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Preface

Computational neuroscience has become a very active field of research in
the last decades. Improved experimental facilities, new mathematical tech-
niques and especially the exponential increase of computational power have
lead to stunning new insights into the functioning of the brain. Scientists
begin to endeavor simulating the brain from the bottom level of single
neurons to the top-level of cognitive behavior. The “Blue Brain Project”
(http://bluebrainproject.epfl.ch/) for example, is a hallmark for this
approach.

Many scientists are attracted to this highly interdisciplinary field of re-
search, in which only the combined efforts of neuroscientists, biologists, psy-
chologists, physicists and mathematicians, computer scientists, engineers and
other specialists, e.g. from anthropology, linguistics, or medicine, seem to be
able to shift the limits of our knowledge. However, one of the most common
problems of interdisciplinary work is to find a “common language”, i.e., an
effective way to discuss problems with colleagues with a different scientific
background. Therefore, an introduction into this field has to familiarize the
reader with aspects from various relevant fields in an intelligible way.

This book is an introduction to the field of computational neuroscience
from a physicist’s perspective, regarded as neurophysics, with in depth con-
tributions of systems neuroscientists. It is based upon the lectures delivered
during the 5th Helmholtz Summer School on Supercomputational Physics:

“Complex Networks in Brain Dynamics”

held in September 2005 at the University of Potsdam.
The book-title Lectures in Supercomputational Neuroscience: Dynamics

in Complex Brain Networks is motivated by the methods and outcomes of
the Summer School: A conceptual model for complex networks of neurons is
introduced, which incorporates many important features of the “real” brain,
such as different types of neurons, various brain areas, inhibitory and excita-
tory coupling and plasticity of the network. The model is then implemented
in an MPI (message-passing interface)-based parallel computer code, running
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at appropriate supercomputers, that is introduced and discussed in detail in
this book. But beyond the mere presentation of the C-program, the text will
enable the reader to modify and adapt the algorithm for his/her own research.

The first part of the book (Neurophysiology) gives an introduction to
the physiology of the brain on different levels, ranging from the rather large
areas of the brain down to individual neurons. Various models for individual
neurons are discussed as well as models for the “communication” among these
neuronal oscillators. An outlook on cognition and learning is also given in this
first part.

The second part (Complex Networks) outlines the dynamics of ensem-
bles of neurons forming different types of networks. Recently developed new
approaches based on complex networks with special emphasis on the rela-
tionships between structure and function of complex systems are presented.
The topology of such a network, i.e., how the neurons are coupled, plays an
important role for the behavior of the ensemble. Even though the network of
the 1010 neurons in a human brain is much too complex to be modeled with
our present knowledge, the conceptual models presented here are a promis-
ing starting point and allow gaining insight into the principles of complex
networks in brain dynamics. This part covers all aspects from the basics of
networks, their topology and how to quantify them, to the structure and func-
tion of complex cortical networks up to collective behavior of large networks
such as clustered synchronization. New techniques for the analysis of data of
complex networks are also introduced. They allow not only to study large
populations of neurons but also to study (neural) oscillators with more than
one time scale, e.g. spiking and bursting neurons.

The third part (Cognition and Higher Perception) presents results
about how structural units of the brain (columns) can be described and how
networks of neurons can be used to model cognition and perception as mea-
sured by the electroencephalogram. It is shown how networks of simple neu-
ronal models can be used to model, e.g., reaction times from psychological
experiments.

The forth part (Implementations) discusses the implementation of a
model of a network of networks of neurons in an MPI-based C-code. The
code is modular in the sense that the model(s) for the neurons, the topol-
ogy of the network, the coupling and many further parameters can easily be
changed and adapted. The main point is to outline how in principle many
different features can be implemented in a computer code, rather than pre-
senting a cutting-edge algorithm. The computer code is available for download
(http://www.agnld.uni-potsdam.de). In this part we also discuss that com-
putational neuroscience is not simply about parallelizing normal computer
code. A very important component of it is the implementation of specially
adapted algorithms. An example of such a computer code will be given in this
chapter.

In the fifth and final part (Applications), three groups of students of
the Summer School, discuss the results they obtained running the code on
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supercomputers. After studying the parameter space for large networks of
Morris-Lecar neurons, they use a map of cortical connections from a cat’s
brain, which was obtained based on experimental studies. In their simulations
they consider multiple spatio-temporal scales and study the patterns for syn-
chronized firing of neurons in different brain areas. Results of simulations for
different network topologies and neuronal models are also summarized here.
These chapters will be helpful to those who are planning to apply the parallel
code for their own research, as they give a very practical account of how to
actually perform simulations. They point at crucial problems and show how
to overcome pitfalls when simulating based on the MPI code.

We hope that this book will help graduate students and researchers to
access the field of computational neuroscience and to develop and improve
high-end, parallel computer codes for the simulation of large networks of
neurons.

Last, but not least, we wish to thank all lecturers and the coordinators
of the 5th Helmholtz Summer School on Supercomputational Physics; Ma-
men Romano, Lucia Zemanová, and Gorka Zamora-López for their assistance;
the Land Brandenburg for main funding, EU, NoE, and EU-Network BioSim
(contract No. LSHB–CT–2004–005137) for further support; the University of
Potsdam for making access to its supercomputer cluster available and also
for logistics. Finally, we thank James Ong for his careful proof-reading of the
complete book.

Nonlinear Dynamics Group Peter beim Graben
University of Potsdam Changsong Zhou

Marco Thiel
Jürgen Kurths
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Foundations of Neurophysics

Peter beim Graben1,2

1 School of Psychology and Clinical Language Sciences,
University of Reading, United Kingdom
p.r.beimgraben@reading.ac.uk

2 Institute of Physics, Nonlinear Dynamics Group, Universität Potsdam,
Germany

Summary. This chapter presents an introductory course to the biophysics of neu-
rons, comprising a discussion of ion channels, active and passive membranes, action
potentials and postsynaptic potentials. It reviews several conductance-based and
reduced neuron models, neural networks and neural field theories. Finally, the basic
principles of the neuroelectrodynamics of mass potentials, i.e. dendritic fields, lo-
cal field potentials, and the electroencephalogram are elucidated and their putative
functional role as a mean field is discussed.

1.1 Introduction

Metaphorically, the brain is often compared with a digital computer [1, 2]
that runs software algorithms in order to perform cognitive computations.
In spite of its usefulness as a working hypothesis in the cognitive [3–6] and
computational [7–18] neurosciences, this metaphor does obviously not apply
to the hardware level. Digital computers consist of circuit boards equipped
with chips, transistors, resistors, capacitances, power supplies, and other elec-
tronic components wired together. Digital computation is essentially based on
controlled switching processes in semiconductors which are nonlinear physical
systems. On the other hand, brains consist to 80% of water contained in cells
and also surrounding cells. How can this physical wet-ware substrate support
computational dynamics? This question should be addressed in the present
chapter. Starting from the physiological facts about neurons, their cell mem-
branes, electrolytes, and ions [19–21], I shall outline the biophysical principles
of neural computation [12, 13, 15, 18, 22–25] in parallel to those of computa-
tion in electronic circuits. Thus, the interesting physiological properties will
be described by electric “equivalent circuits” providing a construction kit of
building blocks that allow the modeling of membranes, single neurons, and
eventually neural networks. This field of research is broadly covered by com-
putational neuroscience. However, since this discipline also deals with more
abstract approximations of real neurons (see Sect. 1.4.3) and with artificial
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neural networks, I prefer to speak about neurophysics, i.e. the biophysics of
real neurons.

The chapter is organized as a journey along a characteristic neuron where
the stages are Sects. 1.2–1.4. Looking at Fig. 8.1 in Chap. 8, the reader rec-
ognizes the cell bodies, or somata, of three cortical neurons as the triangular
knobs. Here, our journey will start by describing the microscopically observ-
able membrane potentials. Membranes separating electrolytes with different
ion concentrations exhibit a characteristic resting potential. In a correspond-
ing equivalent circuit, this voltage can be thought of being supplied by a bat-
tery. Moreover, passive membranes act as a capacitance while their semiper-
meability with respect to particular kinds of ions leads to an approximately
ohmic resistance. This property is due to the existence of leaky ion chan-
nels embedded in the cell membrane. At the neuron’s axon hillock (trigger
zone), situated at the base of the soma, the composition of the cell membrane
changes. Here and along the axon, voltage-gated sodium and potassium chan-
nels appear in addition to the leakage channels, both making the membrane
active and excitable. As we shall see, the equivalent circuit of the membrane
allows for the derivation of the famous Hodgkin-Huxley equations of the ac-
tion potentials which are the basic of neural conductance models . Traveling
along the axon, we reach the presynaptic terminals, where the Hodgkin-Huxley
equations have to be supplemented by additional terms describing the dynam-
ics of voltage-gated calcium channels. Calcium flowing into the terminal causes
the release of transmitter vesicles that pour their content of neurotransmit-
ter into the synaptic cleft of a chemical synapse. Then, at the postsynapse,
transmitter molecules dock onto receptor molecules, which indirectly open
other ion channels. The kinetics of these reactions give rise to the impulse
response functions of the postsynaptic membranes. Because these membranes
behave almost passively, a linear differential equation describes the emergence
of postsynaptic potentials by the convolution product of the postsynaptic pulse
response with the spike train, i.e. the sequence of action potentials. Postsy-
naptic potentials propagate along the dendrites and the soma of the neuron
and superimpose linearly to a resulting signal that eventually arrives at the
axon hillock, where our journey ends.

In Sect. 1.5, we shall change our perspective from the microscopic to the
macroscopic. Here, the emergence of mass potentials such as the local field
potential (LFP) and the electroencephalogram (EEG) will be discussed.

1.2 Passive Membranes

Neurons are cells specialized for the purpose of fast transfer and computation
of information in an organism. Like almost every other cell, they posses a
cell body containing a nucleus and other organelles and they are surrounded
by a membrane separating their interior from the extracellular space. In or-
der to collect information from their environment, the soma of a characteristic
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neuron branches out into a dendritic tree while another thin process, the axon,
provides an output connection to other neurons [19–21]. The cell plasma in the
interior as well as the liquid in the extracellular space are electrolytes, i.e. solu-
tions of different kinds of ions such as sodium (Na+), potassium (K+), calcium
(Ca2+), chloride (Cl−), and large organic ions. However, the concentrations
of these ions (denoted by [Na+], [K+], [Ca2+], etc.) can differ drastically from
one side of the cell membrane to the other (see Fig. 2.1 of Chap. 2). Therefore,
the membrane is subjected to two competing forces: the osmotic force aiming
at a compensation of these concentration gradients on the one hand, and the
Coulomb force aiming at a compensation of the electric potential gradient.
Biochemically, cell membranes are lipid bi-layers swimming like fat blobs in
the plasma soup [19,20], which makes them perfect electric isolators. Putting
such a dielectric between two opposite electric charges yields a capacitance of
capacity

Cm =
Q

U
, (1.1)

where Q is the total charge stored in the capacitance and U is the voltage
needed for that storage. Hence, a membrane patch of a fixed area A that sep-
arates different ion concentrations can be represented by a single capacitance
Cm = 1μF cm−1 ×A in an equivalent “circuit” shown in Fig. 1.1 [19, 20].

Generally, we interpret such equivalent circuits in the following way: The
upper clamp refers to the extracellular space whereas the clamp at the bot-
tom measures the potential within the cell. Due to its higher conductance,
the extracellular space is usually assumed to be equipotential, which can be
designated as U = 0 mV without loss of generality.

1.2.1 Ion Channels

If neuron membranes were simply lipid bi-layers, there would be nothing more
to say. Of course, they are not. All the dynamical richness and computational
complexity of neurons is due to the presence of particular proteins, called
ion channels , embedded in the cell membranes. These molecules form tubes
traversing the membrane that are permeable to certain kinds of ions [19–25].
The “zoo” of ion channels is comparable with that of elementary particles.
There are channels whose pores are always open (leakage channels) but per-
meable only for sodium or potassium or chloride. Others possess gates situated
in their pores which are controlled by the membrane potential, or the presence
of certain substances or even both. We shall refer to the first kind of chan-
nels as to voltage-gated channels , and to the second kind as to ligand-gated

Cm

Fig. 1.1. Equivalent “circuit” for the capacitance Cm of a membrane patch



6 P. beim Graben

channels . Furthermore, the permeability of a channel can depend on the di-
rection of the ionic current such that it behaves as a rectifier whose equivalent
“circuit” would be a diode [19, 20]. Eventually, the permeability could be a
function of the concentration of particular reagents either in the cell plasma
or in the extracellular space, which holds not only for ligand-gated channels.
Such substances are used for classifying ion channels. Generally, there are two
types of substances. Those from the first class facilitate the functioning of a
channel and are therefore called agonists. The members of the second class
are named antagonists as they impede channel function.

Omitting these complications for a while, we assume that a single ion
channel of kind k behaves as an ohmic resistor with conductance

γk =
1
ρk
, (1.2)

where ρk is the resistivity of the channel. A typical value (for the gramicidin-A
channel) is γGRAMA ≈ 12 pS. Figure 1.2 displays the corresponding equivalent
“circuit”.

In the remainder of this chapter, we will always consider membrane patches
of a fixed area A. In such a patch, many ion channels are embedded, forming
the parallel circuit shown in Fig. 1.3(a).

According to Kirchhoff’s First Law, the total conductance of the parallel
circuit is

gk = Nkγk (1.3)

when Nk channels are embedded in the patch, or, equivalently, expressed by
the channel concentration [k] = Nk/A,

gk = [k]Aγk .

1.2.2 Resting Potentials

By embedding leakage channels into the cell membrane, it becomes semiper-
meable, i.e. permeable for certain kinds of ions while impenetrable for others.
If there is a concentration gradient of a permeable ion across a semipermeable
membrane, a diffusion current Idiff through the membrane patch A is created,
whose density obeys Fick’s Law

jdiff = −Dq
d[I]
dx

, (1.4)

γk

Fig. 1.2. Equivalent “circuit” for a single ohmic ion channel with conductance γk
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γkγkγk

(a)

gk

(b)

Fig. 1.3. Equivalent circuits (a) for ion channels of one kind k connected in parallel;
(b) Substituted by a single resistor of conductance gk = 3γk

where d[I]/dx denotes the concentration gradient for ion I, q its charge, and
D = kBT/μ is the diffusion constant given by Einstein’s relation [26] (kB

is Boltzmann’s constant, T is the temperature and μ is the viscosity of the
electrolyte) [22–25]. This diffusion current can be described by an equivalent
“circuit” given by a current source Idiff (Fig. 1.4).

The separation of charges by the diffusion current leads to an increasing
potential gradient dU/dx across the membrane. Therefore, a compensating
ohmic current

johm = −σdU
dx

(1.5)

flows back through the leakage channels (σ = q2[I]/μ is the conductance of
the electrolyte expressed by the ion concentration and its charge). Then the
total current j = jdiff + johm (visualized by the circuit in Fig. 1.5) is described
by the Nernst-Planck equation

j = −D q
d[I]
dx
− [I]

q2

μ

dU
dx

. (1.6)

The Nernst Equation

The general quasi-stationary solution of (1.6), the Goldman-Hodgkin-Katz
equation ((2.4) in Chap. 2), clearly exhibits a nonlinear dependence of the ionic
current on the membrane voltage [22–25]. However, for only small deviations
from the stationary solution — given by the Nernst equation

EI =
kBT

q
ln

[I]out

[I]int
, (1.7)

I

Fig. 1.4. Equivalent “circuit” either for the diffusion currents through the cell
membrane or for the active ion pumps
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Idiffσ

Fig. 1.5. Equivalent circuit for the derivation of the Nernst-Planck equation (1.6)

where [I]out is the ion concentration in the extracellular space and [I]int within
the cell — the current can be regarded as being ohmic.

For room temperature, the factor kBT/q ≈ 25 mV. With the concentra-
tions from Fig. 2.1, Chap. 2, this leads to the characteristic resting potentials;
e.g. UK+ = −101 mV, and UNa+ = +56 mV.

Each sort of ion possesses its own Nernst equilibrium potential. We express
this fact by a battery in an equivalent “circuit” shown in Fig. 1.6.

Now, we are able to combine different ion channels k all selective for one
sort of ions I with their corresponding power supplies. This is achieved by a
serial circuit as shown in Fig. 1.7. This equivalent circuit will be our basic
building block for all other subsequent membrane models.

If the clamp voltage of this circuit has the value U , we have to distribute
this voltage according to Kirchhoff’s Second Law as

U =
Ik
gk

+ EI ,

leading to the fundamental equation

Ik = gk(U − EI) . (1.8)

The Goldman Equation

As an example, we assume that three types of ion channels are embedded in the
membrane patch, one pervious for sodium with the conductance gNa+ , another
pervious for potassium with the conductance gK+ , and the third pervious
for chloride with the conductance gCl− , respectively. Figure 1.8 displays the
corresponding equivalent circuit.

Interpreting the top of the circuit as the extracellular space and the bottom
as the interior of the neuron, we see that the resting potential for potassium

EI

Fig. 1.6. Equivalent circuit for the Nernst equilibrium potential (1.7)
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gk

EI

Fig. 1.7. Equivalent circuit for a population of ion channels of kind k selective for
the ion sort I embedded in a membrane with resting potential EI

and chloride is negative (denoted by the short tongue of the battery sym-
bol) while the sodium equilibrium potential is positive in comparison to the
extracellular space.

According to Kirchhoff’s First Law, the total current through the circuit
is

I = INa+ + IK+ + ICl− . (1.9)

To obtain the stationary equilibrium, we have to set I = 0. Using the funda-
mental equation (1.8), we get the equation

0 = gNa+(U − ENa+) + gK+(U − EK+) + gCl−(U − ECl−) ,

whose resolution entails the equilibrium potential

U =
gNa+ENa+ + gK+EK+ + gCl−ECl−

gNa+ + gK+ + gCl−
. (1.10)

Equation (1.10) is closely related to the Goldman equation that can be
derived from the Goldman-Hodgkin-Katz equation [24]. It describes the net
effect of all leakage channels. Therefore, the circuit in Fig. 1.8 can be replaced
by the simplification found in Fig. 1.9.

Accordingly, the leakage current is again given by (1.8)

Il = gl(U − El) . (1.11)

gCl−

ECl−

gK+

EK+

gNa+

ENa+

Fig. 1.8. Equivalent circuit for three populations of ion channels permeable for
sodium, potassium and chloride with their respective Nernst potentials
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gl

El

Fig. 1.9. Equivalent circuit for the total leakage current and its corresponding
leakage potential El

Characteristic values are gl = 13μS for the leakage conductance and El =
−69 mV for the leakage potential as the solution of (1.10) [19, 20].

While the Nernst potential for one kind of ions denotes a stationary state,
the Goldman equilibrium potential results from a continuous in- and outflow of
ions that would cease when all concentration gradients had been balanced. To
stabilize the leakage potential the cell exploits active ion pumps modeled by a
current source as displayed in Fig. 1.4. These ion pumps are proteins embedded
in the cell membrane that transfer ions against their diffusion gradients by
consuming energy. Maintaining resting potentials is one of the energetically
most expensive processes in the nervous system [27]. This consumption of
energy is, though rather indirectly, measurable by neuroimaging techniques
such as positron emission tomography (PET) or functional magnetic resonance
imaging (fMRI) [19, 20, 28, 29].

1.3 Active Membranes

The resting potentials we have discussed so far are very sensitive to changes
in the conductances of the ion channels. While these are almost constant for
the leakage channels, there are other types of channels whose conductances
are functions of certain parameters such as the membrane potential or the
occurrence of particular reagents. These channels make membranes active and
dynamic. The former are called voltage-gated whereas the latter are referred
to as ligand-gated. Basically, these channels occur in two dynamical states:
their pore may be open (O) or closed (C). The conductance of closed channels
is zero, while that of an open channel assumes a particular value γk. Therefore,
a single gated channel can be represented by a serial circuit of a resistor with
conductance γk and a switch S, as depicted in Fig. 1.10.

Let Nk be the number of gated channels of brand k embedded in our
membrane patch of area A, and let Ok and Ck the number of momentarily
open and closed channels of this kind, respectively. As argued in Sect. 1.2.1,
the total conductance of all open channels is given by Kirchhoff’s First Law as
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S

γk

Fig. 1.10. Equivalent circuit for a single gated channel with open-conductance γk

gk = Ok γk , (1.12)

while
ḡk = Nk γk (1.13)

is now the maximal conductance of these channels.

1.3.1 Action Potentials

Signals propagate mainly passively along the dendritic and somatic mem-
branes until they reach the axon hillock, or trigger zone of the neuron. Here,
the composition of the membrane changes significantly and voltage-gated
sodium and potassium channels supplement the all-pervasive leakage channels.
Above, we have modeled these channels by switches connected serially with
ohmic resistors. Now, the crucial question arises: Who opens the switches?

Here, for the first time, a stochastic account is required. Ion channels are
macro-molecules and hence quantum objects. Furthermore, these objects are
weakly interacting with their environments. Therefore the cell membrane and
the electrolytes surrounding it provide a heat bath making a thermodynamical
treatment necessary. From a statistical point of view, an individual channel
has a probability of being open, pk, such that the number of open channels is
the expectation value

Ok = pk Nk . (1.14)

Inserting (1.14) into (1.12) yields the conductance

gk = pk Nk γk = pk ḡk . (1.15)

The problem of determining the probability pk is usually tackled by mod-
eling Markov chains [24, 25]. The simplest approach is a two-state Markov
process shown in Fig. 1.11, where C and O denote the closed and the open
state, respectively, while α, β are transition rates.

The state probabilities of the Markov chain in Fig. 1.11 obey a master
equation [30, 31]

dpk

dt
= αk (1 − pk(t)) − βk pk(t) , (1.16)
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Fig. 1.11. Two-state Markov model of a voltage-gated ion channel

whose transition rates are given by the thermodynamic Boltzmann weights

αk = e
W (C→O)

kBT , (1.17)

where W (C → O) is the necessary amount of energy that has to be supplied
by the heat bath to open the channel pore.

Channel proteins consist of amino acids that are to some extent electrically
polarized [19–21]. The gate blocking the pore is assumed to be a subunit with
charge Q. Call W0(C → O) the work that is necessary to move Q through
the electric field generated by the other amino acids to open the channel
pore. Superimposing this field with the membrane potential U yields the total
transition energy

W (C → O) = W0(C → O) +QU . (1.18)

If QU < 0, W (C → O) is diminished and the transition C → O is facilitated
[12], thereby increasing the rate αk according to

αk(U) = e
W0(C→O)+QU

kBT . (1.19)

The equations (1.15, 1.16, 1.19) describe the functioning of voltage-gated
ion channels [12,13,15,23–25]. Yet, voltage-gated resistors are also well-known
in electric engineering: transistors are transient resistors. Though not usual in
the literature, I would like to use the transistor symbol to denote voltage-gated
ion channels here (Fig. 1.12). In contrast to batteries, resistors and capacitors,
which are passive building blocks of electronic engineering, transistors are
active components thus justifying our choice for active membranes.

ḡk

U

Fig. 1.12. Equivalent circuit for a population of voltage-gated ion channels. The
maximal conductance ḡk is reached when the transistor is in saturation
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ḡk

EI

U

Fig. 1.13. Equivalent circuit for a population of voltage-gated ion channels of kind
k selective for the ion sort I embedded in a membrane with resting potential EI

Corresponding to Fig. 1.7, the equivalent circuit for a population of
voltage-gated channels of kind k permeable for ions I supplied by their re-
spective resting potential EI is provided in Fig. 1.13.

The Hodgkin-Huxley Equations

Now we are prepared to derive the Nobel-prize-winning Hodgkin-Huxley equa-
tions for the action potential [32] (see also [12–15, 23–25]). Looking again at
Fig. 1.8, one easily recognizes that an increase of the sodium conductance
leads to a more positive membrane potential, or, to a depolarization, while an
increasing conductance either of potassium or of chloride entails a further neg-
ativity, or hyperpolarization of the membrane potential. These effects are in
fact achieved by voltage-gated sodium and potassium channels which we refer
here to as AN and AK, respectively. Embedding these into the cell membrane
yields the equivalent circuit shown in Fig. 1.14.3

U

Cm
ḡAK

EK+

ḡAN

ENa+

gl

El

Fig. 1.14. Equivalent circuit for the Hodgkin-Huxley equations (1.25, 1.27–1.29)

3 I apologize to all electrical engineers for taking their notation rather symbolically.
Certainly, this circuit has neither protection resistors nor voltage stabilizers and
should not be reproduced. Sorry for that!
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The first and second branches represent the voltage-gated potassium and
sodium channels, respectively. The third is taken from the stationary descrip-
tions of the leakage potential (Sect. 1.2.2) while the capacitance is now nec-
essary to account for the dynamics of the membrane potential. According to
Kirchhoff’s First Law, the total current through the circuit adds up to an
injected current Im,

Im = IAK + IAN + Il + IC . (1.20)

The partial currents are

IAK = pAK ḡAK(U − EK+) (1.21)
IAN = pAN ḡAN (U − ENa+) (1.22)
Il = gl(U − El) (1.23)

IC = Cm
dU
dt

, (1.24)

where (1.21, 1.22) are produced from (1.15) and (1.8), (1.23) is actually (1.11)
and (1.24) is the temporal derivative of (1.1). Taken together, the membrane
potential U(t) obeys the differential equation

Cm
dU
dt

+pAK ḡAK(U−EK+)+pAN ḡAN (U−ENa+)+gl(U−El) = Im . (1.25)

Equation (1.25) has to be supplemented by two master equations: (1.16) for
the open probabilities pAK , pAN and the rate equations (1.19) for αAK , αAN .

Unfortunately, this approach is inconsistent with the experimental findings
of Hodgkin and Huxley [32]. They reported two other relations

pAK = n4; pAN = m3 h , (1.26)

where n,m and h now obey three master equations

dn
dt

= αn (1 − n)− βn n (1.27)

dm
dt

= αm (1−m)− βmm (1.28)

dh
dt

= αh (1− h)− βh h . (1.29)

The equations (1.25, 1.27–1.29) are called Hodgkin-Huxley equations [12–15,
23–25, 32]. They constitute a four-dimensional nonlinear dynamical system
controlled by the parameter Im. Figure 1.15 displays numerical solutions for
three different values of Im.

Figure 1.15 illustrates only two of a multitude of dynamical patters of the
Hodgkin-Huxley system. Firstly, it exhibits a threshold behavior that is due to
a Hopf bifurcation [18]. For subthreshold currents (solid line: Im = 7.09μA),
one observes a damped oscillation corresponding to a stable fixed point in
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Fig. 1.15. Numeric solutions of the Hodgkin-Huxley equations (1.25, 1.27–1.29)
according to the Rinzel-Wilson model (Sect. 1.4.3) for three different values of the
control parameter Im. Solid: subthreshold current Im = 7.09 μA; dashed: super-
threshold current Im = 10 μA; dashed-dotted: even higher current Im = 200 μA

the phase space. If the control parameter Im exceeds a certain threshold θ,
this fixed point destabilizes and a limit cycle emerges (dashed line: Im =
10μA). Secondly, further heightening of Im leads to limit cycles of increased
frequencies (dashed-dotted line: Im = 200μA). This regular spiking dynamics
explains the law of all-or-nothing as well as the encoding principle by frequency
modulation in the nervous system [19–21].

In order to interpret the Hodgkin-Huxley equations (1.25, 1.27–1.29) bi-
ologically, we have to consider (1.26) first. It tells that our simple two-state
Markov chain (Fig. 1.11) is not appropriate. Instead, the description of the
active potassium channel requires a four-state Markov chain comprising three
distinct closed and one open state [24,25]. However, (1.26) allows for another
instructive interpretation: According to a fundamental theorem of probability
theory, the joint probability of disjunct events equals the product of the indi-
vidual probabilities upon their stochastic independence. Since pAK = n4, we
can assume the existence of four independently moving gating charges within
the channel molecule. Correspondingly, for the sodium channel we expect three
independent gating charges and one inhibiting subunit since pAN = m3 h. This
is supported by patch clamp measurements where the channel’s pores were
blocked by the Fugu’s fish tetradotoxin [19–21]. Although the blocked chan-
nel could not pass any ions, about three brief currents were observed. We can
imagine these charges as key cylinders that have to be brought into the right
positions to unlock a cylinder lock (thus opening the channel).

The emergence of an action potential results from different kinetics of the
ion channels. If the cell membrane is slightly depolarized by the current Im,
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the opening rate αn for the sodium channels increases, thus entailing a further
depolarization of the membrane. The positive feed-back loop started in this
way leads to a torrent of inflowing sodium until the peak of the action po-
tential is reached. Then, the membrane potential is positive in comparison
to the extracellular space, causing voltage-gated potassium channels to open.
Due to its negative equilibrium potential, potassium leaves the cell thereby
hyperpolarizing the interior. Contrastingly, the hyperpolarization of the mem-
brane reduces the open probability of the sodium channels, which become
increasingly closed. Another positive feed-back loop enhances the hyperpo-
larization thereby overshooting the resting potential. While the potassium
channels change very slowly back to their closed state, the sodium channels
become additionally inactivated by a stopper subunit of the channel molecule
whose kinetics is governed by the h term. This inhibition process is responsible
for the refractory time prohibiting the occurrence of another action potential
within this period.

1.3.2 Presynaptic Potentials

A spike train, generated in the way described by the Hodgkin-Huxley equa-
tions, travels along the axon and, after several branches, reaches the
presynaptic terminals. Here, the composition of the membrane changes again.
Voltage-gated calcium channels are present in addition to the voltage-gated
potassium and sodium channels, and can be described by another branch in
Fig. 1.14. The class of voltage-gated calcium channels is quite extensive and
they operate generally far from the linear (ohmic) domain of the Goldman-
Hodgkin-Katz equation [13, 15, 24, 25]. However, according to Johnston &
Wu [24], an ohmic treatment of presynaptic Ca2+ channels is feasible such
that their current is given by

IAC = l5 ḡAC (U − ECa2+) , (1.30)

where l obeys another master equation

dl
dt

= αl (1− l)− βl l . (1.31)

In the absence of an injected current (Im = 0), the presynaptic potential U(t)
is then governed by the differential equation

Cm
dU
dt

+ IAK + IAN + IAC + Il = 0 . (1.32)

Neglecting calcium leakage, the current (1.30) leads to an enhancement
of the intracellular concentration [Ca2+]int that is described by a continuity
equation [12]

d[Ca2+]int

dt
= − IAC

qNAV
. (1.33)
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Here, q = 2e is the charge of the calcium ion (e denoting the elementary
charge). Avogadro’s constant NA scales the ion concentration to moles con-
tained in the volume V . The accumulation of calcium in the cell plasma gives
rise to a cascade of metabolic reactions. Calcium does not only serve as an
electric signal; it also acts as an important messenger and chemical reagent,
enabling or disenabling the functioning of enzymes.

The movement of neurotransmitter into the synaptic cleft comprises two
sub-processes taking place in the presynaptic terminal: Firstly, transmitter
must be allocated, and secondly, it must be released. The allocation of trans-
mitter depends on the intracellular calcium concentration (1.33), while it is
stochastically released by increased calcium currents (1.30) as a consequence
of an arriving action potential with a probability p.

In the resting state, transmitter vesicles are anchored at the cytoskeleton
by proteins called synapsin, which act like a wheel clamp. The probability
to loosen these joints increases with the concentration [Ca2+]int. Liberated
vesicles wander to one of a finite number Z of active zones where vesicles
can fuse with the terminal membrane thereby releasing their content into
the synaptic cleft by the process of exocytosis [19–21]. Allocation means that
Y ≤ Z active zones are provided with vesicles, where

Y = κ([Ca2+]int)Z (1.34)

is the average number of occupied active zones, and κ([Ca2+]int) is a mono-
tonic function of the calcium concentration that must be determined from
the reaction kinetics between calcium and synapsin mediated by kinases. The
release of transmitter is then described by a Bernoulli process started by an
arriving action potential. The probability that k of the Y occupied active
zones release a vesicle is given by the binomial distribution

p(k, Y ) =
(
Y

k

)
pk(1− p)Y −k . (1.35)

For the sake of mathematical convenience, we shall replace the binomial
distribution by a normal distribution

ρ(k, Y ) =
1√

2πy(1− p) exp
[
− (k − y)2

2y(1− p)
]
, (1.36)

where y = Y p is the average number of transmitter releasing active zones.
Assuming that a vesicle contains on average nT = 5000 transmitter molecules
[19, 20], we can estimate the mean number of transmitter molecules that are
released by an action potential as

T = nTY p = nTZpκ([Ca2+]int) . (1.37)

Correspondingly, the expected number of transmitter molecules released by k
vesicles is given by
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ḡCa2+

transmitter

ECa2+

U

Fig. 1.16. Equivalent circuit for the calcium-controlled transmitter release (indi-
cated by the arrows of the LED)

T (k) =
nTY√

2πy(1− p) exp
[
− (k − y)2

2y(1− p)
]
. (1.38)

Finally, we need an equivalent circuit symbol for the transmitter release.
Electronics suggests the use of the LED symbol (light-emitting diode). Con-
nected all together, the calcium controlled transmitter release might be rep-
resented by the branch shown in Fig. 1.16.

1.3.3 Postsynaptic Potentials

After being poured out into the synaptic cleft of a chemical synapse, trans-
mitter molecules diffuse to the opposite postsynaptic membrane, unless they
have not been decomposed by enzymic reactions. There, they dock onto re-
ceptor molecules , which fall into two classes: ionotropic receptors are actually
transmitter-gated ion channels, whereas metabotropic receptors are proteins
that, once activated by transmitter molecules, start metabolic processes from
second messenger release up to gene expression. At particular pathways, they
control the opening of other ion channels gated by intracellular reaction prod-
ucts. The directly transmitter-gated channels are fast and effective, while the
intracellularly gated channels react very slowly [19–21, 33]. In this section, I
shall treat two distinct examples from each receptor class.

Excitatory Postsynaptic Potentials

One important transmitter-gated ion channel is (among others, such as the
AMPA, GABAA, and NMDA receptors) the nACh receptor that has nicotine
as an antagonist. It becomes open if three or four molecules of the neurotrans-
mitter acetylcholine (ACh) dock at its surface rising into the synaptic cleft.
These molecules cause shifts of the electric polarization within the molecule
which opens the gate in the pore. This process can be modeled by a Markov
chain similarly to the exposition in Sect. 1.3.1. However, another treatment is
also feasible, using chemical reaction networks [30, 33].
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The open nACh channel is conductive for sodium as well as for potassium
ions, such that its reversal (resting) potential is provided by the Goldman
equation (1.10). Yet the sodium conductance is slightly larger than that for
potassium yielding a net current of inflowing sodium ions. Since this current
is depolarizing, the nACh channels constitute excitatory synapses. Therefore,
they generate excitatory postsynaptic potentials (EPSP). On the other hand,
hyperpolarizing channels, such as the GABAA channel, constitute inhibitory
synapses generating inhibitory postsynaptic potentials (IPSP).

Let us once more consider a membrane patch of area A containing NnACh

receptors. Again, let OnACh be the number of momentarily opened and CnACh

the number of closed channels. According to (1.12), the conductance of all
open channels connected in parallel is then gnACh = OnACh γnACh. Opening
of the channels can now be described by the chemical reaction equation

C + 3T � O , (1.39)

where C denotes the closed and O the opened molecules. T stands for the
transmitter ACh. Because in each single reaction, three molecules T react
with one molecule C to produce one molecule O, the corresponding kinetic
equation [30, 31, 33] comprises a cubic nonlinearity,

dO
dt

= ν1CT
3 − ν2O , (1.40)

where ν1 denotes the production and ν2 the decomposition rate of open chan-
nels in (1.39). These reaction rates depend on the temperature of the heat
bath and probably on metabolic circumstances such as phosphorylation. This
equation has to be supplemented by a reaction-diffusion equation for the neu-
rotransmitter reservoir in the synaptic cleft

dT
dt

= ν2O − ν3TE − σT , (1.41)

where ν2O is the intake of transmitter due to decaying receptor-transmitter
complexes, which is the same as the loss of open channels in (1.40), ν3TE is
the decline due to reactions between the transmitter with enzyme E, and σT
denotes the diffusion out of the synaptic cleft. Its initial condition T (t = 0)
is supplied by (1.38). Taken together, the equations (1.40, 1.41) describe the
reaction-diffusion kinetics of the ligand-gated ion channel nACh.

Expressing the electric conductivity (1.12) through the maximal conduc-
tivity ḡnACh,

gk =
OnACh

NnACh
ḡnACh , (1.42)

suggests a new equivalent circuit symbol for ligand-gated channels. The con-
ductance is controlled by the number of transmitter molecules, i.e. the number
of particular particles in the environment. This corresponds to the phototran-
sistor in electronic engineering which is controlled by the number of photons
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ḡk

Fig. 1.17. Equivalent circuit for a population of ligand-gated ion channels of
kind k

collected by its base. Hence, I would like to suggest the circuit shown in
Fig. 1.17 as an equivalent to the nACh receptor.

In order to compute the postsynaptic potential, the circuit in Fig. 1.17 has
to be connected in parallel with the leakage conductance and the membrane
capacitance as in Fig. 1.18.

The EPSP for the nACh receptor then obeys the equations

Cm
dU
dt

+
OnACh

NnACh
ḡnACh(U − EnACh) + gl(U − El) = 0 (1.43)

together with (1.40, 1.41), and initial condition (1.38).
However, instead of solving these differential equations, most postsynaptic

potentials can be easily described by alpha functions as synaptic gain functions
[12–16,18]

UPSP(t) = EPSP α
2t e−αt Θ(t) , (1.44)

where α is the characteristic time constant of the postsynaptic potential (PSP)
and

Θ(t) =
{

0 for t ≤ 0
1 for t > 0 (1.45)

is Heaviside’s jump function.

U

Cm
ḡk

EPSP

gl

Ul

Fig. 1.18. Equivalent circuit for the postsynaptic potential generated by ligand-
gated channels of kind k with reversal potential PSP
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Fig. 1.19. Numeric solutions of the kinetic equations (1.40, 1.41, 1.43) for the
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Figure 1.19 displays the numerical solution of equations (1.40, 1.41, 1.43)
for arbitrarily chosen parameters together with a “fitted” alpha function for
comparison. Obviously, the correspondence is not that large.

Inhibitory Postsynaptic Potentials

Synapses are excitatory if they open sodium or calcium channels with more
positive reversal potentials compared to the resting state. Their neurotrans-
mitters are generally acetylcholine (ACh) or the amino acid glutamate. Con-
trastingly, most inhibitory synapses employ the amino acids glycine or GABA
(gamma-amino-butyric-acid) to open potassium or chloride channels with
more negative reversal potentials. While the GABAA receptor is transmitter-
gated such as the nACh receptor discussed in the previous section, the
GABAB- and mACh receptors (having the toadstool toxin muscarine as
an antagonist) activate intracellular G proteins which subsequently open G
protein-gated potassium channels [19–21]. The activation of G protein-gated
potassium channels comprises the following chemical reactions [12]:

R0 + T � R∗ � D (1.46)
R∗ +G0 � RG∗ → R∗ +G∗

G∗ → G0

C + nG∗ � O ,
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where R0 is the metabotropic GABAB receptor in its resting state, T the
transmitter GABA, R∗ the transmitter-activated receptor on the one hand,
and D the same transmitter-receptor complex in its inactivated state on the
other hand; furthermore, G0 is the G protein in its resting state, (RG)∗ a
short-lived activated receptor-G protein complex and G∗ the activated G pro-
tein; finally, C is the G protein-gated potassium channel in its closed state
and O in the open state. The channel possesses n docking sites for G protein
molecules. Translating (1.46) into kinetic equations and adding (1.41) yields

dR0

dt
= −ν1R0T + ν2R

∗ (1.47)

dT
dt

= −ν1R0T + ν2R
∗ − ν11 TE − σT (1.48)

dR∗

dt
= ν1R0T − ν2R∗ + ν3D − ν4R∗ (1.49)

−ν5R∗G0 + ν6 (RG)∗ + ν8 (RG)∗

dD
dt

= −ν3D + ν4R
∗ (1.50)

dG0

dt
= −ν5R∗G0 + ν6 (RG)∗ + ν7G

∗ (1.51)

d(RG)∗

dt
= ν5R

∗G0 − ν6 (RG)∗ − ν8 (RG)∗ (1.52)

dG∗

dt
= −ν7G∗ + ν8 (RG)∗ + ν10O (1.53)

dO
dt

= ν9 CG
∗n − ν10O (1.54)

for the metabolic dynamics. Equations (1.47–1.54) together with (1.43) de-
scribe the inhibitory GABA-ergic potential

Cm
dU
dt

+
O

O + C
ḡGP(U − EK+) + gl(U − El) = 0 , (1.55)

where ḡGP denotes the maximal conductance and EK+ the reversal potential
of the G protein-gated potassium channels.

Temporal Integration

Each action potential arriving at the presynaptic terminal causes the (binomi-
ally distributed) release of one or more vesicles that pour their total amount
of transmitter molecules into the synaptic cleft. Here, transmitter molecules
react either with ionotropic or with metabotropic receptors which open —
more or less directly — ion channels such that a postsynaptic current

IPSC(t) =
Ok(t)
Nk

ḡk(U − Ek) , (1.56)
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either excitatory or inhibitory, flows through the “phototransistor” branch of
Fig. 1.17. This current gives rise to the EPSP or IPSP according to (1.43,
1.55). Since these potentials were determined for the transmitter released by
one action potential, we can consider them as impulse response functions .
Inserting IPSC into (1.43, 1.55) and shifting the resting potential to El = 0
yields the inhomogeneous linear differential equation

τ
dU
dt

+ U = −I
PSC

Cm
, (1.57)

with τ = Cm/gl as the characteristic time constant of the membrane patch.
If we describe the current IPSC by a pulse of height I0 at time t0,

IPSC(t) = I0δ(t− t0) , (1.58)

the solution of (1.57) is given by a Green’s function UPSP = G(t, t′) [13,18,22].
By virtue of this Green’s function, we can easily compute the postsynaptic
potential evoked by an arbitrary spike train

IPSC(t) = I0
∑

k

δ(t− tk) (1.59)

as the convolution product

UPSP(t) =
∫
G(t, t′) IPSC(t) dt′ = G ∗ IPSC . (1.60)

Inserting (1.59) into (1.60) gives

UPSP(t) = I0
∑

k

G(t, tk) . (1.61)

If the action potentials are generated by the presynaptic neuron in the regular
spiking mode with frequency f (see Sect. 1.3.1), the event times are given by

tk =
k

f
. (1.62)

Eventually, (1.61, 1.62) lead to

UPSP(t) = I0
∑

k

G

(
t,
k

f

)
. (1.63)

Figure 1.20 displays two postsynaptic potentials obtained by the convolution
of the Green’s function

G(t, t′) = Θ(t− t′) · I0
Cm

exp
(
− t− t

′

τ

)

with regular spike trains.
By means of the convolution mechanism, an analogue continuously varying

membrane potential is regained from a frequency-modulated spike train. This
process is called temporal integration.
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Fig. 1.20. Temporal integration of postsynaptic pulse responses for a lower (lower
curve) and a higher regular spiking frequency (upper curve)

1.4 Neuron Models

In the preceding sections, we completed our construction kit for neurophysical
engineering. In the remaining ones, we are going to apply these building blocks.
There are three main threads of neural modeling. The first one builds point
models, where all kinds of ion channels are connected in parallel. Secondly,
compartment models additionally take into account the cable properties of cell
membranes that are responsible for spatial integration processes. However, all
these models are computationally very expensive. Therefore several simpli-
fications and abstractions have been proposed to cope with these problems
especially for the modeling of neural networks . Nevertheless, for the simula-
tion of relatively small networks of point or compartment models, powerful
software tools such as GENESIS [34], or NEURON [35] have been developed.

1.4.1 Point Models

In the point model account, all membrane patches of a nerve cell are assumed
to be equipotential, disregarding its spacial extension [12, 15, 36, 37]. In our
equivalent circuits, this assumption is reflected by connecting all different ion
channels in parallel. Figure 1.21 shows such a point model.

In order to simulate the neuron in Fig. 1.21, all discussed differential equa-
tions are to be solved simultaneously. Neural networks then consist of many
circuits of this form that are “optically” coupled, i.e. by the transmitter re-
leasing and receiving devices at both ends of one circuit. The efficacy of the
coupling between two neurons i and j is expressed by the synaptic weight wij .
Physiologically, these weights depend on the maximal synaptic conductances
ḡPSP.



1 Foundations of Neurophysics 25

presynapse
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Fig. 1.21. Equivalent circuit for a neural point model

1.4.2 Compartment Models

Point models have one serious disadvantage: They completely disregard the
spatial extension of the cell and the fact that different membrane patches,
e.g. at the soma, the axon, the terminals, or the dendrites, exhibit different
potentials (cf. Chap. 2). The gradients between these sites then lead to ion cur-
rents through the cell plasma thus contributing to the mechanisms of spatial
integration. Moreover, currents moving back through the extracellular space
give rise to the somato-dendritic field potentials (DFP). These fields sum to
the local field potentials (LFP) at a mesoscopic and to electrocorticogram
(ECoG) and electroencephalogram (EEG) at macroscopic scales [38–42] (cf.
Chaps. 8 and 7 in this volume).

Correctly, the spatiotemporal dynamics of neuronal membranes must be
treated by the cable equation [12, 13, 15, 18, 22, 24, 25]. This is a second-order
partial differential equation for the membrane potential U(r, t). For the sake
of numerical simulations, its discretized form leads to compartment models
where individual membrane patches are described by the equivalent circuits
discussed in the previous sections [12, 13, 15, 16, 18, 40, 41]. As an example, I
shall create an equivalent circuit for a three-compartment model for the cor-
tical pyramidal cells that is able to describe somato-dendritic field potentials.

Pyramidal cells are characterized by their axial symmetry. They consist
of an apical dendritic tree comprising only excitatory synapses and a basal
dendritic tree where mainly inhibitory synapses are situated. Both types of
synapses are significantly separated in space thus forming a dipole of cur-
rent sources (the inhibitory synapses) and sinks (the excitatory synapses)
[38, 39, 41, 42]. The extracellular current flows from the sources to the sinks
through a non-negligible resistance Rout which entails the somato-dendritic
field. Therefore, we divide the pyramidal cell into three compartments: the
first represents the apical dendrites, the second the basal dendrites, and the
third takes firing into account. Figure 1.22 depicts its equivalent circuit. The
internal resistance Rint accounts for the length constant of the neuron and
contributes also to the synaptic weights (see Chap. 7).
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In this model, the extracellular current Iout flowing from the inhibitory to
the excitatory compartment through R1 entails the dendritic field potential

UDFP =
Iout

R1
. (1.64)

Note that Iout is large for a large difference between the EPSP and the IPSP,
i.e. when both types of synapses are synchronously activated. In this case,
however, the remaining current I − Iout flowing through the axonal compart-
ment can be too small to elicit action potentials. Therefore, DFP and spiking
are inversely related with each other [41].

1.4.3 Reduced Models

The computational complexity of conductance models prevents numerical sim-
ulations of large neural networks. Therefore, simplifications and approxima-
tions have been devised and employed by several authors [10–18,43–50].

In the following, we shall consider networks composed from n model neu-
rons. Their membrane potentials Ui (1 ≤ i ≤ n) span the observable state
space, such that U ∈ R

n; note that the proper phase space of the neural net-
work might be of higher dimension. The observables Ui depend on the total
postsynaptic current

IPSC
i = −

n∑
j=1

wij Ij − Iext
i , (1.65)

where wij is the synaptic weight of the connection from unit j to unit i,
dependent on the synaptic gain ḡij that evolves during learning, thus reflect-
ing synaptic plasticity (see Chap. 2), and the intracellular resistances (see
Chap. 7). The capacitance in (1.57) has been deliberately neglected and Iext

i

denotes the externally controlled input to neuron i.

The McCulloch-Pitts Model

The coarsest simplification by McCulloch and Pitts [16, 18, 51, 52] replaces
the involved Hodgkin-Huxley system (1.25, 1.27–1.29) by a threshold device
with only two states: Xi ∈ {0, 1} where 0 denotes the inactivated, silent,
and 1 denotes the activated, firing state. The dynamics of a network of n
McCulloch-Pitts units is governed by the equations

Xi(t+ 1) = Θ(IPSC
i − θi) , (1.66)

where t is the discretized time, θi the activation threshold for unit i, and
Ii = Xi have been identified.
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Integrate-and-fire Models

The next step to make threshold units biologically more plausible is by taking
the passive membrane properties as described by (1.57) into account. This
leads to the class of (leaky) integrate-and-fire models [12,13,15,16,18,46,50]:

τi
dUi

dt
+ Ui = IPSC

i (1.67)

Xi(tk) = Θ(Ui(tk)− θi)
Ui(tk)← E .

Here, Ui(t) describes the membrane potential of unit i, Xi and θi model the
action potentials and the firing thresholds as in (1.66), and tk are the firing
times where the membrane potential is reset to its resting value E (indicated
by the arrow).

Rate Models

In Sects. 1.3.1 and 1.3.3, we saw that the principles of frequency modulation
are exploited for neural en- and decoding — at least for regular spiking dy-
namics. Therefore, it seems to be appropriate to replace the exact time-course
of a spike train by its frequency, firing rate, or firing probability [53,54]. The
latter approach leads to the problem of determining the value

Ri(t) = Prob(Ui(t) ≥ θi) =
∫

dn−1u

∞∫
θi

ρ(u, t) dui , (1.68)

where we have to regard the membrane potentials U(t) as a multivariate
stochastic variable in the observable space with expectation values Ūi(t) and
probability density function ρ(u, t). The first integral in (1.68) provides the
marginal distribution in the ith observable subspace. The stochasticity as-
sumption is justified by our treatment of the presynaptic potential in Sect.
1.3.2. Because every action potential starts a Bernoulli process which describes
how many vesicles are to be released, this element of stochasticity propagates
along the synapse. As we have characterized the distribution of the number of
released vesicles by (1.36), the postsynaptic currents are normally distributed
about their voltage-dependent means Īi(Ū),

IPSC
i = −

∑
j

wij (Īj(Ū(t)) + ηj(t)) , (1.69)

where ηj(t) are independent normally distributed stochastic processes with

〈ηj(t)〉 = 0 (1.70)
〈ηj(t), ηk(t′)〉 = Qjk δ(t− t′) .
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Therefore, (1.57) has to be read as a stochastic differential (Langevin) [30,31]
equation

dUi

dt
= Ki(U )−

∑
j

αiwijηj(t)) , (1.71)

where
Ki(U) = −αiUi −

∑
j

αiwij Īj(Ū) (1.72)

are the deterministic drifting forces and
∑

j αiwijηj are stochastic fluctua-
tions, obeying〈∑

j

αiwijηj(t),
∑

l

αkwklηl(t′)

〉
= Rikδ(t− t′) , (1.73)

with
Rik =

∑
jl

αiwij αkwkl Qjl ; (1.74)

here, we substituted αi = τ−1
i .

The probability distribution density ρ(u, t) is then obtained by solving the
Fokker-Planck equation [30, 31] associated to (1.71),

∂ρ

∂t
=
∑

i

∂

∂ui
[Ki(u)ρ] +

1
2

∑
ik

Rik
∂2ρ

∂ui∂uk
. (1.75)

In order to solve (1.75), we assume that the currents Īj do not explicitly
depend on the mean membrane potential, and that they change rather slowly
in comparison to the density ρ (the “adiabatic ansatz”). Then, (1.75) is linear
and hence solved by the Gaussians

ρ(u, t) =
1√

2πσ2
U (t)

exp
[
− (u− Ū(t))2

2σ2
U (t)

]
(1.76)

as its stationary marginal distributions, where Ū(t) and σ2
U (t) have to be

determined from Ī(t) and Rik. Integrating (1.68) with respect to (1.76) yields
the spike rate

Ri = f(Ūi) =
1
2

erfc
(
θi − Ūi√

2σU

)
, (1.77)

with “erfc” denoting the complementary error function. In such a way, the
stochastic threshold dynamics are translated into the typical sigmoidal acti-
vation functions f(x) employed in computational neuroscience [7–9,11–13,15,
16, 18].

Gathering (1.67, 1.77), a leaky integrator model [46] is obtained as

τi
dUi

dt
+ Ui =

∑
j

wij f(Uj) . (1.78)
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An alternative derivation of (1.78) can be found in Chap. 7 by disregarding
the postsynaptic impulse response functions G(t, t′). If these are taken into
account, instead an integro-differential equation

τi
dUi

dt
+ Ui =

∑
j

wij

t∫
−∞

G(t− t′)f(Uj(t′)) dt′ (1.79)

applies.

The Rinzel-Wilson Model

The models to be discussed next are approximations for the full Hodgkin-
Huxley equations (1.25, 1.27–1.29). Following Rinzel, Wilson and Trappen-
berg [14,16], the Hodgkin-Huxley equations exhibit two separated time-scales:
at the fast scale, the opening of the sodium channels characterized by m(t)
happens nearly instantaneously such that m(t) can be replaced by its sta-
tionary value m∞. On the other hand, the opening rate for the potassium
channels n and the inactivation rate h for the sodium channels exhibit an
almost linear relationship h = 1 − n. The corresponding substitutions then
lead to a two-dimensional system for each neuron i.

Ii = Cm
dUi

dt
+ n4

i ḡAK(Ui − EK+) + (1.80)

+ m3
∞(1− ni) ḡAN (Ui − ENa+) + gl(Ui − El)

dni

dt
= αn (1 − ni)− βn ni

which was applied for the plot in Fig. 1.15.

The FitzHugh-Nagumo Model

The same observation as in above led FitzHugh and Nagumo to their approx-
imation of the Hodgkin-Huxley equations [13, 14, 18, 43, 50]. Here, a general
linear relation h = a − b n is used in combination with a coordinate trans-
formation and rescaling to arrive at the Bonhoeffer-Van-der-Pol-, or likewise,
FitzHugh-Nagumo equations ,

dUi

dt
= Ui − 1

3
U3

i −Wi + Ii (1.81)

dWi

dt
= φ(Ui + a− bWi) ,

with parameters φ, a, b.
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The Morris-Lecar Model

Originally, the Morris-Lecar model was devised to describe the spiking dy-
namics of potassium- and calcium-controlled muscle fibers [12–14,18,50]. After
introducing dimensionless variables and rescaled parameters, they read

dUi

dt
= −m∞ḡAC(Ui − 1)−Wi ḡAK(Ui − EK+)− gl(Ui − El) + Ii(1.82)

dWi

dt
= αW (1 −Wi)− βW Wi .

The Morris-Lecar model has been extensively employed during the Sum-
mer School, see Chaps. 9, 11, 12, 14.

The Hindmarsh-Rose Model

The FitzHugh-Nagumo and Morris-Lecar models have the disadvantage that
they do not have a bursting regime in their parameter space [50]. In order to
overcome this obstacle, a third dimension for the phase space is necessary. The
Hindmarsh-Rose equations, which exhibit this third dimension, are [14, 47]

dUi

dt
= Vi − U3

i + 3U2
i + Ii −Wi (1.83)

dVi

dt
= 1− 5U2

i − Vi

dWi

dt
= r[s(Ui − U0)−Wi] ,

with parameters r, s, U0.
For applications of the Hindmarsh-Rose model in this book, see Chap. 6.

The Izhikevich Model

Making use of arguments from bifurcation theory, Izhikevich [49] approxi-
mated the Hodgkin-Huxley equations by the two-dimensional flow

dUi

dt
= 0.04U2

i + 5Ui + 140− Ui + Ii (1.84)

dVi

dt
= a(bVi − Ui) , (1.85)

disrupted by an auxiliary after-spike resetting

if Ui ≥ 30 mV, then
{
Ui ← E
Vi ← Vi + c

with parameters a, b, c, E, where E denotes the resting potential.
A comprehensive comparison of different spiking neuron models with re-

spect to their biological plausibility and computational complexity can be
found in [50].

Also the Izhikevich model has been used during the Summer School. These
results are presented in Chap. 13.
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1.4.4 Neural Field Theories

For very large neural networks, a continuum approximation by spatial coarse-
graining suggests itself [55–70]. Starting from the rate equation (1.79), the
sum over the nodes connected with unit i has to be replaced by an integral
transformation of a neural field quantity U(x, t), where the continuous pa-
rameter x now indicates the position i in the network. Correspondingly, the
synaptic weights wij turn into a kernel function w(x, y). In addition, for large
networks, the propagation velocity c of neural activation has to be taken into
account. Therefore, (1.79) assumes the retarded form

τ(x)
∂U(x, t)
∂t

+U(x, t)=

t∫
−∞

dt′
∫

dx′w(x, x′)G(t−t′)f
[
U

(
x′, t′ − |x− x

′|
c

)]
,

(1.86)
which can be transformed into a wave equation under additional assumptions.
For further details, consult Chap. 8 and the references above.

1.5 Mass Potentials

Neural field theories [55–70] as well as population models of cortical mod-
ules [39, 71–81] (see also Chap. 7) describe mass potentials such as LFP or
EEG as spatial sums of the EPSPs and IPSPs of cortical pyramidal cells. In
these accounts, the somato-dendritic field potential (DFP) of an infinitesimally
small volume element of cortical tissue, or of a single neuron, respectively, is
described [79] by

UDFP = UEPSP + U IPSP (1.87)

when UEPSP > 0, U IPSP < 0.4 Unfortunately, this description is at variance
with the physiological origin of the DFP. Looking at the equivalent circuit of
the three-compartment model in Fig. 1.22, one easily recognizes that simulta-
neously active excitatory and inhibitory synapses give rise to a large voltage
drop along the resistor R1 separating both kind of synapses in space. There-
fore, a large extracellular current yields a large DFP according to (1.64).
On the other hand, the sum in (1.87) becomes comparatively small since
EPSP and IPSP almost compensate each other. Therefore, the geometry and
anatomy of pyramidal cells and cortex have to be taken into account. To this
end, I shall mainly review the presentation of Nunez and Srinivasan [42, 82]
in the following.

4 The signs in (1.87) are physiologically plausible (cf. (1.43, 1.55)), whereas Jansen
et al. [75, 76], Wendling et al. [77, 78], and David and Friston [79] assume that
EPSP and IPSP both have positive signs such that their estimate for the DFP
reads UDFP = UEPSP − U IPSP (cf. Chap. 5).
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1.5.1 Dendritic Field Potentials

If the reader takes a look at Fig. 8.1 in Chap. 8, she or he sees three trian-
gular knobs that are the cell bodies of three pyramidal cells. Starting from
their bases, axons proceed downwards like the roots of plants. In the other di-
rection, they send strongly branched trees of dendrites towards the surface of
the cortex. Pyramidal cells exhibit roughly an axonal symmetry and they are
very densely packed in parallel, forming a fibrous tissue. Excitatory and in-
hibitory synapses are spatially separated along the dendritic tree: Excitatory
synapses are mainly situated at the apical (i.e. the top-most) dendrites, while
inhibitory synapses are arranged at the soma and the basal dendrites of the
cells. This arrangement is functionally significant as the inhibitory synapses
very effectively suppress the generation of action potentials by establishing
short-cuts [41].

From the viewpoint of the extracellular space, inhibitory synapses act as
current sources while excitatory synapses are current sinks. The extracellular
space itself can be regarded as an electrolyte with (volume-) conductance σ(x),
where x indicates the dependence on the spatial position. From Maxwell’s
equations for the electromagnetic field, a continuity equation

−∇ · (σ∇φ) +
∂ρ

∂t
= 0 (1.88)

can be derived for the “wet-ware” [42, 82]. Here, φ(x) denotes the electric
potential and ρ(x, t) the charge density, and j = −σ∇φ is the current density
according to Ohm’s Law (1.5). Assuming that the conductivity σ(x) is piece-
wise constant in the vicinity of a pyramidal cell, σ can be removed from the
scope of the first gradient, yielding

−σΔφ+
∂ρ

∂t
= 0 . (1.89)

Next, we have to describe the change of the current density. Setting

∂ρ(x)
∂t

=
∑

i

Iiδ(x− xi) (1.90)

describes the postsynaptic transmembrane currents in the desired way as point
sources and sinks located at xi. When we insert (1.90) into (1.89), we finally
arrive at a Poisson equation

σΔφ =
∑

i

Iiδ(x− xi) (1.91)

in complete analogy to electrostatics.
Equation (1.91) can be easily solved by choosing appropriate boundary

conditions that exclude the interiors and the membranes of the cells from the
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domain of integration.5 Integrating (1.91) over the extracellular space gives

φ(x) =
1

4πσ

∑
i

Ii
ri
, (1.92)

where x denotes the observation site and ri = |x−xi| abbreviates the distance
between the point sources and sinks Ii and x.

If the distance of the observation site x is large in comparison to the
respective distances of the current sources and sinks from each other, the
potential φ(x) can be approximated by the first few terms of a multipole
expansion,

φ(x) =
1

4πσ

(
1
x

∑
i

Ii +
1
x3

∑
i

Ii xi · x + . . .

)
. (1.93)

Now, x denotes the distance of the observation point from the center of mass
of the current cloud Ii. Due to the conservation of charge, the monopole term
vanishes, whereas the higher order multipoles strongly decline with x → ∞.
Therefore, only the dipole term accounts for the DFP,

φDFP(x) =
1

4πσ
1
x3

∑
i

Ii xi · x =
1

4πσ
p · x
x3

, (1.94)

where the dipole moment of the currents

p = I(x1 − x2) = Id (1.95)

can be introduced when a current source +I and a sink −I are separated by
the distance d. The unit vector d/d points from the source to the sink.

Equation (1.95) now suggests a solution for the problem with (1.87). The
DFP is proportional to the dipole moment which depends monotonically on
the absolute value I. Assuming that the excitatory and the inhibitory branch
in the equivalent circuit in Fig. 1.22 are symmetric, the dipole moment, which
is determined by Iout, depends on the difference between the (positive) EPSP
and the (negative) IPSP,

UDFP = UEPSP − U IPSP , (1.96)

such that a simple change of the sign corrects (1.87).
5 My presentation here deviates from that given by Nunez and Srinivasan [42] who

assume quasi-stationary currents [∇ · j = 0]. As a consequence of (1.88), the
change of the charge density would also vanish leading to a trivial solution. In
order to circumvent this obstacle, Nunez and Srinivasan [42, p. 166] decompose
the current into an “ohmic” part −σ∇φ and peculiar “impressed currents” JS

corresponding to EPSC and IPSC that cross the cell membranes. However, they
concede that “the introduction of this pseudo-current may, at first, appear arti-
ficial and mysterious” aiming at the representation of the boundary conditions.
This distinction is actually unnecessary when boundary conditions are appropri-
ately chosen [82]. Nevertheless, Nunez’ and Srinivasan’s argument became very
popular in the literature, e.g. in [4,67].
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1.5.2 Local Field potentials

Since pyramidal cells are aligned in parallel, they form a dipole layer of thick-
ness d when they are synchronized within a cortical module. Subsequently, we
will identify such modules with the anatomical columns (cf. Chap. 8) in order
to compute the collective DFP, i.e. the local field potential (LFP) generated
by a mass of approximately 10,000 pyramidal cells.

The current differential dI is then proportional to the infinitesimal area
in cylindrical coordinates

dI = jdA , (1.97)

where the current density j is assumed to be a constant scalar within one col-
umn. Hence, the differential of the potential dφ at a distance z perpendicular
to a cortical column of radius R that is contributed by the current dI is given
by

dφ(x) =
1

4πσ
j d · (x− x′)
|x− x′|3 dA , (1.98)

where x′ varies across the area of the module. Making use of the geometry
depicted in Fig. 1.23 yields

dφ(z) =
1

4πσ
jd
√
r2 + z2 cosϑ

(r2 + z2)3/2
r dr dϕ

=
jd

4πσ
z
√
r2 + z2

√
r2 + z2(r2 + z2)3/2

r dr dϕ

=
jd

4πσ
rz

(r2 + z2)3/2
drdϕ

φ(z) =
jd

4πσ

2π∫
0

dϕ

R∫
0

dr
rz

(r2 + z2)3/2
.

Performing the integration then gives the LFP perpendicular to the dipole
layer

φLFP(z) =
jd

2σ

(
1− z√

R2 + z2

)
. (1.99)

1.5.3 Electroencephalograms

Equation (1.99) describes the summed potential resulting from the synchro-
nized synaptic activity of all pyramidal neurons in a column in a distance z
above the cortical gray matter. By integrating over a larger domain of cor-
tical tissue, e.g. over a macrocolumn, one obtains an estimator of the elec-
trocorticogram (ECoG) [83]. In order to compute the electroencephalogram
(EEG), one has to take the different conductances of skull and scalp into
account. Nunez and Srinivasan [42] discuss different scenarios with different
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Fig. 1.23. Geometry of a cortical column

geometries. In the simplest case, only one interface between a conductor (G1)
with conductance σ1 and an isolator G2 (conductance σ2 = 0) is considered.
According to the respective interpretation, either the skull, or the air above
the subject’s head is regarded to be the isolator.6

In one case, one has to consider the potential generated by a point source
(or sink) I at a distance −h from the interface in the semi-space G1 by at-
taching a mirror source (or sink) I ′ at a distance h from the interface in order
to solve Dirichlet’s boundary problem if x ∈ G2, z > 0 [42]. In the other case,
one has to replace the source (or sink) I in the semi-space G1 by another
source (or sink) I + I ′′ if x ∈ G1, z < 0. The geometrical situation is shown
in Fig. 1.24.

In the semi-space G2 relevant for the EEG measurement, (1.91) is then
solved by

φDFP(x) =
1

2π(σ1 + σ2)
I√

r2 + (z + h)2
. (1.100)

When G2 is assumed to be an isolator, we set σ2 = 0, σ1 ≡ σ. Hence the
potential in the semi-space G2 is simply twice the potential in a homogeneous
medium. Provided that all current sources and sinks are distributed in G1,
the superposition principle entails

φDFP(x) =
1

2πσ

∑
i

Ii√
r2i + (z + hi)2

. (1.101)

From (1.99) follows

6 Occasionally a misunderstanding occurs in the literature where ionic currents
and dielectric displacement, i.e. polarization, are confused [84, 85]. Do we really
measure sodium or potassium ions that have traversed the skull during an EEG
measurement, or is the skull merely a polarizable medium?
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Fig. 1.24. Geometry of Dirichlet’s boundary problem for the EEG

Φ(z) ≡ φEEG =
jd

σ

(
1− z√

R2 + z2

)
(1.102)

for the EEG generated by a cortical column measurable at the scalp.

1.5.4 Mean Fields

In this last subsection, I shall discuss the question of whether mass potentials
such as LFP or EEG are mere epiphenomena [42,86], or whether they play a
functional role in the organization of brain functioning. If the latter were the
case, they would be described as order parameters which couple as mean fields
onto the microscopic neurodynamics with the ability to enslave its behavior
[30, 87].

In order to encounter this problem, one has to estimate the average
field strengths and voltage differences that are generated by synchronized
activity of all pyramidal cells of a cortical module. These quantities then
have to be compared with experimental findings on the susceptibility of
nerve cells through electromagnetic fields. As mentioned above, the spiking
threshold is around θ = −50 mV, i.e. the membrane must be polarized by
ΔU = 10 mV –20 mV from its resting value given by the Nernst equation
(1.7). This corresponds to an electric field strength E = 106 V/m for a thick-
ness of 5 nm of the cell membrane [88].

On the other hand, neurophysiological experiments have revealed that
much smaller field strengths of about 1 V/m entail significant changes of neu-
ral excitability [89–93]. Event-related potentials can be modulated by values
around 4 V/m. In the hippocampus, where pyramidal cells are very densely
packed, effective field strengths are in the range of 5–7 V/m, whereas 10–15
V/m are needed in the cerebellum [91].

To estimate the field strength generated by a cortical column, we have to
solve the Dirichlet boundary problem within the electrolyte G1 as shown in
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Fig. 1.24. The potential of a point source (or sink) I at x ∼= (0, 0, z) is given
in the semi-space G1 as

φ(x) =
I

4πσ1

(
1√

r2 + (z + h)2
+
σ1 − σ2

σ1 + σ2

1√
r2 + (z − h)2

)
. (1.103)

Since we assume G2 to be an isolator again (σ2 = 0), the superposition prin-
ciple yields

φ(x) =
1

4πσ

∑
i

Ii

(
1√

r2i + (z + hi)2
+

1√
r2i + (z − hi)2

)
. (1.104)

Next, we apply (1.104) to a current dipole made up by a source (or sink) I at
(r, ϕ, l − d/2) and a sink (or source) −I at (r, ϕ, l + d/2), where the dipole’s
center is situated in a distance l below the interface:

φ(x) =
I

4πσ

(
1√

r2 + (z + l − d/2)2
+

1√
r2 + (z − l + d/2)2

−

1√
r2 + (z + l+ d/2)2

+
1√

r2 + (z − l − d/2)2

)
.

Approximating the quotients by (1 + x)−1/2 ≈ 1− x/2 gives

φ(x) =
Ild

2πσr3
, (1.105)

i.e. the potential depends only on the radial direction in the conductor. There-
fore, the field strength is given by the r-component of the gradient

E = − ∂

∂r
φ(x) =

3Ild
2πσr4

. (1.106)

In order to replace the column by an equivalent current dipole moment
generating the same field, we have to compute the current density through
the surface of the column according to (1.102) from the measured scalp EEG.
Rearrangement of (1.102) yields

j =
σ

d

Φ(z)
1− z√

R2+z2

. (1.107)

Then, the current through the column would be

I = jπR2 (1.108)

if the tissue were a continuum as presupposed in Sect. 1.5.2. Here, R ≈ 150μm
is the radius of a column. By contrast, one has to take into account that a
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Fig. 1.25. Electric field strength estimated from the EEG depending on the dis-
tance of an equivalent dipole. The horizontal lines indicate critical field strengths
for evoking action potentials (upper line), and for detectable physiological impact
(bottom line)

column contains about 10,000 pyramidal cells. Thus, the current along a single
pyramidal cell is

IPyr =
jπR2

N
(1.109)

with N = 10, 000. Inserting (1.109) and (1.107) into (1.106) gives with z = l

E(r) =
3lR2

2Nr4
Φ(l)

1− l√
R2+l2

. (1.110)

Figure 1.25 presents a plot ofE(r) for the parameter valuesR = 150μm, N =
10, 000, where a distance between the cortex surface and the skull l = 8 mm
and a peak EEG amplitude of Φ(l) = 100μV have been assumed.

