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PREFACE

The investigation of structures and properties of nucleic acids has fascinated and
challenged researchers ever since the discovery of their relation to genes. Extensive
studies have been carried out on these species to unravel the mystery behind the
selection of these molecules as genetic material by nature and to explain various
physico-chemical properties. However, a vast pool of information is yet to be
discovered. DNA constituents, mainly aromatic purine and pyrimidine bases, absorb
ultraviolet irradiation efficiently, but the absorbed energy is quickly released in the
form of ultrafast nonradiative decays. Recently impressive progress has been made
towards the understanding of photophysical and photochemical properties of DNA
fragments.

It has been established that the singlet excited state life-times of nucleic acid bases
are in the sub-picosecond range. These state-of-the-art experiments became feasible
due to the advancement of electronics technologies, the advent of femtosecond lasers
and the development of advanced methodologies to vaporize volatile compounds
like the nucleic acid bases in order to trap them in supersonic jet expansion.
Theoretical studies on DNA fragments have revealed valuable and subtle details,
many of which are still not accessible by experiments. For example, ground state
geometries of nucleic acid bases were determined experimentally using X-ray
crystallography and neutron diffraction a long time ago, but quantitative infor-
mation about excited state geometries of such complex molecules using experi-
mental techniques is still not possible. Only limited information (e.g. nonplanarity)
based on resonance Raman spectroscopy and the diffuseness of R2PI spectra with
regard to the excited state geometries has been obtained. On the other hand,
using theoretical methods, one can predict excited state geometries of complex
molecules (within the limits of the available computational resources), which
indicate that DNA bases are generally nonplanar in the singlet electronic excited
states.

However, it should be noted that routine computation of excited state properties
at the ab initio level has become feasible only recently due to the impressive
development of computer hardware and computational algorithms. Applicability
of theoretical methods to investigations of the ground state properties is relatively
much simpler than to excited states. Usually single-reference methods are suitable

iX



X Preface

for studying ground state properties, although dynamical electron correlation has to
be included for chemical accuracy. To study excited states of molecules, generally
multiconfigurational methods are needed. This is particularly important in exploring
conical intersections where potential energy surfaces have multiconfigurational
nature. Further, to obtain spectral accuracy, dynamic correlation is also necessary.
These requirements considerably hamper an extensive investigation of excited state
phenomena.

This volume covers exciting theoretical and experimental developments in the
area of radiation induced phenomena in nucleic acid fragments and selected related
species. It mainly focuses on the effects of ultraviolet radiation and low-energy
electrons on DNA fragments that include nucleic acid bases and nucleosides.
These contributions have been delivered by experts in a wide range of sub-
fields extending from ab initio theoretical developments, excited state molecular
dynamics simulations, experiments unraveling ultra-fast excited state phenomena,
nonradiative deactivation mechanisms and low energy electron induced DNA
damage.

The first chapter, written by the editors of this book, is devoted to a brief intro-
duction of UV and low energy electron induced phenomena in DNA fragments. It
also provides a brief synopsis of all contributions in the volume which can serve as
a guide for less experienced readers. The second chapter, contributed by S. Hirata
et al., provides a lucid presentation of single-reference methods currently in use for
excited state calculations and discusses their advantages, weaknesses and strategies
for further improvements. This chapter is followed by contributions dealing with
highly electron correlated methods such as different variants of the coupled-cluster
method by J.D. Watts and the Symmetry-Adapted Cluster-Configuration Interaction
(SAC-CI) method by J. Hasegawa and H. Nakatsuji. B.O. Roos has been instru-
mental in the development of CASSCF and CASPT2 multiconfiguration methods
and he has contributed the next chapter. It is followed by a chapter written by M.
Abe et al. dealing with the development of relativistic multireference perturbation
theory. R. Cammi and B. Mennucci, who are among leading researchers involved
in the development and implementation of different solvation models, discuss the
PCM solvation model and its application to electronic excited states of molecular
system in Chapter 7.

The next three chapters deal with the developments and applications of excited
state molecular dynamics techniques for studying nucleic acid fragments and model
systems. M. Barbatti et al. have discussed nonadiabatic excited state dynamics
investigation of aromatic heterocycles. B.E. Billinghurst, S.A. Oladepo and G.R.
Loppnow have discussed the application of Raman and resonance Raman spectro-
scopic methods for predicting the excited state structural dynamics of nucleic acid
components. On the other hand, N.L. Doltsinis et al. have discussed the results
of ab initio molecular dynamics simulations unraveling the nonradiative decay of
nucleic acid fragments. We also have three contributions from experimentalists
who have performed seminal work using advanced technologies and spectroscopic
methods to study excited state structures and properties of nucleic acid bases, base
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pairs and related species. These contributions also discuss the principles of different
experimental methodologies used in the investigations. W. Kong, Y. He and C.
Wu have discussed different deactivation pathways of pyrimidine bases both in
the gas phase and in solution. M.S. de Vries has discussed results of advanced
spectroscopic investigations and applications of theoretical methods in exploring
the structural information from the complex spectra of nucleic acid bases and base
pairs. Guanine is the nucleic acid base that has the largest number of tautomers
detected in different environments. Interestingly, the recent reassignment of the
R2PI spectra shows the existence of relatively less stable imino tautomers in the jet-
cooled supersonic beam. The contribution from M. Mons, I. Dimicoli and F. Piuzzi
provides a comprehensive description of experimental and theoretical analysis of
guanine tautomerism in the gas phase. This chapter is followed by a brief analysis
of electronic transitions, excited state geometries, hydration and proton transfer in
DNA bases and electronic excited state structures of thio analogs of bases presented
by the editors.

Recently, there have been impressive activities focusing on understanding the
ultrafast nonradiative processes in nucleic acid bases and base pairs using high level
theoretical methods. This volume presents three contributions dealing with up-to-
date information on different possible mechanisms for the ultrafast deactivations
of DNA fragments. A comprehensive analysis of experimental and theoretical
results explaining the nonradiative deactivations and the prominent role played
by biradical states of DNA bases, donor-acceptor species and other biological
systems is the focus of the contribution from M.Z. Zgierski, T. Fuziwara and E.C.
Lim. On the other hand, an application of highly correlated methods unraveling
nonradiative decay mechanisms of DNA bases and base pairs, singlet-triplet crossing
and photodimerization is discussed by L. Serrano-Andrés and M. Merchan. L.
Blancafort, M.J. Bearpark and M.A. Robb discuss the results of highly electron
correlated methods in the exploration of different possible nonradiative deactivation
routes in cytosine.

The last part of the book discusses low energy electron induced DNA damage
and the possible mechanisms of such phenomena. D.M. Close discusses experi-
mental methods and theoretical analysis of radical formation of the DNA fragments.
L. Sanche, who discovered that low energy electrons can also produce DNA
strand breaks, presents a comprehensive analysis of different experiments dealing
with low energy electron induced DNA damage. Theoretical analysis of different
possible mechanisms for low energy electron induced DNA damage is presented
by A. Kumar and M.D. Sevilla. The last chapter, contributed by J. Rak et
al., presents a lucid analysis of experimental and theoretical results obtained
from the study of electron induced DNA damage including different possible
pathways.

With a great pleasure, we take this opportunity to thank the contributing authors
for devoting their time and hard work to enable us to complete this volume. We
believe that with excellent contributions from all the authors, this book provides
a common platform for both theoreticians and experimentalists. We hope that it
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will be useful not only for those involved in this area, but also for others who are
planning to launch research on excited state properties of complex molecules. As
usual, graduate students are also our important target audience. We are grateful to
the editors at Springer for excellent cooperation and to our families and friends for
their kind support.

Manoj K. Shukla, Jerzy Leszczynski
Jackson State University, Mississippi, USA
October 2007



CHAPTER 1

RADIATION INDUCED MOLECULAR PHENOMENA
IN NUCLEIC ACIDS: A BRIEF INTRODUCTION

MANOIJ K. SHUKLA AND JERZY LESZCZYNSKI*

Computational Center for Molecular Structure and Interactions, Department of Chemistry, Jackson
State University, Jackson, MS 39217, USA

Abstract: A brief elucidation of focus of the current volume is provided. It has been pointed out
that a cohrent strategy incorporating both theoretical and experimental approaches is
needed to study the molecular building blocks of nucleic acids. These investigations will
help enriching our understanding of behavior of genetic materials. A brief description
of available theoretical and experimental methods in exploring intrinsic and extrinsic
properties of genetic molecules and the essence of the book is presented in this intro-
ductory chapter

Keywords:  Nucleic Acid Bases, Ultrafast Nonradiative Deactivation, Excited State, Radiation Induced
DNA Damage, Proton Transfer

1.1. INTRODUCTION

Deoxyribonucleic acid (DNA) is the genetic carrier in the living organisms. There
are three main components of DNA: (1) purine (adenine, guanine) and pyrimidine
(thymine, cytosine) bases, (2) deoxyribose sugar and (3) phosphate group. The
hydrogen bonds between purine and pyrimidine bases forming a specific sequence
are the key to genetic information and heredity. The first discovery that DNA is the
genetic carrier was made by Avery et al. [1] in 1944. In 1953, three consecutive
research papers were published in Nature that dealt with X-ray crystallography of
DNA [2-4]. The work of Wilkins et al. [3] and that of Franklin and Gosling [4] based
on X-ray crystallography of fibrous DNA demonstrated the helical nature of DNA
while that of Watson and Crick [2] revealed the famous double helical structure
of DNA involving the base pairings now called Watson-Crick (WC) base pairing.
These and other vital studies relating to nature, structures and functions of genetic

* Corresponding author, e-mail: jerzy @ccmsi.us
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molecules have opened the new era of biological science called molecular biology.
Unprecedented progress has been made in the ever spreading and diversifying area
of molecular biology that has a close relationship with living systems. For example,
both the Human Genome Project and the stem cell research offer very promising
ways to deal with lethal diseases and in vivo growing of different tissues. However,
they also come with a price tag in the form of potential for misuse against the
human kind.

In spite of these developments, the age old question as to what is life remains
unanswered. What is the origin of life? Did it originate on the earth itself, was
it a spontaneous process or was it transferred to earth from some other planet
or other universe? A variety of simple molecules and organic species have been
identified in meteorites and comets. For example, water, carbon mono and dioxides,
formaldehyde, nitrogen, hydrogen cyanide, hydrogen sulfide and methane have
been detected in cometary comas [5]. The purine base adenine has been observed in
asteroids and comets. Thus, a question arises about the possible prebiotic synthetic
function of nucleic acid bases. It has been demonstrated experimentally that under
certain conditions adenine can be formed from the pentamerization of HCN in
the solid, liquid and gas phases [6, 7]. The presence of HCN polymers has been
speculated on Jupiter and this was based on the emergance of the brown-orange
color as the consequence of impacts of comet P/Shoemaker-Levy 9 on the planet
in 1994 [8]. The presence of the HCN polymer has also been speculated to be
responsible for the coloration of the Saturn. The existence of significant amounts
of HCN and HNC molecules in the interstellar space is well known [9]. Tennekes
et al. [10] have recently measured the distribution of these isomers (HCN and
HNC) in the protostellar dust core. Smith et al. [11] have discussed the formation
of small HCN-oligomers in the interstellar clouds. Glaser et al. [12] have recently
theoretically studied the pyrimidine ring formation of monocyclic HCN-pentamers
to understand prebiotic adenine synthesis. It has been found that the key steps
proceed without any catalysts producing the purine ring under photolytic conditions
and no activation barrier was involved.

Life on earth probably evolved under extreme harsh conditions where there
were different types of irradiation involved. As we know, the nucleic acid bases
absorb ultraviolet (UV) irradiation efficiently, but the quantum yield of radiative
emission is extremely poor [13-15]. The major part of the energy is released in the
form of ultrafast nonradiative decays. Recent high level experimental investigations
suggested that the electronic singlet excited state lifetimes of nucleic acid bases
are in the sub-picosecond order and thus very short [15]. The principle of survival-
of-the-fittest prevails in nature. Nature has adopted an efficient mechanism to
release extra energy attained due to excitation of the nucleic acid bases under UV-
irradiation through ultrafast nonradiative internal conversion relaxation processes.
Since photoreaction requires longer excited state lifetime, it can be argued that
nature intelligently designed these species as a carrier of genetic information. Here
we would like to point out that energetically the most stable species are not always
biologically important. For example, the Watson-Crick adenine-thymine (AT) base
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pair is not the most stable among different tautomeric structures, but it is biologically
the most important one. The importance of WC pairing over the other types is
also evident from the fact that these structures offer the ultrafast nonradiative
deactivation paths on electronic excitations [16].

We all are well aware of the fact that ionizing and UV-irradiation can be very
dangerous to living species. Alteration in DNA may lead to mutation which basically
is a permanent change in the base pair sequence of a gene that alters the amino
acid sequence of the protein encoded by it. The exact cause for a mutation is not
known, but several factors like environment, irradiation may contribute towards
such phenomena. It has long been believed that proton transfer in base pairs may
lead to mispairing of bases and thus can cause mutation [17]. Fortunately, the
number of minor tautomers that are possible in free nucleic acid bases is reduced
in nucleic acid polymers due to the presence of sugar at the N9 site of purines
and the N1 site of pyrimidines. Therefore, the possible tautomerism in nucleic
acid polymers is restricted to the keto-enol and amino-imino forms of bases. It
has been shown that the presence of a water molecule in the proton transfer
reaction path of the keto-enol tautomerization reaction of nucleic acid bases and
their analogous drastically reduces the barrier height of tautomerization [18, 19].
Further, the transition states of such water-assisted proton transfer reactions involve
a zwitterionic structure [19]. The transfer of a proton corresponding to the keto-
enol tautomerization of such hydrated species is characterized by a collective
process.

Theoretical investigations of proton transfer on model species predicted the
proton transfer barriers in the lowest singlet mm* excited state to be significantly
reduced with respect to the corresponding ground state values [20, 21]. However,
computational investigations on adenine, guanine and hypoxanthine on the other
hand suggest that proton transfer barrier height in the electronic lowest singlet
" excited state is significantly large indicating that the electronic excitation may
not facilitate the proton transfer in the bases [22-24]. The formation of thymine
dimer between the adjacent stacked bases is the most common UV-induced DNA
damage. Recent femtosecond time-resolved IR spectroscopic study on thymine
oligodeoxynucleotide (dT),; and thymidine 5’-monophosphate (TMP) suggested
the ultrafast (femtosecond time scale) nature of the thymine dimerization process
and that the formation of the dimer from the initially excited electronic singlet
Tm* state proceeds without any energy barrier [25]. However, a proper geometrical
orientation of the stacked pairs involved in the dimerization reaction is necessary
for such photodimer formation.

Different experimental and theoretical methods have long been used to unravel
the mystery behind the selection of DNA and constituents molecules (especially
nucleic acid bases) by nature as genetic material [13—15]. Due to complexity of the
problem it can be solved only by careful applications of both types of techniques
and their mutual interplay. In the next few sections, we provide a brief introduction
to the theoretical and experimental methods and their applications used in this
context that are discussed in detail in this volume.
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1.2. THEORETICAL METHODS

The electronic structure methods are based primarily on two basic approximations:
(1) Born-Oppenheimer approximation that separates the nuclear motion from the
electronic motion, and (2) Independent Particle approximation that allows one to
describe the total electronic wavefunction in the form of one electron wavefunc-
tions i.e. a Slater determinant [26]. Together with electron spin, this is known
as the Hartree-Fock (HF) approximation. The HF method can be of three types:
restricted Hartree-Fock (RHF), unrestricted Hartree-Fock (UHF) and restricted open
Hartree-Fock (ROHF). In the RHF method, which is used for the singlet spin
system, the same orbital spatial function is used for both electronic spins (o and
B). In the UHF method, electrons with o and 3 spins have different orbital spatial
functions. However, this kind of wavefunction treatment yields an error known as
spin contamination. In the case of ROHF method, for an open shell system paired
electron spins have the same orbital spatial function. One of the shortcomings of the
HF method is neglect of explicit electron correlation. Electron correlation is mainly
caused by the instantaneous interaction between electrons which is not treated in
an explicit way in the HF method. Therefore, several physical phenomena can not
be explained using the HF method, for example, the dissociation of molecules. The
deficiency of the HF method (RHF) at the dissociation limit of molecules can be
partly overcome in the UHF method. However, for a satisfactory result, a method
with electron correlation is necessary.

There are two types of electron correlation: static and dynamic. The static corre-
lation is related to the behavior of HF method at the dissociation limit of the
molecule and deals with the long range behavior of this approach. On the other
hand dynamic electron correlation is related to the electron repulsion term and is the
reciprocal function of a distance between two electrons and thus represents short
range phenomena. However, it should be noted that the electron correlation in the
HF method is included in the indirect manner by the consideration of an electronic
motion in an effective potential field due to the nuclei and the rest of the electrons
and due to the inclusion of electron spin. Therefore, despite the known short-
comings, HF method has been extensively used in chemical calculations and has
been quite successful for systems which are not extensive for electron correlation.

The correlation energy is defined as the energy difference between the HF
and exact nonrelativistic energy of a system. Electron correlation can be taken
into account by the method of configuration interaction (CI) or by the many-
body perturbation theory. The expansion of a molecular wavefunction in terms of
Slater determinants is called configuration interaction (CI). The deficiency of a HF
wavefunction in describing dissociation of a molecule can be largely corrected by
a small (limited) CI calculation. Such correlation is called as non-dynamical corre-
lation. The non-dynamical correlation can also be obtained using the application
of multi-configurational self-consistent field (MCSCF) method [27-30]. The best
molecular electronic wavefunction that can be calculated using a given basis set is
obtained by a full CI calculation. However, application of full CI for systems with
more than a few atoms is not yet possible. On the other hand, limiting the number of



Radiation Induced Molecular Phenomena in Nucleic Acids 5

configurations may result in a wavefunction that is not size consistent. For example,
the configuration interaction-singles (CIS) method adds only single excitations, CID
adds only double excitations, CISD adds both single and double excitations while
CISDT includes upto triple excitations to the HF determinant. In order to correct
the size-consistency problem in truncated CI methods, the Quadratic Configuration
Interaction (QCI) method has been developed. The different variants of the QCI
method are represented by QCISD, QCISD(T) and QCISDT(TQ) [31-33].

The Moller-Plesset perturbation theory is a popular and most extensively used
method to incorporate electron correlation to the HF theory [26, 34]. In this method
the HF Hamiltonian is treated in a perturbative way. Thus, the total Hamiltonian is
written as:

H=H,+\V

where Hj is the reference HF Hamiltonian and AV serves as a perurbation to the H,
term. The second order many body perturbation theory method (MBPT2) generally
known as the MP2 method is the most extensively used technique to treat electronic
correlation to HF wavefunction. The coupled-cluster (CC) theory represents a very
powerful method design to deal with the electron correlation problem. The CC
method was first introduced by Coester and Kummel in the study of electronic and
nuclear strucutre [35]. The equation for the coupled-cluster doubles (CCD) was
first derived by Cizek in 1966 [36]. Later this method was advanced by Bartlett
and coworkers [37, 38], Pople and coworkers [39] and other groups [40]. In the CC
method, the wavefunction is written in the form of exponential operator § = e d,,
where, s is the exact nonrelativistic ground state wavefunction, ¢, is the ground
state HF wavefunction and the operator €T is expresessed in the form of a Taylor
series expansion.

For the last 20 years, Density Functional Theory (DFT) has been very popular
computational method among chemists to predict structures and properties of
molecular systems [41-43]. The merit of the DFT method lies in its compa-
rable accuracy to that of the MP2 method, while it is much less computationally
demanding. However, it should be noted that the DFT method is not an ab initio
method in true sense since exchange parameters are empirically fitted. The original
assumption of the DFT method was derived by Hohenburg and Kohn while practical
application was developed by Kohn and Sham. In the DFT techniques the electron
density is expressed as a linear combination of basis functions. Determinant formed
from these functions is called Kohn-Sham orbitals. The electronic energy and ground
state molecular properties are computed from the ground state electronic density.
There are different variants of the DFT method such as X, method, local density
approximation (LDA) and local spin density approximation (LSDA). However,
the real progress of DFT began with the introduction of the nonlocal gradient
corrected functional. The B3LYP hybrid exchange-correlation functional is the most
widely used DFT variant which stands for Becke’s [44] three parameter exchange
functional combined with the Lee-Yang-Parr correlation functional [45]. However,
several limitations have been exposed with the DFT method, e.g. it can not be used
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to correctly predict dispersion energy. This limits its applications to a number of
important systems including those with the stacked configurations or complexes
with weak interactions.

As discussed earlier, the non-dynamical correlation problem can be solved by
using the multi-configurational self-consistent field (MCSCF) method [27-30]. The
MCSCF wavefunction is expressed in terms of a linear combination of several
configurations, that are referred to as configuration state functions (CSFs). Each
CSF differes with respect to the distribution of electrons in molecular orbitals which
are usually expressed in terms of the atomic orbitals. In the MCSCF method, both
the configuration mixing coefficients and MO expansion coefficients are optimized.
Generally HF wavefunctions are taken as the starting orbitals for MCSCF calcula-
tions. The complete active space self-consistent field (CASSCF) method represents
the popular MCSCF method used for highly accurate calculations of variety of
molecules. In the CASSCF method one divides orbitals into three parts: inactive,
active and secondary orbitals. The inactive orbitals are always doubly occupied,
while secondary orbitals are always unoccupied. Active orbitals consist of some
occupied and some virtual orbitals. A full CI is carried out within the active orbitals
known as the active space. The proper selection of appropriate orbitals in the active
space, depending upon the nature of a problem, is necessary for the CASSCF
calculation.

The problem of the inclusion of dynamic electron correlation correction to
CASSCF energies can be addressed using the multi-reference CI (MRCI) or a
perturbative level of the treatment [26]. In the MRCI calculation, first a MCSCF
wavefunction is obtained which is a linear combination of several CSFs known
as reference CSFs. New CSFs are then obtained by promoting electrons from the
occupied orbitals of the reference CSFs. The MRCI wavefunction is described by
a linear combination of new CSFs. Although, the MRCI method represents quite
accurate technique but is practical for only small molecules. The complete active
space second order perturbation theory (CASPT2) [28] is another method which
gives results of accuracy comparable to those of the MRCI method but with less
computational effort. In the CASPT2 method, the MCSCF wavefunction is taken as
the zeroth order function in applying the perturbation theory to provide a general-
ization of the MP theory. The CASSCF excitation energies are usually higher than
the experimental transition energies. The inclusion of dynamic electron correlation
to the CASSCF energies using CASPT2 method yields excitation energies which
have generally the accuracy of about 0.2 eV [27-30]. The second order multi-
reference Moller-Plesset perturbation (MRMP2) theory [46] and second-order multi-
configurational quasi-degenerate perturbation (MCQDPT?2) theory [47] methods are
also used to augment dynamic correlation to CASSCF energies. It should be noted
that when applied to only one state, the MCQDPT2 method is equivalent to MRMP2
approach.

There are several single reference methods to compute electronic transition
energies. Among them are configuration interaction-singles (CIS) [48], random-
phase approximation (RPA) [49, 50], equation—of-motion couple cluster (EOMCC)
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[32, 38], time-dependent density functional theory (TDDFT) [51-53] and symmetry
adopted-cluster configuration interaction (SAC-CI) [54] methods. The CIS method
is the simplest level of approximation of response methods to study excited states
and it does not take into account the effects of dynamic electron correlation. It
is often regarded as the HF analogue for excited states [48]. The excited state
wave function (W) is expressed as a linear combination of singly excited deter-
minants from some reference configuration, generally taken to be the converged
HF orbitals. The TDDFT method provides a reasonable description for electronic
valence excitation energies of complex molecular systems but it can not be used for
charge transfer states and also Rydberg excitation energies are revealed significantly
low. The EOMCC and SAC-CI methods on the other hand are computationally
expensive and most suitable for single reference problems.

The most accurate and especially appropriate for multiconfigurational problems
in excited states of polyatomic molecules are the multireference CI (MRCI) and
MCSCF/CASPT2 methods. However, the practical applicability of these methods
for excited state calculations is limited to small sized systems. This is especially
true for excited state geometry optimization. Thus it is not surprizing that theoretical
calculations for excited states of complex molecular systems like the nucleic acid
bases and base pairs are far less than those for the ground state properties. In fact,
theoretical calculations for excited states of these types of molecular systems at the
ab initio level using both single and multireference methods gained momentum only
recently with the advent of fast computers and advanced computational algorithms.
However, it should be noted that such calculations with bigger active space and
with sufficiently large basis sets including diffuse functions are still not feasible.
This problem is compounded when dealing with multidimensional excited state
potential energy surfaces including calculations of conical intersection between
different states in prediction of photophysical properties of complex molecules.

One of the objectives of the current volume is to provide a common platform for
theoreticians and experimentalists working on the photophysical and photochemical
aspects of genetically important molecules. It is obvious that such a task requires
detailed description and discussion of various theoretical approaches that could not
be given in our Introduction. Therefore the next chapter of this volume provides a
brief but lucid description of strengths and weaknesses of different single reference
methods used in the electronic structure calculations of excited states of molecules
and complexes. This chapter is followed by the description of different level of
coupled-cluster methods and the SAC-CI method, their applications and strategies
to obtain more elaborate description of electronic wavefunction and to increase
an accuracy of the method. We would like to mention that the coupled cluster
methods allow the computation of analytical gradients, but these techniques can
not be used for conical intersection problems due to the lack of multiconfigura-
tional character. As we pointed out earlier the multireference methods are steadily
becoming affordable for excited state calculations and the next two chapters discuss
the CASSCF/CASPT2 and relativistic multireference perturbation theory.
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There is one more vital aspect of studies on DNA fragments. Water is ubiquitous
for biological systems. Thus, it is imperative that reliable methods to study solvent
effects be developed and applied to different systems. Therefore, the next chapter is
devoted to the development, implementation and application of different solvation
models in the electronic excited state structure calculations.

Application of ab initio molecular dynamics methods to excited state problems
is still very challenging. However, it is steadily becoming an important tool
for investigating the photodynamical properties of aromatic heterocyclic systems.
Molecular dynamics methods for studying photoinduced excited state phenomena
are important, since excited state processes are time dependent. These methods can
be classified as adiabatic and nonadiabatic. In the adiabatic molecular dynamics,
the molecule under investigation is restricted to only one electronic state during the
complete trajectory. In the nonadiabatic molecular dynamics on the other hand, the
system under investigation jumps from one potential energy surface to another with
the help of suitable algorithms [55, 56]. Resonance Raman spectroscopy has been
used to investigate excited state structural dynamics of nucleic acid bases. In fact
the experimental evidence for the nonplanar excited state geometry of uracil comes
from a resonance Raman overtone spectrum of the compound studied by Chinski
et al. [57]. The next three chapters are devoted to the brief discussion of theoretical
development and application of molecular dynamics methods to the photophysical
properties of genetic molecules and related systems.

1.3. EXPERIMENTAL TECHNIQUES

Theoretical and experimental methods are complementary to each other. For
example, computational methods have suggested that the amino groups of nucleic
acid bases in the ground state are nonplanar [58]. However, experimental evidence
for amino group nonplanarity was obtained only recently when Dong and Miller [59]
measured the vibrational transition moment angles in adenine and three tautomers
of cytosine in helium droplets.

The ground state geometries of these molecules were determined long ago using
X-ray crystallographic and neutron diffraction techniques [60]. However, complete
and precise excited state geometries of such complex molecules cannot yet be
determined experimentally. Fortunately, some limited information can be obtained
in this respect experimentally. Experimental results that have also been validated
in recent theoretical studies have suggested nonplanar excited state geometries of
the nucleic acid bases [14, 15, 57, 61]. Certain theoretical studies have shown that
excited state ring geometries of some of these molecules are appreciably nonplanar
[62, 63].

For many years, different spectroscopic methods were used to study conforma-
tions of polynucleotides in different environments [64, 65]. Spectroscopy offers
most developed techniques for studying structural and functional properties of
varieties of molecules. Absorption spectroscopy is one of the oldest and most
common methods used in chemical science to elucidate molecular structures. Since



Radiation Induced Molecular Phenomena in Nucleic Acids 9

an absorption peak arises due to a vertical transition, knowledge concerning the
energy differences between the ground and the excited state lying vertically above
enables one to interpret absorption spectra.

An explanation of fluorescence and phosphorescence spectra requires knowledge
about the relaxed singlet and triplet excited states, respectively. Several low
temperature experiments on the nucleic acid bases and nucleotides in polar
solvents were previously carried out to obtain information on their excited
state properties [66, 67]. The first low temperature work on nucleic acids was
reported in 1960 [68], while the phosphorescence of nucleic acids was first
published for adenine derivatives in 1957 [69]. The first results on isolated
monomers were obtained in 1962 by Longworth [70] and in 1964 by Bersohn
and Isenberg [71]. Initially low temperature measurements were performed
using frozen aqueous solutions, but due to inherent problems associated with
such matrices, most subsequent investigations were made using polar glasses
such as ethylene or propylene glycols usually mixed with equal volumes of
water [66].

Our knowledge about the photophysical and photochemical properties of the
nucleic acid bases has been further enhanced by the impressive advancement
of different spectroscopic techniques such as laser induced fluorescence (LIF),
resonance-enhanced multiphoton ionization (REMPI), spectral hole burning (SHB)
and femtosecond time-resolved experimental techniques in the ultra low temper-
ature [15]. The supersonic expansion method has been used for decades
for cooling molecular samples in the gas phase [72]. However, for volatile
molecules like nucleic acid bases the formation of a vapor without dissoci-
ating the molecule under investigation was the main bottleneck. Fortunately,
this problem was solved by the development of the laser desorption technique
by Levy and coworkers [72] and improvements made by the group of de
Vries [73]. In this method, the sample is deposited on a graphite surface.
The surface is irradiated by a desorption laser (usually Nd:YAG) and in this
process heat is transferred from the graphite substrate to the deposited sample.
Thus a vapor of the sample is produced. It is now possible experimentally
(up to the certain extent) to measure excited state vibrational frequencies for
complex molecules in the gas phase at a very low temperature. Therefore,
together with theoretical data one can at least partially resolve the complex
spectral data particularly where different types of tautomers are contributing
towards it.

A few chapters of the current volume describe different state-of-the-art exper-
imental techniques used to unravel photophysical and photochemical properties
of complex molecular systems. These chapters are especially tailored for the
scholarly description of electronic excited state properties of nucleic acid bases
and related species predicting different tautomeric distributions and possible nonra-
diative deactivation processes. It is interesting to note that guanine provides particu-
larly challenging case to discuss. Recent theoretical and experimental investigations
show the existence of relatively significantly less stable imino tautomers in the
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supersonic jet-cooled beam, but the presence of the most stable keto tautomers has
not yet been satisfactorily worked out [74—78]. It has been argued that the efficient
ultrafast nonradiative deactivation prohibits the observation of the R2PI signal in the
spectra [78]. An impressive discussion of guanine tautomerism in different media
and in supersonic jet-cooled beam is provided in a separate chapter.

14. ELECTRONIC TRANSITIONS AND ULTRAFAST
NONRADIATIVE DECAYS

The fluorescence quantum yields for all the natural nucleic acid bases are very
low in aqueous solutions at room temperature, and most of the excitation energy
is lost through nonradiative decays [13—15]. On the other hand protonated purines
show fluorescence at the room temperature [79-81] and also after being absorbed
on the chromatographic paper [82]. Some substituted purines exhibit significantly
strong fluorescence and, therefore, are used to monitor the structures and dynamics
of nucleic acid polymers [83, 84]. 2-Aminopurine (2AP) is the classic example
in this context [85]. It has a fluorescence quantum yield of about 0.5, while for
adenine (6-aminopurine) it is only about 0.0003 [13, 86]. Further, compared to
adenine the lowest energy absorption band of 2AP is significantly red-shifted,
and this property of the molecule has been utilized as an excitation energy trap
[13, 85-87]. Different mechanisms have been suggested for ultrafast relaxation
processes in nucleic acid bases [14, 15]. Such deactivation mechanisms include
out-of-plane vibrational mode coupling of close lying electronic mw* and nw*
states due to the nonplanar geometries of the excited states [88, 89]. For the
large vibrational coupling, the Franck-Condon factor associated with a radiationless
transition is large. This leads to a rapid conversion to the ground state potential
energy hyper surface. In another mechanism the lower lying mo™* Rydberg state
causes predissociation of the lowest singlet ™ excited electronic state to the ground
state potential energy surface along the N9H bond stretching [90]. It is now well
accepted that excited state structural nonplanarity facilitates the conical intersection
between the excited and ground state potential energy surfaces and thus provides a
route for an efficient nonradiative release of excitation energy [14, 15, 76, 91-95]. A
great deal of emphasis on these phenomena has been provided in this volume where
elucidation of different possible mechanism of ultrafast nonradiative deactivation
in nucleic acid bases and related species using high level of ab initio quantum
chemical calculations are discussed.

1.5. LOW ENERGY ELECTRON INDUCED DNA DAMAGE

As we know, high energy radiation is dangerous to living systems. Depending upon
the energy and intensity, the incident irradiation can dissociate or ionize molecular
systems. Among the four DNA bases, the guanine has the lowest ionization
potential and therefore, it is the predominant hole acceptor site in DNA [14].
Water radiolysis produces significantly harmful radical species such as hydroxyl
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and hydrogen radicals. Our understanding about the role of low energy electrons
causing DNA damage has improved significantly owing to the extensive experi-
mental and theoretical investigations performed in this decade [96-102]. Sanche
and coworkers [96] by irradiating plasmid DNA under ultrahigh vacuum showed
that low energy electrons (3-15 eV) are also dangerous to DNA by producing
single and double strand break. The amount of damage depends upon bases, base
sequence, environment, and the electron energy. These results are of immense
importance since the X-rays and radiation therapy generate secondary electrons (or
low energy electrons) in cellular systems. Secondary electrons produce significant
amounts of highly reactive radicals, anions and cations. These secondary electrons
can cause single and double strand breaks and lesion formation through direct
interaction or via reactive radical species generated from them. Our knowledge
about the mechanism of low energy electron induced DNA damage stems from the
experiments performed on short oligonucleotides and smaller subsystems. Different
mechanisms for low energy electron induced DNA damage have been suggested by
impressive experimental and theoretical studies recently [97-102]. Several models
have shown that electron capture by DNA segments can lead to strand break. It
has been suggested that at low energy electron transfer is operative for the electron
induced DNA damage while at relatively higher energy (> 6 eV) the electron
attachment to the phosphate group provides the main contribution for the strand
break. One electron ionized form of DNA is found to stabilize proton transfer
between the bases in DNA base pairs. A significant part of the current book is
dedicated to the discussion of experimental methods used to identify radicals in
the molecular systems, techniques used to measure DNA damage and extensive
theoretical calculations made to unravel mechanisms of different phenomena related
to the single and double strand DNA damage.

1.6. OUTLOOK AND FUTURE DIRECTIONS

This book contains contributions from both theoreticians and experimentalists
working in this indeed “exciting” research area. We have covered brief descriptions
of theoretical methods starting from the single reference methods to multicon-
figuration methods and relativistic corrections used for the ground and excited
state electronic structure calculations. Excited state reactions are time-dependent
phenomena. Recently, a significant emphasis has been placed by some research
groups on excited state molecular dynamics of DNA and other relevant biological
systems. These topics are also covered in this book. Interdependency of theory and
experiments is most needed for the interpretation of complex spectral data. This
trend will be probably even more notable in the future research projects. One of
the most recent examples in this context is the reassignment of the R2PI data of
guanine which suggested that under nonequilibrium jet-cooled conditions higher
energy tautomers can also be present [74]. Different experimental techniques used to
study ultrafast nonradiative deactivation of DNA bases are also discussed and these
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results are supplemented by discussion on theoretical results in separate contribu-
tions. The last part of the book is devoted to the experimental and theoretical studies
of different radical species of DNA fragments, low energy electron induced cellular
damages and different possible mechanisms associated with it. These studies also
include lucid discussion on different experimental methods used to analyze the
radical species and radiation induced DNA damage. We hope that this volume would
provide useful information to both theoreticians and experimentalists involved in
unraveling the fundamental properties of the molecules of genes. This volume will
also be of tremendous value for graduate students and those researchers who wish
to initiate work in this fascinating research area. Though a vast progress has been
made in the last half of the century truly “exciting” discovery are still ahead of us.
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Abstract:

Keywords:

Excited-state theories in the single-reference, linear-response framework and their deriva-
tives are reviewed with emphasis on their mutual relationship and applications to
extended, periodic insulators. We derive configuration-interaction singles and time-
dependent Hartree—Fock and perturbation corrections thereto including the so-called GW
method. We discuss the accuracy and applicability of these methods to large molecules,
in particular, excitons in crystalline polymers. We assess the potential of time-dependent
density-functional theory (TDDFT) as an inexpensive, correlated excited-state theory
applicable to large systems and solids. We list and analyze the weaknesses of TDDFT
in calculating excitation energies and related properties such as ionization energies and
polarizabilities. We also explore the equation-of-motion coupled-cluster hierarchy and
low-order perturbation corrections. The issue of correct size dependence for an excited-
state theory is addressed, relying on diagrammatic techniques

Configuration-Interaction ~ Singles, Time-Dependent Density-Functional Theory,
Equation-of-Motion Coupled-Cluster Theory, Excitons

2.1. INTRODUCTION

This chapter summarizes recent advances made by the authors and by others in the
quantitative theories of electronic excited states in the gas and condensed phases,
which are fundamental to the overarching goal of this book’s subject research.
Unlike most electronic ground states whose wave functions are predominantly
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single Slater determinants, excited-state wave functions usually consist of several
determinants irrespective of the choice of orbitals. This can be readily understood
by considering the promotion of an electron from or to a degenerate orbital. For
a resulting excited state wave function to transform correctly as an irreducible
representation of the symmetry of the molecular geometry, several determinants
generated by variously occupying degenerate orbitals must participate in the wave
function [1]. Similar situations can certainly occur in the ground states, but they
are more common in excited states.

Accordingly, the crudest physically acceptable theories for excited states
approximate their wave functions as linear combinations of the simplest excited
determinants, i.e., the singles. The theories in this category are the configuration-
interaction singles (CIS), time-dependent Hartree—Fock (TDHF) (also known as
the random phase approximation or RPA), and time-dependent density-functional
theory (TDDFT) [2-8], all of which are of considerable contemporary interest as
they are potentially applicable to large molecules and solids. Therefore, “single-
reference methods” in the chapter title does not imply “single-determinant methods”
for excited states. Rather, single-reference methods spawn the whole manifold of
multi-determinant excited wave functions starting with a molecule in a reference
state (usually the ground state) approximated by a single determinant. They do
not, however, subdivide orbitals into classes according to their perceived or real
importance. Multi-reference methods, in contrast, introduce such classes, e.g., active
and inactive orbitals, which are specified by the user on a case-by-case basis,
providing a more precise control of the balance between computational cost and
accuracy at the sacrifice of the ease of use and the unambiguousness of the
method’s intrinsic accuracy and applicability. This chapter will concentrate on
single-reference methods.

While TDHF and TDDFT are in essence Cl-like multi-determinant methods for
excited states, they are not defined as such. They are instead derived by a general
and transparent principle known as the time-dependent (linear) response theory
[9, 10]. In this theory, we begin with a molecule in a stationary state (typically
the ground state), the wave function of which can be described by some electronic
structure method. In complete analogy to spectroscopic measurements, we then
shine light (conceptually) on the molecule, by adding a time-dependent electric field
operator to the electronic Hamiltonian, and monitor the time-dependent response
in the wave function (or its equivalents such as density matrices). The response
consists of the terms that are linear, quadratic, cubic, etc. to the perturbation. When
we are interested in just excitation energies and oscillator strengths, we seek the
poles in the response, i.e., the resonance frequencies at which the response diverges.
At these resonance frequencies, the linear response dominates over all higher-order
ones. Therefore, the linear response theory is exact for excitation energies and
oscillator strengths with errors arising only from the treatment of the wave function
in the initial stationary state.

The linear response theory is such a transparent and general scheme for emulating
a photon absorption or emission process that it is applicable to virtually any
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electronic structure method for the ground states and generates the corresponding
excited-state methods. We also note in passing that the linear and higher-order
response theory provides the framework in which one can obtain a vast array
of response properties (multipole moments, polarizabilities, hyperpolarizabilities,
magnetic resonance shielding tensors and spin-spin coupling, circular dichroism,
etc.) measurable by spectroscopies. TDHF or TDDFT is derived by the linear
response theory from Hartree—Fock (HF) or density-functional theory (DFT), respec-
tively, and CIS by the Tamm-Dancoff approximation [11] to TDHF. When applied
to the coupled-cluster (CC) methods, it defines equation-of-motion coupled-cluster
(EOM-CC) method [12-17] also known as the CC linear response [18-24] or the
symmetry-adapted-cluster configuration-interaction (SAC-CI) method [25, 26]. The
EOM-CC method constitutes a hierarchy of approximations converging to the exact,
i.e., full configuration-interaction (FCI), wave functions and energies for excited
states.

This chapter, therefore, encompasses two extremes of excited-state theories
within the single-reference, linear-response framework: One that aims at high and
controlled accuracy for relatively small gas-phase molecules such as EOM-CC and
the other with low to medium accuracy for large molecules and solids represented
by CIS and TDDFT. We aim at clarifying the mutual relationship among these
excited-state methods including the two extremes, while delegating a more complete
exposition of EOM-CC to the next chapter contributed by Watts.

In Section 2.2, we deal with CIS and TDHF and various derivative methods
thereof. We discuss the accuracy and applicability of these methods to large
molecules, in particular, excitons in crystalline polymers. We explore low-order
perturbation corrections to CIS to arrive at an inexpensive, correlated method for
excited states that has correct size dependence, in the spirit of the GW method
[27-32] in solid state physics. The issue of correct size dependence for an excited-
state theory is an important but subtle one. We address this issue relying on
diagrammatic techniques. In Section 2.3, we assess the potential of TDDFT as an
inexpensive, correlated excited-state theory applicable to large systems and solids.
We list and analyze the weaknesses of TDDFT in calculating excitation energies
and related properties such as ionization energies and polarizabilities. Almost all of
the weaknesses of TDDFT are ultimately traced to the spurious self interaction of
an electron inevitable in most of semiempirical exchange-correlation functionals.
A grave consequence of this is that TDDFT lacks the correct size dependence and
is, therefore, inapplicable to solids. The absence of two-electron (and higher-order)
excitation roots is attributable to the lack of frequency dependence in the adiabatic
exchange-correlation kernel. Strengths of TDDFT for large systems are empha-
sized in various reports [33] and are not to be repeated in this review. Section 2.4
discusses the EOM-CC hierarchy and perturbation corrections thereto. We discuss
their diagrammatic structures and size dependence of excitation and excited-state
total energies, in a way that is coherent to those in the previous sections. We
conclude this chapter by an overview of the present state of the quantitative excited-
state theory and our subjective views on its future.
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2.2 CONFIGURATION-INTERACTION SINGLES
AND TIME-DEPENDENT HARTREE-FOCK METHODS

2.2.1. CIS and TDHF: Formalism

We assume that the molecule is in a stationary state initially, the wave function
of which is describable by HF. In the density matrix formalism [9, 10] (which
is equivalent to the usual operator form), the Fock F(*) and density matrices D©®
satisfy the time-independent equation

©) H©0) _ () ) _
Z(qu DY) quFq,)_o, (2-1)

q

and the idempotency condition (corresponding to the orthonormality condition of
orbitals):

O O — pO)
> DYDY =DY. (2-2)
q

The superscripts in parentheses indicate the perturbation order, and p, ¢, and r label
spinorbitals. We then apply an oscillatory perturbation, which can be described as
a single Fourier component

1
2

I —

8y = (h(l)e—iwt + hf];)*eiwt) , (2_3)

pPq

where the matrix & represents a one-electron operator describing the details of the
perturbation. The response in the density matrix D to this applied perturbation
consists of first-order (linear) and higher-order terms:

— nO (1) (2)
qu—qu+qu+qu+..., (2-4)
with
1 . )
(1) _ (1) —iw D)x* iw
qu 9 (dpq ¢ t+dqp ¢ t) : (2-5)

The change in the Fock matrix arises from two sources: The direct change in the
one-electron part described by Eq. (2-3) and the indirect change induced by the
first- and higher-order responses in the density matrix, i.e.,

oF
_ O 1 Pg (1)
F,=FY+g+3 5D£S +..., (2-6)
with
qu
=(psllgr) ={ps|qr)—(ps|rq), (2-7)

oD

rs
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and

sl = [ ¢, ()60 () (e, (r) g, (r)drdn, (29)

We substitute the time-dependent Fock and density matrices into the following
time-dependent HF equation

> (ququ - ququ) =i atpr ’ (2-9)
q

and the idempotency condition
>.D,D,=D,,. (2-10)

q

Collecting the terms that are linear in the perturbation with the ¢~ time depen-
dence, we obtain
0) 4(1 1) (0 1) (0 (1) o
ZF,i)d( =2y FY + 3D + 3 (il lgs) di’ DY)
s,t
0)7,(1 q 0 q (1) ' 1 (2-11)
= 2Dy = 3 Dy arlIrs) du’ = wd).

q q,s,t

The terms with the ¢/’ dependence merely lead to the complex conjugate of the
above equation. Because the HF equation and energy are invariant to rotations
among just occupied orbitals or among Just virtual orbitals, we only need to consider
the occupied-virtual block of d, i.e., {d } and {a'(1 }. Furthermore, if we assume
the canonical HF wave function as an initial state, the zeroth-order quantities
simplify to

F)=e,b,,. (2-12)
DY =5, (2-13)
Dy =D =Dy =0, (2-14)

where e, is the pth spinorbital energy and we use i, j, k, [, m, n, etc. for occupied
orbitals, a, b, c, d, e, f, etc. for virtual orbitals, and p, ¢, r, s, and ¢ for either
throughout this chapter. Substituting these into Eq. (2-11), we arrive at a pair of
equations:

(ea— ) X+ hS + 3" (ajl|iby x,;+ Y (abl|if) y,; = wx,,  (2-15)

b,j b,j

(e —e,) yai— hiy = 3" (ijl lab) x,; — 3" {ib||aj) yp; = @y, (2-16)

b,j b,j
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where x,; = déi) and y, = dg). These may be cast into a compact matrix linear

equation
A—-wl B X h
( B! A*+w1>(y)=_<hf*>’ @-17)
with
(A)gipj = 0ij0uy (e, — €) +(ajl|ib) (2-18)
(B)ai,bj = (ab||ij), (2-19)

and 1 is a unit matrix. Equation (2-17) can be solved for x and y by standard
iterative techniques that use trial vectors and that work with just atomic-orbital-based
integrals [34, 35]. Once the equation is solved, the frequency-dependent polariz-
ability is readily evaluated by

@ () = =23 (kx4 1)va), (2-20)

if h is a dipole moment matrix.

The poles of the frequency-dependent polarizability correspond to electronic
excitations, occurring with an infinitesimal perturbation, i.e., h = 0. Substituting
this into Eq. (2-17) leads to a nonsymmetric matrix eigenvalue problem:

(2 2)G)~( %))

which can be solved for electronic excitation energies w and corresponding x and
y vectors of TDHF or RPA by standard techniques using Davidson’s trial-vector
algorithm [36] (see also Refs. [37, 38]) (as adapted to a nonsymmetric problem
[39]) in an atomic-orbital-based scheme [40]. The eigenvectors are orthonormalized
with the metric in Eq. (2-21) as x”'x? —y”'y? = §,,,, where we have introduced the
superscripts to label excited states.

The matrix B is numerically much less important than A and accordingly |y| << |x|.
This suggests a simplification of the foregoing equations by setting B = 0. This Tamm-
Dancoff approximation [11] leads to a symmetric matrix eigenvalue equation

Ax = wx, (2-22)
or

(e, —e)x,;+ Z (aj||ib) Xpj = WXy (2-23)

b.j

which can be solved in a more robust and straightforward algorithm than those
required to solve Eq. (2-21). The computational cost of solving Eq. (2-22) by a
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trial-vector algorithm is roughly half that of solving Eq. (2-21). Equation (2-22) or
(2-23) defines the CIS method.

At this point, we introduce a graphical representation of the CIS equation with
Hugenholtz diagrams. The three matrix elements in Eq. (2-18) are depicted by

where 1, 2, and 3 correspond to e,, e;, and {aj||ib), respectively (strictly
speaking, they represent the corresponding operators). The rules for interpreting
these diagrams and generating the corresponding algebraic expressions are the same
as those for diagrammatic many-body perturbation theory (MBPT) and CC theory
found in Ref. [41]. Equation (2-22) or (2-23) can then be diagrammed as

wherein the double vertex is used to denote a CIS amplitude x. They include the
information about the overall signs: e.g., diagram 5 is —e,;x,; for canonical HF

ivai

orbitals. The CIS excitation energy w is the following diagrammatic sum:
a i
X R A X
8 9 w0/\ /)°?

which are obtained by closing diagrams 4-6 by x7,.
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2.2.2. CIS and TDHF for Extended Systems

2.2.2.1. Formalism

Both CIS and TDHF have the correct size dependence and can be applied to large
molecules and solids (we will shortly substantiate what is meant by the “correct
size dependence”) [42-51]. It is this property and their relatively low computer
cost that render these methods unique significance in the subject area of this book
despite their obvious weaknesses as quantitative excited-state theories. They can
usually provide an adequate zeroth-order description of excitons in solids [50].
Adapting the TDHF or CIS equations (or any methods with correct size depen-
dence, for that matter) to infinitely extended, periodic insulators is rather straight-
forward. First, we recognize that a canonical HF orbital of a periodic system is
characterized by a quantum number k (wave vector), which is proportional to the
electron’s linear momentum k7. In a one-dimensional extended system, the orbital is

. x
Polk] (r=K2 Z Z C;[k]elmkaXn (r—ma), (2-24)
n m=—oo
where C7,, is an expansion coefficient of a crystalline orbital ¢, by atomic orbitals
{x.}. a 1s the fundamental vector that outlines the unit cell, and K is the number
of wave vector sampling points in the first Brillouin zone (—7/a < k < 7/a and
a = |a]). Each orbital index that labels a molecular integral is hence a compound
index that specifies both an energy band (p) and a wave vector (k). Second, we
note that molecular integrals are nonzero only when the momentum conservation
[(—ky —ky+k;+k,)a=2mm (m is an integer)] is satisfied:

<p[k1]q[kz]| |V[k3]s[k4]> —K! Z

my,my,ms

npk npx ny My i(—myky+moks+makg)a [ (0) (my)
Z Cpk, €gky Cricy €5k, € ny n,

(m) (m3)
n3 n4 N
ny, 3,0y

(2-25)

where superscript “[k]” indicates the wave vector of the HF orbital and superscript
“(m,)” means that the atomic orbital is centered in the m;,th unit cell. Likewise,

15([)131] 4k, vanishes unless (—k;+k;)a =2mm (m is an integer). The excitation
amplitudes x, however, do not have to satisfy such conditions because an excitation
transition in a solid can be either direct or indirect, resulting in an exciton with a
zero or nonzero linear momentum, respectively. The CIS equation for an extended

system is

( elli+AK _ eE’“) el 303 (alhi A jlea] || plka sk xg_k;] = 2k
b,j ky

(2-26)

where Ak is the exciton’s momentum. The corresponding equation of TDHF [50]
can be readily inferred and will not be repeated here.
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2.2.2.2. Size correctness

The diagrammatic representations of Eq. (2-26) are hardly altered from 4-7, except
that the momentum conservation condition is incorporated into the rule that demands
each line to have a wave vector index and the sum of the wave vectors of outgoing
lines be equal to the sum of the wave vectors of incoming lines [52]. The momentum
of each of the diagrams 4-7 is still conserved (at a possibly nonzero value) because
each contains the xm'] (or x ) amplitude only once.

Equation (2-25) also underscores the fact that the two-electron integrals decay
as K~! with respect to K (the number of wave vector sampling points in the first
Brillouin zone). It can also be shown easily that Fock matrix elements display K°
dependence. The dependence of the CIS amplitudes is not immediately clear until
we consider the normalization condition:

2.2 |%

a,i k;

(2-27)

which suggests x!) oc K=1/2. The K dependence of these molecular integrals and

excitation amphtudes offers an important basis for determining the size dependence
of the energies and wave functions because K is a direct measure of the system
size: When an infinitely long polymer chain is modeled as a ring of » identical unit
cells, there are only n unique wave vectors in the first Brillouin zone, i.e., K = n,
so that N electrons per unit cell times n unit cells in a ring can be accommodated
exactly in N energy bands at K = n distinct wave vectors (a “ring” implies the
periodic boundary condition and does not mean a curved polymer backbone).

Let us demonstrate the correct size dependence of the CIS method. The
first term in Eq. (2-26) scales as K2 because el o« K0, xI*1l o K172,
and there is no k-summation. The second term also scales as K~!/2 because
(a[k1+Ak]j[k2]| |i[k1]b[k2+Ak]> x K1, xLl‘] o K72 and there is a k-summation
contributing to a factor of K'. Consequently, w!*l must scale as K° for the right-
hand side to scale in the same way as the left-hand side, which is a desired
conclusion because w!** should be a size-intensive quantity (which is asymptot-
ically constant at an infinite system size). For an excited-state theory to be size
correct, two conditions must be met: (1) The total energy of an excited state must
be neither size extensive nor intensive, but is a sum of size-extensive and intensive
quantities, each scaling as K! and K°, respectively. (2) In the ground state, the total
energy must equal the size-extensive part of the energy and the size-intensive part
must vanish. These conditions are met by the CIS method because

ECIS — EHF + w[Ak] , (2'28)
~~ ~——

size extensive  size intensive

where E and EMF are the CIS and HF total energies of an excited state and
the ground state. The size extensivity and intensivity of EMF and w[*¥! can be
demonstrated by the arguments based on the K dependence for an infinite periodic
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insulator. Using mathematical induction, all terms in an equation having the same
K dependence can be shown to be equivalent to the diagrammatic linkedness (no
disconnected closed parts); e.g., o[*¥ consists of linked diagrams (8-10) only and
this guarantees that they have the same K dependence.

