution of each variable to the outcome variable is calculated.
However, an explanatory variable that is correlated with the outcome variable
may not be a significant predictor when the other explanatory variables have
accounted for a large proportion of the variance so that the remaining variance
is small®.

In stepwise multiple regression, the order of the explanatory variables is
determined by the strength of their correlation with the outcome variable or
by predetermined statistical criteria. The stepwise procedure can be forward
selection, backward deletion or stepwise, all of which are available options in
SPSS. In forward selection, variables are added one at a time until the addition
of another variable accounts only for a small amount of variance. In backward
selection, all variables are entered and then are deleted one at a time if they do
not contribute significantly to the prediction of the outcome. Forward selec-
tion and backward deletion may not result in the same regression equation?.
Stepwise is a combination of both forward selection and backward deletion in
which variables are added one at a time and retained if they satisfy set statistical
criteria but are deleted if they no longer contribute significantly to the model®.

In sequential multiple regression, which is also called hierarchical regres-
sion, the order of entering the explanatory variables is determined by the
researcher using logical or theoretical factors, or by the strength of the cor-
relation with the outcome variable. When each new variable is entered, the
variance contributed by the variable, possible collinearity with other variables
and the influence of the variable on the model are assessed. Variables can
be entered one at a time or together in blocks and the significance of each
variable, or each variable in the block, is assessed at each step. This method
delivers a stable and reliable model and provides invaluable information about
the inter-relationships between the explanatory variables.

Sample size considerations

For multiple regression, it is important to have an adequate sample size. A
simple rule that has been suggested for predictive equations is that the mini-
mum number of cases should be at least 100 or, for stepwise regression, that
the number of cases should be at least 40 x m, where m is the number of
variables in the model®. More precise methods for calculating sample size and
power are available®. To avoid underestimating the sample size for regression,
sample size calculations should be based on the regression model itself and
not on correlation coefficients.

It is important not to include too many explanatory variables in the model
relative to the number of cases because this can inflate the R? value. When the
sample size is very small, the R? value will be artificially inflated, the adjusted
R? value will be reduced and the imprecise regression estimates may have no
sensible interpretation. If the sample size is too small to support the number
of explanatory variables being tested, the variables can be tested one at a time
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and only the most significant included in the final model. Alternatively, a
new explanatory variable can be created that is a composite of the original
variables, for example BMI could be included instead of weight and height.

Alarger sample size increases the precision around the estimates by reducing
standard errors and often increases the generalisability of the results. The
sample size needs to be increased if a small effect size is anticipated or if
there is substantial measurement error in any variable, which tends to reduce
statistical power to demonstrate significant associations between variables.

Itis important to achieve a balance in the regression model with the number
of explanatory variables and sample size, because even a small R value will
become statistically significant when the sample size is very large. Thus, when
the sample size is large it is prudent to be cautious about type I errors. When the
final model is obtained, the clinical importance of estimates of effect size should
be used to interpret the coefficients for each variable rather than reliance on
P values.

Collinearity

Collinearity is a term that is used when two or more of the explanatory vari-
ables are significantly related to one another. The issue of collinearity is only
important for the relationships between explanatory variables and naturally
does not need to be considered in relationships between the explanatory vari-
ables and the outcome.

Regression is more robust to some degrees of collinearity than ANOVA but
the smaller the sample size and the larger the number of variables in the model,
the more problematic collinearity becomes. Important degrees of collinearity
need to be reconciled because they can distort the regression coefficients and
lead to aloss of precision, that is inflated standard errors of the beta coefficients,
and thus to an unstable and unreliable model. In extreme cases of collinearity,
the direction of effect, that is the sign, of a regression coefficient may change.

Correlations between explanatory variables cause logical as well as statis-
tical problems. If one variable accounts for most of the variation in another
explanatory variable, the logic of including both explanatory variables in the
model needs to be considered since they are approximate measures of the
same entity. The correlation (r) between explanatory variables in a regres-
sion model should not be greater than 0.70.” For this reason, the decision
of which variables to include should be based on theoretical constructs rather
than statistical considerations based on regression estimates. Variables that can
be measured with reliability and with minimum measurement error are pre-
ferred whereas measurements that are costly, invasive, unreliable or removed
from the main causal pathway are less useful in predictive models.

The amount of collinearity in a model is estimated by the variance inflation
factor (VIF), which is calculated as 1/(1 — R?) where R? is the squared multi-
ple correlation coefficient. In essence, VIF measures how much the variance
of the regression coefficient has been inflated due to collinearity with other
explanatory variables®. In regression models, P values rely on an estimate of
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variance around the regression coefficients, which is proportional to the VIF
and thus if the VIF is inflated, the P value may be unreliable. A VIF that is
large, say greater than or equal to 4, is a sign of collinearity and the regression
coefficients, their variances and their P values are likely to be unreliable.

In SPSS, collinearity is estimated by tolerance, that is 1 — R2. Tolerance has
an inverse relationship to VIF in that VIF = 1/tolerance. Tolerance values close
to zero indicate collinearity®. In regression, tolerance values less than 0.2 are
usually considered to indicate collinearity. The relation between R, tolerance
and VIF is shown in Table 6.1. A tolerance value below 0.5, which corresponds
with an R value above 0.7 is of concern.

Table 6.1 Relation between R, tolerance
and variance inflation factor (VIF)

R Tolerance VIF

0.25 0.94 1.07
0.50 0.75 1.33
0.70 0.51 1.96
0.90 0.19 5.26
0.95 0.10 10.26

Collinearity can be estimated from examining the standard errors and from
tolerance values as described in the examples below, or collinearity statistics
can be obtained in the Statistics options under the Analyze — Regression— Linear
commands.

Multiple linear regression: testing for group differences

Regression can be used to test whether the relation between the outcome
and explanatory variables is the same across categorical groups, say males and
females. Rather than split the data set and analyse the data from males and
females separately, it is often more useful to incorporate gender as a binary
explanatory variable in the regression model. This process maintains statistical
power by maintaining sample size and has the advantage of providing an
estimate of the size of the difference between the gender groups.

The spreadsheet weights.sav used previously in this chapter will be used
to answer the following research questions.

Research question

Question: Is the prediction equation of weight using length different for
males and females or for babies with siblings?
Variables: Outcome variable = weight (continuous)

Explanatory variables = length (continuous), gender (cate-
gory, two levels) and parity (category, two levels)
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In this model, length is included because it is an important predictor of
weight. In effect, the regression model is used to adjust weight for differences
in length between babies and then to test the null hypothesis that there is no
difference in weight between groups defined by gender and parity.

It is simple to include a categorical variable in a regression model when the
variable is binary, that is, has two levels only. Binary regression coefficients
have a straight forward interpretation if the variable is coded 0 for the com-
parison group, for example a factor that is absent or reply of no, and 1 for the
group of interest, for example a factor thatis present or a reply that is coded yes.

The Transform — Recode commands shown in Box 1.10 in Chapter 1 can be
used to re-code gender into a new variable labelled gender2 with values 0 and
1, making an arbitrary decision to code male gender as the comparison group.

Similarly, parity can be re-coded into a new variable, parity2 with the value
0 for singletons unchanged and with values of 1 or greater re-coded to 1 using
the Range option from [ through 3. Once re-coded, values and labels for both
variables need to be added in the Variable View screen and the numbers in
each group verified as correct using the frequency commands shown in Box
1.7 in Chapter 1. It is important to always have systems in place to check for
possible re-coding errors and to document re-coded group numbers in any
new variables.

In this chapter, regression equations are built using the sequential method.
To add variables to the regression model in blocks, the commands shown in
Box 6.8 can be used with the enter method and block option. Prior bivariate
analysis using ¢-tests for gender and one-way ANOVA for parity (not shown)
indicated that the association between gender and weight is stronger than
the association between parity and weight. Therefore, gender is added in the
model before parity. Using the sequential method, the statistics of the two
models are easily compared, collinearity between variables can be identified
and reasons for any inflation in standard errors and loss of precision become
clear.

Box 6.8 SPSS commands to generate a regression model with a binary
explanatory variable

SPSS Commands
weights — SPSS Data Editor
Analyze — Regression — Linear
Linear Regression
Highlight Weight, click into Dependent box
Highlight Length, click into Independent(s) box
Under Block 1 of 1, click Next
Highlight Gender recoded, click into Independent(s) box in Block 2 of 2
Method = Enter (default)
Click OK




Regression

Model Summary
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Adjusted Std. error of
Model R R square R square the estimate
1 0.7132 0.509 0.508 0.42229
2 0.741° 0.549 0.548 0.40474
2Predictors: (constant), length (cm).
bPredictors: (constant), length (cm), gender re-coded.
ANOVA*
Model Sum of squares df Mean square F Sig.
1 Regression 101.119 1 101.119 567.043 0.000°
Residual 97.723 548 0.178
Total 198.842 549
2 Regression 109.235 2 54.617 333.407 0.000P
Residual 89.607 547 0.164
Total 198.842 549

2Predictors: (constant), length (cm).

bPredictors: (constant), length (cm), gender re-coded.

¢Dependent variable: weight (kg).

Coefficients®

Unstandardised
coefficients

Standardised
coefficients

Model B Std. error Beta t Sig.
1 (Constant) -5.412 .0411 —13.167 0.000
Length (cm) 0.178 0.007 0.713 23.813 0.000
2 (Constant) —4.563 0.412 —-11.074 0.000
Length (cm) 0.165 0.007 0.660 22.259 0.000
Gender re-coded —0.251 0.036 —0.209 —7.039 0.000
2Dependent variable: weight (kg).
Excluded Variables®
Collinearity
statistics
Partial
Model Beta In t Sig. correlation Tolerance
1 Gender re-coded —0.209° —7.039 0.000 —0.288 0.936

@Predictors in the model: (constant), length (cm).
bDependent variable: weight (kg).
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The Model Summary table indicates the strength of the predictive or ex-
planatory variables in the regression model. The first model contains length
and the second model contains length and gender. Because there are a dif-
ferent number of variables in the two models, the adjusted R square value
is used when making direct comparisons between the models. The adjusted
R square value can be used to assess whether the fit of the model improves
with inclusion of the additional variable, that is whether the amount of ex-
plained variation increases. By comparing the adjusted R square of Model
1 generated in Block 1 with the adjusted R square of Model 2 generated in
Block 2, it is clear that adding gender improves the model fit because the ad-
justed R square increases from 0.508 to 0.548. This indicates that 54.8% of the
variation is now explained. If it is important to know whether the R square
increases by a significant amount, a P value for the change can be obtained
by using the following commands Regression — Linear — Statistics — R squared
change.

In the ANOVA table, the regression mean square decreases from 101.119
in Model 1 to 54.617 in Model 2 when gender is added because more of the
unexplained variation is now explained. With high F values, both models are
clearly significant as expected.

In the Coefficients table, the standard error around the beta coefficient for
length (B) remains at 0.007 in both models indicating that the model is sta-
ble. An increase of more than 10% in a standard error indicates collinearity
between the variables in the model and the variable being added.

With two explanatory variables in the model, the regression line will be of
the form of y = a + by x; + box>, where x;is length and x, is gender. Substi-
tuting the variables and the unstandardised coefficients from the Coefficients
table, the equation for model is as follows:

Weight = —4.563 + (0.165 x Length) — (0.251 x Gender)

Because males are coded zero, the final term in the equation is removed for
males. The term for gender indicates that, after adjusting for length, females
are 0.251 kg lighter than males. In effect this means that the y intercept is
-4.563 for males and —4.814 (i.e. —4.563 — 0.251) for females. Thus the lines
for males and females are parallel but females have a lower y-axis intercept.

The unstandardised coefficients cannot be directly compared to assess their
relative importance because they are in the original units of the measurements.
However, the standardised coefficients indicate the relative importance of each
variable in comparable standardised units (z scores). The Coefficients table
shows that length with a standardised coefficient of 0.660 is a more significant
predictor of weight than gender with a standardised coefficient of —0.209. As
with an R value, the negative sign is an indication of the direction of effect
only. The standardised coefficients give useful additional information because
they show that although both predictors have the same P values, they are not
of equal importance in predicting weight.
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The Excluded Variables table shows the model with gender omitted. The
beta In is the standardised coefficient that would result if gender is included
in the model and is identical to the standardised coefficient in the Coefficients
table above. The partial correlation is the unique contribution of gender to
predicting weight after the effect of length is removed and is an estimate of
the relative importance of this predictive variable in isolation from length. The
collinearity statistic tolerance is close to 1 indicating that the predictor variables
are not closely related to one another and that the regression assumption of
independence between predictive variables is not violated.

Plotting a regression line with categorical
explanatory variables

To plot a regression equation, it is important to ascertain the range of the
explanatory variable values because the line should never extend outside the
absolute range of the data. To obtain the minimum and maximum values
of length for males and females the commands Analyze — Compare Means —
Means can be used with length as the dependent variable and gender2 as the
independent variable, and Options clicked to request minimum and maximum
values. This provides the information that the length of male babies ranges
from 50 to 62 cm and that the length of female babies ranges from 48 to
60.5 cm.

Table 6.2 shows how an Excel spreadsheet can be used to compute the
coordinates for the beginning and end of the regression line for each gender.
The regression coefficients from the equation are entered in the first three
columns, and the minimum and maximum values for length and indicators
of gender are entered in the next two columns. Weight is then calculated using
the equation of the regression line and the calculation function in Excel.

Table 6.2 Excel spreadsheet to calculate regression line coordinates

Column 1 Column 2 Column 3 Column 4 Column 5 Column 6

a b1 b2 length gender2 predicted weight
—4.563 0.165 —0.251 50 0 3.687

—4.563 0.165 —0.251 62 0 5.667

—4.563 0.165 —0.251 48 1 3.106

—4.563 0.165 —0.251 60.5 1 5.169

The line coordinates from columns 4 and 6 can be copied and pasted into
SigmaPlot to draw the graph using the commands shown in Box 6.9. The
SigmaPlot spreadsheet should have the lower and upper coordinates for males
in columns 1 and 2 and the lower and upper coordinates for females in
columns 3 and 4 as follows:
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Column 1 Column 2 Column 3 Column 4
50.0 3.69 48.0 3.11
62.0 5.67 60.5 5.17

Box 6.9 SigmaPlot commands to plot regression lines

SigmaPlot Commands
SigmaPlot — [Data 1*]
Graph — Create Graph
Create Graph — Type
Highlight ‘Line Plot’, click Next
Create Graph — Style
Highlight ‘Simple Straight Line’, click Next
Create Graph — Data Format
Data format = Highlight ‘XY Pair’, click Next
Create Graph — Select Data
Highlight Column 1, click into Data for X
Highlight Column 2, click into Data for Y
Click Finish

The second line for females can be added using Graph — Add Plot and using
the same command sequence shown in Box 6.9, except that the Data for X
is column 3 and the Data for Y is column 4. The resulting graph can then be
customised using the many options in Graph — Graph Properties. The completed
graph, as shown in Figure 6.4, is a useful tool for presenting summary results

6.0 5
—— Males
557 ———- Females
5.0 1
)
= 4.5 A
=
)
‘D 4.0 A
= P
35 - e
3.0 1
2.5 T T T T T T T T Y
46 48 50 52 54 56 58 60 62 64

Length (cm)

Figure 6.4 Equations for predicting weight at 1 month of age in term babies.
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in a way that shows the relationship between weight and length and the size
of the difference between the genders.

Regression models with two explanatory
categorical variables

Having established the relation between weight, length and gender, the re-
coded binary variable parity2 can be added to the model. Using the commands
shown in Box 6.8, length and gender re-coded can be added as independent
variables into Block 1 of 1 and parity re-coded (binary) as an independent
variable into Block 2 of 2 to obtain the following output.

Regression

Model Summary

Adjusted Std. error of
Model R R square R square the estimate
1 0.741° 0.549 0.548 0.40474
2 0.747° 0.559 0.556 0.40088

2Predictors: (constant), gender re-coded, length (cm).
bPredictors: (constant), gender re-coded, length (cm), parity re-coded.

Coefficients®

Unstandardised Standardised

coefficients coefficients
Model B Std. error  Beta t Sig.
1 (Constant) —4.563 0.412 —11.074 0.000
Length (cm) 0.165 0.007 0.660 22.259 0.000
Gender re-coded —0.251 0.036 —0.209 —7.039 0.000
2 (Constant) —4.572 0.408 —11.203  0.000
Length (cm) 0.164  0.007 0.655 22.262 0.000
Gender re-coded —0.255 0.035 -0.212 —7.200 0.000
Parity re-coded (binary) 0.124 0.036 0.097 3.405 0.001
2Dependent variable: weight (kg).
Excluded Variables?
Collinearity
statistics
Partial
Model Betaln t Sig. correlation  Tolerance
1 Parity re-coded (binary) 0.097° 3.405 0.001 0.144 0.997

@Predictors in the model: (constant), gender re-coded, length (cm).
bDependent variable: weight (kg).
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The Model Summary table shows that adding parity to the model improves
the adjusted R square value only slightly from 0.548 in Model 1 to 0.556 in
Model 2, that is 55.6% of the variation is now explained.

In the ANOVA table, the mean square decreases from 54.617 in Model
1 to 37.033 in Model 2 because more of the unexplained variation is now
explained.

In the Coefficients table, the standard error for length remains at 0.007 in
both models and the standard error for gender reduces slightly from 0.036
in Model 1 to 0.035 in Model 2 indicating that the model is stable. The un-
standardised coefficients indicate that the equation for the regression model
is now as follows:

Weight = —4.572 + (0.164 x Length) — (0.255 x Gender) + (0.124 x Parity)

When parity status is singleton, i.e. parity equals zero, the final term of the
regression equation will return a zero value and will therefore be removed
for singleton babies. Therefore, the model indicates that, after adjusting for
length and gender, babies who have siblings are on average 0.124 kg heavier
than singleton babies.

The standardised coefficients in the Coefficients table show that length and
gender are more significant predictors than parity in that their standardised
coefficients are larger. These coefficients give a useful estimate of the size of
effect of each variable when, as in this case, the P values are similar.

The Excluded Variables table shows that tolerance remains high at 0.997
indicating that there is no collinearity between variables.

Plotting regression lines with two explanatory
categorical variables

Figure 6.4 shows regression lines plotted for a single binary explanatory vari-
able. To include the second binary explanatory variable of sibling status in
the graph, two line coordinates are computed for each of the four groups,
that is males with no siblings; males with one or more siblings; females with
no siblings and females with one or more siblings. To obtain the minimum
and maximum values for each of these groups, the data can be split by gen-
der using the Split File command shown in Box 4.8 in Chapter 4 and then
the commands Analyze— Compare Means— Means can be used with length as
the dependent variable and parity2 as the independent variable and Options
clicked to request minimum and maximum values.

Again, Excel can be used to calculate the regression coordinates using the
regression equation and with an indicator for parity included in an additional
column. The Excel spreadsheet from Table 6.3 and the commands from Box
6.9 can be used to plot the figure in SigmaPlot with additional lines included
under Graph— Add Plot.



Continuous data analyses 181

Table 6.3 Excel spreadsheet for calculating coordinates for regression lines with two
binary explanatory variables

Column 8
Column1 Column2 Column3 Column4 Column5 Column6 Column?7 predicted
a b1 b2 b3 length gender2  parity2 weight
—4.572 0.164 —0.255 0.124 50 0 0 3.63
—4.572 0.164 —0.255 0.124 62 0 0 5.60
—4.572 0.164 —0.255 0.124 49 1 0 3.21
—4.572 0.164 —0.255 0.124 58.5 1 0 4.77
—4.572 0.164 —0.255 0.124 50 0 1 3.75
—4.572 0.164 —0.255 0.124 62 0 1 5.72
—4.572 0.164 —0.255 0.124 48 1 1 3.17
—4.572 0.164 —0.255 0.124 60.5 1 1 5.22

The coordinates from columns 5 and 8 can be copied and pasted into
SigmaPlot and then split and rearranged to form the following spreadsheet
of line coordinates.

Line1-X Line1-Y Line2-X Line2-Y Line3-X Line3-Y Line4-X Lined4-Y

50.0 3.63 49.0 3.21 50.0 3.75 48.0 3.17
62.0 5.60 58.5 4.77 62.0 5.72 60.5 5.22

The SigmaPlot commands shown in Box 6.9 but with ‘multiple straight lines’
selected under Graph Styles can be used to draw the four regression lines as
shown in Figure 6.5. Plotting the lines is a useful method to indicate the size
of the differences in weight between the four groups.

Including multi-level categorical variables

The previous model includes categorical variables with only two levels, that
is binary explanatory variables. A categorical explanatory variable with three
or more levels can also be included in a regression model but first needs to be
transformed into a series of binary variables. Simply adding a variable with
three or more levels would produce a regression coefficient that indicates the
effect for each level of the variable. If the effects for each level are unequal, the
regression assumption that there is an equal (linear) effect across each level of
the variable will be violated. Thus, multi-level categorical variables can only
be used when there is a linearity of effect over the categories. This assumption
of linearity is not required for ANOVA.

When there are different effects across three or more levels of a variable,
the problem of non-linearity can be resolved by creating dummy variables,
which are also called indicator variables. It is not possible to include a dummy
variable for each level of the variable because the dummy variables would
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Figure 6.5 Regression lines by gender and parity status for predicting weight at
1 month of age in term babies.

lack independence and create collinearity. Therefore for k levels of a variable,
there will be ¥ — 1 dummy variables, for example for a variable with three
levels two dummy variables will be created. It is helpful in interpreting the
results if each dummy variable has a binary coding of 0 or 1.

The variable parityl with three levels from Chapter 5, that is parity coded as
babies with 0, 1 or 2 or more siblings, can be re-coded into dummy variables
using Transform — Recode — Into Different Variables.

paritydl: Old Value = 1 — New Value = copy old value (I sibling);
Old Value: All other values — New Value = 0

parityd2: 0Old Value = 2 — New Value = 1 (2 or more siblings)
0ld Value: All other values — New Value = 0

Clearly a dummy variable for singletons is not required because if the values
of parityd1 and parityd2 are both coded 0, the case is singleton. Dummy vari-
ables are invaluable for testing the effects of ordered groups that are likely to
be different, for example lung function in groups of non-smokers, ex-smokers
and current smokers. It is essential that dummy variables are used when
groups are non-ordered, for example when marital status is categorised as
single, married or divorced.

Using the SPSS commands shown in Box 6.8, length and gender2 can be
added into the model as independent variables into Block 1 of 1 and the
dummy variables parityd1 and parityd2 added in Block 2 of 2. Related dummy
variables must always be included in a model together because they cannot be
treated independently. If one dummy variable is significant in the model and
a related dummy variable is not, they must both be left in the model together.
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Regression

Model Summary

Adjusted Std. error of
Model R R square R square the estimate
1 0.741° 0.549 0.548 0.40474
2 0.748° 0.559 0.556 0.40109

2Predictors: (constant), gender recoded, length (cm).
bPredictors: (constant), gender recoded, length (cm) dummy variable — parity = 1, dummy
variable — parity >=2.

Coefficients?

Unstandardised  Standardised

coefficients coefficients
Model B Std. error Beta t Sig.
1 (Constant) —4.563 0.412 —11.074 0.000
Length (cm) 0.165 0.007 0.660 22.259 0.000
Gender recoded —0.251 0.036 —0.209 —7.039 0.000
2 (Constant) —4.557 0.409 —11.144 0.000
Length (cm) 0.164 0.007 0.654 22.182 0.000
Gender recoded —0.255 0.035 -0.212 —7.216 0.000
Dummy variable — parity = 1 0.111 0.042 0.088 2.678 0.008
Dummy variable — parity >=2  0.138 0.043 0.108 3.249 0.001
2Dependent variable: weight (kg).
Excluded Variables?
Collinearity
statistics
Partial
Model Betaln t Sig. correlation Tolerance
1 Dummy variable — parity = 1 0.034® 1.188 0.236 0.051 0.999
Dummy variable — parity >=2 0.063* 2.183 0.029 0.093 0.994

aPredictors in the model: (constant), gender re-coded, length (cm).
bDependent variable: weight (kg).

In the Model Summary table, the adjusted R square value shows that the
addition of the dummy variables for parity improves the fit of the model only
slightly from 0.548 to 0.556, that is by 0.8%. In the Coefficients table, the
P values for the unstandardised coefficients show that both dummy vari-
ables are significant predictors of weight with P values of 0.008 and 0.001
respectively. However, the low standardised coefficients and the small partial
correlations in the Excluded Variables table show that the dummy variables
contribute little to the model compared to length and gender.
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The regression equation shown in the Coefficients table is now as follows:

Weight = —4.557 4 (0.164 x Length) — (0.255 x Gender)
+(0.111 x Paritydl) + (0.138 x Parityd2)

Because of the binary coding used, the final two terms in the model are ren-
dered zero for singletons because both dummy variables are coded zero. The
coefficients for the final two terms indicate that after adjusting for length and
gender, babies with one sibling are on average 0.111 kg heavier than single-
tons, and babies with two or more siblings are on average 0.138 kg heavier
than singletons.

Multiple linear regression with two continuous
variables and two categorical variables

Any combination of continuous and categorical explanatory variables can be
included in a multiple linear regression model. The previous regression model
with one continuous and two categorical variables, that is length, gender and
parity, can be further extended with the addition of second continuous ex-
planatory variable, that is head circumference.

Research question

Using the file weights.sav, the research question can be extended to exam-
ine whether head circumference contributes to the prediction of weight in
1 month old babies after adjusting for length, gender and parity. The final pre-
dictive equation could be used to generate normal values for term babies, to
calculate z scores for babies” weights, or to calculate per cent predicted weights.

The regression model obtained previously can be built on to test the influ-
ence of the variable, head circumference. The model in which parity2 was
included as a binary variable is used because including parity with three levels
coded as dummy variables did not substantially improve the fit of the model.
Using the SPSS commands shown in Box 6.8, length, gender2 and parity2 can
be added in Block 1 of 1and head circumference in Block 2 of 2 to generate
the following output.

Regression

Model Summary

Adjusted Std. error of

Model R R square R square the estimate
0.747°2 0.559 0.556 0.40088
2 0.772° 0.596 0.593 0.38406

2Predictors: (constant), parity re-coded, gender re-coded, length (cm).
bPpredictors: (constant), parity re-coded, gender re-coded, length (cm),
head circumference (cm).
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Coefficients?

Unstandardised Standardised

coefficients coefficients
Model B Std. error Beta t Sig.
1 (Constant) —4.572  0.408 —11.203  0.000
Length (cm) 0.164 0.007 0.655 22.262 0.000
Gender re-coded —0.255 0.035 -0.212 —7.200 0.000
Parity re-coded (binary) 0.124 0.036 0.097 3.405 0.001
2 (Constant) —6.890 0.511 —13.496  0.000
Length (cm) 0.130 0.009 0.520 15.243  0.000
Gender re-coded —-0.196 0.035 -0.163 -5.624 0.000
Parity re-coded (binary) 0.093 0.035 0.073 2.638 0.009
Head circumference (cm) 0.110 0.016 0.249 7.061 0.000
2Dependent variable: weight (kg).
Excluded VariablesP
Collinearity
statistics
Partial
Model Betaln t Sig. correlation  Tolerance
1 Head circumference (cm) 0.249° 7.061 0.000 0.290 0.598

2Predictors in the model: (constant), parity re-coded (binary), gender re-coded, length (cm).
bDependent variable: weight (kg).

The Model Summary table shows that the adjusted R square increases
slightly from 55.6% to 59.3% with the addition of head circumference. In
the Coefficients table, all predictors are significant and the standardised co-
efficients show that length contributes to the model to a greater degree than
head circumference, but that head circumference makes a larger contribu-
tion than gender or parity. However, the tolerance statistic in the Excluded
Variables has fallen to 0.598 indicating some collinearity in the model. This is
expected because the initial Pearson’s correlations showed a significant asso-
ciation between length and head circumference with an r value of 0.598. As a
result of the collinearity, the standard error for length has inflated from 0.007
in Model 1 to 0.009 in Model 2, a 29% increase. The benefit of explaining
an extra 3.7% of the variation in length has to be balanced with this loss of
precision.

Deciding which variables to include in a model can be difficult. Head cir-
cumference is expected to vary with length as a result of common factors that
influence body size and growth. In this situation, head circumference should
be classified as an alternative outcome rather than an independent explana-
tory variable because it is on the same developmental pathway as length.
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Each model building situation will be different but it is important that the
relationships between the variables and the purpose of building the model are
always carefully considered.

Interactions

An interaction occurs when there is a multiplicative rather than additive
relationship between two variables. An additive effect of a binary variable
was shown in Figure 6.4 where the lines for each gender had the same
slopes so that they were parallel. If an interactive effect is present, the two
lines would have different slopes and would cross over or intersect at some
point?.

Again, coding of binary variables as 0 and 1 is helpful for interpreting in-
teractions. In the following equation, which shows an interaction between
length and gender, the third and fourth terms in the model will be zero when
gender is coded 0. When gender is coded as 1, the third term will add a fixed
amount to the prediction of the outcome variable and the fourth interactive
term will add an amount that increases as length increases thereby causing
the regression lines for each gender to increasingly diverge.

Weight = a + (b; x Length) 4 (b, x Gender) + (b3 x Length x Gender)

It is preferable to explore evidence that an interaction is present rather than
testing for all possible interactions in the model. Testing for all interactions will
almost certainly throw up some spurious but significant P values!®. Interac-
tions naturally introduce collinearity into the model because the interaction
term correlates with both of its derivatives. This will result in an unstable
model, especially when the sample size is small.

Interactions between variables can be identified by plotting the dependent
variable against the explanatory variable for each group within a factor. The
regression plots can then be inspected to assess whether there is a different
linear relationship across the groups. To obtain the plots shown in Figure 6.6,
the SPSS commands shown in Box 6.7 can be used with gender2 highlighted
and dragged into the Panel Variables box and accepted for conversion to a
categorical variable. Prediction lines are not requested.

The regression equations shown in Figure 6.6 indicate that the y intercept
is different for males and females as expected from the former regression
equations. When they values of the data points are a long way from zero, as in
these plots, the intercept has no meaningful interpretation although they can
indicate that the slopes are different. However, the slope of the line through the
points is similar at 0.19 for males and 0.13 for females. This similarity of slopes
suggests that there is no important interaction between length and gender
in predicting weight. The graphs can be repeated to investigate a possible
interaction between head circumference and gender.
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Male Female
Weight (kg) = -5.91 + 0.19 * length Weight (kg) = -3.11 + 0.13 * length
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Figure 6.6 Scatter plots of weight on length for male and female babies with
regression line.

The plots in Figure 6.7 show that the intercept is different between the
genders at —6.75 for males and —3.22 for females. Moreover, the slope of
0.30 for males is 50% higher than the slope of 0.20 for females as shown by
the different slopes of the regression lines through the plots. If plotted on the
same figure, the two regression lines would intersect at some point indicating
an interaction between head circumference and gender. The interaction term
can be computed for inclusion in the model as shown in Box 6.10.

Male Female
Weight (kg) = -6.75 + 0.30 * headc Weight (kg) = —3.22 + 0.20 * headc
R-square = 0.38 R-square = 0.27
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g 5.00 b
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©
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Head circumference (cm) Head circumference (cm)

Figure 6.7 Scatter plots of weight on head circumference for male and female babies
with regression line.
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SPSS Commands

weights — SPSS Data Editor
Transform — Compute

Compute Variable

Click OK

Target Variable = headxgen
Numeric Expression = Head circumference * Gender recoded

Box 6.10 SPSS command to compute an interaction term

In practice, head circumference would be omitted from the model because
of its collinearity with length but it is included in this model solely for demon-
strating the effect of an interaction term. The model is obtained using the
commands shown in Box 6.8 and by adding length, gender2, parity2 and
head circumference into Block 1 of 1 and the interaction term headxgen into

Block 2 of 2.
Regression

Model Summary

Adjusted Std. error of
Model R R square R square the estimate
0.7722 0.596 0.593 0.38406

2 0.775P 0.601 0.597 0.38211

aPredictors: (constant), head circumference (cm), parity re-coded

(binary), gender re-coded, length (cm).

bPredictors: (constant), head circumference (cm), parity re-coded

(binary), gender re-coded, length (cm), head by gender interaction.

Coefficients?

Unstandardised Standardised
coefficients coefficients

Model B Std. error Beta t Sig.