Additionally, Fig. 1.25 displays two lines: the upper line reflects the spiking
threshold of a single neuron, E = 106 V/m; the bottom one indicates the limit
of physiological efficacy, E = 10 V/m [91]. These thresholds correspond to the
distances r1 = 16.39μm, and r2 = 346.77μm from the equivalent dipole.
Because we took R = 150μm as the radius of a cortical module, r2 reaches far
into the neighboring column. With 10,000 pyramidal cells per module, their
average distance amounts to 3μm, such that approximately 120 closely packed
pyramidal cells can be excited by the mass potential. Interestingly, the radius
r2 coincides nicely with the size of the column. Hence, this rough estimate
suggests that cortical columns are functional modules controlled by their own
electric mean fields that are very likely not mere epiphenomena.

This is consistent with empirical findings. Adey [89] reported a change of
the calcium conductivity of neuron membranes under the impact of sustained
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high-frequency fields. In the hippocampus of rats, field effects are particu-
larly pronounced due to the extreme packing density of the pyramidal cells
and the resulting low conductivity of the extracellular liquid. Suppressing
synaptic transmission experimentally by reducing the amount of available ex-
tracellular calcium, leads to the emergence of spontaneous bursting that can
be synchronized by mass potentials [91]. Bracci et al. [90] demonstrated that
the synchronization of hippocampal neurons is facilitated by the application of
external electric fields. They showed also that the conductance of the extracel-
lular electrolyte is a control parameter which can be tuned in such a way that
spontaneous synchronization takes place if the conductance is lowered below
a critical value. In this case, the fall of the dendritic field potentials along
the extracellular resistors contribute to larger LFP and EEG that in turn
enslave the whole population. Most recently, Richardson, Schiff and Gluck-
man [92,93] studied the propagation of traveling waves through an excitable
neural medium under the influence of external fields. They reported a depen-
dence of the group velocity on the polarity of the applied field, and modeled
these effects through a neural field theory analogue of (1.86).

Coming back to our neuron models, the impact of mass potentials can be
formally taken into account by introducing a mean field coupling. Concern-
ing, for example, the Hodgkin-Huxley equations (1.25, 1.27–1.29), one has to
replace the membrane potential Ui of neuron i by a shifted value

U ′
i = Ui −

∑
j

UDFP
j , (1.111)

where either the dendritic field potential is given by (1.64), or, in a continuum
account, the whole sum is provided by (1.99). This idea has been expressed
by Braitenberg and Schüz [94, p. 198], in that a cortical module controls its
own activation thresholds.

1.6 Discussion

In this chapter, I have sketched the basic principles of neurophysics, i.e. the
biophysics of membranes, neurons, neural networks and neural masses. Let me
finally make some concluding remarks on neural modeling and descriptions.
I hope the reader has recognized that there is no unique physical model of the
neuron, or of the neural network of the brain. Even a single neuron can be
described by models from different complexity classes. It can be regarded as a
continuous system governed by a nonlinear partial differential equation which
describes its cable properties. Decomposing the cable into compartments, one
obtains either compartment models comprised of lots of coupled ordinary
differential equations, or point models that are still described by many cou-
pled ordinary differential equations, one for the kinetics of each population of
ion channels. Further simplifying these models, one eventually arrives at the
coarsest McCulloch-Pitts neuron [51].
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On the other hand, each neuron model dictates the dimensionality of its
phase space and, as its projection, its observable space. Observables provide
the interface to experimental neuroscience in that they should be observable.
The best theoretical neuron model is not much good if it contains quantities
that are not observable in real experiments. In most cases, observables are
membrane potentials either collected from the axons, i.e. action potentials,
or measured from the dendro-somatic membranes such as EPSP and IPSP.
However, a few electrode tips put into a couple of neurons will not provide suf-
ficiently many observables for describing the behavior of a neural network. At
the network level, the abovementioned problems greatly worsen with increas-
ing size and complexity of the network, ending in an unmanageable number
of degrees of freedom for continuum models.

In this case, spatial coarse-graining [62] is the method of choice. By aver-
aging activity across regions of appropriate size, one obtains mass potentials
such as LFP or EEG. LFP is experimentally observable through the use of
multi-electrode arrays placed into the extracellular space. Each sensor collects
averaged dendritic field potentials from several thousands of neurons, as well
as some spiking activity in its vicinity. On the other hand, ECoG (intracranial
EEG) and EEG are gathered by electrodes placed at the cerebral membrane
or at the scalp, respectively. Each electrode registers the mean activity of bil-
lions of neurons. Using conventional 32, 64, or 128 channel amplifiers thereby
collapses the huge microscopic observable space of single neurons and the large
mesoscopic observable space of LFP to a macroscopic observable space of 32,
64, or 128 dimensions.

As we have seen in Sect. 1.5.3, such mass potentials are not in the least
irrelevant because they serve as order parameters [30,87], both indicating and
causing macroscopic ordering of the system. Yet there is another important
aspect of mass potentials. They do not only comprise a spatial coarse-graining
by definition, but also provide a coarse-graining of the high-dimensional mi-
croscopic phase space. Consider a mean field observable

F (x) =
∑

i

fi(x) , (1.112)

where the sum extends over a population of n neurons and fi denotes a pro-
jection of the microscopic state x ∈ X onto the i-th coordinate axis measuring
the activation fi(x) = xi of the ith neuron. Obviously, the outcomes of F may
have multiple realizations as the terms in the sum in (1.111) can be arbitrarily
arranged. Therefore, two neural activation vectors x,y can lead to the same
value F (x) = F (y) (e.g. when fi(x) − ε = fj(x) + ε, i �= j), so that they
are indistinguishable by means of F . Beim Graben and Atmanspacher [95]
call such microstates epistemically equivalent. All microstates that are epis-
temically equivalent to each other form an equivalence class, and, as it is well
known from set theory, all equivalence classes partition the phase space X . If
the equivalence classes of F in X form a finite partition Q = {A1, . . . AI} of
X , one can assign symbols ai from an alphabet A to the cells Ai and obtain
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a symbolic dynamics [96–98]. In this way, experimentally well-defined meso-
and macroscopic brain observables, LFP and EEG, form a coarse-grained de-
scription of the underlying microscopic neurodynamics.

Atmanspacher and beim Graben [99,100] discuss this coarse-graining with
respect to its stability properties. The microscopic dynamics x �→ Φt(x) where
the flow Φ solves the microscopic differential equations, is captured by tran-
sitions from one symbol to another one ai �→ aj . If these transitions can be
described by an ergodic Markov chain, the symbolic dynamics exhibits par-
ticular stability properties. If the Markov chain is aperiodic, a distinguished
thermal equilibrium state can be constructed for the symbolic description.
If, contrarily, the Markov chain is periodic, the system possesses stable fixed
point or limit cycle attractors. Atmanspacher and beim Graben argue that
in both cases, the concept of contextual emergence applies where higher-level
descriptions emerge from contingently supplied contexts that are not merely
reducible to lower-level descriptions. As an application, Atmanspacher and
beim Graben [99, 100] demonstrated the contextual emergence of neural cor-
relates of consciousness [101] from neurodynamics where arbitrary contexts
are given by phenomenal families partitioning the space of phenomenal expe-
riences [102]. Other examples were discussed by beim Graben [103] and Dale
and Spivey [104] where symbolic cognition emerges from partitioned dynam-
ical systems.

The problem of finding reasonable macroscopic observables for neural net-
works has been addressed by Amari [52]. He considered random networks of
McCulloch-Pitts neurons (cf. Chaps. 3, 5, 7), and defined a proper macrostate
as a macroscopic observable such as (1.112) if two conditions hold: Firstly, the
temporal evolution of the observable should be compatible with the coarse-
graining, and, secondly, the observable should be structurally stable against
topological deformations of the network. The second requirement is closely
related to ergodicity of the resulting symbolic dynamics [99]. Accordingly, the
first demand entails that all initial conditions that are mapped onto the same
value of a macrostate are epistemically equivalent. As an example for a good
macrostate, at least for his toy-model, Amari [52] provided the mass potential
(1.112). Hence, macroscopic descriptions of neural masses provide important
insights into the functional organization of neurodynamical systems. They are
by far more then mere epiphenomena.
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37. C. Bédard, H. Kröger, and A. Destexhe. Modeling extracellular field potentials
and the frequency-filtering properties of extracellular space. Biophys. J., 86(3):
1829–1842, 2004.

38. O. Creutzfeld and J. Houchin. Neuronal basis of EEG-waves. In Handbook
of Electroencephalography and Clinical Neurophysiology, Vol. 2, Part C, pp.
2C-5–2C-55. Elsevier, Amsterdam, 1974.

39. W. J. Freeman. Mass Action in the Nervous System. Academic Press,
New York (NY), 1975.



1 Foundations of Neurophysics 45

40. D. T. J. Liley, D. M. Alexander, J. J. Wright, and M. D. Aldous. Alpha rhythm
emerges from large-scale networks of realistically coupled multicompartmental
model cortical neurons. Network: Comput. Neural Syst., 10: 79–92, 1999.

41. A. J. Trevelyan and O. Watkinson. Does inhibition balance excitation in neo-
cortex? Prog. Biophys. Mol. Biol.,, 87: 109–143, 2005.

42. P. L. Nunez and R. Srinivasan. Electric Fields of the Brain: The Neurophysics
of EEG. Oxford University Press, New York, 2006.

43. R. FitzHugh. Impulses and physiological states in theoretical models of nerve
membrane. Biophys. J., 1: 445–466, 1961.

44. T. Pavlidis. A new model for simple neural nets and its application in the
design of a neural oscillator. Bull. Math. Biol., 27: 215–229, 1965.
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2.1 Introduction

This chapter incorporates two lectures presented at the 2005 Helmholtz School
in Potsdam, Germany in September, 2005. The goal of this chapter is to cover
two topics, both briefly:

• some basics of the biophysics of neurons and synapses. Many students had
studied this material, and for them it was a lightning fast review. Some
students had not studied this material, and for them it was a lightning
fast introduction. See the book by Johnston and Wu [1] to make the in-
troduction slower.

• the use of these basics to develop a neural time delay circuit and explore
its use in the fundamental nervous system task of recognizing signals sent
from the sensory system to a central nervous system as spike trains [2].

In a broad sense, modeling or computation in neuroscience takes place at
two levels:

• Top-down: Start with the analysis of those macroscopic aspects of an an-
imal’s behavior that are robust, reproducible and important for survival.
Try to represent the nervous system as a collection of circuits, perhaps
based on biological physics, but perhaps not, needed to perform these
function. The top-down approach is a speculative “big picture” view.

• Bottom-up: Start from a description of individual neurons and their synap-
tic connections; use facts about the details of their dynamical behavior
from observed anatomical and electrophysiological data. Using these data,
the pattern of connectivity in a circuit is reconstructed. Using the patterns
of connectivity (the “wiring diagram”) along with the dynamical features
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of the neurons and synapses, bottom-up models have been able to predict
functional properties of neural circuits and their role in animal behavior.

The point of view in these lectures is distinctly “bottom-up.” This is a
much harder task than “top-down” approaches as it relies on observations to
dictate the road ahead and the constraints in navigating that road. In our
opinion, biological phenomena, neurobiological as well as others, are complex
because the networks are designed by the necessity of performing functions
for living things. They are not designed by optimality principles so far as we
know.

The point of view we take here is that if one can understand in a well
formulated predictive and quantitative mathematical model how biological
processes are constructed in nature, then general principles for the design
and construction of these can be analyzed. This requires working closely with
experiments as guides, making predictions with models that are never totally
correct, and refining those models within the framework of the outcome of
experiments suggested by the models or formulated on other grounds.

Some will find the effort required rather formidable, but looking back
on the historical interplay between experiment and theory that, say, led to
the 20th century uncovering of the structure of quantum theory from the
application of the Planck heat radiation law to wave equations, one should be
ready for the engagement.

The dynamical point of view emphasized in this chapter is expanded in a
review article appeared in Reviews of Modern Physics [3].

2.2 Lightning Fast (Review, Introduction)
to Neural and Synaptic Dynamics

2.2.1 Neurons-points

The basic biophysical phenomena involved in the operation of neurons and a
phenomenological set of equations describing them were identified by Hodgkin,
Katz, Huxley, and many others in the mid part of the 20th century. Neurons
are cells producing electrical signals through protein channels penetrating
their plasma membrane allowing ions to flow into or out of the cells with
permeabilities and rates often controlled by the voltage V (t) across the mem-
brane. There are two competing sources of current leading to the voltage dif-
ference across the membrane: ions flowing from higher concentrations C(x, t)
to lower concentrations giving rise to a current

Jconcentration(x, t) = −D∂C(x, t)
∂x

, (2.1)

with D the diffusion coefficient; and ions flowing because of the electric field
associated with the electrostatic potential difference between the inside and
the outside of the cell, giving rise to a competing current
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Jelectric(x, t) = −D zF

RT
C(x, t)

∂V (x, t)
∂x

. (2.2)

z is the magnitude of the ion charge in units of |e|, F is the Faraday constant
96485.34 C/mol, T is the temperature, and R is the universal gas constant
8.3144 J/mol K.

Approximating the gradient of the voltage across the thickness l of the cell
membrane by V (t)/l, we have for the total current

J(t) = −D
{
∂C(x, t)
∂x

+
zF

RT
C(x, t)

V (t)
l

}
. (2.3)

Denoting the intracellular concentration of the ion in question as Cin and
the extracellular concentration as Cout, one may solve for the current J(t),
resulting in the Goldman-Hodgkin-Katz (GHK) equation

J(t) = −V (t)zFD
RT l

Cin − Coute
− zF V (t)

RT

1− e−
zFV (t)

RT

. (2.4)

The GHK current has a zero at the reversal potential or Nernst potential Vrev

for each ionic species

Vrev =
RT

zF
ln
Cout
Cin

=
61.5 mV

z
ln
Cout
Cin

. (2.5)

Using the values of intracellular and extracellular concentrations for various
common ions present in nerve cells, we have the resting potentials listed in
Fig. 2.1.

In the study of many neurons and their processes (axons carrying signals
to other receiver cells and dendrites receiving signals from other transmitter
cells), Hodgkin-Huxley (HH), along with many others, formulated a quite
general, phenomenological form for ion currents that are gated, or controlled,
by the membrane voltage. This form is

Ivoltage−gated(t) = gionm(t)ph(t)q(V (t)− Vrev), (2.6)

where gion is the maximal conductance of the ion channel, p and q are integers,
and Z(t) = {m(t), h(t)} are activation and inactivation variables depending
on the voltage V (t) through phenomenological first order kinetic equations
(master equations)

dZ(t)
dt

= αZ(V (t))(1 − Z(t))− βZ(V (t))Z(t)

=
Z0(V (t))− Z(t)

τ(V (t))
, (2.7)
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136 mV30000.1Ca2+

-76 mV7120Cl-

-101 mV3135K+

56 mV14518Na+

Resting PotentialExtracellular
Concentration nM

Intracellular
Concentration nM

Ion Name

Fig. 2.1. Resting potentials for various common ions in nerve cells

where αZ(V ) and βZ(V ) are empirically determined functions of voltage whose
functional form is dictated by considerations of activations of gating variables.
A good discussion of this formalism is found in Chap. 2 by Christopher Fall
and Joel Keizer of the Joel Keizer memorial volume Computational Cell Bi-
ology [4]. The activation variable m(t) normally resides near zero for voltages
near Vrev and rises to order unity when the voltage rises toward positive val-
ues. The inactivation variables n(t) and h(t) normally reside near unity and
decrease towards zero as the voltage rises.

In the original HH model, we have three channels, one for Na+ ions, one
for K+ ions, and one for a generalized lossy effect called a “leak” channel.
With an added DC current, the HH equations are

C
dV (t)

dt
= −(gNam(t)3h(t)(V (t)− VNa) (2.8)

+ gKn(t)4(V (t)− VK) + gL(V (t)− VL)) + IDC,

along with kinetic equations for m(t), h(t), and n(t) (2.7). Using gNa =
120 mS cm−2, gK = 36 mS cm−2, gL = 0.3 mS cm−2, VNa = 55 mV, VK =
−72 mV, VL = −49 mV and C = 1μF cm−2, we can numerically solve these
HH equations for various values of IDC . The standard HH equations for the
αZ(V ) and the βZ(V ) are given in Fig. 2.2.

For low values of IDC , the neuron is at rest at various voltages. Above
a threshold, action potentials are observed as shown in Fig. 2.3 for IDC =
0.55μA. The behavior of the K+ activation variable n(t) is shown in Fig. 2.4.
The action potential comes from Na+ flowing rapidly into the cell from higher
concentrations outside the cell. The K+ activation variable shows the K+
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αm(V ) = −0.1
35 + V

e−(35 + V )/10 − 1
βm(V ) = e−(60 + V )/18

αn(V ) = 0.07 e−(60 + V )/20 βn(V ) =
1

e−(30 + V )/10 + 1

αh(V ) = −0.01
50 + V

e−(50 + V ) − 1
βh(V ) = 0.125 e−(60 + V )/80

Fig. 2.2. Empirical forms for the voltage-gating functions in the original HH
equations

channel opening subsequently and allowing K+ to flow out of the cell, thus
assisting in terminating the action potential (cf. Chap. 1).

The HH model has four degrees of freedom, and with the parameters we
have used exhibits a limit cycle or periodic behavior. To represent the phase
space variation of a limit cycle solution of a differential equation generically
takes three coordinates [5], however, we are fortunate here in that we can
see the full limit cycle in two dimensions as shown in Fig. 2.5. In Fig. 2.6
we show the functions m0(V ), h0(V ), and n0(V ) along with the associated
voltage dependent times, τ(V ).

Fig. 2.3. Action potentials in the HH model
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Fig. 2.4. The potassium activation variable n(t) in the standard HH model

The HH model is phenomenological in origin, yet has the distinct scientific
advantage of identifying measurable quantities in each expression. It comes
from a “bottom-up” analysis of cellular dynamics. Reduced models of neural
behavior often lose the latter property, and this makes the connection with
how biology solves problems less satisfactory. In the “bottom-up” approach we
are following, one of the goals is to use “biological parts” to construct neural
circuits, not so much for simplicity at times but for the ability to connect

Fig. 2.5. The (n(t), V (t))-plane during action potential generation by the HH model
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Fig. 2.6. Activation {m0(V ), n0(V )} and inactivation h0(V ) variables and the time
constants associated with them for the standard HH model. Note that the time scale
of Na+ activation τm(V ) is much smaller than the times for the others, indicating
the rapidity with which the Na+ channels open

with biological networks and biophysical realizations of those networks. If one
invents a lovely “top-down” network but has no way to establish whether it is
implemented by biology, that may prove to be amusing applied mathematics
but it tells us little about how biology, evolution and environment, achieved
its functional goals.

Not all real neurons are periodic action potential generators as we have
seen of the HH model neurons. Indeed, even the HH model has complex be-
havior for parameter values outside the range quoted. It is interesting, and
perhaps sobering, to have a look at some real neuron data which is quite
different, lest one settle into thinking of neurons as periodic oscillators.

In Fig. 2.7, we show a long time series of (scaled) membrane voltage mea-
sured from a neuron in a rhythm generator circuit in the digestive system of
a California spiny lobster (not the tasty kind, alas). The circuit is comprised
of fourteen neurons, see Fig. 2.8. The data is from an isolated LP neuron; it
was physically isolated from the rest. The data were taken every 0.2 ms for
several minutes. Only a portion of the data is shown.

The membrane voltage shows a nearly periodic oscillation at about 1 Hz,
and on top of the peaks of this oscillation occur bursts of spikes with frequen-
cies in the range of 30–50 Hz. While inspection of a time series by eye is not
a recommended diagnostic, look carefully at the graphic and you will notice
the nonperiodic nature of the signal. The tools for analyzing such a signal are
given in [3, 5]. We can achieve some, again visual, insight if we reconstruct a
proxy version of the full phase space of the system in a manner which imitates
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Fig. 2.7. Experimental membrane voltage data from an isolated LP neuron in the
Pyloric Central Pattern Generator

the plot of n(t) versus V (t) we presented for the HH model. In Fig. 2.9, we
plot the membrane voltage against itself, but time delayed. This is the start
of an unfolding of the full phase space of the neuron [5] from the voltage
measurements which are a projection of the data. In this figure, we see the
region of nearly regular behavior, as well as a structured picture of the spiking
activity.

Fig. 2.8. Circuit diagram of the Pyloric Central Pattern Generator. The data in
Fig. 2.7 were taken from the LP neuron, in the box, after it was physically isolated
from the remainder of the circuit
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Fig. 2.9. Two dimensional reconstructed phase space plot [5] for the LP membrane
voltage. This indicates that two dimensions is not sufficient to unfold the projection
of the attractor onto the voltage axis; that takes four dimensions

2.2.2 Neurons-non-points

Of course, neurons are not points; they have spatial structure, and this can
be very important. The point neuron which we have constructed so far is
an abstraction which represents the idea that the membrane voltage is con-
stant over the spatial extent of a neuron at any given time. To address spa-
tially varying voltages across a nerve cell, it is common practice to make a
many-compartment model comprised of the various sections of a neuron (see
Chap. 1). Each section is assumed to be an equipotential, and one connects
them together by ohmic couplings.

One might construct an HH model determining the voltage in the soma
of a neuron VS(t) and another HH model for a dendrite compartment with
potential Vd(t). In the soma equation, one would then include a coupling
term gSD(Vd(t) − VS(t)); similarly, in the dendrite equation. This allows one
to more realistically represent the distribution of ion channels across a spa-
tially extended neuron and to introduce interesting time delays as potential
variations propagate from one part of the neuron to another. We do not ex-
plore this here as there is an extensive literature on compartment neuron
models [6].
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2.2.3 Synapses

The isolated neuron of HH type we have constructed is an interesting dynam-
ical system having so far no functional role in describing biological systems.
We must connect these nonlinear oscillators to create a network. There are
two major types of connections among neurons:

• Ohmic or gap junction or electrotonic connections are implemented by
means of a protein which penetrates the membrane of two adjacent cells
and allows the flow of the various intracellular ion species. The current
entering an HH neuron when the two connected cells have voltage V1(t)
and V2(t) is (for the equation for V1(t)) Igapjunction(t) = gGJ(V2(t)−V1(t)).

• Chemical synaptic connections, which activate when an action potential
signal from a transmitting (presynaptic) cell arrives at the termination of
an axon process. This starts processes which release neurotransmitters of
various compositions to diffuse across a gap (the synaptic cleft) and dock
on receptors penetrating the membrane of the receiving (or postsynap-
tic) cell. The docking of the neurotransmitter changes the permeability
of the channel associated with the receptor and allows ions to flow. When
those neurotransmitter molecules undock, the receptor closes down the ion
flow. The times for the docking and undocking of the neurotransmitter on
receptors vary substantially with the receptor type.
Each synaptic connection can be represented by a maximal conductance
g, a function S(t) taking values between zero and unity representing the
percentage of the maximum allowed docked neurotransmitter presently on
postsynaptic receptors, and an “ohmic term” (Vpostsynaptic(t) − Vreversal).
This makes for a net current Isynaptic(t) = gS(t)(Vpostsynaptic(t)−Vreversal).
– Excitatory synaptic connections have reversal potentials near 0 mV and

allow mixtures of Na+, Ca2+ and K+ ions to flow. They tend to cause
the postsynaptic voltage to rise from its resting value upon receipt of a
presynaptic action potential, thus exciting the postsynaptic cell toward
action potential generation. The rise, often small, in the postsynaptic
potential is called an “excitatory postsynaptic potential” or EPSP.
There are two quite important excitatory synapses we need to know
about for our discussion of synaptic plasticity:
· AMPA receptors, which are the main excitatory connection in many

nervous systems and where synaptic strength change (plasticity)
occurs. AMPA connections are fast, opening and closing in a few
ms.

· NMDA receptors, which have a very high permeability to Ca2+ ions,
are blocked by Mg2+ ions at low membrane voltages, and allow the
entry of Ca2+ for order of 100 ms after being opened. In addition
to the form of the synaptic current noted above, one must add a
multiplicative term

B(V ) =
1

1 + 0.288 e−0.062V
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to the NMDA synaptic current to represent the Mg2+ block:
INMDA(t) = gNMDA SNMDA(t)B(Vpost)(Vpost(t)− Vreversal).

– Inhibitory synaptic connections have reversal potentials near −80 mV
and allow Cl− ions to flow. They tend to cause the postsynaptic volt-
age to fall from its resting value upon receipt of a presynaptic action
potential, thus inhibiting the postsynaptic cell from action potential
generation. The fall, often small, in the postsynaptic potential is called
an “inhibitory postsynaptic potential” or IPSP.

A useful equation for S(t) associates two time constants with its temporal
evolution: one for docking the neurotransmitter and one for undocking it. The
following describes this:

dS(t)
dt

=
S0(Vpre(t))− S(t)
τ(S1 − S0(Vpre(t))

, (2.9)

where S0(x) is zero for negative arguments and rises rapidly to unity for x ≥ 0.
A convenient form for this is

S0(x) = 0.5 (1 + tanh(120(x− 0.1))). (2.10)

This equation tells us that when the presynaptic voltage is below 0 mV, so no
action potential is present, S(t) decays to zero with a time constant τS1. This
is the undocking time. When an action potential arrives at the presynaptic
terminal, S0 rises rapidly to unity, driving S(t) toward unity with a time
constant τ(S1−1). This is the docking time. This formulation applies for both
inhibition and excitation when the rise time of the synapse is comparable to
the width of the action potential, as in the case of fast excitatory AMPA
synapses and fast inhibitory GABAA synapses. In order to model synapses

Mg2+

NMDA
Receptor

AMPA
Receptor

Voltage Gated Calcium 
Channel

[Ca2+](t) = Ca(t)

Vpost(t)

Vpre(t) action potential leads to 
release of neurotransmitter--
glutamate

Postsynaptic
Membrane

Presynaptic
Membrane

RA Neuron PN

From HVc or lMAN

Fig. 2.10. Graphic depicting the arrival of an action potential at a synaptic terminal
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with slower rise times such as NMDA, we need coupled first order kinetic
equations of the form given in (2.10).

Figure 2.10 is a “cartoon” indicating the action at a synapse and postsy-
naptic neuron.

The ion channels discussed in the context of the HH model are called
voltage-gated channels. The synaptic connections just described are called
ligand-gated. There are other synaptic connections which do not allow ion flow
after receipt of a presynaptic potential but through changes in the properties of
the receptor-induced postsynaptic biochemical processes. These metabotropic
receptors are discussed in Chap. 1.

2.3 Synaptic Plasticity

An important dynamical process in nervous systems is the activity dependent
change in synaptic strength associated with both inhibitory and excitatory
synaptic connections. Though far from “proven”, it is widely believed that
changes in these connection strengths among neurons produce the rewiring
occurring when the nervous systems learns.

As early as 1973, Lomø and Bliss [7] showed that if one presents a series of
spikes (a tetanus) with interspike intervals (ISIs) as small as 10 ms, namely a
spiking frequency of 100 Hz, to certain hippocampal cells through an excita-
tory AMPA synapse, the baseline EPSP before and after the presentation of
the tetanus showed increased amplitude that persisted for hours after the pre-
sentation. This was called “long term potentiation” or LTP. Experiments by
Malinow and Miller [8] that presented lower frequency tetani and controlled
the postsynaptic voltage at the same time showed that one could induce long
lasting decreases in EPSPs. This is called long term depression or LTD.

Experiments in the 1990s showed that both LTP and LTD could be in-
duced at excitatory AMPA synapses by pairing isolated single presynaptic
and postsynaptic spikes. An evoked presynaptic spike arrives at the synaptic
terminal at tpre and a postsynaptic spike is induced by a short current injec-
tion at time tpost. As a function of the time difference τ = tpost − tpre, one
observes both LTP and LTD. This is nicely summarized in the data of Bi and
Poo [9] shown in Fig. 2.11.

To provide an explanation of these phenomena, several groups [10–12] have
made biophysically based plasticity models founded on the observation [13]
that postsynaptic Ca2+ concentration is critical to inducing the competing
biochemical pathways in the postsynaptic cell.

In our formulation [11], we attribute a dynamical degree of freedom P (t)
to kinases which lead to potentiation and another D(t) to phosphatases which
lead to depression. We hypothesize first order kinematics for each of these

dP (t)
dt

= fP (Δ[Ca2+](t))(1 − P (t))− βPP (t)

dD(t)
dt

= fD(Δ[Ca2+](t))(1 −D(t)) − βDD(t), (2.11)
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Fig. 2.11. Data from Bi and Poo [9] on LTP and LTD induction by presentation
of a presynaptic spike at tpre and stimulation of a postsynaptic spike at tpost as a
function of τ = tpost − tpre

with fP (Δ[Ca2+](t)) and fD(Δ[Ca2+](t)) functions of the time dependent el-
evation of intracellular Ca2+ over its equilibrium value C0, and βP and βD

being rates for the return of each process to zero. The change in excitatory
synaptic strength is hypothesized to be proportional to the nonlinear compe-
tition between these processes

dgE(t)
dt

= g0(P (t)D(t)η −D(t)P (t)η), (2.12)

with g0 being a baseline conductance.
The competition of these two processes is supported by the data from

O’Connor, et al. [14] and presented in Fig. 2.12. To develop these data, the
potentiation processes mediated by kinases were first blocked by the applica-
tion of K252a, and then the depression processes mediated by phosphatases
were blocked by okadaic acid. One can clearly see from their very nice data
the presence of competing dynamical postsynaptic mechanisms.

The time dependence of intracellular calcium [Ca2+](t) is determined by
a rate equation of the form

d[Ca2+](t)
dt

=
C0 − [Ca2+](t)

τC
+ Sources(t) (2.13)

where τC ≈ 20 ms is the relaxation rate of [Ca2+] back to C0. The sources in-
clude AMPA currents, NMDA currents, and voltage-gated Ca2+ channels [11].
Coupling this to a HH model of the postsynaptic cell allows us to simulate
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LTD and LTP are separable

Fig. 2.12. Separation of the biochemical postsynaptic processes associated with
LTP (kinases) and LTD (phosphatases) (adapted from [14])

the effect of an experimental electrophysiological stimulation protocol — for
example, one presynaptic spike at tpre and one postsynaptic spike at tpost —
to determine the postsynaptic membrane voltage Vpost(t), the intracellular
Ca2+ time course [Ca2+](t) and from those quantities deduce the change in
gE(t) from its value g0 before the electrophysiological induction, to the value
g0(1 +

∫∞
−∞ dt((P (t)D(t)η −D(t)P (t)η))) after the induction.

In Fig. 2.13, we show the result of a calculation of Δg(τ)
g0

for such a model.

Fig. 2.13. Δg(τ)
g0

for Ca2+ dynamics model
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Fig. 2.14. Data from Gayle Wittenberg as a function of τ = tpost(2)−tpre compared
to our model calculation based on Ca2+ postsynaptic dynamics

Fig. 2.15. Spike timing plasticity at an inhibitory synapse: Summary results of
change in postsynaptic IPSP initial slope, expressed as a function of Δt = tpost−tpre.
No change is represented by normalized IPSP equal to unity (equal to the baseline
value before pairing). Each point represents data from one cell. Change is evaluated
as the mean IPSP slope over the 20 min. following pairings, normalized to the mean
of the slopes for 15 minutes preceding pairings. Cells for which the change in IPSP
slope was significant (p < .01, ANOVA) are plotted in blue. Empirical fit to the
observed data is given by ΔIPSP = 1 + g0

βe−β αβΔt|Δt|β−1e−α|Δt|, with g0 = 0.8,
α = 1, and β = 10
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Gayle Wittenberg [15] has performed experiments in which she presents
cells in the hippocampus with a single presynaptic spike at tpre and two post-
synaptic spikes separated by Δt. She used the time of the second postsynaptic
spike and tpre to determine τ = tpost(2) − tpre, and her results are shown in
Fig. 2.14. Along with her data is the result of a calculation by our laboratory
for the same process based on a Ca2+ dynamics model.

Finally, we note, and we will use below, the experimental evidence for
spike timing dependent plasticity at an inhibitory synapse. This is shown in
Fig. 2.15 and comes from data by [16].

That ends the lightning fast review (or introduction). As suggested, the
introductory book by Johnston and Wu [1], or Chap. 1 expands on these topics
in rather more detail.

2.4 Synchronization and Plasticity

It is widely thought, though hardly proven, that synchronization among pop-
ulations of neurons can play an important role in their performing important
functional activity in biological neural networks. Here we look at the micro-
circuit of one periodically oscillating HH neuron driving another periodically
oscillating HH neuron. The question we ask is whether synaptic plasticity has
an interesting effect on the ability of these two neurons to synchronize. The
answer is yes, and though interesting, does not answer a biological question
yet. Let’s look at what we can show, then pose some harder questions for
further investigation.

The setup we examine is that of a periodically oscillating HH neuron with a
period T1. We control T1 by injection of a selected level of DC current. This is
the “transmitter”. The receiver, or postsynaptic neuron, is another HH neuron
oscillating with a period T 0

2 before receiving synaptic input from neuron 1.
When the synaptic current has begun, the receiver neuron changes its period
to T2. A schematic of the setup is in Fig. 2.16. The coupling is through an
excitatory synapse with current Isynapse(t) = gE(t)SE(t, Vpre(t))(Vpost(t) −
Vreversal).

We have selected the postsynaptic neuron to be our two-compartment
model as described in [17] and set it to produce autonomous oscillations with
a period T 0

2 . This period is a function of the injected DC current into the
somatic compartment. We hold this fixed while we inject a synaptic AMPA
current

Isynapse(t) = gAMPA(t)SA(t)(Vpost(t)− Vrev), (2.14)

into the postsynaptic somatic compartment. Vpost(t) is the membrane voltage
of this postsynaptic compartment. gAMPA(t) is our time-dependent maximal
AMPA conductance, and SA(t) satisfies

dSA(t)
dt

=
1
τA

S0(Vpre(t))− SA(t)
S1A − S0(Vpre(t))

(2.15)
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Fig. 2.16. Setup for exploring effect of a dynamical synapse on synchronization of
two periodic neural HH neurons

as described above. Vpre(t) is the periodic presynaptic voltage which we adjust
by selecting the injected DC current into the presynaptic HH neuron. We call
the period of this oscillation T1.

When gAMPA = 0, the neurons are disconnected and oscillate autonomously.
When gAMPA(t) �= 0, the synaptic current into the postsynaptic neuron
changes its period of oscillation from the autonomous T 0

2 to the driven value
of T2, which we evaluate for various choices of T1. We expect from general
arguments [18] that there will be regimes of synchronization where T1

T2
equal

ratios of integers over the range of frequencies 1
T1

presented presynaptically.
This will be true both for fixed gAMPA and when gAMPA(t) varies as deter-
mined by our model.

In Fig. 2.17 we present T1
T2

as function of the frequency 1000
T1

(T1 is given
in milliseconds, so this is in units of Hz) for fixed gAMPA = 0.1 mS cm−2 and
for gAMPA(t) determined from our model. This amounts to a choice for the
baseline value of the AMPA conductance. The fixed gAMPA results are in filled
upright triangles and, as expected, show a regime of one-to-one synchroniza-
tion over a range of frequencies. One also sees regions of two-to-one and hints
of five-to-two and three-to-one synchronization. These are expected from gen-
eral arguments on the parametric driving of a nonlinear oscillator by periodic
forces.

When we allow gAMPA to change in time according to the model we have
discussed, we see (unfilled inverted triangles) a substantial increase in the
regime of one-to-one synchronization, the appearance of some instances of
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Fig. 2.17. T1/T2, the ratio of the interspike interval T1 of the presynaptic neuron
to the interspike interval T2 of the postsynaptic neuron, is plotted as a function
of the presynaptic input frequency, 1000/T1 Hz, for a synapse starting at a base
AMPA conductance of gAMPA(t = 0) = 0.1 mS cm−2. We see that the one-to-one
synchronization window is broadened when the static synapse is replaced by a plastic
synapse

three-to-two synchronization, and a much smaller regime with two-to-one syn-
chronization. This suggests that the one-to-one synchronization of oscillating
neurons, which is what one usually means by neural synchrony, is substantially
enhanced when the synaptic coupling between neurons is allowed to vary by
the rules we have described.

2.5 Marking Time Biologically

Biological systems have to mark time to keep pace with events and transmit
information. There are three distinct ways known to us by which this is ac-
complished. One is to use the same principle of a delay line in physics: a signal
has a propagation velocity v along some cable, and then a signal traversing a
length of this cable L takes a time L

v . This is manifest in the interaural time
differences used by the barn owl, for example, in actively locating prey or pas-
sively detecting sources of sound. With a velocity v ≈ 5 m

s and axon lengths
of a few mm, time delays as short as tens of microseconds are used [19–22].
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Time delays of the order of hours or days are connected with circadian
rhythms and are marked using limit cycle oscillators. A detailed model of
the biochemical processes thought to underly the ≈ 24 h circadian rhythm
is found in recent work by Forger and Peskin [23, 24], where a limit cycle
oscillator with a period slightly more than 24 h is identified and analyzed.

Environmental signals are passed on in an animal from its sensory sys-
tems to central nervous system neurons as sequences of spikes with interspike
intervals (ISIs) of a few to hundreds of milliseconds. Since these spikes are
essentially identical in waveform, all information contained in these sequences
are in the ISIs. Our focus is on these signals.

There are many examples of sensitive stimulus-response properties char-
acterizing how neurons respond to specific stimuli. These include whisker-
selective neural response in barrel cortex [25, 26] of rats and motion sensitive
cells in the visual cortical areas of primates [27, 28].

One striking example is the selective auditory response of neurons in the
songbird telencephalic nucleus HVC [29–32]. Projection neurons within HVC
fire sparse bursts of spikes when presented with auditory playback of the bird’s
own song (BOS) and are quite unresponsive to other auditory inputs. Nucleus
NIf, through which auditory signals reach HVC [32–36], also strongly responds
to BOS in addition to responding to a broad range of other auditory stimuli.
NIf projects to HVC, and the similarity of NIf responses to the auditory
input and the subthreshold activity in HVC neurons suggests that NIf could
be acting as a nonlinear filter for BOS, preferentially passing that important
signal on to HVC. It was these examples from birdsong that led us to address
the ISI reading problem we consider here.

How can these neural circuits be sensitive to specific sequences of ISIs?
One way is that they act as a nonlinear filter for such sequences. The circuit
is trained on a particular sequence which the animal has found important
to recognize with great sensitivity. We identify the ISI sequence we wish to
recognize as a set of times SISI = {T0, T1, T2, . . . , TN} coming from a set of
spike times Sspikes = {t0, t1, . . . , tN+1} with Tj = tj+1 − tj . If we have a set
of time delay units which is trained to create a signal at τj after it receives
a spike at time tj , then we can use the output sequence τ0, τ1, . . . , τN coming
from the input Sspikes as a comparison to the original ISI sequence SISI. The
comparison can be achieved by introducing both into a detection circuit which
fires only when two spikes occur within a few ms of each other. If the detection
unit fires, the correct ISI Tj has matched the time delay τj .

How are we to build a time delay circuit with tunable synapses? For this,
we turn to the observations of Kimpo et al. [37] in which they identify a
pathway in the birdsong system which quite reliably produces a time delay
of 50± 10 ms when a short burst of spikes is introduced into its entry point.
The importance of this timing in the birdsong systems has been examined
in [38]; not surprisingly, given the tone of these lectures, it is connected with
a specific timing required by spike timing plasticity in the stabilization of
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Fig. 2.18. Time delay circuit adapted from the birdsong system

the bird’s song. How are we to “tune” τj? For this, we use the spike time
dependent inhibitory plasticity rules observed by Haas [16].

The time delay circuit is displayed in Fig. 2.18. There are three neurons in
the circuit, and they are connected by inhibitory synapses. Neuron A receives
an excitatory input signal from some source at time tn. It is at rest when the
source is quiet, and when activated, it inhibits neuron B. Neuron B receives
an excitatory input from the same source at the same time tn. Neuron B oscil-
lates periodically when there is no input from the source. Neuron B inhibits
neuron C. Neuron C produces periodic spiking in the absence of inhibition
from neuron B. The tunable synaptic strength is that connecting neuron B
to neuron C. The dimensionless number Rn is the magnitude of the B→C
maximal conductance relative to some baseline conductance.

When the inhibition from neuron B to neuron C is released by the in-
hibitory signal from neuron A to neuron B, neuron C rebounds and produces
an action potential some time later. This is due to the intrinsic stable spiking
of neuron C in the absence of any inhibition from neuron B.

This time delay is dependent on the strength of the B→C inhibition,
as the stronger that is set the further below threshold neuron C is driven
and the further it must rise in membrane voltage to reach the action po-
tential threshold. This means the larger the B→C inhibition, the longer the
time delay produced by the circuit. Other parameters in the circuit, such
as the cellular membrane time constants, set the scale of the overall time
delay.

The direct excitation of neuron B by the signal source is critical. It serves
to reset the phase of the neuron B oscillation, as a result of which the spike
from neuron C is measured with respect to the input signal and thus makes
the timing of the circuit precise relative to the arrival of the initiating spike.
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Without this excitation to neuron B, the phase of its oscillation is uncorrelated
with the arrival time of a signal from the source, and the time delay of the
circuit varies over the period of oscillation of neuron B. This is not a desirable
outcome.

We have constructed this circuit using HH conductance based neurons
and realistic synaptic connections. The dynamical equations for the three HH
neurons shown in Fig. 2.18 are these:

CM
dVi(t)

dt
= gNam(t, Vi(t))3h(t, Vi(t))(Vi(t)− VNa)

+ gKn(t, Vi(t))4(Vi(t)− VK) + gL(Vi(t)− VL)
+ gI

ijSI(t)(Vi(t)− VrevI) + Isyn
i (t) + IDC

i , (2.16)

where (i, j) = [A, B, C]. The membrane capacitance is CM , and VNa, VK, VL,
and VrevI are reversal potentials for the sodium, potassium, leak, and in-
hibitory synaptic connections, respectively. m(t), h(t), and n(t) are the usual
activation and inactivation dynamical variables. gNa, gK and gL are the max-
imal conductances of sodium, potassium and leak channels respectively. IDC

i

is the DC current into the A, B or C neuron. These are selected such that
neuron A is resting at −63.74 mV in the absence of any synaptic input, neuron
B is spiking at around 20 Hz, and neuron C would also be spiking at around
20 Hz in the absence of any synaptic inputs.

Isyn
i = gE

i SE(t)(Vi(t) − VrevE) is the synaptic input to the delay circuit
at neuron A and B. It receives a spike from the signal source at time t0;
gE

i = (gA, gB, 0). The nonzero inhibitory synaptic strengths gI
ij in the delay

circuit are gBA = R0gI and gCB = RgI . The dimensionless factors, R and
R0, set the strength of A→B and B→C inhibitory connections respectively,
relative to baseline strength gI , which is set to 1 mS cm−2 in all the calculations
presented here.

gA = gB = 0.5 mS cm−2. gI = 1 mS cm−2, R0 = 50.0, and R varies as
given in text. VrevE = 0 mV, and VrevI = −80 mV. τE = 1.0 ms, S1E = 1.5,
τI = 1.2 ms, S1I = 4.6. The DC currents in the neurons are taken as IDC

A =
0.0μAcm−2, IDC

B = 1.97μAcm−2 and IDC
C = 1.96μAcm−2.

SE(t) represents the fraction of excitatory neurotransmitter docked on the
postsynaptic cell receptors as a function of time. It varies between 0 and 1
and has two time constants: one for the docking time of the neurotransmitter
and one for its release time. It satisfies the dynamical equation:

dSE(t)
dt

=
S0(Vpre(t))− SE(t)
τE(S1E − S0(Vpre(t)))

. (2.17)

The docking time constant for the neurotransmitter is τE(S1E − 1), while
the undocking time is τES1E . For neurons A and B, the presynaptic voltage
is given by the incoming spike or burst of spikes arriving from some source at
time t0. For our excitatory synapses, we take τE = 1 ms and S1E = 1.5, for
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Fig. 2.19. (a) For R = 0.7, we show the membrane voltages of neuron A (blue) and
neuron C (red) in response to single spike input (black) arriving at neuron A and
neuron B at time t0 = 500 ms. We see the output spike from neuron C occurring
at t = 543.68 ms, corresponding to τ (R) = 43.6 ms; (b) For R = 0.7 we again show
the membrane voltages of neuron A (blue) and neuron C (red), and in addition
now display the membrane voltage of neuron B (green). A single spike input (black)
arrives at time t = 500 ms. We see that the periodic action potential generation by
neuron B is reset by the incoming signal; (c) The delay τ (R) produced by the three
neuron time delay unit as a function of R, the strength of the inhibitory synaptic
connection B→C. All other parameters of the time delay circuit are fixed to values
given in the text. For R < RL, the inhibition is too weak to prevent spiking of
neuron C. For R > RU , the inhibitory synapse is so strong that neuron C does not
produce any action potential, so effectively the delay is infinity. In Figs. 2.19(a) and
2.19(b), the arrows indicate the time of the spike input to units A and B of our
delay unit

a docking time of 0.5 ms and an undocking time of 1.5 ms. These times are
characteristic of AMPA excitatory synapses.

Similarly, SI(t) represents the percentage of inhibitory neurotransmitter
docked on the postsynaptic cell as a function of time. It satisfies the following
equation:

dSI(t)
dt

=
S0(Vpre(t))− SI(t)
τI(S1I − S0(Vpre(t)))

, (2.18)
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Fig. 2.20. (a) Schematic of the detection unit. It receives two input spikes with
various time intervals between them. It responds with a spike if the two inputs
are within 1 ms of each other; (b) Top panel The scaled response of the detec-
tion unit when two inputs arrive within 2 ms of each other. We see that the inte-
grated input arriving at this delay does not result in neuron spiking. In the bottom
panel, we show the scaled neuron response to two input spikes arriving within 1 ms
of each other. The detection unit produces a spike output, indicating coincidence
detection

where we select τI = 1.2 ms and S1I = 4.6 for a docking time of 4.32 ms and
undocking time of 5.52 ms. The range of time delays produced by the three
neuron delay circuit depends sensitively on the docking and undocking times
of this synapse.

For these values, we find τ(R) as shown in Fig. 2.19(c). For R too small,
R < RL in Fig. 2.19(c), the inhibition from B → C does not prevent the
production of action potentials. For R too large, R > RU in Fig. 2.19(c),
the C neuron is inhibited so strongly that it never spikes. Over the range of
RL ≤ R ≤ RU , we typically find that τ(R) has a range of about 20 ms within
an overall scale of about 10 ms to 100 ms.
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Fig. 2.21. Training an IRU to learn an ISI of T = 55 ms. The initial values of
gBC(N = 0) are set to explore the two scenarios described in the text. τ (R) (top
panel) and gBC (bottom panel) are plotted as function of the number of presentations
of the training sequence N. The resolution limit δ = 4ms is shown in dotted lines
for τ (R) and T = 55 ms is shown as a solid line

The ISI recognition unit is now constructed as follows:

• A circuit we call the “spike separation unit” [2] separates the individual
spikes at time t0, t1, tN+1 in the sequence. These are then presented to a
set of time delay units in pairs {tj , tj+1}.

• After introducing an excitatory feedback from neuron C to neuron C of
each time delay unit, we use the inhibitory plasticity rule in Fig. 2.15 to
adjust Rj until τj ≈ tj+1 − tj = Tj . When this occurs, the training is
completed.

• A “detection unit” comprised of a neuron or neurons fires when two spikes
within a few ms of each other are received, but not when a single spike
is received. The operation of the detection unit is illustrated in Fig. 2.20.
When the detection unit fires, the information that the replica ISI se-
quence τ0(R0), τ1(R1), . . . , τN (RN ) has matched the desired sequence SISI

is passed on to other functions.

As an example of the training of a delay unit, we show in Fig. 2.21 the
training of one time delay unit to a time delay of 55 ms. The spike sequence
t0, t1 = t0 + T0 with T0 = 55 ms, is presented N = 0, 1, 2, . . . times. We
present the spike sequence many times N = 0, 1, 2, . . . to the IRU to train
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the time delays to accurately reflect the individual ISIs in the sequence. In
Fig. 2.21, we show results from training two IRU units tuned to detect an
ISI of T = 55 ms. The first IRU has gBC(N = 0) = 2, corresponding to
τ(R) ≈ 43 ms, so T > τ(R). The second has gBC(N = 0) = 30 leading to
τ(R) ≈ 60 ms, so T < τ(R). Each IRU trains itself on the given ISI input
presented N = 1, 2, . . . times. In the detection unit, we set the time within
which the spikes must arrive at 4 ms. This is a resolution which approximates
the refractory period of a typical neuron.

As a final comment, we return to the matter which led to a discussion of
the sensitivity of a neural circuit, such as that in the sensory-motor junction
of the birdsong system [32]. We suggest, based on the construction discussed
here, that within NIf (or possibly before NIf in the auditory pathway) there
will be neural structures which select for specific ISI sequences. In the first
phase of song learning, called the sensory phase, we suggest that a genetically
determined circuit with time delays nearly those appropriate to the tutor’s
song is tuned by repeated presentation of the song. This tunes the nonlinear
filter for ISI sequences we just constructed. Once this has happened, the bird-
song development moves into its next phase, the sensori-motor phase, where
the muscles of the bird’s songbox are trained by other plasticity events [38]
through auditory feedback, filtered by the ISI recognition structure. Once
the bird’s own song matches the tutor’s song, the training of the songbox is
completed.
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Summary. In this chapter, Graph Theory will be introduced using cat corticocor-
tical connectivity data as an example. Distinct graph measures will be summarized
and examples of their usage shown, as well as hints about the kind of information
one can obtain from them. Special attention will be paid to conflicting points in
graph theory that often generate confusion and some algorithmic tips will be pro-
vided. It is not our aim to introduce graph theory to the reader in a detailed manner,
nor to reproduce what other authors have written in several extensive reviews (see
Sect. 3.8).

Some of the examples placed in this chapter referring to the cat cortex are
unpublished material and thus, not to be regarded as established scientific results.
Otherwise, references will be provided.

3.1 Introduction

A network is an abstract manner of representing a broad range of real systems
in order to be mathematically tractable. Elements of that system are repre-
sented by vertices and their interactions by links, often giving rise to complex
topological structures. Links could illustrate some real physical connection: in
roadmaps, cities are represented by dots (vertices) and roads by lines (links);
neurons (vertices) connect to each other through axons and synapses (links);
the Internet is formed by computers or servers (vertices) connected by cables
(links). Abstract concepts are also suitable to be translated into networks: in
physics, regular solids are represented as crystal lattices; in the social sciences,
vertices might represent people and a link between them could be placed when
two persons are friends; the World Wide Web is also an abstract network where
vertices are web pages linked by hyperlinks pointing from one web page to
another; in ecological food webs, species (vertices) are linked depending on
their hierarchy in the web.

In the universe of networks, three basic types of graphs are found: simple
graphs , whose vertices are connected by edges without directional information;
digraphs (directed graphs), whose directed links are drawn by arrows (arcs);



78 G. Zamora-López et al.

and weighted graphs , when links represent some scalar magnitude. The weights
given to a link depend on the specific system under study. In a transportation
network, weights could either represent the physical distance between two
cities or the number of passengers, cars, trains, etc. that travel from one city
to another. In order to simplify the analytical treatment, most theoretical work
has been focused in the study of “graphs”. In this chapter on the contrary, the
general properties of both directed and weighted networks will be introduced
because corticocortical connectivity data belong to this class.

3.1.1 Brief Historical Review

Historically, the study of networks has been the domain of a branch of dis-
crete mathematics known as graph theory. Since its birth in 1736, when the
Swiss mathematician Leonhard Euler published the solution to the Königsberg
bridge problem (consisting in finding a round trip that traversed each of the
bridges of the Prussian city of Königsberg exactly once), the study of networks
turned out to be useful in many different contexts. In the social sciences, the
practical use of graph theory started as early as the 1920s. During the 1990s
thanks to the advances in computation, the handling of very large data sets
became affordable for the first time, and thus the study of the interconnec-
tivity of many real systems became possible. The field experienced a rapid
growth and nowadays is mainly known under the name of Complex Networks ;
its influence can be seen in different disciplines like sociology, life sciences,
technology, physics, economics, politics, etc. We will keep in mind that net-
work theory is just a data analysis toolkit flexible enough to be applied in
many different contexts.

Apart from structural characterization, special attention has been paid in
recent years to dynamical processes of networks in an attempt to understand
the bridge between structure and function, which is important for the study of
neuroscience. On one hand, dynamical processes can happen within a network,
like electrical current flowing through a electrical circuit or when vertices rep-
resent some dynamical system as oscillators, neurons, etc (cf. Chaps. 1, 5–14).
In this case, we might raise the question of how the complex interconnectiv-
ity of elements affects both individual and collective behavior. On the other
hand, the structure of the network itself might change in time (i.e. plasticity
processes happening in neural networks), affecting its dynamical properties
(cf. Chaps. 2, 5, 7). Understanding the interrelation between structure and
dynamics (function) could allow, for example, the design of flexible techno-
logical networks where deliberate change of connections could optimize the
“maximum service/minimum cost” problem. In the life sciences, it could pro-
vide understanding of how internal dynamical processes drive and regulate
structural changes leading to self-organization in the system.
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3.1.2 Complexity, Networks and the Nervous System

Complex systems are typically characterized by a large number of elements
that interact nonlinearly. Successful mathematical methods to treat such sys-
tems are still a demanding challenge for current and near future research.
Classically, nature has been abstracted and broken up into different pieces
called systems and further partitioned into semi-independent subsystems sus-
ceptible to being separately studied. Once different pieces are understood,
the answers are summed up to provide a more global understanding (what
is known as the principle of linear superposition.) The small contribution of
nonlinear interactions and other unknown contributions are simply classified
as noise. The Fourier transformation and its applications (a method to decom-
pose a function as a linear superposition of some other functions) is a good
example of what can be mathematically achieved thanks to the assumption of
linearity. Even for systems composed of very many elements, provided linear
interactions dominate, statistical methods allow their description by means of
“macroscopic” properties.

But, what if a system cannot be broken up into such independent pieces?
Or, what if the system can be partitioned but its overall behavior cannot be
described as the linear sum of its components? We are then facing a com-
plex system. We are here to show another ingredient that causes complexity
in real systems: the intricate connectivity of interactions among its elements.
Solid crystals have regular structures providing symmetries that simplify their
macroscopic description. In many other systems, like star clusters or clouds
of charged particles, all elements interact with each other allowing a macro-
scopic description in terms of “mean fields”. The intricate connectivity of
many real systems, on the contrary, makes such simplifications impossible. It
is rather true that the complexity of the nervous system arises from many dif-
ferent aspects: the coexisting spatio-temporal scales of its dynamics, genetic
regulation, molecular organization, the mixture of electrical and molecular
signals for communication, intricate connectivity among elements at different
scales etc. Each of these features require the use of specific tools and scientific
methodologies, making modern neuroscience a highly interdisciplinary field.

What we are trying to emphasize in this book, and especially in this chap-
ter, is that the complex inter-connectivity among the elements comprising the
brain (at different scales) is an important aspect to be understood. Therefore,
we present Graph Theory as a suitable data analysis toolkit.

3.2 The Cat Cortical Connectivity Network

One of the principal enigmas of biology, and the central issue in physiol-
ogy, is the intrinsic relationship between the physical geometry of biological
structures and their function. The study of structures of biological systems
at different scales has been enabled by advances in optical devices, imaging
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and spectroscopy. However, knowledge about structure at different levels of
organization in the nervous system and interconnectivity is still far from be-
ing satisfactory [1]. Knowledge about mesoscopic structures and microscopic
connectivity is largely missing. Even at the macroscopic scale, interconnectiv-
ity between different cortical regions is only known for few mammal species:
macaque and cat (partially that of rats also), although further work is still
necessary to confirm and improve the existing data. In the case of humans,
no harmless tracing technique is available yet to obtain a comprehensive map
of the anatomic cortical connectivity, although potential use of non-invasive
techniques such as DTI (Diffusion Tensor Imaging) from Magnetic Resonance
Imaging (MRI) data is already under study, as well as post-mortem tracing
studies (see Chap. 4).

For the exercises and scientific tasks of the 5th Helmholtz Summer School
on Supercomputational Physics, the corticocortical connectivity data of the
cat was chosen because it is, for the moment, the most complete of its type.1

This data summarizes the corticocortical connections, where links represent
the bundles of axons projecting between distant cortical areas through the
white matter. Connections are classified as weak “1”, medium “2” or strong
“3” depending on the diameter of the fibres. The current data is a collation
of previous reports performed by Jack W. Scannell during his Ph.D. and
presented in various versions [3,4] including the thalamo-cortical connections.
The network has been extensively analyzed. It has been found to be clustered
and hierarchically organized both in its structural [5–7] and in its functional [8]
connectivity. This network also has “small-world properties” [9]. More about
its network properties will be studied in this chapter and in Chap. 4.

In Fig. 3.1, the parcelation scheme used by Scannell et al. [3] for both lat-
eral and medial views of a single cortical hemisphere are shown as

Fig. 3.1. Parcelation of a single hemisphere of the cat cortex. Reprinted from [2]
with permission. Lateral view (left) and medial view (right)

1 It is important to mention current efforts to improve the connectivity data of
the macaque cortex, see http://www.cocomac.org, that will become the best
reference in the near future.
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presented in [2]. In Fig. 9.2 of Chap. 9, the corticocortical connectivity data
of the cat is shown in adjacency matrix form. Aij means that area i (row)
projects a bundle of axons into area j (column). The four major clusters on
the diagonal represent internal connections between areas within the visual,
auditory, somatosensory-motor and frontolimbic cortex, while “off-diagonal”
connections represent information exchange paths between different functional
clusters. We show here the network with 53 cortical areas since this was the
version used for computation during the Summer School.

3.3 Network Characterization
and the Cat Cerebral Cortex

Vertices of networks are labeled with numbers from 1 to N and links between
vertices i and j are represented as entries of a matrix: Aij = 1 if i connects
to j, and Aij = 0 otherwise. This is known as the adjacency matrix of the
network (Fig. 3.2(a)). When computing large networks, matrices become very
inefficient in terms of memory allocation. A network of N vertices requires a
matrix of N2 elements, where most of the entries will be zero because real
networks tend to be sparse (look at Table 1 of [10]). Thus, large amounts
of memory are being wasted. Another way to represent networks is through
adjacency lists (Fig. 3.2(b)), which consist of N lists containing only the ver-
tices to which vertex i projects. In this case, the amount of required memory
is proportional to the number of connections m in the network. All we need
is a list with the N vertices and the N lists of the neighbors of each vertex.
This makes a total memory requirement of O(N +

∑
i ki) = O(N +m), where

ki is the number of neighbors of each vertex.
For example, a network with 10, 000 vertices requires a matrix of 108 ele-

ments translating into ∼ 95 MB if entries are taken as 8 bit (1 Byte) integers.
Imagine our network has a density of connections ρ = 0.1 (z ≈ 1000 links per
vertex). The number of connections is then m = ρ ·N ·(N − 1) = 9, 999, 000.

Fig. 3.2. Representation of networks: a) adjacency matrix and; b) adjacency lists
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Note that we now need 16 bit (2 Byte) integers since the indices of vertices
go up to 10000, thus the memory required in an adjacency list representation
is only ∼ 20 MB.

Although adjacency lists reduce memory requirements, performance may
be sacrificed. Some operations run faster with adjacency lists, i.e. to calculate
the degree of each node we only need to ask the system to return the size of
each list while in a matrix, all elements have to be read and nonzero elements
counted. However, the calculation of most graph theoretic measures requires
one to enquire whether two vertices are connected or not, and this operation
on a matrix is very fast because when we code something like “if net(n1,n2)
== 1” the system only needs to visit the specific memory location for (n1,n2)
and read the value. Using adjacency lists, the system has to look through all
values in the list for node n1 and compare each value to n2 until it is found
or the end of the list is reached. In Chap. 11, more will be discussed about
suitable data structures for representing networks and performing simulations
of dynamical networks.

3.3.1 Degree Distributions and Degree Correlations

The most basic property of nodes is the vertex degree ki which represents
the number of connections a vertex i has; this is the building block for other
structural measures. In networks without self-loops (links going out of a node
and returning to itself) and multiple links (more than one link connecting two
vertices), the degree equals the number of neighbors of i. In directed graphs
(digraphs), the number of connections leaving from i and the number of links
that enter i are not necessarily equal, so the degree splits up into the input de-
gree (in-ki) and output degree (out-ki); most degree-based structural measures
also split accordingly. Given a network with N vertices and M connections:

N∑
i=1

in-ki =
N∑

i=1

out-ki = M

In the context of weighted graphs, the natural counterpart of vertex degree
is the vertex intensity Si, defined as the sum of weights of i’s connections.
The directed versions in-Si and out-Si can equally be defined summing the
weights of the input connections that i receives or the weights of the output
connections leaving from i.

In order to obtain statistical information about the degrees in large net-
works, the degree distribution P (k) is measured and defined as the probability
that a randomly chosen vertex has degree k. Quantitatively, it is measured as
the fraction of nodes in the network that have degree k, or estimated from a
histogram of the degrees. However, for many real networks with scale-free or
exponential distribution, a histogram provides poor statistics at high degree
vertices and the cumulative degree distribution, Pc(k), is recommended. It is
defined as the fraction of nodes in the network with degree larger than k.
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Pc(k) requires no binning of data and is a monotonous decreasing function
of k, which makes it a better measure to estimate the exponent of scale-free
and exponential distributions. The only difference is that if a network has a
scale-free degree distribution with exponent, P (k) ∼ k−γ , then the measured
exponent in the cumulative distribution is Pc(k) ∼ k−α where α = γ − 1.

Degree distribution alone does not tell one very much about the internal
structure of a network, and other measures are required. It is interesting, for
example, to look for correlations between degrees of vertices. A network will
be called assortative when high degree vertices connect preferentially to each
other, and low degree vertices to each other (correlation is thus an increasing
function of k). A network is called disassortative when high degree vertices
preferentially connect to low degree vertices (correlation is a decreasing func-
tion of k). Interestingly, as pointed out in [10], social networks are observed
to show assortative behavior while many other networks (technological net-
works, biological networks) tend to be disassortative. Formally, degree-degree
correlations are expressed by the conditional probability P (k|k′) that may be
problematic to evaluate due to finite size effects.

A popular measure to evaluate degree correlations is the average neighbors’
degree, knn(k) introduced in [11]. Firstly, for each vertex i, the average degree
of its neighbors is calculated (knn,i). Then, these values are again averaged
for all nodes having degree k. In the case of directed networks, things become
confusing and we may not know what to look for. Below we show only two
cases:

1. is the out-ki of vertex i correlated to its output neighbors’ in-kj degree?
(Fig. 3.3(a)).

2. is the in-ki of vertex i correlated to its input neighbors’ out-kj? (Fig. 3.3(b)).

The extension of these measurement to weighted networks consists in replacing
the degrees by intensities and adjacency matrices by their weighted counter-
parts as presented in [12].

Fig. 3.3. Schematic representation of two possible combinations to calculate knn(k)
in directed networks
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Fig. 3.4. Neighbors’ degree as a measure for degree correlation: (a) knn(k) of the
Internet and the Barabási-Albert model. Reprinted with permission from [11]; (b)
Comparison of knn(k) to its weighted version for the WAN (World Airport Network)
as defined in [12]. Reprinted with permission

Figure 3.4(a) (from [11]) shows the average neighbors’ degree of the In-
ternet in the year 1998 to be disassortative. The Internet is known to have a
scale-free degree distribution with an exponent γ ≈ 2.2. However, a modified
Barabási-Albert model (BA) that constructs a network with similar exponent
displays uncorrelated degrees, failing to catch the internal structure of the
Internet. In Fig. 3.4(b) (from [12]), average neighbors’ degree of the World
Airport Network (WAN) is shown. In the unweighted case, connection flights
between two airports are considered, while in the weighted case, the intensity
of the connections represents the number of passengers flying from one airport
to another in direct (non-stop) flights. The network has assortative behavior,
more pronounced in the weighted case. This example illustrates the loss of in-
formation when, for simplicity, the unweighted version of a weighted network
is considered. Note that in Fig. 3.4(b) the weighted kw

nn(k) is plotted against
k only for comparative reasons, but it is more natural, for obvious reasons, to
plot it against the intensity Si of the vertex.

Figures 3.5(a) and (b) show neighbors’ degree of the cat corticocortical
network for the two cases previously depicted in Fig. 3.3. It is surprising to
observe the asymmetry between the two cases. While out-ki happens to be
independent of their neighbors’ in-kj (Fig. 3.5(a)), the opposite case exhibits
a nontrivial behavior (Fig. 3.5(b)): it looks assortative for low degree areas
and then saturates to become disassortative at high degrees. The meaning of
this asymmetry and its functional consequences is as yet unclear.

3.3.2 Clustering Coefficient

The concept of clustering coefficient is well illustrated by using social net-
works as an example: “If person A is a friend of person B and a friend of
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Fig. 3.5. Degree correlations of cat cortex. (a) Correlation between out-ki of node
i and its neighbors’ in-kn (b) opposite case, correlation between in-ki of node i and
its neighbors’ out-kn

person C, what is then the probability that persons B and C are also friends?”
Clustering coefficient is, thus, a measure to quantify the conditional probabil-
ity P (BC | (AB ∩ AC)) (Fig. 3.6(a)). In general, given a set of vertices, the
average clustering will quantify the cohesiveness of that set.

The most popular way of measuring C in graphs is to count the number of
triangles. The number of paths of length 2 {a, b, c} gives the total number of
possible triangles. Taking into account that a triangle formed by vertices a, b
and c contains three such paths ({a, b, c}, {b, c, a} and {c, a, b}), the average
clustering of the network is then measured as :

C =
3× number of triangles

number of paths of length 2

Higher order versions of this method are possible by counting the number of
squares and so on.

In directed graphs, however, it is not clear how to define a triangle. A
common approach is to define first the local clustering coefficient Ci of a
single vertex and then average over all vertices to find the average clustering

Fig. 3.6. Illustration of clustering coefficient: (a) Clustering quantifies the condi-
tional probability of two vertices to be connected provided they share a common
neighbor; (b) Local CA measure as used in directed networks: the fraction of existing
connections between neighbors of A to all the possible connections between them
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C. Interestingly, Ci of a single vertex is not directly a structural measure
of i itself but a property of its neighbors that measures “how well are the
neighbors of i are connected together”. Defining Ni as the set of neighbors of
vertex i, Ci is then measured (illustrated in Fig. 3.6(b)) as the ratio between
the number of existing links among vertices in Ni and the number of possible
links in the set:

Ci =

∑
j,k∈Ni

(Ajk +Akj)
ki(ki − 1)

where ki is the degree of vertex i. It is very important to stress that, as pointed
out in [10], this approach is not exactly a measure of the conditional probabil-
ity Ci =

∑
j,k P (jk | (ij ∩ ik)), and it tends to overestimate the contribution

of low-degree vertices due to the smaller denominator.
Again, we find different possibilities in the case of directed networks. Clus-

tering of the “output neighbors” (using out-ki, N out
i , Fig. 3.6(b)) can be mea-

sured or that of the “input neighbors” (using in-ki, N in
i ). Another possibility

is to use both the input and output neighbors of i. However, it is erroneous
to define ki = in-ki + out-ki because reciprocal links will be counted twice. ki

has to be now the number of all vertices that i is connected to (whether input
or output). When reciprocal connections are highly present in the network,
output and input versions should give similar results.

Once the Ci are calculated it is interesting to look for their correlations
with other local properties. Ci of many real networks has been found to anti-
correlate with ki due to their modular structure [10]. This relationship has
also been captured by theoretical models [13]. The cat cortex provides an il-
lustrative example as shown in Fig. 3.7. Those areas with few neighbors have
higher Ci than those with larger degree. The reason becomes clear when ob-
serving the modular structure of the adjacency matrix in Fig. 9.2 of Chap. 9.
Low degree cortical areas do preferentially connect to other areas in the same
functional cluster (visual, auditory, etc.) while high degree areas have connec-

Fig. 3.7. Clustering coefficient of each cortical area Ci as function of area degree
ki. The negative slope is a signature of modular structure in the network
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Table 3.1. Average clustering coefficients of the cat cortex and of its anatomical
communities

Whole cortex Visual Auditory Somatosensory-motor Frontolimbic

0.61 0.64 0.87 0.79 0.72

tions all over the network. Thus, neighbors of high degree areas are gathered
into semi-independent groups that rarely connect with each other.

The average clustering coefficient C provides a quantitative estimation of
how cohesive a network is (or just a set of neighbors). Table 3.1 summarizes the
internal C values of the whole cat cortical network and of its four structural
clusters. As expected, the internal C of clusters is higher than that of the
whole network, with auditory cortex being the most cohesive of them all. In
order to measure C of a subset of vertices, the set must be first isolated from
the rest of the network and then C of this sub-network measured using only
internal vertices and the connections among them.

3.3.3 Distance

In networks, topological distance measures the minimum number of links
crossed in order to go from a given vertex a to another vertex b. If there
is a direct link from a to b, then d(a, b) = 1. If there is no shorter path than
going from a to c and from here to b, then d(a, b) = 2, and so on. Usually,
more than one shortest path from a to b exists. This will give rise to important
measures meaningful in the context of flows in networks, whatever the flow
represents: water flow in a pipeline, information flow, traffic in transportation
networks, etc. In graphs, d(a, b) equals d(b, a), so if the distance matrix is
defined as the matrix whose elements dab = d(a, b), then it is symmetric. The
average pathlength l of a network is defined as the average of all values in the
dij matrix.