2.2.2.3. Application: Polyethylene

The photoconduction threshold, the photoemission threshold, and the position of
the optical absorption band edge are measured separately for polyethylene and they
are 8.8, 8.8, and 7.6¢eV, respectively [53, 54]. These three distinct processes are
schematically drawn in Figure 2-1. Photoconduction occurs when either an electron
promoted to the conduction band or a hole in the valence band acts as a free carrier
of electric current. To create a pair of a free electron and a free hole requires at least
the energy equal to the fundamental band gap. In optical absorption spectra of solids,
there are absorption peaks at lower energies than the fundamental band gaps. They
correspond to the electronic transitions to excitons, which are pairs of an electron and
a hole bound to each other by a screened Coulomb interaction. These bound electron
and hole cannot carry electricity. Photoemission occurs when sufficient energy is
given to a solid to promote an electron in the valence band to a vacuum level.
In the language of a single-particle theory (HF, DFT, etc.), the photoconduction
threshold, photoemission threshold, and optical absorption band edge position are
the fundamental band (HOMO-LUMO) gap, the ionization potential (the negative
of HOMO energy according to Koopmans’ theorem), and the smallest excitation
energy. The coincidence between the measured photoconduction and photoemission
thresholds suggests that the bottom of the conduction band is at the vacuum
level.

The prevailing view of excitations in solids is based on the two extreme
approximations—the Frenkel and Wannier excitons—but more realistic exciton
wave functions are intermediate of these two and are linear combinations of various
singly-excited (or higher-order) configurations with the same k. CIS and TDHF
offer exactly such wave functions for extended systems in a size-correct fashion.
Figure 2-2 shows the performance of CIS and HF for describing these three

""""""""""" NRNAN» oo 't “xciton
.. O binding

valence

Figure 2-1. Schematic representations of (1) the photoconduction, (2) the photoemission, and (3) the
optical absorption processes
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Figure 2-2. HF and CIS predictions of the photoconduction (fundamental gap), photoemission
(ionization), and optical absorption (excitation) energies of polyethylene [50, 55]

quantities of polyethylene (the TDHF results are essentially the same as those of
CIS and are not shown) [50]. The goal is to qualitatively reproduce the relative size
ordering of the three quantities (the rightmost of Figure 2-2). It is evident that the
basis-set dependence of the calculated energy gap and excitation energy is so large
that the small-basis results are excessively in error. When a larger basis set with
diffuse functions is used, the calculated results begin to resemble the experimental
data. The calculated ionization energy and excitation energy with the 6-31+4G
basis seem close to convergence, while the energy gap is still far from the infinite
basis-set limit. In theory, it is expected that LUMO of a solid should be at least
as low as the vacuum level at the infinite basis-set limit; The energy gap should
go down at least to the ionization energy for a larger basis set. Therefore, CIS
and HF are capable of providing a qualitatively correct description of the three
processes. The computed excitation energies are always lower than the energy gap,
which attests to the theory’s ability to account for the exciton binding effect. The
remaining errors of a few electron volts are electron-correlation effects; This claim
will be substantiated by correlated CIS calculations described in the next section.
See also Ref. [51] for a calculation on polydiacetylenes.
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2.2.3. CIS with Electron Correlation

While CIS provides adequate zeroth-order descriptions of excited states, it does not
account for the effects of electron correlation and hence does not have quantitative
accuracy. An inexpensive and size-correct method to incorporate those effects for
large systems is desired. Low-order perturbation corrections to CIS are important
in this context along with TDDFT considered in the next section and the so-called
GW method in solid state physics.

2.2.3.1. CIS-MP2

The first such method has been explored by Foresman et al. [1], who have called the
method CIS-MP2 as it adds electron correlation effects to CIS in a similar way as
the second-order Mgller—Plesset perturbation (MP2) theory [56] does in the ground
state. The MP2 correlation correction to the HF total energy is evaluated by using
the formula

(Pye| H |05 (@5 | H | Dye) 5= 5~ {ablli]) (ijlab)

s
ei+ej_eﬂ_eh i<ja<b ei+ej_ea_eh

(2-29)

NRED

i<ja<b

where H is electronic Hamiltonian and @Dy is the HF wave function. The energy
diagram [57] is

where the horizontal dotted line represents the denominator (see Ref. [41] for the
interpretation rules) and the orbital indices are henceforth omitted for simplicity.
For the pth excited state, the corresponding CIS-MP2 correction to the excited-state
total energy [1] becomes

AEP =33

i<ja<b

+2 X

i<j<k a<b<c

(Dys| H | D) (52| H | Dys)

w,+e+e —e,—e,

R R (2-30)
(Peis| H | @55 ) (@55 | H | Pess)

ijk

b
w,t+e+e+e—e,—e,—e.

where @) = X |Pyp) = Y x,;{a’i} |Pyp), a' and i are particle annihilation
a,i

and hole creation operators, respectively, and the curly bracket indicates that the
operators in it are normal ordered. Like Eq. (2-29), the CIS-MP2 energy and
wave function can be derived rigorously by Rayleigh—Schrodinger perturbation
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theory truncated after second order [58, 59] (see also Section 2.4.2). However, this
method has not received wide acceptance because it lacks the important property
of size correctness and, when applied to certain extended systems, Eq. (2-30) can
diverge [60].

The lack of size correctness in CIS-MP2 can be best illustrated by the diagram-
matic representation [61]. The first term in Eq. (2-30) has two factors in the
numerator, which are diagrammatically

When contracted, we arrive at only two topologically distinct diagrams:

which are both linked. The K dependence analysis show that they scale as K°, so
they are size intensive (the denominator is K°). The factors in the numerator of the
second term are triple excitation and deexcitation and are inevitably disconnected:

VY AAA

The contraction of these gives rise to the following three topologies:

Diagrams 19 and 20 are linked and scale as K° (size intensive), whereas diagram
18 is unlinked and scales differently from the rest as K! (size extensive). It may be



28 S. Hirata et al.

that 18 represents a second-order correlation correction in the ground state because
the sum of 14, 15, 18, 19, and 20 is a correction to the total energy of an excited
state, which consists of the ground-state and excitation energies. However, 18, or
more specifically,

Els — Z Z ZZ <ab| |l]> <l]| |ab> xjkxck (2_31)

9
i<ja<b k ¢ wP+ei+ej+ek_ea_eb_ec

does not agree with the MP2 correction in the ground state, i.e., diagram 11.
Consequently, when the correction to the excitation energy is defined by AE[?) -
AEéz), which is the only rational definition, there is incomplete cancellation between
E.s and AE®, leaving a term that scales as K' in what should be an entirely
K° quantity. We also note that the evaluation of 18, 19, or 20 involves O (n6)
operations where n is the number of orbitals, which are one order of magnitude
greater than O (n5) operations required for MP2 in ground states.

2.2.32.  CIS(D)

A size-correct and less expensive second-order correction to CIS, termed CIS(D)
with “D” standing for double excitations (from CIS wave functions), has been
introduced by Head-Gordon et al. [60]. The aforementioned problems of CIS-MP2,
i.e., the lack of size correctness and O (n") operation costs, are ultimately due to
the denominator spanning both closed parts of 18, crossing all six indices. When
the denominator line in 18 is shortened to span only the larger closed part of the
diagram as

this becomes identical to diagram 11 because the smaller closed part in 21 is
unity since it simply represents Y |x,,|* = 1 (normalization). In other words, we

a,i
approximate w, in the denominator of Eq. (2-31) by e, — ¢, and E,4 reduces to
AE(()Z). Diagram 21 is still unlinked and scales as K!, but it cancels exactly between
the correlation correction in the ground and excited states, leaving a size-intensive
(K®) correction for the excitation energy. Head-Gordon et al. made this adjustment,
which we call “factorization” [62], not just to 18 but also to 19 and 20 in a consistent
fashion, which has converted these three diagrams to
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where the solid vertex is the doubles amplitude of MP2, i.e.,

23

TH=y 3 _ labllijy {a'bji). (2-32)

i<ja<b l+e ¢

After this adjustment, the second-order correction to the total energy of an excited
state is

AECS® = AEMP? L E 4 Eio+ Ey + Eyy, (2-33)

size extensive

size intensive

where AEMP? is the MP2 correlation correction in the ground state and is equal
to AE(()Z). This approximation also lowers the operation costs of evaluating these
diagrams from O (n°) to O (n°).

2233 CIS(3)

The same strategy of deriving correlation corrections to CIS by
Rayleigh—Schrodinger perturbation theory and adjusting size-incorrect terms can be
extended to higher orders [61]. The third-order correction consists of four terms:

q)ab ‘A/ (I)c(l)< 7
AE® — i) ki 1\ Pk
’ ;ggg(‘%"'ei"‘e e.—ep) (0, +ete—e —ey)
ITY Y Y (Ders| V|37 (@ | V| @i ) (@] VI Prs)
i<ja<bk<l<mc<d<e (wl)+ei+e' €, —€ ) (w +ek+el+em 7667601768)
(Deys| V| Do) (D | V | i) (e | V| Diys)
+ (2-34)
i<12<ka<zzb<u1§n(§ (wp+er+e,/+ek €, —€,—¢ c) ( p+el+em d_ef)
(s 14 |(babt><(bm| 14 1mn ) \®mn ‘7|‘I’c15>

+ZZZZ(

i<j<ka<b<cl<m<nd<e<f

w1,+e,~+ej+ek—ea—eb—er) ((u,,+el+em+e,,—ed—ee—ef)'

They may be denoted AEpL, AELr, AE,, and AE,, respectively, where D and
T standing for doubles and triples manifolds in which the perturbation corrections
are gathered. The fluctuation potential V is defined as H — H, with

Hy=PHP+Q |:EHF +ZF‘°) {a'b} +ZF,“’> {if }] 0, (2-35)
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and

P= |(DHF> <CDHF| +Z|CD7> <<D:l|

a,i

0 =33 |oF)@F[+ 30 X |G|+

i<ja<b i<j<ka<b<c

(2-36)

Of numerous diagrammatic contributions, particularly troublesome ones arise from
the AE;; term that contracts the following three diagrammatic pieces:

VAV L AAN

26

The contraction gives rise to the following that are size extensive (K' dependence)
yet not interpretable as a correction in the ground state:

To ensure the size correctness of CIS(3), we decrease the span of the two denomi-
nators in 28, such that it reduces to the third-order Mgller—Plesset (MP3) correction
in the ground state. Using the solid vertexes representing the MP2 amplitudes, the
modified diagram becomes

30
Diagram 29 does not easily lend itself to factorization and is simply excluded from
the summation.

After the consistent use of factorization, the CIS(3) correction to the total energy
in an excited state is defined as

AECIS(3) — AECIS(2) 4 AAECIS(3)’ (2_37)
AAETS® = AAEMP + AAAESSO), (2-38)
~——— ~————

size extensive size intensive
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and

(Dyp| X1V |57 (@50 | V| Df ) (Df | V5| Dyge)

AAAECIS(3> :ZZZZ ij

i<ja<bk<lc<d (wp + € + ej —€;— eb) (wp + €k + € —e.— ed)

(Dye| 3TV | D) (@2 | VIV 3 | Dy

w,t+e+e—e,—¢,

(2-39)

+2>° 3

i<ja<b

A [at (1) A
+( Py Tz( : [XTVTz( )x|®HF>] o
linked

The restriction on the linked diagrams only excludes diagrams that originate from
28 and 29 from the last term. Diagram 30, which is the result of factorization applied
to 28, is in AAEMP3, The CIS(3) correction introduces a quite large number of
diagrammatic contributions that are best handled by computerized symbolic algebra
[63-65]. Some representative diagrams in Eq. (2-39) are

Diagrams 31 and 32 arise from the first and second term of the right-hand side of
Eq. (2-39); 33 and 34 from the third term.

The strategy can be extended to even higher-order perturbation corrections. A
partial fourth-order correction to CIS excitation energies [CIS(4),] is the highest
order reported thus far [61]. The CIS(3) and CIS(4), calculations involve nonit-
erative O (né) and O (ns) operations, respectively. A slightly different third-order
correction to CIS denoted CIS(D3) has been proposed by Head-Gordon et al. [66].

2.2.34.  P-EOM-MBPT(2)

The partitioned equation-of-motion second-order many-body perturbation theory
[P-EOM-MBPT(2)] [67] is an approximation to equation-of-motion coupled-cluster
singles and doubles (EOM-CCSD) [17], which will be fully described in Section 2.4.
The EOM-CCSD method diagonalizes the coupled-cluster effective Hamiltonian
H= (Hei“’@) in the singles and doubles space, i.e.,

connected

ﬁssxs + I:ISDXD = wXg, (2-40)
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Hpsxs + HppXp = 0Xp, (2-41)

where Hgg, Hgp, Hpg, and Hp, are singles-singles, singles-doubles, doubles-
singles, and doubles-doubles blocks, respectively, of the effective Hamiltonian. The
P-EOM- MBPT(2) method approx1mates the singles and doubles cluster excitation
operators Tl and T2 by zero and T (the MP2 excitation operator) and furthermore
the doubles-doubles block by orbital energy differences:

(

With these approximations, the coupled singles and doubles Eqs. (2-40) and (2-
41) can be recast to a CIS-like form which can be subject to a comparison to CIS(D)
or other correlation corrections to CIS. Using “(1)” to distinguish approximate
Hamiltonian matrices using 7x2(1)’ Eq. (2-41) can be solved formally for xp:

H| D) 2=8,,6,,6,8, (e,+e,—e—e;). (2-42)

i’ ]]

o o iy

xp = (- fl“>) Ax 243
v P §§w+ei+ej—ea—eb ( )
Substituting this into Eq. (2-40), we arrive at the CIS-like equation
I:I/S(S])xS = wXg, (2-44)
with
_, H(l) (I)ab (Dab H(l)

1<ja<hw+ei+ej ea_eb
which is frequency dependent. To solve Eq. (2-44), one must diagonalize I:I/S(Sl) for
a variety of input w and plot the eigenvalues (output w’s) as a function of input w
and find where the input and output w’s agree with each other (i.e., where the plot
and the line y = x intersect) [68]. This straightforward solution is cumbersome in
practice and the diagonalization of w-independent H in the singles and doubles
space [Egs. (2-40) and (2-41)] is often preferred

The diagrammatic representation of HSS Xg 18

VX
VO OVO WY 0
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It may be noticed that by virtue of I:Iéls) being a dressed Hamiltonian including
the effect of correlation, diagrams 37-39 account for some of the CIS(D)-type
correlation corrections (22-24) to CIS (diagrams 35 and 36). There is no need to
make ad hoc adjustments to diagrams to ensure size correctness because diagram 37
(unlinked) cancels exactly between the ground and excited states. In other words,
P-EOM-MBPT(2) has the factorization approximation built in.

The second term of Eq. (2-45) folds the correlatlon effects from doubles into the
singles-singles block. Diagrammatically, HSD and H s are depicted as

40

Consequently, >~ > HSD |q)§‘/.”> (a) tete—e,— eb) (<D“b| HDS gives rise to open
i<ja<b ’

diagrams such as

When xg vertexes in these diagrams are CIS ones and they are furthermore closed
by the same CIS vertexes, diagrams 43 and 44 become the CIS(D) corrections 14
and 15, respectively. Hence, P-EOM-MBPT(2) offers a transparent derivation of
CIS(D); If we neglect diagrammatic contribution 45 in Eq. (2-45), approximate Xg
by CIS amphtudes and collect only the diagonal elements in the HSS matrix (i.e.,
XCISHSS Xcis), We arrive at the CIS(D) correction. Diagram 45, when defined and
closed by the CIS vertexes, becomes a part of the CIS(3) correction (diagram 32).
P-EOM-MBPT(2) has a noniterative O (n°) step, but its iterative steps cost only
o (n).

2.2.3.5. The D-CIS(2) method

Alternatively, if we neglect 45 in Eq. (2-45) but do not hold xg fixed at the
CIS amplitudes, we arrive at a new method which we call D-CIS(2) [69]. The
D-CIS(2) and CIS(D) methods differ from each other in that CIS(D) considers
only the diagonal of H with Xg = X, Whereas D-CIS(2) takes into account off-
diagonal elements and glves rise to a new set of Xg including electron-correlation
effects at the second-order perturbation level. The D-CIS(2) method and also
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CIS(D) can be rigorously derived by applying the Lowdin-type (as opposed to
Rayleigh—Schrédinger) perturbation theory [70] to CIS, according to Meissner [71].
Additional off-diagonal second-order corrections to CIS have been considered by
Head-Gordon et al. [72].

2.2.3.6. The GW methods

The CIS equation (2-23) is a convenient basis for a correlated excited-state description
that is inexpensive and applicable to large systems and solids. The essence of
the approximation involved is the concept of quasi-particles dressed with electron-
correlation effects. Both abare electron and a quasi-particle have well-defined energies
(orbital energies) but the energies for the latter incorporate electron-correlation effects
through many-body Green’s function theory. Furthermore, the effective interaction
between quasi-particles is “screened” by a dielectric constant relative to the Coulomb
interaction between bare electrons. In this approximation, the excitation energy
can be obtained by solving the CIS-like Bethe—Salpeter equation [73-75]:

(eSP — e?P> X, + Y (ajl Wib) x,; = wx,, (2-46)

b,j

where egp is the pth quasi-particle orbital energy and {(aj| W |ib) is a two-electron
integral with a screened, frequency-dependent Coulomb interaction W (r;, r,; ).

The Dyson equation of many-body Green’s function theory offers a rigorous
way of dressing the single-particle energies with electron-correlation effects [57].
Invoking the diagonal approximation to the irreducible self-energy part truncated
at second order, the inverse Dyson equation yields

Dyson(2) _ (ab||pj) (pillab) (pbllij) ijl1pb)
ePy - el’ + Z Dyson(2) + Z Dyson(2)
jra<b €p tej—e,—e, i<jbep te,—e¢—e;

(2-47)

’

which needs to be solved for e,l?y““(z) iteratively. This can be achieved straight-

forwardly if the root is far from the singularities causing a division by zero in
Eq. (2-47). This is the case only for the orbitals near the highest occupied or lowest
unoccupied orbitals and solving Eq. (2-47) becomes increasingly more difficult for
high- or low-lying orbitals.
An alternative, perhaps more robust definition of eI?P is provided by MP2 as
MP2 _

e, _ep+

D {abl|pj) {pillab) 3 (bl 1ij) {ij] Ipb>’ (2-48)
j.a<b ep+ej_ea_eb i<j,b el’+eb_ei_ej

which does not need an iterative solution. Diagrammatically, the last two terms
(the correlation corrections) of the right-hand side are obtained by opening either
particle (upward) or hole (downward) line of the MP2 energy diagram 11. Without
distinction of holes and particles, they look like
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"""" AN—a
_______ VoY

46 47

corresponding to the two terms in Eq. (2-48). Therefore, (e — e?P

46) is the sum of diagram 35 and ones similar (but not equal) to 43 and 39 of
CIS(D) and P-EOM-MBPT(2) (note the span of denominators):

) x, in Eq. (2-

The Coulomb interaction between two electrons is reduced by the ability of
the other electrons to polarize and shield their charges. Hence, the effective inter-
particle interaction in Eq. (2-46), i.e., W (r,, r,; w), differs from the bare Coulomb
interaction. Specifically,

(@jl W |ib) = (ajl ib) + [ ¢, ) ¢} (0) E (11,125 ) {5, (1) @, (1)
—¢, () ¢; (ry)} dr,dr, (2-49)

and
1 6p(r5;w) 1

—13] 68 (ry; ) [ry — 1y

2 (1), @) = / E drydr,, (2-50)
1

where p (r;; w) and g (ry; w) are the electron density and an infinitesimal external
perturbation, respectively. The functional derivative in Eq. (2-50) is related to a
frequency-dependent polarizability computable by TDHF (or RPA according to the
terminology in this field). The use of many-body Green’s function theory (G) and that
of screened Coulombinteractions (W)isthereason why the methods are called GW [32].

After a rearrangement of terms, one of the TDHF pair equations (2-15) is diagram-
matically represented as
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{0 (e~ e} \/ _ \/ . \/ + \/6
s50L  s1%0 Q 53V
52

where the open circle vertex represents the perturbation hflll) and the double-line
vertexes are x,; (upward open) or y,; (downward open). Canonical HF orbitals are
assumed. Eq. (2-16) gives rise to an upside-down picture of the above diagrammatic
equation. Let us now consider an iterative solution of these TDHF equations.
Substituting x,; = y,; = 0 in the right-hand side of the above equation, we find that
52 and 53 vanish and obtain

5= [l

where the dotted line denotes the w-dependent denominator and the number in the
square bracket is the iteration count. Substituting xgll-] (54) and yl[,li] (not shown) in
the right-hand side of 50-53, we arrive at

Repeating this an infinite number of times, we have a diagrammatic representation
of x,; (similarly for y,;) as an infinite diagrammatic sum:




Single-Reference Methods for Excited States in Molecules and Polymers 37

The change in electron density is ép (r; w) = % (xm-e*"”” ~|—yaiei“”) ¢, (r) ¢; (r) when
the perturbation is 8g (r; @) = 1 (h,e ™ + hi,e") @, (r) @; (r). The diagrams of
{aj| W |ib) can, therefore, be obtained by closing diagrams 61-65 etc. from the top
with the bare interaction 3 and replacing the perturbation vertexes (open circles)
also by 3:

\/ -V
0, VO

66 67 68

etc. (aj| W |ib) is the sum of all these and the bare interaction 3.
The algebraic interpretation of W (r,, r,; w) is the following equation exposing
the iterative structure [32]:

(| W 1ib) = ajllib) + 3 Gak ic) { w—(e.—¢) wt(e.—e)

} (cj| W |kb).
(2-51)

Alternatively, with the solutions of Eq. (2-21), it can be written in an equivalent
form as

P Yy
(aj| W |ib) = (ajl|ib) + " (ak|Jic) {— - —} (djl|ib),
P w—wp w+wp

(2-52)

which involves no iteration, where w, is the TDHF excitation energy of the pth
state with the corresponding solution vectors x” and y”. The iterative solution
of Eq. (2-47) for Dyson(2) quasi-particle energies also corresponds to inserting
diagrams 66, 67, 68, etc. to the rings in 46 and 47.

It can be noticed that the screened interaction represented by these diagrams
gives rise to contributions similar to 38, a familiar topology in CIS(D) and P-EOM-
MBPT(2), but differing in the spans of denominators. In other words, diagram 38 in
CIS(D) and P-EOM-MBPT(2) may be interpreted also as accounting for frequency-
dependent dielectric shielding of Coulomb interactions. These diagrams help clarify
the relationships between CIS(D), P-EOM-MBPT(2), GW, etc., but diagrams 66—68
are, however, never individually evaluated in the GW methods because the sum
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of all these “ring” diagrams can be obtained directly by the TDHF or TDHF-like
procedure. Compared with CIS(D), P-EOM-MBPT(2), and EOM-CCSD, etc., the
GW method sums an infinite number of ring diagrams but lacks other important
ones (e.g., the so-called ladder diagrams) that are in the former. This is due to the
restricted form of the effective interaction W (r;, r,; ). In the extension known as
the GWT" method [7, 76], the restriction is partly lifted and diagrams that resemble
43, 44, and 45 are also taken into account.

2.2.3.7. The SCS and SOS schemes

All of the foregoing equations and diagrams are in the spin-orbital formalisms,
meaning that each matrix index carries the attributes of spatial orbital and spin.
For instance, the MP2 energy [Eq. (2-29)] is the sum of the contributions from the
following four spin combinations:

AE, = Ly 5 YLD TN a0) @ 1) (7 1B

= 2-53
R N e te—e,—ey 2-53)
E(Z) 1 Z Z <a//b// | l//]//> <l// 4 | a//b//> <a//b// | l// //> <l// s | b//a//>
BBEE = PRI — :
l/ J/ a// bH i’ J” a” bH
(2-54)

/b// - ! 21 /b//
P S LA LA T} (.55

iaw € +ep—ey—ey

where single and double primed indices are the spatial orbitals with an a- or 3-spin
electron, respectively.

Grimme [77] found that scaling the same-spin (SS) component AE® + AEEL;BB

and opposite-spin (OS) one AEfﬁ)ﬂﬁ by empirical parameters of 1/3 and 1.2 leads to
a better performing model (SCS-MP2 for spin-component-scaled MP2) for ground
states. The same scheme was applied to CIS(D), defining SCS-CIS(D), by scaling
diagrams 23 and 24 (but not 14 or 15) with improved agreement in excitation
energies with experiment [78]. It is certainly possible to scale all of 14, 15, 23,
and 24 consistently [69]. Grimme introduced this scheme as a purely empirical
adjustment with no rigorous derivation or justification from the viewpoint of its
operation cost, although Szabados [79] later furnished a theoretical basis viewing
this as a perturbation resummation by way of Feenberg scaling [80].

Jung et al. [81] reported a variant of this approach that used the multiplicative
factor of zero for the SS component and 1.3 for the OS component. This calculation,
SOS-MP2 (scaled opposite-spin MP2), can be performed with only an 0(n4)
operation cost when combined with Almlof’s Laplace transform technique [82].
The SOS approximation can be applied to CIS(D) [69]. A similar simplification
was often adopted in the GW method under the name COHSEX approximation [32]
also partly from an operation cost consideration.
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2.2.3.8. Applications

2.2.3.8.1. Ethylene We consider two representative examples that expose
the strengths and weaknesses of various CIS-based approaches: Ethylene and
formaldehyde [60, 61, 67]. Low-lying excited states of ethylene are known to be
described reasonably well by CIS. Consequently, various correlation corrections
to CIS work excellently for these states. Figure 2-3 illustrates this point. The
perturbation corrections to CIS — CIS(D), CIS(3), and CIS(4), — give a systematic
improvement for most cases converging toward EOM-CCSD, which is an accurate
benchmark. The agreement between CIS(4), and EOM-CCSD is within 0.1 eV. The
D-CIS(2) method has the same corrections as CIS(D) for the diagonal elements of
the dressed CIS Hamiltonian but also off-diagonal corrections and can potentially
account for a rotation of CIS vectors. For this molecule, such an effect is minimal
and D-CIS(2) and CIS(D) give essentially the same results. The P-EOM-MBPT(2)
method is also capable of handling a rotation of CIS vectors. It leads to solid
improvements over CIS for all states but the results are not as good as CIS(3)
or CIS(4),. The SCS- and SOS-CIS(D) methods display remarkable accuracy, the
origin of which cannot be fully understood because they are empirical modifications
to CIS(D).
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Figure 2-3. The calculated excitation energies to some low-lying states of ethylene. The basis set,
geometry, and other details are found in Refs. [60, 61, 67, 69]
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2.2.3.8.2. Formaldehyde Some of the low-lying excited states of formaldehyde
cannot be described well by CIS. There is a considerable rotation of the CI vector
within the singles-singles space upon enlarging the diagonalization space to include
doubles [61]. The perturbation corrections to CIS, therefore, become less useful for
them because a large change in the CIS amplitudes is beyond the applicability of
perturbation theory. Nevertheless, in the excited states labeled A and B in Figure 2-4,
CIS with perturbation corrections nonetheless manages to converge toward EOM-
CCSD. However, the convergence is oscillatory and the CIS(3) results are not closer
to EOM-CCSD than the corresponding CIS(D) results. In state C, the change in the
CIS amplitudes is so great that the perturbation corrections diverge: The CIS(4),
result falls outside the range of Figure 2-4. The D-CIS(2) method has a potential
ability to address the CIS vector rotation through off-diagonal corrections. In states
A and B, D-CIS(2) and CIS(D) give the same results, as expected. In state C,
where the rotation is severe, D-CIS(2) does give a considerably different result than
CIS(D), attesting to the emergence of significant off-diagonal corrections. However,
the resulting excitation energy of D-CIS(2) is farther away from EOM-CCSD than
CIS(D) or even CIS. This might indicate that the good agreement between CIS(D)
and EOM-CCSD is merely accidental. P-EOM-MBPT(2) also suffers in state C
but is much more robust against the rotation of the CI vectors. This is expected
because P-EOM-MBPT(2) involves diagonalization of the frequency-independent
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Figure 2-4. The calculated excitation energies to some low-lying states of formaldehyde. The basis set,
geometry, and other details are found in Refs. [60, 61, 67, 69]
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Hamiltonian in the singles and doubles space [see Egs. (2-40) and (2-41)]. SCS-
and SOS-CIS(D) yield uniform and systematic improvements over CIS and CIS(D)
in all states studied.

2.2.3.8.3. Polyethylene 1In Section 2.2.2, HF and CIS (and TDHF) are shown
to describe the photoconduction, photoemission, and optical absorption thresholds
of polyethylene qualitatively correctly. There are, however, quantitative errors of
a few electron volts, which are speculated to be electron-correlation effects. To
prove or disprove this speculation, correlated CIS calculations at the Dyson(2) or
MP2 level are performed [55] on the basis of Eqgs. (2-46) and (2-47) or (2-48) with
W (), 15 @) = 1, =1, | '

(€9 = e®) x4 X al ib) 3,y = %, (2-56)

b.,j

Hence, this is a considerably simplified version of the P-EOM-MBPT(2) or GW
method. Figure 2-5 demonstrates the basis-set dependence of the three quantities
computed by MP2 (the Dyson(2) results are essentially the same). With the largest
basis set including diffuse functions, the photoemission and optical absorption
thresholds (ionization potential and excitation energy) are close to convergence and
are in good agreement with experiment. This supports the assertion that the errors
in the CIS results of these quantities are electron-correlation effects. The photocon-
duction threshold (energy gap) also improves with inclusion of electron-correlation

25
O Energy gap
B lonization energy
204 — m Excitation energy
2 151 _
~ —
>
<
9]
= |
S 10
e
2
Z
51 o -'
7
[
”
Z
0 T T T T T
S O] S c
O:) 5 + (]
@) I ) £
= © | o
»n © %
<
. Ll
Basis set

Figure 2-5. MP2 predictions of the photoconduction (fundamental gap), photoemission (ionization), and
optical absorption (excitation) energies of polyethylene [55]
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effects but there still remains an error of 2eV. Again, this must be primarily due
to a basis set deficiency and the addition of extremely diffuse functions should
bring the energy gap down at least to the ionization energy. Hence, we believe that
MP2 correlation-corrected CIS can semi-quantitatively explain the three processes
of polyethylene. It should of course be remembered that Eq. (2-56) neglects the
dielectric screening of inter-quasi-particle interactions and the correlation correc-
tions tend to be exaggerated.

2.3. TIME-DEPENDENT DENSITY-FUNCTIONAL METHODS
2.3.1. TDDFT: Formalism

Since DFT has essentially the same mean-field formalism as the HF theory and
share much the same computational algorithm, it is not surprising that it has the
excited-state counterparts corresponding to TDHF and CIS. They—TDDFT [83-88]
and Tamm-Dancoff TDDFT [89], respectively — can be derived analogously to
Section 2.2.1 with the only differences being in the definitions of the F®) operator
(now called the Kohn—Sham or KS Hamiltonian) and its derivative with respect to
the density matrix [see Eq. (2-7)]. The latter is

oF,,
oD

rs

=(ps|qr)+(pslwlgr) (2-57)
with

(pslwlgr) = [ @ (1) €5 (1) WKy, 125 0) @y (1) @, (1) drydy,
(2-58)

8 fxc
dp, (r)) dp, (ry) ’

for a pure local exchange-correlation functional fy-, where k and A are spin
labels for electrons in ¢, and ¢,, respectively. The second derivative of fyc with
respect to the electron densities is called an exchange-correlation kernel. There is
no w dependence in w(r,, r,; w) because of the adiabatic approximation. A more
complete expression encompassing local, gradient-corrected, and hybrid functionals
as well as CIS and TDHF can be found elsewhere [S0, 88]. With this modification,
TDDFT for frequency-dependent polarizabilities [83] is defined by Egs. (2-17) and
(2-20) and TDDFT or Tamm-Dancoff TDDFT for excitation energies by Eq. (2-21)
or (2-22), respectively, with the following new A and B matrices:

(2-59)

w(r), ry); w) =

(A) i = 0ij0us (e, — €)) +(aj | ib) +(ajlw]ib), (2-60)
(B) .5 = (ab | ij) + (ablw]ij). (2-61)

While the relationship between w(r,,r,; w) and W (r,,r,; ®) in Eq. (2-49) is
unknown, but they both serve the same purpose of accounting for the screened
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interaction between quasi-particles (note that DFT incorporates electron correlation
in a single-particle mean-field framework). However, unlike W (r,,r,; ) in the
GW methods, w (r,, r,; ) or the exchange-correlation functional therein has some
serious shortcomings with practical consequences in TDDFT results owing to the
approximations inevitable in the functional, which are discussed below.

2.3.2. TDDFT: Shortcomings

DFT and TDDFT with semiempirical functionals have some severe shortcomings
originating from one of the following two causes: The incomplete cancellation
of spurious self interaction between Coulomb and exchange energies and the
adiabatic approximation in an exchange-correlation kernel [33]. The semiempirical
functionals refer to virtually all functionals developed in the past with the exception
of those based on the optimized effective potential (OEP) of Talman and Shadwick
[90]. The term “semiempirical” is used in the sense that the former offers no way of
approaching the exactness and this is regardless of whether or not an experimental
input was used in the functional design.

2.3.2.1. Self interaction

The Coulomb energy is defined so as to include the self interaction (ii | ii).
This nonphysical term is cancelled exactly by an identical contribution in the HF
exchange, i.e., (ii||ii) = (ii | ii) — (ii | ii) = 0. In semiempirical DFT, where the
exchange energy is approximate, this exact cancellation does not occur. Often, an
exchange functional underestimates the magnitude of — (ii | ii), leaving a positive
error in the Coulomb part. The following are a partial list of the consequences of this:
DFT predicts too low ionization energies in Koopmans’ approximation [91-93].
TDDFT places Rydberg excitation energies also too low [91-93].

TDDFT systematically overestimates (hyper)polarizabilities [94-96].

TDDFT lacks charge-transfer separability [97, 98].

TDDFT yields nonphysical zero exciton binding [50].

The origin of shortcoming 1 is the following: The correct KS exchange potential,
defined as the functional first derivative of fy. with respect to the electron
density, has —1/r asymptotic decay behavior because of its self-interaction contri-
bution (— (ii | ii)). If an approximate exchange functional does not have this self-
interaction contribution exactly, its asymptotic decay lacks the correct —1/r form.
Usually, the value of fy. at one spatial position is a function of the value and/or the
gradients of the electron density at that position. Since the electron density decays
exponentially, an approximate exchange potential also tends to decay exponentially
rather than as —1/r. Without the slow —1/r decay, the approximate exchange
potential is too shallow almost everywhere causing all occupied orbitals to lie
too high. When an ionization potential is obtained as the negative of the highest-
occupied KS orbital energy, it is too low. This also explains too low Rydberg
states and too large polarizabilities predicted by TDDFT: Since a series of Rydberg

S
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excitation energies converges at an ionization threshold, if the latter is underes-
timated, so are the former. (Hyper)polarizabilities are the properties that depend
on excitation energies essentially in an inversely proportional fashion. When the
excitation energies (especially those to Rydberg states) are systematically underes-
timated, (hyper)polarizabilities are inevitably overestimated.

Another perspective is offered by considering the size dependence of the self
interaction (ii | ii). This integral displays K~' size-dependence according to Eq. (2-
25) and hence it vanishes for a completely delocalized orbital of an infinitely
periodic insulator. For a spatially localized orbital, the same self interaction is
nonzero. This is a consequence of the lack of orbital invariance of this integral. In
HF theory, the self interaction is cancelled between Coulomb and exchange terms
and does not spoil the orbital invariance of the total energy and wave function. In
semiempirical DFT and TDDFT, since the cancellation is not exact, the remnant,
positive self interaction (ii | ii) is usually minimal for a delocalized orbital. This
renders semiempirical DFT and TDDFT a universal tendency to favor delocalized
wave functions irrespective of the true nature of chemical systems.

Some of the aforementioned problems can be better explained by this tendency.
TDDFT is known to underestimate charge-transfer excitation energies and fail to
reproduce the correct —1/r dependence on the distance between two moieties
between which the charge transfer occurs. This is because TDDFT portrays even
such an excited state as one in which the charge is delocalized over the two moieties
(4). An exciton in a solid is stabilized (by an exciton binding energy) as an excited
electron in a conduction band and a “hole” it left behind in a valence band attracts
each other. In a TDDFT description, both excited electron and hole are delocalized
over the whole solid with zero stabilization (see the next paragraph). Note that for
a singlet two-electron system, the entire exchange energy becomes self interaction,
wherein DFT and TDDFT are particularly troublesome.

It may not be obvious that the self interaction problem is present in TDDFT,
but it can be made evident by comparing CIS and Tamm-Dancoff TDDFT for an
excitation describable by just a pair of orbitals (x,; = 1):

wcis = (e, — €;) + (ail |ia) , (2-62)
orpprr = (e, — €;) +(ai | ia) + (ai| w|ia) . (2-63)

In CIS, the — (ai | ai) term in Eq. (2-62) arises from the self interaction term
(= (@i | ii)) in the exchange energy. This term can be physically interpreted as a
charge-charge interaction (—1/r dependence) between orbitals a and i. The corre-
sponding term in Tamm-Dancoff TDDFT (ai| w |ia) is ultimately an overlap-type
integral with the present-day approximations of exchange functionals [see Eq. (2-
58)] and does not exhibit —1/r dependence. This is the reason why the distance
dependence of charge-transfer excitations is incorrect and the electron-hole inter-
action in an exciton is absent in semiempirical TDDFT.

Note that {ai|ia) is a dipole-dipole interaction (1/r® dependence) and also
numerically much less important than — {ai | ai) (self interaction). When a lattice
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sum with respect to the number of wave vector sampling points (K) is carried out
for w in a solid, it is the terms involving — (ai | ai) (K~' dependence) that are
expected to dictate the overall rate of convergence. It should also be noticed that
e, and e; contain terms that are of a charge-charge interaction type:

eo—e;=(alhlay = (il b [i) + 2 {ajllaj) — (il i)}

= (al hye|a) = (il by i) + 3 {{aj | aj) = (ij | ij)} +(ai | ai)
i#i

charge—charge interaction

=2 {(ajlja) = (ij| ji)} = (aiia), (2-64)

J#i

dipole—dipole interaction

where h,, is the one-electron part of the Fock or KS Hamiltonian operator. It
is evident that the e, — ¢; term has one extra term (the fourth term in the right-
hand side) with a charge-charge interaction type (1/r and K~! dependence) that
is cancelled exactly by — {ai | ai) in TDHF [Eq. (2-62)]. This exact cancellation
does not occur in TDDFT [Eq. (2-63)] because of semiempirical exchange kernel
w(r;, r,; @), causing nonphysical K dependence of excitation energies in solids
(see below for numerical results).

Another well-known example of the same problem of semiempirical DFT is
electronic structures of frans-polacetylene [99-105]. This is a one-dimensional
system subject to a Pierels distortion. Therefore, it is an insulator with a bond-
alternated structure at a sufficiently low temperature. However, semiempirical DFT
fails to reproduce a large band gap or bond-alternated structure, predicting incor-
rectly that frams-polyacetylene is (nearly) metallic at zero temperature. This is
another manifestation of DFT’s nonphysical tendency to favor delocalized wave
functions. The HF or HF-based correlated theories do not exhibit this problem.

Although usual diagrammatic argument does not apply, for these reasons,
semiempirical DFT and TDDFT may be said to lack size correctness.

2.3.2.2. Adiabatic exchange-correlation kernels

There are other shortcomings in semiempirical TDDFT that are not related to the self
interaction. Semiempirical TDDFT has the same overall formalism and algorithmic
structure as TDHF and the energy distribution of excited-state roots from these
methods is much less dense than the exact distribution from FCI. In other words,
while TDDFT is formally an exact theory for excited states (cf. Runge-Gross
theorem [2]), semiempirical TDDFT has only one-electron excitations just as TDHF
or CIS, which are the crudest approximations in excited-state molecular orbital
theory.

This apparent contradiction arises from the adiabatic approximation of exchange-
correlation kernels, i.e., their absence of frequency dependence [106]. As Egs. (2-44)
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and (2-45) indicate, a diagonalization of the bare Hamiltonian matrix in the singles
and doubles space can be cast into an equivalent diagonalization of the dressed,
frequency-dependent Hamiltonian matrix in the singles space. Clearly, this process
of folding higher-order sections of Hamiltonian into the singles section can be
repeated, leading to an exact excited-state theory within apparent single-excitation
formalisms. In other words, frequency dependence in an exchange-correlation
kernel is expected to account for two-electron and higher-order excitations and
also frequency-dependent screening of Coulomb interactions between correlation-
dressed electrons in TDDFT and this effect is missing in virtually all semiempirical
TDDFT calculations.

2.3.3. TDDFT Based on Optimized Effective Potentials

2.3.3.1. OEP

The fundamental problem of DFT and TDDFT underlying the aforementioned
pathology is that approximations inevitable in the methods are not systematic and
that the cost-accuracy trade-off is not subject to a control. The effort to find a
systematic series of approximations in exchange-correlation functionals is important
in this regard [107]. It helps us understand the performance of DFT and TDDFT
and possibly provides a guideline by which we can improve the approximations.
A rigorous exchange functional is known as the OEP method originally developed
by Talman and Shadwick [90]. They asked the question of finding a frequency-
independent and local (multiplicative) effective potential that minimizes the HF
energy expression when evaluated with orbitals that are obtained by a self-consistent
field procedure with the potential. This defines an OEP, which satisfies many of the
analytical conditions that the exact KS potential must satisfy [108]: It cancels exactly
the self interaction in the Coulomb energy and has the correct —1/r asymptote. It
exhibits an integer derivative discontinuity upon addition of an infinitesimal fraction
of an electron to the highest occupied orbital. It obeys the exchange virial theorem
and Koopmans’ theorem for the highest occupied orbital. Since it is self-interaction
free, none of the usual problems of semiempirical DFT and TDDFT do not occur
in OEP results. However, the practical usefulness of the OEP method is limited as
it gives essentially the same prediction as the HF method in chemical simulations.

There are several ways of defining an OEP: The variation of a local potential
(i.e., OEP) to minimize the HF energy expression, the projection of non-local HF
exchange operator onto a local potential by the Sham—Schliiter equation, or the
weighted least square fit of non-local HF operator and local OEP. They all lead to
a pointwise identity:

3 (al Voep 1) ¢4 () ¢; () _ 3 (al Ky i) @, (¥) @; (r).

e;—e e;—e,

(2-65)

i,a a i,a

for real-valued orbitals, where Vg is an OEP and (¢| Kyp i) is a HF exchange
matrix element equal to — 3", (ij | ja). Equation (2-65) may be interpreted as a
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projection of a non-local operator (the right-hand side) to a local potential (the
left-hand side) by a linear response function

Loy P (r) ¢; (r)) @i () @, (1)
X(rl,rz,w)—%: o—(e,—2)
@, (r) ¢; (1) ¢, (r,) @, (13)

(2-66)

i,a

at o = 0. Using this quantity, Eq. (2-65) can be written as a Fredholm integral
equation of the first kind, i.e.,

0) Z (al Kyr i) ¢, (1) @; (r5) , (2-67)

I__
Vorp (1)) = EX l(rl’r2§ P

because of the very multiplicative nature of Vgp. It can be seen that an OEP
defined by Eq. (2-65) possesses the —1/r asymptote as follows. At r far away from
the molecular center, the contribution of the highest occupied orbital ¢, dominates
in the sums in Eq. (2-65) over all the other occupied orbitals because the latter
decay much more rapidly with r. In this limit, integral — (kA | ha) dominates in the
right-hand side and then the integral equation can be solved analytically to yield

Vo (1)) =~ — '*Dh(f' r, ~ 3 (2-68)

Lt 1

The negative of the highest occupied KS orbital energy is a reasonable approx-
imation to the first ionization potential (just as that in the HF theory) and no
systematic underestimation can be seen.

2.3.3.2. TDOEP

TDDFT with an OEP (TDOEP) for excitation energies [109, 110] and frequency-
dependent polarizabilities [111] has the same working equations (2-17), (2-21),
or (2-22) with (2-60) and (2-61). The corresponding exchange-correlation kernel
derived by Gorling [112, 113] is frequency dependent:

—2e;,¢; — 20*
Wopp (1, Ty @) = ZZ =

i,j ab ( €ia wZ) (ejb

-2 2
PN w)[ii, & 5 (@ 1D e m) & (1) () ()

(aj | bi) ¢; (r)) @, (r)) ¢, (1) @, (13)
?)

+ZZ 4 ( S ) <a|KHF Voep 1)

i,j a

x{@; (r) @; (1) ¢; (1) @, (r2) + ¢, (1) @; (1)) ¢; (r,) @; (r,) }
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ia®ja — 2w’ I .
+220 ( wz)/(eia _ wz) (il Ky = Vore |7

i,j a

@; (r)) @, (rl) P; (ry) @, (1)

+Xl:(§e ( )<1|KH1= Voee |a)
x{@, (r) ¢, (r)) ¢, (ry) @; (r2) + @; (1) @, (r}) @, (r2) @, (1)}

2
+ZZ ezh+ w

el G wz) (¢, — ?) (bl Kyir — Vogp |a)
@; (rl) Py (l'l) @; (rz) @ (rz) . (2-69)

If we substitute w = 0 into the above, we arrive at a frequency-independent kernel
expression, which can be derived by differentiating Eq. (2-67) with respect to
the electron density [110]. With the frequency-independent kernel, one can obtain
a one-electron excitation spectrum from TDOEP [110]. The frequency-dependent
kernel offers a unique opportunity to quantify the impact of the adiabatic approxi-
mation [114].

2.3.3.3. Applications

Figure 2-6 illustrates the different performance of semiempirical TDDFT, TDOEP,
and TDHF [110]. A few observations can be made: The semiempirical TDDFT
systematically underestimate excitation energies of Be and H,O, many of whose
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4 . . . . . .
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Figure 2-6. Comparison of calculated and experimental vertical excitation energies of Be and H,O.
TDDFT is based on the Slater—Vosko—Wilk—Nusair functional. See Ref. [110] for details
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low-lying excited states are of Rydberg type. TDHF and TDOEP have compa-
rable errors as the semiempirical TDDFT, but they are scattered on both sides of
experimental data and do not show systematic underestimation. It is also clear that
the TDOEP results follow closely the corresponding TDHF ones. This is expected
and satisfying because TDOEP and TDHF are both rigorous exchange-only time-
dependent linear response theory for excited states in DFT and molecular orbital
theory, respectively. Similar observations have been made in static and frequency-
dependent polarizabilities [110] and van der Waals C, coefficients [115]. The
impact of adiabatic approximation in the exchange kernel has been quantified in
off-resonance energy regions and has been shown to be negligible [114]. This
result justifies the widely held assumption in virtually all semiempirical TDDFT
calculations. The impact of the approximation at resonance and the emergence of
two-electron excitations is a separate issue, which is yet to be studied.

2.34. TDDFT Applications to Polymers

The extension of TDDFT and Tamm-Dancoff TDDFT to crystalline polymers
is straightforward within the formalisms of Section 2.2.2. Figure 2-7 summa-
rizes the results of TDDFT calculations of the photoconduction, photoemission,
and optical absorption thresholds (energy gap, ionization energy, and excitation
energy) of polyethylene as a function of basis set [50]. The Slater—Vosko—Wilk—
Nusair functional [116, 117] is used, but the following conclusion is unaltered
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Figure 2-7. TDDFT (the Slater—Vosko—Wilk—Nusair functional) predictions of the photoconduction

(fundamental gap), photoemission (ionization), and optical absorption (excitation) energies of
polyethylene [50]
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by the identity of the functional (insofar as there is no hybrid HF contribution)
or by the Tamm-Dancoff approximation. Although the quantitative errors are
deceptively small especially for the excitation energy, the TDDFT results have
a fundamental shortcoming. Irrespective of the basis set used, the calculated
excitation energy and energy gap coincide, yielding vanishing exciton binding
energy. This is a consequence of incomplete self-interaction cancellation in DFT
and TDDFT, favoring delocalized wave functions and orbitals. In this nonphysical
picture, an electron and a hole created by a photon are delocalized over the
entire chain, so that the remnant self-interaction energy is minimized instead
of forming a localized electron-hole pair stabilized by a Coulomb interaction.
Self interaction also causes the ionization energy computed as the negative of
the valence band maximum to be underestimated by many electron volts.

Figure 2-8 also illustrates the wrong physical description of excitation by TDDFT.
It plots the excitation energies of CIS and TDDFT relative to the respective
converged values as a function of K, which is the measure of molecular size [50].
Despite the rapid decay of the TDDFT molecular integrals within sixth neighbor
unit cells, the excitation energy depends strongly on K, reflecting the permanent
delocalization of the exciton wave function as the ring (the polymer chain in the
periodic boundary conditions) is enlarged. The correct K dependence can be seen in
the CIS result (Figure 2-8). The CIS molecular integrals are more slowly decaying
than the TDDFT ones. Nevertheless, the excitation energy converges as soon as a
sufficiently large value (20) of K is chosen and ceases to change upon any further
increase. This is because the exciton wave function in CIS has a well-defined
spatial spread and as soon as K becomes large enough to accommodate the wave
function the result is independent of K. Semiempirical TDDFT excitation energy to
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—e— TDDFT
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Error/ Eh
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Figure 2-8. Convergence of the excitation energy to the lowest-lying singlet exciton computed by CIS
and TDDFT using the Slater—Vosko—Wilk—Nusair functional with the STO-3G basis set as a function
of the number of wave vector sampling points (K) [50]. The error is defined as the absolute difference
from the K = 100 results. The converged (K = 100) result with TDDFT is very close to the fundamental

energy gap
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the lowest-lying exciton is the same as the fundamental band gap at convergence.
Since the latter value is known from the preceding DFT calculations, it may be said
that the TDDFT step is not meaningful for this purpose.

2.4. COUPLED-CLUSTER METHODS
2.4.1. EOM-CC: Formalism

The coupled-cluster (CC) method [41, 118-120] expresses the wave function of a
molecule in the ground state by
0 ©)
W)= 1), (2-70)
where 7© is a cluster excitation operator and @, is a single-determinant reference,
which is typically but not limited to a HF wave function. The superscript (0) is
placed on a zeroth-order quantity in the subsequent time-dependent perturbation
treatment. The exponential operator is defined by its Taylor series:

N N 1 N 2 1 N 3
=14 T4 (70) + o (70) +.... (2-71)

This ingenious parameterization reflects the fact that an electron-electron inter-
action is of two-body type and hence four-fold and six-fold excitations are indeed
dominated by two and three simultaneous two-fold excitations. The cluster ampli-
tudes in 7(© are determined by substituting W2 into the Schrodinger equation and
projecting it onto the determinant manifolds reachable by acting 7© on D, i.e.,

7 7(0) 0 7(0)
(D] HO |Dy) = EQ (D] " @), (2-72)
al “a, () 0 a--a,| FO
(@0 HOT D) = B (D51 ™ ) (2-73)

where H© is the usual time-independent Hamiltonian, n ranges from 1 through the
excitation rank of T©, and E((g stands for the total CC energy. Because e s

by-by, } and {<q)b1 m —T(ﬂ)

J1+Jm “Jm
identical determinant space. Equations (2-72) and (2-73) are, therefore, rewritten in
equivalent forms:

an excitation operator, {(CD

} with 0 < m < n span the

(Dy| H | D) = EX, (2-74)
(@1 | H |Dy) =0, (2-75)

iy

where the CC effective or similarity-transformed Hamiltonian is

=00 [0 7
connected

The [ - - Jeomectea Tequires that H® and T be diagrammatically connected in the
usual sense of the word. This is a stronger condition than linkedness that allows
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disconnected diagrams insofar as they are open and hence are potentially connected
once closed. The connectedness of H ensures the linkedness of the energy diagrams,
which are (excluding the reference energy)

71

where the solid vertexes represent the single-excitation part of the cluster operator f“l(o)
(in 69 and 71) or the double-excitation part 7x2(0) (in 70). The %1(0) and %2(0) operators
(or vertexes) scale as K° and K~! and one- and two-electron parts of HO also scale
as K and K~'. Hence, all of 69, 70, and 71 scale as K' and ECp is size extensive.
Likewise, every term in the amplitude equations (2-73) and (2-75) can be shown
to scale in the same way as K —n+1 The amplitudes are, therefore, size extensive.

The time-dependent linear response principle can be applied to the CC theory

[22-24]. We begin with the Hamiltonian operator H that is a sum of the usual
time-independent one H® and a time-dependent perturbation g(":

69 70

H=H" 45" (2-77)
with

2 = % (ilme—““’ + RO e"w’) ) (2-78)
In response to perturbation, essentially all parameters that enter ‘I’C(%) vary. Here we

consider only the variation in the cluster amplitudes (the reference wave function
and orbitals therein are frozen), i.e.,

T=TO4RWe 4 (2-79)
where R is an excitation operator having the same structure as yACR e.g., if
7O = 7O 4 79 then R = R{" + R{". Substituting Egs. (2-77) and (2-79) into
the time-dependent Schrodinger equation, we obtain

O 4 1) it 4 Lyt gior ) JTO+RDe 4 g\ B _ 0 1O RO ior ) o IEL
<H +5hVe™@ 43 e )e |D,) e =i-e | D) e .

