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Part I

Introduction

The ultimate rationale behind all purposeful structures and behaviour
of living beings is embodied in the sequence of residues of nascent
polypeptide chains — the precursors of the folded proteins which in
biology play the role of Maxwell’s demons. In a very real sense it is
at this level of organisation that the secret of life (if there is one) is
to be found. If we could not only determine these sequences but also
pronounce the law by which they fold, then the secret of life would be
found — the ultimate rationale discovered!

Jaques Monod (1970)
from Chance and Necessity
loosely translated from the French (and Latin).
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1 Prologue

1.1 Scope and Aims

Proteins are the main essential active agents in biochemistry: without them al-
most none of the metabolic processes that we associate with life would take place.
Consequently, most reviews of proteins concentrate on these catalytic abilities: on
their chemical kinetics, interactions and the detailed stereochemical arrangement
of the catalytic groups that allow catalysis (or binding) of substrate and other
macromolecules. From this biochemical viewpoint, the overall structure of the
protein (which is much larger than the active-site) is viewed as a relatively unin-
teresting supporting scaffold for the chemistry. In this review, however, proteins
will be viewed from a different angle — indeed, their biology and chemistry will
be completely ignored. Instead, their overall structure will form the central topic
and within this, an emphasis will be placed on abstracting an overview rather
than concentrating on chemical or structural details. The underlying theme of
the work is: “why do proteins adopt the forms that we see?” leading to the
supplementary question: “do the proteins we know represent a fraction or a full
sample of the possible forms?”. The answers to these questions are not only of
interest from a structural/biochemical viewpoint but also have implications for
our ideas of molecular evolution and the origin of life.

The text of this work will be aimed at readers from the physical and mathe-
matical sciences and, as such, will not rely on any significant biochemical knowl-
edge on the part of the reader. Each topic will be fully explained from first
principles with an emphasis on basic concepts rather than applications or occur-
rences. Much of the text will also concentrate on computational methods, again
focusing on the basic algorithms rather than their application or implementation.
As such, while essentially a review, little attempt has been made to provide an
exhaustive coverage of the specialised literature. Rather, effort has been directed
towards communicating ideas and methods that might have some resonance for
those with a more physical background.

Many of the aspects of proteins that will be explored have been investigated
by molecular biologists (such as ourselves) who have been enticed into more
abstract areas. Along the way we have usually taken a pragmatic approach
to each investigation, sometimes inventing new methods (which often turn out
to be re-inventions) or ‘borrowing’ methods and approaches from other fields
(especially physics). It is our hope in writing the current work, that some more
specialised readers, perhaps having seen a frightening misapplication of their
favourite method, might take-up the challenge and “do it properly”. There are
also some problems discused for which we, at least, see no way forward (or more
generally, no satisfactory way forward). We hope that these topics might inspire
consideration from a fresh (ideally, orthogonal) viewpoint and allow some new
directions to be identified.
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1.2 Why Proteins?

1.2.1 Catching a Demon

There are many large biological molecules, including: nucleic acids, carbohy-
drates, lipids and proteins. While each play a vital (and interesting) part in life,
there is something special about proteins. From a physicist’s point-of-view, the
essence of this uniqueness might be captured by saying that, mechanically (if not
thermodynamically), proteins are about as close as we can come to capturing a
real-life Maxwell’s Demon (Figure 1).

Of the components that make up life, almost all but proteins are relatively
inert and are, generally, the substrates that are chopped and changed by the
action of proteins. In doing this, proteins do not act using some abstract bulk
property (as do lipids and carbohydrates) but are individual agents (rather like
demons) that latch-onto their ‘victims’ (substrates) and cut and change them
(sometimes even using the chemistry of sulphur). Indeed, when located across a
lipid membrane, they are also quite good at opening and shutting trap-doors!

To a large extent, understanding the action of proteins is the key to under-
standing the spark of life itself and this has been stated quite explicitly in the
quotation by Jaques Monod (one of the ‘founding-fathers’ of molecular biology)
that opens this section. As indicated by Monod in the same quotation, proteins
also occupy a unique position in the hierarchy of physical organisation: lying in
a grey region between chemistry and biology. For a chemist, proteins are large
complicated molecules that even polymer chemists would have difficulty in mod-
elling. From the biological side, although any individual protein would not be
considered to be alive, it does not take many of them (plus a bit of nucleic acid)
before life-like behaviour begins to emerge. For example; some of the smallest
viruses, such as HIV, which might be considered to be on the borderline of life,
operates with only 10 different types of protein.

1.2.2 Origins

Before leaving these ideas about the nature of life it is interesting to consider some
of the ideas concerning the origin of proteins. It is now generally accepted that,
before the first living cells (just under four giga-years ago), ‘life’ — or rather the
assemblies of self reproducing macromolecules — were ribonucleic acids (RNA).
Circumstantial evidence for this can be found in ‘relic’ pieces of RNA that still
hold a few of the most central functions in the processes of life: for example in
the synthesis of proteins on the ribosome. In this ‘RNA world’ a single type
of molecule performed both the functions of active (catalytic) agent and repos-
itory of its own description — the ‘blueprint’ from which further copies could
be taken. The former function is a property of the folded molecule while the
later is a property of the linear polymer sequence, and the two functions need
not necessarily be compatible. One can imagine a situation in which, say, for

8



Figure 1: A small enzyme approaches its substrate. Against all thermody-
namic reason, some people have likened proteins (such as this adenylate kinase
molecule) to Maxwell’s demons. The active (or catalytic) site of the molecule is
indicated by elongated triangles.
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more efficient catalysis, an extra chemical activity was needed at a particular
point: however, a modification of the RNA structure to achieve this (such as the
chemical modification of a part of the molecule) might leave it incapable of du-
plication or folding. It seems that RNA circumvented this problem by recruiting
co-factors that could augment its chemical reprotire without compromising its
ability to make copies of itself. Some of these cofactors were probably peptides
and a development can be imagined in which the peptide cofactors became more
complex as the functional rôle of the RNA diminished.

In this simple world, however, RNA would rely on the chance synthesis of
suitable peptides which would limit both the size of the peptides and the number
of these that could be involved with the RNA. This fundamental problem was
overcome through the establishment of a synergistic loop in which the RNA was
able to act as a template to guide the synthesis of the peptides that it needed.
With the limitation on the chance synthesis of the right peptides now removed
(or limited only by the fidelity in the translation of RNA into peptide sequences),
the system was free to become much more complex 1. The details of how this
key event in life became established are very vague but some plausible hypothe-
sises are described in the opening chapters of “The RNA World” (Gesteland and
Atkins, 1993). This transition marked the escape from the error-prone world of
self-replicating macromolecules to a system with unlimited scope to control its
own metabolism and replication. It also began the divergence of function: with
peptides/proteins taking-over the active (catalytic) activity while RNA became
more inert with its main function being now to encode proteins, which would
then periodically help replicate the RNA itself.

From this state, the introduction of the third major molecular component of
life — DNA — is almost incidental. With RNA free from most of its structural
constraints and under strong evolutionary pressure to maintain the reproductive
fidelity of the increasingly complex protein/RNA machine: in computer terms, a
back-up facility was required. This was found in DNA, which is only a slightly
modified form of RNA but has much greater stability — especially when ‘locked’
away in its famous double helical structure. This subsidiary rôle for DNA is
maintained in all present day life: and although proteins can interact directly with
DNA, there is no direct link from DNA to protein except via RNA intermediates.

It is interesting to note that this polarisation of function into active machine
(protein) and inert blueprint (DNA) follows the logical requirements specified by
von Neuman for a self replicating machine.

1The short time-span between the impact that created the moon and the first cell have led
some to suspect that there was not enough time for this complexity to develop on Earth.
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1.3 Outline of the Work

Hopefully, the preceeding thoughts and speculations have proved to be suffi-
ciently intriguing to persuade the less biologically-oriented reader that proteins
are a fascinating topic and certainly one central to the understanding of life. In
the following sections, we will leave these broader considerations and lay down
some basic ground-work on protein structure so that all readers, irrespective of
background, will have a common foundation on which some of the later more
technical sections can build. As promised above, we will try to avoid the stan-
dard ‘biochemistry textbook’ approach to the topic.

From this base, the first major aspect to be considered will be the systematic
comparison and classification of protein structure (Part II), progressing towards
more abstract geometric representations of protein structure (Part III). These
sections will include details and reviews of the methods that can be used for
structure comparison and the degree to which these can be interpreted. For the
physicist and mathematician, there should be interesting problems here involving
the description of three-dimensional objects and the statistical significance of
their comparison.

11



2 Basic Principles of Protein Structure

In this section the basic principles that determine protein structure will be re-
viewed. Although many aspects of these topics will be returned to in greater
detail in the following sections below, it is better firstly to gain an overview of
these together in one place rather than encounter important definitions scattered
throughout the text. Further information on many of these topics, including
greater biological background, can be found in Brändén and Tooze (1991) or
Chothia (1984) for a review concentrating more on on packing.

2.1 The shapes and sizes of proteins

From a chemical viewpoint, proteins are linear hetropolymers. However, unlike
most synthetic polymers, which are condensed from one or a few monomer units,
proteins can draw on a mix of twenty different monomers. A further distinction
is found in their organisation: while polymers are generally very large extended
molecules forming a matrix (typically cross-linked as a gel), the majority of pro-
teins fold as relatively small self-contained structures. These factors balance:
although small (for a polymer), the variety of monomers gives an almost unlim-
ited scope for the construction of different protein molecules. Perhaps the most
remarkable feature of proteins, however, is the observation that each protein
found in nature has a specific three-dimensional structure and that this structure
is determined (effectively) only by the sequence of the monomers themselves. To
give names to these parts: the monomer units are amino acids which condense
with the formation of a peptide bond linking them: hence, the resulting chain
is often referred to as a polypeptide. The linked amino acids are then referred
to as residues: an odd name deriving from the stuff at the bottom of test-tubes
when proteins were sequenced by chemical means in the early days of protein
chemistry.

There is great variety in the structure of the twenty different (natural) amino
acids but despite this, the variation (with one exception) is all confined to the side
groups leaving a constant unit that polymerises into a regular backbone chain.
(See Taylor (1986a) and Taylor (1999a) for some further discssion of amino acid
properties). Furthermore, even though amino acids contain a chiral centre (on
their α-carbon), only one enantiomer is used to make proteins. As we shall
see below, this regularity in the polypeptide chain allows the formation of semi-
regular substructures that are the building blocks of proteins. The polypeptide
chain is also very flexible: although the peptide bond is not free to rotate, the
two flanking bonds are, giving two reasonably free rotations for each residue.

12



2.1.1 Fibrous proteins

There is no (reasonable) physical limit to the length of a polypeptide chain but
those occurring naturally tend to be less than 1000 residues. This may represent
a constraint derived from the fidelity of translation in the synthesis of the protein
(or a historical relic from the days when fidelity was poorer) or it may simply
be a consequence of the time needed to synthesise the protein. There are, of
course, many exceptions and the largest known protein has about 100,000 residues
(Higgins et al., 1994). Clearly, to fold such a protein into a unique structure would
be a formidable task and proteins of this size are composed of repeated units:
either of like or mixed type. When the repetition is regular, involving a single
(or few) type(s) then the resulting structure takes the form of a general helix —
providing there is good interaction between the repeats. Otherwise, if the repeats
form independent units, the structure has the form of a flexible string of beads.
These proteins are referred to as fibrous and tend to play a more inert structural
role in the cellular functions.

2.1.2 Globular proteins

Of greater interest are the proteins that have a unique structure derived from a
non-repetitive sequence. These tend to fold in to fairly compact units and are,
correspondingly, referred to as globular proteins. This class is composed predomi-
nantly of proteins in the size range of a hundred to several hundred residues. They
include the majority of proteins that catalyse metabolic processes (enzymes) and
those that regulate replication and expression of the genetic material. Clearly
this covers most of the interesting functions of life and this richness is reflected in
a corresponding richness of structure. Fortunately, this class is also that about
which most is known structurally. This is a consequence of the ability of many
globular proteins to crystalise and hence have their structure determined by X-ray
crystallography. For the smaller members of the family, the technique of Nuclear
Magnetic Resonance (NMR) is also yielding an increasing number of structures.

2.1.3 Membrane proteins

A third class of proteins is restricted to the unique environment of the phospho-
lipid bilayer membrane that surrounds all cells and many sub-cellular organelles.
These proteins cover a range from globular proteins that happen to have a small
tail that anchors them to the membrane through proteins that are half-in/half-
out of the membrane, to proteins that are fully embeded in the membrane. In
function, they cover the transport of material across the enclosing cell membrane,
ranging from simple ions to the import of nutrients and the export of products
that can influence the surrounding environment. For multicellular organisms, one
aspect of the latter function is to influence the state or behaviour of neighbouring
cells. This can be effected through the secretion of chemicals that others detect
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(and, again, the detection involves membrane bound proteins called receptors),
or through direct physical contact between receptors.

2.2 The hydrophobic core

Globular proteins generally exist in the aqueous (‘soup’-like) environment of the
cellular cytoplasm. The basic organising principle of their structure is to get the
amino acid side-chains that are not soluble in water (referred to as hydrophobic)
together in a core and surround them with a shell of water-soluble amino acid
side-chains (referred to as hydrophilic or polar) which provide an interface to the
solvent (Figure 2). This arrangement generally results in a protein that is itself
soluble in water and prevents unspecific protein-protein aggregation as might
occur if the ‘sticky’ hydrophobic residues were exposed.

2.3 Secondary structure

One complication of this simple scheme, however, is that all residues also have
polar atoms in their main-chain and this includes the hydrophobic residues which
we would otherwise like to see buried in the core. Burying these residues will now
necessarily entail the burial of a polar amide (N-H) and carbonyl (C=O) group
with each residue (each of which carry a a partial charge).

A solution to this problem is to form a hydrogen-bond between these unlike
charges using groups from different parts of the main-chain. When mutually
satisfied in this way, the bonded pair can can then be ‘safely’ buried away from
solvent. One might imagine that such a pairing could be achieved in an ad-hoc
manner (simply matching-up whatever pairs came nearby) — but possibly as
a consequence of the complexity of connecting such a network, the hydrogen-
bonded networks found in proteins are remarkably regular.

Hydrogen bonded pairings are dominated by the shortest local connection
along the chain that can be made without significant distortion of the bond
geometry — bonding the carbonyl group of residue i to the amide group of residue
i+ 4. When repeated along the chain, this arrangement is a helical structure of
period 3.6 residues, known as the α-helix. The second, and almost only other
solution of structural importance in proteins (known as β structure), is formed
by two remote parts of the chain lining-up to form a ‘ladder’ of hydrogen-bonds
between them. This ‘ladder’ of bonds can be formed either when the juxtaposed
chains run parallel or antiparallel. Each β-strand can contribute to two ladders,
allowing the hydrogen-bonded network to extend indefinitely in either direction,
resulting in a general sheet structure, referred to as a β-sheet.

Together the α-helix and β-sheet structures are referred to as secondary
structure, being intermediate in a structural hierarchy in which the polypeptide
chain is primary and the folded chain is tertiary (Crippen, 1978). However
there is a wide variety of other commonly occurring sub-structures that cannot
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Figure 2: The hydrophobic core A section (slab) has been taken through the
core of a small protein (PDB code: 3chy) and displayed (using RASMOL) to
show the van der Waal’s surface of all the (non-hydrogen) atoms. These are
coloured as grey for polar amino acids and black for hydrophobic amino acids.
The black hydrophobic core can be clearly seen but (as with all ‘rules’ concerning
protein structure) there are some exceptions and a (grey) hydrophilic residue can
be seen in the core and a (black) hydrophobic residue on the surface. The former
probably is hydrogen bonded to another hydrophilic side-chain or to main-chain
polar groups, while the latter may make contact with another protein.
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be ignored in a more detailed analysis (Efimov, 1993) including recurring com-
binations of secondary structures (Efimov, 1991a; Efimov, 1991b; Efimov, 1987)
commonly referred to as isuper-secondary structure.

2.4 Packed layers

The simplicity of having effectively only two secondary structures is that there
are only three (pairwise) combinations of them that can be used to construct
proteins; so giving the three major structural classes: 1) α with α, 2) α with
β and 3) β with βi (Levitt and Chothia, 1976). (For detailed analysis of each
class, see: 1) Chothia et al. (1981), Lesk and Chothia (1980); 2) Cohen et al.
(1981), Chothia and Janin (1981), Chothia and Janin (1982), and 3) Cohen et al.
(1982), With the main-chain atoms tied-up in secondary structure, a core can
be constructed using any mixture of α or β building blocks. Incorporation of a
β-sheet, however, imposes a long-range constraint across the structure. The β-
sheet has free hydrogen-bonds on its two edges, which consequently prevents the
sheet from terminating in the hydrophobic core. This divides the core into two
and, if considered more generally, imposes a layered structure onto the further
arrangement of secondary structures in the protein. (See Figure 3 for examples).
(See both Chothia and Finkelstein (1990) and Finkelstein and Ptitsyn (1987) for
further consideration of protein structure along these lines.)

2.4.1 All-α proteins

The all-α protein class is dominated by small folds, many of which form a sim-
ple bundle with helices running up then down (Figure 3(b)). The interactions
between helices are not discrete (in the way that hydrogen bonds in a β-sheet
are either there or not) which makes their classification more difficult (Lesk and
Chothia, 1980). Set against this, however, the size of the α-helix (which is gener-
ally larger than a β-strand) gives more interatomic contacts with its neighbours
(relative to the a β-strand) allowing interactions to be more clearly defined. (Fig-
ure 3(b)).

2.4.2 All-β proteins

The all-β proteins are often characterised by the number of β-sheets in the struc-
ture and the number and direction of β-strands in the sheet. This leads to a fairly
rigid classification scheme (Richardson, 1977) which can be sensitive to the exact
definition of hydrogen-bonds and β-strands. Being less rigid than an α-helix,
the β-sheets can be relatively distorted — often with differing degrees of twist
of fragmented or extra strands on the edges of the sheet. (Figure 3(a)). Various
patterns can be identified in the arrangement of the β-strands, often giving rise
to the identification of recurring motifs (Hutchinson and Thornton, 1993).
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(a) All-β protein (b) All-α protein

Figure 3: Protein structures with one secondary structure type (a) an
all-β protein (immunoglobulin) with two packed β-sheets. (b) an all-α protein
(globin) showing packed α-helices.

2.4.3 α-β proteins

The α-β protein class can be subdivided roughly into proteins that exhibit a
mainly alternating arrangement of α-helices and β-strands along the sequence
and those that have more segregated secondary structures. The former class
includes structures in which the secondary structures are arranged in layers and
those that form a circular of barrel-like arrangement. (Figure 4). Recurring folds
can also be identified in the latter type (Orengo and Thornton, 1993).

2.5 Barrel structures and β-helices

Solutions can be found to tie-up the ‘loose’ hydrogen-bonds on the edge of a β-
sheet. One commonly encountered, is to twist the sheet so that the two edges meet
and can hydrogen-bond to each other — forming a closed barrel-like network of
hydrogen-bonds (Chou et al., 1990). This cannot easily be accomplished with less
than six strands and if only β-structure is used, then the barrel must incorporate
antiparallel pairings. However, in combination with α-helices it is possible to
link one (open) end of the barrel to the other and allow the formation of a,
predominantly, or pure parallel sheet. A particularly striking example of this
arrangement is seen in the eight-fold β-α-barrel (βα)8 which was found originally
in the enzyme triosephosphate isomerase and is often referred to as the TIM-
barrel (Figure 5). (See Murzin et al. (1994a) and Murzin et al. (1994b) for a full
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(a) Eight βα-units (b) Six βα-units

Figure 4: Folding options for tandem β−α units. β-strands are represented
by rectangles and α-helices are represented as bold circles. All strands run par-
allel and progress towards the viewer. In reality, the strands are both curved
and twisted which is suggested by their non-linear alignment and α-helices are
about twice as broad as a β-strand. The direction of the chain is indicated by a
terminal arrow-head. The structural implications of the size difference between
the two secondary structure types (combined with chirality constraints on their
connection) are shown for a concatenation of both eight and six β − α units. (a)
With eight units the sheet can form a barrel and the different radii of this circular
form at the β and α level accommodate their different size. The barrel struc-
ture is found in many (unrelated) enzymes, typified by triosephosphate isomerase
(TIM) and is referred to as a TIM-barrel. (See Figure 5). (b) Six units cannot
form a barrel forcing an inversion in one half of the sheet to allow helices to be
placed both above and below. The resulting arrangement has two-fold symmetry
and occurs widely among di-nucleotide binding proteins. It is typified by the
dehydrogenases where it is referred to as a Rossmann fold.
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analysis.)
A barrel can also be formed with the β-strands running in the orthogonal

direction (leaving free hydrogen-bonds on the open ends of the barrel). This
structure, however, completely dictates the course of the protein chain (as a sim-
ple helix) giving little scope for evolutionary exploitation of the fold for different
functions. (See Chothia and Murzin (1993) for some examples). This type of
structure is associated more with structural (fibrous) proteins.