When there is no path going from a to b, then d(a, b) = ∞ and b is said
to be disconnected from a. It is easier to find disconnected vertices in di-
graphs due to the directed nature of connections. In food-webs for example,
a directed link “worms” → “birds” exists but no arrow is to be drawn like
“birds”→ “worms” because worms do not eat birds. Thus, d(worm, bird) = 1
but d(bird,worm) = ∞. (Note: in food webs arrows point in the direction
of the energy flow.) An important matter in networks is the presence of con-
nected components : isolated groups of vertices, internally connected, that can-
not reach other components.

Taking connection weights into account while measuring distance is only
meaningful when weights represent real metric distance between vertices, like
in a roadmap. An interesting example is given by the Via-Michelin web page
and similar services. This web page allows one to, for example, find the road
trip between any two addresses within Europe. One option is to perform the
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search by shortest distance for which only metric distance information is used.
Another possibility is to perform a search by fastest trip. In this case, other
kinds of information must be used in order to give a proper “weight” to each
road-segment (type of road, average traffic, etc.) that measure how quickly
one can drive through them, and combined with the metric distance in order
to calculate the “shortest graph distance”, that in this case refers to “time”.

There is an extensive literature about algorithms to find shortest paths
between vertices in a network. The two most popular ones are the Dijkstra
and the Floyd-Warshall algorithms. Both of them are useful for weighted
digraphs since they are designed to return the lowest cost path, whatever the
weight means in the network. The Dijkstra algorithm finds the shortest path
between a source vertex s and all other vertices in time O(N2), where N is
the size of the network. In the case of sparse matrices (m � N2), it can be
improved up to O(N + m · logm). But if we want to calculate the distance
between all pairs of vertices, then Dijkstra’s algorithm has to be repeated
for each vertex, O(N3), the length of each path calculated and the distance
matrix created. Thus, Dijkstra is the algorithm of choice when we want the
shortest path (or distance) between a given pair of vertices, but when all-to-all
distances are to be calculated, then the Floyd-Warshall algorithm is the choice.
This algorithm takes the adjacency matrix of the network as an input and
returns the distance matrix in time O(N3), but faster than applying Dijkstra
N times. It can also be implemented to return the shortest paths between
each pair.

3.3.4 Centrality Measures

There is a set of measures requiring to initially calculate the distance matrix.
Given a graph G and its distance matrix, the eccentricity ei of a vertex i is
defined by the maximum distance from i to any other vertex in the network.
The radius of the network ρ(G) is then the minimal eccentricity of all vertices
and the diameter , diam(G), the maximal.

eccentricity ei = max(dij) : j ∈ V
radius ρ(G) = min(dij) = min(ei)
diameter diam(G) = max(dij) = max(ei)

The center of the network is composed by the set of vertices whose ei =
ρ(G). The name “center” is given because these vertices are closest to any
other in the network. If a signal is to be sent so that it reaches all vertices
as fast as possible, then the signal should be sent from one of the vertices in
the center. If an emergency center is to be placed in a city, it is desirable to
strategically place it so that ambulances or firemen will arrive at any corner
of the city in minimal time.
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Such definitions give rise to a discrete spectrum of values, and it would
be desirable to have a continuous spectrum in order to correlate them to
other vertex properties. We suggest that the reader instead uses the following
definition of eccentricity:

ei =
1
N

N∑
j=1

dij

this is nothing but the average pathlength from vertex i to any other vertex
in the network.

We could also ask the opposite question: “which vertices can be most
quickly reached from anywhere in the network?” In other words, where should
a shopping mall be placed such that all inhabitants in a city can reach it as
quickly as possible? The status si of a vertex is defined as the average of the
values in the ith column of dij ,

si =
1
N

N∑
j=1

dji

and quantifies how quickly, on average, vertex i is reached from other vertices.
Another important measure is the betweenness centrality that can be de-

fined both for vertices or links. For brevity, only the case of vertices will be
described here. The betweenness centrality (BCi) of vertex i is the count of
how often i is present in all the shortest paths between all pairs of vertices in
the network. Note that, usually, there is more than one shortest path between
two vertices, thus, all shortest paths between a given pair are to be accounted
for. It is computationally tricky and expensive to find them all. The Dijkstra
and Floyd-Warshall algorithms, for reasons of efficiency, look for only one
shortest path.

The approach personally followed by the authors of this chapter was to
use a modified version of the depth-first-search algorithm (DFS) in order to
stop the tree search at a desired depth. Once the distance matrix has been
calculated, the DFS algorithm is called for each pair of vertices i, j. The
known distance dij is introduced into the DFS algorithm so that it will search
through the whole tree but no deeper than dij steps, as depicted in Fig. 3.8(b).
If dij =∞, the search must be skipped. When all shortest paths in the network
are found, the number of times every vertex appears as an intermediate vertex
is counted.

BCi is an important measure because it quantifies how much of the flow
(information transmission, water flow, traffic, etc.) goes through i. Besides,
BCi does not necessarily correlate to vertex degree ki. Imagine two indepen-
dent networks that are connected by a single link. No matter how small the
degree of the two vertices is at the end of that link, their BC will be very
high because any path connecting the two sub-networks necessarily includes
them. Thus, in robustness analysis, selective attack on vertices with high BCi

is much more relevant than attack on those with high ki.
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Fig. 3.8. Finding all shortest paths between a pair of vertices. (a) Adjacency matrix
of example network; (b) Tree of vertex 1. Once d(1, 4) = 2 is known, DFS algorithm
is modified in order to stop the tree search at desired depth. Two distinct paths are
found from 1 to 4, say {1 → 2 → 4} and {1 → 5 → 4}, giving rise to BC(2) += 1

and BC(5) += 1

3.3.5 Matching Index

Intuitively, two vertices having the same neighbors might be performing sim-
ilar functions. The matching index MI(i, j) of vertices i and j is the count
of common neighbors shared by both vertices, and provides an estimation of
their “functional similarity”. Directionality of the network brings again dif-
ferent possibilities since we could look for common input neighbors, common
output neighbors or both. In order to properly normalize the measure, the num-
ber of common neighbors should be divided by the total number of distinct
neighbors that i and j have. Normalizing over (ki + kj) returns misleading
results as illustrated in the following example:

1 → {4, 5, 6}
2 → {4, 5, 7, 9}
3 → {1, 2, 5, 8, 9, 11, 12}
4 → {1, 2, 5, 8, 9, 11, 12}

Vertices 1 and 2 share two {4, 5} out of five different neighbors {4, 5, 6, 7, 9},
thus MI(1, 2) = 2/5 = 0.4. Vertices 3 and 4 share all of their seven neighbors
giving rise to MI(3, 4) = 1. In the case where we would normalize over (ki +
kj), MI(1, 2) = 2/(3 + 4) = 0.286 and MI(3, 4) = 7/(7 + 7) = 0.5, clearly
faulty expressing the probability of common neighbors.

The matrix representation of MI is symmetric. Diagonal elements are
simply ignored and receive null values. The matching index of the cat cortical
network in Fig. 3.9 reflects its modular structure and includes some new infor-
mation. A pair of cortical areas do not need to be connected in order to have a
large overlap of neighbors, and thus similar functionality (although in the case
of cat cortex, MI tends to provide higher values for connected areas). MI val-
ues within a cluster lie in general between 0.35 and 0.6 with some higher value
exceptions (mainly in the sensory-motor cortex), while inter-cluster connec-
tions tend to have values below 0.35 with some exceptions dominated by the
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Fig. 3.9. Matching index of the cat cortical network: a) MI of input connections.
b) MI of output connections

connections of high degree areas.MI versions for input neighbors in Fig. 3.9(a)
and for output neighbors Fig. 3.9(b) show different internal structures of the
anatomical clusters. While for the input version the four anatomical clusters
(visual, auditory, somatosensory-motor and frontolimbic) are clearly observed,
the output version shows subdivisions of the somatosensory-motor cortex into
two clusters, and some visual areas are kicked out.

3.4 Random Graph Models

In order to understand the natural mechanisms underlying the observed struc-
tural properties of real networks, creating network models is essential. Differ-
ent network classes are known to exist, e.g. technological or biological net-
works that share similar properties within each class and differences across
them. Modeling helps us to understand both the similarities and the differ-
ences. There is a very extensive literature about random graph models and
readers are strongly recommended to read some of the reviews listed in the
last section of this chapter. The goal of this section is just to give a very brief
but hopefully clear description of the main network models whose modifica-
tion have motivated many more detailed and realistic models. We will stick
to their original descriptions as graphs and leave directed connections and
weights aside, since this simplification has permitted an extensive analytical
treatment.

3.4.1 Erdős-Rényi (ER) Networks

The Erdős-Rényi (ER) model is probably the simplest random network that
can be built (cf. Chaps. 5, 7). Starting from an empty set of n vertices with-
out connections, m links are randomly added one by one so that every pair
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of vertices has the same probability of getting a new link. Gn,m is the en-
semble of all possible random graphs of size n and m links constructed by
this procedure. Typical restrictions are 1) only one link is allowed between
a pair of vertices and 2) no self-loops are allowed (self-connections leaving a
vertex and re-entering itself; by contrast, see Chap. 7 for an example of an
Erdős-Rényi network exhibiting self-loops). The simplicity of this model has
permitted extensive analytical work of its properties, started by Erdős and
Rényi themselves in the 1960s.

Its degree distribution follows a binomial distribution, becoming Poisso-
nian in the limit of large networks. The probability of a vertex to have degree
k is then:

P (k) =
(
N
k

)
pk(1− p)N−k � zke−z

k!
: N →∞

where p is the uniform probability of a vertex to get a link. This distribution
is peaked around the average degree z = 〈k〉, which allows the description of
the network in terms of z, simplifying the analytical approach.

The model drew much attention due to its percolation properties, equiv-
alent to continuous phase transitions studied in statistical physics and ther-
modynamics. At the beginning of the random process, when few links are
present, many independent and small connected groups of vertices appear
called connected components, while remaining disconnected from each other
(find 3 of them in Fig. 3.10). When more links are added, components grow
and merge together into larger components making their size distribution ap-
proach a scale-free distribution — very many small components and few large
ones. There is a critical number of links when the largest components merge
suddenly giving rise to a giant component, composed of most of the nodes
of the network (around 80% of them). This transition has been analytically
proved and numerically corroborated to happen when z = 〈k〉 ≈ 1, so that
m ≈ n. Chap. 7 relates this percolation transition with another one where
oscillations emerge in the networks’s dynamics when super-cycles are merged
from isolated ones.

Fig. 3.10. Generation of ER random graphs. An initially empty set of n vertices is
linked with uniform probability p
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But, how well does the ER model resemble real networks? A universal
property of real complex networks captured by this model (above the perco-
lation threshold) is the small-world property. The distance between any pair
of nodes, and thus the network average pathlength, is observed to be very
short. However, what does “short” mean? Obviously, the larger the network,
(keeping z constant) the longer the average pathlength l will become. In order
to quantify what short means, the small-world property has been defined as
the following upper scaling limit of the average pathlength in the network:

lupper = lnN

in the case of the ER model, average pathlength is proven to scale as:

l =
lnN
ln z

< lnN

under the following conditions, N � z � lnN � 1. This means that the
network is connected (well above the percolation threshold) but connection
density is not too large.

On the contrary, the ER model resembles real networks very poorly be-
cause it does not reproduce any of the other typical properties like clustering
coefficient, degree correlations, etc. Real networks do not show Poissonian de-
gree distributions. Many modifications of the ER model have been presented
trying to reproduce these other properties. One to be mentioned, since it will
be discussed in the next section, is the so-called configuration model that pro-
duces maximally random networks with a prescribed degree distribution or
degree sequence [14–16]. Thus, the ER model is just an special case of the
configuration-model.

3.4.2 The Watts-Strogatz (W-S) Model of “Small-world”
Networks

Motivated by the high clustering observed in many real networks and by the
highly unrealistic networks (lattices or random) previously used to model dy-
namical processes, Watts and Strogatz proposed the following model: starting
from a regular lattice (a 1-d ring in this case) whose vertices all have de-
gree z, a link is selected with uniform probability prew and randomly rewired,
conserving one of its original ends (Fig. 3.11). The initial lattice had large
clustering coefficient, C = (3z − 3)/(4z − 2), and large average pathlength,
l ≈ N/4z for large N . The introduction of a few shortcuts significantly de-
creases l while C remains nearly constant. This is true for a range of small
prew ≤ 0.1. As prew → 1 (more links are rewired), the closer the network is
to a random graph of the ER type. Thus, the W-S model is a prew-mediated
transition between regular and ER random networks.

The following restrictions are applied to the rewiring: 1) only one of the
end nodes of the link is rewired, 2) no self-loops are accepted after rewiring
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Fig. 3.11. Generation of W-S random networks. Starting from an initial regular
lattice where each vertex has z neighbors, one end of the links is rewired with
probability prew giving rise to shortcuts

and 3) only one link is allowed between each pair of vertices. Other meth-
ods have been later suggested relaxing some of these restrictions in order to
simplify analytical work. In fact, analytical results of the scaling properties of
the model are difficult since they depend not only on network size and den-
sity of connections but also on the given rewiring probability prew. However,
Barrat and Weigt [17] did estimate an analytical expression for the scaling of
the clustering coefficient (calculated using their own definition of clustering
coefficient) to be:

C(p) =
3(z − 1)
2(2z − 1)

(1− prew)3

In Sect. 3.5, we will display numerical comparison of the scaling properties
for different prew.

Again, while the WS model captures some of the properties of real net-
works, it fails to resemble their degree distribution and correlations. Initially,
as all vertices in the ring have the same degree, p(k) = δ(k − z). During the
rewiring process, some vertices gain a few connections and others lose them
making the distribution wider, creating in the end a binomial distribution
exactly like the ER model (see Fig. 3.14).

3.4.3 Barabási-Albert (BA) Model of Scale-free Networks

During the 1990s, advances in computing power permitted for the first time
the analysis of large real networks. Many of them exhibit scale-free (SF) degree
distributions, p(k) ∼ k−γ , with exponents γ between 2 and 3. This discovery
contrasted to the properties of the ER random model, extensively studied
for decades as models for real networks. Barabási and Albert proved that
two ingredients trigger the emergence of SF distributions in real networks:
growing of networks adding new vertices in time and preferential attachment
of new vertices with high degree vertices. A model including these ingredients
was first introduced by Price in 1965 [18] trying to account for properties of
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citation networks, but it was a simpler version published in 1999 by Barábasi
and Albert that became popular and provoked an avalanche of new papers
and models.

The BA model, as depicted in Fig. 3.12, starts from an initially small and
empty network of n0 without connections. At every time step, a new vertex
is included that makes m ≤ n0 connections to existing vertices, being the
probability of connection proportional to their current degree:

Π(ki) =
ki∑
j kj

Older vertices tend to accumulate more and more connections and thus a
higher probability to link to newly introduced vertices (rich-gets-richer phe-
nomenon). Meanwhile, new vertices have few connections and thus a lower
probability of gaining links in the future.

Networks generated by the BA model are found to have shorter average
pathlength than ER and W-S networks of the same size and density with
distance scaling as logarithm of size, l ∼ ln(N). Analytical estimations predict
even shorter correlation l ∼ ln(N)/ ln(ln(N)) [19]. Clustering coefficient has
been found to scale as C ∼ (ln(N))2/N [13], and it exhibits no degree-degree
correlations. An interesting property of BA networks is that the procedure
always generates connected networks in a single component, in large contrast
to SF networks generated by the configuration model and similar methods
where percolation processes are present. Another very important property
of SF networks (not exclusive to the BA model) is that of robustness (or
resilience) under attack or failures. As a few vertices accumulate most of the
connections (hubs) and most vertices make few links, SF networks are very
robust to the random removal of vertices, but selective attack of hubs produces
large damage.

The BA is a very simple model intended to capture the main ingredients
giving rise to SF degree distributions. This does not mean that it approximates

Fig. 3.12. Generation of BA scale-free random networks. Starting from an empty
and small set of n0 vertices, new vertices are included at each time step that make
m ≤ n0 links to existing vertices with probability proportional to their current
degree (preferential attachment rule)
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other properties observed in real networks like degree-degree correlations and
clustering coefficients. However, it is a flexible model and many modifications
have been proposed to reproduce other properties. To only mention some of
them, in [11] a mechanism to generate the degree-degree correlations of the
WWW is presented (Fig. 3.4) and in [13, 20] mechanisms to introduce large
C to evolving SF networks are discussed.

Another limitation of the BA model is that it generates networks with a
unique exponent γ = 3 (when N → ∞) whatever the initial conditions and
for all allowed parameters m ≤ n0. Besides, in real networks the SF scaling
does not generally happen over the whole range of degrees. Some networks
display a SF distribution truncated by exponential decays due to “ageing” of
vertices (receive no new connections after some time) or saturation (limited
capacity for a vertex to host new connections) [21].

3.5 Comparison of Random Graph Models

The random models introduced in the previous section share some similarity
properties. Besides, nomenclature makes differentiation confusing since the so-
called “small-world networks” are not the only ones obeying the small-world
property. Therefore, in this section we will study and compare the scaling
characteristics of the three models in more detail.

3.5.1 Average Pathlength

All three random network models described in this chapter generate small-
world networks. What is then the difference between them? Which model
generates the smallest networks? In Sect. 3.4.2, W-S networks were defined as
a transition between lattices and random graphs by a process of rewiring links.
For small rewiring probabilities prew, the networks conserve high clustering
while their average pathlength decays very fast approaching that of ER graphs.
Thus, lattices have the longest l of all, increasing linearly with network size as
l ∼ N/(4z) > lnN , faster than the “small-world upper limit”. On the contrary,
l of ER graphs scale in the large network limit as l ∼ lnN/ ln z < lnN , where
z is the average number of links per vertex. There is no analytical estimate
for the scaling of W-S graphs, since this depends on N, z and prew.

In Figs. 3.13(a) and (b), this transition is depicted for generated networks
of N = 500 vertices and different number of connections (represented here
as connection densities instead of z). Figure 3.13(a) shows the fast decay of
l: for a small rewiring probability of prew = 0.01, average pathlength of W-S
lies very close to that of ER networks. Interestingly, it is observed that the
differences between the models are only meaningful for rather sparse networks.
At connection densities ρ ≈ 0.3, lattices, random networks and W-S-networks
have very similar average pathlengths; at ρ ≈ 0.5, they are actually equal.
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Fig. 3.13. W-S networks as a transition between regular lattices (prew = 0) and
ER random graphs (prew = 1): (a) average pathlength l and; (b) average clustering
coefficient C of generated networks with n = 500 vertices and increasing number
of connections. BA model (◦). All models differ at low densities. With increasing
number of connections, average measures of all models become indistinguishable.
Each data point is an average of 10 realizations

Scaling properties of l in SF networks are not trivial. Bollobás et al. [22]
performed a strictly mathematical demonstration that the BA model scales
as: l ∼ lnN/ ln lnN . Independently, Cohen et al. [19] studied l of “random”
SF networks, using the Molloy-Reed version of the configuration model. It
consists of assigning each vertex a given degree probability P (ki) of getting a
link and then introduce connections at random (The ER model is the special
case where P (k) is uniform: P (ki) = P (kj) for all i, j ∈ N). They found that
the scaling of the average pathlength depends on the exponent γ and for
γ < 3, SF networks possess “ultra-small” diameter (again, in the large and
sparse network limit).

2 < γ < 3 → l ∼ ln lnN
γ = 3 → l ∼ ln N

ln ln N
γ > 3 → l ∼ lnN

Note that the scaling found for γ = 3 in the Molloy-Reed SF networks co-
incides with that of the BA model. Although both methods generate graphs
with scale-free degree distribution, they have different internal structure.

Summarizing, SF networks are the smallest of all while ER graphs are
smaller than W-S graphs.

3.5.2 Clustering Coefficient

Figure 3.13(b) shows the transition of C in W-S networks, between lattices
and ER graphs, to be slower with increasing prew than the transition of l
(Fig. 3.13(a)). At small prew = 0.01, average pathlength of W-S networks
is very close to that of ER graphs, while average clustering coefficient at
prew = 0.4 starts to approach the curve of random graphs. The combination
of these features, fast decrease of l while keeping high C, was the reason to coin
the W-S graphs as “small-world networks” in analogy to social networks where
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the “friends of my friends are also my friends” effect causes high clustering
and helps average pathlength between members of the network to be shorter.

Lattices have the largest C of all and W-S graphs have, for any prew < 1.0,
larger C than ER graphs. Note that C of ER graphs equals its density of
connections since this density is equal to the probability p of two vertices to
be linked. Again, there is a critical density of connections (ρ ≈ 0.7−0.8) where
C of all models becomes indistinguishable. BA graphs have a relatively low C
(solid line with open circles) but still larger than ER graphs. Unfortunately,
it is not possible to generate BA graphs of larger densities because they are
grown out of an initial empty graphs of finite size n0 and new vertices make
a maximum of m ≤ n0 connections. An analytical estimation of its scaling
with network size was found by Klemm and Egúıluz in [13]. In Fig. 3.14,
analytical estimations for the clustering coefficients of the different models
are summarized.

3.5.3 Other Structural Differences

As mentioned in Sect. 3.3.1, the degree distribution p(k), although important,
does not explain very much about the internal structural organization of a
network. Random graphs of the same size, connection density and degree
distribution may possess very distinct internal structure. While W-S graphs
should conserve much of the regularity of their parent lattices, degrees of
ER and BA networks are uncorrelated, as depicted in Fig. 3.4(a) (even if
BA networks are generated by a “preferential attachment” rule forcing new
vertices to preferentially link to those with highest degree). This absence of
degree-degree correlations is not a general property of scale-free networks, but
intrinsic of the BA model.

Another important structural feature of real complex networks, not cap-
tured by any of the models presented here, is the presence of modules and
hierarchies. In many real networks, and specially in biological ones, the com-
bination of modular and hierarchical organization is believed to be a very
important consequence of self-organisation: elements specialized in similar
function are arranged into modules that hierarchically interact with each
other. This requires a complex topology supporting the very rich range of
functional capacities exhibited by living organisms. Imagine genetic networks
where genes involved in similar regulatory processes form clusters, or in the
cat cortex (Fig. 9.2 of Chap. 9) where cortical areas performing similar func-
tion form the visual, auditory, somatosensory-motor and frontolimbic clusters
observed. After recognizing its importance, Ravasz et al. [23] studied such
structures in metabolic networks and presented a simple model that generates
networks with both scale-free degree distribution and hierarchical/modular
architecture.
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Fig. 3.14. Comparison of random graph models
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3.6 Randomizing Networks and Comparison
with Expected Properties

In Sect. 3.5, we compared random network models in terms of their scaling
properties. In practice, however, scaling information is rarely available because
usually we have one, and only one real network to be studied. In some cases
(for example, the Internet or WWW), its structure might be known at different
time stamps and thus its growing properties are available.

Then, how does one classify a real network? How expected, or surprising,
are its properties and organization compared to those of random networks?
Given any real network, a first approach is to generate a set of random ER
networks of the same size N and number of connections M and compare their
properties. But if the real network has a scale-free degree distribution, how
representative is this comparison? A better approach is to generate a set of
SF networks of the same size, number of connections and scaling factor γ and
again, compare. In such a case, generation of static SF networks is suggested,
using the configuration model and similar methods like the one presented
in [24]. These methods are computationally more efficient than the BA model
and, very importantly, the scaling factor γ is tunable while the BA model
always returns γ = 3 exponent.

In reality, however, the degree distribution of real networks will rarely
match that of any model, so, what should we expect the measures to be,
given the degree distribution? By rewiring the connections, an ensemble of
maximally random networks of the same size, density and degree sequence
can be generated to be used as null hypotheses. The method is depicted in
Fig. 3.15 and summarized as the following:

Select two connections at random, say, (a1 → b1) and (a2 → b2), and switch
them if and only if:

1. Neither the (a1 → b2) and (a2 → b1) links previously exist — otherwise
double links would be introduced.

2. b2 �= a1 and b1 �= a2 exist — otherwise self-loops would be introduced.

Fig. 3.15. Schematic representation of randomizing networks while conserving de-
gree distribution. After randomly selecting two links, they are exchanged provided
some restrictions are fulfilled. This procedure generates a maximally random net-
work of same size, N , number of connections m and degree-distributions P (kin) and
P (kout) as its parent network
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When applied to matrices, the rewiring procedure will also conserve input
intensity in-S (but not out-S). Given a digraph in adjacency list form, the
pseudo-code for the algorithm might read like:
counter = 0

while counter < mrew:
1) Select one node at random, a1, and one of its neighbors, b1.
2) Select another vertex a2.

Check that a2 �= a1, a2 �= b1 and NOT a2 → b1, otherwise
start again.

3) Select a neighbor of a2, b2.
Check that b2 �= a1 and NOT a1 → b2, otherwise start again.

4) include b2 in the list net(a1) Swap the connections
include b1 in the list net(a2)

remove b1 from net(a1) delete the old links
remove b2 from net(a2)

counter += 1

where mrew is the maximum number of times the rewiring process will run
(note that at each step two connections are rewired). The two links must be
randomly chosen with uniform probability 1/M but the algorithm is taking
first nodes a1 and a2 (with probability 1/N) and then one of their neigh-
bors. Individual links are thus selected with probability p(b|a) = p(a) p(b) =
1
N

1
out-k(a) . As a result, links of high degree nodes have a lower probability of

being rewired. A very easy way to balance the situation is to initially generate
a list of size M containing each node out-k(a) times (as in the configuration
model) and select every time the nodes a1 and a2 occur in this list. The
probability of selecting any link is now:

p(b | a) = p(a) p(b) =
out-k(a)
M

1
out-k(a)

=
1
M

Fig. 3.16. Rewiring the cat cortical network towards generation of maximally ran-
dom digraphs of same N , M and degree distributions: a) Average clustering coef-
ficient and b) average pathlength of the rewired networks. Each data point is the
average after 100 realizations
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An important question one faces when rewiring networks is how long the
process should run so that we are sure of having really randomized networks.
In this case, as shown in Figs. 3.16(a) and (b), C and l of the cat cortex
become stable after rewiring 2M connections.

The rewiring process will destroy the internal structure of the network:
degree-degree correlations, clustering, communities, hierarchies etc. while con-
serving a basic property like the degree distribution. However, it is also pos-
sible to generate maximally random networks with given degree correlations
or clustering coefficients, etc. Different levels of approximation are available
and it is up to the readers to decide which level of detail is enough in their
specific case.

3.7 Classification of the Cat Cortical Network

The cortical networks of cat and macaque are known to have clustered or-
ganization as well as small-world properties: high clustering coefficient and
short average pathlength [4,5,9]. In an effort to understand how cortical orga-
nization has evolved towards such structures, Tononi and Sporns found that
similar topology could emerge from the balance between functional integration
and segregation [25].

In Table 3.2 the clustering coefficient C and average pathlength l of the
cat cortex and of different generated random networks (N = 53,M = 826) are
presented. C of cat cortex is much higher than that of ER random digraphs
and thus, apparently very “surprising” based on what should be expected in a
random network of its size and number of connections. l is always very small
due to the high density of connections (∼ 0.3). As pointed out in the previous
section, we need to define a proper ensemble of random networks to be used
as a “null hypothesis”. Comparison to ER digraphs might be erroneous, as it
is in this case. The degree distribution of the cat cortex in Fig. 3.17(b) shows
no relation to any of the models introduced in this chapter. The distribution
of ER networks is localized around the mean number of links per vertex z
(zcat ≈ 16) but the distribution of cat is very wide, some areas have degree
up to k = 35 while N is only 53. Using the rewiring procedure described in
Sect. 3.6, a set of maximally random networks of the same size, number of
connections and degree distribution was obtained. C and l of the cat cortex
are still higher than those of rewired networks, but the differences are not so
large as when compared to ER digraphs, and thus, not so “surprising”.

C and l of the generated W-S networks are very close to those of the cat,
suggesting that cat cortex is similar to a W-S network with prew between 0.05
and 0.1. In Fig. 3.17(a), the cumulative degree distribution of the cat cortex is
shown together with that of W-S networks (−+ line) and “scale-free” networks
generated by the configuration model with γ = 3.5 (solid line). As expected,
the distribution of the W-S digraphs is very narrow (decays very quickly) and
thus, very unlikely to be a representative model for cortical networks. Even
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Table 3.2. Comparison of average clustering and average shortest path between the
cat cortical network and random networks of same size and number of connections.
“Rewired Cat” also possesses the same degree sequence. Each value is the average
over 10 realizations

Cat cortex ER random Rewired Cat W-S (prew = 0.05) W-S (prew = 0.1)

C 0.62 0.30 0.41 0.63 0.57
l 1.83 1.71 1.74 1.89 1.80

if the average properties of the W-S model closely reproduce those of the cat
cortex, the internal structural organization is still very different. Besides, it is
very difficult to imagine how cortical networks might have evolved as anything
similar to a rewired regular lattice.

Wide range degree-distributions are typical of scale-free networks. Ob-
viously, speaking of SF distribution in a network as small as 53 vertices is
meaningless. However, the cumulative degree distribution of generated “SF
networks” with N = 53 and M = 826 (solid line in Fig. 3.17(a)) closely fol-
lows the real distribution of the cat cortex. It is true that the existence of
a SF distribution does not necessarily imply any mechanism of network con-
struction, but SF properties usually emerge out of self-organized systems and
the BA model presents an intuitive and likely evolutionary scenario. There is
yet another observation suggesting that mammalian cortex has a SF nature:
in [26], robustness of cortical networks is shown to behave like SF networks
under random or selective attack.

Apart from its modular structure, mammalian cortical networks are also
known to be hierarchically organized [6, 27]. Recently, various authors in
this book found, by means of correlations in dynamical simulations, that
functional connectivity of cat cortical network also follows a modular and

Fig. 3.17. Degree distribution of in-k of cat cortical network. (a) Cumulative degree
distribution of cat cortex (◦), generated W-S prew = 0.3 (−+ line) and scale-free γ =
3.5 (solid line) networks of same size and number of connections as the cat cortical
network. Notice that W-S networks produce poor approximations; (b) Histogram of
in-k
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hierarchical pattern very close to that of its structural organization [8, 28].
Internal connections between areas within the same community (visual, audi-
tory, somatosensory-motor and frontolimbic) are the first links being func-
tionally expressed, while later the connections between areas in different
communities are expressed. This separation unveils two hierarchical levels rep-
resenting specialized information processing and integration of multisensorial
information.

In the development of realistic models for the evolution of mammalian
cortex, the idea of balancing functional integration and segregation proposed
by Tononi and Sporns may be useful as a “macroscopic” driving force, yet
more natural and detailed mechanisms need to be found to cause the sys-
tem to self-organism into a modular and hierarchical structure. The broad
degree distribution, suggesting a SF-type system, comes to the rescue since
power laws are characteristic of self-organized systems. Although the model
by Ravasz et al. [23], which generates hierarchical networks with a scale-free
degree distribution by self-replication of structures, is an interesting start-
ing point, it seems unlikely as a model for cortical evolution. A recipe for
such an evolutionary model should at least reproduce the ingredients we have
presented in this last section.

3.8 Further Reading

Readers looking for a first introduction to networks (or better said, graph
theory) are encouraged to look for online resources. A web page called An
Interactive Introduction to Graph Theory by Chris K. Caldwell provides an
illustrative and educational introduction of basic concepts for the non-initiated
(http://www.utm.edu/cgi-bin/caldwell/tutor/departments/math/graph
/intro), while in his web page Algorithmic Graph Theory, Rashid Bin
Muhammad provides a more concise introduction to mathematical graph
theory: (http://www.personal.kent.edu/∼rmuhamma/GraphTheory/graph
Theory.htm)

Books on classical graph theory are usually difficult to read and far from
our current interests in complex networks, but are a necessary reference if se-
rious research on networks is to be done. Classical books treat the general case
of directed graphs (digraphs) poorly, with the exception of a recent book by
Jørgen Bang-Jensen and Gregory Gutin titled Digraphs: Theory, Algorithms
and Applications [29].

There are some books dedicated to the ‘new science’ of complex networks;
however, we would recommend reading through some of the excellent reviews
available. Newman [10] published the first major review dedicated to complex
networks, their topology and random graph models. It lacks many of the
current developments and challenges of complex networks research but it is
still a “must” to anyone starting in the field. Two recent reviews [30,31] come
to the rescue and after going through structural properties of networks, they
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jump into dynamical processes occurring in networks. They also provide an
overview of current fields where network theory has been applied, such as
epidemiology, neuroscience, economics, etc. and summarize the challenges to
be faced in each field.

Newman, Barabási and Watts recently published a compilation of selected
papers which have been central in the development of complex networks theory
[32].
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Summary. This review gives a general overview of the organization of complex
brain networks at the systems level, in particular in the cerebral cortex of the cat
brain. We identify fundamental parameters of the structural organization of corti-
cal networks, illustrate how these characteristics may arise during brain develop-
ment and how they give rise to robustness of the cortical networks against damage.
Moreover, we review potential implications of the structural organization of cortical
networks for brain function.

4.1 Introduction

The network organization of the mammalian brain underlies its diverse stable
and plastic functions. Experimental approaches from various directions have
suggested that the specific organization of nerve fibre networks, particularly
in the massively interconnected cerebral cortex of the brain, is closely linked
to their function. However, the exact relationship between cortical network
structure and brain function is still poorly understood, mainly due to the
complexity of the available experimental data on brain networks, both with
respect to their great volume and formidable intricacy. This complexity re-
quires theoretical analyses as well as computational modeling to characterize
the network organization and deduce functional implications of particular net-
work parameters. In this review, we specifically focus on the structural and
functional organization of brain networks, which are interconnecting neural
elements at the large-scale systems level of the brain, and we use the cortico-
cortical network of the cat as an example to illustrate different aspects of
organization and function.
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4.1.1 A Systems View of Brain Networks

The brain is a networked system of extraordinary complexity. Considering,
for instance, the cellular organization of the human brain, one is faced with
approximately 1010 single elements (e.g. [1], each of which on average is con-
nected to more than 1,000 other elements [2]). To complicate matters, these
elements are neither completely nor randomly connected, e.g. [3]. Fortunately,
there is some regularity in the brain that might help to reduce the number of
objects and interconnections that need to be considered. Neurons that possess
similar connectional and functional features tend to group into large assem-
blies of several thousands to millions of cells that are regionally localized
(forming cortical ‘areas’ or subcortical ‘nuclei’). A first attempt to under-
stand brain organization and function can, therefore, start with investigating
the structure, connectivity and function of these assemblies of cells, rather
than the complete cellular substance of the brain, e.g. [4]. It is this so-called
systems level approach that we pursue here.

This review focuses on corticocortical connectivity at the systems level,
specifically networks formed by long-range projections among cortical areas.
There are two main reasons that motivate this approach. First, more exten-
sive and reliable databases are currently available for systems level networks
than for cellular neuronal circuits. There have been pioneering studies about
the interconnections of different types of neurons at the level of cellular cir-
cuits, for instance, [3, 5–9]. However, detailed information about connectivity
at the cellular level, based on systematic sampling of different cortical regions,
is still largely missing. Second, systems connectivity data play an important
role in many models of the brain (e.g. [4, 10–14]). These data have been used
to derive conclusions about the global organization, development and evolu-
tion of the brain and to suggest modes of information processing. In particu-
lar, systems level connectivity may be responsible for important aspects of brain
function, such as the neural activation patterns observed in functional imaging
studies of perception and cognition (e.g. [15]), functional diversity and complex-
ity [16], as well as other functional aspects reviewed here.

The systems level concept can be readily formalized and treated with the
help of graph theoretical approaches, considering cortical areas as nodes and
their interconnections by long-ranging nerve fibres as edges of directed or
undirected graphs. In the theoretical systems level concept, areas and nuclei
of the brain are well-defined, intrinsically uniform entities with sharp bor-
ders. It needs to be kept in mind, however, that experimental data present a
more complicated picture. For instance, numerous, partly incongruent, map-
ping schemes exist for describing the parcellation of the cerebral cortex into
different areas [17].

4.1.2 Types of Brain Connectivity

Different aspects of brain connectivity can be distinguished using the follow-
ing, widely accepted classification [18]:
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• Anatomical or structural connectivity denotes the set of physical connec-
tions linking neural units (cells and populations) at a given time. Structural
connectivity data can range over multiple spatial scales, from area-intrinsic
circuits to large-scale networks of inter-regional pathways. Anatomical con-
nection patterns are relatively static over shorter time scales (seconds to
minutes), but can be dynamic over longer time scales (hours to weeks); for
example, during learning or development.

• Functional connectivity [19] captures patterns of statistical dependence be-
tween distributed neural units, which may be spatially remote, measuring
their correlation/covariance, spectral coherence or phase-locking. Func-
tional connectivity is time-dependent (typically using time series contain-
ing hundreds of milliseconds) and ‘model-free’, that is, it measures statis-
tical interdependence (mutual information) without explicit reference to
causal effects. Different methodologies for measuring brain activity may
result in different statistical estimates of functional connectivity [20].

• Effective connectivity describes the set of causal effects one neural unit
exerts over another [19]. Thus, unlike functional connectivity, effective
connectivity is not ‘model-free’, but requires the specification of a causal
model including structural connection parameters. Experimentally, effec-
tive connectivity can be inferred through network perturbations [21], or
through the observation of the temporal ordering of neural events. Other
measures estimating causal interactions can also be used (e.g. [22]). Effec-
tive connectivity is also time-dependent. Statistical interactions between
brain regions change rapidly, reflecting the participation of varying subsets
of brain regions and pathways in different cognitive tasks [23–26], behav-
ioral or attentional states [24], and changes within the structural substrate
related to learning [27].

Importantly, structural, functional and effective connectivity are mutually
interrelated. Clearly, structural connectivity is an essential condition for the
kinds of patterns of functional or effective connectivity that can be generated
in a network. Structural inputs and outputs of a given cortical region, its con-
nectional fingerprint [28], are major determinants of its functional properties.
Conversely, functional interactions can contribute to the shaping of the under-
lying anatomical substrate [29], either directly through activity (covariance)-
dependent synaptic modification, or, over longer time scales, through affecting
an organism’s perceptual, cognitive or behavioral capabilities, and thus its
adaptation and survival.

4.1.3 A Case Study of Structural Connectivity: Inter-area
Connections in the Cat Cerebral Cortex

The specific analyses described in this and other chapters in this volume are
based on a global collation of cat cortical connectivity (892 interconnections of
55 areas) [30]. This collation of cat cortical data was developed from the data
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set described in [14] and forms part of a larger database of thalamocortical
connectivity of the cat [31]. The database was created by the interpretation
of a large number of reports of tract-tracing experiments from the anatomical
literature. All tract-tracing experiments are based on the same general design.
The investigated brain region of an anaesthetized animal is injected with a
tracer substance (chemical or microrganismic), which is directly brought into
the cells or taken up by neurons close to the injection site. The tracer, which
is typically taken up at the axonal or dendritic branch endpoints, is then
transported along the neuron’s axon, retrogradely from the axonal terminals
to the soma, or anterogradely in the opposite direction, or in both directions.
After a method-dependent survival time, the animal is sacrificed and its brain
is sectioned, histochemically processed, and analyzed under a microscope to
show the distribution of transported tracer. Mathematically speaking, the ex-
perimental result of a tract-tracing experiment is a three-dimensional map of
tracer concentration, contained in two-dimensional sections, at the moment
of the animal’s death. From the systematic analyses of the label distribution
in the sections, in combination with a given parcellation of the cortical sheet
into distinct areas, conclusions can be drawn about the specific interconnec-
tions of different areas by neural fiber projections. The invasive nature of
these experiments explains why they cannot be applied to the human brain.
As alternative non-invasive approaches with similar resolution and reliability
are still missing, our knowledge about structural brain connectivity is largely
restricted to non-human brains [32].

While the distribution of retrograde labelling may be quantified by sys-
tematic counts of labelled cells of projection origin (providing a numerical
measure of the number of axons in a particular projection), the strength of
anterograde label at a given location can often only be determined as an or-
dinal measure (e.g. ‘sparse’, ‘moderate’, ‘dense’). The quantification of the
number of projection origins in retrograde experiments is laborious as well;
for this reason, the strength of fiber pathways is frequently only reported
in ordinal terms (as for the specific cat data shown in Fig. 9.2 of Chap. 9:
ones represent sparse, twos moderate and threes dense projections). It should
be noted that the absent entries in a connectivity matrix can stand for con-
nections that were investigated and were found to be absent, or potential
projections that were not investigated in the first place. The potential im-
pact of future additions to connectivity compilations needs to be carefully
considered. However, previous simulations of connectivity matrices in which
all entries with unknown information were assumed to exist did not result in
principally different findings [33, 34].

In the remainder of this review, we discuss the organization of structural
brain connectivity and its implication for the functions of the cerebral cor-
tex, using as a particular example the complex network of interconnections
between regions of the cerebral cortex of the cat. First, we explore the spatial
layout of cortical networks in Sect. 4.2, and then their topological organization
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in Sect. 4.3, before presenting aspects of functional implications in Sect. 4.4.
We conclude by summarizing the main conclusions and formulating open prob-
lems for future research.

4.2 Spatial Organization

The organization of neural systems is shaped by multiple constraints, rang-
ing from limits placed by physical and chemical laws to diverse functional
requirements. In particular, it is of interest to identify factors influencing the
spatial layout of neural connectivity networks. Although spatial coordinates of
cortical areas in the cat are not readily available at the moment, it may be ex-
pected that the spatial organization of the cat cortex is close to that in other
mammals. In particular, we have analyzed detailed information about the
spatial organization of the cerebral cortex in primates, such as the macaque
monkey [35, 36].

One prominent guiding idea is that the establishment and maintenance of
neural connections carries a significant metabolic cost that should be reduced
wherever possible [37]. As a consequence, wiring length should be globally min-
imized in neural systems. A trend toward wiring minimization is apparent in
the distributions of projection lengths for various neural systems, which show
that most neuronal projections are short [2, 35, 36]. However, wiring length
distributions also indicate a significant number of longer-distance projections,
which are not formed between immediate neighbors in the network.

Alternatively, it has been suggested that wiring length reductions in neural
systems are achieved not by minimal rewiring of projections within the net-
works, but by suitable spatial arrangement of the components. Under these
circumstances, the connectivity patterns of neurons or regions remain un-
changed, maintaining their structural and functional connectivity, but the
layout of components is perfected such that it leads to the most economical
wiring. In the sense of this ‘component placement optimization’ (CPO) [37],
any rearrangement of the position of neural components, while keeping their
connections unchanged, would lead to an increase of total wiring length in the
network.

Using extensive connectivity datasets for systems and cellular neural net-
works combined with spatial coordinates for the network nodes, we found that
optimized component rearrangements could substantially reduce total wiring
length in all tested neural networks [36]. Specifically, total wiring length be-
tween 95 primate (macaque) cortical areas could be decreased by 32%, and
wiring of neuronal networks in the nematode Caenorhabditis elegans could be
shortened by 48% on the global level, and by 49% for neurons within frontal
ganglia. The wiring length distribution before and after optimization as well
as the reduction for the macaque cortical connectivity are shown in Fig. 4.1.
Wiring length reductions were possible due to the existence of long-distance
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Fig. 4.1. Projection length distribution and total wiring length for original and
optimally rearranged neural networks: (a) Approximated projection length distri-
bution in the macaque monkey cortical connectivity network with 95 areas and
2,402 projections; (b) Reduction in total wiring length in rearranged layouts yielded
by simulated annealing; (c) Approximated projection length distribution in neu-
ral networks with optimized component placement. The number of long distance
connections is substantially reduced compared to the original length distribution
in (a)
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projections in the neural networks. Thus, biological neural networks feature
shorter average pathlengths than networks lacking long-distance connections.
Moreover, the average shortest pathlengths of neural networks, corresponding
to the average number of processing steps along the shortest signalling paths,
were close to pathlengths in networks optimized for minimal paths.

Minimizing average pathlength — that is, reducing the number of interme-
diate transmission steps in neural integration pathways — has several func-
tional advantages. First, the number of intermediate nodes that may introduce
interfering signals and noise is limited. Second, by reducing transmission de-
lays from intermediate connections, the speed of signal processing and, ul-
timately, behavioral decisions is increased. Third, long-distance connections
enable neighboring as well as distant regions to receive activation nearly si-
multaneously [35, 38] and thus facilitate synchronous information processing
in the system (compare [39]). Fourth, the structural and functional robustness
of neural systems increases when processing pathways (chains of nodes) are
shorter. Each further node introduces an additional probability that the signal
is not transmitted, which may be substantial (e.g. failure rates for transmitter
release in individual synapses are between 50% and 90% [40]). Even when the
signal survives, longer chains of transmission may lead to an increased loss of
information. A similar conclusion, on computational grounds, was first drawn
by John von Neumann [41] when he compared the organization of computers
and brains. He argued that, due to the low precision of individual processing
steps in the brain, the number of steps leading to the result of a calculation
(‘logical depth’) should be reduced, and highly parallel computing would be
necessary.

4.3 Topologic Organization

Various approaches can be used to investigate the topology of cortical net-
works, at the local node-based level (e.g. Koetter & Stephan, [42]), for small
circuits of connected nodes (also called network motifs), or at the global level
of the network. Several of these approaches are summarized in [43, 44] and
are also reviewed elsewhere in this volume (Chap. 3). Moreover, generic ap-
proaches for the investigation of complex networks may also be applied to
brain connectivity [45]. Methodologically, analyses have used either techniques
from graph theory, or multivariate methods using clustering or scaling tech-
niques to extract statistical structure.

All studies of cortical structural connectivity have confirmed that cerebral
cortical areas in mammalian brains are neither completely connected with each
other nor randomly linked; instead, their interconnections show a specific and
characteristic organization. Various global connectivity features of cortical
networks have been described and characterized with the help of multivariate
analysis techniques, such as multidimensional scaling or hierarchical cluster
analysis [43]. For example, clusters or streams of visual cortical areas have
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Fig. 4.2. Clustered organization of cat cortical connectivity: (a) Cluster count plot,
indicating the relative frequency with which any two areas appeared in the same clus-
ter, computed by stochastic optimization of a network clustering cost function [30].
Functional labels were assigned to the clusters based on the predominant functional
specialization of areas within them, as indicated by the physiologic literature; (b)
Cat cortical areas are arranged on a circle in such a way that areas with similar
incoming and outgoing connections are spatially close. The ordering by structural
similarity is related to the functional classification of the nodes, which was assigned
as in (a)
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been identified that are known to be segregated functionally [46] as well as in
terms of their inputs, outputs and mutual interconnections [12]. Topological
sequences of areas can be distinguished that might provide the layout for
signaling pathways across cortical networks [47]. Alternatively, hierarchies of
cortical areas can be constructed, based on the laminar origin and termination
patterns of interconnections [48, 49].

Significantly, all large-scale cortical connection patterns examined to
date, including global connectivity in cat and monkey brains as well as
their subdivisions, exhibit small-world attributes with short pathlengths and
high clustering coefficients [16, 30, 44]. These properties are also found in
intermediate-scale connection patterns generated by probabilistic connection
rules, taking into account metric distance between neuronal units [50]. The
findings suggest that high clustering and short pathlengths can be found across
multiple spatial scales of cortical organization.

To identify the clusters that are indicated by the high clustering coeffi-
cients of cortical networks, a computational approach based on evolutionary
optimization can be used [30]. This stochastic optimization method delin-
eated a small number of distinctive clusters in global cortical networks of cat
and macaque [51] (Fig. 4.2). These clusters contained areas which were more
frequently linked with each other than with areas in the remainder of the
network, and the clusters followed functional subdivisions (e.g., containing
predominantly visual or somatosensory-motor areas), as discussed in Sect. 4.6
below. The algorithm could also be tuned to identify clusters that no longer
contained any known absent connections, and thus produced maximally dense
clusters of areas, interpretable as network ‘building blocks’.

A clustered organization of cortical networks was also indicated by appli-
cation of the matching index, demonstrating distinct groups of cortical areas
with similar input and output [43]. The matching index captures the pairwise
similarity of areas in terms of their specific afferents and efferents from other
parts of the network [43,44] (as well as in Chap. 3), following one of the central
assumptions of systems neuroscience that the functional roles of brain regions
are specified by their inputs and outputs. In agreement with this concept,
one finds that pairs of areas with high matching index also share functional
properties [43].

The ubiquitous feature of a segregation of cortical networks into multiple,
interconnected network clusters (or ‘communities’ in network analysis par-
lance) is explored from various perspectives in the following sections.

4.4 Network Development

Thepreviouslyreviewedspatialandtopologicanalysesdemonstratethatcortical
networks arepredominantly, butnot exclusively, connectedby shortprojections,
and that cortical connections link areas into densely connected clusters. How
does such an organization arise during the development of the brain?
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It is known that neural systems on several scales show distance dependence
for the establishment of projections. In systems ranging from connectivity be-
tween individual neurons in Caenorhabditis elegans [36] and rat visual cor-
tex [52] to connectivity between mouse [2, 53], macaque [35] (see Fig. 4.1(a))
or human [54] cortical areas, there is a higher tendency to establish short-
distance than long-distance connections. This feature can be incorporated
into models of cortical connection development.

4.4.1 Models for Network Development

Whereas various models exist for network development or evolution, only
few of them consider spatial constraints. The standard model for generating
scale-free networks, for example, uses growth and preferential attachment [55].
Starting with m0 initial nodes, a new node establishes a connection with an
existing node i with the probability

Pi =
ki∑
k
,

that is, the number of edges of node i (ki) divided by the total number of
edges already established in the network. The resulting network consists of
one cluster, and the degree distribution shows a power law. This model may
result in degree distributions comparable with real biological networks but
lacks multiple clusters or modules.

In order to generate scale-free networks with a modular organization, a
hierarchical model for network development was designed [56, 57]. Starting
with one root node, during each step two units are added that are identical
to the network generated in the previous iteration. Then the bottom nodes of
these two units are linked with the root of the network. While this algorithm
resulted in a modular organization, it did not support a large variety of module
sizes within the same network, as seen in real-world networks.

Waxman [58] proposed a connection establishment algorithm for the In-
ternet in which the probability of a connection between two nodes decays
exponentially with the spatial distance between them. In this way, the high
costs for the wiring and maintenance of long-range connections can be repre-
sented. Initially, the nodes are distributed at random. Thereafter, edges are
attached to the graph. The probability that an edge is established between
two nodes decays exponentially with the distance between them. In contrast
to the previous models, the location of the nodes is determined from the
start, therefore, there was no growth in terms of the size of the network or
the number of nodes.

A decay with distance, however, is also likely for growing and expanding bi-
ological systems, as the concentration of a chemical substance such as a growth
factor decays with the distance from the place of production or emission [59].
We therefore explored different mechanisms for spatial and topological net-
work development through computational modeling, considering (i) a simple
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dependence of projection formation on spatial distance and enclosing spatial
borders, and (ii) dependence on distance as well as on developmental time win-
dows. We also compared the algorithms with previously suggested topological
mechanisms for network development.

4.4.2 Growth Depending on Spatial Distance

We simulated mechanisms of spatial growth, in such a way that connections
between nearby nodes (i.e. areas) in the cortical network were more probable
than projections to spatially distant nodes [58]. Such a distribution could, for
instance, result from the concentration of unspecific factors for axon guidance
decaying exponentially with the distance to the source [59].

At each step of the algorithm, a new area was added to the network un-
til reaching the target number of nodes (55 areas for simulated cat cortical
networks). New areas were generated at randomly chosen positions of the em-
bedding space. The probability for establishing a connection between a new
area u and existing areas v was set as

P (u, v) = β e−α d(u,v) , (4.1)

with d(u, v) being the distance between the nodes and α and β being scaling
coefficients. Areas that did not establish connections were disregarded. A more
detailed presentation of the network growth model is given elsewhere [60,61].

We generated 50 networks of the size of the cat cortical network, through
limited spatial growth in a fixed modeling space, and using parameters α = 5
and β = 2.5. The spatial limits imposed during the simulations might rep-
resent internal restrictions of growth (e.g. by apoptosis [62]) as well as ex-
ternal factors (e.g. skull borders). The simulated networks yielded clustering
coefficients and averaged shortest pathlength (ASP; see Chap. 3), shown in
Table 4.1, similar to the cortical network. Moreover, the degree distribution
of cortical and simulated limited growth networks showed a significant corre-
lation (Spearman’s rank correlation ρ = 0.77, P < 3× 10−3).

Note that a small-world topology with similar ASP and clustering coeffi-
cient as in the biological networks could only be generated for limited spatial
growth where the growing network quickly reached the borders of the em-
bedding space. For unlimited growth, the ASP was much larger whereas the
clustering coefficient was much lower than for the original cortical network.

Table 4.1. Comparison of cat cortical and simulated networks. Shown are the
clustering coefficient Cbrain and ASPbrain of the cat network as well as the average
clustering coefficient and ASP of 50 generated limited and unlimited spatial growth
networks with respective standard deviations

Cbrain Climited Cunlimited ASPbrain ASPlimited ASPunlimited

cat 0.55 0.50 ± 0.02 0.29 ± 0.05 1.8 1.70 ± 0.04 3.86 ± 0.47
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This is in accordance with experimental findings in which the lack of growth
limits given by prohibiting apoptosis [62] resulted in a different layer archi-
tecture and network topology.

The presented spatial growth model proceeds independently of network ac-
tivity. Such an approach is supported by experimental studies that show that
activity is not necessary for the establishment of global connectivity. For ex-
ample, after blocking neurotransmitter release and thus activity propagation
during development, the global connectivity pattern of the brain remained
unchanged [63].

We also investigated an alternative growth model, using a developmen-
tal mechanism of growth and preferential attachment, in which new nodes
were more likely to establish links to existing nodes that already had many
connections [55]. This model was also able to yield density and clustering co-
efficients similar to those in cortical networks. However, it failed to generate
multiple clusters seen in the biological systems, as only one main cluster could
be generated by this approach.

4.4.3 Growth Depending on Distance and Developmental
Time Windows

Whereas the spatial growth model described above could replicate the small-
world topology of the cat cortical network, there was no guarantee that mul-
tiple network clusters, as found in the cortical connectivity of the mammalian
brain, would arise. Moreover, in cases where multiple clusters did occur, their
size could not be controlled by the model parameters.

In order to explore the essential multiple-cluster feature of cortical con-
nectivity, we modified the previous model and included one additional factor
of cortical development, the formation of cortical areas and their interconnec-
tions during specific, overlapping time windows. Time windows arise during
cortical development [64,65], as the formation of many cortical areas overlaps
in time but ends at different time points, with highly differentiated sensory
areas (for example, Brodmann area 17) finishing last. Based on this experi-
mental finding, we explored a modified wiring rule in which network nodes
were more likely to connect if they were (i) spatially close and (ii) developed
during the same time window.

The following algorithm was used for network growth depending on dis-
tance combined with time windows (cf. Fig. 4.3(a)). First, three seed nodes
were placed at spatially distant locations (cf. Fig. 4.3(b)). New nodes were
placed randomly in space. The time window of a newly forming node was
the same as that of the nearest seed node, as it was assumed to origi-
nate from, or co-develop with, that node. Second, the new node u estab-
lished a connection with an existing node v with probability P (u, v) =
Ptemp(u) × Ptemp(v) × Pdist(u, v). The dependence Pdist decayed exponen-
tially with the distance between the two nodes (cf. [60]). Third, if the newly
formed node failed to establish connections, it was removed from the network.
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Fig. 4.3. Time windows and initial seed nodes: (a) Temporal dependence Ptemp of
projection establishment depending on node domain. Relative time was normalized
such that ‘0’ stands for the beginning of development and ‘1’ for the end of network
growth. The three seed nodes had different time windows, which were partially over-
lapping; (b) Two-dimensional projection of the 73 three-dimensional node positions.
The gray level coding represents the time window corresponding to one of the three
seed nodes (+)

Although the following results show networks with 73 nodes, comparable to
the primate networks, networks similar to the cat cortical network also could be
generated (not shown). The timed adjacency matrix shows the development of
connections over time (Fig. 4.4(a)). Different gray levels represent the respective
timewindows of the nodes.The reorderedmatrix represents the original network

t

t(a) (b)

Fig. 4.4. (a) Timed adjacency matrix (the first nodes are in the left lower corner);
(b) Clustered adjacency matrix. The matrix is the same as in (a), but nodes with
similar connections are arranged adjacent in the node ordering
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withdifferent node order, in such away that nodeswith similar connectivitywere
placed nearby in the adjacency matrix(Fig. 4.4(b)).

Therefore, the inclusion of developmental time windows into the spatial
growth algorithm generated multiple network clusters, with their number be-
ing identical to the number of different time windows that governed devel-
opment. In addition to the number of clusters, the size of clusters could be
varied by changing the width of the corresponding time window.

These results demonstrate that simple mechanisms of spatial growth, in
combination with constraints by spatial borders or developmental time win-
dows, can account for many of the structural features of corticocortical con-
nectivity, in particular the formation of multiple network clusters.

4.5 Network Robustness

The brain can be remarkably robust against physical damage. Significant loss
of neural tissue may be compensated in a relatively short time by large-scale
adaptation of the remaining brain parts (e.g. [66–68]. For example, there has
been a case in which almost an entire hemisphere was removed from an 11
year-old boy who had medically intractable seizures. After three years of re-
habilitation training in the hospital, however, the patient was left with few
remaining functional deficits [69]. Similarly, on a more local scale for damage
within specific brain regions, Parkinson’s disease only becomes apparent af-
ter half of the pigmented cells in the affected substantia nigra are lost [70].
In other cases, however, the removal of small amounts of tissue (e.g. in re-
gions specialized for language functions) can lead to severe functional deficits.
These findings provide a somewhat contradictory picture of the robustness of
the brain and highlight several questions. Can we formally evaluate robustness
given the variability in the effects of brain lesions? Are severity and nature of
the effects of localized damage predictable? And finally, how can robustness
against the loss of large amounts of tissue be explained?

In the following sections, we explore network robustness through the ef-
fects of lesions of structural network components. Lesions can affect nodes
or edges, and can be applied either randomly or in a targeted way, in which
case specific components are eliminated by target criteria which assess the
perceived importance of the components.

4.5.1 Impact of Node Lesions

Following Barabási and Albert [71], we assessed the impact of lesions on net-
work connectivity and integrity by measuring the average shortest path (ASP)
or characteristic pathlength. As described in Chap. 3, the ASP between any
two nodes in the network is the number of sequential connections that are
required, on average, to link one node to another by the shortest possible
route [72]. In case a network becomes disconnected in the process of removing
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edges or nodes, and no path exists between two particular nodes, this pair of
nodes is ignored. If no connected nodes remain, the average shortest path is
set to zero.

In two separate approaches for sequential node removal, we removed nodes
either randomly or by targeted elimination. During random removal, nodes
were selected randomly, with a uniform probability distribution, and deleted
from the graph. In the case of targeted removal, the nodes with the highest
node degree were subsequently eliminated. After each deletion, the ASP of
the resulting graph was calculated, and the removal of nodes was continued
until all nodes were removed from the network.

To provide benchmarks for comparisons, random, small-world and scale-
free networks of the same size as the cat network were created and lesioned
in an analogous way. We used rewiring to generate small-world networks [73]
and a modified version of growth and preferential attachment for scale-free
networks [55]. Fifty benchmark networks were created for each of the condi-
tions. Moreover, the process of random removal of nodes in the cat cortical
networks was repeated fifty times.

For the cat brain network (Fig. 4.5), the random and small-world bench-
mark networks show a different behavior for targeted node removal when
compared to the cortical network. The cat network’s response to targeted
node removal is largely within the 95% confidence interval for the scale-free
benchmark networks; however, the peak ASP value and the fraction of deleted
nodes where the peak occurs are comparatively lower for the cat cortical net-
work. Thus, in terms of random and targeted node lesion behavior, the cortical
networks most closely resemble scale-free networks.

The decline in ASP at a later stage during the elimination process, as ob-
served for the brain and scale-free networks, deserves special attention. It can
be for two reasons. First, it could be that the network becomes fragmented
into different disconnected components. Each of these is smaller, and likely
to have a shorter ASP. Second, the overall decrease in network size with suc-
cessive eliminations can lead to a decrease in shortest path. This is, however,
likely to be a slow process, as it will usually be offset by an increase in ASP
due to the targeted nature of the elimination.

In conclusion, this shows that structural properties of cortical networks
are quite robust towards the random elimination of nodes from the network.
In contrast, the targeted removal of nodes, by removing the most highly-
connected nodes first, leads to a rapid fragmentation of the network. There-
fore, cortical networks are similar to scale free networks in their response to
the random or targeted removal of nodes. Indeed, as for scale-free networks,
brain networks contain nodes which are almost connected to all other nodes of
the system. Examples of such ‘hubs’ for the cat would be amygdala and hip-
pocampus in the subcortical domain and anterior ectosylvian sulcus (AES),
agranular insula (Ia), and area 7 for cortical regions.
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Fig. 4.5. Sequential node elimination in cat cortical and benchmark networks. The
fraction of deleted nodes (zero for the intact network) is plotted against the average
shortest path (ASP) after node removals. Nodes were removed randomly, or start-
ing with the most highly connected nodes (targeted elimination): (a) Cat cortical
network during targeted (dashed) and random (solid line) elimination. In the sub-
sequent plots (b), (c) and (d), the dashed line shows the average effect of targeted
elimination and the thin dashed lines the 95% confidence interval for the gener-
ated same-size benchmark networks. The solid line represents the average effect of
random elimination; (b) Small-world benchmark network; (c) Scale-free benchmark
network; (d) Random benchmark network

4.5.2 Impact of Edge Lesions

In many networks, the failure of single connections may be more likely than
the extinction of entire nodes. We tested several measures for identifying vul-
nerable edges and compared their prediction performance for the cat cortical
network. Among the tested measures, edge frequency in all shortest paths
of a network yielded a particularly high correlation with vulnerability, and
identified inter-cluster connections in biological networks [35].

Measures for Predicting Edge Vulnerability

We tested four candidate measures for predicting vulnerable edges in net-
works. First, the product of the degrees (PD) of adjacent nodes was calculated
for each edge. A high PD indicates connections between two hubs which may
represent potentially important network links. Second, the absolute difference
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in the adjacent node degrees (DD) of all edges was inspected. A large degree
difference signifies connections between hubs and more sparsely connected
network regions which may be important for linking central with peripheral
regions of a network. Third, the matching index (MI) [43] was calculated as
the number of matching incoming and outgoing connections of the two nodes
adjacent to an edge, divided by the total number of the nodes’ connections
(excluding direct connections between the nodes [44]). A low MI identifies
connections between very dissimilar network nodes which might represent im-
portant ‘short cuts’ between remote components of the network. Finally, edge
frequency (EF), a measure similar to ‘edge betweenness’ [74, 75], indicates
how many times a particular edge appears in all pairs shortest paths of the
network. This measure focuses on connections that may have an impact on
the characteristic path length by their presence in many individual shortest
paths [35].

Prediction Performance

In the present calculation, both increase and decrease of ASP indicate an
impairment of the network structure. Therefore, we took the deviation from
the ASP of the intact network as a measure for structural impairments. We
evaluated the correlation between the size of the prediction measures and the
damage (shown in Table 4.2). While most of the local measures exhibited good
correlation with ASP impact in real-world networks, the highest correlation
was consistently reached by the EF measure. Also, the measures of matching
index and difference of degrees show a high correlation.

After identifying a measure to predict which edges were most vulnerable,
we looked at where in the network these edges resided. We generated 20 test
networks; each consisting of three randomly wired clusters and six fixed inter-
cluster connections (Fig. 4.6(a)). The inter-cluster connections (light gray)
occurred in many shortest paths (Fig. 4.6(b)) leading to an assignment of the
highest EF value, as no alternative paths of the same length were available.
Furthermore, their elimination resulted in the greatest network damage as
shown by increased ASP.

Table 4.2. Density, clustering coefficient CC, average shortest path ASP and cor-
relation coefficients r for different vulnerability predictors of the analyzed networks
(the index refers to the number of nodes). Tested prediction measures were the prod-
uct of degrees (PD), absolute difference of degrees (DD), matching index (MI), and
edge frequency (EF)

Density CC ASP | rPD rDD rMI rEF

Cat55 0.30 0.55 1.8 | 0.08∗ 0.48∗∗ –0.34∗∗ 0.77∗∗

∗ Significant Pearson Correlation, 2-tailed 0.05 level.
∗∗ Significant Pearson Correlation, 2-tailed 0.01 level.
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Fig. 4.6. Edges with high edge frequency form essential inter-cluster connections:
(a) Connectivity of test networks with three clusters and six pre-defined inter-cluster
connections. The network has comparable density as primate brain connectivity. The
gray-level shading of a connection in the adjacency matrix indicates the relative
frequency of an edge in 20 generated networks. White entries stand for edges absent
in all networks; (b) Edge frequencies in the all-pairs shortest paths against ASP
after elimination of edges. Light gray data points represent the values for the inter-
cluster connections in all 20 test networks. Inter-cluster connections not only have
the largest edge frequency, but also cause most damage after elimination

4.5.3 Conclusions of Network Lesion Studies

Cortical systems are known to consist of several distinct, linked clusters with a
higher frequency of connection within than between the clusters (e.g. Fig. 4.2).
Inter-cluster connections have also been considered important in the context of
social contact networks, as ‘weak ties’ between individuals [76] and separators
of communities [74]. We, therefore, speculated that connections between clus-
ters might be generally important for predicting vulnerability. Whereas many
alternative pathways exist for edges within clusters, alternative pathways for
edges between clusters can be considerably longer. Interestingly, previously
suggested growth mechanisms for scale-free networks, such as preferential
attachment [55], or strategies for generating hierarchical networks [56] did
not produce distributed, interlinked clusters. Consequently, the low predic-
tive value of EF in the scale-free benchmark networks was attributable to
the fact that scale-free networks grown by preferential attachment consisted
of one central cluster, but did not possess a multi-cluster organization. This
suggests that alternative developmental models may be required to reproduce
the specific organization of biological networks (see Sect. 4.4 above).

An analysis of the similarity between the cat network and random, rewired,
small-world, and scale-free benchmark networks shows that cat cortical con-
nectivity is most similar to scale-free networks in several respects. Most im-
portantly, cortical as well as scale-free networks show a huge disparity between
random elimination of nodes or edges and targeted elimination in which the
most vulnerable parts of the network are removed. Similarly, an analysis of



4 Organization and Function of Complex Cortical Networks 125

edge vulnerability has shown that the targeted removal of connections between
clusters has a large effect compared to the removal of connections within a
cluster.

Is the brain optimized for robustness against random removal of nodes or
edges? Although this question is highly debatable, there are several arguments
why the robust architecture could be explained as a side effect of other func-
tional constraints. For example, the formation of functional clusters is nec-
essary to exclude signals with different modality and highly-connected areas
could function as integrators of (multi-modal) information or spreaders of
information to multiple clusters or many nodes within one cluster. There-
fore, in the future it will be interesting to compare the function of areas
with their number of projections and the function of their directly connected
neighbors.

The effect of the structural network organization on the functional impact
after lesions is also important for neurological lesion analysis [68]. The de-
gree of connectedness of neural structures can affect the functional impact of
local and remote network lesions, and this property might also be an impor-
tant factor for inferring the function of individual regions from lesion-induced
performance changes [21].

4.6 Functional Implications

Several experimental studies have demonstrated a close link between the or-
ganization of structural brain connectivity and functional connectivity. The
analysis of neuronographic connection data for the monkey and cat cortex,
for example, has revealed dense interconnections among visual, auditory and
particularly somatosensory-motor areas, arranged in similar network clusters
as those formed by structural connectivity [77]. Neuronographic data are pro-
duced by the disinhibition of local populations of cortical neurons through the
application of strychnine, and by recording the resulting steady-state activa-
tion of remote areas. Thus, this kind of approach reveals eleptiform functional
connectivity , which also can be described by a simple propagation model [78].

Similar findings were obtained for another type of functional connectiv-
ity independent from particular tasks or stimuli, the slow-frequency coupling
among cortical areas in human fMRI resting state data [79]. These resting-
state networks are very similar to the structural connectivity from the cat
or monkey, in that most interactions proceed only across short distances and
run in local clusters, which follow regional and functional subdivisions of the
brain [80]. However, some functional interactions also exist across longer dis-
tances, particularly those between homotopic regions in the two hemispheres.
However, the actual neural or metabolic mechanisms underlying resting-state
coupling are still poorly understood. Thus, this type of connectivity currently
needs to be interpreted with caution.
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In the next subsections, we review particular functional implications of the
clustered organization of cortical networks, based on various computational
approaches.

4.6.1 Functional Motif Diversity

The approach of motif analysis [81] can be adapted to draw conclusions on
functional diversity in cortical networks, based on an analysis of structural
connectivity. This approach starts from a simple premise: areas need to be
connected in order to interact, and the kind and number of different local
circuits that can be formed within a given structural network may reflect the
diversity of functions performed by this network. This idea was applied to a
motif analysis of corticocortical connectivity, by distinguishing between struc-
tural and functional motifs. Structural motifs were defined in the conventional
sense, as the set of different connection patterns involving n = 2, 3, 4 . . . nodes
found in the given network, while functional motifs represented all possible
subsets of identified structural motifs. By comparison with benchmark net-
works and through network evolution, Sporns and Koetter [82] found that, in
cortical networks, the number of structural motifs is small, while the number
of functional motifs is large, suggesting that cortical networks are organized as
to achieve high functional diversity with a small number of different structural
elements. However, this finding may be partly due to the global organization
of the cortical networks. Since the studied networks are organized into densely
connected clusters, the motif analysis resulted in a small number of structural
motifs which are also completely, or almost completely, connected. Naturally,
these structural motifs allow a large number of different functional submo-
tives. Moreover, motifs are difficult to interpret in terms of building blocks
of development or function. For example, current knowledge about the devel-
opment or evolution of cortical networks makes it appear unlikely that brain
networks develop by adding circuits of three or four areas. Moreover, the func-
tional interactions within such ensembles may be too complex to represent a
truly basic unit of cortical functioning.