(2-80)

—iwt

Collecting only those terms that are in first order to the perturbation and carry e
dependence, we arrive at

HO" RV @) + LhV e |@y) = (Eé‘)c) + w) eTRM @) (2-81)
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i i@
where we have dropped the e~ 1o1=EC! factor and used

ORI O Ry O (1 L RW o 4 ) ' (2-82)
Equation (2-81) must be satisfied in the same determinant space adopted in Egs. (2-

74) and (2-75). When just excitation energies and transition dipole moments are
concerned, the perturbation can be infinitesimal and Eq. (2-81) simplifies to

HOT RO |@y) = (Egg + w> JTORD Dy, (2-83)
or equivalently

ARD |dy) = (Egg + w) RO |y, (2-84)
within the determinant space of Egs. (2-74) and (2-75). This defines the coupled-
cluster linear response [22-24] or equation-of-motion coupled-cluster (EOM-CC)
method [17] for excitation energies. Because of Egs. (2-74) and (2-75), the following
is also true in the same determinant space:

RVH |®y) = EQRY | ). (2-85)

Subtracting this from Eq. (2-84), we can isolate the excitation energy w from the
ground-state energy and expose the connected structure of the equation as follows:

(7. RO] @) = 0R |y, (2-86)
or

(I:Ik(l))connecled |q)0> - wk(l) |¢0> ’ (2_87)

Some of the diagrams of H are shown below:

@ 4 Y o LM

76 77

A
VAAVAVAVIRVAVAVAY,

79 80 81 82
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etc. Each is composed of connected H and T’s and can effect at most (4n—2)-
electron excitation or two-electron deexcitation if 7" is truncated after the n-electron
excitation operator. It also has a constant term that is equal to ESQ (72), which
equals the sum of 69, 70, and 71 and the reference energy. Hence, HR®" |®,) of,
e.g., EOM-CC with singles and doubles (EOM-CCSD) has unlinked, disconnected
(83) and linked, disconnected (84) diagrams which are

83 84

where the double line vertex represents RM. Both disconnected diagrams are
cancelled exactly by the identical contributions in R/ |D,) [83 with Eéoc)f?(') |Dy)
and 84 is actually zero because of Eq. (2-75)]. The diagrammatic connectedness of
Eq. (2-87) ensures that the every term in both sides of the equation scales consis-
tently in the same way if and only if we assume K° dependence of w. This means
that the truncated EOM-CC method is size correct and its total excited-state energy
has the sum form:

— (0)
Evom—cc= Ee¢ + o (2-88)
N S .
size correct size extensive ~ S1Z¢ Intensive

insofar as the truncation ranks of 7@ and R are identical as required by the
linear response derivation. Notice the similarity between Eq. (2-84) and truncated
CI methods; EOM-CC can be viewed as a CI procedure using H. Unlike a truncated
CI, which is generally not size correct either in ground or excited states, EOM-CC
is size correct because H has a partial block-diagonal structure (Figure 2-9) that
separates the ground and excitation energies as Eq. (2-88) [17].

The use of a linear or Cl-like excitation operator such as IAQ(I), therefore, does
not immediately translate to the lack of correct size dependence in an excited-state
theory. On the contrary, a linear excitation operator, whose action is size intensive,
is ideal for a description of spatially localized electron reorganizations such as
excitations, ionization, electron attachment, bond breaking, etc. The problem in
truncated CI for excited states rather derives from the use of the size-intensive linear
operator to also describe size-extensive correlation energies in the ground state.
This is why CIS with a HF reference wave function is size correct as CIS introduces
no correlation (Brillouin’s theorem) and the HF energy for the ground state is size
extensive. The size correctness of EOM-CC is, therefore, a direct consequence of
the size extensivity of CC and the use of time-dependent linear response theory.
If the rank of the linear operator RM is chosen to be higher than that of 7O, the
former is used not just to describe excitations but also to introduce correlation in
the ground state and the size correctness is lost.
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Figure 2-9. The structure of coupled-cluster similarity-transformed Hamiltonian for coupled-cluster
singles and doubles

Viewed as a CI-like eigenvalue problem of H, the EOM-CC equation must have
its Hermitian conjugate counterpart:

(| LVH = (@] LV (EQ +0), (2-89)

which should be true in the same determinant (ket) space as before, where L®jsa
linear deexcitation operator of the same rank as RT or 77, Taking EOM-CCSD
as an example, we can draw the diagrammatic representation of the left-hand side as

()
FAN A AN SN
85 86 87 88

etc. An inspection readily shows that only unlinked diagrams are of the type 85,
which can be written as (| L(I)Egg. Disconnected, but linked diagrams such as
86 give nonvanishing contributions. Hence, we can rewrite Eq. (2-89) as

(D, (imﬁ) = (Dy| LV . (2-90)

linked

Being linked, Eq. (2-90) is size correct.
The EOM-CCSD equation (2-87) projected onto singles has such contributions as

¢ ¢ LT \T
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Diagram 89 contains diagrams like 35 and 39 and diagram 90 includes 36 and
38. Hence, the H pieces such as 73 dress the orbital energies with the electron-
correlation effects through coupled-cluster Green’s function [121, 122] (see also
Ref. [123]) akin to 47, whereas 76 accounts for screened Coulomb interactions
between correlation-dressed electrons. Diagrams 91 and 92 can be viewed as a
contraction of f{gl) with the H piece 75 and 79, respectively, folding the effect of
two-electron excitations into the singles space as in Eq. (2-45).

2.4.2. EOM-CC with a Perturbation Correction

2.4.2.1. Formalism

Among the most effective methods of electron correlation are low-order perturbation
corrections to the CC methods, represented by CCSD(T) [124, 125]. The same
strategy can be applied to excited states on the basis of either Rayleigh—Schrodinger
perturbation theory or Lowdin perturbation theory [70]. The former lead to the
CIS-MP2, CIS(D), CIS(3), and CIS(4), methods [61] when the CIS method is
selected as the reference wave function (see Section 2.2.3). This section is concerned
with low-order Rayleigh—Schrodinger perturbation corrections to the EOM-CCSD
method for excited states [58, 59, 126], which also encompass the corresponding
corrections to the CCSD for the ground state [127] (see also Refs. [128-130]).

We partition the CCSD-similarity-transformed Hamiltonian H into the zeroth-
order part

I:IO=PI:IP+Q|: (°)+ZF§§? {a' b}+ZF(°>{ }} (2-91)
and perturbation V=H- I:IO, where
= |®y) (P, I+ZZ|¢“ (@7 + 303 | @) (@ (2-92)
i<ja<b

and Q = 1— P [cf. Egs. (2-35) and (2-36)]. With this partitioning, the leading-order
Rayleigh—Schrddinger perturbation correction to the total energy of an excited state
occurs at the second order:

AE® = AE"D 4 AE@ (2-93)
and

ijk

b L(I)V q)abc q)abc VR(I) )
LY oo ROy

AED — Z Z

i<j<k a<b<c

AE©Q — Z Z

i<j<k<la<b<c<d

wtetet+e—e,—e,—e,

<q)0| L(I)V |®db6d)<q)ah6d| Vk(l) |(D0>

ijkl ijkl

a)~|—e,-—|—ej+ek—|—e,—ea—eb—ec—ed'
(2-95)
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The parallelism between these equations and Eq. (2-30) (CIS-MP2) is evident.
Indeed, Eqgs. (2-91) and (2-92) are one-rank higher counterparts of Egs. (2-35)
and (2-36). The latter can be viewed as the perturbation corrections to EOM-CCS
[58, 59].

2.4.2.2. Size correctness

Let us turn to the question of whether or not Egs. (2-94) and (2-95) are diagram-
matically linked. For Eq. (2-94) to be unlinked, the two factors in the numerator
must be unlinked or disconnected to begin with and furthermore, if disconnected
but linked, they must be contracted in a certain way to become overall unlinked.
The only ways the second factor can be disconnected or unlinked are

TTRTATAYRYANAY

Diagrams 93 and 94 vanish because the disconnected parts that represent H (the
open rectangular vertexes) are zero because of Eq. (2-75). The H disconnected part
in 95, however, does not vanish in CCSD. The double circle vertex represents f?él)
(the contribution of the reference determinant in the excited-state wave function),
which is also nonzero if the excited-state symmetry is the same as that of the
reference state. This means that unlinked contributions do exist in Eq. (2-94) and
they arise from 95 as, e.g.,

WA

96

M

©
—
SN~—
N

The inspection of the K dependence shows that the unlinked diagrams such as 96
scale as K! while the other (linked) diagrams as K°. Equation (2-95) is shown to
behave in the same fashion, i.e.,

2 2
AE(2) = AEl(m?inked + AEl(in)ked (2'96)
—— ——

size extensive  size intensive

for an excited state.

Hence, Eqgs. (2-94) and (2-95) have the appearance of size-correct corrections
that separate into a size-extensive correction to the ground-state total energy and
a size-intensive one for the excitation energy. However, they are not size correct
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because there are both logical and practical difficulties in considering AEﬁmked as
a correction to the ground-state total energy. Logically, AESkaed of any excited
state should be equal to AE® evaluated for the ground state (Figure 2-10), but
this is not the case because, e.g., 96 contains LM (the double vertex) for the
excited state, which bears no simple relationship with LX) for the ground state with
which AE® for the ground state should be obtained. Numerically also, AEﬁLnked
is disproportionately small to be considered as a second-order correction to the
ground-state total energy. In fact, it vanishes when the excited-state symmetry
differs from the ground-state symmetry.

An ad hoc adjustment has been made in a previous work [126] to make the
second-order correction size correct: AEl(lﬁinked in Eq. (2-96) has been replaced
by AE®@ evaluated for the ground state, which is equivalent to calling AEﬁﬂed a
size-intensive correction to the excitation energy. This adjustment comes at the
price of underestimating excitation energies because replacing tiny AEﬁLnked by a
large, negative AE® lowers the excited total energy considerably (Figure 2-10).
With this approximation, Eq. (2-93) defines EOM-CCSD(2),. If we neglect the
quadruples [Eq. (2-95)], we arrive at EOM-CCSD(2);, [126], which is equivalent to
EOM-CCSD(T) of Watts and Bartlett [131-133]. Shiozaki et al. [126] considered a
third-order triples correction to EOM-CCSD in this way. For the ground state, up to
a third-order triples and quadruples correction to CCSD [126] and a second-order

quadruples correction to CCSDT [127] have been reported.

2.4.2.3. Application: C,

The most challenging and therefore the most telling example for excitation theories
is C,, whose ground state has a severe multi-determinant wave function. It is
known that, to obtain quantitative results (errors < 0.1eV), one must resort to
EOM-CCSDTQ [134]. Figure 2-11 compares EOM-CCSD, CCSDT, and various
perturbation corrections to EOM-CCSD with FCI for three excited states of C, [126].
EOM-CCSD, which is usually highly accurate, is inadequate for the two states A
and B with errors approaching 2 eV. All variants of the perturbation corrections are

excited state
_—

N I-(O _a size-1ntensive

N X

.. Y.__  correction

" 1

\‘ K
\
the same size-
ground state extensive correction

S .

\\ Kl

reference perturbation

Figure 2-10. An energy diagram of an excited and the ground state. A size-correct perturbation theory
adds a size-extensive correction to the ground state. It gives the sum of the same size-extensive correction
and intensive correction to the excited state
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Figure 2-11. The calculated excitation energies to some low-lying states of C,. The basis set, geometry,
and other details are found in Refs. [126]

quite effective in rectifying the errors. With these corrections, the excitation energies
are within 0.5eV. It is also evident that the perturbation methods overestimate the
corrections and hence underestimate the excitation energies (Figure 2-10).

2.5. CONCLUDING REMARKS

Key chemical reactions of important biological functions or advanced materials are
often initiated by a photon. An example is the track ionizations in aqueous phases
caused by a high-energy photon, leading to radiation damage of living tissues [135].
Another example is photosynthesis and photoprotection in plants [136], in which
electron transfers between hemes occur. These electron transfers are nothing but
electronic excitations with a large electron density shift. Also, photogeneration of
an exciton and its separation into a free electron and a free hole in conducting
polymers is the enabling mechanism of its use in a solar cell [137]. In elucidating
these processes, computational modeling studies using a fast and predictive theory
for excited states become mandatory. Such a theory is likely based on a simple
single-reference theory, e.g., CIS, TDDFT, or CIS with perturbation corrections
such as CIS(D) or GW. If it is to be applied to large systems, it must be size
correct. While EOM-CC based methods may be too expensive to be the workhorse
in these modeling, they are still crucial as a guide to formulating and improving the
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lower-order methods. In particular, a method like P-EOM-MBPT(2) serves as a
template to design, compare, and improve upon CIS(n), GW, or even TDDFT.
Unlike in the methods for the ground state, there is a gap in the hierarchy of
excited-state theory: No ultimate excited-state theory has emerged that is fast and
accurate for small and large systems alike, in the same way DFT or MP2 are in
the ground state. The methods discussed in this review are certainly closest to this
goal, but there seems to be ample room for a significant advance in this direction.
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ABBREVIATIONS

CC

Coupled-cluster

CCSD Coupled-cluster singles and doubles

CI Configuration-interaction

CIS Configuration-interaction singles

CIS-MP2 Configuration-interaction singles with a second-order

Mgller—Plesset correction

CIS(D) Configuration-interaction singles with a doubles correction

CIS(3) Configuration-interaction  singles with a third-order
correction

CIS(4), Configuration-interaction singles with a partial fourth-order
correction

D-CIS(2) Configuration-interaction singles with an off-diagonal
second-order correction

DFT Density-functional theory

EOM-CC Equation-of-motion coupled-cluster

EOM-CCSD Equation-of-motion coupled-cluster singles and doubles

EOM-CCSD(2),
EOM-CCSD(2),,

EOM-CCSD(3),

Equation-of-motion coupled-cluster singles and doubles
with a second-order triples correction

Equation-of-motion coupled-cluster singles and doubles
with a second-order triples and quadruples correction
Equation-of-motion coupled-cluster singles and doubles
with a third-order triples correction

EOM-CCSDT Equation-of-motion coupled-cluster singles, doubles, and
triples

EOM-CCSDTQ Equation-of-motion  coupled-cluster singles, doubles,
triples, and quadruples

FCI Full configuration-interaction

HF Hartree—Fock

HOMO The highest occupied molecular orbital
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LUMO  The lowest unoccupied molecular orbital
MBPT  Many-body perturbation theory

MP2
MP3
OEP
RPA

Second-order Mgller—Plesset perturbation theory
Third-order Mgller—Plesset perturbation theory
Optimized effective potential

Random phase approximation

SAC-CI  Symmetry-adapted-cluster configuration-interaction
TDDFT Time-dependent density-functional theory
TDHF Time-dependent Hartree—Fock
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CHAPTER 3

AN INTRODUCTION TO EQUATION-OF-MOTION

AND LINEAR-RESPONSE COUPLED-CLUSTER METHODS
FOR ELECTRONICALLY EXCITED STATES

OF MOLECULES

JOHN D. WATTS*

Computational Center for Molecular Structure and Interactions, Department of Chemistry, P. O. Box
17910, Jackson State University, Jackson, MS 39217, USA

Abstract: This chapter presents a review of equation-of-motion coupled-cluster (EOM-CC) and
linear-response coupled-cluster (LR-CC) methods for excited states of molecules. These
methods derive from ground-state CC theory and, just as CC has become a very effective
tool for ground electronic states, EOM-CC/LR-CC methods have become increasingly
useful tools for excited states. The general theory is first outlined. This is followed by a
survey of the different approximate schemes that have been developed and implemented.
Next, the performance of some of these different schemes is assessed by numerical
comparisons with exact results and with experimental data. Finally, a few illustrative
applications are described in order to show the scope and applicability of EOM-CC/LR-
CC methods

Keywords:  Equation-of-Motion Coupled-Cluster Theory, Linear-Response Coupled-Cluster Theory,
Molecular Excitation Energies, Excited State Properties, Electronic Spectra

3.1. INTRODUCTION

In principle the calculation of the energies and properties of electronically excited
states of molecules is no more difficult than calculating those of the ground state.
After all, the wave functions and energies of ground and excited states are eigen-
functions and eigenvalues of the Hamiltonian operator, and they may be obtained
by solving the Schrédinger equation

HY, =E,V, (3-1)
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Here H is the quantum mechanical Born-Oppenheimer Hamiltonian operator and
W, and E, are the wave function and energy of the kth electronic state. It should
be pointed out that the wave function W, and energy E, of each state depend on
the nuclear coordinates. Thus, each E, is a function of nuclear coordinates and
defines a potential energy surface. In practice, of course, studying excited states is
different from studying ground states in one way or another. First, some methods
that provide a semi-quantitative or better description of the ground state cannot be
straightforwardly applied to excited states. This category includes not only standard
single-determinant Hartree-Fock (HF) theory, but also correlated methods that use
the HF determinant as a starting point and depend on it for providing at least a
reasonable zeroth-order description, such as perturbation theory or coupled-cluster
(CC) theory. One problem is that most excited states may not be represented as a
single determinant. Furthermore, obtaining the equivalent of HF orbitals for excited
states is not generally possible. Configuration interaction (CI) can in principle
describe excited states by solving the same sort of equations as for the ground state:
the ground state energy is the lowest energy eigenvalue of the Hamiltonian matrix,
while excited state energies are higher energy eigenvalues and their wave functions
are the corresponding eigenvectors. However, if the molecular orbitals (MOs) on
which the CI calculation is based are those of the ground state, those orbitals are less
suitable for describing an excited state, and in general more reference determinants
are needed to obtain an adequate description of the excited states.

The purpose of this chapter is to provide an introduction to the use of coupled-
cluster (CC) methods for studying electronically excited states of molecules. There
are in fact several branches of CC methodology that can in principle be applied to
this problem. Our focus, however, is on the so-called equation-of-motion CC (EOM-
CC) or linear-response CC (LR-CC) approach. This approach has several features
that recommend it. First, it is “straightforward” in that it uses an unambiguous
single-reference-like approach that builds excited state wave functions from the
CC ground state wave function. Second, it has proven to be capable of quite
high accuracy. Third, it is applicable to “small” to “medium-sized” molecules.
Fourth, analytical derivatives of the energy have been available for some time,
thus permitting computation of stationary points on excited state potential energy
surfaces and harmonic vibrational frequencies. Fifth, these methods are available
in several software packages, and are increasingly being used in applications.

For some time single-reference CC theory has been widely used in quantum
chemical applications on systems that can be qualitatively described by a single
determinant of orthonormal spin orbitals. These include closed-shell and high-spin
open-shell systems, i.e. the ground states of most molecules and selected excited
states. The wide use of CC theory is a reflection of its accuracy, its superiority over
other single-reference approaches, and the availability of efficient algorithms in
widely available software. CC theory was first considered in the 1950s for studies
of nuclear matter [1, 2]. It was introduced into quantum chemistry by CiZek in
the 1960s [3, 4], who made further pioneering developments with Paldus [5] and
Paldus and Shavitt [6] in the early 1970s. Several excellent reviews on aspects of
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SR-CC theory and its applications are available [7-16]. Some of these also address
aspects of the CC treatment of excited states.

As mentioned above, most excited states are not amenable to study by the
standard SR-CC theory since they cannot be qualitatively represented by a single
Slater determinant. Accordingly, a new strategy had to be developed to study these
electronic states by CC methods. As mentioned above, one approach goes by the
name of linear-response CC theory (LR-CC) or equation-of-motion CC (EOM-CC).
LR-CC theory is derived in a time-dependent manner, while EOM-CC theory is
derived in a time-independent manner. However, both approaches lead to the same
energies of excited states. The initial LR-CC formalism is due to Monkhorst [17]
and Dalgaard and Monkhorst [18]. Further formal work was later done by Koch
and Jgrgensen [19], followed by the implementation of the LR-CC singles and
doubles (LR-CCSD) method and its application to calculate excitation energies of
several molecules [20]. Initial formal work on the EOM-CC approach is credited
to Emrich [21]. Further formal work and initial numerical results were obtained by
Sekino and Bartlett [22]. Geertsen et al. [23] obtained partitioned EOM-CC results.
In 1993 Stanton and Bartlett [24] and Comeau and Bartlett [25] obtained EOM-
CCSD results, as did Rico and Head-Gordon [26]. Since then there have been many
further developments, including incorporation of higher excitations, development
of analytical derivatives for the excited state energies, and many applications.

The plan of this chapter is as follows. The next section briefly reviews the CC
formalism for the ground state. This is necessary since the LR-CC and EOM-CC
approaches start from the CC ground state description. It also introduces some
notation that will be used in later sections. Next, the basics of the exact EOM-CC
approach are derived, showing how an eigensystem is arrived at. After some aspects
of characterizing an electronic transition, EOM-/LR-CC methods that have been
developed and implemented are surveyed. The next section presents a numerical
assessment of some of the main methods. Finally, a few illustrative applications are
summarized. Some aspects of EOM-CC methods are discussed in Chapter 2. The
symmetry-adapted cluster configuration interaction (SAC-CI) method can be related
to EOM-CC methods. The SAC-CI method and several impressive applications
thereof are described in Chapter 4.

3.2. COUPLED-CLUSTER THEORY FOR THE GROUND STATE

In the EOM-CC and LR-CC approaches, excited state wave functions and energies
are built on top of a single-determinant CC description of the ground state (or other
convenient reference state). Therefore, we begin with an overview of the ground
state CC method.

In these methods, the ground state must be of a type that can be described by
a single Slater determinant of orthonormal spin orbitals. One such type, which is
the most common ground state, is a closed-shell system (i.e. all occupied MOs are
doubly occupied). We let W}, or |0 > denote the Slater determinant wave function
for the ground state, which will usually be made up of HF MOs, although in fact
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it is not necessary that the orbitals are solutions of the HF equations. The starting
point for the CC approach is the existence of a set of orthonormal occupied and
unoccupied MOs. The ground state Slater determinant contains only the occupied
orbitals. The convention that we shall follow is occupied orbitals will be labeled by
indices i, j, k, ..., while unoccupied orbitals will be labeled by indices a, b, c, ...
Indices p, g, r, ... will be used to denote a general MO or spin orbital. The CC
wave function for the ground state has the general form

V=W, =e'|0> (3-2)
The operator T is an excitation operator. It is given by
T=T+T,+T,+... (3-3)

The operators f‘n are n-electron excitation operators that excite n electrons from
the occupied orbitals to the unoccupied orbitals. Alternatively, they may be said to
replace n occupied spin orbitals in |0 > by n unoccupied spin orbitals. f“,, sums
over all possible n-electron excitations combinations, and each excitation has its
own weight that must be solved for (see below). The form of the single- and
double-excitation operators is

N A 1 a ot
I, =Y t{a*i} T,= 1 > tijb{a+zb+]} (3-4)

a,b,i,j

The ¢! and t;‘jb are known as the single- and double-excitation cluster amplitudes.
The quantities in braces handle the excitation. For example, {a*i} means annihilate
spin orbital i and create spin orbital a. Higher than double excitations are defined
analogously.

The CC equations must be solved to find the cluster amplitudes. The general
form of the CC equations is

<ghe [(Hye")el0> =0 (3-5)

This general notation is deceptively simple. The bra is an excited determinant. There
is an equation for each excited determinant, and each level of excitation leads to
a different type of equation. Furthermore, the equations are all coupled, and they
are non-linear in the amplitudes. However, they may be formulated in a quasilinear
manner [27], and they have been solved for a wide range of CC schemes. The
operator H v 1s the Hamiltonian written in second-quantized form minus the energy
of the reference determinant, i.e. H N = =H- < 0|H|0 >. The subscript C restricts
the operator product of H and e’ to “connected” terms. Once the CC equations
have been solved, the CC correlatlon energy can be calculated from

AEqe =< 0|(Hye')c|0 > = mer;wi > <ijllab > [t +1ith — 141?]
a,i a,b,i,j

(3-6)
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One should note that although the above energy expression only explicitly includes
single- and double-excitation amplitudes, these amplitudes depend on the triple- and
higher excitation amplitudes since the CC equations are coupled: the 7, equation
includes single, double, and triple-excitation amplitudes; the T, equation includes
single, double, triple, and quadruple-excitation amplitudes, and so on. This situation
is analogous to that for CI: the CI energy depends explicitly only on the single- and
double-excitation CI coefficients.

The above discussion refers to “full” or “complete” CC theory. At this point,
no approximations have been made, beyond any that are made in forming the
underlying MOs, namely the one-particle basis set approximation. The results of
full CC are equivalent to those of full CI (FCI) with the same basis set. In practice,
for other than model systems, approximations must be made in order for CC
calculations to be tractable. Several directions may be followed. First, one may
truncate the cluster operator at different levels of excitation. Setting

Pt (3-7)
defines the coupled-cluster singles-and-doubles method (CCSD) [28]. Setting
T=T+1,+T, (3-8)

defines the coupled-cluster single, doubles, and triples method (CCSDT) [29, 30],
and so on. Of course, the cost of the calculations rapidly increases as the level of
excitation increases. Letting n and N respectively denote the numbers of occupied
and unoccupied orbitals, one can characterize the different CC approximations
according to how their “costs” scale in terms of n and N. Thus, CCSD scales as n’N*,
CCSDT as n°N>, CCSDTQ [31, 32] as n*N®, and so on. In practice, CCSD calcu-
lations on a “medium-sized” molecule are feasible, but even the CCSDT method
is of limited applicability. Accordingly, since 7‘3 effects have been established to
be essential for accurate work, much effort has been made to develop CC methods
that incorporate f; (and higher clusters) effects at reduced cost.

Three general types of approximations can be made: (1) iterative; (2) non-
iterative (or perturbative); and (3) active space. In iterative approximations to
CCSDT, for example, the T, equation is truncated so that the most expensive
terms are not included. This can be justified since the most expensive terms
occur first in fifth-order PT, whereas the lowest order at which triple excitations
make a contribution is fourth. Among iterative approximations to CCSDT are
the CCSDT-1 [33, 34], CCSDT-2 [35], CCSDT-3 [35], and CC3 [36] methods.
These methods all scale as n®N*, so there is a considerable savings over CCSDT.
Non-iterative methods offer an even greater savings. In non-iterative approxi-
mations to CCSDT, for example, one first solves the CCSD equations. Next,
the CCSD amplitudes are used to estimate the effects of 7"3. The best-known
method of this type is CCSD(T) [37]. In CCSD(T), the cost of the T step
scales as n*N*, but this is step is needed just once, whereas the n’N* steps in
the CCSDT-n and CC3 methods are performed each iteration (typically 20-30
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iterations are needed to converge the CC equations). In active space methods,
the general idea is to restrict the higher excitations to a subspace of the full
MO space, thereby reducing the cost of the higher excitations. For example,
CCSDt [38] and CCSDtq [38] are active space approximations to CCSDT and
CCSDTQ.

3.3. EQUATION-OF-MOTION COUPLED-CLUSTER METHODS
FOR EXCITED STATES

3.3.1. General Theory

Having defined the basics of CC treatments of ground states, we now consider the
EOM-CC treatment of excited states. The excited state wave function is written as
the action of an excitation operator on the ground state CC wave function, which
itself is written as the action of the exponential operator on a ground state Slater
determinant.

W, =R, =R.e|0> (3-9)
The operator fik is defined by
R 1
R, = ry(k)+ > ri(k){ati} + 2 Y (k) {atibt i+ (3-10)
i,a a,b,i,j

There is a set of r coefficients (7, (k), rf(k), r;‘/.b (k), ...) for each excited state, and
these can be obtained by solving an eigenvalue problem, as will be shown shortly.
If the excited state wave function is substituted into the Schrodinger equation, we
have

HY, = HRe"|0 >=ER,e'|0 > (3-11)
Using the fact that f?k and 7 commute, and operating on the left with e~T, we have
e THe'R|0>=E,e"e¢"R,|0 >= E,R,|0 > (3-12)

Hence the CI-like functions R, |0 >, are eigenfunctions of the operator H = e THe,
and the eigenvalues are the energies of the excited states E,. The above equation
is often rewritten so that the eigenvalues are the excitation energies w, = E; — E,,.
This is done by introducing H = e~7(H — E,)e’:

HR,|0 >= (E, — E))R,|0 >= w,R,|0 > (3-13)

To this point, this is an exact formalism (apart from the basis set approximation
in |0 >) and gives the same results (and costs as much) as FCI. In practice, of
course, approximations must be made in order to have computationally tractable
methods, just as is necessary for the ground state CC treatment. Conceptually, the
most straightforward set of approximations run parallel to the approximations for
the ground state:
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EOM-CCSD: T T1 + T2, Rk is restricted to single and double excitations
EOM-CCSDT: T, +T,+Ty; R, is restricted to single, double, and triple
excitations

and so on. The excitation energies and r,‘;b_ coefficients for these methods can
be obtained by diagonalizing the matrix of H in the appropriate space of excited
determinants. For EOM-CCSD, the diagonalization is done in the space of singly-
and doubly-excited determinants. For EOM-CCSDT, the diagonalization is done
in the space of singly-, doubly-, and triply-excited determinants. There is an
obvious parallel with CI here. The key difference is that in CI one diago-
nalizes the “bare” Hamiltonian matrix, while in EOM-CC, one diagonalizes the
“effective” or “dressed” Hamiltonian H. In the limit of no truncation of either
T or R, the results are the same. In practice, it is found that when trunca-
tions are made at a given level of excitations, the EOM-CC treatment is more
effective than the CI treatment: for example, EOM-CCSD is more accurate than
CISD.

The quantum mechanical Hamiltonian is an hermitian operator. Similarly, its
matrix representation is an hermitian matrix. This means that its eigenvalues are
real and its eigenvectors are orthogonal. The situation for H is different. Thus, H
is not hermitian and so does not necessarily have real eigenvalues and orthogonal
eigenvectors. In fact H has distinct left- and right-hand eigenvectors, although they
have the same eigenvalues:

L.H=w,L, (3-14)
HR, = oR, (3-15)

In these equations, H is the matrix representation, while R, and L, are vectors,
L, being a row vector and R, being a column vector. The left- and right-hand
eigenvectors can be normalized so that they share a biorthonormal relationship [24]:

LR, =3, (3-16)

The left- and right-hand eigenvectors are used in the calculation of properties of
excited states in the EOM-CC formalism and in derivatives of the energy. For
obtaining energies and wave functions of excited states, it is only necessary to find
one set of eigenvectors. One might mention here the R and L vectors for the ground
state. R, has 1 in the first position (the weight of the ground state CC wave function)
and zero elsewhere. L, in fact arises in the theory of CC energy derivatives for
the ground state: the various coefficients in L, are the set of amplitudes of the
de-excitation operator A.

To this point, the formalism has been restricted to (;C methods for which a
wave function is defined and is of the form W.. = e’|0 >. In fact, there are
several well-established CC schemes for which the wave function is either not
defined or is not of the standard CC form. Examples include the iterative approx-
imations to CCSDT mentioned above (CCSDT-n (n = 1-3) and CC3) and the
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CCSD(T) method. The question then naturally arises as to how these methods can
be extended to excited states. For the iterative methods, the extension is straight-
forward: by analyzing the correspondence between terms in the CC equations and
in H, one can define an “H” matrix for these methods, even though it is not
exactly of the form of a similarity-transformed Hamiltonian. If one follows the
linear-response approach, one arrives at the same matrix: in the linear response
theory, one starts from the CC equations, rather than the CC wave function, and
no CC wave function is assumed. This matrix also arises in the equations for
derivatives of CC amplitudes. In linear response theory, this matrix is sometimes
called the Jacobian [19]. The upshot is that excited states for methods such as
CCSDT-1, CCSDT-2, CCSDT-3, and CC3 can be obtained by solving eigen-
value equations in a manner similar to those for methods such as CCSD and
CCSDT.

Non-iterative or perturbative CC methods do not have an associated wave
function. Given their economy and good performance for ground states, devel-
opment of non-iterative treatments for excited states is highly desirable. However,
in general, the extension of these methods to excited states is not straightforward.
Several non-iterative treatments for excitation energies have been developed,
although these methods are in most cases not extensions of the ground state methods.
Some of these will be mentioned later.

3.3.2. Molecular Orbitals for EOM-CC and LR-CC

One point needs to be made about the MOs used in EOM-CC methods. In
“textbook” quantum chemistry, obtaining “suitable” MOs for the electronic state
being studied is normally the first step, which would be followed by a corre-
lation treatment. From the foregoing, one can see that EOM-CC does not conform
to this model: the same set of MOs is used for the ground state and all
excited states (these are the MOs in the Slater determinant and the accompa-
nying unoccupied orbitals). Usually the MOs used are the HF orbitals for the
ground state. This strategy raises a number of questions. Does the use of one
set of orbitals have a detrimental effect on the calculated results? Are there
any advantages? Regarding the first question, although it might be preferable
to use a set of orbitals that is in some sense optimum for each electronic
state, if sufficient correlation effects are included, the results are quite insen-
sitive to the choice of orbitals. In the limit of FCI, of course, the results are
independent of the MOs. It should also be borne in mind that even if one would
like to obtain a set of optimum orbitals for each excited electronic state, this
is frequently not possible for several reasons. Furthermore, in complete active
space self-consistent field (CASSCF)-based methods, for example, it is common
to use one set of averaged orbitals, even though those methods can obtain
state-specific orbitals. The use of a common set of orbitals is advantageous in
some respects, such as in calculating transition moments between the ground and
excited states.
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3.3.3. Characterization of Electronic Transitions:
How Many Electrons?

Before considering the different types of EOM-/LR-CC schemes that are available,
it is appropriate to consider one characteristic of an electronic transition, namely
how many electrons are excited. This issue is a major factor in determining the
accuracy of a theoretical treatment. Within the orbital picture of the electronic
structure of a molecule, we are accustomed to envisioning an electron transition
as involving an integral number of electrons. Most transitions in the visible or
ultraviolet regions are considered to involve the excitation of one electron from an
MO that is occupied in the ground state to one that is unoccupied in the ground state.
Some transitions in these regions are two-electron in character. Of course, these
views are great simplifications, but they have their uses conceptually. It is of some
value to see to what extent these concepts come out of a more rigorous quantum
mechanical treatment. In fact, the accuracy of theoretical treatments depends very
much on the number of electrons involved in a transition, so it is useful to have
a measure of this quantity, even though it is necessarily more complicated that
the simple orbital picture. What one finds is that many transitions can indeed be
classified as either one- or two-electron processes. At the same time, however, some
transitions are intermediate in character. This should not be taken to imply that a
transition involves a fraction of an electron, of course. A general conclusion from
many studies is that the more electrons involved in a transition, the higher level of
excitation needed in the theoretical treatment for meaningful results. Specifically, if
transitions are essentially one-electron in character, the CCSD approximation works
adequately for many purposes. However, if a transition is predominantly a two-
electron process or has significant double-excitation character, the CCSD results
will be of little use, and some account of at least triple excitations will be needed
for adequate results. Some specific data illustrating these points will be presented
later in this chapter.

We now consider some of these measures of numbers of electrons involved in a
transition and present some results. One of the most straightforward measures is the
relative sizes of the different types of r (or [) coefficients. If the single-excitation
coefficients dominate, the transition is considered a one-electron transition. If the
double-excitation coefficients dominate, the transition is a two-electron transition.
If both single- and double- excitations have significant weights, we would say
the transition is intermediate or has significant double-excitation character. For
example, Koch et al. [20] characterized transitions according to percentages of
single- and double-excitation coefficients, while Rico et al. [39] defined a norm
of the single-excitation coefficients as a measure of the single excitation character.
Kohn and Hittig [40] have defined a single-excitation percentage based on the left
and right eigenvectors. Another strategy is the approximate excitation level (AEL)
defined by Stanton and Bartlett [24]. This involves calculating the ground and
excited state density matrices (which depend on the CC amplitudes and the r and
[ coefficients) within the same natural orbital set, chosen to be that of the ground
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state. Since the diagonal elements of the density matrices can be considered to be
a measure of orbital occupation numbers, the AEL is defined by

1
AEL =33 lp;, = P}l (3-17)
)4

If uncorrelated wave functions based on ground state natural orbitals are used, the
AEL will be an integer, i.e. 1 for a one-electron transition, 2 for a two-electron
transition, and so on. For EOM-CC wave functions the AEL is not an integer. AEL
values range from very close to 1 for predominantly one-electron transitions to very
close to 2 for predominantly two-electron transitions.

As an illustration, we consider the CH™ ion. This simple system has been used
a benchmark and is a good test. The leading configuration of the ground state is
162202302, The lowest lying singlet excited states are 'II (leading configuration:
16%2023a!17!), followed by 'A and '3F, both of which have leading configuration
16220*1m%. The AEL value for the transition to the 'IT state is 1.03, and the %
contribution of single excitations is 97.0%. In accord with their leading configura-
tions, the 'A and '3+ states are essentially doubly excited relative to the ground
states with AEL values of 2.00 and 1.96 and % contributions of single excitations
of 0.26% and 0.35%. The situation is not always as clear cut as for these states,
however. For the second 'IT state, for example, the AEL is 1.24, while the %
contribution of single excitations is 77.4%, suggesting significant double-excitation
character.

3.34. Characterizing Electronic Transitions: Transition Moments

Another important characteristic of an electronic transition is its intensity, which
depends on the transition moment between the initial and final states involved in
the transition. In EOM-CC and LR-CC, just as one has left and right eigenvectors
of H, there are left and right transition moments, which can be combined to
give an oscillator strength, which is in principle observable. Stanton and Bartlett
[24] suggested and implemented a Cl-like formalism for the transition moments.
Subsequently, Koch et al. [41] noted that Stanton and Bartlett’s left transition
moment, though equivalent in the limit to FCI, is not size-intensive for truncated
EOM-CC methods. They derived a left transition moment that is size intensive
(their right transition moment is the same as that of reference [24]). In practice,
for a given molecule, the oscillator strengths obtained from the two approaches
differ little.

3.3.5. A Survey of EOM-CC and LR-CC Methods That Have Been
Developed and Implemented

Having outlined the theory, we now survey EOM- and LR-CC methods that have
actually been implemented. Selected numerical results will be presented later.
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3.3.5.1. Inclusion of single and double excitations: EOM-CCSD
and LR-CCSD

One of the most important methods is the EOM-/LR-CCSD method, which has
been widely applied. A partitioned version was presented by Geertsen et al. [23]
in 1989 and applied to Be and CO. The full version was first developed and
implemented in 1990 by Koch et al. [20] using the linear-response formalism.
These workers compared results on Be and CH" with FCI excitation energies.
They also reported results on CO and H,O. Subsequently, several other groups
reported implementations [24-26]. The general consensus on the EOM-/LR-CCSD
method is that it provides a fairly accurate description of excited states that are
essentially single excitations from the ground state. When the excitation involves
significant double-excitation character, the performance deteriorates. The compu-
tational cost of the EOM-/LR-CCSD method scales as for the ground state, i.e.
its formal operation count is proportional to n*N*. Therefore, for the most part,
if resources are available for a ground state CCSD calculation, they should be
sufficient for an EOM-/LR-CCSD calculation on the same system. Through devel-
opment and implementations of efficient algorithms, it has been possible to perform
ground- and excited-state CCSD calculations for quite large numbers of basis
functions [42].

3.3.5.2. Iterative inclusion of triple excitations

In order to improve the description of excited states that have significant double
excitation character relative to the ground state, the next step was to go beyond
CCSD and incorporate f"3 effects. Before the full EOM-CCSDT method was
implemented, implementations of several approximations to CCSDT were made.
An approximate CCSDT scheme with a simplified H was implemented and
tested on a few examples [43]. This was followed by implementations of the
CCSDT-1a [44], CC3 [45], and CCSDT-3 [46] methods. These three methods
all scale as n®N* and avoid the most expensive terms in the CCSDT method,
which scale as N> and n*N*. It was found that all of these methods signif-
icantly improve the description of doubly excited states compared with CCSD.
In addition, CCSDT-3 and CC3 also improve the description of singly-excited
states. Although these n®N* methods are significantly more economical than
CCSDT, they are also substantially more computationally demanding than CCSD.
Kowalski and Piecuch [47] examined some approximate EOM-CCSDt active
space approaches. The full EOM-/LR-CCSDT approach has now been imple-
mented by several groups. Initial results were obtained by extracting CCSDT
energies from an FCI code [48-51]. These were followed shortly thereafter by
specific CCSDT implementations by Kowalski and Piecuch [52] and Musial et al.
[53]. The latter authors applied EOM-CCSDT to CO and N, using up to 92
basis functions. As for the ground state CCSDT method, the most demanding
term in EOM-/LR-CCSDT scales as n°N> when the most efficient algorithm is
used.
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3.3.5.3. Iterative inclusion of quadruple and higher excitations [54]

Even CCSDT is not capable of adequately describing certain doubly excited
states, and several extensions that incorporate connected quadruple excitations (i.e.
methods that include ﬁ in the ground state) have been implemented. Unless some
restrictions are placed on the subspaces for which quadruple excitations are possible,
methods such as EOM-CCSDTQ will not be practical in other than benchmark
model calculations. Such calculations are, of course, of some importance since one
can calibrate approximate treatments of quadruple excitations by comparisons with
the full EOM-CCSDTQ method, for example. Even higher excitation levels have
been implemented and compared with FCI results [48-51]. Again, these methods
are not expected to be generally applicable to anything other than a model system,
but they are of great value as benchmarks.

3.3.54. Non-iterative inclusion of triple and quadruple excitations

With the success of non-iterative methods such as CCSD(T) for ground states, it
is worthwhile to consider whether non-iterative CC techniques can be developed
for excited states. Some progress has been made in this direction, but of the
methods developed, none achieves for excited states the simplicity, economy,
and accuracy that CCSD(T) enjoys for ground states. A non-iterative version of
the CCSDT-1a method was first developed [44]. This provided an estimate of
the effect of triple excitations on excitation energies from the CCSD r and !
amplitudes. In the two FCI comparisons made (CH™ and Be), the noniterative
treatment improved both CCSD and CCSDT-1a. However, for some singly excited
states in C,, its performance was worse than that of CCSD. Shortly thereafter,
Christiansen et al. [55] introduced non-iterative approximations to CCSDT-1a,
CCSDT-1b, and CC3. The results of the two noniterative approximations to CC3,
denoted CCSDR(T) and CCSDR(3), were found to be closer to the FCI results for
singly excited states. A perturbation analysis suggested the overall superiority of
CCSDR(T) and CCSDR(3) over CCSDR(1a) and CCSDR(1b) for singly excited
states. CCSDR(3) was considered to be the most balanced of the non-iterative treat-
ments considered. A non-iterative version of CCSDT-3, termed EOM—CCSD(f"),
was developed about the same time [46]. Its performance was quite promising, but
concerns were expressed that it might overestimate triple excitation corrections.
The same situation is most likely observed for CCSDR(T) [55]. Presumably the
extra steps in CCSDR(3), which allow for relaxation of the ground state amplitudes,
were partially to avoid this “overshooting” and make the results closer to CC3.
More general analyses of non-iterative approaches for excited states, denoted EOM-
CC(m)PT(n), have been explored by Hirata et al. [56] and implemented within
a determinant-based FCI program. This approach has recently been re-examined
for triple- and quadruple-excitation corrections that were implemented in a more
general code [57]. Non-iterative inclusion of triple excitations for excited states
has also been investigated within the completely renormalized EOM-CC formalism
[58, 59].
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3.3.5.5. Approximations to EOM-/LR-CCSD

There has also been some work on the development of methods that are approxi-
mations to EOM-/LR-CCSD and have lower computational cost than CCSD. Even
though EOM-CCSD can be used in quite large calculations, it has its limitations.
In particular, the terms that arise from the four-virtual orbital integrals, are a
bottleneck since they scale as n?N*. One example is the CC2 method [60]. This
method truncates the CCSD ground state equations by neglecting all terms in the 7"2
equation that are higher than second-order. Single excitations are treated as zeroth
order, while double excitations are treated as first order. This leads to a much-
simplified f"z equation, with the result that the method scales as n>N>. The response
theory for CC2 can be developed just as for CCSD to obtain a scheme for excited
states [60]. Other approaches [61] involved partitioning and/or truncation of H to
second-order. The partitioned EOM-CCSD approach scales as n*N® for the excited
state, but CCSD is retained for the ground state. An EOM-MBPT(2) approach, also
named EOM-CCSD(2) [62], was devised in which the ground state is described
by second-order many-body perturbation theory (MBPT(2)) and excited states are
obtained by diagonalizing the second-order truncation of H. While this does not
reduce the scaling, a partitioned version (P-EOM-MBPT(2)) has an iterative scaling
of only n’N?; a few n®N* steps are still needed in the one-time formation of some
parts of H.

3.3.5.6. Similarity-tranformed EOM-CC methods [63]

These methods are a variant of EOM-CC methods that involve an additional
similarity transformation. The second similarity transformation effectively decouples
the singles-doubles blocks of H. Consequently, by diagonalizing the single-singles
block of the doubly-transformed matrix one obtains results that benefit from the
implicit inclusion of double excitations. Since the cost of diagonalizing the singles-
singles block is so small, it is possible to calculate large numbers of excited states
at very low cost. In fact, the limiting step of the calculation is obtaining the ground
state CCSD wave function. Further developments of STEOM-CC methods to improve
description of doubly excited states have been made.

3.3.6. Analytical Derivatives for EOM-CC and LR-CC Methods

The availability of analytical derivatives for a quantum chemical method greatly
enhances its usefulness. Derivatives of the energy with respect to nuclear coordinates
enable efficient location of stationary points and calculations of harmonic vibra-
tional frequiencies. Various one-electron properties can be treated as derivatives
with respect to other quantities and are obtained as a byproduct of derivative calcu-
lations with negligible extra cost. Derivatives of EOM-CCSD/LR-CCSD excited
state energies were first developed by Stanton and Gauss [64, 65]. They have been
used in many applications since then and greatly assist in the analysis and prediction
of quantities relevant to electronic spectra, such as geometry changes following
excitation, adiabatic excitation energies, vibrational frequencies of excited states,
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and excited state properties. Emphasizing its application to large systems, efficient
analytical derivatives have been implemented for the CC2 method [40].

34. ASSESSMENT OF EOM-CC AND LR-CC METHODS
FOR DESCRIBING EXCITED STATES

It is often said that the quality of a computational method can be assessed by how
well it compares with experimental data. While this is true, making a meaningful
comparison with experiment is much harder for excited states than for ground
states. As a result, an initial judgment of a newly-developed method is to compare
the results with those from FCI on a model system. FCI energies for ground and
excited states of several small systems are available, and these provide a useful test
for EOM-/LR-CC methods. We consider a few examples.

34.1. Comparisons with FCI Vertical Excitation Energies

3.4.1.1. CH*

Although this system has only 4 valence electrons, it provides a useful test case.
The ground electronic state is ' 3%, arising from the configuration 16>20230?. The
1o MO is essentially the C s orbital, while to a first approximation, the 20 MO
is primarily the C 2s orbital and 30 is the bonding MO formed from the C 2p,
and the H 1s orbitals. There are three valence excited states. The lowest, a ' state
arises from the 30 — 1 single excitation. The other valence excited states, a I3+
and a 'A state, arise from the 36> — 1172 double excitation.

FCI energies of the ground state and several excited states (3 '>+, 2 'TI, and
2 'A states) were obtained by Olsen et al. [66] in 1989 using a DZP basis set
augmented with diffuse functions. These data have been used as tests for a wide
variety of EOM/LR-CC methods, including CCSD [20, 24], CCSDT-1a [44], CC3
[45], CCSDT-3 [46], and CCSDt [52]. Later Hirata et al. [49] obtained FCI results
with the 6-31G** basis set. Shiozaki et al. [57] have obtained FCI results with
the augmented correlation-consistent polarized valence double-zeta (cc-pVDZ) and
valence triple-zeta (aug-cc-pVTZ) sets.

Table 3-1 shows a comparison with the FCI data of Olsen et al. [66]. The data
show that for states that are predominantly single excitations from the ground
state (the second and third excited '3* states and the lowest 'TI state) the CCSD
method gives errors of less than 0.1 eV. For all excited states, the CCSD excitation
energies are above the FCI values. For states that have substantial double-excitation
character, the deviations from FCI are much larger. The errors for the lowest '2F
and lowest 'A states, which are predominantly double excitations, are 0.66 and
0.92 eV, respectively. The errors for the second 'A and 'IT states are about 0.3 and
0.5 eV, respectively. Going beyond CCSD has led to a much-improved description
of the doubly-excited states of CH™ . Initial results were reported with the CCSDT-1,
CCSDT-3, and CC3 methods. These reduced the error for the lowest !3* state to
about 0.25 eV and the error for the lowest ' A state to about 0.3 eV. Going to CCSDt
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Table 3-1. Comparison of the vertical excitation energies of CH' obtained from various CC methods
with FCI. The units are eV

Excited state ~ AEL? FCIP CCSD*¢ CCSDT-1a¢ CCSDT-3¢ ccaf CCSDt#

IS+ 1.96 8.55 9.11 8.78 8.78 8.78 8.64
s+ 1.06 13.53 13.58 13.58 13.55 13.54 13.53
s+ 1.13 17.22 17.32 17.29 17.25 17.24 17.23
Bl 1.03 3.23 3.26 3.27 3.24 3.24 3.23
gl 1.24 14.13 14.45 14.40 14.35 14.35 14.22
'A 2.00 6.96 7.89 7.29 7.28 7.28 7.02
'A 1.99 16.83 17.34 17.10 17.11 17.09 16.85

@ Approximate excitation level. From reference [44]. ® Ref. [66]. ¢ Ref. [20]. ¢ Ref. [44]. ¢ Ref. [46].
! Ref. [45]. £ Ref. [52]

reduces the error to less than 0.1 eV. The same is true of CCSDT data presented in
other FCI comparisons [49, 52].

34.12. G,

The diatomic C, is an even more challenging case than CH*. The ground state is
'3 7. The primary ground state configuration is 1o;10;20;20, 17}, but the doubly
excited configuration 10} 10,20;20, 17,30, also makes a substantial contribution
to the ground state wave function. FCI vertical excitation energies for 4 states
were reported by Christiansen et al. [67], who also reported CCS, CC2, CCSD,
CC3, and CCSDT-1a excitation energies. Kowalski and Piecuch [52] have reported
CCSDt results. Hirata [54] obtained CCSDT and CCSDTQ results. The results of
these calculations are shown in Table 3-2. The general trends are as for CHT,
but the additional demands of C, are evident. At the CCSD level, the excitation
energies for singly excited states (‘II, and ') are 0.09 and 0.20 eV above the
FCI results. Approximate inclusion of triple excitations (CC3) and full inclusion of
triples (CCSDt and CCSDT) reduces the errors significantly. The CCSDTQ results
are better by an order of magnitude. For the doubly excited states, the CCSD
errors are significantly larger than for CHT, namely 2.05 eV for the ‘Ag state and
1.71 eV for the '3 state). Approximate inclusion of triple excitations with CC3 or

Table 3-2. Comparison of the vertical excitation energies of C, obtained from various CC methods with
FCI. The FCI excitation energies are given. The data given for the CC methods are the differences
relative to the FCI results. The units are eV

Excited state FCI* cc2? CCSDh? CC3? CCSDt® CCSDT* CCSDTQ*

I, 1.385 0.269 0.090 —0.068 —0.062 0.034 0.001
lAg 2.293 2.054 0.859 0.269 0.407 0.024
'sF 5.602 0.420 0.197 —0.047 0.085 0.113 0.013
Bl 4.494 1.708 0.496 0.076 0.088 —0.007

@ Ref. [67]. ® Ref. [52]. © Ref. [54].
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CCSDT-1a improves the CCSD result, but the errors are still unacceptably large.
Even with CCSDT, the error for the lAg state is still 0.41 eV, while for the 'SF
state it is only 0.09 eV. It is only by going to CCSDTQ that the errors for all states
are satisfactorily low. Indeed, the highly accurate results for CCSDTQ represent
a significant achievement for this very difficult system. Shiozaki et al. [57] have
very recently developed a series of non-iterative approximations to CCSDT and
CCSDTQ and applied them to CH*, C,, and H,CO.

34.13. N,

Unlike C,, the low-lying excited states of N, are largely singly excited relative to
the ground state. The results for this system, then, are more representative of what
might be expected of a typical organic system. FCI results have been reported by
Christiansen et al. [67], along with CC2, CCSD, and CC3 results. These results
are shown in Table 3-3. Overall one sees a steady reduction in error as one goes
through this series. The 'TI, state has the most double-excitation character, so the
CCSD error is somewhat larger for this state than the others. The CC2 results are
adequate for the first 2 states, but for the last 2 the errors are unacceptably large.

34.14. CH,

The FCI and various CC results on this system by Hirata et al. [49] are considered
now. These include data for 5 excited singlet states and 5 triplet states using CCSD
through CCSDTQPH (FCI for this system when the 1s core electrons are frozen).
The ground state of CH, is the lowest *B, state, of course, but for convenience the
reference state used is the lowest ' A | state, which is known to be about 9 kcal mol~!
above the lowest *B, state. The basis set is 6-31G*. The results for CCSD, CCSDT,
CCSDTQ, and CCSDT-3 are shown in Table 3-4. Results for CCSDTQP were also
reported but these are identical to FCI to all figures quoted and so are not shown. The
results on CH, echo trends seen in other comparisons. One can see that CCSDTQ
is again essentially exact for all states: the maximum error is 0.001 eV. For other
methods, one sees a different performance depending on whether the excitation is
essentially a one- or two-electron process. For the one-electron processes, CCSD
gives errors below 0.1 eV, with one exception. For CCSDT the maximum error
for these transitions is 0.005 eV. CCSDT-3 reduces the CCSD error somewhat, but

Table 3-3. Comparison of the vertical excitation energies of N, obtained from
various CC methods with FCI. The FCI data are excitation energies. The data given
for the CC methods are the differences relative to the FCI results. The units are eV

Excited state FCI* cea2? CCSD* CcC3?
', 9.584 0.136 0.081 0.033
o 10.329 0.342 0.136 0.007
'A, 10.718 0.517 0.180 0.009
Qi 13.608 0.934 0.401 0.177

@ Ref. [67].
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Table 3-4. Comparison of the vertical excitation energies of CH, obtained from various CC methods
with FCI. The FCI data are excitation energies are given. The data given for the CC methods are the
differences relative to the FCI results. The units are eV

Excited state %singles® FCI* CCSD* CCSDT* CCSDTQ* CCSDT-3*

B, 94.6% 1.6787  0.011 0.001 0.000 —0.006
A, 0.2 45168  1.327 0.046 0.001 0.458
A, 92.2 6.0926  0.008  —0.001 0.000 0.008
B, 2.8 8.2536 1438 0.024 0.000 0.496
1A, 89.3 9.0529  0.067 0.003 0.000 0.023
3B, 94.9 —03101 —0.034  —0.002 0.000 —0.012
3A, 92.9 53150 —0.015  —0.001 0.000 0.000
3B, 2.5 6.9054 1478 0.048 0.001 0.571
3A, 90.1 8.3267  0.063 0.003 0.000 0.026
3B, 91.2 9.1504  0.1533 0.005 0.000 0.039
a Ref. [49].

not as much as CCSDT. For the three double excitations, the convergence to FCI
is slower. The CCSD errors are over 1 eV. CCSDT-3 reduces the CCSD error by
over 50%, but its errors are still about 0.5 eV, considerably larger than those of
CCSDT.

3.4.2. Extended Basis Sets and Other Properties

Going beyond the necessarily modest basis sets that are used in FCI comparisons
is obviously essential if meaningful comparisons are to be made with experiment.
Assessing the quality of a theoretical method for excited states by comparison with
experiment is not straightforward for at least two reasons: (1) incompleteness of
the one-particle basis set; (2) the limited availability of precise experimental data
that can be directly compared with the quantities that are normally obtained from
theoretical calculations.

