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PREFACE

Since the Second Edition was written in 1988, the pace of change in
medicine has accelerated. Changes have brought greater recognition of the
perspectives and methods of clinical epidemiology.

Countries throughout the world have, in their efforts to provide high-
quality health care, experienced growing difficulties controlling the cost
of care. The tension between demands for care and resvurces to provide
it have increased the need for better information about elinical effectiveness
in setting priorities. It has become clearer that not all clinical care is effective
and that the outcomes of care are the best way of judging effectiveness.
Variations in care among clinicians and regions, not explained by patients’
needs and not accompanied by similar differences in outcomes, have raised
questions about which practices are best. All these forces in modern society
have increased the value of good clinical research and of those who can
perform and interpret this research properly.

Phenomenal advances in understanding the biology of disease, cspe-
cially at the molecular level, have also occurred. Discoveries in the labora-
tory increase the need for good patient-based research. They must be tested
in patients before they can be accepted as clinically useful. Thus the two—
laboratory science and clinical epidemiclogy —complement each other and
are not alternatives or competitors.

Other aspects of medicine are timeless. Patients and physicians still face
the same kinds of questions about diagnosis, prognosis, and treatment and
still value the same outcomes: to relieve suffering, restore function, and
prevent untimely death. We rely on the same basic strategies (cohort and
case-control studies, randomized trials, and the like) to answer the ques-
tions. The inherent uncertainty of all clinical information, even that based
on the best studies, persists.

In preparing the third edition of this text, we have tried to take into
account the sweeping changes in medicine as well as what has not changed.
We have left the basic structure of the book intact. We updated examples
throughout in recognition that some diseases, such as ATDS, are new and
others, such as peptic ulcer disease, are better understood.

Woe have tried to remember that the book’s niche is as an introduction
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vi PREFACE

to clinical epidemiology and to avoid pitching the presentation to our
colleagues who already have a firm grasp of the basics. The presentation
is meant to be as simple as the topic allows, However, the field is covered
in somewhat greater depth on the belief that readers expect more of the
book now than they did when the field was new.

This edition is still primarily for clinicians who wish to develop a sys-
tematic understanding of how the evidence base for patient care is devel-
oped and assessed. Researchers begin with many of the same basic needs.
The text should be useful at any level of clinical training: from medical
student to practicing clinician.
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1

INTRODUCTION

A 5l-year-old man asks to see you because of chest pain. He was well
until 2 weeks ago, when he noticed tightness in the center of his chest
while walking uphill. The tightness stopped after 2 to 3 min of rest. A
similar discomfort occurred several times since then, sometimes during
exercise and sometimes at rest. He smokes one pack of cigarettes per day
and has been told that his blood pressure is “a little high.” He is otherwise
well and takes no medications. However, he is worried about his health,
particularly about heart disease. A complete physical examination
and reshing electrocardiogram are normal except for a blood pressure of
150/9e.

This patient is likely to have many questions. Am 1 sick? How sure are
you? Tt T am sick, what is causing my illness? How will it affect me? What
can be done abeut it? How much will it cost?

As the clinician caring for this patient, you must respond to these ques-
tions and use them to guide your course of action. Ts the probability of
serious, treatable disease high enough to proceed immediately beyeond
simple explanation and reassurance to diagnostic tests? How well do vari-
ous tests distinguish among the possible causes of chest pain: angina pecto-
ris, esophageal spasm, muscle strain, anxiety, and the like. For example,
how helpful will an exercise clectrocardiogram be in either confirming or
ruling out coronary artery discase? If coronary disease is found, how long
can the patient expect to have the pain? Will the condition shorten his
life? How likely is it that other complications-—congestive heart failure,
myocardial infarction, or atherosclerotic disease of other organs—will oc-
cur? Will reduction of his risk factors for coronary disease —cigarette smok-
ing and hypertension—reduce his risk? If medications control the pain,
should the patient have coronary artery bypass surgery anyway?

Clinicians use various sources of information to answer these questions:
their own experiences, the advice of their colleagues, and the medical
literature. In general, they depend on past observations on other similar
patients to predict what will happen to the patient at hand. The manner
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2 CLINICAL EPIDEMIOLOGY

in which such observations arc made and interpreted determines whether
the conclusions they reach are valid, and thus how helpful the conclusions
will be to patients.

Clinical Epidemiology

Clinical epidemiology is the science of making predictions about indi-
vidual patients by counting clinical events in similar patients, using strong
scientific methods for studies of groups of patients to ensure that the pre-
dictions are accurate. The purpose of clinical epidemiology is to develop
and apply methods of clinical observation that will lead to valid conclu-
sions by avoiding being misled by systematic error and chance. It is one
important approach to obtaining the kind of information clinicians need
to make good decisions in the care of patients.

CLINICAL MEDICINE AND EPIDEMIOLOGY

The term clinical epidemiology is derived from its twoe parent disciplines:
clinical medicine and epidemiology. It is “clinical” because it seeks to
answer clinical questions and to guide clinical decision making with the
best available evidence. [tis “cpidemiologic” because many of the methods
used to answer these questions have been developed by epidemiologists
and because the care of individual patients is seen in the context of the
larger population of which the patient is a member.

Clinical medicine and epidemiology began together (1). The founders
of epidemiology were, for the most part, clinicians. It is only during this
century that the two disciplines drifted apart, with separate schools, train-
ing, journals, and opportunities for employment. More recently, clinicians
and epidemiologists have become increasingly aware that their fields inter-
relate and that each is limited without the other (2).

TRADITIONAL CLINICAL PERSPECTIVE

Clinicians have a special set of experiences and needs that has condi-
tioned how they go about answering clinical questions. They are, by and
large, concerned with individual patients. They know all of their patients
persenally; take their own histories; do their own physical examinations;
and they accept an intense, personal responsibility for each patient’s wel-
fare. As a result, they tend to sce what is distinctive about each one and
are reluctant to lump patients into crude categories of risk, diagnosis, or
treatment and to express patients’ membership in these categories as a
probability.

Because their work invoelves the care of a succession of individual pa-
tients and is demanding in its own right, clinicians tend to be less interested
in patients who have not come to their attention because they are in some
other medical setting or are not under medical care at all—even though
these patients may be just as sick as the patients they sce.
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Clinical training has been oriented toward the mechanisms of disease
through the study of biochemistry, anatomy, physiology, and other tradi-
tional basic sciences. These sciences powerfully influence medical students
during their formative years and are a predominant force in clinical re-
search and publications. This training fosters the belief that to understand
the detailed processes of disease in individual patients is to understand
medicine. The implication is that one can predict the course of disease and
select appropriate treatments through knowledge of the mechanisms of
disease.

THE NEED FOR AN ADDITIONAL “BASIC SCIENCE"

This traditional approach serves clinicians well under the right circum-
stances. It has identified many promising interventions—for example, vac-
cines, antimicrobial and vasoactive drugs, and synthetic hormones. It
works well for correcting acid-base abnormalities and diagnosing and
treating nerve compressions.

However, clinical predictions from knowledge of the biology of disease
should ordinarily be considered hypotheses, to be tested by clinical re-
search, about what might transpire in patients, because the mechanisms
are only partly understood and many other factors in the genetic, physical,
and social environments also affect outcome. For example, it has been
shown, despite predictons to the contrary, that feeding diabetics simple
sugars produces no worse metabolic effects than feeding them complex
sugars, that some antiarrhythmic drugs actually cause arrhythmias, and
that drugs that favorably affect the rheologic properties of sickle cells do
not necessarily reduce the frequency and severity of sickle cell erises.

Personal experience is also a guide to clinical decision making. However,
no one clinician can have enough direct experience to recognize all the
subtle, long-term, interacting relationships that characterize most chronic
diseases (sec Chapter 6).

Therefore, for clinicians who intend to make up their own minds about
the soundness of clinical information, some understanding of clinical epi-
demiology is as necessary as an understanding of anatomy, pathology,
biochemistry, and pharmacology. Indeed, clinical epidemioclogy is one of
the basic sciences, a foundation on which modern medicine is practiced.

ELEMENTS OF CLINICAL EPIDEMIOLOGY

Personal experience and medicine’s basis in the biology of disease are
both valuable, but they do not take into account some of the realities of
clinical science, which might be summarized as tollows:

* In most clinical situations the diagnosis, prognosis, and results of treat-
ment are uncertain for individual patients and, therefore, must be ex-
pressed as probabilities
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* Probability for an individual patient is best estimated by referring to
past experience with groups of similar patients

¢ Because clinical observations are made on people who are free to do as
they please and by clinicians with variable skills and biases, the observa-
tions may be affected by systematic errors that can cause misleading
conclusions

* All observations, including clinical ones, are also influenced by the play
of chance

* To avoeid being mislead, clinicians should rely on observations that are
based on sound scientific principles, including ways to reduce bias and
eshmate the role of chance.

THE SCCIAL CONTEXT OF CLINICAL EPIDEMIOLOGY

Important forces in modern society have accelerated the recognition of
clinical epidemiologic methods and perspectives. The costs of medical care
are rising beyond the point where even the most affluent societies are able
to pay for all the care people want. Studies have shown wide variation in
clinical practices without corresponding variation in outcomes of care,
suggesting that not all common and expensive practices are useful. More
rigorous methods of evaluating clinical evidence are being developed and
are valued by decision makers. These observations have led to the consen-
sus that clinical care should be based on the strongest possible research
and should be judged by the outcomes it achicves at a cost society can
afford. Also, individual patients are increasingly seen in relation to the
larger group of which they are members, both to make accurate predictions
about them and to assist in deciding which uses of limited medical re-
sources do the most good for the most people.

Basic Principles
The basic purpose of clinical epidemiology is to foster methods of clini-

cal observation and interpretation that lead to valid conclusions. The most
credible answers to clinical questions are based on the following principles.

CLINICAL QUESTIONS

Types of questions addressed by clinical epidemiology are listed in
Table 1.1. These are the same questions confronting the doctor and patient
in the example presented at the beginning of this chapter. They are at issuc
in most doctor-patient encounters.

HEALTH OUTCOMES

The clinical events of primary interest in clinical epidemiology are the
health outcomes of particular concern to patients and those caring for them
(Table 1.2). They are the events doctors try to understand, predict, interpret,
and change when caring for patients. An important distinction between
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Table 1.1
Clinical Questions

lssue Chugstion

Abnormality Is the patient sick or well?

Diagnosis How accurate are tests used to diagnose discase?

Frequency How often does a disease ocour?

Risk Whal faclors are associated with an increased risk of diseasa?

Prognosis What are the consequences of having a disease?

Treatment How does treatment change the course of disease?

Preyvention Does an intervention on well people keep disease from arising? Does
early deteclion and treatrment improve the course of disease?

Cause What conditions lead to disease? What are the pathogenetic
mechanisms of disease?

Cost How rmuch will care for an illness cost?

Table 1.2

Outcomes of Disease (the Five Ds)®

Denth A bad cutcome it untimely

Disease” Acsel of symptoms, physical signs, and laboratory abnormalities
Discomfort Symptoms such as pain, nausea, dyspnea, itching, and tinnitis
Disability Impaired ability 10 go about usual activities at home, work, or recreation
Dissatistaction Emaotional reaction to disease and its care, such as sadness or anger

“ Perhaps a sixth [, destitution, belongs on this ist because the financial cost of ilness (for individual patients
or society) is an important conssqguence of diseaso,
*Or ilness, the patient's experience of diseasa.

clinical epidemiology and other medical sciences is that the events of inter-
est in clinical epidemiology can be studied directly enly in infact humans
and not in animals or parts of humans, such as humeral transmitters, tissue
cultures, cell membranes, and genetic sequences.

Biologic outcomes cannot properly be substituted for clinical ones with-
out direct evidence that the two are related. Table 1.3 summarizes some
biologic and clinical outcomes for the modern treatment of a patient with
human immunodeficiency virus (HIV) infection. 1t is plausible, from what
is known about the biclogy of HIV infection, that clinical outcomes such
as opportunistic infections, Kaposi’s sarcoma, and death would be better
if an intervention reduced the decline in C1)4+ cell counts and p34 antigen.
However, there is evidence that these are incomplete markers of disease
progression and response to treatment. It is too much to assume that patient
outcomes would improve as a result of the intervention just because bio-
logic markers do, because many other factors might determine the end
result. Clinical decisions should, therefore, be based on direet evidence
that clinical outcomes themselves are improved.
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Table 1.3
Biologic and Clinical Outcomes: Treatment of Human Immunodeficiency
Virus Infection

Cutcomes
Disease Interventions [Gologic Clinical
HIY infection Zidovudine CD4+ counts Opportunistic intections
Lol p24 antigenemia Cluality of life
DDC Viremia Death

Association known or assumeod?

NUMBERS AND PROBABILITY

Clinical science is at its strongest when measurements are quantitative,
in part because numerical information allows better confirmation, more
precise communication among clinicians and between clinicians and pa-
tients, and estimation of error. Clinical outcomes such as death, symptoms,
or disability, can be counted and expressed as numbers. Although qualita-
tive observation is also important in clinical medicine, it is not part of
clinical epidemiology.

Individual patients will either expericence a clinical outcome or not, but
predicting whether or not an individual will do so is seldom exact. Rather,
clinicians use the results of research to assign probabilities that the outcome
will occur. The clinical epidemiologic approach accepts that clinical predic-
tions are uncertain, but can be quantitated, by expressing predictions as
probabilities—for example, that symptomatic coronary disease occurs in
1 in 100 middle-aged men per year, that cigarette smoking doubles one’s
risk of dying at all ages, and that exogenous estrogens reduce the risk of
fractures from osteoporosis by half.

PCPULATIONS AND SAMPLES

In general, populations are large groups of people in a defined setting
{such as North Carolina) or with a certain characteristic {(such as age >65
years). These include relatively unselected people in the community, the
usual population for epidemiologic studies of cause, as well as groups of
people selected because of their attendance in a clinic or hospital or because
of a characteristic such as the presence or severity of disease, as is more
often the case in clinical studies. Thus one speaks of the general population,
a hospitalized population, or a population of patients with a specific
disease.

A sample is a subset of a population and is selected from the population.
Clinical research is ordinarily carried out on samples. One is interested in
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the characteristics of the defined population but must, for practical reasons,
estimate them by describing a sample.
BIAS

Bigs is “'a process at any stage of inference tending to produce results
that depart systematically from the true values” (3). Suppose, for example,
that treatment A is found Lo work better than treatment B. What kinds of
biases might have brought about this observation if it were not true? Per-
haps A is given to healthicr patients than is B; then the results could be
due to the systematic difference in health between the groups of patients
whether or not they were treated rather than to differences in the effective-
ness of treatment. Or A might taste better than B so that patients take the
drug more regularly. Or A might be a new, very popular drug and B an
old one, so that researchers and patients are more inclined to think that
the new drug works better whether or not it really does. All of these are
examples of potential biases.

Observations on patients (whether for patient care or research) are par-
ticularly susceptible to bias. The process tends to be just plain untidy. As
participants in a study, human beings have the disconcerting habit of doing
as they please and not necessarily what would be required for producing
scientifically rigorous answers. When researchers attempt to conduct an
experiment with them, as one might in a laboratory, things tend 1o go
wrong. Some people refuse to participate, while others drop out or choose
another treatment. What is more, some of the most important things about
celings, comfort, performance—are generally more difficult to
measure than physical characleristics, such as blood pressure or serum
sodium. Then, too, clinicians are inclined to believe that their therapies are
successful. {Most patients would not want a physician who felt otherwise.)
This attitude, so important in the practice of medicine, makes clinical obser-
vations particularly vulnerable to bias.

Although dozens of biascs have been defined (4), most fall into one of
three broad categorics (Table 1.4).

Selection bins occurs when comparisons are made between groups of pa-
tients that differ in ways, other than the main factors under study, that affect

Table 1.4
Bias in Clinical Observation

* Selection bias ocours when comparsons are made between groups of patients that differ
in determinants of autcomne olher than the one under study.

& Measurernent bias occurs when the methods of measurement are dissimilar among
groups of patients.

= Corfounding bias occurs when two factors arc associatod (Mravel together”) and the
effect of one is confused with or distorod by the effect of the other.
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the outcome of the study. Groups of patients often differ in many ways—
age, sex, severity of discase, the presence of other diseases, and the care they
receive. If we compare the experience of two groups that differ on a specific
characteristic of interest (for example, a treatment or a suspected cause of
disease) but are dissimilar in these other ways and the differences are them-
selves related to cutcome, the comparison is biased and little can be concluded
about the independent effects of the characteristic of interest. In the example
used earlier, selection bias would have occurred if patients given treatment
A were healthier than those given treatment B.

Measurement bins occurs when the methods of measurement are consis-
tently dissimilar in different groups of patients. An example of a potential
measurement bias would be the use of information taken from medical
records to determine if women on birth control pills were at greater risk
for thromboembolism than those not on the Pill. Suppose a study were
made comparing the frequency of oral contraceptive use among women
admitted to a hospital because of thrombophlebitis and a group of women
admitted for other reasons. It is entirely possible that women with throm-
bophlebitis, if awarc of the reported association between estrogens and
thrombotic events, might report use of oral contraceptives more completely
than women without thrombophlebitis, because they had already heard
of the association. For the same reasons, clinicians might obtain and record
information about oral contraceptive use more completely for women with
phlebitis than for those without it. If so, an association between oral contra-
ceptives and thrombophlebitis might be observed because of the way in
which the history of exposure was reported and not because there really
is an association.

Confounding bigs occurs when two factors are associated with each other,
or “travel together,” and the effect of one is confused with or distorted by
the effect of the other. This could occur because of selection bias, by chance,
or because the two really are associated in nature.