4.6.2 Functional Complexity

Central aspects of cortical functioning are provided by the structural and func-
tional specialization of cortical regions on the one hand, and their integration
in distributed networks, on the other. This relationship has been formalized
as an expression of functional complexity, with complexity being defined as

C(X) = H(X)−
∑

i

H(xi|X − xi), (4.2)

where H(X) is the entropy of the system and the second term on the right-
hand side of the equation denotes the conditional entropy of each element,
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given the entropy of the rest of the system [16]. Thus, this measure describes
the balance between the functional independence of a system’s elements and
their functional integration.

The complexity of cortical networks, as defined in (4.2), was explored
through a simple functional model of the network, created by injecting the
areas with white noise and investigating their functional coupling. Random
rewiring of the actual cortical networks reduced their functional complexity,
while graph evolution and selection for maximum complexity tended to pro-
duce small-world networks with a similar organization of multiple intercon-
nected clusters as seen in the actual networks. Thus, the clustered organization
of the networks appears to be well suited to support functional complexity, by
facilitating high integration within clusters, yet high independence between
clusters.

4.6.3 Critical Range of Functional Activations

In complex neural networks stable activation patterns within a critical func-
tional range are required to allow function to be represented (cf. Chap. 7).
In this critical range, the activity of neural populations in the network per-
sists, falling between the extremes of quickly dying out or activating the whole
network. We used a basic percolation model to investigate how functional ac-
tivation spreads through a cortical network which has a clustered organization
across several levels of organization. Specifically, cortical networks not only
form clusters at the level of connected areas, but neural populations within
areas are also more strongly connected with each other than they are with
neurons in other cortical areas. Similar clustering can be observed at the even
finer levels of hypercolumns and columns [83] (see Chap. 8). Our simulations
demonstrated that hierarchical cluster networks were more easily activated
than random networks, and that persistent and scalable activation patterns
could be produced in hierarchically clustered networks, but not in random
networks of the same size. This was due to the higher density of connections
within the clusters facilitating local activation, in combination with the sparser
connectivity between clusters which hindered the spreading of activity to the
whole network. The critical range in the hierarchical networks was also larger
than that in simple, same-sized small-world networks (Fig. 4.7). A detailed
description of these results will be published elsewhere. The findings indicate
that a hierarchical cluster architecture may provide the structural basis for
the stable functional patterns observed in cortical networks.

While the reviewed results give ground for optimism that the structural
organization of cortical networks provides the basis for their diverse, complex
and stable functions, the actual mechanisms linking structural and functional
connectivity are still speculative. Further computational modeling may be
helpful in exploring some of the potential mechanisms, in particular by tak-
ing into account different types of organization at the level of area-intrinsic
connectivity.
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Fig. 4.7. Functional criticality in small-world and hierarchical cluster networks:
Schematic views of (a) a small-world network and; (b) a hierarchical multiple-cluster
network; (c) Critical range (gray) of persistent activity for small-world and; (d)
hierarchical networks. In the critical parameter range, activity neither dies out nor
spreads through the whole network

4.7 Conclusions and Open Questions

A number of preliminary conclusions can be drawn from the findings presented
here. First, cerebral cortical fibre networks balance short overall wiring with
short processing paths. This combination of desirable spatial and topologic
network features results in high functional efficiency, providing a reduction
of conduction delays along fibre tracts in combination with a reduction of
transmission delays at node relays. Second, a central aspect of the topologi-
cal organization of cortical networks is their segregation into distributed and
interconnected multiple clusters of areas. Such a modular organization can
also be observed at smaller levels of the cortical architecture, for instance,
in densely intraconnected cortical columns. Experimental physiologic studies
have demonstrated that the area clusters correspond to functional subdivi-
sions of the cerebral cortex, suggesting a close relationship between global
connectivity and function. Third, biologically plausible growth mechanisms
for spatial network development can be implemented in simple computational
models. Networks resulting from the simulations show the observed distance
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distribution of cortical connectivity as well its multi-cluster network organi-
zation. Fourth, the clustered organization of cortical connectivity may also be
the reason for the robustness of cortical networks against damage, in particu-
lar for randomly inflicted impairments. In their response to damage and attack
on nodes, cortical networks show behavior similar to scale-free networks. Due
to this feature, they are robust to random lesions of nodes, but react critically
to the removal of highly-connected nodes. Finally, the outlined structural or-
ganization of cortical networks has various functional implications: networks
of hierarchically organized, inter-linked clusters provide the circuitry for di-
verse functional interactions and may lead to increased functional complexity
as well as a wider critical range of activation behavior.

Nonetheless, many open questions remain. For example, what determines
the specific layout of long-range cortical projections, given that their layout is
not completely specified by spatial proximity? Is the organization of cortical
networks into clusters already determined during ontogenetic development,
or are they formed later on by activity-dependent rewiring of the networks?
How are long-range connections integrated with the intrinsic micro-circuitry of
cortical areas? What determines how widely brain functions are distributed
in cortical networks? More broadly, what is the exact relationship between
structural and functional connectivity at the systems level? Can general rules
be formulated that describe the functional interactions of areas based on their
structural connectivity? Progress in answering these questions will depend on
a close and fruitful interaction between quantitative anatomical and phys-
iological brain research and new approaches in data analysis and network
modeling.
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Summary. Previous chapters have discussed tools from graph theory and their con-
tribution to our understanding of the structural organization of mammalian brains
and its functional implications. The brain functions are mediated by complicated
dynamical processes which arise from the underlying complex neural networks, and
synchronization has been proposed as an important mechanism for neural informa-
tion processing. In this chapter, we discuss synchronization dynamics on complex
networks. We first present a general theory and tools to characterize the relation-
ship of some structural measures of networks to their synchronizability (the ability
of the networks to achieve complete synchronization) and to the organization of
effective synchronization patterns on the networks. Then, we study synchronization
in a realistic network of cat cortical connectivity by modeling the nodes (which are
cortical areas composed of large ensembles of neurons) by a neural mass model or
a subnetwork of interacting neurons. We show that if the dynamics is characterized
by well-defined oscillations (neural mass model and subnetworks with strong cou-
plings), the synchronization patterns can be understood by the general principles
discussed in the first part of the chapter. With weak couplings, the model with sub-
networks displays biologically plausible dynamics and the synchronization pattern
reveals a hierarchically clustered organization in the network structure. Thus, the
study of synchronization of complex networks can provide insights into the rela-
tionship between network topology and functional organization of complex brain
networks.

5.1 Introduction

Real-world complex networks are interacting dynamical entities with an in-
terplay between dynamical states and interaction patterns, such as the neural
networks in the brain. Recently, the complex network approach has been play-
ing an increasing role in the study of complex systems [1]. The main research
focus has been on the topological structures of complex systems based on
simplified graphs, paying special attention to the global properties of complex
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networks, such as the small-world (small-world networks (SWNs) [2]) scale-
free (scale-free networks (SFNs) [3]) features, or to the presence or absence
of some very small subgraphs, such as network motifs [4]. Such topological
studies have revealed important organizational principles in the structures of
many realistic network systems [1]. The structural characterization of net-
works has been discussed in Chap. 3.

However, a more complete understanding of many realistic systems would
require characterizations beyond the interaction topology. A problem of fun-
damental importance is the impact of network structures on the dynamics of
the networks. The elements of many complex systems display oscillatory dy-
namics. Therefore, synchronization of oscillators is one of the widely studied
dynamical behavior on complex networks [5]. It is important to emphasize that
synchronization is especially relevant in brain dynamics [6]. Synchronization
of neuronal dynamics on networks with complex topology thus has received
significant recent attention [7–10].

Most previous studies have focused on the influence of complex network
topology on the ability of the network to achieve synchronization. It has been
shown that SWNs provide a better synchronization of coupled excitable neu-
rons in the presence of external stimuli [7]. In pulse-coupled oscillators, syn-
chronization becomes optimal in a small-world regime [8], and it is degraded
when the degree becomes more heterogeneous with increased randomness [9].
Investigation of phase oscillators [11] or circle maps [12] on SWNs has shown
that when more and more shortcuts are created at larger rewiring probabil-
ity p, the transition to the synchronization regime becomes easier [11]. These
observations have shown that the ability of a network to synchronize (syn-
chronizability) is generally enhanced in SWNs as compared to regular chains.
Physically, this enhanced synchronizability was attributed to the decreasing
of the average network distance due to the shortcuts. On the other hand, it
has been shown that the synchronizability also depends critically on the het-
erogeneity of the degree distribution [13]. In particular, random networks with
strong heterogeneity in the degree distribution, such as SFNs, are more diffi-
cult to synchronize than random homogeneous networks [13], despite the fact
that heterogeneity reduces the average distance between nodes [14]. The syn-
chronizability in most previous studies is based on the linear stability of the
complete synchronization state using spectral analysis of the network coupling
matrix [5].

These studies focusing on the impacts of network topology assumed that
the coupling strength is uniform. However, most complex networks in na-
ture where synchronization is relevant are actually weighted, e.g. neural net-
works [15], networks of cities in the synchronization of epidemic outbreaks [16],
and communication and other technological networks whose functioning re-
lies on the synchronization of interacting units [17]. The connection weights
of many real networks are often highly heterogeneous [18]. It has been shown
that weighted coupling has significant effects on the synchronization of com-
plex networks [19–22].
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In this chapter, we discuss the synchronization of nonlinear oscillators
coupled in complex networks. Our emphasis is to demonstrate how the network
topology and the connection weights influence the synchronization behavior
of the oscillators. The theory and method are mainly based on general models
of complex networks, and we also study synchronization and the relationship
between dynamical clusters and anatomical communities in a realistic complex
network of brain cortex.

The chapter is organized as follows. In Sect. 5.2, we present the gen-
eral dynamical equations and the linear stability analysis for the complete
synchronization state when the oscillators are identical. Then, we demon-
strate the leading parameters that universally control the synchronizability
of a general class of random weighted networks in Sect. 5.3. In Sect. 5.4,
we carry out simulations of hierarchical synchronization in SFNs outside the
complete synchronization regimes. We demonstrate the influence of small-
world connections in Sect. 5.5. Section 5.6 is devoted to synchronization
analysis in cat cortical networks. We discuss the possible relevance of the
analysis of dynamical complex neural networks and meaningful extensions
in Sect. 5.7.

5.2 Dynamical Equations
and Stability Analysis

The dynamics of a general network of N coupled oscillators is described by:

ẋj = τjF (xj) + σ

N∑
i=1

AjiWji[H(xi)−H(xj)] (5.1)

= τjF (xj)− σ
N∑

i=1

GjiH(xi), j = 1, . . . , N , (5.2)

where xj is the state of oscillator j and F = F (x) governs the dynamics
of each individual oscillator. The parameter τj controls the time scales of
the oscillators, which are not identical in general. H = H(x) is the output
function, and σ is the overall coupling strength. A = (Aji) is the adjacency
matrix of the underlying network of couplings, where Aji = 1 if there is a
link from node i to node j, and Aji = 0 otherwise. Here, we assume that the
coupling is bidirectional so that Aij = Aji, i.e., A is symmetric. The number
of connections of a node, the degree kj , is just the row sum of the adjacency
matrix A, i.e., kj =

∑
iAji. More details about network characterization are

found in Chap. 3. Wji is the weight of the incoming strength for the link from
node i to node j. Note that the incoming and output weights can be in general
asymmetric, Wji �= Wij . Here G = (Gji) is the coupling matrix combining
both topology [adjacency matrix A = (Aji)] and weights [weight matrix W =
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(Wji)]: Gji = −Wji for i �= j and Gjj =
∑

i WjiAji. By definition, the rows
of matrix G have zero sum,

∑N
i=1Gji = 0.

As we mentioned in the introduction, much previous work characterizes the
synchronizability of networks using graph spectral analysis. The framework of
this analysis is based on the master stability function. The readers are referred
to the references [5,23] for the details. Here, we outline the main idea, which is
to consider the ideal case of identical oscillators, i.e., τ1 = τ2 = · · · = τN = 1.
In this case, it is easy to see that the completely synchronized state, x1(t) =
x2(t) = · · · = xN (t) = s(t), is a solution of (5.2), i.e., all the oscillators follow
the same trajectory in the phase space, and the trajectory belongs to the
attractor of the isolated oscillator. So this solution is also called the invariant
synchronization manifold. However, synchronization in the network can only
be observed when the synchronization state is robust against desynchronizing
perturbations. Now the crucial question is: Is this solution stable? And under
what conditions is it stable?

To study the stability of the synchronization state, we consider small per-
turbations of the synchronization state s, δẋj = xj − s, which are governed
by the linear variational equations

δẋj = DF (s)δxj − σDH(s)
N∑

i=1

Gjiδxi, j = 1, · · · , N , (5.3)

where DF (s) and DH(s) are the Jacobians on s.
The main idea of the master stability function is to project δx into the

eigenspace spanned by the eigenvectors v of the coupling matrix G. By doing
so, (5.3) can be diagonalized into N decoupled blocks of the form

ξ̇l = [DF (s)− σλlDH(s)] ξl, l = 1, · · · , N , (5.4)

where ξl is the eigenmode associated to the eigenvalue λl of the coupling
matrix G. Here, λ1 = 0 corresponds to the eigenmode parallel to the synchro-
nization manifold, and the other N−1 eigenvalues λl represent the eigenmodes
transverse to the synchronization manifold.

Note that all the variational equations in (5.4) have the same form:

ξ̇ = [DF (s)− εDH(s)] ξ . (5.5)

They differ only by the parameter ε = σλl. From this, we understand that the
stability of each mode is determined by the property of the master stability
of the normal form in (5.5) and the eigenvalue λl. In this chapter, we focus
on the cases where G has real eigenvalues, ordered as 0 = λ1 ≤ λ2 · · · ≤ λN .
The largest Lyapunov exponent Λ(ε) of (5.5) as a function of the param-
eter ε is called the master stability function. If Λ(ε) < 0, it follows that
ξ(t) ∼ exp(Λt) → 0 when t → ∞ and the mode is stable, otherwise, small
perturbations will grow with time t and the mode is unstable. For many oscil-
latory dynamical systems [23], (5.5) is stable (e.g., Λ(ε) < 0) in a single, finite
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interval ε1 < ε < ε2, where the thresholds ε1 and ε2 are determined only by
F , H, and s. A transverse mode is damped if the corresponding eigenvalue
satisfies ε1 < σλi < ε2, and the complete synchronization state is stable when
all the transverse modes are damped, namely,

ε1 < σλ2 ≤ σλ3 ≤ · · · ≤ σλN < ε2 . (5.6)

This condition can only be fulfilled for some values of σ when the eigenratio
R meets

R ≡ λN/λ2 < ε2/ε1 . (5.7)

It is impossible to synchronize the network completely if R > ε2/ε1, since there
is no σ value for whom the solution is linearly stable. The eigenratioR depends
only on the network structure, as defined by the coupling matrix G. If R is
small, in general the condition in (5.7) will be more easily satisfied. It follows
that the smaller the eigenratio R the more synchronizable the network and
vice versa [5], and we can characterize the synchronizability of the networks
with R, without referring to specific oscillators. In some special cases, ε2 =∞,
and the synchronization state is stable when the overall coupling strength σ
is larger than a threshold σc = ε1/λ2. More detailed characterization of the
synchronizability in this case can be found in [21].

In the following section, we characterize the synchronizability of weighted
networks using only the eigenratio R.

5.3 Universality of Synchronizability

5.3.1 Universal Formula

How the synchronizability, the eigenratio R, depends on the structure of
networks is one of the major questions in previous studies. Based on spec-
tral graph theory, previous work has obtained bounds for the eigenvalues
of unweighted networks (Wji = 1) [13, 24]. For arbitrary networks [24], the
eigenvalues are bounded as 4

NDmax
≤ λ2 ≤ N

N−1kmin and N
N−1kmax ≤ λN ≤

max(ki + kj) ≤ 2kmax, where kmin and kmax are the minimum and maximum
degrees, respectively, ki and kj are the degrees of two connected nodes, and
Dmax, the diameter of the graph, is the maximum of the distances between
nodes. From this, one gets

kmax/kmin ≤ R ≤ NDmax max(ki + kj)/4 . (5.8)

The reader can find more details concerning how these bounds are obtained
in [24]. Such bounds can provide some insights into the synchronizability of
the networks. For example, networks with heterogeneous degrees have low
synchronizability, since R is bounded away from 1 by kmax/kmin. However,
such bounds are not tight. The upper bound, as a function of the network
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size N , can be orders of magnitude larger than the lower one even for small
networks (especially for random networks), thus providing limited information
about the actual synchronizability of the networks.

In the following, we present tighter bounds for more general weighted net-
works, including unweighted networks as special cases. We restrict ourselves
to sufficiently random networks. Our analysis is based on the combination of
a mean field approximation and new graph spectral results [21].

First, in random networks with a large enough minimal degree kmin � 1,
(5.1) (τj = 1, ∀j) can be approximated as

ẋj = F (xi) + σ
Sj

kj

N∑
i=1

Aji[H(xi)−H(xj)] . (5.9)

The reason is that each oscillator i receives signals from a large and random
sample of other oscillators in the network and xi is not affected directly by
the individual output weights Wji. Thus, we may assume that Wji and H(xi)
are statistically uncorrelated and the following approximation holds

N∑
i=1

WjiAjiH(xi) ≈ 1
kj

N∑
i=1

AjiH(xi)
N∑

i=1

WjiAji = H̄jSj (5.10)

if ki � 1. Here, H̄j = (1/kj)
∑N

i=1AjiH(xi) is the local mean field, and Sj

is the intensity of node j. Defined as the total input weight of node,

Sj =
N∑

i=1

AjiWji , (5.11)

the intensity Sj is a significant measure integrating the information of con-
nectivity and weights [18].

Now, if the network is sufficiently random, the local mean field H̄j can
be approximated by the global mean field of the network, H̄j ≈ H̄ =
(1/N)

∑N
i=1 H(xi), since the information that a node obtains from its kj � 1

connected neighbors is well distributed in the network and the averaged signal
is close enough to the average behavior of the whole network. Moreover, close
to the synchronized state s, we may assume H̄j ≈ H(s), and the system is
approximated as

ẋj = F (xj) + σSj [H(s)−H(xj)], j = 1, . . . , N . (5.12)

We call this the mean field approximation, which indicates that the oscillators
are decoupled and forced by a common oscillator s with a forcing strength
proportional to the intensity Sj (cf. Chap. 1). The variational equations (5.12)
have the same form as (5.4), except that λl is replaced by Sl. If there is some
σ satisfying

ε1 < σSmin ≤ · · · ≤ σSl ≤ · · · ≤ σSmax < ε2 , (5.13)
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then all the oscillators are synchronizable by the common driving H(s), cor-
responding to a complete synchronization of the whole network. These obser-
vations suggest that the eigenratio R can be approximated as

R ≈ Smax/Smin , (5.14)

where Smin, Smax are the minimum and maximum intensities Sj in (5.11),
respectively.

Next, we present tight bounds for the above approximation. Equation (5.9)
means that the coupling matrix G is replaced by the new matrix Ga = (Ga

ji),
with Ga

ji = Sj

kj
(δjikj −Aji). Ga can be written as Ga = SĜ = SD−1(D−A),

where S = (δjiSj) and D = (δjikj) are the diagonal matrices of intensities
and degrees, respectively, and Ĝ is the normalized Laplacian matrix [25].
Importantly, now the contributions from the topology and weight structure
are separated and accounted for by Ĝ and S, respectively. We can show that
in large enough complex networks, such as SFNs in many realistic complex
systems, the largest and smallest nonzero eigenvalues of the matrix Ga are
bounded by the eigenvalues μl of Ĝ as

Sminμ2c ≤ λ2 ≤ Sminc
′, Smax ≤ λN ≤ SmaxμN , (5.15)

where c and c′ can be approximated by 1 for most large complex networks of
interest, such as realistic SFNs. The upper bound of λN in the inequality (5.15)
follows from

λN = max
||v||=1

||SĜv|| ≤ max
||v||=1

||Sv|| max
||v||=1

||Ĝv|| = SmaxμN (5.16)

where || · || is the Euclidean norm and v denotes the normalized eigenvector
of Ga. The other bounds in (5.15) are obtained in a similar spirit. If the
network is sufficiently random, the spectrum of Ĝ tends to the semicircle law
for large networks with arbitrary expected degrees [25]. The semicircle law
says that if kmin �

√
K, where K is the mean degree of the network, the

distribution function of the eigenvalues of Ĝ follows a semicircle with the
center at 1.0 and the radius r = 2/

√
K when N →∞. In particular, we have

max{1 − μ2, μN − 1} = [1 + o(1)] 2√
K

for kmin �
√
K ln3N . From these, it

follows that
μ2 ≈ 1− 2/

√
K, μN ≈ 1 + 2/

√
K , (5.17)

which we find to provide also a good approximation under the weaker condi-
tion kmin � 1, regardless of the degree distribution of the random network.
From (5.15) and (5.17), we have the following approximation for the bounds
of R:

Smax

Smin
≤ R ≤ Smax

Smin

1 + 2/
√
K

1− 2/
√
K

. (5.18)
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We stress that this result applies to unweighted networks (Si = ki) and the
upper bound in the inequality (5.18) is much tighter than that in (5.8).

The bounds in (5.18) show that the contribution of the network topology
is mainly captured by the mean degree K. Therefore, for a given K, the
synchronizability of random networks with a large kmin is expected to be well
approximated by the following universal formula:

R = AR
Smax

Smin
, (5.19)

where the pre-factors AR are expected to be close to 1. In the case of uniform
intensity (Si = 1 ∀i), they are given by the upper bounds, AR = 1+2/

√
K

1−2/
√

K
, and

AR → 1 in the limit K →∞. Equation (5.19) is consistent with the approxi-
mation in (5.14) and indicates that the synchronizability of these networks is
primarily determined by the heterogeneity of the intensities, regardless of the
degree distribution.

In simpler words, the universal formula says that if you give me a random
enough but arbitrary network, we then can measure the intensities and tell
you whether or not the network is synchronizable for a given oscillator (which
specifies ε1 and ε2). If Smax/Smin is clearly smaller than ε2/ε1, then we can
predict that the suitable coupling strength for complete synchronization is
ε1/Smin < σ < ε2/Smax.

5.3.2 Numerical Confirmation of the Universality

In the following, we present some results of numerical simulations of the syn-
chronizability of various weighted and unweighted networks. These results con-
firm the above universal formula obtained based on physical arguments and
graph spectral analysis. For example, let us consider the following weighted
coupling scheme:

Wji = Sj/kj , (5.20)

in which the intensities Sj follow an arbitrary distribution not necessarily
correlated with the degrees kj . This means that the intensities Sj of a node j
are equally distributed into the kj input connections of this node, which serves
as an approximation of realistic networks. However, nonuniform weights of the
input links does not change our conclusion according to the approximation in
(5.9). In [21], we presented results for more realistic weighted networks and
showed that the universal formula also applies.

With the weighted coupling in (5.20), (5.9) and (5.1) are identical and
Ga = G. This weighted coupling scheme includes many previously studied
systems as special cases. If Sj = kj ∀j, it corresponds to the widely studied
case of unweighed networks [5, 13, 26]. In the case of fully uniform intensity
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(Sj = 1 ∀j), it accommodates a number of previous studies about synchroniza-
tion of coupled maps [27,28]. The weighted scheme studied in [19],Wji = kθ

j , is
another special case of (5.20) where Sj = k1+θ

j . We have applied the weighted
scheme to various network models:

(i) Growing SFNs with aging [29]. This model of complex networks extends
the Barabási-Albert (BA) model [3]. Starting with 2m + 1 fully connected
nodes, at each time step we connect a new node to m existing nodes according
to the probability Πi ∼ kiτ

−α
i , where τi is the age of the node. The minimum

degree is then kmin = m and the mean degree is K = 2m. For the aging
exponent −∞ < α ≤ 0, this growing rule generates SFNs with a power-law
tail P (k) ∼ k−γ and the scaling exponent in the interval 2 < γ ≤ 3 [29], as
in most real SFNs. For α = 0, we recover the usual Barabási-Albert (BA)
model [3], which has γ = 3.

(ii) Random SFNs [30]. Each node is assigned to have a number ki ≥ kmin

of “half-links” according to the distribution P (k) ∼ k−γ . The network is
generated by randomly connecting these half-links to form links, prohibiting
self- and repeated links.

(iii) K-regular random networks. Each node is randomly connected to K
other nodes.

We now present results for two different distributions of intensity Si

that are uncorrelated with the distribution of the degree ki: (1) a uniform
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Fig. 5.1. R as a function of Smax/Smin. Filled symbols: uniform distribution of
Si ∈ [Smin, Smax]. Open symbols: power-law distribution of Si, P (S) ∼ S−Γ for 2.5 ≤
Γ ≤ 10. Different symbols are for networks with different topologies: BA growing
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for Smax/Smin = 1 (circles), 2 (squares), 10 (triangles), and 100 (stars), obtained
with a uniform distribution of Si in K-regular networks. The dashed lines are the
bounds. Solid line: (5.19) with AR = 1
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distribution in [Smin, Smax]; and (2) a power-law distribution, P (S) ∼ S−Γ ,
S ≥ Smin, where Smin is a positive number. Consistently with the predic-
tion of the universal formula, if kmin � 1, the eigenratio R collapses into
a single curve for a given K when plotted as a function of Smax/Smin, irre-
spective of the distributions of kj and Sj, as shown in Fig. 5.1. The behavior
of the fitting parameter AR is shown in the inset of Fig. 5.1. For a uniform
intensity, it is very close to the upper bounds. It approaches 1 very quickly
when the intensities become more heterogeneous (Smax/Smin > 3). There-
fore, (5.19) with AR = 1 (Fig. 5.1, solid line) provides a good approxima-
tion of the synchronizability for any large K if the intensities are not very
homogeneous.

5.4 Effective Synchronization
in Scale-Free Networks

So far, we have presented an analysis of the stability of the complete synchro-
nization state and the synchronizability of the networks based on the spectrum
of the weighted graphs. The main conclusion is that, for random networks,
the ability of the network to achieve complete synchronization is determined
by the maximal and minimal values of the intensities Sj. The intensity of a
node in (5.11), defined as the sum of the strengths of all input connections
of that node, incorporates both topological and weighted properties of the
network.

Now we carry out simulations on concrete dynamical systems. We would
like to demonstrate that the intensities Sj are still the important parameter
for the organization of effective synchronization on the network outside the
complete synchronization regime, e.g., when the network is perturbed by noise,
or when the oscillators are non-identical, which are typical cases in more
realistic systems.

In the following we give a summary of the main results (for more details,
see [31]). For this purpose, we analyze the paradigmatic Rössler chaotic oscil-
lator x = (x, y, z):

ẋ = −0.97x− z, (5.21)
ẏ = 0.97x+ 0.15y, (5.22)
ż = x(z − 8.5) + 0.4. (5.23)

The oscillations are chaotic, and its time-dependent phase can be defined as
φ = arctan(y/x) [32, 33], as illustrated in Fig. 5.2.

Without loss of generality, we consider SFNs generated with the BA
model [3] and use the coupling scheme in (5.20). For simplicity, we also sorted
the label of the nodes according to the degrees, k1 ≥ k2 ≥ · · · ≥ kN . We com-
pare unweighted networks (UN) (Wij = 1) by taking Sj = kj and weighted
networks (WN) (Wji = 1/kj) by taking uniform intensities Sj = 1 for all the
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nodes. Here, we use the output function H(x) = x in our simulations. In this
case, ε1 = ΛF , the largest Lyapunov exponent of the isolated Rössler chaotic
oscillator, and ε2 =∞.

Numerical simulations confirm that synchronization is achieved when
σ > σc = ΛF/λ2. The transition to synchronization is shown in Fig. 5.3
as a function of the normalized coupling strength g = σ〈S〉, where 〈S〉 is
the average intensity of the networks. Here, we have plotted the average syn-
chronization error E = (1/N)

∑N
j=1ΔXj, where ΔXj = 〈|xj − X |〉t is the

time-averaged distance between the oscillator xj and the mean activity of
the whole network, X = (1/N)

∑N
j=1 xj . When complete synchronization is

achieved at g > gc, one has E = 0 after a sufficiently long transient. Addition-
ally, we show the oscillation amplitude AX of the mean field X , calculated as
the standard deviation of X over time. As expected, the WN with uniform
intensity achieves complete synchronization at a critical coupling strength gc

smaller than that of the UN having the same mean degree K. It is impor-
tant to emphasize that the network already maintains collective oscillations
when the coupling strength g is much smaller than the threshold value gc

for complete synchronization. This is manifested by an amplitude AX of the
collective oscillations, which has the same level as that of the completely syn-
chronized state at g > gc.
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Fig. 5.3. Transition to synchronization in the UN and WN, indicated by the syn-
chronization error E (squares) and the amplitude AX of the mean field X (circles).
The filled symbols are for the UN and the open symbols for the WN. In both net-
works, N = 1000 and K = 10 (kmin = 5)

5.4.1 Hierarchical Synchronization

Now we look into the different behavior of the two networks outside the com-
plete synchronization regime, when the coupling is too weak (g < gc) or when
the synchronization state at g > gc is perturbed by noise. Noise is simulated by
adding independent Gaussian random perturbations Dηj(t) with a standard
deviation D to the variables of the oscillators, i.e., 〈ηj(t)ηi(t − τ) = δjiδ(τ).
We examine the synchronization difference ΔXj of an individual oscillator
with respect to the collective oscillations X of the whole network. The typi-
cal results are as shown in Figs. 5.4(a) and (b) for weak coupling and noise
perturbation, respectively.

It is seen that ΔXj is almost the same for the nodes in the WN (only
slightly smaller for nodes with larger degrees), since in this case, the intensity
is fully uniform (Sj = 1) and independent of the degrees. In sharp contrast,
the synchronization difference is strongly heterogeneous in the UN and is
negatively correlated with the intensity (Sj = kj) of the nodes. To get a clear
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Fig. 5.4. Synchronization difference ΔXj of the oscillators with respect to the
global mean field X in the UN (solid line) and WN (dotted line). The sym-
bol (◦) denotes the degree kj of the nodes. Note the log-log scales of the plots:
(a) The coupling strength is weak (g = 0.1); (b) The synchronized state (g = 0.3)
is perturbed by noise (D = 0.5)

dependence of ΔX on the degree k, we calculate the average value ΔX(k)
among all nodes with degree k, i.e.,

ΔX(k) =
1
Nk

∑
kj=k

ΔXj , (5.24)

where Nk is the number of nodes with degree kj = k in the SFN network. Now
a pronounced dependence can be observed for the UN, as shown in Fig. 5.5. For
both weak couplings and noise perturbations, the dependence is characterized
by a power-law scaling

ΔX(k) ∼ k−α , (5.25)

with the exponent α ≈ 1. These results demonstrate that in the UN, where
the intensities (Sj = kj) are heterogeneous due to the power-law distribution
of the degrees, a small portion of nodes with large intensities synchronize more
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Fig. 5.5. The average values ΔX(k) as a function of k at various coupling strength
g in the UN: (a) The coupling strength is weak; (b) The synchronized state (g = 0.3)
is perturbed by noise. The solid lines with slope −1 are plotted for reference
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closely to the mean field X , while most of the nodes with small intensities are
still rather independent ofX outside the synchronization regime. The effective
synchronization patterns of the networks are controlled by the distribution
of the intensities Sj , while complete synchronization is determined by the
maximal and minimal values.

5.4.2 Effective Synchronization Clusters

We have shown that the synchronization behavior of the individual oscil-
lators in the UN is highly nonuniform; in particular, the nodes with large
degrees, i.e., the hubs, are close to the mean field. As a result, the synchro-
nization difference between them should also be relatively small. We define
an effective synchronization cluster for those oscillators that synchronize to
each other within some threshold. For this purpose, we have calculated the
pairwise synchronization difference ΔXij = 〈|xi − xj |〉t. A pair of oscillators
(i �= j) is considered to be synchronized effectively when their synchronization
difference is smaller than a threshold: ΔXij ≤ Δth. Since the synchronization
difference is heterogeneous, there is no unique choice of the threshold value
Δth. What we can expect is that with smaller values of Δth, the size of the
effective cluster is smaller. The effective synchronization clusters for differ-
ent values of the threshold Δth are shown in Figs. 5.6(a) and (b). The same
clusters are also represented in the space of degrees (ki, kj) in Figs. 5.6(c)
and (d), respectively. Note that almost all the oscillators forming the clus-
ters have a degree kj > kth, where kth is the threshold degree satisfying
ΔX(kth) = Δth; or correspondingly, the effective cluster is formed by nodes
with j < Jth, where Jth is the mean index of nodes with degree kj = kth.
The triangular shape of the effective clusters in Fig. 5.6 is well described
by the relation i + j ≤ Jth. Above the solid line i + j = Jth, those oscilla-
tors (i ≤ Jth and j ≤ Jth) having large enough degrees, i.e., ki ≥ kth and
kj ≥ kth, are close to the mean field with ΔXi ≤ Δth and ΔXj ≤ Δth,
but the pairwise distance is large, ΔXij > Δth. These results demonstrate
clearly that the nodes with the largest intensities are the dynamical core of the
networks.

5.4.3 Non-identical Oscillators

Now we consider non-identical oscillators by assuming that the time scale pa-
rameters τj are heterogeneous in (5.1), so that the oscillators have different
mean oscillation frequencies Ωj . In our simulations, we use a uniform distri-
bution of τj in an interval [1 − Δτ, 1 + Δτ ], with Δτ = 0.1. We define the
phases of the oscillations as indicated in Fig. 5.2. The average frequency can
be computed as Ωj = 〈φ̇j〉.

Let us first examine the collective oscillations in the network. Fig. 5.7
shows the amplitude AX of the mean field X as a function of the coupling
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strength g for the UN and WN. It is seen that both networks generate a coher-
ent collective oscillation when the coupling strength is larger than a critical
value gcr ≈ 0.08. However, the UN generates a weaker degree of collective
synchronization as indicated by a smaller amplitude AX of the mean field.

Now we study in more detail synchronization behavior in the weak, inter-
mediate and strong coupling regimes, indicated by the three vertical dashed
lines in Fig. 5.7.

I. Weak Coupling: Non-synchronization Regime

We start with the weak coupling regime with g = 0.05. Here, neither the UN
nor the WN display significant collective oscillations. The frequencies of the
oscillators are still distributed and the phases of the oscillators are not locked.
However, interesting dynamical changes can be already expected in the UN.
Based on the mean field approximation described in Sect. 3.1, we have

ẋj = τjF (xj) + g
Sj

〈S〉 (X − xj), kj � 1 . (5.26)
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Fig. 5.7. The amplitude of the mean field as a function of the coupling strength
g in the UN (◦) and WN (�). The networks have mean degree K = 10 and size
N = 1000

For the UN, Sj = kj , and this approximation means that the oscillators are
forced by a common signal, the global mean field X , with the forcing strength
being proportional to their degree kj . Now even though the overall coupling
strength g is still small, the oscillators with large degrees are already strongly
forced by the common signal X. In this weak coupling regime, the global
mean field displays some small fluctuations around the unstable fixed point
of the isolated oscillator, X ≈ xF (F (xF ) = 0), thus it has only a very small
amplitude. These oscillators should somewhat synchronize to X. As shown
in Figs. 5.8(a) and (b), oscillators with k > 10 already display some degree
of synchronization, indicated by a decreasing ΔX for larger k, while all the
oscillators in the WN are distant from X , since Sj = 1 for all of them. A small
distance of an oscillator j from X , which has an almost vanishing amplitude,
shows that the oscillation amplitude Aj of the oscillator is small. We have
calculated Aj as the standard deviation of the time series xj . We can see
from Fig. 5.8(c) that Aj indeed displays almost the same behavior as ΔXj .
This becomes even more evident when we compare the average value A(k),
similar to (5.24), (Fig. 5.8(d)), with ΔX(k), (Fig. 5.8(b)). The changes in the
amplitudes can be understood as follows: taking X ≈ xF , from (5.29) one
gets for the UN

ẋj = τjF (xj)− g kj

K
(xj − xF ), kj � 1 , (5.27)

which yields that hubs (nodes with the largest degrees) are experiencing
a strong negative self-feedback, so that the trajectory is stabilized at the
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originally unstable fixed point xF , but with some fluctuations due to small
non-vanishing perturbations from the mean activity of the neighbors.

To summarize: in the weak coupling regime, where even frequency and
phase synchronization are not yet established, the heterogeneous UN already
displays a form of hierarchical synchronization expressed by a change in the
oscillation amplitudes.

II. Intermediate Coupling: Phase
Synchronization

Next, we take an intermediate coupling strength g = 0.13, where both net-
works are in the regime of transition to strong collective oscillations (Fig. 5.7).
In this regime, frequency and phase synchronization become evident, while
the absolute distance ΔX is still large. In Fig. 5.9, we show the mean oscil-
lation frequencies Ωj of all oscillators. In the UN, we find that about 70% of
the nodes are locked to a common frequency Ω = 0.99, forming a frequency
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Fig. 5.9. The mean oscillation frequencies Ωj of the oscillators in the UN: (a) and
the WN; (b) at the coupling strength g = 0.13

synchronization cluster. Note that almost all nodes with the largest degrees kj

are synchronized in frequency, while many nodes with small degrees are not
yet locked. In the WN, on the contrary, the frequencies of all nodes are locked
so that the network is globally synchronized in frequency. The nodes that are
not frequency locked in the UN are largely uncorrelated with each other and
they do not generate significant contributions to the collective oscillations,
while all the nodes in the WN have a significant contribution; as a result, the
amplitude of the collective oscillation is much smaller in the UN.

Now we examine phase synchronization of the nodes with respect to X .
We measure phase synchronization by the time-averaged order parameter (Ku-
ramoto parameter)

rj = 〈sin(Δφj)〉2 + 〈cos(Δφj)〉2 , (5.28)

where Δφj = φj−φX is the difference of the phases of an individual oscillator
j and the mean field X. Here, the phases are defined as φj = arctan(yj/xj)
and φX = arctan(Y/X) for an individual oscillator j and the mean field,
respectively. Note that rj ≈ 0 when there is no phase locking and rj ≈ 1 when
the phases are locked with an almost constant phase difference. Consistent
with Fig. 5.9, we find that rj = 1 for all oscillators in the WN; while rj < 1
for many nodes with small degrees in the UN (Fig. 5.10(a)). To get a clear
dependence of r on the degree k, we again calculate the average value r(k)
between all nodes with degree k. Now there is a more pronounced dependence
between r(k) and k (Fig. 5.10(b)).

We also calculate the absolute distances ΔXj. They are not small on av-
erage in both networks in spite of phase synchronization (Fig. 5.10(c)), be-
cause phase locked oscillators may have significant (but bounded) phase dif-
ferences. However, ΔXj again displays the hierarchical structure in the UN
(Fig 5.10(d)). The nodes with large degrees are not only locked in frequency,
but also have small phase differences. So, in this regime, the hierarchical syn-
chronization is manifested by different degrees of frequency and phase locking.
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(b), but for the distance ΔXj and its average value ΔX(k), respectively. The results
are averaged over 50 realizations of random distribution of the time scale parameter
τj . The coupling strength is g = 0.13

III. Strong Coupling: Almost Complete
Synchronization

Now we consider the strong coupling regime where both networks have a large
and saturated amplitude in their collective oscillations (Fig. 5.7).

We take g = 0.5, at which the amplitude of X is almost the same for
both networks. The frequencies of all the oscillators are locked mutually as
well as locked to the mean field; as a result, the phase synchronization or-
der parameter is rj = 1 for all oscillators in both UN and WN, i.e., the
networks are globally phase synchronized. In the WN network, the phase dif-
ference Δφj between an oscillator and the mean field, averaged over time and
over different realizations of random distribution of the time scale parame-
ters τj , is small and on average rather homogeneous for all the oscillators
(Fig. 5.11(a)). This implies that the oscillators are almost completely syn-
chronized in the sense that ΔX ≈ AX sin(Δφ) ≈ AXΔφ is also small and
uniform on average (Fig. 5.11(c)). In the UN, however, many nodes with a
degree smaller than the mean value K is not as strongly connected to the
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mean field, and on average they have phase differences larger than that of
the WN (Fig. 5.11(a)), as is shown evidently by the average value Δφ(k) over
nodes with degree k (Fig. 5.11(b)). Consequently, the synchronization differ-
ence ΔXj is still heterogeneous (Fig. 5.11(c)) and ΔX(k) ∼ k−α with α ≈ 1
(Fig. 5.11(d)).

5.4.4 Analysis of Hierarchical Synchronization

We have shown with unweighted SFNs that the effective synchronization
displays a hierarchical organization according to the intensities, when the
coupling is not strong enough, when there is noise or when the oscillators are
non-identical. Here, we present an analysis of this hierarchical synchroniza-
tion. The analysis is based on a mean field approximation of (5.1) with (5.26).
For the case of UN, it reads

ẋj = τjF (xj) +
gkj

K
(X − xj), kj � 1 . (5.29)



5 Synchronization Dynamics in Complex Networks 155

This approximation means that the oscillators are forced by a common signal
X, with the forcing strength being proportional to their degree kj .

For identical oscillators (τj = 1, ∀j), the linear variational equations of
(5.29) are

ξ̇j =
[
DF (X)− g

K
kjI

]
ξj , kj � 1 , (5.30)

which have the same form as (5.4), except that λj is replaced by kj and DH(s)
is replaced by the identity matrix I when H(x) = x. The largest Lyapunov
exponent Λ(kj) (master stability function) of this linear equation is a function
of kj , i.e.,

Λ(kj) = ΛF − gkj/K . (5.31)

Remember that ΛF is the largest Lyapunov exponent of the isolated oscillator
F (x). Λ(kj) becomes negative for g

K kj > ΛF . For large values of k satisfying
g
K k � ΛF , we have Λ(k) ≈ − g

K k.
Now suppose that the network is close to being completely synchronized,

when the coupling strength g is below the threshold gc, or when there is noise
present in the system. For nodes with a large degree k so that Λ(k) ≈ − g

K k is
sufficiently negative, the dynamics of the averaged synchronization difference
ΔX(k) over large time scales can be expressed as

d
dt
ΔX(k) = Λ(k)ΔX(k) + c , (5.32)

where c > 0 is a constant denoting the level of perturbation with respect to
the complete synchronization state, which depends on the noise level D or the
coupling strength g. For the case of non-identical oscillators, the perturbation
level (constant c) is due to the disorder in the time scale τj of the oscillators.
From this, we get the asymptotic result ΔX(k) = c/|Λ(k)|, giving

ΔX(k) ∼ k−1 , (5.33)

which explains qualitatively the numerically observed scaling in Figs. 5.5, 5.10
and 5.11. The slight deviation of the scaling exponents from the linear result
α = 1 may result from the mean field approximation and significant nonlin-
earity, since the linear analysis in (5.32) is only a first order approximation.

For a general weighted random network, the degree k in (5.33) should be
replaced by the intensity S, and we have

ΔX(S) ∼ S−1 . (5.34)

5.5 Phase Synchronization in Small-World
Networks of Oscillators

So far, we have analyzed networks that are random, where the nodes do not
have spatial properties. However, in many realistic networks, the oscillators
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are arranged in space, and this spatial arrangement has a significant impact
on the connection patterns. A good example of this type is the network of
interacting neurons in local areas of the brain cortex. Here, the neurons have
sparse connections to neighboring neurons, neither in a fully regular, nor in
a completely random manner, but somewhere in between. A simple model
describing this type of network is the SWN model proposed in [2, 34]. It is
based on a regular array of oscillators, each coupled to its k nearest neighbors.
With a probability p, a link is added (rewired) to a randomly selected pair of
the oscillators, i.e., some long-range connections are introduced. For small p
values, the resulting networks display both the properties of regular networks
(high clustering) and of random networks (short pathlength), i.e., they are
SWNs.

In this section, we demonstrate the important impact of such random long-
range interactions on the synchronization of non-identical oscillators. We start
with a regular ring of N nodes, each connected to its two nearest neighbors,
i.e., k = 2. Shortcuts are then added between randomly selected pairs of nodes,
with probability p per link of the basic regular ring, so that typically there
are pN shortcuts in the resulting networks. In this way, the total number of
connections also increases with p. Again, we use the Rössler chaotic oscillators
F (x) and output function H(x) as in Sect. 4. The dynamical equation is

ẋj = τjF (xj) +
g

kj

N∑
i=1

Aji(xi − xj) , j = 1, . . . , N , (5.35)

Note that the coupling strength g is normalized by the degree kj of each node,
so that we can scale out effects of the increasing average degree K = 〈kj〉
when more and more shortcuts are added in the network at larger probability
p. As in Sect. 4.3, we consider a uniform distribution of τj in the interval
[1−Δτ, 1 +Δτ ], and we fix Δτ = 0.4 in the simulations.

We now discuss the synchronization behavior of (5.35) for networks with
different shortcut probabilities p. The degree of synchronization is quantified
by the amplitude AX of the mean field oscillation X = (1/N)

∑N
j=1 xj as

a function of the coupling strength g (Fig. 5.12(a)). We also examine the
variation of the oscillation amplitudes in individual oscillators with respect
to g by measuring the average value of the standard deviation of xj(t), 〈Aj〉
(Fig. 5.12(b)). We observe the following types of synchronous behavior:

i) When the shortcut probability p is very small (p = 0.01), the network
is still dominated by local coupling and it does not display obvious collective
synchronization effects over a broad range of g, as indicated by an almost
vanishing mean field X . However, the oscillation amplitude of individual os-
cillators changes with g.

ii) With a larger number of shortcuts at p = 0.1, the network starts to
synchronize and generates a coherent collective oscillation at a strong enough
coupling strength.



5 Synchronization Dynamics in Complex Networks 157

0.0 1.0 2.0 3.0 4.0 5.0
g

0

2

4

6

8

A
X

p=0.01
p=0.1
p=0.3
p=0.5

0.0 1.0 2.0 3.0 4.0 5.0
g

0

2

4

6

8

<
A

j>

(a) (b)

Fig. 5.12. Transition to oscillation death and synchronization in various SWNs of
chaotic Rössler oscillators: (a) The amplitude AX of the mean field X as a function
of the coupling strength g; (b) The average value of the amplitudes Aj of all the
individual oscillators. The network size is N = 1024

iii) At even larger values of p, e.g., p = 0.3 and p = 0.5, the networks
display three dynamical regimes: (1) When the coupling strength is increased
from very small values, the trajectory of each oscillator draws closer and closer
to the unstable steady state xF (F (xF ) = 0), as seen by a rapid decrease
of the amplitude 〈Aj〉 of individual oscillators (Fig 5.12(b)). The oscillation
frequencies Ωj are still distributed in this regime (Fig 5.13(a,b)). (2) When a
critical value g1 is reached, all oscillators become stable at the same steady
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Fig. 5.13. Oscillation frequency Ωj of the oscillators in SWNs with the shortcut
probability p = 0.5 for different coupling strength: (a) g = 0; (b) g = 0.1; and
(c) g = 1.5
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state xF , so that AX = 0 and 〈Aj〉 = 0, and we observe oscillation death
in SWNs, i.e., all the oscillators stop oscillating (Fig 5.12(b)). (3) When g
is further increased to exceed another critical value g2, the steady state xF

becomes unstable again, and the oscillation is restored. Importantly, the whole
network is now in a global synchronization regime: the frequencies and phases
of all oscillators are locked (Fig 5.13(c)). Comparing the critical value g2 of
the coherent synchronization regime for p = 0.3 and p = 0.5, one can see that
networks with more shortcuts achieve this coherent synchronization with a
smaller coupling strength.

For a fixed value of the coupling strength g, the two regimes of oscillation
death and global synchronization can also be obtained by adding a suffi-
cient number of shortcuts (Fig. 5.14). The system behavior is not sensitive
to increasing p when p < 0.02. With a further increase of p, the oscillation
amplitudes of the oscillators are reduced and finally the regime of oscillation
death is reached, which is stable for networks in a certain range of p, and
afterwards a coherent collective oscillation is observed due to global synchro-
nization, which becomes more pronounced as more shortcuts are added to the
network.

We have shown that the coupling topology in the SWNs has significant ef-
fects on the synchronization of strongly non-identical nonlinear oscillators.
Compared to regular networks with local coupling (p ≈ 0), SWNs with
many shortcuts display enhanced synchronization as expressed by the regimes
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Fig. 5.14. Synchronization behavior vs. the shortcut probability p for a fixed
coupling strength (g = 1.5)
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of oscillation death and global synchronization similar to globally coupled
networks [35].

5.6 Hierarchical Synchronization and Clustering
in Complex Brain Networks

Synchronization of distributed brain activity has been proposed as an im-
portant mechanism for neural information processing [6]. Experimentally ob-
served brain activity, characterized by synchronization phenomena over a wide
range of spatial and temporal scales [36], reflects a hierarchical organization
of the dynamics. Such an organization arises through a hierarchy of complex
cortical networks: the microscopic level of interacting neurons, the mesoscopic
level of mini-columns and local neural circuits, and the macroscopic level of
nerve fiber projections between brain areas [15]. While details at the first two
levels are still largely missing, extensive information has been collected about
the latter level in the brain of animals, such as the cat and the macaque
monkey [37]. The complex topology of cortical networks has been the subject
of many recent analyses [37]. See Chaps. 3, 4, or 9 for a complete review.
Analyses of the anatomical connectivity of the mammalian cortex [37] and
the functional connectivity of the human brain [38] have shown that the two
share typical features of many complex networks. However, the relationship
between anatomical and functional connectivities remains one of the major
challenges in neuroscience [6].

Conceptually modeling the dynamics of the neural system based on a
realistic network of corticocortical connections and investigating the synchro-
nization behavior should provide meaningful insights into this problem. Here
we consider the cortical network of the cat. The cortex of the cat can be par-
cellated into 53 areas, linked by about 830 fibers of different densities [15] into
a weighted complex network as shown in Fig. 5.15(a). This network displays
typical small-world properties, i.e., short average pathlength and high cluster-
ing coefficient, indicating an optimal organization for an effective inter-area
communication and for achieving high functional complexity [39,40]. The de-
grees of the nodes are heterogeneous, for example, some nodes have only two
or three links, while some others have up to 35 connections. Due to the small
number of areas, it is difficult to claim a scale-free distribution [40], neverthe-
less, analyses comparing this network to scale-free network models with the
same size and connectivity density does suggest a scale-free distribution (see
Sect. 3.7 of Chap. 3).

Different from random networks models, the cortical network of the cat ex-
hibits hierarchically clustered organization [40,41]. There are a small number
of clusters that broadly agree with the four functional cortical sub-divisions,
i.e., visual cortex (V, 16 areas), auditory (A, 7 areas), somatosensory-motor
(SM, 16 areas) and frontolimbic (FL, 14 areas). To distinguish these from
the dynamical clusters in the following discussion, we refer to the topological
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Fig. 5.15. (a) Connection matrix MA of the cortical network of the cat brain.
The different symbols represent different connection weights: 1 (• sparse), 2 (◦ in-
termediate) and 3 (∗ dense). The organization of the system into four topological
communities (functional sub-systems, V, A, SM, FL) is indicated by the dashed
lines; (b) The number of connections between the four communities

clusters as communities [42]. The inter-community connections in Fig. 5.15(b)
show that A is much less connected while V, SM and FL are densely connected
with each other.

Next, we analyze synchronization dynamics of this network by simulat-
ing each cortical area with (i) periodic neural mass oscillators for modeling
neural rhythms [43, 44] and (ii) a subnetwork of interacting excitable neu-
rons [45, 46]. While the model with neural mass oscillators typically displays
the synchronization behavior explained in Sect. 5.4, the model with subnet-
works shows that the dynamics is also hierarchically organized and reveals
different scales in the hierarchy of the network topology. In particular, in the
biologically plausible regime, the most prominent dynamical clusters coincide
closely with anatomical communities that agree broadly with the functional
sub-divisions V, A, SM and FL.

5.6.1 Neural Mass Model

The mean activities of a population of neurons in the brain often exhibit
rhythmic oscillations with well defined frequency bands, as seen in EEG mea-
surements (cf. Chaps. 7 and 8). Such oscillations can be captured by realistic
macroscopic models of EEG generation proposed in the early 1970s [43] (see
Chap. 1 for a discussion). In this section, we use the neural mass model and
parameters presented in [44]. A population of neurons contains two subpopu-
lations: subset 1 consists of pyramidal cells receiving excitatory or inhibitory
feedback from subset 2. Subset 2 is composed of local interneurons receiv-
ing excitatory input. The neural mass model describes the evolution of the
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macroscopic variables, i.e., mass potentials ve, vi and vd for the excitatory,
inhibitory and interneurons, respectively. A static nonlinear sigmoid function
f(v) = 2e0/(1 + er(v0−v)) converts the average membrane potential into an
average pulse density of action potentials. Here, e0 is the firing rate at the
mass potential v0 and r is the steepness of the activation. The input from
another group of neurons and from external signals is fed into the population
of interneurons. The dynamical equations for I = 1, . . . , N multiple coupled
populations read

v̈e
I = Aaf(vd

I − vi
I)− 2av̇e

I − a2ve
I , (5.36)

v̈i
I = BbC4f(C3v

e
I)− 2bv̇i

I − b2vi
I , (5.37)

v̈d
I = Aa

[
C2f(C1v

e
I) + pI(t) +

g

〈S〉
N∑
J

WIJf(vd
J − vi

J)
]

(5.38)

−2av̇d
I − a2vd

I ,

where ve
I , v

i
I and vd

I are the mass potentials of the area I. Here, A andB are
the average synaptic gain, a and b are the characteristic time constants of the
EPSP and IPSP, respectively; C1 and C2, C3 and C4 are the average number
of synaptic contacts, for the excitatory and inhibitory synapses, respectively.
More detailed interpretation and standard values of these model parameters
can be found in [44]. The coupling strength g is normalized by the mean
intensity 〈S〉 as in Sect. 5.4.

Here we model the cat cortical network by simulating each cortical area (a
large ensemble of neurons) by such a macroscopic neural mass oscillator, i.e.,
by taking the cortical network in Fig. 5.15(a) as the coupling matrix WIJ in
(5.39). As in [44], in our simulations we take pI(t) = p0 + ξI(t) where ξI(t)
is a Gaussian white noise with standard deviation D = 2. We fix p0 = 180
so that the system is in the periodic regime corresponding to alpha waves. A
typical time series of the output, the average potential VI = vd

I − vi
I , is shown

in Fig. 5.16(a). Synchronization between the areas is measured by the linear
correlation coefficient R(I, J) between the outputs VI and VJ . The average
correlation 〈R〉 among all pairs of areas is shown in Fig. 5.16(b) as a function
of the coupling strength g.

According to our analysis in Sects. 5.3 and 5.4, in a sufficiently random net-
work, each oscillator is influenced by the mean activity of the whole network
with a coupling strength proportional to the intensity SI =

∑N
J=1WIJ . Not

much direct relationship between the pair-wise coupling strength WIJ and the
strength of synchronization R(I, J) is expected. We find that this still roughly
holds for the cat cortical network although it is not very random due to the
clustered organization. To demonstrate this, we distinguish three cases for
any pair of nodes in the network: reciprocal projections (P2), uni-directional
couplings (P1) and non-connection (P0), and compute the distribution of the
correlation R(I, J) for these cases separately. As seen in Fig. 5.17, when the
coupling is weak (e.g., g = 2), the distributions for P0, P1 and P2 pairs
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Fig. 5.16. (a) Typical activity V = vd − vi of the uncoupled neural mass model;
(b) The average correlation coefficient 〈R〉 = 1

N(N−1)

∑
I �=J R(I, J) (N = 53) vs.

the coupling strength g in (5.39)

coincide and display a Gaussian shape around zero and no significant corre-
lation is established. At a stronger coupling (e.g., g = 5), the P2 pairs have
slightly stronger correlation than P1, however, the distributions still overlap
significantly, as for strong coupling.

The dynamical pattern is not structured with very weak coupling, but with
stronger coupling (g ≥ 5), the system forms a major cluster including most of
the areas from V, SM and FL, while the auditory system A remains relatively
independent (Fig. 5.18). This is consistent with the inter-community connec-
tivity shown in Fig. 5.15(b). Also, some other areas with the smallest degrees
and intensities are also relatively independent. The correlation coefficient RX

between the activity VI of an area and the global mean field X̄ = (1/N)
∑N

VI

is shown in Fig. 5.19. It is roughly an increasing function of S, which basically
reproduces the behavior presented in Sect. 5.4 (e.g., Figs. 5.5, 5.10 and 5.11).

-0.05 0 0.05

R

0

0.05

0.1

0.15

pr
ob

ab
ili

ty

0 0.2

R

(a) (b)
g = 2 g = 5

0 0.5 1

R

(c)

g = 20

Fig. 5.17. (a) Distribution of the correlation R for P2 (solid line), P1 (dashed line)
and P0 (dotted line) pairs at various values of the coupling strength g, (a) g = 2,
(b) g = 5 and (c) g = 20



5 Synchronization Dynamics in Complex Networks 163

area J

ar
ea

 I
(a)

0 10 20 30 40 50

50

40

30

20

10

0
−0.04

−0.02

0

0.02

0.04

area J

(b)

0 10 20 30 40 50

50

40

30

20

10

0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 5.18. Correlation matrices R(I, J) for (a) weak coupling g = 2; (b) For strong
coupling g = 20. Note the different gray-scales in the colorbars

5.6.2 Subnetworks of Interacting Neurons

Each brain area is composed of a large ensemble of neurons coupled in a com-
plex network topology having several levels of organization; the detailed con-
nectivity, however, is still largely unclear. In the following section, we model
each cortical area with a sub-network of Na interacting neurons. We use the
SWN model [2] to couple the neurons. Specifically, a regular array of Na neu-
rons with a mean degree ka is rewired with a probability p. Such a topology
incorporates the basic biological feature that neurons are mainly connected
to their spatial neighbors, but also have a few long-range synapses [47]. The
small-world topology has been shown to improve the synchronization of in-
teracting neurons [7–9]. Our model also includes other realistic, experimen-
tally observed features, i.e., 25% of the Na neurons are inhibitory and only a
small number of neurons (about 5%) of one area receive excitatory synapses
from another connected area [48]. To our knowledge, no information is avail-
able about the output synapses of each area, and for simplicity, we assume
that the output signal from one area to another one is the mean activity of
the output area. Individual neurons are described by the FitzHugh-Nagumo
(FHN) excitable model [49] with non-identical excitability (cf. Chap. 1). A
weak Gaussian white noise (with strength D = 0.03) is added to each neu-
ron to generate sparse, Poisson-like irregular spiking patterns in isolated FHN
neurons, as in realistic neurons.

Thus, our model of the neural network of a cat cortex is composed of a
large ensemble of noisy neurons connected in a network of networks, and the
dynamics of the neuron i in the area I is specified as:
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Fig. 5.19. Correlation between an area and the global mean field, as a function of
the intensity S (averaged over nodes with the same intensity S) at various coupling
strengths g

εẋI,i =f(xI,i) +
g

ka

Na∑
j

ML
I (i, j)(xI,j − xI,i)

+
g

〈w〉
N∑
J

MA(I, J)LI,J(i)(VJ − xI,i) , (5.39)

ẏI,i =xI,i + aI,i +DξI,i(t) , (5.40)

where

f(xI,i) = xI,i −
x3

I,i

3
− yI,i . (5.41)

Here, the matrix MA represents the corticocortical connections in the
cat network as in Fig. 5.15(a). ML

I denotes the local SWN of the I-th area
(ML

I (i, j): (i, j = 1, . . . , Na)). A neuron j is inhibitory if ML
I (i, j) = −1 for all

of its connected neighbors. The label LI,J(i) = 1 if the neuron i is among the
5% within the area I receiving the mean field signal VJ = (1/N)

∑Na

l xJ,l from
the area J , otherwise, LI,J(i) = 0. The diffusive coupling, describing electrical
synapses (gap junctions; see Chap. 2) and not being the most typical case in
mammalian cortex, is mainly used for the simplicity of simulation at this
stage. Normalized by the mean degree ka of the SWNs within the areas, and
normalized by the average weight 〈w〉 of inter-area connections, g represents
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the average coupling strength between any pair of neurons and is the control
parameter in our simulations. (Note that we assume g to be equal for couplings
within and between subnetworks).

The system is simulated with Na = 200, ka = 12 and p = 0.3 for the
subnetworks. Our focus is to study the synchronization behavior at the sys-
tems level, i.e., the synchronization behavior between the mean activity VI of
the subnetworks and its relationship with the underlying cortical network in
Fig. 5.15(a). The behavior demonstrated below does not depend critically on
the parameters of the subnetworks, while the detailed synchronization behav-
ior within the subnetwork does depend on them [7–9].

The coupling strength g controls the mutual excitation between neurons.
At small g (e.g. g = 0.06), a neuron is not often excited by the noise-induced
spiking of its connected neighbors, so the synchronization within and between
the subnetworks is weak. This is shown by small fluctuations of the mean
activity VI of each area (Fig. 5.20(a)) and a small average correlation coeffi-
cient 〈R〉 among VI (Fig. 5.20(d)). Weak synchronization in the subnetwork
of an area is manifested by some clear peaks in VI (Fig. 5.20(a)). When we in-
crease g, the synchronization becomes stronger with more frequent and larger
peaks in VI (Fig. 5.20(b)) and at large enough g, the neurons are mutually
excited achieving both strongly synchronized and regular spiking behavior
(Fig. 5.20(c)). 〈R〉 approaches 1 (Fig. 5.20(d)), indicating an almost global
synchronization of the network.

The patterns of the correlation matrix R(I, J) are shown in Fig. 5.21. The
behavior at strong couplings is very similar to that of the neural mass model
in Fig. 5.18, since both models display well defined oscillations. However,
Fig. 5.21(a) suggests that the dynamics of the present model with weak cou-
pling has a nontrivial organization and an intriguing relationship with the
underlying network topology. The distribution of R over all pairs of areas
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Fig. 5.21. Correlation matrices R(I, J) at weak coupling g = 0.06: (a) and strong
coupling g = 0.12; (b) Note the different gray-scales in the colorbars

displays a Gaussian peak around zero, but with a long tail for large values
(Fig. 5.22(a), solid line). Although the correlations are relatively small, we
find that the large values are significant when compared to the distribution
of R of surrogate data by random shuffling of the time series VI (Fig. 5.22(a),
dash-dotted line). The weak coupling regime is biologically more realistic since
here, the neurons only have a low frequency of irregular spiking and irregu-
lar mean activities (Fig. 5.20(a)), similar to those observed experimentally
(e.g., EEG data [50]). The propagation of a signal between connected areas is
mediated by synchronized activities (peaks in V ) and a temporal correlation
is most likely established when receivers produce similar synchronized activ-
ities from one input, or when two areas are excited by strongly correlated
signals from common neighbors. Due to the weak coupling and the existence
of subnetworks, such a synchronized response does not always occur and a
local signal (excitation) does not propagate through the whole network. As
a result, the correlation patterns are closely related to the network topology,
although the values are relatively small due to infrequent signal propagation.
With strong coupling, the signal can propagate through the whole network,
corresponding to pathological situations, such as epileptic seizure [51].

Let us now characterize the dynamical organization and its relationship to
the network topology. Based on an argument of signal propagation, we expect
that the correlations for the P2, P1 and P0 areas should be different. Indeed,
the distributions of R for these three cases display well-separated peaks in the
weak coupling regime (Fig. 5.22(a)). Note especially that, all the P2 pairs have
significant correlations compared to the surrogate data. With strong coupling
(e.g. g > 0.09), where the excitation propagates through the whole network,
the distribution is very similar to the neural mass model in Fig. 5.17(c), and
the separation is no longer pronounced (not shown).
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We extract a functional network MF [38] by applying a threshold Rth to
the correlationR, i.e., a pair of areas is considered to be functionally connected
if R(I, J) ≥ Rth (MF (I, J) = 1). We can then compare the topological struc-
tures of the anatomical network MA and the functional networks MF with
varying Rth and examine how the various levels of synchronization reveal dif-
ferent scales in the network topology. focusing on the biologically meaningful
weak coupling regime.

We focus on the biologically meaningful weak coupling regime and take
g = 0.07 as the typical case. When Rth is very close to the maximal value
of R, only a few P2 areas in the auditory system A are functionally con-
nected, because of their strong anatomical links and sharing of many common
neighbors. With lower values, e.g. Rth = 0.07, about 2/3 of the areas but
only 10% of the P2 links are active in the functional network (Fig. 5.22(c)).
Interestingly, within each anatomical community V, A, SM, and FL, a core
subnetwork is functionally manifested in the form of connected components
without inter-community connections. At lower values, e.g., Rth = 0.065,
more areas from the respective communities are included into these com-
ponents and a few inter-community connections appear to join the compo-
nents from V, SM, and FL (Fig. 5.22(d)). This observation suggests that a
core subnetwork coupled more strongly and communicating more frequently
among the areas within the respective community is most likely to perform
specialized functions of this community. Going to an even lower thresh-
old, e.g., Rth = 0.055, all areas become involved and form a single con-
nected functional network, but this network contains only about 1/3 of
the anatomical P2 links and very few P1 links. However, the communi-
cation of the whole network is still mediated only by a small number of
inter-community connections while most of the connections are within V,
A, SM and FL, i.e., the functional network is highly clustered and agrees
well with the anatomical communities. With further reduction of Rth, still
more anatomical links are expressed as functional connections. For example,
at Rth = 0.019, all P2 links are just fully expressed and about 70% of P1
links too. Meanwhile, about 4% of non-connected pairs (P0) establish signif-
icant functional connections (the significance level ≈ 0.004 at R = 0.019),
since they have many common neighbors. Thus, the functional network re-
veals the anatomical network rather faithfully (Fig. 5.22(f)). To compare
the matrices MF (symmetrical) and MA (asymmetrical) in a more quan-
titative way, we take the binary matrix of MA, symmetrize all P1 links
and compute the Hamming distance H , i.e., the percentage of elements be-
tween MF and the binary and symmetrized MA that are different. The
closeness between them is confirmed by a very small Hamming distance
H = 0.074, which is almost minimal for varying Rth (Fig. 5.22(b)). It is in-
teresting to note that this value of the threshold Rth is exactly where the
full distribution of R starts to deviate from the Gaussian and the distri-
bution of P2 areas separates from that of the surrogate data (Fig. 5.22(a),
solid line). We find that such a natural choice of Rth always reproduces
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the network topology well with H ≈ 0.06 for different coupling strength
0.04 ≤ g ≤ 0.08.

We have analyzed the dynamical clusters using the algorithm for hier-
archical clustering in Matlab with the dissimilarity matrix d = [d(I, J) =
1 − R(I, J)]. Typical hierarchical trees for the weak and strong synchroniza-
tion regimes are shown in Fig. 5.23. Figure 5.24 displays the most prominent
clusters for the weak coupling regime. The functional clusters closely resemble
the four communities obtained by using graphical tools based on anatomical
structures [40, 41]. The four dynamical clusters sufficiently correspond to the
functional sub-division of the cortex– C1 (V), C2 (A), C3 (SM), C4 (FL).
However, it is also important to notice that there are a few nodes that be-
long to one anatomical community but join another dynamical cluster. For
example, the area I = 49 (anatomically named as 36 in the cat cortex) of
the fronto-limbic system is in the dynamical cluster C2 mainly composed of
areas from the auditory system (Fig. 5.24 (C2)). A close inspection shows that
these nodes bridging different anatomical communities and dynamical clus-
ters are exactly the areas sitting in one anatomical community but in close
connectional association with the areas in other communities [15]. In the
strong synchronization regime, V, SM and FL join to form a major clus-
ter (Fig. 5.25 (C3)), while the auditory system A remains as a distinct cluster
(Fig. 5.25 (C2)). The formation of a cluster from community A both in the
weak and the strong synchronization regimes is due to almost global connec-
tions within A. The cluster formation behavior in the strong coupling regime
is also in good accordance with the inter-community connectivity shown in
Fig. 5.15(b). There are also two single areas showing themselves as indepen-
dent clusters. It turns out that these are the nodes with the minimal intensities
in the network. In [46], we have shown that the clustering patterns remain
almost the same in randomized networks that preserve the sequence of the

area

(a)

area

(b)

Fig. 5.23. Typical hierarchical tree of the dynamical clusters in the weak coupling
regime; (a) g = 0.07 and strong coupling regime: (b) g = 0.12
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Fig. 5.24. Dynamical clusters (◦) with weak coupling strength g = 0.07, overlaid
on the underlying anatomical connections (·)

intensities SI as in the cat cortical network; the auditory system A no longer
forms a distinct cluster when the pronounced intra-community connections
are destroyed in the randomized networks. This demonstrates that our under-
standing of synchronization based on weighted random networks in Sects. 5.3
and 5.4 can be applied when the node dynamics (mean activity of the sub-
network in this case) display a well-defined oscillatory behavior.

The comparison between models with subnetworks and those with neural
mass oscillators indicates that self-sustained oscillator models may not be
as appropriate for the understanding of the interplay between dynamics and
structure in the brain as a hierarchical network of excitable elements.
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5.7 Conclusion and Outlook

In this chapter, we discussed synchronization dynamics on complex networks.
Firstly, we analyzed the relationship of some structural measures (such as
degree and intensity of the nodes, fraction of random shortcuts etc.) in general
network models to the synchronization behavior of the networks. Sections 5.2
and 5.3 considered the ideal case of complete synchronization allowing us to
characterize the synchronizability of the network based solely on the spectral
properties of the network. The main result is that the synchronizability, as
measured by the ratio between the maximal and the minimal eigenvalues,
is mainly determined by the maximal and minimal intensities in sufficiently
random networks. In more general situations, the dynamics is perturbed away
from the complete synchronization state, and we showed that the effective
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synchronization is hierarchically organized according to the distribution of
the intensities. We also demonstrated that random long-range interactions
in spatially extended networks (small-world networks) can induce different
synchronization regimes, such as oscillation death and global synchronization
with highly non-identical oscillators.