Regarding the second reason mentioned above, diatomic molecules provide the
most unambiguous test set since for quite a large number of excited states, properties
such as r,, T,, and w, are well established. Also, reasonable estimates of vertical
excitation energies can often be made.

In their CCSDT work, Kucharski et al. [53] obtained vertical excitation energies
for three excited states of N, and four excited states of CO with up to the aug-cc-
pVTZ basis set. The CCSDT errors in the excitation energies with this basis set
for the three states of N, ('IL,, '3, 'A,) are 0.11, 0.10, and 0.16 eV, respectively.
These errors are somewhat less than those obtained at the CCSD level (0.19, 0.20,
and 0.30 eV). For CO there is less uniformity, but for three of the four states,
the CCSDT treatment provides somewhat closer agreement with experiment. The
CCSDT errors for the 'TI, '3, 'A, and '3 states are 0.03, 0.17, —0.05, and
0.20 eV, respectively. By comparison, the CCSD errors are 0.13, 0.21, 0.00, and
0.44 eV. The accuracy of CCSD for the 'A state is no doubt fortuitous.
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An investigation of the performance of the CCSD method for calculating several
properties (r,, w,, T.) of the lowest excited states of several diatomic molecules
(H,, BH, CO, N,, BF, and C,) was made by Stanton et al. [68]. This study also
considered three polyatomic molecules (NH;, C,H,, and H,CO). The largest basis
set used for the diatomic molecules was aug-cc-pVTZ. The general trend for the
diatomic molecules is that the calculated r, is about 0.01 A below the experimental
value. The w, values are correspondingly higher. These observations are in line
with the well-established trends for ground states. The calculated T, values are
somewhat higher than the experimental values. The errors for BH, CO, N,, and BF
are 0.14, 0.19, 0.25, and 0.08 eV, respectively. The CCSD structure and harmonic
frequencies of ' A” H,CO are in accord with the experimentally derived structure and
fundamental frequencies. In particular, the CCSD harmonic frequencies are above
the experimental data by about 5-8%, which is comparable with the performance
of CCSD for ground states.

An informative study on excited states of diatomic molecules has been made
by Sattelmeyer et al. [69]. This study includes a comparison with FCI results as
well as a comparison of some extended basis set CC values of r,, ., and T, with
experimental data. A total of 7 valence excited states were studied: BH (‘IT); CH*
('I); C, (', and 'I1,); CO ('II); N, ('II, and '37). First, for BH and CH*
CCSD, CC3, CCSDT-3, CCSDT, CCSDTQ, and FCI results were obtained with
the cc-pVDZ basis set. Next, all molecules were studied with the CCSD, CC3,
and CCSDT-3 methods and the cc-pVDZ, cc-pVTZ, cc-pVQZ, and cc-pV5Z basis
sets. Diffuse functions were not included since the excited states considered are of
valence character.

For BH and CH*, the CCSDTQ values of r, and w, are identical to the FCI
results to all figures quoted (i.e. to 107* A and 1cm™!), as might be expected for
these systems with 4 valence electrons. The CCSDT results are very close to FCI:
the deviations for r, and , for BH are 10~* A and 2cm™!, while for CHT they
are 0.0006 A and 6cm~'. An important issue investigated was how well CC3 and
CCSDT-3 reproduced the CCSDT results for r, and w,. The deviations observed for
BH and CH" are perhaps surprisingly large. CC3 performs better than CCSDT-3
for these two molecules. The CC3-CCSDT differences in r, and w, are 0.0033 A
and 36cm™!, and for CH* they are 0.0040 A and 35 cm™!. CCSDT, CCSDTQ, and
FCI T, values were not reported. One anticipates the same trends as observed for
vertical excitation energies.

Moving now to comparison with experiment, Table 3-5 shows the CCSD, CC3,
and CCSDT-3 results with the cc-pV5Z basis set along with experimental data.
Before discussing these data, a remark on basis set effects is appropriate. The largest
change was seen on going from cc-pVDZ to cc-pVTZ. Usually, but not always, the
effect of going from cc-pVTZ to cc-pVQZ was quite small with changes of less
than 0.005 (r,), 10cm™ (®,), and 200cm™" (T,). As would be expected, for the
most part, the smallest change was on going from cc-pVQZ to cc-pV5Z. BH and
CH™ were anomalous in this regard, with increases in w, of over 50 cm~! for BH,
for example.
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Table 3-5. Calculated (cc-pV5Z basis set) and experimental values of r,, o,, and T, for excited states
of BH, CH*, CO, N,, and C,. r, is in 16%; o, and T, are in cm™'. All data are from reference [69]

CCSD cc3 CCSDT-3 Expt.

BH 1) I, 1.2101 12128 12125 1219
o, 2399 2371 2374 2251

T, 23358 23216 23242 23136

CH* 1 I, 1.2221 1.2281 1.2275 1.234
o, 1938 1882 1887 1865

T, 24471 24229 24327 24111

Co 51 I, 1.2196 1.2421 1.2374 1.235
o, 1606 1439 1481 1518

T, 66812 64936 65280 65076

N, ', I, 1.2102 1.2204 1.2171 1.220
o, 1775 1689 1721 1694

T, 71557 69540 69806 69283

o I, 1.2650 1.2782 12715 1.276
o, 1597 1497 1555 1530

T, 71390 68211 68626 68152

G, 'S, r, 1.2518 1.2373 1.2419 1.238
o, 1814 1855 1822 1830

T, 44211 42924 43401 43259

I, I, 1.3154 1.3213 1.3180 1318
o, 1626 1609 1621 1608
T 8747 7865 7902 8391

@

One sees several trends in the cc-pV5Z results. With the exception of C,, the
CCSD r, values are 0.01-0.02 A below experiment, with w, being correspondingly
higher. Except for C,, including triple excitations increases r, and decreases .,
improving agreement with experiment. CCSDT-3 tends to decrease r, slightly more
than does CC3. CC3 and CCSDT-3 results for r, and are very similar for BH
and CH™, but show more variation for CO and N,. CCSDT-3 agrees better with
experiment for CO, while CC3 performs better for N,. The errors in o, for BH are
surprisingly large. Sattelmeyer et al. mention the possibility that the experimental
data for this state may not be very well established. The data for the '3, state
of C, are unusual in that adding triple excitations decreases r, and increases w,.
The CCSD 1, and o, for the 'TI, state of C, are in quite good agreement with
experiment, and the improvement due to triple excitations is small. Turning now
to the behavior of 7., we see that the CCSD values always exceed experiment,
while including triple excitations reduces T,. With the exception of the 'TI, state
of C,, this significantly improves agreement with experiment. Particularly large
improvements are seen for CO and N,. The largest CC3 or CCSDT-3 error in 7, is
well below 0.1 eV (800 cm™'). CC3 tends to perform slightly better than CCSDT-3
for 7, for these examples.

Hirata [54] has made some extended basis set studies on excited states of the
CH radical and formaldehyde. He obtained 7, values and dipole moments for the
ground state and 4 excited states of CH with the CCSD, CCSDT, and CCSDTQ
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methods. With the CCSD method, the largest basis set used was aug-cc-pVQZ,
while the largest basis sets used with CCSDT and CCSDTQ were aug-cc-pVTZ and
aug-cc-pVDZ, respectively. One can see a clear improvement in accuracy on going
from CCSD to CCSDT, and a further small improvement on going to CCSDTQ,
which provides an almost exact treatment of electron correlation for this system.
Even with the modest aug-cc-pVDZ basis set, the CCSDTQ errors in 7, are at
most 0.12 eV. Based on the basis set effects for the CCSD and CCSDT methods,
CCSDTQ results with the larger basis sets will be even closer to experiment. The
calculations on H,CO used the CCSD method with up to the aug-cc-pVTZ and
d-aug-cc-pVTZ basis sets. The CCSDT method was used with the aug-cc-pVDZ
basis set. Vertical excitation energies, dipole moments, and oscillator strengths of 5
excited states were calculated. The T, of the lowest excited state was calculated, as
well as its dipole moment at the excited state geometry. In general, CCSD provides
good agreement with experimental estimates of the vertical excitation energies,
while CCSDT provides a slight improvement. At the CCSD level, the 7, value for
the 'A2 state is overestimated by about 0.2 eV, but the CCSDT result is somewhat
closer to the experimental value. The CCSDT dipole moment for that state is also
significantly better than the CCSD value.

Kohn and Hittig [40] have presented a quite extensive study on the perfor-
mance of the CC2 method for adiabatic excitation energies, excited state structures,
and excited state harmonic frequencies. The systems studied include 7 diatomic
molecules, 8 triatomic molecules, and 5 larger molecules. The aug-cc-pVDZ, aug-
cc-pVTZ, and aug-cc-pVQZ basis sets were used. The results in general are quite
encouraging, and studies of this sort with CCSD and, to the extent that they are
possible, with higher level methods would be most welcome.

3.5. ILLUSTRATIVE APPLICATIONS
3.5.1. Benzene

A study by Christiansen et al. [42] provides a thorough analysis of the vertical
excitation energies of benzene. One noteworthy feature is that it used significantly
larger basis sets than prior studies. CCSD calculations were performed with several
basis sets, the largest of which contained 432 contracted basis functions. Such
large calculations were possible since the authors developed and implemented an
integral-direct algorithm for excited state calculations. It was thought that the largest
calculations in this paper provided a fairly well converged set of vertical excitation
energies for benzene, which is quite an achievement for a molecule of this size.
Having reached this level, one could begin to analyze differences between calculated
vertical excitation energies and experimental band maxima and band origins using
geometry relaxation and vibrational energies.

Three basis sets were used in the CCSD calculations. The first, designated ANO1,
is an atomic natural orbital set consisting of 4s3p1d contracted functions on C, 2slp
on H, and a set of spd diffuse functions positioned at the center of the molecule. The
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other basis sets used are the aug-cc-pVDZ and aug-cc-pVTZ sets, both augmented
with 2 diffuse sets of spd functions at the center of the molecule. In addition
to CCSD calculations, CC2 calculations were carried out with all basis sets. To
estimate triple excitation effects, CC3 and CCSDR(3) calculations were performed
with the ANOLI set.

The basis set effects on the excitation energies are not uniform. For the first
2 valence transitions, the excitation energies decrease by 0.012 and 0.056 eV on
going from aug-cc-pVDZ to aug-cc-pVTZ. For other transitions there is usually an
increase in the excitation energy, often by more than 0.1 eV. The ANOI results
tend to be between the aug-cc-pVDZ and aug-cc-pVTZ values, usually closer to
the former.

With two exceptions, the transitions studied are all predominantly of single-
excitation character (the % single-excitation contribution is 94% or higher). In line
with this, the triple excitation effects, as measured by the difference between CCSD
and CC3, are small (less than 0.1 eV) with three exceptions. The lowest energy
transition (1 'B,,; €1, — €,) has a triples effect of —0.111€V. For the transition
to the 2 1E2g state, the effect is large (-0.765 eV). According to the CCSD wave
function, this transition has an 85% singles contribution, but the singles contribution
in the CC3 wave function is significantly smaller (66%). The triple excitation effect
for the 2 'E,, state is =0.159 eV.

A subsequent paper [70] used analytical derivatives for the ground and excited
states to obtain the geometry and harmonic vibrational frequencies of the ground
state (1 'A;,) and first excited state (I 'B,,) of benzene. This excited state is a
m — m* valence state. The calculations used the CC2 and CCSD methods with
DZP and TZ2P basis sets. By comparison with prior work, the TZ2P basis set was
found to be capable of giving an accurate value for the energy difference between
these two electronic states. The calculated vibrational frequencies were used to
assess assignments of observed frequencies for both states. In addition, a theoretical
estimate of the 0-0 transition energy was made. First, from the energies of the
optimized geometries of both states, the CCSD/TZ2P T, was found to be 5.0682 eV.
Combining this with the calculated zero-point energies gave a CCSD/TZ2P 0-0
energy of 4.9281 eV. Using the triples correction previously found (-0.111 eV) and
an estimate of the effect of extending the basis set (-0.02 eV), a refined estimate of
4.80 eV was obtained. This is to be compared with an observed value of 4.72 eV.
This very good agreement suggests that the methodology used can be used to predict
quantities of this type and provide further assistance in assignment of electronic
spectra.

3.5.2. Interpretation of the Electronic Spectrum of Free Base Porphin

The electronic spectrum of free base porphin has been the subject of many exper-
imental and theoretical studies. Because of the size of this molecule, obtaining
meaningful ab initio calculations has been a significant challenge. Different calcu-
lations naturally give different numerical results, but they also give different
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interpretations. We consider here a study by Gwaltney and Bartlett [71] that used the
EOM-CCSD and STEOM-CCSD methods. This work was stimulated in part by a
symmetry-adapted cluster CI (SAC-CI) study [72] that suggested a new assignment
of the B and N bands in the spectrum. The 4 lowest energy bands in the spectrum
are the two Q bands (Q, and Qy), the B band, and the N band, which is a shoulder
on the B band. The traditional interpretation is that the Q, and Q, bands come from
excitation to 1 'B,, and 1 'B,, states, while the B band is assigned to the 2 'B;,
and 2 'B,, states.

In contrast to some earlier ab initio calculations, Gwaltney and Bartlett [71]
included polarization and diffuse functions in their calculations. Their polarized
basis set comprised 3s2pld contracted functions on C and N and 2s contracted
functions on H, giving a total of 364 contracted basis functions. Since the EOM-
CCSD calculations were very demanding computationally, they were limited to
the lowest 7 dipole-allowed states. A large number of additional electronic states
were studied using the STEOM-CCSD method. The rate-determining step in these
calculations is obtaining the CCSD ground state wave function and calculating the
H elements. Finding the STEOM-CCSD excited states involves diagonalizing a
matrix whose dimension is only that of the number of single-excitation amplitudes.
Hence, a total of 84 electronic states were found in the STEOM-CCSD calculations,
providing a wealth of data on various Rydberg and triplet states of free base
porphin that lie at higher energies than the low-lying valence states. Regarding the
interpretation of the B band, Gwaltney and Bartlett conclude that this band should
be assigned to both the 2 'B;, and 2 'B,, states, in accord with the traditional
interpretation.

3.5.3. Intramolecular Charge-Transfer in Quinolidines

Recently a study was made on low-lying excited states of NMC6 and NTC6 (see
Figure 3-1) using the CC2 method [73]. The purpose of this study was to address
the mechanism of dual fluorescence. The “normal” fluorescence is attributed to a
locally excited (LE) state, while the “anomalous” fluorescence has been established
to arise from a highly polar intramolecular charge-transfer (ICT) state. What has
not been clear, however, is the structure of the ICT state. There are two hypotheses:
the twisted ICT state (TICT) and the planar ICT (PICT). Theory and experiment
on 4-(N,N-dimethylamino)benzonitrile (DMABN) are consistent with the TICT
hypothesis. The absence of dual fluorescence for NMC6 and NEC6 was considered
to support the TICT hypothesis since it was thought that the twisting of the amino
group would be prevented. However, dual fluorescence is observed for NTC6,
which apparently casts doubt on the necessity of a TICT state for dual fluorescence.
The reason is that if twisting is not possible for NMC6, it should not be possible
for NTC6.

To analyze the situation further, Hittig et al. [73] performed a parallel series
of calculations on NMC6 and NTC6. These calculations involved determining
the geometries of the ground states and the low-lying excited states that may be
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Figure 3-1. Structure of 1-alkyl-6-cyano-1,2,3,4-tetrahydroquinolines. In NTC6 (1-fertbutyl-6-cyano-
1,2,3,4-tetrahydroquinoline), NMC6, and NME6, R = rBu, Me, and Et, respectively

involved in the fluorescence. The CC2 method was used in these calculations in
conjunction with a triple-zeta plus polarization quality basis set. Because of the size
of the systems and the consequent demands on computational resources, it was not
possible to use the CCSD method, for example. Previously, the authors performed
a study on DMABN for which it was possible to obtain CCSD results, and in
that study they found good correspondence between CC2 and CCSD results. The
calculations on NTC6 involved a one-particle basis set consisting of 748 functions.
The authors used the resolution of the identity scheme to speed up the calculations.
The auxiliary basis set for NTC6 contained 1756 functions. Absorption and emission
energies, oscillator strengths, and dipole moments were calculated and compared
with the observations.

3.6. CONCLUSIONS

Looking back over almost 20 years, one can see how EOM-/LR-CC methods have

matured and come to the forefront of quantum chemical methods for studying

electronically excited states of molecules. A large number of advances have been
made during that time period, including the following:

(1) The basic methodology for iterative methods has been well defined and imple-
mented. In particular, the series CCSD, CCSDT, CCSDTQ, and beyond has
been numerically tested and assessed;

(2) A variety of non-iterative schemes has been explored both formally and numer-
ically;

(3) Efficient algorithms have been developed and implemented, enabling applica-
tions to be made to quite large systems and with extended basis sets;

(4) The results are sufficiently good that more and more emphasis is being made
on direct and specific comparison with experiment;

(5) The development of analytical derivatives for EOM-/LR-CC methods has
greatly extended the scope of these methods and their value

Evidently, one can look forward to further applications of these methods. One of

their strengths is in their comparative ease of use.
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ABBREVIATIONS

CcC

Coupled-cluster

CCSD Coupled-cluster with single and double excitation cluster operators

CCSDT Coupled-cluster with single, double, and triple excitation cluster
operators

CCSDTQ  Coupled-cluster with single, double, triple, and quadruple
excitation cluster operators

CCSD(T) CCSD augmented by a non-iterative triple excitations

CCSDT-n Different approximate CCSDT methods that are obtained by
truncating the T; equation. Different n values define different
truncations

cC2 A second-order approximation to CCSD (in which T, is counted as
a zeroth-order quantity)

CC3 A third-order approximation to CCSDT (in which T, is counted as
a zeroth-order quantity)

CI Configuration interaction

EOM-CC Equation-of-motion coupled-cluster

FCI Full configuration interaction

HF Hartree-Fock

LR-CC Linear-response coupled-cluster

MBPT(n) Many-body perturbation theory of order n

MO Molecular orbital
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CHAPTER 4

EXPLORING PHOTOBIOLOGY AND BIOSPECTROSCOPY
WITH THE SAC-CI (SYMMETRY-ADAPTED
CLUSTER-CONFIGURATION INTERACTION) METHOD
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Abstract: Recent SAC-CI applications to photobiology and biospectroscopy were summarized.
The SAC-CI method is an accurate electronic-structure theory for the ground, excited,
and ionized states of atoms and molecules in various spin multiplicities. The present
SAC-CI code is available in Gaussian 03 and is applicable to moderately large systems.
The recent topics covered in this review are (i) Circular dichroism (CD) spectrum of a
nucleoside, uridine, (ii) photo-cycle of phytochromobilin in phytochrome, (iii) excited
states and electron-transfers in bacterial photosynthetic reaction centers, (iv) color-tuning
mechanism of retinal proteins, (v) excitation and emission of green fluorescent proteins
(GFP), and (vi) emission color-tuning mechanism of firefly luciferin. These successful
applications show that the SAC-CI method is a useful and reliable tool for studying
molecular photobiology and biospectroscopy

Keywords: SAC-CI, Excited State, Photo-Biology, Biospectroscopy, Circular Dichroism,
Phytochrome, Photosynthetic Reaction Center, Electron Transfer, Color-tuning
Mechanism, Retinal Protein, Green Fluorescent Protein, Firefly Luciferase

4.1. INTRODUCTION

Light is indispensable for life. Green plants and some bacteria use solar energy
for the energy source in their photosynthesis [1-3]. Archeal bacteriorhodopsin is a
membrane bound protein and works as a light-driven proton pump [4, 5]. Another
role of light is information carrier that is recognized in vision and photo-sensors.

*Corresponding author, e-mail: h.nakatsuji@qcri.or.jp
93

M. K. Shukla, J. Leszczynski (eds.), Radiation Induced Molecular Phenomena in Nucleic Acids, 93—124.
© Springer Science+Business Media B.V. 2008



94 J. Hasegawa and H. Nakatsuji

Our retina has red, green, and blue cones which include rhodopsins as photo-
receptors [6—8]. Phytochromes are photo-sensors of green plants [9]. Biological
luminescences from fireflies [10] and some jellyfishes [11] are also beautiful activ-
ities of living organism. Recently, fluorescent proteins are routinely applied as
molecular markers for gene expression in the field of molecular biology [12].

These photobiological events occur as photochemical reactions in proteins. The
key steps of the reactions are electronic excitations, electron transfers, struc-
tural relaxations, and emissions of photo-functional pigments involved in proteins.
Proteins must therefore play important roles for adjusting not only the ground
electronic structure but also the excited electronic structure of the functional
pigments. Interactions between the ground and excited pigments and the protein
environment would be important for controlling the function. To figure out the
mechanism of the photo-functions and further to control them, if possible, it is
important to elucidate detailed electronic structures of the pigments in proteins in
both ground and excited states.

Quantum chemistry plays vital central roles in clarifying and understanding the
mechanisms of these photobiological events. Electronic structures and transitions of
active centers in proteins obey the principles of quantum mechanics, and molecular
properties dramatically change after the transitions. In addition, photochemical
events in excited states are often transient and sometimes difficult to study in
experimental approaches. If an accurate and reliable theory exists and can be applied
to photobiological subjects, one can obtain not only rational explanations but also
predictions on the photo-functions of the active centers and proteins.

Recent advances in theoretical and computational chemistry opened a door for
clarifying the electronic origins and mechanisms of the photobiological phenomena.
To obtain reliable understanding on these subjects, a choice of reliable and useful
electronic-structure methodology is one of the most crucial aspects in performing
theoretical studies. The accuracy and reliability of the method are crucial particularly
in photobiology and biospectroscopy, because the energy ranges of the phenomena
are relatively narrow in biology. Further, without accuracy and reliability, new
predictions are absolutely hopeless. In such critical situations, theories with semi-
empirical nature and the time-dependent density functional theory (TDDFT) are
difficult to apply, since the error bars of these theories are wider than the typical
energy width of the biological phenomena.

The symmetry-adapted cluster (SAC) [13, 14]/SAC-configuration interaction (CI)
[15-18] methodology was proposed by Nakatsuji in 1978 and developed in his
laboratory [19-22] as an accurate electronic-structure theory for ground and excited
states of molecules. The method has been applied so far to more than 150 molecules
[19-22] and established as a useful method for studying chemistry and physics
involving various electronic states. The analytical energy gradient method for the
SAC/SAC-CI energy was developed [23-27]. This is an important tool for geometry
optimizations and for studying the relaxation processes of molecules in their excited
states. The SAC/SAC-CI code was released through Gaussian 03 program [28]. The
SAC/SAC-CI code permits one to do perturbation-selection of linked excitation
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operators [29], which permits the method to be applicable to very fine spectroscopy
of relatively small molecules to photobiology and biospectroscopy of relatively
large molecules.

In this review, we provide an overview of our SAC-CI applications to some
important photobiological and biospectroscopic subjects. In Section 4.2, the method-
ological and the computational aspects of the SAC-CI method are briefly explained.
Next, we review some recent SAC-CI applications to circular dichroism (CD)
spectrum of a nucleoside, uridine (Section 4.3), structural identification of some key
isomers in phytochrome (Section 4.4), (iii) excited states and electron transfer in
bacterial photosynthetic reaction centers (Section 4.5), (iv) color-tuning mechanism
of retinal proteins (Section 4.6), (v) excited states of green fluorescent protein
and its mutants (Section 4.7), and (vi) emission color-tuning of firefly luciferase
(Section 4.8). Through these successful applications, we show that the SAC-CI
method is a useful tool for the studies in photobiology and biospectroscopy.

4.2 SAC-CI THEORY AND THE COMPUTATIONAL
PROGRAM: A BRIEF OVERVIEW

In this section, we explain the SAC-CI method and the computational program. For
detailed descriptions, we refer to the original papers [13-18] and the earlier review
articles [19-22].

The SAC/SAC-CI method is a correlated electronic-structure theory for the
ground and excited states in various spin multiplicities. The SAC method belongs
to the coupled-cluster theory [30, 31]. In the case of a closed-shell singlet state, the
SAC wave function is written as

W = exp (S) W), (4-1)

where ¥, is the reference determinant, and S is the linear combination of the
excitation operators,

§=Y.¢8;. (4-2)
1

The excitation operator 3’, is symmetry-adapted, which discriminates between the
SAC and ordinary CC methods. The C, is the coefficient of the operator. Applying
the variational principle, we obtain the variational SAC equations.

(W - E [9") =0 (4-3)
(w3e| (A= E,) 31 |w5*) =0 (4-4)

These equations are iteratively solved to determine the energy and the coefficients.
The SAC wave functions for open-shell systems were also defined and described
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elsewhere [13, 32]. Since the correlation energy calculated by the SAC method is
size-extensive, the method is applicable to large systems.

The Eq. (4-4) actually indicates the generalized-Brillouin theorem. This theorem
implies that a function S} illfgSAC> is the basis function for describing the excited
states. Let us consider an excited function,

dy = P} |WC), (4-5)
where P is the operator which projects out the ground state SAC wave function.

Using Eqs. (4-3 and 4-4), it is easily shown that these functions {®,} satisfy orthog-
onality and Hamiltonian orthogonality to the ground-state SAC wave function.

<q>K W) =0, (D] H | qf;AC> -0 (4-6)

Therefore, the excited state wave function can be described by a linear combination
of the basis functions,

WAL =" d, Dy, 4-7)
K

where dy is the coefficient of the function. This is the SAC-CI wave function
[15-17] which satisfies the correct relationship between the ground and excited
states,

(\I,;‘AC | WHAC=CT) = ( and (\II;AC |H| ,\IffAC’C1> =0. (4-8)

To determine the SAC-CI coefficients {dy}, we applied the variational principle
and obtained the variational SAC-CI equation.

(@] (A - E,) [ =0 (4-9)

The Eq. (4-9) is an eigen equation and gives multiple excited states by single
diagonalization. The different SAC-CI solutions are therefore orthogonal to each
other.

(\I,}SAC—CI | q,jAC—CI) —0and <\I,.}SAC—CI |ICI} \I,eSAC—C1> —0. (4-10)

In the SAC-CI equations described above, the symmetries of the excitation operators
were implicitly limited to be the same as those in the ground SAC wave function.
However, the Egs. (4-5-4-10) were also valid for the excitation operators having
different symmetries.

®, = PR} | W5C) (4-11)
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Now, the IAQE operator is not only singlet excitations but also triplet, doublet (ionized
and electron-attached), and higher-spin multiplicities. Thus, the SAC-CI method
can calculate the ground and excited states in various spin-multiplicities.

These formulations based on the variation principle provided the beautiful
equations for the ground and excited states. However, in a practical point of view,
it is very difficult to solve the Egs. (4-3, 4-4, and 4-9), since the exponential expan-
sions reach full-CI limit. We introduced non-variational equations for the SAC
method,

(w1 £, w3*) =0 (4-12)

<\1r0| 5, (ﬁl—Eg) | w;“) ~0, (4-13)
and for the SAC-CI method,

(Wl Re (B~ E,) [w9e ) =0, (4-14)

These equations are obtained by projecting the Schrodinger equation onto the space
spanned by the linked configurations. Since the solutions of the non-variational
equations are close to the full-CI ones [33], the deviation between the variational
and non-variational solutions would be small for the molecules in the equilibrium
structures. These non-variational equations were used for solving the SAC and
SAC-CI wave functions in the actual applications.

There is no restriction in the order of the excitation operators in the SAC and
SAC-CI theories. The SAC/SAC-CI solutions become exact, if one includes the
excitation operator up to the full-CI limit. This implies that the accuracies of the SAC
and SAC-CI solutions can be improved systematically by including the higher-order
excitation operators. This is one of the great advantages of the SAC/SAC-CI method
over DFT. For the practical calculations, there are two standards with respect to
the excitation operators in the SAC-CI wave function. For calculating one-electron
excitation, ionization, and electron-attachment processes, it is sufficient to include
singles and doubles linked excitation operators in the SAC-CI wave functions (SAC-
CI SD-R method) [19-22]. For describing many-electron processes like shake-up
ionizations, we must include higher-order excitation operators in the SAC-CI linked
operators, which is the general-R method [18]. This approach has been successfully
applied to the valence ionization spectra with satellites, molecular structure of
multi-electron processes, and the excited states of open-shell systems [21].

The computational code for the SAC and SAC-CI methods was completed in
1978 [16, 17] and published in 1985 (SAC85) [34]. In 2003, the SAC-CI code was
incorporated into the Gaussian03 program package [28]. Figure 4-1 overviews the
available functions of the SAC-CI program in Gaussian03. Using this code, we can
calculate the electronic structures and energy gradients of any ground and excited
states from singlet to septet spin multiplicities in both SAC-CI SD-R and general-
R accuracies. To study molecular structures, chemical reactions, and dynamics
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SAC/SAC-CI program

Accurate correlation theory for ground and excited states
(H. Nakatsuji, 1978)

SAC singlet closed-shell state (ground state)

|
SAC-CI
—— singlet excited states
—— triplet ground & excited states
—— ionized states (doublet ground & excited states)

—— electron-attached states
(doublet ground & excited states)

L—— quartet to septet ground & excited states

Energy Gradient (Force acting on nuclei)
Dynamics involving ground and excited states

Subject: Chemistry and Physics involving these states

Figure 4-1. Current SAC-CI program system released in Gaussian 03

involving the excited states, we implemented SAC-CI energy gradient (force acting
on nuclei) for any of these electronic states [23-27].

In order to calculate larger systems of our research interest, the SAC-CI program
adopted a perturbation-selection method [29]. By evaluating the perturbation energy
at the second-order level, important double-excitation operators are selected for the
SAC and SAC-CI wave functions. This method reduces the number of doubles
without losing much accuracy. Owing to these advantages, the SAC-CI method
has been successfully applied to the biological systems. In the Gaussian03 program
[28], we prepared three levels of energy thresholds: LevelOne, LevelTwo, and
LevelThree. LevelThree (default) uses (1 x 107%au, 1 x 1077 au) for (ground,
excited) states. LevelTwo and LevelOne are defined as (5 x 10™®au, 5 x 1077 au)
and (1 x 1073 au, 1 x 107 au), respectively. The LevelThree calculation is the most
accurate of the three and is used as the default condition. Calculations with the
lower levels are more approximate but computationally easier to apply the SAC-CI
method to larger systems. We generally observed that the relative energies among
the excited states were rather insensitive among these three threshold sets.

We introduced a new algorithm and succeeded in reducing the computation time
for the perturbation selection [35]. In Table 4-1, we show the timing data. The new
algorithm was compared with the previous one adopted in the Gaussian 03 rev. C02.
The system is a chromophore of Cyan Fluorescent Protein (CFP), C,sH,sN;0,(C,-
symmetry). A DZP basis sets [36] was used, and total 290 active orbitals (51
occupied and 239 unoccupied orbitals) were correlated in the SAC/SAC-CI calcu-
lation. The number of the reference states was 8 in the selection. The comparison
shows that the CPU time was remarkably reduced for singlet and triplet excited states.
The present selection algorithm was released in the Gaussian03 rev. DO1.



Exploring Photobiology and Biospectroscopy with the SAC-CI Method 99

Table 4-1. CPU time for the perturbation selection. Cyan Fluorescent
Protein, C;sH;5sN;0, (C,-symmetry), with DZP level basis sets. The Is
core and corresponding virtual orbitals were frozen. Total number of active
space is 290 (51 occ. & 239 unocc.)

CPU time (with HP DS25)

Integral sorting Selection
Singlet ground states
Previous none 3m 25s
Present 1m 30s 48s
Singlet excited states
Previous none 1h 53m 10s
Present 1m 38s 6m 7s
Triplet states
Previous none 6h 47m 53s
Present 1m 37s 11m 48s

4.3. NUCLEOSIDE: CIRCULAR-DICHROISM SPECTRUM
OF URIDINE

Photochemical properties of nucleic acids, DNA and RNA, are of great interest not
only in biology [3, 37-39] but also in material science [40]. There are many experi-
mental and theoretical studies on the excited states of nucleic acids (for review, see
refs. [38, 39]). Since nucleosides and nucleotides are chiral molecules, Circular-
Dichroism (CD) spectroscopy is a useful tool to identify the excited states having
very small intensity in the ordinary absorption spectrum. CD spectra of DNA are
also used for identifying the helical structures [41]. The CD signal is, however,
composed of both positive and negative peaks. Without accurate theoretical calcu-
lations, it is often difficult to assign the spectrum. As shown in Figure 4-2(a),
the experimental absorption spectrum of uridine shows two peaks at 260 (4.77
eV) and 205 nm (6.05eV) [42]. The experimental CD spectrum has four peaks at
267 nm (peak I, 4.64¢eV), 240nm (peak II, 5.17eV), 210nm (peak III, 5.90eV),
and 190 nm (peak IV, 6.53eV) [42] as shown in Figure 4-2(b). Compared to the
absorption spectrum, the peak positions observed in the CD spectrum shift by
0.13~0.15eV. Moreover, the CD spectrum in A\, > 240 nm range is so different
from the absorption spectrum.

SAC-CI method was applied to calculate the electronic CD spectrum of uridine
[43]. Based on theoretical CD and absorption spectra, observed peaks in the exper-
imental spectra were assigned. The rotational strength (R) in the length form [44]
was calculated as imaginary part of the inner product of the electric transition dipole
moment (ETDM) and magnetic transition dipole moment (MTDM).

max

Ry =Im [(W,[ & [W,) (W] i [W,)] (4-15)

The ETDM and MTDM were calculated using the SAC and SAC-CI wave
functions. i and 7 are electric and magnetic dipole moment operators, respectively.
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Figure 4-2. (a) Absorption and (b) CD spectra of uridine. In the theoretical CD spectrum, the calculated
rotational strengths (solid vertical lines) were convoluted with the Gaussian envelopes

Since the rotational strength includes the MTDM, the CD spectrum can detect
excited states having little oscillator strength in the absorption spectrum. For compu-
tational model, the OH and hydroxymethyl groups in the sugar ring are substituted
by the H atoms. Geometry was optimized at DFT(B3LYP [45, 46])/6-31G* [47, 48]
level. For calculating the excited states and CD spectrum, the basis functions
employed were TZ [49] with double polarization functions [50] plus double Rydberg
functions [36] for every C, N and O atoms in the base part. The DZ [36, 51] sets
were used for the other atoms. In addition, double Rydberg d-functions [36] were
placed on the center of the base ring. In the SAC-CI calculation, 1s orbitals of the
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C, O and N atoms were treated as the frozen orbitals. Perturbation selection [29]
was carried out at the “LevelTwo” level of thresholds.

In Figure 4-2, the SAC-CI theoretical spectra are compared with the experimental
ones. Excitation energy, second moment, oscillator strength, and rotational strength
are summarized in Table 4-2. The intense peak at 260 nm (4.77 V) in the absorption
spectrum was assigned to the 2' A state (valence  — m* excitation). The 3'A state
(n—m* excitation) was located at 4.74eV. The CD rotational strengths of these
states were opposite each other. Although the oscillator strength of the 3'A state
is very small (0.0001 bohr), the calculated rotational strength (—6.42 x 1074 cgs)
is comparable to that of the 2!A state (17.00 x 107%° cgs) in magnitude. Since the
signs of the rotational strengths are opposite, the two peaks cancel each other.
Consequently, the residual positive contribution from the 2'A state is observed as
the positive peak I in the CD spectrum. This cancellation also shifts the peak I to
the lower-energy region in the CD spectrum.

Peak II was assigned to the 4'A state which has negative rotational strength
(—5.42 x 107%° cgs). The nature is a one-electron excitation from 7 orbital to mixed
o* and Rydberg orbitals. The 4'A state could also be ascribed to the shoulder in
the high-energy side of the 260 nm peak (4.77 eV) in the absorption spectrum.

Peak III was assigned to the 5~7'A states having negative rotational strength.
Peak IV in the CD spectrum would be ascribed to the positive rotational strength
from 9'A and 11'A states. Since the excitation energies of the 8~11'A states were
higher than 6.4eV, these four states would contribute to the broad absorption in
this part of the absorption spectrum.

To understand the origin of the rotational strength, we performed factorization
analysis for the rotational strength of ™ — " (2'A) and n—7* (3'A) transitions. The

Table 4-2. Singlet excited states of uridine calculated by the SAC-CI method

State Nature SAC-CI Exptl*

E?, Sec.© Osc.4 Rot. E,, (abs) E,, (CD)?
X'A Ground State - -170 - - -
2'A m—* 4.64 —171 0.2875 17.00 4.77
3'A n-m* 4.74 —169 0.0001 —6.42 4.64(+)
4'A 7—(Ryd,o*) 5.19 —228 0.0153 —5.42 5.17(—)
5'A m—(Ryd,o*) 580  —241 0.0008 ~1.00
6'A m—(Ryd,0*) 590 —266 0.0144 ~546 605 5.90(—)
7'A m—Ryd 6.24 —282 0.0026 —7.83
8'A n-m* 6.40 —167 0.0004 —13.12
9'A 7—(Ryd,o*) 645  —276 0.0132 6.84 .
10A 7 (Rydm) 657  —240 0.0944 075 >65 :
1'A  w—(Ryd) 6.66  —261 0.0182 3457

2 Reference [42]; b Excitation energy in eV; ¢ Electronic second moment in bohr?; 4 Oscillator strength
in bohr; ¢ Rotational strength in 107#° cgs unit; © Peak maximum in the absorption spectrum [42]; ¢ Peak
maximum in the CD spectrum [42]. Sign in the parenthesis denotes the sign of the rotational strength.
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rotational strength can also be expressed by using the angle 6 between ETDM and
MTDM.

Ry =Im ||| |,,| cos 6] (4-16)

This analysis classifies the origin of the rotational strength in terms of the
magnitudes of the two transition moments and their angle. The latter determines the
selection rule of the optical activity. In the case of the  — 7" transition (2' A state)
of uridine, the angle between g and m is almost orthogonal (89.07°). Although
the cosine part is very small, both ETDM and MTDM contribute to the rotational
strength. On the other hand, both ETDM and MTDM are small in the n—7*
transition (3'!A state). However, the angle 6 (127.08°) significantly deviates from
90°, which is large enough to be observed in the CD spectrum. The reason of
the deviation is in the character of the n-orbital. Although the 7 and m* orbitals
of uridine are localized in the uracil moiety, the n-orbital has certain amount of
amplitude in the sugar part of uridine. The rotational strength of the ™ — 7™ transition
originates from the magnitude of the transition dipole moments, and that of the
n—* transitions from the symmetry-lowering.

44. ON THE PHOTO-CYCLE OF PHYTOCHROME: STRUCTURE
OF P, AND P,. FORMS OF PHYTOCHROMOBILIN (P®B)

A biliprotein Phytochrome is one of the most important photoreceptors in green
plants [9] and controls the photo-morphogenic processes. Phytochrome exists in
one of two photo-interconvertible forms: physiologically inactive P, and active
P;, forms which absorb light in the red (\,,, = 668 nm, 1.86eV) and in the far-
red (A, = 730nm, 1.70eV) regions, respectively [52]. The absorption of light
initiates the photoisomerization of phytochromobilin (P®B, Figure 4-3) included
in phytochrome. Several transient intermediates between the P, and Pj forms
were also detected and monitored by UV/vis spectroscopy [53]. Resonance Raman
spectroscopy [54-59] was used for studying the structure of P®B. Kneip et al.
proposed that P®B in the P, form is in ZZZasa (Cs-Z, C,y-Z, C,5s-Z, Cs-anti, C, -
syn, C;s-anti) structure [59], while Andel III et al. reported that the P, and P, forms
are ZEZaas and ZEEaaa isomers, respectively [56]. However, the crystal structure
of the phytochrome has not yet been obtained.

In such a situation, reliable theoretical studies on the absorption spectra would
provide useful information on the relationship between the structure and the
absorption spectrum. As shown in Figure 4-3, three models, Al, A2, and B, were
examined for the photo-isomerization. The Models Al and A2 were based on the
Resonance Raman study by Kneip et al [59]. For Model A2, we also referred to a
study by Lippitsch et al. [60] in which a rotation around a single bond (C,,—C,5)
was also suggested (Hula Twist). Model B was based on the Resonance Raman
study by Andel III and co-workers [56].

In the computational model, substituents that do not conjugate with the -orbitals
were replaced by the hydrogen atoms. We included a propanoic acid that mimics
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Model Al

P,: ZZZasa (C10=Z, syn, C15=Z anti)
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« Model A2
C15=E, syn)

H H
o O g+ A9 H
= , Model B /\N/\N\\No
SO g T =TT
N7 o —
X/ 15

P, ZEZaaa (C10=E,anti, C15=Z, syn) Pg,: ZEEaaa (C10=E, anti, C15=E, anti)

Figure 4-3. Possible mechanisms for the photo-isomerization of phytochromobilin

an acidic residue. We also evaluated protonation states of the N atom in the ring C
at DFT [61] (B3LYP [45])/6-31+G(d) level. In Models Al and A2, the protonated
forms (P®B-H)"-(Asp)~ were more stable than the neutral forms (P®B)-(Asp-H)
by 4.5 and 5.4 kcal/mol, respectively. These results agreed with the experimental
findings [55, 56, 59]. However in Model B, the neutral forms of ZEZaas and ZEEaaa
isomers were slightly more stable than the protonated ones by 0.7 and 3.4 kcal/mol,
respectively. Single-point SAC-CI/DZ calculations were performed for these struc-
tures. For the negatively charged oxygen atoms in the aspartate, single p-type anion
functions (o = 0.059) [36] were augmented. The frozen-core approximation was
introduced for the 1s orbitals of C, N, and O atoms and their corresponding virtual
orbitals were also treated as the frozen orbitals. The perturbation selection of the
excitation operators [29] was carried out with the LevelTwo set.

As shown in Figure 4-4, the SAC-CI results clearly showed that the spectral
change of Model A2 was very close to that of the experiment. The amount of the red-
shift was calculated to be 0.11 eV, which was very close to the experimental value
(0.16eV). The calculated excitation energies for ZZZasa and ZZEass structures
were 1.73 and 1.62eV, respectively, which were in reasonable agreement with
the experiment [52]. The oscillator strengths of the ZZZasa and ZZEass structures
were 1.31 and 0.77 au, respectively, and the change in the spectral intensity was
also reproduced. On the other hand, the SAC-CI results for Models Al and B
could not explain the experimental spectra. From these results, we concluded that
protonated ZZZasa and ZZEass isomers are assigned to the P, and P, forms of
P®B, respectively.

The UV/vis spectroscopy [53, 62] and time-resolved Circular Dichroism (TRCD)
[63] studies discovered lumi-R and meta-R, states as the intermediate states between
the P, and P;, forms. The experimental absorption peak maxima of lumi-R (1.80eV)
and meta-R, (1.87eV) states are very close to that of P, form (1.86eV) [62]. The
C,5=C,4 rotation is so far accepted as the primary step of the photo-isomerization
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Figure 4-4. (a) SAC-CI spectra for Model A2: ZZZasa (x) and ZZEass (O) isomers. (b) SAC-CI
spectra for Model B: ZEZaas (x) and ZEEaaa (Q) isomers

[64]. Our present result showed that the structure differences between the P, and P,
forms are both in the C,s=C,4 rotation from Z- to E-conformation and in the C,-C5
rotation from anti- to syn-conformation. Therefore, ZZEasa isomer is a possible
candidate for the lumi-R or meta-R, forms. The calculated excitation energy for
ZZEasa isomer was 1.71 eV, which was 0.02 eV smaller than that of ZZZasa isomer,
P, form. The result suggested that lumi-R and meta-R, could have ZZEasa structure
as a basic skeleton.

4.5. BACTERIAL PHOTOSYNTHETIC REACTION CENTER:
EXCITED STATES AND ELECTRON TRANSFERS

Light-induced transmembrane electron transfer (ET) in the photosynthetic reaction
center (PSRC) is a key step of the energy production in the green plants and
bacteria [1-3]. The PSRC protein contains seven chromophores: bacteriochlorophyll
dimer (Special Pair, P), two bacteriochlorophyll monomers (B,, Bg), two bacte-
riopheophytin monomers (H,, Hy), and two quinones (Q,, Qg). The chromophore
alignment has pseudo-C, symmetry as shown in Figure 4-5. The electron transfer
in the PSRC is unidirectional and highly efficient [65]. An excited electron at P is
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B branch 5 A branch

Figure 4-5. Chromophores in the photosynthetic reaction center (PSRC) of Rb. sphaeroides

sequentially transferred only along the A-branch in Rhodobactor (Rb.) sphaeroides
(L-branch in Rhodopseudomonas (Rps.) viridis). To investigate the primary photo-
chemical event, the SAC-CI method was applied to the photo-absorption spectrum
of the PSRC in Rps. viridis [66-68] and Rb. sphaeroides[69]. To clarify the unidi-
rectionality of the electron transfer, the SAC-CI wave functions were also used
for calculating the electronic factor in the electron-transfer rate constant [66-69].
The initial structure of the PSRC was taken from a X-ray structure (1PRC [70]
and 10GV [71]). The SAC-CI/D95 [36] level calculations was performed for each
chromophore. The electrostatic effect from the protein was treated by a point charge
model using AMBER force field [72].

The photo-absorption and linear dichroism (LD) spectra of Rps. viridis calculated
by the SAC-CI method were compared with the experimental data as shown in
Figure 4-6. A total of 21 states were calculated in the energy region of 1.3~2.8eV.
Based on the theoretical spectrum and the other experimental findings, the 14
peaks observed in the experiment were assigned and their characters were clarified.
The root mean square (rms) error in the SAC-CI excitation energy was 0.14¢eV,
indicating that reasonable assignments were obtained [66, 67]. The absorption
spectrum of Rb. sphaeroides was also assigned with an rms error of 0.11eV [69].
These assignments provided a starting point for the photochemical studies of the
PSRC. The first peak, which is important as the initial state of the ET, is assigned
to the first excited state of P. The HOMO — LUMO excitation is the dominant
contributor to the wave function.

Using these SAC-CI wave functions, we calculated the electronic factor |H,p|*
in the ET rate constant.

K7 = 2T, P (FC) (#17)
where FC is Frank-Condon factor which describes the contribution from the nuclear
dynamics. The details of the computational procedure are found in the previous
paper [68]. The results are summarized in Figure 4-7(a,b). The energy levels of
the states were taken from a previous experimental study [73]. In the case of Rps.
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Figure 4-7. Electronic factors in the rate constant calculated for the electron transfers in the bacterial
photosynthetic reaction centers of (a) Rhodopseudomonas viridis, and (b) Rhodobactor sphaeroides

viridis (Figure 4-7(a)), the electronic factor of the ET from P to B, was 15 times
larger than that from P to By, [66, 68]. We note that By, By, H;,, and Hy, in Rps.
viridis are equivalent to B,, By, H,, and Hy in Rb. sphaeroides, respectively. The
ET electronic factor for B; — H, was also larger than that for By; — H,,; [66, 68].
The unidirectional electron transfer in Rps. viridis was explained by the asymmetry
in the ET electronic factor. A decomposition analysis revealed that the asymmetric
electronic factor has structure-biological origin: the inter-chromophore distance in
the L-branch is 0.5 A shorter than that of the M-branch [66, 68]. In the case of
Rb. sphaeroides, the calculated electronic factors of the P — B transfer were very
similar between the A- and B-branches as shown in Figure 4-7(b). However, for the
ET from B to H, the electronic factor of the A-branch ET was 20 times larger than
that for the B-branch. Therefore, the electronic factor for the B — H transfer is
relevant to the unidirectionality in Rb. sphaeroides. We decomposed the electronic
factor into the atom-atom contributions. For the ET from B, to H,, the atomic
distance of the most contributing pair is 2.95A, while that of the corresponding
pair is 3.96A in the B-branch. Therefore, the asymmetry in the structure was
commonly ascribed to the origin of the unidirectional ET both in Rps. viridis and
Rb. sphaeroides.

We also calculated the electronic factor for the charge recombination B, — P.
As shown in Figure 4-7(a,b). The results were 100 and 200 times smaller than
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that of the ET (B, — H) in Rps. viridis and Rb. sphaeroides, respectively. This
indicated that the electronic factor also controls the efficiency of the ET in the
PSRC. It is very interesting to note that the methyl groups play a crucial role in the
ET. The decomposition analysis showed that the H atoms of methyl group gives
an important contribution [69]. This is due to the hyper-conjugation between the
methyl group and the m-system of bacteriochlorophyll skeleton [69]. Such crucial
contribution of the hyperconjugation seems to be common to all of the electron
transfers in the PSRC, and should be recognized as a general principle.

4.6. RETINAL PROTEINS: COLOR-TUNING MECHANISM

Photo-absorption is the initial event of vision, photo-sensing, and ion-pumps in
retinal proteins [4-8, 74, 75]. The absorption maxima are regulated by the protein
environment (opsin) and widely spread from 360 to 635nm [76] to furnish the
photo-receptors with the color sensitivity. However, the proteins include a common
chromophore, retinal. In order to identify physical mechanism of the color tuning
in the retinal proteins, many computational investigations have been performed by
using modern quantum-chemistry methodologies [77-87]. Among them, SAC-CI
studies gave systematically nice agreement to all of the retinal proteins studied [85—
87]. There are important requirements in the computational approach to reproduce
the experimental absorption energies. First, to accurately calculate the electronic
energy, the electron-correlation should be included appropriately for the ionic m—7*
excited state of polyene-like molecule [88]. Second, the absorption energy is highly
sensitive to the bond-length alternation and the torsional angle of the polyene chain
[84, 86]. With Hartree-Fock (HF) optimized geometry, calculated excitation energy
significantly overestimates the experimental result [77, 78, 84]. The 2nd order
Moller-Plesset (MP2) perturbation theory or B3LYP [45, 46] perform better for the
geometry optimization [84, 86]. Third, the interactions between the chromophore
and the counter ion must be described properly. Point-charge model lacks the
higher-order electronic effects such as electronic polarization, charge-transfer, and
exchange interactions [77, 79, 84].

We reported ab initio QM/MM and SAC-CI studies on the color-tuning
mechanism of retinal proteins, bacteriorhodopsin (bR) [86], sensoryrhodopsin II
(sRII) [86], rhodopsin (Rh) [86], and human blue cone pigment (HB) [87]. The
QM(B3LYP/D95(d)) / MM(AMBERY9 [89]) geometry optimizations were carried
out for the retinal proteins. In Figure 4-8, the structures of the QM segments are
illustrated. Active-site (AS) models included counter residues and a water, while
retinal (RET) models consisted of only the retinal protonated Schiff-base. The MM
segment describes the steric and electrostatic effects of the surrounding environment
from the rest of the system by means of the molecular mechanics. With the QM/MM
optimized structures, we calculated the absorption energies of the QM segment at
the SAC-CI/D95(d) level with the point charges representing the electrostatic field
of the surrounding protein.
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Figure 4-8. QM/MM optimized structures of the active-site of (a) bacteriorhodopsin (bR), (b) senso-
ryrhodopsin II (sRII), (c) rhodopsin (Rh), and (d) human blue cone pigment (HB). These active-site
(AS) models were also used for the QM region in the SAC-CI calculations

In Table 4-3, the SAC-CI results were summarized. The rms deviation between
the calculated and experimental absorption energies was 0.09eV for 6 retinal
proteins. TD-B3LYP calculations were also performed with the same geome-
tries. The B3LYP absorption energies for sRII and Rh showed deviations from
experiment of 0.15 and 0.07 eV, respectively. However, the deviation in bR was
0.39eV. TD-DFT results were also qualitatively different from the other methods
when the C4-C,; bond rotated [84]. Therefore, it would be difficult to use TD-
B3LYP method for clarifying the color-tuning mechanism among various retinal
proteins.

Mechanism of color-tuning was compared among bR, sRII, and Rh [86].
Absorption energies of both sRII and Rh are 2.49 eV, which is 0.31eV larger than
that of bR. The origin of the spectral blue shifts was decomposed into three contri-
butions. The first one was the structural distortion of the chromophore due to the
protein confinement (Structural effect). The second one was the electrostatic (ES)
interaction between the chromophore and the surrounding proteins (ES effect). The
last one was the quantum effect of the counter-ion and a water molecule in the
vicinity of the retinal protonated Schiff base (PSB) (Counter-ion quantum effect).
These contributions were deduced from the absorption energies listed in Table 4-3.
The structural effect was evaluated as the difference of the absorption energies of
the “bare” chromophores.

AEStruct — EfxET,bare (A) _ ERET,bare (B) , (4_18)

ex
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Table 4-3. The first excited states of rhodopsin (Rh), bacteriorhodopsin (bR), sensoryrhodopsin II (sRII),
and human blue cone pigment (HB) calculated by the SAC-CI and other methods

Protein QM region Environment SAC-CI Exptl. MRPT2 SORCI TD-B3LYP
Eex ECX EEX ECX
(eV) (eV) (eV) (eV) (eV)
bR/WTf AS in opsin 2.23 218 - - 2.57
RET 1.88 2.754 2.34¢ 2.49
RET bare 1.30 - 2.05¢ 1.86° 231
bR/R82AE AS in opsin 2.34 223k — - -
SRI/WT! AS in opsin 2.53 249" — - 2.68
RET 2.17 - - 2.58
RET bare 1.31 - - - 2.30
SRI/R72A"  AS in opsin 2.58 2.48™ - - -
Rh/WTf AS in opsin 2.45 249" 2.86 - 2.52
RET 2.06 278,259 - 2.44
RET bare 1.36 - 2.72°,2.72¢ - 2.53
HB/WTf AS in opsin 2.85 2.99
RET 2.50
RET bare 1.40 -

% CASPT2 result described in ref. [139], ® CASPT2 result described in ref. [81], ¢ CASPT2 result
described in ref. [140], ¢ MRMP result described in ref. [77], © SORCI result described in ref. [84],
f Shows “Wild Type”, ¢ Shows “R82A” mutant, " Shows “R72A” mutant, ! Ref. [74, 75, 141], ) Ref.
[142], * Ref. [143], 'Ref. [144], ™ Ref. [145].

where A and B denote the retinal proteins. The ES effect was the difference of the
spectral shift due to the electrostatic environment modeled by the point charges.