1 (Constant) —6.890 0.511 —13.496 0.000
Length (cm) 0.130 0.009 0.520 15.243 0.000
Gender re-coded —0.196 0.035 -0.163 —5.624 0.000
Parity re-coded (binary) 0.093 0.035 0.073 2.638 0.009
Head circumference (cm) 0.110 0.016 0.249 7.061 0.000

2 (Constant) —8.086 0.689 —-11.731  0.000
Length (cm) 0.128 0.009 0.512 15.034 0.000
Gender re-coded 2.282 0.966 1.898 2.362 0.019
Parity re-coded (binary) 0.093 0.035 0.073 2.651 0.008
Head circumference (cm) 0.144 0.020 0.326 7.063 0.000
Head by gender interaction —0.065 0.025 —2.040 —-2.567 0.011

2Dependent variable: weight (kg).
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Excluded Variables?

Collinearity
statistics
Partial
Model Betaln t Sig. correlation Tolerance
1 Head by gender interaction —2.040® —-2.567 0.011 —0.109 0.001

aPredictors in the model: (constant), head circumference (cm), parity re-coded (binary), gender
re-coded, length (cm).
bDependent variable: weight (kg).

The Model Summary table shows that the interaction term only slightly
improves the fit of the model by increasing the adjusted R square from 0.593
to 0.597. In the Coefficients table, the interaction term in Model 2 is significant
with a P value of 0.011 and therefore must be included because it helps
to describe the true relationship between weight, head circumference and
gender. If an interaction term is included then both derivative variables, that
is head circumference and gender, must be retained in the model regardless
of their statistical significance. Once an interaction is present, the coefficients
for the derivative variables have no interpretation except that they form an
integral part of the mathematical equation.

The Coefficients table shows that inclusion of the interaction term inflates
the standard error for head circumference from 0.016 in Model 1 to 0.02 in
Model 2 and significantly inflates the standard error for gender from 0.035
to 0.966. These standard errors have inflated as a result of the collinearity
with the interaction term and, as a result, the tolerance value in the Excluded
Variables table is very low and unacceptable at 0.001, also a sign of collinear-
ity. This example highlights the trade-off between building a stable predictive
model and deriving an equation that describes an interaction between vari-
ables. Collinearity caused by interactions can be removed by a technique called
centreing’, which is described later in this chapter but is rarely used in the
literature.

Model of best fit

The final model with all variables and the interaction term included could be
considered to be over-fitted. By including variables that explain little additional
variation and by including the interaction term, the model not only becomes
complex but the precision around the estimates is sacrificed and the regres-
sion assumptions of independence are violated. Head circumference should
be omitted because of its relation with length and because it explains only a
small additional amount of variation in weight. Thus, the interaction term is
also omitted. The final model with only length, gender and parity is parsimo-
nious. Once the final model is reached, the remaining regression assumptions
should be confirmed.
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Residuals

The residuals are the distances between each data point and the value pre-
dicted by the regression equation, that is the variation about the regression
line shown in Figure 6.2. The residual distances are converted to standard-
ised residuals that are in units of standard deviations from the regression.
Standardised residuals are assumed to be normal or approximately normally
distributed with a mean of zero and a standard deviation of 1.

Given the characteristics of a normal distribution, it is expected that 5% of
standardised residuals will be outside the area that lies between —1.96 and
+1.96 standard deviations from the mean (see Figure 2.2). In addition, 1%
of standardised residuals are expected to be outside the area that lies between
—3 and +3 standard deviations from the mean.

As the sample size increases, there will be an increasing number of potential
outliers. In this sample size of 550 babies, it is expected that 5 children will
have a standardised residual that will be outside the area that lies between —3
and +3 standard deviations from the mean.

An assumption of regression is that the residuals are normally distributed.
The residual for each case can be saved to a data column using the Save option
and the plots of the residuals can be obtained while running the model as
shown in Box 6.11. The normality of the residuals can then be inspected
using Analyze — Descriptive Statistics — Explore as discussed in Chapter 2.

Box 6.11 SPSS commands to test the regression assumptions

SPSS Commands
weights — SPSS Data Editor
Analyze — Regression — Linear
Linear Regression
Highlight Weight, click into the Dependent box
Highlight Length, Gender recoded, Parity recoded (binary), click into
the Independent(s) box
Click on Statistics
Linear Regression: Statistics
Under Regression Coefficients, tick Estimates (default)
Tick Model fit (default) and Collinearity diagnostics
Under Residuals, tick Casewise diagnostics — Outliers outside 3 standard
deviations (default), click Continue
Linear Regression
Click Plots
Linear Regression: Plots
Under Scatter 1 of 1, highlight *ZPRED and click into X, highlight
*ZRESID and click into Y
Under Standardized Residual Plots, tick Histogram and Normal
probability plot
Click Continue




Linear Regression
Click on Save
Linear Regression: Save

Click Continue
Linear Regression
Click OK

Under Predicted Values, tick Standardized
Under Residuals, tick Standardized
Under Distances, tick Mahalanobis, Cook’s and Leverage values
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Regression

Coefficients?

Unstandardised Standardised
coefficients

coefficients

Collinearity
statistics

Model B Std. error Beta t Sig. Tolerance VIF
1 (Constant) —4.572 0.408 —11.203 0.000

Length (cm) 0.164 0.007 0.655 22.262 0.000 0.933 1.071

Gender re-coded —0.255 0.035 -0.212 —7.200 0.000 0.935 1.069

Parity re-coded 0.124 0.036 0.097 3.405 0.001 0.997 1.003
2Dependent variable: weight (kg).
Casewise diagnostics®
Case number Std. residual Weight (kg) Predicted value Residual
243 3.122 5.23 3.9783 1.2517
2Dependent variable: weight (kg).
Residual Statistics®

Minimum Maximum Mean Std. deviation N

Predicted value 3.1594 5.7069 43664  0.44985 550
Std. predicted value —2.683 2.980 0.000 1.000 550
Standard error of predicted value 0.02687  0.06017 0.03365 0.00604 550
Adjusted predicted value 3.1413 5.7047 4.3665 0.44988 550
Residual —1.0791 1.2517 0.0000  0.39978 550
Std. residual —2.692 3.122 0.000 0.997 550
Stud. residual —2.706 3.130 0.000 1.001 550
Deleted residual —1.0904 1.2581 —0.0001  0.40276 550
Stud. deleted residual —2.722 3.156 0.000 1.003 550
Mahal. distance 1.469 11.372 2.995 1.529 550
Cook’s distance 0.000 0.028 0.002 0.003 550
Centred leverage value 0.003 0.021 0.005 0.003 550

2Dependent variable: weight (kg).
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The Coefficients table shows the variables in the model and the high toler-
ance values confirm their lack of collinearity. The Casewise Diagnostics table
shows the cases that are more than three standard deviations from the regres-
sion line. There is only one case that has a standardised residual that is more
than three standard deviations from the regression, that is case number 243
which is a baby with a weight of 5.23 kg compared with a predicted value of
3.9783 kg and with a standardised residual of 3.122.

The Residuals Statistics table shows the minimum and maximum predicted
values. The predicted values range from 3.159 to 5.707 kg and the unstan-
dardised residuals range from 1.079 kg below the regression line to 1.252 kg
above the regression line. This is the minimum and maximum distances of
babies from the equation, which is the variation about the regression.

The standardised predicted values and standardised residuals shown in the
Residuals Statistics table are expressed in units of their standard deviation and
have a mean of zero and a standard deviation of approximately or equal to 1,
as expected when they are normally distributed.

The histogram and normal P-P plot shown in Figure 6.8 indicate that the
distribution of the residuals deviates only slightly from a classically bell shaped
distribution.

The variance around the residuals can also be used to test whether the model
violates the assumption of homoscedasticity, that is equal variance over the
length of the regression model. Residual plots are a good method for examining
the spread of variance. The scatter plot in Figure 6.8 shows that there is an
equal spread of residuals across the predicted values indicating that the model
is homoscedastic.

Outliers and remote points

Outliers are data points that are more than three standard deviations from
the regression line. Outliers in regression are identified in a similar manner
to outliers in ANOVA. Univariate outliers should be identified before fitting
a model but multivariate outliers, if present, are identified once the model
of best fit is obtained. Outliers that cause a poor fit degrade the predictive
value of the regression model; however, this has to be balanced with loss of
generalisability if the points are omitted.

Multivariate outliers are data values that have an extreme value on a com-
bination of explanatory variables and exert too much leverage and/or discrep-
ancy (see Figure 5.10 in Chapter 5). Data points with high leverage and low
discrepancy have no effect on the regression line but tend to increase the R
square value and reduce the standard errors. On the other hand, data points
with low leverage and high discrepancy tend to influence the intercept but
not the slope of the regression or the R square value and tend to inflate the
standard errors. Data points with both a high leverage and a high discrepancy
influence the slope, the intercept and the R square value. Thus, a model that
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Figure 6.8 Plots of standardised residuals for regression on weight.
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contains problematic data points with high leverage and/or high discrepancy
values may not generalise well to the population.

Multivariate outliers can be identified using Cook’s distances and leverage
values as discussed in Chapter 5. The Residuals Statistics table shows that the
largest Cook’s distance is 0.028, which is below the critical value of 1, and
the largest leverage value is 0.021, which is below the critical value of 0.05
indicating that there are no influential outliers in this model. In regression,
Mahalanobis distances can also be inspected. Mahalanobis distances are eval-
uated using critical values of chi-square with degrees of freedom equal to the
number of explanatory variables in the model. To adjust for the number of
variables being tested, Mahalanobis distances are usually considered unac-
ceptable at the P < 0.001 level, although the influence of any values with
P < 0.05 should be examined.

To plot the Mahalanobis distances, which have been saved to a column at
the end of the data sheet, the commands Graphs — Histogram can be used to
obtain Figure 6.9. Any Mahalanobis distance that is greater than 16.266, that
is a chi-square value for P < 0.001 with three degrees of freedom (because
there are three explanatory variables in the model), would be problematic.
The graph shows that no Mahalanobis distances are larger than this. This is
confirmed in the Residual Statistics table, which shows that the maximum
Mahalanobis distance is 11.372.
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Figure 6.9 Histogram of Mahalanobis distances for weight.
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If multivariate outliers are detected they can be deleted but it is not rea-
sonable to remove troublesome data points simply to improve the fit of the
model. In addition, when one extreme data point is removed another may
take its place so it is important to recheck the data after deletion to ens-
ure that there are no further multivariate outliers. Alternatively, the data
can be transformed to reduce the influence of the multivariate outlier or the
extreme data point can be re-coded to a less extreme value. However, a multi-
variate outlier depends on a combination of explanatory variables and there-
fore the scores would have to be adjusted for each variable. Any technique
that is used to deal with multivariate outliers should be recorded in the study
handbook and described in any publications.

Validating the model

If the sample size is large enough, the model can be built using one-half of
the data and then validated with the other half. If this is the purpose, the
sample should be split randomly. Other selections of 60% to 80% for building
the model and 40% to 20% for validation can be used. A model built using
one part of the data and validated using the other part of the data provides
good evidence of stability and reliability. However, both models must have an
adequate sample size and must conform to the assumptions for regression to
minimise collinearity and maximise precision and stability.

Non-linear regression

If scatter plots suggest that there is a curved relationship between the explana-
tory and outcome variables, then a linear model may not be the best fit. Other
non-linear models that may be more appropriate for describing the relation-
ship can be examined using the SPSS commands shown in Box 6.12. Loga-
rithmic, quadratic and exponential fits are the most common transformations

Box 6.12 SPSS commands for examining the equation that best fits the
data

SPSS Commands
weights — SPSS Data Editor
Analyze — Regression — Curve Estimation
Curve Estimation
Highlight Weight, click into Dependent(s) box
Highlight Length, click into Independent Variable box
Under Models, tick Linear (default), Logarithmic, Quadratic
and Exponential
Click OK
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used in medical research when data are skewed or when a relationship is not
linear.

Curve fit

Independent: LENGTH
Dependent Mth Rsqg d.f. F Sigf b0 bl b2
WEIGHT LIN .509 548 567.04 .000 -5.4121 .1783
WEIGHT LOG .508 548 566.40 .000 -34.875 9.8019
WEIGHT QUA .509 547 283.03 .000 -6.6256 .2224 -.0004
WEIGHT EXP .503 548 555.23 .000 .4578 .0409

In the Curve Fit table, b0 is the intercept which is the coefficient labelled ‘a’
in previous models. The equations of the models are as follows:

Linear: Weight = by + (b; x Length)

Quadratic: Weight = by + (b, x Length) + (b, x Length?)

(
Logarithmic: Weight = by + (b x loge Length)
(
Exponential: Weight = by 4 (b x '8

The R square values, denoted as Rsq in the Curve Fit table, show that the
linear and the quadratic models have the best fit with R square values of
0.509 closely followed by the logarithmic model with an R square of 0.508.
The plots in Figure 6.10 show that the curves for the four models only deviate
at the extremities of the data points, which are the regions in which prediction
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Figure 6.10 Different curve estimates of weight on length.
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is less certain. Because the linear model is easier to communicate, in practice
it would be the preferable model to use.

If it was important to use the quadratic model, say to compare with other
quadratic models in the literature, then the square of length can be computed
as lensq in the menu Transform — Compute using the formula lensq = length x
length. The quadratic equation can be obtained using the commands shown
in Box 6.8, with length added as independent variable into Block 1 of 1 and
the square of length (lensq) into Block 2 of 2.

Model Summary

Adjusted Std. error of
Model R R square R square the estimate
1 0.7132 0.509 0.508 0.42229
2 0.713 0.509 0.507 0.42266
2Predictors: (constant), length (cm).
bPredictors: (constant), length (cm), length squared.
Coefficients?
Unstandardised Standardised
coefficients coefficients
Model B Std. error Beta t Sig.
1 (Constant) —-5.412 0.411 —13.167 0.000
Length (cm) 0.178 0.007 0.713 23.813 0.000
2 (Constant) —6.626 7.053 -0.939 0.348
Length (cm) 0.222 0.256 0.890 0.868 0.386
Length squared 0.000 0.002 —0.177 —0.172 0.863
bDependent variable: weight (kg).
Excluded Variables?
Collinearity
statistics
Partial
Model Beta In t Sig. correlation Tolerance
1 Length squared -0.177° -0.172 0.863 —0.007 0.001

@Predictors in the model: (constant), length (cm).
bDependent variable: weight (kg).

The Model Summary and Coefficients tables show that the R square and the
regression coefficients are as indicated in the curve fit procedure. However,
the standard error for length has increased from 0.007 in Model 1 to 0.256
in Model 2. In addition, length is no longer significant in Model 2 and the
Excluded Variables table shows that tolerance is very low at 0.001 indicating
that the explanatory variables are highly related to one other.
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Collinearity can occur naturally when a quadratic term is included in a re-
gression equation because the variable and its square are related. A scatter plot
using the SPSS commands Graphs — Scatter — Simple to plot length squared
against length demonstrates the direct relationship between the two variables
as shown in Figure 6.11.
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Figure 6.11 Scatter plot of length by length squared.

Centreing

To avoid collinearity in quadratic equations, a simple mathematical trick of
centreing, that is subtracting a constant from the data values, can be applied!!.
The constant that minimises collinearity most effectively is the mean value of
the variable. Using Descriptive Statistics — Descriptives in SPSS indicates that the
mean of length is 54.841 cm. Using the commands Transform — Compute the
mean value is used to compute a new variable for length centred (lencent)
as length — 54.841 and then to compute another new variable which is the
square of lencent (lencntsq).

A scatter plot of length centred and its square in Figure 6.12 shows that
the relationship is no longer linear simply because subtracting the mean value
gives half of the values a negative value but then squaring all values returns
a positive value again. The relation is thus U-shaped and no longer linear.
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Figure 6.12 Scatter plot of length squared by length centred squared.

The regression can now be re-run using the commands shown in Box 6.8
but with length centred in Block 1 of 1 and its square in Block 2 of 2.

Model Summary

Adjusted Std. error of
Model R R square R square the estimate
1 0.7132 0.509 0.508 0.42229
2 0.713 0.509 0.507 0.42266
@Predictors: (constant), length centred.
bPredictors: (constant), length centred, length centred squared.
Coefficients?
Unstandardised Standardised
coefficients coefficients
Model B Std. error  Beta t Sig.
1 (Constant) 4366 0.018 242.494 0.000
Length centred 0.178 0.007 0.713 23.813  0.000
2 (Constant) 4369 0.022 194.357 0.000
Length centred 0.179  0.008 0.714 23.499 0.000
Length centred squared  0.000  0.002 —0.005 -0.172  0.863

2Dependent variable: weight (kg).
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Excluded VariablesP

Collinearity
statistics
Partial
Model Betaln t Sig. correlation  Tolerance
1 Length centred squared —0.005° -0.172 0.863 —0.007 0.973

2Predictors in the model: (constant), length centred.
bDependent variable: weight (kg).

The Model Summary table shows that when length is centred, the R square
value remains unchanged and the Coefficients table shows the standard error
for length is similar at 0.007 in Model 1 and 0.008 in Model 2. In addition,
the unstandardised coetficients are now significant and the tolerance value is
high at 0.973. The unstandardised coefficient for the square term is close to
zero with a non-significant P value indicating its negligible contribution to
the model. The equation for this regression model is as follows:

Weight = 4.369 + (0.179 x (Length — 54.841)) 4 (0.0001
x (Length — 54.841)%)

This centred model is a more stable quadratic model than the model given by
the curve fit option and is therefore more reliable for predicting weight or for
testing the effects of other factors on weight.

The technique of centreing can also be used to remove collinearity caused
by interactions which are naturally related to their derivatives’.

Notes for critical appraisal

Box 6.13 shows the questions that should be asked when critically appraising
a paper that reports linear or multiple regression analyses.

Box 6.13 Questions to ask when critically appraising a regression analysis

The following questions should be asked when appraising published re-

sults from analyses in which regression has been used:

* Was the sample size large enough to justify using the model?

e Are the axes the correct way around with the outcome on the y-axis
and the explanatory variable on the x-axis?

o Were any repeated measures from the same participants treated as in-
dependent observations?

o Were all of the explanatory variables measured independently from the
outcome variable?

o Have the explanatory variables been measured reliably?
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Is there any collinearity between the explanatory variables that could
reduce the precision of the model?

Are there any multivariate outliers that could influence the regression
estimates?

Is evidence presented that the residuals are normally distributed?

Are there sufficient data at the extremities of the regression or should
the prediction range be shortened?
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CHAPTER 7

Categorical variables: rates
and proportions

When the methods of statistical inference were being developed in the first half of the
twentieth century, calculations were done using pencil, paper, tables, slide rules and
with luck a very expensive adding machine® .

MARTIN BLAND STATISTICIAN

Obijectives

The objectives of this chapter are to explain how to:

use the correct summary statistics for rates and proportions

present categorical baseline characteristics correctly

crosstabulate categorical variables and obtain meaningful percentages
choose the correct chi-square value

plot percentages and interpret 95% confidence intervals

manage cells with small numbers

use trend tests for ordered exposure variables

convert continuous variables with a non-normal distribution into categorical
variables

calculate the number needed to treat

calculate significance and estimate effect size for paired categorical data
critically appraise the literature in which rates and proportions are reported

Categorical variables are summarised using statistics called rates and pro-
portions. A rate is a number used to express the frequency of a characteristic
of interest in the population, such as 1 case per 10 000. In some cases, the rate
is applied to a time period such as per annum. Frequencies can also be de-
scribed using summary statistics such as a percentage e.g. 20% or a proportion
e.g. 0.2. Rates, percentages and proportions are frequently used for summaris-
ing information that is collected with tick box options on questionnaires.

Obtaining information about the distribution of the categorical variables in a
study provides a good working knowledge of the characteristics of the sample.
The spreadsheet surgery.sav contains data from a sample of 141 consecutive
babies who were admitted to hospital to undergo surgery. The SPSS commands
shown in Box 7.1 can be used to obtain frequencies and histograms for the
categorical variables prematurity (1 = Premature; 2 = Term) and gender2
(1 = Male and 2 = Female). The frequencies for place of birth were obtained
in Chapter 1.

202
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Box 7.1 SPSS commands to obtain frequencies and histograms

SPSS Commands
surgery — SPSS Data Editor
Analyze — Descriptive Statistics — Frequencies
Frequencies
Highlight Prematurity and Gender recoded, click into Variable(s) box
Click on Charts
Frequencies: Charts
Chart Type: Tick Bar charts, Click Continue
Frequencies
Click Ok

Frequency Table

Prematurity

Frequency Per cent Valid per cent Cumulative per cent
Valid Premature 45 31.9 31.9 31.9
Term 96 68.1 68.1 100.0
Total 141 100.0 100.0
Gender Recoded
Frequency Per cent Valid per cent Cumulative per cent
Valid Male 82 58.2 58.2 58.2
Female 59 41.8 41.8 100.0
Total 141 100.0 100.0

The valid per cent column in the first Frequency table indicates that 31.9%
of babies in the sample were born prematurely and that 68.1% of babies in the
sample were term births. The per cent and valid per cent columns are identical
because all children in the sample have information of their birth status, that
is there are no missing data. In journal articles and scientific reports when the
sample size is greater than 100, percentages such as these are reported with one
decimal place only. When the sample size is less than 100, no decimal places
are used. If the sample size was less than 20 participants, percentages would
not be reported (Chapter 1) although SPSS includes them on the output.

The valid per cent column in the second Frequency table indicates that there
are more males than females in the sample (58.2% vs 41.8%).

The bar charts shown in Figure 7.1 are helpful for comparing the frequen-
cies visually and are often useful for a poster or a talk. However, charts are
not suitable for presenting sample characteristics in journal articles or other
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Figure 7.1 Number of babies by prematurity status and by gender.
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publications because accurate frequency information cannot be read from
them and they are ‘space hungry’ for the relatively small amount of infor-
mation provided.

Baseline characteristics

The baseline characteristics of the sample could be described as shown in
Table 7.1 or Table 7.2. If the percentage of male children is included, it is not
necessary to report the percentage of female children because this is the com-
plement that can be easily calculated. Similarly, it is not necessary to include
percentages of both term and premature birth since one can be calculated
from the other. In most cases, observed numbers are not included in addition
to percentages because the numbers can be calculated from the percentages
and the total number of the sample. However, some journals request that the
number of cases and the sample size, e.g. 82/141, are reported in addition to
percentages.

Table 7.1 Baseline characteristics

Characteristic Per cent
Total number 141
Male 58.2%
Place of birth
Local 63.8%
Regional 23.4%
Overseas 6.4%
No information 6.4%
Premature birth 31.9%

Although confidence intervals around percentage figures can be computed,
these statistics are more appropriate for comparing rates in two or more differ-
ent groups, as discussed later in this chapter, and not for describing the sample
characteristics.

Table 7.2 Baseline characteristics

Characteristic Sample size (N) Per cent
Male 141 58.2%
Place of birth 132
Local 68.2%
Regional 25.0%
Overseas 6.8%

Premature birth 141 31.9%
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Describing categorical data

When describing frequencies, it is important to use the correct term. A com-
mon mistake is to describe prevalence as incidence, or vice versa, although
these terms have different meanings and cannot be used interchangeably.

Incidence is a term used to describe the number of new cases with a condi-
tion divided by the population at risk. Prevalence is a term used to describe the
total number of cases with a condition divided by the population at risk. The
population at risk is the number of people during the specified time period
who were susceptible to the condition. The prevalence of an illness in a spec-
ified period is the number of incident cases in that period plus the previous
prevalent cases and minus any deaths or remissions.

Both incidence and prevalence are usually calculated for a defined time
period, for example for a 1 or 5 year period. When the number of cases of a
condition is measured at a specified point in time, the term point prevalence
is used. The terms incidence and prevalence should only be used when the
sample is selected randomly. When the sample has not been selected randomly
from the population, the terms percentage, proportion, or frequency are more
appropriate.

Chi-square tests

A chi-square test is used to assess whether the frequency of a condition is sig-
nificantly different between two or more groups, for example groups who re-
ceived different treatments or who have different exposures. Thus, chi-square
tests would be used to assess whether there is a significant between-group dif-
ference in the frequency of participants with a certain condition. For example,
chi-square could be used to test whether the absence or presence of an illness
is independent of whether a child was or was not immunised.

The data for chi-square tests are summarised using crosstabulations as
shown in Table 7.3. These tables are sometimes called frequency or contin-
gency tables. Table 7.3 is called a 2 x 2 table because each variable has two
levels, but tables can have larger dimensions when either the exposure or the
disease has more than two levels.

Table 7.3 Crosstabulation for estimating chi-square

Disease absent Disease present Total
Exposure absent d c c+d
Exposure present b a a+b
Total b+d a+c Total

In a contingency table, one variable (usually the exposure) forms the rows
and the other variable (usually the disease) forms the columns. In the above



Categorical variables 207

example, the exposure immunisation (no, yes) would form the rows and the
illness (present, absent) would form the columns. The four internal cells of the
table show the counts for each of the disease/exposure groups, for example cell
‘a’ shows the number who satisty exposure present (immunised) and disease
present (illness positive).

The assumptions for using a chi-square test are shown in Box 7.2.

Box 7.2 Assumptions for using chi-square tests

The assumptions that must be met when using a chi-square test are that:

o cach observation must be independent

o cach participant is represented in the table once only

e 80% of the expected cell frequencies should exceed 5 and all expected
cell frequencies should exceed 1

A major assumption of chi-square tests is independence, that is each par-
ticipant must be represented in the analysis once only. Thus, if repeat data
have been collected, for example if data have been collected from hospital
inpatients and some patients have been re-admitted, a decision must be made
about which data, for example, from the first admission or the last admission,
are used in the analyses.

The expected frequency in each cell, which is discussed later in this chapter,
is an important concept in determining P values and deciding the validity
of a chi-square test. For each cell, a certain number of participants would be
expected given the frequencies of each of the characteristics in the sample.

When a chi-square test is requested, most statistics programs provide a
number of chi-square values on the output. The chi-square statistic that is
conventionally used depends on both the sample size and the expected cell
counts as shown in Table 7.4. However, these guidelines are quite conserva-
tive and if the result from a Fisher’s exact test is available, it could be used in

Table 7.4 Type and application of chi-square tests

Statistic Application
Pearsons’ chi-square Used when the sample size is very large, say over 1000
Continuity correction Applied to 2 x 2 tables only and is an approximation to

Pearson’s for a smaller sample size, say less than 1000

Fisher’s exact test Must always be used when one or more cells in a 2 x 2 table
have a small expected number of cases

Linear-by-linear Used to test for a trend in the frequency of the outcome across
an ordered exposure variable
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all situations because it is a gold standard test, whereas Pearson’s chi-square
and the continuity correction tests are approximations. Fisher’s exact test is
generally printed for 2 x 2 tables and, depending on the program used, may
also be produced for crosstabulations larger than 2 x 2. The linear-by-linear
test is most appropriate in situations in which an ordered exposure variable
has three or more categories and the outcome variable is binary.

As in all analyses, it is important to identify which variable is the outcome
variable and which variable is the explanatory variable. This is important for
setting up the crosstabulation table to display the percentages that are appro-
priate for answering the research question. This can be achieved by either:

o entering the explanatory variable in the rows, the outcome in the columns
and using row percentages, or

o entering the explanatory variable in the columns, the outcome in the rows
and using column percentages

A table set up in either of these ways will display the per cent of participants

with the outcome of interest in each of the explanatory variable groups. In

most study designs, the outcome is a disease and the explanatory variable is

an exposure or an experimental group. However, in case—control studies in

which cases are selected on the basis of their disease status, the disease may be

treated as the explanatory variable and the exposure as the outcome variable.

Research question

The data set surgery.sav contains data from babies who were admitted to
hospital for surgery. This sample was not selected randomly and therefore only
percentages will apply and the terms incidence and prevalence cannot be used.
However, chi-square tests are valid to assess whether there are any between-
group differences in the proportion of babies with certain characteristics.

Question: Are males who are admitted for surgery more likely than
females to have been born prematurely?

Null hypothesis: That the proportion of males in the premature group is
equal to the proportion of females in the premature
group.

Variables: Outcome variable = prematurity (categorical, two levels)

Explanatory variable = gender (categorical, two levels)

The command sequence to obtain a crosstabulation and chi-square test is
shown in Box 7.3.

Box 7.3 SPSS commands to obtain a chi-square test

SPSS Commands
surgery — SPSS Data Editor
Analyze — Descriptive Statistics — Crosstabs



Crosstabs

Click Statistics
Crosstabs: Statistics
Tick Chi-square, click Continue
Crosstabs
Click Cells
Crosstabs: Cell Display
Counts: tick Observed (default),
Percentages: tick Row
Click Continue
Crosstabs
Click OK
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Highlight Gender recoded and click into Row(s)
Highlight Prematurity and click into Column(s)

Crosstabs

Gender Re-coded * Prematurity Crosstabulation

Prematurity

Premature  Term Total
Gender re-coded  Male Count 33 49 82
% within gender re-coded  40.2% 59.8% 100.0%
Female  Count 12 47 59
% within gender re-coded  20.3% 79.7%  100.0%
Total Count 45 9% 141
% within gender re-coded  31.9% 68.1%  100.0%
Chi-Square Tests
Asymp. sig. Exact sig. Exact sig.
Value df (two-sided) (two-sided) (one-sided)
Pearson chi-square 6.256° 1 0.012
Continuity correction? 5.374 1 0.020
Likelihood ratio 6.464 1 0.011
Fisher's exact test 0.017 0.009
Linear-by-linear association 6.212 1 0.013
N of valid cases 141

2Computed only for a 2 x 2 table.

b0 cell (0.0%) has expected count less than 5. The minimum expected count is 18.83.

The first Crosstabulation table shows that the two variables each have two
levels to create a 2 x 2 table with four cells. The table shows that 40.2% of
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males in the sample were premature compared with 20.3% of females, that
is the rate of prematurity in the males is almost twice that in the females.

Chi-square values are calculated from the number of observed and expected
frequencies in each cell of the crosstabulation. The observed numbers are the
numbers shown in each cell of the crosstabulation. The expected number for
each cell is calculated as

Row total x Column total/Grand total

For cell g in Table 7.3, the expected number is ((a + b) x (a + ¢))/Total

The above formula is an estimate of how many cases would be expected
in any one cell given the frequencies of the outcome and the exposure in
the sample. The Pearson chi-square value is then calculated by the following
summation from all cells:

¥ (Observed count — Expected count)?

Chi-square value =
Expected count

The continuity corrected chi-square is calculated in a similar way but with
a correction made for a smaller sample size. Obviously, if the observed and
expected values are similar, then the chi-square value will be close to zero and
therefore will not be significant. The more different the observed and expected
values are from one another, the larger the chi-square value becomes and the
more likely the P value will be significant.

In the Crosstabulation, the smallest cell has an observed count of 12. The
expected number for this cell is 59 x 45/141, or 18.83 as shown in the footnote
of the Chi-Square Tests table.

In the Chi-Square Tests table, the continuity correction chi-square of 5.374 is
conventionally used because the sample size is only 141 children. This value
indicates that the difference in rates of prematurity between the genders is
statistically significant at P = 0.02. This result would be reported as ‘there was
a significant difference in prematurity between males and females (40.2% vs
20.3%, P = 0.02)".

Confidence intervals

When between-group differences are compared, the summary percentages
are best shown with 95% confidence intervals. As discussed in Chapter 3, it
is useful to include the 95% confidence intervals when results are shown as
figures because the degree of overlap between them provides an approximate
significance of the ditferences between groups.

Many statistics programs do not provide confidence intervals around fre-
quency statistics. However, 95% confidence intervals can be easily computed
using an Excel spreadsheet. The standard error around a proportion is cal-
culated as /[p(1 — p)/n] where p is the proportion expressed as a decimal
number and 7 is the number of cases in the group from which the proportion
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is calculated. The standard error around a proportion is rarely reported but is
commonly converted into a 95% confidence interval which is p £ (SE x 1.96).

An Excel spreadsheet in which the percentage is entered as its decimal
equivalent in the first column and the number in the group is entered in
the second column can be used to calculate confidence intervals as shown in
Table 7.5.

Table 7.5 Excel spreadsheet to compute 95% confidence intervals around
proportions

Proportion N SE Width Cl lower Cl upper
Male 0.402 82 0.054 0.106 0.296 0.508
Female 0.203 59 0.052 0.103 0.100 0.306

The formula for the standard error (SE) is entered into the formula bar of
Excel as sqrt (p x (1 — p)/n) and the formula for the width of the confidence
interval is entered as 1.96 x SE. This width, which is the dimension of the
95% confidence interval that is entered into SigmaPlot to draw bar charts
with error bars, can then be both subtracted and added to the proportion to
calculate the 95% confidence interval values shown in the last two columns
of Table 7.5.