Example s herpesvirus infection a cause of cervical cancer? It has been
consistently obscrved that the prevalence of herpesvirus infection is higher
in women with cervical cancer than in those without. However, both herpes-
virus and a number of other infectious agents, themselves possible causes of
cervical cancer, are transmitted by sexual contact. In particular, there is strong
evidence that human papillomavirus infeclion leads to cervical cancer. Per-
haps the higher prevalence of herpesvirus infection in women with cervical
cancer is only a consequence of greater sexual activity and so is indirectly
related to a true cause, which is also transmitted sexually (Fig. 1.1). To show
that herpesvirus infection is associated with cervical cancer independently
of other agents, it would be necessary to observe the effects of herpesvirus
[ree of the other factors related to increased sexual activity (3).

Selection bias and confounding bias are not mutually exclusive. They are
described separately, however, because they present problems at different
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Figure 1.1. Confounding bias: Is herpesvirus 2 (HSV-2) a possible cause of cervical
cancer? Only if its association with cervical cancer is independent of human papitlo-
mavirus (HPV) infection, known to be a cause of cervical cancer. Both viruses are
related to increased sexual activity.

points in a clinical observation or study. Selection bias is at issue primarily
when patients are chosen for observation, and so it is important in the
design of a study. Confounding bias must be dealt with during analysis
of the data, once the observations have been made.

Often in the same study more than one bias operates, as in the following
hypothetical example.

Example A sludy was done to determine whether regular exercise low-
ets the risk of coronary heart disease (CHD). An exetcise program was offered
to employees of a plant, and the rate of subsequent coronary events was
compared between employees who volunteered for the program and those
who did not volunteer. Coronary events were determined by means of regu-
lar voluntary checkups, including a careful history, an electrocardiogram,
and a review of routine health records. The group that exercised had lower
rates of CHD. However, they also smoked cigarettes less.

In this example, selection bias could be present if volunteers for the
exercise program were at lower risk for coronary disease even before the
program began— for example, because they had lower serum lipids or less
family history of coronary disease. Measurement bias might have oceurred
because the exercise group stood a better chance of having a coronary
event detected, because more of them were examined routinely. Finally,
the conclusion that exercise lowered the risk of coronary disease might be
the result of a confounding bias if the association between exercise and
coronary events in this particular study resulted from the fact that smoking
cigarettes is a risk factor for coronary disease and the exercise group
smoked less.

A potential for bias does not mean that bias is actually present in a
particular study. For a researcher or reader to deal effectively with bias,
it is first necessary to know where and how to look for it and what can
be done about it. But one should not stop there. Tt is also necessary to
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determine whether bias is actually present and how large it is likely to be
to decide whether it is important ecnough to change the conclusions of the
study in a clinically meaningful way.

CHANCE

Observations about disease are ordinarily made on a sample of patients
rather than all those with the disease in question. Observabions on a sample
of patients, even if unbiased, may misrepresent the situation in the popula-
tion as a whole because of chance. However, if the observabtions were
repeated on many such patient samples, results for the samples would
vary about the true value. The divergence of an observation on a sample
from the true population value, due to chance alone, is called random
variation.

We are all familiar with chance as an explanation for why a coin does
not come up heads exactly 50% of the Hme when it is flipped, say, 100
times. The same effect, random variation, applics when assessing the effects
of treatments A and B, discussed earlier. Supposc all biases were removed
from a study of the relative effects of the two treatments. Suppose, further,
that the two treatments are, in reality, equally cffective, each improving
about 50% of the patients treated. Even so, becausce of chance alone a single
study including small numbers of patients in each treatment group might
casily tind A improving a larger proportion of patients than B or
vice versa.

Chance can affect all of the steps involved in clinical observations. Tn
the assessment of treatments A and B, random variation occurs in the
sampling of patients for the study, the selection of treatment groups, and
the measurements made on the groups.

Unlike bias, which deflects values In one direction or another, random
variation is as likely to result in observations above the true value as below
it. As a consequence, the mean of many unbiased observations on samples
tends to correspond to the true value in the population, even though the
results of individual small samples may not.

Statistics can be used to estimate the probability of chance (random
variation} accounting for clinical results. A knowledge of statistics can also
help reduce that probability by allowing one to formulate a better design
and analyses. However, random variation can never be totally eliminated,
so chance should always be considered when assessing the results of clini-
cal observations.

The relationship between bias and chance is illustrated in Figure 1.2,
The measurement of diastolic blood pressure on a single patient is taken
as an example. True blood pressure can be obtained by an intraarterial
cannula, which is 80 mm Hg for this patient. But this method is not possible
for routine measurements; blood pressure is ordinarily measured indi-
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Figure 1.2. Rslationship between bias and chance: Blood pressure measurements
by intraarterial cannula and sphygmomanameter.

rectly, using a sphygmomanometer. The simpler instrument is prone to
error, or deviations from the true value. In the figure, the error is repre-
sented by all of the sphygmomanometer readings falling to the right of
the truc value. The deviation of sphygmomanometer readings to the right
(bias) may have several explanations—for example, a poorly calibrated
sphygmomanometer, the wrong cuff size, or a deaf clinician. Bias could
also result if different sounds were chosen to represent diastolic blood
pressure. The usual end points—phase IV and phase V Korotkoff
sounds—tend to be above and below the true diastolic pressure, respec-
tively, and even that is unpredictable in obese people. Individual blood
pressure readings are also subject to error because of random variation
in measurement, as illustrated by the spread of the sphygmomanometer
readings around the mean value (90 mm Hg).

The two sources of error—bias and chance—are not mutually exclusive.
In most situations, both are present. The main reason for distinguishing
between the two is that they are handled differently.

Bias can in theory be prevented by conducting clinical investigations
properly or corrected through proper data analysis. T¢ not eliminated, bias
often can be detected by the discerning reader. Most of this book is about
how to recognize, avoid, or minimize bias. Chance, on the other hand,
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cannot be eliminated, but its influence can be reduced by proper design
of research, and the remaining error can be estimaied by statistics. Statistics
can also help remove the effects of known biases. However, no amount of
statistical treatment can correct for unknown biases in data, Some statisti-
cians would go so far as to suggest that statistics not be applied to data
vulnerable to bias because of poor research design, for fear of giving false
respectability to misleading work.

INTERNAL AND EXTERNAL VALIDITY

When making inferences about a population from observations on a
sample, two fundamental questions arise {Fig. 1.3): First, are the conclu-
sions of the research correct for the people in the sample? Second, if so,
does the sample represent fairly the population of interest?

Internal validity is the degree to which the results of a study are correct
for the sample of patients being studied. It is “internal”” because it applies
to the conditions of the particular group of patients being observed and
not necessarily to others. The internal validity of clinical research is deter-
mined by how well the design, data collection, and analyses are carried
out and is threatened by all of the biases and random variation discussed
above. For a clinical observation to be useful, internal validity is a necessary
but not sufficient condition.

External validity (generalizability) is the degree to which the results of an

All patients with the INTERNAL
condition of interest VALIDITY

sampling

selection

. bias

measurement,
confounding bias
29 RSN N ‘chance
EXTERNAL T CONCLUSION
VALIDITY
(generalizability)

Figure 1.3. Internal and external validity.
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observation hold true in other settings. For an individual physician, it is
an answer to the question, “Assuming that the results of a study are true,
do they apply to my patient as well?” Generalizability expresses the valid-
ity of assuming that patients in a study arc comparable with other patients.
An unimpeachable study, with high internal validity, may be totally
misleading if its results are generalized to the wrong patients.

Example  What is the risk that an abdominal aortic aneurysm will rup-
ture? Clinicians secing patients with aneurysms must have this information
to make wise decisions about the need for elective surgical repair. The answer
depends on which kinds of patients are described. Among patients with
aneurysms <5 cm in diameter, above which surgery is commonly advised,
those seen in referral centers have about a 10 times greater rate of rupture
during 5 vears of follow-up than these in the general population (Fig 1.4)
(6). This may be because patients in centers are referred for symptoms or
signs of impending rupture. 1If clinicians in office practice were to use the
results of research from referral centers to predict rupture, they would greatly
overestimate the risk and perhaps make the wrong decision about the need
tor clective surgical repair.

The generalizability of clinical observations, even those with high inter-
nal validity, is a matter of opinion about which reasonable people might
disagree.

Example The Physician’s Health Study showed that low-dose aspirin
{325 mg cvery other day) prevented myocardial infarction in male physicians

30
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i
=~ 207}
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Population Reterral
centers

Figure 1.4. Sampling bias: Range of risk of rupture (shaded area) in the next 5
vears of abdominal aortic aneurysm {-25.0 cm in diameter} according to whether the
patient is from the general population or a referral center (B).
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without known coronary heart disease (7). The 11,037 physicians randomly
assigned to take aspirin had a 44% lower rate of myocardial infarction than
the 13,034 assigned to take placcbo. The study was carcfully conducted and
used a strong research desiygn; its findings have stood up well to criticisms.
However, only healthy male physicians were in the study. When the results
of the study were first released, clinicians had to decide whether it was
justified to give aspirin to women, people with many risk factors, and patients
who are already known to have coronary disease. Subsequently, teviews of
evidence from all available studies have suggested thal aspirin is also effec-
tive in these olher groups of people (8).

Generalizability can rarely be dealt with satisfactorily in any one study.
Even a defined, geographically based population is a biased sample of
larger populations; for example, hospital patienis are biased samples of
county residents; countics, of states; states, of regions, and so on. Doing a
study in many centers may improve generalizability, but does not scttle
the issue,

Usually, the best a rescarcher can do about generalizability is to ensure
internal validity, have the study population fit the research question, and
avoid studying groups so unusual that experience with them generalizes
to few other patients. It then remains for other studies, in other settings,
to extend generalizability.

Sampling bias has occurred when the sample of patients in a study is
systematically different from those appropriate for the rescarch question
or the clinical use of the information. Because most clinical studies take
place in medical centers and because patients in such centers usually over-
represent the serious end of the disease spectrum, sampling bias in clinical
research tends to result in an exaggerated view of the serious nature of
discasc.

Uses of Clinical Epidentiology

iLearning and applying clinical epidemiology adds time to an already
busy clinician’s schedule. What can he or she expect in return?

Understanding the strengths and weaknesses of clinical evidence, such
as reports of research, gives intellectual satisfaction and cenfidence where
there might otherwise be bewilderment and frustration. 1t can increase
efficiency in acquiring sound information by allowing onc to decide
quickly, from basic principles, which articles or sources of clinical informa-
tion are credible. During interaction with colleagues, it provides a sounder
alternative to other ways of deciding where to invest belief in an asser-
tion—the conviction, rhetoric, seniority, or specialty of the proponent. By
relying on dinical epidemiology, clinicians of all backgrounds are on a
more equal footing, all depending mainly on the interpretation of the same
set of strong studies. Finally, clinical epidemiology gives clinicians a per-
spective on the extent to which their efforts, relative to other factors, such
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as the biology of disease and the physical and sccial environment, deter-
mine health outcomes, so that they can know what they can and cannot
change.

For these reasons, we believe the time invested in learning clinical epide-
miology is more than repaid.

Information and Decisions

The primary concerns of this book are the quality of clinical information
and its correct interpretation. Making decisions is another matter, True,
good decisions depend en good information; but they involve a great deal
more as well, including value judgments and the weighing of competing
risks and benefits.

In recent years, medical decision making has become a valued discipline
in its own right. The field includes qualitative studies of how clinicians
make decisions and how the process might be biased and can be improved.
Tt also includes quantitative methods— decision analysis, cost-benefit anal-
ysis, and cost-effectiveness analysis-—that present the decision-making
process in an explicit way so its components and the consequences of
assigning various probabilities and valucs to them can be examined.

Some aspects of decision analysis, such as evaluation of diagnostic tests,
arc included in this bock. However, we have elected not to go deeply into
medical decision making itself. Qur justification is that decisions are only
as good as the information used to make them, and we have found enough
to say about the essentials of collecting and interpreting clinical information
to fill a book. Readers who wish to delve more deeply into medical decision
making can begin with some of the suggested readings listed at the end
of this chapter.

Organization of the Book

This book is written for clinicians who wish to understand for them-
selves the validity of clinical observations to be able to judge the credibility
of their own clinical observations, those of their colleagues, and research
findings in the medical literature. We have not written primarily for those
who do clinical research, but for all the rest who depend on it. However,
we believe that the basic needs of those who do and those who use clinical
research findings are similar.

In most textbooks of clinical medicine, information about diseasc is
presented as answers to traditional clinical questions: diagnosis, clinical
course, treatment, and the like. On the other hand, most books about
clinical investigation are organized around research strategies such as clini-
cal trials, surveys, and case-control studies. This way of organizing a book
may scrve those who perform clinical research, but it is awkward for
clinicians.
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We have organized the book primarily according to the clinical ques-
tions encountered when doctors care for patients. Figure 1.5 illustrates how
these questions correspond to the book chapters, taking lung cancer as an
example. The questions relate to the entire natural history of disease, from
the time people without lung cancer are first exposed to risk, through
when some acquire the disease and emergce as patients, until the end results
of discasc are manifest.

In each chapter, we describe research strategics used to answer that
chapter’s clinical questions. Some strategies, such as cohort studies, are
useful for answering scveral different kinds of clinical questions, For the
purposes of presentation, we have discussed each strategy primarily in
one chapter and simply referred to the discussion when the method is
relevant to other questions in other chapters.
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ABNORMALITY

Clinicians spend a great deal of time distinguishing “normal’’ from
“abnormal.”” When confronted with something grossly different from
the usual, there is little difficulty telling the two apart. We all are familiar
with pictures in textbooks of physical diagnosis showing massive hepa-
tosplenomegaly, huge goiters, or severe changes of rheumatoid arthritis
in the hand. We can take no particular pride in recognizing this degree
of abnormality. More often, however, clinicians must make subtler dis-
tinctions between normal and abnormal. Is fleeting chest pain angina
or inconsequential? Ts a soft systolic heart sound a sign of valvular heart
disease or an innocent murmur? Is a slightly clevated serum alkaline
phosphatase evidence for liver disease, asymptomatic Paget’s disease,
or nothing important?

Decisions about what is abnormal are most difficult among relatively
unsclected patients, usually found outside of hospitals. When patients
have already been selected for special attention, as is the case in most
referral centers, it is usually clear that something is wrong. The tasks
are then to refine the diagnosis and te treat the problem. In primary
care settings, however, patients with subtle manifestations of disease
arc mixed with those with the everyday complaints of healthy people.
It is not possible to pursue all of these complaints aggressively. Which
of many patients with abdominal pain have self-limited gastroenteritis
and which have early appendicitis? Which patients with sore throat and
hoarseness have a garden variety pharyngitis and which the rare but
potentially lethal Haemophilus epiglottitis? These are examples of how
difficult, and important, distinguishing various kinds of abnormalities
can be.

The point of distinguishing normal from abnormal is to separate out
those clinical observations that should be considered for action from
those that can be simply noted. Observations that are thought to be
normal are usually described as ““within normal limits,” ““unremark-
able,” or “noncontributory” and remain buried in the body of a medical

19
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record. The abnormal findings are set out in a problem list or under the
heading “impressions” or “diagnoses™ and are the basis for action.

Simply calling clinical findings normal or abnormal is undoubtedly
crude and results in some misclassification. The justification for taking this
approach is that it is often impractical or unnecessary to consider the raw
data in all their detail. As Bertrand Russell put it, “To be perfectly intelligi-
ble one must be inaccurate, and to be perfectly accurake, one must be
unintelligible.” Physicians usually choose to err on the side of being intelli-
gible—to themselves and others—even at the expense of some accuracy.
Another reasen for simplifying data is that each aspect of a clinician’s
work ends in a decision—to pursue evaluation or to wait, to select a
treatment or reassure. Under these circumstances some sort of present/
absent classification is necessary.

Table 2.1 is an example of how relatively simple expressions of abnor-
mality are derived from more complex clinical data. On the left is a typical
problem list, a statement of the patient’s important medical problems. On
the right are some of the data on which the decisions to call them problems
are based. Conclusions from the data, represented by the preblem list, are
by no means noncentroversial. For example, the mean of the four diastolic
blood pressure measurements is 94 mm Hg. Some might argue that this
level of blood pressure does not justify the label “hypertension,” because
it is not particularly high and there are some disadvantages to telling
patients they are sick and giving them pills. Others might consider the
labe} fair, considering that this level of blood pressure is associated with
an increased risk of cardiovascular disease and that the risk may be re-
duced by treatment. Although crude, the problem list serves as a basis
for decisions-——about diagnosis, prognosis, and treatment—and clinical

Table 2.1
Summarization of Clinical Data: A Patient’s Problem List and the Data
on Which It Is Based

Froblern List Flaw Dala
1. Hypertension Several blood pressure readings (mm Hg):
1/0/102, 150/86, 166/92, 172/96
2. Diabetes mellitus Glucose tolerance test:
Time {h} 0 0.5 1 ?

Plasma glucese 110 190 170 140
{rngd 100 L)

3. Renal insufficiency Serum chamistries:
Creatinine 2.7 mg/100 mL
Urea nitrogen 40 mg/100 mL
Bicarbonate 18 mEg/L
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decisions must be made, whether actively (by additional diagnostic tests
and treatment} or passively (by no intervention).

This chapter describes some of the ways clinicians distinguish normal
from abnormal. To do so, first it will be necessary to consider how biologic
phenomena are measured, vary, and are summarized. Then it will be possi-
ble to consider how these data are used as a basis for value judgments
about what is worth calling abnormal.

Clinical Measurement

Measurements of clinical phenomena yield three kinds of data: nominal,
ordinal, and interval.