Secondly, we studied synchronization in a realistic network of cat corti-
cal connectivity. We demonstrated that if well-defined oscillatory dynamics is
assumed for the nodes (which represent cortical areas composed of large en-
sembles of neurons), for example, by employing a neural mass model, or by a
subnetwork of rather strongly coupled neurons, the synchronization patterns
can be understood by using general principles discussed in the first part of this
chapter, i.e., the synchronization is mainly controlled by the global structural
statistics (intensities) of the network. However, with weak coupling, the model
with subnetworks displays biologically plausible dynamics and the synchro-
nization pattern exhibits a close relationship with the hierarchically clustered
organization in the network structure, i.e., the dynamics is mainly controlled
by the local structures in the network.

Here, we have only focused on the highest structural level and modeled
each large cortical area with one level of subnetwork and simple neuron dy-
namics. The maximal correlation (0.1–0.2) is low in a biologically plausible
regime. The model displays a large region of frequent and regular spiking in
the neurons and strong synchronization even without strong external influ-
ence. The model can be extended and improved in several ways, in order to
address more realistic information processing in the brain:

(i) Biologically, a system of 105 neurons corresponding to a cubic millime-
ter of cortex is the minimal system size at which the complexity of the cortex
can be represented, e.g., the number of synapses a neuron receives is 104 [52].
Thus, large sub-networks with other biologically realistic features, e.g., addi-
tional hierarchically clustered organization and more detailed spatial structure
of neural circuits, should be considered. Such an extension is important for
the modeling and simulation of experimentally observed hierarchical activity
characterized by synchronization phenomena over a wide range of spatial and
temporal scales.

(ii) Cortical neurons display rich dynamics which would require more sub-
tle neuron models.

(iii) Biologically more realistic coupling by chemical synapses should be
used and synaptic plasticity considered.

An extension of our model by additionally including the hierarchy of clus-
tered structures reflecting the connectivity at the level of local neuronal cir-
cuits would allow localized and strong synchronization in some low-level clus-
ters and naturally organize dynamics at higher scales. This will significantly
broaden the biologically plausible regimes with stronger correlations, as ob-
served experimentally [38].

Synchronization of distributed brain activity has been believed to be an im-
portant mechanism for neural information processing [6]. A carefully extended
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model could be used to investigate the relative contributions of network topol-
ogy and task-related network activations to functional brain connectivity and
information processing. The dynamics of the model could be then compared
to the observed spread of activity in the cortex [53] and to the functional
connectivity [38] at suitable spatio-temporal scales.

Simulations of such large, complex neural network models of the cortex
and investigations of the relationship between network structure, dynamics
organization and function of the system crossing various levels in the hierar-
chy would require significant developments both in neurophysics, in theory of
dynamical complex networks and in algorithms of parallel computing [52].
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Summary. We present a method for synchronization analysis, that is able to handle
large networks of interacting dynamical units. We focus on large networks with
different topologies (random, small-world and scale-free) and neuronal dynamics at
each node. We consider neurons that exhibit dynamics on two time scales, namely
spiking and bursting behavior. The proposed method is able to distinguish between
synchronization of spikes and synchronization of bursts, so that we analyze the
synchronization of each time scale separately. We find for all network topologies
that the synchronization of the bursts sets in for smaller coupling strengths than the
synchronization of the spikes. Furthermore, we obtain an interesting behavior for the
synchronization of the spikes dependent on the coupling strength: for small values
of the coupling, the synchronization of the spikes increases, but for intermediate
values of the coupling, the synchronization index of the spikes decreases. For larger
values of the coupling strength, the synchronization index increases again until all
the spikes synchronize.

6.1 Introduction

Networks are ubiquitous in nature, biology, technology and in the social sci-
ences (see [1] and references therein). Much effort has been made to describe
and characterize them in different fields of research. One key finding of these
studies is that there are unifying principles underlying their behavior. In the
past, two major approaches have been pursued to deal with networks. The
first approach considers networks of regular topology, such as arrays or rings
of coupled systems with nonlinear and complex dynamics on each node. The
second approach concentrates on the topology of the network and sets aside
the dynamics or at most considers a rather simple one at each node. Some of
the prototypical types of network architectures that have been considered are
random, small-world, scale-free and generalized random networks [2].

Recently, the study of complex dynamics on the nodes has been extended
from regular to more complex architectures [3]. However, in most previous
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work, each node is still considered to be a phase oscillator (system with one
predominant time scale), often pulse-coupled to each other. Much is left, how-
ever, to understand about network behavior with more realistic complex dy-
namics on the nodes of networks of complex architecture, such as chaotic and
stochastic dynamics, which is found in many real application systems, such
as in neural networks. The influence of the topology of the network on the
dynamical properties of the complex systems is currently being investigated
in the context of synchronisation [4–6].

Synchronization of complex systems has been intensively studied during
the last years [7] and it has been found to be present in numerous natu-
ral and engineering systems [8]. Chaotic systems defy synchronization due
to their sensitivity to slight differences in initial conditions. However, it has
been demonstrated that these kind of systems are able to synchronize. In the
case of two interacting non-identical chaotic systems (which is more likely to
occur in nature than if they were identical), several types of synchronization
might occur, dependent on the coupling strength between the systems. For
rather weak coupling strength, phase synchronisation (PS) might set in. In
this case, the phases and frequencies of the complex systems are locked, i.e.
|φ1(t)−φ2(t)| < const. and ω1 ≈ ω2, whereas their amplitudes remain uncor-
related. If the coupling strength is further increased, a stronger relationship
between the interacting systems might occur, namely generalized synchro-
nization (GS). In this case, there is a functional relationship between both
systems. Finally, for very strong coupling, both systems can become almost
completely synchronized. Then, their trajectories evolve almost identically in
time [7].

In the case of phase synchronization, the first step in the analysis is to de-
termine the phases φ1(t) and φ2(t) of the two interacting systems with respect
to the time t. If the chaotic systems have mainly one characteristic time scale,
i.e. a predominant peak in the power spectrum, the phase can be estimated
as the angle of rotation around one center of the projection of the trajec-
tory on an appropriate plane. Alternatively, the analytical signal approach
can be used [9]. However, for most of the complex systems found in nature,
there is more than one characteristic time scale [10]. Hence, the approaches
mentioned above to estimate the phase are not appropriate. Recently, a new
method, based on the recurrence properties of the interacting systems [11],
has been introduced to overcome this problem. By means of this technique,
it is possible to analyze systems with a rather broad spectrum, as well as
systems strongly contaminated by noise or subjected to non-stationarity [12].

In this chapter, we extend the recurrence based technique for phase syn-
chronization analysis to systems with two predominant time scales, so that
it is possible to obtain one synchronization index for each time scale. More-
over, we apply this method to large networks of different architectures with
neuronal dynamics on their nodes.

The outline of this chapter is as follows: in Sect. 6.2, we introduce the con-
cept of recurrence, as well as the synchronization index based on the recurrence
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properties of the system. In Sect. 6.2.2, we present the method to analyze the
synchronization for two different time scales separately. In Sect. 6.3, we apply
the method to complex networks of neurons and present the obtained results.

6.2 Phase Synchronization by Means of Recurrences

First, we show the problem of defining the phase in systems with rather
broad power spectrum by using the paradigmatic system of two coupled non-
identical Rössler oscillators:

ẋ1,2 = −ω1,2y1,2 − z1,2

ẏ1,2 = ω1,2x1,2 + ay1,2 + μ(y2,1 − y1,2) (6.1)
ż1,2 = 0.1 + z1,2(x1,2 − 8.5) ,

where μ is the coupling strength and ω1,2 determine the mean intrinsic fre-
quency of the (uncoupled) oscillators in the case of phase coherent attrac-
tors. In our simulations, we take ω1 = 0.98 and ω2 = 1.02. The parameter
a ∈ [0.15, 0.3] governs the topology of the chaotic attractor. When a is
below a critical value ac (ac ≈ 0.186 for ω1 = 0.98 and ac ≈ 0.195 for
ω2 = 1.02), the chaotic trajectories always cycle around the unstable fixed
point (x0, y0) ≈ (0, 0) in the (x, y) subspace (Fig. 6.1(a)). In this case, the
rotation angle

φ = arctan
y

x
(6.2)

can be defined as the phase which increases almost uniformly. The oscilla-
tor has coherent phase dynamics, i.e. the diffusion of the phase dynamics is
very low (10−5–10−4). In this case, other phase definitions, e.g. based on the
Hilbert transform or on the Poincaré section, yield equivalent results [9]. How-
ever, beyond the critical value ac, the trajectories no longer completely cycle
around (x0, y0) – the attractor becomes the so-called funnel attractor. Such
earlier returns in the funnel attractor happen more frequently with increasing
a (Fig. 6.1(b)). It is clear that for the funnel attractors, usual (and rather
simple) definitions of phase, such as (6.2), are no longer applicable [9].

Another problematic case arises if the systems under consideration have
two predominant time scales, which is common in many real systems, e.g.
neurons with spiking and bursting dynamics. In such cases, the definition of
the phase given by (6.2) is also not appropriate.

Figure 6.2 shows these problems with the time series of a Hindmarsh-Rose
neuron.1

Rosenblum et al. [13] have proposed the use of an ensemble of phase co-
herent oscillators that is driven by a non-phase-coherent oscillator in order
to estimate the frequency of the latter and hence detect PS in such kind

1 For the definition of the Hindmarsh-Rose neuron see Sect. 6.3 and also Chap. 1.
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Fig. 6.1. (a,e): Segment of the x1-component of the trajectory of the Rössler sys-
tems (6.1); (b,f): periodogram of the x-component of the trajectory; (c,g): projection
of the attractor onto the (x, y) plane; (d,h): projection onto the (ẋ, ẏ) plane. Up-
per panel (a,b,c,d) computed for a = 0.16 and lower panel (e,f,g,h) computed for
a = 0.2925

of systems. However, depending on the component one uses to couple the
non-phase-coherent oscillator to the coherent ones, the result of the obtained
frequency can be different.

Furthermore, Osipov et al. [10] have proposed another approach which
is based on the general idea of the curvature of an arbitrary curve. For any
two-dimensional curve r=(u, v) they propose that the phase φ be defined as
φ=arctan v̇

u̇ . By means of this definition, the projection ṙ =(u̇, v̇) is a curve
cycling monotonically around a certain point.

This definition of φ holds in general for any dynamical system if the pro-
jection of the phase trajectory onto some plane is a curve with a positive
curvature. This approach is applicable to a large variety of chaotic oscillators,
such as the Lorenz system [14], the Chua circuit [15] or the model of an ideal
four-level laser with periodic pump modulation [16].
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Fig. 6.2. Projection of the x-y-plane; (a) and the plot of the Hilbert Transform of
x versus x; (b) for the Hindmarsh-Rose-neuron
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This is clear for phase-coherent as well as funnel attractors in the Rössler
oscillator. Here, projections of chaotic trajectories on the plane (ẋ, ẏ) always
rotate around the origin (Figs. 6.1(c) and (d)) and the phase can be defined as

φ = arctan
ẏ

ẋ
. (6.3)

Although this approach works well in non-phase-coherent model systems,
we have to consider that one is often confronted with the computation of the
phase in experimental time series, which are usually corrupted by noise. In
this case, some difficulties may appear when computing the phase given in
(6.3), because derivatives are involved in its definition.

6.2.1 Cross-correlation of the Probability of Recurrence

We use a different approach, based on recurrences in phase space, to detect
PS indirectly. We define a recurrence of the trajectory of a dynamical system
{xi}Ni=1 in the following way: we say that the trajectory has returned at time
t=j to the former point in phase space visited at t= i if

R
(ε)
i,j = Θ(ε− ‖xi − xj‖) = 1 , (6.4)

where ε is a pre-defined threshold and Θ(·) is the Heaviside function. A “1”
in the matrix at i, j means that xi and xj are neighboring, a “0” that they
are not. The black and white representation of this binary matrix is called
a recurrence plot (RP). This method has been intensively studied in the last
years [11]: different measures of complexity have been proposed based on
the structures obtained in the RP and have found numerous applications for
example, in physiology and earth science [17]. Furthermore, it has been even
shown that some dynamical invariants can be estimated by means of the
recurrence structures [18].

Based on this definition of recurrence, one is able to tackle the problem of
performing a synchronization analysis in the case of non-phase-coherent sys-
tems. We avoid the direct definition of the phase and use instead the recurrence
properties of the systems in the following way: the probability P (ε)(τ) that
the system returns to the neighborhood of a former point xi of the trajectory2

after τ time steps can be estimated as follows:

P (ε)(τ) =
1

N − τ
N−τ∑
i=1

Θ(ε− ‖xi − xi+τ‖) =
1

N − τ
N−τ∑
i=1

R
(ε)
i,i+τ . (6.5)

This function can be regarded as a generalized autocorrelation function, as it
also describes higher order correlations between the points of the trajectory

2 The neighborhood is defined as a box of size ε centered at xi, as we use the
maximum norm.
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dependent on the time delay τ . A further advantage with respect to the linear
autocorrelation function is that P (ε)(τ) is defined for a trajectory in phase
space and not only for a single observable of the system’s trajectory.

For a periodic system with period T , it can be easily shown that P (ε)(τ)=1
if τ = T and P (ε)(τ) = 0 otherwise. For coherent chaotic oscillators, such
as (6.1) for a=0.16, P (ε)(τ) has well-expressed local maxima at multiples of
the mean period, but the probability of recurrence after one or more rotations
around the fixed point is less than one (Fig. 6.3(b,d)).

Analyzing the probability of recurrence, it is possible to detect PS for non-
phase-coherent oscillators as well. This approach is based on the following idea:
Originally, a phase φ is assigned to a periodic trajectory x in phase space, by
projecting the trajectory onto a plane and choosing an origin, around which
the trajectory oscillates all the time. Then, an increment of 2π is assigned to
φ when the point of the trajectory has returned to its starting position, i.e.
when ‖x(t + T ) − x(t)‖ = 0. Analogously to the case of a periodic system,
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Fig. 6.3. Time series (a and c) and the probability of recurrence (b and d)
of the Rössler system with parameters a = 0.15, b = 0.2, c = 8.5, ω1 = 1 and
ω2 =1.05. The coupling strength for the non-PS case (a and b) is μnonPS =0.01
and μPS =0.07 for the PS case (c and d), respectively. The values for CPR that
have been calculated are CPRnonPS = 0.0102 and CPRPS = 0.9995. The figures
show clearly how the peaks drift apart from each other in the absence of PS and
coincide in the case of PS
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we can assign an increment of 2π to φ for a complex non-periodic trajectory
x(t) when ‖x(t+T )−x(t)‖ ∼ 0, or equivalently when ‖x(t+T )−x(t)‖ < ε,
where ε is a predefined threshold. That means that a recurrence R(ε)

t,t+τ = 1
can be interpreted as an increment of 2π of the phase in the time interval τ .3

P (ε)(τ) can be viewed as a statistical measure of how often φ in the original
phase space has increased by 2π or multiples of 2π within the time interval τ . If
two systems are in PS, on the average, the phases of both systems increase by
2π k, with k a natural number, within the same time interval τ . Hence, looking
at the coincidence of the positions of the maxima of P (ε)(τ) for both systems,
we can quantitatively identify PS (from now on, we omit (ε) in P (ε)(τ) to
simplify the notation). The proposed algorithm then consists of two steps:

• Compute P1,2(τ) of both systems based on (6.5).
• Compute the cross-correlation coefficient between P1(τ) and P2(τ) (Cor-

relation between probabilities of recurrence)

CPR1,2 =

〈
P̄1(τ)P̄2(τ)

〉
τ

σ1σ2
, (6.6)

where the bar above P̄1,2 denotes that the mean value has been subtracted
and σ1 and σ2 are the standard deviations of P1(τ) and P2(τ), respectively.

If both systems are in PS, the probability of recurrence is maximal si-
multaneously and CPR1,2≈ 1. In contrast, if the systems are not in PS, the
maxima of the probability of recurrence do not occur jointly and we would
expect low values of CPR1,2.

In Figs. 6.3 and 6.4, we illustrate the performance of the method with two
examples of the Rössler system.

6.2.2 The Problem of Separating the Time Scales

As already mentioned, neurons can exhibit dynamics on several distinct time
scales (spiking and bursting) and are also able to synchronize on both scales
separately. To perform a synchronisation analysis of such a system, one has
to segregate the two scales of each other. Figure 6.5 shows the RP of a
Hindmarsh-Rose neuron.4 In Fig. 6.5(a), the structures that emerged from the
recurrence of the bursts can be identified quite clearly, namely the “swelling
diagonal lines”. In Fig. 6.5(b), one of those “swellings” is presented magnified.
Here, the recurrences of the spike dynamics can be noticed as diagonal lines
on a smaller scale in the RP.

Separating the scales is a non-trivial task. Filtering the time series could
be one approach, but this is not recommended as the attractor of the fil-
tered time series will be distorted, which will change the recurrence behavior.

3 This can be considered as an alternative definition of the phase to (6.2) and (6.3).
4 For the definition of the Hindmarsh-Rose neuron see Sect. 6.3 and Chap. 1, again.
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Fig. 6.4. Time series (a and c) and the probability of recurrence (b and d) of the
Rössler system in a bursting regime with the parameters a=0.38, b=0.4, c=50,
ω1 = 1 and ω2 = 1.05. The coupling strength for the non PS case (a and b) is
μnonPS =0.005 and μPS =0.23 for the PS case (c and d), respectively. The values
for CPR that have been calculated are CPRnonPS =0.0258 and CPRPS =0.9684.
Clearly, the peaks do not coincide in the non-PS case and do so in the presence
of PS. This example shows quite well that the algorithm is able to detect PS for
systems with a very complicated flow of the phase

Therefore, separating the time scales after calculating the RP or P (τ) is a
better approach. We separate the time scales in two ways: The first one re-
quires the choice of an appropriate recurrence rate and the second one is the
application of some filter to P (τ).

In Fig. 6.6(a) the recurrence probability P (τ) of a Hindmarsh-Rose neuron
is presented. The large peaks correspond to the recurrence of the bursts. The
arrows indicate the smaller peaks generated by the recurrence of the spikes.
There are many methods for separating both scales, e.g. wavelets, etc. In this
analysis, an infinite impulse response (IIR) filter has been used, which can be
implemented easily by simple difference equations.

Figure 6.6(b) shows the highpass filtered P (τ). The cutoff has been chosen
to be 0.2 × sampling rate. The broad peaks, originated by the burst, are fil-
tered out and the smaller peaks corresponding to the spike recurrence become
clearer. Note that the filtered P (τ) cannot be interpreted as a probability of
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Fig. 6.5. Recurrence plot of the time series of a Hindmarsh-Rose neuron on a large
scale (a) and zoomed in to show a small scale features (b)

recurrence any more, since it also assumes negative values. However, it still
captures all the relevant information about the recurrence of the spiking dy-
namics. Thus, a separate synchronization analysis of the spike scale can now
be accomplished by computing the index CPR of the filtered functions.

The recurrence rate is the parameter that specifies the number of black
points in the RP and determines the threshold ε in (6.4). This parameter also
influences the patterns obtained in the recurrence plot. Hence, by varying the
recurrence rate, we can enhance or suppress certain information.

Figure 6.7(a) shows the RP of a Hindmarsh-Rose neuron time series, com-
puted for a high recurrence rate of 0.5. Comparing this plot with the one
in Fig. 6.5(a), it can be observed that the shorter lines originating from the
recurrence of the spikes are “smeared out” The corresponding probability of
recurrence P (τ) in Fig. 6.7(b) shows only the oscillations that are caused by
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Fig. 6.6. Probability of recurrence P (τ ) for the Hindmarsh-Rose neuron: (a) The
original and; (b) highpass filtered. The arrows indicate the features created by the
recurrence of the spikes
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Fig. 6.7. RP with RR = 0.5; (a) and corresponding P (τ ) ; (b) for an exemplary
Hindmarsh-Rose neuron

the recurrence of the bursts. Consequently, the recurrence rate can be used to
analyze the synchronization of the slow time scale (bursts), since the influence
of the fast scale is automatically removed.

Analogously, choosing a rather low value for the recurrence rate causes the
fine structures of the spike recurrences to appear more clearly. Therefore, it is
advisable to use a rather low recurrence rate to analyze the synchronization of
the spikes. In Fig. 6.8, the RP and the corresponding high-pass filtered P (τ)
are presented. This example demonstrates quite well, how the large peaks,
which are usually created by the recurrence of the bursts, are suppressed,
so that the recurrence of the spikes is clearer than for higher values of the
recurrence rate.
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Fig. 6.8. RP with RR = 0.05: (a) and corresponding highpass filtered P (τ ) ; (b)
for an exemplary Hindmarsh-Rose neuron
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A Few Notes on the Parameters

The RP based method has several parameters that need to be chosen in an
appropriate way. These parameters are the already discussed recurrence rate
and cutoff frequency of the filter, the averaging length N in (6.5), and the
maximum recurrence time τmax when calculating CPR.

On the one hand, small values of N and τmax are desirable, such that
the analysis can operate as locally as possible and with as small as possible
computational cost. On the other hand, the values cannot be too small, since
the analyses requires averaging and thus needs a large number of points for a
correct calculation. Therefore, one has to determine the minimum values of N
and τmax to serve both requirements. This can be done by calculating CPR
for different values of these parameters. For large values, one can expect some
kind of asymptotic behavior.

6.3 Application of the Algorithm

In this section, we present a few results that have been obtained by applying
the proposed algorithm to networks of coupled neurons with different topolo-
gies. The neuron model that has been used is a (modified) four-dimensional
Hindmarsh-Rose system (for details, see [19] and [20]),

ẋn = ωfast,n(yn + 3x2
n − x3

n − 0.99zn + In) + μ
∑N

m=1Anm(xm − xn)
ẏn = ωfast,n(1.01− yn − 5.0128x2

n − 0.0278wn)
żn = ωslow1,n(−zn + 3.966(xn + 1.605))
ẇn = ωslow2,n(−0.9573wn + 3(yn + 1.619)),

(6.7)

where xn is the membrane potential, and yn, zn, and wn represent inner
degrees of freedom of neuron n, with n=1, . . . , N . Whereas yn is responsible
for the fast dynamics of the spikes, zn and wn represent the slow dynamics of
the bursts. In is the external input current of neuron n, ωfast,n determines the
firing rate, and ωslow1,n and ωslow2,n determine the duration of the bursts. The
neurons are electrically coupled, while the coupling topology of the neurons
is given by the adjacency matrix Anm (see Chap. 3). The parameter μ is the
coupling strength of the whole network.

6.3.1 Analysis of Two Coupled Neurons

First, we apply the algorithm to a pair of coupled Hindmarsh-Rose neurons.
We consider different parameter sets for the two neurons (see Table 6.1), so
that we have three possibilities for the dynamical regime of the neurons: (i)
both neurons in regular bursting regime with different frequencies, (ii) both
neurons in chaotic bursting regime with different frequencies, and (iii) one
neuron in spiking regime and one in regular bursting regime, both neurons
with the same frequencies.
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Table 6.1. A list of parameters in the examined pair of Hindmarsh-Rose neurons

wslow1,1 wslow2,1 wfast1 I1 wslow1,2 wslow2,2 wfast2 I2

regular bursting 0.0015 0.019 1.1 3.0 0.0018 0.0012 0.9 2.9
chaotic bursting 0.0050 0.0010 1.1 3.1 0.0022 0.0007 0.9 3.1
one bursting, one spiking 0.0015 0.0009 1.0 5.0 0.0015 0.0009 1.0 2.5
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Fig. 6.9. CPRbursts and CPRspikes vs. coupling strength μ for a pair of Hindmarsh-
Rose neurons with parameters according to Table 6.1: (a) regular bursting (b)
chaotic bursting; (c) one spiking, one regular bursting

Then, we compute the synchronisation indices CPRbursts and CPRspikes

for each case dependent on the coupling strength (see Fig. 6.9). For all three
cases the spikes need higher coupling strengths to become phase synchronized
than the bursts. This result is in good accordance with [21].

6.3.2 Analysis of Networks of Neurons

Different network topologies (random, small-world and scale-free) with Hind-
marsh-Rose neurons at each node have been analyzed. Each network had
N=200 nodes and an average degree 〈d〉 of 10. The parameters of the neurons
have been chosen as follows: In ∈ N (3.1, 0.05) (chaotic bursting regime),
ωfast,n ∈ N (1, 0.05), ωslow1,n ∈ N (0.002, 0.0005), and ωslow,n = 0.001, where
N (μ̃, σ) denotes a Gaussian normal distribution with mean μ̃ and variance
σ. The coupling strength has been chosen as μ=g/ 〈d〉. The synchronization
indices CPRbursts and CPRspikes have been calculated for each pair of nodes
from the networks for increasing values of the coupling parameter g. Thus,
we obtain two matrices (CPRbursts

nm ) and (CPRspikes
nm ), where n,m = 1, . . . , 200

indicate the nodes.
In Fig. 6.10, we present a few snapshots of those CPR-matrices for different

values of the coupling strength g for the scale free network. We have found
that with an increasing coupling strength, the hubs (nodes with largest degree,
see Chap. 3 for details) will synchronize first, while the rest of the nodes
need a higher coupling strength to become synchronized. This is in good
accordance with [22], where this has been shown for a scale free network of
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Fig. 6.10. Several snapshots of the CPR matrix of a network of 200 Hindmarsh-
Rose neurons are presented for different coupling strengths. The left hand plot of
each pair corresponds to the bursts, the right hand one to the spikes, respectively.
Several phenomena stand out: 1. the hubs synchronize first, “attracting” the
remaining nodes when the coupling increases further; 2. the spikes synchronize
for a higher coupling strength than the bursts and; 3. there is a collapse of the
spike synchronization in a certain domain of the coupling strength

Rössler oscillators. Furthermore, we have found for all three networks, as in
the case of two coupled neurons, that the synchronization of the spikes sets
in for higher values of the coupling strength than for the bursts.

To quantify the degree of phase synchronization of the whole network, we
count the number of values in (CPRnm) that are above a certain threshold
and we call this number “area of synchronization”. The threshold has been
chosen as 0.8. In Fig. 6.11, those areas of synchronization are plotted versus
the coupling strength.

An interesting result can be observed in the plot of the area of synchro-
nization, as well in the snapshots of the CPR-matrices: there is a collapse
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Fig. 6.11. Area of synchronization for; (a) random network; (b) small-world net-
work; and (c) scale-free network for bursts and spikes, respectively

of the synchronization of the spikes for intermediate values of the coupling
strength. In contrast, the synchronization of the bursts remains unchanged.
This could be due to a change of the dynamics, namely the coherence of the
oscillators with increasing values of the coupling strength g.

6.4 Conclusions

In this chapter, we have analyzed phase synchronization in networks with
complex topology and complex dynamics. In particular, we have concentrated
on dynamics on two time scales, as is typically observed in neurons with
spiking and bursting dynamics. In order to analyze the synchronization be-
havior of such systems we extended an existing method, which is based on the
concept of recurrence [11], to treat the two time scales separately. We have
applied the proposed method to complex networks of Hindmarsh-Rose neu-
rons. Our results are in accordance with [21], where it has been shown that
the spikes need higher values of the coupling strength than the bursts in order
to phase synchronize. Moreover, we have found that in a scale-free network of
Hindmarsh-Rose neurons, the hubs synchronize first with increasing coupling
strength, while the rest of the nodes need a higher coupling to synchronize,
as has been reported in [22] for a scale-free network of Rössler oscillators. In
addition, the most interesting result of our analysis is that we have found a
collapse in the synchronization of the spikes in those complex networks for
an intermediate coupling strength. This effect will be discussed in detail in a
forthcoming paper.
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Summary. After reviewing several physiological findings on oscillations in the elec-
troencephalogram (EEG) and their possible explanations by dynamical modeling, we
present neural networks consisting of leaky integrator units as a universal paradigm
for neural and cognitive modeling. In contrast to standard recurrent neural net-
works, leaky integrator units are described by ordinary differential equations living
in continuous time. We present an algorithm to train the temporal behavior of leaky
integrator networks by generalized back-propagation and discuss their physiologi-
cal relevance. Eventually, we show how leaky integrator units can be used to build
oscillators that may serve as models of brain oscillations and cognitive processes.

7.1 Introduction

The electroencephalogram (EEG) measures the electric fields of the brain gen-
erated by large formations of certain neurons, the pyramidal cells . These nerve
cells roughly possess an axial symmetry and they are aligned in parallel per-
pendicular to the surface of the cortex [1–4]. They receive excitatory input at
the superficial apical dendrites from thalamic relay neurons and inhibitory in-
put at the basal dendrites and at their somata from local interneurons [1,3–5].
Excitatory and inhibitory synapses cause different ion currents through the
cell membranes thus leading to either depolarization or hyperpolarization,
respectively. When these synapses are activated, a single pyramidal cell be-
haves as a microscopic electric dipole surrounded by its characteristic electric
field [1, 6].

According to the inhomogeneity of the cortical gray matter, a mass of
approximately 10,000 synchronized pyramidal cells form a dipole layer whose
fields sum up to the local field potentials that polarize the outer tissues of
the scalp, which acts thereby as a low pass filter [1, 3, 5, 6]. These filtered
sum potentials are macroscopically measurable as the EEG at the surface of
a subject’s head (cf. Chap. 1).
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Some of the most obvious features of the EEG are oscillations in certain
frequency bands. The alpha waves are sinusoidal-like oscillations between
8–14 Hz, strongly pronounced over parietal and occipital recording sites that
reflect a state of relaxation during wakefulness, with no or only low visual
attention. Figure 7.1 shows a characteristic power spectrum for the alpha
rhythm: There is one distinguished peak superimposed to the 1/f background
EEG. When a subject starts paying attention, the powerful slow alpha waves
disappear, while smaller oscillations with higher frequencies around 14–30 Hz
(the beta waves) arise [2, 7, 8]. We will refer to this finding, sometimes called
desynchronization of the EEG, as to the alpha blocking [7].4 Alpha waves are
assumed to be related to awareness and cognitive processes [11–14]. Experi-
mental findings suggest that thalamocortical feed-back loops are involved in
the origin of the alpha EEG [1,2, 4, 8, 15, 16].

The 1/f -behavior and the existence of distinguished oscillations in the
EEG such as the alpha waves are cornerstones in the evaluation of computa-
tional models of the EEG. Indeed, modeling these brain rhythms has a long
tradition. Wilson and Cowan [17] were the first to use populations of exci-
tatory and inhibitory neurons innervating each other (see Sect. 7.3.2). They
introduced a two-dimensional state vector whose components describe the pro-
portion of firing McCulloch-Pitts neurons [18] within a unit volume of neural
tissue at an instance of time. This kind of ensemble statistics leads to the
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Fig. 7.1. Power spectrum of the alpha EEG at one parietal electrode site (PZ)

4 The term “desynchronization” is misleading since it has no direct relation to
synchronization in the sense of, for example, [9, 10]. From the viewpoint of data
analysis it simply means: decreasing power in the alpha band of the spectrum.
However, biophysical theories of the EEG explain the loss of spectral power by a
loss of coherence of neuron activity, i.e. a reduction of synchronization [7,8,11].
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well-known sigmoidal activation functions for neural networks [19] through
the probability distributions of either synapses or activation thresholds (see
also [5]). The model further includes the refractory time in which a neuron
that has been activated just before cannot be activated again, and the time-
course of postsynaptic potentials as impulse response functions . This model
has been strongly simplified by Wilson [20], leading to a network of only two
recurrently coupled leaky integrator units (see Sect. 7.2). Wilson reported limit
cycle dynamics of this system for a certain range of the excitatory input, play-
ing the role of a control parameter. However, this network does not exhibit
an equivalent to the alpha blocking, because the frequency of the oscillations
becomes slower for increasing input.

Lopez da Silva et al. [21] pursued two different approaches: a distributed
model of the thalamus where relay cells and interneurons are considered indi-
vidually, and a “lumped” model analogous to the one of Wilson and Cowan [17]
but without refractory time and with even more complicated postsynaptic
potentials. In order to determine the sum membrane potential of each pop-
ulation as a model EEG, one has to compute the convolution integral of the
postsynaptic impulse response functions with the spike rate per unit of vol-
ume. Linearizing the activation functions allows a system-theoretic treatment
of the model by means of the Laplace transform, thus allowing the analytical
computation of the power spectrum. Lopez da Silva et al. [21,22] have shown
that their model of thalamical or cortical feedback loops actually exhibits a
peak around 10 Hz, i.e. alpha waves, in the spectrum, although they were not
able to demonstrate alpha blocking. This population model [21] has been fur-
ther developed by Freeman [23], Jansen et al. [24,25], Wendling et al. [26,27],
and researchers from the Friston group [28–30] in order to model the EEG
of the olfactory system, epileptic EEGs, and event-related potentials (ERP),
respectively.

A further generalization of the Lopez da Silva et al. model [21] led Rot-
terdam et al. [31] to a description of spatio-temporal dynamics by considering
a chain of coupled cortical oscillators. A similar approach has been pursued
by Wright and Liley [32, 33] who discussed a spatial lattice of coupled unit
volumes of excitatory and inhibitory elements obeying cortical connectivity
statistics. The convolution integrals of the postsynaptic potentials with the
spike rates were substituted by convolution sums over discrete time. The most
important result for us is that the power spectrum shows the alpha peak, and,
that there is a “shift to the right” (towards the beta band) of this peak with
increasing input describing arousal, i.e. actually alpha blocking.

Additionally, Liley et al. [34] also suggested a distributed model of cortical
alpha activity using a compartmental description of membrane potentials [35].
In such an approach, nerve cells are thought to be built up of cylindrical
compartments that are governed by generalized Hodgkin-Huxley equations
[36] (see also Chap. 1). Liley et al. [34] reported two oscillatory regimes of this
dynamics: one having a broad-band spectrum with a peak in the beta range
and the other narrowly banded with a peak around the alpha frequency.
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There are also field theoretic models of neural activity [37–41] (see Chap. 8).
In these theories, the unit volumes of cortical tissue are considered to be in-
finitesimally small. Thus, the systems of coupled ordinary differential equa-
tions are substituted by nonlinear partial differential equations. Robinson et
al. [41] have proposed such a theory in order to describe thalamocortical in-
teractions and hence the alpha EEG.

Another approach that could lead to the explanation of the EEG is Hebb’s
concept of a cell assembly [42], where reverberatory circles form neural oscil-
lators. We shall see in Sect. 7.4.3 how such circles may emerge in an evolving
neural network.

On the other hand, Kaplan et al. [43], van der Velde and de Kamps [44],
Wennekers et al. [45], and Smolensky and Legendre [46] argue how neural
networks could bridge the gap between the sub-symbolic representation of
single neurons and “a symbol-like unit of thought” in models of cognitive
processes. Kaplan et al. proposed that the cell assembly be an assembly of
neural units that are recurrently connected to exhibit reverberatory circles,
in which information needs to cycle around until the symbolic meaning is
fully established. They presented a series of experiments in which they made
use of physiological principles that should be present in the functioning of
cell assemblies: temporally structured input, dependency on prior experience,
competition between assemblies and control of its activation. A main result
is that after a cell assembly is provided with input, its activation gradually
increases until an asymptotic activation is reached or the input is removed.
After removal of the input, the activation gradually decreases until it comes
back to its resting level.

7.2 Leaky Integrator Networks

7.2.1 Description of Leaky Integrator Units

When neural signals are exchanged between different cell assemblies that are
typically involved in brain functions, oscillations caused by recurrent connec-
tions between the neurons should become visible. A possible way to model this
behavior is by describing each cell assembly by a leaky integrator unit [47],
which integrates input over time while the internal activation is continuously
decreased by a dampening leakage term. We shall present the relationship be-
tween cell assemblies and leaky integrator units in Sect. 7.3.2. However, also
single neurons can be described by a leaky integrator unit, though with quite
different leakage constants, as we shall see in Sect. 7.3.1. In terms of standard
units (as e.g. used by Rumelhard et al. [48]), a leaky integrator unit looks like
the one depicted in Fig. 7.2.



7 Neural and Cognitive Modeling 199

α w

1−α
α w

α

(a)

(b)
(1-α)w

Fig. 7.2. Simulation of a leaky integrator unit (a) and a recurrent combination
of two standard units (b). The function of the leakage rate α is mimicked by two
parallel standard units with a logistic and a linear activation function, respectively.
The synaptic weights to subsequent units are denoted by w (cf. (7.3))

The activation of this leaky integrator unit is described by

dxi(t)
dt

= −xi(t) + (1− αi) xi(t) + αif(yi(t))

= −αixi(t) + αif(yi(t)) , (7.1)

or, in another form:

τi
dxi(t)

dt
+ xi(t) = f(yi(t)) . (7.2)

The symbols have the following meanings:
dxi(t)

dt change of activation of unit i at time t
xi(t) activation of unit i at time t
yi(t) net input of unit i at time t
αi leakage rate of unit i
τi = α−1

i time constant of unit i
f activation function of each unit; usually sigmoidal

(e.g. logistic as in (7.5)) or linear.

The leakage rate α tells how much a unit depends on the actual net input. Its
value is between 0 and 1. The lower the value of α, the stronger the influence
of the previous level of activation and the less the influence of the actual net
input. If α = 1, the previous activation does not have any influence and the
new activation is only determined by the net input (this is the case e.g. for the
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standard units used by the PDP group [48]). By contrast, α = 0 means that
the actual net input does not have any influence and the activation remains
constant. (1 − α could also be regarded as the strength of its memory with
respect to earlier activations.)

The net input of unit i is given as the sum of all incoming signals:

yi(t) =
∑

j

wijxj(t) + bi + Iext
i (t) . (7.3)

With

yi(t) net input of unit i at time t
wij weight of connection from unit j to unit i
bi bias of unit i
Iext
i external input to unit i

Equation (7.1) is very similar to the general form of neural networks equa-
tions for continuous-valued units (described, for example, in [19]). The dif-
ference lies in the presence of the leakage term α that makes the current
activation dependent on its previous activation. We motivate (7.1) by the
equivalent recurrent network of Fig. 7.2 and we shall use it in Sect. 7.2.2 sub-
sequently to derive a generalized back-propagation algorithm as a learning
rule for temporal patterns. On the other hand, (7.2) is well-known from the
theory of ordinary differential equations. Its associated homogeneous form

τi
dxi

dt
+ xi = 0

simply describes an exponential decay process. Therefore, the inhomogeneous
(7.2) can be seen as a forced decay process integrating its input on the right
hand side.

Hertz et al. [19, p. 54] discuss a Hopfield network of leaky integrator units
which is characterized by (7.2) with symmetric synaptic weights wij . Such a
network is a dynamical system whose attractors are the patterns which are
to be learned. Moreover, Hertz et al. [19, p. 55] consider another dynamical
system

τi
dxi(t)

dt
+ xi(t) =

∑
j

wijf(xj(t)) + bi + Iext
i (t) (7.4)

having the same equilibrium solutions as (7.2). As we shall see in Sect. 7.3.1,
(7.4) appropriately models small networks of single neurons. The time-course
of activation for a leaky integrator unit using a logistic activation function

f(x) =
1

1 + e−βx
(7.5)

with respect to input and leakage rate is shown in Figs. 7.3(a) and (b).
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Fig. 7.3. Time-course of activation (7.1); (a) for different input with Δt = 0.1,
α = 0.3 and b = −2.2; (b) Time-course of activation (7.1) for different leakage rates
with Δt = 0.1, Iext = 4.3 and b ≈ −2.2

7.2.2 Training Leaky Integrator Networks

In order to use leaky integrator units to create network models for simula-
tion experiments, a learning rule that works in continuous time is needed.
The following formulation is motivated by [49, 50] and describes how a back-
propagation algorithm for leaky integrator units can be derived.
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In a first step, Euler’s algorithm is used to change the differential equations
into difference equations:5

xi(t+Δt) ≈ xi(t) +
dxi(t)

dt
Δt

⇒ dxi(t)
dt

≈ xi(t+Δt)− xi(t)
Δt

. (7.6)

Combining (7.1) and (7.6) yields

x̃i(t+Δt) = (1 −Δt)x̃i(t) +Δt {(1− αi)x̃i(t) + αif(ỹi(t))}
= (1−Δtαi) x̃i(t) +Δtαif(ỹi(t)) , (7.7)

where tildes above variables (e.g. x̃ ) denote continuous functions that have
been discretized.

Figures 7.3(a) and (b) show the time-course of activation for a leaky inte-
grator unit with different values of external input I and leakage parameters
α with I �= 0 for t ∈ [0, 20]. In order to train a network, one needs to define
an error function

E =

t1∫
t0

ferr [x(t), t] dt . (7.8)

Here, we choose the least mean square function

E =
1
2

∑
i

t1∫
t0

si [xi(t)− di(t)]
2 dt , (7.9)

where di(t) is the desired activation of unit i at time t and si is the relative
importance of this activation: s = 0 means unimportant and s = 1 means
most important.

If one changes the activation of unit i at time t for a small amount, one
gets a measure of how much this change influences the error function:

ei(t) =
∂ferr [x(t), t]

∂xi(t)
(7.10)

with
ferr =

1
2

∑
i

si [xi(t)− di(t)]
2
.

With (7.9) as error function, we get

ei(t) = si [xi(t)− di(t)] . (7.11)
5 Note that the following derivation could also be achieved using the variational

calculus well-known from Hamilton’s principle in analytical mechanics [49]. We
leave this as an exercise for the reader.
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Equations (7.10) and (7.11) describe the influence of a change of activation
only for t. In a neural net that is described by (7.1) and (7.3), each change
of activation at t also influences the activation at later times t′ (t < t′). The
amount of this influence can be described by using time-ordered derivatives
[51, 52]:

z̃i(t) =
∂+E

∂x̃i(t)

:=
∂E

∂x̃i(t)
+
∑
t′>t

∑
j

∂+E

∂x̃j(t′)
∂x̃j(t′)
∂x̃i(t)

(7.12)

with j = 1, 2, . . . , n n number of units
t′ = t+Δt, t+ 2Δt, . . . , t1 t1 last defined time

z̃i(t) measures how much a change of activation of unit i at time t influences
the error function at all times.

Performing the derivations in (7.12) with (7.9), (7.11), (7.7) and (7.3) and
setting t′ = t+Δt gives:

∂E

∂x̃j(t)
= Δtei (7.13)

∂x̃i(t+Δt)
∂x̃i(t)

= (1 −Δtαi) +Δtαiwiif
′(ỹi(t)) (7.14)

∂x̃j(t+Δt)
∂x̃i(t)

= Δtαjwjif
′(ỹj(t)) (7.15)

for all units j that are connected with unit i .

All other derivatives are zero. With this, one gets

z̃i(t) = Δtei + (1−Δtαi) z̃i(t+Δt)

+
∑

j

Δtαjwjif
′(ỹj(t))z̃j(t+Δt) . (7.16)

The back-propagated error signal z(t) is equivalent to the δ in standard back-
propagation. After the last defined activation di(t1), there is no further change
of E, so zi(t1 +Δt) = 0.

Making use of Euler’s method in the opposite direction, we find that the
back-propagated error signal can be described by the following differential
equation:

dzi(t)
dt

= αizi(t)− ei −
∑

j

αjwjif
′(yj(t))zj(t) . (7.17)

With (7.16), it is possible to calculate how the error function changes if one
changes the parameters αi and wij . Each variation also changes the activation
xi. The influence of this activation on E can be calculated using the chain
rule of derivatives.
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If wij changes over Δt by ∂wij , then the influence of this change on the
error function can be described by

∂E

∂wij

∣∣∣∣
t+Δt

t

:=
∂+E

∂xi(t+Δt)
∂xi(t+Δt)

∂wij

= zi(t+Δt)αixj(t)f ′(yi(t))Δt . (7.18)

A change of ∂wij during the whole time t0 ≤ t ≤ t1 produces:

∂E

∂wij
= αi

t1∫
t0

zi(t)xj(t)f ′(yi(t))dt . (7.19)

For the influence of a change in αi on E one finds

∂+E

∂αi

∣∣∣∣
t+Δt

t

=
∂E

∂xi(t+Δt)
∂xi(t+Δt)

∂αi

= zi(t+Δt) {f(yi(t)) − xi(t)}Δt . (7.20)

For the whole time:

∂E

∂αi
=

t1∫
t0

zi(t) {f(yi(t))− xi(t)} dt . (7.21)

Now, we have nearly all the equations that are needed to train a neural
network of leaky integrator units. Finally, we must keep in mind the fact that
the leakage term α must be between 0 and 1. This can be done by using

α =
1

1 + e−ᾱ
(7.22)

and learning ᾱ instead of α. With this replacement we set

∂E

∂ᾱi
=

1
1 + e−ᾱi

(
1− 1

1 + e−ᾱi

)
×

×
t1∫

t0

zi(t) {f(yi(t))− xi(t)} dt . (7.23)

7.2.3 Overview of the Learning Procedure

To start the training, one needs to have the following information:

(i) topology of the net with number of units (n) and connections
(ii) values of the parameters W (0) = (wij(0)) and ᾱ(0) at t = 0
(iii) activations x(t0) at t = 0



7 Neural and Cognitive Modeling 205

(iv) time-course of the input Iext(t), t0 ≤ t ≤ t1
(v) time-course of the desired output d(t)
(vi) activation function f for each unit
(vii) error function E
(viii) time-step size Δt that resembles the required resolution of the time-

course (Δt = 0.1 turned out to be a good default value).

After having fixed these parameters according to the desired learning
schedule, the goal is then to find a combination of W and ᾱ(0) that gives a
minimum for E. This can be achieved by the following algorithm:

(i) At first one has to calculate the net input (7.3) for each unit successively
and for each time-step forward in time. Simultaneously, the activations
are calculated with (7.7).

(ii) With (7.9), one calculates the main error E and the error vector e(t)
using (7.11).

(iii) Then, the error signals are propagated backwards through time with
(7.16), making use of the condition z̃i(t1 +Δt) = 0.

(iv) Now, one calculates the gradient of each free parameter with respect to
the error function E with the discrete versions of (7.19) and (7.23):

∂E

∂wij
=

1
1 + e−ᾱi

t1∑
t=t0

z̃i(t+Δt)x̃j(t)f ′(ỹi(t))Δt (7.24)

∂E

∂ᾱi
=

1
1 + e−ᾱi

(
1− 1

1 + e−ᾱi

)

t1∑
t=t0

z̃i(t) {f(ỹi(t))− x̃i(t)}Δt . (7.25)

(v) After this, the parameters are changed along the negative gradient (gra-
dient descent):

wij = wij − ηw
∂E

∂wij
(7.26)

ᾱi = ᾱi − ηᾱ
∂E

∂ᾱi
, (7.27)

with ηw and ηᾱ as learning rates. (η = 0.1 is commonly a suitable
starting value.) The gradient can be used for steepest descent, conjugate
gradient or other numeric approximations (see e.g. [53]).

(vi) Having obtained the new values W and ᾱ, the procedure goes back to
step (i) and is followed until the main error falls below a certain value
in step (ii) or this criterion is not reached after a maximal number of
iterations.
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(For a model that uses this type of learning algorithm with leaky integrator
units, see [54]). In the context of modeling oscillating brain activity, recurrent
networks of leaky integrator units become interesting. Section 7.4 will describe
three typical examples.

7.3 From Physiology to Leaky Integrator Models

7.3.1 Leaky Integrator Model of Single Neurons

Let us consider the somatic membrane of a neuron i in the vicinity of its trigger
zone. For the sake of simplicity, we shall assume that the membrane behaves
only passively at this site. For further simplification, we do not describe the
trigger zone by the complete Hodgkin-Huxley equations [36], but instead as
a McCulloch-Pitts neuron [18], i.e. as a threshold device: the neuron fires if
its membrane potential Ui(t) exceeds the activation threshold θ ≈ −50 mV
from below due to the law of “all-or-nothing” [55, 56]. Because of this, the
membrane potential Ui(t) becomes translated into a spike train which can be
modeled by a sum of delta functions

Ri(t) =
∑

k:Ui(tk)=θ

U̇i(tk)>0

δ(t− tk) . (7.28)

Now, we can determine the number of spikes in a time interval [0, t] [35], which
is given by

Ni(t) =

t∫
0

Ri(t′)dt′ .

Thus, from the spike rate per unit time, we regain the original signal

d
dt
Ni(t) = Ri(t) . (7.29)

In the next step, we consider the membrane potential Ui in the vicinity of
the trigger zone which obeys Kirchhoff’s First Law (see Fig. 7.4), i.e.

∑
j

Iij =
Ui − Em

rm
+ ci

dUi

dt
, (7.30)

here, Em is the Nernst equilibrium potential of the leakage channels with
resistance rm. ci is the capacitance of the membrane of neuron i and Iij is the
current through the membrane at the chosen site coming from the synapse
formed by the jth neuron with neuron i.
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Fig. 7.4. Equivalent circuit for the leaky integrator neuron

These synaptic currents depend upon both the potential difference Ũij−Ui

between the postsynaptic potential Ũij at the synapse connecting neuron j to
i and the potential Ui at the trigger zone of i, and the intracellular resistance
along the current’s path rij . Therefore

Iij =
Ũij − Ui

rij
(7.31)

applies. Inserting (7.31) into (7.30) yields

∑
j

Ũij − Ui

rij
=
Ui − Em

rm
+ ci

dUi

dt
,

and after some rearrangements

rmci
dUi

dt
+ Ui

⎛
⎝1 +

∑
j

rm
rij

⎞
⎠ = Em +

∑
j

rm
rij
Ũij . (7.32)

After letting Em = 0, without loss of generality and introducing the time
constants

τi =
rmci

1 +
∑

j
rm

rij

(7.33)
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and provisory synaptic weights

w̃ij =
rm

rij

1 +
∑

j
rm

rij

, (7.34)

we eventually obtain

τi
dUi

dt
+ Ui =

∑
j

w̃ij Ũij . (7.35)

Next, the postsynaptic potentials Ũij require our attention. We assume
that an action potential arriving at the presynaptic terminal of the neuron j
releases, on average, one transmitter vesicle.6 The content of the vesicle dif-
fuses through the synaptic cleft and reacts with receptor molecules embedded
in the postsynaptic membrane. After chemical reactions described by kinetic
differential equations (cf. Chap. 1, [35]), opened ion channels give rise to a
postsynaptic impulse response potential Gij(t). Because we characterize the
dendro-somatic membranes as linear systems here, the postsynaptic potential
elicited by a spike train Rj(t) is given by the convolution

Ũij(t) = Gij(t) ∗Rj(t) . (7.36)

Let us make a rather crude approximation here by setting the postsynaptic
impulse response function proportional to a delta function:

Gij(t) = gijδ(t) , (7.37)

where gij is the gain of the synapse j → i. Then, the postsynaptic potential is
given by the product of the gain with the spike rate of the presynaptic neuron j.

Finally, we must take the stochasticity of the neuron into account as thor-
oughly described in Chap. 1. This is achieved by replacing the membrane
potential Uj at the trigger zone by its average obtained from the distribution
function, which leads to the characteristic sigmoidal activation functions [57],
e.g. the logistic function (see (7.5))

Rj(t) = f(Uj(t)) =
1

1 + e−β[Uj(t)−θ]
. (7.38)

Collecting (7.35, 7.36) and (7.38) together and introducing the proper
synaptic weights

wij = gijw̃ij (7.39)

yields the leaky integrator model of a network of distributed single neurons

τi
dUi

dt
+ Ui =

∑
j

wij f(Uj(t)) (7.40)

which is analogous to (7.4).
6 The release of transmitter is a stochastic process that can be approximately de-

scribed by a binomial distribution [55], and hence, due to the limit theorem of de
Moivre and Laplace, is normally distributed (see Chap. 1).
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7.3.2 Leaky Integrator Model of Neural Populations

According to Freeman [58] (see also [59]), a neuronal population (“KI” set)
consists of many reciprocally connected neurons of one kind, either excitatory
or inhibitory. Let us consider such a set of McCulloch-Pitts neurons [18] dis-
tributed over a unit volume i of neural tissue. We introduce the proportions
of firing cells (either excitatory or inhibitory, in contrast to [17]) in volume i
at the instance of time t, Qi(t), as the state variables [17, 32].

A neuron belonging to volume i will fire if its net input Ui (analogous
to the membrane potential at the trigger zone, see Sect. 7.3.1) crosses the
threshold θ. But now, we have to deal with an ensemble of neurons possess-
ing randomly distributed thresholds within the unit volume i. We therefore
obtain an ensemble activation function [5] (cf. Chap. 14) by integrating the
corresponding probability distribution density D(θ) of thresholds [17],

f(Ui) =

Ui∫
0

D(θ)dθ . (7.41)

Depending upon the modality of the distributionD(θ), the activation function
could be sigmoidal or even more complicated. For unimodal distributions such
as Gaussian or Poissonian distributions, f(Ui) might be approximated by
the logistic function (7.38). As for the single neuron model, the net input is
obtained by a convolution

Ui(t) =

t∫
−∞

G(t− t′)
∑

j

wij Qj(t′)dt′ , (7.42)

with “synaptic weights”wij characterizing the neural connectivity and whether
the population is excitatory or inhibitory.

In the following, we shall simplify the model of Wilson and Cowan [17] by
neglecting the refractory time. The model equations are then

Qi(t+ τi) = f

⎛
⎝

t+τi∫
−∞

G(t− t′)
∑

j

wij Qj(t′)dt′

⎞
⎠ , (7.43)

such that Qi(t + τi) is the proportion of cells being above threshold in the
time interval [t, t+ τi]. Expanding the left hand side into a Taylor series at t
and assuming again that G(t− t′) = δ(t− t′), we obtain

τi
dQi(t)

dt
+Qi(t) = f

⎛
⎝∑

j

wij Qj(t)

⎞
⎠ , (7.44)

a leaky integrator model again, yet characterized by (7.2).
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7.4 Oscillators from Leaky Integrator Units

7.4.1 Linear Model

In this section, we demonstrate that a damped harmonic oscillator can be
obtained from a simple model of two recurrently coupled leaky integrator
units with linear activation functions [49]. Figure 7.5 shows the architecture
of this model.

The network of Fig. 7.5 is governed by (7.4):

τ1
dx1

dt
+ x1 = w11x1 + w12x2 + p (7.45)

τ2
dx2

dt
+ x2 = w21x1 + w22x2 , (7.46)

where x1 denotes the activity of unit 1 and x2 that of unit 2. Correspondingly,
τ1 and τ2 are the time constants of the units 1 and 2, respectively. The synaptic
weights wij are indicated in Fig. 7.5. Note that the weights w11 and w22

describe autapses [60]. The quantity p refers to excitatory synaptic input that
might be a periodic forcing or any other function of time.

Equations (7.45) and (7.46) can be converted into two second-order ordi-
nary differential equations

d2x1

dt2
+ γ

dx1

dt
+ ω2

0 = p1 (7.47)

d2x2

dt2
+ γ

dx2

dt
+ ω2

0 = p2 , (7.48)

where we have introduced the following simplifying parameters:

γ =
τ1(1− w22) + τ2(1− w11)

τ1τ2

ω2
0 =

w11w22 − w12w21 − w11 − w22 + 1
τ1τ2

p1 =
1
τ1

dp
dt

+
1− w22

τ1τ2

p2 =
w21

τ1τ2
p

Fig. 7.5. Architecture of an oscillator formed by leaky integrator units
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Now, (7.47) and (7.48) describe two damped, decoupled, harmonic oscillators
with external forcing when γ ≥ 0 and ω2

0 > 0, i.e. one unit must be excitatory
and the other inhibitory.

7.4.2 Simple Nonlinear Model

Next, we discuss a simple nonlinear system, consisting of three coupled leaky
integrator units, which provides a model of the thalamocortical loop. Figure
7.6 displays its architecture.

According to Fig. 7.6, the model (7.4) are

τ1
dx1

dt
+ x1 = −αf(x3(t)) (7.49)

τ2
dx2

dt
+ x2 = βf(x1(t)) (7.50)

τ3
dx3

dt
+ x3 = γf(x2(t)) . (7.51)

Setting all τi = 1 and rearranging, we get

dx1

dt
= −x1 − αf(x3(t))

dx2

dt
= −x2 + βf(x1(t))

dx3

dt
= −x3 + γf(x2(t)) .

These equations define a vector field F with the Jacobian matrix

DF =

⎛
⎝ −1 0 −αf ′(x3(t))
βf ′(x1(t)) −1 0

0 γf ′(x2(t)) −1

⎞
⎠ .

��

��

��

��

1

3

�
�

�
�

�
�

���

�

β

γ−α

2

Fig. 7.6. Thalamocortical oscillator of three leaky integrator units: (1 ) pyramidal
cell; (2 ) thalamus cell; (3 ) cortical interneuron (star cell)



212 P. beim Graben et al.

For the activation function, we chose f(x) = tanhx, which can be obtained
by a coordinate transformation from the logistic function in (7.38). Therefore,
F (x1, x2, x3) = 0 and we can look at whether the center manifold theorem [61]
can be applied. The Jacobian at (0, 0, 0) is

DF (0) =

⎛
⎝−1 0 −α

β −1 0
0 γ −1

⎞
⎠ ,

having eigenvalues

λ1 = −1− 3
√
αβγ

λ2 = −1 +
1
2
(1− i

√
3) 3
√
αβγ

λ3 = −1 +
1
2
(1 + i

√
3) 3
√
αβγ .

Since λ1 < 0 for α, β, γ ≥ 0, we seek for the weight parameters making
Re(λ2|3) = 0. This leads to the condition

αβγ = 8 , (7.52)

which can be easily fulfilled, for example, by setting

α = 4, β = 1, γ = 2 .

In this case, the center manifold theorem applies: the dynamics stabilizes
along the eigenvector corresponding to λ1, exhibiting a limit cycle in the
center manifold spanned by the eigenvectors of λ2 and λ3. Figure 7.7 shows
a numerical simulation of this oscillator. It is also possible to train a leaky
integrator network using the algorithm described in Sect. 7.2.2 in order to
replicate a limit cycle dynamics [49].

7.4.3 Random Neural Networks

In this last subsection, we describe a network model that is closely related
to those presented in Chaps. 3, 5, 12, 13, and 14, namely a random graph
carrying leaky integrator units described by (7.4) or, equivalently, (7.40), at
its nodes:

τi
dxi(t)

dt
+ xi(t) =

∑
j

wijf(xj(t)) .

We shall see that the onset of oscillatory behavior is correlated with the emer-
gence of super-cycles in the topology of the network provided by an evolving
directed and weighted Erdős-Rényi graph of N nodes where all connections
between two nodes are equally likely with increasing probability [62–64].

As explained in Chap. 3, a directed Erdős-Rényi graph consists of a set
of vertices V that are randomly connected by arrows taken from an edge set
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E ⊂ V ×V with equal probability q. The topology of the graph is completely
described by its adjacency matrix A = (aij) where aij = 1, if there is an
arrow connecting the vertex j with the vertex i (i.e. (j, i) ∈ E for i, j ∈ V )
while aij = 0 otherwise. A directed and weighted Erdős-Rényi graph is then
described by the weight matrix W = (wij) which is obtained by element-
wise multiplication of the adjacency matrix with constants gij : wij = gij aij .
Biologically plausible models must satisfy Dale’s law, which says that exci-
tatory neurons only have excitatory synapses while inhibitory neurons only
possess inhibitory synapses [56]. Therefore, the column vectors of the weight
matrix are constrained to have a unique sign. We achieve this requirement
by randomly choosing a proportion p of the vertices to be excitatory and the
remainder to be inhibitory.

In our model, the weights become time-dependent due to the following
evolution algorithm:

(i) Initialization: W (0) = 0.
(ii) At evolution time t, select a random pair of nodes i, j.
(iii) If they are not connected, create a synapse with weight wij(t+ 1) = +δ

if j is excitatory, and wij(t+1) = −δ if j is inhibitory. If they are already
connected, enhance the weight wij(t+ 1) = wij(t) + δ if wij(t) > 0 and
wij(t+1) = wij(t)−δ if wij(t) < 0. All other weights remain unchanged.

(iv) Repeat from (ii) for a fixed number of iterations L.

As the “learning rate”, we choose δ = 1, while the connectivity increases for
L time steps. In order to simplify the simulations, we further set τi = 1 for
all 1 ≤ i ≤ N .

Since (7.40) describes the membrane potential of the ith neuron, we can
estimate its dendritic field potential by the inhomogeneity of (7.40),
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Fig. 7.7. Limit cycle of the thalamocortical oscillator in its center manifold plane
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Fi(t) =
∑

j

wij f(xj) . (7.53)

Then, the model EEG7 is given by the sum of the dendritic field potentials of
all excitatory nodes

E(t) =
∑
i+

Fi(t) . (7.54)

The indices i+ indicate that the neuron i belongs to the population of exci-
tatory neurons, namely the EEG generating pyramidal cells.

We create such random neural networks with size N = 100, 200, 500, and
1000 nodes. Since about 80% of cortical neurons are excitatory pyramidal
cells, p = 80% of the network’s nodes are chosen to be excitatory [66]. For each
iteration of the network’s evolution, the dynamics of its nodes is calculated.
After preparing them with normally distributed initial conditions (μ = 0, σ =
1), (7.40) is solved numerically with the activation functions fi(x) = tanhx
for an ensemble of K = 10 time series of length T = 100 with a step-width of
Δt = 0.0244. The dendritic field potential and EEG are computed according
to (7.53) and (7.54).

From the simulated EEGs, the power spectra are computed and averaged
over all K realizations of the network’s dynamics. In order to monitor sudden
changes in the topologies of the networks, three characteristic statistics are
calculated:

(1) The mean degree (the average number of vertices attached to the nodes) 〈k〉
of the associated undirected graphs, described by the symmetrized adjacency
matrix As = Θ(A + AT ) (Θ denotes Heaviside’s step function),

(2) the total distribution

d(l) =
tr(Al)
lN (7.55)

of cycles of the exact length l [62–64, 67–70]. In (7.55), tr(Al) provides the
total number of (not necessarily self-avoiding) closed paths of length l through
the network. Since any node at such a path may serve as the starting point
and there are l nodes, the correct number of cycles is obtained by dividing
by l. Finally, N =

∑
l tr(A

l)/l is a normalization constant. From the cycle
distribution (7.55), we derive

(3) an order parameter s for topological transitions from the averaged slopes
of the envelope of d(l), where the envelopes are estimated by connecting the
local maxima of d(l). The above mentioned procedure is repeated for each net-
work size M = 10 times where we have chosen L100 = 150, L200 = 400, L500 =
800, and L1000 = 1700 iterations of network evolution in order to ensure suf-
ficiently dense connectivities.
7 In fact, (7.54) describes better the local field potential (LFP) rather than the

EEG. Considering (7.4) as a model of coupled neural populations, instead, seems
to be more appropriate for describing the EEG [65].
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Fig. 7.8. (a) Power spectra of representative simulated time series during the oscil-
latory transition (critical phase) for four different network sizes: N = 100 (dotted),
N = 200 (dashed-dotted), N = 500 (solid), and N = 1000 (dashed); (b) Total
distributions of cycles (7.55) for the same networks

Figure 7.8 shows four representative networks in the critical phase char-
acterized by the smallest positive value of the cycle order parameter s, aver-
aged over the M = 10 network simulations, when sudden oscillations occur
in the dynamics of the units, as is visible by the peaks in the power spec-
tra [Fig. 7.8(a)]. The cycle distributions d(l) [Fig. 7.8(b)] for network sizes
N = 200, 500, and 1000 display a transition from geometrically decaying to



216 P. beim Graben et al.

exponentially growing functions while this transition has already taken place
for N = 100. As Fig. 7.8(a) reveals, the power spectra display a broad 1/f
continuum. Superimposed to this continuum are distinguished peaks that can
be regarded as the “alpha waves” of the model.

According to random graph theory, Erdős-Rényi networks exhibit a per-
colation transition when a giant cluster suddenly occurs for 〈k〉 = 1 [62–64]. A
second transition takes place for 〈k〉 = 2, indicating the appearance of mainly
isolated cycles in the graph. Isolated cycles are characterized by a geometri-
cally decaying envelope of the total cycle distribution. Our simulations suggest
the existence of a third transition when super-cycles are composed from merg-
ing smaller ones. This is reflected by a transition of the total cycle distribution
d(l) from a geometrically decaying to an exponentially growing behavior due
to a “combinatorial explosion” of possible self-intersecting paths through the
network (super-cycles are common in regular lattices with 〈k〉 ≥ 3). We detect
this transition by means of a suitably chosen order parameter s derived from
d(l) as the averaged slope of its envelope. For decaying d(l), s < 0 and for
growing d(l), s > 0. The appearance of super-cycles is associated with s ≈ 0 if
d(l) is approximately symmetric in the range of l. In this case, sustained oscil-
lations emerge in the network’s dynamics due to the presence of reverberatory
circles. For further details, see [65].

7.5 Cognitive Modeling

In this chapter we have reviewed neurophysiological findings on oscillations in
the electroencephalogram as well as certain approaches to model these through
coupled differential equations. We have introduced the theory of networks of
leaky integrator units and presented a general learning rule to train these net-
works in such a way that they are able to reproduce temporal patterns in
continuous time. This learning rule is a generalized back-propagation algo-
rithm that has been applied for the first time to model reaction times from
a psychological experiment [54]. Therefore, leaky integrator networks pro-
vide a unique and physiologically plausible paradigm for neural and cognitive
modeling.

Mathematically, leaky integrator models are described by systems of cou-
pled ordinary differential equations that become nonlinear dynamical systems
by using sigmoidal activation functions. Networks of leaky integrator units
may display a variety of complex behaviors: limit cycles, multistability, bifur-
cations and hysteresis [17]. They could therefore act as models of perceptional
instability [71] or cognitive conflicts [72], as has already been demonstrated
by Haken [73, 74] using synergetic computers . As Haken [74, p. 246] pointed
out, the order parameter equations of synergetic computers are analogous to
neural networks whose activation function is expanded into a power series.
However, these computers are actually leaky integrator networks as we will
see subsequently.
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Basically, synergetic computers are time-continuous Hopfield nets [19] gov-
erned by a differential equation

dx

dt
−

K∑
k=1

ηkvk(v+
k x) = −B

K∑
k′ �=k

(v+
k′x)2(v+

k x)x− C(x+x)x (7.56)

where x(t) denotes the activation vector of the network; the K vectors vk

are training patterns with adjoints v+
k such that the orthonormality relations

v+
k vl = δkl hold. In this notation, x+y =

∑
i xiyi means the inner product

of the row vector x+ with a column vector y yielding a scalar. On the other
hand, the outer product yx+ of a column vector y with a row vector x+ is a
matrix with elements yixj .

Therefore, the second term of the left hand side of (7.56) can be rewritten
as

K∑
k=1

ηkvk(v+
k x) =

K∑
k=1

ηk(vkv+
k )x =

(
K∑

k=1

ηkvkv+
k

)
x = Wx

where

W =
K∑

k=1

ηkvkv+
k

is the synaptic weight matrix obtained by Hebbian learning of the patterns
vk with learning rates ηk.

The notion “synergetic computer” refers to the possibility of describing
the network (7.56) by the evolution of order parameters , which are appropri-
ately chosen as the “loads” of the training patterns vk in a kind of principal
component analysis. We therefore separate activation space and time by the
ansatz

x(t) =
∑

k

ξk(t)vk + w(t) ,

where ξk(t) = v+
k x(t) and w(t) is a fast decaying remainder. Multiplying

(7.56) from the left with v+
l and exploiting the orthonormality relations, we

eventually obtain

dξl
dt
− ηlξl = −B

K∑
k �=l

ξ2kξl − C
(∑

k

ξ2k

)
ξl . (7.57)

Division by −ηl = 1/τl then yields the leaky integrator equations for the order
parameters with rescaled constants B′, C′ and a cubic activation function

τl
dξl
dt

+ ξl = B′
K∑

k �=l

ξ2kξl + C′
(∑

k

ξ2k

)
ξl . (7.58)

The “time constants” play then the role of attention parameters describing
the amount of attention devoted to a particular pattern. These parameters
might also depend on time, e.g. for modeling habituation.
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From a formal point of view, the attention model of Lourenço [75], the
cellular neural networks (CNN) of Chua [76] (see also [77–79]) and the disease
model of Huber et al. [80] can also be regarded as leaky integrator networks.

Also, higher cognitive functions such as language processing and their
neural correlates such as event-related brain potentials (ERPs) [72,81,82] can
be modeled with leaky integrator networks. Kawamoto [83] used a Hopfield
net with exponentially decaying activation and habituating synaptic weights
to modeling lexical ambiguity resolution. The activations of the units in his
model are governed by the equations

xi(t+ 1) = f

⎛
⎝δxi(t) +

∑
j

wijxj(t)

⎞
⎠ . (7.59)

Setting δ = 1−α = 1−τ−1 and approximating f ′(x) ≈ 1 for typical activation
values yields, after a Taylor expansion of the activation function,

f

⎛
⎝δxi(t) +

∑
j

wijxj(t)

⎞
⎠ ≈ f

⎛
⎝∑

j

wijxj(t)

⎞
⎠+ f ′

⎛
⎝∑

j

wijxj(t)

⎞
⎠ δxi(t) ,

the leaky integrator equation (7.2).
Smolensky and Legendre [46] consider Hopfield nets of leaky integrator

units that can be described by a Lyapunov function E. They call the function
H = −E the harmony of the network and argue that cognitive computations
maximize this harmony function at the sub-symbolic level. Additionally, the
harmony value can also be computed at the symbolic level of linguistic repre-
sentations in the framework of harmonic grammars or optimality theory [84].
By regarding the harmony as an order parameter of the network, one could
also model neural correlates of cognitive processes, e.g., ERPs.