The calculations are undertaken in proportions (decimal numbers) but are
easily converted back to percentages by moving the decimal point two places to
the right. Using the converted values, the result could be reported as ‘the per-
centage of male babies born prematurely was 40.2% (95% CI29.6 to 50.8%).
This was significantly higher than the percentage of female babies born pre-
maturely which was 20.3% (95% CI 10.0 to 30.6%) (P = 0.02)’". The P value
of 0.02 for this comparison is derived from the Chi-Square Tests table.

Creating a figure using SigmaPlot

The summary statistics from Table 7.5 can be entered into SigmaPlot by first
using the commands File — New and then entering the percentages in col-
umn 1 and the width of the confidence interval, also converted to a percentage
in column 2.

Column 1 Column 2
40.2 10.6
20.3 10.3

The SigmaPlot commands for plotting these summary statistics as a figure
are shown in Box 7.4.
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Box 7.4 SigmaPlot commands to draw simple histograms

SigmaPlot Commands
Sigmaplot — [Data 1]
Graph — Create Graph
Create Graph - Type
Highlight Horizontal Bar Chart, click Next
Create Graph - Style
Highlight Simple Error Bars, click Next
Create Graph — Error Bars
Symbol Values = Worksheet Columns (default), click Next
Create Graph — Data Format
Highlight Single X, click Next
Create Graph — Select Data
Data for Bar = use drop box and select Column 1
Data for Error = use drop box and select Column 2
Click Finish

Females = !

Males = !

0 10 20 30 40 50 60

Percentage (%) of group

Figure 7.2 Per cent of male and female babies born prematurely.

The graph can then be customised using the options under Graph — Proper-
ties to produce Figure 7.2. The lack of overlap between the confidence intervals
is an approximate indication of a statistically significant difference between the
two groups.
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2 x 3 chi-square tables

In addition to the common application of analysing 2 x 2 tables, chi-square
tests can also be used for larger 2 x 3 tables in which one variable has two
levels and the other variable has three levels.

Research question

Question: Are the babies born in regional centres (away from the
hospital or overseas) more likely to be premature than
babies born in local areas?

Null hypothesis: ~ That the proportion of premature babies in the group born
locally is not different to the proportion of premature
babies in the groups born regionally or overseas.

Variables: Place of birth (categorical, three levels and) prematurity
(categorical, two levels)

In this research question, there is no clear outcome or explanatory variable
because both variables in the analysis are characteristics of the babies. This type
of question is asked when it is important to know about the inter-relationships
between variables in the data set. If prematurity has an important association
with place of birth, this may need to be taken into account in multivariate
analyses.

The SPSS commands shown in Box 7.3 can be used with place of birth
recoded entered into the rows, prematurity entered into the columns and
row percentages requested.

Crosstabs

Place of birth (re-coded) * Prematurity Crosstabulation

Prematurity

Premature Term Total
Place of birth Local Count 29 61 90
(re-coded) % within place of 32.2% 67.8% 100.0%
birth (re-coded)
Regional Count 6 27 33
% within place of 18.2% 81.8% 100.0%
birth (re-coded)
Overseas Count 5 4 9
% within place of 55.6% 44.4% 100.0%
birth (re-coded)
Total Count 40 92 132
% within place of 30.3% 69.7% 100.0%

birth (re-coded)
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Chi-Square Tests

Asymp. sig.

Value df (two-sided)
Pearson chi-square 5.170° 2 0.075
Likelihood ratio 5.146 2 0.076
Linear-by-linear association 0.028 1 0.866

N of valid cases 132

21 cell (16.7%) has expected count less than 5. The minimum expected count is 2.73.

The row percentages in the Crosstabulation table show that there is a differ-
ence in the frequency of prematurity between babies born at ditferent loca-
tions. The per cent of babies who are premature is 32.2% from local centres,
18.2% from regional centres and 55.6% from overseas centres. This difference
in percentages fails to reach significance with a Pearson’s chi-square value of
5.170 and a P value of 0.075. For tables such as this that are larger than 2 x 2,
an exact chi-square test that is used when an expected count is low has to be
requested and is not a default option (see next section).

In the crosstabulation, the absolute difference in per cent of premature
babies between regional and overseas centres is quite large at 55.6% — 18.2%,
or 37.4%. The finding of a non-significant P value in the presence of this large
between-group difference could be considered a type Il error as a consequence
of the small sample size. In this case, the sample size is too small to demons-
trate statistical significance when a large difference of 37.4% exists. If the
sample size had been larger, then the P value for the same between-group
difference would be significant. Conversely, the difference between the groups
may have been due to chance and a larger sample size might show a smaller
between-group difference.

A major problem with this analysis is the small numbers in some of the
cells. There are only nine babies in the overseas group. The row percent-
ages illustrate the problem that arises when some cells have small numbers.
The five premature babies born overseas are 55.6% of their group because
each baby is 1/9™" or 11.1% of the group. When a group size is small, adding
or losing a single case from a cell results in a large change in frequency
statistics. Because of these small group sizes, the footnote in the Chi-Square
Tests table indicates that one cell in the table has an expected count less
than five.

Using the formula shown previously, the expected number of premature
babies referred from overseas is 9 x 40/132 or 2.73. This minimum expected
cell count is printed in the footnote below the Chi-Square Tests table. If a
table has less than five expected observations in more than 20% of cells,
the assumptions for the chi-square test are not met. The warning message
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suggests that the P value 0f 0.075 is unreliable and probably an overestimate of
significance.

Cells with small numbers

Small cells cannot be avoided at times, for example when a disease is rare.
However, cells and groups with small numbers are a problem in all types of
analyses because their summary statistics are often unstable and difficult to
interpret. When calculating a chi-square statistic, most packages will give a
warning message when the number of expected cases in a cell is low.

Chi-square tests may be valid when the number of observed counts in a cell
is zero as long as the expected number is greater than 5 in 80% of the cells and
greater than 1 in all cells. If expected numbers are less than this, then an exact
chi-square based on alternative assumptions can be used. An exact chi-square
can be obtained for the 3 x 2 table above by clicking on the Exact button
in the bottom left hand corner of the Crosstabs dialogue box. The following
table is obtained when the Monte Carlo method of computing the exact chi-
square is requested. The Monte Carlo P value is based on a random sample
of a probability distribution rather than a chi-square distribution which is an
approximation. When the Monte-Carlo option is selected, the P value will
vary each time the test is run on the same data set because it is based on a
random sample of probabilities.

The Chi-Square Tests table shows that the asymptotic significance value of
P = 0.075 is identical to the exact significance value obtained previously i.e.
P = 0.075. The two-sided test should be used because the direction of effect
could have been either way, that is the proportion of premature babies could
have been higher or lower in any of the groups.

An alternative to using exact methods is to merge the group with small cells
with another group but only if the theory is valid. Alternatively, the group
can be omitted from the analyses although this will reduce the generalisabil-
ity of the results. It is usually sensible to combine groups when there are
less than 10 cases in a cell. The number of viable cells for statistical analysis
usually depends on sample size. As a rule of thumb, the maximum number
of cells that can be tested using chi-square is the sample size divided by 10.
Thus, a sample size of 160 could theoretically support 16 cells such as an 8 x 2
table, a 5 x 3 table or a 4 x 4 table. However, this relies on an even distribu-
tion of cases over the cells, which rarely occurs. In practice, the maximum
number of cells is usually the sample size divided by 20. In this data set this
would be 141/20 or approximately seven cells which would supporta 2 x 2 or
2 x 3 table. These tables would be viable as long as no cell size is particularly
small.

The pathway for analysing categorical variables when some cells have small
numbers is shown in Figure 7.3.
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Monte Carlo sig. (two-sided)

Monte Carlo sig. (one-sided)

95% confidence interval

95% confidence interval

Asymp. sig.
Value df  (two-sided) Sig. Lower bound Upper bound Sig. Lower bound Upper bound
Pearson chi-square 5.1702 2 0.075 0.075° 0.070 0.081
Likelihood ratio 5.146 2 0.076 0.100° 0.094 0.106
Fisher’s exact test 5.072 0.075° 0.070 0.081
Linear-by-linear association 0.028¢ 1 0.866 0.879° 0.872 0.885 0.481° 0.472 0.491
N of valid cases 132

20ne cell (16.7%) has expected count less than 5. The minimum expected count is 2.73.
bBased on 10000 sampled tables with starting seed 624387341.

“The standardized statistic is —0.168.
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Non-ordered |—— | Cells with small | —— Exact methods
/ categories numbers
Categorical Combine
data cells
Each cell has Pearson’s or
sufficient —> continuity corrected
numbers chi-squared
Ordered Combine cells Non-parametric
categories with small > |statistics or chi-squared
numbers trend

Figure 7.3 Pathway for analysing categorical variables when some cells have small
numbers.

Re-coding to avoid small cell numbers

Groups can easily be combined to increase cell size if the re-coding is intuitive.
However, if two or more unrelated groups need to be combined, they could be
described with a generic label such as ‘other’ if neither group is more closely
related to one of the other groups in the analysis. In the data set surgery.sav, it
makes sense to combine the regional group with the overseas group because
both are distinct from the local group. The SPSS commands to transform a
variable into a new variable were shown in Box 1.10 in Chapter 1 and can be
used to transform place2 with three levels into a binary variable called place3
(local, regional/overseas). To ensure that all output is self-documented, it is
important to label each new variable in Variable View after re-coding and to
verify the frequencies of place3 using the commands shown in Box 1.9.

Frequencies

Place of Birth (Binary)

Frequency Percent Valid percent Cumulative percent

Valid Local 90 63.8 68.2 68.2
Regional or overseas 42 29.8 31.8 100.0
Total 132 93.6 100.0

Missing  System 9 6.4

Total 141 100.0

Having combined the small overseas group of nine children with the re-
gional group of 33 children, the new combined group has 42 children. The
crosstabulation to answer the research question can then be repeated using
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the command sequence shown in Box 7.3 to compute a 2 x 2 table with the
binary place of birth variable entered into the rows.

Crosstabs

Place of Birth (Binary) * Prematurity Crosstabulation

Prematurity

Premature  Term Total

Place of birth  Local Count 29 61 90
(binary) % within place of 32.2% 67.8% 100.0%
birth (binary)
Regional or overseas  Count 11 31 42
% within place of  26.2% 73.8%  100.0%
birth (binary)
Total Count 40 92 132
% within place of  30.3% 69.7%  100.0%

birth (binary)

Chi-Square Tests

Asymp. sig. Exact sig. Exact sig.
Value df  (two-sided) (two-sided) (one-sided)
Pearson chi-square 0.493P 1 0.482
Continuity correction?® 0.249 1 0.618
Likelihood ratio 0.501 1 0.479
Fisher's exact test 0.546 0.312
Linear-by-linear association 0.490 1 0.484

N of valid cases 132

2Computed only for a 2 x 2 table.
b0 cell (0.0%) has expected count less than 5. The minimum expected count is 12.73.

The Crosstabulation shows that 32.2% of babies in the sample from local
areas were premature compared to 26.2% of babies from regional centres or
overseas. The Chi-Square Tests table shows the continuity corrected P value
of 0.618 which is not significant. This value, which is very different from the P
value of 0.075 for the 3 x 2 table, is more robust because all cells have adequate
sizes. With the small cells combined with larger cells, the footnote shows that
no cell has an expected count less than five and thus the assumptions for
chi-square are met.

Using the Excel spreadsheet created previously in Table 7.5, the percentages
can be added as proportions and the confidence intervals calculated as shown
in Table 7.6.
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Table 7.6 Excel spreadsheet to compute confidence intervals around proportions

Proportion N SE Width Cl lower Cl upper
Local 0.322 90 0.049 0.097 0.225 0.419
Regional or overseas 0.262 42 0.068 0.133 0.129 0.395

Presenting the results: crosstabulated information

When presenting crosstabulated information of the effects of explanatory fac-
tors for a report, journal article or presentation, it is appropriate to use tables
with the outcome variable presented in the columns and the risk factors or
explanatory variables presented in the rows as shown in Table 7.7.

The chi-square analyses show that the number of males and females referred
for surgery is significantly different but that the per cent of premature babies
from regional or overseas areas is not significantly different from the per cent
of premature babies in the group born locally. The results of these analyses
could be presented as shown in Table 7.7.

Table 7.7 Factors associated with prematurity in 141 children attending hospital for
surgery

Risk factor Per cent premature and 95% CI P value
Male 40.2% (95% Cl 29.6, 50.8) 0.02
Female 20.3% (95% Cl 10.0, 30.6)

Born in local area 32.2% (95% Cl 22.5, 41.9) 0.62
Born in regional area or overseas 26.2% (95% Cl 12.9, 39.5)

The overlap of the 95% confidence intervals in this table is consistent with
the P values and shows that there is only a minor overlap of 95% confidence
intervals between genders but a large overlap of 95% confidence intervals
between regions.

Differences in proportions

When comparing proportions between two groups, it can be useful to express
the size of the absolute difference in proportions between the groups. A 95%
confidence interval around this difference is invaluable in interpreting the
significance of the difference because if the interval does not cross the line of
no difference (zero value) then the difference between groups is statistically
significant.

The Excel spreadsheet shown in Table 7.8 can be used to calculate the dif-
ferences in proportions, the standard error around the differences and the
width of the confidence intervals. The difference in proportions is calculated
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Table 7.8 Excel spreadsheet to compute confidence intervals around a difference in
proportions

p1 n1 p2 n2 1-p1 1-p2 Difference SE Width Cllower Clupper

Gender 0.402 82 0.203 59 0.598 0.797 0.199 0.075 0.148 0.051 0.347
Place 0.322 90 0.262 42 0.678 0.738 0.06 0.084 0.164 —0.104 0.224

as p1 — p2 and the standard error of the difference as \/((p1 x (1 — p1)/m1) +
(p2 X (1 — p2)/n2)), where p; is the proportion and 7, is the number of cases
in one group and p; is the proportion and 7, is the number of cases in the
other group. The width of the confidence interval is calculated as before as
SE x 1.96.

Presenting the results: differences in percentages

The results from the above analyses can be presented as shown in Table 7.9
as an alternative to the presentation shown in Table 7.7. In Table 7.7, the
precision in both groups could be compared but Table 7.9 shows the absolute
difference between the groups. This type of presentation is useful for exam-
ple when comparing percentages between two groups that were studied in
different time periods and the outcome of interest is the change over time.

Table 7.9 Risk factor for prematurity in 141 children attending for surgery

Per cent Difference and 95%
Risk factor premature confidence interval P value
Male 40.2% 19.9% (95% Cl 5.1, 34.7) 0.02
Female 20.3%
Born locally 32.2% 6.0% (95% C1-10.4, 22.4) 0.62
Born regionally/overseas 26.2%

The 95% confidence interval for the difference between genders does not
contain the zero value of no difference as expected because the P value is
significant. On the other hand, the confidence interval for the difference be-
tween places of birth contains the zero value indicating there is little difference
between groups and that the P value is not significant.

When using larger crosstabulations, such as 2 x 3 tables, it can be difficult to
interpret the P value without further sub-analyses, as shown when answering
the following research question.

Research question

Question: Are babies who are born prematurely more likely to
require different types of surgical procedures than term
babies?
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Null hypothesis: ~ That the proportion of babies who require each type of
surgical procedure in the group born prematurely is the
same as in the group of term babies.

Variables: Outcome variable = procedure performed (categorical,
three levels)

Explanatory variable = prematurity (categorical, two levels)

In situations such as this where the table is 3 x 2 because the outcome
has three levels, both the row and column cell percentages can be used to
provide useful summary statistics for between-group comparisons. The com-
mands shown in Box 7.3 can be used with prematurity as the explanatory
variable entered in the rows and procedure performed as the outcome vari-
able in the columns. In addition, the column percentages can be obtained by
ticking the column option in Cels.

Crosstabs

Prematurity * Procedure Performed Crosstabulation

Procedure performed

Abdominal Cardiac Other Total

Prematurity Premature Count 9 23 13 45
% within prematurity ~ 20.0% 51.1% 28.9% 100.0%
% within procedure 17.0% 41.1%  40.6% 31.9%
performed
Term Count 44 33 19 96
% within prematurity ~ 45.8% 34.4% 19.8% 100.0%
% within procedure 83.0% 58.9% 59.4% 68.1%
performed
Total Count 53 56 32 141
% within prematurity  37.6% 39.7%  22.7% 100.0%
% within procedure 100.0% 100.0% 100.0% 100.0%
performed

Chi-Square Tests

Asymp. sig.

Value df (two-sided)
Pearson chi-square 8.7182 2 0.013
Likelihood ratio 9.237 2 0.010
Linear-by-linear association 6.392 1 0.011

N of valid cases 141

20 cell (0.0%) has expected count less than 5. The minimum expected count is 10.21.
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The row percentages in the Crosstabulation show that fewer of the prema-
ture babies required abdominal procedures than the term babies (20.0% vs
45.8%) and that more of the premature babies had cardiac procedures than
the term babies (51.1% vs 34.4%). In addition, more of the premature babies
than the term babies had other procedures (28.9% vs 19.8%). The significance
of these differences from the Chi-Square Tests table is P = 0.013. However,
this P value does not indicate the specific between-group comparisons that
are significantly different from one another. In practice, the P value indicates
that there is a significant difference in percentages within the table but does
indicate which groups are significantly different from one another. In this sit-
uation where there is no ordered explanatory variable, the linear by linear
association has no interpretation.

The column percentages shown in the Crosstabulation table can be used to
interpret the 2 x 2 comparisons. These percentages show that rates of surgery
types in premature babies are abdominal vs cardiac surgery 17.0% vs 41.1%,
abdominal vs other surgery 17.0% vs 40.6% and cardiac vs other surgery
41.1% vs 40.6%. To obtain P values for these comparisons, the Data — Se-
lect Cases — If condition is satisfied option can be used to select two groups at
a time and compute three separate 2 x 2 tables. For the three comparisons
above, this provides P values of 0.011, 0.031 and 1.0 respectively. Thus, the
original P value from the 2 x 3 table was significant because the rate of pre-
maturity was significantly lower in the abdominal surgery group compared to
both the cardiac and other surgery groups. However, there was no significant
difference between the cardiac vs other surgery group. This process of making
multiple comparisons increases the chance of a type I error, that is finding
a significant difference when one does not exist. A preferable method is to
compute confidence intervals as shown in the Excel spreadsheet in Table 7.5
and then examine the degree of overlap. The computed intervals are shown
in Table 7.10.

Table 7.10 Excel spreadsheet to compute confidence intervals around proportions

Proportion N SE Width Cl lower Cl upper
Abdominal-premature 0.17 53 0.052 0.101 0.069 0.271
Cardiac-premature 0.411 56 0.066 0.129 0.282 0.540
Other-premature 0.406 32 0.087 0.170 0.236 0.576
Abdominal-term 0.83 53 0.052 0.101 0.729 0.931
Cardiac-term 0.589 56 0.066 0.129 0.460 0.718
Other-term 0.594 32 0.087 0.170 0.424 0.764

The rates and their confidence intervals can then be plotted using
SigmaPlot as shown in Box 7.5. The data sheet has the proportions and
confidence interval widths converted into percentages for the premature
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babies in columns 1 and 2 and for the term babies in columns 3 and 4 as
follows.

Column 1 Column 2 Column 3 Column 4
17.0 10.1 83.0 10.1
41.1 12.9 58.9 12.9
40.6 17.0 59.4 17.0

Box 7.5 SigmaPlot commands for plotting multiple bars

SigmaPlot Commands
SigmaPlot — [Data 1*]
Graph — Create Graph
Create Graph - Type
Highlight Horizontal Bar Chart, click Next
Create Graph - Style
Highlight Grouped Error Bars, click Next
Create Graph — Error Bars
Symbol Values = Worksheet Columns (default), click Next
Create Graph — Data Format
Highlight Many X, click Next
Create Graph — Select Data
Data for Set 1 = used drop box and select Column 1
Data for Error 1 = used drop box and select Column 2
Data for Set 2 = used drop box and select Column 3
Data for Error 2 = used drop box and select Column 4
Click Finish

Figure 7.4 shows clearly that the 95% confidence intervals of the bars for
the per cent of the abdominal surgery group who are term or premature babies
do not overlap either of the other groups and therefore the percentages are
significantly different as described by the P values. The sample percentages of
term and premature babies in the cardiac surgery and other procedure groups
are almost identical as described by the P value of 1.0.

Larger chi-square tables

In addition to 2 x 2 and 2 x 3 tables, chi-square tests can also be used to anal-
yse tables of larger dimensions as shown in the following research question.
However, the same assumptions apply and the sample size should be suf-
ficient to support the table without creating small cells with few expected
counts.



224 Chapter 7

T Premature
tzzzzz Term

Other 7zzzz777777777777777/7%

procedures % ] e
Cardiac 222222222202
e
Abdominal JPZ2227222772222722777777777 2
I ——
0 20 40 60 80 100

Per cent (%) of group

Figure 7.4 Percentage of surgical procedures in premature and term babies.

Research question

Question: Do babies who have a cardiac procedure stay in hospital
longer than babies who have other procedures?

Null hypothesis: That length of stay is not different between children who
undergo different procedures

Variables: Outcome variable = length of stay (categorised into
quintiles)
Explanatory variable = procedure performed
(categorical, three levels)

In the data set, length of stay is a right skewed continuous variable. As an
alternative to using rank-based non-parametric tests, it is often useful to divide
non-normally distributed variables such as this into categories. Box 7.6 shows
the SPSS commands that can be used to divide length of stay into quintiles,
that is five groups with approximately equal cell sizes.

Box 7.6 SPSS commands to categorise variables

SPSS Commands
surgery — SPSS Data Editor
Transform — Categorize Variables
Categorize Variables
Highlight Length of stay and click into ‘Create Categories for’ box
Enter the number 5 into the ‘Number of categories’ box
Click OK
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Once this new variable is obtained, it should be labelled in the Variable View
window, for example this variable has been labelled ‘Length of stay quintiles’.
The SPSS commands to obtain information about the sample size of each
quintile and the range of values in each quintile band are shown in Box 7.7.

Box 7.7 SPSS commands to obtain statistics for each quintile

SPSS Commands
surgery — SPSS Data Editor
Data — Split file
Split File
Click option 'Organize output by groups’
Highlight Length of stay quintiles and click into ‘Groups based on’
Click OK
surgery — SPSS Data Editor
Analyze— Descriptive Statistics — Descriptives
Descriptives
Highlight Length of stay and click into Variable(s) box
Click OK

Descriptives

Length of stay quintiles = 1

Descriptive Statistics?

N Minimum Maximum Mean Std. deviation
Length of stay 25 0 18 13.52 4.556
Valid N (listwise) 25

2Length of stay quintiles = 1.

Length of stay quintiles = 2

Descriptive Statistics®

N Minimum Maximum Mean Std. deviation
Length of stay 29 19 22 20.86 1.060
Valid N (listwise) 29

2Length of stay quintiles = 2.

Length of stay quintiles = 3

Descriptive Statistics?

N Minimum Maximum Mean Std. deviation
Length of stay 26 23 30 26.96 2.720
Valid N (listwise) 26

2Length of stay quintiles = 3.
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Length of stay quintiles = 4

Descriptive Statistics?

N Minimum Maximum Mean Std. deviation
Length of stay 26 31 44 39.31 3.813
Valid N (listwise) 26

2Length of stay quintiles = 4.

Length of stay quintiles = 5

Descriptive Statistics?

N Minimum Maximum Mean Std. deviation
Length of stay 26 45 244 90.65 52.092
Valid N (listwise) 26

2Length of stay quintiles = 5.

The output shows the number of cases, the mean, and the minimum and
maximum days of each quintile. This information is important for labelling
the quintile groups in Variable View so that the output is self-documented.
The information of quintile ranges is also important for describing the quintile
values when reporting the results. The number of cases in some quintiles are
unequal because there are some ties in the data.

The SPSS commands for obtaining crosstabulations shown in Box 7.3 can
now be used to answer the research question. Before running the crosstabu-
lation, the Data — Split File command needs to be reversed using the option
Analyze all cases, do not create groups in Split File. In the crosstabulation, the pro-
cedure performed is entered into the rows as explanatory variable and length
of stay quintiles are entered in the columns as the outcome variable. The row
percentages are selected in Cells.

It is very difficult to interpret large tables such as this 3 x 5 table. The
crosstabulation has 15 cells, each with fewer than 20 observed cases. Although
some cells have only two or three cases, the Chi-Square Tests footnote shows
that no cells have an expected number less than 5, so that the analysis and
the P value are valid. Although the P value is significant at P = 0.004, no
clear trends are apparent in the table. If the cardiac and abdominal patients
are compared, the abdominal group has fewer babies in the lowest quintile
and the cardiac group has slightly fewer babies in the highest quintile. In the
group of babies who had other procedures, most babies are either in the low-
est or in the highest quintiles of length of stay. Thus, the P value is difficult
to interpret without any further sub-group analyses and the interpretation of
the statistical significance of the results is difficult to communicate. Again, in
a table such as this with a non-ordered explanatory variable, the linear-by-
linear statistic has no interpretation and should not be used. A solution to
removing small cells would be to divide length of stay into two groups only,
perhaps above and below the median value or above and below a clinically



Procedure Performed * Length of Stay Quintiles Crosstabulation

Length of stay quintiles

0-18 days 19-22 days 23-30 days 31-44 days 45-244 days Total
Procedure Abdominal Count 2 1 15 1 9 48
performed % within procedure 4.2% 22.9% 31.3% 22.9% 18.8% 100.0%
performed
Cardiac Count 15 13 7 12 6 53
% within procedure 28.3% 24.5% 13.2% 22.6% 11.3% 100.0%
performed
Other Count 8 5 4 3 1 31
% within procedure 25.8% 16.1% 12.9% 9.7% 35.5% 100.0%
performed
Total Count 25 29 26 26 26 132
% within procedure 18.9% 22.0% 19.7% 19.7% 19.7% 100.0%
performed
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Chi-Square Tests

Value df Asymp. sig. (two-sided)
Pearson chi-square 22.4252 8 0.004
Likelihood ratio 24.341 8 0.002
Linear-by-linear association 0.676 1 0.411
N of valid cases 132

20 cells (0.0%) has expected count less than 5. The minimum expected count is 5.87.

important threshold, and to examine the per cent of babies in each procedure
group who have long or short stays.

Chi-square trend test for ordered variables

Chi-square trend tests, which in SPSS are called linear-by-linear associations,
work well when the exposure variable can be categorised into ordered groups,
such as quintiles for length of stay, and the outcome variable is binary. The
linear-by-linear statistic then indicates whether there is a trend for the out-
come to increase or decrease as the exposure increases.

Research question

Question: Is there a trend for babies who stay longer in hospital to
have a higher infection rate?

Null hypothesis: That infection rates do not change with length of stay

Variables: Outcome variable = infection (categorical, two levels)
Explanatory/exposure variable = length of stay
(categorised into quintiles, ordered)

In this research question, it makes sense to test whether there is a trend for
the per cent of babies with infection to increase significantly with an increase
in length of stay. The SPSS commands shown in Box 7.3 can be used with
length of stay quintiles in the rows, infection in the columns and the row
percentages requested.

Crosstabs

Length of Stay Quintiles* Infection Crosstabulation

Infection
No Yes Total
Length of 0-18 days Count 19 6 25
stay quintiles % within length 76.0% 24.0% 100.0%
of stay quintiles
19-22 days Count 21 8 29
% within length 72.4% 27.6% 100.0%

of stay quintiles
Continued
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Infection
No Yes Total
23-30 days Count 17 9 26
% within length 65.4% 34.6% 100.0%
of stay quintiles
31-44 days Count 12 14 26
% within length 46.2% 53.8% 100.0%
of stay quintiles
45-244 days Count 1 15 26
% within length 42.3% 57.7% 100.0%
of stay quintiles
Total Count 80 52 132
% within length 60.6% 39.4% 100.0%
of stay quintiles
Chi-Square Tests
Asymp. sig.
Value df (two-sided)
Pearson chi-square 10.3442 4 0.035
Likelihood ratio 10.433 4 0.034
Linear-by-linear association 9.551 1 0.002

N of valid cases 132

20 cell (0.0%) has expected count less than 5. The minimum expected count is 9.85.

The Crosstabulation table shows that the per cent of children with infection
increases with length of stay quintile, from 24.0% in the lowest length of stay
quintile group to 57.7% in the highest quintile group. The Pearson chi-square
indicates that there is a significant difference in percentages between some
groups in the table with P = 0.035. From this, it can be inferred that the low-
est rate of infection in the bottom quintile is significantly different from the
highest rate in the top quintile but not that any other rates are significantly
different from one other. More usefully, the linear-by-linear association indi-
cates that there is a significant trend for infection to increase with length of
stay at P = 0.002.

Presenting the results

When presenting the effects of an ordered exposure variable on several out-
comes in a scientific table, the exposure groups are best shown in the columns
and the outcomes in the rows. This is the reverse presentation to Table 7.9.
Using this layout the per cent of babies in each exposure group can be com-
pared across a line of the table. The data from the Crosstabulation above can
be presented as shown in Table 7.11. If other outcomes associated with length
of stay were also investigated, further rows could be added to the table.
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Table 7.11 Rates of infection by length of stay

Length of stay in quintiles

1 2 3 4 5 P value
Range (days) 0-18 19-22 23-30 31-44 45-244 Pvalue fortrend
Number in group 25 29 26 26 26

Percentage with infection 24.0% 27.6% 34.6% 53.8% 57.7% 0.035 0.002

To obtain a graphical indication of the magnitude of the trend across the
data, a clustered bar chart can be requested using the SPSS commands shown
in Box 7.8. If the number of cases in each group is unequal, as in this data set,
then percentages rather than numbers must be selected in the Bars Represent
option so that the height of each bar is standardised for the different numbers
in each group and can be directly compared.

Box 7.8 SPSS commands to obtain a clustered bar chart

SPSS Commands
surgery — SPSS Data Editor
Graphs — Bar
Bar Charts
Click Clustered, click Define
Define Clustered Bar: Summaries for Groups of Cases
Bars Represent: Tick % of cases box
Highlight Infection and click into Category Axis
Highlight Length of stay quintiles and click into Define Clusters by
Click Options
Options
Omit default check for Display groups defined by missing variables
Click Continue
Define Clustered Bar: Summaries for Groups of Cases
Click OK

In Figure 7.5, the group of bars on the left hand side of the graph shows the
decrease in the per cent of babies who did not have infection across length of
stay quintiles. The group of bars on the right hand side shows the complement
of the data, that is the increase across quintiles of the per cent of babies who did
have infection. A way of presenting the data to answer the research question
would be to draw a bar chart of the per cent of children with infection only
as shown on the right hand side of Figure 7.5. This chart can be drawn in
SigmaPlot using the commands shown in Box 7.4 with a vertical bar chart
rather than a horizontal bar chart selected. Using the SigmaPlot commands
Statistics — Linear Regression — All data in plot will provide a plot that is more
useful for presenting the results in that a trend line across exposures is shown
as in Figure 7.6.
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Figure 7.6 Rate of infection across length of stay quintiles.
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Number needed to treat

In interpreting the results from clinical trials, clinicians are often interested
in how many patients need to be administered a treatment to prevent one
adverse event. This statistic, which is called number needed to treat (NNT), can
be calculated from clinical studies in which the effectiveness of an intervention
is compared in two groups, for example a standard treatment group and a
new treatment group. For 2 x 2 crosstabulations, a chi-square test is used
to indicate significance between the groups or a difference in proportions is
used to indicate whether the new treatment group has a significantly lower
rate of adverse events than the standard treatment group. However, in clinical
situations, these statistics, which describe the general differences between two
groups, may not be the major results of interest. In a clinical setting, the statistic
NNT provides a number that can be directly applied to individual patients and
may therefore be more informative.

To calculate NNT, two categorical variables each with two levels are required
in order to compute a 2 x 2 crosstabulation. One variable must indicate the
presence or absence of the adverse event, for example, an outcome such as
death or disability, and the other variable must indicate group status (expo-
sure), for example whether patients are in the intervention or control group.

The file therapy.sav contains data for 200 patients, half of whom were
randomised to receive standard therapy and half of whom were randomised
to receive a new therapy. The two outcomes that have been collected are the
presence or absence of stroke and the presence or absence of disability. Each
outcome variable is a binary yes/no response. Using the commands shown
in Box 7.3, the following 2 x 2 tables for each outcome can be obtained. To
calculate NNT, the outcome is entered as the rows, the treatment group is
entered in the columns and column percentages are requested.