2.6 Protein Topology

The path of the chain through the various layers of packed secondary structures
described above (sometimes referred to as frameworks or architectures) is referred
to as the fold of the chain. As this entails various degrees of cross-linking through
hydrogen-bonds, it is also possible to, loosely, view it from a topological perspec-
tive. This topic will be returned to in detail in Part III but, firstly, a few basic
aspects will be considered here which are relevant to the later discussions. (See
Ptitsyn and Finkelstein (1980) for a general review.) The course of the chain
through the secondary structure frameworks is largely unrestricted. Two con-
straints, however, are well observed. The strongest is that two loops cannot cross
on the same face between layers (Ptitsyn and Finkelstein, 1980)2. The source
of this constraint is a simple consequence of the bulk of the polypeptide chain:
if two loops cross, one will be buried by the other which will be energetically
unfavourable unless the buried loop can satisfy its main-chain hydrogen-bonds.
Having done this however, the loop is now probably a secondary structure and
so the rule that loops do not cross is preserved.

The second strong constraint derives from the chiral nature of the central (α)
carbon in each residue. This favours a particular (right) handedness for the α-
helix and a corresponding twist to the β-sheet which is left-handed when viewed
along the chain direction. Together, these local chiralities result in a strong
preference for connections between strands in the same sheet to be right-handed
(even when there is no α-helix involved). The few exceptions to this rule are seen
when the chain meanders to a remote part of the structure (another domain)
and the ‘context’ of the local constraint is lost (Sternberg and Thornton, 1977b)
(Figure 6). Some chiral effect are also detected in the ββα and αββ arrangements
(Kajva, 1992) and in the packing of four α-helices (Weber and Salemme, 1980;
Presnell and Cohen, 1989).

2.7 Domain structure

Large hydrophobic cores are not found in globular proteins, probably because of
limitations in the folding kinetics and stability. Single compact units of more

2An exception has been found in the protein with PDB code 2csmA.
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Figure 5: Eight-fold alternating β/α barrel protein The protein chain spirals
(as a toroid) while alternating between β and α secondary structure type, giving
rise to a closed ring or barrel β-sheet in the centre surrounded by a larger ring of
α-helices on the outside. The structure, first seen in the enzyme triosephosphate-
isomerase (after which it is often named as the TIM-barrel) has been seen many
times in unrelated proteins.
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(a) Right-handed unit (b) Left-handed unit

Figure 6: Handedness in secondary structure connections. An α-helix
linking two β-strands (hydrogen bonded in a sheet) is shown as a backbone (alpha-
carbon) trace in: (a) the common right-handed configuration, and (b) with the
rare left handed connection. The different chiralities can be appreciated if the
whole chain is viewed as a super-helix: in the R-hand form clockwise rotation
would drive it into the page (like a screw or cork-screw) while the same rotation
would extract the L-hand form.
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(a) Single link (b) Multiple links

Figure 7: Simple and complex domain connections. (a) two immunoglob-
ulin domains linked by a single connection. (b) two more closely packed domains
(arabinose-binding protein) between which the chain passes three times. (The
linkers have been drawn thiner for clarity).

than 500 residues are rare with the typical size lying more around half this size
(200–300 residues). As a consequence, large proteins are organised into units of
this size referred to as domains (Rose, 1979; Richardson, 1981; Janin and Chothia,
1985) (Figure 7).

The definition of a domain is problematic — one suggestion is that, if the
chain were to be cut, then the two parts would remain stable (with each having
its own hydrophobic core). With well segregated domains (like beads on a string)
this is undoubtedly true but with more closely interacting domains (and in par-
ticular, those in which the chain crosses between the domains more than once),
such an experiment cannot be carried-out without exposing surfaces that are not
optimally evolved for solvation.

Various working definitions of domains have been derived (Holm and Sander,
1994a; Swindells, 1995; Siddiqui and Barton, 1995; Islam et al., 1995; Sowdhamini
and Blundell, 1995) but in the more difficult examples, these seldom agree. The
problem with all these methods is that they try to imitate (human) expert defi-
nitions and it is clear that these definitions entail the synthesis of many abstract
ideas such as biological function, recurrence and symmetry, all of which are dif-
ficult to capture in an automatic method. A recent approach to this problem
has been based (loosly) on an Ising model, in which structural domains evolve in
competition with each other for residues in the protein (Taylor, 1999c).

22



Part II

Protein Structure Comparison
and Classification

Perhaps the most remarkable features of the [myoglobin] molecule are
its complexity and lack of symmetry. The arrangement seems to be
almost totally lacking in the kinds of regularities which one instinc-
tively anticipates, and it is more complicated than any theory of pro-
tein structure.

John Kendrew et al. (1958)
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3 Overview of Comparison Methods

3.1 Challenges for Structure Comparison Methods

The vast variety of protein sequence and structure found in the current databases
could not have been anticipated by a polymer chemist looking only at bonds
and forces. Indeed, the best effort from pure stereochemical considerations was
made by Linus Pauling who predicted the α-helix from first principles before any
protein structures were known. However, this did not prepare people for the sight
of the first structures, which were much more irregular than expected3 The most
important things we know about proteins have come therefore, not from theory,
but from observation and the comparison of sequences and structures.

Equivalent proteins from related species usually have similar structures and
sequences and a comparative analysis of these can tell us about residue substi-
tutions and how the structure adapts to accommodate them. However, if one is
interested in the stability and versatility of protein structure under greater de-
grees of sequence variation — in other words, how far can a structure be pushed
by evolution, then it is necessary to compare the most distantly related pro-
teins. This has driven those who develop methods to compare protein structures
to continually ‘push-back’ the range of comparison methods with the hope of
discovering further and perhaps more fundamental similarities among proteins.

Another way of viewing this problem is to consider an abstract space of all
sequences. As we have seen, one sequence gives rise to one unique structure.
However, the mapping in the other direction is not unique and many sequences
can give rise to the same structure. We can then ask, how big is the space of
sequences that give rise to the same structure. The answer to this will tell us
how stable different folds are and whether through, ‘random’ evolution some are
more likely to accumulate than others. These fundamental questions raise further
questions: most importantly, “at what degree of dissimilarity do we consider two
proteins to be the same or different?”. Without an answer (or an approach to)
this problem we cannot get answers to the other more fundamental questions.

The same problem is encountered from an evolutionary angle: if our prime
interest is in determining whether two proteins are evolutionarily related (share
a common ancestor). Again, such questions cannot easily be answered as the
probabilities depend on how accessible a common fold is to different sequences.
In other words, we need the complete map of sequence space — annotated by
structure. With many assumptions, this might be roughly estimated if every
distinct type of protein structure (topology or fold) were known along with their
frequency of occurrence. However, given our limited data, the question of “how
many folds?” is not easily answered and begs the question of whether those we
see in Nature are a complete covering of the possibilities or represent a fraction

3See the opening quote to this Part.
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that has been ‘frozen’ through some historical accident. (These problems will be
returned to in Section 8).

To tackle questions such as these, methods of protein structure comparison
have been developed. These have been based on a great variety of approaches
aimed at different aspects of structure (folds, fragments, etc.). With improved
computer power, some of these methods have even been applied to the comparison
of the complete protein structure databank, giving an automated analysis of what
had previously been the monopoly of a few experts. To assess the results of such
analyses (which will be considered in Section 8) it is necessary to know how
the various methods work as many behave quite differently. Such knowledge is
equally vital when choosing a method for a particular comparison problem.

3.2 Degrees of Difficulty

Structural similarity is of interest at many levels, from the fine detail of backbone
and side-chain conformation at the residue level, through the coarse similarity of
folds at the tertiary structure level, to a simple count of secondary structures.
Similarities may also be locally confined or extend globally over whole structural
domains and even involve more than two structures. These issues are reflected
in the methods that will be discussed below: spanning comparisons of almost
identical structures through to highly dissimilar ones.

The simplest applications are concerned with studies on a single protein. Ex-
amples include studies of conformational change between states of the same pro-
tein (including multiple NMR structure solutions), and the comparison of mutant
forms of a protein where the structures being compared usually have very similar
structure at all levels of detail and negligible or no insertions and deletions of
sequence (indels).

Applications of intermediate difficulty include comparison of closely related
proteins to analyse evolutionary divergence, inference of weak sequence homolo-
gies on structural grounds, characterization of conserved structural features such
as functional sites within families. Conversely, structure comparison may help
in the analysis of similar folds that apparently result from evolutionary conver-
gence (Orengo et al., 1993). Sometimes the requirement is to screen a specified
structural fragment (motif) against a database of protein structures, searching
for strong matches. In these examples, the structures of interest are relatively
similar, so that indels present a limited problem.

The most difficult and general structure comparison applications arise in the
classification of the known protein structures into different fold families. This ra-
tionalizes the organization of the structure databank, and may indicate hitherto
unsuspected structural similarities, evolutionary relationships, or constraints on
folding. Powerful comparison methods must be able to deal with structural sim-
ilarity at all levels of detail, must handle indels of arbitrary length and position
in the respective structures, and must identify structural similarities even when
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these form a relatively small proportion of the structures being compared.
This diversity of applications is addressed by a corresponding variety of auto-

matic or semi-automatic comparison methods, some suitable for comparing highly
similar structures at a specific level of detail or element size (residue, backbone
fragment, secondary structure, etc.), while other more general methods may op-
erate at several element sizes or may be applicable to more remote comparisons.

The common aims of each method are to compute some quantitative measure
of similarity, and often to generate a structurally derived alignment of one protein
sequence against the other(s). The set of element equivalences so defined may
be used to drive a rigid body superposition to facilitate visual comparison, either
as an intrinsic part of the method, or as a separate step (Rippmann and Taylor,
1991).

3.3 Different Approaches

Structure comparison methods differ in many ways: these include the basic choice
of algorithm(s) and the kind or size of structural elements compared. Finer
distinctions are found in tolerance to indels, ability to detect mirror images,
translocations, or rigid internal rotations, and (as in sequence comparison) ability
to distinguish between local or global similarity. The following sections summarise
some of these aspects which are used below to assess the different methods (and
what they might be good for).

3.3.1 Comparison Power

The simplest methods rely only on the (bulk) structural content of the protein
(such as number of secondary structures). Judged by their ability to distinguish
proteins of differing degrees of similarity, these methods can be classed as weak.
They are generally statistical in approach, thereby losing both the individual
identity and the ordering of the component elements. Methods that are inter-
mediate in power, are those that preserve the identity of elements and finally
there are strong methods that preserve both element identity and sequential
order. This latter distinction corresponds to that of Rossmann and Argos (1977)
who defined the terms structural equivalence to describe the spatial similarity of
components and topological equivalence for connected runs of structurally equiv-
alent components, sometimes referred to below as non-sequential and sequential
categories, respectively.

3.3.2 Feature or Relationship

Methods differ also in the type of data structures that they compare. These fall
into two classes depending on their definition for a given element. A feature is
an intrinsic property of each element: this can be a single scalar property value
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or a (fixed length) vector of such values associated with an element. Examples
for residues might be solvent accessibility (scalar) and {φ, ψ} main-chain torsion
angle pairs (vector). By contrast, a relationship describes each element in terms
of other elements in the structure: for each element there is a relationship value
with every other element, an example being interatomic distance. The essential
difference between a feature and a relationship set is that, for any protein with N
structural elements, the number of feature values (or compound feature values,
e.g., {φ, ψ} angles) is proportional to N , while the number of relationship values
is proportional to N2.

The simplest comparison approach might be to define a measure based only
on features: say, the secondary structure state and degree of burial of the two
residues in the two proteins being compared. Such a simplistic measure, however,
could not distinguish two adjacent β-strands both of which were buried in the
core of both proteins. For this, a description of environment is required that can
capture the true 3-dimensional relationship between residues (their topological
relationship). This poses a difficult computational problem and might best be
appreciated by the following simple example. Consider two β-strands — A and
B, found in both proteins being compared and lying in the order A–B, both in
the sequence of the two proteins and also in their respective β-sheets. If both
pack against an α-helix then, in both proteins, a point on A would be buried by
a β-strand to the right and an α-helix above, and would be considered to be in
similar environments. If, however, in one protein, the α-helix lay between strand
A and B, while in the other protein it lay after strand B then the two arrangements
would not be topologically equivalent (Figure 8).

3.3.3 Hybrid methods

Some methods operate with more than one element size and/or structural prop-
erty and function as discrete multi-stage or combined algorithms (which are some-
times iterated). Many of the most recent developments behave in this way and
these are best described as hybrid methods but can generally be decomposed into
their components using the ideas described above.

3.4 Dynamic Programming

3.4.1 The basic evolutionary model

The ability of proteins to lose or gain sequence elements over evolutionary time
(relative insertions or deletions: jointly referred to as indels) has led many meth-
ods of structure comparison to follow the simple model of evolutionary change
which is used in sequence alignment methods. This assumes that the only pro-
cesses at work are substitution of amino acids (or rather the underlying nu-
cleotides) and their deletion or insertion. More complex operations such as re-
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Figure 8: Topological and structural equivalance. Two β-strands, A and
B, are shown schematically as triangles packing against an α-helix(circle) in two
distinct structural fragments, a (βαβ) and b (ββα). The packing in the two
fragments could be identical but a comparison method that takes account of the
topology (or connectivity) of the units would not detect any great similarity.
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versals, translocation and duplication events are ‘forbidden’. This model further
assumes that these processes are uniformly applied along the sequence length and
are the same for all proteins. In addition, most alignment methods implicitly as-
sume that the substitutions4 in one place do not affect substitutions elsewhere.
From our knowledge of protein structure this latter assumption is clearly un-
true (one part of a structure can influence any other part) but, despite this, the
sequence alignment model provides a good starting point.

This model of sequence evolution is implemented in a simple algorithm called
dynamic programming. As this algorithm will be referred to frequently below, it
will be described here — initially in the context of sequence comparison followed
by an outline application to structural data.

3.4.2 Sequence Alignment

The alignment of one sequence with another can be represented by constructing
a grid (or matrix) with a sequence on each axis. Each cell in this matrix links a
pair of elements (residues or nucleotides) in the two sequences and an alignment
of the two sequences is a path through the matrix that progresses without any
backwards or stationary steps in either sequence. The problem to be solved is to
find the path through the matrix (top or left edge to the bottom or right edge)
that passes through the highest scoring cells finding a maximum sum of scores.
(See Figure 9 for a worked example). This algorithm is guaranteed to find the
optimal alignment under a given scoring scheme, providing pairwise matches are
independent: that is; the score for each match is unaffected by matches elsewhere.
(See Pearson and Miller (1992) for a review).

The dynamic programming algorithm forms the basis of many widely used
sequence alignment algorithms which can align one whole sequence against an-
other, giving an overall or global alignment (Needleman and Wunsch, 1970), or
find the section that aligns best, giving a local alignment (Smith and Waterman,
1981). In general, any information that can be encoded as a sequence (providing
the elements can be matched independently) can be aligned using the basic dy-
namic programming algorithm. For proteins, this can be either pure sequences or
can be structural data (encoded as a string) allowing ‘structures’ to be compared
against each other and with an amino acid sequence.

3.4.3 Gap-penalty

A penalty against gaps in a sequence alignment can easily be incorporated into the
standard dynamic programming algorithm simply by subtracting a constant value
from each score inherited by any transition other than the diagonally adjacent
cell. This can impose a fixed penalty for any size of gap but can be refined to
be partly (or wholly) dependent on the gap size. (See Figure 9 for examples.)

4Substitutions are realised as mismatches in an alignment of two sequences.
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(a)
        D  W  V  T  A  L  K
     T  8  3  8 11  9  9  8
     D 12  1  6  8  8  4  8
     W  1 25  2  3  2  6  5
     V  6  2 12  8  8 10  6
     L  4  6 10  9  6 14  5
     K  8  5  6  8  7  5 13    

Gap Penalties: (a, b) = (0, 0) (a, b) = ( 2,10)

                 
(b)
        D  W  V  T  A  L  K
     T  8  3  8 11  9  9  8
     D 12  9 14 16 19 15 19
     W  1 37 14 17 18 25 24
     V  6 14 49 45 45 47 43
     L  4 18 47 58 55 63 54
     K  8 17 43 57 65 63 76    

                  

        D  W  V  T  A  L  K
     T  8  3  8 11  9  9  8
     D 12  9  9 16 19 13 16
     W  1 37 11 12 18 25 18
     V  6  3 49 33 31 31 31
     L  4 12 35 58 43 49 38
     K  8  9 29 45 65 51 62    

− D W V T A L K
T D W V − − L K 

− D W V T A L K
T D W V L K − − 

(c)

Figure 9: The basic Dynamic Programming algorithm. Steps in this al-
gorithm are illustrated using the alignment of two short protein sequences. (a)
the sequences form a matrix in which each element is a similarity score for the
match. (Different pairs get a different score: e.g. a W:W match gets 25). (b) the
matrices are summed with each cell (i, j) adding the best summed score in the
previous sub-matrix (all with indices < i,< j) to its own. (e.g. W:W = 12+25 =
37). (c) Two variations are shown one in which gaps are free and the other where
there is a high cost resulting in an ungapped alignment.
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The form of the gap penalty reflects an underlying model of protein evolution
which, in part, is a reflection of the stability of protein structure. A simple model
for the latter is that the core is very sensitive to change while the surface, and
especially exposed loops, are very susceptible to change (Bajaj and Blundell,
1984). Indeed, it probably makes little difference to a protein structure whether
10 or 100 residues have been inserted into an exposed loop — providing the
insert is in the form of a compact, independently folded, domain. On this basis,
the simple gap-penalty (no extension penalty) provides an adequate model for
remotely related proteins.

When the more complex form for the penalty is employed there is one penalty
to open the gap and another making it dependent on gap size. A linear function
with positive coefficients is commonly used: an + b, where n is the gap length
(a = 1, b = 10; are typical). This is generally referred to as an affine model
(Altschul and Erickson, 1986).

A further general result from the analysis of affine gap-penalties emerges in
the phase-space of the two gap parameters (a and b) where the alignments are
found to fall into two types: 1) when the penalty for a gap is high the best
ungapped (or local) alignment is optimal and, 2) when the penalties are reduced,
a boundary is crossed (a phase transition) into the region of gapped alignments.
Correct protein sequence alignments seem to lie close to this boundary (Vingron
and Waterman, 1994).

3.4.4 Structure Biased Gap-penalties

If the three-dimensional structure of one (or both) of the proteins is known then
the model of what gaps might be possible at different locations on the sequence
can deviate greatly from the simple problem of aligning two sequences. Relative
insertions and deletions of sequence are much less likely to be found in segments
of secondary structure segments, especially when these are buried (Pascarella
and Argos, 1992; Johnson et al., 1996). If the structure of the proteins are
known, then the alignment program can use this information and modify its local
gap-penalty accordingly to avoid breaking secondary structures and inserting
residues in the hydrophobic core (Lesk et al., 1986; Barton and Sternberg, 1987;
Kanaoka et al., 1989; Zhu et al., 1992; Smith and Smith, 1992; Johnson et al.,
1996).

4 Early and Simple Approaches

Most of the early methods of structure comparison were developed by crystallo-
graphers in order to compare their new structures with others (or themselves, if
they contained internal duplications). Mainly, they depend upon transformation
of the global coordinate frame of one molecule into that of the other and therefore
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tend to be most successful when comparing closely related structures. These algo-
rthms rely on minimising the root-mean-square deviation between equivalenced
positions (McLachlan, 1972a; Kabsch, 1976; Sippl, 1982).

Parallel to these developments of simple superposition, a different line devel-
oped that was based on comparing structural features that had been reduced to
strings (sometimes using the dynamic programming method described above).
These two approaches prepared the ground for the development of later methods
(described in the following sections) that synthesised the true 3D structural view
with an alignment model.