This has recently been attempted by Wennekers et al. [83], who built a six-
layer model of the perisylvian language cortex by randomly connecting leaky
integrator units within each layer (similar to our exposition in Sect. 7.4.3).
The network was trained with a Hebbian correlation learning rule to memorize
“words” (co-activated auditory and motor areas) and “pseudowords” (activa-
tion of the auditory layer only). After training, cell assemblies of synchronously
oscillating units across all six layers emerged. Averaging their event-related
oscillations in the recall phase then yielded a larger amplitude for the “words”
than for the “pseudowords”, thus emulating the mismatch negativity (MMN)
ERP known from word recognition experiments [45].
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Summary. Neurons within a cortical macrocolumn can be represented in contin-
uum state equations that include axonal and dendritic delays, synaptic densities,
adaptation and distribution of AMPA, NMDA and GABA postsynaptic receptors,
and back-propagation of action potentials in the dendritic tree. Parameter values
are independently specified from physiological data. In numerical simulations, syn-
chronous oscillation and gamma activity are reproduced and a mechanism for self-
regulation of cortical gamma is demonstrated. Properties of synchronous fields ob-
served in the simulations are then applied in a model of the self-organization of
synapses, using a simple Hebbian learning rule with decay. The patterns of con-
nection of maximally stable configuration are compared to real cortical synaptic
connections that emerge in neurodevelopment.

8.1 Introduction

This chapter gives an account of two complementary approaches to modeling
the axo-dendritic dynamics, and of the functionally related synaptic dynamics,
within a small volume of cerebral cortex. Choice of the appropriate volume is
somewhat arbitrary, but a useful scale is that which has been described using
a variety of related criteria as the macrocolumn, or corticocortical column a
volume approximately 300 microns in surface diameter [1–3]. The extension of
the dendritic and intracortical proximal axonal trees of pyramidal cells within
the cortex conform to this 300 micron approximation, as is indicated in Fig.
8.1, and because of the branching structure of both dendrites and local axons,
the density of synaptic connections between neurons declines with distance
from the cell body [4,5]. Consequently, the strength of interaction of neurons
up to 300 microns apart is comparatively high. On the other hand, the largest
fraction of synapses within any volume of cortex arises from cell bodies outside
the column, and the sparse connectivity of neurons inside the column makes
the intermingling of adjacent “columns” inevitable [3, 5]. As will be shown,
the theoretical modeling reported here may help to provide a new definition
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Fig. 8.1. Dendritic trees of pyramidal cells. (Braitenberg and Schüz, 1991)

of the macrocolumn, as the scale of a synaptic map of activity relayed from
the wider cortex.

To simplify description, the cortex will be considered to be two-dimensional,
thus largely ignoring organization in depth.

Analysis of cortical functional anatomy at the macrocolumnar scale has
been found of particular utility within the visual cortex [6, 7], because this
scale is also the scale of ramification in cortex of terminal axons from the
direct visual pathway [2,3,6,7]. Studies of responses of individual cells and of
groups of cells to moving objects in the visual field, have shown that neural
responses are organized so that responses to moving lines are not only selective
for the orientation of the line (orientation preference, or OP), but also to
the velocity, angle relative to motion, and extension of the lines [8]. Where
binocular vision is present, neurons are organized into bands, each of which
are about as broad as a macrocolumn, with alternating bands — the ocular
dominance (OD) columns — selectively responding to one or other eye. This
yields a unit system — the hypercolumn [1,6] — with the capacity to process
information from a specific small part of the visual field [9]. It can also be
shown that the function of each such unit is modulated by the contextual
activity of the surrounding visual field [10].

It is presently unclear how this anatomical detail is involved in the pro-
cessing of visual information in neural-network terms. The modeling described
here attempts to solve parts of this problem.

Synchronous oscillation is a physiological phenomenon relevant to all con-
siderations of the processing of cortical information. When separate neurons
are concurrently activated by discrete stimuli, they begin to fire synchronously,
emitting action potentials with maximum cross-correlation at zero lag [11–14].
The emission of action potentials and fluctuation of the local dendritic
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potential is typically at around 50 Hz — although not uniquely so — and
because this frequency falls within the gamma-band of electrocortical activ-
ity, it is referred to as “gamma synchrony”. Gamma synchrony is believed to
underlie the psychological process of perceptual “binding”, allowing states of
the cortex to code for many different perceptual states, by use of combinations
of a smaller set of unit states per neuron [15, 16].

To provide an account of the relation of synchronous oscillation to func-
tional anatomical organization at the scale of the macrocolumn, a continuum
model of electrocortical activity is proposed. The model uses discretized in-
tegral state equations and includes effects of axonal and dendritic delays,
back-propagation in the dendritic tree, reversal potentials, synaptic densities,
and kinetics of AMPA, GABA and NMDA receptors, and has been reported
in an earlier form in relation to global electrocortical activity [17]. To the ex-
tent practicable, all parameters are obtained from independent physiological
and anatomical estimates, and all lie in the physiologically plausible range. In
this and related models, gamma activity is reproduced, associated with syn-
chronous oscillation [18–22]. As a further step toward realism, the most recent
development introduces a mechanism of control of transition into autonomous
gamma, which is initiated and suppressed by the level of subcortical reticular
activation, and the transcortical synaptic flux originating from outside the
macrocolumn.

Having described a means of generation of synchronous fields of activity in
cortex, a model [23] for the self-organization of synapses can then be applied,
thus extending consideration to learning-related modifications of synapses. Ac-
cording to this model, “local maps” are formed by self-organization of synapses
during development, and each local map is analogous to a projection of the
primary visual cortex (V1) onto a Möbius strip. The scale of each map is
that of a macrocolumn, and they represent the most stable synaptic state in
fields of neural synchrony, under conditions of uniform metabolic load and
of Hebbian learning with decay. In this maximally stable state, all synapses
are either saturated, or have minimum pre/postsynaptic coincidence. Each
local map is arrayed as approximately a mirror-image reflection of each of
its neighbors, accounting for a number of major features of local anatomi-
cal organization. Preliminary consideration is given to the impact of dynamic
perturbation upon the stable synaptic configuration, and the implications for
perception and cortical information processing.

8.2 A Continuum Model of Electrocortical Activity

Electrotonic and pulse activity in the cortex can be treated as activity in
a wave medium, as shown by numerous workers [24–28] (cf. Chap. 1). All
members of this family of models have strong resemblances, but there are dif-
ferences in both the details of the state equations and the parameters applied.
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The form given here has been developed to be applicable to cortex at a variety
of scales, and to permit application alongside related models [17, 29].

8.2.1 State Equations

Synaptic Flux Density

The distribution of neuron cell bodies sending afferent connections to a cortical
point, r, is f(r, r′), where {r′} are all other points in the field. The synaptic
flux density, ϕp(r, t), the average input pulse rate per synapse at r, is given
by

ϕp(r, t) =
∫
f(r, r′)Qp

(
r′, t− |r − r′|

vp

)
d2r′ , (8.1)

where the normalized axonal spread f(r, r′) satisfies
∫
f(r, r′)d2r =

∫
f(r, r′)d2r′ = 1 ,

Qp(r′, t) are the pulse densities of neurons in the afferent field,
vp is the velocity of axonal conduction,
p = e, i indicates whether the afferent neurons are excitatory or inhibitory.

An alternative to (8.1) is a damped wave equation, for which the implicit
axonal spread is approximately a two-dimensional Gaussian [28], is:

(
∂2

∂t2
+ 2γp

∂

∂t
+ γ2

p − v2
p∇2

)
ϕp(r, t) = γ2

pQp(r, t) , (8.2)

where γp is the ratio of action potential conduction velocity and the axonal
range, for excitatory and inhibitory axons respectively. The wave equation is
much more numerically efficient, but for the present work, the integral form
has been retained.

Synapto-dendritic Transformations of Synaptic Flux

Afferent synaptic activity ultimately gives rise to a change in membrane polar-
ization at the trigger point for the generation of action potentials. The change
in membrane polarization depends upon the types of postsynaptic receptor,
adaptive changes in receptor configurations, membrane reversal potentials,
position of the synapses on the dendritic tree, and the state of the postsy-
naptic neuron — notably, whether or not it has recently discharged an action
potential.

All these processes can be reduced in first approximation to steady-state
equations and linear impulse responses. To compress the equations and em-
phasize analogies, the following conventions apply: p = e, i indicates presy-
naptic neurons and q = e, i indicates postsynaptic neurons. The superscripts
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[R] = [AMPA], [NMDA] when p = e, and [R] = [GABA] when p = i, indicate
receptor type, described further below.

Within the synapse the afferent synaptic flux is modified by changes in the
conformation of ion channels [30–33]. A normalized impulse response function,
J [R](τ), describes the rise and fall of receptor adaptation to a brief afferent
stimulus:

J [R](τ) =

[∑
n

B
[R]
n

β
[R]
n

−
∑
m

A
[R]
m

α
[R]
m

]−1

×
[∑

n

B[R]
n exp(−β[R]

n τ) (8.3)

−
∑
m

A[R]
m exp(−α[R]

m τ)

]
,

where
∞∫
0

J [R](τ)dτ = 1, {A[R]
n , B

[R]
n , α

[R]
n , β

[R]
n } are constants, and J [R] = 0 if

τ = 0.
The postsynaptic depolarization, ψ[R]

qp (r, t), is the time-varying change of
membrane voltage produced via synaptic receptors of a specific type, conse-
quent on the synaptic flux density, and is defined without initial regard to the
position of specific synapses on the dendritic tree. Ψ [R]

qp (r) is the steady-state
value of ψ[R]

qp (r, t):

Ψ [R]
qp = g[0]

p exp[−λ[R]ϕp]

(
V rev

p − Vq

V rev
p − V [0]

q

ϕp

)
, (8.4)

where

g
[0]
p is the synaptic gain at resting membrane potential,
λ[R] is a measure of steady-state synaptic adaptation to ϕp,
V rev

p is the excitatory or inhibitory reversal potential,
V

[0]
q is the resting membrane potential, and
Vq is the average membrane potential.

Another normalized impulse response function, H(τ), describes the rise
and fall of postsynaptic membrane potential

H(τ) =
ab

b− a (e−aτ − e−bτ ) , (8.5)

where
∞∫
0

H(τ)dτ = 1, a, b, are constants, and H = 0 if τ = 0.

Consequently, from (8.1–8.5), and where “∗” indicates convolution in time,

ψ[R]
qp = Hp ∗ (J [R] ∗ Ψ [R]

qp ) . (8.6)
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Transmission of Postsynaptic Depolarization
to Initiate Action Potentials

At the release of an action potential at the soma, a retrograde propagation
takes place, depolarizing the dendritic membrane throughout the proximal
dendritic tree [34]. This must have major implications for the weight of in-
dividual synapses in determining any subsequent action potential generation,
depending on the recent history of activity in the neuron. Those synapses
within the zone of back-propagation can be called “near” synapses, and those
more distal in the dendritic trees “far” synapses. It is assumed that when
the neuron is fully re-polarized, the greatest weight in the generation of a
subsequent action potential can be ascribed to activity at the near synapses,
because of their weighting by proximity to the axon hillock. On the release
of an action potential, the near synapses have their efficacy reduced to zero
during the absolute refractory period, and the distal synaptic trees become
partially depolarized, so that whether or not a subsequent action potential
is generated at the end of the refractory period is relatively weighted toward
activity at the far synapses, conducted via cable properties with delay to the
trigger point. Thus, in the continuum formulation, the impact of transmission
of total postsynaptic flux to the trigger point depends upon cable delays in
near and far dendritic trees, the fraction of neurons which have recently fired,
and the relative distribution of synapses and receptor types in the near and
far dendritic trees.

Following the normalized format of (8.4) and (8.5), the cable delay, Lj , is
given by

Lj = aj exp(−ajτ) , (8.7)

where aj are constants, and j = n, f indicate synapses positioned in the near

and far dendritic trees, respectively.
Consequently, the fractions Af (t),An(t), of neurons responding primarily

to near or far synapses, are

Af (t) =
Qq

Qmax
q

(8.8)

An(t) = 1− Qq

Qmax
q

, (8.9)

where Qmax
q is the maximum firing rate of neurons and reflects the refractory

period, while Qq is the pulse density at r.
Since the distribution of postsynaptic receptors differs in near and far

trees, fractional distributions rj[R] can be defined with

rn[R] + rf [R] = 1 . (8.10)

rj[R] can be used to fractionally weight the synaptic numbers,Nqp, the number
of excitatory or inhibitory synapses per neuron.
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Equation (8.6) can then be aggregated over types of afferent neuron and
number of synapses and types of receptor in the near and far dendritic trees,
as

Vq(t) = V [0]
q +

∑
p

∑
j

∑
[R]

rj[R]NqpAj(Lj ∗ ψ[R]
qp ) , (8.11)

where Vq(t) is the potential of the dendritic membrane at the trigger points,

and V [0]
q is the resting membrane potential. The value of Ve(t) — the potential

in the excitatory (pyramidal) neurons — scales as the local field potential
(LFP; cf. Chap. 1), and Vq(t) can be applied as a surrogate for Vq in (8.4).

Generated Pulse Density

Generation of action potentials then follows the sigmoidal relation

Qq(t) =
Qmax

q

1 + exp[−π(Vq − θq)/(
√

3σq)]
. (8.12)

θq is the mean value of Vq at which 50% of neurons are above threshold for
the emission of action potentials. σq approximates one standard deviation of
probability of emission of an action potential in a single cell, as a function of
Vq.

8.2.2 Parameter Values

Parameter values for the state equations have been obtained from anatomical
and physiological measurements, or inferred from direct measurements. They
are presented in Tabs. 8.1–8.5. In most instances values are only known ap-
proximately, and confidence intervals are unknown or uncertain. Parameters
expressed as constants or as linear processes must, in reality, be time-varying
and nonlinear to some degree. However, sensitivity studies to be reported else-
where indicate that despite reservations on the accuracy of individual param-
eters, the system properties to be reported are relatively robust to parameter

Table 8.1. Synaptic numbers and gain factors [3,5,21,35,36]

Nee,cc Excitatory to excitatory corticocortical synapses/cell 3710 dimensionless
Nie,cc Excitatory to inhibitory corticocortical synapses/cell 3710 dimensionless
Nee,ic Excitatory to excitatory intracortical synapses/cell 410 dimensionless
Nei,ic Inhibitory to excitatory intracortical synapses/cell 800 dimensionless
Nie,ic Excitatory to inhibitory intracortical synapses/cell 410 dimensionless
Nii,ic Inhibitory to inhibitory intracortical synapses/cell 800 dimensionless
Nee,ns Synapses per excitatory cell from subcortical sources 100 dimensionless
Nie,ns Synapses per inhibitory cell from subcortical sources 0 dimensionless
ge[0] Excitatory gain per synapse at rest potential 2.4 × 10−6 Vs
gi[0] Inhibitory gain per synapse at rest potential −5.9 × 10−6 Vs
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Table 8.2. Threshold values [21,37]

Qmax
e Maximum firing rate of excitatory cells 100 s−1

Qmax
i Maximum firing rate of inhibitory cells 200 s−1

V rev
e Excitatory reversal potential 0V

V rev
i Inhibitory reversal potential −0.070 V

V
[0]

q,p Resting membrane potential −0.064 V

θq Mean dendritic potential when 50% of neurones
firing

−0.035 V

σq Standard deviation of neuron firing probability,
versus mean dendritic potential

0.0145 V

variation. Since the state equations are given in terms of scalar gains and
normalized impulse responses embedded within convolutions, errors in indi-
vidual parameters can partially cancel. With the following tables, sources for
the values are given as numbered references with each table title, and further
qualifications given in the associated text.

The parameters aj have not been specifically sourced, but are approximate
physiologically realistic delays.

These parameters were obtained by deriving steady-state and impulse re-
sponse functions from mass-action models of receptor/transmitter interac-
tions.

Distribution of three receptor types were considered as representative of a
much wider group of receptors. These were the principal fast excitatory gluta-
mate receptor (AMPA), the principal fast inhibitory GABA receptor (GABAA)
and the principal slow and voltage-dependent glutamate receptor (NMDA).
NMDA is distributed predominantly in the distal dendritic tree [38] and the
others more uniformly — and their distribution may be subject to dynamic
functional variation. Thus, the values applied are rather arbitrary. Sensitiv-
ity analyses indicate that robust results may be obtained despite considerable
variation of the values applied, and adjustment of these parameters depended
upon obtaining match to the average firing rates of cells observed in cortex [39].

Table 8.3. Membrane time constants [21]

aee EPSP decay time-constant in excitatory cells 68 s−1

bqp EPSP and IPSP rise time-constants 500 s−1

aei IPSP decay time-constant in excitatory cells 47 s−1

aie EPSP decay time-constant in inhibitory cells 176 s−1

aii IPSP decay time-constant in inhibitory cells 82 s−1

aj Delay attributable to position of near and far
synapses on dendritic tree

an = 1000 s−1

af = 200 s−1
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Table 8.4. Receptor adaptation gains and time constants [30–33]

λ[R] Receptor adaptation pulse-efficacy de-
cay constants

[AMPA] = 0.012 s

[NMDA] = 0.037 s
[GABAA] = 0.005 s

B
[R]
n Receptor onset coefficients [AMPA]1 = 1.0

[NMDA]1 = 1.0
[GABAA]1 = 1.0
dimensionless

A
[R]
n Receptor offset coefficients [AMPA]1 = 0.0004

[AMPA]2 = 0.6339
[AMPA]3 = 0.3657
[NMDA]1 = 0.298
[NMDA]2 = 0.702
[GABA]1 = 0.0060
[GABA]2 = 0.9936
dimensionless

β
[R]
n Receptor onset time-constants [AMPA]1 = 760.0 s−1

[NMDA]1 = 50.5 s−1

[GABA]1 = 178.0 s−1

α
[R]
n Receptor offset time-constants [AMPA]1 = 21.8 s−1

[AMPA]2 = 60.3 s−1

[AMPA]3 = 684.0 s−1

[NMDA]1 = 0.608 s−1

[NMDA]2 = 3.3 s−1

[GABA]1 = 11.2 s−1

[GABA]2 = 127 s−1

8.2.3 Application to the Macrocolumn

The continuum model was applied numerically in discrete form, using a 20×20
matrix of “elements”, each of which can be considered as situated at the
position r, surrounded by other elements at positions {r′}, and each cou-
pled to the others so as to create an approximation of the “Mexican Hat”

Table 8.5. Receptor distribution

rn[R] Relative weighting of receptors on near
dendritic field

[AMPA] = 1 − rf [R]

[NMDA] = 1 − rf [R]

[GABA] = 1 − rf [R]

rf [R] Relative weighting of receptors on far
dendritic field

[AMPA] = 0.5

[NMDA] = 1.0
[GABA] = 0.375
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configuration [40] of excitatory and inhibitory intracortical connections within
a macrocolumn, in accord with a two-dimensional Gaussian version of (8.1).
Where γp represents the standard deviation of axonal range. The connection
densities as a function of distance are thus

ϕp(r, t) =
∫

1
2πγ2

p

exp
[
−|r − r′|2

2γ2
p

]
Qp(t− δp)d3r′ , (8.13)

The value of γp was 4.9 simulation elements for the excitatory couplings,
and 4.5 simulation elements for the inhibitory couplings. A wide range of
plausible axonal conduction velocities were applied, and results found insen-
sitive to variation for all small conduction lags, consistent with the size of

Fig. 8.2. Simulation of synchronous oscillation induced by moving bars (size and
movement shown as arrowed icons) in the visual field. Plotted are local field potential
time-series, power spectral content, and cross-correlations of two sites in the cortical
field, when driven by simulated moving bars — with each “bar” a field of zero-mean
white noise, uncorrelated in separate bars. (Wright et al., 2000)
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the macrocolumn. In the results shown below, axonal delay was 0.4 ms per
element. Simulation time-step was 0.1 ms.3

The tabulated parameters were applied distinguishing the synapses for
nonspecific cortical activation from the reticular formation (Nee,ns) and those
reaching the macrocolumn from the surrounding cortex (Nee,cc and Nie,cc) as
the principal sites of external input to the macrocolumn.

The non-specific afferent flux was considered excitatory and terminating
on excitatory cortical neurons only (consistent with its predominant input
to the upper layers of the cortex, where the pyramidal cell dendritic trees
predominate) [3]. The afferent flux from trans-cortical sources terminated on
both excitatory and inhibitory neurons.

8.2.4 Comparison of Simulation to Experimental Data

Figure 8.2 shows that when the simulation is configured to imitate results
representative of synchronous oscillation (differential response to short and
long moving bars in the visual field), LFP time-signatures, LFP spectra, and
pulse cross-correlations are like those seen in real data [11–15]. (These results
were obtained with an earlier simulation having properties identical in the
respects shown, to the present simulation.)

Figure 8.3 shows that the balance of the non-specific afferent synaptic
flux and the trans-cortical synaptic flux entering the macrocolumn can act

Fig. 8.3. Amplitude of simulated gamma band oscillation as a function of the
excitatory synaptic flux delivered to pyramidal neurons only (the nonspecific afferent
flux) versus the excitatory synaptic flux delivered to both pyramidal and inhibitory
neurons (the transcortical afferent flux). (Units of nonspecific afferent flux have
been “normalized” to avoid specification of synaptic efficacies of connections from
subcortical sources)

3 In computation, due to the serial nature of the algorithm, delay by a time step
must be assumed between (8.4) and (8.11), and also between (8.12) and (8.11).
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Fig. 8.4. Essential properties of synchronous oscillation. Top figures A represen-
tation of the simulated cortical surface. Open squares represent the sites of input
of uncorrelated white noise. The filled square is the reference point from which
cross-correlations are calculated with respect to the rest of the field. Top left Max-
imum positive cross-correlation (over all lags). Top right Delay associated with
maximum positive cross-correlation. Middle figures The first and second princi-
ple eigenmodes of spatial activity on the same simulated surface. Bottom figures
Schematic “freeze frame” images of local field potentials (or pulse densities) on the
simulated cortical surface when the twin inputs are in-phase or anti-phase signals.
(Wright et al. 2003)
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as a control parameter, respectively initiating and suppressing the onset of
oscillation in the macrocolumn according to the balance of excitatory and
inhibitory tone and providing an explanation of gamma bursts, with a pulse
variance consistent with gamma oscillation [39].

Figure 8.4 shows the basis of the synchronous fields generated within sim-
ulations of this type [18–20,22]. In brief, synchronous oscillation arises from a
distinctive property of the cortical wave medium. “Odd” components in any
pair of the Fourier components in signals input to dendrites are selectively
dissipated — since dendrites are summing junctions. This selective elimina-
tion leaves the synchronous “even” components of activity at any two sites
predominant.

The ubiquity of synchronous oscillation in the cortical field, and the mech-
anism of synchrony — which is not confined to the gamma band, but applies
to all frequencies [41] — has implications for the self-organization of synapses
in the developing brain, as we argue in the next section.

8.3 Synaptic Dynamics

The second part of the model summarized here is concerned with self-
organization of synapses during antenatal and/or early postnatal visual de-
velopment [23]. The emphasis here is upon the most stable configuration
of synapses that can emerge under a Hebbian learning rule that incorpo-
rates “decay” (forgetting) under metabolic constraints, given an initial set
of connections of random strength, density and with distribution consis-
tent with anatomical findings, as well as the dynamical properties described
above.

8.3.1 Initial Connections and the Transmission of Information
in Early V1

Decline of synaptic density with distance occurs in the local intracorti-
cal connections at the scale of macrocolumns and in the longer intracorti-
cal connections spanning a fraction of the extent of the visual cortex (V1)
[3–5]. Via polysynaptic transmission, information can potentially reach each
macrocolumnar-sized area from the whole, or a substantial part, of V1. Thus,
the distribution of terminal axonal ramifications in intracortical axons defines
the scale of a local map of approximately macrocolumnar size, and associate
the scale of V1 with a global map — the map of the visual field.

8.3.2 Visual Spatial Covariance, and Synchronous Fields

Because of the decline of synaptic density with distance, fields of synchronous
oscillation decline in magnitude with distance [18–20, 22] as can be seen in
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Fig. 8.4. Visual stimuli themselves exhibit a decline in cross-covariance with
distance. Thus, cross-covariance of activity in V1 declines with distance at
both the global, V1, scale, and the local, macro-columnar, scale.

8.3.3 Learning Rule

As a generic simplification of synaptic plasticity at multiple time-scales, a
simple Hebbian rule with decay can be applied. These learning-related synap-
tic modifications fall outside the mechanisms included in the preceding ac-
count, and discussion of their physiological analogs is deferred to the conclu-
sion.

At each synapse, the coincidence of pre- and postsynaptic activity, rQϕ, is
given by a relation of the form

rQϕ ∝
∑

t

Qe(t)× ϕe(t) , (8.14)

where Qe(t) ∈ {0, 1} is the postsynaptic firing state, and ϕe(t) ∈ {0, 1} is the
presynaptic firing state. A multiplication factor, Hs, operating on the gain of
synapses at steady states of pre- and postsynaptic firing is approximately

Hs = Hmax exp(−λ/rQϕ) , (8.15)

where λ is a suitable constant. With changes in either the pre- or postsynaptic
firing state, Hs can increase or fade over time, at rates differing for fast and
slow forms of memory storage.

8.3.4 Individual Synaptic States of Stability

It can be shown [23] that under these learning rules, synapses can approach
a stable, unchanging state only by approaching either one of two extremes
— either saturated or sensitive. In the saturated state, Hs and rQϕ are at
maxima, while in the sensitive state, Hs and rQϕ are at minima. Conversely,
dHs

drQϕ
, the sensitivity to change in synaptic gain, is at a minimum for saturated

synapses and a maximum for sensitive synapses — hence the choice of the
names.

8.3.5 Metabolic Uniformity

Competition for metabolic resources within axons adds a constraint to Hebbian
rules [42]. The metabolic energy supply of all small axonal segments can
be presumed to remain approximately uniform, while the metabolic demand
of saturated synapses, which have high activity, will be much greater than
for sensitive synapses. Therefore, the proportion of saturated and sensitive
synapses must be uniform along axons, and consequently, the densities of
both saturated and sensitive synapses must decline with the distance of the
presynapses from the cell bodies of origin.
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8.3.6 The Impact of Distance/Density and Saturation/Sensitivity
on Overall Synaptic Stability

All positions in V1, {Pj,k}, can be given an ordered numbering in the complex
plane, 1 . . . , j, . . . , k, . . . , 2n, and all positions within a macrocolumn located
at P0, {pj,k}, can be similarly numbered. The total perturbation of synaptic
gains for the synapses from V1 entering the macrocolumn, Ψ(pP ), and the
total perturbation of synaptic gains within the macrocolumn, Ψ(pp), can thus
be written as

Ψ(pP ) =
j=n∑
j=1

k=n∑
k=1

σSAT (pjPk)SSAT (pjPk) + (8.16)

j=n∑
j=1

k=n∑
k=1

σSENS(pjPk)SSENS(pjPk)

Ψ(pp) =
j=n∑
j=1

k=n∑
k=1

σSAT (pjpk)SSAT (pjpk) + (8.17)

j=n∑
j=1

k=n∑
k=1

σSENS(pjpk)SSENS(pjpk) ,

where σSAT (pjPk, pjpk) and σSENS(pjPk, pjpk) are the densities of saturated
and sensitive synapses respectively, and SSAT (pjPk, pjpk) and SSENS(pjPk,
pjpk) are the corresponding variations of synaptic gains over a convenient
short epoch.

Since the densities of synapses decline with increasing cell separation, then
as a simple arithmetic property of sums of products, minimization of Ψ(pp)
requires neurons separated by short distances to most closely approach max-
imum saturation, or maximum sensitivity. Yet, metabolic uniformity requires
that both sensitive and saturated synaptic densities must decline with dis-
tance from the cell bodies of origin, and remain in equal ratio. An apparent
paradox arises, since sensitive synapses must link pre- and postsynaptic neu-
rons with minimal pre- and postsynaptic pulse coincidence, yet the reverse
is true for saturated synapses. Also apparently paradoxically, minimization
of Ψ(pP ) requires that saturated connections afferent to any pj arise from
highly covariant, and therefore closely situated, sites in V1, while sensitive
connections afferent to pj must arise from well-separated sites. Yet, metabolic
uniformity requires that both sensitive and saturated presynapses arise from
cells at the same site. The paradoxes exist only in the Euclidean plane, and
can be resolved as in the next subsection.

8.3.7 Möbius Projection, and the Local Map

By re-numbering {Pj,k} as {Pj1,j2,k1,k2}, and {pj,k} as {pj1,j2,k1,k2}, the sub-
script numbers 1, . . . , j1, . . . , j2, . . . , n, (n + 1), . . . , k1, . . . , k2, . . . , 2n can be
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assigned in the global map so that j1 and j2 are located diametrically oppo-
site and equidistant from P0, while in the local map j1 and j2 have positions
analogous to superimposed points located on opposite surfaces of a Möbius
strip. This generates a Möbius projection (the input map) from global to local,
and a Möbius ordering within the local map. That is,

P 2
jm

|Pjm| → pkm, m ∈ {1, 2} (8.18)

and
pjm → pkm m ∈ {1, 2} . (8.19)

In (8.18), the mapping of widely separated points in the global map con-
verge to coincident points on opposite surfaces of the local map’s Möbius
representation. In (8.19), the density of saturated synaptic connections now
decreases as |j1 − k1| and |j2 − k2|, while the density of sensitive couplings
decreases as |j2− k1| and |j1− k2|.

The anatomical parallel requires j1 and j2 in the local map to represent
two distinct groups of neurons. To attain maximum synaptic stability within
the local map, an intertwined mesh of saturated couplings forms, closed after
passing twice around the local map’s center, with sensitive synapses locally
linking the two turns of the mesh together. In this fashion, both saturated and
sensitive synapses decline in density with distance as required. The input map
is of corresponding form, conveying an image of the activity in V1 analogous
to projection onto a Möbius strip.

Evolution of these patterns of synaptic connections is shown in Figs. 8.5
and 8.6.

Fig. 8.5. Initial conditions for local evolution of synaptic strength. Left. The global
field (V1) in polar co-ordinates. Central defect indicates the position of a local area
of macro-columnar size. Polar angle is shown by the color spectrum, twice repeated.
Middle. Zones of random termination (shown by color) of lateral axonal projections
from global V1 in the local area. Central defect is an arbitrary zero reference. Right.
Transient patterns of synchronous oscillation generated in the local area, mediated
by local axonal connections
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Fig. 8.6. Evolution of synaptic strengths to their maximally stable configuration.
Left. The global field (V1), as represented in Fig. 8.1. Middle. Saturated synaptic
connections input from the global field now form a Möbius projection of the global
field, afferent to the local neuronal field, and forming a local map. Right. Saturated
local synapses, within the local map, form a mesh of connections closed over 0−4π
radians. The central defect now corresponds to the position within the local map, of
the local map within the global map. Sensitive synapses (not shown) link adjacent
neurons as bridges between the 0−2π and 2π−4π limbs of the mesh of saturated
connections. (Wright et al. 2006)

8.3.8 Monosynaptic Interactions between Adjacent Local Maps

The input and local maps can, in principle, emerge with any orientation, and
with either left or right-handed chirality. However, chirality and orientation of
adjacent local maps is also constrained by a requirement for overall stability.
Adjacent local maps should form an approximately mirror image relation, as
shown in Fig. 8.7, because in that configuration, homologous points within the
local maps have the densest saturated and sensitive synaptic connections, thus
meeting minimization requirements analogous to those of (8.16) and (8.17).

8.3.9 Projection of Object Motion to the Local Map and Dendritic
Integration

Since the emergent input and local maps form a 1:1 representation of points
in the global map, they enable the relay of information delivered to V1 by the
visual pathway to every local map. This pattern is relayed to the local map
according to

O

(
P 2

jm

|Pjm| , t−
Pjm

ν

)
⇒ O(pjm, t) , (8.20)

where O(P, t) is the pattern of neuronal firing generated in V1 by a visual
object and ν is the axonal conduction velocity.

When signals from global V1 are received in the local map, they are subject
to integration over time in local dendrites. If we represent local dendritic
potentials as V (p, t), average synaptic gain (incorporating the Hebbian gain
factor) as g, dendritic rise and fall time-constants as a, b, then
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Fig. 8.7. Mutual organization of saturated coupling within and between local maps.
Orientation and chirality of OP in macrocolumns. (Wright et al. 2006)

V (pjm, t) = [g(e−aτ − e−bτ )] ∗
[
O(Pjm, t− Pjm

ν
− τ)

]
, t, τ ≥ 0 (8.21)

expresses the way moving objects in the visual field exert threshold or sub-
threshold effects on action potential generation within the local map. The
impact of delayed conduction from the global to the local maps can account
for the recently discovered [8] dependence of OP on stimulus velocity, angle of
stimulus orientation to direction of motion, and extension of the stimulus [23].

8.3.10 Effects of Perturbation

Because all activity in global V1 is projected to each local map, visual stim-
uli must act to perturb synaptic gains away from the stable configuration.
Further, cells at any two corresponding positions on the mesh of saturated
connections positioned on the opposite 0−2π and 2π−4π limbs of the mesh
and connected with sensitive synapses of high density are maximally sen-
sitive to perturbation when concurrently stimulated by some visual object.
Figure 8.8 shows the effect of a stimulus such as a moving line in the visual
field, which will give rise to a strong perturbation, followed by a relaxation
back toward the stable configuration as the stimulus is withdrawn. Pertur-
bation interactions within and between local maps on short time scales may
account for phenomena of perceptual closure.
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Fig. 8.8. Perturbation of synaptic saturation and sensitivity by extended stimuli.
Left. A representation of the connections formed by a small group of neurons with
cell bodies located at 3 o’clock in the local map. Saturated connections (red) and
sensitive connections (green) are arrayed at their maximally stable configuration.
Second from left. An afferent volley is delivered to neurons at 3 o’clock in the
local map, arising from sites on both sides of the position of the local map, so
that neurons in the 0 − 2π and 2π − 4π limbs of the mesh are forced into highly
correlated firing. Second from right. On withdrawal of the perturbing afferent
volley, the synaptic configuration generated by the perturbation begins to decay.
Right. The maximally stable configuration is again attained

Decay to the maximally stable configuration may occur on multiple time-
scales, and with continuing perturbation may be retarded indefinitely if
growth mechanisms overcome the prior requirements of metabolic uniformity.

Fig. 8.9. Simulated and real maps of orientation preference: (a) Final configuration
of OP consequent to seeding the development of fields of OP with the local map
mirror-image pairs shown joined by solid lines. (Wright et al. 2006); (b) Real OP
as visualized in the tree shrew by Bosking et al. (1997). Intracortical connections
superimposed in black connect zones of like OP
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Fig. 8.10. (a) Simulated OD columns (Wright et al. 2006); (b) Real OD columns,
as visualized by Obermayer & Blasdel (1993)

8.3.11 Comparison to Standard Anatomical Findings

Figures 8.9 and 8.10 show the results of simulations [23] based on the topo-
logical principles described, matched to experimental data [43, 44]. Other ex-
perimental data accounted for include direction preference fractures and the
occurrence of OD columns. The OD columns arise as an “exception to the
rule”. Representation of visual input from each eye separately is required,
since images seen with binocular disparity by the two eyes are spatially lag-
correlated. This violates the requirement that information be mapped from
global to local map with preservation of cross-covariance with distance. Sep-
arate representation of the images of each eye is a required compromise to
achieve overall maximum stability.

8.4 Conclusion

The two pieces of research work described in this chapter offer a contrast
and a convergence. The model of axo-dendritic dynamics depends upon the
quantitative choice of parameter values obtained from physiological data to
the extent possible. The properties of this model are relatively robust to per-
turbation of the parameter values, but wide variation of parameters leads
to dynamics wholly unmatched to real electrocortical activity, the parameters
that result in realism needing to be in particular proportions to each other [45].
Moreover, limited aspects of real dynamics can be reproduced by partial mod-
els, which utilize apparently different mechanisms [17, 29] (cf. Chaps. 7 and
5). More complete models will require confrontation of simulations with many
separate, but concurrent, classes of data.
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Conversely, the model of synaptic organization is essentially independent
of parameter values, and depends upon topological effects, which emerge in
between-scale dynamic interactions in cortex. It appears that dynamic inter-
actions may contribute to the organization of realistic anatomical connections,
thus supplementing the actions of the many growth factors, and chemical gra-
dients contributing at biochemical level to the formation and dissolution of
connections (e.g. [46]).

The basis for learning-related modifications of synaptic gains was earlier
left undiscussed. The mechanisms are likely to be multiple, and occurring on
many time scales. A likely major candidate for inclusion is long term po-
tentiation (LTP) and depression (LTD). Recent work [47,48] on learning-rule
modeling and experiments in hippocampus have led to the proposal of a learn-
ing rule and a link to LTP/D consistent with the requirements for synap-
tic stability and sensitivity in the stable state and during perturbation (cf.
Chap. 2). At a more abstract level, comparison with the information-theoretic
coherent-infomax principle is apparent [38]. In a unified version, the two mod-
els may provide a framework for more detailed comparisons with experimental
data, while also enabling analysis of their information storage and processing
properties.

The author presumes, but has not proved, that the two models are mutu-
ally compatible and could be combined in a single numerical simulation.
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Summary. We introduce the general framework of the large-scale neuronal model
used in the 5th Helmholtz Summer School — Complex Brain Networks. The main
aim is to build a universal large-scale model of a cortical neuronal network, struc-
tured as a network of networks, which is flexible enough to implement different kinds
of topology and neuronal models and which exhibits behavior in various dynami-
cal regimes. First, we describe important biological aspects of brain topology and
use them in the construction of a large-scale cortical network. Second, the general
dynamical model is presented together with explanations of the major dynamical
properties of neurons. Finally, we discuss the implementation of the model into
parallel code and its possible modifications and improvements.

9.1 Introduction

In the last few decades, an innumerable amount of information about the
mammalian brain has been collected [1, 2]. The anatomical properties of the
cortices of different animal species have been explored in detail with modern
imaging techniques revealing the functions of various brain regions and giving
insight into the processes of perception and cognition.

Neural modeling represents a powerful and effective tool for the investi-
gation and understanding of the development and organization of the brain,
and of the dynamical processes. The wide spectrum of neuronal models cap-
tures and describes processes ranging from the behavior of a single cell at
the microscopic level to large-scale neuronal population activity. ‘Bottom-up’
modeling is a common strategy used to design large cortical networks [3–6].
In this approach, the basic dynamical and topological unit of the system is
a single neuron. The specific pattern of interconnections between the simple
units can be represented as a complicated network. Depending on the network
structure, the model can stand for a local neuronal ensemble of a cortical area
or for the hierarchically organized architecture of the brain. The selection of
the concrete neuronal model should take the main dynamical behaviors, such
as spiking or bursting, into account.
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Table 9.1. Parameters of the network — structure and connections

Parameter Description

m Number of areas
n Number of neurons per area
z Number of connections per neuron within an area
pring Density of connections inside one area
prew Probability of rewiring
pinh Ratio of inhibitory neurons
p3 Ratio of neurons receiving synapses from a connected area
p4 Ratio of neurons with synapses towards a connected area
g1,exc Non-normalized strength of intra-areal excitatory synapses
g1,inh Non-normalized strength of intra-areal inhibitory synapses
g2,exc Non-normalized strength of inter-areal excitatory synapses

The main idea of this chapter is to introduce a general framework for build-
ing a complex large-scale brain network that can be used to study the relation-
ship between network topology and spreading of activity (see Chaps. 14 and
13) and present a large-scale cortical model using the ‘bottom-up’ approach.
We discuss the neuronal properties of a single unit and the structure of the
network connecting these neurons. Our aim is to build a general neuronal
model able to capture and mimic various dynamical processes, as well as the
wide spectrum of possible neuronal topologies. Furthermore, we would like to
use this complex model to investigate the relationship between the structure
and the function of the system.

In Sect. 9.2, we introduce the concept of the connectome. Subsequently,
the model of the network topology and structural details are presented. All
network parameters are summarized in Table 9.1. In Sect. 9.3, we deal with the

Table 9.2. Parameters of the neuronal dynamics

Parameter Description

Ibase Constant base current
Vexc Reversal potential for excitatory synapses
Vinh Reversal potential for inhibitory synapses
D Intensity of the Gaussian white noise
Gex Strength of Poissonian current (Pc)
Np Number of Pc
λ Frequency of Pc
τ1,exc, τ2,exc Rise and decay times of excitatory synaptic current
τ1,inh, τ2,inh Rise and decay times of inhibitory synaptic current
A+, A− Magnitude of the LTP, LTD
τ+, τ− Rise and decay rate of the LTP, LTD
tdel,1,exc Delay of intra-areal excitatory synapses
tdel,1,inh Delay of intra-areal inhibitory synapses
tdel,2,exc Delay of inter-areal excitatory synapses
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dynamical characteristics of neurons. The basic neuronal properties are listed
and their specific role in the neuronal dynamics is explained. We again present
an overview of all dynamical variables used in the model (cf. Table 9.2). Fur-
thermore, the general framework of the large-scale neuronal model is summa-
rized and its implementation into parallel code is described. At the end, we
discuss possible improvements and extensions of the model.

9.2 Topology

9.2.1 Connectome

Mammalian brains consist of a vast number of neurons that are intercon-
nected in complex ways [2]. In recent years, the network of anatomical links
connecting neuronal elements, the connectome, has been the subject of in-
tensive investigation. From numerous neurohistological studies, information
about the morphology, location and connections of different types of neu-
ronal cells, microcircuits and anatomical areas has been collected and sorted.
These data play an important role in creating a global image of the brain.
The implementation of such topological information in a large-scale neuronal
model might help us to understand the mechanisms of temporal and spatial
spreading of the cortical activity.

Although the details of the neuronal network architecture are not fully
known, several levels of cortical connectivity can be defined [2].

Microscopic Connectivity
In the human brain, approximately 1011 neurons are linked together by
1014 to 1015 connections, which correspond to 104 synapses per neuron.
The network is rather sparsely connected, with mainly local connectiv-
ity. Neurohistological studies of animal cortical tissue have pointed out
that each neuron makes contact to its closest neighbors only by one
synapse or not at all [7, 8]. Generally, individual neuronal interconnec-
tions are partially predetermined by genetic constraints and later modified
by adaptation rules and processes like ‘spike-timing-dependent plasticity’
(STDP) [9], nutrition, and learning, often happening on the daily base.
For many reasons — the high number of neurons, the complex topology,
frequent changes in the connectivity, the rapid decrease of living neurons
in the dead tissue and invasive histological techniques (staining, neurotrac-
ers, etc.) — it is not possible to extract the complete realistic connectivity
of neuronal ensembles either for animals or for humans [7].
Thus, the connections, especially at this microscopic scale, have to be mod-
elled as a graph, whose structure ranges from simple networks
such as random [5, 10–12], small-world [13, 14], or globally coupled net-
works [15–17] to more realistic networks reflecting spatial growth of the
cortex [18] (cf. Chap. 4).
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Mesoscopic Connectivity
A cortical minicolumn, an ensemble of neurons organized in the vertical
direction, is considered to be a basic functional unit processing information
in the brain of mammals. Such local circuit consists of only approx. 80–100
neurons, but the exact anatomical details of its structure are still not fully
described [2,8]. It is assumed that the minicolumnar architecture is more
complex than just random or distance dependent connections patterns. A
set of these functionally specialized and precisely rewired small neuronal
populations gives rise to the cortical column. Therefore, the minicolumn
is deemed to be a basic building block of the complete connectome [2,19].

Macroscopic Connectivity
In the cerebral cortex, neurons are organized into numerous regions (areas)
that differ in cytoarchitecture and function. These areas, originally defined
and listed by Brodmann, may be assumed to be basic elements at the
macroscale. Several studies have examined the topology of the neuronal
fiber connections linking different areas in the animal brain [20–22]. For
various species, like rat, cat and monkey, cortical maps were extracted
that capture the presence and the strength of cortical connections between
the areas. Unfortunately, the current histological techniques using mainly
tracer injections have toxic effects on the neuronal tissue and thus it is
not possible to perform similar studies on humans. Other imaging methods
like Diffusion Tensor Imaging [23] are still under development and do not
bring sufficiently satisfactory results.

The detailed knowledge of the anatomical connectivity at the systems level
offers a good starting point to explore the undergoing dynamical processes.

Databases

Even though the human connectome still remains unrevealed, a large amount
of information concerning animal anatomy has been already summarized and
presented in various databases on several web sites. At the mesoscopic scale
the database Microcircuit [24] or Wormatlas [25] offers insights into local
circuit connectivity. The database Cocomac [26] contains connectivity maps
of macroscopic brain networks of macaque monkey and BrainMaps [27] maps
the anatomical details of different animal species like domestic mouse, rat,
cat, and several types of monkeys.

9.2.2 Topology of Network Model

Due to the modular and hierarchical organization of the human connectome
(brain), simple models of individual levels do not offer an appropriate insight
into the complex dynamics occurring in such a complex topology. Thus, our
model combines the microscopic and macroscopic levels into one framework.
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The higher level copies the known connectivity of real neuroanatomical data,
especially the interconnectivity between 53 cat cortical areas [20, 21]. At the
lower level, single cortical areas of the cat brain are modeled by large neu-
ronal ensembles. Implementation of these two layers gives rise to a specific
topology — a network of networks . Recent analysis has confirmed a crucial
role of this type of hierarchical network structure in the uncovering of dynam-
ical properties of the system (see Chaps. 4 and 5). In the following section,
we will describe details of the topology of the model and discuss possible
modifications.

Global Cortical Network

As a representation of the large scale connectivity in our model, we chose the
cat cortical map, see Fig. 9.1. The cat cortex, together with the cerebral cor-
tex of the macaque monkey, are the most completely described brain systems
among the mammals. The first collation of the cat corticocortical connec-
tions, including 65 areas and 1139 reported links, was presented by Scannell
et al. [20]. The results of the study were later completed and reorganized
which led to the origin of a corticocortical network of 53 cortical areas and
additional thalamocortical network of 42 thalamic areas [21]. We will consider
only corticocortical connections in our modeling.

The corticocortical network of the cat is composed of 53 highly reciprocally
interconnected brain areas, see Fig. 9.2. The density of afferent and efferent
axonal fibers is expressed in three levels — 3 for the strongest bundles of fibers,
2 for intermediate or unknown density and 1 for the weakest connections. The
value 0 characterizes absent or unknown connections. These values convey
more the ranks of the links than the absolute density of the fibers, in the
sense that a ‘2’ is stronger than a ‘1’ but weaker than a ‘3’. All together, there
are around 830 connections in the corticocortical network with an average of
15 links per area [20, 21]. (For more details, see Chaps. 3 and 4).

Generally, in the network of cat cortical connections, four distinct subsys-
tems can be identified. The three sensory or sensorimotor subsystems — visual

Fig. 9.1. Topographical map of cat cerebral cortex (from [20])
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Fig. 9.2. Connectivity matrix representing connections between 53 cortical areas
of the cat brain

(V, 16 areas), auditory (A, 7 areas), somatosensory-motor (SM, 16 areas) —
involve regions participating in the processing of sensory information and ex-
ecution of motoric function. The fourth subsystem — frontolimbic (FL, 14
areas) — consists of various cortical areas related to higher brain functions,
like cognition and consciousness.

The subsystems are defined as sets of cortical areas with specialized func-
tion. To obtain the optimal arrangement of the areas into clusters, several
methods based on network connectivity were applied [21,28,29]. For example,
in the evolutionary optimization algorithm, the number of connections be-
tween units of the cluster should be maximized while inter-cluster connections
are minimized. The four resulting clusters largely agree with the functional
subsystems.
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The corticocortical network has been a subject of much detailed analysis
based on graph theory (clustering coefficient, average pathlength, matching in-
dex and many other statistical properties) [30] and theoretical neuroanatomy
(e.g. segregation and integration) [31]. (See more in Chaps. 3 and 4). The
knowledge of the topological properties provides a good starting point for our
investigation of the relationship of the structure and dynamics. Our model,
however, is flexible to allow for the inclusion of any known cortical connectiv-
ity or artificially created network of long-range cortical connections. The cat
cortical map is, in evolutionary terms, not so closely related to the structure of
the human cortex. To minimize this difference, one can replace the cat matrix
by the cortical map extracted from macaque monkey or possibly by a map of
the human connectome in the future.

Local Neuronal Network

As we have already mentioned, the individual areas differ in cytoarchitecture
and function. Due to these natural distinctions, we model each area as a local
network, i.e. a population of neurons having its own topology. Considering the
fact that local connections are more frequent than long range ones (although
the exact neuronal topology is unknown), we have chosen a small-world archi-
tecture as a minimal model [13]. This type of network, originally proposed by
Watts and Strogatz [32], represents a transition between random and regular
connectivity. At the beginning, each unit of the network connects to a number
z of the nearest neighbors, specified by a connection density parameter pring

as z = pring×n. Later, links are rewired with a probability prew to a randomly
selected node, which introduces the long-range connections. So, the parame-
ters pring and prew are crucial for the selection of specific network character
(regular, small-world or random), see [32] or Chap. 3.

The small-world topology disposes of improved structural properties like
short average pathlength and large clustering coefficient. From the dynamical
point of view, it is known that synchronization is enhanced on such networks
because of these two characteristics. Such an improvement in the ability to
achieve synchronization plays an important role in neural signaling. Many
studies also confirmed the presence of the small-world properties in various
biological networks, including cortical networks [30, 33].

Previous Chaps. (3, 5) presented a general overview of different kind of
networks, their network properties and the influence of these properties on
the network dynamics.

We distinguished two types of neurons — excitatory and inhibitory. It is
known that approximately 75–80% of the neurons are excitatory (pyramidal
type) and the remaining 20–25% are inhibitory neurons (interneurons) [1,5]. In
our simulations, we randomly select the inhibitory neurons with a probability
pinh = 0.25. Since only pyramidal neurons are involved in the long-range
inter-areal connections, we consider all inter-areal links to be excitatory.
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In the following part, we are mainly interested in the specification of the
strength of the different types of synapses. Generally, due to the smaller
amount of inhibitory neurons (and thus inhibitory synapses), these connec-
tions are usually stronger than the excitatory ones. We assume different cou-
pling strengths for the excitatory (g1,ex) and inhibitory (g1,in) synapses within
a cortical area. The modification of g1,ex and g1,in allows us to balance the ex-
citatory and inhibitory inputs to the neurons within a single cortical area and
achieve the ‘natural’ firing rate of neurons in the range of 1–3 Hz. To exclude
the dependence of the neuron firing rate on the network size, we additionally
normalize the coupling strength by the square root of the number of connec-
tions per area (z). In Chap. 14, the students present an efficient description
of the search for the optimal coupling parameters.

Additionally, we also have to consider signals coming from other cortical
areas (inter-areal links). If two areas are connected, only 5% of neurons within
each area will receive or send signals to the other area. On average, up to
30–40% of neurons of one area can be involved in communication with other
areas [34]. The coupling strength g2,ex of the inter-areal connections is scaled

Fig. 9.3. The modeled system — a network of networks. Note that local subnetworks
have small-world structure
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here by the square of the total number of neurons from the distant area sending
signals to the specific neuron.

Table 9.1 offers an overview of all network parameters presented in the
model of the network topology.

Let us briefly summarize the network structure of the model: The system
represents a network of networks , see Fig. 9.3. The macroscopic level corre-
sponds to the known anatomical connectivity map of 53 cat cortical areas.
At the microscopic level, a single cortical area is modeled by a large neuronal
population of excitatory and inhibitory neurons. The topology and the size of
the local network can be adjusted by changing the network parameters. Four
possible patterns of the local connectivity structure are available — global
(all-to-all), regular, small-world and random. Omitting the layered structure
of the cortical area and corresponding topological details, we randomly choose
5% of the neurons to receive an input from, and 5% of neurons to send an
output to the various connected cortical areas. The coupling strengths are
tuned to reproduce the ‘natural’ firing rate of neurons in their resting state.

9.3 Dynamics

Whether the model system will plausibly reflect the biological behavior or
not does not only depend on the network structure but also on the presence
of other necessary properties of neurons. We are aware that this book and
chapter resulting from the Summer School are not able to capture all these
properties, so here, we will discuss only the most relevant ones.

Neurons are highly specialized cells of the nervous system responsible
for the processing and transmission of information encoded in the form of
electrical activity. To handle such a peculiar task, neurons possess complex
morphology, including a wide dendritic tree with branches contacting many
neighboring cells, and an axon with its special myelin sheath conveying action
potential effectively and quickly. Additionally, several types of ion channels
incorporated in the cell membrane moderate the ionic currents and flexibly
respond to incoming signals (see Chaps. 1 and 2).

An implementation of all these dynamical and spatial properties would
lead to a complex structural model of the neuron, computationally expen-
sive and thus unsuitable for large-scale neuronal simulations. (However, this
approach is used in the Blue Brain Project, which uses supercomputers to
simulate the neuronal dynamics of the brain on different levels [6].) Rather
than representing neurons as a spatial unit with a complex geometry, they
should be modeled as dynamical systems with emphasis on the various ionic
currents. These ionic currents determine the neural response to the stimuli and
its excitability, which are of the main importance for the neural dynamics.

The general answer of a neuron to the stimuli is an ‘all-or-nothing’ activity.
Neurons only fire when the total synaptic or external input reaches some
threshold. If the inputs are weak, only temporal and spatial summation of
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such inputs will cause the neuron to fire. After the emission of a spike, the
upcoming short refractory period prevents the neuron from firing for a certain
time interval, even under the application of strong stimuli. Such a neuronal
response can be captured by a simple threshold or excitable model.

Thus, excitable neurons can be modeled by a variety of point spike models,
e.g. Integrate-and-fire model, Hindmarsh-Rose model, Izhikevich model (see
Chap. 1 and several overviews [35, 36]). In several simulations during the
Summer School, we chose the Morris-Lecar model, which is able to mimic
different types of the behavior categorized according to the neuron excitability
and is computationally efficient [37, 38].

Here we introduce the general global dynamics of the neurons described
by two variables V and W , see (9.1, 9.2).

V̇i = f(Vi, I
base) + Isyn

i (t) + Iext
i (t) (9.1)

Ẇi = h(Wi) +Dξi(t) (9.2)

The dynamics of the fast variable V imitating the membrane potential
are predetermined by a function f of two arguments: the membrane poten-
tial V and the basic current Ibase, which flows into the neuron and sets up
the neuronal excitability. Moreover, the membrane potential V is modified
by the total synaptic current Isyn coming from other connected neurons and
external current Iext, representing perturbations from lower brain parts. The
slow recovery variable W , modeled by a function h, accounts for the activ-
ity of various ion channels. Neurons are additionally stimulated by Gaussian
white noise ξ of intensity D, which simulates inherent neuronal stochastic
disturbance.

Now we will describe each individual input and its properties.

• Noise
In the living brain, neurons in the normal state usually do not exhibit
strong activity. According to some estimates, they are silent 99% of the
time, just sitting below the critical threshold and being ready to fire [39].
In our model, the neurons are also initially set in the excitable state.
To mimic the intrinsic stochastic character of neuronal dynamics, caused
by stochastic processes like synaptic transmission, Gaussian white noise is
included:

〈ξi(t)ξj(t− τ)〉 = δijδ(τ).

The tunable parameter D in (9.2) scales the intensity of this random in-
put. We would like to emphasize that due to the stochastic term in the
system, the Euler method is more appropriate for numerical integration.
Furthermore, the excitatory neurons are stimulated by multiple inputs of
Poissonian noise IPoiss (9.3), where Np is a number of Poissonian inputs
of frequency λ = 3 Hz. Poissonian input simulates external influences, e.g.
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from subcortical areas [10, 11, 39, 40]. In order to obtain the natural fir-
ing rate of individual neurons (1–3 Hz), we can also vary the strength of
the Poissonian current Gex (normalized to the square root of number of
Poissonian processes) until the expected firing rate is reached.

Iext
i (t) =

Gex√
Np

Np∑
l

IPoiss,l
i (t) (9.3)

• Synapses
Neurons in brain tissue are connected together in a sparse network through
two types of synapses: electrical and chemical [1].
Electrical coupling (linear) appears only locally through the close contact

of the membrane of the neurons. The information about the change of
membrane potential of one neuron is transmitted directly as a current
flowing through ion channels, called gap junctions.

Chemical synaptic connections (nonlinear) represent the majority of con-
nections between neurons in the neocortex. The principle of signal
transmission is based on the release of chemical messengers from the de-
polarized presynaptic neuron, which consequently bind to the receptors
of the postsynaptic neuron and cause the flow of ions in the cytoplasm.
Depending on the type of the receptor, we can distinguish excitatory
or inhibitory neurons, which occur in the ratio about 3:1 (pinh = 0.25).
Several models of chemical coupling have been proposed, varying from
simple [41] to more complex ones [1,14,15]. In our model, we consider
only the chemical type of neuronal coupling (cf. Chap. 1).

The term Isyn
i in (9.1) represents a total synaptic current to the ith cell,

i.e. the sum of signals (spikes) k = 1, . . . ,m from all pre-synaptic neurons,
j = 1, . . . , n, as shown in (9.4).

The response from all synapses is modeled by (i) the nonlinear function
α(t) describing the neuronal response and (ii) the difference between the
membrane potential of the postsynaptic neuron Vi and the reversal poten-
tial Vs (see a similar approach in [11]). Vs stands for Vexc or Vinh depending
on whether the neuron is excitatory or inhibitory.

Isyn
i (t) =

m∑
k

gijαj(t− tkj,spike − tdel)[Vi(t)− Vs] (9.4)

The parameter gij determines the connectivity and coupling strength be-
tween the postsynaptic i and presynaptic j neurons. In the case of dis-
connected neurons, we have gij = 0; gij > 0 indicates the presence of
excitatory links and gij < 0 the presence of inhibitory ones.
The gain function α(t) (9.5) expresses the dynamics of the neural response
with τ1,s and τ2,s as parameters of rise and decay times, where s symbolizes
whether the neurons are excitatory or inhibitory.
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Time tkj,spike is the spiking time of the k-th input spike of neuron i from
presynaptic neuron j. The variable tdel represents the time delay in the
signal transmission typical for the neuronal connection of i and j. For more
details, see Chaps. 1, 2 and 8.

αj(t) =
1

τ1,s − τ2,s
[e(−t/τ1,s) − e(−t/τ2,s)] (9.5)

• Plasticity
Neurons and neuronal connections in the brain evolve throughout life.
These changes are characterized by a decrease of the number of the neurons
and an increase of the density of the neural connections. According to
Hebb’s postulate, the most often used connections are strengthened, while
the weakest ones atrophy.

Recently, several researchers described a mechanism of spike-timing-
dependent plasticity (STDP) [9,42] (cf. Chap. 2). We used it to modify the
weight of the coupling between pairs of neurons. The amount of synaptic
modification depends on the exact time difference Δt between postsynap-
tic ti and presynaptic tj spike arrival (see (9.6, 9.7)). If the presynaptic
neuron j fires first (Δt > 0), long term potentiation (LTP) is induced and
the synapse is strengthened. In the opposite case, the synapse is weakened
(long term depression, LTD).

Δt = ti − tj (9.6)

gij(Δt) =
{
A+ exp (−Δt/τ+) if Δt > 0 ;
−A− exp (−Δt/τ−) if Δt < 0 . (9.7)

The parameters A± correspond to the maximum number of synaptic
changes (when Δt → 0). The time parameters τ± determine the range
of the temporal window for synaptic strengthening and weakening. Here,
we set the values: A+ = 0.01, A− = −0.012 and τ+ = 20.0, τ− = 20.0. For
more details, see [40, 42].

• Time Delay
Spikes require some time to propagate within the network; this time can
be determined from the axonal conduction velocities, which depend on the
length and diameter of axonal fiber [43]. In our model, we have omitted
all spatial properties of the neuron but transduction delays tdel have been
considered to capture the time scale of neuronal communication. They
play a crucial role in the neuronal dynamics [40, 44], e.g. neuronal syn-
chrony can be enhanced. The typical time delay between neurons varies
between 0.1–20 ms corresponding to axon conduction velocities around
1–20 m/s [45].
The time delay tdel,1 of the range of 1–10 ms was initially set up for local
neurons within one area. For the inter-areal delay, we considered values
tdel,2 of 10–30 ms.
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Chapter 2 offers more information and details of the synaptic properties
of neuronal connections, their models and the mechanism of spike-timing-
dependent plasticity. Here, we finally summarize the parameters of the neurons
defined in this section, whose alteration provides freedom in the exploration
of the neuronal dynamics.

9.4 Parallel Implementation of the Code

We have presented a large-scale network model of the cortex that accounts for
several biological features at different scales. From our previous experience, we
know that even simple neural dynamics, omitting properties like time delay,
synaptic plasticity, neural response etc., demand large computational power,
see Chap. 5 and [46, 47]. The inclusion of these omitted components causes
the simulation of the system to be computationally infeasible to run on single
CPUs. To reduce computational time and to improve the efficacy of the code,
the parallelization of the code was the only possibility to perform simulations
on a reasonable time scale [48] (cf. Chap. 10). For the parallel communication,
we chose the message-passing interface (MPI) [49]. The main idea is based on
the exchange of packages between different CPUs, i.e. sending and receiving
messages. All details of the code and process of parallelization are described
in Chap. 11.

The flexibility of the program allows one to replace various parts with
new ones or redefined properties. The groups of students had free access to
this parallel code and used it for their own simulations. Students chose and
implemented the neural models, in some cases including their own modules
(Chaps. 13 and 14).

9.5 Summary

In this chapter, we introduced the general concepts of neuronal modeling,
especially the construction of a large-scale computational model of cortical
neuronal network. First, we reviewed the main neurophysiological properties
that should be included in such a complicated model. The general idea of
the connectome was introduced and the structural properties of neural net-
works discussed. Second, we described the general dynamical features of single
neurons and interactions between them. All these individual structural and
dynamical properties are explained in more depth and summarized in the fol-
lowing chapters, which give basic information about the different biological
and physical phenomena occurring in the brain, e.g. dynamics of individual
neurons and populations (Chaps. 1, 2, 7, and 8), structure and its relation
to the dynamics (Chaps. 3, 5, and 7). Additionally, we discussed the need of
the parallelization of the code. More details and parallel implementation are
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given in Chaps. 10 and 11. This general framework we created was later used
by the groups of students during the summer school.

Although, we have previously described our approach as bottom-up mod-
eling (where we go from single neuron dynamics to the dynamics of cortical
areas by averaging), the model also exhibits features of a top-down modeling
scheme. We started from the systems level, cortical areas, connected accord-
ing to the cat map. The internal structure of each area was later expressed as
the local network of the neurons. From the structural point of the view, we
have omitted the complex character of the connections on the cellular level,
e.g. layered structure, morphology of the different types of neurons etc. Fu-
ture possible improvements could include hierarchical organization of neurons
into different layers together with substructures like cortical minicolumns and
columns. But such a detailed approach would increase the number of param-
eters and demand even higher computational power. The improved model
follows the same goal as an ambitious project, the Blue Brain Project (BBP),
attempting to create a computational model of the mammalian brain [6]. The
current effort of BBP concentrates on an accurate computational replica of
the neocortical column using one of the fastest supercomputers in the world.
Later, simulations of the whole brain with detailed anatomical structure and
dynamical properties are planned to discover the secrets of dynamical pro-
cesses in the brain.
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47. C. Zhou, L. Zemanová, G. Zamora, C. C. Hilgetag, and J. Kurths, Hierarchical
organization unveiled by functional connectivity in complex brain networks,
Phys. Rev. Lett. 97 (2006) 238103.

48. A. Morrison, C. Mehring, T. Geisel, A. Aertsen, and M. Diesmann, Advancing
the boundaries of high-connectivity network simulation with distributed com-
puting, Neural Comput. 17 (2005) 1776–1801.

49. W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable parallel programming
with the message-passing interface, 1999, 2nd ed., The MIT Press, Cambridge,
MA.



10

Maintaining Causality in Discrete Time
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Summary. When designing a discrete time simulation tool for neuronal networks,
conceptual difficulties are often encountered in defining the interaction between the
continuous dynamics of the neurons and the point events (spikes) they exchange.
These problems increase significantly when the tool is designed to be distributed
over many computers. In this chapter, we bring together the methods that have been
developed over the last years to handle these difficulties. We describe a framework
in which the temporal order of events within a simulation remains consistent. It is
applicable to networks of neurons with arbitrary subthreshold dynamics, both with
and without delays, exchanging point events either constrained to a discrete time
grid or in continuous time, and is compatible with distributed computing.

10.1 Introduction

Neural network simulations are crucial for the advancement of computational
neuroscience, as the nonlinear activity dynamics is only partially accessible by
purely analytical methods and experimental techniques are still severely lim-
ited in their ability to observe and manipulate large numbers of neurons. The
brain is an unusual physical system, as it consists of elements (neurons) which
can best be described by a set of differential equations, yet the interaction be-
tween these elements is mediated by point-like events (action potentials or
spikes). It is, moreover, a very complex system — for example, each neuron in
the cortex receives in the order of 104 connections from other neurons, both
within its immediate area and from more remote parts of the brain. Simu-
lating networks with this degree of complexity naturally suggests the use of
distributed computing techniques. However, the meshing of continuous-time
dynamics and discrete-time communication makes it notoriously difficult to
define a consistent and sufficiently general framework for the integration of
the dynamics.

There are two classical approaches to simulation: time-driven and event-
driven. In the former, a computational time step h is defined. One iteration of a
simulation involves each neuron advancing its dynamics over one time step. If
its conditions for generating an action potential are met, a spike is delivered to
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each of the neurons to which it projects. After all neurons have been updated,
the next iteration begins. In the latter approach, an event queue manages
the order in which spikes are delivered. Each neuron is only updated when it
receives an event. If its conditions for generating an action potential are met,
the new event is inserted into the queue. This algorithm can be defined very
simply and can be very efficient if the neuronal dynamics is invertible — for
example, if the arrival of a spike causes an immediate jump in the membrane
potential which then decays exponentially. In this case, the neuron can only
fire at the arrival of an incoming event, so the behavior of the neuron between
the arrival of one event and the next is not relevant for the correct integration
of the network. For neuron models with non-invertible dynamics, such as
those where the maximum excursion of the membrane potential occurs some
time after the arrival of a spike, it is much harder to define an event-driven
algorithm. More sophisticated mechanisms are needed: for example, neurons
might place provisional events in the queue if they are close to their firing
conditions, but may have to revise their predicted spike times upon the arrival
of further events [1, 2]. In the following, we concentrate on the time-driven
approach as defined above, which can incorporate any kind of subthreshold
dynamics without changes being made to the updating and spike delivery
algorithm, and has been shown to have good performance in simulating large-
scale neuronal networks and to scale excellently when distributed [3].

Here, we present a framework which defines the interactions between the
neurons without damaging causality, i.e. such that the order in which neurons
are updated does not affect the outcome of a simulation. The framework is
suitable for distributed computing. In Sect. 10.2, we cover the basics of point
event interaction between continuous-time neuronal elements. We first discuss
the historically important concept of neuronal networks with no propagation
delay and describe an updating scheme ensuring that the simulation results are
independent of the order in which neurons are updated (Sect. 10.2.1). We then
demonstrate how this scheme needs to be adapted to incorporate delays that
are multiples of the computational time step h (Sect. 10.2.2). Such networks
have traditionally constrained spike times to the discrete time grid. However,
for networks with propagation delays greater or equal to the computational
time step, this constraint can be relaxed. In Sect. 10.3 we show how the
scheme can be extended to permit neurons to generate and receive off-grid
point events. Finally, we discuss how the propagation delays between neurons
can be exploited to optimize communication efficiency between machines in a
distributed environment (Sect. 10.4).

10.2 Networks with Discrete Spike Times

In the following, we will assume that communication between neurons is
mediated by synapses. When a neuron spikes, all of its outgoing synapses
send a discrete event to their respective postsynaptic neurons. The event is
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parameterized with a weight w, which is interpreted by the postsynaptic neu-
ron with respect to the postsynaptic dynamics it implements. For example,
the postsynaptic neuron may interpret w as the size of an instantaneous jump
in its membrane potential, or as the maximum amplitude of a postsynap-
tic current implemented as an alpha function (see Chap. 1). In Sect. 10.2.2,
the event is further parameterized by an integer delay k, which expresses the
propagation delay d between the neurons in units of the computational time
step h, i.e. d = k · h.

10.2.1 Networks without Propagation Delays

Consider the following situation: neuron i and neuron j have a strong recipro-
cal inhibitory connection, such that a spike causes an instantaneous reduction
in the membrane potential of the postsynaptic neuron. Each neuron is re-
ceiving enough input to drive it to spike at time t. If neuron i is updated
to time t first, the spike is instantaneously delivered to neuron j. When j is
updated, the strong inhibition prevents the membrane potential from passing
the threshold, and so it does not itself generate a spike. Conversely, if neuron
j is updated first, neuron j spikes at time t and neuron i is inhibited.

The order dependence in the above example is extremely undesirable. How-
ever, with a small conceptual adjustment, the simulation can be made inter-
nally consistent. The convention is to define that the generation of a spike
may only be influenced by spikes which precede it. This is depicted in the
flowchart in Fig. 10.1(a). When the neuron is updated from t to t + h, it
first modifies its state according to the new spikes from its upstream neurons
which fired at time t (operator G), for example incrementing the membrane
potential or postsynaptic current. Then the subthreshold dynamics is carried
out to propagate the modified neuron state, including the new events, to t+h
(operator Fh). At this point, the spiking criteria are applied; if they are ful-
filled, the neuron emits a spike. Thus, the effects of the spike on the neuron
state are consistent with receiving a spike at t, as can be seen in the membrane
potential of neuron post in Fig. 10.1(b), but the earliest time the neuron can
emit a spike as a result of receiving that spike is t+ h. This is the equivalent
of considering spikes to have an infinitesimal ε-delay, and has the effect of
making simulations consistent, in that the order of updates does not affect
the outcome. In our previous example of two neurons with mutual inhibition,
both neurons would fire at time t. Assuming no refractory period, the effect
of the mutual inhibition would result in a hyperpolarization of both neurons
at time t+ h.