Nominal data oceur in categories without any inherent order, Examples
of nominal data are characteristics that are determined by a small set of
genes (e.g., tissue antigens, sex, inborn crrors of metabolism) or are dra-
matic, discrete events (c.g., death, dialysis, or surgery). These data can be
placed in categories without much concern about misclassification. Nomi-
nal data that can be divided into two categories (e.g., present/absent, yes/
no, alive/dead) are called dichotomous.

Ordinal data possess some inherent ordering or rank, such as small to
large or good to bad, but the size of the intervals between categories cannot
be specified. Some clinical examples include 1+ to 4+ leg edema, grades
I'to VI murmurs {(heard only with special effort to audible with the stetho-
scope off the chest), and grades 1 to 5 muscle strength {(no movement to
normal strength)

For interval data, there is inherent order and the interval between successive
values is equal, no matter where one is on the scale. There are two types of
interval data. Continuous data can take on any value in a continuum. Exam-
ples include most serum chemistries, weight, blood pressure, and partial
pressure of oxygen in arterial blood. The measurement and descriptions of
continuous variables may in practice be confined to a limited number of points
on the continuum, often integers, because the precision of the measurement, or
its use, does not warrant greater detail. For example, a particular blood glucose
reading may in fact be 193.2846573 . . . mg/100 ml. but simply reported as
193 mg /100 ml.. Discrefe data, can take on only specific values and are ex-
pressed as counts. Examples of discrete data are the number of a woman'’s
pregnancies and live births and the number of seizures a patient has per
month,

It is for ordinal and numerical data that the following question arises:
Where does normal leave off and abnormal begin? When, for example,
does a large normal prostate become oo large to be considered normal?
Clinicians are free to choose any cutoff point, Seme of the reasons for the
choices will be considered later in this chapter.
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Performanca O_}( Measurements

Whatever the type of measurement, its performance can be described
in several ways, discussed below.
VALIDITY

As pointed out in Chapter 1, validity is the degrec to which the data
measure what they were intended to measure—that is, the tesults of a
measurement correspond to the true state of the phenomenon being mea-
sured. Another word for validity is accuracy.

For clinical observations that can be measured by physical means, it is
relatively easy to establish validity. The observed measurement is com-
pared with some accepted standard. For example, serum sodium can be
measured on an instrument recenily calibrated against solutions made up
with known concentrations of sodium. Clinical laboratory measurements
are commonly subjected to extensive and repeated validity checks. For
example, it is a national standard in the United States that blood glucose
measurements be monitored for accuracy by comparing readings against
high and low standards at the beginning of each day, before each technician
begins a day, and after any changes in the techniques such as a new bottle
of reagents or a new battery for the instrument. Similarly, the validity
of a physical finding can be established by the results of surgery or an
autopsy.

Other clinical measurements such as pain, nausea, dyspncea, depression,
and fear cannot be verified physically. In clinical medicine, information
about these phenomena is obtained by “taking a history.”” More formal
and standardized approaches, used in clinical research, are structured in-
terviews and questionnaires. Groups of individual questions (items) are
designed to measure specific phenomena (such as symptoms, feelings,
attitudes, knowledge, beliefs) called “constructs.” Responses to questions
concerning a construct are converted to numbers and grouped together to
form “'scales.”

There are three general strategies for establishing the validity of mea-
surements that cannot be directly verified by the physical senses.

Content validity is the extent to which a particular method of measure-
ment includes all of the dimensions of the construct one intends to measure
and nothing more. For example, a scale for measuring pain would have
content validity if it included questions about aching, throbbing, burning,
and stinging but not about pressure, itching, nausca, tingling, and the like.

Cemstruct validity is present to the extent that the measurement is consis-
tent with other measurements of the same phenomenon. For example, the
researcher might show that responses to a scale measuring pain are related
to other manifestations of the severity of pain such as sweating, moaning,
writhing, and asking for pain medications.
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Criterion validity is present to the extent that the measurements predict
a directly observable phenomenon. For example, one might sec if responses
on a scale measuring pain bear a predictable relationship to pain of known
severity: mild pain from minor abrasion, moderate pain from ordinary
headache and peptic ulcer, and severe pain from renal colic.

Validity is not, as is often asserted, cither present or absent; Rather,
with these strategies one can build a case for or against the validity of a
scale, under the conditions in which it is used, so as to convinee others
that the scale is more or less valid.

Because of their selection and training, physicians tend to prefer the
kind of precise measurements the physical and biologic sciences afford,
and they avoid or discount others, especially for research. Yet relief of
symptoms and promoting satisfaction and a feeling of well-being are
among the most important outcomes of care, central concerns of patients
and doctors alike. To guide clinical decisions, research must include them,
lest the “picture” of medicine painted by the research be distorted.

As Feinstein (1) put it:

The term “hard” is usually applied to data that are reliable and preferably
dimensional (e.g., laboratory data, demographic data, and financial costs).
But clinical performance, convenience, anticipation, and familial data are
“soft.” They depend on subjective statements, usually expressed in words
tather than numbers, by the people who are the observers and the observed.

To avoid such soft data, the results of treatment are commonly restricted
te laboratory information that can be objective, dimensional, and reliable—
but it is also dehumanized. If we are told that the serum cholesterol is 230
mg per 100 ml, that the chest X-ray shows cardiac cnlargement, and that the
electrocardiogram has 3 waves, we would not know whether the treated
object was a dog or a person. If we were told that capacity at work was
restored, that the medicine tasted good and was easy to take, and that the
family was happy about the results, we would recognize a human sct of
[CSPONSEs.

RELIABILITY

Reliability is the extent to which repeated measurements of a stable
phenomenon— by different people and instruments, at different times and
places—get similar results. Reproducibifity and precision are other words
for this property.

The reliability of laboratory measurements is established by repeated
measures—for example, of the same serum or tissue specimen—some-
times by different people and with different instruments. The reliability of
symptoms can be established by showing that they are similarly described
to different observers under different conditions.

The relationships between reliability and validity are shown in Figure
2.1. An instrument {laboratory apparatus or a questionnaire) used to collect
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a large set of measurements can be valid (accurate) on the average but not
be reliable, because the measures obtained are widely scattered about the
truc value. On the other hand, an instrument can be very reliable but be
systematically off the mark (inaccurate). A single measurement with poor
reliability has low validity because it is likely to be off the mark simply
because of chance alone.

RANGE

An instrument may not register very low or high values of the thing
being measured, limiting the information it conveys. Thus the “first-
generation” method of measuring serum thyreid-stimulating hormone
(TSE) was not uscful for diagnosing hyperthyroidism or for precise titra-
tion of thyroxine administration because the method could not detect low
levels of TSH. Similarly, the Activities of Daily Living scale (which mea-
sures people’s ability at feeding, continence, transferring, going to the toi-
let, dressing, and bathing) does not measure inability to read, write, or play
the piano—activities that might be very important to individual patients.
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RESPONSIVENESS

An instrument is responsive to the extent that its results change as condi-
tions change. For example, the New York Heart Association scale—classes
I'to IV (no symptoms, symptoms with slight and moderate exertion, and
symptoms at rest)—is not sensitive to subtle changes in congestive heart
failure, ones patients would value, whereas laboratory measurements of
ejection fraction can detect changes too subtle for patients to notice.

INTERPRETABILITY

A disadvantage of scales based on questionnaires that is not generally
shared by physical measurements is that the results may not have meaning
to clinicians and patients. For example, just how bad is it to have a Zung
depression scale value of 72? To overcome this disadvantage, researchers
can “anchor” scale values to familiar phenomena—for example, by indi-
cating that people with scores below 50 are considered normal and those
with scores of 70 or over are severely or extremely depressed, requiring
immediate care.

Variation

Clinical measurements of the same phenemenon can take on a range of
values, depending on the circumstances in which they are made. To avoid
erroneous conclusions from data, clinicians should be awarce of the reasons
for variation in a given siluation and know which are likely to play a large
part, a smali part, or no part al all in what has been observed.

Overall variation is the sum of variation related to the act of measure-
ment, biologic differences within individuals from time to time, and bio-
logic differences from person to person (Table 2.2).

MEASUREMENT VARIATION

All observations are subject to variation because of the performance of
the instruments and observers invelved in making the measurement. The
conditions of measurement can lead to a biased result (lack of validity) or

Table 2.2
Sources of Variation

Gource Dcfinition

Measurernent

Instrument The means of making the measurement

Observer The person making the measurerment
Biclogic

Within individuals Changes in people with time and situation

Among individuals Biologic differences from porson to person
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simply random error (lack of reliability). It is possible to reduce this source
of variation by making measurements with great care and by following
standard protocols. However, when measurements involve human judg-
ment, rather than machines, variation can be particularly large and difficult
to control.

Example Fetal heart rate is often monitored by auscultation, which is
subject to observer error. Electronic monitoring gives the true rate. I'etal heart
rates that are unusually high or low are markers of fetal distress, suggesting
a need for early delivery.

Day et al. (2) compared fetal heart rates obtained by auscultation by hospi-
{al staff with rates obtained by electronic monitoring (Fig. 2.2). When the
true fetal heart rate was in the normal range, rates by auscultation were
evenly distributed about the true value, e, there was only random error,
But when the true fetal heart rate was unusually high or low, rates by auscul-
tation were biased toward normal. Low rates tended to be reported as higher
than the true rates, and high rates as lower than the true rates.

This study illustrates both randem and systematic errors in clinical ob-
servations. In this case, the bias toward normal rates might have arisen
because the hospital staff hoped the fetus was well and were reluctant to
undertake a major intervention based on their observation of an abnor-
mally high or low heart rate.

Varijations in measurements also arise because measurements are made on
only a sample of the phenomenon being described, which may misrepresent
the whole. Often the sampling fraction (the fraction of the whole that is included
in the sample) is very small. For example, a liver biopsy represents only about
1/100,000 of the liver. Because such a small part of the whole is examined,
there is room for considerable variation from one sample to another.

If measurements are made by several different methods {e.g., different
laboratories, technicians, or instruments) some of the determinations may
be unreliable and/or manifest systematic differences from the correct
value, contributing to the spread of values obtained.

BIOLOGIC VARIATION

Variation also arises because of biologic changes within individuals over
time. Most biologic phenomena change from moment to moment. A mea-
surement at a point in time is a sample of measurements during a period
of time and may not represent the usual value of these measurements.

Example Clinicians estimate the frequency of ventricular premature de-
polarization (V1)) to help determine the need for and effectivencss of treat-
ment. For practical reasons, they may do so by making relatively bricef obser-
vations—perhaps feeling a pulsc for 1 min or reviewing an electrocardiogram
{a record of about 10 sec). Ilowever, the frequency of VI'Ds in a given patient
varies over ime. To obtain a larger sample of VPD rate, a pertable (Folter)
monitor is sometimes used. But monitoring even for extended periods of
time can be misleading. Figure 2.3 shows observations en onc patient with
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Figure 2.2. Observer variability. Error in reporting fetal heart rate according to
whether the true rate, determined by electronic monitor, is within the normal range,
low, or high. {(Redrawn from Day E, Maddern L., Wood C. Auscultation of foetal heart
rate: an assessment of its error and significance. Br Med J 1968, 4:422-424)

VIDs, similar to other patients studied (3). VPDs per hour varied from less
than 20 to 380 during a 3-day period, according to day and time of day. The
authors concluded: “To distinguish a reduction in VPD frequency attribut-
able to therapeutic intervention rather than biologic or spontaneous variation
alone required a greater than 83% reduction in VPD frequency if only two
24-hour monitoring periods were compared.”

Variation also arises because of differences among people. Biologic dif-
ferences among people predominate in many situations. For example, sev-
eral studies have shown that high blood pressure on single, casual mea-
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Figure 2.3. Biviogic variability. The number of ventricular premature depolarizations
{VPDs) for one untreated patient on 3 consecutive days. {(Redrawn from Morganroth
J, Michelson EL, Horowitz LN, Josephson ME, Peariman AS, Dunkman WB. Limita-
tions of routine long-term electrocardiographic monitoring to assess ventricular ec-
topic frequency. Circulation 1978;58:408-414.)

surements, although subject to all other forms of variation, is related to
subsequent cardiovascular disease.

TOTAL VARIATION

The several sources of variation are cumulative. Figure 2.4 illustrates
this for the measurement of blood pressure. Variation from measurement
contributes relatively little, although it covers as much as a 12 mm Hg
range among various observers. On the other hand, each patient’s blood
pressure varies a great dcal from moment to moment throughout the day,
so that any single blood pressure reading might not represent the usual
for that patient. Much of this variation is not random: blood pressure is
generally higher when people are awake, excited, visiting physicians, or
taking over-the-counter cold medications. Of course, we are most inter-
ested in knowing how an individual’s blood pressure compares with that
of his or her peers, especially if the blood pressure level is related to
complications of hypertension and the effectiveness of treatment.

EFFECTS OF VARIATION
Another way of thinking about variation is in terms of its net effect on the

validity and reliability of a measurement and what can be done about it.
Random variation—for example, by unstable instruments or many ob-
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servers with various biases that tend to balance each other out—results
on average in no net misrepresentation of the true state of a phenomenon
if a set of measurements are made; individual measurements, however,
may be misleading. Inaccuracy resulting from random variation can be
reduced by taking a larger sample of what is being measured, for example,
by counting more cells on a blood smear, examining a larger area of a
urine sediment, or studying more patients. Also, the extent of random
variation can be estimated by statistical methods (see Chapter 9).

On the other hand, biased results are systematically different from the true

Conditions of Distribution of Source(s)
Measurement Measurements of Variation
One patient, one observer, ‘.

repeated observations
at one point in time:

>  Measurement

Cne patient, many
observers, at one'time

One patient, one observer,
at many times of day

T

T | | I l I Biologic and
¢ Measurement

Many patients

—
T T T T I ] | |

60 70 80 90 100 110 120 130

DIASTOLIC BLOOD PRESSURE (mm Hg)

Figure 2.4. Sources of variation. The measurement of diastolic {phase V) blood
pressure, {Data from Fletcher RH and Fletcher SW; and Boe J, Humertelt S, Weder-
vang F, Oecon C. The blood pressure in a population [Special Issug]. Acta Med
Scand 1957;321:5-313))
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value, no matter how many times they are repeated. For example, when investi-
gating a patient suspected of having an infiltrative uver disease (perhaps follow-
ing up an elevated serum alkaline phosphatase) a single liver biopsy may be
misleading, depending on how the lesions are distributed in the liver. If the
lesion is a metastasis in the left lobe of the liver, a biopsy in the usual place
(the right lobe) would miss it. On the other hand, a biopsy for miliary tuberculo-
sis, which is represented by millions of small granulomata throughout the liver,
would be inaccurate only through random variation. Similarly, all of the high
values for VPDs shown in Figure 2.3 were recorded on the first day, and most
of the low values on the third. The days were biased estimates of each other,
because of variation in VPD rate from day to day.

Distributions

Data that are measured on interval scales are often presented as a figure,
called a frequency distribution, showing the number (or proportion) of a
defined group of people posscssing the different values of the measure-

ment (Fig. 2.5). Presenting interval data as a frequency distribution conveys
the information in relatively fine detail.

og Mode

:

Percent

1 2 3 4 5 6 7 8 9 10
PSA {(ng/mL)}

Figure 2.5. Measures of central tendency and dispersion. The distribution of pros-
tate-specific antigen (PSA) leveis in presumably normal men. (Data from Kane RA,
Littrup PJ, Babaian R, Drago JR, Lee F, Chesley A, Murphy GP, Mettlin C. Prostate-
specific antigen levels in 1695 men without evidence of prostate cancer. Cancer
1992;69:1201-120/7)
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Table 2.3
Expressions of Central Tendency and Dispersion
Expression Desfinition Arlvantages Disadvantages
Central Tendency
Mean Sum of values Well suited for Aftected by extreme
for observations mathernatical values

Number of manipualation
observations

Median The point where the number  Not easily Mot well suited for
of observations above influenced by mathematical
equals the number below extreme values manipulation

Mode Most frequently occurring Simphicity of Sometimes there
value meaning are no, or many,

most frequent
values
Dispersion

Range From lowest to highest Includes all values  Greatly affected by
value in a distribution axtrems values

Standard The absolute value of the Well suited for For non-Gaussian

deviation® average difference of rmathermatical distributions,

Percentile, decile,

individual values from the

mean

The proportion of all

manipulation

Describes the

does not descnbe
a known
proporticn of the
abservations

Mot well suited for

quartile, ete. abgervations falling “unusuainess™ statistical
between speeified values of a value manipulation

without

assumptions

about the shape

of a distribution

. TP XY
-1

where X — each observation; X = mean of al observations; and N ~ number of observations.
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DESCRIEBING DISTRIBUTIONS

It is convenient to surmmarize distributions. Indeed, summarization is imper-
ative if a large number of distributions are to be presented and compared.

Two basic properties of distributions are used to summarize them: cen-
fral tendency, the middle of the distribution, and dispersion, how spread out
the values are. Several ways of expressing central tendency and dispersion,
along with their advantages and disadvantages, arc summarized in Table
2.3 and illustrated in Figure 2.5.

ACTUAL DISTRIBUTIONS

The frequency distributions of four common blood tests (potassium,
alkaline phosphatase, glucose, and hemoglobin) are shown in Figure 2.6.
In general, most of the values appear near the middle, and except for the

30
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Figure 2.6. Actual clinical distributions. (Data from Martin HF, Gudzinowicz BJ,
Fanger H. Normal values in clinical chemistry. New York: Marcel Dekkear, 1975.)
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central part of the curves, there are no “humps” or irregularitics. The high
and low ¢nds of the distributions stretch out inte tails, with the tail at one
end often being more elongated than the tail at the other (ie., the curves
are “skewed” toward the long end). Whereas some of the distributions
arc skewed toward higher values, others are skewed toward lower values.
In other words, all these distributions are unimodal, are roughly bell-
shaped, and are not necessary symmetric; otherwise they do not resemble
each other.