4.0.5 Manual and semi-automatic methods

Many of the older applications of rigid body superposition rely on manual spec-
ification of the topologically equivalent residues, for example Muirhead et al.
(1967); McLachlan (1979); Schulz (1980). Useful as such methods are for specific
comparisons between closely related structures, some means of semi-automatic
or automatic selection of equivalences is necessary if large numbers of compar-
isons are to be performed, or if detailed knowledge of topological equivalences is
lacking.

Rao and Rossmann (1973) and Rossmann and Argos (1975) were the first to
describe a semi-automatic iterative method which was manually primed with a
set of topologically equivalent residue pairs. The two molecules are superposed
using a least-squares procedure which searches Eulerian angle and vector space to
minimize the RMS (root-mean-square) score between equivalent residues. Given
the new spatial correspondance, probabilities relating to spatial similarity and
orientation are computed for each residue pair between the two proteins. Those
sequential pairs having the highest probabilities form a new equivalence set, which
are then used to drive another transformation. Repeated cycles of equivalence
assignment and transformation are applied until the equivalence list is stable.
The original method requires prior knowledge of equivalences but Rossmann and
Argos (1976) eliminated the manual priming by employing a search function in
rotational space. This attempts to maximize the number of equivalences while
three rotational axes are systematically explored.

The Rossmann-Argos method was able to determine the positions of limited
indels as long as sequential sets of equivalent residues can be identified, but, by
comparison with the contemporary Remington-Matthews procedure described
below, is computationally demanding, and requires careful tuning (Matthews
et al., 1981; Matthews and Rossmann, 1985).

4.0.6 Fragment based methods

In the method of Remington and Matthews (1978,1980) all possible backbone
segments of a given length in the first protein were compared with those of the
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second protein by a rigid body superposition. The resulting distribution of RMS
scores was then used to assess the statistical significance of high scoring segment
pairs. Additionally, an RMS contour map of one protein sequence against the
other reveals these pairs as peaks in relation to the two sequences. The trans-
formations applied to segment pairs contributing to any dominant peak are an
estimate of the transformation for overall superposition. The method is analo-
gous to the similarity (dot-plot) matrix used in sequence comparison and is useful
for identifying structural repeats.

Similar segments in separate proteins can be located provided they are not
interrupted by large insertions and deletions. In contrast to the contemporary
Rossmann-Argos method described above, the Remington-Matthews method is
easier to apply, computationally less demanding, and yields a statistical signif-
icance for any superposition (Matthews et al., 1981; Matthews and Rossmann,
1985).

The fragment-based dynamic programming method of Zuker and Somorjai
(1989) defines a distance measure based on rigid body superposition of Cα back-
bone fragments of three or more residues in one protein onto their counterparts in
the second protein. Dynamic programming was used to identify a set of maximal
length, non-overlapping aligned fragments separated by indels, which produce
an overall best superposition. A penalty is applied for breaking fragments and
this prevents the solution from degenerating into the trivial case of superposing
fragments of length three. A large number of superpositions must be performed
to determine the best possible set of fragments, and the authors developed their
own fast superposition algorithm based on quaternion algebra.

4.1 Comparing Feature Strings

4.1.1 Residue level

Levine et al. (1984) use the sequence of backbone torsion angles to compare two
proteins, constructing a matrix of the combined difference score for the main-
chain torsion angles (φ and ψ). The matrix can be analysed in a number of ways
to obtain an overall similarity score between the two proteins. These include
a fast method of searching for the best path through the matrix using lists,
while a second method obtains a statistical measure of similarity based on the
distribution of torsion angle similarity values along the diagonals. The statistical
nature of this method may lead to the significance of some comparisons being
missed. A further problem is that similarities in secondary structure will be
identified regardless of topological equivalence and this is liable to complicate the
measurement of global similarity.
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4.1.2 Backbone-fragment level

In a generalization of the residue torsion angle method of Levine et al. (1984)
(above), fragments of backbone have been examined by Karpen et al. (1989), who
compare all possible fragments of a chosen length from one protein with those in
the other. Fragments are compared using a RMS measure computed over their
torsion angles, this score being recorded in a matrix as in Levine’s method. The
technique was intended only to identify and rank local features rather than to
produce an overall similarity score.

The approach of Rackovsky and Scheraga (1978), (Rackovsky and Scheraga,
1980; Rackovsky and Scheraga, 1984) uses differential geometry to describe the
trajectory of the protein backbone approximated as a discretized curve. Each
segment in the chain is parameterized by a curvature and torsion computed from
the α-carbon coordinates of a tetrapeptide, this being the smallest applicable
backbone fragment. However, the method is unsuitable for disparate chains con-
taining indels and within these limitations, it is sensitive to the presence of an
internal rotation with respect to similar substructures in the two proteins, as the
plots show complete identity except in the region of the rotation.

4.1.3 Secondary structure level

Abagyan and Maiorov (1988, 1989) idealize the protein backbone as a chain of
vectors connected head to tail. Vectors alternate along the chain representing
linear secondary structure elements (α-helices and β-strands) and intervening
loops. The trajectory of the backbone is described by vector lengths, angles
between sequential vectors, torsion angles about intermediate vectors, and, in
the later work, by the number of residues in each secondary structural element.
Their program FASEAR (Abagyan and Maiorov, 1989) combines the four measures
to compare structures in a 2D matrix. Runs of minima in the matrix indicate
possible topological equivalences, which are used to superpose the vector chains
using the algorithm of McLachlan (1979). The method is suitable for crude
comparisons of similar tertiary folds or for searching a database for some specified
supersecondary motif.

5 3D Methods without dynamic programming

The more automatic methods described in the previous Section simplified each
protein to a string, and in so doing lost the essential 3D relationship between
feaures. This can be retained by considering each protein chain as a sequence of
elements described by their structural relationships with each other. A simple
visual method for examining the internal structural associations of a protein is
the distance plot (matrix, map or diagonal plot) due to Phillips (1970), by which
a property, typically interatomic distance between α-carbons, is recorded in the
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cells of a symmetric 2D matrix, the axes of which are the amino acid sequence of
the protein. To compare two proteins A and B (of equal length), it is necessary to
construct two such matrices (A against A, and B against B). Being comformable,
the matrices can be compared cell by cell and combined in a difference matrix
(DM) of the same dimensions, from which an overall difference score may be
computed.

Most of the methods described in this section make use of this device but do
not use dynamic programming to impose an alignment of the structures.

5.1 Distance-matrix matching

5.1.1 Early attempts

One of the first attempts to compare proteins using this approach was Nishikawa
and Ooi (1974b) who derived difference distance plots by subtracting conformable
distance matrices representing the two proteins. Equivalenced residues were in-
dicated by a low average score along the row or column and an overall measure of
similarity was obtained by calculating the total or average difference score over
the whole plot. The latter may be formulated as an RMS estimate of similarity
of the two conformations, although problems with mirror images may arise. The
technique is less amenable to comparing proteins with larger indels. Dissimilar
regions can, however, be excised to make the distance matrices conformable and
Padlan and Davies (1975) described a means of stretching a shorter sequence
by inserting padding ‘residues’ between known equivalent marker residues in the
two chains. A variety of matrix scoring techniques that aim to overcome such
problems have been described (Liebman, 1982). These solutions are manual and
difficult to apply, so that the basic difference matrix approach is constrained to
closely similar conformations.

A variation on comparative distance plots yields a spectrum of difference
scores corresponding to successive levels of spatial interaction (Sippl, 1982).
These are obtained by comparing subsets of the two distance matrices corre-
sponding to successive off-diagonal elements. The set of scores so obtained con-
tains more information on structural similarity than a single overall measure and
local features such as internal rotations of one molecule are identifiable. The
different diagonals reveal similarities at different levels of structural organization.
For instance, for secondary structures, diagonals of order up to 10 (i.e., distances
between the i and i + 10th residue) should be used. Similarly, for domain level
organization, orders between 10 and 25 give medium and long range structural
information.
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5.1.2 The DALI method

Holm and Sander devised a two stage algorithm, implemented as DALI, which uses
simulated annealing to build an alignment of equivalent hexapeptide backbone
fragments between two proteins Holm et al. (1992); Holm and Sander (1993b);
Holm and Sander (1993a). The approach is equivalent to aligning collapsed dis-
tance matrices of the proteins from which insertions and deletions have been
excised — similar to some of the earlier methods described above.

In the first stage, hexapeptide contact maps are matched and similarity scores
generated by comparing all distances within the hexapeptides. An ‘elastic’ score
proportional to the relative differences between distances is used, making the
method more tolerant to distortions in longer range distances. Hexapeptides
whose contact maps match above some threshold are stored in lists of fragment
equivalences. To reduce the amount of information considered, only hexapeptide
pairs having similar backbone conformations are compared. Similarly, although
residues occur in a number of overlapping contact maps, the map with the closest
contacts to any other segment is selected for a given residue.

In the second stage, an optimization strategy using simulated annealing ex-
plores different concatenations of the fragment pairs. Similarity is assessed by
comparing all distances between aligned substructures. Each step consists of ad-
dition, replacement, or deletion of residue equivalences, in units of hexapeptides
and, since hexapeptides can overlap, each step can result in the addition of be-
tween one and six residues. In the next iteration step, the alignment is expanded
by adding substructures that overlap with those already equivalenced. Once all
candidate fragment pairs have been tested, the alignment is processed to remove
fragments with negative contributions to the overall similarity score.

An advantage of the approach is that the alignment need not be constrained
by fragment sequentiality, so that fragments can be equivalenced in a different
order along the sequences. The method has been used to compare representatives
from all the non-homologous fold families in the Brookhaven databank (Holm and
Sander, 1994b; Holm and Sander, 1997; Holm and Sander, 1998). (see Section 8
for further details).

5.1.3 Backbone fragment methods

The Suppos algorithm incorporated in the WHAT IF program produces superposi-
tions based on either structural or topological equivalence of backbone fragments,
and can also permit chain reversal (Vriend and Sander, 1991). The first of three
stages identifies similar fragments of a given length (10–15 residues) between the
two proteins by rigid body superposition using the algorithm of Kabsch (1978).
These are then iteratively grown and superposed until the same threshold is
reached, thereby identifying maximal length similar fragments. The final rota-
tion matrix used in this superposition is stored with each fragment. In the second
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stage, these pairs form nuclei for a clustering process, in which pairs are fused if
their rotation matrices are similar (within some error). The third and final stage
checks the similarity of the internal spatial organization of respective clusters in
each protein and computes a new superposition based on the largest cluster.

Alexandrov et al. (1992) describe an almost identical method implemented
in the SARF program. This starts with 6–7 residue length overlapping fragments
and superposes using the McLachlan (1979) algorithm, retaining all pair matches
better than a threshold in a fragment pool. All neighbouring fragments with
similar rotation matrices within a tolerance are united, resuperposed on their
counterparts, and the best are returned to the fragment pool. This is in contrast
to the pairwise clustering used by Vriend and Sander (1991). Merging and su-
perposition are iterated, sampling from the pool, until the superposition score is
stable.

5.2 Secondary structure graph-matching

The comparison of proteins at the secondary structure level developed from some
early attempts (Kuntz et al., 1976) through the more complex ’meta-matrix’ anal-
ysis of Richards and Kundrot (1988) to the automated POSSUM method (Mitchell
et al., 1989; Artymiuk et al., 1990) which compares the geometric relationships
between α-helices and β-strands abstracted as axial vectors. In this method,
proteins are represented as fully connected graphs whose nodes are secondary
structure elements and whose edges are pairwise closest approach and midpoint
distances and torsion angle. A standard subgraph isomorphism algorithm de-
tects subgraphs in each protein in the database equivalent to that of the query
structure, having the same types of nodes with similar valued edges within user
specified distance/angle tolerances.

Ordering of secondary structure elements in the query is under user control.
There is no alignment score and a detailed residue level alignment is produced
by conventional superposition. Like the geometric searching techniques (Lesk,
1979; Brint et al., 1989) to which it is related, the method is unsuitable for the
general problem of identifying unspecified common substructure (i.e., discovery of
unspecified common subgraphs). Nevertheless, it is appropriate for fast database
searching with known motifs to identify candidates for more refined comparison.

The subgraph discovery problem is addressed by PROTEP (Artymiuk et al.,
1992b; Artymiuk et al., 1992a; Grindley et al., 1993), which uses an established
maximal common subgraph algorithm to compare the same secondary structure
types and relationships. This identifies maximal fully connected subgraphs or
cliques that are shared between structures. As with POSSUM, the method allows
fast database searching, but does not give a residue level alignment or superpo-
sition.

Subbarao and Haneef (1991) also represent protein structures as partially
connected graphs whose nodes and edges are Cα atoms and interatomic distances,
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respectively, within some user specified cutoff. Two graphs are compared to
identify the maximal common subgraph corresponding to structurally similar
regions using a standard algorithm. The set of Cα atom equivalences mapped
by the subgraph is used to drive a conventional superposition (external feature)
from which a new set of Cα equivalences within a 3Å limit is used produced to
drive a final superposition.

5.3 Geometric-hashing approach

Geometric searching techniques are used in small molecule applications to match
a query structure against a database of molecules and Lesk (1979) has described a
geometric searching method suitable for proteins or other macromolecules. This
computes a sorted list of interatomic distances in the query structure and asso-
ciates with each atom a bitstring wherein the ith bit is set if the atom has a
neighbour at the ith position in the distance list. The bitlist is thus a discrete
signature for that atom. Similar bitstrings in terms of the same distance list are
constructed for each database structure in turn and compared with those of the
query structure to derive tentative atom equivalences. The number of compar-
isons may be reduced by only considering ‘like’ atoms by some property, e.g.,
atom type.

The final, and computationally demanding, step samples all combinations of
matched atoms for each database structure to find the best equivalence set by
superposition onto the query structure. Brint et al. (1989), also working with Cα
interatomic distances, describe an optimization of Lesk’s algorithm, which speeds
up the method by replacing the combinatorial sampling step with a backtracking
tree search.

Since the query specifies the substructure to be matched, these methods are
unsuitable for the general problem of identifying unknown common substructure.
In contrast, an application of the computer vision technique termed geometric
hashing is suitable for database searches using defined patterns or to discover
unknown similarities (Nussinov and Wolfson, 1991; Fischer et al., 1992; Bachar
et al., 1993). The method is demonstrated using Cα atoms, although any atoms
can be discriminated on type, or other properties.

A triple of (non-linear) atoms in a protein defines a reference frame and,
in general, all such triangles are computed and the side lengths are hashed to
compute an address in a hash table, at which the protein identity and three
atom coordinates are stored. The hash table is populated in this way for all
proteins. Once compiled, it can be used for any comparison, and new proteins
can be inserted without recomputing existing entries. A simplified outline of the
algorithm is shown in Figure 10.

Matching a query protein against the database proceeds by looking up the
query protein triangles in the hash table. Each match found constitutes a vote
for the triangle entries stored at that address. High scoring matches represent
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Figure 10: Two protein structures A and B are shown schematically. Two pairs of
positions (i, j in A and m,n in B) are selected. Both structures are centered on the
origin of a grid (below) at i and m and orientated by placing a second atom in each
structure (j and n) on the vertical axis which is (coincidentally) the terminal atom
of each structure. (In three dimensions, three atoms are required to define a unique
orientation.) Atoms in both structures (open and filled circles) are assigned an identifier
that is unique to the cell in which they lie (the hash key). For simplicity, this is shown
as the concatenation of two letters associated with the ordinate with the abscissa (XY).
For example; atoms in structure B are assigned identifiers AD, BC, CC, CD, etc. The
number of common identifiers between the structures provides a score of similarity. In
this example these are CD, CE, FE, GF, HE and FA (not counting i, j and m,n) giving
a score of 6. The process is repeated for all pairs of pairs, or in 3 dimensions, all triples
of triples and the results pooled.
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reference frames common to both proteins, and the rigid body transformation
required to superpose triangles is an estimate of the overall superposition for
the molecule, while the participating atoms are an estimate of the desired atom
equivalences. Many matched reference frames correspond to essentially the same
transformation, and these are merged to produce a larger set of atom equivalences.
These then prime a series of superposition and assignment steps to further refine
and extend the equivalence list.

The same basic method has been applied to comparing protein surfaces at
ligand binding sites (Fischer et al., 1993; Fischer et al., 1994).

6 3D Methods using Dynamic Programming

6.1 Using structural superposition

Barton and Sternberg (1988) describe a specialized application of dynamic pro-
gramming to finding residue equivalences. Given an initial superposition based on
the cores of two closely related proteins, the LOPAL program determines residue
equivalences between variable loop regions, which may differ in the number of
residues as well as spatially. Each such region is represented by a distance matrix
holding all Cα distances from one loop to the other and dynamic programming is
used to find the best global alignment, effectively aligning the Cα atoms by their
3D coordinates. This approach was later developed into a more general method
that used sequence alignment to establish an initial correspondance (Russell and
Barton, 1992).

In the later development of this approach (in the program) STAMP (Russell
and Barton, 1992), multiple pairwise sequence alignments are used to construct a
binary tree ordered by sequence similarity. Structures are then superposed using a
conventional pairwise algorithm in the order dictated by the tree starting with the
most similar pairs at the leaves and terminating at the root, using averaged atomic
coordinates when merging more than 2 structures at an internal branch. At each
merge, α-carbon equivalences are assigned using modified spatial and orientation
probabilities (as in Rossmann and Argos (1976)). A matrix of probabilities for
every possible α-carbon equivalence is computed, using probabilities averaged
over all possible pairs of structures being merged. The best path through this
matrix is assessed using a local dynamic programming step Smith and Waterman
(1981) to select the most likely sequential Cα equivalences. Again like some of
the older methods, cycles of equivalence assignment followed by superposition are
applied until the equivalence list is stable, and the process repeats for the next
merge (May and Johnson, 1994; May and Johnson, 1995; May, 1996).

At the secondary structure level, Murthy (1984) describes a fast, two stage,
superposition method, in which helices and strands are represented by their ax-
ial vectors. The first stage derives from Rossmann and Argos (1976) in which
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rotational space is systematically sampled and at each step a matrix of angular
orientation scores for the secondary structure vectors between each protein is
produced. Each cell indexed by a pair of secondary elements from the two pro-
teins is assigned a weighted score that is maximal for parallel vectors. Dynamic
programming is then used to determine the best alignment and overall similarity
score for each matrix, these being ranked and the highest selected as identifying
the secondary structural equivalences. In the second stage, these equivalences
are then used in another rotational search to achieve superposition by minimis-
ing the differences between vectors linking all pairs of elements in one protein
and equivalent vectors in the second. The score is modified depending on how
well vectors between equivalent secondary elements can be superposed. Finally,
these modified scores are plotted as a function of the three Eulerian angles giving
a contour map wherein strong structural similarities are revealed as peaks.

6.2 Using the relationships of internal features

Capturing the relationships between internal features is the most general and
reliable approach to structure comparison but also computationally the most
difficult. Its power derives from the use of relationships to capture the true 3D
interaction of elements while still retaining useful intrinsic similarities in their
encoded features — including the raw sequence data if desired.

Computational complications arise since, in general, the nature of relation-
ships are not local in sequence and so violate the basic assumption of dynamic
programming. Despite this, methods have been developed for this type of data
that use dynamic programming. Two of the original attempts will be described
below, one of which (COMPARER) uses a stochastic minimisation method to refine
the matching of relationships while the other (SSAP) employs dynamic program-
ming at two distinct levels.

6.2.1 The COMPARER program

Šali and Blundell (1990) recognized that the problem of comparing structures
in terms of relationships was not directly amenable to conventional dynamic
programming. Their program, COMPARER, compares proteins at various struc-
tural levels using a multiplicity of features and relationships. For each kind of
structural element, features are compared and scored with weights into a matrix
indexed by the two sequences. Relationship sets are analysed using simulated an-
nealing to identify and weight elements participating in similar relationships in
the two proteins, these scores being added into the matrix. Finally, the matrices
for each structural level are summed, using weights to control the contribution
of each structural level, and an overall alignment is generated using dynamic
programming.
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The authors also describe how they apply the method to multiple alignments.
An initial series of pairwise structural alignments is used to construct a similarity
tree (or the user can specify their own hierarchy). Multiple alignment proceeds
by a sequence of pairwise alignments, in order of similarity following the topology
of the tree, merging sub-alignments as necessary until all structures have been
incorporated.