10.2.2 Networks with Propagation Delays

Minimal Delay

It is particularly simple to alter the algorithm described in Sect. 10.2.1 to one
in which all propagation delays in the network are equal to the computation
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a b

Fig. 10.1. Schematic of a discrete time simulation with no propagation delay: (a)
Neuron update algorithm. The flowchart depicts the order of operations required
to propagate the state y of an individual neuron by one time step h. Operator G
modifies the state according to the incoming events and operator Fh performs the
subthreshold dynamics; (b) Spike transmission and its effect on the postsynaptic
neuron. The membrane potential Vpre of neuron pre crosses the threshold θ in the
time step (t−h, t], so a spike is emitted at time t and the membrane potential is reset
to V0. The spike arrives at neuron post with no delay (zig-zag arrow). Filled circles
denote the values of the membrane potential that can be reported by the neuron
at the end of a time step. Intermediate (non-observable) values of the membrane
potential are shown as unfilled circles

time step h. In fact, all it amounts to is changing the order of the two operators
Fh and G, see Fig. 10.1 and Fig. 10.2. If neuron pre spikes at time t, this spike
is delivered immediately to neuron post (Fig. 10.2(b)). When neuron post is
being updated from t to t+ h, first the subthreshold dynamics are performed
to propagate the neuron by a step of h (operator Fh), then the neuron state is
modified to include the new events visible at t+h, including the spike sent by
neuron pre. Note that for this case and the case where no propagation delay
is assumed, the infrastructure of the simulation is the same. A spike produced
at time t is delivered immediately to its target, but due to the different order
of operations, the effect of the spike is instantaneous in the first case, but
delayed by h in the second.

The data structure used to store the pending events can be very simple. If
all the synapses have the same dynamics, varying only in amplitude, then each
neuron only requires one buffer to store incoming events. Examples of neuron
models that only require one buffer are those in which synaptic interactions
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a b

Fig. 10.2. Schematic of a discrete time simulation with propagation delays: (a)
Neuron update algorithm. The flowchart depicts the order of operations required
to propagate the state y of an individual neuron by one time step h. Operator Fh

applies the subthreshold dynamics and operator G modifies the state according to
the incoming events. Note that the order of these two operations is the reverse of the
order shown in Fig. 10.1; (b) Spike transmission and its effect on the postsynaptic
neuron. As in Fig. 10.1(b), neuron pre emits a spike at time t. The spike arrives
at neuron post with a minimal delay of h (zig-zag arrow). Filled circles denote the
values of the membrane potential that can be reported by the neuron at the end
of a time step. Intermediate (non-observable) values of the membrane potential are
shown as unfilled circles

cause an instantaneous increment to the membrane potential, or induce expo-
nential postsynaptic currents. Other neuron models may have more than one
set of synaptic dynamics, such as a longer time constant for inhibitory than
for excitatory interactions. Clearly, in this case, one buffer per time constant
would be required. However, for the sake of simplicity, we will focus on neuron
models with only one set of synaptic dynamics.

Depending on the implementation, either a one-element or a two-element
buffer is sufficient to maintain causality in the system. If the global schedul-
ing algorithm iterates through all the neurons twice — once to advance the
dynamics, the second time to apply the spiking criteria and deliver any gener-
ated events — then a one-element buffer is sufficient, as the ‘read’ and ‘write’
phases are cleanly separated. However, for reasons of cache effectiveness it
may be preferable to iterate through all the neurons only once — i.e. for each
neuron, advance its dynamics, apply its spiking criteria and deliver the new
events if it spikes. In this case, the ‘read’ and ‘write’ phases are no longer
cleanly separated, and a two-element buffer is required.
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A two-element buffer is depicted in Fig. 10.3. One side of the buffer can
be considered as the ‘read’ side, the other as the ‘write’ side. When neuron i
is modifying its state to incorporate the new events (operator G in Fig. 10.2),
it collects the summed weights becoming visible at t+ h from the ‘read’ side.
The act of reading clears that side of the buffer. If any neurons that project
to i emit a spike at t+ h, the weight of this event is added to the ‘write’ side.
After all the neurons have been updated, all their buffers are toggled so that
the empty ‘read’ sides are now ‘write’ sides, and the ‘write’ sides, containing
those events which become visible at t + 2h, are now ‘read’ sides. Thus, the
order in which the neurons are updated does not affect the outcome, as events
generated in one time step are always cleanly separated from those generated
in the next.

Exactly the same structure can be used for networks with no propagation
delay, except the assignation of times to buffer elements is shifted by h: in
Fig. 10.3(a), the left side receives events for the time step t + h while the
summed weight of events becoming visible in time step t is read out of the
right side.

General Delay

A system to simulate a network with a minimal propagation delay h can be
converted into one encompassing many different delays, as long as they are all
integer multiples of h, by replacing the simple two-element buffer with a ring
buffer. A traditional ring buffer is an implementation of a queue. The data is
represented in a contiguous series of segments. New elements are appended to
one end of the series, and the oldest elements are popped off the other end.

a b

Fig. 10.3. A two-element buffer, suitable for use in networks with a delay of h:
(a) In the time step (t, t + h], the gray side of the buffer is the ‘write’ side, and it
sums the weights of events generated in this time step that are to become visible in
the next step. The white side of the buffer is the ‘read’ side, containing the summed
weights of all the events received in the previous time step, Σiw

t+h
i . Once the neuron

has read out the buffer, the ‘read’ side is emptied; (b) After all neurons have been
updated, the neuron buffers are toggled. Now the empty white side receives new
events, and the gray side is read by the neuron as it updates from t + h to t + 2h
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a b

Fig. 10.4. A random access ring buffer, suitable for use in networks with delays
that are integer multiples of h. The weights wi of incoming events are written to the
segments corresponding to their delays di, such that a delay d = k · h corresponds
to the segment k along from the current read position: (a) Time step (t, t + h]: the
read position of the buffer is the segment containing the summed weights of all the
events which are to become visible at t + h; (b) Time step (t + h, t + 2h]: The read
position has moved to the next segment (gray), containing the summed weights of
all the events which are to become visible at t + 2h

Thus, the arc containing the data can be imagined as rotating around the
ring as data is added and removed. In this way, a queue can be implemented
without continually having to allocate fresh memory. For our purposes, we
need something more like a random access ring buffer, as shown in Fig. 10.4
(see also [3]). Each segment of the ring corresponds to one time step. When
the neuron is updating from t to t+ h, it reads from the segment containing
the summed weights of the events that become visible at t+h, and then clears
this segment. Incoming events are sorted into the other segments depending
on their delays: a spike with a delay of k · h would be sorted into the kth
segment along from the current read position. After all the neurons have been
updated, the read positions for all buffers are moved around one segment.
The ring buffer needs to be appropriately sized if the correct order of events
is to be maintained — it must be large enough to accommodate the largest
propagation delay between neurons in the simulated system, dmax = kmax ·
h, without ‘wrapping’. Therefore the optimal size for the buffer is kmax +
1. Depending on implementation, dmax may either be specified before the
creation of the network, or, more elegantly, determined dynamically whilst
the network is created.

10.3 Networks with Continuous Spike Times

In the systems discussed above, spike times were constrained to the discrete
time grid. However, Hansel [4] showed that forcing spikes onto the grid can
significantly distort the synchronization dynamics of certain networks. The
integration error decreases only linearly with the computational step size, so
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a very small h is necessary to capture the dynamics accurately. An alterna-
tive solution is to interpolate the membrane potential between grid points
and evaluate the effect of incoming spikes on the neuronal grid in continu-
ous time [4, 5]. This concept was extended in [6] by combining it with exact
integration of the subthreshold dynamics (see [7]). Here, we discuss how the
scheme described in Sect. 10.2.2 can incorporate off-grid spike times.

Continuous spike times can easily be incorporated into discrete time sim-
ulations without having to implement a central queuing structure if the min-
imum propagation delay is greater than or equal to the computational step
size h and an appropriate representation of time is used. In the networks dis-
cussed in Sect. 10.2.2, first the subthreshold dynamics is advanced by one
time step from t to t + h, and then the spiking criteria are applied. If the
neuron state passes the criteria (for example, by having a membrane poten-
tial above a threshold), the neuron emits a spike which is assigned to the
time t+ h. Now, let us assume that the actual spike time can be determined
more precisely, either by interpolation of the membrane potential or by in-
verting the dynamics or by any other method, such that t < tspike ≤ t+ h. If
the propagation delay to the neuron’s postsynaptic target is k · h, the event
should become visible at time tspike + k · h, which is in the update interval
(t + k · h, t + (k + 1) · h]. An appropriate representation of the spike time
therefore consists of an integer time stamp t + h and a floating point offset
δ = tspike− t. By definition, δ is in the interval (0, h]. This choice of represen-
tation allows the infrastructure described in Sect. 10.2.2 to be kept with only
minimal changes. The propagation delay k can still be used to sort the event
into the segment that will be read in the step (t + k · h, t + (k + 1) · h], but
the ring buffer is adapted to hold a vector of events in each segment instead
of a single value. The weight w and offset δ of the event are appended to the
vector. When the neuron performs this update step, the vector is first sorted
in order of increasing δ. Note that the vector is just the simplest possible
implementation and could be replaced by a more sophisticated data structure
such as a calendar queue [8].

The subthreshold dynamics is then advanced from the beginning of the
time step to the arrival time of the first event, at which point the neuron
state is modified to take account of the first event. Then the dynamics is
advanced between the arrival time of the first event and the arrival time of
the second event, at which point the neuron state is modified to take account
of the second event, and so on until all the events for that update step have
been processed. Finally the dynamics is advanced from the arrival time of the
final event to the end of the time step. Thus all incoming events have been
processed in the correct temporal order.

The scheme described above is very general and can be applied to any kind
of subthreshold dynamics, allowing the processing and generation of spikes in
continuous time within a discrete time algorithm. No global queuing of events
is required, as each neuron queues its events locally. In the case that the
subthreshold dynamics is linear, this can be exploited such that not even local
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queuing is required. This involves a slightly more complicated mechanism for
receiving spikes, see [6].

10.4 Distributed Networks

Neuronal network simulations can consume a huge amount of memory, espe-
cially if biologically realistic levels of connectivity are assumed. In the cortex,
each neuron has of the order of 104 incoming synapses and a connection prob-
ability of about 0.1 in its local area [9]. Therefore, a network fulfilling both of
these constraints must have at least 105 neurons. This is equivalent to about
1 mm3 of cortical tissue, and represents a threshold network size for simula-
tions, as beyond this point, the number of synapses increases only linearly with
the number of neurons, rather than quadratically as is the case for smaller
systems. Such networks contain 109 synapses, which, even using an extremely
simple synapse representation, require several gigabytes of RAM. This state
of affairs has naturally prompted much interest in distributed computing, for
example [3,10,11]. However, distribution raises new issues about maintaining
causality in the simulated system. If neuron pre projects to neuron post with
a delay of k · h, a spike produced by neuron pre at time t should be visible to
neuron post at time t+ k · h, no matter whether the two neurons are located
on the same machine.

In [3], it was demonstrated that it is more efficient to distribute a neu-
ronal simulation by placing the synapses on the machines of their postsynaptic
neurons than of their presynaptic neuron. This is equivalent to distributing
a neuron’s axon but keeping its dendrite local. That way, when a neuron
fires, only its index must be sent across the computer network, rather than
a weight and delay for every one of its postsynaptic targets. For neuronal
networks with biologically realistic levels of connectivity, this can represent a
difference of several orders of magnitude in the amount of information being
communicated. One way of ensuring that spikes are always delivered on time
is to communicate in each time step, after all the neurons have been updated
but before the read positions of their buffers has been incremented (see Sect.
10.2.2). However, this approach is sub-optimal with respect to communication
efficiency. Communication between machines has an overhead, so it is more
efficient to send one message of N bytes than N messages of one byte each.
Fortunately, it is generally possible to communicate less often and still deliver
the events correctly. For this, it is necessary to determine the minimum prop-
agation delay between neurons in the simulated system, dmin = kmin · h. As
in the case of dmax, described in Sect. 10.2.2, depending on implementation,
dmin could either be specified before the creation of the neuronal network, or
determined dynamically whilst the neurons are connected. By definition, a
spike cannot have an effect on a postsynaptic neuron earlier than kmin time
steps after generation. Therefore, as long as the temporal order of spikes is
preserved, it is possible to communicate in intervals of kmin time steps. This
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can be a significant improvement, as the minimum delay can be considerably
larger than the computational time step.

Preserving the temporal order of spikes has two parts: correct storage
before communication, and correct delivery after communication. If spikes
are constrained to the discrete time grid, for correct storage it is sufficient for
each machine to store the indices of spiking neurons in a buffer, with tokens
separating the indices of neurons which spiked in one time step from those
which spiked in the previous or next step. Thus, at the end of kmin time
steps, the buffer contains kmin blocks neuron indices separated by kmin − 1
tokens. Then the machine sends this buffer of indices to all other machines,
and receives buffers in turn. If the spikes are not constrained to the grid, as
described in Sect. 10.3, in addition to the index of a spiking neuron, its spike
offset δ must be buffered and communicated as well. For correct delivery,
it is necessary to activate the synapses of the neurons registered in these
buffers whilst taking the temporal order into consideration. The position of
an index in the buffer represents the communication lag, klag, in delivering
the information that a neuron has fired, i.e. klag = kmin for an index in
the first block of data, klag = kmin − 1 for an index in the second block of
data and so on until klag = 1 for indices in the last block of data. Note
that this assumes that the read positions of all the ring buffers had been
incremented before exchange of spike data (see Sect. 10.2.2). If the order is
exchanged, then the communication lag ranges from kmin − 1 for the first
block to 1 for the last block. If the communication lag is subtracted from the
propagation delay encoded in a synapse, then the event will become visible
to the postsynaptic neuron at exactly the same time as it would in a serial
simulation. For example, consider a synapse from neuron pre to neuron post
with a weight w and delay k · h. In a serial simulation, if neuron pre emitted
a spike at time t, w would be added to the ring buffer in the kth segment
along from the current read position. In a distributed simulation, w would be
added to neuron post’s ring buffer k − klag segments along from the current
read position, with klag determined by the position of the index of neuron
pre in the received index buffer. A slightly more sophisticated version of this
approach is discussed in [3].

10.5 Conclusions and Perspectives

We have shown how relatively simple methods and data structures can be
used to simulate networks of spiking neurons in discrete time whilst reliably
maintaining the temporal order of events. If spike times are constrained to
the discrete time grid, the framework is applicable to networks with no prop-
agation delay and to networks with arbitrary delays that are integer multiples
of the computation step size h. If spike times are not constrained to the grid,
the framework is only applicable to networks with propagation delays greater
than or equal to the computational step size h. In this case, the constraint
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that delays must be an integer multiple of h could be relaxed, because floating
point offsets and delays can always be recombined on the fly to produce inte-
ger delays and floating point offsets. All these networks can be implemented
in a distributed environment in a symmetrical fashion, i.e. the architecture is
peer-to-peer rather than master-slave.

These networks can be simulated efficiently because the delivery time of an
event in the simulated system has been decoupled from the arrival time at the
postsynaptic neuron and the temporal resolution of the simulation. This is the
concept that underlies both the ring buffers and the minimum delay intervals
for communication. However, if delivery and arrival times are decoupled, this
can be problematic for synaptic processes that depend on the state of the
postsynaptic neuron, for example spike-timing-dependent plasticity [12, 13]
(see also Chaps. 2 and 9). An algorithm has been developed that maintains the
correct relationships if propagation delays are assumed to be predominantly
dendritic [14]. However, if the propagation delays are predominantly axonal,
the framework presented here is not sufficient and will have to be adapted.
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11.1 Implementation of Diffusive Coupled Networks

A diffusive coupled network of n neurons can be described by a state vector
Ni(t):

dNi(t)
dt

= f(Ni(t)) +
n∑

j=1

wij × (Nj(t)−Ni(t)) , (11.1)

where the function f describes the evolution of the neuron and the weight
matrix wij the coupling strength between the neurons. For simplicity, we
assume that the state of the neuron can be described by a single scalar. The
matrix wij has the following properties:

wij

⎧⎨
⎩
> 0 excitatory coupling
= 0 no coupling
< 0 inhibitory coupling

(11.2)

The matrix can be implemented by a two-dimensional array. The size of this
array scales with O(n2) independent of the number of couplings (equivalent to
non-zero elements in wij). This is in particular inefficient for sparsely coupled
neurons. In this case, it is better to use the list structure (see Fig. 11.1) [1].

From now, on we will apply the Morris-Lecar (ML) neuron model [2] (see
Chaps. 1, 9, 13, 14). The dynamics can be described by two coupled ordinary
differential equations

c
dv
dt

= fv(v, w) = I − gL(v − vL)− gKw(v − vK)

−gCamv(v)(v − vCa) (11.3)
dw
dt

= fw(v, w) = λ(v)(wv(v)− w) , (11.4)

mv(v) =
1
2
(1 + tanh((v − v1)/v2)) ,
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Fig. 11.1. (a) Adjacency matrix and; (b) list representation of a random network
of 16 neurons with connection probability of p = 0.15

mw(v) =
1
2
(1 + tanh((v − v3)/v4)) ,

λ(v) = θ cosh((v − v3)/(2v4)) .

The diffusive coupling (corresponding to electrical synapses; cf. Chaps. 2 and
9) is achieved with the component v, i.e

c
dvi

dt
= fv(vi, wi) +

n∑
j=1

wij × (vj − vi). (11.5)

11.1.1 Sequential Code

The implementation of the list and the dynamics of the network is performed
with the help of the programming language C. It allows the definition of
abstract datatypes, where definition and implementation are separate [3]. An
introduction to the programming language C is given in [4]. A neuron can be
declared as a datatype Neuron in the following way (in the declaration header
file neuron.h):
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typedef struct
{
float v[2]; /* state of ML neuron */
int inhib; /* inhibitory (TRUE) or not (FALSE) */
List connect; /* list of connections */

} Neuron;

The datatype of lists List used by Neuron is declared in the header file list.h:

typedef struct
{
int *index; /* pointer to list of indices itself */
int len; /* length of list */

} List;

/* Declaration of functions */

/* initialize empty list to */
extern void initlist(List *);
/* add connection to list */
extern int addlistitem(List *,int);

The header file contains the declaration of the structure List and the proto-
types of the functions for initialization and adding a connection to the net-
work. Lists can be implemented in two ways: (1) as a variable sized array, and
(2) with linked pointers. The advantage of a implementation using arrays is
the better storage efficiency. A pointer implementation uses for every element
an additional pointer causing some memory overhead. Adding an element to
an array, however, is performed by a copying process of the full list not neces-
sary in the pointer implementation. If the network is not changed often during
runtime, an array implementation is usually more efficient. The initialization
function sets the length of the list to zero and initializes the index array to
the NULL pointer.

void initlist(List *list)
{
list->len=0;
list->index=NULL;

} /* of ‘newlist’ */

An item can be added to the list by a call to the addlistitem function. The
updated length of the list is returned by this function. The memory allocation
can be done by the realloc function of the standard C library. It increases
the allocated memory by a certain number of bytes.

int addlistitem(List *list,int item)
{
/* add item to index vector */
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list->index=(int *)realloc(list->index,
sizeof(int)*(list->len+1));

list->index[list->len]=item;
list->len++;
return list->len;

} /* of ‘addlistitem’ */

A random network can be built up with the function randomnet. For each
element of the neuron array, the list is first initialized and then random con-
nections are added to the list with a probability pconn. The neuron is marked
as an inhibitory neuron with a probability pinhib.

void randomnet(Neuron net[], /* array of neurons */
int n, /* number of neurons */
float p_conn, /* probability of establishing

connection */
float p_inhib /* probability of a inhibitory

neuron */
)

{
int i,j;
for(i=0;i<n;i++) /* iterate over all neurons */
{
initlist(&net[i].connect);
net[i].inhib=(drand48()<p_inhib);
for(j=0;j<n;j++)

if(i!=j && /* avoid self connections */
drand48()<p_conn)
addlistitem(&net[i].connect,j);

}
} /* of ‘randomnet’ */

The drand48 function is a generator of uniformly distributed pseudo-random
numbers defined in stdlib.h. The update of the ML model can be imple-
mented by the following updateml function:

/* constants for ML model */
#define c 1.0
#define gL 0.5
#define gK 2.0
#define gCa 1.0
#define vL (-0.5)
#define vK (-0.7)
#define vCa 1.0
#define v1 (-0.01)
#define v2 0.15
#define v3 0.1
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#define v4 0.145
#define theta (1.0/3.0)
void updateml(float dv[2], /* derivatives dv/dt */

float v[2], /* state vector v, v[0]=v,
v[1}=w */

float I /* applied current */
)

{
float mv,wv,lambda;
mv=0.5*(1+tanh((v[0]-v1)/v2));
wv=0.5*(1+tanh((v[0]-v3)/v4));
lambda=theta*cosh((v[0]-v3)/(2*v4));
dv[0]=I-gL*(v[0]-vL)-gK*v[1]*(v[0]-vK)-gCa*mv*(v[0]-vCa);
dv[1]=lambda*(wv-v[1]);

} /* of ‘updateml’ */

Then the update of the state of all coupled neurons can be performed by the
update function. A simple explicit Euler scheme is used to solve the ordinary
differential equations:

vi(t+Δt) = vi(t) +
Δt

c
× fv(vi(t), wi(t)),

wi(t+Δt) = wi(t) +Δt× fw(vi(t), wi(t)). (11.6)

void update(Neuron net_new[], /* updated array of neurons */
Neuron net[], /* array of neurons */
int n, /* number of neurons */
float I, /* applied current */
float w_in, /* inhibitory coupling

strength */
float w_ex, /* excitatory coupling

strength */
float h /* time step */

)
{
int i,j,index;
float sum,dv[2];
for(i=0;i<n;i++) /* calculate coupling */
{
sum=0;
for(j=0;j<net[i].connect.len;j++)
{

index=net[i].connect.index[j];
if(net[index].inhib)

/* inhibitory neuron */
sum-=w_in*(net[index].v[0]-net[i].v[0]);
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else
/* excitatory neuron */
sum+=w_ex*(net[index].v[0]-net[i].v[0]);

}
updateml(dv,net[i].v,I);
/* apply simple Euler scheme */
net_new[i].v[0]=net[i].v[0]+(h/c)*(dv[0]+sum);
net_new[i].v[1]=net[i].v[1]+h*dv[1];

} /* of ‘update’ */

11.1.2 Parallel Code

The sequential code is limited by the speed and storage capacity of a single
workstation. In particular, a large network of neurons uses O(n2) memory for
the connections, quite easily exceeding the storage of a typical workstation.
Instead of running the code on a faster computer with more memory, it is usu-
ally more cost efficient to run the code in parallel on a network of computers.
There are two different parallel computational models: shared memory and
distributed memory. In the shared memory model, the processors share the
same memory and address space. The memory bandwidth, however, limits the
achievable maximum number of processors. In the distributed memory model,
each processor has its own local memory. Data exchange is performed via a
communication network. This approach allows parallel computers consisting
of several thousands of processors.

Message-passing Paradigm

The parallelization of the code uses the message-passing paradigm based on
the distributed memory model. The message-passing model consists of a set of
processes or tasks that only have local memory but are able to communicate
with other tasks by sending and receiving messages. The data transfer from
the local memory of one task to the local memory of another task requires
operations to be performed on both processes. A portable implementation
running on different platforms and architectures is provided by the message-
passing interface (MPI). An introduction to MPI is given in [5]. The basic
functions of MPI are listed in Table 11.1. The datatypes and message-passing
functions are declared in the header mpi.h: A simple hello world program in
MPI looks like:

#include <stdio.h>
#include <mpi.h>
int main(int argc,char **argv)
{
int mytask,ntask;
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Table 11.1. The basic six-function version of MPI

Routine Description

MPI Init Initialize MPI
MPI Comm size Find out how many tasks there are
MPI Comm rank Find out which task I am
MPI Finalize Finish MPI
MPI Send Send a message
MPI Recv Receive a message

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&ntask);
MPI_Comm_rank(MPI_COMM_WORLD,&mytask);
printf("Hello! I am task %d out of %d tasks\n",

mytask,ntask);
MPI_Finalize();
return 0;

} /* of ‘main’ */

This code can be run in parallel on a arbitrary number of processors. On four
processors, it will produce the following output:

% mpirun -np hello
Hello! I am task 0 out of 4 tasks
Hello! I am task 2 out of 4 tasks
Hello! I am task 1 out of 4 tasks
Hello! I am task 3 out of 4 tasks

The task belonging to a group of n tasks is identified by a number ranging from
0 to n− 1. The default group containing all tasks is named MPI COMM WORLD.
There are two types of communication routines. The first class are point to
point routines, like MPI Recv and MPI Send in order to send to/receive from
a specified task (Fig 11.2). The basic send operation in MPI is declared as

MPI_Send(address,count,datatype,destination,tag,comm),

where

• address, count, datatype describe count occurrences of items of the
form datatype starting at address.

• destination is the task identifier of the destination in the group associ-
ated with the communicator comm.

• tag is an integer used for message matching.
• comm identifies a group of tasks and a communication context.

The corresponding receive is

MPI_Recv(address,maxcount,datatype,source,tag,comm,status)
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P0 P1

A

A

P0 P1

send receive

Fig. 11.2. Basic message-passing function of sending information from task P0 to
task P1

where

• address, maxcount, datatype describe the receive buffer as they do in
the case of MPI Send.

• source is the task identifier of the source of the message in the group
associated with the communicator comm.

• status holds information about the actual message size, source and tag.

MPI has predefined datatypes of the objects sent to or received from remote
tasks. They are listed in Table 11.2. The size of the MPI datatypes can be
calculated by a call of the MPI Type extent routine.

The second class of MPI functions are collective operations that are called
by all processors simultaneously. The most important collective routines are
summarized in Table 11.3. Their communication patterns are graphically rep-
resented in Fig. 11.3. Finally, the C bindings of all MPI routines used are
given in Table 11.4.

Table 11.2. Subset of basic (predefined) MPI datatypes in C

MPI Datatype C Datatype

MPI BYTE signed char

MPI DOUBLE double

MPI FLOAT float

MPI INT int
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Table 11.3. Collective operations of the MPI

Routine Description

MPI Bcast Broadcast data to all tasks
MPI Gather Gather all data to a single task
MPI Reduce Reduce data to one task
MPI Alltoall All to all communication
MPI Alltoallv All to all communication with variable size
MPI Scatter Scatter data to all tasks

Distributing the Network

In a parallel application, the neurons have to be distributed evenly on all tasks.
The parallel algorithm is described in [6] in detail (cf. Chap. 10). They use
basic send/receive routines, while our implementation is based on collective
MPI operations. An algorithm based on send/receive must use a complete
pairwise exchange algorithm [7] in order to prevent deadlocks.

In a distributed network, the connection list contains entries to remote
neurons. Then, the state of the neuron has to be transferred to the remote
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Fig. 11.3. Communication patterns for the MPI collective operations MPI Bcast,
MPI Gather/MPI Scatter, and MPI Alltoall on four tasks P0–P3
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neuron stored in a different task. The algorithm for setting up the communi-
cation structure works in the following way:

(i) For each task, a sorted list of neuron indices to which a connection exists
has to be created. Sorting is necessary in order to delete duplicate entries.

(ii) It has to be determined how many neuron states have to be sent to remote
neurons of all tasks. This defines the length of the output buffers.

(iii) This information is distributed to all tasks via a MPI Alltoall collective
operation call.

(iv) The indices of the neurons that have to be sent to a specific task must
be distributed from all tasks to all tasks via a MPI Alltoallv call. The
length of the packets has been determined by step 2 and 3.

(v) Two index vectors are built up containing the mapping from the input
buffer to the connection lists and the neuron indices to the output buffer.

Then, the exchange of the neuron states can be performed in three steps:

(i) Copy the state of the neurons to be sent to other tasks to the output
buffer.

(ii) Distribute the information with a call of MPI Alltoallv. The MPI Alltoallv
collective operation transports the output buffers to the corresponding in-
put buffers.

(iii) The input buffer must be mapped to the connection list.

Table 11.4. C bindings for the MPI functions used in the parallelization of networks

int MPI Alltoall( void *sendbuf,int sendcount,MPI Datatype sendtype,
void *recvbuf,int recvcount,MPI Datatype recvtype,
MPI Comm comm)

int MPI Alltoallv( void *sendbuf,int *sendcounts,int *sdispls,
MPI Datatype sendtype,void *recvbuf,int *recvcounts,
int *rdispls,MPI Datatype recvtype,MPI Comm comm)

int MPI Comm size(MPI Comm comm,int *size)
int MPI Comm rank(MPI Comm comm,int *rank)
int MPI Finalize()
int MPI Gather( void *sendbuf,int sendcount,MPI Datatype sendtype,

void *recvbuf,int recvcount,MPI Datatype recvtype,int root,
MPI Comm comm)

int MPI Init(int *argc,char ***argv)
int MPI Reduce( void *sendbuf,void *recvbuf,int count,MPI Op op,int root,

MPI Comm comm)
int MPI Recv( void *buf,int count,MPI Datatype datatype,int source,int tag,

MPI Comm comm)
int MPI Send( void *buf,int count,MPI Datatype datatype,int source,int tag,

MPI Comm comm,MPI Status *status)
int MPI Type extent(MPI datatype datatype,MPI Aint *extent)
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The datatype of a distributed network Pnet can be defined by the following
structure:

typedef struct {
int n; /* total number of neurons */
int lo; /* lower bound of subarray */
int hi; /* upper bound of subarray */
int ntask; /* number of tasks */
int taskid; /* my task identifier */
int outsize; /* size of output buffer */
int insize; /* size of input buffer */
int *outdisp; /* displacement vector for output */
int *indisp; /* displacement vector for input */
int *inlen,*outlen; /* vector length for input/output */
MPI_Datatype datatype; /* datatype of input/output

buffer */
void *outbuffer,*inbuffer; /* input/output buffer of

/* generic type void */
int *outindex; /* index vector of output */
List *connect; /* list of connections */

} Pnet;

The topology of the network is now part of this datatype and not part of
neuron. The basic functions for the datatype Pnet are:

/* Initialization of datatype */
extern Pnet *pnet_init(MPI_Datatype,int);
/* Random network setup */
extern void pnet_random(Pnet *,float);
/* Creating communication structure */
extern void pnet_setup(Pnet *);
/* Exchange information */
extern void pnet_exchg(Pnet *);
/* Macros for convenience */
/* iterator of subarray */
#define pnet_foreach(pnet,i) for(i=(pnet)->lo;

i<=(pnet)->hi;i++)
/* allocating an array ar[lo:hi] of datatype type */
#define newvec(type,lo,hi) \

(type *)malloc(sizeof(type)*(hi-(lo)+1)-(lo)
#define freevec(ptr,lo) free(ptr+(lo))

The datatype is initialized by a call to pnet init. The function has two
arguments. The first argument defines the datatype of the data to be dis-
tributed between the different tasks. The second argument defines the total
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number of neurons. In the first part of the function, the necessary arrays are
allocated, the number of tasks and the task identifier are determined. In the
next part, the lower and upper bounds of the neuron array are calculated.
In particular, it must be considered that the total number of neurons can-
not be divided by the total number of tasks. Finally, an array for the neuron
connections is allocated and initialized:

Pnet *pnet_init(MPI_Datatype datatype, /* MPI datatype */
int n /* total number of neurons */

) /* returns allocated struct */
{
int slice,rem,i;
Pnet *pnet;
pnet=(Pnet *)malloc(sizeof(Pnet));
pnet->n=n;
pnet->datatype=datatype;
MPI_Comm_size(MPI_COMM_WORLD,&pnet->ntask);
MPI_Comm_rank(MPI_COMM_WORLD,&pnet->taskid);
/* calculate lower and upper bound of subarray */
slice=pnet->n/pnet->ntask;
pnet->lo=pnet->taskid*slice;
pnet->hi=(pnet->taskid+1)*slice-1;
rem=pnet->n % pnet->ntask;
/* distribute the remainder evenly on all tasks */
if(pnet->taskid<rem)
{
pnet->lo+=pnet->taskid;
pnet->hi+=pnet->taskid+1;

}
else
{
pnet->lo+=rem;
pnet->hi+=rem;

}
/* allocate arrays */
pnet->outdisp=(int *)malloc(sizeof(int)*pnet->ntask);
pnet->indisp=(int *)malloc(sizeof(int)*pnet->ntask);
pnet->outlen=(int *)malloc(sizeof(int)*pnet->ntask);
pnet->inlen=(int *)malloc(sizeof(int)*pnet->ntask);
pnet->connect=newvec(List,pnet->lo,pnet->hi);
pnet_foreach(pnet,i)
initlist(pnet->connect+i);

return pnet;
} /* of ‘pnet_init’ */
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A random network is set up by calling pnet random. The function uses
the macro pnet foreach, ensuring that only the local subarray of each task
is accessed.

void pnet_random(Pnet *pnet,
float p_conn /* connection probability */

)
{
int i,j;
pnet_foreach(pnet,i)
for(j=0;j<pnet->n;j++)
if(i!=j && drand48()<p_conn)
addlistitem(pnet->connect+i,j);

} /* of ‘pnet_random’ */

The setup of the necessary communication patterns between the different
tasks is performed by the pnet setup function. Each task has to know the
upper and lower bounds of the subarrays of all other tasks. This information
is stored in the arrays lo and hi:

void pnet_setup(Pnet *pnet)
{
int *lo,*hi;
int i,j,k,*in,size,slice,rem,task;
slice=pnet->n/pnet->ntask;
rem=pnet->n % pnet->ntask;
lo=newvec(int,0,pnet->ntask-1);
hi=newvec(int,0,pnet->ntask-1);
for(i=0;i<pnet->ntask;i++)
/* calculate boundaries of all tasks for n mod ntask<>0 */
{
lo[i]=i*slice;
hi[i]=(i+1)*slice-1;
if(i<rem)
{

lo[i]+=i;
hi[i]+=i+1;

}
else
{
lo[i]+=rem;
hi[i]+=rem;

}
}

Then, the total number of connections and their indices are calculated.
The array in stores the neuron indices of all connections (Fig. 11.4).
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Fig. 11.4. Network of 16 neurons distributed to 4 tasks (upper figure). These are
the contents of pnet->connect before the call of pnet setup. The lower figure shows
the combined lists of network connections for each task 0–3

for(i=0;i<pnet->ntask;i++)
pnet->outlen[i]=pnet->inlen[i]=0;

/* calculating total length of connection list */
size=0;
pnet_foreach(pnet,i)
size+=pnet->connect[i].len;

in=(int *)malloc(sizeof(int)*size);
k=0; /* concatenating connection lists */
pnet_foreach(pnet,i)
for(j=0;j<pnet->connect[i].len;j++)
in[k++]=pnet->connect[i].index[j];

This array is sorted and duplicated entries are deleted (see Fig. 11.5).

/* sort connection list */
qsort(in,size,sizeof(int),

(int (*)(const void *,const void *))compare);
pnet->insize=1; /* delete duplicate entries */
for(i=1;i<size;i++)
if(in[i]!=in[i-1]) /* same indices? */
{
/* no, increase insize by one */
in[pnet->insize]=in[i];
pnet->insize++;

}
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Fig. 11.5. List of network connections for each task after sorting and deleting
duplicate entries. The numbers above the lists are the corresponding task identifiers
to which the information must be sent

After this step, the length of the vector sent to all tasks has to be calcu-
lated. This can be performed by counting all neuron indices inside the lower
and upper bound for each task (Fig. 11.6).

task=0;
pnet->inlen[task]=0;
/* calculating inlen vector */
for(i=0;i<pnet->insize;)
if(in[i]<=hi[task]) /* inside the boundaries of task? */
{
/* yes, increment inlen by one */
pnet->inlen[task]++;
i++;

}

Fig. 11.6. The length of the communication packets needed by MPI Alltoallv. The
information has to be distributed by MPI Alltoall to all tasks
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else
{
/* no, goto next task, set new inlen to zero */
task++;
pnet->inlen[task]=0;

}

It is important to map the connection from the input buffer to the connec-
tion list of the local neurons. This information is stored again in the array of
lists pnet->connect, because the original connection lists are not needed any
more (Fig. 11.7). The current implementation uses a linear search algorithm
to find the indices in the connection list leading to a runtime characteristic of
O(n2). By using a better algorithm (e.g. binary search), the runtime can be
significantly reduced. The setup function, however, is called only once during
initialization of the network.

/* calculating mapping from input buffer to connection */
pnet_foreach(pnet,i)
{
for(j=0;j<pnet->connect[i].len;j++)
/* search for index in array in */
for(k=0;k<pnet->insize;k++)
if(in[k]==pnet->connect[i].index[j])
{

/* index found and stop searching */
pnet->connect[i].index[i]=k;
break;

}
} /* of pnet_foreach */

The information of the lengths of the communication packets to be received
from other tasks has to be distributed by a call to MPI Alltoall. Then,
the pnet->outlen array contains the length of the outgoing packets. This
information is needed by the MPI Alltoallv function. MPI Alltoallv sends
a distinct message from each task to every task, where the messages can

Fig. 11.7. Mapping of the input buffer to the connection list. These are the contents
of pnet->connect after the call of pnet setup
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have different sizes and displacements. The displacement is the offset from
the first element of the array to the first element of the message and can
be simply calculated by summing up the pnet->inlen array. After calling
MPI Alltoallv, the array pnet->outindex contains the indices of neurons
that must be sent to other tasks (see Fig. 11.8).

MPI_Alltoall(pnet->inlen,1,MPI_INT,pnet->outlen,1,
MPI_INT,MPI_COMM_WORLD);

/* calculating displacements needed by MPI_Alltoallv */
pnet->indisp[0]=pnet->outdisp[0]=0;
for(k=1;k<pnet->ntask;k++)
{
pnet->indisp[k]=pnet->inlen[k-1]+pnet->indisp[k-1];
pnet->outdisp[k]=pnet->outlen[k-1]+pnet->outdisp[k-1];

}
pnet->outsize=0;
for(i=0;i<pnet->ntask;i++)
pnet->outsize+=pnet->outlen[i];

/* allocating outindex */
pnet->outindex=(int *)malloc(sizeof(int)*pnet->outsize);
/* information is moved from in to pnet->outindex calling

the collective operation MPI_Alltoallv */
MPI_Alltoallv(in,pnet->inlen,pnet->indisp,MPI_INT,

pnet->outindex,pnet->outlen,
pnet->outdisp,MPI_INT,MPI_COMM_WORLD);

Finally, we allocate the input and output buffers of type stored in pnet->
datatype. The function MPI Type extent returns the number of bytes for this
datatype. These buffers of generic type void have to be cast by the user to
the appropriate type.

/* allocating input and output buffer */
MPI_Type_extent(pnet->datatype,&size);
pnet->outbuffer=malloc(pnet->outsize*size);

Fig. 11.8. pnet->outindex describes the mapping of the output buffer to the neuron
indices
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pnet->inbuffer=malloc(pnet->insize*size);
/* free auxiliary storage */
free(in);
free(lo);
free(hi);

} /* of ‘pnet_setup’ */

The compare function is needed for the quicksort C library function qsort.
It sorts integer values in ascending order:

static int compare(const int *a,const int *b)
{
return *a-*b;

} /* of ‘compare’ */

Then, the exchange is done by the pnet exchg function calling only the
MPI Alltoallv function. Information is copied from the output buffers to the
input buffers.

void pnet_exchg(Pnet *pnet)
{
MPI_Alltoallv(pnet->outbuffer,

pnet->outlen,pnet->outdisp,
pnet->datatype,pnet->inbuffer,
pnet->inlen,pnet->indisp,
pnet->datatype,MPI_COMM_WORLD);

} /* of ‘pnet_exchg’ */

The parallel initialization of the network is performed by init:

Neuron *init(Pnet **pnet,
int n, /* number of neurons */
float p_conn /* connection probability */
) /* returns allocated array of neurons */

{
Neuron *net;
int i;
*pnet=pnet_init(MPI_FLOAT,n);
pnet_random(*pnet,p_conn);
pnet_setup(*pnet);
net=newvec(Neuron,(*pnet)->lo,(*pnet)->hi);
/* random initial state of ML neurons */
pnet_foreach(*pnet,i)
{
net[i].v[0]=-0.02*0.01*drand48();
net[i].v[1]=0.05+0.20*drand48();

}
return net;

} /* of ‘init’ */
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Then, the parallel update for diffusive coupling can be done in the following
way. For simplicity, only excitatory coupling is used. First, the state of the
neuron has to be copied to the output buffers. After calling pnet exchg, the
information is moved to the input buffer. The list pnet->connect provides
the information about the mapping of the input buffer to the connections.

void update(Pnet *pnet,
Neuron net[], /* subarray of neurons */
float I, /* applied current */
float w, /* coupling strength */
float h /* time step */

)
{
int i;
float sum,*buffer,dv[2];
/* cast outbuffer to float pointer */
buffer=(float *)pnet->outbuffer;
/* copy state to output buffer */
for(i=0;i<pnet->outsize;i++)
buffer[i]=net[pnet->outindex[i]].v[0];

/* Exchange of necessary information to all tasks */
pnet_exchg(pnet);
/* cast inbuffer to float pointer */
buffer=(float *)pnet->inbuffer;
pnet_foreach(pnet,i)
{
sum=0;
for(j=0;j<pnet->connect[i].len;j++)
sum+=buffer[pnet->connect[i].index[j]]-net[i].v[0];

updateml(dv,net[i].v,I);
/* performing Euler step */
net[i].v[0]+=(h/c)*(dv[0]+w*sum);
net[i].v[1]+=h*dv[1];

}
} /* of ‘update’ */

Efficiency of Parallelization

Communication is necessary after every time step in the case of diffusive
coupling. This limits the efficiency of the parallel code, in particular for large
networks with dense couplings. Efficiency E is defined by

E(p) :=
T (1)

p× T (p)
, (11.7)

where T (p) denotes the computation time running on p parallel tasks. The
computation time can be divided into two parts:
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T = Tcalc + Tcomm , (11.8)

where Tcalc denotes the computation part and Tcomm the communication part.
In the case of a fully coupled network of n neurons, Tcomm scales as O(n2),
while the computation part scales as O(n2/p):

T (p) ∼ n2

p
T ′

calc + n2T ′
comm, (11.9)

Thus,

E(p) =
T ′

calc

T ′
calc + pT ′

comm

(11.10)

resembling Amdahl’s law [8]. For large p, the total runtime is dominated by
the communication time and the efficiency tends to zero.

11.2 Non-diffusive Coupling

The coupling of neurons can also be done in a different way: If the integrated
postsynaptic potentials (PSP) reach a certain threshold, a spike train is sent
to remote neurons with a delay time tdelay. The PSP evoked by one single
spike can be parameterized by a gain function g(t) with a rise time τ1 and
decay time τ2 (cf. Chap. 1):

g(t) =
exp(−t/τ1)− exp(−t/τ2)

τ1 − τ2 (11.11)

For t > tmax ≈ 15ms and the chosen parameter τ1 = 1 ms and τ2 = 2 ms,
the PSP gain function g is nearly zero (Fig. 11.9).

Fig. 11.9. PSP gain function g(t) with rise time τ1 = 1 ms and decay time
τ2 = 2 ms
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A spike is generated if v exceeds the critical threshold of zero at time tspike.
The coupled model of n neurons is defined by

c
dvi

dt
= fv(vi, wi) +

n∑
j=1

mj∑
k=1

win,exg(t− tspike,j,k − tdelay,i,j)(vi − vin,ex) ,

dwi

dt
= fw(vi, wi) + σξ , (11.12)

i = 1, . . . , n ,

where tspike,j,k, k = 1, . . . ,mj are the mj spike times of neuron j, win,ex, vin,ex

are weights for inhibitory/excitatory coupling, and ξ is additional Gaussian
white noise with amplitude σ. The numerical discretization using an Euler
scheme for a stochastic differential equation is:

vi(t+Δt) = vi(t) +
Δt

c
× fv(vi(t), wi(t)),

wi(t+Δt) = wi(t) +Δt× fw(vi(t), wi(t)) +
√
Δt× ξ. (11.13)

11.2.1 Sequential Version

In order to speed up the evaluation of the gain function g(t), a lookup table
is used created by the function getg:

#define tau_1 1.0 /* rise time (ms) */
#define tau_2 2.0 /* decay time (ms) */

float *getg(int tmax, /* size of lookup table */
float h /* time step (ms) */
) /* returns calculated lookup table */

{
float *g,gmax;
int t;
g=(float *)malloc(sizeof(float)*tmax);
gmax=0;
for(t=0;t<tmax;t++)
{
g[t]=1/(tau_1-tau_2)*(exp(-t*h/tau_1)-exp(-t*h/tau_2));
if(g[t]>gmax)

gmax=g[t];
}
/* normalize g */
for(t=0;t<tmax;t++)
g[t]/=gmax;

return g;
} /* of ‘getg’ */
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An efficient implementation of such coupling uses a finite event buffer where
the time of spike events are stored (Chap. 10). It is assumed that the max-
imum number of overlapping spikes is limited by the size of the buffer. The
datatype Rbuffer can be defined by using an array that stores a limited
number of events. After the maximum number of spikes is reached, the oldest
event is overwritten. This can be implemented by a ring topology using the
modulo operator. A graphical representation of datatype Rbuffer is shown in
Fig. 11.10.

typedef struct
{
int len; /* length of ring buffer */
int top; /* index of first element in ring buffer */
int size; /* maximum length of ring buffer */
int *events; /* stores up to size latest events */

} Rbuffer;
void initrbuffer(Rbuffer *,int);
void addrbuffer(Rbuffer *,int);

A macro is defined in order to access an event at position pos from the top
of the ring buffer:

#define getrbuffer(rbuf,pos) \
(rbuf)->events[((rbuf)->top-1-(pos)+(rbuf)->size) % (rbuf)
->size]

The datatype is initialized by a call to initrbuffer. The parameter size sets
the maximum number of events that can be stored.

void initrbuffer(Rbuffer *rbuf,int size)
{
rbuf->len=rbuf->top=0;
rbuf->events=(int *)malloc(sizeof(int)*size);
rbuf->size=size;

} /* of ‘initrbuffer’ */

The implementation for adding an event to the ring buffer is straightforward.
The modulo operator is used after incrementing the index to the first element
in the buffer top defining a ring topology.

7874

pos

events 5021 73150 14

top

12338

6 5 4 3 2 1 0 9 8 7

Fig. 11.10. Graphical representation of datatype Rbuffer with size equal to 10
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void addrbuffer(Rbuffer *rbuf,int event)
{
/* have we reached the maximum number of events? */
if(rbuf->len<rbuf->size)
rbuf->len++; /* no, increase len by one */

rbuf->events[rbuf->top]=event;
/* increase top by one, then perform modulo operator */
rbuf->top=(rbuf->top+1) % rbuf->size;

} /* of ‘addrbuffer’ */

For the ML model, the datatype Neuron has to be modified:

typedef struct
{
float v[2]; /* state of neuron (ML) */
Rbuffer spikes; /* times of last spikes */
List connect; /* list of connections */
int inhib; /* inhibitory (TRUE) or excitatory (FALSE) */

} Neuron;

The neurons are initialized and the network is established by the function
init:

#define RBUFF_LEN 10 /* maximum length of ring buffer */

void init(Neuron net[], /* array of neurons */
int n, /* total number of neurons */
float p_conn, /* probability of establishing

connection */
float p_inhib /* probability of a inhibitory

coupling */
)

{
int i,j;
/* Setup of random network */
randomnet(net,n,p_conn,p_inhib);
for(i=0;i<n;i++)
{
/* Set initial conditions of neurons */
net[i].v[0]=-0.02*0.01*drand48();
net[i].v[1]=0.05+0.20*drand48();
/* Initializing event ring buffer */
initrbuffer(&net[i].spikes,RBUFF_LEN);

}
} /* of ‘init’ */

The update function uses the datatype Rbuffer and List. The Gaussian
white noise is generated by a call of the gasdev function as part of the
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numerical recipes library [9]. The function has been slightly modified and
uses the drand48 random number generator.

/* constants for ML model */
#define c 1.0
/* coupling constants */
#define V_in (-0.55)
#define V_ex 0.05

void update(FILE *file, /* output file for spikes */
Neuron net[], /* array of neurons */
int n, /* number of neurons */
int time, /* integer time */
float h, /* time step */
float *g, /* lookup table */
int t_max, /* size of lookup table */
float w_in,float w_ex,int delay,
float I, /* applied current */
float sigma /* amplitude of Gaussian white

noise */
)

{
int i,j,k,index;
float sum,v_new[2],dv[2];
int spike;
for(i=0;i<n;i++)
{
sum=0; /* calculate interactions */
for(j=0;j<net[i].connect.size;j++)
{
index=net[i].connect.index[j];
/* iterating over the ring buffer of neuron index */
for(k=0;k<net[index].spikes.len;k++)
{

spike=getrbuffer(&net[index].spikes,k)+delay;
/* testing whether spike is active */
if(time>=spike && time<spike+t_max)
{
/* yes */
if(net[index].inhib)
/* inhibitory coupling */
sum-=w_in*g[time-spike]*(net[i].v[0]-V_in);

else
/* excitatory coupling */
sum-=w_ex*g[time-spike]*(net[i].v[0]-V_ex);
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}
else
/* no, break if all spikes are not active

anymore */
if(spike+t_max<time)
break;

} /* of for(k=...) */
} /* of for(j=...) */
/* update of ML */
updateml(dv,net[i].v,I);
v_new[0]=net[i].v[0]+(h/c)*(dv[0]+sum);
v_new[1]=net[i].v[1]+h*dv[1]+sqrt(h)*sigma*gasdev();
/* critical threshold of zero reached for v? */
if(net[i].v[0]<0 && v_new[0]>0)
{
/* yes, we have a spike event, add to my ring buffer */
addrbuffer(&net[i].spikes,time);
fprintf(file,"%g %d\n",time*h,i);

}
net[i].v[0]=v_new[0];
net[i].v[1]=v_new[1];

} /* of for(i=...) */
} /* of ‘update’ */

The mean value of vi over the n neurons as a diagnostic variable, v̄ =
1
n

∑n
i=1 vi, can be calculated using the mean function:

float vmean(const Neuron net[],int n)
{
int i;
float sum;
sum=0;
for(i=0;i<n;i++)
sum+=net[i].v[0];

return sum/n;
} /* of ‘vmean’ */

The main program calculating the dynamics of the network is as follows:

#include "list.h"
#include "neuron.h"
#define n 100 /* number of neurons */
#define I 0.1 /* input current */
#define sigma 0.0 /* amplitude of Gaussian white noise */
#define t_max 20.0 /* duration of spike (ms) */
#define h 0.01 /* time step (ms) */
#define p_conn 1.0 /* fully coupled network */



304 W. von Bloh

#define p_inhib 0.0 /* no inhibitory coupling */
#define t_end 100.0 /* simulation time (ms) */
#define delay 0 /* no delay */

int main(int argc,char **argv)
{
Neuron net[n];
float *g,g1,w_in,w_ex;
int t,nstep,ostep,tmax;
FILE *file,*log;
init(net,n,p_conn,p_inhib);
w_in=0.1/((n-1)*p);
w_ex=0.1/((n-1)*p);
nstep=t_end/h;
ostep=nstep/100;
tmax=t_max/h;
g=getg(tmax,h); /* creating lookup table for g */
file=fopen("neuron.spike","wb");
log=fopen("neuron.mean","w");
for(t=0;t<nstep;t++) /* time loop */
{
if(t % ostep==0)
/* write to output file every ostep time steps */
fprintf(log,"%g %g\n",t*h,vmean(net,n));

update(file,net,n,t,h,g,t_max,w_in,w_ex,delay,I,sigma);
} /* of time loop */
fclose(file);
fclose(log);
return 0;

} /* of ‘main’ */

11.2.2 Parallel Version

The parallelization is based on Pnet. The data to be exchanged now have the
type MPI INT. In order to incorporate the ring buffer storing the spike events,
a new datatype Rnet has to defined. inhib is not part of datatype neuron,
because information about remote neurons is also needed.

typedef struct
{
Pnet *pnet; /* parallel network datatype */
Rbuffer *rbuffer; /* event ring buffer */
int *inhib; /* inhibitory list */

} Rnet;



11 Sequential and Parallel Implementation of Networks 305

The datatype Neuron now contains only the last spike event of the neuron
itself:

typedef struct
{
float v[2]; /* state of neuron (ML) */
int spike; /* time of last spike */

} Neuron;

Both the initialization of the neuron and the parallel communication pattern
are organized by the function init. The information about whether a remote
neuron is inhibitory or not is distributed by a call to pnet exchg. The output
buffer contains boolean values.

#define NOFIRE -1
Neuron *init(Rnet *rn,

int n, /* total number of neurons */
float p_conn, /* probability of establishing

connection */
float p_inhib /* probability of a inhibitory

neuron */
) /* returns allocated subarray of neurons */

{
Neuron *net;
int i,*buffer;
int *inhib;
rn->pnet=pnet_init(MPI_INT,n);
/* setup of random network */
pnet_random(rn->pnet,p_conn);
/* allocate subarray of neurons and temp. inhibitory

array*/
net=newvec(Neuron,rn->pnet->lo,rn->pnet->hi);
inhib=newvec(int,rn->pnet->lo,rn->pnet->hi);
pnet_foreach(rn->pnet,i)
{
net[i].spike=NOFIRE;
/* Set initial condition of neuron */
net[i].v[0]=-0.02*0.01*drand48();
net[i].v[1]=0.05+0.20*drand48();
inhib[i]=(drand48()<p_inhib);

}
pnet_setup(rn->pnet);
/* initialization of ring buffer */
rn->rbuffer=(Rbuffer *)malloc(sizeof(Rbuffer)*rn->pnet->

insize);
for(i=0;i<rn->pnet->insize;i++)
initrbuffer(rn->rbuffer+i,RBUFF_LEN);
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/* allocating information about inhibitory neurons */
rn->inhib=(int *)malloc(sizeof(int)*rn->pnet->insize);
/* mapping inhibitory array to output buffer;
buffer=(int *)rn->pnet->outbuffer;
for(i=0;i<rn->pnet->outsize;i++)
buffer[i]=inhib[rn->pnet->outindex[i]];

/* distributing inhibitory vector */
pnet_exchg(rn->pnet);
buffer=(int *)rn->pnet->inbuffer;
for(i=0;i<rn->pnet->insize;i++)
rn->inhib[i]=buffer[i];

/* free temporary storage */
freevec(inhib,rn->pnet->lo);
return net;

} /* of ‘init’ */

In order to write out the timing and the corresponding index of the firing
neuron in a sequential way, a datatype Slist has to be defined:

typedef struct
{
int time,neuron;

} Spike;
typedef struct
{
Spike *index;
int len; /* length of list */

} Slist;

/* Declaration of functions */

/* Initialize empty list */
extern void initspikelist(Slist *);
/* Add spike to list */
extern int addspikelistitem(Slist *,Spike);
/* Empty list */
extern void emptyspikelist(Slist *);

Implementation of Slist is identical to List. If neuron fires, then the index
together with the timing of the event is stored in the Spike structure and
added to the spike list. The parallel update function can be written as:

void update(Slist *spikelist, /* Spike list */
Rnet *rn,
Neuron net[], /* array of neurons */
int time, /* integer time */
float h, /* time step (ms) */
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float *g, /* lookup table */
int t_max, /* size of lookup table */
float w_in,float w_ex,int delay,
float I, /* applied current */
float sigma /* amplitude of Gaussian white

noise */
)

{
int i,j,k,index;
float sum,v_new[2],dv[2];
int spike;
Spike event;
pnet_foreach(rn->pnet,i)
{
sum=0; /* calculate interactions */
for(j=0;j<rn->pnet->connect[i].len;j++)
{
index=rn->pnet->connect[i].index[i];
for(k=0;k<rn->rbuffer[index].len;k++)
{
spike=getrbuffer(rn->rbuffer+index,k)+delay;
if(time>=spike && time<spike+t_max)
{

if(rn->inhib[index])
sum-=w_in*g[time-spike]*(net[i].v[0]-V_in);

else
sum-=w_ex*g[time-spike]*(net[i].v[0]-V_ex);

}
else if(spike+t_max<time)

break;

}
} /* of for(j=..) */
updateml(dv,net[i].v,I);
v_new[0]=net[i].v[0]+(h/c)*(dv[0]+sum);
v_new[1]=net[i].v[1]+h*dv[1]+sqrt(h)*sigma*gasdev();
/* critical threshold of zero reached for v? */
if(net[i].v[0]<0 && v_new[0]>0)
{
/* yes, store time */
net[i].spike=time;
event.time=time;
event.neuron=i;
addspikelist(spikelist,event); /* add spike to list */

}
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net[i].v[0]=v_new[0];
net[i].v[1]=v_new[1];

} /* of for(i=..) */
} /* of ‘update’ */

The exchange of spike timings is performed by a call of the exchg function:

void exch(Rnet *rn,Neuron net[])
{
int i,*buffer;
/* write time of last spike to output buffer */
buffer=(int *)rn->pnet->outbuffer;
for(i=0;i<rn->pnet->outsize;i++)
buffer[i]=net[rn->pnet->outindex[i]].spike;

pnet_exchg(rn->pnet); /* Communication */
/* add times of last spike to the corresponding ring

buffer */
buffer=(int *)rn->pnet->inbuffer;
for(i=0;i<rn->pnet->insize;i++)
if(buffer[i]!=NOFIRE) /* spike occured */

if(rn->rbuffer[i].len==0 ||
rn->pnet->inbuffer[i]!=getrbuffer(rn->rbuffer+i,0))
/* we have a new spike */
addrbuffer(rn->rbuffer+i,buffer[i]);

} /* of ‘exch’ */

The exchange is only necessary after time tdelay. Therefore, communication is
significantly reduced in comparison to diffusive coupled neurons.

Each task contains a list of all spike events occured stored locally in the
Slist datatype. The serialized output of the spike events collected from all
tasks is achieved by the fwritespikes function. All tasks initially send the
number of events recorded via the collective MPI Gather operation to task
zero. Then the content of the spike list is sent via MPI Send to task zero.

#define MSG_TIME 99 /* message tag used by send/recv */

void fwritespikes(FILE *file,Pnet *pnet,Slist *list)
{
int len,i,*list_len;
Spike *vec;
MPI_Status status; /* needed by MPI_Recv */
len=list->len;
list_len=newvec(int,0,pnet->ntask-1);
/* Gather number of spikes from all tasks */
MPI_Gather(&len,1,MPI_INT,list_len,1,MPI_INT,

0,MPI_COMM_WORLD);
if(pnet->taskid==0)
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{
/* write spike events of task 0 */
fwrite(list->index,sizeof(Spike),len,file);
/* collect spike events from all other tasks */
for(i=1;i<pnet->ntask;i++)
if(list_len[i]>0) /* spike occured in task i? */
{
/* yes, allocate temporal storage */
vec=newvec(Spike,0,list_len[i]-1);
/* receive spike list from task i */
MPI_Recv(vec,sizeof(Spike)*list_len[i],

MPI_BYTE,i,MSG_TIME,
MPI_COMM_WORLD,&status);

fwrite(vec,sizeof(Spike),list_len[i],file);
free(vec);

}
}
else if (len>0) /* spike occured in my task */
/* send to task zero */
MPI_Send(list->index,sizeof(Spike)*len,MPI_BYTE,

0,MSG_TIME,MPI_COMM_WORLD);
free(list_len);

} /* of ‘fwritespikes’ */

The function for calculating the mean value v̄ in parallel uses the global re-
duction function MPI Reduce. The reduction function MPI SUM adds the values
of all tasks. The function returns in task zero the global sum:

float vmean(Rnet *rn,
const Neuron net[] /* subarray of neurons */
) /* returns mean value of v on task zero */

{
int i;
float sum,globalsum;
sum=0;
pnet_foreach(rn->pnet,i)
sum+=net[i].v[0];

/* global reduction of sum o globlasum on task zero
using add operator */

MPI_Reduce(&sum,&globalsum,1,MPI_FLOAT,MPI_SUM,
0,MPI_COMM_WORLD);

return globalsum/rn->pnet->n;
} /* of ‘vmean’ */

The main program of the parallel version is:

#include <stdlib.h>
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#include <stdio.h>
#include <mpi.h> /* MPI prototypes */
#include "list,h" /* list datatype */
#include "pnet.h"
#include "rnet.h"
#include "neuron.h"
int main(int argc,char **argv)
{
Neuron *net;
float *g,g1,w_in,w_ex,v;
int t,nstep,ostep,tmax;
FILE *file,*log;
Rnet rnet;
Slist spikelist;
MPI_Init(&argc,&argv); /* initialize MPI */
net=init(&rnet,n,p_conn,p_inhib);
/* set random seeds differently for each task */
srand48(22892+38*rnet.pnet->taskid);
/* setting inhibitory and excitatory coupling strength */
w_in=0.1/((n-1)*p_conn);
w_ex=0.1/((n-1)*p_conn);
nstep=t_end/h;
ostep=nstep/100;
tmax=t_max/h;
g=getg(tmax,h);
if(rnet.pnet->taskid==0)
{
/* opening output files on task 0 */
file=fopen("neuron.spike","wb");
log=fopen("neuron.mean","w");

}
initspikelist(&spikelist);
for(t=0;t<nstep;t++) /* time loop */
{
if(t % ostep==0)
{
/* write mean value of v to output file every

ostep time steps */
v=vmean(&rnet,net);
if(rnet.pnet->taskid==0)
fprintf(log,"%g %g\n",t*h,v);

}
update(&spikelist,&rnet,net,t,h,g,t_max,

w_in,w_ex,delay,I,sigma);
if(delay==0 || t % (delay-1)==0)
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Fig. 11.11. Spike pattern for a network of 100 neurons derived from file
neuron.spike

{ /* exchange necessary every delay time steps */
exch(&rnet,net);
/* write out spike timings */
fwritespikes(file,rnet.pnet,&spikelist);
emptyspikelist(&spikelist);

}
} /* of time loop */
if(rnet.pnet->taskid==0)
{
fclose(file);
fclose(log);

}
MPI_Finalize(); /* end MPI */
return 0;

} /* of ‘main’ */

Sample output of the spiking times of a ML network is shown in Fig. 11.11.

11.3 Connection Dependent Coupling Strengths
and Delays

For the sake of simplicity, we have up to now only considered globally uniform
values for the coupling strength win,ex and delays tdelay. In general, these are
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connection dependent values. This can be implemented by defining a new
datatype for connections:

typedef struct
{
int index; /* index of neuron */
float w; /* connection dependent weight */
int delay; /* delay */

} Conn;

typedef struct
{
Conn *conns; /* array of connections */
int size; /* number of connections */

} Connlist;

Then, the datatype neuron is defined as:

typedef struct
{
float v[2]; /* state of neuron (ML) */
Rbuffer spikes; /* times of last spikes */
int inhib; /* inhibitory or not */
Connlist connect; /* connection list */

} Neuron;

Using this data structure, it is possible to model spike-timing-dependent plas-
ticity (STDP), i.e. the weights are modified differently, dependent on the times
of the pre- and postsynaptic spike arrival times ti and tj (Chaps. 2 and 9).
The weight wij of a connection is increased or decreased by Δwij according
to:

Δwij =
{
A+ exp(Δt/t+) for Δt > 0
A− exp(Δt/t−) for Δt < 0 , (11.14)

where A+ > 0, A− < 0 and Δt = ti − tj . The function Δwij (Fig. 11.12)
is implemented in the following way:

#define A_plus 0.01
#define A_minus (-0.012)
#define t_plus 20.0
#define t_minus 20.0

float deltaw(float deltat)
{
return (deltat>0) ? A_plus*exp(-deltat/t_plus)

: A_minus*exp(deltat/t_minus);
} /* of ‘deltaw’ */
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Fig. 11.12. Plasticity Δw as a function of difference between pre- and postsynaptic
spike arrival Δt

Then the sequential update function with plasticity is:

void update(FILE *file, /* output file for spikes */
Neuron net[], /* array of neurons */
int n, /* number of neurons */
int time, /* integer time */
float h, /* time step */
float *g, /* lookup table */
int t_max, /* size of lookup table */
float I, /* applied current */
float sigma /* amplitude of Gaussian white

noise */
)

{
int i,j,k,index,last;
float sum,v_new[2],dv[2];
int spike;
for(i=0;i<n;i++)
{
sum=0; /* calculate interactions */
for(j=0;j<net[i].connect.size;j++)
{
index=net[i].connect.conns[j].index;
/* iterating over the ring buffer of neuron index */
for(k=0;k<net[index].spikes.len;k++)
{
spike=getrbuffer(&net[index].spikes,k)+

net[i].connect.conns[j].delay;
/* testing whether spike is active */
if(time>=spike && time<spike+t_max)
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{
/* yes */
if(net[index].inhib)
/* inhibitory coupling */
sum-=net[i].connect.conns[j].w*

g[time-spike]*(net[i].v[0]-V_in);
else
/* excitatory coupling */
sum-=net[i].connect.conns[j].w*

g[time-spike]*(net[i].v[0]-V_ex);
/* plasticity */
if(time==spike)
{
/* previous spike occured? */
if(net[i].spikes.len>0)
{
/* yes, change weight of connection, delta

t<0 */
last=getqueue(net[i].spikes,0);
net[i].connect.conns[j].w+=

deltaw(-(spike-last)*h);
}

}
else
/* no, break if all spikes are not active

anymore */
if(spike+t_max<time)
break;

} /* of for(k=...) */
} /* of for(j=...) */
/* update of ML */
updateml(dv,net[i].v,I);
v_new[0]=net[i].v[0]+(h/c)*(dv[0]+sum);
v_new[1]=net[i].v[1]+h*dv[1]+sqrt(h)*sigma*gasdev();
/* critical threshold of zero reached for v? */
if(net[i].v[0]<0 && v_new[0]>0)
{
/* yes, we have a spike event, add to my ring buffer */
addrbuffer(&net[i].spikes,time);
fprintf(file,"%g %d\n",time*h,i);
/* plasticity */
for(j=0;j<net[i].connect.len;j++)
{
index=net[i].connect.conns[j].index;
for(k=0;k<net[index].spikes.len;k++)
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{
spike=getqueue(net[index].spikes,k)+

net[i].connect.conns[j].delay;
if(spike<time)
{
/*change weight of connection, delta t>0 */
net[i].connect.conns[j].w+=deltaw((time-spike)
*h);
break;

}
} /* of for(k=...) */

} /* of for(j=...) */
}
net[i].v[0]=v_new[0];
net[i].v[1]=v_new[1];

} /* of for(i=...) */
} /* of ‘update’ */

The initialization of the network has to include setting up the connection-
dependent weights and delays. The parallel version of the code can be imple-
mented analogously. The parallel exchange performed by pnet exch is only
necessary every tmin ×Δt time steps, where tmin is defined as

tmin = min
i,j=1...n

tdelay,i,j . (11.15)
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12.1 Introduction

The properties of a network are determined by the network topology, including
the connectivity and the coupling strength. Our network consists of neurons
modeled by the Morris-Lecar equations. We study the influence of some im-
portant parameters on the network dynamics. The parameters we vary are the
network topology, the global coupling strengths for excitatory and inhibitory
neurons gex and gin and the variance of an internal noise term.

In Sect. 12.2, the mean spike rate is taken as a measure for network activity,
and scans through the gex–gin parameter plane for different noise strengths
reveal how the network activity typically depends on the coupling strength.
Most of the study is concerned with ER random networks, but in Sect. 12.2.3,
it is shown that the typical dependencies also hold for small-world networks.

In Sect.12.3, the network behavior near the lower critical coupling strength,
where network activity sets in, is inspected more closely. Raster plots of ran-
dom networks as well as small-world networks show the time series of spiking
activity.

12.1.1 The Morris-Lecar Neuron Model

To simulate our neural network, we use the Morris-Lecar model (see Chaps. 1,
9, 11, 14). This model represents an electrical circuit similar to a cellular mem-
brane. It consists of three general synaptic currents and an additional external
current Iext. Equation (12.1) describes the development of the membrane po-
tential V , with instantaneous activation of the inward Ca2+ current, slower
activation of the outward K+ current and a leakage current.
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V̇ = − gCan∞(V − VCa)− gKw(V − VK)− gleak(V − Vleak) + Iext (12.1)

with n∞ = 0.5
[
1 + tanh

(
V − V1

V2

)]

ẇ = φ cosh
(
V − V3

2V4

)
(w∞ − w) + ση(t)

√
h (12.2)

with w∞ = 0.5
[
1 + tanh

(
V − V3

V4

)]

This is the normalized form of the Morris-Lecar equations used by Rinzel and
Ermentrout [1]. The parameters gCa, gK and gleak are the maximal conduc-
tances for each synaptic current and VCa, VK and Vleak are the corresponding
reversal potentials. The number of open Ca2+ channels is n∞. The number
of activated K+ channels is w, its time dependence being described in (12.2).
Equation (12.2) contains an internal noise term ση(t)

√
h, which is additive

Gaussian white noise with variance σ2. The external current Iext is given by

Iext = I + Isyn,

where I is a constant external current and Isyn the synaptic current coming
from connected neurons (see below). For a discussion of the equations and
their parameters, refer to [2, 4], or Chap. 1.3

12.1.2 Network Setup

The statistical properties of the networks (e.g. connection probability) are
fixed, but the network behavior may vary for different realizations of the
setup. We set up a new network for every simulation run, thereby ensuring
that most of our data points are from typical realizations of the network setup.

The coupling of the neurons enters the Morris-Lecar equations through
the synaptic current Isyn, which is defined as

Isyn = −
N∑

j=1

∞∑
k=1

g(t− tspike(j, k))(V − Vj) (12.3)

with

g(t) =
gj

τ1 − τ2 (e−t/τ1 − e−t/τ2) (12.4)

and the replacement rule
3 The parameter values were fixed to: VCa = 1.0, VK = −0.7, Vleak = −0.5, V1 =
−0.01, V2 = 0.15, V3 = 0.1, V4 = 0.145, Vinh = −0.55, Vex = 0.05, I = 0.08,
φ = 0.33, gCa = 1.0, gK = 2.0, gleak = 0.5, h = 0.01 ms, τ1 = 1.0 ms, τ2 = 2.0 ms,
N = 400.
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neuron j is excitatory ⇐⇒ Vj = Vex, gj = gex,

neuron j is inhibitory ⇐⇒ Vj = Vin, gj = gin.
(12.5)

In (12.3), N is the number of neurons in the network. The function g(t)
modulates the weight of a spike depending on the time that has passed. Vex > 0
is the resting potential for excitatory neurons, Vin < 0 the resting potential
for inhibitory neurons.