The distribution of values for many laboratory tests changes with char-
acteristics of the patients such as age, sex, race, and nutrition. Figure 2.7
shows how the distribution of one such test, blood urea nitrogen (BUN),
changes with age. A BUN of 25 mg/100 mL would be unusually high for
a young person, but not particularly remarkable for an older person.

THE NORMAL DISTRIBUTION

Another kind of distribution, called the “normal”’ or Gaussian distribution,
is sometimes assumed to approximate naturally occurring distributions,
though it is based in statistical theory and has no necessary relationship to
natural distributions. The normal curve describes the frequency distribution
of repeated measurements of the same physical object by the same instrument.
Dispersion of values represents random variation alone. A normal curve is
shown in Figure 2.8. The curve is symmetrical and bell shaped. Tt has the

20-29 years old

=80 years old

Frequency

10 20 30 40 50
BUN mg/100 mL

Figure 2.7. The distribution of clinical variables changes with age: BUN for pecple
aged 20—29 versus those 80 or older. {Data from Martin HF, Gudzinowicz BJ, Fanger
H. Normal values in clinical chemistry. New York: Marcel Dekker, 1875}
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Figure 2.8. The normal (Gaussian) distribution.

mathematical property that about two-thirds of the observations fall within
1 standard deviation of the mean, and about 95% within 2 standard deviations.

Although clinical distributions often resemble a normal distribution the
resemblance is superficial. As one statistician (4) put it:

The experimental fact is that for most physiologic variables the distribution
is smooth, unimodal, and skewed, and that mean *2 standard deviations
does not cut off the desired 953%. We have no mathematical, statistical, or
other theorems that enable us to predict the shape of the distributions of
physiologic measurements.

Whereas the normal distribution is derived from mathematical theory
and rteflects only random variation, many other sources of variation con-
tribute to distributions of clinical measurements, especially biologic differ-
ences among people. Therefore, if distributions of clinical measurements
resemble normal curves, it is largely by accident. Even so, it is often as-
sumed, as a matter of convenience (because means and standard deviations
are relatively casy to calculate and manipulate mathematically), that clini-
cal measurements arc “normally” distributed.

Criteria for Abnormality

It would be convenient if the frequency distributions of clinical measure-
ments for normal and abnormal people were so different that these distri-
butions could be used to distinguish two or more distinct populations.
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This is the case for specific DNA and RNA sequences and antigens {Fig.
2.9A), which are either present or absent, although: their clinical manifesta-
tions may not be so clear-cut.

However, most distributions of clinical variables are not easily di-
vided into “normal” and ““abnormal,”” because they are not inherently
dichotomous and they do not display sharp breaks or two peaks that

A

Percent

Normal Mutant

Alleles for Phenyialanine Hydroxylase

Percent

0 2 4 6 8 10
Blood Phenylalanine {mg /dL)

Figure 2.9. Screening for phenylketonuria {PKU) in infants: dichotomous and over-
tapping distributions of normal and abnormal. A, Alleles coding for phenylalanine
hydroxylase are either normal or mutant. B, The distributions of blood phenylalanine
levels in newborns with and without PKU overlap and are of greatly different magni-
tude. (The prevalence of PKU, actually about 1/10,000, is exaggerated so that its
distribution can be seen in the figure.)
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characterize normal and abnormal results. There are several reasons
why this is so.

For many laboratory tests there are not even theoretical reasons for
believing that distinct populations—well and diseased —exist. Disease is
acquired by degrees, and so there is a smooth transition from low to high
values with increasing degrees of dysfunction. Laboratory tests reflecting
organ failure, such as serum creatinine for renal failure, behave in
this way.

In other situations, well and diseased persons do in fact belong to sepa-
rate populations, but when the two populations are mixed together they
cannet be recognized as separatce because values for the abnormals vary,
they overlap those for normals, and there are few abnormals in the
population.

Example Thenylketonuria (PKU) is a disease characterized by progres-
sive mental retardation in childhood. A variety of mutant alleles coding for
phenylalanine hydroxylase results in dysfunction of the enzyme and, with a
normal diet, accumulation of phenylalanine. The diagnosis, which becomes
apparcnt in the first year of life, is confirmed by persistently high phenylala-
nine levels (several times the usual range) and low tyrosine levels in
the Blood.

It is common practice to screen newborns for PKU with a blood test for
phenylalanine a few days after birth, in ime to treat before there is irrevers-
ible damage. However, the test misclassifies some infants, because at that
age there is an overlap in the distributions of serum phenylalanine concentra-
tions in infants with and without PKU and because infants with PKU make
up only a small proportion of those screened, about 1/10,000 (Fig. 2.9B).
Some newborns with PKU are in the normal range cither because they have
not yet ingested enough protein or because Lhey have a combinalion of alleles
associated with mild discase. Some children who are not destined to develop
PKU have relatively high levels --for example, because their mothers have
abnormal phenylalanine metabolism. The test is sef Lo be positive at the lower
end of the overlap between normal and abnormal levels, to detect most
infants with the disease, even though only about 1 out of 5 infants with an
abnormal screening test turns out to have PKLU,

In unsclected populations, the diseased patients often do not stand out
because there arc very few of them relative to normal people and because
laberatory valucs for the diseased population overlap those for normals. The
curve for diseased people is “swallowed up” by the larger curve for normal
people. If, on the other hand, normal and diseased populations are mixed in
more equal proportions—perhaps by selecting out for testing people with an
unusually high likelihood of disease—then the resulting distribution could
be truly bimodal. Even so, it would not be possible to choose a test value
that clearly separates diseased and nondiscased persons {see Chapter 3).

If there is no sharp dividing line between normal and abnormal, and
the clinician can choose where the line is placed, what ground rules should
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be used to decide? Three criteria have proven useful: being unusual, being
sick, and being treatable. For a given measurement, the results of these
approaches bear no necessary relation to each other, so that what might
be considered abnormal using one criterion might be normal by another.

ABNORMAL — UNUSUAL

Normal often refers to the most frequently occurring or usual condition.
Whatever occurs often is considered normal, and whatever occurs infre-
quently is abnormal. This is a statistical definition, based on the frequency
of a characteristic in a defined population. Commonly, the reference popu-
lation is made up of people without disease, but this need not be the casc.
For example, we may say that it is normal to have pain after surgery or
for eczema to itch.

It is tempting to be more specific by defining what is unusual in mathe-
matical terms. One commonly used way of establishing a cutoff point
between normal and abnormal is to agree, somewhat arbitrarily, that all
values beyond 2 standard deviations from the mean are abnormal. On
the assumption that the distribution in question approximates a normal
(Gaussian) distribution, 2.5% of observations would then appear in cach
tail of the distribution and be considered abnormal.

Of course, as already pointed out most biologic measurements are not
normally distributed. So it is better to describe unusual values, whatever
the proportion chosen, as a fraction (or percentile) of the actual distribution.
In this way, it is possible to make a direct statement about how infrequent
a value is without making assumptions about the shape of the distribution
from which it came.

A statistical definition of normality is commonly used but there arce
several ways in which it can be ambiguous or misleading.

First, if all values beyond an arbitrary statistical limit, say the 95th
percentile, were considered abnormal, then the prevalence of all discases
would be the same, 5%. This is inconsistent with our usual way of thinking
about disease frequency.

Second, there is no general relationship between the degree of statistical
unusualness and clinical disease. The relationship is specific to the disease
in question. For some measurements, deviations from usual are associated
with discase to an important degree only at quite extreme values, well
beyond the 95th or even the 99th percentile.

Example The World Health Organization (WHO) considers anemia to
be present when hemoglobin (Hb) levels are below 12 /100 mL in adult
nonpregnant females. In a British survey of women aged 20-64, Hb was
below 12 /100 mL in 11% of 920 nonpregnant women, twice as many as
would be expected if the criterion for abnormality were exceeding 2 standard
deviations (). But were the women with Hb levels below 12 g/100 ml.
“diseased” in any way because of their relatively low 11b? Two possibilities
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come to mind: The low 1Ib may be associated with symptoms or il may be
a manifestation of serious underlying discase. Symptoms such as fatigue,
dizziness, and irritability were not correlaled with Hb level, at least for
women whose Hb was above 8.0, Moreover, oral iron, given to women with
Hb between 8.0 and 12.0, increased FHb by an average of 2.30 £/100 mL but
did not lead to any greater improvement in symptoms than was experienced
by women given placcho. As for serious underlying disease, it is lruc that
occasionally low Hb may be a manifestation of cancer, chronic infection, or
rheumatic discases. But only a very small proportion of women with low Hb
have these conditions.

Thus only at Hb levels below 8.0, which occurred in less than 1% of these
women, might anemia be an important health problem.

Third, many laboratory tests are related to risk of disease over their entire
range of values, from low to high. For serum chelesterol, there is an almost
threefold increase in risk from the “low normal” to the “high normal” range.

Fourth, some extreme values are distinctly unusual but preferable to
more usual ones. This is particularly truc at the low end of some distribu-
tions, Who would not be pleased to have a serum creatinine of 0.4 mg/
100 mL er a systolic blood pressure of 105 mm Hg? Both are unusually
low but they represent better than average health or risk.

Finally, sometimes patients may have, for laboratory tests diagnostic of
their disease, values in the usual range for healthy people, yet clearly be
diseased. Examples include low pressure hydrocephalus, normal pressurce
glaucoma, and normocalcemic hyperparathyroidism.

ABNORMAL - ASSOCIATED WITH DISEASE

A sounder approach to distinguishing normal from abnormal is to call
abnormal those observations that are regularly associated with diseasc,
disability, or death, i.e., clinically meaningful departures from good health.

Example  What is a “normal” alcohol {ethanol) intake? Several studies
have shown a U-shaped relationship between alcohol intake and mortality:
high death rates in abstainers, lower rates in moderate drinkers, and high
rates in heavy drinkers (Fig, 2.10). Tt has been suggested Lhat the lower death
rates with increasing alcohol consumption, at the lower end of the curve,
oceur because alcohol raises high density lipoprotein levels, which protects
against cardiovascular discase. Alternatively, when people become ill they
reduce their alcohol consumption and this could explain the high rate of
mortality associated with low aleohol intake (6). High death rates at high
intake is less controversial: aleohol is a cause of several fatal diseases (heart
disease, cancer, and stroke). The interprelation of the causes for the U-sha ped
curve determines whether it is as abnormal to abstain as it is to drink heavily.

ABNORMAL — TREATABLE

['or some conditions, particularly those that are not troublesome in their
own right (i.e., arc asymptomatic), it is better to consider a measurement
abrormal only if treatment of the condition represented by the measure-
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Figure 2.10. Abnarmal as associated with disease. The relationship belween alco-
heol consumption and mortality. (From Shaper AG, Wannamethee G, Walker M. Alco-
hol and mortality in British men: explaining the U-shaped curve, Lancet
1988, 21267 -1273)

ment leads to a better outcome. This is because not everything that is
associated with an increased risk can be successfully treated: the removal
of the condition may not remove risk, either because the condition itself
is not a causc of discasc but is only related to a cause or because irreversible
damage has already occurred. Alse, to label people abnormal can cause
adverse psychological effects that are not justified if treatment cannot im-
prove the outlook.

What we consider treatable changes with Hme. At their best, therapeutic
decisions are grounded on evidence from well-conducted clinical trials
(Chapter 8). As new knowledge is acquired from the results of clinical
trials, the level at which treatment is considered useful may change. For
example, accumulating evidence for treating hypertension has changed
the definition of what level is treatable. As more studies are conducted,
successively lower levels of diastolic blood pressure have been shown to
be worth treating.

Regression to the Mean
When clinicians encounter an unexpectedly abnormal test result, they

tend to repeat the test. Often the second test result is closer to normal.
Why does this happen? Should it be reassuring?
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Patients selected because they represent an extreme valuce in a distribu-
tion can be expected, on the average, to have less extreme values on subse-
quent measurements. This occurs for purely statistical reasons, not because
the patients have necessarily improved. The phenomenon is called regres-
siont to Hie mean,

Regression to the mean arises in the following way (Fig 2.11). People
are first selected for inclusion in a study or for further diagnosis or treat-
ment because their initial measurement for a trait fell beyond an arbitrarily
selected cutoff pointin the tail of a distribution of values for all the patients
examined. Some of these people will remain above the cutoff point on
subsequent measurements, because their true values are usually higher
than average. But others who were found to have values above the cutoff
point during the initial screening usually have lower values. They were
selected only because they happened, through random variation, to have
a high value at the time they were first measured. When the measurement
is taken again, these people have lower values than they had during the
first screening. This phenomenon tends to drag down the mean value of
the subgroup originally found to have values above the cutoff point.

Thus patients who are singled out from others because of a laboratory
test result that is unusually high or low can be expected, on average, to
be closer to the center of the distribution if the test is repeated. Moreover,
subsequent values are likely to be more accurate estimates of the truc

First testing of
the population

—Frequency—»

Patients with high values

Patients retested

Figure 2.11. Regression to the mean.
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value, which could be obtained if measurements were repeated for a partic-
ular patient many times. So the time-honored practice of repeating labora-
tory tests that are found to be abnormal and of considering the second
one, which is often within normal limits, the correct one is not just wishful
thinking. It has a sound theoretical basis. It also has an empirical basis.
For example, it has been shown that half of serum T, tests found to be
outside normal limits on sereening were within normal limits when re-
prated (7). However, the more extreme the initial reading is, the less likely
it is to be normal if it is repeated.

Summary

Clinical phenomena are measured on nominal, ordinal, and interval
scales. Although many clinical observations fall on a continuum of values,
for practical reasons they are often simplified into dichotomous {(normal/
abnormal) categories. Observations of clinical phenomena vary because
of measurement error, differences in individuals from time to time, and
differences among individuals. The performance of a method of measure-
ment is characterized by validity (Does it measure what it intends to mea-
sure?), reliability (Do repeated measures of the same thing give the same
result?}, range, responsiveness, and interpretability.

Frequency distributions for clinical variables have different shapes,
which ¢an be summarized by describing their central tendency and
dispersion.

Laboratory values from normal and abnormal people often overlap;
because of this and the relatively low prevalence of abnormals, it is usually
not possible to make a clean distinction between the two groups using the
test result alone. Choice of a point at which normal ends and abnormal
begins is arbitrary and is often related to one of three definitions of abnor-
mality: statistically unusual, associated with disease, or treatable. If patients
with extreme values of a test are selected and the test is repeated, the
second set of values is likely to fall closer Lo the central {statistically normal)
part of the frequency distribution, a phenomenon called regression to
the mean.
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DIAGNOSIS

Appearances to the mind are of four kinds. Things either arc what
they appear to be; or they neither are, nor appear to be; or they are,
and do not appear to be; or they are not, yet appear to be. Rightly
fo aim in all these cases is the wise man’s task

Epictetus, 2nd century A.D.

Clinicians devote a great deal of time to determining diagnoses for
complaints or abnormalities presented by their patients. They arrive at the
diagnoses after applying various diagnostic tests. Most competent clini-
cians use good judgment, a thorough knowledge of the literature, and
a kind of rough-and-ready approach to how the information should be
organized. However, there are also basic principles with which a clinician
should be familiar when interpreting diagnostic tests. This chapter deals
with those principles.

A diagnostic test is ordinarily taken to mean a test performed in a labora-
tory. But the principles discussed in this chapter apply equally well to
clinical information obtained from history, physical examination, and im-
aging procedures. They also apply where a constellation of findings serves
as a diagnostic test. Thus one might speak of the value of prodromal
neurclogic symptoms, headache, nausea, and vomiting in diagnosing clas-
sic migraine or of hemoptysis and weight loss in a cigarette smoker as
indicators of lung cancer.

Simplifying Data

In Chapter 2, it was pointed out that clinical measurements, including
data from diagnostic tests, are expressed on nominal, ordinal, or interval
scales. Regardless of the kind of data produced by diagnostic tests, clini-
cians generally reduce the data to a simpler form to make them useful in
practice. Most ordinal scales are examples of this simplification process.
Obviously, heart murmurs can vary from very loud to inaudible. But trying
to express subtle gradations in the intensity of murmurs is unnecessary
for clinical decision making. A simple ordinal scale—grades | to VI—
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serves just as well. More often, complex data are reduced to a simple
dichotomy, e.g., present/abscnt, abnormal /normal, or diseased /well. This
is particularly deone when test results are used to decide on treatment. At
any given point in hime, therapeutic decisions are either/or decisions, Ei-
ther treatment is begun or it is withheld.

The use of blood pressure data to decide about therapy is an example
of how we simplify information for practical clinical purposes. Blood
pressure is ordinarily measured to the nearest 2 mm Hg, i.e., on an
interval scale. However, most hypertension treatment guidelines, such
as those of the Joint National Committee on the Detection, Evaluation,
and Treatment of Hypertension (1) and of most physicians, choose a
particular level (e.g., 95 mm Hg diastolic pressure) at which to initiate
drug treatment. In doing so, clinicians have transformed interval data
inte nominal (in this case, dichotomous) data. To take the example
further, the Joint National Committee recommends that a physician
choose a treatment plan according to whether the patient’s diastolic
blood pressure is “mildly elevated” (90-94 mm Hg), “‘moderately ele-
vated” (95-114 mm Hg}, or “severely clevated” (=115 mm Hg), an
ordinal scale.

The Accuracy of a Test Result

Establishing diagnoses is an imperfect process, resulting in a probability
rather than a certainty of being right. In the past, the doctor’s diagnostic
certainty or uncertainty was expressed by using terms such as rule out or
possible before a clinical diagnosis. Increasingly, the modem clinician expresses
the likelihood that a patient has a disease by using a probability. That being
the case, it behooves the clinician to become familiar with the mathematical
relationships between the properties of diagnostic tests and the information
they yield in various clinical situations. In many instances, understanding
these issucs will help the clinician resolve some uncertainty surrounding the
use of diagnostic tests. In other situations, it may only increase understanding
of the uncertainty. Occasionally, it may convince the clinician to increase his
or her level of uncertainty.