Crosstabs

Stroke * Treatment Group Crosstabulation

Treatment group

New Standard
therapy treatment Total

Stroke No complications Count 85 79 164
% within treatment 85.0% 79.0% 82.0%
group
Stroke Count 15 21 36
% within treatment 15.0% 21.0% 18.0%
group
Total Count 100 100 200
% within treatment 100.0% 100.0% 100.0%

group
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Chi-Square Tests

Asymp. sig. Exact sig. Exact sig.
Value df (two-sided) (two-sided) (one-sided)
Pearson chi-square 1.220° 1 0.269
Continuity correction? 0.847 1 0.357
Likelihood ratio 1.224 1 0.269
Fishers exact test 0.358 0.179
Linear-by-linear association 1.213 1 0.271

N of valid cases 200

a2Computed only for a 2 x 2 table.
b0 cell (0.0%) has expected count less than 5. The minimum expected count is 18.00.

The first Crosstabulation shows that the rate of stroke is 15% in the new
treatment group compared to 21.0% in the standard treatment group. The
Chi-Square Tests table shows the continuity corrected chi-square value with
P = 0.357 which indicates that this difference in rates is not statistically sig-
nificant. However, statistical significance, which depends largely on sample
size, may not be of primary interest in a clinical setting.

From the table, NNT is calculated from the absolute risk reduction (ARR),
which is simply the difference in the per cent of patients with the outcome of
interest between the groups. From the Crosstabulation for stroke:

ARR =21.0% — 15.0% = 6.0%

ARR is then converted to a proportion, which in decimal format is 0.06, and
the reciprocal is taken to obtain NNT:

NNT = 1/ARR =1/0.06 = 16.67

Obviously, NNT is always rounded to the nearest whole number. This indicates
that 17 people will need to receive the new treatment to prevent one extra
person from having a stroke.

Crosstabs

Disability * Treatment Group Crosstabulation

Treatment group

New Standard
therapy  treatment  Total

Disability =~ No disability =~ Count 82 68 150
% within treatment group 82.0% 68.0% 75.0%

Disability Count 18 32 50
% within treatment group 18.0% 32.0% 25.0%

Total Count 100 100 200

% within treatment group 100.0% 100.0% 100.0%
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Chi-Square Tests

Asymp. sig. Exact sig. Exact sig.
Value df  (two-sided) (two-sided) (one-sided)
Pearson chi-square 5.227° 1 0.022
Continuity correction? 4.507 1 0.034
Likelihood ratio 5.281 1 0.022
Fishers exact test 0.033 0.017
Linear-by-linear association 5.201 1 0.023

N of valid cases 200

a2Computed only for a 2 x 2 table.
b0 cell (0.0%) has expected count less than 5. The minimum expected count is 25.00.

The second Crosstabulation shows that the rate of disability is 18 % in the
new treatment group compared to 32.0% in the standard treatment group.
The continuity corrected chi-square value with P = 0.034 shows that this new
treatment achieves a significant reduction in rate of disability. The calculation
of NNT is as follows:

ARR = 32.0% — 18.0% = 14.0%

NNT = 1/ARR = 1/0.14 = 7.14

This indicates that seven people will need to receive the new treatment to
prevent one extra person having a major disability. The larger the difference
between groups as shown by a larger ARR, the fewer the number of patients
who need to receive the treatment to prevent occurrence of one additional

adverse event. Methods for calculating confidence intervals for NNT, which
must be a positive number, are reported in the literature?.

If nothing goes wrong, is everything OK?

Occasionally in clinical trials there may be no events in one group. If the
Crosstabs procedure is repeated again, with the variable indicating survival
entered as the outcome in the rows, the following table is produced.

Crosstabs

Death * Treatment Group Crosstabulation

Treatment group

New Standard
therapy treatment Total
Death Survived Count 100 92 192
% within treatment group 100.0% 92.0% 96.0%
Died Count 0 8 8
% within treatment group 0.0% 8.0% 4.0%
Total Count 100 100 200

% within treatment group 100.0% 100.0% 100.0%
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Chi-Square Tests

Asymp. sig. Exact sig. Exact sig.
Value df (two-sided) (two-sided) (one-sided)
Pearson chi-square 8.333> 1 0.004
Continuity correction? 6.380 1 0.012
Likelihood ratio 11.424 1 0.001
Fishers exact test 0.007 0.003
Linear-by-linear association 8.292 1 0.004

N of valid cases 200

a2Computed only for a 2 x 2 table.
b2 cells (50.0%) have expected count less than 5. The minimum expected count is 4.00.

When no adverse events occur in a group, as for deaths in the new treatment
group this does not mean that no deaths will ever occur in patients who
receive the new treatment. One way to estimate the proportion of patients
in this group who might die is to calculate the upper end of the confidence
interval around the zero percentage. To compute a confidence interval around
a percentage that is less than 1% requires exact methods based on a binomial
distribution. However, a rough estimate of the upper 95% confidence interval
around a zero percentage is 3/n where 7 is the number of participants in the
group. From the Crosstabulation, the upper 95% confidence interval around
no deaths in the new therapy group would then be 3/100, or 3%. This is an
approximate calculation only and may yield a conservative estimate. For more
accurate estimates, Web programs are available (see Useful Web sites).

Paired categorical variables

Paired categorical measurements taken from the same participants on two
occasions or matched categorical data collected in matched case — control
studies must be analysed using tests for repeated data.

The measurements collected in these types of study designs are not inde-
pendent and therefore chi-square tests cannot be used because the assump-
tions would be violated. In this situation, McNemar’s test is used to assess
whether there is a significant change in proportions over time for paired data or
whether there is a significant difference in proportions between matched cases
and controls. In this type of analysis, the outcome of interest is the within-
person changes or the within-pair differences and there are no explanatory
variables.

Research question

The file health-camp.sav contains the data from 86 children who attended
a camp to learn how to self-manage their illness. The children were asked
whether they knew how to manage their illness appropriately and whether
they knew when to use their rescue medication appropriately at both the start
and completion of the camp.
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Question: Did attendance at the camp increase the number of
children who knew how to manage their illness
appropriately?

Null hypothesis: That there was no change in children’s knowledge of

illness management between the beginning and
completion of the health camp.

Variables: Appropriate knowledge (categorical, binary) at the
beginning and completion of the camp.

In this research question the explanatory variable is time which is built
into the analysis method and knowledge at both Time 1 and Time 2 are the
outcome variables.

The assumptions for using paired categorical tests are shown in Box 7.9.

Box 7.9 Assumptions for a paired McNemar’s test

For a paired McNemar’s test the following assumptions must be met:

o the outcome variable has a categorical scale

o cach participant is represented in the table once only

o the difference between the paired proportions is the outcome of interest

The relation between the measurements is summarised using a paired 2 x 2
contingency table and McNemar’s test can be obtained using the commands
shown in Box 7.10.

Box 7.10 SPSS commands to obtain McNemar’s test

SPSS Commands
health-camp — SPSS Data Editor
Analyze — Descriptive Statistics — Crosstabs
Crosstabs
Highlight Knowledge-Timel and click into Row(s)
Highlight Knowledge-Time2 and click into Column(s)
Click on Statistics
Crosstabs: Statistics
Tick McNemar, click Continue
Crosstabs
Click on Cells
Crosstabs: Cell Display
Tick Observed under Counts (default), tick Total under Percentages
Click Continue
Crosstabs
Click OK
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Crosstabs

Knowledge—Time1* Knowledge—Time2 Crosstabulation

Knowledge—Time2

No Yes Total
Knowledge—Time1 No Count 27 29 56
% of total 31.4% 33.7% 65.1%
Yes Count 6 24 30
% of total 7.0% 27.9% 34.9%
Total Count 33 53 86
% of total 38.4% 61.6% 100.0%

Chi-Square Tests

Value Exact sig. (two-sided)

McNemar test 0.000°
N of valid cases 86

2Binomial distribution used.

In the Crosstabulation, the total column and total row cells indicate that
34.9% of children had appropriate knowledge at the beginning of the camp
(Yes at Time 1) and 61.6% at the end of the camp (Yes at Time 2). More im-
portantly, the internal cells of the table show that 31.4% of children did not
have appropriate knowledge on both occasions and 27.9% did have appro-
priate knowledge on both occasions. The percentages also show that 33.7%
of children improved their knowledge (i.e. went from No at Time 1 to Yes at
Time 2) and only 7.0% of children reduced their knowledge (i.e. went from
Yes at Time 1 to No at Time 2). The Chi-Square Tests table shows a McNemar P
value of <0.0001 indicating a significant increase in the proportion of children
who improved their illness management knowledge.

When reporting paired information, summary statistics that reflect how
many children improved their knowledge compared to how many children
reduced their knowledge are used. This difference in proportions with its 95 %
confidence interval can be calculated using Excel.

In computing these statistics from the Crosstabulation table, the concordant
cells are not used and only the information from the discordant cells is of in-
terest as shown in Table 7.12. In Table 7.12, the two concordant cells (a and 4)
show the number of children who did or did not have appropriate knowledge
at both the beginning and end of the camp. The two discordant cells (» and c)
show the number of children who changed their knowledge status in either
direction between the two occasions.

The counts in the discordant cells are used in calculating the change as a
proportion and the SE of difference from the cell counts as follows:
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Table 7.12 Presentation of data showing discordant cells

No at end of camp Yes at end of camp | Total
No at beginning of camp 27 29 56
a b
c d
Yes at beginning of camp 6 24 30
Total 33 53 n 86

Difference in proportions = (b —c¢)/n

SE of difference = 1/n x /(b +¢ — ((b — ¢)*/n))

For large sample sizes, the 95% confidence interval around the difference in
proportions is calculated as 1.96 x SE. These statistics can be computed using
the discordant cell counts in an Excel spreadsheet as shown in Table 7.13 and
the proportions for appropriate knowledge at the beginning of the camp (Yes at
Timel) and end of the camp (Yes at Time 2). The table shows that the increase
in knowledge converted back to a percentage is 26.7% (95% CI 14.5, 39.0).
The 95% confidence interval does not cross the zero line of no difference which
reflects the finding that the change in proportions is statistically significant.

Table 7.13 Excel spreadsheet to compute differences for paired data

p2 Yes- p1Yes- Total Difference SE 95% Cl  Cllower Cl upper
Time2 Time1l N width

Knowledge 0.616 0.349 86 0.267 0.062 0.122 0.145 0.390

A second outcome that was measured in the study was whether children
knew when to use their rescue medication appropriately. The commands
shown in Box 7.10 can be used to obtain a McNemar’s test for this outcome
by entering medication-time 1 into the rows and medication-time 2 into
the columns of the crosstabulation. Again, only the total percentages are
requested.

Crosstabs

Medication—Time1* Medication—Time2 Crosstabulation

Medication—Time2

No Yes Total
Medication—Time1 NO Count 17 13 30
% of total 19.8% 15.1% 34.9%
Yes Count 11 45 56
% of total 12.8% 52.3% 65.1%
Total Count 28 58 86

% of total 32.6% 67.4% 100.0%
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Chi-Square Tests

Value Exact sig. (two-sided)

McNemar test 0.839°
N of valid cases 86

2Binomial distribution used.

The percentages in the discordant cells indicate a small increase in knowl-
edge of 15.1% to 12.8%, or 2.3%. The Chi-Square Tests table shows that this
difference is not significant with a P value of 0.839. The Excel spreadsheet
shown in Table 7.13 can be used to obtain the paired difference and its 95%
confidence interval as proportions as shown in Table 7.14. The increase in
knowledge is 2.3% (95% CI -8.8%, 13.5%). The 95% confidence interval
crosses the zero line of no difference reflecting the finding that the change in
proportions is not statistically significant.

Table 7.14 Excel spreadsheet to compute differences for paired data

p2 Yes- p1Yes- Total Difference SE 95% CI  Cllower Clupper
Time2 Time1 N width

Medication 0.674 0.651 86 0.023 0.057 0.112 —0.088 0.135

Presenting the results

The analyses show that the number of children who knew how to manage
their illness appropriately increased significantly and that the number of chil-
dren who knew when to use their rescue medication increased slightly but
not significantly on completion of the camp. These results could be presented
as shown in Table 7.15. By reporting the per cent of children with knowledge
on both occasions, the per cent increase and the P value, all information that
is relevant to interpreting the findings is included.

Table 7.15 Changes in knowledge of management and medication use in 86 children
following camp attendance

Knowledge Knowledge % increase

at entry on leaving and 95% CI P value
Management 34.9% 61.6% 26.7% (14.5, 39.0) <0.0001
Medication use 65.1% 67.4% 2.3% (—8.8, 13.5) 0.84

Notes for critical appraisal

There are many ways in which crosstabulations can be used and chi-square
values can be computed. These values often depend on the sample size and
can be biased by cells with only a small number of expected counts. When
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critically appraising an article that presents categorical data analysed using
univariate statistics or crosstabulations, it is important to ask the questions
shown in Box 7.11.

Box 7.11 Questions for critical appraisal

The following questions should be asked when appraising published

results from analyses in which crosstabulations are used:

e Has any participant been included in an analysis more than once?

e Have the correct terms to describe rates or proportions been used?

o Is the correct chi-square value presented?

e Could any small cells have biased the P value?

o Are percentages reported so that the size of the difference is clear?

e Have 95% confidence intervals for percentages been reported?

o If two groups are being compared, is the difference between them
shown?

o If the exposure variable is ordered, is a trend statistic reported?

e Is it clear how any ‘missing data” have influenced the results?

o Are the most important findings reported as a figure?

o If the results of a trial to test an intervention are being reported, is NNT
presented?

o If the data are paired, has a paired statistical test been used?
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CHAPTER 8

Categorical variables:
risk statistics

Clinicians have a good intuitive understanding of risk and even of a ratio of risks.
Gamblers have a good intuitive understanding of odds. No one (with the possible
exception of certain statisticians) intuitively understands a ratio of odds.!

Objectives

The objectives of this chapter are to explain how to:

» decide whether odds ratio or relative risk is the appropriate statistic to use
« use logistic regression to compute adjusted odds ratios

 report and plot unadjusted and adjusted odds ratios

e change risk estimates to protection and vice versa

» calculate 95% confidence intervals around estimates of risk

« critically appraise the literature in which estimates of risk are reported

Chi-square tests indicate whether two binary variables such as an exposure
and an outcome measurement are independent or are significantly related to
each other. However, apart from the P value, chi-square tests do not provide
a statistic for describing the strength of the relationship. Two statistics that are
useful for measuring the magnitude of the association between two binary
variables measured in a 2 x 2 table are the odds ratio or a relative risk. Both
of these statistics are estimates of risk and, as such, describe the probability
that people who are exposed to a certain factor will have a disease compared
to people who are not exposed to the same factor.

The choice of using an odds ratio or relative risk depends on both the study
design and whether bivariate or multivariate analyses are required. Relative
risk is an appropriate risk statistic to use when the sample has been selected
randomly, such as in a cohort or cross-sectional study, and when only bivariate
analyses are required. Odds ratios have the advantage that they can be used
in any study design, including case—control studies in which the proportion
of cases is unlikely to be representative of the proportion in the population,
and they can be adjusted for the effects of other confounders in multivariate
analyses.

Both odds ratio and relative risk are widely used in epidemiological and
clinical research to describe the risk of people having a disease (or an outcome)
in the presence of an exposure, which may be an environmental factor, a
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treatment or any other type of explanatory factor. In case—control studies,
odds ratio is used to measure the odds that a case has been exposed compared
to the odds that a control has had the same exposure.

The way in which tables to calculate risk statistics are classically set up in
the clinical epidemiology textbooks is shown in Table 8.1.

Table 8.1 Table to measure the relation between a disease and an exposure

Disease present Disease absent Total
Exposure present a b a+b
Exposure absent c d c+d
Total a+c b+d N

The odds ratio and relative risk compare the likelihood of an event occurring
between two groups. The odds is a ratio of the probability of an event occurring
to the probability of an event not occurring?. The odds ratio is calculated
by comparing the odds of an event in one group (e.g. exposure present) to
the odds of the same event in another group (e.g. exposure absent). From
Table 8.1, the odds of the disease in the exposed group compared to the odds
of the disease in the non-exposed group can be calculated as follows:

0Odds ratio (OR) = (a/b)/(c/d) = (a x d)/(b x ¢)

This calculation shows why an odds ratio is sometimes called a ratio of cross-
products. On the other hand, relative risk compares the conditional probability
of the event occurring in the exposed and non-exposed groups and is calcu-
lated as follows:

Relative risk (RR) =

Coding

A problem arises in calculating odds ratio and relative risk using some statistical
packages because the format of the table that is required to compute the correct
statistics is different from the format used in clinical epidemiology textbooks.
To use SPSS to compute these risk statistics, the variables need to be coded as
shown in Table 8.2.

Table 8.2 Possible coding of variables to compute risk

Code Alternate code Condition Interpretation

1 0 Disease absent Outcome negative
2 1 Disease present Outcome positive

1 0 Exposure absent Risk factor negative
2 1 Exposure present Risk factor positive
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This will invert the table shown in Table 8.1 but as shown later in this
chapter, this will allow the odds ratio to be read directly from the SPSS output
generated in both the Frequencies — Crosstabs and the Regression — Binary Logistic
menus.

If the reverse notation is used as in Table 8.1, the odds ratio and relative risk
statistics printed by SPSS have to be inverted to obtain the correct direction
of effect. The options are to either
o code the data as shown in Table 8.2 and in Table 7.3 in Chapter 7, which

inverts the location of cells in Table 8.1 but not the statistics or
e code the data as shown in Table 8.1 which inverts the statistics but not the

table.
In this chapter, the first option is used so that the layout of the tables is as
shown in Table 7.3 in Chapter 7.

Odds ratio vs relative risk

Both odds ratio and relative risk are invaluable statistics for describing the mag-
nitude of the relationship between the exposure and the outcome variables
because they provide a size of effect that adds to the information provided by
the chi-square value. A chi-square test indicates whether the difference in the
proportion of participants with and without disease in the exposure present
group and the exposure absent group is statistically significant, but an odds
ratio quantifies the relative size of the difference between the groups.

The advantage of calculating the relative risk is that it has an intuitive in-
terpretation. A relative risk of 2.0 indicates that the prevalence of disease in
the exposed cases is twice as high as the prevalence in the non-exposed cases.
Although a relative risk should not be calculated for some study designs, for
example case—control designs, it is a useful statistic to describe risk in studies
in which the participants are selected as a random sample of the population.

Odds ratio is a less valuable statistic because it represents the odds of disease,
which is not as intuitive as the relative risk. Although the odds ratio is not the
easiest of statistics to explain or understand, it is widely used for describing
an association between an exposure and a disease because it can be calculated
from studies of any design, including cross-sectional, cohort studies, case—
control studies and experimental trials as shown in Table 8.3.

Table 8.3 Study type and statistics available

Type of study Odds ratio Relative risk
Cross-sectional Yes Yes

Cohort Yes Sometimes
Case—control Yes No

Clinical trial Yes Sometimes
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Odds ratio has the advantage that it can be used to make direct comparisons
of results from studies of different designs and, for this reason, odds ratios are
often used in meta-analyses. The odds ratio and the relative risk are always in
the same direction of risk or protection. However, the odds ratio does not give a
good approximation of the relative risk when the exposure and/or the disease
is relatively common?. The odds ratio is always larger than relative risk and
therefore generally overestimates the true association between variables. For
this reason, odds ratios are sometimes referred to as a poor man’s relative risk.

The assumptions for using odds ratio and relative risk are exactly the same
as the assumptions for using chi-square tests shown in Box 7.2 in Chapter 7.

Odds ratio

The odds ratio is the odds of a person having a disease if exposed to the risk
factor divided by the odds of a person having a disease if not exposed to the risk
factor. Conversely, an odds ratio can be interpreted as the odds of a person
having been exposed to a factor when having the disease compared to the
odds of a person not having been exposed to a factor when not having the
disease. This converse interpretation is useful for case—control studies in which
participants are selected on the basis of their disease status and their exposures
are measured. In this type of study, the odds ratio is interpreted as the odds
that a case has been exposed to the risk factor of interest compared to the odds
that a control has been exposed.

Table 8.4 2 x 2 crosstabulation of disease and exposure

Disease absent Disease present Total
Exposure absent 75 60 135
d
b
Exposure present 25 40 65
Total 100 100 200

The calculation of the odds ratio from the data shown in Table 8.4 is as
follows:

0Odds ratio = (a/b)/(c/d)
(40/25)/(60/75)
(8/5)/(4/5)

2.0

Obviously, if an odds ratio is 1.0 then the odds that people with and without
the disease have been exposed is equal and the exposure presents no difference
in risk. An odds ratio of 2.0 can be interpreted as the odds that an exposed
person has the disease present is twice that of the odds that a non-exposed
person has the disease present. An odds ratio calculated in this way from a
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2 x 2 table is called an unadjusted odds ratio because it is not adjusted for the
effects of possible confounders. Odds ratios calculated using logistic regression
are called adjusted odds ratios because they are adjusted for the effects of the
other variables in the model.

Another way that an odds ratio of 2 can be interpreted is that if a person
who is exposed to a risk factor and a person who is not exposed to the same
risk factor are compared, a gambler would break even by betting 2:1 that
the person who had been exposed would have the disease!. Naturally, these
interpretations are not intuitive for most researchers and clinicians.

The size of odds ratio that is important is often debated and in considering
this the clinical importance of the outcome and the number of people exposed
need to be taken into account. An odds ratio above 2.0 is usually important.
However, a smaller odds ratio between 1.0 and 2.0 can have public health
importance if a large number of people are exposed to the factor of interest.
For example, approximately 25% of the 5 million children aged between 1
and 14 years living in Australasia have a mother who smokes. The odds ratio
for children to wheeze if exposed to environmental tobacco smoke is 1.3,
which is close to 1.0. Based on this odds ratio and the high exposure rate,
a conservative estimate is that 320 000 children wheeze as a result of being
exposed, which amounts to an important public health problem?*. If only 5%
of children were exposed or if the outcome was more trivial, the public health
impact would be less important.

Research question

The spreadsheet asthma.sav contains data from a random cross-sectional
sample of 2464 children aged 8 to 10 years in which the exposure of allergy
to housedust mites (HDM), the exposure to respiratory infection in early life,
the characteristic gender and the presence of the disease, that is, asthma, were
measured in all children.

Question: Are HDM allergy, early infection or gender independent
risk factors for asthma in this sample of children?

Null hypothesis: That HDM allergy, respiratory infection in early life and
gender are not independent risk factors for asthma.

Variables: Outcome variable = Diagnosed asthma (categorical, two
levels)
Explanatory variables (risk factors) = allergy to HDM
(categorical, two levels), early infection (categorical, two
levels) and gender (categorical, two levels).

The SPSS commands shown in Box 8.1 can be used to obtain the crosstab-
ulations for the three risk factors and their risk statistics. In calculating risk,
the risk factors are entered in the rows, the outcome in the columns and the
row percentages are requested. Each explanatory variable is crosstabulated
separately with the outcome variable so three different crosstabulation tables
are produced.
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SPSS Commands

Crosstabs
Row(s)

Click Statistics
Crosstabs: Statistics

Crosstabs
Click Cells
Crosstabs: Cell Display

Continue
Crosstabs
Click OK

Box 8.1 SPSS commands to obtain risk statistics

asthma — SPSS Data Editor
Analyze — Descriptive Statistics — Crosstabs

Highlight Diagnosed asthma and click into Column(s)

Tick Chi-square, tick Risk, Click Continue

Highlight Allergy to HDM, Early infection, and Gender and click into

Tick Observed under Counts (default), tick Row under Percentages, click

Allergy to HDM * Diagnosed asthma

Crosstab

Diagnosed asthma

No Yes Total
Allergy to HDM No Count 1414 125 1539
% within allergy to HDM 91.9% 8.1% 100.0%
Yes Count 529 396 925
% within allergy to HDM 57.2% 42.8% 100.0%
Total Count 1943 521 2464
% within allergy to HDM 78.9% 21.1% 100.0%
Chi-Square Tests
Asymp. sig.  Exact sig. Exact sig.
Value df (two-sided) (two-sided) (one-sided)
Pearson chi-square 416.951° 1 0.000
Continuity correction? 414.874 1 0.000
Likelihood ratio 411.844 1 0.000
Fisher's exact test 0.000 0.000

Linear-by-linear association
N of valid cases

416.782 1 0.000
2464

2Computed only for a 2 x 2 table.
b0 cell (0.0%) has expected count less than 5. The minimum expected count is 195.59.
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Risk Estimate

95% confidence interval

Value Lower Upper
Odds ratio for allergy to HDM (no/yes) 8.468 6.765 10.600
For cohort diagnosed asthma = no 1.607 1.516 1.702
For cohort diagnosed asthma = yes 0.190 0.158 0.228
N of valid cases 2464

The Crosstab table for HDM allergy shows that in the group of children who
did not have HDM allergy 8.1% had been diagnosed with asthma and in the
group of children who did have HDM allergy 42.8% had been diagnosed with
asthma. The Pearson’s chi-square value in the Chi-Square Tests table is used to
assess significance because the sample size is in excess of 1000. The P value is
highly significant at P < 0.0001 indicating that the frequency of HDM allergy
is significantly different between the two groups. The odds ratio could be
calculated from the crosstabulation as (396/529)/(125/1414), which is 8.468.
This is shown in the Risk Estimate table, which also gives the 95% confidence
interval. The odds ratio for the association between a diagnosis of asthma
and HDM allergy is large at 8.468 (95% CI 6.765 to 10.60) reflecting the
large difference in percentages of outcome given exposure and thus a strong
relation between the two variables in this sample of children. The 95% con-
fidence interval does not contain the value of 1.0, which represents no differ-
ence in risk, and therefore is consistent with an odds ratio that is statistically
significant.

The cohort statistics below the odds ratio can also be used to generate relative
risk, which is explained later in this chapter.

Early infection * Diagnosed asthma

Crosstab
Diagnosed asthma

No Yes Total

Early infection No Count 1622 399 2021
% within early infection 80.3% 19.7% 100.0%

Yes Count 321 122 443
% within early infection 72.5% 27.5% 100.0%

Total Count 1943 521 2464

% within early infection 78.9% 21.1% 100.0%
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Chi-Square Tests

Asymp. sig.  Exact sig. Exact sig.
Value df (two-sided) (two-sided) (one-sided)
Pearson chi-square 13.247° 1 0.000
Continuity correction?® 12.784 1 0.000
Likelihood ratio 12.599 1 0.000
Fisher's exact test 0.000 0.000
Linear-by-linear association 13.242 1 0.000

N of valid cases 2464

a2Computed only for a 2 x 2 table.
b0 cell (0.0%) has expected count less than 5. The minimum expected count is 93.67.

Risk Estimate

95% confidence interval

Value Lower Upper
Odds ratio for early infection (no/yes) 1.545 1.221 1.955
For cohort diagnosed asthma = no 1.108 1.042 1.178
For cohort diagnosed asthma = yes 0.717 0.602 0.854
N of valid cases 2464

The second Crosstab table shows that 19.7% of children in the group who
did not have an early respiratory infection had a diagnosis of asthma compared
with 27.5% of the group who did have an early respiratory infection. Although
the difference in percentages in this table (27.5% vs 19.7%) is not as large
as for HDM allergy, the Pearson’s chi-square value in the Chi-Square Tests
table shows that this difference is similarly highly significant at P < 0.0001.
However, the Risk Estimate table shows that the odds ratio for the association
between a diagnosis of asthma and an early respiratory infection is much lower
than for HDM allergy at 1.545 (95% CI 1.221 to 1.955). Again, the statistical
significance of the odds ratio is reflected in the 95% confidence interval, which
does not contain the value of 1.0, which represents no difference in risk.

Gender * Diagnosed asthma

Crosstab
Diagnosed asthma

No Yes Total

Gender Female Count 965 223 1188
% within gender 81.2% 18.8% 100.0%

Male Count 978 298 1276
% within gender 76.6% 23.4% 100.0%

Total Count 1943 521 2464

% within gender 78.9% 21.1% 100.0%
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Chi-Square Tests

Asymp. sig.  Exact sig. Exact sig.
Value df (two-sided) (two-sided) (one-sided)
Pearson chi-square 7.751° 1 0.005
Continuity correction?® 7.478 1 0.006
Likelihood ratio 7.778 1 0.005
Fisher's exact test 0.006 0.003
Linear-by-linear association 7.747 1 0.005

N of valid cases 2464

2Computed only for a 2 x 2 table.
b0 cell (0.0%) has expected count less than 5. The minimum expected count is 251.20.

Risk Estimate

95% confidence interval

Value Lower Upper
Odds ratio for gender (female/male) 1.319 1.085 1.602
For cohort diagnosed asthma = no 1.060 1.017 1.104
For cohort diagnosed asthma = yes 0.804 0.689 0.938
N of valid cases 2464

For gender, the Crosstab table shows that 18.8% of females had a diagnosis
of asthma compared with 23.4% of males. At P = 0.005, the Pearson’s chi-
square value in the Chi-Square Tests table is less significant than for the other
two variables and the odds ratio of 1.319 (95% CI 1.085 to 1.602) in the Risk
Estimate table is also smaller, reflecting the smaller difference in proportions
in diagnosed asthma between the two gender groups.

Reporting the results

The results from these tables can be presented as shown in Table 8.5. When
reporting an odds ratio or relative risk, the per cent of cases with the outcome
in the two comparison groups of interest are included. It is often useful to
rank variables in order of the magnitude of risk.

Table 8.5 Unadjusted associations between risk factors and diagnosed asthma in a
random sample of 2464 children aged 8 to 10 years

%diagnosed % diagnosed

asthma in asthma in
Risk factor exposed non-exposed  Unadjusted odds
(exposure) group group ratio and 95% CI  Chi-square P value
Allergy to HDM  42.8% 8.1% 8.5 (6.8, 10.6) 417.0 <0.0001
Early infection 27.5% 19.7% 1.5 (1.2, 2.0) 13.2 <0.0001

Gender 23.4% 18.8% 1.3(1.1, 1.6) 7.8 0.005
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Odds ratios larger than 1.0 are reported with only one decimal place because
the precision of 1/100™ or 1/1000™ of an estimate of risk is not required.
The decision of whether to include a column with the chi-square values is
optional since the only interpretation of the chi-square value is the P value.
From the table, it is easy to see how the odds ratio describes the strength of
the associations between variables in a way that is not discriminated by the
P values.

Protective odds ratios

An odds ratio greater than 1.0 indicates that the risk of disease in the exposed
group is greater than the risk in the non-exposed group. If the odds ratio is
less than 1.0, then the risk of disease in the exposed group is less than the risk
in the non-exposed group.

Whether odds ratios represent risk or protection largely depends on the
way in which the data are coded. For example, having HDM allergy is a
strong risk factor for diagnosed asthma in the study sample but if the cod-
ing had been reversed with not having HDM allergy coded as 2, then not
having HDM allergy would be a strong protective factor. For ease of interpre-
tation, comparison and communication, it is usually better to present all odds
ratios in the direction of risk rather than presenting some as risk and some as
protection.

To illustrate this, the commands shown in Box 1.10 can be used to reverse
the coding of HDM allergy from 2 = exposure to 1 = exposure and from 1 =
no exposure to 2 = no exposure. In this example, the new variable is called
hdm2 and its values have been added in Variable View before conducting
any analyses. The SPSS commands shown in Box 8.1 can then be used with
allergy to HDM re-coded as the row variable, diagnosed asthma as the column
variable and the row percentages requested.

Allergy to HDM - Re-coded * Diagnosed Asthma Crosstabulation

Diagnosed asthma

No Yes Total
Allergy to HDM —  Allergy Count 529 396 925
re-coded % within allergy 57.2% 42.8% 100.0%
to HDM - re-coded
No Allergy ~ Count 1414 125 1539
% within allergy 91.9% 8.1% 100.0%
to HDM - re-coded
Total Count 1943 521 2464
% within allergy 78.9% 21.1% 100.0%

to HDM - re-coded
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Chi-Square Tests

Asymp. sig.  Exact sig. Exact sig.
Value df (two-sided) (two-sided) (one-sided)
Pearson chi-square 416.951° 1 0.000
Continuity correction? 414.874 1 0.000
Likelihood ratio 411.844 1 0.000
Fisher's exact test 0.000 0.000
Linear-by-linear association 416.782 1 0.000

N of valid cases 2464

2Computed only for a 2 x 2 table.
b0 cell (0.0%) has expected count less than 5. The minimum expected count is 195.59.