6.2.2 The SSAP program

The SSAP program (Taylor and Orengo, 1989b), and its derivatives (Taylor and
Orengo, 1989a; Orengo and Taylor, 1990; Orengo and Taylor, 1993; Taylor et al.,
1994a), (see Orengo and Taylor (1996) for a review) uses a ‘double’ dynamic pro-
gramming algorithm to manipulate two tiers of matrices5. A single upper matrix
is used to score features directly and to accumulate alignment paths from the
lower tier matrices, which are used to compare relationship sets of each possible
pair of residues. The principal relationship employed uses a local structural en-
vironment about each residue comprising a simple reference frame defined by the
geometry of the Cα atom. Every other residue is defined in this frame by a set
of interatomic vectors. (Figure 11). Residue equivalences given by the resulting
structural alignments are used directly to produce a weighted superposition by
the algorithm of McLachlan (1979) using the alignment score at each equivalent
position (Rippmann and Taylor, 1991).

Other relationships examined include interatomic distances, H-bond energies,
virtual H-bonds extending through sheets, and disulphide bridges, while features
include residue accessibility, secondary structure assignment, backbone angles,
solvent accessible area, and sequence similarity (Taylor and Orengo, 1989a). Mul-
tiple features and relationships are scored using a weighted polynomial scoring
function, with choice of features, relationships, and weights under user control.

The full double dynamic programming algorithm is computationally demand-
ing, but Orengo and Taylor (1990) show that only a small subset of lower level
comparisons is necessary — an aspect that has been exploited in later develop-
ments (Taylor, 1999b) (more fully described below). A local alignment version
using a modified Smith and Waterman (1981) algorithm (Orengo and Taylor,
1993), and a multiple alignment version (Taylor et al., 1994a) (using the pro-
gressive multiple sequence alignment algorithm of Taylor (1988)) were developed
also. The latter generates a concensus structure by averaging vectors between
equivalenced residues. Information gathered on structural variability of individ-
ual vectors and environments can be used, for example, to weight structurally
conserved positions as more structures are added to the alignment.

SSAP can also align secondary structure elements (SSEs) (Orengo et al., 1992)
using secondary structure features (hydrophobicity, length, surface area) and rela-

5This older implementation of the algorithm will not be described in detail here since the
current iterated algorithm will be described in the following section.
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Figure 11: Two protein structures A and B are shown schematically. A pair of
positions (i in A and m in B) is selected. Both structures are centered on i and m
and orientated by a local measure (indicated by the large cross). In this superposition
the relationship between all pairs of atoms (e.g. n and j) is quantified, either as a
simple distance (dnj) or by some more complex function. All pair values are stored
in a matrix and an alignment (white trace) found. The arbitrary choice of equating
i and m is circumvented by repeating the process for all possible i,m superpositions
and pooling the results. In the SSAP algorithm a final alignment is extracted from the
summed results by a second dynamic programming step.
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tionships (buried area, overlap, tilt and interaxial angles, inter-element vectors).
The resulting alignment of SSEs can then be used to constrain a subsequent
residue level alignment. The method is fast and allows sorting of the structure
databank into unique fold families (Orengo et al., 1993).

6.3 Iterated Double Dynamic Programming

The program SAP (for Structure Alignment Program) described in this Section
was derived from the related SSAP program (Taylor and Orengo, 1989b; Taylor
and Orengo, 1989a) (Section 6.2.2) and is largely a simplification of its predecessor
but is based on a refined iterative algorithm. The method is fully described here as
some of its results are used below in Section 7 and Part III. The core comparison
algorithm underlying both SAP (as well as SSAP, and also some sequence/structure
comparison methods (Jones et al., 1992; Taylor, 1997a)) is based on the dynamic
programming algorithm.

6.3.1 Double Dynamic Programming

The computational difficulty in structure comparison programs like SSAP and
COMPARER arises through trying to obtain a measure of similarity between two sets
of internal relationships in different proteins. To compare the internal relationship
of, say, residue i in protein A with a residue m in B relies on matching the
individual relationships (such as {i, j} in A with {m,n} in B) (Figure 11). If
this known (even for one such i,m pair) then the comparison problem would
be solved before the first step was taken! To break this circularity, the following
computational device was used: given the assumption that two residues (one from
each of the two proteins) are equivalent, then how similar can their relationships
(or structural environments) be made to appear while still retaining topological
equivalence?

This aspect of the calculation is described in Figure 11 in which the score
matrix is referred to as the low-level matrix (R). The scores along the best path
through this matrix are then summed imto a ‘master’ matrix (S), referred to
as the high-level matrix. After all residue pairs have been considered and their
path-scores summed in S, the best path is now found through S giving a best-
of-the-best (or consensus) result. Representing the application of the dynamic
programming algorithm as a matrix transform function Z that sets all matrix
elements to zero except those that lie along the best path, then the full algorithm
can be summarised as:

Z(S) = Z(
∑

i

∑

j

Z(Rij)) (1)

where the sums are over all residues (i) in one protein with all residues (j) in the
other.
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The basic alignment (or Dynamic Programming) algorithm is thus applied
at two distinct levels: a low-level to find the best score given that residue i is
equivalent to j, and at a high-level to select which of all possible i, j pairs form
the best alignment. This double level (combined with the basic algorithm) gave
rise to the name “Double Dynamic Programming” (DDP).

6.3.2 Selection and Iteration

The DDP algorithm described above, requires a computation time proportional
to the fourth power of the sequence length (for two proteins of equal length) as
it performs an alignment for all residue pairs. To circumvent this severe require-
ment, some simple heuristics were devised based on the principle that comparing
the environment of all residue pairs is not necessary. By considering local struc-
ture and environment, many residue (indeed most) pairs can be neglected. This
selection is based on secondary structure state (one would not normally want
to compare an α-helix with a β-strand) and burial (those with a similar sec-
ondary structure and degree of burial are selected) but a component based on
the amino acid identity can also be used, giving any sequence similarity a chance
to contribute.

An iterated algorithm was implemented previously (Orengo and Taylor, 1990),
using heuristics on the first cycle to make a selection of a large number of po-
tentially similar residue pairs. In the reformulated algorithm, a small selection
(typically 20–30) pairs are selected initially and gradually increased over several
iterations. This initial sparse sampling can, however, be unrepresentative of the
truly equivalent pairs and to avoid this problem, continuity through the early
sparse cycles was maintained by using the initial rough similarity score matrix
(referred to as the bias matrix) as a base for incremental revision. (Figure 12).
As the cycles progress, the selection of pairs becomes increasingly determined
by the dominant alignment, approaching (or attaining) by the final cycle, a self-
consistent state in which the alignment has been calculated predominantly (or
completely) from pairs of residues that lie on the alignment.

6.3.3 Sampling alternate alignments

A useful ‘spin-off’ from the iterated DDP approach is to augment, or bias, the
evolving selection of pairings (referred to as the current selection). This can be
done using external information such as sequence or structural patterns (Jonassen
et al., 1999), or by adding random displacements to the scores on which the
selections are based. This latter approach introduces some of the aspects of the
stochastic methods discussed above (Šali and Blundell, 1990) (Section 6.2.1) and
is equivalent to sampling the population of high scoring alternate alignments.

Knowledge of the distribution of sub-alignments gives an idea of how unique
the highest scoring alignment is (and indeed, whether this best alignment was
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Figure 12: Outline of the iterated double dynamic programming al-
gorithm. Values from the HIGH LEVEL score matrix are ranked and a pre-
specified number (represented by the dashed cutoff line) are passed to the LOW
LEVEL for evaluation. These are joined by a fixed number of externally specified
pair-selections. The resulting alignment paths are summed back into the HIGH
LEVEL score matrix and, after normalisation of the values, a new selection is
made. Five cycles of iteration are typical.
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found by the ‘one-shot’ algorithm). If the best alignment is unique (few similar
scoring alternatives) then it can be treated with confidence whereas if there are
a lot of equally scoring alternatives then care must be taken in interpreting it
in detail. Ways in which this can help also in assessing the significance of an
alignment score are discussed in Section 7.

7 Assessment of Significance

Like sequence alignment methods, almost all of the methods discussed above will
produce a match when presented with two structures — whether these structures
share any similarity or not. An important aspect of structure comparison is
to decide when a match is significant. This is difficult as we have seen that,
beyond close similarity, there is no uniquely correct structural alignment of two
proteins and different alignments are achieved depending on which biological
properties and relations are emphasised in the comparison (Taylor and Orengo,
1989b; Godzik, 1996; May and Johnson, 1994; May, 1996).

For a proper statistical assessment, The scoring found for a structure com-
parison must be compared against what is expected by chance. This is often
implemented as what is expected by aligning random structures, or using frag-
ments of non-related proteins.

7.1 Score distributions from known structures

Alexandrov and Go (1994) made an analysis for finding the significance of similar
pairs of proteins using their program SARF. For a fixed length L, they picked up
all fragment pairs of this length in two unrelated structures, and found the value
RL such that only 1% of pairs have smaller RMSD. Similarly, Russell (1998),
made an analysis using distance RMSD, related to his method for detecting side-
chain patterns. Random pairs of structures with different folds were chosen, and
random patterns of two to six patterns were derived.

Alexandrov and Fischer (1996) and Holm and Sander (1993b) used a Z-value
statistic to measure significance whereas Gibrat et al. (Gibrat et al., 1996), in
their VAST program, compute a P-value for an alignment based on how many
secondary structure elements are aligned as compared with the chance of aligning
elements randomly. Levitt and Gerstein (1998), made a comparison of the scoring
of their iterated dynamic programming/superposition program to RMSD. The P-
value of a score S for fixed N (number of matched residues) can be found by fitting
to an extreme-value distribution. The same statistics can be developed for use of
RMSD and both can then be compared by a method of Brenner et al. (1998) in
which the E-values of each structure pair giving 1% false-positives was taken.
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7.2 Random structural models

In sequence comparison, the generation of a set of random models is easily
achieved by generating random sequences either as a Markov process or through
shuffling the native sequences. However, no such simple method can be used for
structures and the best random model against which comparison scores should
be compared depends on the degree to which the inherent nonrandom features
of protein structure in general should be considered significant (Taylor, 1997b).
Random chains can be generated and compared (McLachlan, 1984) but the best
random models would be those generated with secondary structures. Ideally,
these models should be calculated for each comparison to match the length of the
native comparison and the secondary structure composition (Aszódi and Taylor,
1994b). However, these models are complex to generate and cannot be ‘tailor-
made’ for each individual comparison without excessive computation.

Models involving symmetry operations on the protein (reversal and reflection)
can be used in situations where the comparison method restricts its calculation
to the α-carbon atoms of the protein since the arrangement of the other main-
chain atoms is directional (Taylor, 1997b; Maiorov and Crippen, 1994). Con-
sidering just α-carbons, the conformations of local structural features (such as
secondary structure and their chirality of connection) in the reversed chain is
virtually indistinguishable from a forward running ’native’ chain. This principle
of reversal applies equally at the level of the sequence and has been used previ-
ously to provide a random model for sequence pattern matching (Taylor, 1986b;
Taylor, 1998). In both sequence and structural data the reversed model preserves
the length and composition of the protein, including directionally symmetric cor-
relations associated with secondary structure, while additionally in the reversed
structural model, the bulk properties of packing density and inertial axes are also
preserved. The latter are difficult to maintain in randomly generated structures
(Aszódi and Taylor, 1994a).

The reflected chain is clearly not an ideal model for proteins as they contain
both large and small scale chiral features which will change hand under reflection.
However, the use of greatly simplified lattice models avoids this problem and
based on this analysis, Maiorov and Crippen (1994) proposed a definition of the
significance of RMSD in which they take two conformers to be intrinsically similar
if their RMSD is smaller than that when one of them is mirror inverted.

7.3 Randomsed alignment models

In general, the closer the random model is to preserving the properties of the
native proteins, the more difficult it becomes to generate plausible alternatives.
This problem is particularly accute for the reversed-chain random model discussed
above since, for any given protein, there is only one. This problem can be partially
circumvented, however, at the stage of calculating the alignment. At this point
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the alignment with each random model can be expanded into a population of
variants by introducing ‘noise’ into the score matrix and repeating the calculation
of the alignment path from each noisy matrix. This generates a family of near-
optimal subalignments and the spread of scores for this population can provide
a measure of the stability or uniqueness of the answer. An advantage of this
approach is that it can be applied not only to structures belonging to the set of
randomised models but also to the native structure itself and the two resulting
score distributions can be tested statistically to see if they are distinct.

If there is sufficient ‘noise’ introduced into the alignment method, and the
population is large enough, then almost all reasonable alignments for a pair of
proteins can be sampled. Plotting these solutions by their number of aligned
positions against RMSD revealed a ‘cloud’ of points which was diffuse at high
RMSD but had a sharp boundary on its lower edge. This edge represents the
limit, for a given number of aligned positions, below which a smaller RMSD
cannot be found. As judged by the sharp edge to the distribution, this limit
is not restricted by the the method of comparing the proteins and so provides
an absolute standard against which other methods can be compared. For a
few protein pairs, the results of other methods (gathered by Godzik (1996)) were
plotted and compared to these lines. Most of these results were found to lie above
the line, indicating that the optimal solution in terms of minimum RMDS had
not been attained. Only a few results lay on the line and these mostly involved a
smaller number of equivalent positions. It should be noted that assessing methods
by the use of the RMSD value is sometimes unfair since for many of the methods,
their aim is not to minimise the RMSD value.

7.4 Scoring and biological significance

When a structure is compared to every other structure (or to a representative
selection), then scores will result ranging from the clear relationships of homol-
ogous proteins to a large number of poor scores for obviously unrelated pairs.
Between these extremes lies a “twilight” zone within which it is very difficult to
assess the significance of the score. This problem is exacerbated because many
proteins contain similar substructures, such as secondary and super-secondary
structures and the problem is to decide when a similarity is just a consequence
of being protein-like and when it indicates a more specific relationship between
the two proteins.

Because of its common currency, most considerations of this problem have
focused on the significance of the RMSD measure based on comparison of pro-
teins or protein fragments of equal length (see above). Others, such as the
DALI method, have adopted a similar approach based on the scores achieved
over matches of protein fragments (Holm and Sander, 1993b). Both these ap-
proaches require that the selected fragments are unrelated to the proteins being
assessed, however, this raises the problem of what criterion can be used to make
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this distinction and, in principle, it should not be a weaker method than that
used for the current comparison. It is not acceptable, either, to consider com-
pletely unrelated proteins since, to take an extreme example, if the two proteins
being compared contained only α-helices and the clearly unrelated control set
contained only β-structure, then the two α proteins would appear more related
than they should do.

An alternate approach to this problem is to use the reversed structure (as
described above). When this is matched against the structure databank a similar
range of scores should result — since the reversed structure has exactly the same
length, overall shape, and secondary structure content as the native probe. What
will be lost is any specific overall similarity to proteins that are homologous to
the native probe. In addition, if the probe structure is a particularly simple fold
(such as four α-helices) then the reversed structure will also embody this property
so a specific match will need to capture more than a few matched helices to gain
significantly over the background of scores derived from the reversed structure.

7.5 Examples

7.5.1 Distant globin similarities

A globin-like fold is also found in the plant phycocyanin proteins which have the
same core fold of six helices with two ‘extra’ ones preceeding this core (Pastore
and Lesk, 1990). These proteins have no significant sequence similarity and only a
vague relationship: both bind co-factors, however, the phycocyanins are electron
transport proteins specific to the photosynthetic complex and do not bind oxygen
as do all the globins.

The globin fold has also been found in the bacterial toxin protein colicin-A.
As with the phycocyanins, this is larger than the globins, but in this relationship,
the equivalent fold must be extracted from an otherwise well packed bundle of
8 helices (Holm and Sander, 1993a; Orengo and Taylor, 1993). Here no amount
of imagination can lead to a plausible functional or evolutionary link with the
globins (or the phycocyanins).

Progressing in the other direction, many small folds can exhibit similarity
with part of the globin fold — in the extreme, this might involve matching a
single α-helix. A relationship of a small protein with the globins that has been
considered ‘significant’ was noted in the DNA-binding domain of the bacterial
repressor proteins Subbiah et al. (1993). This consists essentially of only three
helices but, overall, these adopt the same fold as part of the globins. The authors
suggested a possible evolutionary relationship here since the DNA- and hæm-
binding sites are located in similar parts of the structure — but this is rather
speculative.
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(a) colicin

(b) phycocyanin

Figure 13: The globin fold in colicin-A and phycocyanin. The two struc-
tures are drawn to show their backbone as linked α-carbons with the region
corresponding to the globin fold drawn more thickly. (a) Colicin [1colA], which
has extra helices towards the carboxy terminus. The core region matched 97
residues with an RMS deviation of 3.2Å. (a) Phycocyanin [1cpcA], which has
two extra helices on the amino terminus. Both structures were compared against
the hemoglobin structure 11hlb (sea cucumber). The core region matched 85
residues with an RMS deviation of 5.4Å.
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7.5.2 Assessment against chain reversal model

The three globin fold similarities were reexamined using the reversed chain as
a background score model. A globin fold was scanned against a non-redundant
selection of the Protein Structure Databank (PDB)6. and found all globins and
all phycocyanins as significant matches. Similarly, a phycocyanin probe found all
phycocyanins and globins.

The globin/colicin-A relationship was tested using the reversed colicin struc-
ture as a control and was found to retain its significance (Figure 14(a)) with the
globin finding colicin and colicin finding the globins. However, while colicin could
find a phycocyanin, a phycocyanin probe did not find colicin at a significant level.
(Figure 14(b)).

When tested in a similar way, the relationship between the bacteriophage
repressor and the globins was not found to be significant when using a globin as
a probe, however, with the repressor as a probe a number of globins were found
to lie just on the border-line of significance.

6This selection was made by choosing one representative for all sequences that share greater
than 50% sequence identity. The member taken to represent each family fulfilled a variety of
criteria but generally had the best resolution and the lowest average B-value (an indicator of
refinement quality). Details can be found in Taylor (1997a).
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Figure 14: Structural searches with colicin and phycocyanin. RMS devi-
ation is plotted against number of residues aligned (diamonds). The structures
match themselves (point on the lower right corner) and any homologues (clus-
tered in the lower right corner). The probe structure was then reversed and
rescanned (crosses). from these results a line (dashed) was fitted that excludes
99% of the reversed matches. (a) Colicin [1colA], has only one homologue and
the cluster of matches around 2–4Å RMS and 80–100 residues include globins
and phycocyanins. (b) Phycocyanin [1cpcA], has a few homologues and matches
the globins in a cluster around 4–6Å and 80-110 residues. Colicin was not found
at a significant level.
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8 Protein Structure Classification

8.1 Introduction

We are currently faced with a flood of protein 3D structure data: as we en-
ter this Millennium, there are 11515 entries7 in the Protein Data Bank (PDB)
(http://www.rcsb.org/pdb). Furthermore, the number of structures in this database
is doubling almost every 18 months.

Despite this flood of data, increasingly efficient and robust methods for protein
3D structure comparison have made it feasible to perform all-against-all compar-
isons of all known 3D structures. (for a review, see Holm and Sander (1994b)
and Orengo (1994) and also the previous Sections for details of the methods).
These exhaustive comparisons reveal that proteins can share a common fold de-
spite lacking any ‘significant’ sequence identity (Section 7.5) and, furthermore,
proteins with the same fold may have different functions. Their main aim, how-
ever, is to try and bring some order into the description of protein structure by
imposing a classification.

In this Section we investigate some of these approaches and ask whether the
evolutionary model, that is used when there is clear sequence similarity, can be
extrapolated into these more tentative relationships and whether attempts at
classification lead to a greater understanding of protein structure.

8.1.1 Practical applications

The following list gives some areas in which (even a rough) classification has
proved useful, and some areas in which it should still be of use.

1. Classification helps us to understand protein evolution since structure is
better conserved than sequence (Lesk and Chothia, 1980; Chothia and Lesk,
1986; Chothia and Lesk, 1987).

2. It is useful to describe protein fold-space and maybe answer the question:
how many folds are there in Nature?

3. With the increasing number of proteins for which an experimentally deter-
mined 3D structure is available it is helpful to have an ordered collection of
all known folds to ascertain whether a new structure is in fact a novel fold.

4. Classification aids our understanding of the relationships between 3D struc-
ture and function such as in enzymes (Thornton et al., 1999).

7This value overestimates the number of different structures as there is a high level of
redundancy in the PDB with the same or slightly modified protein being seen in different
structures or under different conditions. There is also obvious bias in structure determination
towards small, single domain proteins amenable to such experimental investigation and also
towards those proteins deemed to be of interest (e.g. enzymes or DNA-binding proteins).
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5. If we have a fixed number of different structure types, then predicting a
protein structure from sequence will involve a finite search. (Section 12).