AEES — (E‘I;XET,M opsin (A) _ E(I;ET,bare (A)) _ (E‘I;ET,in opsin (B) _ ESfT,bare (B))
(4-19)

The counter-ion quantum effect is the difference of the spectral shift between the
AS and RET systems.

AEQuantum — (E?XS,in opsin (A) _ E:;ET,in opsin (A)) _ (E:;;S',in opsin (B)
_ EiET,in opsin (B)) (4_20)

The dominant contribution in both Rh and sRII turned out to be the ES effect.
The amount of the shift in sRII (0.28¢eV) is by 0.16eV larger than that in Rh
(0.12eV). This difference arises from the character of the excited state and the
ES potential along the retinal skeleton. The first excited state is characterized
as an intramolecular charge-transfer (CT) state. As shown in Figure 4-9(a,b), the
HOMO and LUMO are located in the left- and right-halves of the chromophore,
respectively. On the other hand, due to the counter ion, the ES potential decreases
around the PSB part (Figure 4-9(c)). Therefore, the protein ES effect increases the
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Figure 4-9. (a) HOMO and LUMO distributions of rhodopsin (Rh), (b) Protein-electrostatic potential at
atoms in the retinal skeleton in atomic unit

CT excitation energy. The amount of the blue-shift was qualitatively explained by
the change in ES potential along the skeleton. This is a general feature seen in the
retinal protein including PSB.

The structural distortion effect in Rh (0.06eV) was larger than that in sRII
(0.00eV). This difference was mainly attributed to the torsion around the C,-C,
bond due to the steric repulsion (Figure 4-8(c)). The blue-shift mechanism of human
blue-cone pigment (HB) was compared to rhodopsin (Rh) in the same way [87]. As
shown in Table 4-3, the ES interaction (0.40eV) is the dominant contributor to the
blue-shift. In order to analyze the ES interaction in more detail, we decomposed
the ES interaction into the contribution into each residue [87]. As in the previous
experimental studies [90], we found many residues contributing to the blue-shift
[91]. Among them, Ser183 and Tyr265 give leading contributions. Compared to
Rh, Ser183 and Tyr265 increase HOMO-LUMO gaps of the chromophore by 0.10
and 0.05eV, respectively. We investigated the protein environment in the vicinity
of the retinal SB region of HB and Rh. The O-H bond orientation of Ser183 in
HB (Ser186 in Rh) and Tyr265 in HB (Tyr268 in Rh) were significantly different
between the two proteins. This is controlled by the hydrogen-bonding network
in HB and Rh. Ser289 in HB acts as proton donor, while hydrophobic Ala292
cannot mediate hydrogen-bonding network. Therefore, Ser289 in HB regulates the
hydrogen-bonding patterns around the SB region and indirectly contributes to the
spectral blue-shift.

4.7. GREEN FLUORESCENT PROTEIN (GFP) AND MUTANTS:
PHOTOABSORPTION AND EMISSION ENERGIES

Green Fluorescent Protein is involved in the jellyfish, Aequorea Victoria [11,
92-95] and has very efficient emission property. It is now widely used as an
excellent molecular marker in various fields of molecular biology [12, 96]. There
are theoretical studies investigating spectroscopy [97-104], potential surface of the
excited state [105-107], and protein environmental effect [35, 101, 104, 108-110].
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Figure 4-10. Computational models. (a—d) Chromophores of GFP and its mutants. Theoretical and
experimental absorption (E,,) and emission energies (E;) were also indicated. Roman numeral in the
parenthesis indicates computational model (see text), (e) Large active site model of BFP for the geometry
optimization, (f) Small active site model of GFP for the SAC-CI calculations

We also studied protonation state of GFP chromophore [103] and environmental
effect [35].

Several computational models were employed in our study [35]. Model I included
a chromophore in gas-phase (Figure 4-10(a—d)). Model II additionally involved a
point-charge model for protein electrostatic potential. In Model III, the atoms in the
active site (Figure 4-10(f)) were treated by quantum mechanics, and the rest of the
protein effect was treated by the point-charge model. The structures used in Models
IT and III were obtained by using large active-site model (Figure 4-10(e)) at DFT
[61](B3LYP [45, 46])/6-31G* [47, 48] and CIS/6-31G* levels for the ground and
excited states, respectively.

For the excitation energy of GFP, SAC-CI calculations using Models I, II, and
IIT gave 3.23, 3.21, and 3.27 eV, respectively. These values are reasonably close
to the experimental value (3.12eV [111]). For the fluorescence energy, SAC-CI
with Models I and II gave 2.70 and 2.73 eV, respectively. Since the excitation and
fluorescence energies obtained by the gas phase model (Model 1) and the protein
model (Models II and IIT) were close to each other, the protein environment gives
minor contributions to the transition energies. Similar results were obtained for
Y66F mutant. We performed a decomposition analysis to clarify the environmental
effect [35]. Some neighboring residues, GIn94 and Arg96, decrease the excitation
energy [35, 101]. However, the rest of the protein-electrostatic effect increases the
excitation energy and diminishes the red-shift effect of GIn94 and Arg96.



Exploring Photobiology and Biospectroscopy with the SAC-CI Method 113

Radiating UV (254 nm, 4.9 eV) or visible (390 nm, 3.2eV) lights induce photo-
chemical conversion of the GFP active site [12, 112, 113]. A charge-transfer
(CT) excitation from Glu222 to the GFP chromophore was thought to be a key
step in a hypothetical mechanism [113], although there was neither experimental
nor theoretical evidences for the CT excitation. We performed SAC-CI calcula-
tions for the excited states of GFP active site (GFP-W22-Ser205-Glu222-Ser65,
see Figure 4-10(f)) [35]. Such large-scale SAC-CI calculations were performed
with an improved code containing a new algorithm for the perturbation selection
[35]. Table 4-4 shows singlet and triplet excited states up to 5.5eV. Since the
SAC-CI method can calculate many states distributed in a wide energy region,
spectroscopy is one of the best applied fields of the SAC-CI method. The results
indicated that a charge-transfer (CT) state is located at 4.19 eV, which could be
related to the channel of the photochemistry as indicated in a previous experi-
mental study [113]. On the other hand, there is no CT state below the 2'A state
(3.27eV). Since GFP has large two-photon absorption cross section [114, 115],
the chromophore could be excited to the states around 6.4eV (3.2 x 2) by the
two-photon processes.

Recent developments realized variety of GFP mutants having different fluores-
cence colors [12, 96, 116-118]. We studied the excitation and fluorescence energies
of Blue Fluorescent Protein (BFP), Cyan Fluorescent Protein (CFP), and Y66F.
Protonation state of the chromophore is very important, when the excited-state
proton transfer is considered. In the case of BFP, there are two possibilities as
indicated in Figure 4-10(c-1 and c-2). Based on the excitation energy, the fluores-
cence energy, and total energy, we propose that the protonation state of the BFP
chromophore is the BFP-II structure. We also calculated the excited state of CFP
chromophore in two different conformations as shown in Figure 4-10(d-1 and d-2).
The SAC-CI results were close to those of anti-CFP structure. This result agreed
with the existing X-ray structure [119].

4.8. RED LIGHT IN CHEMILUMINESCENCE AND
YELLOW-GREEN LIGHT IN BIOLUMINESCENCE:
EMISSION COLOR-TUNING MECHANISM OF FIREFLY
LUCIFERIN

Firefly luminescence is intriguing photobiological phenomenon [10]. The firefly
luciferase enzyme (Luc) has also become an important tool for bio-molecular
imaging, because of the highly-efficient conversion of chemical energy into light
[120]. Therefore, the underlying molecular mechanism of color-tuning must be
clarified. In the case of North American firefly (Photinus Pyralis), the chromophore,
luciferin, is transformed into electronically-excited oxyluciferin (OxyLH,) inside
the Luc [121-127], and exhibits the yellow-green emission (556 nm, 2.23eV). In
chemiluminescence (Figure 4-11(b)), keto- and enol-OxyLH, emit red (620 nm,
1.97eV) and green (560 nm, 2.20eV) lights, respectively [125-127]. Because of
the similarity, the yellow-green bioluminescence had long been ascribed to the
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Figure 4-11. Proposed mechanism for (a) bioluminescence and (b) chemiluminescence of the firefly
[126]. (¢) micro-environment mechanism [136-138, 147], and (d) our mechanism proposed in this study
[131]

enol-form of OxyLH, [125-127]. Recently, Branchini and co-workers found that
keto-constrained OxyLH, shows the yellow-green emission in the Luc [128, 129].
This indicated that the color of the firefly luminescence may be controlled only
within the keto-form. We investigated the emission color-tuning mechanism of the
firefly luciferin: red light in chemiluminescence and yellow-green light in biolumi-
nescence.

For studying the chemiluminescence in DMSO solution, we examined eight
structural isomers and tautomers in different protonation states at SAC-CI
/D95(d)//CIS/D95(d) plus PCM(DMSO) [130] level [131]. Counter ion (K%)
included in the experimental solution was explicitly included in the QM calcu-
lations. First, we could exclude the neutral forms, keto-s-trans and enol-s-trans,
from the candidates for the chemiluminescence emitter, since calculated emission
energies were much higher than the observed value [131]. Second, we could also
exclude cis isomers, since relative energies were higher than the corresponding
trans isomers [131]. Figure 4-12 shows the fluorescence energies of keto-s-trans,
enol-s-trans(-1), enol-s-trans(-1)’, and enol-s-trans(-2) forms calculated by the SAC-
CI method. Regarding the keto form, the calculated emission energy for keto-s-
trans(-1) was 2.10eV, which agrees reasonably well with the experimental value
of 1.97eV. Thus, keto-s-trans(-1) was confirmed as the red emitter in the chemi-
luminescence. For the enol form under strongly basic conditions, the calculated
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(a) keto-s-trans(—1) (b) enol-s-trans(—1)
= I <1
O OH
E¢(theo.)=2.10 AE(theo.)= OO E;(theo.)=2.31 AE(theo.) =17.2
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(c) enol-s-trans(-1) (d) enol-s-trans(-2)
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Figure 4-12. Structural of OxyLH, tautomers in different protonation states. E¢(theo.) and E;(exp.)
denote theoretical and experimental emission energies in eV unit, respectively. AE(theo.) denotes relative
energy in kcal/mol unit. Keto-s-trans(-1) form was taken as the reference

emission energies of the three candidates, enol-s-trans(-1), enol-s-trans(-1)’, and
enol-s-trans(-2), were 2.31, 2.20, and 2.17eV, respectively [131]. Since all of
these values were close to the experimental emission energy of 2.20eV, we next
examined the relative stability of these enol forms in the excited states. The total
energy was sum of the energies of potassium-OxyLH, complex and ters-BuO [131].
Since enol-s-trans(-2) was the most stable of the three candidates as shown in
Figure 4-12, enol-s-trans(-2) was ascribed to the yellow-green chemiluminescence
emitter.

For the bioluminescence, we constructed computational models of OxyLH,—
Luc binding complexes using X-ray structure of Luc [132] and a working model
proposed by experimental studies [133-135]. These structures were relaxed by
performing molecular dynamics, molecular mechanics (MM), and then ab initio
CIS (configuration-interaction singles) calculations. In CIS optimization, most of
the surrounding residues were treated by quantum mechanics (QM). The 6-31G*
[47, 48] sets were used for OxyLH, and phosphate-group in AMP. The 6-31G
sets were used for the others. In the SAC-CI calculations, OxyLH,, the phosphate,
Arg218, and His245 were treated by QM. The D95(d) [36] and 6-31G basis sets
were used for OxyLH, and the others, respectively. In both CIS and SAC-CI
calculations, electrostatic effect from the other residues was described by the point
charges.

In Luc environment, we obtained two representative structures, models A-a and
A-b. These two gave the emission energies of 2.33 and 2.08 eV, respectively, as
shown in “Calc. III” in Table 4-5. Since these values were close to the exper-
iment (2.23eV) [128, 129], keto-OxyLH, in the anionic form (keto-s-trans(-1) in
Figure 4-12 (a)) was confirmed to be the yellow-green emitter in Luc environment.
The character of the excited state is one-electron transition from HOMO(m) to
LUMO(7*), and these orbitals are clearly localized within OxyLH,.

Next, the possibility of the enol forms was considered. We performed the SAC-
CI calculations for enol-s-trans(-1) and enol-s-trans(-2) forms inside Luc. In the
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Table 4-5. Emission (fluorescence) energies of OxyLH, in the keto-s-trans(-1) form
in the gas phase and protein environment

Calc. Environment QM region Geom? Emission energy/eV
SAC-CI  Exptl.
I OxyLH, Gas 1.97
I in Gas phase ~ OxyLH, A-a 1.73
A-b 1.58
I in Protein OxyLH, + ARG218 A-a 2.33 2230
+HIS245 +Phosphate ~ A-b 2.08

? “Gas” denotes geometry optimized in the gas phase. For structures “A-a” and “A-b”,
see text; ® Bioluminescence emission maxima for Photinus pyralis wild-type at pH
8.6 [128].

enol-s-trans(-2) structure, the enol group was deprotonated, and the proton was
transferred to the phosphate group. The fluorescence energy and energy profile
are shown in Figure 4-13(a), together with the optimized structures. The SAC-CI
fluorescence energies (data in the parentheses) of keto-s-trans(-1), enol-s-trans(-1),
and enol-s-trans(-2) in Luc were 2.33, 2.29, and 2.21 eV, respectively. All of them
are close to the experimental value (2.23 eV). However, potential energies of the
first excited state of the enol-s-trans(-1) and enol-s-trans(-2) structures are by 19.8
and 34.2kcal/mol higher than that of the keto-s-trans(-1) structure, respectively.
These energy differences are large enough to conclude that the enol transformation
is energetically unfavorable in the Luc environment.

Protonation state of the O6’ atom in the benzothiazoryl ring also affects the
emission energy [136-138]. We examined another protonation state in which a
proton of Arg218 was transferred to OxyLH, (Figure 4-11(c)). As shown in
Figure 4-13(b), the calculated fluorescence energy (3.02eV) was about 0.8eV
higher than the experimental value. In addition, the total energy evaluated at
the CIS/6-31G* level was 20.2 kcal/mol higher than that of the keto-s-trans(-1)
system.

We analyzed the origin of the blue-shift by comparing several SAC-CI calcu-
lations using different computational models (Table 4-5). The reference gas-
phase calculation (Calc. I) gave emission energy of 1.97eV. In Calc. II, all of
the surrounding molecules and the charges were removed from the Calc. III.
Difference between Calc. II and Calc. I gives the chromophore structural effect.
The fluorescence energies obtained were 1.73 and 1.58eV for models A-a and
A-b, respectively. The structural constraint in the protein environment actually
causes red-shifts of 0.24 and 0.39 eV in the fluorescence, respectively. Comparison
between Calc. III and Calc. II corresponds to the environmental effect caused
by the coulombic interaction between OxyLH, and the surroundings. This effect
leads to a marked blue-shift in fluorescence energy of 0.60 and 0.50eV in
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Figure 4-13. (a) Comparison of the potential energy and emission energy (in parenthesis) of the keto
and enol forms in the Luc environment, (b) Comparison of the potential energy and emission energy (in
parenthesis) of the two protonation states

models A-a and A-b, respectively. A further analysis showed that the blue shift
is mainly due to the interactions with Arg218 and phosphate group of AMP.
Therefore, we concluded that the emission color of the keto-form remarkably
shifts to yellow-green due to the coulombic interaction between OxyLH, and Luc

environment.
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4.9. SUMMARY

An overview of the SAC-CI applications to photobiology and biospectroscopy
was presented in this account. The most important point in these successful
applications would be the accuracy of the SAC-CI theory and computations. A
typical example was seen in the retinal proteins. The TD-B3LYP works very
nicely for two proteins but gave an error of 0.4eV in one protein, indicating the
method is not systematically applicable to unknown retinal proteins. In Figure 4-14,
the SAC-CI results (with DZP basis sets at least) were compared to the experi-
mental data. The molecules included were nucleoside, green fluorescent proteins,
retinal protonated Schiff base, and oxyluciferins. The excited states calculated
were one-electron m — ¥, n-m*, m— ¢* excited states including exciton and
intramolecular charge-transfer states. The root mean square (rms) error was 0.09 eV
(2.08 kcal/mol) among 26 states. For the chlorophylls in the photosynthetic reaction
center and the bilins in phytochrome, the SAC-CI/DZ basis level gave an rms
error of 0.13 eV among 26 states. These results indicate the accuracy and reliability
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Figure 4-14. Comparison of the SAC-CI and experimental results in some photobiological and biospec-
troscopic applications
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of the excitation/emission energies calculated by the SAC-CI method. For this
reason, reliable conclusions could be deduced for spectroscopy, structural identi-
fications, interpretation of the photo-absorption/emission color-tuning mechanisms
in photobiology.
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CHAPTER 5

MULTICONFIGURATIONAL QUANTUM CHEMISTRY
FOR GROUND AND EXCITED STATES

BJORN 0. ROOS*
Department of Theoretical Chemistry, Chemical Center P.O.B. 124, S-221 00 Lund, Sweden

Abstract: One frequently used quantum chemical approach for studies of spectroscopy and
photochemistry is the Complete Active Space (CAS) SCF method in combination with
multiconfigurational second order perturbation theory (CASPT2). In this chapter we shall
describe these two approaches. The basic idea behind them is the request that the wave
function should give a proper description of the electronic structure already at the lowest
level of theory. This should be possible for all possible arrangements of the electrons: in
chemical bonds, in excited states, in dissociated states, at transition states for chemical
reactions, etc. It should also be possible for all atoms of the periodic systems. The
CASSCF wave function fulfills, in principle, this requirement because it is full CI, albeit
in a limited space of active orbitals. CASSCF can therefore be regarded as an extension
of the Hartree-Fock (HF) method to any arrangement of the electrons. The addition of
dynamic electron correlation is as crucial here as it is in the HF method. The suggested
solution is to compute this energy using second order perturbation theory (CASPT2)
because it is relatively simple and allows applications to a wide variety of systems and
many electrons. The review will focus on the methods themselves. Applications will be
described in other chapters of the book

Keywords:  Multiconfigurational methods, CASSCF, CASPT2

5.1. INTRODUCTION

This chapter will discuss that Complete Active Space (CAS) SCF method [1, 2]
and multiconfigurational second order perturbation theory, CASPT2 [3, 4]. The
CASSCF method was introduced almost thirty years ago. The aim was to be able to
deal with electronic structures that could not be described even qualitatively using
a single electronic configuration.

Actually, the method itself is much older. It was formulated by P.-O. Lowdin
in his famous 1955 paper, where he notes that in a limited spin-orbital basis, the
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best wave function will be a full CI with both the CI coefficients and the MOs
optimized using the variational principle [5]. He called this the Extended Hartree-
Fock scheme. He derived the condition for optimum orbitals, which was later to be
known as the extended Brillouin’s theorem (The Levy-Berthier- Brillouin (BLB)
theorem) [6, 7]. The key ingredients of the CASSCF method are already formulated
here. Lowdin moreover refers to unpublished work by J. C. Slater and the book by
Frenkel from 1934. Nothing is new under the sun. An important forerunner to the
CASSCF method was the Fully Optimized Reaction Space-FORS introduced by K.
Ruedenberg in 1976 [8]. He defined an orbital reaction space in which a complete
CI expansion was used (in principle) and all orbitals were optimized. In practice,
it was necessary to use only a selected set of configurations in this step because of
the difficulty to perform the large CI calculations that were needed.

The development that finally lead to a code that could be used for production
was based on two main ingredients: the possibility to perform full CI calculations
effectively for large expansions comprising up to at least a million configuration
state functions (CFs), and the possibility to optimize the orbitals and CI coefficients
in an effective way. The first problem was solved by the development of the
Graphical Unitary Group Approach (GUGA) by 1. Shavitt in the late 70s. He gave
a detailed recipe for direct full CI calculations for a general spin-state [9, 10],
The second problem had been a nightmare for those who tried to perform MCSCF
calculations in the 60 s and early 70 s. The methods used were based on an extension
of the HF theory formulated for open shells by Roothaan in 1960 [11]. An important
paradigm shift came with the Super-CI method, which was directly based on the
BLB theorem [12]. One of the first modern formulations of the MCSCF optimization
problem was given by J. Hinze in 1973 [13]. He also introduced what may be
called an approximate second order (Newton-Raphson) procedure based on the
partitioning: U = 1+ T, where U is the unitary transformation matrix for the orbitals
and T is an anti-Hermitian matrix. This was later to become U = exp(T). The full
exponential formulation of the orbital and CI optimization problem was given by
Dalgaard and Jgrgensen in 1978 [14]. Variations in orbitals and CI coefficients were
described through unitary rotations expressed as the exponent of anti-hermitian
matrices. They formulated a full second order optimization procedure (Newton-
Raphson, NR), which has since then become the standard. Other methods (e.g. the
Super-CI method) can be considered as approximations to the NR approach.

The GUGA method was in Shavitt’s formulation limited to rather small CI
expansions due to the problem of storing a large number of two-electron coupling
coefficients. This problem was solved by P.-A. Malmgqvist with the introduction
of the Split GUGA approach, where only one-electron coupling coefficients were
used [15]. It now became possible to use CI expansions of the order of 10° CFs.
Technically, it was, however, even more efficient to solve the CI problem in a
basis of pure Slater determinants instead of spin-projected CFs and some modern
programs (for example the MOLCAS software) use this approach in the inner loops
of the CI code, while keeping the GUGA formalism.

An important addition to this development of the CASSCF formalism was the
method introduced by Malmqvist to compute transition density matrices between
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CASSCF wave functions with their own sets of optimized orbitals, which where
then not orthogonal to each other. The CAS State interaction CASSI, method made
it possible to compute efficiently first and second order transition density matrices
for any type of CASSCF wave functions [16, 17]. The method is used to compute
transition dipole moments in spectroscopy and also in applications where it is
advantageous to use localized orbitals, for example in studies of charge transfer
reactions [18]. Today, the same approach is used to construct and solve a spin-orbit
Hamiltonian in a basis of CASSCF wave functions [19].

The CASSCF method itself is not very useful for anything else than systems
with few electrons unless an effective method to treat dynamical correlation effects
could be developed. The Multi-Reference CI (MRCI) method was available but
was limited due to the steep increase of the size of the CI expansion as a function
of the number of correlated electrons, the basis set, and the number of active
orbitals in the reference function. The direct MRCI formulation by P. Siegbahn
helped but the limits still prevented applications to larger systems with many
valence electrons [20]. The method is still used with some success due to recent
technological developments [21]. Another drawback with the MRCI approach is
the lack of size-extensivity, even if methods are available that can approximately
correct the energies. Multi-reference coupled-cluster methods are studied but have
not yet reached a state where real applications are possible.

So, is there an alternative? In single configurational quantum chemistry the
Mgller-Plesset second order perturbation theory (MP2) has been used for a long time
to treat electron correlation [22]. Today we have a long experience of this approach
and know that it is surprisingly accurate in predicting structures and properties of
closed shell molecules. It is therefore rather obvious to ask the question whether
such an approach could also work with a CASSCF reference function. Actually,
one should expect it to be even more accurate because the CASSCF wave function
already includes the most important CFs, those which cannot be treated with low
order perturbation theory. On the other hand, the applications would now be more
demanding covering not only ground states, but also excited states, transition states
for chemical reactions, and systems where MP2 is known not to work, for example,
transition metal complexes. A preliminary program was written immediately after
the introduction of the CASSCF method [23] but this first attempt failed because the
entire interacting space could not be included in the first order wave function due
to technical difficulties in computing the necessary third and fourth order CASSCF
density matrices. It was to take until the late 80s until this problem was solved
and a full first order wave function could be constructed with a general CASSCF
reference function of arbitrary complexity [3, 4]. Today, the CASPT2 method is
probably the most widely used method to compute dynamic correlation effects for
multiconfigurational (CASSCF) wave functions.

In this review we shall briefly describe the CASSCF and CASPT2 methods and
how they can be used in practical applications. Other chapters in the book will
describe applications, focusing on excited states and photochemistry.
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5.2 MULTICONFIGURATIONAL WAVE FUNCTIONS
AND ACTIVE SPACES

Assume that you have selected an AO basis set for a given molecular system with N
electrons. It has the size m (m molecular orbitals corresponding to 2m spin-orbitals).
Transform this basis set in some way to a set of orthonormal one-electron functions.

. . 2 .
From these new spin-orbitals you can construct 1(," Slater determinants. You

can then expand your wave function, ¥ in these determinants:

v=30C,9,. (5-1)

Applying the variational principle leads to the well known secular equation that
determines the expansion coefficients:

> (H,, —ES,,)C, =0, (5-2)

14

where H,, are the Hamiltonian matrix elements over the determinant basis and S,,,,
are the corresponding overlap integrals. This approach is called Full Configuration
Interaction, FCI, and constitutes the best solution to the Schrodinger equation that
can be obtained with the given basis set. It becomes the exact solution when the
basis set becomes infinite and complete. It is the trade mark of ab initio quantum
chemistry that it can, in principle, be driven towards the exact solution by increasing
the basis set and improving the wave function.

In practice, it is not possible to solve the FCI equation except for small systems
with few electrons and very limited basis sets. Wave function quantum chemistry
therefore seeks as good approximations to the FCI equations as possible. Many
such approaches are available today, each of them having their own advantages and
disadvantages. The simplest approximation is to use only one Slater determinant
and then use the variation principle to find the best orbitals for this approximation.
This is the Hartree-Fock, HF, method. It is a surprisingly good approach in many
cases and often yields a total energy that is in error with less than one percent. It
would be an exact solution if the electrons did not interact with each other. The HF
method uses a mean-field approximation for the electron—electron interaction. The
remaining error describes the part of the electron repulsion that is not covered by
this approximation and is commonly called electron correlation. It can be recovered
by adding more determinants to the CI expansion. A variety of methods have
been developed to do this, the most accurate being the coupled cluster expansion
of the CI wave function. We shall not discuss these methods further but instead
concentrate on the case where one determinant is not sufficient to describe the
electronic structure even qualitatively. Let us start with an example, the nitrogen
molecule, N,. First, we perform a full CI calculation using a small double-zeta (DZ)
basis set: 3s2p. This gives a total of 18 basis functions. Freezing the 1s electrons
reduces the number to 16 with 10 electrons (10in16 FCI). The FCI in this basis set is
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only about 10° determinants. By combining the determinants to linear combinations
that are eigenfunctions of the spin-operator and only keeping the combinations that
have S=0 (singlets) we can further reduce the variational space to half a million,
which is a routine calculation. Having done the calculations, we can analyze the
results in terms of the natural orbitals (NOs), the eigenfunctions of the first order
reduced density matrix. The occupation numbers (the eigenvalues of the matrix) are
a good measure of the importance of the corresponding orbitals in the FCI wave
function. Orbitals with small occupation numbers will only appear in configurations
that have a small weight in the FCI expansion, and vice versa. Figure 5-1 shows
how these occupation numbers varies as a function of the internuclear distance in
the molecule. Some representative numbers are also given in Table 5-1.

Let us take a close look at these natural orbitals. The two first (20, and 20,) are
derived from the nitrogen 2s orbitals and remain almost doubly occupied for all
distances. The occupation numbers varies between 1.97 and 1.99. The next three
orbitals (notice that the 7 orbitals are doubly degenerate) have strongly varying
occupation numbers. Close to equilibrium they are almost doubly occupied and
are the orbitals that constitute the triple bond in the nitrogen molecule. At large
distances the occupation drops to one. The electrons are moved to the corresponding
antibonding orbitals 177, and 30,. This wave function with six singly occupied
orbitals describes the dissociated system, two nitrogen atoms in a *S, state. The
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Figure 5-1. The natural orbital occupation numbers for the N, molecule as a function of bond distance
for the DZ FCI calculation
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remaining eight orbitals have small occupation numbers. Another thing to note
is the typical pairing of the natural orbitals. For each bonding orbital there is a
corresponding antibonding orbital such that the sum of the two occupation numbers
is close to two.

Let us now use this information to reduce the computational effort. We can limit
the orbital space used to performed the FCI calculation to the orbitals that have
occupation numbers that are in a given range, say between 0.02 and 1.98 and then
assume that we can treat the rest of the CI space using a simpler method, like singles
and doubles CI or perturbation theory. In our case it means that we need only eight
orbitals: the 2s derived orbitals 20, and 20,, and the bonding and antibonding o
and 7 orbitals, corresponding to eight orbitals and ten electrons (10in8 FCI). The
FCI expansion is now reduced from 566896 spin projected configurations functions
(CFs) to only 176.

We shall compare the potential curves obtained with the two different methods.
Second order perturbation theory (CASPT2) has been used to estimate the remaining
correlation effects in the FCI calculation with the smaller number of orbitals.
This approach will be described in detail below. The spectroscopic constants are
presented in Table 5-2. As can be seen, the two results are almost identical. The
results are obviously far from experiment because of the small basis set used but
that is not relevant to the present discussion. With the smaller number of orbitals
we can now perform much more advanced calculations using larger basis sets and
approach the experimental values. As an illustration, such a result is also given in
the table.

Let us finally also compare the NO occupation numbers for the 10in16 and the
10in8 calculations. They are also presented in Table 5-2. As we can see they have
not changed much. The largest changes are found the the 20, and 20, orbitals. The
reason is that we have not included the correlating orbitals 40, and 40, orbitals in
the FCI orbital space. It is a general result that the occupation orbitals of strongly
occupied orbitals very stable quantities that do not change much when we extend

Table 5-2. Spectroscopic constants for the N, molecule obtained with different methods and the DZ
basis set

Method R,(A) D, (eV) w, (cm™) wx, (cm™")
10in16 FCI 1.150 6.82 2002 1.41
CASPT2 10in8 1.150 6.81 2001 1.45
CASPT2 10in8¢ 1.102 9.56 2340 19.0

Expt. 1.098 9.76 2358 14.3

NO occupation numbers at R(NN)=1.10 A.

20, 20, 30, 1m, lm, 30,
10in16 FCI 1.969 1.987 1.973 1.925 0.078 0.022
10in8 FCI 1.988 1.995 1.981 1.933 0.073 0.021

“Obtained with the basis set: ANO-RCC 8s7p4d3f2g, Ref [71].
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the orbital space. We finally notice that it is not possible to reduce the FCI wave
function to a single determinant. Only in the region around equilibrium is the wave
function dominated by a single configuration as can be seen from the NO occupation
numbers in Table 5-1.

5.2.1. Complete Active Spaces and the CASSCF Method

The above simple example is an illustration of the idea underlying the concept of
active orbital spaces and the Complete Active Space (CAS) wave function (the
word complete was used instead of the word full to describe this type of wave
functions). The method is based on the partitioning of the orbital space into three
subspaces; inactive, active and virtual orbitals. The FCI space is reduced such
that only CFs with the inactive orbitals doubly occupied are included in the CI
expansion and no terms where the virtual orbitals are occupied. This corresponds
to an FCI expansion within the active orbitals space. In the above example, the
inactive orbitals are the nitrogen 1s generated orbitals 1o, and lo,, while the
active orbitals are those derived from the nitrogen valence orbitals 2s and 2p.
Other choices might have been possible, for example to leave 20, and 20, inactive
(6in6 active space) because their occupation number is close to two independent
of the internuclear distance, or to include also the correlation orbitals 40'g and 40,
(10in10). The choice of the active space is thus governed by an a priori knowledge
of which orbitals are going to have occupation numbers that differ from two or
zero for a given chemical problem. In the above example, it was the dissociation
of the nitrogen molecule. Other typical examples are: energy surfaces for chemical
reactions, excitation processes, etc. Each problem is unique and one has to carefully
investigate, which orbitals may become active during the process under study. If
this cannot be decided from chemical knowledge of the system, one might have to
perform exploratory calculations using methods that can handle large active spaces,
for example, the RASSCF method (see below for details about this approach). The
CASSCF method was introduced more than 25 years ago and today we have gained
considerable experience about the choice of the active space in different types of
applications [1, 2].

The CAS CI procedure is thus a method which can be used to partition the full
CI space into one part that comprises the most important CFs and another much
larger part, which it is believed that one can treat using other quantum chemical
approaches, like for example perturbation theory. One problem with the approach
is the size of the CI expansion. The number of CFs of a given spin symmetry S for
N electrons and m orbitals is given by Weyl’s formula:

25+1( m+1 m+1 (5-3)
m+1 \N/2—-S )\ N2+S+1
This number increases quickly with the number of active orbitals and with todays

computational technology the practical limit lies around 15 orbitals unless the
number of electrons (or the number of holes) is much smaller than 15. If we want to
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be able to treat larger active spaces we have to reduce the CI expansion. One way
to do this that have been found quite useful in some applications is the Restricted
Active Space (RAS) method [24]. We saw in the above example that the 20, and 20,
orbitals had occupation numbers rather close to two. Let us restrict the excitation
level from these orbitals to be between zero and two, that is, only CFs with at least
two electrons in these orbitals will be included in the wave function. Likewise, we
can add the 40, and 40, orbitals to the active space but restrict the number of
electrons in these orbitals to be two or less. This is the RAS method, which will be
described in more detail below.

5.2.1.1. Optimization of orbitals and CI coefficients

There are two types of parameters that determine the RAS wave function: the CI
coefficients and the molecular orbitals. When both of them are optimized the result
will be a RASSCF (CASSCF) wave function, which is a extension of the SCF
method to the multiconfigurational case. Below we shall briefly show how the
optimization is done in practice in most modern programs (more details can, for
example, be found in Ref. [25]).

The energy expression for a general CI wave function can be written in the form:

E=Y D,k + D Pu(pqlrs), (5-4)
p.q

p.q.r,s

where h,, and (pq|rs) are the one- and two-electron integrals, respectively. They
contain information about the MOs. D,,, and P, are the reduced one- and two-body
matrices, which are built from the CI wave function:

Dﬂq = Z CMCVAI;ZI/
v

P,..=> C,CAY (5-5)
w,v

v pgrs?

where A" and A" are structure constants that are independent of the parameters
determining the wave function. They depend only on the way in which we construct
the CF basis set @, (Eq. 5-1). There are two alternatives, either we use Slater
determinants or we use spin-projected linear combinations of determinants. The
latter choice has the advantage of giving a more compact wave function that is
also an eigenfunction of the spin operators S, and S*. The former choice has the
advantage of making it easier to solve the secular Equation (5-2) because of the
simpler form of the structure constants in a basis of determinants. In order to solve
the secular Equation (5-2) for large CI expansions one has to find an effective way
of computing the structure constants. This was done by I. Shavitt 30 years ago
based on spin projected CFs [9, 10]. He developed a graphical representation of
the unitary group approach for spin projection that made it possible to compute
the matrix elements in an effective way and also to construct a lexical ordering
of the CFs. With this method it became possible to do calculations with up to
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about 10° CFs. The bottleneck was the large number of two-electron constants
that were generated. P.-A. Malmgvist later developed a method that avoided the
construction of these constants and made it possible to increase the size of the CI
expansion one order of magnitude [15]. However, it also became clear that the use
of determinants instead of spin-projected CFs was more effective. The MOLCAS
code today uses spin-projected CFs in the construction and analysis of the wave
function but transforms to determinants in the CI section of the program [24].

In order to optimize the MCSCF wave function we have to determine the CI
coefficients and the orbital parameters, that is, the AO expansion coefficients for
the MOs. The condition for optimal parameters is that the gradient of the energy is
zero with respect to variations of the parameters:

OF
— =0, (5-6)
op;

Where p; are the variational parameters. An iterative procedure is used to arrive
at this point, which is based on an expansion of the energy to second order in the
parameters:

E(p) =E(0)+p'g+p'Hp+---, (5-7)

where p is the vector of the parameters, g is the gradient of the energy and H the
Hessian matrix, the second derivatives. Setting the derivative of this equation to
zero one obtains an estimate of the optimal values of the parameters. These are the
Newton-Raphson equations:

0 =g+ Hp. (5-8)

Most MCSCF programs use one or another variant of this iterative method. It
is often approximated. One problem is that the Hessian matrix contains terms that
couple variations in the MO coefficients with those of the CI vector. They are
difficult to evaluate for large CI expansions and are often neglected. It is usually
no problem for CASSCF wave functions, but can slow down or even prevent
convergence in the RASSCF case. More approximations are possible. The super-
CI method that is used in the MOLCAS program approximates the Hessian with
an effective one-electron Fock-type operator [26]. Update procedures based on
previous calculations of the gradients are used to update the Hessian, thereby also
reintroducing the coupling between then two sets of parameters. We shall not go
through the optimization procedure in detail here but refer the interested reader to
the text books, for example [25].

5.2.1.2. The CASSCF wave function and the choice of active orbitals

The CASSCEF energy (but not RASSCF) is invariant to rotations among the inactive
orbitals (compare SCF) and also to rotations among the active orbitals. This can be
used, for example, to transform to localized orbitals, or to pseudo-natural orbitals,
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which diagonalize the first order density matrix in the sub-space of active orbitals.
True natural orbitals are obtained by diagonalizing the full density matrix and will
not preserve the CASSCF wave function because of the mixing of inactive and
active orbitals that occurs.

The key problem is the choice of the active space. Today the CASSCF method
has been used for 25 years and a considerable experience has been gained. We
shall go through some of this below, but one should remember that every problem
is unique and there is no real standard solution except in rather trivial cases. We
shall, however, go through some typical cases, which may be helpful for similar
studies.

5.2.1.2.1. Main group elements If a molecule contains only main group atoms
there are some general rules that can be used. For small molecules, less or equal to
four atoms (hydrogens not included), the best choice is to use all valence orbitals:
for Li, B and C (and similar for the higher rows in the periodic table) this means
four orbitals, 2s and 2p. For the heavier elements N, O, and F one can leave the
2s orbital inactive. This choice makes it possible to compute all dissociation paths
and other transformations of the system. As an example of how this can be applied
we refer to a recent study of the S;O molecule. An earlier study had used a very
small active space and obtained erroneous results [27]. The use of an active space
16in12 (all p-type orbitals) gives results in full agreement with experiment and
other types of calculations [28]. This is a quite general result. The method also gives
accurate geometries, when optimized at the CASPT2 level. The active space may
have to be extended for excited state calculations, in particular if Rydberg states
are involved.

What about larger molecules? Here there are no general rules. It depends on the
problem under consideration. It is often possible to leave the CH bonds inactive
(unless they are involved in a chemical transformation). A molecule like butadiene
(C,Hy) then needs 12 active orbitals (12in12). One can now break all CC bonds.
Usually, the active site is only part of a larger molecule and we then need only
active orbitals that are localized to that part. For example, a long alkyl chain with
an active end group only needs orbitals there to be active. The choice of the active
space does not in itself limit the size of molecules that can be studied.

5.2.1.2.2. Excited states of planar unsaturated molecules A large number of
applications have been performed in this area. We thus have a lot of experience of
how to choose the active space. The general rule is to include all 7r-orbitals. This
will allow studies of the valence excited states. However, they are often mixed with
Rydberg states and it is therefore necessary to include also such orbitals in the active
space, This should not be done by adding diffuse functions to the AO basis set on all
atoms. Instead proceed as follows: Perform a calculation on the positive ion. Find
the charge center and place a set of pre-selected Rydberg functions there. Rules
of how to choose these basis functions are available [29-31]. Rydberg orbitals are



136 B. O. Roos

usually not needed when the calculations are performed in a solvent, for example,
using the PCM model.

Now, this active space will easily become too large for most unsaturated
molecules. It is then necessary to reduce the active space. How this is done depends
on the problem. Rydberg orbitals are only needed for excitation energies above
about 5 eV, so if one is only interested in lower excited states, they can be left
out. Still this may not be enough. Again, if only the lower excited states are to be
studied, one can usually leave the lowest 7r-orbitals inactive and move the highest
to the virtual space. One should do this with care and use as many active orbitals
as possible.

When the molecule contains hetero atoms such as nitrogen or oxygen one may
want to include also lone-pair orbitals of o-type in the active space. Note, however,
that ¢ — 7 excitations are of another symmetry than m — 7* excitations for
planar systems. One can therefore often use a different active space for these
two types of excitations. The CASSCF method is frequently used to study photo-
chemical processes that involve conical intersections, intersystem crossings, etc.
where simpler approaches, as for example, time-dependent (TD) DFT do not work
well. Here, one is only interested in the lower excited states of different spin-
multiplicities and the demands on the active space are not so high.

5.2.1.2.3. Transition metal compounds The CASSCF method has been used
extensively to study compounds containing transition metals. The choice of the
active space is almost never trivial for such systems and must be closely related to
the chemical process under study. The CASSCF method is usually used together
with the CASPT2 method (which will be described in detail below) to add dynamic
correlation effects. That combination often makes it necessary to use a larger active
spaces than one would need, for example, if one was combining CASSCF with
MRCI calculations even if that is also non-trivial in many cases.

The complexity of choosing the active space was clear already in the first appli-
cation of the CASSCF/CASPT2 method to a transition metal [4]. The problem
was to describe the electronic spectrum of the Ni atom. We present in Table 5-3
the results obtained with different active spaces (from Ref. [4]). Calculations were
performed for each state separately. We note first the large errors obtained with
the SCF method (open shell restricted SCF). The results are improved with the

Table 5-3. Excitation energies for the Ni atom with different active spaces. The ground state is chosen
as d°s!' D

State SCF 3d,4s 3d,4s,4p 3d,3d’,4s,4p with 3p corr Expt.
d8s23F -1.62 0.47 0.22 -0.18 -0.08 0.03
diots 435 0.40 0.42 1.87 1.77 1.74
d°s','D 0.33 0.33 0.32 0.25 0.32 0.33

Data from Ref. [4].
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minimal active space 3d, 4s (10in6) but are still in error with more that 1 eV. The
reason is the crowded 3d space, which will affect the shape of the 3d orbitals in
a way that depend on the number of electrons. The crowdedness of the 3d space
results in a situation where the electronic structure is better described with a double
set of 3d orbitals which allows one or more of the electrons to reside in a more
diffuse orbital. To describe this double shell effect one needs one more set of 3d
orbitals, 3d’, to be added to the active space. In addition one needs to add a set of
4p orbitals to describe the strong correlation effects in the 4s. In all this gives an
active space of 14 orbitals (10in14). The results of such a calculation is also shown
in Table 5-3. The computed excitation energies are greatly improved with errors
not exceeding 0.21 eV. If one then also includes the dynamic correlation effects
of the 3p electrons one arrives at the final results where the errors in computed
excitation energies are all smaller than 0.11 eV. Note that scalar relativistic effects
are included in these results (for details we refer to Ref. [4]). There we can also find
references to earlier MCSCF and MRCI results that have also noted the importance
of the second 3d’ shell.

How do we transfer this experience to transition metal complexes. First of all:
the second 3d shell is only needed when we study processes where the occupation
of the 3d shell changes. In a study of the bonding in a molecule like Cr, we do not
need them. But we still need to include the 4p shell (as it turns out only the 4pr
orbitals are needed), which leads to an active space of 12in16 (3d, 4s, 4p). Such
a calculation yields an accurate description of the elusive ground state potential
for Cr, [32]. The situation becomes more complex for transition metal complexes.
Here, we do not need to include the 4s orbital, which is pushed up in energy but
instead we have to consider the ligand orbitals. As an example, let us consider
the complex Cr(CO),. In addition to the 3d orbitals we need to include the six o
lone-pairs of the CO ligands, but not all of them, only those that interact with the 3d
orbitals. The 3d orbitals transform according to the t,,(3d ;) and e,(3d,,) irreducible
representations (irreps). The corresponding ligand orbitals should therefore also be
included in the active space. For a CO ligand they are two e, o orbitals with four
electrons and three t,, unoccupied 7* orbitals. Together with the five 3d orbitals
with six electrons, this an active space of 10 orbitals with 10 electrons (10in10).
There is no need to add more orbitals to account for a double shell effect since this
is taken care of by the empty ligand orbital, which will acquire some 4d character.
For a more detailed discussion of the 10in10 rule see Ref. [31].

In the tetrahedral Ni(CO), complex we have a formal d!° system and there is
no CO to Ni o donation. We therefore need no CO o orbitals in the active space.
Instead we add empty orbitals of the same symmetry as the 3d orbitals, e and
t,. These orbital will turn out to be a mixture of CO 7* orbitals and Cr 34’ and
thus include the double shell effect. The 10in10 active space turns out to be quite
general and can be used for many transition metal complexes. This active space will
allow studies of the ground state and ligand field excited states. If charge transfer
states are considered, one has to extend the active space with the appropriate ligand
orbitals.
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The situation is, however, not always so simple. Metals in high oxidation states
tend to form covalent bonds with the ligands and this may require more ligand
orbitals to be active. An extreme case is the permanganate ion MnO, where Mn is
formally in the oxidations state VII with no 3d orbitals occupied. Such a situation
is of course very unbalanced and a large charge transfer takes place from all ligand
2p orbitals to the metal. A calculation on this molecule therefore requires an active
space of 17 orbitals (5 3d plus 4x3 O2p) with 24 electrons, a calculation that is on
the limit of what todays technology can handle. For more details, see Ref. [33]. K.
Pierloot has analyzed a number of these difficult cases and it is recommended to
read her reviews on the subject [34, 35]. Let us finally add that the importance of
the double shell effect will decrease for the heavier second and third row transition
metals because the d orbitals are now more diffuse, an effect that ids further
increased by relativity.

5.2.1.2.4. Lanthanide and actinide chemistry CASSCF/CASPT?2 calculations
on actinide compounds have have quite successful in several recent applications.
Examples are the early actinide diatoms Ac, to U, [36, 37], the electronic spectrum
of the UO, molecule [38], the uranyl ion in water, a combined quantum chemical
and molecular dynamics study [39], and several other actinide compounds. The
choice of the active space for these compounds is never trivial. For uranium, for
example, one would preferably use the 5f, 6d, and 7s one each atom, that is 13
orbitals with 6 electrons. This was obviously impossible for the uranium dimer.
A compromise had to be made. Experimental calculations showed that a strong
triple bond 0'5%773 was formed with little occupation of the antibonding orbitals.
These orbitals where therefore made inactive, resulting in an active space of six
electrons in 20 orbitals, which could be handled [37]. Another example is the
UO, molecule. Here we were interested in computing the electronic spectrum.
The ground state of the molecule is *@®, with the open shell 5f¢7s. Other 5f
and 7p orbitals become occupied in the excited states. It was known from the
calculations on the uranyl ion UO3" that one needed an active space of 12in12 to
describe the UO bonds properly [40]. It was, however, impossible to add all these
orbitals to those needed to describe the electronic spectrum for UO,. A sequence
of active orbitals was therefore used to see if the excitation energies converged
before the maximum possible active space was reached. This did not happen and
we refer to the original paper for details [38]. Other examples of applications of
the CASSCF/CASPT?2 method in actinide chemistry can be found in the literature.
Wabhlgren and co-workers have, for example, studied electron transfer reactions
for uranyl(V)-uranyl(VI) complexes in solution [41]. K. Pierloot has studied the
electronic spectrum of the uranyl ion and the complex with chlorine, UO,CI5~
with excellent agreement with experiment. It is difficult to give any general rules
for how one should choose the active space for these compounds. The two early
elements Ac and Th are actually transition metals with the electronic structure
dominated by 6d and 7s and no 5f. The latter orbitals starts to become populated
for Pa and becomes increasingly dominant for the heavier elements. High oxidation
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states, which is common in actinide compounds, favor 5 f, which makes the choice
of the active space easier. But higher oxidation states also often gives strong
covalent bonding, thus requiring several ligand orbitals to be active, as in the
uranyl ion.

Very few calculations have so far been performed for lanthanides and not much
is known about the choice of the active space. However, most lanthanide complexes
have the metal in oxidation state 3+. Furthermore, are the 4f orbitals inert and do
not interact strongly with the ligands. It is therefore likely that in such complexes
only the 4f orbitals have to be active unless the process studied includes charge
transfer from the ligands to the metal. In systems with the metal in a lower
oxidation state, the choice of the active space would show similar problems as
in the actinides, in particular because the 5d orbitals may also take part in the
bonding. As an example we might mention a recent study of the SmO molecule
and positive ion where 13 active orbitals where shown to produce results of good
accuracy [42].

5.2.2. The Restricted Active Space Method

The major problem with the CASSCF method is the limited number of active
orbitals that can be used. However, one notes in many applications that some
of these orbitals will have occupation numbers rather close to two for the whole
process one is studying, while others keep low occupations numbers. The restricted
Active Space (RAS) SCF method was developed to handle such cases [15, 24].
Here, the active space is partitioned into three subspaces: RAS1, RAS2, and RAS3
with the following properties:
e RASI is in principle doubly occupied, but one or more electrons may be excited
into any of the other orbital subspaces. It thus has a maximum number of holes.
e RAS?2 has the same properties as the active space in CASSCEF, thus all possible
occupations are allowed.
e RAS3 is in principle empty but one or more electrons may be excited into these
orbitals. It is thus defined by a maximum number of electrons.

With this recipe we can construct a number of different types of MCSCF
wave functions. With an empty RAS2 space we obtain SDT...-CI wave functions
depending how many holes we allow in RAS1 and how many electrons we allow
in RAS3. If we add a RAS2 space and allow up to two holes in RAS1 and max two
electron sin RAS3 we obtain what has traditionally been called the second order
CI wave function. Many other choices are possible. Since we have reduced the CI
space, we can use more active orbitals distributed over the three subspaces. Recent
application have used more than 30 active orbitals. The RASSCF method has so far
not be extensively used because there is no obvious way to treat dynamic correlation
effects unless one can use the MRCI method. However, ongoing work attempts
to extend the CASPT2 method (see below) to RASPT2, which may make the
RASSCF method more useful in future applications (P.-A. Malmqvist, unpublished
work).
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5.2.3. The RASSCEF State Interaction Method (RASSI)

Assume that we have computed CASSCF wave function for two different electronic
states. Now we want to compute transition properties, for example, the transition
dipole moment. How can we do that. The two states will in general be described by
two non-orthonormal sets of MOs, so the normal Slater rules cannot be applied. Let
us start by considering the case where two electronic states w and v are described
by the same set of MOs. The transition matrix element for a one-electron operator
A is then given by the simple expression:

(wlAlv)=>" DA, (5-9)
p-q

where A, are the matrix elements of the one-electron operator and D/ the transition
density matrix elements, which we can easily compute from the two sets of CI-
coefficients and the one-electron coupling coefficients. But what happens if the
two states are represented by two different MO bases, which are then in general
not orthonormal? 25 years ago this was considered to be a difficult problem.
One could use the Slater-Lowdin rules to compute the matrix element 5-9 [5]
but such a calculation involved the cumbersome calculation of determinants of
overlap integrals between the two sets of MOs. A surprisingly simple solution to the
problem was presented by P.-A. Malmqvist in 1986 [16, 17]. He showed that if one
makes a non-unitary transformation of the two sets of MOs such that they become
bi-orthonormal, the simple formula 5-9 becomes again valid. He also showed how
one can simultaneously transform the two RASSCF wave functions to the new MO
basis by a series of one-electron transformations. The method cannot be applied
to general MCSCF wave functions but to all functions that are closed under de-
excitation (meaning that no states outside the original CI space are generated). The
CASSCF and RASSCF wave functions belong to this category.

The RASSI method can be used to compute first and second order transition
densities and can thus also be used to set up an Hamiltonian in a basis of RASSCF
wave function with separately optimized MOs. Such calculations have, for example,
been found to be useful in studies of electron-transfer reactions where solutions in a
localized basis are preferred [43]. The approach has recently been extended to also
include matrix elements of a spin-orbit Hamiltonian. A number of RASSCF wave
functions are used as a basis set to construct the spin-orbit Hamiltonian, which is
then diagonalized [19, 44].

5.24. RASSCF and the Excited State

The CAS(RAS)SCF method is one of the best methods to study excited states and
photochemical processes because it can in a balanced way treat closed and open
shell electronic states of varying complexity and also of different spin, which is
necessary in studies of intersystem crossing. However, calculations on excited states
is often more complicated than those for a well defined ground state. Preferably,



Multiconfigurational Quantum Chemistry for Ground and Excited States 141

one would like to treat each excited separately, producing its own set of optimized
orbitals but this is most often not possible. The energy spectrum may be dense
and states of the same energy might be close in energy, which often leads to
convergence problems in the CASSCF calculations. Even more serious is that the
wave functions for the different electronic states are not orthogonal to each other.
This may not be serious if the overlap integral is small but that cannot be assured
and may also vary for different points on an energy surface.

Most applications in spectroscopy and photochemistry has therefore used a
simplified approach. A state average calculation is performed where the same set
of MOs is used for a number of electronic states of the same spin and symmetry.
Thus, the CI problem is solved for a number of roots (say M) and the orbitals are
optimized for the average energy, E, ,, of these states:

aver

M
Eaver = Zlel’ (5-10)
I=1

where w, are weight factors, which can be chosen. Normally, they are set to be
equal, but other choices are possible if one is interested specifically in a given
electronic state. The average energy can be written as

Eauer = ZDZ;erhpq + Z stf:(pQ|rs)7 (5_11)
p.q

Psq.r.s

where the density matrices in Equation 5-4 have been replaced by average values.
The modifications of the code that are needed for such calculations are thus trivial.

State average orbitals are not optimized for a specific electronic state. Normally,
this is not a problem and a subsequent CASPT2 calculation will correct for most
of it because the first order wave function contains CFs that are singly excited with
respect to the CASSCF reference function. However, if the MOs in the different
excited states are very different it may be needed to extend the active space such
that it can describe the differences. A typical example is the double shell effect that
appears for the late first row transition metals as described above.

5.3. MULTICONFIGURATIONAL SECOND ORDER
PERTURBATION THEORY — CASPT2

We have above discussed the CASSCF method and how we can choose the active
space. We noted that this choice was closely connected to the method we use to
compute the effects of dynamic correlation, in this case the CASPT2 method. The
development of this approach was inspired by the success of the Mgller-Plesset
second order perturbation theory (MP2), which has been used for a long time to
treat electron correlation for ground states, where the reference function is a single
determinant. It was assumed that such an approach would be even more effective
with the more accurate CASSCEF reference function. A first attempt was made soon



142 B. O. Roos

after the introduction of the CASSCF method [23], but it was not until all technical
problems were solved in the late 80 s that an effective code could be written [3, 4].