Risk Estimate

95% confidence interval

Value Lower Upper
Odds ratio for allergy to HDM — recoded 0.118 0.094 0.148
(allergy/no allergy)
For cohort diagnosed asthma = no 0.622 0.588 0.659
For cohort diagnosed asthma = yes 5.271 4.386 6.334
N of valid cases 2464

The per cent of children with diagnosed asthma in the exposed and un-
exposed groups and the P value are obviously exactly the same as before.
The only difference in the Crosstabulation table is that the rows have been
interchanged. The odds ratio is now a protective factor of 0.118 (95% 0.094
to 0.148) rather than a risk factor of 8.468 (95% CI 6.765 to 10.60) as it was
in the first analysis.

Summary statistics of odds ratio can easily be changed from protection to
risk or vice versa by calculating the reciprocal value, that is

odds ratio (risk) = 1/odds ratio (protection)
1/0.118
= 8.474

When recalculated, the upper confidence interval becomes the lower confi-
dence interval and vice versa.

Figure 8.1 shows an odds ratio expressed as a risk factor or as a protective
factor. The x-axis is a logarithmic scale because odds ratios are derived from
logarithmic values. In Figure 8.1, the dotted line passing through 1 indicates
the line of no effect, that is, no difference in risk. When a factor is coded as
risk or protection, the effect size is the same because on a logarithmic scale
the odds ratios are symmetrical on either side of the line of unity.
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Figure 8.1 Effect of an exposure on a disease shown as both a protective factor and as
a risk factor.

Adjusting for inter-relationships between risk factors

A problem with odds ratios calculated from 2 x 2 crosstabulations is that some
explanatory factors may be related to one another. If cases with one factor
present also tend to have another factor present, the effects of both factors in
increasing the odds of disease will be included in each odds ratio. Thus, each
odds ratio will be artificially inflated with the effect of the associated exposure,
that is confounding will be present. Logistic regression is used to calculate
the effects of risk factors as independent odds ratios with the effects of other
confounders removed. These odds ratios are called adjusted odds ratios.

Figure 8.2 shows the percentage of cases with disease in each of three expo-
sure groups. In group 1, participants had no exposure, in group 2 participants
had exposure to factor T and in group 3 participants had exposure to factor
I and factor II. If an unadjusted odds ratio were used to calculate the risk of
disease in the presence of exposure to factor I, then in a bivariate analysis,
groups 2 and 3 would be combined and compared with group 1. The effect of
including cases also exposed to factor II would inflate the estimate of risk
because their rate of disease is higher than for cases exposed to factor 1.
Logistic regression is used to mathematically separate out the independent
risk associated with exposure to factor I or to factor II.

Binary logistic regression

Binary logistic regression is not really a regression analysis in the classic
sense of the term but is a mathematical method to measure the effects of
binary risk factors on a binary outcome variable whilst adjusting for inter-
relationships between them. In binary logistic regression, the variables that
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Figure 8.2 Rate of disease in group not exposed and in groups exposed to factor I or
to both factors I and II.

affect the probability of the outcome are measured as odds ratios which are
called adjusted odds ratios.

Logistic regression is primarily used to determine which binary explanatory
variables independently predict the outcome, when the outcome is a binary
variable®. The outcome variable normally reflects the presence or absence of
a condition or a disease, for example, the presence or absence of asthma, or
the occurrence or absence of a heart attack.

The assumptions for using logistic regression are shown in Box 8.2. In ad-
dition, the assumptions for the chi-square test as shown in Box 7.2 must also
be met.

Box 8.2 Assumptions for using logistic regression

The assumptions that must be met when using logistic regression are as

follows:

» the sample is representative of the population to which inference will
be made

o the sample size is sufficient to support the model

 the data have been collected in a period when the relationship between
the outcome and the explanatory variable/s remains constant

e all important explanatory variables are included

« the explanatory variables do not have a high degree of collinearity with
one another
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o if an ordered categorical variable or a continuous variable is included
as an explanatory variable, the effect over levels of the factor must be
linear

e alternate outcome and intervening variables are not included as ex-
planatory variables

Although the explanatory variables or predictors in the model can be con-
tinuous or categorical variables, logistic regression is best suited to measure the
effects of exposures or explanatory variables that are binary variables. Contin-
uous variables can be included but logistic regression will produce an estimate
of risk for each unit of measurement. Thus, the assumption that the risk effect
is linear over each unit of the variable must be met and the relationship should
not be curved or have a threshold value over which the effect occurs. In ad-
dition, interactions between explanatory variables can be included but these
cause the same problems of collinearity as discussed for multiple regression
in Chapter 6. Logistic regression is not suitable for matched or paired data or
for repeated measures because the measurements are not independent — in
these situations, conditional logistic regression is used. In addition, variables
that are alternative outcome variables because they are on the same pathway
of development as the outcome variable must not be included as independent
risk factors.

A large sample size is usually required to support a reliable binary logistic
regression model because a cell is generated for each unit of the variable. The
data are divided into a multi-dimension array of cells in exactly the same way
as for fuctorial ANOVA shown in Table 5.6 in Chapter 5 but the outcome
variable is also included in the array. If three variables each with two levels
are included in the analysis, for example an outcome and two explanatory
variables, the number of cells in the model will be 2 x 2 x 2, or eight cells. As
with chi-square analyses, a general rule of thumb is that the number of cases
in any one cell should be at least 10. When there are empty cells or cells with
a small number of cases, estimates of risk can become unstable and unreliable.
Thus, it is important to have an adequate sample size to support the analysis.

Although SPSS provides automatic forward and backward stepwise pro-
cesses for building multivariate models, it is better to build a logistic regression
model using the same sequential method described for multiple regression in
Chapter 6. Using this method, variables are added to the model one at a time
in order of the magnitude of the chi-square association, starting with the
largest estimate. At each step, changes to the model can be examined to assess
collinearity and instability in the model.

If an a priori decision is made to include known confounders, these can be
entered first into the logistic regression and the model built up from there.
Alternatively, confounders can be entered at the end of the model building
sequence and only retained in the model if they change the size of the coeffi-
cients of the variables already in the model by more than 10%. It is important
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to decide which is the most appropriate method of entering the variables be-
fore the analysis is conducted.

At each step of adding a variable to the model, it is important to compare the
P values, the standard errors and the odds ratios in the model from Block 1 of 1
with the values from the second model in Block 2 of 2. A standard error that
increases by an important amount, say 10%, is an indication that the model
has become less precise. In this situation, the model is less stable as a result
of two or more variables having some degree of collinearity and thus sharing
variation. The effect of shared variation is to inflate the standard errors. If
this occurs, then one of the variables must be removed. If the standard error
decreases, the model has become more precise. This indicates that the variable
added to the model is a good predictor of the outcome and explains some of
the variance. As with any multivariate model, the decision of which variable
to remove or maintain is based on biological plausibility for the effect and
decisions about the variables that can be measured with most accuracy.

Research question

The risk factors for asthma in the research question can now be examined in a
multivariate model by building a logistic regression using the SPSS commands
shown in Box 8.3. Based on the magnitude of the chi square values, the
variable allergy to HDM will be entered first, then early infection and finally
gender.

Box 8.3 SPSS commands to build a logistic regression model

SPSS Commands

asthma — SPSS Data Editor
Analyze — Regression — Binary Logistic

Logistic Regression
Highlight Diagnosed asthma and click into Dependent
Highlight Allergy to HDM and click into Covariates
Method = Enter (default)
Under Block 1 of 1, click Next
Highlight Early infection and click into Covariates under Block 2 of 2
Method = Enter (default)
Click OK

Logistic regression

Model Summary

Step —2 Log likelihood Cox & Snell R square Nagelkerke R square

1 2130.337 0.154 0.239
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Variables in the Equation

B S.E. Wald df Sig. Exp(B)
Step HDM 2.136 0.115 347.771 1 0.000 8.468
1@ Constant —4.562 0.198 530.349 1 0.000 0.010

2Variable(s) entered on step 1: HDM.

In the Model Summary table, the Cox and Snell R square is similar to the
multiple correlation coefficient in linear regression and measures the strength
of the association. This coefficient which takes sample size into consideration
is based on log likelihoods and cannot reach its maximum value of 1. The
Nagelkerke R square is a modification of the Cox and Snell so that a value
of 1 can be obtained®. Consequently, the Nagelkerke R square is generally
higher than Cox’s and has values that range between 0 and 1. In this model,
the Nagelkerke R square indicates that 23.9% of the variation in diagnosed
asthma is explained by HDM allergy.

The Variables in the Equation table shows the model coefficients. The B
estimate for HDM allergy of 2.136 is the odds ratio in units of natural loga-
rithms, that is to the base e. The standard error of this estimate in log units is
0.115. When adding further variables to the model, it is important that this
standard error does not inflate by more than 10%. The actual odds ratio of
8.468 is shown as the anti-log (or exponential) of the B estimate in the column
exp(B).

The Wald statistic in the Variables in the Equation table has a chi-square
distribution and is the result of dividing the B value by its standard error and
then squaring the result. This value is used to calculate the significance (P)
value for each factor in the model. In logistic regression, the constant is used
in the prediction of probabilities but does not have a practical interpretation.

Block 2: Method = Enter

Model Summary

Step —2 Log likelihood Cox & Snell R square Nagelkerke R square

1 2125.062 0.156 0.242

Variables in the Equation

B S.E. Wald df Sig. Exp(B)
Step HDM 2.123 0.115 342.608 1 0.000 8.360
12 INFECT 0.307 0.133 5.369 1 0.020 1.360
Constant —4.911 0.252 380.375 1 0.000 0.007

2Variable(s) entered on step 1: INFECT.
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The Model Summary table from Block 2 shows that the Nagelkerke R square
has increased slightly from 0.239 to 0.242 and the odds ratio for HDM allergy
has decreased slightly from 8.467 to 8.360. Importantly, the standard error
for HDM allergy has remained unchanged at 0.115 indicating that the model
is stable. The odds ratio for infection, which is the exponential of the beta
coefficient (B) 0.307, that is 1.36, is significant at P = 0.02. This estimate
of risk is reduced compared to the unadjusted odds ratio obtained from the
2 x 2 table.

The effect of gender can be added to the model using the commands shown
in Box 8.3 by entering the variables allergy to HDM and early infection for
the stable model in Block 1 of 1 and entering gender in Block 2 of 2.

Logistic regression

Model Summary

Step —2 Log likelihood Cox & Snell R square Nagelkerke R square

1 2124.788 0.156 0.242

Variables in the Equation

B S.E. Wald df Sig. Exp(B)
Step HDM 2.118 0.115 338.103 1 0.000 8.313
12 INFECT 0.302 0.133 5.155 1 0.023 1.353
GENDER 0.058 0.110 0.274 1 0.600 1.059
Constant —4.985 0.289 297.409 1 0.000 0.007

2Variable(s) entered on step 1: GENDER.

The addition of gender does not change the R square statistics in the Model
Summary table and hardly changes the odds ratio for HDM allergy in the
Variables in the Equation table. The odds ratio for HDM allergy falls slightly
from 8.360 to 8.313 and there is no change in the standard error of 0.115.
The odds ratio for infection falls slightly from 1.360 to 1.353, again with no
change in the standard error of 0.133. However, gender which was a significant
risk factor in the unadjusted analysis at P = 0.005 is no longer significant in
the model with P = 0.60. The unadjusted odds ratio for gender was 1.319 in
bivariate analyses compared to the adjusted value which is now 1.059.

The reduction in this odds ratio suggests that there is a degree of confounding
between gender and HDM allergy or infection. The extent of the confounding
can be investigated using the SPSS commands in Box 7.3 with allergy to HDM
and early infection entered in the rows, gender entered in the columns and
column percentages requested.
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Allergy to HDM * Gender

Chapter 8

Crosstab
Gender
Female Male Total
Allergy to HDM No Count 805 734 1539
% within gender 67.8% 57.5% 62.5%
Yes Count 383 542 925
% within gender 32.2% 42.5% 37.5%
Total Count 1188 1276 2464
% within gender 100.0% 100.0% 100.0%
Chi-Square Tests
Asymp. sig.  Exact sig. Exact sig.
Value df  (two-sided) (two-sided) (one-sided)
Pearson chi-square 27.499P 1 0.000
Continuity correction? 27.064 1 0.000
Likelihood ratio 27.600 1 0.000
Fisher's exact test 0.000 0.000
Linear-by-linear association 27.487 1 0.000
N of valid cases 2464

2Computed only for a 2 x 2 table.
b0 cell (0.0%) has expected count less than 5. The minimum expected count is 445.98.

Early infection * Gender

Crosstab
Gender
Female Male Total
Early infection No Count 1016 1005 2021
% within gender 85.5% 78.8% 82.0%
Yes Count 172 271 443
% within gender 14.5% 21.2% 18.0%
Total Count 1188 1276 2464
% within gender 100.0% 100.0% 100.0%
Chi-Square Tests
Asymp. sig. Exact sig. Exact sig.
Value df (two-sided) (two-sided) (one-sided)
Pearson chi-square 19.065° 1 0.000
Continuity correction® 18.610 1 0.000

Continued
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Asymp. sig. Exact sig. Exact sig.
Value df  (two-sided) (two-sided) (one-sided)
Likelihood ratio 19.228 1 0.000
Fisher’s exact test 0.000 0.000
Linear-by-linear association 19.058 1 0.000

N of valid cases 2464

2Computed only for a 2 x 2 table.
b0 cell (0.0%) has expected count less than 5. The minimum expected count is 213.59.

The tables show that allergy to housedust mites and early respiratory in-
fection are both related to gender, with males having a higher percentage
of allergy and early respiratory infections. Thus, gender was a risk factor in
the unadjusted estimates because of confounding between gender and the
other two risk factors. The logistic regression shows that once the effects of
confounding are removed, gender is no longer a significant independent risk
factor for diagnosed asthma.

The interpretation of this model is that boys have a higher rate of diagnosed
asthma because they have a higher rate of allergy to HDM and a higher rate
of early respiratory infection than girls, and not because they are male per
se. Separating out the confounding and identifying the independent effects of
risk factors makes an invaluable contribution towards identifying pathways
to disease.

Computing confidence intervals from logistic
regression output

Odds ratios should be reported with their 95% confidence intervals although
the intervals are not provided in the SPSS output. The calculation is simple
but it needs to take account of the fact that the odds ratio (B) and the SE are in
units of natural logarithms. Few people can think in logarithmic units. Thus,
once the 95% confidence intervals are calculated, the anti-log of the units
needs to be obtained for presenting summary statistics in a way that increases
the transparency of the results and simplifies communicating the findings.
The 95% CI can be calculated in logarithmic units as follows:

95% CI = Beta + (1.96 x SE)

and then the antilog of the two values can be calculated. This can be under-
taken in an Excel spreadsheet as shown in Table 8.6. The beta coefficients
and the standard errors (SE) are taken directly from the SPSS output. The for-
mulae that are used to calculate the 95% confidence intervals around the odds
ratios derived from SPSS are shown below, where exp indicates an exponential
conversion. In Excel, clicking on Insert and then Function, the exponential
function is listed as EXP under the Math and Trig Function Category.
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Odds ratio = exp (beta)
Lower CI = exp (beta — 1.96 x SE)
Upper CI = exp (beta + 1.96 x SE)
Width down = odds ratio — lower CI
Width up = upper CI — odds ratio

Table 8.6 Excel spreadsheet to compute confidence intervals around odds ratios
derived from logistic regression

Beta SE 1.96 x SE Odds ratio Lower Upper Width down Width up

HDM 2.118 0.115 0.225 8.313 6.637 10.417 1.678 2.102
Infection 0.302 0.133 0.261 1.353 1.042 1.755 0.310 0.403
Gender  0.058 0.11 0.216 1.059 0.854 1.315 0.206 0.255

Reporting the results

When reporting odds ratios from any type of study design, the percentages
from which they are derived must also be reported so that the level of exposure
can be used to interpret the findings. In this research question, the data were
derived from a cross-sectional study and thus it is important to report the
proportion of children who had asthma in the groups that were exposed or
not exposed to the risk factors of interest as shown in Table 8.7. In a case—
control study, it would be important to report the per cent of participants in
the case and control groups who were exposed to the factors of interest. It
is also important to report the unadjusted and adjusted values so that the
importance of confounding factors is clear. The adjusted odds ratios from the
binary logistic regression are smaller but provide an estimate that is not biased
by confounding.

Table 8.7 Unadjusted and adjusted risk factors for children to have asthma

Exposed %  Non-exposed % Unadjusted odds Adjusted odds

Risk factor with asthma with asthma ratio (95% CI) ratio (95% CI) P value
HDM allergy  42.8% 8.1% 8.5 (6.8, 10.6) 8.3(6.6, 10.4) <0.0001
Early infection 27.5% 19.7% 1.5(1.2, 2.0) 1.4 (1.0, 1.8) 0.023
Gender 23.4% 18.8% 1.4 (1.1, 1.6) 1.1(0.9, 1.3) 0.600

Odds ratios are multiplicative. Table 8.7 shows that the odds ratio for the
association between childhood asthma and allergy to HDM is 8.3. However,
the odds ratio for children to have diagnosed asthma is they are exposed to
both allergy to HDM and to an early respiratory infection compared to the
odds they are not exposed to either risk factor is 8.3 x 1.4, or 11.6.



Categorical variables 261

Plotting the results in a figure

The lower and upper 95 % confidence intervals have different widths as a result
of being computed in logarithmic units, therefore they need to be overlaid as
separate plots when using SigmaPlot as shown in Box 8.4. The estimates of
odds ratios and confidence interval widths obtained in Excel can be entered
into SigmaPlot worksheet with the odds ratio in column 1, the width down
in column 2 and the width up in column 3 as follows:

Column 1 Column 2 Column 3
8.314 1.678 2.102
1.353 0.310 0.403
1.060 0.206 0.255

The graph can then be plotted using the commands shown in Box 8.4.

Box 8.4 SigmaPlot commands to plot odds ratios

SigmaPlot Commands
SigmaPlot — [Data 1*]
Graph — Create Graph
Create Graph - Type
Highlight Scatter Plot, click Next
Create Graph - Style
Highlight Horizontal Error Bars, click Next
Create Graph — Error Bars
Symbol Values = Worksheet Columns (default), click Next
Create Graph — Data Format
Data Format = Highlight Many X, click Next
Create Graph — Select Data
Data for Bar = use drop box and select Column 1
Data for Error = use drop box and select Column 2
Click Finish

The sequence is then repeated in Graph — Add Plot with column 1 again as
the data for the bar and column 3 as the data for the error. Once this basic
graph is obtained, the labels, symbols, axes, ticks and labels can be customised
under the Graph — Options menus to obtain Figure 8.3. The x-axis needs to be
a logarithmic base 10 scale, the first plot should have negative error bars only
and the second plot should have positive error bars only.

Figure 8.3 shows the relative importance of the odds ratios. Early infection
and allergy to HDM are significant risk factors which is reflected by their 95%
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Figure 8.3 Independent risk factors for diagnosed asthma in children.

confidence intervals not crossing the line of no effect (unity). For gender, the
odds ratio is close to unity and the confidence intervals lie on either side of
the line of unity indicating an effect from protection to risk, which is therefore
ambiguous.

Relative risk

Relative risk can only be used when the sample is randomly selected from the
population and cannot be used in other studies, such as case—control studies
or some clinical trials, in which the percentage of the sample with the disease
is determined by the sampling method.

If the summary data shown in Table 8.4 had been collected from a random
sample the relative risk would be calculated as follows:

Relative risk = a/(a +c)/b/(b+ d)
(40/100)/(25/100)
1.6

Thus the risk estimates are calculated by dividing the per cent of disease pos-
itive cases in one row by the per cent of disease positive cases in the other
row. The calculation shows how the odds ratio of 2.0 calculated previously
with the same data can overestimate the relative risk of 1.6.

In requesting risk statistics in conjunction with a 2 x 2 table in SPSS, three
estimates are shown in the Risk Estimate table. The first set of statistics is the
odds ratio and the next two sets of estimates are labelled ‘For cohort = No’
and ‘For cohort = Yes'. If the 2 x 2 table is set up appropriately, one of these
two statistics is the relative risk. If the 2 x 2 table is not set up appropriately,
relative risk has to be computed from the risk estimates.
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For obtaining relative risk in SPSS, the crosstabulation table needs to be set
up with the outcome in the columns, the risk factor in the rows and the row
percentages requested. If a table is constructed in this way, then either of the
following two options can be used.

Option 1
The risk factor but not the outcome has to be re-coded with the exposure
present (yes) coded as 1 and the exposure absent (no) coded as 2.

On the spreadsheet asthma.sav, allergy to HDM has been re-coded in this
way into the variable HDM2. This coding is exactly opposite to the coding
needed to easily interpret the output from logistic and linear regressions. This
coding scheme will ‘invert” the crosstabulation table so that the positive ex-
posure is shown on the top row and no exposure is shown on the row below.
This table with HDM allergy re-coded, which was shown previously, is shown
again below. The relative risk can then be calculated as the row percentage for
positive outcome divided by the row percentage for negative outcome, that
is 42.8/8.1 or 5.28. This statistic is given in the line ‘For cohort = Yes’, with
a negligible difference from the calculated value resulting from rounding of
decimal places.

Crosstabs

Allergy to HDM - Re-coded * Diagnosed Asthma Crosstabulation

Diagnosed asthma

No Yes Total
Allergy to Allergy Count 529 396 925
HDM - recoded % within allergy to 57.2% 42.8% 100.0%
HDM - recoded
No allergy Count 1414 125 1539
% within allergy to 91.9% 8.1% 100.0%
HDM - recoded
Total Count 1943 521 2464
% within allergy to 78.9% 21.1% 100.0%

HDM - recoded

Risk Estimate

95% confidence interval

Value Lower Upper
Odds ratio for HDM allergy — recoded 0.118 0.094 0.148
(allergy/no allergy)
For cohort diagnosed asthma = no 0.622 0.588 0.659
For cohort diagnosed asthma = yes 5.271 4.386 6.334

N of valid cases 2464
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In the Risk Estimate table, ‘For cohort diagnosed asthma = yes’ shows the
relative risk for children to have diagnosed asthma in the presence of HDM
allergy is 5.271 (95% CI 4.386, 6.334). As with odds ratio, only the number
of decimal places that infer a precision that can be interpreted is reported so
the risk estimates from this table would be reported as a relative risk of 5.3
(95% Cl 4.4, 6.3).

Option 2

If the risk factor for exposure is maintained as coded as 1 for exposure ab-
sent (no) and 2 for exposure present (yes), then the table that was obtained
previously is shown again below.

Allergy to HDM * Diagnosed Asthma Crosstabulation

Diagnosed asthma

No Yes Total

Allergy to HDM No Count 1414 125 1539
% within allergy to HDM 91.9% 8.1% 100.0%

Yes Count 529 396 925
% within allergy to HDM 57.2% 42.8% 100.0%

Total Count 1943 521 2464
% within allergy to HDM 78.9% 21.1% 100.0%

Risk Estimate

95% confidence interval

Value Lower Upper
Odds ratio for allergy to HDM (nol/yes) 8.468 6.765 10.600
For cohort diagnosed asthma = no 1.607 1.516 1.702
For cohort diagnosed asthma = yes 0.190 0.158 0.228
N of valid cases 2464

In this case, the relative risk shown in the table is calculated as 8.1/42.8,
or 0.190 and is in the direction of protection. The estimate in the direction of
risk and the 95% confidence interval can be computed as the reciprocal of the
estimates given for ‘For cohort diagnosed asthma = yes’ as follows:

1/0.190 = 5.263
1/0.158 = 6.329
1/0.228 = 4.386
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Thus, the relative risk for children to have asthma in the presence of HDM
allergy is 5.3 (95% CI 4.4, 6.3), which is identical to using the first option.

For both options, the estimate ‘For cohort ... = no’ is the relative risk of
children having diagnosed asthma in the group that is not exposed to the risk
factor of interest. This statistic is rarely used.

Number needed to be exposed for one additional
person to be harmed

In epidemiological studies in which the influence of an exposure is described
by an odds ratio, inclusion of the statistic number needed to be exposed for one
additional person to be harmed (NNEH) can be a useful statistic that applies to
a person rather than to a sample. As such, this statistic provides the number
of people who need to be exposed to the risk factor of interest to cause harm
to one additional person.

As with calculating NNT in Chapter 7, NNEH is calculated from a 2 x 2 table
in which both the outcome and the exposure are coded as binary variables. The
statistic NNEH can be easily calculated from a 2 x 2 crosstabulation in which
the outcome is entered in the rows, the exposure is entered in the columns and
the column percentages are requested. The statistic NNEH is then calculated
from the absolute risk increase (ARI), which is simply the difference in the
proportion of participants with the outcome of interest in the exposed and
unexposed groups. From the tables for asthma and HDM allergy:

ARI = 0.43 — 0.08 = 0.35
NNEH = 1/ ARI=1/0.35=2.9

This indicates that for every three children with allergy to housedust mites,
one additional child will be diagnosed with asthma. NNEH is only reported to
whole numbers.

For early infection

ARI = 0.275 — 0.197 = 0.078
NNEH = 1/ARR =1/0.078 = 12.8

This indicates that for every 13 children who have respiratory infection in
early life, one additional child will be diagnosed with asthma. Obviously, the
larger the odds ratio, the fewer the number of people who need to be exposed
to cause harm.

Notes for critical appraisal

When critically appraising an article that reports risk statistics, it is important
to ask the questions shown in Box 8.5.
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Box 8.5 Questions to ask when critically appraising the literature in which
risk statistics are presented

The following questions should be asked of studies that report risk statis-

tics:

o If relative risk is reported, was the sample randomly selected?

o Have the proportions of disease in the exposed and non-exposed groups
been reported in addition to the odds ratio or relative risk?

o Isit difficult to compare estimates if some of the factors are presented as
risk factors and others as protective factors?

o Are confidence intervals presented for all estimates of odds ratio or rel-
ative risk?

o Can all of the variables in the model be classified as independent expo-
sure factors or have alternative outcomes and intervening variables also
been included?

o What type of method was used to build the logistic regression model
and was collinearity between variables tested?
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CHAPTER 9

Categorical and continuous
variables: tests of agreement

Truth cannot be defined or tested by agreement with ‘the world’; for not only do
truths differ for different worlds but the nature of agreement between a world apart
from it is notoriously nebulous.

NELSON GOODMAN, PHILOSOPHER

Objectives

The objectives of the chapter are to explain how to:

» measure repeatability of categorical information collected by questionnaires
» measure the repeatability of continuous measurements

« critically appraise the literature that reports tests of agreement

Repeatability

Questionnaires are often tested for repeatability, which is an aspect of measur-
ing agreement. Repeatability is an important issue especially when new instru-
ments are being developed. In any type of research study, measurements that
are accurate (repeatable) provide more reliable information. However, studies
of repeatability must be conducted in a setting in which they do not produce
a false impression of the accuracy of the measurement. Box 9.1 shows the

Box 9.1 Assumptions for measuring repeatability

The following methods must be used when measuring repeatability:

e the method of administration must be identical on each occasion

e at the second administration, both the participant and the rater (ob-
server) must have no knowledge of the results of the first measurement

« the time to the second administration should be short enough so that
the condition has not changed since the first administration

o if a questionnaire is being tested, the time between administrations must
be long enough for participants to have forgotten their previous re-
sponses

o the setting in which repeatability is established must be the same as the
setting in which the questionnaire or measurement will be used

267
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assumptions under which the repeatability of categorical measurements and
continuous measurements are tested. All of the assumptions relate to study
design.

If a questionnaire is to be used in a community setting, then repeatability has
to be established in a similar community setting and not for example in a clinic
setting where the patients form a well-defined sub-sample of a population.
Patients who frequently answer questions about their illness may have well
rehearsed responses to questions and may provide an artificial estimate of
repeatability when compared to people in the general population who rarely
consider aspects of an illness that they do not have.

Repeatability of categorical data

Questionnaires are widely used in research studies to obtain information of
personnel characteristics, illnesses and exposure to environmental factors. For
a questionnaire to be a useful research tool, the responses must be repeatable,
that is they must not have a substantial amount of measurement error. To
test repeatability, the questionnaire is administered to the same people on
two separate occasions. An important concept is that the condition that the
questionnaire is designed to measure must not have changed in the period
between administrations and the time period must be long enough for the
participants to have little recollection of their previous responses. Repeatability
is then measured as the proportion of responses in agreement on the two
occasions using the statistic kappa.

Kappa is used to test the agreement between observers or between admin-
istrations for both binary and nominal scales. For data with three or more
possible responses or for ordered categorical data, weighted kappa should be
used. Kappa is an estimate of the proportion in agreement between two ad-
ministrations or two observers in excess of the agreement that would occur by
chance. A value of 1 indicates perfect agreement and a value of 0 indicates no
agreement. In general, values less than 0.40 indicate poor agreement, values
between 0.41 and 0.60 indicate moderate agreement, values between 0.61 and
0.80 indicate good agreement and above 0.81 indicate very good agreement'.

Research question

The file questionnaires. sav contains the data of three questions which re-
quired a yes or no response. The questions were administered on two occa-
sions to the same 50 people at an interval of 3 weeks. The research aim was
to measure the repeatability of the questions. It is often important to establish
how repeatable questions are because questions that are prone to a significant
amount of random error or bias do not make good outcome or explanatory
variables. The SPSS commands shown in Box 9.2 can be used to obtain re-
peatability statistics.

This command sequence can then be repeated to obtain the following tables
and statistics for questions 2 and 3 of the questionnaire.
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Box 9.2 SPSS commands to measure repeatability

SPSS Commands
questionnaires — SPSS Data Editor
Analyze — Descriptive Statistics — Crosstabs
Crosstabs
Highlight Question 1-time 1 and click into Row(s)
Highlight Questionl-time 2 and click into Column(s)
Click on Statistics
Crosstabs: Statistics
Tick Kappa, tick Continue
Crosstabs
Click on Cells
Crosstabs: Cell Display
Tick Observed under Counts (default), tick Total under Percentages
Click Continue
Crosstabs
Click OK

Crosstabs

Question 1 - Time 1 * Question 1 - Time 2 Crosstabulation

Question 1 - time 2

No Yes Total
Question 1- time 1 No Count 20 15 35
% of total 40.0% 30.0% 70.0%
Yes Count 4 11 15
% of total 8.0% 22.0% 30.0%
Total Count 24 26 50
% of total 48.0% 52.0% 100.0%
Symmetric Measures
Asymp.
Value std. error? Approx. TP Approx. sig.
Measure of agreement Kappa 0.252 0.123 1.977 0.048

N of valid cases 50

2 Not assuming the null hypothesis.
b-Using the asymptotic standard error assuming the null hypothesis.

From the Crosstabulation, the proportion in agreement is estimated from
the per cent in the concordant No at Time 1-No at Time 2 and Yes at Time
1-Yes at Time 2 cells. Thus the proportion in agreement is 40% + 22%, or 0.62
as a proportion. The Symmetric Measures table shows that the kappa value is
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low at 0.252 indicating poor repeatability after agreement by chance is taken
into account. Kappa is always lower than the proportion in agreement.
Although a P value is included in the Symmetric Measures table, it is not
a good indication of agreement because its interpretation is that the kappa
value is significantly different from zero. Measurements taken from the same
people on two occasions in order to assess repeatability are highly related by
nature and thus the P value is expected to indicate some degree of agreement.
The standard error is also reported and can be used to calculate a confidence
interval around kappa but this is also of little interest.

Crosstabs

Question 2 - Time 1* Question 2 - Time 2 Crosstabulation

Question 2 - time 2

No Yes Total
Question 2 -time 1 No Count 34 5 39
% of total 68.0% 10.0% 78.0%
Yes Count 6 5 11
% of total 12.0% 10.0% 22.0%
Total Count 40 10 50
% of total 80.0% 20.0% 100.0%
Symmetric Measures
Asymp.
Value std. error? Approx. o Approx. sig.
Measure of agreement Kappa 0.337 0.159 2.390 0.017
N of valid cases 50
2 Not assuming the null hypothesis.
b-Using the asymptotic standard error assuming the null hypothesis.
Crosstabs
Question 3 - Time 1 * Question 3 - Time 2 Crosstabulation
Question 3 - time 2
No Yes Total
Question 3 -time 1 No Count 17 5 22
% of total 34.0% 10.0% 44.0%
Yes Count 6 22 28
% of total 12.0% 44.0% 56.0%
Total Count 23 27 50
% of total 46.0% 54.0% 100.0%
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Symmetric Measures

Asymp.
Value std. error@ Approx. TP Approx. sig.
Measure of agreement Kappa 0.556 0.118 3.933 0.000

N of valid cases 50

2 Not assuming the null hypothesis.
b-Using the asymptotic standard error assuming the null hypothesis.

In the second Crosstabulation table, the percentage in agreement is 68% +
10%, or 0.78 as a proportion, and kappa is higher than in the first table at
0.337. Although the percentage in agreement in the third table is 34% + 44%,
also 0.78 as a proportion, kappa is higher than in the second table at 0.556 and
the P value increases in significance from 0.017 to <0.001. Thus, kappa varies
for the same proportion in agreement. With a higher proportion of Yes replies
(56% for question 3 compared with 22% for question 2), kappa increases
from poor to moderate range.