6. Classification makes protein 3D structure data more accessible to biologists
and other non-specialists.

8.1.2 Genome appliactions

In 1995 the complete genome sequence (i.e. the entire DNA) of a bacterium be-
came available. This was the first organism larger than a virus to have its genome
determined. Since then almost another 50 microbes have had their genomes se-
quenced and, recently, we have seen the much larger genomes of three ‘higher’
organisms (brewer’s yeast, a nematode worm and a fruit fly) and the human
genome is expected this year (2000).

A major challenge in the post-genome-sequence era lies in the functional anno-
tation of genomes: assignment of function to each gene product. In the absence
of an experimentally defined function, the most reliable method for predicting
function is on the basis of sequence similarity to proteins of known function. If
a protein of unknown function can be assigned to a protein fold then this can
add even more value in terms of structure-function relationships. It is for this
reason also that 3D structures are now being determined experimentally for pro-
teins with no known function. Clearly, classification of protein folds is key to
functional annotation of genomes.

A related issue is that of target selection for structural genomics. The aim of
structural genomics is to assign a 3D structure to all the proteins encoded by a
genome. However, whatever the eventual number of genes in the human genome,
it is clear that is not feasible to determine experimentally the 3D structure of
every human protein. Instead, it should be possible to identify those proteins
whose structures will reveal new folds. By definition, given a complete set of
folds, it will then be possible to model all proteins for which an experimentally
defined 3D structure is not available.

8.2 Practical approaches to classification

One dictionary defines the term ‘classification’ as the “systematic placement in
categories” (Collins Paperback English Dictionary (1993)). But to be systematic,
the placement must be made according to established criteria for similarity that
describes the extent of resemblance between the objects. Clearly, the question of
how to define similarity is not trivial and can be highly subjective. Indeed, all
the various ways in which proteins can be compared that were described in the
previous Sections, will give rise to systematic but differing classifications.
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We will discuss the three most popular classifications, all of which are acces-
sible via the World Wide Web (WWW)8. In summary, these are:

1. SCOP: a Structural Classification of Proteins database (Murzin et al., 1995;
Hubbard et al., 1997) which is essentially a manual classification.

2. CATH (Orengo et al., 1997) which is constructed using both manual and
automated approaches.

3. FSSP (Holm and Sander, 1997; Holm and Sander, 1998) which is built in
a totally automated fashion.

All three classifications use a hierarchical data structure with a nested set of
partitions grouping similar proteins.

8.2.1 Automated approaches to classification

Given an approach to define, preferably, a topological equivalence between a
pair of 3D structures we need a measure to describe their extent of similarity or
distance (a metric). Most metrics specify the pairwise DISsimilarity: for exam-
ple, the most common dissimilarity measure is the root-mean-square deviation
(RMSD) after rigid-body superposition9.

Unfortunately, as we have seen in the previous Sections, unlike amino acid se-
quence alignment, the problem of 3D structure alignment is not trivial. Although
sequence alignment using dynamic programming guarantees the optimal solution
(mathematically but perhaps not biologically), the comparison of 3D coordinate
data is not as well defined as the comparison of 1D strings of amino acids. This
gives even more scope for the measures produced automatically to differ, as an
alignment between 3D structures depends on the nature of the objective func-
tion. For instance, intermolecular distances might be minimised in a rigid-body
superposition (e.g. (May and Johnson, 1994; May and Johnson, 1995)), or they
might be compared in a pairwise manner, as in the SSAP (Taylor and Orengo,
1989b) and Dali (Holm and Sander, 1993b) programs.

Another consideration for structure alignment, say by superposition, is the
balance between the number of topological equivalences and the attendant RMSD
(May, 1996) in this case, the goal is to maximise the number of equivalences while
simultaneously minimise the associated RMSD. The question arises then as to
how to identify the alignment with the most meaningful compromise between the
two factors (May, 1996; Taylor, 1999b).

8Structure database web sites:
SCOP = http://scop.mrc-lmb.cam.ac.uk/scop/,
CATH = http://www.biochem.ucl.ac.uk/bsm/cath/,
FSSP = http://www2.ebi.ac.uk/dali/fssp/. The latter is generated by the program Dali.

9It is important to specify over which atoms the RMSD is calculated. In the current dis-
cussion it can be assumed that only the main chain α-carbon atoms are considered but any
different choice obviously affects the result.
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8.3 Organisation of the classifications

8.3.1 The unit of classification

Despite the differing philosophies behind the three classifications, (SCOP, CATH
and FSSP) there is consensus on the unit of classification: the protein domain.
(Section 2.7). There are several algorithms for domain identification from co-
ordinates (Taylor, 1999c; Holm and Sander, 1994a; Swindells, 1995) but even a
structure-based definition is often non-trivial. For instance, there are often ex-
tensive interfaces between domains leading to ambiguity about the appropriate
level of granularity for domain definition. Another complication lies in the fact
that domains can comprise sequential (continuous domains) and non-sequential
(discontinuous domains) parts of the polypeptide chain (Figure 7). Continuous
domains are easier to identify than discontinuous ones (Jones et al. (1998)). Not
surprisingly, differences in domain assignment have been shown to be an impor-
tant factor between the classification schemes (Hadley and Jones, 1995) although
other, less-structural, criteria are involved such as folding (independently folding
units) or function (functional units).

8.3.2 Hierarchical organisation

Although all three major classifications agree on a hierarchical paradigm, they
differ in the detailed organisation. For example, the top level of the hierarchy
in SCOP and CATH is protein class. However, SCOP and CATH differ in the
number of classes used. While SCOP uses the original four classes of Levitt and
Chothia (1976), CATH merges the α/β and α+β classes into a single one.

CATH has a unique level within its hierarchy: architecture. Architecture is
the overall shape of a domain as defined by the packing of the secondary structure
elements but ignoring their connectivity. The current release of CATH (version
1.6 June 1999) consists of 35 architectures which have been assigned by eye. (A
more systematic approach will be outlined in Section 10).

All three classifications agree on a fold level. The fold of a protein describes
its architecture together with its topological connections. However, there is a
difference in how folds are assigned. For instance, it is done automatically in
CATH on the basis of structure similarity score derived by SSAP (Taylor and
Orengo, 1989b). However, in SCOP, fold definition is done by eye.

Although proteins are grouped into families and superfamilies, once again
the operational definition of these terms can vary. Families comprise proteins
believed to be homologous i.e. those related by divergent evolution from a com-
mon ancestor. Clear evolutionary relationship is usually assigned on the basis of
significant sequence identity. Here there are differences: SCOP uses a threshold
of ≥ 30% sequence identity while CATH uses ≥ 35%. Of course, in those cases
where family membership is assigned on the basis of common fold and function,
in the absence of significant sequence identity (e.g. as with the globin examples
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discussed in Section 7.5), then a problem remains in definition of a common fold.
Superfamilies comprise proteins deemed to share a probable common evolution-
ary origin on the basis of a common fold and often function but in the absence of
significant sequence identity. (A detailed comparison of SCOP, CATH and FSSP
is described in Hadley and Jones (1995).)

8.3.3 Hierarchical classification

Hierarchical organisation is a key concept not only in protein structure and its
classification but also across all biology. For instance, the formal system for
classifying and naming organisms — Linnaean taxonomy — is based on a sim-
ple hierarchical structure. Furthermore, hierarchical classification is the most
frequently used method of cluster analysis. The result of a hierarchical clas-
sification of a set of objects is a tree resembling a phylogenetic (evolutionary)
tree. A tree used for phylogeny inference is almost always tested in terms of the
support for a tree representation and individual clusters contained within. One
of the most popular methods to attach confidence limits on phylogenies is via
bootstrap replicates (Felsenstein (1985)).

Surprisingly, until recently, trees derived from protein 3D structures had not
been assessed in such a way. Recently, May (1999a,b) used a jackknife test to
identify meaningful 3D structure-based trees — defining a meaningful tree as one
where all the clusters are found to be reliable according to the jackknife test.
For example, applying this test to the relationships between small βα proteins
(Taylor et al., 1994a) found that 3 of the 9 clusters contained within the tree
were unreliable according to the jackknife test (May (1999a)). Such an approach
allows the investigation of the suitability of a structure (dis)similarity measure
for hierarchical classification of protein folds (May (1999a)).

8.4 Remaining Problems

8.4.1 What questions does classification help us to answer?

The current version of CATH (version 1.6 June 1999) contains 672 folds while
there are 520 in SCOP (release 1.48 Nov 1999) and with these large well organised
classification schemes, it is possible to compile population statistics of 3D struc-
tures. Such analysis has shown that some folds occur more often than others such
as the TIM barrel (Figure 5). This structure was first seen in triose phosphate
isomerase (TIM) (Banner et al., 1975), an enzyme in the key metabolic pathway
glycolysis. In fact, not only are all the glcolytic enzymes α/β structures but also
the last enzyme of the pathway, pyruvate kinase, contains another TIM barrel
domain. Approximately 10% of all known enzyme 3D structures have a TIM
barrel fold despite having different amino acid sequences and different functions
(for a recent review, see Reardon and Farber (1995)). Along with a few other
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folds, the TIM barrel has been termed a “superfold” (Orengo et al., 1994): a
fold common to at least three non-homologous proteins (i.e. with no significant
sequence identity).

Classification has made it possible to explore global relationships between
protein 3D structure and function. For example, originally Nishikawa and Ooi
(1974a), and more recently, Martin et al. (1998) have shown that most enzymes
have α/β folds. It is also possible to identify densely populated regions of fold
space — referred to as ‘attractors’ in Holm and Sander (1996)).

Brenner et al. (1998) have used the SCOP classification as a “standard of
truth” to evaluate the effectiveness of sequence alignment methods. The idea
is that protein relationships defined according to 3D structure and function can
serve to benchmark methods that match proteins on the basis of only sequence
similarity.

8.4.2 Questions raised by classification

Analysis of the various classifications has helped us to refine our ideas of protein
3D structure similarity. However, further questions are also raised:

• How might we best represent similarity relationships?

• Is a hierarchy the best model?

• Is it possible to reach consensus on terminology such as how to define a
architecture, fold, and family?

• Most importantly, might classification be made less subjective?

SCOP defines a separate class for multi-domain α and β class proteins and
for folds consisting of more than one domain of different classes. Is it feasible to
improve the classification of such folds? As we have seen, multidomain proteins
are subdivided into domains for the purpose of all current classifications. By def-
inition, however, the function of multidomain proteins is a property of the entire
structure. This problem is only going to get worse as the continuing advances in
technologies for protein 3D structure determination mean that more and more
structures will become available for large, multidomain proteins. Similarly, the
focus of structure determination is moving towards protein-protein complexes
such as those involved in transcription or signal transduction.

Not surprisingly, there has been much speculation as to the total number of
protein folds in nature. One, often quoted, estimate is that there are 1000 folds
(Chothia, 1992). However, a recent calculation puts the figure at around 2000
(Govindarajan et al. (1999)). In fact, the only area of agreement within the
community is that the number of protein folds in nature is finite! Whatever the
actual answer, we need to consider the question of how many folds remain to
be seen. Of course, this is not just an academic question given the investment

59



required for structural genomics. Clearly, classification helps to define sparsely
populated regions of fold space and so can help to direct protein 3D structure
determination.

Organising known protein 3D structures into classifications has only served
to emphasize the paucity of membrane protein 3D structure data. For instance,
excluding proteins only anchored in the membrane, there are only 10 known
membrane protein folds according to SCOP (release 1.48 Nov 1999). Recently,
Jones and Taylor (1999) have suggested the existence of transmembrane protein
superfolds.

Classification of proteins on the basis of common fold and function informs
hypotheses about how proteins evolve new functions. What is the relationship
between protein fold and folding pathway? In a series of papers, Efimov (for
example, see Efimov (1997)) has classified protein folds by constructing what he
describes as ”structural trees”. The root of each tree is a motif common between
all folds described therein. Each fold can then be described in terms of stepwise
addition of secondary structure elements, on the basis of the rules of protein
3D structure, to the basic motif. Efimov has suggested that not only might the
core motifs represent nuclei in protein folding but also that the pathways of their
stepwise elaboration could correspond to folding mechanisms.

8.4.3 Future prospects

Since we do not yet have a complete library of protein folds, any classification can
only be a snapshot of a dynamic situation and this means that the classifications
need constant updating. This emphasises an important difference between the
three classifications: FSSP, because its construction is entirely automated and so
is always up to date; however, SCOP and CATH need considerable human input
and so are behind the latest release of the structure data. More fundamentally,
as we have seen, there is an unacceptable level of disagreement about the usage of
certain terms and what is important in a classification. It is to be expected then
that even when a complete set of protein folds is available there will be many
discrepancies between classifications.

In Rutherford’s division of science, protein fold classification currently bears
a greater similarity to stamp-collecting than to physics! In many ways, it repre-
sents little more than fact accumulation and sorting. Indeed, one might wonder
whether attempts to classify protein folds are simply a reflection of an innate hu-
man desire to impose order and certainty on an otherwise unconnected collection
of folds? What we lack at the moment is a general physical theory to synthe-
sise the current data. This might come from a better understanding of how a
1D amino acid sequence specifies a particular 3D structure (the “protein folding
problem”) but at the moment we can do little more than catalogue each new pro-
tein 3D structure and hope, as occurred in Natural History of the mid-ninteenth
century, for the arrival of a new Darwin to guide us out of the wilderness!
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Part III

Geometric Abstractions and
Topology

For the want of a bond, a strand was missed,
For the want of a strand, a sheet was missed,
For the want of a sheet, a fold was missed,
All for the want of a hydrogen-bond.

Adaped from the nursery rhyme the Horseshoe Nail
(with apologies to Anon.)
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9 Simplified Geometries

9.1 Structure Representations

9.1.1 From bonds to cartoons

Through the previous descriptions of structure and comparison, proteins have
been represented in a variety of ways using different levels of detail. Although
little of it has been seen hitherto, the full representation of proteins has all atom
coordinates specified including hydrogens. For most X-ray analyses of structure,
however, the hydrogen positions are not normally visible and the standard repre-
sentation is generally to use all heavy (non-H) atoms (Figure 15(a)). While this
level of representation is required for detailed analysis of substrate binding, pack-
ing and catalysis, in the present work, we have concentrated more on the overall
fold of the protein and for this a representation of the protein backbone path is
usually sufficient. This can be shown in many ways: some of which incorporate
features derived from the more detailed levels: such as secondary structure.

The simplest representation is to connect a central atom in each residue (and
for this the α-carbon is the obvious choice) resulting in a trace that shows the
overall fold of the protein clearly and in which secondary structure (if present)
can also be seen (Figure 15(b)). This trace can be smoothed to different de-
grees to simplify ‘unimportant’ details in surface loops or the secondary struc-
tures can be emphasised by using a more symbolic representation (Richardson,
1985). This can be done without explicit definition of the secondary structures
— using the orientation of the (flat) peptide plane (> N − C <) to guide
the surface of a ribbon representation (Figure 15(c)) or with explicit secondary
structures resulting in a similar representation but now the β-strand compo-
nents have been ‘labeled’ with an arrowhead (Sklenar et al., 1989; Carson, 1991;
Thomas, 1994). The definitions of secondary structure used in the latter repre-
sentation should also have been generated by an ‘expert’ (usually the scientist
who determined the structure) or by an automatic algorithm that has explicitly
considered H-bonding networks (such as the DSSP program (Kabsch and Sander,
1983)). These representations are shown together in Figure 15 for comparison.
Each was generated from the program RASMOL (Sayle and Milner-White, 1995)
which is principally intended to display these representations interactively. Finer
quality but static representations can be generated from other programs such as
Molscript (Kraulis, 1991), some examples of which can be seen in Figure 3 and
Figure 5 in Section 2.

9.1.2 From 3-D to 2-D

Secondary structures are extended (helical) objects and, because of their linear
axis, often pack in a roughly aligned manner as in a bundle of rods. To a first
approximation this allows the structure of proteins to be displayed in a very
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(a) All-atom model (b) α-carbon trace

(c) Ribbon trace (d) Cartoon representation

Figure 15: Protein structures representations A small β/α protein (flavo-
doxin) is shown in four representations. (a) showing bonds between all non-
hydrogen atoms, (b) with lines connecting sequential α-carbon atoms, (c) as a
flat trace (ribbon), drawn to follow the orientation of the peptide planes, (d) with
explicit secondary structure definitions represented by ‘cartoon’ objects. The fig-
ures were produced by the program RASMOL.
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simplified manner by neglecting the extended dimension and portraying only the
ends of the ‘rods’. In this representation protein structures appear as layers
of packed secondary structure (Figure 4). Typically, β on β (the β-sandwich
class) or a β-layer between two α-layers (the alternating β/α class). The layered
structure is clear in the preceding classes because of the regularity imposed by
the hydrogen-bonded β-sheets. However, this constraint is not present in the
all-α class which adopt a less regular variety of forms.

This form of representation is typically referred to as a ‘topology cartoon’
and has been used extensively to describe protein folds since some of the earliest
analyses of structure (Sternberg and Thornton, 1977b; Sternberg and Thornton,
1977a; Nagano, 1977). It has also formed the basis for semi-automatic (Flores
et al., 1994) and fully-automatic analyses of proteins at the ‘topological’ level
(Sternberg et al., 1985; Rawlings et al., 1985; Rawlings et al., 1986; Clark et al.,
1991; Gilbert et al., in Press; Gilbert et al., 1999) including the basis of a text
string description of structure (Flower, 1998).

10 Stick Representation

Representation of secondary structures as line segments introduces a great sav-
ing in the structural description of proteins without a significant loss of detail.
The information that is discarded is the phase of the helix or strand relative to
the rest of the protein along with whatever degree of detail has been discarded
from the loop regions connecting the secondary structures. As illustrated above
(Figure 15), the latter can range from none (in which the α-carbon trace is main-
tained through the loops) through varying degrees of smoothing to the situation
in which the link between secondary structures is represented only by an abstract
line or curve.

This economy of description has resulted in great savings in computational
time in many of the various structure comparison methods described in Part II.
In general the number of points is reduced by ten-fold and for algorithms that
typically require execution times with, at best, cubic or quadratic order depen-
dency on the number of points, then savings can be considerable. Consequently,
it is at this level of representation — at which greatest simplification has been
achieved with least loss of structural information — that it is convenient to gain
an overview of the full range of protein structure and to devise ways in which it
can be systematically represented and compared.

10.1 Secondary structure line-segments

10.1.1 Problems with current criteria

One of the problems that bedevils the analysis of protein structure at the level
of secondary structures is to find a robust definition of secondary structure. As
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the opening rhyme to this part emphasises, trivial differences at the atomic level
can propagate upwards to become obvious differences at the higher level of rep-
resentation. Taking this verse literally, a difference of as little as a fraction of an
Ångstrom in the position of a main-chain hydrogen-bonding group might lead to
the failure of an algorithm to recognise a potential hydrogen-bond. This might
then leave a β-strand (on the edge of the sheet) to be too short to be incorporated
into the sheet which could lead to a secondary structure representation with one
less element betwen otherwise identical proteins.

One of the (few) advantages of a manual definition of secondary structure
is that experts ‘gloss-over’ these minor abberations and tend to make a more
regular or ‘tidy’ definition of secondary structure. While good for an overview,
if one is analysing disruptions in secondary structure then this is not a very
useful approach. To minimise these difficulties, automatic methods tend to have
a flexible definition of hydrogen bonding and also tend to base their definition
on larger scale structures — such as hydrogen-bonded ladders (as in as the DSSP

program of Kabsch and Sander (1983)) giving some degree of robustness.
A further problem, not well dealt with either by ’eye’ (or automatically) is

in deciding what the secondary structure is when there are only a few hydrogen-
bonds involved. This might seem to be simple since the hydrogen-bonds are
discrete: progressing through the various helices of 310, α and π in steps of one
residue in the nearest bonded neighbour. However what can be made of the
following pathological example in which each of the three helix types follows
in progression (Figure 16). Clearly one could define three different helix types
but the problem is that each overlaps each other in extent — in other words:
although each helix only has one bond, this bond bridges a number of residues.
The problem is further compounded by the ability of hydrogen-bonds to bifurcate
and have two bonding partners!

The following section describes a simple physical method to avoid some of
these problems while retaining a working definition close to what would be defined
by an expert. It will be described in reasonable detail as it will be used later in
this section for the further automatic analysis of protein structure in terms of
secondary structure line segments.