It is in principle simple to define a CASPT2 procedure. We first have to define
the interacting space of electronic configurations. They turn out to be formally the
same excited states as in MP2:

E, E,|CASSCF), (5-12)

where qu, etc. are single excitation operators. This space contains all singly and
doubly excited states with respect to the CASSCF wave function. Notice that they
are not single configurations but linear combinations with coefficients determined by
the CASSCF multiconfigurational wave function. The orbital indices must contain
at least one in the inactive or in the virtual space. Configurations with all indices
active belong to the CAS-CI space and do not interact with the CASSCEF reference
function.

The next step is to determine the zeroth order Hamiltonian. In MP2 it is simply
obtained from the eigenvalues, ¢, of the HF operator:

H=Y¢,E, (5-13)
P

The success of the MP2 method for closed shell HF reference functions makes
it interesting to try to develop a Hamiltonian that has the MP2 case as the limit
when there are no active orbitals. For this purpose a generalized Fock operator was
defined:

F=3foikp (5-14)
p.q
with
1
qu:hpq+ZDrs[(pq|rs)_z(pr|qs)]' (5'15)

It has the property that f,, = —IP, when the orbital p is doubly occupied
and f,, = —EA, when the orbital is empty (/P = Ionization potential and EA =
electron affinity). The value will be somewhere between these two extremes for
active orbitals. Thus, we have for orbitals with occupation number one: f[,[7 =
—%(IP[, +EA,). This formulation is somewhat unbalanced and will favor systems
with open shells, leading for example to somewhat low binding energies [45]. The
energy of an orbital excited out of, should be close to the IP of that orbital. With
this formulation it is too high. In the same spirit we want the energy of an orbital
that is excited into to be EA like, so it is too low. This results in too low energies for
open shell states resulting in too low excitation energies and dissociation energies
or other relative energies where the process goes from a closed shell like state to
an open shell. There is, however, a possibility to correct for this misbehavior of the
zeroth order Hamiltonian:
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5.3.1. A Modified Zeroth Order Hamiltonian

The systematic error caused by the definition of the zeroth order Hamiltonian,
as described above, leads to too low relative energies for systems with open
shells. A consequence is that dissociation and excitation energies will be too low
because the dissociated or excited state has usually more open shell character
than the reference state. Is there a way we can remedy this systematic error? The
diagonal elements of the generalized Fock operator can for an active orbitals be
estimated as:

1
Fpp==3 (D,,IP,+(2—D,,)EA,). (5-16)
This formula is correct for D,, =0 and 2 and also for a singly occupied open

shell. Thus, for an open shell (D,, = 1) we obtain:

1
Fpp:—z(IPp—f-EA,,). (5-17)

If we excite out of this orbital or into it, does not matter. The energy is in either
case given by Eq. (5-17). We would like the energy to be —IP, when we excite
out of it and —FA » when we excite into it. Thus, we would like to introduce a shift
ofA that replaces 5-17 with —EA, when we excite into this orbital. That shift is
given by;

O_EA

)= 5D, (IP,~EA,). (5-18)

Similarly when we excite out of the orbital we want the shift to be:

1
o) = —E(Z—Dpp)(IPP—EAp). (5-19)

The problem is that we cannot easily compute the ionization energy and
the electron affinity. In a recent work we therefore suggested to use a simple
parametrized version of the shift where /P, — EA,, is replaced with an average shift
parameter € [46]:

1
EA
0']) :EDI’PE
1P 1
off == 32=D,)e, (5-20)

where € will be determined by comparison to accurate experimental results. The
parameter € is an average value for (/P, — EA,). To obtain a feeling for how
this quantity varies we show it in Figure 5-2 for all atoms in the periodic
table.
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Figure 5-2. The quantity (IP, — EA,,) for all atoms of the periodic table.The horizontal line corresponds
to €=0.25

Inspection of Figure 5-2 shows that if we insist on a constant value for € it
should lie somewhere between 0.2 and 0.3. The precise value is actually not terribly
important because the results vary only slowly for moderate changes of it. A large
number of test calculations were performed where the dissociation energies for
diatomic molecules were computed, IPs for transition metal atoms and the electronic
spectrum of benzene [46]. Improvements of the results were obtained in almost
all cases. For example, the RMS error in the dissociation energies for 49 diatomic
molecules were reduced from 0.224 eV (e = 0) to 0.096, 0.090, and 0.098 eV for
€= 0.20, 0.25, and 0.30, respectively. The effect on other molecular properties were
negligible within this parameter range. Based on this experience it was decided to
use € = (.25. This value also gave improved results for the ionization energies of
first row transition metal atoms and for the electronic spectrum of benzene. We refer
to Ref.[46] for details. Later experience has shown that this modified zeroth order
Hamiltonian works well in a wide variety of applications and it is today the default
choice in the MOLCAS program. € should not be used as an empirical parameters
to improve the results of a specific applications. If large errors are found, they most
likely have other sources, the most common one being an inadequate choice of the
active orbital space.
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5.3.2. Intruder States in CASPT2

The second order energy in Mgller-Plesset perturbation theory (MP2) can be written
as:

< W0|H|q’ijab >?

’
E,+&,—8& —¢;

E,=Y

ij.a.b

(5-21)

where W, is the Hartree-Fock reference function, ¥;,,, a doubly excited states and

the & are orbital energies for the occupied orbitals i, j and the virtual orbitals a, b,

respectively. The method works well when there is an appreciable HOMO-LUMO

energy gap such that the denominators in Eq. (5-21) are always positive and large.

This is not always the case in CASPT2 calculations. Active orbitals with large

occupation numbers can have energies close to the inactive orbitals, while those

with small occupation numbers can have energies close to the virtual orbitals. As a

result, it may happen that the denominator in the energy expression becomes small,

or even negative. We call this an intruder state. One can see three different cases:

1. The interaction between this state and the CASSCF reference function is zero or
very small. The effect on the second order energy will then be negligible, unless
the denominator is very close to zero.

2. The interaction is large, say larger than 0.01 au. This is the most serious type
of intruder states and the only sound way to remove it is to add the orbital that
causes the intruder state to the active space.

3. In the case of an intruder state of intermediate strength, one can in many cases
remove them by a level shift technique that will be described below. But also
in this case is it better if one can extend the active space such that the intruder
states disappear.

One way to remove the intruder state is to use a level shift technique [47]. A
level shift, €, is added to the zeroth order Hamiltonian, such that the first order
equation becomes:

(Hy— Ey+ &)W, =— (H,— E))¥,
H,®, =€,
¥, =>C,®,. (5-22)
0
where the tilde denotes quantities obtained with the level shift. For simplicity, we

have in the above equations assumed the the first order interacting space, @, to be
diagonal in H,. Solving these equations, we obtain:

e __<(DM|H1|EI’0>
® €,—Ey+e
~ |<(D,L|I:Il|q’0>|2

Ey=-Y

n

5-23
€,—Eyt+e ( )



146 B. O. Roos

The level shift will remove the intruder states, but the problem is that the result
will depend on the level shift and that is not acceptable. However, it is possible to
remove this ambiguity by a back transformation of the second order energy to the
unshifted value with the intruder states removed. We can write the second order
energy as:

EM—EO

~ ~ &
E,=E,+&) |C,|’ <1+ ) (5-24)
j

where E, is the second order energy without a level shift. If we now assume that
the denominators in the above expression are large, we can approximately obtain
E, as:

E,~E,—¢ (l - 1) = ELS, (5-25)
®
where @ is the weight of the CASSCF reference function in the level shifted
CASPT?2 calculation. E£ is thus to first order in & the same as the unshifted energy.
It will differ from E, only if there are intruder states, which makes €, — E, small. A
number of test calculations have been performed, which shows that the results are
very little affected by the level shift if there are no intruder states. For example, the
dissociation energy for the N, molecule varies only with 0.07 eV for level shifts
in the range 0.0-0.5. For more details, we refer to the original article [47] and an
article, where the approach was tested in a number of different applications [48].
Finally, it should be noted that level shifts should only be used when needed to
remove weak intruder states. Strong intruders should be removed by extending the
active space. The level shift value should preferably not be larger than about 0.3
and one should carefully check the weight of the CASSCF reference function to
see that it remains constant as a function of the parameters of the calculation, for
example, the geometry.

An alternative is to use an imaginary level shift as suggested by Forsberg and
Malmgqvist [49]. It removes effectively the intruder states with very little effect on
the properties of the system. Level shifts of the order 0.0-0.2 are recommended.
We refer to the paper for further details [49].

5.3.3. The Multi-state CASPT2 Method

The first order CASPT2 wave function is internally contracted, meaning that it
consists of a CASSCF wave function plus a linear combination of the states
comprising the first order interacting space. The reference CASSCF wave function
is thus fixed and the coefficients building it cannot vary. This is normally a good
approximation as long as the different solutions to the CASSCF Hamiltonian are
well separated in energy. However, situations occur where this is no longer true.
Different CASSCF wave function of the same symmetry can sometimes be close
in energy. This happens, for example, in the neighborhood of conical intersections
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and in cases of valence-Rydberg mixing of excited states. For more elusive systems
it may even happen for ground states as a recent study of the CrH molecule has
illustrated [50]. In such cases a single state CASSCF/CASPT2 calculation will not
be meaningful. A multistate variant of the CASPT2 method, MS-CASPT2, has been
developed to deal with these situations [51].

The idea is quite simple: Assume that N CASPT2 calculations have been
performed starting from a set of CASSCEF reference functions, ®;, i = 1, N, obtained
with a set of state averaged orbitals. The first order (CASPT2) wave functions are
denoted: x;,i =1, N. Let the N function ¥, = &, + x; form the basis for a pseudo-
variational calculation, where all third order terms appearing in the Hamiltonian
matrix will be neglected.

The overlap integrals between the basis functions are:

< &;|P; >=§,; (5-26)
< @|x; >=0 (5-27)
< xilx; >=s;, (5-28)
which gives:
Sy =<Y|¥;,>=0;+s;- (5-29)

The following Hamiltonian matrix elements are also known:
< @|H|D; >=5,E, (5-30)
< @i|f1|xj >=€, (5-31)

where E; is the CASSCF energy for state i and the diagonal elements €;; are the
CASPT?2 correlation energies.

It remains to compute the matrix elements: < )(i|f1 |X; >. To do that we partition
the Hamiltonian into the zeroth order plus the first order contribution. This parti-
tioning is state dependent:

H=Hy,+V,. (5-32)

The second term will be neglected in the matrix element, since it corresponds to
a third order contribution to the energy. We thus have:

< Xi|f{|Xj >~< Xi|j:[0i|Xj >~< Xi|ﬁ0j|Xj > (5-33)

We can now use the first order equations for states i and j to express the matrix
elements in already known quantities:

< Xi|H0i|Xj >=Eys;—€

ij

< X[|I:I()j|)(j >=Ey;s8;; — €5, (5-34)
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where E,; is the zeroth order energy for state i: £, =< P, |I:10,« |®; >. The consistency
of the approximation can be checked by comparing the two expressions. In practice
the average value is used:

~ 1 ~ N
< Xi|H|Xj >= §(< Xi|H0i|Xj >+ < Xi|H0j|Xj >). (5-35)

Adding the contributions together we obtain the Hamiltonian matrix in the
basis ¥;:

N 1 1
H;=<W¥|H|¥;,>=§,E;+ E(E()i +Ey)s; + E(Eij +€;). (5-36)

The matrix element contains terms of zeroth, first and second order only. The
corresponding secular equation is:

(H-ES)C =0. (5-37)

Introduce a new vector C' = S!/2C. The transformed secular equation takes the
form:

(H' — E1)C =0, (5-38)

where H' = S~'/?HS~!/2. Truncation of this Hamiltonian to second order gives:

H,./j = SijE,-—l—%(e,-j—i—eﬁ). (5-39)

The crucial approximation made above is the use of an average matrix element
as in 5-35. If the two matrix elements 5-31 are not equal to a good approximation,
the method will not work well. This is often a matter of choosing the active space.
When the same set of orbitals is used for a number of electronic states it is vital that
the active space is large enough to cover the differences that may occur between
the electronic structures of the different states. Merchdan and Serrano-Andrés have
analyzed this situation for the case of a conical intersection and shown that more
extended active spaces are needed [52].

The MS-CASPT2 method should be used when it is suspected that several
CASSCEF states are close in energy, a situation that often obtains in photochemistry
where close avoided crossings are common and even conical intersections. It may
also be crucial in order to separate valence and Rydberg excited states as illustrated
in the original publication for the case of ethylene. Another example was given by
Merchén and Serrano-Andrés in a study of the excited states of n-tetrasilane [52].



Multiconfigurational Quantum Chemistry for Ground and Excited States 149

54. APPLICATIONS OF THE CASSCF/CASPT2 METHOD

With the development of the CASPT2 method in 1990 it became possible to
apply the combined CASSCF/CASPT?2 approach to a variety of quantum chemical
problems. The early studies of the Ni atom pointed to the difficulties in the choice of
the active space for transition metal systems but also to the potential accuracy that
could be obtained for such systems if the active space could be properly chosen. The
10in10 active space was used in an early study of the M(CO), compounds (M=Cr,
Fe, Ni) [53] and Ferrocene [54]. The latter study showed that the CASPT2 method
was able to describe the structure properly in contrast to earlier studies using MP2.
Another important early application was the study of the electronic structure and the
spectroscopy of the blue copper proteins, in particular plastocyanin [55-58]. These
studies illustrated how the present theoretical approach could be used for studies
of transition metal complexes of biological significance. However, applications in
transition metal chemistry are sometimes difficult or even impossible. One such
case is systems with the metal in a very high oxidation state as illustrated for
example by the permanganate ion where the metal ion is formally in oxidation
state VII. In such cases the metal ligand bonds become very covalent and involve
all ligand orbitals putting very heavy demands on the active space. K. Pierloot
has analyzed several such cases [33, 34]. If the system contains more than one
transition metal, the calculations can become virtually impossible if the process
studied involves a change of the occupation of the 3d shells such that the double
shell effect has to be taken into account. A recent example is a study of model
complexes of the enzyme tyrosinase, which contains a bridged Cu,O, complex as
the central unit [59]. The CASPT2 method is unable to predict a reasonable value of
the energy of a side on peroxide structure relative to that of a bis(u-0xo) structure.
The change is accompanied by a change of the oxidation state of the copper ions
and to describe that by the CASPT2 method one has to include the double shell
effect, which leads to an excessively large active space. If on the other hand there
is no change of the oxidation state of the metal, the CASSCF/CASPT?2 method is
able to produce accurate results as has been shown in a number of applications
to complexes involving a transition metal dimer as a central unit. Examples are
diatoms like Cr,, Mo, and W, [60] and larger complexes like PhCrCrPh [61]. More
examples from transition metal chemistry can be found in Ref. [31].

More recently, the CASSCF/CASPT2 method with spin-orbit coupling has been
applied to a number of problems in actinide chemistry. Some recent examples are:
the electronic spectrum of UO, [38], the electronic structure of PhUUPh [62], the
diactinides Ac,, Th,, Pa,, and U, [36, 37], etc. Some of this work has recently been
reviewed [63].

Another early application of the CASSCF/CASPT2 method was to the electronic
spectrum of the benzene molecule [64]. The spectrum of this molecule was very
well described by the semi-empirical methods of the 50 s and 60s. Actually a first
semi-quantitative analysis was performed as early as 1938 by Goeppert-Mayer and
Sklar [65]. It turned out to be very difficult to reproduce these results with the ab
initio methods that were developed in the 60 s and 70s. The CASPT2 calculations
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were made with the first version of the code with the original definition of the
zeroth order Hamiltonian, no level-shift and no multi-state possibilities. Still the
results were quite promising and it might be interesting to take a look at them in
retrospect. They are presented in Table 5-4.

Two sets of calculations were performed. One used the natural selection of the
active space: the six 7 orbitals. The results are presented in the first column of
Table 5-4. As we can see, all values are smaller than experiment. This is particularly
true for the 'E,, state, which also had a small CASSCF reference weight. The reason
was an interaction with a nearby Rydberg state of the same symmetry. Today we
know that the too low excitation energies are due to the systematic error of the
zeroth order Hamiltonian and we know how to correct for it. In 1992 another more
crude solution was attempted: to double the active space, thus moving important
correlation effects to the variational space and diminishing the systematic error.
This was partly successful and the results are now fortuitously good. These are
vertical excitation energies and we expect them to be about 0.1 eV higher than the
experimental values for the band maxima. The real error of, for example, the 'B,,
state is thus about 0.3 eV. Using the IPEA shifted Hamiltonian one obtains instead
5.02 eV, which is very close to the real vertical excitation energy [46]. A detailed
discussion of the vibrational progressions in the two first bands of the benzene
spectrum can be found in Ref. [66] which also shows the location of the vertical
energies with respect to the band maxima.

The results obtained for the electronic spectrum of benzene triggered a large
number of applications to unsaturated organic molecules. Several hundreds of
systems were studied. A number of reviews have been written on the subject, which
the reader is referred to [29-31, 67]. The accuracy of these calculations are usually
about 0.2 eV for vertical excitation energies. Also transition intensities, which are
computed at the CASSCF level of theory, are in general in good agreement with
experiment, which is quite helpful for the assignment of the experimental spectra.

Today, the emphasis has shifted from pure electronic spectroscopy to photo-
chemistry, for which the CASSCF/CASPT2 method is ideally suited. When one
moves on an excited state surface through a photochemical reaction, the nature
of the wave function changes drastically. In the Franck-Condon region it may
represent an excited valence or even Rydberg state while in the transition state
region it is typically characterized by an avoided crossing, an intersystem crossing,
or a conical intersection where its nature is strongly multiconfigurational. Several

Table 5-4. The electronic spectrum of benzene computed in 1992

Active space 6in6 6in12 Expt.
'B,, 4.58 4.70 4.90
Bl 5.89 6.10 6.20
'E,,(V) 6.52 7.06 6.94
E,.(R) 7.67 7.59

7.68 7.717 7.80
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A

Figure 5-3. The planar quadratic transition state of cyclobutadiene

energy surfaces may be close in energy and affect the outcome of the reaction
(see for example Ref. [68]). That work that concerned the photodissociation of
1,2-dioxoethane, a model compound for the bio-luminescent molecule luciferine,
showed that energy surfaces have to be computed at the CASPT2 level of theory.
It is not enough, as is often seen, to compute them at the CASSCF level and than
just compute CASPT?2 energies at the crucial points on the surface (intersystem
crossings, conical intersections, etc.). It is clear that single configurational quantum
chemical methods cannot in general handle problems in photochemistry. The area
has recently been reviewed [69] and a number of further examples will be given in
other chapters of this volume.

We shall finish with a small example that illustrates the difference between
the multiconfigurational wave function approach described in this chapter and
the commonly used density functional (DFT) theory. It concerns the quadratic
cyclobutadiene system, which is a transition state between the two equivalent
rectangular forms of the molecule (cf. Fig. 5-3).

The system is anti-aromatic with 4 7 electrons in 4 orbitals. The symmetry is Dy,
and the orbitals belong to the following irreps (in energy order): a,,, e,, and b,,.
The first orbital is doubly occupied and the remaining two electrons are distributed
among the two components of the e, orbital. This gives rise to the four electronic
states presented in Table 5-5, where we have given the symmetry labels also for
the D,,, subgroup in which all calculations are performed.

The question is: what is the ground state of this system. Intuitively one would
guess 3A2g according to Hund’s rule. If we perform a CASSCF/CASPT2 calculation

Table 5-5. The electronic states with the configu-
ration (a,,)*(e,)? in quadratic cyclobutadiene

Dy, (D)) electronic configuration
3AZg(SBlg) (egxegy)T

IBZg(] Blg) (egxegy)s

lBlg(lAg) (egx)z - (eg_v)z

lAlg(lAg) (egx)z +(exy)2
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with the four 7 orbitals active and a TZP quality basis set, we obtain, however, a
different result as presented in Table 5-6.*

The ground state is ' B, ¢~ The reason is a strong interaction with the configuration
(a,,)(b,,), which forms a singlet state of the same symmetry. This state will actually
contribute 7% to the CASSCF wave function.

Corresponding DFT(B3LYP) results obtained with the same basis set are also
presented in the table. They are completely different. The triplet state is the ground
state with the first singlet state 0.86 eV higher in energy. The reason for this failure
is the multideterminental nature of the wave functions. The wave function associated
with a DFT calculation is assumed to be a single determinant. This works well only
for the triplet state. Let us assume that the energy for this state is written as E, — K,
where K is the exchange integral (e,.e, |e,.e,,). The corresponding singlet state,
'B,,, is in DFT described by the determinant |e, e, e,,8)|, which is only half of
the singlet wave function and gives the energy E,, if we assume that the orbitals
in the two states are the same. The computed energy difference between the two
determinants is then K and from the results in Table 5-6 we obtain the value 0.65
eV for this parameter. The true energy of the singlet state is E,+ K and we can
compute it from the knowledge of K. It is given in the last column of the table.
The same exercise can be performed for the 'Blg and 'A 1¢ States. They have the
energies E; — K and E, + K, respectively, while DFT computes the energy E, for
both of them. If we use the same value of the exchange integral, we obtain the
other two energies in the last column of the table. We can see some improvement
in the results but the difference from the CASPT2 result is still as large as 0.69 eV
for the leg state and DFT still predicts a triplet ground state.

One notices that the multideterminental nature of the wave functions occurs in
three different ways in this little example: The open shell singlet state needs two
determinants to be properly described, the !B, o, and 'Alg contains two determinants
that differ by two spin-orbitals, and finally there is a strong mixing of a second ‘Blg
state in the ground state wave function. One might argue that this is a very special
case, but it is not. It is actually a situation that commonly occurs in photochemical
reactions. Near a transition state or a conical intersection there will be strong

Table 5-6. Energies of the lower excited states in quadratic

cyclobutadiene

Dy;(Dy;) CASPT2 DFT Corrected DFT
'B,('A,) 0.00 0.00 0.00
*A,,CByy) 0.18 —0.86 -0.21
'4,,('4,) 1.38 0.00 1.30
'B,,('By,) 1.78 —0.21 1.09

* The author is grateful to L. Pegado, P. S6derhjelm, J. Heimdahl, M. Turesson, and L. De Vico, who
performed these calculations as an exercise during a course in quantum chemistry.
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interaction between two or more configurations with wave functions that differ in
two spin-orbitals, like the ' B, g and TA, o states here. Mixing in of other configurations
with a sizable weight also frequently happens. Time dependent DFT is sometimes
used to study photochemical processes but will run into problems when important
configurations differ from the ground state (closed shell) determinant with two or
more spin-orbitals. A semi-empirical method that corrects for these deficiencies to
some extent is the DFT-MRCI approach of S. Grimme and co-workers [70].

5.5. SUMMARY AND CONCLUSIONS

We have in this chapter given a brief review of the multiconfigurational CASSCF
and CASPT?2 methods. The emphasis has been on the methods, its advantages and
limitations in different areas of applications, more than the applications themselves.
They are described in other chapters of the book.

The CASSCF/CASPT?2 method has been designed to deal with quantum chemical
situations, where the electronic structure is complex and not well described, even
qualitatively, by single configurational methods. The method relies on the possibility
to choose an active space of orbitals that can be used to construct a full CI wave
function that describes the system qualitatively correct. When this is possible, the
method is capable of describing complex electronic structures quite accurately.
Examples of such situations are found in excited states, in particular photochemical
reactions that is the subject of this book, but also in transition metal, and actinide
chemistry.

The most severe limitation of the approach is the active space. A number of
applications would need an active space that goes beyond what is today possible.
This is maybe most evident is transition metal and actinide chemistry as was
exemplified earlier in this chapter. Such extensions of the active almost always
involves orbitals with occupation numbers either close to two or zero. As described
above, the RASSCF method is quite useful in handling such situations because it
can deal with much larger active spaces than CASSCEF. It is therefore interesting
to notice the ongoing development of a RASPT2 method that will deal with the
dynamic correlation effects for a RASSCF reference function (P.-A. Malmgqyvist,
unpublished work. Another development, which is important for the possibility to
apply the approach to larger molecules is the Cholesky decomposition technique
that has recently been implemented in the MOLCAS software (F. Aquilante et al.,
unpublished work). The method concentrates the list of two-electron integrals by
performing a Cholesky decomposition and storing only the non-redundant Cholesky
vectors. This leads to a considerable saving of space and time thus extending the
size of the systems that can be studied. The method has been implemented with
a variety of wave function based (and DFT) methods, among them RASSCF and
CASPT?2. In the near future it will therefore be possible to perform such calculations
with several thousand basis functions. With these perspectives it is hoped that the
CASSCF/CASPT2 (RASSCF/RASPT2) method will continue to be a viable tool
for quantum chemical studies of of systems with a non-trivial electronic structure.
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Abstract: The relativistic complete active-space second-order perturbation theory (CASPT2)
developed for the four-component relativistic Hamiltonian is introduced in this chapter.
This method can describe the near-degenerated and dissociated electronic states of
molecules involving heavy elements. This method is applicable for the systems which
can be described by neither DFT nor single reference methods, and the system with very
heavy-elements which cannot be described by quasi-relativistic approaches. The present
theory provides accurate descriptions of bonding or dissociation states and of ground
and excited states in a well-balanced way. In this review, for example, the ground and
low-lying excited states of diatomic molecules with 6p series, TIH, Tl,, PbH, and Pb,
are calculated with the Dirac—-Coulomb (DC) CASPT2 method and their spectroscopic
constants and potential energy curves are presented. The obtained spectroscopic constants
are compared with experimental findings and previous theoretical works. For all the
molecules, the spectroscopic constants of DC-CASPT2 show reasonably good agreement
with the experimental or previous theoretical spectroscopic constants
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6.1. INTRODUCTION

For the computational investigation of molecular systems containing heavy atoms,
such as transition metals, lanthanides, and actinides, we could neglect neither
relativity nor electron correlation. Relativistic effects, both spin-free and spin-orbit,
increase with the nuclear charge of atoms. Therefore, instead of the nonrelativistic
Schrodinger equation, we must start with the Dirac equation, which has four-
component solutions. For many-electron systems, the four-component Hamiltonian
is constructed from the one-electron Dirac operator with an approximated relativistic
two-electron operator, such as the Coulomb, Breit, or Gaunt operator, within the no-
pair approximation. The four-component method is relativistically rigorous, which
includes both spin-free and spin-orbit effects in a balanced way. However it requires
much computational time since it contains more variational parameters than the
approximated, one or two-component method.

So far, to overcome the time consuming defect of the four-component method, we
have developed an efficient relativistic four-component polyatomic program REL4D
[1], as a relativistic part of program package UTChem [2]. One important feature
of REL4D is adoption of two-component Gaussian spinor with general contraction
scheme for basis functions. This is not likely to the other four-component programs
such as MOLFDIR [3] or DIRAC [4], and the adoption ensures more explicit
kinetic balance relationship. Furthermore, the size of basis sets is also reduced
compared to using decoupled scalar spin orbital basis which is used in MOLFDIR
and DIRAC. The compactness of basis sets is quite efficient especially in the
time-consuming parts such as two-electron integral evaluation [5] or molecular
spinor integral transformation [6]. In the released version of REL4D in 2004, Dirac-
Coulomb (DC) Hartree-Fock (HF), DC Kohn-Sham, and single reference electron
correlation methods, such as Mgller—Plesset second-order perturbation theory (MP2)
are incorporated.

However, the systems with open shell d or f electrons tend to be near degen-
erated and single reference methods often do not work well. Instead, multireference
electron correlation methods based on the four-component relativistic Hamiltonian
become essential for the systems with heavy elements. Several multireference
methods based on the four-component Hamiltonian had been developed previ-
ously: the Fock-space coupled cluster method by Visscher et al. [7], the configu-
ration interaction (CI) method of Fleig et al. with the Kramers restricted MCSCF
wave function [8], the generalized multiconfigurational quasi-degenerate pertur-
bation theory (GMCQDPT) developed by Miyajima et al. [9] More recently,
the complete active-space second-order perturbation theory (CASPT2) based
on the four-component Dirac-Coulomb (DC) Hamiltonian was developed by
ourselves [10].

The non-relativistic CASPT2 method developed by Anderson et al. [11, 12] is one
of the most familiar multireference approaches. It is well established and has been
applied to a large number of molecular systems with the non- or quasi-relativistic
approaches. Because the CASPT2 method treats dynamic correlation effects pertur-
batively, it is less expensive than the multireference CI (MRCI) method. The
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inexpensiveness of the CASPT2 method allows us to handle a larger number of
active orbitals for correlation than the MRCI method. Molecules containing heavy-
element atoms often have many degenerated valence orbitals and the number of
determinants in the reference space tends to be large. This situation is undesirable
for the MRCI method, because the cost of MRCI drastically increases when the
dimensionality of the active space increases. If one handles a larger active space
in the MRCI method, one must often decrease the dimensionality of correlated
core or virtual space. Moreover, in the relativistic case, spin symmetry is not
available, and the correlation calculations become more expensive than for the
nonrelativistic case.

The present chapter aims to introduce the DC-CASPT2 method. Theoretical
review of the four-component DC method, especially the way of taking two-
component basis set in REL4D, is described in Section 6.2. and theoretical review of
DC-CASPT?2 is described in Section 6.3. Applications of the DC-CASPT2 method
for TIH, TL,, PbH, and Pb, molecules are discussed with their potential curves in
Section 6.4. Conclusions are described in the final Section, 6.5.

6.2. DIRAC-COULOMB HAMILTONIAN AND TWO-COMPONENT
BASIS SPINORS

Within the Born—Oppenheimer approximation, the total electronic Dirac-Coulomb
Hamiltonian is written as

Nelec Nelee

Hpe =Y hp(N)+ Y &, (6-1)
A A<p
where
hp(A) = co-p,+ (B =D = V™ (M), (6-2)
and
gCuulumb — 1 . (6-3)
is ry—r,

Here, h,,(A) and g5 om” are one- and two-electron operators, respectively. & and
B are Pauli matrices, c is the speed of light, N,,,. is number of electrons, and V"*“(A)
is the nuclear attraction potential. The electron—electron repulsion is assumed to be
the Coulomb interaction and electron-positron interactions are disregarded with no
pair approximation.

As an approach analogous of nonrelativistic Hartree-Fock theory, the four-
component Dirac-Hartree-Fock wave function is described with a Slater determinant

of one-electron molecular functions {i;(r,), i=1,..., N},
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Wy (ry, Ty, s Eyeee) = (N T2 (), () - iyt (B )|
(6-4)

In the four-component case, a one-electron molecular function is not a scalar
function, but a four-component vector called molecular spinor.

L
li

_ ¢?L)_ 3 .
Wk

The upper two-component vector >~ is called the large-component spinor, and
the lower 7% is the small-component spinor. In the REL4D program, we use two-
component (large- and small-component) atomic spinors (¢>" and ¢;°) for basis set

expansion.
n 2L
‘»VZL Clei ®p
¢i=< 25 ZZ s 25 | (6-6)
v > \Cpi ¢
Each component of ¢>" and ¢7* is generally contracted with Gaussian type spherical
harmonics functions. Contraction coefficients of the basis sets are determined by
four-component atomic calculations [5].

On the other hand, in the pioneering DHF and post-DHF program package
MOLFDIR [3] and the well-developed four-component relativistic program package
DIRAC [4], the molecular four-component spinors are expanded into decoupled
scalar spin orbitals

L L
ll’i = Z C;uq (pua

(=N =]
- O O O

S S
SB
+X el | [+ Xk o
2 n

S O = O

nL
LB L
+ Z Cui ‘Pﬂﬁ
n

(==l

(6-7)

with 2n’ large-component and 275 small-component basis spinors. The scalar basis
functions of ¢’ and ¢5 must obey a kinetic balance relationship,

¢, =i(o-p)e, (6-8)

to avoid variational collapse. Note that this relationship only satisfies with non-
relativistic atomic limit and is valid for primitive basis functions. Because of the
derivative operator in this condition, the number of basis set for small component is
almost twice larger than the number of basis set for large component, that is n5 = 2nt.

The two-component basis spinors <p12)L and gois in REL4D, on the other hand,
obey more explicit kinetic balance relationship,

¢, =i(V—E=2c)"(¢-p)¢;, (6-9)
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Table 6-1. Wall times in seconds for computing ERI of Au, with
[19s14p10d5f]/(6s4p3d1f)

Program MOLFDIR  REL4D-A* REL4D-B®
The number of basis function
Large components 160 160 160
Small components 420 160 160
Wall time 274864 22458 6670

% REL4D-A- separate contraction coefficients for quantum number a = =+;
b REL4D-B — same contraction coefficients for quantum number a = +.

which completely reproduces relativistic atomic limit and is valid for contracted
basis functions. The molecular spinor coefficients lei and C;fl. are optimized
commonly among the o and B components of each large or small component.
Therefore the number of basis sets of large and small component is equal. If
one uses the same number of large-component basis sets in the two- and one-
component basis set expansion approaches, to realize same quality calculations, the
two-component basis set scheme requires almost two-thirds number of basis sets
of the one-component scheme. The compactness of basis sets is quite efficient,
especially in the routines which depend on higher order of basis set, such as
two-electron integral evaluation or molecular spinor integral transformation. For
example, Au, system, REL4D is more than ten times faster for computing electron
repulsion integral, and eight times faster for computing molecular spinor integral
transformation than MOLFDIR as referred in Tables 6-1 and 6-2 [5, 6].

6.3. DIRAC-COULOMB CASPT2 METHOD

The formulation of the relativistic CASPT2 method is almost the same as the
nonrelativistic CASPT2 in the second quantized form. In this section, firstly we
express the relativistic Hamiltonian in the second quantized form, and then, we give
a summary of the CASPT2 method [11, 12].

Table 6-2. Wall times in seconds of the integral transformation by
MOLFDIR, DIRAC and RELA4D in the Au, calculation

Program MOLFDIR DIRAC REL4D
The number of basis function
Large components 160 160 160
Small components 420 422 160
Wall time 30080¢ 16691 4310

* This value was the interrupted result because the MOLFDIR program
was suspended with some program errors.
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The total electronic Hamiltonian (6.1) is rewritten in the second quantized form
as

thq pq+ > (pqlrs)[ o 8PSE,q]. (6-10)

pqrs

Here, h,, is a relativistic one-electron molecular spinor integral, and (pq|rs) is a
two-electron molecular spinor integral written in chemist’s notation. The second
quantized formulation is same as the nonrelativistic one when we use an excitation
operator,

S s .

E, =a,a, (p,q € all molecular spinors). (6-11)
The operator is different from the spin-averaged nonrelativistic excitation operator
denoted by

E

o =5 (@)@ +a)ga,5) (p. g € all molecular orbitals) . (6-12)

patqa

I\JI>—

The absence of spin symmetry in the relativistic case makes the indices run over
all spinor space, which is twice as wide as the non-relativistic orbital space.

Here, we summarize the CASPT2 method [11, 12]. In perturbation theory in
the correlation problem, partitioning of the total Hamlltoman H into a Oth-order
Hamiltonian H0 and a small perturbation 1% is a major problem. The Oth-order
wave function |0), which is the eigenstate of HO, should be mostly close to the
exact eigenstate of H for the rapid convergence of the perturbation. As a Oth-order
wave function, the CASPT2 method adopts a multiconfigurational wave function
generated from the CASSCF or CASCI calculations.

To determine I:IO, the configurational space for the expansion of the wave function
is introduced. The space is divided into four subspaces: V;, Vi, Vsp, and Vyq . Vj is
the one-dimensional space spanned by a CASSCF or CASCI reference function |0).
Vi is the space spanned by the orthogonal complements of |0), which is obtained by
the same CASCI calculation that generates the reference function. Vg, is the space
spanned by the single and double replacement states from the reference function,
and Vpq  is the space spanned by all the higher order replacement states from
the reference function. Only the states in Vg contribute to the expansion of the
first-order wave function and the second-order correlation energy, because only
states in Vg, interact with the reference function via the total Hamiltonian H. The
ﬁo in CASPT2 is constructed so that only V, contributes to the expansion of the
first-order wave function. The resulting ﬁIO is given by

Ho POFPO+PKFPK+PSDFPSD+PTQ FPTQ (6-13)

Here, fA’O, 13,(, PSD, and f’TQ'_'denote projection operators to V;, Vi, Vsp, and Vg
subspaces, respectively.
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F in Eq. (6-13) is a sum of one-electron operators and is given by
F= prquq' (6-14)
pq
Here, f,, is the generalized Fock matrix elements,
qu:hpq+ZDrs [(pq|rs)—(ps|rq)], (6_15)

where D, is the first-order density matrix element.
The first-order wave function, which determines the second-order correlation
energy, is expanded with a set of |i) in Vy, space as

M
W) =2 Cili), (6-16)
i=1
and the coefficients C,; are determined by the linear equations

M
S C(i| Hy—Eyjy =— G H|0),i=1,....., M (6-17)
j=1

where E, = (0| H, |0) is the Oth-order energy and M is the total number of states
|i), which is the multiconfigurational state in Vgp, space, £, E. [0).
If the one-electron operator of Eq. (6-14) consists of only diagonal operators, that

is F = > fépEpp, the linear equations of Eq. (6-17) are separated into eight noninter-
P

acting subgroups. In this case, the evaluation of the inverse matrix of (i| H,— E, |,j),
which is required to solve Eq. (6-17), is also divided into eight subgroups and the
cost of calculation is decreased. Therefore, to obtain the diagonal Fock operator,
fpq 1s transformed to f;, = d,,€, by a unitary transformation with block diagonal-
izations within three subspaces: inactive, active, and secondary. Molecular spinors
are also transformed by the unitary transformation. The transformed spinors are
used as a one-electron basis to obtain the first-order wave function. After solving
Eq. (6-17) within the eight subgroups, the second-order energy with the diagonal
Fock operator is evaluated by

E,=(0|H|¥,) (6-18)

The effects of the nondiagonal part of the Fock operator in Eq. (6-14) can be
estimated additionally with an iterative procedure [12]. More details are given in
refs. [11, 12].

In the relativistic CASPT2 method, the matrix elements (i|1€I0 —E,|j) and
(i| H0) are evaluated with the excitation operator in the spinor basis, rather than
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the nonrelativistic spin-averaged excitation operator in the orbital basis. Thus,
double-group symmetry can be used instead of the single-group treatment in the
nonrelativistic approach. Consequently, in the relativistic case, the complex values
of one- and two-electron integrals and CI coefficients must be handled. This makes
computational cost larger than in the nonrelativistic case.

6.4. APPLICATIONS
6.4.1. Computational Details

Low-lying states of TIH, Tl,, PbH, and Pb, molecules were calculated with the four-
component DC-CASPT2 method. For the TIH and T1, molecules, various theoretical
calculations have been reported so far and readers are referred to refs. [13-16],
[17-22], for TIH and T, respectively. For the PbH and Pb, molecules, theoretical
applications are fewer, such as reference [23] for PbH and refs [19, 24] for Pb,. In
the TIH molecule, the Hartree—Fock (HF), the second-order Mgller—Plesset (MP2)
theory, and the complete active-space configuration interaction (CASCI) based on
the DC Hamiltonian (DC-HF, DC-MP2, and DC-CASCI) were also calculated for
comparison with DC-CASPT2. The DC-CASCI wave function was used as the
reference function for DC-CASPT?2. Molecular spinors were determined by the RHF
or ROHF methods. For virtual spinors, the improved virtual orbital (IVO) method
[25, 26] was adopted. Usually, CASSCEF is used as the reference function of non-
relativistic CASPT2. While application of four-component relativistic CASSCF is
theoretically possible, analogues of Fleig’s work [8], it requires complicated calcu-
lations. Instead of CASSCF, we applied the CASCI-IVO method as the reference
function which is more simple and robust than CASSCF. We used DC-CASPT2
with the diagonal approximation [11] for the present calculations. The REL4D part
[1] in the UTChem program package [2] was used for the DC-HF [5], integral
transformation [6], and the DC-MP?2 calculations. For IVO, DC-CASCI, and DC-
CASPT?2 calculations, new programs were developed.

Spherical harmonic Gaussian-type basis spinors with general contraction were
used throughout this study. For TIH and TI, calculations, the exponents of the
Gaussian basis functions [27] determined by the spin-free third-order Douglas—Kroll
(DK3) method [28] with point-charge nucleus model were used, and contraction
coefficients were determined by the four-component atomic SCF calculation [29].
For PbH and Pb, calculations, relativistic Gaussian basis set with finite nucleus
model determined by Faegri [30] was used. The finite nucleus model was adopted
for PbH and Pb, calculations, whereas point-charge nucleus model was adopted for
TIH and TIl,. Outer exponents were decontracted to be valence triple-zeta quality
and several diffused primitive exponents were added by even tempered method
from division by 2.5. The size of the large-components basis sets is as follows;
H:[8s2p]/(5s2p), T1:[28s23p15d11f]/(10s7p6d4f) for TIH and Tl,, H:[8s2p]/(5s2p)
and Pb:[25s21p14d9f]/(10s7p5d3f) for PbH, and Pb:[25s21p14d9f]/(10s9p5d3f) for
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Pb,. Spectroscopic constants of equilibrium bond lengths (R, ), harmonic frequencies
(w,), adiabatic transition energies (7,), and dissociation energies (D, ) were obtained
by fitting to an analytical form using cubic splines. The dissociation energy was
obtained by substitution from the sum of energies of the atomic states to the
minimum energy of the molecular state. To simplify notations, we abbreviate the
taking of active space and active electrons in CASCI calculations to the form CASCI
(Nuets Nejee)- N, indicates the number of spinors in the active space, and N
indicates the number of electrons in the active space. For the CASPT2 calculations,
we also use abbreviations such as CASPT2(N,,,.., N..» Ng.) with the number
of spinors in inactive space, N, ., active space, N,., and secondary space, N
respectively.

act? sec?

6.4.2. TIH Molecule

The DC-CASCI (12, 4) calculation was performed to construct reference functions.
The active space includes the molecular spinors, which have atomic nature of 6s, ,,
6p1)2, 6p3), of Tl and 1s,,, of H, and two virtual molecular spinors. The DC-
CASPT2 (10, 12, 110) calculation followed and this choice of active space provided
smooth potential curves for four low-lying states of TIH at the DC-CASPT2
level.

The potential curves for the ground state with the DC-HF, DC-MP2, DC-CASCI,
and DC-CASPT2 methods are illustrated in Figure 6-1, which shows that the
deviation of the multireference methods, DC-CASCI and DC-CASPT?2, from the
single-reference methods, DC-HF and DC-MP2, becomes significant in the region
of longer bond length. From the spectroscopic constants listed in Table 6-3 with
experimental data [31], the DC-CASPT2 method provides better agreement with
experiment for the three properties, R., w,, and D, than the DC-HF, DC-CASCI,
and DC-MP2 method.

In the bonding region, the ground state of DC-CASCI is mainly contributed
by the DC-HF determinant and the DC-HF weight is about 97%. The static
correlation of DC-CASCI provides 0.052 A longer bond length and 190cm™
smaller harmonic frequency than the DC-HF results. The DC-CASCI results
overestimate the experimental bond length and underestimate the experimental
frequency. The dynamic correlation by DC-CASPT2 corrects the bond length
and frequency of DC-CASCI toward the experimental values. The deviation
of the DC-CASPT2 result from the experimental values (R, = 1.870 A
and w, = 1391cm™") is 0.023 A in bond length and 40cm~' in harmonic
frequency.

The ground state and three low-lying states calculated at the DC-CASPT2 level
are shown in Figure 6-2 and assigned as 07(I), 0~, 1, and 0*(I), from the lower
states respectively. In our calculation, only the OF(II) state has minimum energy
among the excited states. This state has a dissociation channel of the *P; /> excited
state of Tl and the 'S, s> ground state of H, while the other three states have a
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Figure 6-1. Potential energy curves of the ground state of TIH with various four-component electron
correlation methods

dissociation channel of the 2P, 2 ground state of Tl and the 'S, 2 ground state
of H. The spectroscopic constants of the 0*(II) state are listed in Table 6-4 with
experimental findings [32] and the previous theoretical work by Rakowitz et al.[15]
Our DC-CASPT?2 result for 07(I) state agrees with both experiments and the
theoretical spin-orbit CI works very well.

Table 6-3. Spectroscopic constants of ground state TIH (Og) at several
calculation levels

Method R, (A) o, (cm™h) D,(eV)
Present calculations
DC-HF 1.871 1447 -
DC-MP2 1.869 1425 -
DC-CASCI 1.923 1257 1.45
DC-CASPT2 1.893 1351 1.87
exp.” 1.870 1391 2.06

a Ref. [31].
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Figure 6-2. Potential energy curves of low-lying TIH states at the DC-CASPT2 level. 0t:—e&—,
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6.4.3. Tl, Molecule

The DC-CASCI (16, 2) calculation was performed to construct reference functions.
The active space includes the molecular spinors, which have atomic nature of 6p
spinors of two TI and four virtual molecular spinors. We followed this with the
DC-CASPT2 (12, 16, 128) calculation, and nine low-lying states were obtained.
Potential curves of the nine low-lying states of Tl, calculated at the DC-CASPT2
level are shown in Figure 6-3. The spectroscopic constants of the ground state (0;)
at the DC-CASCI and DC-CASPT?2 levels are listed in Table 6-5 with the Raman
experimental data [33] and the two-component Kramers restricted (KR) CI results
with relativistic effective potential (REP), reported by Kim et al. [17] and Han et al.
[18], and the spin—free DK2-CASPT2 results with perturbative spin—orbit coupling
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Table 6-4. Spectroscopic constants of the excited state of TIH (Og(II))
at the DC-CASPT?2 level with previous findings

Method R. (A) D, (eV) T.(eV)
DC-CASPT2 1.861 0.85 2.09
SOCIEX® 1.86 - 2.07
exp. 1.86 - 2.18

* Rakowitz et al. Spin-orbit CI with energy extrapolation [15]; ® Ref.
[32].

by Roos et al. [19] The states obtained by DC-HF and DC-MP2 methods are 07,
which have different symmetry from the ground state, and hence the results of
DC-HF and DC-MP2 are not included in Table 6-3. For the excited states, the DC-
CASPT?2 results are listed in Table 6-6 compared with the two-component KRCI
method by Kim et al. [17]

...... 8 e TI(1/2)+ TI(3/2)

Energy (eV)

----» TI(1/2) + TI(1/2)

! !

|
o
N

4.5 5 5.5 6 6.5 7
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N
(6]
w
w
(6]
A

Figure 6-3. Potential energy curves of the nine low-lying states of Tl, at the DC-CASPT2 level. O;r:
O, 0 —o—, 0 —@—, 1 —A—, 10 A, 2, —B—, 2B



Relativistic Multireference Perturbation Theory 169

Table 6-5. Spectroscopic constants of the ground state Tl, (0 ) at several calcu-
lation levels

Method R, (A) w, (cm™) D,(eV)
DC-CASCI 3.56 39 -0.01
DC-CASPT2 3.04 84 0.51
KRCI-REP* 3.30 55 0.32
KRCI-REP® 3.11 75 0.34
CASPT2-SOC* 3.09 75 0.43

exp.d 3.00 78 0.43+£0.04

ATwo-component KR-RASCl(rasl = 4,ras2 = 12,ras3 = 36) with REP by Kim
et al. [17]; ®Two-component KR-RASCI(rasl = 24,ras2 = 4,ras3 =full virtual
spinors) with REP Han et al. [18]; “Spin—free CASPT2 with perturbative spin—
orbit coupling (SOC) by Roos et al. [19]. The dissociation energy is D, value;
dRef. [33]. The dissociation energy is D, value.

In Table 6-3, the spectroscopic constants of the ground state (0;) with DC-
CASPT2 (R, =3.04 A, w, =84cm™', and D, = 0.51eV) show satisfactory
agreement with the experimental results (R, = 3.0 A, w, =78cm™', and D, =
0.43£0.03eV) [33]. From the comparison to the DC-CASCI result (R, = 3.56
A, w, =39cm™!, and D, = —0.01eV), dynamic correlation by DC-CASPT?2 is
very important for the weak bonding description of the T1, molecule. The present
DC-CASPT2 method yields the similar result in comparison with the previous
theoretical results. For the properties in the excited states in Table 6-4, DC-CASPT2
and KRCI by Kim et al. have relatively similar values of 7, among the lower four
states, 0;, 1,(I), 05 (I), and Of. Other properties, R., @., and D, of these states
are not very similar because the CI calculation by Kim et al. uses a smaller spinor
space in correlation than the present DC-CASPT?2 calculation.

Table 6-6. Spectroscopic constants of the nine low-lying states of Tl, at the DC-CASPT2 level with
previous theoretical results

DC-CASPT2 KRCI-REP?*

we De Te we De Te
State R. (A) R. (A)

(cm™!) (eV) (eV) (cm™!) (eV) (eV)
0y 3.04 84 0.51 0 3.30 55 0.32 0
1,(D 3.07 79 0.37 0.135 3.36 47 0.20 0.115
0;(1) 2.90 79 0.36 0.146 3.62 29 0.15 0.169
0: 2.97 98 1.24 0.198 3.16 73 0.90 0.232
Zg 2.74 123 0.81 0.622 3.08 62 0.17 0.973
Og(H) 3.08 111 0.74 0.690 3.34 66 0.42 0.727
L,a - - - (~07) 333 54 0.32 0.824
2, 3.09 60 0.52 0.917 3.26 64 0.51 0.628
lg - - - (~0.9) 2.96 87 0.47 0.662

2Two-component KR-RASCI(4, 12, 36) with REP by Kim et al. [17]
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6.4.4. PbH Molecule

The DC-CASCI (10, 3) calculation was performed to construct reference functions.
The active space includes the molecular spinors, which have atomic nature of
65,2, 6P/, and 6p;,, of Pb and 1s,,, of H and three virtual molecular spinors.
This was followed with the DC-CASPT2 (26, 10, 86) level of calculation which
provided smooth curves both at the bonding and dissociation regions for five of
the low-lying states. These potential curves are represented in Figure 6-4. The
spectroscopic constants of the lowest lying states (0 = 1/2 (ground) and Q) = 3/2)
at the DC-CASCI and DC-CASPT?2 level of computation are compared and listed
in Table 6-7 with the experimental data [34]. Theoretical calculations using the
generalized relativistic effective core potential (GRECP) followed by multireference

Energy (eV)

---» Pb(2) +H(1/2)

- Pb(1)+H(1/2)

. T WA Wy A Wy Wy WAL Wy . Ry i yay £\ Pb(O)+H(1/2)

—1 1 1 1 1 1
10 15 20 25 30 35 40 45 50 55

Bond length A

Figure 6-4. Potential energy curves of the five low-lying states of PbH at the DC-CASPT2 level.
1204, 32— @—
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Table 6-7. Spectroscopic constants of the two low-lying states of PbH with experimental findings and
previous calculation. BSSE is estimated by counterpoise correction (CPC)

Method R, (A) w, (cm™) D, (eV) T, (eV)
1/2 state (ground state)

DC-CASCI (10, 3) 1.830 1628 0.69 0
DC-CASCI (10, 3)+CPC 1.830 1627 0.87 0
DC-CASPT?2 (26, 10, 86) 1.816 1601 1.39 0
DC-CASPT?2 (26, 10, 86)+CPC 1.849 1514 1.42 0
GRECP/5¢eMRD-CI* 1.871 1686 1.44 0
exp.” 1.838 1564 < 1.59 0
3/2 state

DC-CASCI (10, 3) 1.806 1708 0.80 0.805
DC-CASPT?2 (26, 10, 86) 1.790 1685 1.39 0.829
GRECP/5¢eMRD-CI* 1.855 1727 - 0.797
exp.© - - - ~0.855

five electrons MRD-CI calculation with GRECP by Isaev et al. [23]; °Ref. [34]; “Unpublished data by
Fink et al.

single- and double-excitation configuration interaction (MRD-CI) method by Isaev
et al. [23] are also listed.

For the ground state, we performed counterpoise corrections (CPC) to estimate
basis set superposition error (BSSE). While DC-CASPT2 without CPC provides
slightly shorter bond length (0.016 A) and larger frequency (37 cm™") than exper-
imental values, CPC improves these values toward the experiment, longer bond
length (0.011 A) and smaller frequencies (50 cm™"). The present DC-CASPT2-CPC
results show good agreement with experiment. The effects of CPC are 0.033 A in
bond length, 87 cm™! in harmonic frequency, and 0.03eV in dissociation energy.
For the first excited state, 3/2(I), the excitation energy of DC-CASPT2 (0.829eV)
is quite close to the experimental value (~0.855eV). The 3/2(I) state have shorter
bond length and larger harmonic frequency than the ground state and this tendency
is similar to the previous calculation with GRECP/MRDCI method. Atomic spectra
of Pb at the DC-CASPT?2 level are also consistent with experimental values: First
excitation energy, 0.830eV, and second excitation energy, 1.278 eV, are obtained
by the DC-CASPT?2 method, whereas experimentally they are determined 0.970 eV
and 1.320eV respectively [35].

6.4.5. Pb, Molecule

The DC-CASCI (12, 4) calculation was performed to construct reference functions.
The active space includes the molecular spinors, which have atomic nature of 6p,
and 6p,,, of Pb. This was followed with the DC-CASPT2 (24, 12, 160) level
of calculation and the potential energy curves are illustrated in Figure 6-5a. This
figure includes all the states which go to the first, second, and third dissociation
channels, except 1,(Il) state, which had intruder state problem. For simplification
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Figure 6-5a. Potential energy curves of the ten low-lying states of Pb, at the DC-CASPT2 level.

06—, 0,0, lyi—B—, 1B, 2,—A—, 2,0A

of Figure 6-5ca, gerade and ungerade symmetries are separately represented in
Figures 6-5cb and 6-5cc, respectively. In Table 6-8, spectroscopic constants of
the ground state, Og, at the DC-CASPT2 with and without CPC are listed with
experimental data [36, 37] and a previous theoretical work with spin—free Douglas-
Kroll CASPT2 with perturbative spin—orbit coupling (SOC) by Roos et al. [19].
[25s21p14d9f]/(10s9p5d3f) basis set, triple zeta (TZ) quality with two s-type and
two p-type diffuse primitive functions (TZ+2s+2p), was used to obtain the whole
potential curves and spectroscopic properties of ground and excited states. To
estimate the effects of BSSE for the ground state, two types of basis sets were also
used, TZ with two s-type primitive functions (TZ+2s) and TZ with two s—, two
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Figure 6-5b. Potential energy curves of the gerade states of Pb, at the DC-CASPT2 level. 0,(I), 0,(IT),

0, (TIT), 14(I), 14(IT), and 2,(I) states are included. O,: g B, 2 &

p—, and one d-type primitive functions (TZ+2s+2p+1d). Spectroscopic constants
of two excited states, 0,(IIT) and 1,(I), were analyzed and listed in Table 6-9.