In addition to the spikes produced by the Morris-Lecar equations, we feed
spikes to each neuron independently at random times with a mean frequency
of 3 Hz. This Poisson process serves as an external forcing of the network and
stimulates activity [3].

In our study, the network consists of 400 neurons. 90% of the neurons
are excitatory and 10% are inhibitory. The connections between neurons are
bidirectional and the connection strengths are uniform. Excitatory neurons
are connected with a connection strength gex, and inhibitory neurons have
connection strength gin. The following two network topologies are considered:

(i) An ER random network, in which each neuron is connected to every other
neuron with a probability of p = 0.2, leading to a connectivity of 20%.

(ii) A small-world network, which is set up by first forming a ring where
every neuron is connected to the next 40 neighbors to each side and then
replacing 5% of those connections by connections to random neurons. The
resulting connectivity is also 20%.

Both topologies have properties that are important for cortical networks: the
random networks has a short pathlength but low clustering, and the small-
world network has short pathlengths and high clustering.

12.2 Influence of Coupling Strengths and Noise
on the Network Activity

The dynamics of networks of neurons is affected by excitatory and inhibitory
coupling strengths (gex and gin, respectively). We take the spike rate as a
measure for the global behavior of the network.

For any pair of gex and gin, the spike rate per neuron is computed by
running the simulation, counting the total number of spikes, and dividing by
simulation time (typically 3 s) and the number of neurons.

We take the code from Chap. 11, make it parallel using MPI and run it on
a cluster of 16 nodes. The parameter space (gex, gin) is divided into subareas,
with each area being assigned to one processor. The parameter gex is varied
between 0 and 1 with a step size of 0.008, while gin is varied between 0 and
0.4 with a step size of 0.01. We use a smaller incremental step for gex than for
gin, since we expect that the network dynamics depends more strongly on the
excitatory coupling strength than on the inhibitory one, because only 10% of
the neurons are inhibitory.
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12.2.1 Characteristic Features of the Activity Function

We study a network of N = 400 neurons, which are randomly connected with
a probability p = 0.2. In this first study, the noise level in (12.2) is set to
σ = 0. This initial choice allows us to study the network behavior in the case
of deterministic neuron equations.

Figure 12.1 shows the 3-D plot of the spike rate as a function of the cou-
pling strengths gin and gex. For small gex, the spike rate is rather low (3 Hz).
This is the rate of spikes that are externally induced by the Poisson process.
As expected, there is no self-sustained spiking activity above the input level
if the coupling between the neurons is too weak.

At gex ≈ 0.05, there is an abrupt increase in network activity. The value of
the critical threshold only weakly depends on the inhibitory coupling strength,
as Fig. 12.2 shows. As the excitatory coupling strength increases further, the
spike rate reaches a maximum of about 130 Hz at gex ≈ 0.15 and then de-
creases again. The most obvious difference when changing gin is the behavior
for large gex. For small gin, the spike rate quickly drops to a constant value of
50 Hz, whereas for larger gin, the decrease is slower, and saturation is not yet
reached for the highest gex in our data.
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Fig. 12.1. Random network: spike rate per neuron as a function of coupling
strengths gin, gex
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Fig. 12.2. Random network: spike rate per neuron as a function of coupling strength
gex

12.2.2 Effects of Additional Gaussian Noise

Next, we study the effects of additional noise on the global behavior of a
random network. The crucial parameter is the noise strength σ in the Morris-
Lecar equation (12.2). In Fig. 12.3, the activity for σ = 0.05 is compared to
the case where σ = 0.

The σ = 0.05 curve does not present the sharp increase in spike rate at
a certain excitatory coupling strength like the one we observe for σ = 0. We
speculate that the reason for this is the disturbance of collective behavior by
the independent random signals fed to each neuron.

Furthermore, the peak of maximal activity moves towards higher coupling
strengths. We compare the spike rates at a fixed value of gin = 0.1: for σ = 0.05
the maximum is at gex = 0.25, and for σ = 0 it is at gex = 0.16. Similarly to
σ = 0, the range of gex considered is too small to observe saturation.

12.2.3 Activity Function for a Small-world Network

The study of the dynamics of a small-world network with N = 400 neurons,
probability of long range connection p = 0.05 is performed with the same
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Fig. 12.3. Random network: spike rates per neuron for noisy Morris-Lecar neurons
compared to the curve σ = 0. For both curves gin = 0.1
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global connectivity of 20% and the same Poissonian input process. Fig. 12.4
shows the spike rate curves for a random as well as small-world network. For
both network types, there is a transition point at some value of the excitatory
coupling strength gex, where a sharp increase in network activity occurs.

12.3 Network Dynamics Near the Critical
Coupling Strength

As shown in the previous section, for both network types, there is a sharp
increase in network activity at a certain coupling strength gex. This section
will show that close to the critical coupling strength, the network dynamics
develops complex features on the time scale of a few seconds (cf. Fig. 12.5).

To analyze the network behavior, the spike events are presented in raster
plots . This type of plot has time on the horizontal axis, neuron index on the
vertical axis, and contains a dot for every spike event. From this, temporal
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Fig. 12.5. Raster plots of a random network of Morris-Lecar neurons for two differ-
ent coupling strengths that are in the critical range: (a) gex = 0.062; (b) gex = 0.065.
gin = 0.4 for both
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changes in network activity as well as spatial inhomogeneities can be readily
recognized.

When there is Gaussian white noise added to the Morris-Lecar equa-
tion (12.2), the sharp transition in activity as well as the complex behavior
vanish. This is to be expected, since noise with variance σ2 is added to each
neuron independently and should disturb correlation and coherence between
them. All considerations in the following part are therefore from data with
σ = 0.

12.3.1 ER Random Network

In our network configuration (cf. Sect. 12.1) and with gin = 0.4, the transition
occurs between gex = 0.06 and gex = 0.07. Figure 12.5 shows two simulations
with gex = 0.062 and gex = 0.065.

For these parameter values, there are two distinct states of the network.
The state with low activity has a spike rate of approximately 3 Hz. This is
the main frequency of the external forcing (cf. Sect. 12.1), so there is almost
no self-sustained activity. The high-activity state has a spike rate of approxi-
mately 26 Hz. In this state, the neurons seem to be synchronized (cf. Fig. 12.6),
which suggests that the interaction between the neurons drives the network.

Within one simulation run, the network switches between the two states
irregularly. With increasing gex, the network is in the high-activity state for
longer time intervals (Fig. 12.5). Interestingly, the spike rate changes rather
abruptly within 50 ms, whereas between the switches it remains constant for
typically a few seconds.
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Fig. 12.6. Random network near critical coupling strength during high-activity
phase. Enlargement of Fig. 12.5(b)
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Figure 12.6 shows an enlargement of a high-activity phase of Fig. 12.5(b).
There are irregular small-amplitude variations of activity on a time scale of a
few milliseconds. The horizontal stripes are due to the rather strong activity
variations between neurons: the average spike rate for a single neuron is 23
spikes per second, with a standard deviation of 9 spikes per second. We think
that the deviations in activity are due to differences in the number of connec-
tions. Neurons with fewer connections have less input and therefore should be
less active on average.

12.3.2 Small-world Network

Raster plots for small-world networks also show complex behavior near the
critical coupling strength, but there are differences to the behavior of random
networks, which are related to network topology. In a small-world network,
neurons with neighboring indices are strongly connected, while there are only
a few random connections between distant neurons (cf. Sect. 12.1).

The small-world topology influences the dynamics of the network in two
ways:

(i) By the connection of neurons with neighboring indices, the concepts of
neighborhood and distance between neurons are introduced. As a con-
sequence, the spreading of activity is represented in the raster plots as
non-orthogonal features, which almost certainly do not occur in random
networks (compare Figs. 12.5 and 12.7).

(ii) Neighboring neurons can group into clusters that are strongly intercon-
nected, but weakly connected to the rest of the network. The existence
of inhibitory neurons supports this separation into clusters. In a raster
plot, the clustering is indicated by broad horizontal stripes with distinct
spiking behavior.

Figure 12.7 shows two examples of small-world networks with a close-to-
critical coupling strength gex. As in the case of random networks, there is a
state in which the network activity is only driven by the 3 Hz Poissonian input
noise, and a state in which the coupling leads to a rather strong activity. For
small-world networks, the whole network is not all in one single state; rather,
the different clusters can have different states. For example, the cluster around
neuron 300 in Fig. 12.7(a) is silent all the time, while the state of the neurons
100 to 250 changes irregularly.

Generally, with increasing gex, the high-activity state dominates the low-
activity state, which is similar to the case of random networks. But the sim-
ulation run shown in Fig. 12.7(a) has a higher activity than the one shown
in Fig. 12.7(b), although its coupling strength is lower. Bearing in mind that
for each simulation run a new realization of the network setup was used, this
gives a hint that the dynamics of near-critical small-world networks is more
sensitive to the details of the network setup.
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Fig. 12.7. Raster plots of small-world networks of Morris-Lecar neurons for
two different coupling strengths that are in the critical range: (a) gex = 0.065;
(b) gex = 0.071. gin = 0.4 for both

In Fig. 12.8, which is an enlargement of Fig. 12.7(b), it can be seen that
during high-activity phases, the neurons are strongly synchronized. They spike
together after regular time intervals of approximately 20 ms. Another interest-
ing feature is the spreading of activity that takes place between t = 0.5 s and
t = 0.6 s; initially only neurons 0 to 50 are active, but then activity spreads
up to neuron 250, where the propagation stops at the silent cluster around
neuron 300.

12.4 Conclusion

Our study of networks of Morris-Lecar neurons shows that the network activ-
ity, measured as the average spike rate per neuron, strongly depends on the
coupling strength between the excitatory neurons. There is a lower thresh-
old coupling strength at which the activity abruptly rises, a maximal activity
for intermediate coupling strengths and a saturation effect for high coupling
strengths.
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Fig. 12.8. Small-world network near critical coupling strength. Enlargement of
Fig. 12.7(a)

Additive noise in the Morris-Lecar equations changes the shape of the ac-
tivity function: for small coupling strengths, the activity increases
smoothly — there is no threshold coupling strength. The maximum of ac-
tivity is at higher coupling strengths. Our data is not sufficient to establish
a saturation effect for the case of additive noise. Future studies should be
carried out for larger parameter intervals.

For coupling strengths that are close to the lower threshold, complex dy-
namical patterns are possible. These patterns, visualized in raster plots, de-
pend on the network topology and the coupling strength. Internal noise seems
to inhibit the patterns. We suspect that the reason for this is the destruction
of coherence between the neurons by the independent random signals fed to
each neuron.

Our results suggest that the dependence of activity on coupling strength
is similar for small-world networks and random networks. Nevertheless, the
dynamical patterns inferred from the raster plots are rather different. Fur-
thermore, the behavior of small-world networks seems to be more sensitive
to connection set up. However, our results for small-world networks are only
preliminary and require validation. Further studies should also try to system-
atically investigate the influence of the internal noise strength.

Two important questions remain open. First, how can one quantify the
network behavior by different measures than the spike rate? For example,
the detection of phase synchronization of the neurons would certainly give
deeper insight into the network dynamics (compare also Chap. 6). Second,
the character of the transition at the lower threshold of coupling strength
should be explored. This regime may be particularly interesting for brain
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dynamics, since the intermediate degree of synchronisation allows for coherent
but complex reaction to external stimulation.
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13.1 Introduction

The average adult human brain has about 100 billion neurons. Taken together,
these neurons form several trillions [1] of connections with each other. Though
we understand the functioning of single neurons in quite some detail, the same
cannot be said about large-scale neural network dynamics and the mechanisms
that generate them. Issues pertaining to large-scale neural interactions remain
open questions in the neurophysiological community. Even amongst computa-
tional neuroscientists who use neural modeling to investigate brain dynamics,
scale has remained a challenging issue.

To date, there are two major lines in modeling neural activity. On the one
hand, individual neurons are modeled in more or less detail [2] (cf. Chaps.1
and 2) and on the other hand, field equations that do not explicitly contain
individual neurons are derived for the propagation of activity in neural tissue
[3](cf. Chaps.1 and 8). Both these approaches have advantages but at the
same time they have serious shortcomings.

When modeling individual neurons, one has access not only to spike rates
but also to spike timings and the relations between the timings of individ-
ual spikes. Such timing aspects seem to play important roles for neural pro-
cessing and coding [4–6]. It has been argued that only codes that rely on
spike timing could account for certain types of experimentally observed neu-
ronal responses [7]. However, modeling individual neurons is usually limited



332 M. Vejmelka et al.

to relatively small numbers of neurons, typically several hundred, e.g. [8]. To
overcome this limitation, several models that describe the propagation of sta-
tistical properties (such as spike rate or average postsynaptic potential) of
neural tissue, so-called neural “field equations”, have been developed [3,9,10].
In these types of models, individual cells are not modeled explicitly but in-
stead the neural tissue by virtue of its high density of neurons is modeled as
a continuum. Although these models capture dynamic aspects of large num-
bers of neurons, they do not capture all the details like an individual neuron’s
spikes and hence cannot provide information such as spike timing.

In this chapter, we explore the possibility of bringing the best of both
worlds into one approach. We modeled a large-scale hierarchically organized
neuronal network made up of individual neurons with a connection topology
based on real physiological data. The connectivity of this large network mim-
icked the connectivity patterns found in the cat cortex by Scannel et al. [11]
previously.

Simulating hundreds of thousands of neurons requires far more comput-
ing power than what can be supplied by even the most powerful desktop
computers of today. In addition, it also presents some difficult numerical and
computational challenges. We employed clusters of PCs operating in parallel
to simulate our very large and detailed neuronal network. Thus, we were able
to capture details of the network like spike timing and at the same time have
the benefit of a large spatial scale and realistic connectivity. Using this ap-
proach, one set of results may be analyzed on multiple levels of detail at the
same time.

13.2 Materials and Methods

We have modeled the distributed large-scale cortical activity of the cat us-
ing a neural network model with three hierarchically organized scales. On the
lowest level of hierarchy, single neuron dynamics was modeled using point
neuron models (cf. Chap. 1). These neuron models were connected to form
local networks with a random topology (cf. Chap.3). The local networks were
subsequently connected together to form a global network using a connec-
tion scheme respecting physiologically known information about long-range
connectivity in the mammalian brain [11] (cf. Chaps. 4 and 9).

13.2.1 Neuron Model

Single neurons were modeled using the simple neuronal model proposed by
Izhikevich [12] (cf. Chap. 1). This model consists of two state equations (13.2),
representing the fast dynamics of the membrane potential and slow recovery
effects due to activation of K+ and inactivation of Na+ currents.

dv
dt

= 0.04v2 + 5v + 140− u+ I (13.1)

du
dt

= a(bv − u),
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where u is a variable representing the Na+ channel activation and K+ chan-
nel inactivation and v is the membrane potential. If the membrane potential
exceeds 30 mV, the model is reset to v = c and u = u + d and a spike is
emitted. The model can be tuned using the four parameters a, b, c, d to mimic
the dynamical features of a wide variety of cortical and subcortical neurons.
The variable I represents the total input current into the neuron. Motivated
by the anatomy of the mammalian cortex [13], we chose the ratio of exci-
tatory to inhibitory neurons to be 4 to 1. Excitatory neurons were chosen
from a distribution containing the dynamical features of regular spiking, in-
trinsically bursting and chattering cells [14, 15]; typical activity of each type
is shown in Fig. 13.1. For every excitatory neuron, the parameters were set
to (a, b) = (0.02, 0.2) and (c, d) = (−65, 8) + (15,−6)r2 where r ∈ 〈0, 1〉 is a
uniformly distributed variable. As regular spiking cells are more frequent in
the cortex, the choice of excitatory neurons was biased towards this cell type.
The term r2 serves to bias the distribution.

Inhibitory neurons were chosen from a distribution containing fast spiking
and low threshold firing cells, the parameters given by (a, b) = (0.02, 0.25) +
(0.08,−0.05)r and (c, d) = (−65, 2), where again r ∈ 〈0, 1〉 is uniformly

Fig. 13.1. Membrane potential evolution of samples from the distribution of ex-
citatory (left) and inhibitory (right) cells in response to injected current (bottom
traces)
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distributed. Samples of the activity of both types are also in Fig. 13.1. Low
threshold firing cells are characterized by strong spike frequency adaption
during tonic stimulation [12].

13.2.2 Local Networks

We have decided to use a random connection topology for local connections
because we found the current anatomical and physiological knowledge insuf-
ficient to support the adoption of a more specific topology. In order to mimic
the sparsity of neural connections, only 10% of all possible connections were
generated. Connections were randomly selected from the set of all possible
connections. In total, 53 local networks were modeled, one for each area of
the cortex as mapped by Scannel et al. [11]. If one neuron was connected to
another neuron, spikes of the first neuron triggered postsynaptic potentials in
the second neuron with a certain conduction delay. Postsynaptic potentials
were modeled by the function

VPSP(τ) =
σ

τ1 − τ2
(

exp(−τ/τ1)− exp(−τ/τ2)
)

(13.2)

with a rising time constant τ1 = 1 ms and a falling time constant of τ2 = 3 ms
added to the membrane potential of the postsynaptic cell, and where σ is
the peak value of the exponential. The time constants of the postsynaptic
potential were chosen to mimic the dynamics of AMPA and GABAA receptors
of excitatory and inhibitory synapses respectively [13]. Cortical conduction
delays vary over a broad range between 0.1 ms to delays as long as 44 ms. Data
by Swadlow [16] show two peaks in the distribution of conduction delays. One
of these peaks is in the range of delays clearly below 10 ms, the other peak is in
a range between 10 ms and slightly above 20 ms. We modeled local conduction
delays in the range between 0.5 and 4 ms, which roughly corresponds to the
first peak in the conduction delay distribution. In this way, conduction delays
for long range connections could be modeled using conduction delays from
the second peak. The strengths of the connections in the local networks were
assigned to the lowest value for which the stimulation of 10% of the neurons
in the network still lead to an overall response of that area.

13.2.3 Long Range Networks

The local networks were connected to form one single large-scale network.
Very little is known about the exact strengths of long range corticocortical
connections. However, Scannel et al. [11] rated connectivity data from the
cat cortex according to whether a connection was strong, intermediate, weak
or absent. Figure 13.2 shows the connections between areas in matrix form.
See [11] for assignment of the numbers to anatomical names. A total of 826
connections have been identified.
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Fig. 13.2. The connectivity map used to set up the connections in the model.
Adopted from [11]

We simulated long range connectivity by associating each of the 53 local
networks with one cortex area. If the data by Scannel et al. [11] reported a
connection between two areas, we randomly selected 5% of the excitatory cells
from the first area and connected these cells to a randomly selected 5% cells
from the other area. Connections were modeled as described in Sect. 13.2.2 (see
Chaps. 3, 9). The alpha functions modeling the postsynaptic potential shape
of these connections were scaled by a factor depending on the connection
strengths reported by [11]. If a strong connection was reported, the alpha
function was scaled by a factor of σ = 3, if an intermediate connection was
reported the alpha function was scaled by σ = 2. For weak connections, the
alpha function was not scaled, σ = 1. We have thus used a linear scale for
the connection strengths. Other options include polynomial (e.g. quadratic)
scaling or exponential scaling (101, 102, 103).

Conduction delays of long range connections were randomly assigned to a
value between 10 and 20 ms in accordance with data provided by Swadlow [16].
Connection strengths between local networks were assigned the lowest value
for which the stimulation of one local network still visibly spread to other
local networks.

13.2.4 Stimulation Paradigms

During the simulation, the network was exposed to three different types of
input.

(i) Unspecific thalamic input which was modeled by adding Gaussian white
noise to the membrane potential of all cells.

(ii) Specific thalamic input, which was modeled by the injection of direct cur-
rent into some of the cells belonging to the primary visual cortex (Brod-
mann’s area 17).

(iii) Combined specific and unspecific thalamic input.
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13.2.5 Rastergram Analysis

To find out whether the signal was propagating in an orderly fashion primarily
along the paths suggested by the anatomical data, we analyzed the resulting
spike time series to recover propagation delays of the signals from Brodmann’s
area 17 and related this to the shortest pathlength to all other areas.

Two different detection methods were used to estimate the propagation
delay. The neural spike traces were preprocessed to generate one time series
per local network, resulting in 53 different time traces. The preprocessing
algorithm computed the number of spikes per time step in each local network.
The first method was a threshold algorithm, which triggered a detection event
when spiking activity in a local network crossed a minimum threshold. The
propagation delay was defined as the difference of the time instance when
activity was detected and the beginning of DC current injection. The sec-
ond method was cross-correlation, where the propagation delay was derived
from the lag at which the cross-correlation exhibited a maximum, zero lag
coinciding with the time instant when the DC current injection started.

To provide further evidence that the synaptic connections are well ad-
justed and excitation is spreading primarily along the long range connectivity
paths, we analyzed the local network cumulative spike traces resulting from
the simulation to detect dominant connectivity patterns. Again, two different
methods were used, cross-correlation and mutual information. The algorithm
operated with prior information on how many connections were in the original
input matrix. The problem of selecting a suitable detection threshold was thus
circumvented. The question was, given the correct number of connections, will
the detected connections between the area be similar to the anatomical data
used as input to the simulation? Mutual information was computed for each
pair of the time series. The computed values were sorted by magnitude from
largest to smallest and only the 826 largest values (the number of connections
in the data given by Scannel et al.) were considered to be detected connections.

13.3 Results

The model was run on 16 nodes of the Linux cluster “Peyote” of the Max
Planck Institute for Gravitational Physics, Potsdam, Germany (cf. Chap. 11).
The cluster is populated by 128 nodes with 2 CPUs (Intel Dual Xeon) and 2GB
RAM each. The model was run under the three above mentioned conditions
and a 10 second spike rastergram was obtained from each simulation. Here,
we show results from simulations performed with 4096 neurons in each local
network, that is, 217,088 neurons total. The rastergrams have simulation time
on the horizontal axis and neuron index on the vertical axis (cf. Chaps. 12
and 14). When a neuron emits a spike, a dot is placed on the rastergram at
the point corresponding to the time instant and neuron index. The network
was simulated using Gaussian integration with a step size of 0.5 ms.
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In the first experiments (specific thalamic input), we injected 50 nA of
direct current into 10% of the neurons in Brodmann’s area 17 (primary visual
cortex) periodically every second for 100 ms. The rest of the network had
no external excitatory input except incoming postsynaptic potentials from
other neurons. The rastergram in Fig. 13.3 shows a one second segment of the
simulation.

Figure 13.4 clearly shows that the propagation delays from Brodmann’s
area 17 to other local networks are well correlated with the minimum path-
length between the local network and Brodmann’s area 17. Both detection
methods show similar results.

The plot showing connections detected using mutual information is shown
in Fig. 13.5.

The computed connectivity matrix exhibits a reasonable degree of simi-
larity to the original matrix.

In the second experiment (unspecific thalamic input), Gaussian white
noise with mean 0 and standard deviation 5 nA was added to the membrane
potential, v, in (13.2) of each neuron in each time step. The model network
was run for 10 seconds and a trace of the spikes of each neuron was captured.
Figure 13.6 shows the resulting trace image of the first two seconds. The
network exhibits a synchronous rhythm with a frequency of approximately
5 Hz.

To simulate more realistic conditions, we applied the direct current injec-
tion in the presence of unspecific thalamic input. The resulting trace is shown
in Fig. 13.7.

Fig. 13.3. The spike rastergram generated by the model when DC current injection
was applied to 10% of the cells of Brodmann’s area 17
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Fig. 13.4. Signal propagation delays from Brodmann’s area 17 (index 0 ) to other
areas. Black line is the delay corresponding to the minimum pathlength from area
17 to each area in turn. The blue line is the propagation delay computed by cross-
correlation and the red line is the propagation delay computed by activity detection
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Fig. 13.6. Unspecific thalamic input rastergram

Qualitatively, the model exhibited the same behavior when unspecific tha-
lamic input was present in addition to the direct currentinjection and again
generated a 5 Hz rhythm. This could be explained by the fact that we only ap-
plied weak stimulation, which we verified would propagate from local network
to local network, but was itself not strong enough to significantly alter the
dynamics of the entire network.

Fig. 13.7. Combined stimulation rastergram
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13.4 Discussion

In the current investigation, we observed highly synchronized spike waves
when the network was exposed to global unspecific noise. If one area of the
network was directly activated by adding a fixed current to 10% of the neurons
in that area, activity spread from this area to other areas.

We observed 5 Hz oscillations that were highly synchronized across the
whole network. What is the origin of these oscillations? We can distinguish
three different reasons that our network might show these oscillations:

(i) If excited by a constant current, most excitatory cells in our model
spike with an interspike interval of roughly 200 ms [12]. It might thus be that
an overall 5 Hz rhythm is due to the fact that every single neuron fires spikes
with a frequency of 5 Hz.

(ii) If the overall 5 Hz rhythm can not be explained by the properties of
the single neurons, this rhythm might evolve from the dynamics of the local
randomly connected networks.

(iii) A third possible reason for the emergence of 5 Hz activity could be the
large-scale connection properties that were adapted from Scannel et al. [11].

From these three mechanisms that might underlie the 5 Hz oscillations we
observed in our simulation, the first mechanism is easily ruled out. In a sim-
ulation without any connections, only the properties of the single cells would
play a role. In such a simulation, the first spike wave might be synchronized.
However, subsequent spike waves will be increasingly scattered due to the
noisy input. As long as there is no mechanism that counteracts the scattering
of spike times due to noise, an overall rhythm will not emerge as a rule. The
second and the third mechanisms are much harder to differentiate. Studies of
networks with one level of hierarchy (i.e. local networks, in our simulation)
have however not shown any such oscillations. In such simulations, usually
much higher network frequencies (> 25 Hz) than 5 Hz are observed [2, 8].
Some authors also described lower frequency components in the alpha range
(8–12Hz, [12]). Therefore, we believe that our results can be accounted for by
the large-scale connectivity that was adapted from Scannel et al. [11].

The frequency of the synchronized activity was an unexpected result. In
general, the main frequency components of the brain can be found around
10 Hz and 40 Hz [17]. However, it could be shown in field equation simulations
that under conditions with either very low external input [18] or weak con-
nections [19], oscillation periods can also be in the range that was observed
in the current investigation. Both these conditions might be present in the
current simulation. However, the data from Fig. 13.4 demonstrate that the
connections are at least strong enough to ensure a reliable propagation of ac-
tivity between areas. A more rigorous investigation of this issue is required to
clearly separate these two points.

Under what conditions do “real” brains show such highly synchronized
low frequency activity? The electroencephalogram displays synchronized os-
cillations in the so-called theta range (3–7Hz) during sleep stage 1 (drowsi-
ness) [20] and most prominent during deep meditation [21, 22]. Interestingly,
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these brain states can be associated with reduced sensory input. During sleep
stage 1, the eyes are closed and sounds are perceived to be damped. Persons
performing deep meditation report that sensory stimulation is attenuated,
which is also confirmed by event related potentials (Coromaldi, pers. comm.).
Thus, the emergence of 5 Hz rhythmic activity during very weak stimulation
seems to have a psycho-physiological counterpart.

If unspecific input to all areas was combined with direct excitation of one
area, the well defined propagation pattern observed in Figs. 13.3 and 13.4 was
lost. A plausible reason for this might be that the specific stimulus was too
weak to trigger an overall change of the dynamics of the network. However, as
we did not analyze the spike patterns at the level of single neurons, we cannot
exclude the possibility that there were stimulus specific patterns in the spike
responses of the single neurons. The importance of such patterns has been
highlighted by several authors [2, 4, 7, 23].

13.5 Conclusion

The current results indicate that spiking neuron models can display dynamics
that are comparable to those obtained from neural field equations. If the
number of simulated spiking neurons is sufficiently large, weak noisy input
can drive activity patterns that are observed in field equations and neural
mass recordings. Further investigations are required to identify the precise
relations between spike timing and spike rates in such large scale simulations.
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14.1 Introduction

One does not need to delve into complex modern physical phenomena to
realize that laws of physical nature are vastly employed and exploited by
nature. We can see in an object as ubiquitous as a flower, among other striking
properties related to its form, that the anther is isolated and the stigma is
grounded, readily providing an electrostatic mechanism for charged bees to
carry the pollen [1]. This phenomenon is so basic, yet shows what years of
evolution manage with one charged particle, its surplus and absence.

The quest to understand and somehow control biological systems, using
fundamentals and even by-products from physics and mathematics, has a long
history. Only to mention a very few examples and recent observations: an
original model of rhythmic waves coordinated by a central pattern generator
in multi-legged animal locomotion [2, 3], models dealing with the mechanism
of pattern formation (a perspective in [4]); a description of the formation
of sunflowers’ spirals and their relationship to Fibonacci series [5]; and new
phenomena and nonlinear mechanical models of hearing [6, 7]. Most of these
works require multidisciplinary thinking and address a larger community at
various levels of mathematical sophistication, see [8] for a recent selection of
biologically related material.

Among biological systems in general, the mammalian nervous system is ar-
guably the richest example of the interplay between biology, physics, chemistry
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and geometry. In the brain, vastly complex physical phenomena occur, but
not only because of the raw number of interacting units and their hierarchical
organization. The units themselves [9–12] as well as their effective connectiv-
ity [13–15] are still a major challenge to comprehension.

Various reports attempting to model aspects of neuronal activity with
tools from nonlinear dynamics have aroused a growing acceptance of the fact
that the diverse biological reactions of a cell to a stimulus can be explained by
bifurcation theory. While many types of receptors and channels (which need
to be taken into account in a description of the cell’s intrinsic properties)
might be present in a specific cell, they only determine the type of bifurcation
of the neural dynamical behavior [16].

Of more interest to us is the thriving activity in modeling networks of
neurons with diverse levels of biological realism, focused on explaining a few
features of the collective behavior. Using tools related to nonlinear dynamics,
such models come in various forms like traditional dynamical systems [17–19],
continuous media [20–22], mean field approximations [23], maps [24,25]; mod-
els incorporating morphology and structure [26–31]; models with competition
both at the network level [19] or at the synaptic level via plasticity [15] (see
Chap. 1 for a survey). As usual, a trade-off is necessary to balance the level
of detail and the scope of any attempt to come out with a useful model, i.e.
to predict behavior or a particular trait accurately and reproducibly.

In [16], a thorough exposition of the basic mechanisms by which neuronal
dynamical features can be understood is presented and the common idea of
the existence of a threshold is challenged. In [32], a review of the state of
affairs of neuronal network modeling surveying a wide range of techniques
and information of the present state of phenomenological advances is available.
The frontier between complex network structures and associated dynamics is
extensively detailed in [33]. A bold perspective appearing in [34] argues that
the level of knowledge of the biological intricacies of brain areas and layers
has reached such a mature level that time is ripe to attempt a larger scale
brain simulation of a microcolumn, calibrated to be indistinguishable from a
real one.

The real lack of detailed knowledge of connectivities in the mammalian
brain suggests that a wide range of possibilities should be tried when simu-
lating networks of many neurons. This poses a computational challenge. The
main goal of this chapter is to show the simulation work we produced during
the Summer School using and modifying the code presented in Chap. 11 using
the general scheme of Chap. 9 that tries to take on account neural structures
and connectivities. It is important to remember that other efforts to simulate
computationally large communities of neuronal cells have been done with dif-
ferent objectives in mind, for example [35,36] or the various references in [34].
Although interesting and efficient, those initiatives do not permit a straight-
forward extension to allow for structured areas with their natural connectivity
patterns.
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This chapter reports on a number of activities developed at the 5th summer
school where we implemented a working framework for the simulation of large
populations of neurons. Those neurons were treated as dynamical systems
near a bifurcation so that variations of critical parameters would convert an
otherwise quiescent state into a state of firing/bursting activity. Keeping track
of all the information describing the network state in files would of course
become prohibitive, so strategies for dealing with the data also were envisaged.

We chose the Morris-Lecar model as the unit in our simulations. This
choice is based on the fact that its dynamics is well understood for the
sake of the computational efficiency needed to produce data on a fine time
scale and long simulation range. Its efficiency could be one order of magni-
tude better than the full Hodgkin-Huxley prototype neuron. Morris-Lecar is
a conductance-based model like Hodgkin-Huxley but with only two persis-
tent channels, one fast (Ca2+) and one slow (K+). Another group of par-
ticipants dealing with the cat map (Chap. 13) implemented the Izhikevich
model, see [17]. Any other dynamical model can be easily implemented as an
additional module to the code (cf. Chap. 1).

The choice of the Morris-Lecar model could seem odd to a biologist, for
this model was originally proposed to simulate features of a muscle cell, but
the trade-off of biological realism for the possibilities of investigating a longer
simulation and actually observing size dependent phenomena has paid off,
especially when considering that many other biological facts were already
left aside or oversimplified (e.g. synaptic dynamics, morphology, delay, etc.)
for this particular set of studies. This is in full accordance with the original
proposal of building a simple framework from scratch, avoiding black boxes, in
a bid to better understand the role played by connectivity in large networked
dynamical systems.

The idea of building a framework as general as we implemented is to start
probing the functioning of the cat’s brain. A vast amount of knowledge of its
structures and connectivities has been collected during the last few years [37].
An important feature of the cat’s brain is its subdivision into 53 functioning
areas. The connection strength of these areas is assumed to be proportional
to the thickness of nerves connecting them and is implemented in our code as
well. One question that comes to mind is to what extent stimulating one area
would spread activity to other areas. This main task is what we set about to
address after polishing the code. Our results, while still too preliminary, look
promising.

The chapter begins with a brief description, in Sect. 14.2, of the Morris-
Lecar prototype neuron dynamics and its coupling to other neurons and the
noisy environment. In Sect. 14.3, the idea of one neuronal area is developed
and the conjecture of small world connectivity is implemented. This section
also addresses the tuning of the network to a natural baseline behavior through
parameter search. In Sect. 14.4, the procedure of tuning parameters to baseline
behavior is re-introduced and preliminary results of our simulations, mainly
the stimulation/ablation of areas and the effect of the size of the network, are
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presented. Section 14.5 describes the relation of the known connectivity struc-
ture of cortex with the observed activity in the simulations. Last, Sect. 14.6
provides discussions on our results and poses important perspectives to be
considered in the future using the general framework presented in Chap. 9.

14.2 The Model

14.2.1 The Morris-Lecar Neuron Model

The neuron model used in our simulations is the Morris-Lecar model. It is a
simplified conductance model of the barnacle muscle fiber, with two variables
obeying the equations:

v̇ = −gCa(v)(v − VCa)− gKw(v − VK)− gL(v − VL) + Iext (14.1)

ẇ =
φ

τw(v)
(W∞(v)− w) (14.2)

This is the dimensionless form of the model as presented by Rinzel and
Ermentrout in their classic exposition [38]. Voltage v is normalized to the
reversal potential of the excitatory ion Ca2+, so voltage parameters are
VCa = 1.0, VK = −0.7 and VL = −0.5. Conductances have been normalized
by a reference conductance Gref = 4 mS/cm2 and time by the time constant
τ = C/Gref = 5 ms, where C = 20 μF/cm2. Thus we arrive at values gK = 2.0,
gCa = 1.0 and gL = 0.5. In order to better match the model to the simulation
of mammal cortex rhythms, one (dimensionless) time unit will henceforth be
equivalent to 1 ms. Finally, φ = 1.0

3.0 , and:

gCa(v) = 0.5
[
1 + tanh

(
v + 0.01

0.15

)]
(14.3)

τw(v) =
1

cosh
(

v−0.1
0.145

) (14.4)

W∞(v) = 0.5
[
1 + tanh

(
v − 0.1
0.29

)]
(14.5)

This leaves the external current Iext as the only free parameter. For low values
(Iext < ISN), all orbits of the system are attracted to the unique stable node
with most potassium channels closed and a low, polarized voltage (between
VL and VK). As the external current grows beyond ISN = 0.0833, the stable
node disappears via a saddle-node bifurcation in an invariant circle, giving
way to an attracting limit cycle. In this cycle, the voltage jumps towards VCa

and triggers the opening of potassium channels, which in turn pull the voltage
back to polarized values; potassium channels then close and the cycle begins
again. The result is rhythmic spiking beginning at infinitely low frequencies,
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Fig. 14.1. Bifurcation diagram of the Morris-Lecar model used in this chapter. SN ,
saddle-node on invariant circle. H , Hopf. SNLC, saddle-node of limit cycles

and therefore, for the values of parameters chosen, Morris-Lecar is a class I
model (for other choices of parameters, it may be a class II model ; see [38]).

Figure 14.1 completes the picture of bifurcations with external current.
When Iext = ISNLC = 0.242, the limit cycle disappears through collision with
an unstable limit cycle (born at a subcritical Hopf bifurcation of the hitherto
unstable focus of the system) and the neuron becomes silent again, this time
at a depolarized value of voltage. In this state, the external current is so
strong that it effectively offsets the injection of potassium ions into the cell,
preventing the firing of action potentials.

The parameter region of interest for our networks is the so-called excitable
regime found at values of Iext just below the threshold ISN of rhythmic spiking.
In this regime, if the voltage is pushed by the arrival of a synaptic impulse
or by random noise out of equilibrium and across the unstable manifold of
the saddle point, the system will make a long excursion in the phase plane,
producing a single spike. This is illustrated in Fig. 14.2.

14.2.2 Coupling Between Neurons and External Stimulation

In the previous section, external current Iext has been treated as a constant
parameter. In network simulations, Iext is a time-varying current coming from
three sources:

Iext(t) = Ibias + Isyn(t) + IPoiss(t)
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Fig. 14.2. Phase plane representation (left) and time evolution of variables v and
w (right) for a single spike in the excitable regime (Iext = 0.07) of the Morris-Lecar
model. In the phase plane diagram, the thin continuous line is the unstable manifold
of the saddle, dashed lines are the v and w nullclines, and the thick continuous line
is the system trajectory. Point A, both in the phase plane and in the v − t diagram,
is the maximum of the action potential, where the trajectory crosses the v-nullcline.
At point B, where the trajectory intersects the w-nullcline, there is maximal opening
of potassium channels. Point C is the after-hyperpolarization peak due to remaining
open potassium channels when the voltage first returns to the equilibrium level

• Ibias is a constant external bias current which will set the neurons in the
excitable regime, as described in the previous section. It is common for all
neurons.

• Isyn is the sum of synaptic currents arising from connections with other
neurons in the network.

• IPoiss also comes in the form of a synaptic current, but its origin lies
outside the network; the presynaptic spikes that generate this current do
not come from neurons in the network, but are instead randomly generated
according to a Poisson process. These currents allow us to inject external
stimulation.

We now describe the synaptic current Isyn(t). It is a sum of currents due
to both excitatory and inhibitory chemical synapses. Indeed, neurons in the
network are classified as excitatory or inhibitory. If an excitatory presynaptic
neuron fires at time tsp (i.e. its voltage crosses zero with positive derivative),
it adds to the term Isyn(t) of the postsynaptic neurons an ohmic current
Isyn,exc(t) with reversal potential Vexc = 0.05 and time-varying, alpha function
shaped conductance, thus:

Isyn,exc(t) = −gexcαexc(t− tsp− tdel) ·Θ(t− tsp− tdel) · (vpost(t)−Vexc) (14.6)
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Here, gexc is the strength of connection between pre- and postsynaptic neu-
rons, tdel is the time delay of this connection, Θ(t) is the Heaviside step
function, vpost(t) is the postsynaptic neuron voltage and αexc(t) is the alpha
function:

αexc(t) =
1

τ1,exc − τ2,exc
(e−

t
τ1,exc − e−

t
τ2,exc )

The smaller of the two time constants τ1,exc and τ2,exc is the rise time and
the larger one is the decay time of the function. If, instead, the presynaptic
neuron is inhibitory, the reversal potential is Vinh = −0.50 (i.e. equal to VL)
and the synaptic current added to Isyn(t) is similarly:

Isyn,inh(t) = −ginhαinh(t− tsp − tdel) ·Θ(t− tsp − tdel) · (vpost(t)− Vinh),

where αinh(t) is now timed according to (possibly different) constants τ1,inh

and τ2,inh.
Finally, the IPoiss(t) term is very similar to Isyn(t). The only difference

is that it is made up exclusively of excitatory currents of the form of 14.6,
and the times tsp do not correspond to spikes of presynaptic neurons but are
instead generated by a Poisson process. By varying the rate λ of this process,
the amount of external stimulation injected into the different areas of our
network may be chosen. Baseline values for non-stimulated areas are around
λ = 3 Hz (mean period TPoiss = 333 ms).

14.3 Setting Proper Parameters

The two-level network described in Chap. 9 gives rise to a moderately large
number of parameters (connection numbers and strengths) that have to be
tuned if we want our model to mimic cortex behavior. In this section, we
describe the tuning procedure in two steps: first for intra-area parameters, and
then for the whole 53 area network. Table 14.1 summarizes all the relevant
parameters of the model and gives default values for them.

14.3.1 Optimal Inhibitory and Excitatory Coupling Strength
for one area

In the absence of specific external stimulation, we would like neurons in our
network to receive balanced excitatory and inhibitory input, so as to maintain
a baseline activity corresponding to the non-specific Poissonian stimulation
of 3 Hz. If this balance is achieved, scaling of connection strength with the
square root of the degree (see Chap. 9) will ensure that input amplitude is
independent of the number of neurons in the network (which is bounded by
computational constraints). Balance of excitation and inhibition in one area
depends on coupling parameters g1,inh and g1,exc. In order to find appropriate
values for these parameters, we did the following:
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Table 14.1. Parameters of the network model and their default values grouped as:
neuronal model parameters, network topology, connectivity strength and delays

Parameter Description Default value

Ibias Constant bias current 0.08
Vexc Reversal potential for excitatory synapses 0.05
Vinh Reversal potential for inhibitory synapses −0.5

n neurons per area 512
pinh Ratio of inhibitory neurons 0.2
pring Ratio of connections inside one area 0.1
prew Probability of rewiring 0.3
p3 Ratio of neurons receiving synapses from

a connected area
0.05

p4 Ratio of neurons with synapses towards a
connected area

0.05

g1,exc Non-normalized strength of intra-area
excitatory synapses

0.075

g1,inh Non-normalized strength of intra-area
inhibitory synapses

2.5

g2,exc Non-normalized strength of inter-area
excitatory synapses

0.075

g2,inh Non-normalized strength of inter-area
inhibitory synapses

0

gext Strength of connection for Poissonian
currents

0.1

τ1,exc, τ2,exc Rise and delay times of excitatory synaptic
current

1 ms, 3 ms

τ1,inh, τ2,inh Rise and delay times of inhibitory synaptic
current

1 ms, 3 ms

tdel,1,exc Delay of intra-area excitatory synapses 1 ms
tdel,1,inh Delay of intra-area inhibitory synapses 3 ms
tdel,2,exc Delay of inter-area excitatory synapses 3 ms
tdel,2,inh Delay of inter-area inhibitory synapses 9 ms
TPoisson Mean period of Poisson excitation 333 ms

• In the absence of inhibition (g1,inh = 0), we measured the mean firing rate
(MFR) of the network (total number of spikes per second per neuron) as
a function of the strength of excitatory synapses g1,exc. Poissonian stimu-
lation at a rate of 3 Hz is added to elicit baseline network activity. As is
shown in Fig. 14.3(left), for g1,exc < 0.05, the MFR is close to the exter-
nally imposed Poisson rate. At around g1,exc ≈ 0.05, activity blows up to
a state of higher MFR where spiking is self-sustained and independent of
the external input.

• Selecting a value for g1,exc barely above the threshold of sustained MFR
(g1,exc = 0.075), we increased the strength of inhibitory connections
until the activity turned back to the background level as shown in
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Fig. 14.3. (Left) Mean firing rate in one area of n = 512 neurons as a function
of the strength of excitatory synapses for g1,inh = 0. Each point is an average of 25
simulations; (Right) Mean firing rate in one area of n = 512 neurons as a function
of the strength of inhibitory synapses for g1,exc = 0.075. Each point is an average of
25 simulations

Fig. 14.3(right). At this point, excitatory and inhibitory forces within one
area are balanced.

In order to check if both forces are balanced, we have measured the MFR as
a function of the number of neurons n in one area for two sets of parameters.
The first one corresponds to the pair (g1,exc = 0.075, g1,inh = 0.25), which
produces a 3 Hz firing rate (see Fig. 14.3) and the second one, (g1,exc = 0.075,
g1,inh = 0.1), is chosen such that there is more excitation than inhibition. This
imbalance is going to be dependent on area size as shown in Fig. 14.4, while
for the right selection of the excitatory and inhibitory strengths, the MFR
remains constant at background level.
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Fig. 14.4. Comparison of the MFR as a function of the number of neurons n per
area between two sets of coupling strengths. When inhibition is not well balanced,
the MFR increases as n becomes larger
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14.3.2 Tuning Inter-area Parameters

When the 53 areas are coupled with the choice of parameters of the previous
section, making g2,exc = g1,exc and g2,inh = 0, a firing pattern that we will call
“generic” was observed, see Fig. 14.5. All areas show a similar homogeneous
pattern of activity, only the firing rate differs. Overexcitation can be deter-
mined to be responsible for this result. Therefore, a more extensive search for
parameters that yielded spontaneous bursting (the desired physiologic phe-
nomenon) was performed to elucidate suitable ranges and ratios of parameters
in the model. In addition, trends were noted on how such parameters affect
general behavior, including bursting, spike rates, and propagation through the
systems of the simulated cortical structures.

Even though the parameter values chosen for a single area produced ac-
tivity patterns and firing rates analogous to “natural” activity, the extension
to 53 areas, through incorporation of the connectivity matrix, affected the
behavior of each area. The primary effect was the introduction of additional
activity in each area from all the areas that it is connected to with afferent
connections. This extra activity increased the mean firing rate of each area
to frequencies higher than desired, higher than the 10–40 Hz range. Since the
parameters for excitatory and inhibitory connections within each area have
the greatest influence on the mean firing rate, we performed simulations of
the whole model with different combinations of these values. Figure 14.6 sum-
marizes the results of all these simulations. From these plots, we chose the
parameters g1,inh = 0.4 and g2,exc = 0.075 as the ones providing the most
appropriate firing rates.

Fig. 14.5. Raster plot of the behavior of the whole cortex characterized as “generic”.
g1,inh = 0.4, g2,inh = 0, g1,exc = g2,exc = 0.075, pring = 0.05, prew = 0.2



14 Parallel Computation of Large Neuronal Networks 353

0 50
0

100

g
1,inh

 = 0.15, g
2,exc

 = 0.075

M
F

R
 (

H
z)

0 50
0

100

g
1,inh

 = 0.25, g
2,exc

 = 0.075

0 50
0

100

g
1,inh

 = 0.4, g
2,exc

 = 0.075

0 50
0

100

g
1,inh

 = 0.15, g
2,exc

 = 0.1

M
F

R
 (

H
z)

0 50
0

100

g
1,inh

 = 0.25, g
2,exc

 = 0.1

0 50
0

100

g
1,inh

 = 0.4, g
2,exc

 = 0.1

0 50
0

100

g
1,inh

 = 0.15, g
2,exc

 = 0.15

M
F

R
 (

H
z)

Index area
0 50

0

100

g
1,inh

 = 0.25, g
2,exc

 = 0.15

Index area
0 50

0

100

g
1,inh

 = 0.18, g
2,exc

 = 0.125

Index area
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and g2,exc. pring = 0.05, prew = 0.2. Chosen parameters for further simulations:
g1,inh = 0.4 and g2,exc = 0.075

Despite the fact that our model was now able to produce activity within the
desired firing rate range, the overall behavior of areas continued to be rather
homogeneous. We interpreted this result as not being “natural” behavior and
called it “generic”.
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Fig. 14.8. Raster plot of the behavior of the whole cortex characterized as “natural”.
g1,inh = 0.4, g1,exc = 0.075, pring = prew = 0.2

Therefore, a set of further parameter search simulations were carried
out where different combinations of the connectivity within each area were
investigated, see Fig. 14.7. In this set of simulations, as before, our primary
determining factor for “natural” behavior was to conserve the mean firing rate
within the desired ranges. The additional condition was to obtain raster plots
that presented different patterns of activity. Considering that the highest num-
ber of connections between areas is within each system, we desired that the
areas of each system behave in a similar manner, and the behavioral pattern
of each system be different from each other, hence representing each system’s
different function. This second condition was satisfied by setting parameters
pring and prew to 0.2 (each area is modeled by a “small-world” subnetwork
composed of 512 neurons. The number of connections is controlled by param-
eter pring and the deviation from the initial ring by prew (see Chaps. 3 and
9 for detailed descriptions)). Figure 14.8 presents the behavior obtained with
these parameters.

14.4 Simulation of the Cat Cerebral Cortex

Once we managed to configure our model to behave in the manner of Fig. 14.8,
we were more confident that the effects of the connectivity matrix were sig-
nificant and that the behavior of the model could be described as “natural”.
We remind the reader that, as discussed in Chap. 3, the given corticocortical
network has been found to be divided into four major clusters, corresponding
to sensorial systems. Areas indexed 1–16 correspond to visual cortex , 17–23
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represents the auditory cortex , indices 24–39 somatosensory-motor cortex and
40−53 frontolimbic cortical areas. Next, we aimed to simulate different con-
ditions of the neural network:

• The already achieved natural behavior, under the conditions of background
noise (simulated by low frequency Poisson noise). Area coupling propels
connected areas into correlated patterns of bursting, behavior remaining
similar within each of the 4 cortical systems. Due to the small number of
connections between systems, each system is to follow its own independent
behavior.

• Stimulation of a single area, and of a whole system. From the sparseness of
connection weights in the matrix beyond each system, and the existence of
areas operating as “communication hubs”, a preferential pathway of inter-
system communication is implied. Stimulation of an area, or system, with
a simulated external signal was expected to propagate to other systems of
the network along this preferential pathway.

• The effects of ablating an area. The existence of only a small number of
areas preferential for inter system communication implies a greater signif-
icance for these areas for network operation. Removal of these areas from
the model should contribute to a great change of the overall activity of the
network. To further confirm that our model was adequately representative
of cat cerebral cortex and to observe the effects of the removal of such
areas, we carried out simulations where such areas were ablated.

We thus proceeded to simulate stimulation of a part of the cortex to ob-
serve the propagation of the stimulation and the effects on the non-stimulated
parts. Considering that the visual system is one of the most important, if
not the primary, stimulus receiving part of the cortex, we simulated our
model with stimulation of pulses at 25 Hz on the whole visual system. It is
clear from Fig. 14.9, as expected, that the independent behavior of the other
systems and areas of the cortex was dominated by the stimulation. Specifi-
cally, we can observe that the visual system transfers the introduced activity
into the other systems and functions as the driving system for the whole
cortex.

Our final simulations considered the effects of damaged tissue. To observe
these effects, we simulated our model with stimulation and in addition, we
inactivated areas that operated as midpoints in the pathway from the stim-
ulation area to other areas. In these simulations, to represent area “death”
or “ablation”, we lowered the excitability parameter, Ibias, of the neurons
within the target area slightly below their excitable regime. In addition, since
the effects of stimulation of the whole visual cortex were so dominating that
subtle changes of the network (“ablation” of an area) were not affecting the
overall behavior, we limited ourselves to stimulating only “area 17” (primary
visual cortex, index: 1) with pulses at 25Hz. Areas “Ia”, “35”, and “36”
(indexes: 43, 48 and 49; frontolimbic areas) were active (Fig. 14.10) or in-
active (Fig. 14.11). Inactivation of these frontolimbic areas can be seen to
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Fig. 14.9. Raster plot of the behavior of the whole cortex characterized under
stimulation of the whole visual cortex

affect the auditory system (indices: 17–23) lowering its activity and synchro-
nization as expected, since part of the functions of the limbic system is to
connect the visual system with the auditory system.

Aside from configuring and simulating our model to observe the above
behaviors, we also attempted a simulation with a large number of neurons
(> 106). This was done mostly as a computational task and the parameters for
this simulation were not in accordance to the other simulations. Regardless,
the behavior exhibited by our model with this large number of neurons is

Fig. 14.10. Raster plot of stimulation of area “17” (primary visual cortex, index: 0)
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Fig. 14.11. Stimulation of area “17”, while areas “LA”, “35”, and “36” (indices:
43, 48 and 49; frontolimbic cortex) are inactive

presented in Fig. 14.12. Considering that the parameters were different from
our other simulations, the result is obviously misleading. We believe the strong
oscillatory pattern observed to be related to the dynamics of the Morris-Lecar
neuronal model. Looking at its bifurcation diagram, shown in Fig. 14.1, we
argue that for the given parameters, all neurons must have collectively followed
similar changes in their dynamical states. When so many neurons are present

Fig. 14.12. Raster plot of the behavior of a cortex of 1, 085, 440 neurons, which
corresponds to 20, 480 neurons per area. g1,inh = 0.4, g1,exc = 0.075, g2,exc = 0.15,
pring = 0.05, prew = 0.1



358 M. Barbosa et al.

within each cortical area, each neuron receives an extremely large amount of
input, which, after a brief period of intense firing, raises their Ibias triggering
all neurons beyond the SNLC point into the “silent regime”. Once all neurons
are silent, only noise is present in the system, allowing neurons to recover their
“excitatory state” and start firing again after a brief pause. Unfortunately,
we could not perform further simulations of this size due to computer time
limitations.

14.5 Dependence of MFR on Anatomical Connectivity

In this section, we present a brief attempt to explore the relationship between
the observed behavior of the simulated system and the structural properties of
the network. We will look for correlations between the characteristic firing rate
of each cortical area obtained in the simulations with its degree and intensity.
We will also try to find a simple analytical solution to explain the observed
dynamics.

In Sect. 14.4, firing rates of individual cortical areas were estimated
from the simulations. Frequency is observed to be modulated within about
10–20 ms (look at the fine structure of Fig. 14.8). On the other hand, under
stationary conditions it varies significantly from area to area (Fig. 14.13). The
variation of g2,exc (inter-areal excitatory coupling strength) and g1,inh (intra-
areal inhibitory coupling strength) contributes to the absolute value of the
mean firing rate. In the chosen parameter range, g2,exc ∈ [0.075, 0.15] and

Fig. 14.13. Dependence of the firing rate on the internal and external coupling
strength. g2,exc = 0.15 in all cases. Dashed line: g1,inh = 0.15, solid: g1,inh = 0.25,
dotted: g1,inh = 0.4
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g1,inh ∈ [0.15, 0.4], the mean firing rate of the areas was found to lie between
25 to 100 Hz. The main curve profile remains unchanged for different val-
ues of g1,inh and g2,exc. Modification of the g1,inh coupling shifts the curve
in the vertical direction, i.e. higher frequencies are achieved with lower in-
hibition. This fact indicates the importance of inhibitory connections in the
modulation of brain dynamics. Indeed, inhibitory coupling has been shown to
suppress oscillations induced by the excitatory coupling as is known to happen
in pathology such as epileptic seizures caused by excessive synchronization of
neuronal activity [39].

14.5.1 Correlation to kin and Sin

The input degree of a node kin refers to the number of connections a node
receives. Its natural extension for weighted networks, the input intensity of a
node Sin, is the sum of the strength of its input connections. Although there
are many existing network measures (see Chap. 3 for descriptions of network
characterization and properties of the cat cortex), here, we will only explore
the relationship between the mean firing rate and kin and Sin.

The average response of a cortical area depends directly on the amount of
input signal received, thus we will correlate the MFR to kin and Sin of the
cortical areas. Linear correlation of both measures with the MFR obtained
from simulations is depicted on Fig. 14.14. As expected, it is a monotonously
increasing function of kin and Sin. The more input a cortical area receives, the
more often its neurons will fire. The linear fit is better in the case of intensity,
since the relation between the MFR and kin slightly saturates at high degrees
(kin ≥ 20). This saturation is more pronounced in other parameter sets (not
shown). Figure 14.17 shows that correlation between the MFR and Sin is
higher for most of the parameter sets.

14.5.2 Analytical Estimation

In the following, our modest effort to model the observed MFRs for each corti-
cal area is presented. A commonly used approach in artificial neural networks
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is to define an activation function describing the average response of neurons
to input received from its neighbors. In a general form, the equations are
written as:

ri(t+ 1) = F (hi)

hi = a
N∑

j=1

Wijrj(t) + ξ, i = 1, ..., N,

ri being the activity of the neuron, Wij the weighted adjacency matrix of the
network and ξ some external input, i.e. noise. F (hi) is usually some sigmoidal
saturation function and is normalized either to [0, 1] or [−1, 1]. Parameter a
controls the slope of the saturation function tuning the scale of the response.
Such a function sums up all inputs the neuron receives and returns a normal-
ized output representing its average activity response.

Similar approaches have already been used for cortical models of the
cat [40, 41]. Here, we simulate cortical areas instead of individual neurons.
This approach is reasonable since the mean activation level of a cortical area
strongly depends on the amount of input received from its neighbors in a
cumulative and smooth manner, which could be highly arguable in the case
of individual neurons [42, 43]. As said above, the number of firing neurons
scales with the input an area receives. Here, mean activity level will be con-
sidered to be equivalent to MFR. The simplest choice is to assume a linear
approximation

F (hi) = αhi + β, where β = 0

(the saturation function crosses the origin). Our study is then limited to esti-
mating the slope parameter a and noise level ξ to provide an optimal approx-
imation to the results obtained from the simulations.

In the steady state ri(t + 1) = ri(t) and after taking F (hi) to be linear,
equations reduce to:

ri = α

(
a

N∑
j

Wijrj + ξ

)
.

After rescaling, we arrive at the following equation in matrix form:

r′ = (I − a′W )−1
ξ′, (14.7)

where r′ is the MFR vector of the 53 areas, I is the identity matrix, W is the
adjacency matrix of the cortical network, a′ = αa, and ξ′ is a column vector
where all elements are αξ.

Our main purpose is to find the coupling strengths g1,inh and g1,exc that
produce estimated MFRs as closely correlated to the MFRs from our simu-
lations as possible. We face the problem of setting both slope a′ and noise
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ξ′ parameters satisfactorily. There is a limited range of a′s we can examine
because the maximum eigenvalue of our dynamical system (given by the adja-
cency matrix W ) is λmax = 29.08, and thus a′ ≈ 1/λmax = 0.034385. At this
value, the system has a singularity and solutions with larger a′ are unstable.
Correlation is “blind” to this singularity, and thus, in order to look for proper
a′ and ξ′, we will calculate the Euclidean distance between the estimated r′

vectors and the vectors of MFRs for different g1,inh and g2,exc obtained from
our simulations. Figure 14.15a shows how estimated MFRs differ from simu-
lated MFRs for different values of a′. In this representation, the singularity is
clearly observed as the distance between r′ and MFR vectors grows to infinity
(Fig. 14.15b).

Importantly, Fig. 14.15(b) also shows the presence of a minimal distance,
so in the following, our optimization problem is to find the closest r′ solutions
to the MFR from simulations. Among the stable solutions (a′ < 0.034385),
the shortest distance depends both on a′ and ξ′ for each coupling strength
combination. After solving (14.7) for different parameters a′ and ξ′, optimal
values were found for each combination of g1,inh and g2,exc as summarized in
Table 14.2.

We are now ready to look for the optimal coupling strengths. For each pair
of g1,inh and g2,exc, the simulated MFRs and the vector r′ estimated for corre-
sponding optimal a′ and ξ′ (see Table 14.2) are correlated. Results are shown
in Fig. 14.16. Note that the best correlation is for the values of the coupling
parameters that produce lower MFRs. Interestingly, the properly balanced in-
hibitory coupling allows us to achieve both “natural behavior” and maximal
correlation to the linear approximation. Too low as well as too high inhibition
gives rise to a marked decrease of this correlation for all excitatory values.

Fig. 14.15. a) Simulated MFR of the 53 cortical areas (solid) and estimated MFRs
with ξ = 24.5 and different a′ values (dotted lines). Distance between simulated and
estimated MFRs varies significantly for different parameters; b) Setting ξ′ = 1.0,
the singularity of the dynamical system appears as distance going to infinity at
a′ = 0.034385. Larger values of a′ represent unstable solutions
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Table 14.2. Optimal values of slope a′ and noise ξ′ for different coupling strengths

g2,exc g1,inh opt a′ opt ξ′ g2,exc g1,inh opt a′ opt ξ′

0.075 0.15 0.0145 47.0 0.125 0.15 0.0135 50.0
0.18 0.0175 33.5 0.18 0.0175 37.5
0.2 0.0185 28.0 0.2 0.0190 32.0
0.25 0.0200 19.0 0.25 0.0205 24.5
0.3 0.0200 14.5 0.3 0.0210 20.0
0.4 0.0195 9.0 0.4 0.0195 16.0

0.1 0.15 0.0140 50.0 0.15 0.15 0.0130 50.0
0.18 0.0175 36.0 0.18 0.0165 39.5
0.2 0.0190 30.0 0.2 0.0190 32.5
0.25 0.0205 22.0 0.25 0.0220 23.5
0.3 0.0200 18.5 0.3 0.0215 21.5
0.4 0.0210 11.5 0.4 0.0205 17.5

Increasing the excitatory coupling g2,exc produces, in general, a monotonous
increase of correlation.

Finally, we compare the results from this analytical linear estimation to
the effects of degree and intensity distribution. Vectors of input degrees kin

and input intensities Sin of cortical areas are correlated to the MFRs from
the simulation as shown in Fig. 14.17. As expected from the weighted nature
of the adjacency matrix, intensities do correlate better than degrees. After all
the optimization effort, high correlation values suggest that our model behaves
as a linear system for a certain range of coupling strengths (see Fig. 14.17).
This is also supported by the high correlation between simulated MFRs and
intensities Sin. Indeed, the analytical estimations show only slightly better
correlation than the Sin.
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Fig. 14.16. Correlation between MFR from simulations and estimated r′ using
optimal a′ and ξ′ for each set of g1,inh and g2,exc
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Fig. 14.17. Comparison of the correlation between computed MFR and estimated
MFR at parameter a′ (solid line), degree (dashed), intensity (dotted)

14.6 Conclusions and Outlook

During this set of computational exercises, we learned principles of large-
scale neuronal simulations using the parallel code initially given to us. We
defined a method to look for parameters that would provide a realistic
behavior. We observed that finding suitable parameters and obtaining ro-
bust behavior is difficult. First, for the internal sub-network representing
each cortical area, a set of excitatory/inhibitory strengths was found that
would provide stable response with increasing size of the sub-network (see
Fig. 14.4). The requirement was to keep average firing rate of individ-
ual neurons around 3 Hz. Then, after connecting the 53 subnetworks and
assuming equal g1,exc and g2,exc, the network showed too high a MFR,
which was re-balanced by increasing the strength of inhibitory connections
(Fig. 14.7). But this change happened to break the balance again as seen
in the simulation with a million neurons, where the effect of scaling is
evident.

However, raster plots displayed rather homogeneous and similar behavior
of all cortical areas (Fig. 14.5), a behavior we called “generic”. Looking for
different, more realistic behaviors, we performed a parameter search on pring
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and prew in order to change the network structure and hopefully also the be-
havior. A regime in which cortical areas exhibit bursting and silent epochs was
found providing more interesting dynamics that we called “natural behavior”
(see Fig. 14.8).

Finally, as discussed in Sect. 14.5, our analytical estimations show that
the model behaves on average as a linear network model where, apart from
the bursting dynamics, the MFR of each cortical area is highly proportional
to the total input received (see Fig. 14.14).

Several open questions remain and a large set of possible implementations
can be tried out:

First, we are aware of the arbitrary manner in which “natural behavior”
was characterized: based exclusively on keeping the MFR at biologically reli-
able levels observed experimentally and on visual inspection of raster plots to
avoid homogeneous dynamical responses. Thus, more convenient methodology
founded on different measures would be desirable in order to characterize and
classify the observed dynamics. Such measures could depend on, e.g., temporal
correlations, frequency content, information transfer, etc.

Second, in our simulations, the small-world network topology following
the Watts-Strogatz model was used for the internal neural connections within
one cortical area. This topology has already been shown to enhance signal
propagation and network synchronization which are so important for exchange
of information.

It would be desirable, however, to introduce more realistic internal connec-
tivities modeling finer cortical structures like layers, columns and if possible,
the morphology of cortical neurons. Current sparse knowledge of detailed con-
nectivity at the neuronal level makes such an implementation improbable in
the nearest future. An intermediate solution might rely on taking just a small
set of cat’s cortical neurons, extracting their approximate local topology and
randomly replicating it in order to mimic the internal structure of a corti-
cal area. On the other hand, representing cortical layers and all the available
experimental data about their interconnectivity offers an interesting oppor-
tunity to improve the internal architecture of the model. A first initial step
should be the modeling of hierarchical organization of the cortex introducing
hierarchical subnetworks for each cortical area rather than the small-worlds
used here.

And finally, the linear behavior described by the model is not expected
in real brains. As a complex system per excellence, the brain does not
perform only such trivial behavior. Further modifications might include
the introduction of delays and improved simulation strategies to limit the
continuous spread of activity typical of pathological situations. For future
work, we should remark that the dependence of the mean firing rates on
the intra-areal connectivity among neurons is yet to be tested. Observ-
ing and characterizing brain activity under external stimuli is also of high
interest.
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6. V. M. Egúıluz, M. Ospeck, Y. Choe, A. J. Hudspeth and M. O. Magnasco,
Essential nonlinearities in hearing, Phys. Rev. Lett., 84(22):5232–5235, 2000.

7. P. Martin and A. J. Hudspeth, Compressive nonlinearity in the hair bun-
dle’s active response to mechanical stimulation, Proc. Natl. Acad. Sci. USA,
98(25):14386–14391, 2001.

8. PhysicsWeb, Best of physicsweb, Best of Physics in Biology, http://physicsweb.
org/bestof/biology, 2006.

9. C. Koch and I. Segev, The role of single neurons in information processing, Nat.
Neurosci., 3:1171–1177, 2000.

10. B. J. O’Brien, T. Isayama, R. Richardson and D. H. Berson, Intrinsic physio-
logical properties of cat retinal ganglion cells, J. Physiol., 538(3):787–802, 2002.

11. R. H. Masland, The fundamental plan of the retina, Nat. Neurosci., 4(9):
877–886, 2001.

12. C. F. Stevens, Models are common; good theories are scarce, Nat. Neurosci.,
3:1177, 2000.

13. L. C. Jia, M. Sano, P.-Y. Lai and C. K. Chan, Connectivities and synchronous
firing in cortical neuronal networks, Phys. Rev. Lett., 93:088101, 2004.

14. J. van Pelt, I. Vajda, P. S. Wolters, M. A. Corner, W. L. C. Rutten and G. J. A.
Ramakers, Dynamics and plasticity in developing neuronal networks in vitro,
Prog. Brain Res., 147:173–188, 2005.

15. A. Van Ooyen, Competition in neurite outgrowth and the development of nerve
connections, Prog. Brain Res., 147:81–99, 2005.

16. E. M. Izhikevich, Dynamical systems in neuroscience: the geometry of excitabil-
ity and bursting, MIT Press, 2007.

17. E. M. Izhikevich, Which model to use for cortical spiking neurons, IEEE Trans.
Neural Netw., 15(5):1063–1070, 2004.

18. R. C. Elson, A. I. Selverston, R. Huerta, N. F. Rulkov, M. I. Rabinovich and
H. D. I. Abarbanel, Synchronous behaviour of two coupled biological neurons,
Phys. Rev. Lett., 81(25):5692–5695, 1998.

19. M. Rabinovich, A. Volkovskii, P. Lecanda, R. Huerta, H. D. I. Abarbanel and
G. Laurent, Dynamical encoding by networks of competing neuron groups: win-
nerless competition, Phys. Rev. Lett., 87(6):068102, 2001.

20. C. J. Rennie, P. A. Robinson and J. J. Wright, Unified neruophysical model of
EEG spectra and evoked potentials, Biol. Cybern., 86:457–471, 2002.

21. J. J. Wright, C. J. Rennie, G. J. Lees, P. A. Robinson, P. D. Bourke, C.
L. Chapman, E. Gordon and D. L. Rowe, Simulated electrocortical activity
at microscopic, macroscopic and global scales, Neuropsychopharmacology, 28:
80–93, 2003.



366 M. Barbosa et al.

22. P. A. Robinson, C. J. Rennie, D. L. Rowe, S. C. O’Connor, J. J. Wright, E.
Gordon and R. W. Whitehouse, Neurophysical modeling of brain dynamics,
Neuropsychopharmacology, 28:74–79, 2003.

23. H. R. Wilson and J. D. Cowan, A mathematical theory of the functional dy-
namics of cortical and thalamic neuron tissue, Kybernetik, 13:55–80, 1973.

24. M. Bazhenov, N. F. Rulkov, J.-M. Fellous and I. Timofeev, Role of network
dynamics in shaping spike timing reliability, Phys. Rev. E, 72:041903, 2005.

25. G. Tanaka, B. Ibarz, M. A. F. Sanjuan and K. Aihara, Synchronization and
propagation of bursts in networks of coupled map neurons, Chaos, 16:013113,
2006.

26. G. A. Ascoli, Progress and perspectives in computational neuroanatomy, Anat.
Rec. (New Anat.), 257(6):195–207, 1999.

27. P. C. Bressloff, Resonantlike synchronization and bursting in a model of pulse-
coupled neurons with active dendrites, J. Comput. Neurosci., 6:237–249, 1999.

28. S. M. Korogod, I. B. Kulagina, V. I. Kukushka, P. Gogan and S. Tyc-Dumont,
Spatial reconfiguration of charge transfer effectiveness in active bistable den-
dritic arborizations, Eur. J. Neurosci; 16:2260–2270, 2002.

29. P. C. Bressloff and S. Coombes, Synchrony in an array of integrate-and-fire
neurons with dendritic structure, Phys. Rev. Lett., 78(24):4665–4668, 1997.

30. L. da F. Costa, Morphological complex networks: can individual morphology
determine the general connectivity and dynamics of networks?, oai:arXiv.org:q-
bio/0503041, 2005.

31. L. F. Lago-Fernández, R. Huerta, F. Corbacho and J. A. Sigüenza, Fast response
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