A simple way of locking at the relationships between a test’s results
and the true diagnosis is shown in Figure 3.1, The test is considered to be
either positive {(abnormal) or negative (normal), and the discase is either
present or absent. There are then four possible interpretations of the test
results, two of which are correct and two wrong. The test has given the
correct answer when it is positive in the presence of disease or negative
in the absence of the discase. On the other hand, the test has been mis-
leading if it is positive when the discase is absent (false positive) or negative
when the disease is present (false negative).
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DISEASE

Present Absent

T

True

Positive positive

TEST

d
True

Negative negative

Figure 3.1. The relationship between a diagnostic test result and the occurrence
of disease. There are two possibifities for the test result to be correct {true positive
and true negative) and two possibilities for the result to be incorrect {false positive
and false negative).

THE GOLD STANDARD

Assessment of the test’s accuracy rests on its relationship to some way
of knowing whether the disease is truly present or not—a sounder indica-
tion of the truth often referred to as the “gold standard.” As it turns out,
the gold standard is often elusive. Sometimes the standard of accuracy is
itself a relatively simple and inexpensive test, such as a throat culture for
group A fS-hemolytic streptococcus to validate the clinical impression of
strep throat or an antibody test for human immunodeficiency virus. How-
ever, this is usually not the case. More often, one must turn to relatively
elaborate, expensive, or risky tests to be certain whether the disease is
present or absent. Among these are biopsy, surgical exploration, and of
course, autopsy.

For discases that are not self-limited and ordinarily become overt in a
matter of a few years after they are first suspected, the results of follow-
up can serve as a gold standard. Most cancers and chrenic, degenerative
discases fall into this category. For them, validation is possible even if on-
the-spot confirmation of a test’s performance is not feasible because the
immediately available gold standard is too risky, involved, or expensive.
Some care must be taken in deciding the length of the follow-up period,
which must be long enough for the disease to manifest but not so long
that cases can arise after the original testing.

Because it is almost always more costly and more dangerous to use
these more accurate ways of establishing the truth, clinicians and patients
prefer simpler tests to the rigorous gold standard, at least initially. Chest
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x-rays and sputum smears are used to determine the nature of pneumonia,
rather than lung biopsy with cxamination of the diseased lung tissue.
Similarly, clectrocardiograms and serum enzymes are often used to estab-
lish the diagnosis of acute myocardial infarction, rather than catheterization
or imaging procedures. The simpler tests arc used as proxies for more
claborate but more accurate ways of establishing the presence of discase,
with the understanding that some risk of misclassification results. This risk
i justified by the safety and convenience of the simpler tests. But simpler
tests are only useful when the risks of misclassificalion are known and
found to be acceptably low. This requires sound data that compare their
accuracy to an appropriate standard.

LACK OF INFORMATION ON NEGATIVE TESTS

The goal of all clinical studies describing the value of diagnostic tests
should be to obtain data for all four of the cells shown in Figure 3.1.
Without all these data, it is not possible to asscss the risks of misclassifica-
tion, the critical questions about the performance of the tests. Given that
the goal is to fill in all four cells, it must be stated that sometimes this is
difficult to do in the real world. It may be that an objective and valid
means of establishing the diagnosis exists, but it is not available for the
purposes of formally cstablishing the properties of a diagnostic test for
ethical or practical reasons. Consider the situation in which most informa-
tion about diagnostic tests is obtained. Published accounts come primarily
from clinical, and not research, settings. Under these circumstances, physi-
cians are using the test in the process of caring for patients, They feel
justified in proceeding with more exhaustive evaluation, in the patient’s
best interest, only when preliminary diagnostic tests are positive, They are
naturally reluctant to initiate an aggressive workup, with its associated
risk and expense, when the test is negative. As a result, information on
negative tests, whether true negative or false negative, tends to be much
less complete in the medical literature.

This problem is iliustrated by an influential study of the utility of the
blood test that detects prostate specific antigen (PSA) in looking for prostate
cancer (2). Patients with PSAs above a cutoff level were subjected to biopsy
while patients with PSAs below the cutoff were not biopsied. The authors
understandably were reluctant to subject men to an uncomfortable proce-
dure without supporting cvidence. As a result, the study leaves us unable
to determine the false-negative rate for PSA screening.

LACK OF INFORMATION ON TEST RESULTS IN THE NONDISEASED

As discussed above, clinicians are understandably loath to perform elab-
orate testing on patients who do not have problems. An evaluation of a
test’s performance can be grossly misleading it the test is only applied to
patients with the condition.
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Example  Magnetic resonance imaging (MRI} of the Jumbar spine is fre-
quently used in the evaluation of patients with low Lack pain. Many patients
with back pain show herniated intervertebral disks on MRI, which often
serves to explain the pain and guide treatment.

MRIs were performed on 98 asymptomatic volunteers (3). The studies
were tead by radiologists who did not know the symptom status of the
patients. Bulging or protruding disks were found in nearly two-thirds of
asymptomatic subjects, only slightly lower than the frequency of similar
abnormality in patients with back pain. The authors concluded that such
findings “may frequently be coincidental.”

LACK OF OBJECTIVE STANDARDS FOR DISEASE

For some conditions, there are simply no hard-and-fast criteria for diag-
nosis. Angina pectoris is one of these. The clinical manifestations were
described nearly a century ago, Yet there is still no better way to substanti-
ate the presence of angina pectoris than a carefully taken history. Certainly,
a great many objectively measurable phenomena are related to this clinical
syndrome, for example, the presence of coronary artery stenoses seen on
angiography, delayed perfusion on a thallium stress test, and characteristic
abnormalities on electrocardiograms both at rest and with exercise. All are
more commenly found in patients believed te have angina pectoris. But
none is so closely tied to the clinical syndrome that it can serve as the
standard by which the condition is considered present or absent.

Sometimes, usually in an cffort to be “rigorous,” circular reasoning is
applied. The validity of a laboratory test is established by comparing its
results to a clinical diagnosis, based on a careful history of symptoms and
a physical examination, Once established, the test is then used to validate
the clinical diagnosis gained [rom history and physical examination! An
example would be the use of manometry to “confirm” irritable bowel
syndrome, because the contraction pattern demonstrated by manometry
and believed to be characieristic of irritable bowel was validated by clinical
impression in the first place.

CONSEQUENCES OF IMPERFECT STANDARDS

Because of such difficulties as these, it is sometimes not possible for
physicians in practice to find information on how well the tests they use
compare with a thoroughly trustworthy standard. They must choose as
their standard of validity another lest that admittedly is imperfect but is
considered the best available. This may force them into comparing one
weak test against another, with one being taken as a standard of validity
because it has had longer use or is considered superior by a consensus of
experts. In deing so, & paradox may arise. If a new test is compared with
an old (but inaccurate) standard test, the new test may scem worse even
when it is actually bette-. For example, if the new test is more sensitive
than the standard test, the additional patients identified by the new test
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would be considered false positives in relation to the old test. Just such a
situation occurred in a comparison of real-time ultrasonography and oral
chelecystography for the detection of gallstones (4). In five patients, ultra-
sound was positive for stones that were missed on an adequate cholecysto-
gram. Two of the patients later underwent surgery and gallstones were
found, so that for at least those two patients, the standard oral cholecysto-
gram was actually less accurate than the newer real-time ultrasound. Simi-
larly, if the new test is more often negative in patients who really do not
have the disease, results for those patients will be considered false nega-
tives compared with the old test. Thus, if an inaccurate standard of validity
is used, a new test can perform no better than that standard and will seem
inferior when it approximates the truth more closely.

Sensitivity and Specificity
Figure 3.2 sunmarizes some relationships between a diagnostic test and

the actual presence of disease. It is an expansion of Figure 3.1, with the
addition of some useful definitions. Most of the rest of this chapter deals

DISEASE

Present Absent

iti __4d
Positive a+b +PV = S
TEST
i Py —d
Negative c+d PV= "5
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Figure 3.2. Diagnostic test characteristics and definitions. Se — sensitivity; Sp =
specificty; P = prevalence; PV — predictive value.
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with these relationships in detail. Figure 3.3 illustrates these relationships.
The diagnostic test is housestaff's clinical impression of whether patients
complaining of pharyngitis have a group A f-hemolytic streptococeus in-
fection or not, and the gold standard is a throat culture.

DEFINITIONS

As can be seen in Figure 3.2 sensitivity is defined as the proportion of
people with the disease who have a positive test for the discase. A sensitive
test will rarely miss people with the discase. Specificity is the proportion
of people without the disease who have a negative test. A specific test will
rarely misclassify people without the disease as diseased.

Applying these definitions to the pharyngitis example (Fig. 3.3), we sce
that 37 of the 149 patients with sore throats had positive cultures, and

Group A

B = Hemolytic
Streptococcus on
Throat Culture

Present Absent

Clinical Yes 27
Diagnosis
of Strep

Pharyngitis |\,

62 +PV=21_44%
+PV =G5 = 44%

-PV =17 _88%
87 87 88%

37 112 149

~37 12 149
- 10
LRs =27+ 10 54 15 _10+27 9
_ 35 77
354+ 77 77 +35

compared with the results of throat culture. {Data from Fletcher SW, Hamann C.
Emergency room management of patients with sore throats in a teaching hospital;
influence of non-physician factors. J Comm Health 1976; 1:196-204.)
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housestaff correctly diagnosed 27 of these—for a sensitivity of 73%. On the
other hand, 112 patients had negative culture results; housestaft correctly
withheld antibiotics from 77, for a specificity of 69%.

USES OF SENSITIVE TESTS

Clinicians should take the sensitivity and specificity of a diagnostic test
into account when a test is selected. A sensitive test (i.e., one that is usually
positive in the presence of disease) should be chosen when there is an
important penalty for missing a disease. This would be so, for example,
when there is reason to suspect a dangerous but treatable condition, such as
tuberculosis, syphilis, or Hodgkin’s disease. Sensitive tests are also helpful
during the early stages of a diagnostic workup, when a great many possi-
bilities are being considered, to reduce the number of possibilities. Diagnos-
tic tests are used in these situations to rule out diseases, ie., to establish
that certain discases are unlikely possibilitics. For example, one might
choose an HIV antibody test early in the evaluation of lung infiltrates and
weight loss to rule out an AIDS-related infection. In sum, a sensitive test
is most helpful to the clinician when the test result is negative.

USES OF SPECIFIC TESTS

Specific tests are useful to confirm (or “rule in”) a diagnosis that has
been suggested by other data. This is because a highly specific test is rarely
positive in the absence of disease, i.e., it gives few false-positive results.
Highly specific tests are particularly needed when false-positive results
can harm the patient physically, emotionally, or financially. Thus, before
patients are subjected to cancer chemotherapy, with all its attendant risks,
emotional trauma, and financial costs, tissue diagnosis is generally required
instead of relying on less specific tests. In sum, a specific test is most
helpful when the test result is positive.

TRADE-OFFS BETWEEN SENSITIVITY AND SPECIFICITY

It is obviously desirable to have a test that is both highly sensitive and
highly specific. Unfortunately, this is usually not poessible. Instead, there
is a trade-off between the sensitivity and specificity of a diagnostic test.
This is true whenever clinical data take on a range of values. In those
situations, the location of a cut-off point, the point on the continuum be-
tween normal and abnormal, is an arbijtrary decision. As a consequence,
for any given test result expressed on a continuous scale, one characteristic
(e.g., sensitivity) can be increased only at the expense of the other {e.g.,
specificity). Table 3.1 demonstrates this interrelationship for the diagnosis
of diabetes. If we require that a blood sugar taken 2 hr after eating be
greater than 180 mg % to diagnose diabetes, all of the people diagnosed
as ‘‘diabetic” would certainly have the disease, but many other people
with diabetes would be missed using this extremely demanding definition
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Table 3.1
Trade-Off between Sensitivity and Specificity when Diagnosing Diabetes®

HBload Sugar Level

2 bir after Fating Sensitivity Spaificity
{mg/ 100 mL} (4] {90

70 g8.6 B8

80 a7.1 255

a0 94.3 47.6
100 83.6 689.8
110 85.7 34.1
120 71.4 92.5
130 54.3 96.9
140 57.1 93.4
150 50.0 99.5
160 47 A 99.8
170 42.9 100.0
180 38.6 100.0
190 34.3 100.0
200 271 100.0

“ Pubhc Health Scrvice. Disbetes program guide. Publication no. 506, Washington, DC: 4.8, Government
Prirting Office, 1960,

of the disease. The test would be very specific at the expense of sensitivity.
At the other extreme, if anyone with a blood sugar of greater than 70 mg
% were diagnosed as diabetic, very few people with the disease would be
missed, but most normal people would be falsely labeled as having diabe-
tes. The test would then be sensitive but nonspecific. There is no way,
using a single blood sugar determination under standard conditions,
that one can improve both the sensitivity and specificity of the test at the
same time.

Another way to express the relationship between sensitivity and speci-
ficity for a given test is to construct a curve, called a receiver operator charac-
teristic (ROC) curve. An ROC curve for the use of a single blood sugar
determination to diagnose diabetes mellitus is illustrated in Figure 3.4. It
1s constructed by plotting the true-positive rate (sensitivity) against the
false-positive rate {1-specificity) over a range of cut-off values. The values
on the axes run from a probability of 0 to 1.0 (or, alternatively, from 0 to
100%). Figure 3.4 illustrates the dilemma created by the trade-off between
sensitivity and specificity. A blood sugar cuteff point of 100 will miss only
11% of diabetics, but 30% of normals will be alarmed by a false-positive
report. Raising the cutoff to 120 reduces false-positives to less than 10% of
normals, but at the expense of missing nearly 30% of cases.

Tests that discriminate well crowd toward the upper left comer of the
ROC curve; for them, as the sensitivity is progressively increased (the
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Figure 3.4. A ROC curve. The accuracy of 2-hr postprandial blood sugar as a
diagnostic test for diabetes meliitus. (Data from Public Health Service. Diabetes
program guide. Publication no. 508. Washington, DC: U.S. Government Printing
Office, 1960.)

cutoff point is Jowered) there is little or no loss in specificity until very
high levels of sensitivity are achieved. Tests that perform less well have
curves that fall closer to the diagonal running from lower left to upper
right. The diagonal shows the relationship between true-positive and false-
positive rates that would occur for a test yielding no information, ¢.g., if
the clinician merely flipped a coin.

The ROC curve shows how severe the trade-off between sensitivity and
specificity is for a test and can be used to help decide where the best cutoff
point should be, Gencerally, the best cutoff point is at or near the “‘shoulder”
of the ROC curve, unless there are clinical reasons for minimizing either
false negatives or false positives.

ROC curves are particularly valuable ways of comparing alternative
tests for the same diagnosis. The overall accuracy of a test can be described
as the area under the ROC curve; the larger the area, the better the test.
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Figure 3.5 compares the ROC curves for two questionnaire tests used to
screen for alcoholism in elderly patients —the CAGE and the MAST (Michi-
gan Alcoholism Screening Test) (5). The CAGE is both more sensitive and
more specific than the MAST and includes a much larger area under its
CUTVE.

Obviously, tests that are both sensitive and specific are highly sought
after and can be of enormous value. However, practicing clinicians rarely
work with tests that are both highly sensitive and specific. So for the
present, we must use other means for circumventing the trade-off between
sensitivity and specificity. The most common way is to use the results of
several tests together (as discussed below).

Establishing Sensitivity and Specificity
Not infrequently, a new diagnostic test is described in glowing terms

when first introduced, only to be found wanting later when more experi-
ence with it has accumulated. Enthusiasm for the clinical value of serum
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with and without alcoholism. (Redrawn from Jones TV, Lindsey BA, Yount P, Soltys
R, Farani-Enayat B. Alcoholism screening questionnaires; are they valid in elderly
medical outpatients? J Gen Intern Med 1993;8:674-678.)
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carcinoembryonic antigen (CEA) waxed and then waned in this way. At
first, CEA was considered a very promising means of diagnosing colon
cancer. But subsequently CEA was shown to be increased in a wide variety
of other conditions as well as in approximately 20% of smokers without
cancer. This kind of confusion—initial enthusiasm followed by disappoint-
ment—arises not from any dishonesty on the part of early investigators
or unfair skepticism by the medical community later. Rather, it is related
to limitations in the methods by which the properties of the test were
established in the first place. At the crudest level, the properties of a diag-
nostic test—sensitivity and specificity, for example-—may be inaccurately
described because an improper standard of validity has been chosen, as
discussed previously. However, two other issues related to the selection
of diseased and nondiseased patients can profoundly affect the determina-
tion of sensitivity and specificity as well. They are the spectrum of patients
to which the test is applied and bias in judging the test’s performance. A
third problem that can lead to inaccurate estimates of sensitivity and speci-
ficity is chance.

SPECTRUM OF PATIENTS

Difficultics may arise when patients used to describe the test’s properties
are different from those to whom the test will be applied in dlinical practice,
Early reports often assess the test’s value among people who are clearly
diseased compared with people who are clearly not discased, e.g., medical
student volunteers. The test may be able to distinguish between these
extremes very well.

Lven patients with the discase in question can differ in severity, stage,
or duration of the disease, and a test’s sensitivity will tend to be higher in
more severely affected patients.

Example [ligure 3.6 illustrates how the performance of the test CEA
varies with the stage of colorectal cancer. CEA performs well for metastatic
disease and poorly for localized cancer. Thus the sensitivity lor “colorectal
cancer” depends on the parlicular mix of stages of patients with disease used
to describe the test, and its accuracy is more stable within stages (6).