The ground state properties of DC-CASPT2 summarized in Table 6-8, are
reasonably consistent with the experimental data and the previous calculations,
except that dissociation energy was underestimated in our calculations. In the case
of Pb,, unlikely to PbH, CPC did not give improvement in all types of the basis sets,
and the CPC effects are 0.034 A in bond length, 3.4cm™! in frequency, and 0.10eV
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Figure 6-5c. Potential energy curves of the ungerade states of Pb, at the DC-CASPT2 level. 0,(I),
0,(II), 1,(I), and 2,(I) states are included. 0,:
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in dissociation energy when TZ+2s+2p basis was used. Among the three types
of basis sets, the largest basis set provides closest results to the experiment and
the deviations of CPC become also smallest. In this molecule, the basis-set depen-

dency is important, and more additional functions are required not only diffuse but
also polarization, for accuracy beyond the present calculations. In Figure Sa, while

the ground state exists and dissociates solely, low-ling excited states are closely
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Table 6-8. Spectroscopic constants of the ground state of Pb, (0g), with various basis sets at the
DC-CASPT?2 level. BSSE is estimated by counterpoise correction (CPC)

DC-CASPT2 without CPC DC-CASPT2 with CPC

o, o,
Basis sets® R. (A) D.(eV) R. (A) D.(eV)

(em™") (em™)
TZ+2s 2.983 103.4 0.927 3.018 98.4 0.506
TZ+2s+2p 2.969 107.4 0.525 3.003 104.0 0.424
TZ+2s+2p+1d 2.968 109.2 0.630 3.000 106.7 0.550
Previous works R. (A) o, (cm™") D,(eV)
CASPT2+S0C* 2.937 104 0.917
exp. 2.932° 110¢ 0.86°

2Spin—free CASPT2 with perturbative spin—orbit coupling (SOC) by Roos et al. [19]; PRef. [36]; “Ref.
(371

located each other and show complex structures, like avoided crossings. The states
with double minimum or pertubatively unstable were eliminated from spectroscopic
calculations and 1,(I) and O,(III) are analyzed . There are neither experimental nor
theoretically work before for the excited state of Pb,, and this is the first prediction
for the system.

6.5. CONCLUSIONS

We have reviewed the relativistic CASPT2 method with the four-component Dirac
Hamiltonian, which has been proposed by our group recently. Because of the
high computational demands of relativistic multireference correlation methods, the
perturbative approach of dynamic correlation in the present method provides feasible
calculations and the ability to use wider correlated spinor spaces than the relativistic
multireference CC or CI methods. As examples, 6p series diatomic molecules
are calculated with the CASPT2 diagonal approximation based on CASCI-IVO
reference functions. The relativistic CASPT2 method shows good agreement with

Table 6-9. Spectroscopic constants of low-lying states of Pb, molecule (0,(I),
0,(IT) and 1,(I)), at the DC-CASPT2 level. The size of basis set for Pb is
[25s21p14d9f]/(10s9p5d3f)

R, (A) o, (cm™) D(eV) T.(eV)
0,(1) 2.969 107.4 0.525 0
1,(D) 2.800 184.8 0.790 0.722

0,(I11) 3.123 79.9 0.462 1.497
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experimental and previous accurate ab initio calculations for the spectroscopic
constants of both ground and low-lying excited states.

Because of highly accurate treatment of relativity with the four-component Dirac
Hamiltonian, the present theory makes it possible to investigate molecules involving
any heavy-element atoms. Since the present method is multireference-base, we can
handle the systems with complicated electronic structures, for examples, lanthanide
and actinide compounds, which often have a large number of near-degenerated
states. Besides, unlikely to single-reference methods, the CASPT2 method can
describe dissociation of bonding and effective to tract chemical reactions. Thus,
it is expected that the relativistic CASPT2 will be a powerful tool to search new
chemical reactions with heavy-element atoms.
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CHAPTER 7

STRUCTURE AND PROPERTIES OF MOLECULAR
SOLUTES IN ELECTRONIC EXCITED STATES:

A POLARIZABLE CONTINUUM MODEL APPROACH
BASED ON THE TIME-DEPENDENT DENSITY
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Abstract:

Keywords:

This chapter reviews the methodological progress of the Polarizable Continuum
Model (PCM) within the time-dependent Density Functonal Theory (TDDFT) to study
chromophores in homogeneous solutions. The progress is represented by (i) a theory
for the analytical gradients of the PCM-TDDFT excitation energies, which allows to
determine the excited state geometries and first order properties within a relaxed density
formalism; (ii) a state-specific version of the PCM-TDDFT to describe solute-solvent
interaction in the excited states based on the changes of the electronic density; (iii) a
time dependent version of the PCM-TDDFT able to describe the dynamical relaxation
of the solvent after a vertical electronic transition in the solute. All these methodological
advances are illustated and discussed with the help of numerical applications

Excited state properties, Polarizable Continuum Model, Solvation dynamics, Time-
Dependent Density Functional theory

7.1. INTRODUCTION

The time-dependent density functional theory, widely known as TDDFT, is an exact
many-body theory [1] in which the ground state time-dependent electron density is
the fundamental variable. For small changes in the time-dependent electron density,
a linear response (LR) approach can be applied to solve the TDDFT equations. In
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this way, the excitation energies of a molecular system can be obtained as poles of
the frequency dependent electron density linear response function [2]. Representing
a good compromise between accuracy and computational cost, in the last years
TDDFT has replaced the Hartree-Fock based single-excitation theories (CIS) as the
method of choice for the calculation of vertical excitation energies in medium to
large sized molecules, in gas phase.

Indeed, TDDFT gives a fast and reliable method to obtain potential energy
surfaces for excited states, by simply adding to the ground state DFT energy the
vertical excitation energy of the selected state, both as functions of the geometry.
In addition, all first order properties of excited states (forces on the nuclei, electric
multipole moments, ...) can be obtained via the first derivatives of the corre-
sponding excited state energy with respect to suitable external perturbations [3-5].
The required computational effort may also be effectively reduced due the recent
availability of analytical gradients of the TDDFT excitation energies.

For years, the capabilities of TDDFT to describe excited states have been limited
to isolated molecules, despite the fact that a large part of the spectroscopic experi-
ments probe molecules in liquids. However, in the last few years there have been
several extensions of the TDDFT to describe excited state of molecules in solution.
These extensions are of particular interest as they will allow to expand the areas of
application of the TDDFT to several photophysical and photochemical processes in
condensed phase.

This chapter reviews the recent progress of the TDDFT when coupled to quantum
mechanical (QM) continuum solvation models. Although the discussion will be
focused on a specific family of solvation models, namely the family of methods
known with the acronym PCM (Polarizable Continuum Model) [6], most of the
results can be straightforwardly extended to other classes of implicit solvation
models [7, 8].

The QM description of excited states of solvated systems is a complex problem,
with many new issues in addition to those already present in the case of isolated
systems.

A first general issue concerns the characterization of the solvent degrees of
freedom required in the description of any electronic transition in a molecule in
solution. In the case of polar solvents, the differences in the characteristic time scales
of the electronic degrees of freedom of the solute and the composite degrees of
freedom of the solvent may lead to different excited state regimes, with two extreme
situations: (i) the “non-equilibrium regime” in which the slow degrees of freedom
of the solvent are not equilibrated with the excited state electronic redistribution
upon excitation (vertical excitation processes), and (ii) the “equilibrium regime”
in which the solvent is allowed to equilibrate (i.e. reorganize) all its degrees of
freedom including the slow ones. The different solvation regimes may dramatically
influence the properties of the solute excited states, and a proper modellization
should take into account such effects.

A second issue concerns the definition of the excitation energies in solution.
The status of the excitation energies of a solvated system is related to the QM
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protocol used for their calculation. We have demonstrated [9] that in the framework
of QM continuum solvation models, contrary to the case of isolated molecules,
there exists an intrinsic difference between the QM methods based on the linear
response analysis (TDHF, CIS, TDDFT) and those based on the explicit evaluation
of the excited states wavefunction (CASSCF, CI,...). The latter methods are also
called "state specific" (SS) approaches, because the direct evaluation of the excited
state wavefunction allows to describe in a more accurate way the variation of the
solute-solvent interaction accompanying the change of the electronic density during
an electronic transition. On the other hand, the linear response methods, like the
PCM-TDDFT, introduce only effects related to the corresponding transition density.

A third general issue regards the dynamic coupling between solute and solvent. To
accurately model excited states formation and relaxation of molecules in solution,
the electronic states have to be coupled with a description of the dynamics of the
solvent relaxation toward an equilibrium solvation regime. The formulations of
continuum models which allow to include a time dependent solvation response can
be formulated as a proper extension of the time-independent solvation problem (of
equilibrium or of nonequilibrium). In the most general case, such an extension is
based on the formulation of the electrostatic problem in terms of Fourier components
and on the use of the whole spectrum of the frequency dependent permittivity, as
it contains all the informations on the dynamic of the solvent response [10-17].

Indeed, all these issues must be properly considered, and in the following sections
we will describe how this may be done within the PCM-TDDFT computational
scheme.

The present review is organized as follows: in Section 7.1.1 we present the
TDDFT-PCM methodology for the calculation of excited state properties of solvated
molecules; in Section 7.1.2 we describe a TDDFT-PCM linear response approach
to a state-specific description of the solute-solvent interaction; finally, in Section
7.1.3 we present a time-dependent extension of the PCM to describe the solvent
relaxation processes accompanying the formation and relaxation of excited state
solutes.

7.1.1. Properties of Excited States in Solution: Equilibrium
and Non Equilibrium Solvation

7.1.1.1. The basic PCM theory

The Polarizable Continuum Model (PCM)[18] describes the solvent as a struc-
tureless continuum, characterized by its dielectric permittivity &, in which a
molecular-shaped empty cavity hosts the solute fully described by its QM charge
distribution. The dielectric medium polarized by the solute charge distribution acts
as source of a reaction field which in turn polarizes back the solute. The effects
of the mutual polarization is evaluated by solving, in a self-consistent way, an
electrostatic Poisson equation, with the proper boundary conditions at the cavity
surface, coupled to a QM Schrodinger equation for the solute.
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The different versions forming the PCM family of methods can be distinguished
on the basis of the boundary conditions and the numerical approach used to solve
the Poisson electrostatic problem. In all versions, the polarization of the medium
is represented in terms of an apparent surface charge (ASC), o, spreading on the
cavity surface. The most general version of PCM, i.e. IEFPCM (integral equation
formalism) [19], is based on the use of proper electrostatic Green functions [20],
defined inside and outside the cavity, to compute the integral operators determining
the apparent charge o. The IEFPCM formalism can be applied to very different
media ranging from standard isotropic solvents characterized by a scalar permit-
tivity, to anisotropic dielectrics like liquid crystals and polymers, passing through
liquid-liquid, liquid-gas, or liquid-solid interfaces. Details on the formal derivation
of the model as well as the expression of the integral operators defining the ASC
o can be found in ref. [19].

The QM descriptions of the molecular solute is based on the Effective
Hamiltonian H_; determining the proper Schrodinger equation for the solvated
molecule:

Hy |¥) = [H'+ VY (W)]|¥) = E|W) (7-1)

where H° is the Hamiltonian describing the isolated molecule, and V* CM is the
solute-solvent interaction operator, describing the electrostatic interaction between
the solute particles (nuclei and electrons and the apparent charge distribution of the
solvent). The treatment of the operator V'™ (W) is delicate, as this term, depending
on the solute total charge density (i.e. on the solute wavefunction), induces a
nonlinear character to the Schrodinger equation. The non-linear QM problem
expressed by Eq. (7-1) can be solved with all the usual techniques developed for
isolated systems (i.e. for linear QM problem). However, it is important to note that
the basic energetic quantity to consider is the free energy functional,

9:E+%<‘II|VPCM|1I/) (7-2)

as the solutions of Eq. (7-1) give stationary points of this functional, even though
it is not the eigenvalue of the nonlinear Hamiltonian, here indicated as E. The
difference between E and G has, however, a clear physical meaning; it represents
the polarization work which the solute does to create the charge density inside
the solvent. It is worth remarking that this interpretation is equally valid for zero-
temperature models and for those in which the thermal agitation is implicitly or
explicitly taken into account.

Within the DFT framework, the molecular Kohn Sham (KS) operator for a
molecular solute becomes a sum of the core Hamiltonian /, a Coulomb and (scaled)
exchange term, the exchange-correlation (XC) potential V*¢ and the solvent reaction
operator VM of Eq. (7-1), namely:

Fogs = hypge +2_[(paoliic’) — .8, (pioligo)]+ Vi, + V0"

pqo pqo
io’

(7-3)
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where (pgo|iic’) is a two-electron repulsion integral in Mulliken notation and

aEXL‘
Vi = (7-4)
T

Pqo
being P the ground state density matrix (indices i, j,... label occupied, a,b.... virtual,
and p,q,... generic MO whereas o, ¢’ are spin labels). In Eq. (7-3) we have used
the hybrid mixing parameter c, originally introduced by Becke [21] which allows
us to interpolate between the limits of "pure" density functionals (c,=0, no “exact”
exchange) and HF theory (c,=1, full exchange and E* = 0) [4].

The solute-solvent potential term VI‘;iM represents the electrostatic interaction
between the solute nuclei and electrons and the apparent surface charge distribution
o of the polarized medium. In the computational practice a boundary-element
method (BEM) is applied by partitioning the cavity surface into discrete elements,
called fesserae, and by substituting the apparent charge o by a collection of point
charges ¢, each one placed at the center of a tessera s;. The point charges can be
obtained as:

qr = ZleVl (7-5)
I

where Q,, are elements of a suitable solvent response matrix Q, and V, are elements
of a vector collecting the value of the molecular electrostatic potential at the center
of the tesserae (see below). The detailed expression of the Q matrix in Eq. (7-5)
depends on the specific variant of the PCM method being used (see refs. [6, 22] for
a complete survey). However, in general Q is determined by the form and shape of
the cavity, by the partition of the surface and by the solvent dielectric permittivity
€. The apparent charges ¢, are also denoted as polarization weights, g’ [22], when
they are computed with the symmetric component, Q°, of the solvent response
matrix.

The solvent induced term V.M of the KS operator is given in terms of the
polarization charges (weights) as

Ve =2 Voursli' (7-6)
k

where Vlﬁw, . 1s the electronic electrostatic potential integral at the k-th point on the

cavity surface:

Vi == [ U3, (6000 0) e @-7)

|r —s;|
The molecular electrostatic potential, V,at the tesserae (see Eq. 7-5) is then given by

Vi=V'+V}! (7-8)
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where VkN is the nuclear contribution, computed from the solute’s nuclear charge
distribution, while the electronic contribution V/ is computed in the atomic orbital
(AO) basis from a generic one-particle density matrix P as

vE=>P,,VE (7-9)

wvo ' pgo,k
mvo

where greek indices refer to AO basis functions.

7.1.1.2. Excitation energies within the PCM-TDDFT framework

In the linear response TDDFT formalism the excitation energies of a molecular
system are determined as poles of the linear response of the ground state electron
density to a time dependent perturbation [2]. After Fourier transformation from
the time to frequency domain, and some algebra, the excitation energies can be
obtained as eigenvalues of the non-Hermitian eigensystem [23]

BRI a0

where the eigenvalue problem is defined in a Hilbert space of dimension 2N,,..Ny;,,
where N,.. and N,;, are, respectively, the numbers of occupied and virtual MO, and

occ vir

the transition eigenvectors |X, Y) are normalized with metrix

[XY] [(1, _01} [ﬂ =1 (7-11)

When solvent effects are introduced according to the PCM model, the definition of
the matrices A and B involves additional PCM-type potentials according to:[24]

Aai(r,hj(r’ = Sab‘sijamr’ (eaa' - Ei(r) + (la0'|]b0',) (7_12)
+f;l§7’,hj0” - Cx 80’0’ (ab0-|l]0-) + Vfii%jo’
Bai(r,hj(r’ = (la0-|]b0-/) + :ii;-,bja’ - Cxamr’ (]aO'llbO') + Vtzgfll/alj(r’
(7-13)

where f7¢ . represents a matrix element of the exchange-correlation kernel in the

aio,bjo

adiabatic approximation:

(92 Ex¢
foor = (7-14)
ap s 8p a’

while VM. | is the corresponding matrix element of the PCM reaction potential

aio,bjo’

which can be seen as a generalization of Egs. (7-5) and (7-6):

V;;g%j(r’ = ZVcﬁ(r,inlVlfj(r’,l (7-15)
ki
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The four-index solvent induced term V;C/. , represents the electrostatic interaction
between the one-electron transition density ¥, and the apparent charges induced
by the transition density ¢ ;.

The PCM-TDDFT Egq. (7-10) can be transformed into a non-Hermitian eigenvalue

problem of half the dimension which involves the diagonalization of the matrix
[(A—B)(A+B)] (7-16)

to find its eigenvalues, which correspond to the square of the excitation energies
w, and both its left, (X—Y|, and right |X+Y) eigenvectors, which form a
biorthonormal set

<Xm - Ym | Xn +Yn> = an (7-17)

Note that, following the above transformation, the PCM contributions is only present
in the (A 4+ B) matrix. In this framework, the excitation energy for the n-th state is
computed as

1 1
w, = 5 <X11+Yn| (A+B) |Xn +Yn> +E <Xn _Yn| (A_B) |Xn _Yn>
(7-18)

7.1.1.3. Analytical gradient of the excited state energy in solution

The analytical derivatives of the PCM-TDDFT excitation energy @ with respect
to the generic parameter (e.g. a nuclear coordinate) ¢ has been proposed by
Scalmani et al. [25], as generalization of the analogous derivative for the PCM-
CIS excitation energies [26]. First, we note that the derivative expression of
Eq. (7-18), i.e.:

1 1
wi = E <Xn +Yn| (A+B)§ |X11+Yn> + E <Xn _Yn| (A—B)f |Xn _Yn>
(7-19)

does not involve the derivatives of the excitation amplitudes (i.e. the left and right
eigenvectors of Eq. (7-18)) because they have been variationally determined, but it
does require the knowledge of the change in the elements of Fock matrix in the MO
basis F lfqg. These, in turn, require the knowledge of the MO coefficients derivatives,
which are the solution of the Couple Perturbed Kohn-Sham equations (CPKS).
It is well known, however, that there is no need to solve the CPKS equations
for each perturbation, but rather only for one degree of freedom, to find the so
called Z-vector [27] (or relaxed-density), which represents the orbital relaxation
contribution to the one-particle density matrices (1PDM) involved in all post-SCF

gradient expressions.
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The generalization to the PCM of the formalism reported in ref. [4], leads to the
following the Z-vector equation:

G+ [ ]+6ab6 6 ( €uo Ezu’) aic — Laio’ (7'20)

aio ijYo0’

where L, is the TDDFT Lagrangian
Lai(r = Cla Czam' + G;rw'[Plfl] + GaJrl(r[PbAc] (7-21)
Clai(r = Z (X+ Y)hi(r baa [(X+ nrs + Z (X Y)bm buo’ [(X Y)rs]

b

+ Z (X + Y)bza' GZZO’ [(X+ Y)rs]

= Z(X+Y)a10' ijo [(X+Y)rv +Z(X Y)ajtr z;u' [(X Y)rv]

and G/[P,] are two contractions of a non-symmetric density matrix P with the

four-indexes portion of the (A + B) and (A — B) matrices,

pqo’ Prs] Z [2 (pq0'|rs0' ) + 2f pqo,rso’ + ZV;(C(;'A{'AU

_Cx60'o" [(psa’|rq0') + (pr0'|sq0')]] Py
pqo’ Prv] Z Cy (m’ (psa'|rqa') - (pra'|sqa')]] Prm'/

where the indexes on the argument matrix can be used to limit the range of the
summation, e.g. GabU[P,-j] is the virtual-virtual block of the contraction of the
occupied-occupied block of P.

Note that the Lagrangian depends on the occupied-occupied and virtual-virtual
blocks of the P4 matrix which are already available from the diagonalization of
(7-16):

Piéo' = _% Z [(X+ Y)iaa' (X+ Y)jaa' + (X - Y)iaa' (X - Y)jaa']

Poy =+5 Z (X4 Y)iae X4+ Y + (X = 1) (X =1)]

while the occupied-virtual block is the unknown in the Eq. (7-20). The Lagrangian
(7-21) includes the exchange-correlation term G, which involves the third
derivative of E*.

Using the definitions introduced in Section 7.1.1.2 and 7.1.1.1, Eq. (7-19) can be
transformed into its final form which is conveniently expressed in the AO basis as

(1)§ = thU/P;‘VU' Zsf W/.LV¢T+ Z (/‘LV|K)\) nvo,kAo’

nvo nvo MUvkAao’

+ @ ¢ 4 M€ (7-22)
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where we used u, v,... to indicate atomic basis functions. We already defined P4
which is the change in the 1PDM between the ground state and the excited state
(including orbital relaxation effects) and (X+Y) which is the transition density (i.e.
the right eigenvectors of matrix (7-16)). The two-particle density matrix (2PDM)
L,okro collects all the contributions that multiply the integral first derivatives
(,Lw|:</\)§ and its expression is given in ref. [4], while h§ and S§ are the derivatives
of the one-electron Hamiltonian and the overlap matrlx respectlvely, finally w*"¢
is a derivatives of exchange-correlation contributions [25].

The expression of the energy-weighted density matrix W,,,,, is more easily given
in the MO basis [4, 26]

A + A
W/ Plﬂf io Sl GUU [qu]
Waiu’ = _CZ PaAzo' €ir
W - PaAhrr €uo SZubo’

where

S0 = 3 D410 G [0 0,4 5 DO 1,0, Gy [(X -1,
T, G5 [+, ]

Szaba = % Z(X+ Y)iao bio [(X + Y)rv] + Z(X Y)zaerbw- [(X Y)rv]

The gradient of the excitation energy includes two explicit PCM contributions, but
the solvent reaction field also implicitly affects Eq. (7-22) through P4 and W:

PCMé: Z VPvcty(f)Pﬁva + Z VPCM@) (X + Y),uvo’ (X + Y)KMT’

uvo,kAo!
uvo MuvkAoo'

The first explicit PCM contribution is common to all post-SCF gradients and
involves the change in the IPDM made by the post-SCF procedure [26, 28]:

é
ZV:VC(;W@)PA vo Z Mmvo |:Z ;wk 11::|

nvo nvo

— Z VkE-A(f) w Z VE AQHV@) + Z VE AQisz
k kil

(7-23)

In Eq. (7-23) V/* is the change in the solute’s electronic electrostatic potential at
the tesserae corresponding to the change in the 1PDM,

Z uro p,vk

pvo
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The second explicit PCM contribution to Eq. (7-22) is specific to the linear response
theory and arises from the derivative of the reaction field matrix element V7™

uvo, kAo’
in the (A + B) matrix,
PCM(£)
Z V;J.VU,K/\G" (X + Y)p.wr(X + Y)K)\(r’ (7_24)
nvkAoo’
E.(X+Y)(é) 1 w1 E, E(X+Y) 15,8y, E.(X+Y)
=23V, [qk]E(X+Y)+ZVk O Vi
k ki
where VkE’(X+Y) and [g"]E**Y are the contributions to the solute’s electronic

electrostatic potential and the polarization weights related to the transition density
(X+Y),

VkE,(X+Y) — Z(X—i— Dﬂygva,k

nvo

) S E, (X
[qr] 5090 =3 g5, v
1

Equation (7-22) can be finally summed to the standard DFT contribution to give
the expression for the total free energy gradient of each state in the presence of the
solvent:

GTPDFT.E _ GgFT,§ +of

For the description of the ground state DFT gradient contribution G2/"¢, the reader
is referred to Ref. [29]

7.1.14. The first-order properties of excited states: The effect
of the equilibrium and non-equilibrium regimes

The solution of the Z-vector equation (7-20) as well as the knowledge of eigen-
vectors (X+Y), and (X —Y), determine, for each excited state n, the variation P2
in the one-particle density matrix with respect to the ground state.

The knowledge of P2 permits, in turns, to evaluate the changes upon excitation
of the first-order properties. For the most common example of the electric dipole
moment, its variation between the excited and the ground state is given as:

A/.LAZZ‘VPAmA A=x,5,2

where m, is the matrix of the dipole integrals.

In the same way we can perform a population analysis of P? and thus obtain
information on the charge rearrangement and the change in bond order induced by
an electronic excitation.

The inclusion of solvent effects enriches this kind of analysis. In fact, by tuning
the value of the solvent dielectric permittivity &, which is included in the expression
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of the Q matrix, we can describe the changes in the excited state charge density
when passing from the Franck-Condon region of the solvent coordinate (i.e. the
non-equilibrium) to a completely relaxed solvent. This is done by changing the
value of & used to compute the polarization weights in Egs. (7-23) and (7-24)
from the optical value &, (namely the square of the refractive index) to the static
bulk value g,. Effects of these changes can be significant for polar solvent for
which e < g,. We note, however, that the the Z vector equation must be always
computed setting the PCM-type contribution to their equilibrium solvation regime
(i.e. using g, in the calculation of the apparent charges).

7.1.1.5. Energies, structures and properties of the CT state
of para-nitroaniline (PNA) in solution

Para-nitroaniline (PNA) represents one of the simplest compounds low lying excited
states characterized by an with intramolecular charge transfer (ICT) from —NH, to
-NO,, thus extremely sensitive to the presence of a stabilizing polar solvent, and
therefore serves as an important model for theoretical [30-32] and experimental
[33-38] studies.

PNA has an intense absorption band in the near ultraviolet to visible spectral
region which depends strongly on solvent polarity: in the gas phase this band peaks
at 4.24 eV [35] whereas in cyclohexane is red-shifted by 0.39 eV and in acetonitrile
by 0.83 eV [38]. In excited PNA, both the donor and the acceptor groups may
modify their conformation, leading to increased intramolecular charge separation.
Twisting of the nitro group relative to the central benzene moiety was first addressed
in ref [36] and more recently, transient absorption spectra in acetonitrile and water
have been measured by Kovalenko and coworkers [38] in a range 300-700 nm with
30 fs resolution. According to these studies, the relaxation of the PNA molecule
after photoexcitation is initiated by the twist of -NO, to a new equilibrium position
with a resulting string intramolecular charge. This happens roughly between 100 fs
and 1 ps and is recognized by the simultaneous decay of the excited state absorption
and the simulated emission band.

Following these observations we have applied the TDDFT approach described
in the previous section to calculate the transition energies and relaxed geometries
for the intramolecular charge transfer (ICT) state of the PNA in cyclohexane and
acetonitrile. In addition we have also calculated the dipole and the NBO charges
[41] at the geometry of the ground and of the excited state to describe changes
from Franck-Condon to relaxed excited states. Moreover, in the case of the polar
solvent we have compared equilibrium and non-equilibrium solvation schemes in
order to study the effect of the solvent reorganization on these properties.

In Table 7-1 we report the calculated and experimental vertical excitation energies
in gas phase and in the two solvents. The calculated values refer to the ground
state (GS) geometries (obtained at the B3LYP/6-311G(d,p)) and in the case of
acetonitrile to non-equilibrium solvation.

The calculated values correctly reproduce the experimental trend passing from
gas-phase to cyclohexane and acetonitrile. More quantitatively we found a red-shift
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Table 7-1. TDDFT and experimental excitation energies (eV) for the
intramolecular charge transfer state (ICT) of pNA in gas phase and in solution.
For solvated systems we also report calculated and observed gas-to-solution
shifts. Theexperimental energies correspond absorption spectral maxima

TDDFT exp
gas 4.07 4.24
cyclohexane 3.82 (0.25) 3.85(0.39)
acetonitrile 3.63 (0.44) 3.41 (0.83)

of 0.25 eV in cyclohexane and 0.44 eV in acetonitrile. These results indicate an
underestimation of the solvent effect when compared to the experimental shifts of
0.39 and 0.83 eV. A probable reason for this underestimation (or at least for a part
of it) is related to the DFT description which amplifies the solvent polarization
effects on GS while it does not sufficiently stabilize the ICT excited state (see
below for further details). As a result the red-shift calculated is smaller than the
observed one.

The main geometrical parameters for the GS and the CT state in gas phase and
in the two solvents are reported in Table 7-2

Both in gas-phase and in solution, the GS is essentially planar and only -NH, is
slightly wagged. The solvent effects present a clear behavior. As the polarity of the
solvent increases (passing from gas phase to cyclohexane and then to acetonitrile),
the pattern of the bond lengths changes: the C,C; bond length increases, while the
C,N,y, C;C, and C,N, bond lengths decreases, thus amplifying their respective
single- and double bond character. Such a behavior is easily explained using the
common picture of two molecular resonance structures, the neutral and the zwitte-
rionic, and observing that with more polar solvents the weight of the zwitterionic
structure will increase with the consequent changes in the geometry.

Both in gas phase and in solution the minimum of the ICT state is a -NO,
twisted structure; we note, however, that this twisting involves also a wagging of
the oxygen atoms thus leading to a net dihedral angle of about 70°. Due to this
deformation, the oxygen atoms are closer to a side of the aromatic moiety (here the
C,C; side) and thus the bond lengths are no longer symmetric. We observe that
the solvent effects for the ICT state are generally small, the main differences being
found the C,N, and the C,N,, bond lengths.

For both isolated and solvated systems, the main changes passing from GS to
ICT state are found in the N,;,O bond length which in the ICT state becomes
significantly longer and in the C,N, which becomes shorter. In gas-phase we also
observe a significant decrease in R(C,N,).

Few of the many theoretical studies of PNA explicitly address excited state
molecular geometries. Among them we cite here the work of Farztdinov et al.
[38], who performed semiempirical SAM1 calculations on the excited state nuclear
dynamics of PNA in gas-phase and in water (using the COSMO model [39]) and
a successive study by Moran et al. [32] using an excited state molecular dynamics
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Table 7-2. Main geometrical parameters for the ground state (GS) and theintramolecular charge transfer
state (ICT) of pNA in gas phase and in the two solvents. The values in parentheses refer to calculations

including diffuse basis functions on the heavy atoms

H y o)
N g /
/N Ni\
9
1
H 0 Yo
5
Gas Cyclohexane Acetonitrile
GS
R(C4Ny) 1.376 1.370 1.357
R(C4C5) 1.409 1.412 1.417
R(C5C,) 1.382 1.381 1.378
R(C,C)) 1.394 1.396 1.400
R(C|Nyo) 1.462 1.456 1.442
R(N,,0) 1.227 1.230 1.235
¢, (HNgC4C;) 19.2 17.2 11.2
¢,(0ON,,C,C,) 0.0 0.0 0.0
ICT

R(C4Ny) 1.351 (1.352) 1.344 (1.344) 1.333 (1.331)
R(C4Cy)5) 1.424/1.423 1.427/1.425 1.432/1.430

(1.425/1.423) (1.428/1.426) (1.433/1.433)
R(C5/5Cy6) 1.367/1.374 1.367/1.373 1.367/1.372

(1.368/1.374) (1.367/1.373) (1.367/1.371)
R(Cy/6Cy) 1.416/1.408 1.414/1.408 1.414/1.408

(1.415/1.408) (1.413/1.408) (1.414/1.408)
R(C|Nyo) 1.419 (1.422) 1.428 (1.430) 1.429 (1.431)
R(N,,0) 1.304 (1.303) 1.305 (1.305) 1.307 (1.307)
¢, (HNgC,C;) 0.0 0.0 0.0
¢,(0ON,,C,C,) 71.1 (71.6) 71.8 (72.1) 72.6 (73.7)

(MD) approach to calculate both ground and excited electronic state equilibrium
geometries. In the latter study the simulations were performed by combining the
AM1 semiempirical Hamiltonian with the collective electronic oscillator (CEQ)
method [40] and solvent effects were incorporated using the Onsager formulation
of the self consistent reaction field. In both studies the equilibrium geometry of the
CT excited state was found to have a greater zwitterionic character compared to
that of the ground state which resulted in corresponding changes of the bond-length
alternation. The only exception with respect to this two-state model was given by
the increase of the C;N,, in acetonitrile (but not in gas phase or in cyclohexane)
and the twisting of the NO, group in acetonitrile (of ca. 25° in the AM1 study and
90° in the SAM1 study).
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In the study by Moran et al. [32], a comparison with experiments was also
presented using the resonance Raman (RR) data measured by Kelley and coworkers
[34]. Most of their results are confirmed by our calculations even if the agreement
is not quantitative. The discrepancies can be due to different reasons but here it
is worth noting that, as the RR intensities are sensitive mainly to the excited state
surface near the Franck—Condon region with respect to both internal and solvent
modes, it is most appropriate to use the description of the excited state at the
ground-state equilibrium value of solvent coordinates while our calculations have
been done assuming a completely relaxed solvent. Indeed, our model is appropriate
for the prediction of the equilibrium geometry in the excited states, while a non-
equilibrium treatment would have been more suited for the comparison with RR
experiments.

We conclude the analysis of the solvent effects on the ICT state by considering
the dipole moments and the NBO charges [41] calculated with the relaxed density
matrix (see Section 7.1.1.4).

In order to allow a comparison with experimental data we first consider Franck-
Condon ICT states, i.e. we calculate the dipole moments of the excited state by keeping
the geometry frozen in the ground state. The results are reported in Table 7-3.

The experimental data reported in the Table for gas phase have been extracted
from measurements in dioxane solution by applying the Onsager reaction field
model to eliminate the solvent effect [37]. By contrast, the cyclohexane “exper-
imental” dipole moments have been obtained from those reported in Ref. [37]
re-including the proper reaction field factors. Once recalled these facts, we note
that the observed solvent-induced changes on both ground and excited state dipole
moments are quantitatively reproduced by the calculations.

As we have noted the data reported in Table 7-3 refer to Franck-Condon ICT
states; it thus becomes interesting to analyze the effects of both the solute and the
solvent relaxation. For the apolar cyclohexane, solvent relaxation effects are null
whereas they are large for the polar acetonitrile, as shown in Table 7-4 in which we
report the evolution of the dipole moment and of the NBO charges of the ICT state
of PNA in acetonitrile when we allow both solvent relaxation and solute geometry
relaxation.

Table 7-3. DFT/TDDFTand experimental dipole moments u (in Debye) of the
ground state (GS) and of the Franck-Condon intramolecular charge transfer (ICT)
stateof pNA in gas phase and in solution

GS ICT

Calc Exp Calc Exp
vacuum 7.2 6.2 12.4 15.3£1
cyclohexane 8.3 7.4% 14.0 18£1*
acetonitrile 10.5 14.2

2 In Dioxane ([37])



Structure and Properties of Molecular Solutes in Electronic Excited States 193

Table 7-4. Change of the natural bond order (NBO) charges and of the dipole moment of pNA in
the ICT state. The label (Un)relax/(Un)relax means that we do (not) have allowe for solute geometry
relaxation/solvent dielectric relaxation. Charges are in a.u. and dipole moments in Debye

n NBO(NH,) NBO(NO,)
Unrelax/Unrelax 14.2 +0.17 -0.60
Relax/Unrelax 16.5 +0.21 -0.63
Relax/Relax 20.8 +0.27 -0.96

As it can be seen by the relative changes of both the NBO charges and the dipole
moment, the solvent relaxation induces an increase of 10% in the charge transfer
and of 16% in the dipole but the effect of the twisting (and of the related changes in
the order geometrical parameters) gives a further 46% charge transfer and a further
26% dipole increase.

7.1.2. A Linear Response Approach to a State-Specific Solvent
Response

The PCM-TDDFT excitation energies obtained from Eq. (7-10) reflect the varia-
tions of the solute-solvent interaction in the excited states in terms of the effects of
the corresponding transition densities. To overcome this limitation (see the Intro-
duction) the PCM-TDDFT scheme may exploits the relaxed density formalism
(Section 7.1.1.4) to compute, for each specific electronic state, the variation of the
solute solvent-interaction in terms of the changes of the electronic density.

7.1.2.1. Excited state free energy

The free energy expression given in Eq. (7-2) when applied to the electronic ground
state of the solute can be written as

1
Sgs = E® — 5 Z Vis(s)qes(s:) (7-25)

where we have introduced the subscript GS to indicate that the corresponding free
energy and solvent charges refer to the ground state.

The free energy Eq. (7-25) can be generalized to any electronic excited state K
both in equilibrium as well as in non-equilibrium solvation regime. In the first case
we assume that the solvent reaction field has had time to completely relax from
the initial ground state value (determining VU(GS)) to the final value representing
a new solute-solvent equilibrium (and determining VU(K)) The nonequilibrium
regime we are here interested corresponding to process of vertical (Franck-Condon)
electronic transition. In this case the solvent reaction field is represented by, sum
of an electronic (or dynamic) contribution f/jf)’" (K) (in equilibrium with the excited
state K) and an orientational (or inertial) part still frozen in the initial ground state
value, \A/;"(GS). The expressions of the free energies corresponding to each regime
are described here below.
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7.1.2.1.1. Equilibrium By defining:
Efg= (W |+ 7,(Gs)| W) (7-26)

= <g’1§q |1:10| W§q> + Z Vi (s:)46s(s:)

as the excited state energy in the presence of the fixed reaction field of the ground
state (V,(GS)), the free energy becomes

e e 7 1A e
7 — <1I/K‘1 Ho—i—EV(,(K)‘ w>
1
= Egs - Z Vi (s)q6s(s;) + 5 Z Vi (5)qx (s;) (7-27)

= Egs - % Z [Vgs(s) + V(sis Pa)lggs(s;)

1 1
+ ) Z Vis(s:)qa(s) + 3 Z V(s;; Po)ga(s;; Py)

where we have expressed the solute electronic density in terms of the one-particle
density matrix on a given basis set and rewritten it as a sum of the GS and a
relaxation term P,. This partition automatically implies a parallel partition in the
electronic part of the electrostatic potential and in the resulting apparent charges,
namely:

Vi (s:) = Vs (5;) + V(s Py)
qx (5;) = qgs(s;) +qa(s;; Py)

A simplification in the notation can be obtained, by exploiting the approximation:

Vis(5:)qa(sis Py) = V(s;s Py)ges(s:) (7-28)

which allows to reduce the expression (7-27) into:
. 1 I
K = Egs— 5 > Vas(s:)q6s(si) + 5 > V(s;sPa)qa(sis Py) (7-29)

7.1.2.1.2. Nonequilibrium The excited state energy in the presence of the fixed
reaction field defined in Eq. (7-26) is now rewritten as:

G =it |f° +V,(G)| i) (7-30)

= (W B )+ S Vi () [ alis() + a5 ()]
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while the free energy becomes

neq __ neq
K - <WK

N A 1. .
HO‘{‘V:;’(GS)‘i‘EVgW(K)’ q,;u{>

- <WGS

1.
7263 73s)
= Egy Z Ve (s)qes (s)+ 5 Z Ve (s)a" (s;)

Z Vcs(s )qcs(s;) (7-31)

_ gy L Z[ Vas(5)455 (5) + Visi: P5) gy (5)+ }
Vas(s)as” (s P5™) + Vs "“’)q"y"(s,, Py

- 5 [ Vos ) 5+ Visi P00+ 5 Vos 0t
where the electronic and the orientational charges are:

ai" = Qe ) Vi’ = Q(e,) Vs + Qe )V(PLY)

dyn

=qgs +95" (7-32)
qx = qfs

in

By noting that g 4+ qJy = qgs We obtain:

In(eq _EK ,neq 4= Z V(Sl, Pneq)qdvn( 50 Pgeq)
+3 Z [Vas(s)as" (55 PE) = Vs Py0ai )] (7-33)

) Xl: Vs (5:)4q6s(s;)

Once again the notation can be simplified if we assume that:
Ves(sg5™ (s PL) = V(sis Py 55 (s)

we in fact obtain

In(eq = K neq Z Vis(5)46s(s) + = Z V(s neq)qd}n( Sis PZ“’)

(7-34)
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which is parallel to what obtained for the equilibrium case but this time the last
term is calculated using the dynamic charges ¢
The vertical transition (free) energy to the excited state K is finally obtained by

subtracting the ground state free energy G of Eq. (7-25) to G of Eq. (7-34):

wnKeq = Iréeq —Sas (7-35)

ne 1 e n e
= AEgg’ “+ 5 Z V(s;; Py q)CIZy (55 Py “)

The excited states free energies of Eqs. (7-29) and (7-34) and the corresponding
excitation energies depend explicitly on the electron density of the specific excited
state considered. Thus their evaluation requires the determination of the corre-
sponding electron density, i.e. the solution of a specific equation of motion for any
excited state. For this reason these excitation energies have been defined as State
Specific excitation energies.

7.1.2.2. A “corrected” linear response approximation

In Eq. (7-29) (or equivalently in Eq. (7-34) for the nonequilibrium case) the excited
state free energies are obtained by calculating the frozen-PCM energy E& and the
relaxation term of the density matrix, P, (or P'?). As said before, the calculation
of the relaxed density matrices requires the solution of a nonlinear problem being
the solvent reaction field dependent on such densities. An approximate, first order,
way to obtain such quantities within the PCM-TDDFT is shown in the following
equations [17].

Using a TDDFT scheme, in fact, we can obtain an estimate of AEX) = EX. — ECS
which represents the difference in the excited and ground state energies in the
presence of a frozen ground state solvent as the eigenvalue of the non-Hermitian
eigensystem (7-10) where the A and B matrices are obtained from Egs. (7-12) and
(7-13) by neglecting the PCM-solvent term, i.e. they describe the response of the
solute in the presence of the fixed ground state reaction potential.

The resulting eigenvalue w$ is a good approximation of AEE? in the sense that it
correctly represents an excitation energy obtained in the presence of a PCM reaction
field kept frozen in its GS situation but still it cannot account for the wavefunction
polarization. The consequence is that we cannot distinguish between equilibrium and
nonequilibrium wavefunctions and thus in this approximation AEky"*! = AEK) =
. By using this approximation, the equilibrium and nonequilibrium free energies
for the excited state K become:

. 1
Kq = 965+w(1)<+§ ZV(Si;PA)qA(Si;PA) (7-36)

ne. 1 e n s
K= Gos + 0+ 5 2 Vs Pi gl (s PY) (7-37)
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The only unknown term of Eqgs. (7-36) and (7-37) remains the relaxation part of the
density matrix, P, (or P’ (and the corresponding apparent charges g, or ¢%").
These quantities can be obtained through the PCM-TDDFT approach to analytical
energy gradients as shown in the previous section, performed in presence of the
fixed GS reaction field.

Once P, is known we can straightforwardly calculate the corresponding apparent
charges by the PCM equation

9, = Q’(e,)V(Py) (7-38)

where

€, =€

P, =P, if an equilibrium regime is assumed

Q=44

ex = EOO

Py =P} if a nonequilibrium regime is assumed

@i =aqy"

The “corrected” Linear Response approach (cLR) consists in the use the TDDFT
relaxed density and the corresponding apparent charges (7-38) into Egs. (7-36) and
(7-37) to obtain the first-order approximation to the “state specific” free energy of
the excited state. The details of the implementation are described in Ref. [17]. This
corrected Linear Response computational scheme can be applied to the analogous of
the Time Dependent Hartree-Fock approach either in the complete (Random Phase
Approximation) or approximated (Tamm-Dancoff approximation or CI singles, CIS)
version.

An illustrative example of the comparison between the vertical (nonequilibrium)
absorption energy obtained with the standard PCM-linear response, its corrected
version, and with the wavefunction State-Specific approach based is reported in
Table 7-5.

Table 7-5. Excitation energies (eV) at HF/CIS level forselected transitions of methylen-cyclopropene
(MCP) and acrolein (ACRO) in dioxane (diox) and acetonitrile (ACN) solutions obtained using linear
response (LR), State Specific (SS) and corrected linear response (cLR) approaches

AE#® MCP(r*) ACRO(n7*) ACRO(mr*)

5.65 430 6.91

diox ACN diox ACN diox ACN
AEKYe 5.75 5.89 4.47 4.63 6.91 6.83
LR 5.70 5.85 4.46 4.63 6.63 6.61
cLR 5.62 5.79 4.40 4.58 6.90 6.81

SS 5.51 5.70 4.37 4.57 6.88 6.80
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For this study we have used methylen-cyclopropene (MCP) and acrolein (ACRO)
in two solvents, an apolar (dioxane) and a polar one (acetonitrile). The selected
transitions can be seen as representative examples of different types of electronic
transitions for which different solvent responses can be studied: for MCP the first
7 — ar* transition for MCP, and the first n — 7* and 7 — * transitions for
ACRO. We note that in MCP the resulting excited state is characterized by a dipole
moment which has an opposite direction with respect to that of the ground state,
whereas in ACRO, the n — 7 and 7 — 7* transitions are characterized by a
decrease and an increase in the dipole moment passing from ground to excited state,
respectively.

As it is not possible to obtain TDDFT-SS results, the results refer to CIS method.
In fact, this method can be obtained from two points of view: one is to consider
the method as a standard CI, in which the wave function of the excited state is
constructed by single excitations from the HF determinant and thus a SS solvent
response can be obtained; the other is to consider CIS as the result of the Tamm-—
Dancoff approximation applied to the linear response equation based on the HF
wave function. The two ways of looking at the CIS method give the same equations
in vacuo, but, as discussed above, they differ for molecules in solution due to the
nature of the effective Hamiltonian.

As it can be seen, the three excitations show a different behavior passing from
a LR to a SS approach. The nature of this behavior can be correlated with the
differences between the changes in the dipole moment passing from the ground to
the excited state (Au = |ug — tgs|) and the transition dipole moment g «. In the
same paper, the conclusion of such analysis confirmed that if 2u?, s.x 18 larger than
Ap?, the LR excitation energy is smaller than the SS one, and vice versa.

For all excitations, the cLR values represent a change of the LR result towards
a better agreement with SS, and in one case (MCP in dioxane) the cLR model is
able to recover the red solvatochromism found with the SS model which was lost
in the LR scheme, where a blue shift was obtained. It is important to note that
the increment in the computational effort of the cLR approach with respect to the
standard LR calculation is almost negligible.

A parallel analysis on TDDFT, show that the corrections introduced in the cLR
approach with respect to the standard LR follow the same trends displayed by the
corresponding LR-CIS methods, which is determined from the differences between
the changes in the dipole moment of each state and the corresponding transition
moment.

7.1.3. Time Dependent Solvation

The method used to represent the time dependent evolution of the solvent polar-
ization that follows the transition between two different electronic states in the
solute has been obtained as a generalization of the time-dependent model origi-
nally proposed to describe ground state charge-transfer phenomena within the PCM
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framework [42]. In such a generalization, the implementation of analytical deriva-
tives of TDDFT excitation energies is used to calculate the change in the one-particle
density matrix of the solute due to an electronic transition and the corresponding
change in the solvent reaction field.

7.1.3.1. The TDPCM model

In a linear response regime the solvent polarization at a given time due to a TD
electric field can be expressed as a convolution integral on previous times as [43]:

P(t) = / di' x(1 — £)E(r)

where x(7) is delayed the solvent response function.

If we apply this scheme to the time dependent evolution of the solvent polarization
after a vertical excitation from an equilibrated ground state to an excited state K and
we reformulate the problem within the PCM framework, the equation to consider
is that defining the TD apparent charges, namely:

g0 = [ drR(t=1)V(1) = qx (1) = dgs + 80, (1) (7-39)

—o0

where we have re-written the time dependence of the potential as the sum of the
ground state potential and a time dependent term: V() = V5 + AV(2).
It is convenient to report here the boundary conditions for the charges q (¢):

qx(—00) =qgs
7-40
qx(+00) =qx = Qg5 +q, (7-40)

where at (t — —oo) the solvent is in equilibrium with a ground state solute and at
t — oo a new equilibrium is reached between solvent and an excited state solute.

The general TD linear response equation (7-39) can be transformed into a working
equation [16, 17] for the potential time dependence (AV(¢)), namely as a step
function, AV(z) = 6(¢) AV, where AV =V —V ;. =V (P,). In this approximation,
in fact, the variation of the polarization charges q, at time ¢ due to a change in
the electrostatic potential at time ¢ = 0 becomes:

8qy (AV, 1) = Aq+8'qx(AV, 1) (7-41)

8'qg(AV, 1) = —% /(;oo djwlm [R (w)]cos(wr) AV (7-42)

where Aq = (qx —qgs) and R is the PCM response matrix (in the following,
for simplicity’s sake we shall omit the explicit dependence of 6q; on AV). This
expression is obtained passing from the time domain to the frequency domain
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as required by the form of the dielectric response of the solvent given in terms
of its complex dielectric permittivity £ as a function of the frequency w. We
note here that the w dependence of & can either be modeled using pure diffusive
expressions (as in the Debye relaxation expression), or calculated on the basis of
experimental measurements of the absorption in the far-infrared region, combined
with the diffusive relaxation at low frequencies. The latter methodology has the
advantage of a more correct representation of the short-timescale of the solvent
response.

Within the TDPCM formalism, the time dependent free energy of the solute
solvent system can be expressed in term of the TD solvation charges, by a proper
reformulation of the expression given in Eq. (7-31); the resulting time dependent
free energy expression becomes

G (1) = g5 3 Vi s Pl i (5 1) — 5 3V (550) g 51
’ l (7-43)

where we have neglected the time dependence of the polarization of the excited
state wavefunction as far as concerns the vacuum term ((WK[Z] |I:1°| 1IfK[t]> o~

<IPK[+oo] |H°| WK[+w]> = EY for all ). In Eq. (7-43) we have also introduced the
square parentheses to indicate a parametric dependence on time. In our first-order
model in fact, the variable time is present only in the constitutive equation of the
PCM charges (7-41). These charges are then used as fixed external charges (but
changing with time) in the various calculations (one for each time) giving P,[¢]
which has thus only a parametric dependence on time.

In Eq. (7-43) the last term on the right hand side accounts for the energy spent to
polarize the orientational degrees of freedom of the solvent and V (7) is the potential
that would generate the orientational part of the PCM charges (V (1 =0) = V5
and V (1 = +00) = Vi). We note that the function Gy (¢) satisfies the following
conditions:

t—0

Gx (1) — Gx*

t—>+o00

Gk (1) — G¢

where G is defined in Eq. (7-34) and G/ is defined in Eq. (7-29). The first
relation can be justified considering that at = 0, the charges defined in Eq. (7-39)
become:
/ =0 in in
8'qy (1) — qgs — gy
dyn

t—0 :
qx (1) — q¢s+qx (7-44)

From a practical point of view it is useful to rewrite Eq. (7-43) in an alternative
form by introducing a time dependent transition energy AUy, (), namely:

Gk (1) = G5+ AUy, (1) (7-45)
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where G is the equilibrium free energy of the ground state given in Eq. (7-2) and:
1
AUy (1) = AESS+ 5 DV (s Palr]) gu(sis 1)

+ % > [Vas () =V (s 0]8'q (53 ) (7-46)

being AEXS = w% (see Section 7.1.2.2) and q,, () = q, + &8'qg (2).

7.1.3.2. Time dependent Stokes shift

One of the applications of the TDPCM model is the calculation of experimental
observable the time dependent Stokes shift S(¢) (TDSS). In experiments, the time
evolution of the solvent orientational response is evaluated from the time dependent
shift of the solute maximum fluorescence signal v(r) with respect to its equilibrium
value v (c0) [45]:

v (1) —v ()

S =0 =v(=)

(7-47)
where v(0) is the value corresponding to the vertical transition.

During dielectric relaxation, the fluorescence shift is influenced by the solvent,
due to the presence of electrostatic, time dependent solute-solvent interactions. The
shift of the solute fluorescence therefore contains information about the solvent
reorganization process. If the geometry of the solute is subject to negligible changes
during the transition, it is possible to express S(¢) in terms of the difference between
the time dependent solvation energy in the excited and in the ground state.

To determination of the TDSS, S(t), is based (i) on the evolution with time of
the excited state energy and the PCM charges, obtained as shown in the previous
section and (ii) on the description for each time ¢ of a vertical ground state, reached
by the vertical emission:

1 n
G (1) = E’+ 5 Z V (s;; Pgslt]) qda)s (s;) (7-48)

1 - ) )
3 Z V(s t) gy (s 1) + Z V (s;; Pgsl]) g (s;5 1)

where:
E* = (¥ |H°|¥)
a() = qe()—q" (7-49)
q" = Q(e )V(P)) with x = GS, K

In Egs. (7-48) and (7-49) we have used the same notation used in Eq. (7-43) to
indicate a parametric dependence on time through square parentheses. Here such a
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parametric dependence applies not only to the excited state but also to the vertical
ground state: the energy of such a state in fact is obtained by using fixed (but
changing with time) orientational PCM charges q¥%(7) in the proper Fock (or KS)
operator. It is worth noting that these charges q% (7) in Eq. (7-49), which represent
the orientational part of the polarization, do not derive from an equilibrium situation,
as in usual absorption processes, but at each time ¢ the emission start from a
non-equilibrated excited state.

The time dependent emission frequency is finally obtained by subtracting from
G&i (1) the corresponding values of G (), defined in Eq. (7-45), calculated at the
same .

As an example of application, in Figure 7-1 we report the results obtained for
the first = — #* transition of MCP in acetonitrile. For this study, two alternative
expressions of £(w) have been tested, one taken from a combination of fitted
experimental data in the high frequency region and of the Debye-like relaxation in
the low frequency region (indicated as fit), and one modeled on a purely diffusive
Debye relaxation (indicated as Debye).

In the upper panel the TDSS defined in Eq. (7-47) is displayed (by definition,
the TDSS values vary form 1 to 0) while in lower panel the time evolution of

0.8 1

064 |

S()

044 \n

0.2 4 N

0.0 —=====
4.2
4.0
3.8

Gy (1)

Energy (eV)
2

0.4
0.2 Ggs' (1)

0.0 : ; .
0 0.5 1 1.5 2
time (ps)

Figure 7-1. Upper panel: TDSS functions for MCP calculated at TDDFT level using the Debye (full
line) and the fit (dotted line) models for &(w). Lower panel: tme dependent evolution of the excited
state free energy G (¢) (in eV) of MCP calculated at TDDFT level using fir model for &(w). For the
latter, we also report the transition energies towards the vertical ground state at the various times. All
the energies are referred to the ground state equilibrium free energy
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the excited state free energy G (¢) and the corresponding emission energies to the
vertical ground state (represented as arrows) is shown.