10.1.2 Line segments from inertial axes

As discussed above, analysis of proteins in terms of the geometry of their sec-
ondary structure line segments depends on having robust definitions of secondary
structure, which despite automatic approaches, are often sensitive to structure
quality. For the methods described below, this area of ambiguity can be largely
avoided by relying on a purely geometric definition of line segments. The axis
of a secondary structure is typically taken as the line with minimum deviation
(least-squares) from the α-carbons and this can be found as the principle axis of
the equivalent inertial ellipsoid (Taylor et al., 1983). More generally, if the size
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310 α π

Figure 16: A difficult secondary structure assignment. A schematic
polypeptide chain is shown with three local hydrogen-bonds (curved lines) at
three different separations: N2 · · ·O4 = 310, N3 · · ·O6 = α and N4 · · ·O8 = π. As
these segments overlap, it would be difficult to make a clear call: particularly for
residue four which is incorporated in all three helix types.

of the three inertial axes are given by A, B and C (in descending order), then
for a good linear structure the ratio A/(B+C) will be large. This ratio can be
calculated for all segment sizes at all residue positions and the problem is then
just to find the optimal combination of segments.

To make the calculation more equivalent over β-strands and α-helices, the
protein structure was initially smoothed by averaging successive triples of α-
carbons, as described elsewhere (Taylor, 1999c). This reduces regions of α-helix
and β-strand to roughly linear segments which will then have comparable ratios
when calculated using the above formula. While not strictly necessary, this results
in a more ‘even-handed’ treatment in the further processing of the segments
described below. No smoothing or inertial ratios, however, were calculated over
chain breaks.

10.1.3 Dynamic programming solution

As with many problems that incorporate a linear-ordering constraint, the optimal
solution (for a given scoring scheme) can be found by the application of the
dynamic programming algorithm. (See Section 3.4). The approach to the current
problem follows in a way similar to the definition of trans-membrane segments
(Jones et al., 1994).

The basic working construct is a matrix of which the dimensions are sequence
position against window size. For each value of these components, the inertial
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ratio A/(B+C) can be calculated. Generally, long thin structures will have a
high value but so also will small structures: indeed, for the trivial case of two
residues, the value will be infinite but it will also tend to be higher for smaller
structures. To prevent the unwanted solution of a series of very short segments,
not only was a minimum (total) segment size of five set, but the bias was tipped
towards larger segments by assigning them the sum of all the values of all their
sub-segments. This can be calculated quite efficiently simply by summing the
raw ratio scores for a given segment with the summed values below it in the score
matrix. Defining the window at residue i as i ± m (that is a window of size
2m+ 1), then:

si,m = ri,m + ri−1,m + si−1,m−1 + si+1,m−1 − si,m−2 − am− b (2)

where s designates the summed scores and r is the raw ratio of the inertial axes
for the current window on residue i. Clearly, the score matrix can be filled
recursively, as is the score matrix in sequence alignment. (See Figure 9 and
Section 3.4). The subtraction of the terms am and b in Equn. 2 can be chosen
to prevent the summed score from monotonically increasing with window size.
They are somewhat equivalent to the use of the two gap-penalties in sequence
alignment (Section 3.4) with b being a fixed penalty and a controlling the increase
of the penalty with segment size.

The choice of a and b in Equn. 2 controls the typical segment size: if these are
zero then one big segment will be obtained dropping through a series of shorter
segments with increasing a and b. This can be seen in the example in Figure 18
in which a bent helix can be defined as either one or two seegments.

10.1.4 ‘Continuous’ secondary structure types

The above approach parses the protein structure into lines and each line can be be
characterised by the residue/length (refered to below as its residue-density). This
measure is effectively equivalent to a definition of secondary structure but, unlike
the definition of secondary structure based on hydrogen-bonds, it is not discrete
and it is thus unnecessary to make explicit definitions of secondary structure
type — so allowing more freedom for ambiguous structures (loops, 310-helices
or distorted β-strands) to assume different rôles. Indeed, the problem of the
pathological structure described in Figure 16 is resolved, as it becomes identified
as a clearly linear segment with a residue density approximating the α-helix.

11 Ideal Forms

In domain sized units, the secondary structures are typically between 10–20 Å
in length and pack at roughly 10Å apart. This makes 10Å a convenient unit in
which to describe their interactions in a simplified form. Further regularity is
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  0 |   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 
  1 |   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 
  2 |   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 
  3 |   1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 
  4 |   1 -4 -5  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 
  5 *  -3 -4 -5 -6  0  0  0  0  0  0  0  0  0  0  0  0  0  0 
  6 |   5 -4 -5 -6 -7  0  0  0  0  0  0  0  0  0  0  0  0  0 
  7 |   7  4 -5 -6 -7 -8  0  0  0  0  0  0  0  0  0  0  0  0 
  8 |  18  5  0 -6 -7 -8 -9  0  0  0  0  0  0  0  0  0  0  0 
  9 |   9  3  0 -6 -7 -8 -9-10  0  0  0  0  0  0  0  0  0  0 
 10 |   3  0 -5 -6 -7 -8 -9-10-11  0  0  0  0  0  0  0  0  0 
 11 |   0 -4 -5 -6 -7 -8 -9-10-11-12  0  0  0  0  0  0  0  0 
 12 *  -3 -4 -5 -6 -7 -8 -9-10-11-12-13  0  0  0  0  0  0  0 
 13 |   0 -4 -5 -6 -7 -8 -9-10-11-12-13-14  0  0  0  0  0  0 
 14 |   0 -2 -5 -6 -7 -8 -9-10-11-12-13-14-15  0  0  0  0  0 
 15 |   0 -1 -3 -6 -7 -8 -9-10-11-12-13-14-15-16  0  0  0  0 
 16 |   3  0 -2 -3 -7 -8 -9-10-11-12-13-14-15-16-17  0  0  0 
 17 |  12  5  0 -2 -4 -8 -9-10-11-12-13-14-15-16-17-18  0  0 
 18 |  12 14  6  0 -2 -4 -9-10-11-12-13-14-15-16-17-18-19  0 
 19 |   9 13 16  8  0 -3 -5-10-11-12-13-14-15-16-17-18-19-20 
 20 |   8 13 18 18  8  0 -4 -7-11-12-13-14-15-16-17-18-19-20 
 21 |   9 13 15 19 10  0 -4 -7 -8-12-13-14-15-16-17-18-19-20 
 22 |  10 13 15  8  1 -3 -5 -7-11-12-13-14-15-16-17-18-19-20 
 23 |   9 15  7  0 -3 -5 -6-10-11-12-13-14-15-16-17-18-19-20 
 24 |  11  5  0 -2 -4 -6 -9-10-11-12-13-14-15-16-17-18-19-20 
 25 |   4  0 -2 -4 -5 -8 -9-10-11-12-13-14-15-16-17-18-19-20 
 26 |   0 -2 -3 -4 -7 -8 -9-10-11-12-13-14-15-16-17-18-19-20 
 27 |  -1 -2 -3 -6 -7 -8 -9-10-11-12-13-14-15-16-17-18-19-20 
 28 |   0 -1 -5 -6 -7 -8 -9-10-11-12-13-14-15-16-17-18-19-20 
 29 |   1 -4 -5 -6 -7 -8 -9-10-11-12-13-14-15-16-17-18-19-20 

segment  size

Res.
No.

(a) Raw values

segment  size

Res.
No.

  0 | 
  1 | 
  2 | 
  3 |    1   3 
  4 |    1 
  5 *                3 
  6 |    5   6  21  17   1 
  7 |    7  36  38  32   6 
  8 |   18  40  58  40   2 
  9 |    9  34  48  40   0 
 10 |    3  13  23  20   2 
 11 |    0 
 12 * 
 13 | 
 14 | 
 15 |    0   1   7   4   2           5   1 
 16 |    3  15  28  42  42  48  53  63  76  37 
 17 |   12  32  56  77 103 118 134 146 122  51 
 18 |   12  47  84 124 165 205 230 214 144  47 
 19 |    9  43 109 175 234 291 304 249 162  50 
 20 |    8  40 108 209 303 341 325 274 178  63 
 21 |    9  41 103 208 308 340 322 272 198  60 
 22 |   10  43 106 171 235 293 300 262 175  65 
 23 |    9  46  86 123 158 203 246 221 153  49 
 24 |   11  30  54  76  99 123 141 158 119  37 
 25 |    4  14  23  38  52  52  54  59  65  10 
 26 |        0   5   9   5   0 
 27 | 
 28 |    0 
 29 |    1 

(b) Summed values

Figure 17: Line segmentation of protein structure. Two matrices are shown
at stages of the calculation to segment protein structure using dynamic program-
ming. Each matrix has the protein sequence running downwards and the segment
(or window) size increasing towards the right. (a) the raw scores: being the iner-
tial ratio A/(B+C) (see text for details) less the penalty am+b with b = a = 1 (see
Equn. 2). (b) the summed matrix (showing only positive values). The dynamic
programming algorithm selects a maximum sum of scores under the constrain
that segments do not overlap. In the example, the selected segments are centred
on residues 8 and 20 with window sizes (m) of 4 and 7, respectively. (Values are
not shown for the trivial columns with m ≤ 1).
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(a) default ‘gap’ penalty (b) stricter ‘gap’ penalty

Figure 18: Line segment variations A small β/α protein (adenylate kinase)
segmented under different ‘gap’ penalties. (a and b in Equn. 2). In the region of
variation, the segment differences are emphasised using a thick line representa-
tion. (a) using the default parameters a = b = 1 a long helix is broken into two
parts. (b) with a = 0.5 (b = 1) a single (slightly kinked) helix is selected.
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introduced in the form of the β-sheet which has a strictly set β-strand spacing of
(just under) 5Å. Together, these dimensions can be used to generate an idealised
stick figure to represent a protein. In this section, some basic forms will be
described and a method outlined which will allow them to be identified in the
stick representations derived from real proteins (above).

11.1 Layer Architectures

As was described in Section 2, the units of globular proteins are secondary struc-
tures which pack together to form a hydrophobic core. Providing the protein
main-chain atoms are tied-up in one of the two secondary structure types, a core
can be constructed using any mix of α or β layers (Chothia and Finkelstein, 1990;
Finkelstein and Ptitsyn, 1987). Seldom more than four layers are ever seen in
proteins and as these can be composed of only one of two secondary structures
(i.e. no mixed layers), then the possibilities are few enough to enumerate.

• 2 layers: ββ; αβ; αα.

• 3 layers: βββ; αββ, βαβ; ααβ, αβα; ααα.

• 4 layers: ββββ; αβββ, βαββ; ααββ, βααβ, αβαβ, αββα; αααβ, ααβα;
αααα.

(These combinations allow for reversals since proteins do not distinguish top from
bottom.)

This gives 19 possible combinations, but this is an over-estimate since adjacent
layers of α-helices are not always distinct. (The helices lack the strict registration
imposed by the hydrogen bonding through the β-sheet.) Among these, not all
possibilities are equally favoured in nature: amongst the 3-layer options, the αβα
combination is very widespread while in the 4-layer structures, the corresponding
αββα structure is also encountered frequently.

11.1.1 α/β/α layers

The ideal form taken to represent these structures is similar to that used previ-
ously for prediction (Cohen et al., 1982) that consisted of a core β-sheet with a
20◦ twist between β-strands (spaced at 5Å at their mid-points). The α-helices
were placed above and below this sheet using a construction that preserved the
local interactions with the sheet as previously used in the construction of ideal
frameworks for transmembrane helices (Taylor et al., 1994b), creating a realistic
staggered packing between the helices. Each helix lay, on average, 10Å above the
sheet and each secondary structure was 10Å in length. (Figure 19(a)).
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11.1.2 β/β layers

The model for the α/β/α layer structures can also be used for stacked β proteins
by neglecting the β-strands (the middle layer) and reducing the scale by half.
If the outer layers (previously α-helices) are taken as β-strands then the model
is a good description of two twisted β-sheet packing against each other (Taylor,
1993). This is similar to that used previously in prediction by Cohen et al. (1980)
and more recently by Finkelstein and Reva (1991) (using a self-consistent field
method). (Figure 19(b)).

Both models can be extended into a general helical structure, allowing any
number of β-strands.

11.1.3 β/α-barrel proteins

A β/α-barrel structure can be constructed along the lines of a ‘squirrel’-cage (an
exercise wheel more commonly used for pet hamsters) in which the β-strands are
represented by the rungs around the circumference (Lesk et al., 1989; Scheerlinck
et al., 1992). To maintain a twist between the β-strands, however, the two sides
of the wheel must have a relative displacement, which is most simply made by
connecting each rung not to its opposing neighbour but to a position slightly
further round (Figure 19(c)).

This basic model can be ‘decorated’ with α-helices in a similar way to the
α/β/α layers, producing a framework for the alternating β/α-barrel proteins
(Figure 5).

11.1.4 All-α proteins

A useful model for this class was devised by Murzin and Finkelstein (1988), who,
constructed idealised models for small globular proteins. If it is assumed that, to
a first approximation, the core regions of α-helices are as long as they are thick,
then two helices will have N- and C- terminal end-points that are equidistant both
within a helix and between helices. This assumption of approximate symmetry
allows very simple architectures to be constructed for bundles of packed helices in
which all pairs of adjacent α-helices have equidistant end-points. This constraint,
combined with the adoption of an approximately spherical shape, define a class of
polyhedra that have equilateral triangles as faces and are sometimes (graphically)
referred to as deltahedra. The most regular members of the class are its smallest
and largest members: the tetrahedron (two helices) and at the upper end, the
icosahedron (six helices). (Figure 19(d)).

11.1.5 Transmembrane models

A specialised protein architecture can be found in the bundles of packed helices
that typically form integral membrane proteins. Neglecting their reversed hy-
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(a) αβα layers (b) ββ layers

(c) αβ barrel (d) all-α model

Figure 19: Stick-figure representations. Each of the major protein architec-
tures are represented by their ideal ‘stick’ form. (α-helices are drawn more thickly
than β-strands.) (a) αβα layers. (Compare with Figure 4(b) and Figure 21). (b)
Two ββ layers or β-‘sandwich’. Three strands pack over four — similar to the
structure shown in Figure 3(a). (c) Eight-fold αβ (TIM) barrel. (Compare with
Figure 4(a) and Figure 5). (d) All-α model for six helices on the icosehedral
frame of Murzin and Finkelstein (1988). The packing corresponds to the globin
structure (Figure 3(b)). In parts c and d the fold of the equivalent proteins is
shown by a fine line. The figures were produced by the program RASMOL.
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drophobic polarity, these helices can also be modelled using the twisted lattice of
sticks described above (Taylor et al., 1994b; Bowie, 2000).

This model can also be extended into a general layer structure and can be
used to overcome the limitation of the maximum number of six helices in the
Murzin-Finkelstein series of deltahedra.

11.2 Stick-figure comparisons

11.2.1 Angle and Distance matching

The stick figures might be compared directly to each other using some of the
structure comparison methods (described in Part II) — for example; the program
SAP could take these data directly. However, generally, the connectivity (fold) of
the ideal forms is not be specified and such a direct comparison would require
testing every possible fold over the ideal form. Even for small proteins (ten
segments) the number of combinations are large and quickly become excessive
with larger proteins. To avoid this, the stick figures were further reduced into a
matrix of pairwise line interactions. As in other similar comparison methods, such
as those based on graph-matching methods (Artymiuk et al., 1990) (Section 5.2)
these were characterised by their distance and angle. The former was taken as
the closest approach of the two line segments while the latter was the unsigned
dihedral angle. These two measures are independent of line direction and so
eliminate the difference between parallel and anti-parallel interactions.

Some interactions will be more important than others and this was quantified
by the degree of over-lap of their line-segments. This was defined by a measure
that summed a series of finely spaced lines as shown in Figure 20.

11.2.2 Finding the best match

In the SAP program, consecutive triples of points are taken in each structure and
the similarity of the remaining points compared in the coordinate frame defined
by each triple. This assessment was made on the basis of point separation and
relative orientation and the best matching pairs found by dynamic-programming
(Taylor and Orengo, 1989b; Taylor, 1999b). (See Part II). The current problem
can be approached in a similar way, except that each triple was selected on
the basis of local structural similarity with points not necessarily adjacent in
the sequence. Similarly, the dynamic programming algorithm cannot be used
as it assumes that the equivalent points will be in linear order. Instead the
‘stable-marriage’ algorithm (Sedgewick, 1990) was used to reconcile the matrix
of conflicting preferences into a one-to-one pairwise assignment.
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x
p

q
Figure 20: Line segment overlap measure. Two line segments corresponding
to secondary structure elements are shown (A–B and C–D) as thick lines with
their mutually perpendicular connecting line (p and q) shown at medium thick-
ness. (This may lie outside one or both of the line segments). A series of fine
lines cover the span in which the line segments overlap, the end-points of which
are equidistant from their corresponding ends of the mutual perpendicular. A
measure of interaction is calculated from this as a summation of the lengths (x)
of these lines as:

∑
exp(−x2/a2), where a = 10 is a good choice.
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Figure 21: Simplified representation of 3chy. The smoothed backbone trace
of the chemotaxis-Y protein is shown with the mid-points of the automatically
defined line-segments shown as spheres. These have radii determined by their
residue-density (see text) with the more dense segments (α-helices) appearing
larger. The three-layer 2-5-3 structure can be clearly seen. (See also Figure 4(b)).
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2-5-2 (18) 3-5-2 (20) 3-6-2 (22) 3-6-3 (24)

3chy 3.305 3.260 - -
5nul 4.002 4.471 - -
2fcr 4.997 5.073 5.237 -
3adk 5.774 5.070 - -
1etu 5.418 5.484 5.821 -
5p21 4.917 5.227 5.428 6.773
1kev 2.800 2.891 3.264 -

Table 1: RMS deviations from the ideal forms for a range of small β/α
class proteins specified by their PDB codes. (See text for details). Each column
gives the RMS deviation to the ideal form specified by its ‘locomotive’ class
corresponding to the number of α-β-α segments in each layer. The RMS values
are unweighted over all the equivalent end-points of the secondary structures,
the number of which is given in parentheses at the top of each column. A dash
indicates that either no solution for found by the matching program, or that
which was found did not incorporate all the elements of the ideal form. Each
match was examined and all were found to be a good topological match.

11.2.3 Evaluation using SAP

From the alignment of segments generated by the preceeding method, it is possible
to construct an ideal stick-figure with the same fold as the real protein. This
reintroduces direction to the sticks and allows a direct comparison between the
two structures. To make this comparison even more direct, the stick lengths of
the real protein were set to the same length as their ideal counter-parts (typically
10Å). These equivalent stick figures were then passed to the SAP program for a
full 3-D comparison. (Figure 22).

11.2.4 Nested solutions

The method described above allows a (real) protein structure to be compared to
each of the ideal forms (frameworks) giving a quantified measure of each com-
parison. The fit of a structure to a framework will not be unique, and in general,
all substructures of a framework should find a better match than the full frame-
work itself. This is illustrated by matching a group of small α/β/α type proteins
against a series of nested frameworks beginning with two α-helicespacked above
and below a 5-stranded β-sheet. (Designated 2-5-2). The goodness-of-fit was
evaluated by the RMD deviation of the real stick figure from the ideal stick fig-
ure, as calculated by the SAP program, based on the aligned segment end-points.
(Table 1).
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Figure 22: Superposed stick figures of 3chy and its ideal form. The stick
figure representation of 3chy (dark grey) superposed on the corresponding stick-
figure of the ideal form (light grey) is shown in the same orientation as Figure 21.
The structures match with a 3.4Å RMS deviation over all 20 matched end-points.
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11.3 Classification using ideal stick forms

As discussed in Section 8, with the large number of protein structures now known,
it is difficult to gain an overview of their variety of forms and even more difficult
to comprehend how each structure relates to its neighbours. Despite system-
atic attempts to instill order into this bewildering variety, the current collections
(SCOP, CATH, FSSP) are all based on the pairwise comparison of protein struc-
tures. Taking this approach, the decision to group proteins together can often be
arbitrary or, more cautiously, not made at all — which leads to a large number
of unconnected entities.

The ability of the stick-comparison method to find solutions up to, but not
beyond the core fold of the protein opens the possibility for its use as a classi-
fication tool. Given a series of ideal forms, it is necessary only to present these
in order of size and select the largest solution. Unlike the visual analysis of
‘topology cartoons’, this approach is completely automatic and is focused on the
well-packed core elements of the structure (which are not always obvious in topol-
ogy cartoons). Finding solutions based on the core also means that two proteins
can be compared even though they do not have the same overall fold. This can
be done by looking back at their match to smaller ideal forms and if a common
solution is found then this can be taken as a measure of relatedness.