Similarly, some kinds of people without disease, such as those in whom
disease is suspected, may have other conditions that cause a positive test,
thereby increasing the false-positive rate and decreasing specificity. For exam-
ple, CEA is also elevated in many palients with ulcerative colitis or cirrhosis.
If patients with these diseases were included in the nondiseased group when
studying the performance ol CEA for colorectal cancer, false positives would
increase and the specificity of the test for cancer would fall,

In theory, the sensitivity and specificity of a test are said to be independent
of the prevalence of diseased individuals in the sample in which the test is
being evaluated. {(Work wilh Figure 3.2 to confirm this for yourself.) In prac-
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Figure 3.6. ROC curve for CEA as a diagnoslic test for colorectal cancer, according
to stage of disease. The sensitivity and specificity of a test vary with the stage of
disease. {Redrawn from Fletcher BH. Carcinoembryonic antigen. Ann Intern Med
1986;104:66-73 )

tice, however, several characteristics of patients, such as stage and severity
of disease, may be related both to the sensitivity and specificity of a test and
to the prevalence, because different kinds of patients are found in high- and
low-prevalence situations. Using a test to screen for disease illustrates this
point (see Chapter 8 for a fuller discussion of screening). Screening invelves
the use of the test in an asymptomatic population where the prevalence of
the disease is gencrally low and the spectrum of disease favors earlier and
less severe cases. In such situations, sensitivity tends to be lower and specific-
ity higher than when the same test is applicd to patients suspected of having
the disease, more of whom have advanced disease.

BIAS

Sometimes the sensitivity and specificity of a test are not established
independently of the means by which the true diagnosis is established,
leading to a biased assessment of the test’s properties. This may occur in
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several ways. As already pointed out, if the test is evaluated using data
obtained during the course of a clinical evaluation of patients suspected
of having the disease in question, a positive test may prompt the clinician
to continue pursuing the diagnosis, increasing the likelihood that the dis-
ease will be found. On the other hand, a negative test may cause the
clinician to abandon further testing, making it more likely that the disease,
if present, will be missed.

In other situations, the test result may be part of the information used
to establish the diagnosis, or conversely, the results of the test may be
interpreted taking other clinical information or the final diagnosis inte
account. Radiologists are frequently subject to this kind of bias when they
read x-rays. Because x-ray interpretation is somewhat subjective, it is easy
to be influenced by the clinical information provided. All clinicians experi-
ence the situation of having x-rays overread because of a clinical impres-
sion, or conversely, of going back over old x-rays in which a finding was
missed because a clinical event was not known at the time, and therefore,
attention was not directed to the particular area in the x-ray. Because of
these biases, some radiologists prefer to read x-rays twice, first without
and then with the clinical information. All of these biases tend to increase
the agreement between the test and the standard of validity. That is, they
tend to make the test seem more useful than it actually is, as, for example,
when an MRT of the lumbar spine shows a bulging disc in a patient with
back pain (see carlier example in this chapter).

CHANCE

Values for sensitivity and specificity (or likelihood ratios, another char-
acteristic of diagnostic tests, discussed below) are usually estimated from
observations on relatively small samples of people with and without the
disease of interest. Because of chance (random variation) in any one sample,
particularly if it is small, the true sensitivity and specificity of the test can
be misrepresented, even if there is no bias in the study. The particular
values observed are compatible with a range of true values, typically char-
acterized by the “95% confidence intervals”' (see Chapter 9). The width
of this range of values defines the degree of precision of the estimates of
sensitivity and specificity. Therefore, reported values for sensitivity and
specificity should not be taken too literally if a small number of patients
is studied.

 The 95%, confidence interval of a proportion is casily estimaled by the following formula, based on the
binomial theorem:
Pt \[ E.ﬂ._ﬂ_ )
' "

where pis the observed proportion and N is the number of peeple observed. To be more nearly exacl,
mltiply by 196,
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Figure 3.7 shows how the precision of estimates of sensitivity increases
as the number of people on which the estimate is based increases. In this
particular example, the observed sensitivity of the diagnostic test is 75%.
Figure 3.7 shows that if this estimate is based on only 10 patients, by
chance alone the true sensitivity could be as low as 45% and as high as
nearly 100%. When more patients are studied, the 95% confidence interval
narrows, i.c., the precision of the estimate increases.

Predictive Value

As noted previously, sensitivity and specificity are properties of a test that
are taken into account when a decision is made whether or not to order the
test. But once the results of a diagnostic test are available, whether positive
or negative, the sensitivity and specificity of the test are no longer relevant,
because these values pertain to persons known to have or not to have the
discase. But if one knew the disease status of the patient, it would not be
necessary to order the test! For the clinician, the dilemma is to determine
whether or not the patient has the disease, given the results of a test.
DEFINITIONS

The probability of disease, given the results of a test, is called the pre-
dictive valiie of the test (see Fig. 3.2). Positive predictive vafue is the probability
of disease in a patient with a positive (abnormal) test result. Negative pre-
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Figure 3.7. The precision of an estimate of sensitivity. The 95% confidence interval
for an observed sensitivity of 75%, according to the numiber of people observed.
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dictive value is the probability of not having the disease when the test
result is negative (normal). Predictive value arswers the question, “If my
patient’s test result is positive (negative) what are the chances that my
patient does (does not) have the disease?” Predictive value is sometimes
called posterior (or posttest) probability, the probability of disease after the
test result is known. Figure 3.3 illustrates these concepts. Among the pa-
tients treated with antibiotics for streptococcal pharyngitis, less than half
(44%} had the conditien by culture (positive predictive value). The negative
predictive value of the housestaff’s diagnostic impressions was better; of
the 87 patients thought not to have streptococcal pharyngitis, the impres-
sion was correct for 77 (88%).

Terms summarizing the overall value of a test have been described.
One such term, accuracy, is the proportion of all test results, both positive
and negative, that are correct. (For the pharyngitis example in Figure
3.3, the accuracy of the housestaff’s diagnostic impressions was 70%.)
The area under the ROC curve is another useful summary measure of
the information provided by a test result. However, these summary
measures are too crude to be useful clinically because specific informa-
tion about the component parts —sensitivity, specificity, and predictive
value at specific cutoff points—is lost when they are aggregated into a
single index.

DETERMINANTS OF PREDICTIVE VALUE

The predictive value of a test is not a property of the test alone. Tt is
determined by the sensitivity and specificity of the test and the prevalence
of disease in the population being tested, where prevalence has its custom-
ary meaning—the proportion of persons in a defined population at a given
point in time with the condition in question. Prevalence is also called prior
{or pretest) probability, the probability of discase before the test result is
known. (For a full discussion of prevalence, see Chapter 4.)

The mathematical formula relating sensitivity, specificity, and preva-
lence to positive predictive value is derived from Bayes’s theorem of condi-
tional probabilities:

f PR e

Positive Sensitivity X Prevalence
predictive =
value

(Sensitivity x Prevalence) + (1-5pecificity) X (1-Prevalence)

The more sensitive a test is, the better will be its negative predictive
value (the more confident the clinician can be that a negative test result
rules out the disease being sought). Conversely, the more specific the test
is, the better will be its positive predictive value {the more confident the
clinician can be that a positive test confirms or rules in the diagnosis being
sought). Because predictive value is alse influenced by prevalence, it is not
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independent of the setting in which the test is used. Positive results even
for a very specific test, when applied to patients with a low likelihood of
having the disease, will be largely false positives. Similarly, negative re-
sults, even for a very sensitive test, when applied to patients with a high
chance of having the disease, are likely to be false negatives. In sum, the
interpretation of a positive or negative diagnostic test result varies from
setting to setting, according to the estimated prevalence of disease in the
particular setting.

It is pot intuitively obvious what prevalence has to do with an individual
patient. For those who are skeptical it might help to consider how a test
would perform at the extremes of prevalence. Remember that no matter
how sensitive and specific a test might be (short of perfection), there will
still be a small proportion of patients who are misclassified by it. Tmagine
a population in which no one has the discase. In such a group all positive
results, even for a very specific test, will be false positives. Thercfore, as
the prevalence of disease in a population approaches zerc, the positive
predictive value of a test also approaches zero. Conversely, if everyone in
a population tested has the disease, all negative results will be false nega-
tives, even for a very sensitive test. As prevalence approaches 100%, nega-
tive predictive value approaches zero. Another way for the skeptic to con-
vince himself or herself of these relationships is to work with Figure 3.2,
holding sensitivity and specificity constant, changing prevalence, and cal-
culating the resulting predictive values.

The effect of prevalence on positive predictive value, for a test at differ-
ent but generally high levels of sensitivity and specificity, is illustrated in
Figure 3.8. When the prevalence of disease in the population tested is
relatively high—more than several percent—the test performs well. But
at lower prevalences, the positive predictive value drops to nearly zero,
and the test is virtually useless for diagnosing disease. As sensitivity and
specificity fall, the influence of changes in prevalence on predictive value
becomes more acute.

Example The predictive value of PSA for diagnosing carcinoma of the
prostate has been studicd in various clinical situations, corresponding to
different prevalences or prior probabilitics. In older asymptomatic men,
where the prevalence of prostatic carcinoma is estimated to be 6-12%, only
about 15% of men with a PSA of 4 mg/dL or more actually had cancer. In
higher risk men (with symptoms or a suspicious rectal exam), where the
prevalence of prostatic carcinoma is 26%, 40% of men with positive PSAs
had cancer (7}. If PSA were used as a screening test in asymptomatic men,
5 or & healthy men would have to undergo additional tests, often including
biopsy, to find one man with cancer. However, when there is a strong clinical
suspicion of malignancy, nearly 50% of men with a positive test will have
prostatic cancer.
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Figure 3.8. Positive predictive value according to sensitivity, specificity, and preva-
lence of disease.

Current efforts to prevent transmission of acquired immunodeficiency
syndrome (AIDS} through blood products is another example of the effect
of disease prevalence on positive predictive value.

Example A blood test for antibodics to human immunodeficiency virus
(HIV} is used to screen blood denors. At one cutoff point, the sensitivity is
97.8% and the specificity is 90.4%. In 1985, the positive predictive value of
the test was estimated from the prevalence of infectious units to be no more
than 1/10,000. Thus there would be 9,250 false-positive test results for every
true-positive result (8). Almost 10,000 units would have to be discarded or
investigated further to prevent one transfusion of contaminated blood. The
authors concluded that, for this emotionally charged subject, “careful adher-
ence {0 the principles of diagnostic test evaluation will avoid unrealistic
expectations.”

But the situation changed. As the prevalence of HIV infection increased
in the general population, the positive predictive valuc of the screening test
improved. In a publication a year later, the prevalence of infected units
among 67,190 tested was 25/10,000, and at similar levels of sensitivity and
specificity, the positive predictive value would be 2.5%, much higher than a
few vears before (9).

ESTIMATING PREVALENCE

How can clinicians estimate the prevalence or probability of disease in
a patient to determine the predictive value of a test result? There are several
sources of information: the medical literature, local databases, and clinical
judgment. Although the resulting estimate of prevalence is seldom very
precise, error is not likely to be so great as to change clinical judgments
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that are based on the estimate. In any case, the process is bound to be
more accurate than implicit judgment alone.

Tn general, prevalence is more important than sensitivity and specificity
in determining predictive value (see Tig. 3.8}. One reason why this is so
is that prevalence commonly varies over a wider range. Prevalence of
disease can vary from a fraction of a percent to near certainty in clinical
settings, depending on the age, gender, risk factors, and clinical findings
of the patient. Contrast the prevalence of liver disease in a healthy, young
adult who uses no drugs, illicit or otherwise, and consumes only occasional
alcohol, with that of a jaundiced intravenous drug user. By current stan-
dards, clinicians are not particularly interested in tests with sensitivities
and specificitics much below 50%, but if both sensitivity and specificity
are 99%, the test is considered a great one. In other words, in practical
terms sensitivity and specificity rarely vary more than twofold.

INCREASING THE PREVALENCE OF DISEASE

Considering the relationship between the predictive value of a test and
prevalence, it is obviously to the physician’s advantage to apply diagnostic
tests to patients with an increased likelihood of having the disease being
sought. In fact as Figure 3.8 shows, diagnostic tests are most helpful when
the presence of disease is neither very likely nor very unlikely.

There are a varicty of ways in which the probability of a disease can
be increased before using a diagnostic test.

Referral Process

The referral process is one of the most common ways in which the
probability of disease is increased. Referral to teaching hospital wards,
clinics, and emergency departments increases the chance that significant
discase will underlie patients” complaints. Therefore, relatively more ag-
gressive use of diagnostic tests might be justified in these settings. In pri-
mary care practice, on the other hand, and particularly among patients
without complaints, the chance of finding disease is considerably smaller,
and tests should be used more sparingly.

Example While practicing in a military clinic, one of the authors saw
hundreds of people with headache, rarely ordered diagnostic tests, and never
encountered a patient with a severe underlying cause of headache. (It is
unlikely that important conditions were missed because the clinic was virtu-
ally the only source of medical care for these patients and prolonged follow-
up was available.} However, during the first week back in a medical resi-
dency, a patient visiting the hospital’s emergency department because of a
headache similar to the omes managed in the military was found to have a
cercbellar abscess!

Because clinicians may work at different extremes of the prevalence spoec-
trum at various times in their clinical practices, they should bear in mind
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that the intensity of diagnostic evaluation may need to be adjusted to suit
the specific situation.

Selected Demographic Groups

In a given setting, physicians can increase the yield of diagnostic tests
by applying them to demographic groups known to be at higher risk for
a disease. A man of 65 is 15 times more likely to have coronary artery
disease as the cause of atypical chest pain than a woman of 30; thus the
electrocardiographic stress test, a particular diagnostic test for coronary
disease, is less useful in confirming the diagnosis in the younger woman
than in the older man (10). Similarly, a sickle-cell test would obviously
have a higher positive predictive value among blacks than among whites,

Specifics of the Clinical Situation

The specifics of the clinical situation are clearly the strongest influence
on the decision to order tests. Symptoms, signs, and disease risk factors
all raise or lower the probability of finding a disease. For example, a woman
with chest pain is more likely to have coronary disease if she has typical
angina and hypertension and she smokes. As a result, an abnormal electro-
cardiographic stress test is more likely to represent coronary discase in
such a woman than in persons with nonspecific chest pain and no coronary
risk factors.

The value of applying diagnostic tests to persons more likely to have a
particular illness is intuitively obvious to most doctors. Nevertheless, with
the increasing availability of diagnostic tests, it is easy to adopt a less
selective approach when ordering tests. However, the less selective the
approach, the lower the prevalence of the disease is likely to be and the
lower will be the positive predictive value of the test.

The magnitude of this effect can be larger than most of us might think.

Example Factors that influence the interpretation of an abnormal clectro-
cardiographic stress test are illustrated in Figure 3.9. It shows that the positive
predictive value for coronary artery disease (CAD) associated with an abnor-
mal test can vary from 17 to 99.8%, depending on age, symptoms, and the
degree of abnormality of the test. Thus an exercise test in an asymptomatic
35-year-old man showing 1 mm ST segment depression will be a false-
positive test in more than 98% of cases. The same test result in a 60-year-old
man with typical angina by history will be associated with coronary artery
disease in more than 90% of cases (10).

Because of this effect, physicians must interpret similar test results dif-
ferently in different clinical situations. A negative stress test in an asymp-
tomatic 35-year-old man merely confirms the already low probability of
corenary artery disease, but a positive test usually will be misleading if it
is used to search for unsuspected disease, as has been done among joggers,
airline pilots, and business executives. The opposite applies to the 65-




CHAPTER 3 / DIAGNGSIS 63

160 - 0.5-1.0 mm

90+ > 2.5mm

s
= 80 F
«
- 70k
g —

2
g8« 50
oo
« T 40
2™ 30
Lo
0 20|
o
e 10

0 2 a1t 25
Age 30-39 60-69 B0O-69
Symptom None None  Atypical Typical
angina  angina

Prevalence 1.9 12.3 67.1 94.3

of CAD (%)

Figure 3.9. Effoct of disease prevalence on positive predictive value of a diagnostic
test. Probability of coronary artery disease in men according to age, symptoms, and
depression of ST segment on selectrocardiogram. (Data from Diamond GA, Forrester
JS. Analysis of probability as an aid in the clinical diagnosis of coronary artery disease.
N Engl J Med 1979;300:1350-1358.)

year-old man with typical angina. [n this case, the test may be helpful in
confirming disease but not in excluding disease. The test is most useful in
intermediate situations, in which prevalence is neither very high nor very
low. For example, a 60-year-old man with atypical chest pain has a 67%
chance of coronary artery disease before stress testing {see Fig. 3.9); but
afterward, with greater than 2.5 mm 5T segment depression, he has a 99%
probability of coronary discasc.

Because prevalence of disease is such a powerful determinant of how
useful a diagnostic test will be, clinicians must consider the probability of
disease before ordering a test. Until recently, clinicians relied on clinical
observations and their experience to estimate the pretest probability of a
diseasc. Research using large clinical computer data banks now provide
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quantitative estimates of the probability of disease, given various combina-
tions of clinical findings (11).
IMPLICATIONS FOR THE MEDICAL LITERATURE

Published descriptions of diagnostic tests often include, in addition to
sensitivity and specificity, some conclusions about the interpretation of a
positive or negative test, i.e., predictive value. This is done, quite rightly,
to provide information directly useful to clinicians. But the data for these
publications are often gathered in university teaching hospitals where the
prevalence of serious disease is relatively high. As a result, statements
about predictive value in the medical literature may be misleading when
the test is applied in less highly selected settings. What is worse, authors
often compare the performance of a test in a number of patients known
to have the disease and an equal number of patients without the disease.
This is an efficient way to describe sensitivity and specificity. However, any
reported positive predictive value from such studies means little because it
has been determined for a group of patients in which the prevalence of
disease was set by the investigators at 50%.