One feature of the fir curve obtained with a combined Debye+exp, not observed
in the Debye-only model is the initial Gaussian decay and the following oscillations
[43-47]. At sufficiently short times, the motions of molecules can be considered as
independent of intermolecular interactions; the frequency which characterizes the
initial Gaussian decay of the solvation energy thus reflects the “free streaming”
of solvent molecules uncoupled from one another. This free-streaming motion
represents the first phase of solvation. The oscillations, on the other hand, represent
collective dynamics occurring in an intermediate time regime. Within this phase
of solvation molecules are colliding with their neighbors (and the solute) and
rebounding in a relatively coherent fashion for some length of time, exhibiting
behavior similar to that of an underdamped oscillator. However, these oscillations
die out relatively quickly and the diffusive contribution to the overall response
becomes predominant. In this timescale, the two curves follow similar decay rates.

This simple example shows that, by explicitly considering the PCM time
dependent charges, one can obtain information about the effects of the solvent
relaxation on the solute electronic states. By contrast, the standard analysis of the
TDSS function will only give information on the solvent relaxation independently
of the solute.

A further example of the potentialities of the TDPCM model is given in the
following section.

7.1.3.3. Cyclic relaxation

We can now trace the complete evolution of an electronic excitation in the
solute starting from the vertical transition from an initial solute-solvent equilibrium
situation in the ground state, and going back to the ground state, considering the
relaxation of both solute geometry and solvent polarization. The overall process
can be represented as a six-step cycle:

e Step 1: electronic excitation of the solute. Solute and solvent are in a nonequi-
librium situation, where the solvent is only partially equilibrated with the new
charge distribution of the excited solute.

e Step 2: the solvent relaxes towards a new equilibrium with the solute electronic
excited state, still maintaining the ground state geometry.

e Step 3: the geometry of the solute relaxes towards its new equilibrium structure
together with the solvent.

e Step 4: the solute emits, returning to the electronic ground state. The solvent is
again in a (reversed) nonequilibrium situation.

e Step 5: the solvent relaxes towards a new equilibrium with the solute electronic
ground state, frozen in the excited state geometry.

e Step 6: the solute geometry relaxes towards the ground state equilibrium structure
together with the solvent reaching again the initial equilibrium situation.

In this step cycle, we have assumed that the explicit time evolution of the solvent
relaxation is decoupled from the relaxation of the solute geometry; the latter has thus
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to be evaluated in the presence of a completely equilibrated solvent or alternatively
in a nonequilibrium solvent.

The first three steps represent the evolution of the solute excited state. Step
1 and Step 2 are described following the time evolution of G (¢) in Eq. (7-45)
where the electronic excitation occurs at ¢ = 0, whereas Step 3 is described by a
geometry optimization of the excited state solute in the presence of an equilibrated
solvent, which is equivalent to consider dielectric relaxation to be faster than the
solute geometry relaxation. Such as assumption has to be verified for the system of
interest, and, in all cases where it is not valid, Steps 2 and 3 need to be inverted.

Steps 4-6 describe the evolution of the system when the solute returns to the
ground state. For Step 4 and 5 we introduce the ground state analog of the time
dependent energy function (7-43) as:

Gos (1) =E°+ % Z V(sis Paslt]ggs (si3 1) — % Z vcs(si)‘S/‘IGs (5:51)
l I (7-50)

where:

Ags (1) = qx + 095 (1) (7-51)
=qx +[Aqgs+8'qes (1)] = Qg5 +0'qs (1)

and the charges 0q (¢) are calculated with the step potential AV=—V (P,), thus
8qgs (1) = —0qx (). In Eq. (7-50) the last term has the same origin of the analogous
term in Eq. (7-43) but in this case VGS (r=0) = Vi and VGS (t=400) = V4.

The free energy G (¢) in Eq. (7-50) is different from Gz¢', defined in Eq. (7-48),
since the former represents the time dependent evolution of an initial nonequilibrium
ground state following the emission from an equilibrated excited state, whereas the
latter always represents a vertical ground state following from the instantaneous
emission from a time dependent excited state. We also note that at t = 0, both the
charges in Eq. (7-51) and the energy in Eq. (7-50) reduce to PCM nonequilibrium
charges and free energy, respectively, e.g.:

dyn

AGs (f) (qcs + ‘IZ\I) +4g6s

and

t—0

s ()73 Gt = E'+ 5 2V (03 PesloD a5 () (152

——Z[ k() (43 (s) + dgs(s)

+V (53 Pss[0]) (‘IiAn(Si) + ‘]gs(si))]
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where we have used the relation:

Vi (Si)qicns(si) =V (s;; Pgs[0]) qicns(si) +V(s;Py) ‘Iicns (s;)
=V (s;; Pgs[0]) qgs(si) +V (s:; Pss[0]) 612" (s;)

Finally, Step 6 represents the relaxation of the solute geometry to the initial
equilibrium situation (once again the relaxation of the solvent is considered faster
than the solute geometry relaxation).

By making use of Steps 1 to 6 we complete the description of electronic excitation
and emission of a molecule in solution accounting for the real dynamics of the
solvent response.

As noted at the end of the previous section, the TDPCM not only allows the
evaluation of the changes in the energies of the electronic states but it can also
be used to study the evolution of the solute properties during the various steps of
the cycle. As a simple but indicative example, in Figure 7-2 we report the time
dependent evolution of the Mulliken charges on the carbon atoms for both the
excited and the ground state of MCP; these evolution correspond to steps 2 and
3, respectively (the charges are calculated with respect to the corresponding initial
states, namely the vertical excited state a # =0 and the vertical ground state after
excited state geometry relaxation).

Excited state Ground state

Figure 7-2. Graphical representation of the time dependent evolution of the Mulliken atomic charges
(a.u.) on the carbons of MCP for the excited (left) and the ground (right) states. All the values are
referred to the nonequilibrium values, i.e. the values calculated in the vertical excited and ground state,
respectively
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The graphs reported in Figure clearly show the contribution of the solvent to the
redistribution of the charge density in the two electronic states following vertical
absorption and emission, respectively. The excited state is characterized by a flux of
electronic charge from the C;-C, bond towards the ring; the effect of the solvent relax-
ation is to amplify such a flux, as shown by the positive values of the change in the C,
and C; charges which increase with time, and the parallel increase of negative charge
on the C, and C, atoms. For the ground state, a reversed phenomenon is observed, with
anet time dependent increase of the electronic charge in the C, atom.

7.1.4. Conclusions

We have reviewed some recent computational methodologies based on the combi-
nation of the TDDFT theory with the Polarizable Continuum solvation Model (PCM)
to study chromophores in homogenous solutions. In particular we have considered
(i) the theory of the analytical gradients of the PCM-TDDFT excitation energies of
solvated molecules, which allows to compute excited states’ first order properties
(ii) the PCM-TDFT approach which leads to a state specific description of the
solute-solvent interaction, and (iii) a time-dependent version of the PCM-TDDFT
which allows to describe the relaxation of the solvent after a vertical transition
(absorption/emission) of the solvated chromophore.

For space limitation, other recent extensions of the PCM-TDDFT scheme aimed
at describing other interesting photophysics phenomena of solvated molecules have
not been considered. We cite here, as examples, the application of PCM-TDDFT
to the study of the Excitation Energy Transfer (EET) between chromophores in
different environments [48], and of absorption/emission spectra of chromophores
in complex environments such as the interphase between two different media [49].

All these new QM computational tools may be of support to the efforts toward
an even better understanding and description of the photophysics and of the photo-
chemistry of molecules in condensed phase and in complex environments.
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NONADIABATIC EXCITED-STATE DYNAMICS
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Abstract:

Keywords:

Ab inito molecular dynamics, although still challenge, is becoming an available tool for
the investigation of the photodynamics of aromatic heterocyclic systems. Potential energy
surfaces and dynamics simulations for three particular examples and different aspects of
the excited and ground state dynamics are presented and discussed. Aminopyrimidine is
investigated as a model for adenine. It shows ultrafast S-S, decay in about 400 fs. The
inclusion of mass-restrictions to emulate the imidizole group increases the lifetime to
about 950fs, a value similar to the lifetime of adenine. The S,-S; deactivation, typical
in the fast component of the decay of nucleobases, is investigated in pyridone. In this
case, the S,-state lifetime is 52fs. The hot ground-state dynamics of pyrrole starting at
the puckered conical intersection is shown to produce ring-opened structures consistent
with the experimental results

Excited State, Heteroaromatic Molecules, Nonadiabatic Dynamics, Surface Hopping

8.1. INTRODUCTION

After UV photoexcitation the DNA and RNA bases return to the electronic ground
state at an ultrafast time scale of about one picosecond [1]. Their short excited-state
lifetimes imply an intrinsic stability against structural photoinduced changes. The
characterization of the excited-state energy surfaces by means of stationary points,
conical intersections and relaxation paths has been of fundamental importance for
the understanding of the mechanisms taking place in the ultrafast deactivation of
these bases [2—10]. In particular, theoretical investigations have shown the existence
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of several deactivation paths connecting the Franck-Condon region to conical
intersections between the first singlet excited state and the ground state. These paths
can be grouped into two types, those involving out-of-plane ring deformations and
those involving planar bond-stretchings [7].

The full understanding of the complete ultrafast deactivation phenomenon
involves time-dependent quantities, such as lifetimes and reaction rates, that call
for the use of dynamics methods. Nevertheless, the dynamics simulation of nucleic
acid bases and pairs is still a very challenging topic given the size and complexity
of these molecular systems. The main limitation is the extremely high computa-
tional costs to obtain an appropriate description of the excited states, which requires
quantum chemical multireference methods to provide a balanced description of the
multitude of energy surfaces. Another important point is the dimensionality of the
problem in terms of internal coordinates that should be taken into account. The
fact that in heteroaromatic systems the conical intersections (and other important
regions on the energy surfaces) involve strongly distorted structures precludes the
restriction of the dynamics to few selected coordinates chosen by educated guesses.
The usage of the full set of degrees of freedom seems to be mandatory elimi-
nating, therefore, the systematic construction of potential energy grids in reduced
dimensions. On the other hand, increasing computer power and improved quantum
chemical methodology have made the direct or on-the-fly dynamics approach in
classical dynamics calculations feasible even for high-level ab initio methods. In
this approach all internal degrees of freedom are taken into account in an automatic
way without any pre-computation of energy surfaces by calculating the electronic
quantities (energies, energy gradients, etc.) as needed in the course of a trajectory.

For the simulation of nonadiabatic photochemical processes, the on-the-fly
approach can be naturally implemented along with surface-hopping algorithms
[11]. In photochemical processes usually sufficient initial energy is available from
the vertical photoexcitation meaning that existing small energy barriers can be
overcome and the region of the intersection seam can be approached in hundred
of femtoseconds to few picoseconds. Because of the relatively short simulation
times needed, such cases are specially tailored to an application of surface-hopping
on-the-fly dynamics. The price to pay for using local approaches is that phenomena
such as tunneling or vibrational quantization cannot be investigated.

The understanding of the energy surfaces is, of course, necessary for successful
dynamics simulations. This knowledge is essential for selecting the appropriate
quantum chemical method to be employed in the dynamics. Therefore, before
presenting dynamics results we will discuss in some detail the features of the
potential energy surfaces of heteroaromatic systems. The existence of conical inter-
sections between the ground and the first excited states is to a large extent connected
to the biradical character of the molecules in the excited state. For this reason, it is
worth to discuss the relaxation paths and conical intersections of basic units such
as ethylene and substituted ethylenes. We want to show that the understanding of
these systems also helps to understand and classify the more complex situations of
aromatic heterocycles. Finally, the dynamics of three distinct heterocycles will be
presented, focusing in each case on a different aspect of the photochemical process.
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8.2. METHODS IN AB INITIO ON-THE-FLY DYNAMICS

The description of molecules close to conical intersections normally is a multiref-
erence problem that demands the use of advanced methods for the treatment of the
involved electronic states. The computational cost of on-the-fly ab initio dynamics
is, as aforementioned, the main bottleneck for these simulations. If the time to
compute one single point (excited state energy + gradient + nonadiabatic coupling
vectors) is t,,, the total cost of the dynamics is n,,,; X ng, X t,, ~ 106tsp, where n,,,;
is the number of trajectories (typically < 10%) and n,, the number of single points in
each trajectories (typically < 10*). Although this situation is alleviated by the fact
that the trajectories can run independently of each other, the ultrafast dynamics (few
picoseconds) of a 6-membered heterocycle such as the pyrimidine bases is close to
the limit of what can be treated considering the current computational capabilities.

Moreover, the method used to perform dynamics including all degrees of
freedom should also allow the analytical computation of energy gradients and
nonadiabatic coupling vectors. New semi-empirical methods have been worked out
[12-16] within the framework of multiconfigurational wavefunctions. Semiem-
pirical methods, however, have as major limitation the unpredictable quality of
the potential energy surfaces in regions not spanned by the fitting of the param-
eters. Some methods such as the time-dependent density functional theory (TD-
DFT) [17-19], the second-order coupled-cluster-based (RI-CC2) [20, 21] and the
equation of motion-coupled cluster (EOM-CC) [22, 23] allow the computation of
analytical gradients, but lack the multireference character. Others, such as density
functional theory/multi-reference configuration interaction (DFT/MRCI) [24] or
the family of multireference perturbation theory methods [25-28] can adequately
describe the energies close to the conical intersections, but do not allow the compu-
tation of analytical gradients. It is worth noting that analytical gradients computed
with complete active space second-order perturbation theory (CASPT2) have been
recently developed [29] and this constitutes a promising fact for the near future.

Substantial progress has been made by the development of analytic energy
gradients and nonadiabatic coupling vectors for multireference configuration
interaction (MRCI) and state-averaged multiconfiguration self-consistent field
(SA-MCSCEF) approaches [30-34]. In particular, our group has worked on the devel-
opment of methods and program systems for performing both, the quantum chemical
and the dynamics calculations based on these methods. MRCI and SA-MCSCF
calculations allowing the computation of analytical gradients and nonadiabatic
coupling vectors [30, 32-34] can routinely be performed with the COLUMBUS
program system [35, 36]. On-the-fly adiabatic and nonadiabatic (surface hopping)
dynamics can be performed using these gradients and vectors with the NEWTON-X
package [37, 38].

A full description of the outline and the capabilities of the NEWTON-X package
is given elsewhere [38]. In brief, the nuclear motion is represented by classical
trajectories computed by numerical integration of Newton’s equations using the
Velocity-Verlet algorithm [39]. Temperature influence can be added by means of
the Andersen thermostat [40]. The molecule is considered to be in some specific
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electronic state at any time and the nuclear trajectory is driven by the gradient of
the potential energy surface of this state.

If the molecule is restricted to be in only one electronic state during the complete
trajectory, the dynamics is termed adiabatic. On the other hand, imposing the electronic
wavefunction to obey the time-dependent Schrodinger equation, the transition proba-
bility to jump from one potential surface to another can be obtained on the basis of
either Tully’s fewest switches algorithm [11, 41] or the modified fewest-switches
algorithm proposed by Hammes-Schiffer and Tully [42]. In either case the decoherence
correction developed by Granucci and Persico [43] can be applied. These algorithms
statistically decide in which electronic state the system will stay in the next time step.
When this option is activated, the dynamics is called nonadiabatic.

NEWTON-X has been developed in a highly modular way, with several
independent programs communicating via files. At each integration time step of
Newton’s equations, NEWTON-X invokes a suitable external quantum chemical
program and obtains the electronic energies, energy gradients, and nonadiabatic
coupling vectors. In principle, any program that can supply analytical energy
gradients and eventually analytical nonadiabatic couplings is eligible. For the time
being, interfaces are provided for the quantum chemistry packages COLUMBUS
[35, 36, 44], with which nonadiabatic and adiabatic dynamics using MCSCF and
MRCI methods can be performed and TURBOMOLE [45] (adiabatic dynamics
with CC2 or TD-DFT). Currently, an interface to the ACES II package [46] is
under development.

As already discussed above, the adiabatic and nonadiabatic simulation of photo-
chemical or photophysical processes requires the execution of a rather large number
of trajectories. Each trajectory is completely independent of the others. Never-
theless, after having all trajectories completed, the data must be retrieved and stored
together in such a way that all quantities of interest, such as quantum yields, state
populations, and internal coordinates, can be computed as averages over all trajec-
tories. NEWTON-X contains routines to generate ensembles of initial conditions
for initiating several independent trajectories, to control the input and output of
multiple trajectories, and to perform the required statistical procedures. In particular,
in the examples discussed in this work the initial conditions for the simulated
trajectories were generated by means of a ground-state quantum-harmonic-oscillator
distribution of nuclear coordinates and momenta.

8.3. COMPUTATIONAL DETAILS

Throughout this work, several systems are discussed and the specific theoretical
level is indicated in each case. The adopted notation is given as follows. CASSCF
calculations including n electrons, m orbitals and averaging k states is denoted
as SA-k-CASSCF(n, m). If all CAS configurations are used to build the reference
space for the MRCI procedure, it is referred to simply as MRCI. On the other hand,
if a different space with p electrons and g orbitals is used, it is denoted MRCI(p, g).
The CI expansion includes either all single and double excitations (MR-CISD) or
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only single excitations (MR-CIS) with respect to the configuration state functions
describing the reference space. When single- and double-excitations are included,
the generalized interacting space restriction [47] is adopted. Higher-order excitation
effects are taken into account by means of the Davidson correction (+Q) [48-50].
The Pople basis sets 6-31G* and 6-31G are used [51, 52].

In the dynamics simulations, time steps of 0.5 fs were adopted for the integration
of the Newton’s equations. The time-dependent Schrédinger equation was integrated
with the 5th-order Butcher algorithm [53]. The momentum after frustrated hoppings
was kept constant and after actual hoppings it was readjusted along the nonadiabatic
coupling vector.

Along this chapter, the structure of the conical intersections of several hetero-
cycles will be discussed and described. Normally they correspond to different types
of puckered rings and it is worth to use some systematic way to classify them.
Among several possibilities (see [54] for a brief and recent review on this subject),
we have adopted the Cremer-Pople approach (CP) [55, 56]. The Cremer-Pople
approach is designed to give a mathematically well defined description of the
shape of a puckered ring. It works by projecting the 3N-6 internal coordinates of
an N-membered ring onto a subspace of N-3 coordinates (or parameters). Each
point in this subspace corresponds to a different conformation. Thus, two geometric
structures differing by bond lengths or bond angles but still sharing the same N-3
coordinates are said to have the same conformation. The conformation can be further
classified [57] (or alternatively decomposed [58]) in terms of the six canonical
puckered rings, namely, chair (C), boat (B), envelope (E), screw-boat (S), half-chair
(H), and twist-boat (T). To deal with conical intersections in heterocycles, we have
adopted the conformer-classification and notation proposed by Boeyens [57] with
the polar set of CP parameters (Q, 6, &) [55]. While the Q parameter gives a general
measurement of the puckering amplitude (Q = 0 A corresponds to the planar ring),
the 6 and ¢ angles allow the continuous deformation from one conformation into
another. For instance, the conformation T, corresponding to twist-boat shape with
the atom 1 moved to above the ring-plane and the atom 3 moved to below, can
be transformed either into the conformation *S; (atom 4 above and atom 3 below
the ring plane) by increasing 6 or into “*B (atoms 1 and 4 above the plane) by
increasing ¢. The advantage of adopting such a scheme will be evident when, for
instance, in Section 8.5.1 we use these CP parameters to compare the minima on
the crossing seam (MXSs) in aminopyrimidine and adenine. The calculations of the
CP parameters were performed with the PLATON program [59].

84. EXCITED-STATE DEACTIVATION PATHS AND DYNAMICS
OF SINGLE =-BONDS

The basic features of the relaxation paths and conical intersections in heteroaromatic
rings can be understood in terms of the paths and intersections in ethylene and
substituted ethylenes. As soon as a  electron is excited into the w* orbital the
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following two paths become energetically favorable. The first one is the well
known twisting around the principal axis. The mw* state is stabilized and the S,
state is destabilized. This leads to an avoided crossing between the S, and the
S, states close to the 90° twisted structure. Bonaci¢-Koutecky et al. [60] have
shown that the magnitude of the gap between S, and S, depends on the difference
of the electronegativities between the two atoms of the double bond. For a non-
polar system, the gap can be as large as 3 eV as it is in the case of ethylene,
while it is very small for CH,NH; (Figure 8-1a). Since the gap depends on the
electronegativity, it can be modified by the application of external electromagnetic
fields [61], by solvation effects [62], or — what is the most important case for the
current discussion — by activation of other internal modes simultaneously to the
torsion. In ethylene for instance this happens by activating the pyramidalization or
hydrogen migration [63—-65] modes (Figure 8-1c).

An important feature observed in torsional trajectories is that they often do not
reach the crossing seam region at 90° even when the conical intersection exists there
[66]. This happens because the gradient difference vector, one of the two vectors
that linearly split the state degeneracy, points along the stretching coordinate of the
main axis. Therefore, to reach the crossing seam after twisting demands a specific
combination of torsional and stretching motions that gives the appropriate values
of these coordinates at 90°. Normally this is not true and the actual value of the
stretching corresponds to a finite gap (avoided crossing), in which the transition
probability is relatively small. The consequence of the lack of correct phase between
the torsion and the stretching is the increasing of the excited-state lifetime. Several
torsional periods are required before the system decay, giving time to the activation
of other internal modes. As a result, other regions of the crossing seam but the
twisted configuration may be actually used to return to the ground state.

(a) (b)

Figure 8-1. Conical intersections in ethylene (c and d) and CH,NH; (a and b): (a) twisted, (b) stretched-
bipyramidalized, (c) twisted-pyramidalized, and (d) ethylidene
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The second type of relaxation process occurring for these polar T systems
has been observed in both MRCI and CASSCF dynamics of CH,NH; [38] and
SiH,CH, [66] systems and is characterized by a very strong stretching along
the main axis with a simultaneous pyramidalization of both terminal groups
(Figure 8-1b). This stretched-bipyramidalized conformation also gives rise to a S-S,
conical intersection. Torsional and stretched-bipyramidalization types of trajectories
are not completely separated and it is possible to observe trajectories with mixed
features of both types.

The conical intersections at the stretched-bipyramidalized structures seem to be
connected by the same crossing seam to the twisted conical intersection, as it has
been observed in the case of CH,NHJ [38]. The large CN distances observed in
this kind of conical intersection (2.24 A at the minimum on the crossing seam,
MXS) implies that specific dissociation channels could be activated after the decay
to the ground state. In Section 8.5 we shall discuss the fact that while the twisted
conical intersections are essential to understand the deactivation in heteroaromatic
6-membered rings [67], the stretched-bipyramidalized conical intersections seem to
play an important role in heteroaromatic 5-membered rings [68].

It is worth mentioning that a third type of conical intersections appears in ethylene
and substituted ethylenes after a hydrogen migration between two groups [63]. In
ethylene, this process gives rise to the ethylidene isomer (CHCH,, Figure 8-1d)
[65, 69]. Although conical intersections were located for this kind of structure for
ethylene and fluoroethylene [70], they do not constitute an important path to the
decay [71]. Ethylidene-like conical intersections has been observed in the dynamics
of substituted ethylenes mostly during the hot ground state motion after the decay,
although some non-negligible fraction of trajectories in ethylene decays through it
[71]. Moreover, these conical intersections may be important in the photodynamics
of cyclohexene as well [69].

8.5. EXCITED-STATE DEACTIVATION PATHS
IN HETEROCYCLES

It has been shown that a large variety of aromatic and heteroaromatic systems
present conical intersections at specific out-of-plane distortions of one or more sites
of the ring. For 5-membered rings they were found for pyrrole [68], imidazole,
furan, thiophene, and cyclopentadiene [67]. Among the 6-membered rings for which
these conical intersections were located we may mention benzene [72], cyclohexene
[69], cyclohexadiene [73], stilbene [74], uracil [2], adenine [5-7], 2-aminopurine
[9], pyrazine [72, 75], thymine [76], cytosine [77], pyridone [78], guanine [10],
and aminopyrimidine [67]. In the case of 7- and 8-membered rings, conical inter-
sections resulting from the out-of-plane distortion was already reported for azulene
[79] and cyclooctatetraene [80]. In the following, we shall discuss in detail three
specific examples, aminopyrimidine, pyridone and pyrrole, and see what the static
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investigation of the excited state potential energy surfaces can tell about their photo-
dynamics. Later in this chapter (Section 8.6), we will return to these examples
within the context of dynamics simulations.

8.5.1. Case Study of 6-Membered Heterocycles I: Aminopyrimidine

Adenine and aminopyrimidine share strong structural similarities. For this reason
the latter has been selected as a prototype for the study of the dynamics of purine
bases [67]. Its first singlet excited state shows at least three different minima at
SA-3-CASSCF(8,7)/6-31G* level of calculation, one of them being planar with
T character. The two other minima of the S, state are slightly puckered at the
C, and C, sites and have nm* character (for atomic numbering see Figure 8-2).
Three distinct MXSs were found in aminopyrimidine. Their geometric structures
are shown in Figure 8-2. The S,-state energy and the Cremer-Pople parameters
[55, 57] are given in Table 8-1.

All three MXSs can be reached with the excess energy of the vertical excitation.
The E and ®S, MXSs are completely analogous to MXSs identified in adenine [6, 7].
The *S; MXS however does not occur in adenine due to the restrictions imposed
by the imidazole group. The path connecting the C,-puckered (n7*) minimum of
the S, state to the lowest-energy MXS (*E) is shown in Figure 8-3a. Although a
small barrier (0.19 eV) appears in this path, it should be noted that it is not the
exact minimum energy path. It was obtained by linear interpolation of internal
coordinates (LIIC) and, therefore, the barrier should be smaller or even inexistent.
Figure 8-3a also shows the equivalent reaction path in adenine. The strong similar-
ities between the paths for both systems are taken as an indication that they have

NH,

O —

A\
/

——

J
\

3

Figure 8-2. Minima of the crossing seam in aminopyrimidine: (a) 2E, (b) ¢S,, and (c) *S; (see Table 8-1).
Calculations were performed at SA-3-CASSCF(8,7)/6-31G* level
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Table 8-1. S; energy and Cremer-Pople parameters for the ring puckering conical intersections in
aminopyrimidine, pyridone and pyrrole. Energies relative to the S, energy in the ground state equilibrium
geometry. The values in parenthesis are the CP parameters for the equivalent MXSs in 9H-adenine using
the geometries given in [5]

MXS AE (eV) Q (A) 0(°) &(°) Conformation
Aminopyrimidine®

Figure 8-2a 4.49 0.54 (0.52) 111 (114) 250 (246) envelope 2E
Figure 8-2b 4.60 0.50 (0.48) 119 (120) 147 (153) screw-boat S,
Figure 8-2c 4.79 0.53 118 333 screw-boat 4S;
Pyridone®

Figure 8-4a 4.31 0.34 84 314 boat B; ¢
Figure 8-4d 445 0.55 113 142 screw-boat S,
Figure 8-4c 4.80 0.13 61 78 screw-boat 3S,
Figure 8-4b 5.51 0.62 61 183 envelope E,
Pyrrole®

Figure 8-5a 5.52 0.43 - 1 envelope E;

4 SA-3-CASSCF(8,7)/6-31G*; ®* SA-3-CASSCF(10,8)/6-31G; ¢ SA-2-CASSCF(6,6)/6-31G*.
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Figure 8-3. LIIC between the minimum of the S, state and the S,/S; MXS in (a) aminopyrimidine and
(b) pyridone. Calculations performed at (a) SA-3-CASSCF(8,7)/6-31G* and (b) SA-3-CASSCF(10,8)/
6-31G levels. Open symbols in (a) show the equivalent curves in 9H-adenine according to [7]. The S,
and S, vertical excitation energies are indicated at the left side of each graph
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similar behavior after photoexcitation. Nevertheless, the dynamics simulations will
show that different processes are taking place in the two cases.

All this information about the S; and S, states suggests that aminopyrimidine will
present ultrafast decay through puckered conical intersections. The excited-state
lifetime and the actual conical intersection that participate in the deactivation process
can only be found by dynamics simulations (see below).

8.5.2. Case Study of 6-Membered Heterocycles II: Pyridone

Pyridone is a fluorescent analogue of the pyrimidine bases that has been used
in Watson-Crick-pair models [78, 81, 82]. One minimum on the S, surface has
been found in pyridone. At the SA-3-CASSCF(10,8)/6-31G level, it has a planar
structure and n,7* biradical character. Frey et al. [78] found a MXS in pyridone
(°S,, see Table 8-1). In addition to this we located other three MXSs as well (Figure
8-4). The MXSs with the lowest energies are the B, (Figure 8-4a) and the °S,;
(Figure 8-4d). The MXS with the highest energy corresponds to a simple envelope
puckering (E,) (Figure 8-4b). The last MXS (°S,), with intermediary energy, is
only slightly puckered as can be observed from the puckering amplitude Q = 0.13
A in Table 8-1. One of its main features is the sp® hybridization (pyramidalization)
of the C, site.

The vertical excitation into the mm* state (S,) amounts to 4.97 eV. Therefore,
from an energetic point of view two MXSs are available with the existing energy
excess. Since the S, and S, states are quite close it can be supposed that in the

Figure 8-4. Minima of the crossing seam in pyridone: (a) B34, (b) E4, (c) 3S,, and (d) S, (see
Table 8-1). Calculations were performed at SA-3-CASSCF(10,8)/6-31G level
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first stage of the relaxation process pyridone quickly decays to S,. The relaxation
will lead to the minimum on the S, surface. From there, pyridone could reach the
conical intersection region by an up-hill path as shown by the LIIC path connecting
the minimum of the S, state to the MXS of lowest energy (B;4) in Figure 8-3b.
Although it has enough energy, pyridone does not seem to follow this path, as
it is revealed by the fact that it is a fluorescent species. It is worth noting that
this situation is probably not a consequence of the theoretical method used. MR-
CISD+Q(6,5)/SA-3-CAS(10,8)/6-31G calculations [83] also show the vertical S,
and S, excitations higher than the lowest MXS.

8.5.3. Case Study of 5-Membered Heterocycles: Pyrrole

Out-of-plane distortions play an important role to reach conical intersections in
S5-membered rings as well [68]. In these cases, however, the out-of-plane distortion
is accompanied by ring opening at the puckered site (see Figure 8-5a and Table 8-1).
In this section it is discussed in some detail the occurrence of this type of conical
intersection, the paths to reach it, and other competing deactivation paths in pyrrole.
Later, in Section 8.5.4 the generality of these features will be considered as well.

Despite the fact that pyrrole cannot be considered as a direct model for nucleic
acid bases, it is particularly interesting because it contains two completely different
reaction paths also present in 9H-adenine, namely the out-of-plane deformation and
the H-detachment [7, 8]. In pyrrole, these two paths are energetically available after
Tr* excitation. Therefore, the question concerning their relative importance for the
photodynamics needs to be answered.

The first deactivation path identified in pyrrole was the H-detachment (Figure 8-6
left), which promotes the crossing between the S, and the S, (mc™) states
(Figure 8-5b) [84]. Although the deactivation through this conical intersection can

. T\z
v/
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Figure 8-5. Minima of the crossing seam in pyrrole. Calculations were performed at (a) MR-CISD/SA-
3-CASSCF(6,5)/6-31G* and (b) MR-CISD/SA-3-CASSCF(6,6)/6-31G* levels. Dashed lines indicate
(a) the ring opening (E,) and (b) the H-detachment
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explain the existence of hydrogen atoms among the photofragments, it cannot
explain the origin of HCN and CNH, that follows the photofragmentation [68, 85].
Recently, we showed the existence [68] of a ring opening out-of-plane deformation
(Figure 8-6 right) that generate a conical intersection in pyrrole. We have also
argued that the path to this conical intersection is a main photochemical path that
could explain the occurrence of these other fragments and even part of the hydrogen-
atom elimination. These conclusions were based on the analysis of reaction paths
on the potential energy surfaces. Specific points such as how much and when each
path is populated require dynamics simulations. An important factor determining
the complexity in the photodynamics of pyrrole is that besides the ground and two
™ states, at least two Rydberg (m — 3s(0*)) states will be involved in the deacti-
vation process (see Figure 8-6 right). These five states form an intricate sequence of
conical intersections. Along the H-detachment path, the ™ states are destabilized
while the Rydberg states are stabilized until they intersect with the ground state.
On the other hand, along the ring-opening deactivation path, the Rydberg states and
one " state are destabilized while the other wm* state is stabilized and intersects
the ground state.

In the present work dynamics of pyrrole in the excited state will not be discussed.
Instead, in Section 8.6 we will present dynamics simulations for the investigation
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Figure 8-6. H-detachment (left) and ring-opening (right) deactivation paths in pyrrole. Both paths start
at the ground state equilibrium geometry. Calculations at MR-CISD level (see [68] for details on the
calculations)
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of the reactivity of pyrrole in the hot ground state, which is generated by the decay
at the ring-opening conical intersection.

8.54. General Discussion on the Deactivation Paths in Heterocycles

The simplest out-of-plane distortion in a 6-membered ring that results in a conical
intersection is the puckering at one site. This process strongly destabilizes the ground
state, but has the opposite effect in a biradically excited state because it decouples
the biradical centers. For instance, for a mm* state, the puckering leads to a singly-
occupied 7 orbitals almost perpendicular to the m* orbital, exactly as it occurs in
the case of twisted MXSs in substituted ethylenes discussed above (see Figure 8-7b)
[86]. One way to understand this relaxation process is to look at the puckering as a
result from the torsional motion around specific bonds (Figure 8-7a) [67] analogous
to the torsion in simple biradical models. The geometrical constraints are now strong
and the “torsional” motions appear as a puckering of one site of the ring (envelope
conformation).

The envelope conformation is, however, only a particular case of out-of-plane
distortions that are able to generate conical intersections in aromatic and heteroaro-
matic rings. We have already seen in the previous sections examples of conical
intersections with screw-boat and boat conformations arising in aminopyrimidine
and pyridone. In all these cases, the relaxation on the excited-state surface is

Figure 8-7. (a) Puckering around one site in a six-membered ring. The drawing should be seen as a
general prototype for heteroaromatic systems, containing one or more heteroatoms. (b) Singly-occupied
orbitals in the S, state of aminopyrimidine at the ’E MXS geometry (fop). The important sites for the
comparison with CH,NH] orbitals at the twisted MXS geometry (bottom) are indicated by the dashed
rectangles
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regarded the same as before: the torsion of bonds promoting the decoupling of
biradical centers.

The distinction between the deformations in 6- and S-membered rings is
connected to their respective constraints. Consider for instance a 6-membered ring.
The puckering of one specific site, say site 1 in Figure 8-7a, is generated by twisting
the dihedral angles ¢ (4561 and 4321). In order to make this conjugated twisting
possible keeping the same bond lengths, it is necessary at same time to reduce the
angles o (456 and 432) to values smaller than the original 120°. The reason for
puckering at site 1 is to have a p-like orbital at this site orthogonally oriented in
relation to the m-system (biradical decoupling relaxation). This situation, however,
implies a very strong reduction of the o angles (by about 20°), leading to a signif-
icant strain in the sp? bonds. MXS optimizations for several 6-membered rings
[7, 67] have shown that normally the p-like orbital is twisted by only 60°~70° in
relation to the 7 system (measured by the 5612 dihedral angle, for example), corre-
sponding to a smaller reduction of the o angles (about 10°) and consequently to
less strain in the sp? bonds. From this configuration, which is geometrically similar
to the twisted MXS in substituted ethylenes, the relaxation of the bond lengths and
additional bond angles is able to tune the conical intersection. Note that in order to
keep the sp? hybridization, the non-ring atoms or groups attached to sites 2 and 6
should also move out of the ring plane.

The reduction of the a angles during the puckering has the effect of shortening
the distance between the sites 2 and 6 creating, as pointed out by Bernardi et al.
[87], a partial o-bond connecting these sites. As a result, the puckering gives rise
to the bycyclic structures such as the prefulvene conical intersection typical of the
benzene photodynamics [88]. For 5-membered rings the symmetrical puckering of
site 1 by 65°, similar as in 6-membered rings, requires that the valence angles
(543 and 432) are reduced by about 15°. An energetically less expensive alter-
native is to twist only one bond, say ¢ (4321 in Figure 8-8a). The consequence
is the breaking of a bond and the opening of the ring. As before, in order to
keep the hybridization scheme requires the motion of the atoms attached to site
2 out of the ring plane. The resulting configuration is geometrically similar to
the stretched-bipyramidalized conical intersections in substituted ethylenes. Besides
pyrrole, this type of conical intersections have been also identified in imidazole,
furan, thiophene, and cyclopentadiene [67]. Out-of-plane ring-opening processes in
5-membered rings are also responsible for the photoisomerization of dihydroazulene
into vinylhepafulvene [89].

The main difference between these stretched-bipyramidalized conical intersec-
tions in rings and substituted ethylenes is the process by which they are reached.
As already discussed before (Section 8.4), dynamics calculations [38, 66, 90]
showed that an important fraction of trajectories of polar substituted ethylenes
undergoes stretching and bipyramidalization in the beginning of the time evolution.
Nevertheless, in rings the “stretched-bipyramidalized” configuration cannot be
reached by the direct activation of these modes, but it is obtained indirectly as
a consequence of the torsional motion around specific bonds. Despite the fact
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Figure 8-8. (a) Puckering around one site in a five-membered ring. The drawing should be seen as a
general prototype for heteroaromatic systems, containing one or more heteroatoms. (b) Singly-occupied
orbitals in the S, state of pyrrole at the MXS geometry (top). The important sites for the comparison
with CH,NHZ orbitals at the stretched-bipyramidalized MXS geometry (bottom) are demarked by the
dashed rectangles

that rings and substituted ethylenes reach the stretched-bipyramidalized region
of the crossing seam in distinct ways, their electronic structures keep strong
resemblance. For instance, Figure 8-8b shows the two singly-occupied orbitals in
the ring-opening MXS of pyrrole and also the two singly-occupied orbitals in the
stretched-bipyramidalized conical intersection of CH,NH;. The same geometric
and electronic features can be observed in both cases, including the strong ™ — o
mixing in the orbitals at the left side of the figure.

Recently, Perun et al. [8] investigating the imidazole group in adenine and
Salzmann et al. [91] analyzing thiophene observed that the opening of these 5-
membered rings under planarity restriction produces a Sy/S, conical intersection of
o™ character. The just mentioned mo-mixing observed in the ring-opened out-of-
plane conical intersection (Figure 8-8b) is an indication that the planar structures
should be considered as a special case of the structures that have been discussed
here. It is quite likely that the crossing seam connects the planar and the out-of-
plane structures. This is also a possibility in the case of azulene, for which planar
[89] and non-planar [79] conical intersections involving the same sites have been
identified.

Conical intersections with ring opening configurations do not occur only in 5-
membered rings. In the case of cyclohexadiene [73] and related systems, such as
chromenes [92] and pre-vitamin D [93], the puckering process can be rationalized
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as the torsion around two bonds, 2-3 and 4-5 in Figure 8-7a, opening the ring
at bond 1-6. The conical intersection obtained in this way does not correspond
to the minimum on the crossing seam [73]. The MXS occurs for an asymmetric
configuration with the torsion occurring mostly at one bond. Also in this case, the
system ends up at a ring-opened structure. In the case of cyclohexadiene, Garavelli
et al. [73] have shown that these conical intersections are connected by the same
crossing seam.

We have seen that in pyridone the *S, MXS has a very small degree of puckering.
This was observed in cyclohexene too [69], for which the conical intersection can
be formed by slight out-of-plane deformation of the ring, compensated by strong
readjustment of the hydrogen atoms. In cyclohexene, this produces a geometric
configuration similar to pyramidalized ethylene [65]. It is expected that this kind
of conical intersection may be particularly common in rings containing only one
double bond or when groups or atoms with 7 and lone pairs are attached to the
ring.

8.6. NONADIABATIC EXCITED STATE DYNAMICS
OF HETEROCYCLES

Figure 8-9 shows basic schemes on how heterocyclic systems can reach conical
intersections based on ring puckering modes. After photoexcitation the ring
undergoes an initial, basically in-plane relaxation, which brings it to the S,
minimum. Depending on the barrier height the molecule can simply stay trapped
there until it decays via photo-emission. In the situation that seems to be typical for
nucleobases, the barrier height is small enough so that the system may stay in this
minimum for a period of time that ranges from hundreds of femtoseconds to few
picoseconds, but it finally overcomes the barrier. Thereafter, the second phase of the
relaxation process starts and it finishes at a conical intersection through which the
system returns to the ground state. After that, the initial compound can be restored
or different reaction products can be obtained. The complexity of this scenario
would be further increased by taking into account that the photoexcitation does not
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Figure 8-9. Two schematic reaction paths connecting the Franck-Condon region with the conical
intersection
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always lead to the first excited state, which means that the system has to find its
path down through a set of consecutive conical intersections involving different
excited states. In the discussion that follows, all these points will be highlighted
by looking at: (i) the relaxation in the first excited state and the deactivation to the
ground state of aminopyrimidine, (ii) the initial decay involving multiple excited
states in pyridone, and (iii) the processes occurring in pyrrole in the hot ground
state after the radiationless decay has taken place.

8.6.1. The S,-S, Deactivation: Aminopyrimidine

Bicyclic rings such as the purine bases are still at the edge of current computa-
tional capabilities for performing multireference ab initio excited state dynamics.
Therefore, we decided to investigate the ultrafast deactivation of adenine using a
simplified model. Although two of the identified deactivation paths in 9H-adenine
involve deformations at the imidazole ring, the most probable deactivation path
dominating in low excitation energies is expected to be the puckering of the pyrim-
idine ring at the C, site (see numbering in Figure 8-2) [5-8]. The central role of the
C, site can be deduced from the very long lifetime of 2-aminopurine [1], indicating
that the new position of the amino group inhibits the deformation at the C, site.
Hence, if the imidazole ring can really be neglected during this kind of photody-
namics, aminopyrimidine seems to be a natural candidate to a model for adenine. It
is also encouraging to observe that, as discussed in Section 8.5.1, there are strong
similarities between the relaxation paths and MXS structures of aminopyrimidine
and adenine.

Excited state nonadiabatic dynamics for thirty trajectories of aminopyrimidine
were performed using a maximum simulation period of 800 fs [67]. Our primary
goal was the characterization of the actually occurring low-energy deactivation path
from the several available (Section 8.5.1). After starting the trajectories in the S,
("mrm*) state, aminopyrimidine quickly returns to the ground state with a lifetime of
416 £ 150 fs. The potential energies of S, and S, states are shown in Figure 8-10
(top) for a typical trajectory. The main reaction path driving aminoyprimidine to
the intersection involves the puckering at the C,H group, corresponding to the *S,
MXS depicted in Figure 8-2c. Even though about 75% of the trajectories that decay
have followed this path, the remaining 25% follow the out-of-plane deformation
involving mainly the N; atom. None of the trajectories deactivated via conical
intersections with NH, out-of-plane bending shown in Figure 8-2b.

The predominance of the nonadiabatic deactivation involving puckering at the
C, atom is not favorable for using aminopyrimidine as a model for adenine. In
adenine the imidazole group is connected to the atoms C, and Cs of pyrimidine,
which cannot be expected to allow any strong out-of-plane deformation due to
structural restrictions. In order to introduce these restrictions in a simple way
into aminopyrimidine, the structural effect of the imidazole ring was simulated
by assigning heavier masses to the hydrogen atoms connected to C, and Cs. The
isotopic mass of these hydrogen atoms was chosen to be 45 a.m.u, which produces
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Figure 8-10. S, and S, potential energies versus time for two typical trajectories of normal (top)
and mass-restricted (bottom) aminopyrimidine. The thick line indicates the current state. Simulations
performed at SA-2-CASSCF(8,7)/6-31G* level

a moment of inertia for the out-of-plane motion that equals the moment of inertia of
the center-of-mass of the imidazole group. Subsequently, a new set of 30 trajectories
was computed for a simulation period of 1700 fs.

The mass-restriction has a significant effect on the dynamics simulations. The
lifetime increases to 957 £ 200 fs, which is a value notably similar to the experi-
mental lifetime of adenine (1.0 ps [1]). The potential energies of S, and S, states
for a typical trajectory are shown in Figure 8-10 (botfom). The puckering at the
C,H group was to some extent inhibited and the main path to the crossing seam
is the out-of-plane deformation involving the N; atom and, in some cases, the C,
atom as well.

In both the mass unrestricted and restricted cases, the analysis of individual
trajectories showed that the dynamics passed through three phases. First, a very
fast relaxation process occurred leading to the minimum on S, surface. This step
took not more than 100 fs independently of the isotopic masses. The character of
the state changed from w7* to n7*. In the second step, aminopyrimidine oscillates
around the S; minimum keeping the n* character. This step is strongly dependent



Nonadiabatic Excited-State Dynamics of Aromatic Heterocycles 227

on the isotopic mass. In normal aminopyrimidine the path to the puckering was
found in about 300 fs, while in the mass-restricted aminopyrimidine it took about
800fs. Finally, in the third step the S, state changed its character to mm™* and S,
stabilized until finding the crossing seam. This is again a fast step that takes not
more than 100fs and does not depend on the mass-restriction. The description of
the photodynamics of aminopyrimidine could be compared with the general process
illustrated in Figure 8-9 (left). The first step corresponds to what was called initial
relaxation in that figure, while the third step (see Figure 8-10) is the biradical
decoupling.

Further investigations on the dynamics starting in the S, state are reported
elsewhere [94].

8.6.2. The S,-S, Deactivation: Pyridone

It has been observed (see Figure 8-3) that even though the mm* excitation energy
is large enough to reach different regions of the crossing seam, pyridone is a
fluorescent species and the nonadiabatic decay is not the main mechanism for the
deactivation. The main reason for this behavior could be connected to the evidence
that the crossing seam region cannot be reached by a sequence of excited-state
relaxations, as in aminopyrimidine, because it is too high in comparison to the S,
minimum.

In the present work the discussion is concentrated on the deactivation from
the S, to S, state, which occurs in less than 200fs. This topic is particularly
relevant for the photodynamics of adenine [95], whose bright m* state is not the
S, state and the relaxation on the excited state surfaces should occur through a
sequence of conical intersections. Indeed, Canuel et al. [1] have experimentally
observed that the ultrafast decay of the nucleobases follows a biexponential pattern,
whose fast component has a life time in the range of 100 (adenine) to 148fs
(guanine). The fact that pyridone does not return radiationlessly to the ground state
simplifies the investigation of this first stage of the dynamics, reducing the decay
to a monoexponential pattern.

The dynamics simulation was performed including three states, Sy, S; and S,.
Thirty-five trajectories were run for 200 fs with time step 0.5fs. The ab initio
calculations were performed at SA-3-CASSCF(10,8)/6-31G level. The numbering
scheme is shown in Figure 8-4.

The first step in the dynamics, the S,-S, deactivation, is completed in only 52
=+ 1 fs, presenting the expected monoexponential decay profile, as can be seen in
Figure 8-11a. This figure shows the fraction of trajectories in each state between 0
and 200 fs for the 35 trajectories computed. Between 20 and 30 fs and again at 37 fs it
is possible to observe a revival of the S, state occupation. The fraction of trajectories
in S, is not shown in the figure for sake of clarity. It is just complementary to the
fraction of trajectories in S,. Thus, a revival in S, is companied by a decrease in
S, occupation. The revivals in the S, occupation occur when the total number of
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Figure 8-11. Initial photodynamics of pyridone: (a) Fraction of trajectories in each adiabatic state. The
exponential decay curve was obtained by fitting of the S,-state occupation, (b) averaged S,-S, energy
gap and averaged C4N bond length, (c) averaged C,C;, C,Cs, and C,0 bond lengths, (d) Total number of
hoppings (S,-S;) and back-hoppings (S;-S,). All quantities in function of time. Calculations performed
at the SA-3-CASSCF(10,8)/6-31G level

S,-S, hoppings at a certain time is smaller than the total number of S,-S, hoppings
(Figure 8-11d).

For each trajectory the S,-S; decay is not composed by a single hopping event,
but by a series of forth and back hoppings. The hopping probability is enhanced by
relatively small S,-S, energy gaps (compare Figure 8-11b and d). The gap value
on its turn depends on the in-plane vibrations of the pyridone ring. In particular, in
the first 100 fs the averaged S,—S, energy gap is correlated to the C,N bond length
and the minimum energy gap occurs at every time that this distance also reaches
its minimum (Figure 8-11b). In this situation the 7y orbital delocalizes over the Cq
and C, atoms and stabilizes the ™ state.

This initial 200 fs dynamics is dominated by the planar relaxation of pyridone.
The CO bond average length increases from 1.24 A to 1.50 A in only 10fs and
after that it oscillates around 1.41 A (Figure 8-11c). It means that the oxygen atom
becomes a radical center (see structure (1) in Figure 8-11a). After 50 fs, when the
system is already in the S, (nm*) state, the bonds in the ring are reorganized in
such a way that a second radical center emerges at the C, atom. This biradical
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conformation (structure (2) in Figure 8-11a) describes also the conformation that
the minimum on the S, surface assumes.

In general, the S,—S, deactivation can take place in two distinct ways depending
on whether the character of the electronic state is preserved or not. In the case
of pyridone the analysis of the trajectories shows that the character is changed
from mm* to n,m* when the decay to S, occurs. Frey and co-workers [78] have
experimentally shown that the photoexcitation of out-of-plane vibrational modes of
the S, state can drive pyridone towards a conical intersection, thus quenching the
fluorescence emission, while in-plane modes do not produce the same effect. This
is an interesting observation that sheds light on the actual importance of the out-of-
plane deformations to the photodynamics of heterocycles. This process, however,
should take place at the picosecond time-scale. Corresponding calculation results
can be found in reference [83].

8.6.3. Dynamics After Internal Conversion: Pyrrole

The experimental data about pyrrole photofragmentation show that a large amount
of HCN is formed. This amount corresponds to about half of the fragments when
the photo-excitation is performed into the 'B,wm* state [85]. Based on the analysis
of the potential energy surfaces (see Section 8.5.3), we have shown the existence
of a ring-opening process that could account for these fragments [68].

The first question that dynamics should be able to address is how the excited
state population is distributed between the two deactivation paths (N-H dissociation
and ring puckering). Nevertheless, excited-state dynamics simulations of pyrrole is
particularly challenging because, as we have discussed in Section 8.5.3, the Rydberg
states cannot be neglected and a total of four excited states must be included. In
this section the aspects of the post-deactivation dynamics that depend essentially
on the ground state surface are discussed. If the out-of-plane ring-opening MXS is
responsible for HCN fragments, it is expected that the radiationless decay to the
ground state through the ring-opening conical intersection (Figure 8-5a) should give
rise to non-cyclic species and not only return to the initial pyrrole geometry.

In order to investigate the available reaction channels and in particular the feasi-
bility of the ring opening process, the dynamics calculations were started on the
ground state surface at the geometry of the ring-opening MXS (Figure 8-5a). It is
expected that after decaying through a conical intersection the system preferentially
follows the two directions that define the cone [96, 97]. For this reason we have
scanned the plane defined by these directions, namely the gradient difference vector
2g = (VRxE, — V4 E,)) and the nonadiabatic coupling vector h = (V| V,'¥,). In these
equations, E, and ¥,, k = 0, 1, are the adiabatic energies and the electronic wave
function of state k. The sub-index R in the differential operator indicates that that
the derivative is performed with respect to the nuclear coordinates. An arbitrary
direction in the (g, h) plane is written in terms of a linear combination of their unit

vectors as & = f;sina—kflcos a). The initial velocity v, is defined along & with
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its modulus corresponding to a predefined kinetic energy AE:

1/2
2AE

| e 8-1
> M2 € (8-1)

Vo =

where M, is the mass of atom i and g;, the component-vector of & at atom i.
The initial kinetic energy should be smaller than the maximum energy available
AE, . = Ey,.. — Eyxs = 1.89eV (at MR-CISD/SA-3-CASSCF(6,5)/6-31G* level)
and lager than the kinetic energy defined by simple equipartition among all internal
degrees: AE,;, =2AE, . /(3N —6) =0.16eV. In these equations Ey,,., E;xs, and
N are the vertical excitation energy, the potential energy at the MXS geometry
and the number of atoms, respectively. The factor 2 comes from the fact that two
degrees of freedom are needed to define the (g-h) plane.

Following this prescription, we have performed dynamics simulations with initial
velocities pointing along 24 different directions in the g-h plane and with several
initial kinetic-energy values between the maximum and the minimum. The results
are presented in Figure 8-12. This figure shows the CN distance in pyrrole after
40fs (radial coordinate) as a function of the initial direction (angular coordinate).
Most of initial directions lead to a CN distance of around 1.5 A and do not

result in non-cyclic structures. In these cases they correspond to photophysical

= 189V
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Figure 8-12. CN distance (radial coordinate) after 40 fs in pyrrole ground-state dynamics starting at
the ring-opening MXS, in function of the initial velocity direction (angular coordinate) in the (g-h)
branching space. Calculations performed at the SA-2-CASSCF(6,6)/6-31G* level
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processes that are expected to end up in a hot pyrrole ground state. There is
however a special subset of directions between —g and —h whose CN distance
is about 3 A, showing the formation of non-cyclic species. They correspond
to photochemical processes consistent with the HCN elimination experimentally
observed [85]. A similar analysis at 80fs shows that the CN distances is still
about 1.5 A for the first type of trajectories, while the CN distance increased to
about 4.5 A in the trajectories with non-cyclic structures. The number of trajec-
tories that result in non-cyclic structures depends not only on the initial velocity
direction but also on the initial kinetic energy (see Figure 8-12). Thus, while with
AE = 0.16 eV only directions between 13 and 16 are photochemical channels,
with AE = 1.89 eV, additional directions (11 and 12) are becoming active as
well.

These simulations are useful for the identification of the types of products to
be expected from the deactivation at the ring-opened conical intersection. The
obtained fraction of non-cyclic structures, however, cannot be directly compared
with the experimental number of fragments coming from ring-opening processes
because in the simulations the initial velocities were isotropically generated. In the
full dynamics simulation, the history of pyrrole derived from the dynamics on the
excited state surface should create a bias towards some specific directions. This is
an important point to be in