11.3.1 A periodic table of proteins

The values in Table 1 can be presented in a more graphical form by taking the
number of helices and strands in the different layers as three coordinates. The
raw RMS values, will tend to be best (smallest) with the smallest structures
and need to be normalised to emphasise larger structures. This can be done by
turning the RMS (r) into a score (s) as:

s = N/(a+ r) (3)

where N is the number of matched points in the two structures (over which the
RMS has been calculated) and a is a constant. When a is large, the value of r
(which lies mainly in the range: 0–10) is less significant so the larger matches
score most highly. With values of a less than 10, the largest match does not
always have the best score and this was used in the results reported below. A
graphical representation of the results for a large α/β/α type protein is shown in
Figure 23.

The use of such an analysis of protein structure is that it will reveal the
extent to which the ideal forms are able to account for the variety of protein
structure. As will be outlined in the following section, this is important for
the prediction of struture from sequence. Similar approaches have also been
made from the direction of a more continuous simplification of protein structure
through progressive smoothing (Hinds and Levitt, 1992; Crippen and Maiorov,
1995; Özkan and Bahar, 1998).
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Figure 23: Ideal substructures in a large βα protein. Ideal αβα forms
were fitted to the protein (databank code 1iso) and the number of secondary
structures in the three layers plotted along each axis of a grid. The X and Z
axes correspond to the two layers of α-helices, while the number of strands in the
β-layer is plotted along Y (receeding ‘into the page’ from the origin O). The value
of s (Equn. 3) is plotted for each solution as a sphere, the size of which represents
the value of s. The largest (and best) solution, which has ten β-strands with four
α-helices above and below the sheet, lies to the upper-right of the figure.
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12 Fold Combinatorics

At the moment, the most successful prediction schemes are based on comparison
of a sequence to known structures using methods such as threading (Jones et al.,
1992). This approach, however, is limited by the extent of the known folds and
cannot, inherently, be used to predict a completely novel fold. This limitation
could be overcome if the sequence were to be compared not to known folds but to
idealised folds and, given a complete range of ideal forms, the problem becomes
one of matching a sequence to all possible windings over each framework. This,
in turn, requires generating all tracings over an idealised framework in which the
path does not cross or pass through the same point twice.

Considering the finite models of Murzin and Finkelstein (1988), the register of
the sequence on the framework is set by the secondary structures with each struc-
ture being placed on alternate edges of the polyhedron as the winding progresses.
Computationally, this can be achieved by the application of a recursive routine
which chooses a path from each node until there is no further secondary structure
units or a dead-end is encountered. On each of these conditions the procedure
‘back-tracks’ to the preceding node and takes and alternative path. Exhaustive
application of this procedure eventually enumerates every possible path. The
introduction of distortions into these polyhedra (by displacing vertices) has also
been considered (Lou et al., 1993).

On the icosahedral model of six helices, there are 1264 distinct paths (the
smaller but less symmetric model for five helices can generate slightly more).
This can be contrasted with the alternative approach (applied to the same size
of problem) of simply adding one helix onto another and allowing the fold to
grow through accumulated pairwise interactions. This generates many millions
of possibilities (Cohen et al., 1979) most of which infringe obvious steric con-
straints that are never encountered when the chain is constrained to an idealised
framework.

12.0.2 Motif incorporation

The possible structures generated by an unconstrained combinatoric trace over
all possible windings can be greatly reduced if a distance constraint can be placed
on even a pair of structural elements. In a previous study on myoglobin (Cohen
and Sternberg, 1980), the constraint implied by hæm binding was imposed after
relatively detailed models had been built. However, it is more cost effective to
apply any such constraints at an early stage. This might be done during the
search over the tree of possibilities and if a forbidden pairing is encountered then
all remaining combinations following that node on the tree can be neglected. This
‘tree-pruning’ strategy is most effective when the interactions being tested are
sequentially local — such as the hand of βαβ units of super secondary structure.

The single constraint of haem-binding in the globins provides a relatively
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weak constraint on the possible folds, however, well defined motifs — such as
the calcium binding EF-hand — can provide powerful constraints when used as
a filter. For example: the protein parvalbumin contains six helices, two pairs
of which constitute EF-hands. Applying these as a constraint (independently of
each other) reduced the possible structures from over 1200 to three — one of
which corresponded to the native fold while the other two were trivial variants
(Taylor, 1991).

In the αβ class, connections are also constrained by chirality and crossover.
An example is shown in Figure 24 for a small protein, with databank code 3chy,
used as an example frequently above (Figure 21). The secondary structures of
this protein can reasonably be predicted and from considering the hydrophobicity
of the β-strands, two of the five can be identified as the probable edge strands
of the sheet. The topologies of all six possible arrangements of the three core
strands can then easily be enumerated (Figure 24). Of these, one involves an
unavoidable crossing of connecting loops while another forms a knot. Both these
migh reasonably be excluded (although the latter will be discussed further in
Section 13.5.2.

12.1 Evaluating folds

A function is required, which, given all possible windings on an ideal framework,
can recognise that which corresponds to the native fold. However, given the sim-
plifications that are inherent in the idealised model such a function is unlikely
to be reliable and attempts to specify it in terms of ‘stick’ packing have yielded
little, unless specific distance or motif constrains can be incorporated (Taylor,
1991). The length of chain connecting secondary structures might be used as a
constraint, but this is also not very effective, given the relatively small dimen-
sions of the packed globule and the uncertainty in secondary structure prediction.
However, the fundamental problem is that the range of interactions between pairs
of secondary structures is not great since one pair of packed hydrophobic surfaces
looks much like any other.

A more realistic initial step has been to apply an evaluation function to models
generated form known structures. A number of methods based on empirical
energy potentials allow model protein structures to be evaluated without the
need to fully specify side-chain locations (e.g. Sippl (1990)). Such methods are
effective at recognising protein sequences matched — or threaded — onto correct
homologues of known tertiary structure (Jones et al., 1993). In principle, it is
only necessary to apply the method to matching a sequence against a sufficiently
realistic representation of a combinatorially generated structures to recognise the
native fold. Two practical problems barring this simple solution are the accuracy
and generality of the empirical potentials used in evaluating different threadings
and the realism achieved by the models generated from ’stick’ structures.

Results based on the globins indicate that while the methods are improving,
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Figure 24: Possible folds for a small βα protein. The secondary structures for
the protein 3chy can be predicted as: βα(β)αβαβα(β)α, with those in parenthes
being confined to the edge of the β-sheet. Labeling the remaining three core
strands as 1,2,3, then their possible arrangements are: 123, 213, 231; 132, 312,
321. These are constructed in the manner of Figure 4 so as to preserve a right-
handed topology of connection between strands. The 123 variant is the native
(‘correct’) fold; folds 213, 231 and 132 infringe no known constraint (213 is found
in adenylate kinase); fold 321 has an unavoidable crossover of connections and
fold 312 forms a knot.

82



the native fold cannot yet be recognised as a unique fit. The reason for this may
simply be that the ‘stick’ models are systematically different from ‘real’ proteins,
so introducing an additional source of noise. Alternatively, there are many folds
among the possible ‘fake’ proteins that, when viewed only at a detailed level,
incorporate interactions that are more similar to the globin fold than anything
encountered in the databank of ‘real’ proteins (for example; a ‘mirror-image’
globin fold). The elimination of these as candidate native folds may be impossible
without full specification of (chiral) side-chain interactions.
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13 Protein Topology

13.1 Introduction

Although mathematical, topology is a highly complex and abstract branch of
mathematics, its roots can be traced back to simple practical problems. Knot
theory, in particular, started as a subfield of applied mathematics. The first sci-
entific application of knot theory was Gauss’s work on computing the inductance
of a system of linked circular wires, and Listing, who was a student of Gauss,
coined the term topology. Since then, topological considerations have often played
a rôle in theoretical problems in physics. For example; when studying the hy-
drodynamics of perfect fluids, Helmholtz proved that a vortex tube (a solid torus
in the flow), once created, would persist in the flow forever. While his theorem
illustrates the beauty and usefulness of topology in capturing the invariances
in physical problems, they probably also induced Rutherford to postulate that
knotted vortices in the æther might explain the different elements. Although,
not supported by experiment, this intriguing theory lived long enough to give a
major boost to knot theory.

As we have seen often in the preceeding Sections, the word “topology” is ap-
plied to the description of the various features in the structural hierarchy within
protein molecules, from the connection patterns between secondary structure ele-
ments to the overall fold of the protein. In this Section, however, we discriminate
between the ‘true’ topological features of proteins in the strict mathematical
sense (such as intrinsic chain topology, the presence of knots and links) and the
qualitative (and ill-defined) concept of the spatial arrangement of chain segments
which we shall call the fold of the chain. This is important since in the absence
of intrachain cross-links all polypeptide chains share the same intrinsic topology,
namely that of the straight line segment, and are therefore indistinguishable from
each other in the strict topological sense.

Before turning to proteins, we will briefly review the terminology and appli-
cation of topological ideas in chemistry, giving a more general background from
which applications to proteins might arise.

13.2 Chemical topology

Geometric considerations have been playing an increasingly important role in
chemistry since van’t Hoff postulated the tetrahedral geometry of carbon atoms
in organic compounds. In fact, the development of organic chemistry provided a
seemingly limitless variety of molecular shapes, the understanding of which would
not be possible without the tools of topology.

Molecular structures may be regarded as graphs, where the atoms are the
vertices of the graph and the edges correspond to the bonds between the atoms.
Chemical graph topology has proved very useful in formalising the hitherto qual-
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itative concepts of “molecular similarity” and “molecular shape”. Similarity
of structures can be characterised through subgraph isomorphism matching, a
technique which enables the identification of common structural motifs within
molecules. (See Section 5.2 for application to protein structure comparison). The
shapes of molecules can be described by various topological invariants, i.e. map-
pings which assign (real) numbers to graphs. Topological invariants have been
used for automatic compound cataloguing and retrieval, for predicting physico-
chemical properties and in quantitative structure-activity relationship (QSAR)
studies.

Despite the variety of organic compounds, the overwhelming majority of them
can be described by simple acyclic graphs (trees) or graphs containing a few cy-
cles. Knots and links have not been observed and their synthesis proved diffi-
cult. The first interlocked organic molecules were synthesised as late as 1960
by Wasserman, who named them catenanes, from the Latin word catena (chain).
These compounds contained a novel type of chemical “bond”, the topological bond,
since they were held together by the topological arrangement of their constituent
atoms, rather than by direct interatomic interactions.

13.3 Polymer topology

Natural and synthetic polymer molecules introduce an additional layer of com-
plexity of structure which brings us closer to potential applications to protein
structure. When studying the topological properties of polymers, it is often con-
venient to distinguish between the intrinsic topology and the spatial embedding of
the structure. The intrinsic topology of the molecule is determined by the (cova-
lent) connectivity graph of the constituent atoms, whereas the spatial embedding
corresponds to the conformation of the molecule as described by the coordinates
of the atoms. For example, all circular polymers have the intrinsic topology of a
closed circle, but the spatial embedding of an unknotted circle is different from
that of a knotted one. Conformational changes which do not require the mak-
ing and/or breaking of chemical bonds are considered topologically equivalent, in
line with the conventional definition of topological transformations which allow
continuous deformations but no “cut-and-paste” operations.

The intrinsic topologies of polymers can be divided into a small number of ma-
jor structural classes which will be discussed below. It must be noted, however,
that the topology of a given molecule depends on the definition of the under-
lying molecular graph. In the following, we will investigate polymers at “low
resolution”, by constructing molecular graphs where the nodes correspond to
monomers and the arcs to bonds between monomers, thus ignoring the details of
the arrangement of atoms within monomers. In some biopolymers, weaker inter-
actions such as H-bonds often play a crucial role in structure formation; therefore,
a distinction shall be made between covalent and non-covalent topologies.
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13.3.1 Bond direction

In some polymers, including proteins, it is possible to assign a direction to the
bonds linking the monomers. For example, in polypeptides the —NH2 groups
of the amino acid monomers form bonds with the —COOH groups and there-
fore each peptide bond has an amino → carboxy direction (N → C for short).
Such polymers can be represented by directed graphs in which the arcs have
“polarities”.

13.3.2 Linear polymers

The spatial embedding of all linear polymers are topologically equivalent since
even the most tangled conformations can be transformed into a straight line by
pulling the chain at one end until the whole string “flows” out smoothly. This
theoretical assertion sometimes seems to contradict sharply with the practical
experience concerning “knots” on ropes and tangled telephone cords, as well as
folded polypeptide chains, which at first sight do not resemble straight lines at
all.

The apparent inadequacy of the topological approach to describe these sit-
uations (which are directly related to the application to protein structure) can
be rationalised by observing that topology concerns itself with the existence of
transformations which do not change abstract properties: while the nature of the
physical forces determining the conformation of a protein or a telephone cord in-
fluences the probability with which these transformations occur. However, as we
shall see below, polymers with linear covalent connectivities often exhibit more
complex intrinsic topologies when weaker inter-monomer interactions are taken
into account, thus enabling the construction of non-trivial topological models.

13.3.3 Branching polymers

The connectivity graphs of branching polymers are trees, i.e. acyclic graphs in
which there exists only one path between any two nodes. Branching polymers
can also be directed if the linear branches are made up by “head-to-tail” poly-
merisation. At branching points, the monomers should be at least trifunctional,
which is the most common case. Similarly to linear polymers, branched polymers
cannot have knots or links. Natural branched polymers can be found among
polysaccharides, the properties of which can be manipulated by controlling the
degree of branching during synthesis.

13.3.4 Circular polymers

Circular polymers, which have the intrinsic topology of a closed loop, are partic-
ularly interesting because they can be embedded into space as knots. Also, two
or more loops can be linked, giving rise to an additional topological variety. The
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most important circular polymers can be found among nucleic acids. In partic-
ular, the study of topological transformations of double-stranded circular DNA
molecules initiated the development of the whole field of biochemical topology
(Cozzarelli and Wang, 1990).

13.4 True Topology of Proteins

13.4.1 Disulfide bridges

The sulfhydryl groups in the cysteine side chains can form disulfide bridges in
an oxidative reaction. As opposed to peptide bonds, the disulfide bridges are
symmetrical and therefore the covalent connectivity graph of a polypeptide with
disulfide bonds can be represented by a partially directed graph. The closure of
disulfide bonds creates cycles in the connectivity graph and can generate com-
plex embedding topologies. Although the majority of such bonds form simple
local connections in the sequence (Thornton, 1981) the possibility of interesting
topologies has been a topic of sutdy and speculation since the earliest days of
structural work on proteins (Kauzmann, 1959; Sela and Lifson, 1959).

Crippen (1974,1975) analysed the chances of finding a knotted topology in
protein chains that had been cross-linked by disulphide bridges. He simulated
protein folds of different lengths as a random self-avoiding walk on a cubic lattice
and then counted the knots formed. This was done in a largely automated meth-
ods using an approach similar to Reidemeister moves (Adams, 1994) to reduce the
complexity of the 2D projection. The chance of a knot being formed was low, at
around 3% for a protein of length 128 residues but none were seen in the few mul-
tiple disulphide linked structures known at the time (Crippen, 1974). This work
was further extended through simulations that incorporated the sequence (cys-
teine positions) of the known proteins but these more realistic simulations again
suggested that proteins appeared to be ”avoiding” knotted topologies. Probably,
it was speculated for entropic reasons (Crippen, 1975).

On a more symbolic level, Klapper and Klapper (1980) analysed the chance
of obtaining a non-planar graph in the disulphide bonded protein chain. This is a
graph that cannot be drawn in 2D and is the minimal requirement for what would
be considered a knotted configuration (although the Klappers used the less re-
strictive term of ”loop-penetration”). The chance of obtaining a non-planar graph
clearly increased with the number of disulphides and again the results suggested
a greater chance of non-planar topologies than was later found in known protein
structures. Their approach had the advantage that the disulphide bonding pat-
tern can be known from chemical sequencing studies without having the full 3D
atomic structure. However, while one case was substantiated by the 3D structure
(scorpion neurotoxin) their prediction for a knot in colipase was not found in the
3D structure (implying an error in the chemical bond assignment). This was later
analysed more fully by Mao (1993) along with the addition of another example
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in the light-chain of the protein methylamine dehydrogenase.
The number of possible disulfide bonding arrangements in a polypeptide chain

can be determined from the following formula:

α(M,n) =M C2nP (n) =
M !

2nn!(M − 2n)!
,M ≤ 2n (4)

where n is the number of disulfide bonds and M is the number of cysteines
in the chain (Sela and Lifson, 1959). Within these patterns, Benham and Jafri
(1993) defined the special cases of symmetric and reducible patterns. A pattern is
symmetric if its mirror image (with the backbone direction reversed) has the same
disulfide connections as the original, and reducible if it gives rise to two separate
non-trivial subpatterns when cut once somewhere along the backbone. The same
authors also carried out a statistical survey of the structure data base to assess the
probabilities with which the various subpatterns occur. Symmetric and reducible
patterns were observed with a much higher frequency than which was expected
from theoretical studies of random disulfide bond formation (Kauzmann, 1959;
Crippen, 1974). However, the limited size and the bias of the database did not
allow for an analysis of statistical significance.

The non-trivial intrinsic covalent topologies generated by disulfide bonds may
give rise to various interesting embeddings (knots and links). However, neither
true knots nor links were found in database searches (Benham and Jafri, 1993),
indicating that non-trivial disulfide bond topologies must be extremely rare if not
absent among native proteins. The absence of true links in which the loops share
no common backbone segment is all the more puzzling because pseudolinks, i. e.
interpenetrations of chain segments in which the loops formed by disulfide bonds
share common parts of the backbone, have indeed been observed in proteins
(Klapper and Klapper, 1980; Kikuchi et al., 1986; Mao, 1989; Le Nguyen et al.,
1990). However, pseudolinks are topologically not equivalent to true links as can
be shown by suitable continuous deformations, and their linking number is zero.

From Crippen’s work, the probability of a disulfide loop participating in a true
link was about 0.15 . This means that well over 250 true links could be expected to
occur in a database containing 2,487 disjoint disulfide loops; however, none were
found Benham and Jafri (1993). This absence of true links is very unlikely to have
happened by chance since the proportion of reducible bond patterns10 is larger
than that was expected from probabilistic considerations. Knots were also absent
from the database, although Crippen’s model estimated a 4% probability for knot
formation in average proteins and the probability was found to increase with the
chain length. These observations suggest that some feature of protein folding
works against the formation of non-trivial topologies. It is sometimes argued

10These can be considered a prerequisite for link formation but to be precise, the two loops
that link do have to be disjoint, since there could be other loops spanning the interval between
them and this arrangement could form a true link without being reducible.
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that loop penetration is hindered by stereochemical constraints in polypeptides;
however, penetration is not a prerequisite of disulfide knot formation since these
can be constructed by appropriately twisting hairpin loops and then linking them
together. If protein folding occurs in a hierarchical fashion, with small local
regions of the chain folding first and then these regions packing together, coupled
with disulfide bond formation at the early stages (and consequently restricted to
happen within the local folding units), then the relative abundance of reducible
disulfide patterns and the scarcity of knots and true links could be explained.
However, neither the current theoretical knowledge nor the available experimental
information is sufficient to decide the correctness of this assumption.

13.4.2 Other cross-links

There is a very wide variety of post-translational modifications made to proteins
and many of these introduce cross-links, either through direct enzymatic modifi-
cation of the protein itself, or through the binding of metals and other cofactors.
(See Kyte (1995) for details). Many of these modifications link two sites on the
protein and so open the possibility for the creation of linked loops and knots. A
wide variety of these have been analysed by Liang and Mislow (1994a/b, 1995) .

13.5 Pseudo-Topology of Proteins

Without covalent cross-linking, the formal topological analysis of proteins is
greatly limited. Some further progress can be made, however, if the strict cova-
lent bonding criterion for graph connectivity is relaxed. This can be progressed
in two directions: either by considering weaker bonds, such as hydrogen-bonds as
valid links, or more simply, by joining the two ends of the protein chain to form
a circle.