Likelihood Ratios

Likelihood ratios are an alternative way of describing the performance
of a diagnostic test. They summarize the same kind of information as
sensitivity and specificity and can be used to calculate the probability of
disease after a positive or negative test.
opDs

Because use of likelihood ratios depends on odds, to understand them
it is first necessary to distinguish odds from probability. Probability—used
to express sensitivity, specificity, and predictive value—is the proportion
of people in whom a particular characteristic, such as a positive test, is
present. Odds, on the other hand, is the ratio of two probabilitics. Odds
and probability contain the same information, but express it differently.
The two can be interconverted using simple formulas:

Odds = Probability of event -+ 1 — Probability of event
Probability — Odds + 1 + Odds

These terms should be familiar to most readers because they are used in
everyday conversation. For example, we may say that the odds are 4:1 that
the Seattle Supersonics will win tonight or that they have an 80% probabil-
ity of winning.
DEFINITIONS

The likelihood ratio for a particular value of a diagnostic test is defined
as the probability of that test result in people with the disease divided by
the probability of the result in people without discase. Likelihood ratios
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express how many times more (or less) likely a test result is to be found
in diseased, compared with nondiseased, people. If a test is dichotomous
{positive/negative) two types of likelihood ratios describe its ability to
discriminate between diseased and nondiseased people: one is associated
with a positive test and the other with a negative test (sec Fig. 3.2).

In the pharyngitis example (see Fig. 3.3), the data can be used to calculate
likelihood ratios for streptococcal pharyngitis in the presence of a positive
or negative test (clinical diagnosis). A positive test is about 2.5 times more
likely to be made in the presence of streptococcal pharyngitis than in the
absence of it. If the clinicians believed streptococcal pharyngitis was not
present, the likelihood ratio for this negative test was 0.39; the odds were
about 1:2.6 that a negative clinical diagnosis would be made in the presence
of streptococcal pharyngitis compared with the absence of the disease.

USES OF LIKELIHOOD RATIOS

Pretest probability (prevalence) can be converted to pretest odds using
the formula presented earlier. Likelihood ratios can then be used to convert
pretest odds to posttest odds, by means of the following formula:

Pretest odds X Likelihood ratio = Postrest odds

Posttest odds can, in turn, be converted back to a probability, using the
formula described carlier in this chapter. In these relationships, pretest
odds contains the same information as prior probability (prevalence), likeli-
hood ratios the same as sensitivity /specificity, and posttest odds the same
as positive predictive value (posttest probability).

The main advantage of likelihood ratios is that they make it easier for
us to go beyond the simple and clumsy classification of a test result as
either abnormal or nermal, as is usually done when describing the accuracy
of a diagnostic test only in terms of sensitivity and specificity at a single
cutoff point. Obviously, disease is more likely in the presence of an ex-
tremely abnormal test result than it is for a marginal one. With likelihood
ratios, it is possible to summarize the information contained in a test result
at different levels. One can define likelihood ratios for any number of test
results, over the entire range of possible values. In this way, information
represented by the degree of abnormality, rather than the crude presence
or absence of it, is not discarded. In computing likelihood ratios across a
range of test results, sensitivity refers to the ability of that particular test
result to identify people with the disease, not individuals with that result
or worse. The same is true for the calculation of specificity.

Thus likelihood ratios can accommodate the common and reasonable
clinical practice of putting more weight on extremcly high (or low) test
results than on borderline ones when estimating the probability (or odds)
that a particular discase is present.
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Example How accurate is serum thyroxine (T,) alone as a test for hypo-
thyroidism? This question was addressed in a study of 120 ambulatory gen-
eral medical patients suspected of having hypothyroidism (12). Paticnts were
diagnosed as being hypothyroid if serum thyrotropin (TSH) was elevated
and if subsequent evaluations, including other thyroid tests and response to
treatment, were consistent with hypothyroidism. The authors studied the
initial T, level in 27 patients with hypothyroidism and 93 patients who were
found not to have it to determine how accurately the simple test alone might
have diagnosed hypothyroidism.

As expected, likelihood ratios for hypothyroidism were highest for low
levels of T, and lowest for high levels (Table 3.2). The lowest values in the
distribution of Tys (<1 4.0 g /dL) were only seen in patients with hypathyroid-
ism, i.e., these levels ruled in the diagnoesis. The highest levels (=8.0 pg/dL)
were not seen in patients with hypothyroidism, i.e., the presence of these
levels ruled out the disease.

The authors concluded that “it may be possible o achieve cost savings
withont loss of diagnostic accuracy by using a single total T, measure-
ment for the initial evaluation of suspected hypothyroidism in selected
patients.”

The likelihood ratio has several other advantages over sensitivity and
specificity as a description of test performance. The information contrib-
uted by the test is summarized in one number instead of two. The calcula-
tions necessary for obtaining posttest odds from pretest odds are casy.

Table 3.2
Distribution of Values for Serum Thyroxine in Hypothyroid and Normal Patients,
with Calculation of Likelihood Ratios®

Patients with Test Result
Total Serum e Ce—

I hygrcmine: Flypothyroid Mozt Likezlinoo
(paddl) nurmbier, percent) [numbcr, percent) Ratic
<11 2 (7.4} 1

1.1-2.0 3111 Ruled in

21-3.0 1(3.7)

31-4.0 8 (29.6} 1

4.1-6.0 4 (14.8} 1{1.1} 13.8

5.1-6.0 4 (14.8) 6 (6.5 2.3

6.1-7.0 3 11 (11.8) 4

7.1-8.0 2{7.4) 19 (201} 4

B.1-9.0 17 (18.3)

9.1-10 20 (21.59) I
10.1-11 11(11.8) Ruled out
11.1-12 414.3)

=12 444.3) I
Tolal 27 (1000 93 (100

“Trom Goldstein B, Mushiin Al Use ol a single thyroxine test to evaluate amibulatory medicasd patients for
suspocted ypothyraidisim. | Gen Intern Med 19ET, 220 - 24,
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Also, likelihood ratios are particularly well suited for describing the overall
probability of disease when a series of diagnostic tests is used (see below),

Likelihood ratios (I.R) also have disadvantages. One must use odds, not
probabilities, and most of us find thinking in terms of odds more difficult
than probabilities. Also, the conversion from probability to odds and back
requires math or the use of a nomogram, which partly offsets the simplicity
of caleulating posttest odds using LRs. Finally, for tests with a range of
results, LRs use measures of sensitivity and specificity that are different
from those usually described.

Multiple Tests

Because clinicians commonly use imperfect diagnostic tests, with less
than 100% sensitivity and specificity and intermediate likelihood ratios, a
single test frequently results in a probability of disease that is neither very
high nor very low, e.g., somewhere between 10% and 90%. Usually 1t is
not acceptable to stop the diagnostic process at such a point. Would a
physician or patient be satisfied with the conclusion that the patient has
cven a 20% chance of having carcinoma of the colen? Or that an asymptom-
atic 35-year-old man with 2.5 mm ST segment depression on a stress test
has a 42% chance of coronary artery disease (see Fig. 3.9)? Even for less
deadly diseases, such as hypothyroidism, tests with intermediate posttest
probabilities arc of little help. The physician is ordinarily bound to raise
ot Jower the probability of disease substantially in such situations—unless,
of course, the diagnostic possibilities are all trivial, nothing could be done
about the result, or the risk of proceeding further is prohibitive. When
these cxceptions do not apply, the doctor will want to proceed with
further tests.

When multiple tests are performed and all are positive or all are nega-
tive, the interpretation is straightforward. All too often, however, some
are positive and others are negative. Interpretation is then more compli-
cated. This section discusses the principles by which multiple tests are
applied and interpreted.

Multiple tests can be applied in two general ways (Fig. 3.10). They can
be used in parallef (i.c., all at once), and a positive result of any test is
considered evidence for disease. Or they can be done seriafly (i.e., consecu-
tively), based on the results of the previous test. For serial testing, all
tests must give a positive result for the diagnosis to be made, because the
diagnostic process is stopped when a negative result is obtained.

PARALLEL TESTS

Physicians usually order tests in parallel when rapid assessment is necessary,
as in hospitalized or emergency patients, or for ambulatory patients who cannot
return easily because they have come from a long distance for evaluation.
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STRATEGY SEQUENCE OF EVENTS CONSEQUENCES

Serial testing

Test A andtest B andtest C are positive

;. 1 Sensitivity
- : TSpecificity
Parallel testing
Test A ortest B ortest C is positive
TSensitivity
I Specificity

Co 1%

Figure 3.10. Serial and parallel testing.

Multiple tests in parallel generally increase the sensitivity and, therefore,
the negative predictive value for a given disease prevalence above those
of each individual test. On the other hand, specificity and positive pre-
dictive value are lowered. That is, disease is less likely to be missed (parallel
testing is probably one reason referral centers seem to diagnose disease
that local physicians miss), but false-positive diagnoses are also more likely
to be made (thus the propensity for overdiagnosing in such centers as
well). The degree to which sensitivity and negative predictive value in-
creases depends on the extent to which the tests identify patients with the
discase missed by the other tests used. For example, if two tests are used
in parallel with 60 and 80% sensitivities, the sensitivity of the parallel
testing will be only 80% if the better test identifies all the cases found by
the less sensitive test. If the two tests each detect all the cases missed by
the other, the sensitivity of parallel testing is, of course, 100%. Tf the two
tests are completely independent of each other, then the sensitivity of
parallel testing would be 92%.

Parallel testing is particularly useful when the clinician is faced with
the need for a very sensitive test but has available only two or more
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relatively insensitive ones that measure different clinical phenomena. By
using the tests in parallel, the net cffect is a mere sensitive diagnostic
strategy. The price, however, is cvaluation or treatment of some patients
without the disease.

Lxample PSA and digital rectal exam are both insensitive {ests for the
diagnosis of prostate cancer (7). Table 3.3 shows their sensitivity, specificity,
and predictive values in the screening sctting (men without symptoms).
When the two tests are used in parallel, the sensitivity increases but the
specificity falls. The positive predictive value is lower than for PSA
testing alone.

SERIAL TESTING

Physicians most commonly use serial testing strategies in clinical situa-
tions where rapid assessment of patients is not required, such as in office
practices and hospital clinics in which ambulatory patients are followed
over time. Serial testing is also used when some of the tests are expensive
or risky, these tests being employed only after simpler and safer tests
suggest the presence of discase. For example, maternal age and blood tests
(a-fetoprotein, chorionic gonadotropin and estriol) are used to identify
pregnancics at higher risk of delivering a baby with Down’s syndrome.
Mothers found to be at high risk by those tests are then offered amniocente-
sis (13). Serial testing leads to less laboratory use than parallel testing,
because additional evaluation is contingent on prior test results. However,
serial testing takes more time because additional tests are ordered only
after the results of previous ones become available.

Serial testing maximizes specificity and positive predictive value, but
lowers sensitivity and the negative predictive value (sce Table 3.3). One
ends up suter that positive test results represent disease, but runs an in-
creased risk that disease will be missed. Serial testing is particularly useful
when none of the individual tests available to a clinician is highly specific.

If a physician is going to use two tests in series, the process will be

Table 3.3
Tests Characteristics of PSA and Digital Rectal Examination (DRE)"

Positive Precictive

Tesl Sensitivily Speciicity Yalue
PSA 4.0 pg/mL 0.87 0.97 0.43
Abnormal DRE 0.50 0.94 (124
Abnormal PSA or DRE .84 (1.92 0.28
Abnormal PSA and DRE 0.34 (3.995 0.49

i g and DRE alone and in combination (paralel and saral testing) in the diagnosis of prostate cancer.
thdaptad from Kramer BS et al. Prostate cancer screening: what we know and what we nead to know. Ann
it Mo 1993119914 823
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more cfficient if the test with the highest specificity is used first. Table 3.4
shows the effect of sequence on serial testing. Test A is more specific than
test B, whereas B is more sensitive than A. By using A first, fewer patients
are subjccted to both tests, even though equal numbers of discased patients
are diagnosed, regardless of the sequence of tests, However, if one test is
much cheaper or less risky, it may be more prudent to use it first.

ASSUMPTION OF INDEPENDENCE

When multiple tests are used, as discussed above, the accuracy of the
result depends on whether the additional information contributed by each
test is somewhat independent of that already available from the preceding
ones, i.e., the next test does not simply duplicate known information. In
fact, this premisc underlies the entire approach to predictive value we have
discussed. However, it seems unlikely that the tests for most diseases

Table 3.4
Effect of Sequence in Serial Testing: A Then B versus B Then A®

Prevalence ot Disease

Number of patients tested 1000
Number of patients with disease 200 (20% prevalence)

Sensitivity and Specificity of Tests

Test Sensitivity Specificity
A 30 a0
B a0 80

Sequence of festing

Begin with Test A

Begin with Test B

Disease Disease
+ - + -
A § 160 50 240 + 180 180 340
- 40 720 760 20 840 660
200 800 1000 200 800 1000

240 Patients Retested with B

340 Patients Retosted with A

Disease Disease
B + 144 16 160 + 144 16 160
- 16 64 a0 - 46 144 180
160 80 240 180 160 340

* Mote that in both sequences the same number of patients are idenlilied as diseased (160) and the same
nurnber of true positives (144) are identified. Bul whan test A fwith the higher spacificity} is used first, fewer
patents are retested. The fower sensitivity of test A doces not adversely affect the final result.
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are fully independent of one another. If the assumption that the tests are
completely independent is wrong, calculation of the probability of disease
from several tests would tend to overestimate the tests” value.

SERIAL LIKELIHOOD RATIOS

When a series of tests is used, an overall probability can be calculated,
using the likelihood ratio for each test result, as shown in Figure 3.11. The
prevalence of disease before testing is first converted to pretest odds. As
each test is done, the posttest odds of one becomes the pretest odds for
the next. In the end, a new probability of disease is found that takes into
account the information contributed by all the tests in the series.

Responsiveness

The clinical status of patients changes continually cither in response to
treatment or because of the effects of aging or illness. Clinicians regularly
face the question, “Has my patient improved or deteriorated?” The tests
used to monitor the clinical course (e.g.,, symptom severity, functional
stahus) are often somewhat different from those used to diagnose disease,
but the assessment of their performance is very similar.

The ability of changes in the value of a test to identify correctly changes
in clinical status is called its responsiveness. It is conceptually related to
the validity of a diagnostic test, except that the presence or absence of a
meaningful change in clinical status, not the presence or abscnce of disease,
is the gold standard. The magnitude of a test’s responsiveness can be
expressed as sensitivity, specificity, and predictive value or as the area
under the ROC curve.

Example Several self-report measures of health and functional status are
commonly used to menitor the health of populations and cvalvate the effects
of {reatment. Two such measures are restricted activity days—number of

PHETEST PROBABILITY
\

Test A Pretest odds x LRa = Postteft odds

Test B Pretest odds x LRs = Posttest odds
1

POSTIEST PROBABILITY:

Figure 3.11. Use of likelihood ratios in serial testing.
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days on which usual activities were limited by illness or injury—and self-
reported health—a question asking respondents to rate their health from
excellent to poor compared with others their age. The responsiveness of these
measures adminisiered 1 year apart was assessed by comparing changes in
cach measure between older adults whe experienced a major illness during
the year and those that did not have a major illness (14). The KOC curves in
Figure 3.12 show that the changes in self-reported health performed slightly
better than chance in picking up changes m health associated with major
illness, while changes in restricted activity days performed much better, ac-
counting for 80% of the area under the ROC curve.

Summary

Diagnostic test performance is judged by comparing the results of the
test to the presence of disease in a two-by-two table. All four cells of the
table must be filled. When estimating the sensitivity and specificity of a
new diagnostic test from information in the medical literature, there must
be a gold standard to which the accuracy of the test is compared. The
discased and nondiscased subjects should both resemble the kinds of pa-
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Distingeishing between elderly patients with and without a major intervening iliness.
{Adapted from Wagner EH, LaCroix AZ, Grothaus LC, Hecht JA. Responsiveness
of health status measures to change among older adults. J Am Geriatr Soc
1993;41:241-248)
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tients for whom the test might be useful in practice. In addition, knowledge
of the final diagnosis should not bias the interpretation of the test results
or vice versa. Changing the cutoff peint between normal and abnormal
changes sensitivity and specificity. Likelihood ratios are another way of
describing the accuracy of a diagnostic test.

The predictive value of a test is the most relevant characteristic when
clinicians interpret test results. It is determined not only by sensitivity and
specificity of the test but also by the prevalence of the disease, which may
change from setting to setting. Usually it is necessary to use several tests,
either in parallel or in series, to achicve acceptable diagnostic certainty.
Responsiveness, a test’s ability to detect change in clinical status, is also
judged by the same two-by-two table.
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4

FREQUENCY

In Chapter 1, we outlined the central questions facing clinicians as they
care for patients. In this chapter, we define and describe the quantitative
evidence that clinicians use to guide their diagnostic and therapeutic deci-
sions. Let us introduce the subject with a patient.

A 72-year-old man presents with slowly progressive urinary {requency,
hesitancy, and dribbling. Digital rectal examination reveals a symmetrically
enlarged prostate gland. Urinary flow measurements show significant re-
duction in flow rate and serum PSA is not elevated. A diagnosis of benign
prostatic hyperplasia (BPH) is made. In deciding on treatment, the clinician
and patient must weigh the costs and benefits of various therapeutic op-
tions: for example, the risks of worsened symptoms or obstructive renal
disease with medical treatment versus operative mortality or sexual dys-
function with surgery.