A feature of kappa is that the value increases as the proportion of ‘No’
and ‘Yes’ responses become more equal and when the proportion in agree-
ment remains the same. This feature is a major barrier to comparing kappa
values. For this reason, the value of kappa, the percentage of positive re-
sponses and the proportion in agreement must all be reported to help assess
repeatability.

Reporting the results

Information about the repeatability of the three questions can be reported as
shown in Table 9.1. It is difficult to say which question is the most repeatable
and has the least non-systematic bias because all three questions have a dif-
ferent percentage of positive responses and therefore the kappa values cannot
be compared. However, both questions 2 and 3 have a higher proportion in
agreement than question 1. The differences in percentages suggest that the
three questions are measuring different entities.

Table 9.1 Repeatability for three questions administered to 50 people at a 3-week

interval
Percentage of Percentage of Proportion in Kappa
positive responses positive responses agreement
at time 1 at time 2
Question 1 30% 52% 0.62 0.25
Question 2 22% 20% 0.78 0.34

Question 3 56% 54% 0.78 0.56
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Repeatability of continuous measurements

Continuous measurements must also have a high degree of repeatability to
be useful as a research tool. Variations in continuous measurements can re-
sult from inconsistent measurement practices, from equipment variation or
from ways in which results are read or interpreted. These sources can be mea-
sured as within-observer (intra-observer) variation, between-observer (inter-
observer) variation or within-subject variation. Variations that result from the
ways in which researchers administer, read or interpret tests are within- or
between-observer variations. Variations that arise from patient compliance
factors or from biological changes are within-subject variations. To quantify
these measurement errors, the same measurement is taken from the same
participant on two occasions or from the same participant by two observers
and the results are compared.

Research question

The file observer-weights.sav contains data from 32 babies who had their
weight measured by two nurses who had no knowledge of each other’s mea-
surements. The weights measured by both nurses could be plotted against
each other in a scatter plot. However, it is best that a Pearson’s correlation
coefficient is not used to describe repeatability because it does not make sense
to test the hypothesis that two measurements taken from the same babies
using the same equipment are related to one another?. In addition, a second
measurement that is, for example, twice as large as the first measurement
would have perfect correlation but poor agreement.

To estimate the measurement error, the Transform — Compute command is
first used to calculate the mean of the two measurements for each baby using
the Mean function and then the difference between the two measurements as a
simple subtraction, that is measurement 1 — measurement 2 is calculated with
this command. The subtraction can be in either direction but the direction
must be indicated in the summary results and graphs. The two new variables
are created at the end of the data sheet and should be labelled as mean and
differences respectively.

The size of the measurement error can then be calculated from the standard
deviation around the differences, which can be obtained using the Analyze —
Descriptive Statistics — Descriptives commands with the differences variable en-
tered as the Variable(s).

Descriptives

Descriptive Statistics

N Minimum Maximum Mean Std. deviation

Differences 32 -0.10 0.15 0.0125 0.06792
Valid N (listwise) 32
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The mean of the differences is 0.0125 and gives an estimate of the amount
of bias between the two measurements. In this case, the measurements taken
by nurse 1 are on average 0.0125 kg higher than nurse 2, which is a small
difference. A problem with using the mean value is that large positive and
large negative differences are balanced and therefore negated. However, the
mean =+ 1.96 SD can also be calculated from this table. This range is calculated
as 0.0125 £ (1.96 x 0.0679), or —0.12 to 0.15 and is called the limits of
agreement’. The limits of agreement indicate the interval in which 95% of
the differences lie.

The mean and difference values can be plotted as a differences-vs-means
plot to show whether the measurement error as estimated by the differences is
related to the size of the measurement as estimated by the mean*. The shape
of the scatter conveys important information about the repeatability of the
measurements. A scatter that is evenly distributed above and below the zero
line of no difference indicates that there is no systematic bias between the
two observers. A scatter that is largely above or largely below the zero line
of no difference or a scatter that increases or decreases with the mean value
indicates a systematic bias between observers’.

The values for the means and differences can be copied and pasted from
SPSS to SigmaPlot and the figure can be created using the commands shown
in Box 9.3. A recommendation for the axes of differences-vs-means plots is
that the y-axis should be approximately one-third to one-half of the length of
the x-axis’.

Box 9.3 SigmaPlot commands to create a differences-vs-means plot

SigmaPlot Commands
SigmaPlot — [Data 1*]
Graph — Create Graph
Create Graph — Type
Highlight Scatter Plot, click Next
Create Graph — Styles
Highlight Simple Scatter, click Next
Create Graph — Data Format
Under Data format, highlight XY pair, click Next
Create Graph — Select Data
Highlight Column 1, click into Data for X
Highlight Column 2, click into Data for Y
Click Finish

The lines for the mean difference and limits of agreement can be added
by typing the x coordinates in column 3 and y coordinates of the lines into
columns 4 to 6 and adding three line plots by using the SigmaPlot commands
Graph — Add Plot — Line Plot — Simple Straight Line — XY Pair options with x as
column 3 each time and each y column. The columns for the coordinate data
are as follows:
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Column 3 Column 4 Column 5 Column 6
3.5 0.0125 —-0.12 0.15
6.0 0.0125 -0.12 0.15
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Figure 9.1 Differences-vs-means plot.

Figure 9.1 shows only a small amount of random error that is evenly scat-
tered around the line of no difference and shows that most of the differences
are within 0.1 kg. A wide scatter would indicate a large amount of measure-
ment error. A Kendall’s correlation coefficient between the means and the dif-
ferences can be obtained using the commands shown in Box 6.3 in Chapter 6.

Non-parametric correlations

Correlations

Differences Mean
Kendall's tau_b Differences Correlation coefficient 1.000 0.045
Sig. (two-tailed) . 0.721
N 32 32
Mean Correlation coefficient 0.045 1.000
Sig. (two-tailed) 0.721 .
N 32 32

The almost negligible correlation of 0.045 with a P value of 0.721 confirms
the uniformity of variance in the repeated measurements. A systematic bias
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between the two measurements could be inspected using a paired #-test or a
non-parametric rank sums test.

A more useful statistic to describe repeatability is to first calculate the mea-
surement error from the standard deviation of the differences of observations
in the same subject . This is calculated as:

Measurement error = SD of differences/./2
= 0.06792/1.414
=0.048 kg

This error can then be converted to a range by multiplying by a critical value
of 1.96.

Error range = Measurement error x Critical value
= 0.048 x 1.96
= 0.09 kg

The error range indicates that the average of all possible measurements of
a baby’s weight is within the range of 0.09 kg above and 0.09 kg below the
actual measurement taken. Thus for a baby with a measured weight of 4.01 kg,
the average of all possible weights, which are expected to be close to the true
weight, would be within the range 3.92 to 4.10 kg.

Intra-class correlation

The intra-class correlation coefficient (ICC) can be used to describe the rela-
tive extent to which two continuous measurements taken by different peo-
ple or two measurements taken by the same person on different occasions
are related. The advantage of ICC is that, unlike Pearson’s correlation, a value
of unity is only obtained when the two measurements are identical to one
another. A high value of ICC of 0.95 indicates that 95% of the variance in
the measurement is due to the true variance between the participants and
5% of the variance is due to measurement error or the variance within the
participants or the observers. The SPSS commands to obtain ICC are shown
in Box 9.4.

Box 9.4 SPSS commands to measure repeatability

SPSS Commands
observer-weights — SPSS Data Editor
Analyze — Scale — Reliability Analysis
Reliability Analysis
Highlight Weight—observer 1 and Weight—observer 2 and click into
Items box
Click Statistics
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Reliability Analysis: Statistics
Tick Intraclass correlation coefficient,
Model: Two-Way Mixed (default)
Type: Consistency (default)
Test Value: 0 (default), click Continue
Reliability Analysis
Click OK

Reliability

RELIABILITY ANALYSIS - SCALE (ALPHA)
Intraclass Correlation Coefficients
Two-Way Mixed Effects Model (Consistency Definition)

ICcC 95% Confidence Interval
Measure Value Lower Bound Upper Bound F-Value Sig.
Single Rater .9922 .9841 .9962 255.4797 .0000
Average of Raters® L9961 .9920 .9981 255.4797 .0000
Degrees of freedom for F-tests are 31 and 31. Test Value = 0.

* Assumes absence of People*Rater interaction.
Reliability Coefficients

N of Cases = 32.0 N of Items = 2
Alpha = .9961

In this example, there are two raters (observers) and the ICC is 0.9961, that
is less than 1% of the variance is explained by within-subject differences. The
95% confidence interval around an ICC is rarely used and the significance
of the ICC is of no importance because it is expected that two measurements
taken from the same person are highly related.

When reporting the results, the differences-vs-means plot gives the most
informative description of agreement or repeatability. Additional information
of the mean difference, the limits of agreement and the 95% range are direct
measures of agreement between two continuous measurements whereas the
intra-class correlation coefficient is a relative measure of agreement. All of
these statistics should be included when reporting information of the agree-
ment or repeatability between two measurements because they all convey
relevant information.

Notes for critical appraisal

Paired measurements to estimate agreement must be treated appropriately
when analysing the data. When critically appraising an article that presents
these types of statistics, it is important to ask the questions shown in Box 9.5.
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Box 9.5 Questions for critical appraisal

The following questions should be asked when appraising published re-

sults from paired categorical follow-up data or data collected to estimate

the repeatability of questionnaire responses or continuous measurements:

e Is the sample size large enough to have confidence in the summary
estimates?

For repeatability of categorical data:

o Is the percentage of positive or negative responses and proportion in
agreement included in addition to kappa?

e Are kappa values inappropriately compared?

For repeatability of continuous measurements:

e Have a differences-vs-means plot, the limits of agreement, a 95% range
and the intra-class correlation been reported?

e Is Pearson’s correlation used inappropriately?
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CHAPTER 10

Categorical and continuous
variables: diagnostic statistics

Like dreams, statistics are a form of wish fulfilment.
JEAN BAUDRILLARD (b. 1929), FRENCH SEMIOLOGIST

Objectives

The objectives of the chapter are to explain how to:

» compute sensitivity, specificity and likelihood ratios

» understand the limitations of positive and negative predictive values
» select cut-off points for screening and diagnostic tests

o critically appraise studies that use or evaluate diagnostic tests

In clinical practice it is important to know how well diagnostic tests, such
as x-rays, biopsies or blood and urine tests, can predict that a patient has a
certain condition or disease. The statistics positive predictive value (PPV), neg-
ative predictive value (NPV), sensitivity and specificity are all used to estimate
the utility of a test in predicting the presence of a condition or a disease. A
statistic that combines the utility of sensitivity and specificity is the likelihood
ratio (LR). If the outcome of the diagnostic test is binary, a likelihood ratio can
be calculated directly. If the test result is on a continuous scale, a receiver oper-
ating characteristic (ROC) curve is used to determine the point that maximises
the LR.

Diagnostic statistics are part of a group of statistics used to describe agree-
ment between two measurements. However, these statistics should only be
calculated when there is a ‘gold standard’ to measure the presence or absence
of disease against which the test can be compared. If a gold diagnostic stan-
dard does not exist, a proxy gold standard may need to be justified!. In this
situation, the test being evaluated must not be included in the definition of
the gold standard'. In measuring the diagnostic utility of a test, the person
interpreting the test measurement must have no knowledge of the disease
status of each patient.

Coding

For diagnostic statistics, it is best to code the variable indicating disease status
as 1 for disease present as measured by the gold standard or test positive and

278
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2 for disease absent or test negative. This coding will produce a table with the
rows and columns in the order shown in Table 10.1. In this table, the row and
column order is the reverse of that used to calculate an odds ratio froma 2 x 2
crosstabulation but is identical to the coding shown in Table 8.1 in Chapter 8
which is frequently used in clinical epidemiology textbooks.

Table 10.1 Coding for diagnostic statistics

Disease present Disease absent Total
Test positive a b a+b
Test negative c d c+d
Total a+c b+d N

Positive and negative predictive values

In estimating the utility of a test, PPV is the proportion of patients who are
test positive and in whom the disease is present and NPV is the proportion
of patients who are test negative and in whom the disease is absent. These
statistics indicate the probability that the test will make a correct diagnosis?.
Both PPV and NPV are statistics that predict from the test to the disease and
indicate the probability that patients will or will not have a disease if they have
a positive or negative diagnostic test. Intuitively, it would seem that PPV and
NPV would be the most useful statistics; however, they have serious limitations
in their interpretations?.

The statistics PPV and NPV should only be calculated if the study sample
is from a population and not if groups of patients and healthy people are
recruited independently, which is often the case. From Table 10.1, the PPV
and NPV can be calculated as follows:

PPV = a/(a + b)
NPV =d/(c +d)

Research question

The file xray.sav contains the data from 150 patients who had an x-ray for a
bone fracture. A positive x-ray means that a fracture appears to be present on
the x-ray, and a negative x-ray means that there is no indication of a fracture
on the x-ray. The presence or absence of a fracture was later confirmed during
surgery. Thus surgery is the ‘gold standard’ for deciding whether or not a
fracture was present. The research question is how accurate are x-rays in
predicting fractures in people. In computing diagnostic statistics, a hypothesis
isnot being tested so that the P value for the crosstabulation has little meaning.

Diagnostic statistics of PPV and NPV are computed using the SPSS commands
shown in Box 10.1 with row percentages requested because PPV and NPV are
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calculated as proportions of the test positive patients and test negative patients
who have the disease. In SPSS, PPV and NPV are not produced directly or
labelled as such but can be simply derived from the row percentages. Although
the figures are given in percentages, diagnostic statistics are more commonly
reported as proportions, that is, in decimal form.

Box 10.1 SPSS commands to compute diagnostic statistics

SPSS Commands
xray - SPSS Data Editor
Analyze — Descriptive Statistics — Crosstabs
Crosstabs
Highlight Xray results (test) and click into Row(s)
Highlight Fracture detected by surgery (disease) and click into Column(s)
Click on Statistics
Crosstabs: Statistics
Check all boxes are empty, click Continue
Crosstabs
Click on Cells
Crosstabs: Cell Display
Under Percentages tick Row, tick Continue
Click OK

Crosstab

X-ray Results * Fracture Detected by Surgery Crosstabulation

Fracture detected
by surgery (disease)

Present Absent Total
X-ray results Positive Count 36 24 60
(test) % within x-ray results 60.0% 40.0% 100.0%
Negative Count 8 82 90
% within x-ray results 8.9% 91.1% 100.0%
Total Count a4 106 150
% within x-ray results 29.3% 70.7% 100.0%

From the crosstabulation the row percentages are used and are simply con-
verted to a proportion by dividing by 100.

Positive predictive value = 0.60 (i.e. 36/60)
Negative predictive value = 0.91 (i.e. 82/90)

This indicates that 0.60 of patients who had a positive x-ray had a fracture
and 0.91 who had a negative x-ray did not have a fracture.
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To measure the certainty of diagnostic statistics, confidence intervals for PPV
and NPV can be calculated as for any proportion. If the confidence interval
around a proportion contains a value less than zero, exact confidence inter-
vals based on the binomial distribution should be used rather than asymptotic
statistics based on a normal distribution®. The formula for calculating the stan-
dard error around a proportion was shown in Chapter 7. The Excel spreadsheet
shown in Table 10.2 can be used to calculate 95% confidence intervals for
PPV and NPV. The confidence interval for PPV is based on the total number of
patients who have a positive test result and the confidence interval for NPV is
based on the total number of patients who have a negative test result.

Table 10.2 Excel spreadsheet to calculate 95% confidence intervals

Proportion N SE Width Cl lower Cl upper
PPV 0.6 60 0.063 0.124 0.476 0.724
NPV 0.91 90 0.030 0.059 0.851 0.969

The interpretation of the 95% confidence interval for PPV is that with 95%
confidence, 47.6% to 72.4% of patients with a positive x-ray will have a
fracture. The interpretation of the 95% confidence interval for NPV is that with
95% confidence, 85.1% to 96.9% of patients with a negative x-ray will not
have a fracture. Confidence intervals should be interpreted taking the sample
size into account. The larger the sample size, the narrower the confidence
intervals will be.

Although PPV and NPV seem intuitive to interpret, both statistics vary with
changes in the proportion of patients in the sample who are disease positive.
Thus, these statistics can only be applied to the study sample or to a sample
with the same proportion of disease positive and disease negative patients.
For this reason, PPV and NPV are not commonly used in clinical practice. Box
10.2 shows why these statistics are limited in their interpretation.

Box 10.2 Limitations in the interpretation of positive and negative
predictive values

Positive and negative predictive values:

e are strongly influenced by the proportion of patients who are disease
positive

e increase when the per cent of patients who have the disease in the
sample is high and decrease when the per cent who have the disease is
small

e cannot be applied or generalised to other clinical settings with different
patient profiles

e cannot be compared between different diagnostic tests
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In practice, the statistics PPV and NPV are only useful in settings in which
the per cent of patients who have the disease present is the same as the preva-
lence of the disease in the population. This naturally rules out most clinical
settings.

Sensitivity and specificity

The statistics that are most often used to describe the utility of diagnostic tests
in clinical applications are sensitivity, specificity* and likelihood ratio’. These
diagnostic statistics can be computed from Table 10.1 as follows:

Sensitivity = a/(a + ¢)
Specificity = d/(b + d)
Likelihood ratio = Sensitivity/(1 — specificity)

Sensitivity indicates how likely patients are to have a positive test if they
have the disease and specificity indicates how likely the patients are to have a
negative test if they do not have the disease. In this sense, these two statistics
describe the proportion of patients in each disease category who are test posi-
tive or negative. Although the usefulness of these statistics is not as intuitive,
sensitivity and specificity have advantages over PPV and NPV as shown in
Box 10.3.

Box 10.3 Advantages of using sensitivity and specificity to describe the
application of diagnostic tests

The advantages of using sensitivity and specificity to describe diagnostic

tests are that these statistics:

o do not alter if the prevalence of disease is different between clinical
populations

e can be applied in different clinical populations and settings

e can be compared between studies with different inclusion criteria

o can be used to compare the diagnostic potential of different tests

The interpretation of sensitivity and specificity is not intuitive and therefore
to calculate these statistics it is recommended that the notations of true pos-
itives (TP), false positives (FP), true negatives (TN) and false negatives (FN)
are written in each quadrant of crosstabulation as shown in Table 10.3. The
false negative group is the proportion of patients who have the disease and
who have a negative test result. The false positive group is the proportion of
patients who do not have the disease and who have a positive test result.

Thus, sensitivity is the rate of true positives in the disease-present group
(a/a +c) and specificity is the rate of true negatives in the disease-absent
group (d/b + d). The ‘opposites’ rule applies to remembering the meaning of
the terms sensitivity and specificity because: sensitivity has a ‘n’ in it and this
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Table 10.3 Terms used in diagnostic statistics

Disease present Disease absent Total
Test positive a b

TP (sensitivity) FP

(true +ve) (false +ve)
Test negative 4 d

FN TN (specificity)

(false —ve) (true —ve)
Total a+c b+d N

applies to the true positives, which begin with ‘p” and specificity has a ‘p” in it
and this applies to the true negatives, which begin with ‘n’.

Is this logical? Well no, but the terminology is well established and this
reverse code helps in remembering which term indicates the true negatives or
true positives. From Table 10.3 it can be seen that the rate of false negatives
is the complement of the true positives for patients who have the disease.
Similarly, the rate of false positives is the complement of the true negatives
for patients who do not have the disease.

SpPin and SnNout

SpPin and SnNout are two clinical epidemiology terms that are commonly
used to aid in the interpretation of sensitivity and specificity in clinical
settings®.

SpPin stands for Specificity-Positive-in, which means that if a test has a
high specificity (TN) and therefore a low 1 — specificity (FP), a positive result
rules the disease in. A test that is used to diagnose an illness in patients with
symptoms of the illness needs to have a low false positive rate because it
will then identify most of the people who do not have the disease. Although
specificity needs to be high for a diagnostic test to rule the disease in, it is
calculated solely from patients without the disease.

SnNout stands for Sensitivity-Negative-out, which means that if the test
has a high sensitivity (TP) and a low 1 — sensitivity (FN), a negative test result
rules the disease out. A test that is used to screen a population in which many
people will not have the disease needs to have high sensitivity because it will
then identity all of the people with the disease. Although sensitivity needs to
be high in a screening test to rule the disease out, it is calculated solely from
patients with the disease.

The SPSS commands shown in Box 10.1 can be used to compute sensitivity
and specificity but the column percentages rather than the row percentages are
requested because sensitivity is a proportion of the disease positive group and
specificity is a proportion of the disease negative group.
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Crosstab

X-ray Results * Fracture Detected by Surgery Crosstabulation

Fracture detected

by surgery (disease)
Present Absent Total
X-ray results Positive Count 36 24 60
(test) % within fracture
detected by surgery 81.8% 22.6% 40.0%
Negative Count 8 82 90
% within fracture
detected by surgery 18.2% 77.4% 60.0%
Total Count a4 106 150
% within fracture
detected by surgery 100.0% 100.0% 100.0%

The column percentages can be simply changed into proportions by dividing
by 100. Thus, from the above table:

Sensitivity = TP = 0.82
1 — sensitivity = FN = 0.18
Specificity =TN = 0.77
1 — specificity = FP = 0.23
The sensitivity of the test indicates that 82% of patients with a fracture will

have a positive x-ray and the specificity of the test indicates that 77.4% of
patients with no fracture will have a negative x-ray.

Confidence intervals

The confidence intervals for sensitivity and specificity can be calculated using
the spreadsheet shown in Table 10.2. This produces the intervals shown in
Table 10.4. Again, if the confidence interval of a proportion contains a value
less than zero, exact confidence intervals should be used>.

Table 10.4 Excel spreadsheet for calculating confidence intervals around a proportion

Proportion N SE Width Cl lower Cl upper
0.82 a4 0.058 0.114 0.706 0.934
0.18 44 0.058 0.114 0.066 0.294
0.77 106 0.041 0.080 0.690 0.850

0.23 106 0.041 0.080 0.150 0.310
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These 95% confidence intervals are based on the number of patients with
the disease present for sensitivity and the number of patients with the dis-
ease absent for specificity. Because each 95% confidence interval is based on
only a subset of the sample rather than on the total sample size, the confi-
dence intervals can be surprisingly wide if the number in the group is quite
small.

The interpretation of the intervals for sensitivity is that with 95% confidence
between 70.6% and 93.4% of patients with a fracture will have a positive
x-ray. Similarly, the interpretation for specificity is that with 95% confid-
ence between 69.0% and 85 % of patients without a fracture will have a neg-
ative x-ray.

Study design

In calculating the required sample size to estimate sensitivity and specificity,
it is important to have an adequate number of people with and without the
disease. A high sensitivity rules the disease out, therefore it is essential to enrol
a large number of people with disease present to calculate the proportion of
true positives with precision. A high specificity rules the disease in, so it is
essential to enrol a large number of people with the disease absent to calculate
the proportion of true negatives with precision.

It is not always understood that to show that a test can rule a disease out,
a large number of people with the disease present must be enrolled and that
to show that a test is useful in ruling a disease in, a large number of people
without the disease must be enrolled. For most tests, a large number of people
with the disease present and with the disease absent must be enrolled to
provide tighter confidence intervals around both sensitivity and specificity.

Likelihood ratio

Both sensitivity and specificity can be thought of as statistics that ‘look back-
wards’ in that they show the probability that a person with a disease will have
a positive test rather than looking ‘forwards” and showing the probability that
the person who tests positive has the disease. Also, sensitivity and specificity
should not be used in isolation because each is calculated from separate parts
of the data. To be useful in clinical practice, these statistics need to be con-
verted to a likelihood ratio that uses data from the total sample to estimate
the relative predictive value of the test. The LR is calculated as follows:

LR = Likelihood of a positive result in people with disease

Likelihood of a positive result in people without disease
= Sensitivity/(1 — specificity)
= TP/FP
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The LR is simply the ratio of true positives to the false positives and indicates
how likely a positive result will be found in a person with the disease than in
a person without the disease!. From the previous calculation:

LR = 0.82/(1 — 0.77) = 3.56

Confidence intervals around LR are best generated using dedicated programs
(see useful websites). The LR indicates how much a positive test will alter the
pre-test probability that a patient will have the illness. The pre-test probability
is the probability of the disease in the clinic setting where the test is being
used. The post-test probability is the probability that the disease is present
when the test is positive. To interpret the LR, a likelihood ratio nomogram can
be used to convert pre-test probability of disease into post-test probability> 7.
Alternatively, the following formula can be used to convert the pre-test prob-
ability (Pre-TP) into a post-test probability (Post-TP):

Post-TP = (Pre-TP x LR)/(1 + Pre-TP x (LR — 1))

The size of the LR indicates the utility of the test in diagnosing an illness. As a
rule, a LR greater than 10 is large and means a conclusive change from pre-test
to post-test probability. On the other hand a LR between 5 and 10 results in
only a moderate shift between pre- and post-test probability, a LR between
2 and 5 results in a small shift but sometimes reflects an important shift, and
a LR below 2 is small and rarely important®.

The advantages of using a likelihood ratio to interpret the results of diag-
nostic tests are shown in Box 10.4.

Box 10.4 Advantages of using likelihood ratio as a predictive statistic for
diagnostic tests

The advantages of likelihood ratio are that this predictive statistic:
o allows valid comparisons of diagnostic statistics between studies
o the diagnostic value can be applied in different clinical settings
« provides the certainty of a positive diagnosis

ROC curves

Receiver operating characteristic (ROC) curves are an invaluable tool for find-
ing the cut-off point in a continuously distributed measurement that best pre-
dicts whether a condition is present, for example whether patients are disease
positive or disease negative®. ROC curves are used to find a cut-off value that
delineates a ‘normal’ from an ‘abnormal’ test result when the test result is
a continuously distributed measurement. ROC curves are plotted by calcu-
lating the sensitivity and specificity of the test in predicting the diagnosis for
each value of the measurement. The curve makes it possible to determine a
cut-off point for the measurement that maximises the rate of true positives
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(sensitivity) and minimises the rate of false positives (1 — specificity), and thus
maximises the likelihood ratio.

Research question

The file xray.sav, which was used in the previous research question, also
contains data for the results of three different biochemical tests and a variable
that indicates whether the disease was later confirmed by surgery. ROC curves
are used to assess which test is most useful in predicting that patients will be
disease positive.

Before constructing a ROC curve, the amount of overlap in the distribution
of the continuous biochemical test measurement in both the disease positive
and disease negative groups can be explored using the SPSS commands shown
in Box 10.5.

Box 10.5 SPSS commands to obtain scatter plots

SPSS Commands

xray - SPSS Data Editor
Graphs — Scatter

Scatterplot
Click on Simple, click on Define

Simple Scatterplots
Highlight BiochemA and click into the Y Axis
Highlight Disease positive and click into the X Axis
Click OK

These SPSS commands can be repeated to obtain scatter plots for the test
BiochemB and BiochemC as shown in Figure 10.1. In the plots, the values
and labels on the x- and y-axes are automatically assigned by SPSS and are
not selected labels. For example, in Figure 10.1 the tests are never negative
as suggested by the negative values on the y-axis and the group labels of 1 for
disease present and 2 for disease absent on the x-axis are not displayed. Al-
though the scatter plots are useful for understanding the discriminatory value
of each continuous variable, they would not be reported in a journal article.

In the first plot shown in Figure 10.1, it is clear that the values for BiochemA
in the disease positive group (coded 1) overlap almost completely with the
values for BiochemA in the disease negative group (coded 2). With complete
overlap such as this, there will never be a cut-off point that effectively delin-
eates between the two groups.

In the plots for BiochemB and BiochemC as shown in Figure 10.1, there is
more separation of the test measurements between the groups, particularly
for BiochemC. The value of the tests in distinguishing between the disease
positive and disease negative groups can be quantified by plotting ROC curves
using the commands shown in Box 10.6. In the data set, disease positive is
coded as 1 and this value is entered into the State Variable box.
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Box 10.6 SPSS commands to plot a ROC curve

SPSS Commands
xray - SPSS Data Editor
Graphs — ROC Curve
ROC Curve
Highlight BiochemA, BiochemB and BiochemC and click into Test Variable
Highlight Disease positive and click into State Variable
Type in 1 as Value of State Variable
Under Display tick ROC Curve (default), With diagonal reference line,
and Standard error and confidence interval
Click OK

Area Under the Curve

Asymptotic 95%
confidence interval

Test result

varible(s) Area Std. error? Asymptotic sig.? Lower bound Upper bound
BiochemA 0.580 0.051 0.114 0.479 0.681
BoichemB 0.755 0.042 0.000 0.673 0.837
BiochemC 0.886 0.028 0.000 0.832 0.940

2Under the non-parametric assumption.
bNull hypothesis: true area = 0.5.

In a ROC curve, sensitivity is calculated using every value of BiochemA
in the data set as a cut-off point and is plotted against the corresponding
1 — specificity at that point, as shown in Figure 10.2. Thus the curve is the
true positives plotted against the false positives calculated using each value of
the test as a cut-off point. In Figure 10.2, the diagonal line indicates where
the test would fall if the results were no better than chance at predicting
the presence of a disease, that is no better than tossing a coin. BiochemA lies
close to this line confirming that the test is poor at discriminating between
disease positive and disease negative patients.

The area under the diagonal line is 0.5 of the total area. The greater the
area under the ROC curve, the more useful the measurement is in predicting
the patients who have the disease. A curve that falls substantially below the
diagonal line indicates that the test is useful for predicting patients who do
not have the disease.

The Area Under the Curve table indicates that the area under the curve for
BiochemA is 0.580 with a non-significant P value (asymptotic significance)
of 0.114, which shows that the area is not significantly different from 0.5. The
95% confidence intervals contain the value 0.5 confirming the P value that
shows that this test is not a significant predictor of disease status.
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Figure 10.2 ROC curves for Biochem A, B and C.

The ROC curves in Figure 10.2 show that, as expected from the previous
scatter plots, the tests BiochemB and BiochemC detect the disease positive
patients more effectively than BiochemA. In the Area under the Curve table,
BiochemC is the superior test because the area under its ROC curve is the
largest at 0.886. Both BiochemB and BiochemC have an area under the curve
that is significantly greater than 0.5 and in both cases, the P value is <0.0001.
The very small amount of overlap of confidence intervals between BiochemB
and BiochemC suggests that BiochemC is a significantly better diagnostic test
than BiochemB, even though the P values are identical.

The choice of the cut-off point that optimises the utility of the test is often
an expert decision taking factors such as the sensitivity, specificity, cost and
purpose of the test into account. In diagnosing a disease, the gold standard
test may be a biopsy or surgery, which is invasive, expensive and carries a
degree of risk, for example the risk of undergoing an anaesthetic. Tests that
are markers of the presence or absence of disease are often used to reduce the
number of patients who require such invasive interventions. The exact points
on the curve that are selected as cut-off points will vary according to each
situation and are best selected using expert opinion.

Three different cut-off points on the curve are used for a diagnostic test, a
general optimal test and a screening test. The cut-off point for a screening test is
chosen to maximise the sensitivity of the test and for a diagnostic test is chosen
to maximise the specificity of the test. The cut-off point for a general optimal
test is chosen to optimise the rate of true positives whilst minimising the
rate of false positives. All three points can be identified from the coordinates
of the ROC curve. By entering only BiochemC into the Test Variable box of
Graphs — ROC and ticking the box ‘Coordinate Points of the ROC Curve’ the
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Figure 10.3 ROC curve for BiochemC with diagnostic, optimal and screening cut-otf
points.

ROC curve and a list of the points on the graph are printed as shown in
Figure 10.3.

The cut-off point for a general optimal test, which is sometimes called the opti-
mal diagnostic point, is the point on the curve that is closest to the top of the left
hand y-axis. This point is shown in Figure 10.3 and the test cut-off value can be
identified from the coordinate points of the curve. The coordinate points from
the central section of the SPSS output have been copied to an Excel spread-
sheet and are shown in Table 10.5. In the table, the Excel function option has
been used to also calculate Specificity and 1 — sensitivity for each point.