13.5.1 Topology of weak links in proteins

In their analysis of disulphide bonded proteins (above), Klapper and Klapper
(1980) introduced the idea of “loop penetration”, being a less restrictive inter-
pretation of a knotted state defined by the covalent network being non-planar.
This approach was generalised by Connolly et al. (1980) who defined cross-links
to be any pair of α-carbon atoms that came within 7Å. (This includes all disul-
phide links). This looser definition encompassed a correspondingly wider variety
of proteins and topological features which were referred to generally as “threaded
loops”. Some folding ideas of how such features could arise were discussed.

A further generalisation of this approach is to consider all distances in proteins
as potential ‘cross-links’. Each link can be characterised by the number of residues
that have been ‘short-circuited’ by the connection and this value plotted against
the two residue positions. The resulting plots, while similar to the Phillips (1970)
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distance plots, give a good impression of the sequential packing order of the
protein (Aszódi and Taylor, 1993).

13.5.2 Topology of ‘circular’ proteins

Given a piece of string, it can usually be decided by pulling the ends whether it is
knotted or not. Since we hold the ends, the string plus body combination forms
a closed circle and there is no danger of untying the knot as it is pulled. One way
to approach the problem of defining knots in proteins is simply to join the ends
(as we do when we pick up a string). This is trivial for knots where the ends of
the string are remote from the knot site — but if the ends are tangled-up together
with the knot then any algorithm devised to ‘pick-up’ the ends creates the risk
that the external connections might either untie an existing knot or create a new
one. Fortunately, for proteins, the ends of their chains (being charged) tend to
lie on the surface of the structure (Thornton and Sibanda, 1983) and so can often
be joined unambiguously by a wide loop. Usually, this was done by extending
the termini to ‘infinity’ in a direction away from the centre of mass but the closer
the termini lie to the centre of the protein, then the more arbitrary this direction
will become.

With the two ends of a protein chain joined, the resulting circle can then
be analysed using ‘proper’ knot theory. This approach was originally based on
representing the cross-overs in a two-dimensional projection of the protein in a
matrix. For example; if each section between crossings (specifically just under-
crossings) is given an index, then for each crossing, we have a pair of indices and
the type of crossing (effectively, left or right handed) can be entered into a matrix.
The properties of such a matrix were analysed by Alexander who found that a
polynomial of the matrix captured an invariant property that corresponded to its
state of knotting. This was not a unique mapping as some knots could not be dis-
tinguished, but with further refinements, the distinction of knots was improved.
Further progress came largely from the work of Vaughan Jones, who recast the
problem as a series of ‘edit-operations’ on the knot (called skein moves), that
gradually reduce the knot to a trivial form. These are ‘recorded’ in an algebraic
way and also gernerate an answer in the form of a polynomial. The current and
most powerful refinement of this approach is referred to as the HOMFLY poly-
nomial — after the initials of the authors who developed it. (See Adams (1994)
for a more complete history).

Unlike DNA, protein chains are very short (relative to their bulk) and the
range of features cannot be expected to be very great. Rather than finding
complex linked chains or different knot topologies (as in DNA), it is rare to find
a protein chain that can even be considered as a knot. Until recently, the few
folds that were reported to be knotted (without considering post-translational
cross-links) have one end of the chain barely extending through a loop by a few
residues and all of these form simple trefoil knots (Mansfield, 1994; Mansfield,
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1997). The ‘best’ knot reported so far11 requires ten residues to be removed
before it becomes unknotted (Takusagawa and Kamitori, 1996).

13.5.3 ‘Topology’ of open chains

A way to avoid the unsatisfactory step of projecting the terminii of the protein
chain to ‘infinity’, is to reverse the operation and shrink the rest of the protein.
This can be done gradually through repeated local averaging: in a chain of length
N consisting of a set of coordinate vectors a (a1, a2, . . . aN) representing the α-
carbon of each residue, each position ai can be replaced by the average of itself
and its two neighbours;

at+1
i = (at

i−1 + at
i + at

i+1)/3, ∀i, 1 > i < N, (5)

where t marks the time step in the iteration. To avoid the chain passing through
itself (an undesirable property for topological analysis), each move (at

i → at+1
i )

was checked to ensure that the two triangles formed by the points {at
i−1, a

t
i, a

t+1
i }

and {at
i+1, a

t
i, a

t+1
i } were not intersected by any other line segment in the chain.

If they were, then the new position (at+1
i ) was not accepted.

Repeated application of this smoothing function eventually shifts all residues
towards the line connecting the two termini — unless there is a ‘knot’ in the chain
as this cannot be smoothed away. In theory, this simple algorithm is sufficient
to detect knots in an open chain (and is equivalent to what happens in ‘real-
life’ when we pull a string tight) but, just as in ‘real’ life, the resulting knots
end-up very small. Indeed, in practice, the knots can become so small that
the numerical accuracy of the computer is insufficient to perform the necessary
topological checks and, in a numerical equivalent of quantum tunneling, the knots
become undone. This was avoided by representing each line between residues by
a tube 0.5Å in radius.

In practice, the test for colinearity was not made at the end but an equivalent
test was made to every triple of consecutive points as the smoothing progressed.
When three points were close to colinear (their cosine was less than -0.99) then
the middle point was removed (providing the thin triangle formed by the three
points was not intersected by any other line). In addition, where the outer two
came very close (specifically, fell within the tube diameter) then the middle point
was also removed. This not only improved execution time but led to an even
simpler test for knots as any chain that can be reduced to just its two termini
is not knotted. Chains with more than two residues remaining are either knots
or tangles in which a group of moves have become ‘grid-locked’ (like ‘rush-hour’
traffic at an intersection). This latter condition was eased (but not completely
eliminated) by making a slight reduction in the tube diameter any time the chain

11In the preparation of this work a fresh search was made for knotted proteins and a deeply
knotted example was discovered which will be described below in detail.
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Figure 25: The basic chain smoothing algorithm. Protein chains are drawn
schematically as lines connecting the central carbon atom in the backbone of each
residue unit running from the amino (N) terminus to the carboxy (C) terminus.
Begining at the second residue, for each residue point (i) in the starting confor-
mation, the average coordinate of i, i−1 and i+1 was taken as the new position
(i′) for the residue. This procedure was then repeated, and the results of this are
progressively smoother chains, shown as a series of feinter lines. Note that the
termini do not move. With each move, it was checked that the chains did not
pass through each other. This was implemented by checking that the triangles
{i′ − 1, i, i′} and {i, i′, i+ 1} (dashed lines in the Figure) did not intersect any
line segment {j′−1, j′} (j < i) before the move point or any line {j, j+1} (j > i)
following.

92



(a) unknotted (b) knotted

Figure 26: Smoothed protein structures. Applying the smoothing algorithm
described in the text (also Figure 25) to protein structures produces a series of
increasingly smoothed chains, coloured from blue to red in the Figures. (For
clarity, the native starting structure is not shown). (a) applied to a protein that
has no knots (triosephosphate isomerase, [1tph1]) results in a straight line joining
the termini. To reach this stage took 52 smoothing iterations. (b) applied to the
knotted protein (the carboxy-terminal domain of acetohydroxy acid isomerore-
ductase, [1yveI]), a straight line is never attained and a small knot remains deep
in the core part of the protein. This is shown in isolation in Figure 27(a).

became stuck. Most chains of a few hundred residues are reduced to their termini
in around 50 iterations. If by 500 iterations a chain was still not reduced to two
points, then the resulting configuration was analysed in more detail. (Figure 26).

Importantly for proteins, the algorithm is not sensitive to the direction of
projection of the termini and can therefore be used to define the exact region
of the chain that gives rise to the knot. This allows knots in proteins to be
characterised by how deep they lie: specifically, number of residues that must be
removed from each end before they become free.

As the termini are now well separated from the knot-site, they can be unambi-
uously joined and analysed as a ‘proper’ circular knot. This might be done using
one of the knot-invariant polynomials (discussed above). However, the few knots
encountered in proteins are so simple that they do not require any sophisticated
analysis and furthermore, from a theoretical perspective, not only are protein
knots directional but also they have a unique break-point (between the termini)
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protein code length knot core depth
acetohydroxy acid isoisomerase 1yveI 513 U 245–444 17220
carbonic anhydrase IV 1zncA 262 A 31–261 64
ubiquitin YUH1-UBAL 1cmxA 214 H 5–210 30
VP3 core protein (bluetongue virus) 2btvB 885 L 203–879 1632
S-adenoyslmethionine synthetase 1fugA 383 A 10–276 1070
carbonic anhydrase 1kopA 223 A 39–223 40
carbonic anhydrase I 1hcb 258 A 28–256 87
carbonic anhydrase V 1dmxA 237 A 5–210 22

Table 2: Knots found in proteins. The knots were characterised by the binary
string formed by the handedness of their successive crossovers. For example,
the crossovers with hands LLRR (L=left, R=right) makes 1100 which was then
mapped to a letter by appending a leading 1 (giving 11100) and subtracting the
value of the numerically lowest knot (1000) giving the codes: A = right-handed
trefoil (RRR), H = left-handed trefoil (LLL), L = figure-of-eight (RRLL), U
= figure-of-eight (LLRR). The core of the knot was determined by a series of
deletions from each terminus to find the smallest region that remained knotted
under application of the method described in the text. To summarise this range,
the product of the number of residues that must be deleted from the ends to free
the knot is tabulated under ’depth’. Note that while the two trefoils (A and H)
are distinct even as circular knots, the two figure-of-eight knots (U and L) can
be created by introducing different break-points in a circular knot.

which is not taken into consideration by any of the polynomial forms. As a work-
ing tool, a simpler method was adopted to characterise these open knots based
on the Dowker knot notation (Adams, 1994). In this, each crossover in a two-
dimensional projection of the knot is characterised by its handedness. Beginning
at the amino terminus, recording the handedness of successive crossovers as 1 or
0 generates a binary number which can be used as a reasonably unique descriptor
for simple knots. To minimise the effects of projection, each knot was rotated
around the axis defined by the two termini and the smallest numeric descriptor
recorded.

Applying this method to a non-redundant selection of protein structures (see
Table 2 for selection details) revealed a surprisingly large number of knots. A
few of these proved to be unresolved tangles (including slip-knots) and some oth-
ers were caused by breaks in the chain creating an unnatural short-cut. The
former were all eliminated by running the program with a smaller ‘tube’ diam-
eter but the latter could only be removed through visual inspection. Of the
seven remaining structures (Table 2), five were right-handed trefoils including
related carbonic anhydrase structures (1zncA 1kopA 1hcb 1dmxA) and the pro-
tein S-adenoyslmethionine synthetase (1fugA) both of which had been identified
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previously. In addition three novel knots were found including a left-handed
trefoil in ubiquitin (1cmxA) and two figure-of-eight (or Flemish) knots in a viral
core protein (2btvB) and acetohydroxy acid isoisomerase (1yveI). (Figure 27(a)).
These latter two are of particular interest as they include an additional crossover
above the trefoil and are therefore less likely to be formed by a wandering chain
during folding. This was confirmed by simulation of random and semi-random
compact protein-like chains in which the trefoil was by far the most common knot
type. The location of the two figure-of-eight knots was determined by a series
of deletions from both termini of the protein chain. This revealed that the knot
in 2btvB required the last eight residues, which is similar to the deepest trefoil
knot. By contrast, the knot in 1yveI, which is contain in the carboxy terminal
domain of the protein, remained until 70 residues were deleted from the carboxy
terminus and 245 residues (including a complete domain) were removed from the
amino terminus. (Figure 27(b)).

It is interesting to speculate how a structure with such a deep and complex
knot might fold — as it is difficult to imagine over 100 residues being ‘fed’ through
a loop in a reproducible way during the folding of the protein. Clues to the folding
of this protein can be found in a clear internal duplication within the domain
comprising 80 residue pairs with 2.0 RMS deviation (as measured by the program
SAP (Taylor, 1999b) over the α-carbon positions). If it is assumed that the two
most deeply buried symmetrically equivalent helices initially pack together, then
the remaining parts of each repeat can wrap around this core requiring only
that the carboxy terminal segment can pass through the large loop between the
repeats before this contracts (through the formation of α-helices) and finally
packs onto the core. Following this path, the nature of the knot is determined
by the chirality of the packing of the initial core helices. The symmetry in this
arrangement suggests that the protein might have evolved from an exchange of
structure or ‘swap’ (Bennet et al., 1995) between two duplicated domains in
which the first helix in the repeat has been transposed across the two-fold axis
of symmetry so creating the knot. (See Section 14 for further discussion).

Intreguingly, the best example of a trefoil knot (in 1fugA) appears to have
arisen in a similar manner, in which a β-strand on the edge of a sheet has been
transfered from one duplicated domain to another. While it cannot be stated
unambiguously that significant knots in proteins will not arise by other means, it
appears that the swapping of elements of secondary structure between duplicated
domains can provide a source of knotted proteins.
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(a) smoothed

(b) native

Figure 27: Knot in 1yveI. (a) The knotted core in the smoothed representation
of 1yveI (Figure 26(b)) is shown in isolation allowing the figure-of-eight knot
to be seen clearly. This form was attained after 50 cycles and if continued,
an irreducible core consisting of eight points was attained. (b) The backbone
representation of the complete native protein structure with the minimal knotted
region drawn thickened. This region is preceded by a complete nucleotide binding
domain and followed by a long loop that wraps around the knotted domain.
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14 Symmetry

Despite the analysis of Kendrew and colleagues when descrbing the first protein
structure (see opening quote to Part III), it has become apparent in the inter-
vening years, (and, hopefully, also through reading this review) that proteins are
not without internal order and often symmetry. Regularities in their structure
span all levels of structural organisation from the individual residue, through
secondary structure (and super-secondary structure) to the overall fold of the
protein. However, perhaps the greatest degree of symmetry is attained at an
even higher level of the assembly of distinct protein chains (referred to as the
quaternary structure in the hierarchy introduced in Section 2). The symmetry
seen in these assemblies (which may involve one or many distinct protein types)
follow general ‘rules’, exhibiting a variety of symmetry operations (Blundell and
Srinivasan, 1996), but mostly simple two-, three-, and four-fold axes or extended
helical arrangements — where the distinction from the large internally repeating
(fibrous) protein structures becomes slight. The only symmetry operator not seen
is, of course, any mirror plane.

Although fascinating, and often strongly linked to function, quaternary struc-
ture will not be pursued in this review which will stay focused on the internal
organisation of proteins. Restricted to this level, a consideration of symmetry
becomes a reflection of much that has been considered above — and, as such,
provides an ideal topic on which to summarise and conclude.

14.1 Structural origins of fold symmetries

14.1.1 βα-class

The clear chiral preference in connections between secondary structure units —
the connection β-α-β is almost never left-handed (see Section 2 and Figure 6) —
can provide a strong source of symmetric structures. Imagine a protein consisting
of consecutive units of α-helices and β-strands. Because local handedness is
determined, all α-helices must lie on the same side of the β-sheet. However,
as the α-helix is much wider than the β-strand, the structure must be curved to
accommodate their differing bulk. This can result in a closed β-barrel surrounded
by a ring of helices. Alternatively, if the end to which β-α units are added
is reversed, the helices then fall on the opposite face of the β-sheet forming a
structure with approximate two-fold symmetry. (Figure 4).

14.1.2 ββ-class

Equally intriguing symmetries can be found in the all-β class of structure. Typi-
cally, these are seen in structures consisting of a β-sheet (or sheets) with a closed
connection forming barrel structure. If the barrel were opened-up (as in a Mer-
cator projection of the world), the whole can be depicted in two dimensions. In
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this representation, some of the chiral symmetries resemble the decorative motif
commonly used in classical Greece and was accordingly named the Greek-key
(Richardson, 1977). The extension of this spiral has been called a “jelly roll”
(also by Richardson) and consists of eight strands in a closed barrel with two
connections across top and two below.

It has been suggested that the Greek-key motif (and the jelly-roll) might have
arisen from the symmetric folding of an elongated hairpin β-structure in the form
of a double helix. (Figure 28)). Similar ideas can be applied to the all-α class of
structure also (Finkelstein and Ptitsyn, 1987).

Some highly symmetric folds are seen in the β-trefoil and β-propeller folds.
β-trefoils consist of an unusual β-sheet formed by six β-hairpins arranged with
three-fold symmetry in which the connections between strands fold into three
very similar units adopting a ‘Y’-like structures (Murzin et al., 1992). In the
larger β-propeller structure, typically six or seven β-sheets twist radially in a
highly symmetric arrangement that resembles a ships propeller (Murzin, 1992)..

14.1.3 αα-class

Folding symmetries are also found in the α/α class but their relationship to the
local chiral preferences of the sub-structures are less clear. Much of the apparent
symmetry within this class probably results simply from the more limited packing
arrangements available with fewer secondary structures — a bundle of four or five
helices will have some regularity almost no matter how they pack.

14.2 Evolutionary origins of fold symmetries

There are symmetries within some proteins that have clearly arisen through the
duplication and fusion of the protein chain12 both in the recent and remote past
(McLachlan, 1972b). (For review, see Bajaj and Blundell (1984)). These include
single duplication (Tang et al., 1978; McLachlan, 1979; Schulz, 1980), through
triple- and double-duplication (Nojima, 1987), to multiplication (McLachlan,
1983) and explosion (Higgins et al., 1994). Indeed, the proteins that do not
contain some indication of duplication (or pseudo-symmetry) in their structure
or sequence are probably the exceptions.

More recent duplication events are often manifest as two spatially and se-
quentially distinct domains. However, if the original protein existed in a dimeric
form, then the fused dimer can still maintain its evolved interface in the new
fusion protein. This probably happened in the aspartyl proteases (Tang et al.,
1978). The situation can be further complicated if two symmetric parts of the

12Strictly, the underlying genetic code is duplicated (or translocated). Translocation requires
the incorrect religation of broken double stranded DNA, while an easy route to generate dupli-
cation involves staggered (double) strand damage combined with ‘fill-in’ repair of the broken
(single strand) ends before religation (Shapiro et al., 1977)
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(a) (b)

*

*
(c) (d)

Figure 28: Various representations of an all-β protein. a Emphasising the
double helical nature of the chain which may have played a rôle in folding. b The
final double-wound structure. c Hydrogen-bonds between vertical strands creates
a cylindrical β-sheet (arrows). d Opening the sheet (at the ‘*’s) produces a two-
dimensional representation emphasising the spiral that would be seen looking
down the helix axis in a or b from the left. The centre describe a Greek Key
motif while the extended spiral is referred to as a Jelly Roll. Most β-sheets are
less regular.
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original dimer or the fusion protein have exchanged (or swapped) places (Bennet
et al., 1995) (see Heringa and Taylor (1997) for a review). This is probably what
occurred in the knotted domain described above (Section 13.5.2). With this de-
gree of rearrangement, the form of the original protein becomes obscured and it
is often difficult to decide if the symmetry has its origins in an evolutionary event
or is a consequence of purely structural pressures. Such an ambiguous example
can be seen in the Rossmann fold (discussed above and Figure 4(b).

14.3 Conclusions

We have seen that the observed shapes of proteins are a result not only of their
history, but also of the physico-chemical constraints imposed by their constituent
components — and it is often difficult to separate the forms imposed by these con-
straints from those that have been inherited. Since we, generally, have no direct
access to the evolutionary history of a protein, one way to approach this problem
is to quantify fully the physico-chemical constraints, then the evolutionary com-
ponent (being the remainder) would similarly be known. For example, a protein
function might involve a general enzymatic reaction that requires a certain juxta-
position of chemical groups (supported by a sufficiently stable framework). If it
could be shown that only one protein chain fold is able to achieve this, then little
evolutionary inference can be made about equivalent enzymes using this mecha-
nism. However, if the necessary groups can be supported by, say, fifty different
folds, then a group of enzymes with the same fold appears much more likely to
be related.

Given the failure to predict protein structure ab initio, it seems unlikely that
the physico-chemical constraints on structure will never be fully specified. In
this situation, the most practical way forward is by inference from the sequences
and structures that we can observe. Comparative analysis of these data will give
indirect access to the evolutionary history of proteins and untangling these lines
of descent, both within and between species, will pose a difficult challenge to
the molecular evolutionist. Many of these comparisons will be difficult, if not
impossible, without the aid of structural data; placing great importance on the
methods of structure comparison reviewed in Part II of this work. Given suffi-
cient sampling over this evolutionary space, we may begin to gain some idea of
the structural envelope within which any given protein structure is able to be
maintained. Although this characterisation maintains some affinity to Ruther-
ford’s ‘stamp collecting’, it is to be hoped that further structural insights will be
gained along the way.
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