To find the coordinates of the optimal diagnostic point, a simple method
is to use a ruler to calculate the coordinate value for 1 — specificity of the
optimal cut-off point. Once the point is identified on the graph as being the
closest point to the top of the y-axis on the ROC curve, a line can be drawn
vertically down to the x-axis. The value for 1 — specificity is then calculated
as the ratio of the distance of the point from the y-axis to the total length
of the x-axis. Using this method, this value is estimated to be 0.167. In the
‘1 — specificity’ column of Table 10.5, there are three values of 0.168, which
are closest to 0.167. For the first value of 0.168, sensitivity equals 0.837 after
which it begins to fall to 0.796 and 0.776. Thus, of the three points, the first
point optimises sensitivity while 1 — specificity remains constant at 0.168. At
this value, specificity is 1 — 0.168, or 0.832. The value of BiochemC at this
coordinate is 24.8, which is the cut-off point for an optimal general test or is
the optimal diagnostic point.
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Table 10.5 Excel spreadsheet to identify clinical cut-off points

Sensitivity 1 - specificity  Specificity 1 - sensitivity
Cut-off point True positives False positives True negatives False negatives Distance
14.950 0.980 0.584 0.416 0.020 0.342
15.150 0.980 0.564 0.436 0.020 0.319
15.350 0.980 0.554 0.446 0.020 0.308
15.550 0.980 0.545 0.455 0.020 0.297
15.750 0.980 0.535 0.465 0.020 0.286
15.900 0.959 0.535 0.465 0.041 0.288
16.500 0.959 0.485 0.515 0.041 0.237
17.500 0.939 0.485 0.515 0.061 0.239
18.450 0.939 0.406 0.594 0.061 0.169
19.450 0.939 0.396 0.604 0.061 0.161
20.200 0.939 0.327 0.673 0.061 0.111
20.700 0.918 0.327 0.673 0.082 0.113
21.500 0.857 0.327 0.673 0.143 0.127
22.300 0.857 0.297 0.703 0.143 0.109
22.650 0.837 0.297 0.703 0.163 0.115
22.850 0.837 0.287 0.713 0.163 0.109
23.500 0.837 0.228 0.772 0.163 0.079
24.050 0.837 0.188 0.812 0.163 0.062
24.350 0.837 0.178 0.822 0.163 0.058
24.800 0.837 0.168 0.832 0.163 0.055
25.400 0.796 0.168 0.832 0.204 0.070
26.150 0.776 0.168 0.832 0.224 0.079
26.750 0.776 0.158 0.842 0.224 0.075
28.000 0.735 0.158 0.842 0.265 0.095
29.200 0.714 0.158 0.842 0.286 0.107
29.650 0.694 0.158 0.842 0.306 0.119
29.950 0.673 0.158 0.842 0.327 0.132
30.500 0.673 0.139 0.861 0.327 0.126
31.400 0.612 0.139 0.861 0.388 0.170
31.850 0.612 0.129 0.871 0.388 0.167
32.300 0.612 0.119 0.881 0.388 0.164
33.200 0.612 0.109 0.891 0.388 0.162
34.600 0.592 0.109 0.891 0.408 0.178
35.550 0.592 0.099 0.901 0.408 0.176
35.650 0.571 0.099 0.901 0.429 0.193
35.900 0.551 0.099 0.901 0.449 0.211
36.350 0.551 0.079 0.921 0.449 0.208
36.650 0.551 0.069 0.931 0.449 0.206
36.800 0.531 0.069 0.931 0.469 0.225
37.050 0.531 0.050 0.950 0.469 0.223
37.600 0.531 0.040 0.960 0.469 0.222
38.100 0.510 0.040 0.960 0.490 0.241

Continued
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Table 10.5 (Conitnued)

Sensitivity 1 - specificity  Specificity 1 - sensitivity
Cut-off point True positives False positives True negatives False negatives Distance
38.500 0.510 0.020 0.980 0.490 0.240
38.250 0.510 0.030 0.970 0.490 0.241
39.200 0.490 0.020 0.980 0.510 0.261
39.850 0.469 0.020 0.980 0.531 0.282
41.100 0.388 0.020 0.980 0.612 0.375
42.700 0.388 0.010 0.990 0.612 0.375
44.250 0.388 0.000 1.000 0.612 0.375

An alternative method to identify the cut-off point from the Excel spread-
sheet is to use the following arithmetic expression, which uses Pythagoras’
theorem, to identify the distance of each point from the top of the y-axis. In
this calculation, the ‘distance’” has no units but is a relative measure:

Distance = (1 — Sensitivity)? + (1 — Specificity)?

This value was calculated for all points in Table 10.5 using the function option
in Excel. The minimum distance value is 0.055 for the cut-off point 24.8.
Above and below this value the distance increases indicating that the points
are further from the optimal diagnostic point. When the point closest to the
top of the y-axis is not readily identified from the ROC curve, this method is
useful for identifying the cut-off value.

The cut-off points that would be used for diagnostic and screening tests
can also be read from the ROC curve coordinates. For a diagnostic test, it is
important to maximise specificity while optimising sensitivity. From the ROC
curve figure, the value that would be used for a diagnostic test is where the
curve is close to the left hand axis, that is where the rate of false positives (1 —
specificity) is low and thus the rate of true negatives (specificity) is high. At
the cut-off point where the test value is 38.5, there is a sensitivity of 0.510
and a low 1 — specificity of 0.02. At this test value, specificity is high at 0.98
which is a requirement for a diagnostic test. Ideally, specificity should be 1.0
but this has to be balanced against the rate of true positives. At the three
test values that have the same sensitivity of 0.510, the rate of false positive
is higher for the cut-off points of 38.1 and 38.25 than for the cut-off point of
38.5, which maximises specificity while optimising sensitivity. At the cut-off
points below 38.5 where specificity is also 0.98, a significant reduction in true
positives would occur if the cut-off point of 41.10 with a sensitivity of 0.388
was selected.

The value that would be used for a screening test is where the curve is close
to the top axis where the rate of true positives (sensitivity) is maximised.
For a screening test, it is important to maximise sensitivity while optimising
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specificity. At the cut-off point where the test value is 15.75, a high sensitivity
of 0.98 is attained for a specificity of 0.465 (Table 10.5). At this point the
false negative rate (1 — sensitivity) is low at 0.02 which is a requirement of
a screening test. Ideally, sensitivity should be 1.0 but this has to be balanced
against the rate of false positives. The original SPSS output (not shown here)
indicates that there are 13 test values below 15.75 at which sensitivity remains
constant at 0.980 but there is a large gain in the rate of false positives across
these cut-off points from 0.535 to 0.703. Thus, at several cut-off values below
15.75, specificity decreases for no change in sensitivity.

For all three cut-off points, the choice of a cut-off value needs to be made
using expert opinion in addition to the ROC curve. In this, the decision needs
to be made about how important it is to minimise the occurrence of false
negative or false positive results.

Reporting the results

The results from the above analyses could be reported as shown in Ta-
ble 10.6. The positive likelihood ratio is computed for each cut-off point as
sensitivity/1 — specificity. A high positive likelihood ratio is more important
for a diagnostic test than for a screening test. The 95% confidence intervals
for sensitivity and specificity are calculated using the Excel spreadsheet in
Table 10.2 with the numbers of disease positive (49) and disease negative
(101) patients respectively used as the sample sizes.

Table 10.6 Cut-off points and diagnostic utility of test BiochemC for identifying
disease positive patients

Cut-off Sensitivity Specificity Positive
Purpose value (95% CI) (95% CI) likelihood ratio
Screening 15.8 0.98 (0.94, 1.02) 0.47 (0.37, 0.57) 1.8
Optimal 24.8 0.84 (0.74, 0.94) 0.83 (0.76 to 0.90) 4.9
Diagnostic 38.5 0.51 (0.37, 0.65) 0.98 (0.95, 1.0) 25.5

Notes for critical appraisal

When critically appraising an article that presents information about diagnos-
tic tests, it is important to ask the questions shown in Box 10.7. In diagnos-
tic tests, 95% confidence intervals are rarely reported but knowledge of the
precision around measurements of sensitivity and specificity is important for
applying the test in clinical practice. In addition, estimating sample size in the
disease positive and negative groups is of paramount importance in designing
studies to measure diagnostic statistics with accuracy.
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Box 10.7 Questions for critical appraisal

The following questions should be asked when appraising studies from

which diagnostic statistics are reported:

e Was a standard protocol used for deciding whether the diagnosis and
the test were classified as positive or negative?

e Was a gold standard used to classify the diagnosis?

o Was knowledge of the results of the test witheld from the people who
classified patients as having a disease and vice versa?

e How long was the time interval between the test and the diagnosis?
Could the condition have changed through medication use, natural pro-
gression, etc. during this time?

o Are there sufficient disease positive and disease negative people in the
sample to calculate both sensitivity and specificity accurately?

» Have confidence intervals been calculated for sensitivity and specificity?
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CHAPTER 11

Categorical and continuous
variables: survival analyses

The individual source of the statistics may easily be the weakest link. Harold Cox tells
a story of his life as a young man in India. He quoted some statistics to a judge who
was an Englishman. The judge said, Cox, when you are a bit older, you will not
quote Indian statistics with that assurance. The Government are very keen on
amassing statistics—they collect them, add them, raise them to the nth power, take
the cube root and prepare wonderful diagrams. But what you must never forget is
that every one of those figures comes in the first instance from the chowkidar (village
watchman), who just puts down whatever he pleases.

JOSIAH CHARLES STAMP (1880 —1941)

Objectives

The objectives of the chapter are to explain how to:

 decide when survival analyses are appropriate

» obtain and interpret the results of survival analyses

 ensure that the assumptions for survival analyses are met

e report results in a graph or a table

« critically appraise the survival analyses reported in the literature

Survival analyses are used to investigate the time between entry into a study
and the subsequent occurrence of an event. Although survival analyses were
designed to measure differences between time to death in study groups, they
are frequently used for time to other events including discharge from hospital;
disease onset; disease relapse or treatment failure; or cessation of an activity
such as breastfeeding or use of contraception.

With data relating to time, a number of problems occur. The time to an
event is rarely normally distributed and follow-up times for patients enrolled
in cohort studies vary, especially when it is impractical to wait until the event
has occurred in all patients. In addition, patients who leave the study early or
who have had less opportunity for the event to occur need to be taken into
account. Survival analyses circumvent these problems by taking advantage
of the longitudinal nature of the data to compare event rates over the study
period and not at an arbitrary time point!.

Survival analyses are ideal for analysing event data from prospective cohort
studies and from randomised controlled trials in which patients are enrolled

296
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in the study over long time periods. The advantages of using survival analyses
rather than logistic regression for measuring the risk of the event occurring are
that the time to the event is used in the analysis and that the different length
of follow-up for each patient is taken into account. This is important because
a patient in one group who has been enrolled for only 12 months does not
have an equal chance for the event to occur as a patient in another group who
has been enrolled for 24 months. Survival analyses also have an advantage
over regression in that the event rate over time does not have to be constant.

Censored observations

Patients who leave the study or do not experience the event are called ‘cen-
sored’ observations. The term censoring is used because, in addition to patients
who survive, the censored group includes patients who are lost to follow-up,
who withdraw from the study or who die without the investigators’ knowl-
edge. Classifying patients who do not experience the event for whatever rea-
son as ‘censored” allows them to be included in the analysis.

Assumptions

The assumptions for using Kaplan—Meier survival analyses are shown in
Box 11.1. These analyses are non-parametric tests and thus no assumptions
about the distributions of variables need to be met.

Box 11.1 Assumptions for using Kaplan—-Meier survival analysis

The assumptions for using Kaplan—Meier survival analysis are that:

« the participants must be independent, that is each participant appears
only once in their group

« the groups must be independent, that is each participant is in one group
only

e the measurement of time to the event must be precise

e the start point and the event must be clearly defined

e participants’ survival prospects remain constant, that is participants en-
rolled early or late in the study have the same survival prospects

« the probability of censoring is not related to the probability of the event

In survival analyses, it is essential that the time to the event be measured accu-
rately. For this, regular observations need to be conducted rather than, for ex-
ample, surmising that the event occurred between two routine examinations?.
When it is only known that an event occurred between two points in time,
for example if observations are only taken every 6 months, the data are said
to be interval censored®. If time to the event is not measured precisely, the
survival probabilities will be biased.
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Both the start point, that is entry into the study, the inclusion criteria and
the event must be well defined to avoid bias in the analyses. This is especially
important when using survival analyses to describe the natural history of a
condition®. Using start points that are prone to bias, such as patient recall of a
diagnosis or attendance at a doctor surgery to define the presence of an illness,
will result in unreliable survival probabilities.

The reason for the event must also be clearly defined. When an event occurs
that is not due to the condition being investigated, careful consideration needs
to be given to whether it is treated as an event or as a withdrawal. In clinical
trials, combined events for example an event that combines death, acute my-
ocardial infarction or cardiac arrest are often used to test the effectiveness of
interventions®.

In addition, patients who are censored must have the same survival
prospects as patients who continue in the study, that is the risk of the event
should not be related to the reasons for censoring or loss to follow-up?. Thus
factors that influence patients” survival prospects, such as different treat-
ment options, should not change over the study period and patients who
experience more sickness in one treatment group should not be preferen-
tially lost to follow-up compared with patients who experience less sick-
ness in another treatment group. Secular trends in survival can also occur
if patients enrolled early have a different underlying prognosis from those
enrolled towards the end of the study. This would bias estimates of risk
of survival in a cohort study but is not so important in clinical trials in
which randomisation balances important prognostic factors between the
groups.

As with all analyses, if the total number of patients in any group is small,
say less than 30 participants in each group, the standard errors around the
summary statistics will be large and therefore the survival estimates will be
imprecise.

When conducting a survival analysis, the data need to be entered with one
binary variable indicating whether or not the event occurred and a continuous
variable indicating the time to the event or the time to follow-up. The event
is usually coded as ‘1’ and censored cases coded as ‘0’, although other coding
such as ‘1’ and ‘2’ could be used.

Research question

The file survival.sav contains the data from 56 patients enrolled in a trial
of two treatments in which 30 patients received the new treatment and 26
patients received the standard treatment. A total of 39 patients died.

Question: Is the survival rate in the new treatment group higher
than in the standard treatment group?
Null hypothesis: That there is no difference in survival rates between

treatment groups.
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Variables: Outcome variable = death (binary event)
Explanatory variables = time of follow-up (continuous),
treatment group (categorical, two levels)

The commands shown in Box 11.2 can be used to obtain a Kaplan—Meier
statistic to assess whether the differences in survival times between the two
treatment groups are significantly different.

Box 11.2 SPSS commands to obtain survival curves

SPSS Commands
survival — SPSS Data Editor
Analyze — Survival— Kaplan-Meier
Kaplan-Meier
Highlight days and click into Time
Highlight event and click into Status
Click on Define Event
Kaplan-Meier: Define Event for Status Variable
Type 1 in Single value box, click Continue
Kaplan-Meier
Highlight Treatment group and click into Factor
Click Compare Factor
Kaplan-Meier: Compare factor levels
Under Test Statistics tick Log rank, Breslow, Tarone Ware, click Continue
Kaplan-Meier
Click Options
Kaplan-Meier: Options
Under Statistics tick Survival table(s) (default) and tick Mean and median
survival (default)
Under Plots, tick Survival
Click Continue
Kaplan-Meier
Click OK

Kaplan—Meier

Survival Analysis for DAYS
Factor GROUP = New treatment

Time Status Cumulative Standard Cumulative Number

Survival Error Events Remaining
5 0 0 29
7 0 0 28
8 0 0 27
9 1 .9630 .0363 1 26
9 0 1 25
12 1 .9244 .0514 2 24
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15 1 .8859 .0620 3 23
16 1 .8474 .0703 4 22
16 0 4 21
16 0 4 20
19 0 4 19
20 0 4 18
23 0 4 17
24 0 4 16
25 0 4 15
29 0 4 14
31 0 4 13
32 1 .7822 .0902 5 12
32 0 5 11
36 1 L7111 .1064 6 10
38 0 6 9
40 0 6 8
41 0 6 7
41 0 6 6
42 0 6 5
43 0 6 4
48 0 6 3
49 0 6 2
58 0 6 1
59 0 6 0
Number of Cases: 30 Censored: 24 (80.00%) Events: 6
Survival Time Standard Error 95% Confidence Interval
Mean: 49 4 (41, 56 ) (Limited to 59 )

Survival Analysis for DAYS
Factor GROUP = Standard treatment

Time Status Cumulative Standard Cumulative Number
Survival Error Events Remaining
1 1 1 25
1 1 2 24
1 1 .8846 .0627 3 23
2 1 .8462 .0708 4 22
3 1 .8077 .0773 5 21
4 1 6 20
4 1 .7308 .0870 7 19
6 0 7 18
7 1 .6902 .0911 8 17
17 1 .6496 .0944 9 16
20 0 9 15
21 1 10 14
21 1 .5630 .0997 11 13
31 0 11 12
31 0 11 11
32 0 11 10
33 0 11 9
33 0 11 8
36 0 11 7
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39 0 11 6
40 0 11 5
40 0 11 4
41 0 11 3
43 0 11 2
50 0 11 1
65 0 11 0
Number of Cases: 26 Censored: 15 ( 57.69%) Events:11
Survival Time Standard Error 95% Confidence Interval
Mean: 40 6 (29, 51 ) (Limited to 65 )

The Survival Analysis for Days tables show the cumulative survival rate at
each follow-up time point which is calculated each time an event occurs. The
column labelled ‘Time’ indicates the day the event occurred. From the Cumu-
lative Survival column, the cumulative survival is 0.7111 at 36 days in group
1 (new treatment) and 0.5630 at 21 days in group 2 (standard treatment). The
Kaplan-Meier method produces a single summary statistic of survival time,
that is the mean®. Mean survival is calculated as the summation of time di-
vided by the number of patients who remain uncensored. The mean survival
time shown at the foot of each table is higher in the new treatment group at
49 days than in the standard treatment group at 40 days.

Survival Analysis for DAYS

Total Number Number Per cent

Events Censored Censored
GROUP New treatment 30 6 24 80.00
GROUP Standard treatment 26 11 15 57.69
Overall 56 17 39 69.64

The final Survival Analysis for Days table also shows summary statistics of
the number in each group, the number of events and the number and per
cent censored. These statistics show that there were fewer events but more
patients who were censored in the new treatment group.

Test Statistics for Equality of Survival Distributions for GROUP

Statistic af Significance
Log Rank 3.27 1 .0705
Breslow 5.32 1 .0211
Tarone-Ware 4.39 1 .0362

The Test Statistics for Equality of Survival Distributions table shows the
three tests that can be used to test the null hypothesis that there is an equal
risk of death in both groups, that is the Log Rank, Breslow and Tarone-Ware
tests. These tests are similar to chi-square tests in that the number of observed
events is compared with the number of expected events. All three tests have
low power for detecting differences when survival curves cross one another.
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The Log Rank statistic, which is derived from a whole pattern test in which
the entire survival curve is used, is the most commonly reported survival
statistic’. The Log Rank test is appropriate when the survival curves continue
to diverge over time but this test becomes unreliable if one or more groups
have small numbers and is not recommended if the survival curves from two
groups cross one another.

The Breslow and Tarone-Ware tests are both weighted variants of the Log
Rank test because in these tests different weightings are given to particular
points of the survival curve’. The Breslow test gives greater weight to early
observations when the sample size is larger and is less sensitive to later obser-
vations when the sample size is smaller. This test is appropriate when there
are few ties in the data, that is patients with equal survival times. The Tarone-
Ware test provides a compromise between the Log Rank and the Breslow tests
but is rarely used.

The SPSS output shows how the three tests can lead to different conclusions
about whether there is a significant difference in the survival rate between
groups. The Log Rank test is not significant at P = 0.0705. However, this test
is not appropriate in this situation in which the number of patients remaining
after 33 to 36 days is small with less than 10 patients in each group.

The Breslow test is significant at P = 0.0211 and is the most appropriate
test to report here because more weight is placed on earlier observations when
group sizes are larger. In this example, the Breslow P value is more significant
than the Log Rank P value because more weight has been placed on the early
observations when survival rates between the groups are different than on
later observations when survival rates between the groups are more similar as
shown in the Survival Functions plot in the next section. If early observations
were more similar between groups and later observations more different, the
Log Rank P value would have been more significant than the Breslow P value.

Reporting the results

When reporting data from survival analyses, the P values from the statistical
analyses do not convey information about the size of the effect. In addition
to P values, summary statistics such as the follow-up time of each group, the
total number of events and the number of patients who remain event free
are important for interpreting the data. This information can be reported as
shown in Table 11.1.

Table 11.1 Survival characteristics of study sample

Number of Number of Number Mean survival time
Group cases events censored in days (95% Cl)
New treatment 30 6 24 (80.0%) 49 (41, 56)

Standard treatment 26 11 15 (57.7%) 40 (29, 51)
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Survival plots

Survival plots, which are called Kaplan-Meier curves, are widely used with
40% of publications from randomised controlled trials including a survival
plot®. In plotting Kaplan—Meier curves, the data are first ranked in ascending
order according to time. A curve is then plotted for each group by calculating
the proportion of patients who remain in the study and who are censored each

time an event occurs. Thus, the curves do not change at the time of censoring
but only when the next event occurs.
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Figure 11.1 Plot showing survival functions of treatment group.

The survival plot shows the proportion of patients who are free of the event
at each time point. The steps in the curves occur each time an event occurs and
the bars on the curves indicate the times at which patients are censored. The
plots show the survival time for a typical patient. In the survival plot shown
in Figure 11.1 the standard treatment group, which is the lower curve, has a
poorer survival time than the new treatment group, which is the upper curve.
The sections of the curves where the slope is steep, in this case the earlier
parts, indicate the periods when patients are most at risk for experiencing the

event. It is always advisable to plot survival curves before conducting the tests
of significance.

Plotting survival curves

There are several ways to plot survival curves and the debate about whether
they should go up or down and how the y-axis should be scaled continues®.
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In SPSS, different presentations of the survival curve can be obtained in the
Plot — Options commands.

Plotting survival curves is not problematic when the study sample is large
and the follow-up time is short. However, when the number of patients who
remain at the end is small, survival estimates are poor. Thus, it is important
to end plots when the number in follow-up has not become too small. In the
above example, the curves should be truncated to 31 days when the number
in each group is 10 or more and should not be continued to 65 days when all
patients in the standard treatment group have experienced the event or are
censored.

The scaling of the y-axis is important because differences between groups
can be visually magnified or reduced by shortening or lengthening the axis.
In practice, a scale only slightly larger than the event rate is generally recom-
mended to provide visual discrimination between groups rather than the full
scale of 0 to 1.°> However, this can tend to make the differences between the
curves seem larger than they actually are, as in the SPSS plot in which the
y-axis scale ranges from 0.5 to 1.0.

Questions for critical appraisal

The questions that should be asked when critically appraising a journal article
that reports a survival analysis are shown in Box 11.3.

Box 11.3 Questions to ask when critically appraising the literature

The following questions can be asked when critically appraising the liter-

ature:

o Is the start point and event clearly defined and free of recall or other
bias?

e Has time been measured accurately?

« Have any factors preferentially changed the patient’s survival prospects
over the course of the study?

o Is a figure reported appropriately?

o Is the sample size in each group sufficient?
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Glossary

Adjusted R square R square is the coefficient of determination that is adjusted
for the number of explanatory variables included in the regression model.
This value can be used to compare regression models that have a different
number of explanatory variables.

Asymptotic methods Commonly used statistical tests based on assumptions
that the sample size is large and the data are normally distributed or, if the
data are categorical, that the condition of interest occurs frequently, say in
more than 5% of the sample.

Balanced design Studies with a balanced design have an equal number of
observations in each cell. This can only be achieved in experimental studies
or by data selection. Most observational studies have an unbalanced design
with unequal number of observations in the cells.

Bivariate tests Tests in which the relation between two variables is estimated,
for example an outcome and an explanatory variable.

Case-control study A study design in which individuals with the disease of
interest (cases) are selected and compared to a control or reference group
of individuals without the disease.

Censoring A term used to indicate that an event did not occur in a survival
analysis. The reasons for censoring could be that the participant withdrew,
was lost to follow-up or did not experience the event.

Chi-square A statistic used to test whether the frequency of an outcome in
two or more groups is significantly different, or that the rows and columns
of a crosstabulation table are independent.

Collinearity A term used when two variables are strongly related to one
another. Collinearity between explanatory variables inflates the standard
errors and causes imprecision because the variation is shared. Thus, the
model becomes unstable (i.e. unreliable).

Complete design A study design is complete when there are one or more
observations in each cell and is incomplete when some cells are empty.

Confidence interval The 95% confidence interval is the interval in which
there is 95% certainty that the true population value lies. Confidence inter-
vals are calculated around summary statistics such as mean values or propor-
tions. For samples with more than 30 cases, a 95% confidence is calculated
as the summary statistic + (SE x 1.96), where SE equals standard error. The
confidence limits are the values at the ends of the confidence interval.

Confounder Confounders are nuisance variables that are related to the
outcome and to the explanatory variables and whose effect needs to be
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minimised in the study design or analyses so that the results are not
biased.

Cook’s distances Measure of influence used in multivariate models. Values
greater than 4/(n — k — 1) are considered influential (# = sample size, k =
number of variables in model).

Discrepancy A measure of how much a case is in line with other cases in a
multivariate model.

Dummy variables A series of binary variables that have been derived from a
multi-level ordinal variable.

Effect size The distance between two mean values described in units of their
standard deviations.

Error term See Residual.

Eta squared A measure of the strength of association between the out-
come and the explanatory factors. As such, eta? is an approximation to R
squared.

Exact statistics Statistics calculated using exact factorial or binomial methods
rather than asymptotic methods. Exact statistics are used when the numbers
in a cell or group are small and the assumptions for asymptotic statistical
tests are violated.

Explanatory variable A variable that is a measured characteristic or an ex-
posure and that is hypothesised to influence an event or a disease status
(i.e. outcome variable). In cross-sectional and cohort studies, explanatory
variables are often exposure variables.

F value An F value is a ratio of variances. For one-way ANOVA, F is the
between-group MS/within MS where MS equals mean sum of squares. For
factorial ANOVA, F is the MS for factor/residual MS. For regression, F is
the MS regression/residual MS.

Factorial ANOVA A factorial ANOVA is used to examine the effects of two or
more factors, or explanatory variables, on a single outcome variable. When
there are two explanatory factors, the model is described as a two-way
ANOVA, when there are three factors as a three-way ANOVA, etc.

Heteroscedasticity Heteroscedasticity indicates that the variances in cells in
a multivariate model are unequal or the variance across a model is not
constant.

Homoscedasticity Homoscedasticity indicates that the variances in cells in a
multivariate model are not different or that there is constant variance over
the length of a model.

Incidence Rate of new cases in a random population sample in a specified
time, for example, 1 year.

Influence Influence is calculated as leverage multiplied by discrepancy and is
used to assess the change in a regression coefficient when a case is deleted.

Inter-quartile range A measure of spread that is the width of the band that
contains the middle half of the data that lies between the 25" and 75"
percentiles.

Interval scale variable A variable with values where differences in intervals
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or points along the scale can be made e.g. the difference between 5 and 10
is the same as the difference between 85 and 90.

Intervening variable A variable that acts on the pathway between an out-
come and an exposure variable.

Kurtosis A measure of whether the distribution of a variable is peaked or flat.
Measures of kurtosis between —1 and 1 indicate that the distribution has an
approximately normal bell shape curve and values around -2 to +2 are a
warning of some degree of kurtosis. Values below —3 or above +3 indicate
that there is significant peakedness or flatness and therefore that the data
are not normally distributed.

Leverage A measure of the influence of a point on the fit of a regression.
Leverage can range from 0 (no influence) to n — 1/n where n equals the
sample size. Leverage values close to 1 indicate total influence.

Likelihood ratio A statistic used to combine sensitivity and specificity into a
single estimate that indicates how a positive test result will change the odds
that a patient has the disease.

Linear-by-linear association A statistic used to test whether a binary out-
come increases or decreases over an ordered categorical exposure variable.
Although this is printed by SPSS when chi-square is requested, the trend is
computed using a Pearson correlation coefficient.

Mahalanobis distance This is the distance between a case and the centroid
of the remaining cases, where the centroid is the point where the means of
the explanatory variables intersect. Mahalanobis distance is used to iden-
tify multivariate outliers in regression analyses. A case with a Mahalanobis
distance above the chi-squared critical value at P < 0.001 with degrees of
freedom equal to the number of explanatory variables in the model is a
multivariate outlier.

Maximum value The largest numerical value of a variable.

Mean A measure of the centre or the average value of the data.

Mean square A term used to describe variance in a regression model. This
term is the sum of the squares divided by their degrees of freedom.

Median The point at which half the measurements lie above and below this
value, that is the point that marks the centre of the data.

Minimum value The smallest numerical value of a variable.

Multivariate tests Tests with more than one explanatory variable in the
model.

Negative predictive value The proportion of individuals who have a negative
diagnostic test result and who do not have the disease.

Nominal variable A variable with values that do not have any ordering or
meaningful ranking and are generally categories e.g. values to indicate re-
tired, employed or unemployed.

Normal score See z score.

Null hypothesis A null hypothesis states that there is no difference between
the means of the populations from which the samples were drawn, that is
population means are equal or that there is no relationship between two
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or more variables. If the null hypothesis is accepted, this does not necessar-
ily mean that the null hypothesis is true but can suggest that there is not
sufficient or strong enough evidence to reject it.

0dds ratio An estimate of risk of disease given exposure, or vice versa, that
can be calculated from any type of study design.

One-tailed tests When the direction of the effect is specified by the alternate
hypothesis e.g. 4 > 50 a one-tailed test is used. The tail refers to the end of
the probability curve. The critical region for a one sided test is located in only
one tail of the probability distribution. One-tailed tests are more powerful
than two-tailed tests for showing a significant difference because the critical
value for significance is lower and are rarely used in health care research.

Ordinal variable A variable with values that indicate a logical order such as
codes to indicate socioeconomic or educational status.

Outcome variable The outcome of interest in a study, that is the variable that
is dependent on or is influenced by other variables (explanatory variables)
such as exposures, risk factors, etc.

Outliers There are two types of outliers: univariate and multivariate. Univari-
ate outliers are defined as data points that have an absolute z score greater
than 3. This term is used to describe values that are at the extremities of
the range of data points or are separated from the normal range of the data.
For small sample sizes, data points that have an absolute z score greater
than 2.5 are considered to be univariate outliers. Multivariate outliers are
data values that have an extreme value on a combination of explanatory
variables and exert too much leverage and/or discrepancy.

P value A P value is the probability of a test statistic occurring if the null
hypothesis is true. P values that are large are consistent with the null hy-
pothesis. On the other hand, P values that are small, say less than 0.05,
lead to rejection of the null hypothesis because there is a small probability
that the null hypothesis is true. P values are also called significance levels.
In SPSS output, P value columns are often labelled ‘Sig.’

Partial correlation The correlation between two variables after the effects of
a third or confounding variable have been removed.

Population A collection of individuals to whom the researcher is interested
in making an inference, for example all people residing in a specific region
or in an entire country, or all people with a specific disease.

Positive predictive value The proportion of individuals with a positive diag-
nostic test result who have the disease.

Power The ability of the study to demonstrate an effect or association if one
exists, that is to avoid type II errors. Power can be influenced by many
factors including the frequency of the outcome, the size of the etfect, the
sample size and the statistical tests used.

Prevalence Rate of total cases in a random population sample in a specified
time, for example 1 year.

Quartiles Obtained by placing observations in an increasing order and then
dividing into four groups so that 25% of the observations are in each group.
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The cut-off points are called quartiles. The four groups formed by the three
quartiles are called ‘fourths’ or ‘quarters’

Quintiles Obtained by placing observations in an increasing order and then
dividing into five groups so that 20% of the observations are in each group.
The cut-off points are called quintiles.

R square The R square value (coefficient of determination) is the squared
multiple correlation coefficient and indicates the per cent of the variance
in the outcome variable that can be explained or accounted for by the ex-
planatory variables.

rvalue Pearson’s correlation coefficient that measures the linear relationship
between two continuous normally distributed variables.

R Multiple correlation coefficient that is the correlation between the observed
and predicted values of the outcome variable.

Range The difference between the lowest and the highest numerical values
of a variable, that is the maximum value subtracted from the minimum
value. The term range is also often used to describe the values that are the
limits of the range, that is the minimum and the maximum values e.g. range
0 to 100.

Ratio scale variable An interval scale variable with a true zero value so that
the ratio between two values on the scale can be calculated, e.g. age in years
is a ratio scale variable but calendar year of birth is not.

Relative risk The risk of disease given exposure divided by the risk of disease
given no exposure, which can only be calculated directly from a random
population sample. In case—control studies, relative risk is estimated by an
odds ratio.

Residual The difference between a participant’s value and the predicted value,
or mean value, for the group. This term is often called the error term.

Risk The probability that any individual will develop a disease. Risk is calcu-
lated as the number of individuals who have the disease divided by the total
number of individuals in the sample or population.

Risk factor An aspect of behaviour or lifestyle or an environmental exposure
that is associated with a health related condition.

Sample Selected and representative part of a population that is used to make
inferences about the total population from which it is drawn.

Sensitivity Proportion of disease positive individuals who are correctly diag-
nosed by a positive diagnostic test result.

Significance level See P value.

Skewness A measure of whether the distribution of a variable has a tail to
the left or right hand side. Skewness values between —1 and +1 indicate
slight skewness and values around -2 and +2 are a warning of a reasonable
degree of skewness but possibly still acceptable. Values below -3 or above +3
indicate that there is significant skewness and that the data are not normally
distributed.

Specificity The proportion of disease negative individuals who are correctly
identified as disease free by a negative diagnostic test result.
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Standard deviation A measure of spread such that it is expected that 95% of
the measurements lie within 1.96 standard deviations above and below the
mean. This value is the square root of the variance.

Standardised coefficients Partial regression coefficients that indicate the
relative importance of each variable in the regression equation. These
coefficients are in standardised units similar to z scores and their dimen-
sion allows them to be compared with one another.

Standard error A measure of precision that is the size of the error around
a mean value or proportion, etc. For continuous variables, the standard
error around a mean value is calculated SD/,/n. For other statistics such as
proportions and regression estimates, different formulae are used. For all
statistics, the SE will become smaller as the sample size increases for data
with the same spread or characteristics.

SE of the estimate This is the approximate standard deviation of the residuals
around a regression line. This statistic is a measure of the variation that is
not accounted for by the regression line. In general, the better the fit, the
smaller the standard error of the estimate.

String variable A variable that generally consists of words or characters but
may include some numbers. This type of variable is also known as an al-
phanumeric variable.

t-value A t-distribution is closely related to a normal distribution but depends
on the number of cases in a sample. A t-value, which is calculated by di-
viding a mean value by its standard error, gives a number from which the
probability of an event occurring is estimated from a ¢-table.

Trimmed mean The 5% trimmed mean is the mean calculated after 5% of the
data (i.e. outliers) are removed. This method is sometimes used in sports
competitions, for example skating, when several judges rate performance
on a scale.

Two-tailed tests When the direction of the effect is not specified by the
alternate hypothesis e.g. i # 50 a two-tailed test is used. The tail refers to
the end of the probability curve. The critical region for a two sided test is
located in both tails of the probability distribution. Two-tailed tests are used
in most research studies.

Type | error A term used when a statistically significant difference between
two study groups is found although the null hypothesis is true. Thus, the
null hypothesis is rejected in error.

Type ll error A term used when a clinically important difference between two
study groups does not reach statistical significance. Thus, the null hypothesis
isnot rejected when it is false. Type II errors typically occur when the sample
size is small.

Type sum of squares (SS) Type III SS are used in ANOVA for unbalanced study
designs when all cells have equal importance but no cells are empty. This
is the most common type of study design in health research. Type I SS are
used when all cell numbers are equal, type II is used when some cells have
equal importance and type IV is used when some cells are empty.
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Univariate tests Descriptive tests in which the distribution or summary statis-
tics for only one variable are reported.

Unstandardised coefficients These are the regression estimates such as y
and x in the equation y = a + bx where ‘a’ is the constant and ‘4’ is the
coefficient for explanatory variable.

Variance A measure of spread that is calculated from the sum of the deviations
from the mean, which have been squared to remove negative values.

Z score This is the number of standard deviations of a value from the mean.
Z scores, which are also known as normal scores, have a mean of zero and
a standard deviation of one unit. Values can be converted to z scores for
variables with a normal or non-normal distribution; however, conversion
to z scores does not transform the shape of the distribution.

Useful Web sites

A New View of Statistics
http://www.sportsci.org/resource/stats/index.html
A peer-reviewed website that includes comprehensive explanations and dis-
cussion of many statistical techniques including confidence intervals, chi-
squared and ANOVA, plus some Excel spreadsheets to calculate summary
statistics that are not available from commonly used statistical packages.

Diagnostic test calculator
http://araw.mede.uic.edu/cgi-alansz/testcalc.pl
Online program for calculating statistics related to diagnostic tests such as
sensitivity, specificity and likelihood ratio.

Epi Info
http://www.cdc.gov/epiinfo/downloads.htm
With Epi Info, a questionnaire or form can be developed, the data entry pro-
cess can be customised and data can be entered and analysed. Epidemiologic
statistics, tables, graphs, maps, and sample size calculations confidence in-
tervals around a proportion can be produced. Epi Info can be downloaded
free.

Graphpad Quickcalcs Free Online calculators for scientists
http://www.graphpad.com/quickcalcs/index.cfm
Online program for calculating many statistical tests from summary data
including McNemars, NNT, etc.

HyperStat Online Textbook
http://davidmlane.com/hyperstat/
Provides information on a variety of statistical procedures, with links to
other related Web sites, recommended books and statistician jokes.

Martin Bland Web page
http://www.mbland.sghms.ac.uk
Web page with links to talks on agreement, cluster designs, etc. and statistics
advice and access to free statistical software. Also includes an index to all
BMJ statistical notes that are online.
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Multivariate Statistics: Concepts, Models and Applications
http://www.psychstat.smsu.edu/multibook2/mlt.htm
A Web site that includes graphs to illustrate multivariate concepts and de-
tailed examples of multiple regression, two-way ANOVA and other multi-
variate tests. Includes examples of how to interpret SPSS output.

PA 765 Statnotes: An Online Textbook by G David Garson
http://www2.chass.ncsu.edu/garson/pa765/statnote.htm
Notes on a range of statistical tests including ¢-tests, chi-squared, ANOVA,
ANCOVA, correlations, regression and logistic regression are presented in
detail. Also, assumptions for each statistical test, definition of terms and
links to other statistical Web sites are given.

Public Health Archives
http://www.jiscmail.ac.uk/archives/public-health.html
Mailbase to search for information or post queries about statistics, study
design issues, etc. This site also has details of international courses, etc.

Raynald'’s SPSS Tools
http://pages.infinit.net/rlevesqu/index.htm
Web site with syntax, macros and online tutorials on how to use SPSS and
with links to other statistical Web sites.

Russ Lenth’s power and sample size page
http://www.stat.uiowa.edu/~rlenth/Power/
A graphical interface for studying the power of one or more tests including
the comparison of two proportions, ¢-tests and balanced ANOVA.

Simple Interactive Statistical Analysis (SISA)
http://home.clara.net/sisa
Simple interactive program that provides tables to conduct statistical analysis
such as chi-square and ¢ tests from summary data.

Statistics on the Web
http://www.execpc.com/~helberg/statistics.html
Links to statistics resources including online education courses, statistics
books and programs and professional organisations.

StatPages.net
http://members.aol.com/johnp71/javastat.html
A conveniently accessible statistical software package with links to online
statistics books, tutorials, downloadable software, and related resources.

StatSoft - Electronic Statistics Textbook
http://www.statsoft.com/textbook/stathome.html
Provides an overview of elementary concepts and continues with a more in-
depth exploration of specific areas of statistics including ANOVA, regression
and survival analysis. A glossary of statistical terms and a list of references
for further study are included.

Stat/Transfer
http://www.stattransfer.com.
Stat/Transfer is designed to simplify the transfer of statistical data between
different programs. Stat/Transfer automatically reads statistical data in the
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internal format of one of the supported programs such as Microsoft Ac-
cess, FoxPro, Minitab, SAS and Epi Info and will then transfer as much
of the information as is present and appropriate to the internal format of
another.

UCLA Academic Technology Services
http://www.ats.ucla.edu/stat/spss/
Helpful Web site with online SPSS textbook and examples and frequently
asked questions, with detailed information about regression and ANOVA.
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confidence intervals
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likelihood ratios, 286
odds ratios, 247, 248,
259-60, 260
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correlation, 156-201
data analysis pathway, 24,
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outliers, 32
normal distribution,
28-31
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survival analysis, 296-304
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Cook’s distances, 15, 150-1,
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correlation, 156-62
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156-8
obtaining coefficients,
159-60
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covariance
(ANCOVA)

Cox & Snell R square, 255,
256, 257
critical appraisal, 22-3, 85
ANOVA/ANCOVA, 154
categorical data, analyses
with
crosstabulations,
239-40
descriptive statistics, 50
diagnostic statistics, 294-5
paired/matched data,
106-7
regression analysis, 200-1
risk statistics, 265-6
survival analysis, 304
testing for normality,
49-50
tests of agreement, 276-7
cross-sectional studies, 4
odds ratios, 243, 260, 260
relative risk, 241

data analysis
critical appraisal, 22-3
documentation, 7-10
log sheets, 6, 7
missing values, 12-15
output format, 21-2
planning, 7
test selection, 16-19
data collection, 14
data management, 1-23
data organisation, 5-7
database creation, 1-2
documentation, 7-10
pathway, 6
data organisation, 5-7
Data View, 1, 2
database creation, 1-2
decimal places, 20, 21, 49,
65, 203
odds ratios, 250
relative risk, 264
descriptive statistics, 25-6,
27-8
continuous variables,
24-50
critical appraisal, 50
presentation, 49, 49
summarising, 49, 49
two independent groups,
56, 57-9, 64
diagnostic statistics, 278-95
coding, 278-9, 279
critical appraisal, 294-5
cut-off points for tests, 290
diagnostic tests, 290
general optimal tests, 290
‘gold standard’
comparison, 278

screening tests, 290
SnNout, 283
SpPin, 283
terminology, 282-3, 283
diagnostic tests, 290, 293,
294
differences-vs-means plot,
273-4, 274, 276
discrepancy, 192, 194
multivariate outliers, 150,
152
documentation, 7-10
categorised variables, 225,

226
outlier management, 64,
195
re-coded information, 13,
174, 217, 250
transformed data, 45, 88,
96
dot plots, 74, 75, 76-7, 77,
105
Duncan test, 123, 126, 127,
129

Dunnett’s C, 123

effect size, 53-4, 54, 56
multiple linear regression,
172
two-sample ¢-test, 73
error range, 275
eta squared, 122
ethics guidelines, 11
exact chi-square test, 215
Excel spreadsheets
confidence intervals,
210-11, 211, 218
around a proportion,
219, 219, 220, 222,
238, 238, 284
around odds ratios,
calculation from
logistic regression
output, 260
negative predictive
value (NPV), 281
positive predictive
value (PPV), 281
differences for paired
categorical data,
237, 238, 239, 239
importing data into SPSS,
10-11
regression line
coordinates
calculation, 177,
177, 180, 181
ROC curve clinical cut-off
points, 291, 292-3,
293
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4,7, 25-7
extreme values, 32-3, 35

factorial ANOVA, 108,

129-40

between-group
differences, 130

cells, 129-30, 130, 131

combining groups,
133
size, 131, 132, 133,

134, 140

Fvalues, 131, 136, 140

factor/covariate
interactions, 130,
136, 138

fixed factors, 130, 131

marginal means, 138-9,
139

normality checks, 134-5

P values, 140

random factors, 130

reporting results, 139,
139-40

running analysis, 135-9

summary means, 133-4

three-way ANOVA model,
131-9

variance ratios, 134, 140

within-group differences,

130

false negative error see type
II error

false negatives, 282-3, 283,
284

false positive error see type I
error

false positives, 282-3, 283,
284

Fisher’s exact test, 207,
207-8

follow-up studies, 2, 55, 277
frequency, 202, 203, 206
histograms, 202, 204

Games Howell test, 123
generalisability, 19, 24, 26,
49, 65
graphs, 74
SigmaPlot, 74, 76-7, 77,
77,78, 211-12
summary statistics of
continuous
variables, 105
trend test
(linear-by-linear
associations)
presentation, 230,
231

histograms, 34, 35, 36, 38,
40, 80, 81
Cook’s distances, 152, 153
frequencies for categorical
variables, 202, 204
Mahalanobis distances,
194, 194
normality plots, 88-9, 89,
151
one-way ANOVA, 114,
116, 116-17, 117
regression model
residuals, 192, 193
percentages, 212, 212
transformed data, 46, 47
homogeneity of variance,
53,80, 114
analysis of covariance
(ANCOVA), 144,
145, 147-8
analysis of variance
(ANOVA), 110,
111
one-way ANOVA, 114,
115, 121
two independent groups,
56, 61, 61, 65, 80
two-sample f-test, 53, 56
homoscedasticity
analysis of variance
(ANOVA), 111
regression models, 192

incidence, 206
independent samples ¢-test
see t-test, two
sample
individual participants
data entry, 1, 2
ethics guidelines, 11
follow-up data, 2
inter-observer (between-
observer)
variation, 272
inter-quartile range, 35, 49,
50, 93, 95
interactions
analysis of covariance
(ANCOVA), 144,
146-7
factorial ANOVA, 130,
136, 138
multiple linear regression,
186-9, 187, 187,
188, 189
interval scale, 4
intervening variables, 3, 3
intra-class correlation
coefficient (ICC),
275-6

Index 319

intra-observer
(within-observer)
variation, 272

Kalplan—-Meier survival
analysis, 299-301
assumptions, 297
Kalplan—Meier (survival)
curves, 303, 3034
kappa, 268, 269-70, 271
Kendall’s t (tau), 158
Kendall’s t (tau)-b, 158,
160, 161, 274
Kolmogorov-Smirnov test,
33-4, 42, 46, 61,
62, 80, 115, 116,
150
kurtosis, 24, 25, 27, 31-2,
34, 59, 61, 65, 68,
80, 115
critical values, 32
transformed data, 46

least significant difference
(LSD) test, 123,
124, 125, 125
Levene’s test of equality of
variance, 53, 68, 69,
70, 100, 101, 145
leverage, 15
Cook’s distances, 150-1,
152, 153
multivariate outliers, 150,
151-2,152,192,194
likelihood ratio, 278, 282,
285-6
advantages of use, 286
calculation, 282, 285
confidence intervals, 286
ROC curves, 287
Lillefors significance
correction, 33-4,
42
limits of agreement, 273, 276
linear-by-linear test, 207,
208
Log Rank test, 301, 302
logarithmic transformation,
44
logistic regression, 255-9
assumptions, 253—4
collinearity, 254, 255
confounding, 257-9
odds ratios, 245, 252-255,
256, 257
confidence intervals
calculation,
259-60, 260
R square statistics, 255,
256, 257
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logistic regression
(Continued )
sample size, 254
sequential model
building, 254-5
longitudinal studies, 86
missing values, 14

McNemar'’s test, 235,
236
assumptions, 236
crosstabulations, 237,
238-9
Mahalanobis distances, 15,
152, 194, 194
Mann-Whitney U test, 78,
80-1
assumptions, 78
reporting results, 81, 84
mean, 28, 29, 29, 30, 30, 35,
43, 49, 50
comparison from two
independent
groups, 51-2, 56
geometric, 46
logarithmic, 46
transformed data, 44, 45,
46
mean square, 122
measurement errors, 272-5
between-observer
(inter-observer)
variation, 272
critical appraisal, 277
differences-vs-means plot,
273-4, 274
error range, 275
estimation, 272-5
limits of agreement, 273
within-observer
(intra-observer)
variation, 272
within-subject variation,
272
measurement scales, 4
median, 28, 29, 29, 30, 30,
49, 50
box plots, 35
interquartile range, 50
non-parametric paired
test, 93, 95
transformed data, 44, 45
meta-analysis, 244
missing values, 12-15, 26,
44
documentation, 13
non-random occurrence,
14
prevention, 14
recoding, 12-13, 14

replacement with
estimated values,
14-15
Monte Carlo method, 215,
216
multiple linear regression,
169-71
categorical explanatory
variables
dummy (indicator)
variables, 181-3
multi-level categorical
variables, 1814
plotting regression line,
177, 177-9, 178,
178, 180-1, 181,
182
with two continuous
and two categorical
variables, 184-6
with two categorical
variables, 179-80
collinearity, 172-3, 185,
186, 189
removal by centreing,
189
effect size estimation,
172
interactions, 186-9, 187,
188, 189
interaction term
computation, 187,
188, 189
model of best fit, 189
sample size, 171-2
sequential (hierarchical)
method, 171, 174,
176-7
standard method, 170-1
stepwise method, 171
testing for group
differences, 173-7

Nagelkerke R square, 255,
256, 257
negative predictive value
(NPV), 278,
279-82
calculation, 279
confidence intervals, 281,
281
crosstabulation, 280
limitations in
interpretation, 281
nominal scale, 4
non-linear regression,
195-8
collinearity, 198, 198
curve fit procedure, 196,
196

non-normal data, 84
rank based
non-parametric
tests, 78, 80
non-parametric tests, 24,
25,43, 78, 80
paired data, 92-5
parametric equivalents,
19
normal distribution, 24,
28-31,43,115,116
critical values, 32, 32
estimated 95% range,
30-1, 31
plots see normality plots
properties, 28, 29
statistical tests, 33-4, 42,
43, 46, 80
normal P-P plot, 192, 193
normal Q-Q plot, 34, 35, 36,
38,40,82, 117, 118,
119
detrended, 35, 37, 39, 41,
48
transformed data, 47, 48
normality checks, 30, 31-2,
32, 80, 83, 88,
110-11, 114
ANOVA/ANCOVA
residuals, 144,
149-50
critical appraisal, 49,
49-50
factorial ANOVA, 134-5
transformed data, 46,
96-7
two sample ¢-test, 52
normality plots, 34-5,
36-41, 43, 80, 81,
82, 88-9, 89
one-way ANOVA, 114,
116, 116-17, 117
regression model
residuals, 190, 192,
193
transformed data, 46,
47-8
baseline measurements,
standardising
differences, 96,
96-7
number needed to be
exposed for one
addional person to
be harmed
(NNEH), 265
number needed to treat
(NNT), 232-4
numbers, reporting, 19-20,
20-1



odds, 242
odds ratios, 241-2, 244-62
adjusted, 245, 252, 253
calculation, 242, 242,
244, 247
chi-square tests, 246, 247,
248, 249
coding of variables, 242,
242-3
confidence intervals, 247,
248
conversion from risk to
protection, 251,
252
crosstabulations, 244,
247, 248, 249
inter-related risk factors
(confounding),
252, 253, 257, 259,
260
logistic regression, 245,
252-5, 256, 257
confidence intervals
calculation,
259-60, 260
plotting results, 261-2, 262
practical importance, 245
protective, 250-1
relative risk comparison,
243, 244
reporting results, 249,
249-50, 260, 260
study design, 241, 243-4
unadjusted, 245
one-tailed tests, 52-3, 86, 88
one-way ANOVA, 108,
111-29
between-group variance,
112-13
cell size, 113, 114
characteristics of data set,
120, 120
model, 111, 111
Fvalues, 113, 114, 122
factors, 111
group/grand means, 111,
112, 112
homogeneity of variances,
114, 115, 121
normal distribution
checks, 114,
115-18, 116, 117,

118, 119

planned a priori tests, 122,
123

post-hoc tests, 122-8,
123, 124, 129

reporting results, 128-9,
129

running analysis, 120-2

summary statistics, 121
trend test, 128
within-group variance
(residual/error
values), 112-13
optimal diagnostic point,
291
ordinal scale, 4
outcome variables, 3, 3, 4, 7
outliers, 6, 15-16, 24, 25,
32,78, 111, 118,
120
analysis of covariance
(ANCOVA), 144,
150-4, 153
box plots, 35
factorial ANOVA, 134-5
histograms, 34
multivariate, 15
Cook’s distances,
150-1, 152, 153
Mahalanobis distances,
194-5
regression models, 192
one-way ANOVA, 111,
118, 120
univariate, 15, 35, 56
changing to less
extreme score, 62,
64
excluded from analysis,
65
output formats, 21-2

P values, 16
confidence intervals
relationship, 72,
74
tests of normality, 34, 42,
46, 80
paired data
baseline measurements,
standardising
differences, 95-7
categorical variables,
235-9, 238
assumptions, 236
McNemar'’s test see
McNemar’s test
presentation of results,
239, 239
summary statistics, 237,
238
non-parametric test see
Wilcoxon signed
rank test
paired ¢-test see t-test,
paired
study designs, 86
paired ¢-test see t-test, paired
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parametric tests, 24, 25
non-parametric
equivalents, 19
selection criteria, 34, 43
summary statistics, 25
partial eta squared, 146,
154
Pearson’s chi-square, 207,
208, 210, 214, 229,
247, 248
Pearson’s correlation
coefficient (r), 157,
158, 160, 161, 167,
185, 272
assumptions, 157
using selected sample,
161-2
percentages, 202, 203, 205,
206
confidence intervals,
210-11, 212, 219,
219, 223, 224
around zero
percentage, 235
reporting results, 211,
220, 220
point prevalence, 206
pooled standard deviation,
54
positive likelihood ratio,
294
positive predictive value
(PPV), 278, 279-82
calculation, 279
confidence intervals, 281,
281
crosstabulation, 280
limitations in
interpretation, 281
power
calculation, 55
missing values effect, 14,
15
parametric tests, 25
sample sizes, 55
pre/post studies, 86, 235-7
prevalence, 206
proportions, 202, 206,
219-20
confidence intervals,
210-11, 211, 238,
239
protective odds ratios, 250-1
conversion from
protection to risk,
251, 252

quartiles, 28
questionnaires, 267, 269
see also repeatability
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quintiles, 224, 225

chi-square test, 226, 227,
228

chi-square trend test
(linear-by-linear
associations),
228-9

presentation of results,

229-30, 230, 231

rank based tests, 25, 78, 80
rates, 202
frequency tables, 203
ratio scale, 4
receiver operating
charateristic (ROC)
curves, 278,
286-94, 290
area under the curve,
289-90
cut-off points, 290-1, 291,
294
diagnostic tests, 293
general optimal test
(optimal diagnostic
point), 291, 292-3,
293
screening tests, 293—4
reporting results, 294,
294
scatterplots of values,
287, 288
reciprocal transformation, 44
regression models, 162-201
assumptions, 164-6
testing, 166, 190-1, 192
coefficient of
determination (R
square value), 167
coefficients, 150, 167,
168
collinearity, 172-3, 173
critical appraisal, 200-1
Fvalue, 163, 167
Mahalanobis distances,
194, 194
mean square, 163
multiple correlation
coefficient (R
value), 167, 173
multiple linear regression,
169-71
non-linear see non-linear
regression
outliers/remote points,
192, 194-5
plotting regression line,
168-9, 169
regression equation
formulation, 166—-8

residuals, 190-2

sample size, 171-2

t value, 168

validation, 195

variables, 164, 170, 172

binary categorical, 174

variation about the
regression (residual
variation), 163, 164

variation due to the
regression, 163,
164

relative risk, 241-2, 262-5

calculation, 242, 242, 262

coding of variables, 242,
242-3

crosstabulation, 263

odds ratios comparison,
243, 244

reporting results, 249

study design, 241, 243

repeatability, 267-75

assumptions for
measurement, 267

categorical data, 268-71

continuous
measurements see
measurement
errors

critical appraisal, 276-7

crosstabulations, 269,
270, 271

intra-class correlation,
275-6

kappa, 268, 269-70, 271

percentage of positive
responses, 271

proportion in agreemant,
271

reporting results, 271, 271

symmetric measures, 269,
270, 271

repeated data, 235

kappa, 268, 269-70, 271
paired t-test, 86-92
McNemar'’s, 236

reporting numbers, 19-20,

20-1

residuals

analysis of covariance
(ANCOVA), 140,
144, 148, 148-50,
151

analysis of variance
(ANOVA), 148,
148-50, 151

regression models, 190-2,
193

risk statistics, 241-66

calculation tables, 242

coding of variables, 242,
242-3

critical appraisal, 265-6

study design, 241, 243,
2434

sample size, 19, 43
effect size calculation for
two groups, 54, 55
paired t-tests, 87
regression models, 171-2
small, 25, 30, 43, 78
statistically significant
effects, 56
two sample t-test, 52, 55
scale variables, 4
Scheffe test, 123
screening tests, 290, 293-4
selecting cases, 161
sensitivity, 278, 282-5
advantages of use, 282
calculation, 282
confidence intervals, 284,
284-5
crosstabulation, 282, 283,
284
ROC curves, 286, 289
cut-off points, 290, 291,
291, 293
sample size, 285
screening tests, 290, 2934
SpPin and SnNout, 283
Shapiro-Wilk test, 33—4, 46,
61, 62, 80, 115,
116, 150
SigmaPlot
bar charts, 105-6, 106,
211, 230
multiple bars, 223
percentages, 211-12
Bonferroni test, 126
differences-vs-means plot,
273
dot plots, 74, 76-7, 77
horizontal, 77, 78
least significant difference
(LSD) test, 125, 125
odds ratios, 261
regressions, 177, 178, 178,
180, 181
skewed distribution, 28, 78
features, 28-9, 29
transformation to
normality, 44—6
skewness, 24, 25, 27, 31-2,
34, 50, 59, 61, 68,
80, 115
box plots, 35
categorisation of
variables, 222



critical values, 32

detection, 30, 31

outliers/extreme values,
32

transformed data, 45-6

SnNout, 283

Spearman’s p (rho), 157-8,

161

specificity, 278, 282-5

advantages of use, 282

calculation, 282

confidence intervals, 284,
284-5

crosstabulation, 282, 283,
284

diagnostic tests, 290, 293

ROC curves, 286, 289

cut-off points, 290, 291,

291, 293

sample size, 285

SnNout, 283

SpPin, 283

SpPin, 283

spread, 24

regression model
residuals, 192, 193

see also variance

SPSS, 225, 226

analysis of covariance
(ANCOVA), 141-2,
143, 144-5

baseline measurements,
standardising
differences, 95-6

categorisation of
variables, 224

chi-square test, 208-9

clustered bar charts, 230

correlation coefficients,
159-60

for subset of data, 161

data analysis
documentation,
8-9, 10

Data View, 1, 2

database creation, 1-2

descriptive statistics,
25-6, 27-8, 56, 57

diagnostic statistics, 280

Dialog Recall, 13-14

dot plots with error bars,
74, 75

eta squared, 122

exporting data into word
processor package,
9,10

factorial ANOVA, 129,
132, 133, 135-6

frequencies for categorical
variables, 202, 203

frequency histograms, 88
frequency tables, 113
help commands, 22
importing data from
Access, 10
importing data from
Excel, 10-11
Independent Samples
Test, 100, 101
interaction term
computation, 188
intra-class correlation
coefficient (ICC),
275-6
Levene’s test for equality
of variance, 53
logistic regression model
building, 255-6
McNemar’s test, 236
Mann-Whitney U test,
80-1, 83
multivariate outliers, 152
non-linear regression, 195
non-parametric paired
test (Wilcoxon
signed rank test),
92-3
non-parametric test for
two independent
groups, 81, 83
normal distribution, 31,
32-3
tests of normality, 33-4,
42, 46
normality plots, 34-5,
3641
one-sample #-test, 97-8
one-way ANOVA, 120-1
output formats, 21-2
Paired Samples Test, 91
paired ¢-test, 89, 90-1
quintiles statistics,
225-6
receiver operating
charateristic (ROC)
curves, 289
regression estimates,
166-7
regression models
assumptions tests,
190-1
generation with binary
explanatory
variable, 174-5,
dummy variables, 182
generation with
multilevel
categorical
variables 184-5
scatter plots, 168
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relative risk, 263

repeatability
measurement, 269,
275-6

risk factor
crosstabulations,
245, 246

risk statistics
computation, 242,
243, 245-7

scatterplots, 287

between variables, 158

Split File to compare
means, 100, 102

summary mean values,
103, 104

survival curves, 299, 304

transformation of
variables, 44, 88

transformed data
documentation, 45

two-sample ¢-test, 68-71,
73, 99

Variable View, 1, 2, 4, 13,
45, 96, 174, 217,
250

square root transformation,

44

standard deviation, 49

computation from
standard error, 49

effect size calculation, 53,
54, 54

estimation of variance,
100

pooled, 54

standard error, 49

computation from
standard deviation,
49

conversion to confidence
interval, 211

Student-Newman-Keuls

(SNK) test, 123

Student’s t-test see t-test,

two sample

study handbook, 6, 7
summary statistics, 25

reporting rules, 20

survival analysis, 296-304

assumptions, 297-8
Breslow test, 301, 302
censored observations,
297, 298
cohort studies, 296-7, 298
critical appraisal, 304
event definition, 298
inclusion criteria, 298
interval censored data,
297
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survival analysis (Continued )
Log Rank test, 301, 302
mean survival time, 301
reporting results, 302, 302
start points, 298
summary statistics, 301
survival curves
(Kalplan-Meier
curves), 303, 303-4
Tarone-Ware test, 301,
302
time measurement
precision, 297
survival curves
(Kalplan—-Meier
curves), 303, 303-4

t-test, paired, 55, 86—-92
assumptions, 87
confidence intervals, 91
P values, 91-2
sample size, 87
t-value, 91

t-test, single-sample, 86,

97-106
assumptions, 97
P values, 98, 103, 105
presentation of results,
100, 102-3, 105,
105
summary statistics, 98,
99, 100, 102, 103
t-value, 98
t-test, two-sample, 51-2,
68-71, 87, 99, 113
assumptions, 52, 56, 68
confidence intervals,
71-3, 74
effect size calculation,
53-4, 54, 56
homogeneity of variance,
53, 56
multiple tests, 111-12
normal distribtuion
check, 69
one-/two-tailed tests,
52-3, 53
reporting results
graphs, 74, 75
tables, 73, 73
study design, 55
t-value, 56, 68

t-value, 56, 68

Tarone-Ware test, 301, 302

test selection, 16-19
decision-making, 43

distribution of variable,
24, 29
one or more outcome
variables and more
than one
explanatory
variable, 18
one outcome variable and
one explanatory
variable, 17
one outcome variable
only, 16
tests of agreement, 267-77
tolerance, 173, 173, 185,
192
transformation, 43
skewed distribution,
44-6, 47-8
true negatives, 282-3, 283,
284
likelihood ratio, 286
ROC curves, 286-7, 289
study design, 285
true positives, 282-3, 283,
284
likelihood ratio, 286
ROC curves, 286-7, 289
study design, 285
Tukey’s honestly significant
difference (HSD),
123
two independent groups,
51-85
box plots, 62, 63, 65, 66,
67
comparing means, 51-2
descriptive statistics, 56,
57-9, 79
effect size calculation,
53-4, 54, 56, 61, 61
histograms, 62, 63, 65, 66,
67
homogeneity of variance,
56, 61, 61, 65, 80
Mann-Whitney U test see
Mann-Whitney U
test
normal distribution
check, 56, 59, 60,
61-2, 68, 68, 80
study design, 55
two-sample t-test see
t-test, two sample
unequal sample sizes, 55
univariate outliers, 56,
62, 64-5

two-tailed tests, 52-3, 53,
55, 86, 88
type L error, 19, 20, 112, 114
multiple linear regression,
172
one-way ANOVA, 122
type Il error, 19, 20, 55,
111,114
one-way ANOVA, 123

Variable View, 1, 2, 13
categorised variables, 225,
226
measurement scales, 4
re-coded values, 174, 217,
250
transformed data, 45,
96
variables
categorical, 4, 5
classification, 3, 3-5, 5
continuous, 4, 5
data entry, 2
distribution, 5, 6
explanatory, 3, 3, 4, 7
intervening, 3, 3
measurement scale, 4
names, 1, 3
outcome, 3, 3, 4, 7
range, 5, 6
types, 1, 3, 3-5
variance
estimation from standard
deviation, 100
homogeneity testing see
homogeneity of
variance
variance inflation factor
(VIF), 172-3, 173

Wald statistic, 256, 257
weighted kappa, 268
Wilcoxon matched pairs test
see Wilcoxon
signed rank test
Wilcoxon signed rank test,
92-5
assumptions, 92
P values, 94, 95
reporting results, 95
summary statistics, 93—4
Wilcoxon W, 78, 81
within-subject variation,
272

z scores, 62, 65, 95, 184
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