The decisions have traditionally been made by “clinical judgment,”
which we learn at the bedside and in the clinics. In recent years, methods
for quantitative clinical decision making have been introduced into medi-
cine. The most commonly used clinical strategies are decision analysis,
cost-effectiveness analysis, and cost-bencefit analysis. These metheds use
quantitative data about the frequency of key clinical events and the conse-
quences of those events to patients to derive the best course of action. The
methods, described in more detail at the end of the chapter, are only as
good as the estimates of the probability or frequency of clinical outcomes
on which they rely.

For the patient with BP’H, sound clinical judgment requires accurate
information about the probability of symptom deterioration, acute reten-
tion or renal damage with medical treatment; and symptom relief, mortal-
ity, impotence, or retrograde ejaculation with surgery. These are, in general,
the kinds of evidence needed to answer most clinical questions. Decisions
are guided by the probability of outcomes under alternative circumstances:
in the presence of a positive test versus a negative test or after treatment
A versus treatment B. Because the probability of discase, improvement,
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deterioration, cure, or death forms the basis for answering most clinical
questions, this chapter examines measures of clinical frequency.

Assigning Numbers to Probability Statements

Physicians often communicate probabilities as words—usuatly, sorme-
times, rarely, etc.—rather than as numbers, Substituting words for nurmbers
is convenient and avoids making a precise statement when one is uncertain
about a probability. However, it has been shown that there is little
agreement about the meanings of commonly used words for frequency.

Example Physicians were asked to estimate the likclihood of discase
for each of 30 expressions of probability found by reviewing radiology and
laboratory reports. There was great difference of opinion for each eXpression.
Probabilities for consistent with ranged from 0.18 to (1.98; for unlikely, the range
was 0.01-0.93. Thesc data support the authors’ assertion that “difference of
opinion among physicians regarding the management of a problem may
reflect differences in the meaning ascribed to words used to define
probability™ {1},

Patients also assign widely varying values for expressions of probability.
In another study, highly skilled and professional workers thought usually
referred to probabilities of 0.35-1.0 (+2 standard deviations from the
mean); rarely meant to them a probability of 0-0.15 (2).

Thus substituting words for numbers diminishes the information con-
veyed. We advocate using numbers whenever possible.

PERCEPTIONS OF FREQUENCY

Personal experience colors the clinician’s perception of the probability
of conditions and outcomes, Faving a recent patient experience an outcome
will tend to make the clinician inflate the probability of that outcome.
Conversely, clinicians tend to underestimate the frequency of occurrences
that they have not yet experienced or that patients may be reluctant to
discuss. For example, systematic interviews of patients after transurethral
resection of the prostate gland (TURP) reveal that more than 50% of men
experience retrograde ejaculation (3). Most urologists would estimate the
frequency to be much lower, since many male patients are reluctant to
discuss sexual issues.

Prevalence and Incidence

In general, chnically relevant measures of the frequency or probability
of events arc fractions in which the numerator is the number of patients
experiencing the outcome {cases) and the denominator is the number of
people in whom the outcome could have occurred. Such fractions are, of
course, proportions; but by common usage, they are referred to as “‘rates.”

Clinicians encounter two measures of frequency —prevalence and
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incidence. A prevalence is the fraction (proportion) of a group of people
possessing a clinical condition or outcome at a given point In time.
Prevalence is measured by surveying a defined population containing
people with and without the condition of interest, at a single slice in
time. There are two kinds of prevalence. Point prevalence is measured at
the time of the survey for cach person, although not necessarily the
same point in time for all the people in the defined population. Period
prevalence refers to cases that were present at any time during a specific
peried of time.

An incidence is the fraction or proportion of a group initially free of the
condition that develops it over a given period of time. Incidence refers
then to new cases of disease occurring in a population initially free of the
disease or new outcomes, such as disability or death, occurring in patients
with a specific disease. As described later in this chapter and in greater
detail in Chapter 5, incidence is measured by identifying a susceptible
group of people (i.e.,, people free of the disease or the outcome) and examin-
ing them periodically over an interval of time to discover and count new
cases that develop during the interval.

Example l'oillustrate the diffcrences between prevalence and incidence,
Figure 4.1 shows the occurrence of disease in a group of 100 peaple over the
course of 3 years (1992-1994). As time passes, individuals in the group de-
velop the discase. They remain in this state until they either recover or die.
In the 3 years, 16 people suffer the onset of disease and 4 already had it. The
remaining 80 people do not develop disease and do not appear in the figure.

At the beginning of 1992, there arc four cases, so the prevalence at that
puint in time is 4/100). If all 100 individuals, including prior cases, are exam-
incd at the beginning of cach year, one can compute the prevalence at those
points in time. At the beginning of 1993, the prevalence is 5/100 because two
of the pre-1992 cases lingered on into 1993 and two of the new cases devel-
oping in 1992 terminated (hopefully in a cure) before the examination at the
start of 1993, Prevalences can be computed for each of the other two annual
examinations, and assuming that none of the original 100 people died, moved
away, or refused examination, these prevalences arc 7/100 at the beginning
of 1994 and 5/100 at the beginning of 1995

To calculate the incidence of new cases developing in the population, we
consider only the 96 individuals free of the disease at the beginning of 1992 and
what happens to them over the next 3 years. Five new cases developed in 1992;
six mew cases developed in 1993, and five additional new cases developed in
1994, The 3-year incidence of the disease is all new cases developing in the 3
years {which is 16} divided by the number of susceptible individuals at the
beginning of the follow-up pericd (96 people), or 16/96 in 3 years. What are
the annual incidences for 1992, 1993, and 1994, respectively? Remembering to
remove the previous cases from the denominator, we would caleulate the annual
incidences as 5/96 for 1992, 6/91 for 1993, and 5/85 for 1994

Every measure of disease frequency necessarily contains some indica-
tion of time. With measures of prevalence, time is assumed to be instanta-
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1992 1993 1994

O Onset
— Duration

Figure 4.1. Cccourrence of disease in 100 people at risk from 1992 to 1994,

neous, as in a single frame from a motion picture. Prevalence depicts the
situation at that point in time for each patient, even though it may, in
reality, have taken several weeks or months to collect observations on the
various people in the group studied. For incidence, time is the essence
because it defines the interval during which susceptible subjects were mon-
itored for the emergence of the event of interest.

Table 4.1 summarizes the characteristics of incidence and prevalence.
Although the distinctions between the two seem clear, the literature is
replete with misuses of the terms, particularly incidence (4).

Why is it important to know the difference between prevalence and
incidence? Because they answer two different questions: (2) What propor-
tion of a group of people have a condition? and (b) At what rate do new
cases arise in a group of people as time passes? The answer to one question
cannot be obtained directly from the answer to the other.
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Measuring Prevalence and Incidence
PREVALENCE STUDIES

The prevalence of disease is measured by surveying a group of people,
some of whom are diseased at that point in time while others are healthy
(Fig. 4.2). The fraction or proportion of the group that is diseased (i.e.,
cases) constitutes the prevalence of the discase.

Such one-shot examinations or surveys of a population of individuals,
including cases and noncases, are called prevalence studies. Another term
is cross-sectional studies, because people are studied at a point (cross-section)
in time. They are among the more common types of research designs
reported in the medical literature.

The following is an example of a typical prevalence study.

Table 4.1
Characteristics of Incidence and Prevalence

Characlenstic

Incidence

Provalence

Nurnerator

Cenominatar

Time
How measured

Mew casas occurring during a
period of fime among a
group initially free of
disease

All susceptibie people presant
at the heginning of the
period

Duration of the period

Gohort study {see Chaptor &)

All cases counted on a single
survey or examination of a
group

All people examined. including
cases and noncases

Single point
Prevalence {cross-sectional)
study

Defined
Population

Representative
Sample

Disease/Qutcome
Present?
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Example What is the prevalence of dementia in the general population
of older adults? To answer this question, 1966 people 75 years of age and
older living in Cambridge, England, were surveyved. Each participant under-
went an examination that included the Mini-Mental State Examination
{MMBE), a test for cognitive impairment. The presence of dementia was
identified by a serial testing strategy: Those with MMSE scores of 25 or less
were examined using a standardized protocol by a psychiatrist who made
the final diagnosis. The prevalence of dementia was about 10% overall, and
rates doubled in each 5-year age band (5).

INCIDENCE STUDIES

[n contrast to prevalence, incidence is measured by first identifying a
pepulation free of the event of interest and then following them through
time with periodic examinations to determine occurrences of the event.
The populatton under examination in an incidence study, referred to as a
cohort, may be healthy individuals followed for the emergence of disease
or discased individuals followed for outcomes of the disease. This process,
also called a cohort study, will be discussed in detail in Chapter 5.

To this point, the term incidence has been used to describe the rate of
new events in a group of people of fixed size, all of whom are observed
over a period of time. This is called cumulative incidence, because new cases
are accumulated over time,

Example To study the incidence of dementia, the Cambridge investiga-
tors identified a cohort by removing from the follow-up study population
those older individuals diagnosed with dementia in the prevalence study
described above (6). The remaining 1778 nondemented people were tracked.
Of these, 305 died, 190 refused further testing, and 88 could not be found or
were too ill to be examined. The remaining 1195 were reexamined an average
of 2.5 years after the original examination. Qverall, the annual incidence rate
of demention in this cohort was 4.3% and exceeded 8% per year lor those
who were over age 85 at the time of the prevalence examination.

A second approach to estimating incidence is to measure the number
of new cases emerging in an ever-changing population, where people are
under study and susceptible for varying lengths of time. The incidence
measure derived from studics of this type is sometimes called incidence
density. Typical examples are clinical trials of chronic treatment in which
eligible paticents are enrolled over several years so that early enrollees are
treated and followed longer than late enrollees. Tn an effort to keep the
contribution of individual subjects commensurate with their follow-up in-
terval, the denominator of an incidence density measure is not persons at
risk for a specific ime period but person-time at risk of the event. An
individual followed for 10 years without becoming a case contributes 10
person-years, whereas an individual followed for 1 year contributes only
one person-year to the denominator. Incidence density is expressed as the
number of new cases per total number of person-years at risk.
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The person-years approach is also useful for estimating the incidence
of disease in large populations of known size when an accurate count of
new cases and an estimate of the population at risk are available, e.g., a
population-based cancer registry.

A disadvantage of the incidence density approach is that it lumps to-
gether different lengths of fellow-up. A small number of patients followed
for a Jong time can contribute as much to the denominator as a large
number of patients followed for a short time. Tf these long-term follow-up
patients are systematically different from short-term follow-up patients,
the resulting incidence measures may be biased.

Interpreting Measures of Clinical Frequency

To make sense of a prevalence or incidence rate, the first steps involve
careful definition of both the numerator and the denominator.

WHAT IS A CASE?—DEFINING THE NUMERATOR

Up to this point, the general term case has been used to indicate an
individual suffering from the disease or outcome of interest. In classical
epidemiology, cases tend to be individuals with a disease, and prevalence
and incidence refer to the frequency of cases among population groups
like the residents of a community. However, clinical decisions often depend
on information about the frequency or rate of disease manifestations, such
as symptoms, signs, or laboratory abnormalities, or the frequency of dis-
ease outcomes, such as death, disability, or symptomatic improvement. In
clinical practice, then, “cases’ are often those patients with a disease who
manifest a particular clinical finding or experience a particular outcome.

To interpret rates, it is necessary to know the basis on which a case is
defined, because the criteria used to define a case can strongly affect rates.

Example Onesimple way to identify a case is to ask people whether they
have a certain condition. How does this method compare to more rigorous
methods? In the Commission on Chronic Tllness study, the prevalences of
various conditions, as determined by personal interviews in the home, were
compared with the prevalences as determined by physician examination of
the same individuals. Figure 4.3 illustrates the interview prevalences and the
clinical examination prevalences for various conditions.

The data illustrate that these two methods of defining a case can generate
very different estimates of prevalence and in different directions, depending
on the condition (7).

For some conditions, broadly accepted, explicit diagnostic criteria are
available. The Centers for Disease Control and Prevention criteria for defi-
nite Lyme disease (Table 4.2) can be used as an example (8). These criteria
demonstrate the specificity required to define reliably a disease that is as
much in the public eye as is Lyme disease. They also illustrate a trade-off
between rigorous definitions and clinical reality. If only “definite” cases
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Method of Defining Case

Clinical Examination Questionnaire

[ Hernia

| Heart disease

E:] Peptic ulcer
I Diabetes
| | Hypertension
[ | Arthritis
C ] Chronic bronchitis
( |  Asthma‘haytever
l::j Chranic sinusitis

f T 1 | T T 1 i
10 8 6 4 2 0 2 4 6

PREVALENCE (%)

Figure 4.3. FPrevalence depends on the definition of a case. The prevalence of
diseases in the general population based on people's opinions (survey) and clinical
evaluation. (Data from Sanders BS. Have morbidity surveys been oversold? Am J
Public Health 1962;52:1648-1659.)

Table 4.2
Criteria for Reporting Lyme Disease®

Climical Case Delinition (Confirmed}
Erythema Migrans or
At lzast one late manifestation and laboratory confirmation of infection

Late Manifestation MWhen Alternative Explanation Not Found)
Musculoskeletal
Recurrent brief attacks of objective joint swelling
Nervous system: any of the following
Lymphogytic meningitis
Cranial neuritis [particularly facial palsy)
Encephalomyelitis with antibody in CSF
Cardiovascular
Acute onset 2 or 3° atrioventricular conduction defecls that resolve.

Labaratary Confirmation {Arny of the Following)
Isolation of Bomralia burgdorfel
Diagnostic levels of Igh and lgG antibodies 1o the spirochete in serum or CSF
Significant change in antibody responses in paired acute- and convalescent-phasc serum
samplcs.

4 Centors for Diseasc Conbrol and FProvenlion crileria. (ddopted from LS. Department of Health and Homan
Services. Case definitions for puobc heakth surveillance, MWMWE 196800 39,19 - 20
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were included in a rate, most patients who ordinarily would be considered
to have the disease would not be included. On the other hand, including
“probable” cases could overestimate the true rate of disease.

Example The incidence rate of Lyme disease was estimated in Olmstead
County, Minnesota (9). Between 1980 and 1990, 68 cases had been clinically
diagnosed in residents of the county. Only 17 (25%) met CDC criteria. In
Minnesota, it is mandatory to report Lyme disease to a public health official,
yet only 7 cases were reported, of which four met CDC criteria. These data
illustrate how difficult it is to make accurate estimates of the frequency of
diseases whose diagnosis relies on multiple clinical criteria.

WHAT IS THE POPULATION? —DEFINING THE DENOMINATOR

A rate is useful only to the extent that the individual practitioner can
decide to which kinds of patients the rate applies. The size and characteris-
tics of the group of individuals in which the cases arose must be known.

Customarily, the group included in the denominator of a rate is referred
to as the population or, more particularly, the population at risk, where at
risk means susceptible to the disease or outcome counted in the numerator.
For example, the incidence or prevalence of cervical cancer will be underes-
timated if the population includes wemen who have had hysterectomies
or includes men.

The denominator of a rate should include the population relevant to
the question being asked, or a representative sample of them. But what is
relevant depends on one’s perspective. For example, if we wanted b know
the true prevalence of rheumateid arthritis in Americans, we would prefer
to include in the denominator a random sample of all people in the United
States. But if we wanted to know the prevalence of rheumatoid arthritis
in medical practice—perhaps to plan services—the relevant denominator
would be patients seen in office practice, not people in the population at
large. In one survey, only 25% of adults found to have arthritic and rheu-
matic complaints (not necessarily rheumatoid arthritis) during a commu-
nity survey had received services for such complaints from any health
prefessional or institution (10).

It is customary for epidemiologists to think of a population as consisting
of all individuals residing in a geographic arca. And so it should be for
studies of cause and effect in the general population. But in studies of
clinical questions, the relevant populations generally consist of patients
suffering from certain diseases or exhibiting certain clinical findings and
who are found in clinical settings that are similar to those in which the
information will be used. Commonly, such patients are assembled at a
limited number of clinical facilities where academic physicians see patients.
They may make up a small and peculiar subset of all patients with the
findings in some geographic area and may even be an unusual group for
office practice in general.
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What difference might the choice of a population make? What is at issue
is the generalizability of observed rates.

SAMPLING

It is rarely possible to study ail the people who have or might develop
the condition of interest. Usually, one takes a sample, so that the number
studied is of manageable size. This raises a question: Is the sample repre-
sentative of the population?

In general, there are two ways to obtain a representative sample. [n a
random sample, every individual in the population has an equal probability of
being selected. The more general term probubility sample is used if every person
has a known (not necessarily equal) probability of being selected. Tt is often
important that a study sample includes a sufficient number of members of
particular subgroups of interest such as ethnic minorities. If these subgroups
are small, a simple random sample of the entire population may not include
enough subgroup members. To remedy this, a larger percentage of each of
these subgroups is selected at random. The final sample will still be represen-
tative of the entire population if the different sampling fractions arc accounted
for in the analysis. On the average, the characteristics of people in probability
samples are similar to those of the population from which they were selected,
particularly if a large sample is chosen.

Other methods of selecting samples may well be biased and so do not
necessarily represent the parent population. Most groups of patients de-
scribed in the medical literature, and found in most clinicians” experience,
are based on biased samples. Typically, patients are included in studies
because they are under care in an academic institution, available, willing
to be studied, and perhaps also particularly interesting and/or severely
affected. There is nothing wrong with this practice—as long as it is under-
stood to whom the results do (or do not) apply.

Relationship among Incidence, Prevalence,
and Duration of Disease

Anything that increases the duration of the disease or clinical finding
in a patient will increase the chance that that patient will be identified in a
prevalence study. A glance at Figure 4.1 will confirm this. The relationship
among incidence and prevalence and duration of disease in a steady
state—i.e., where none of the variables is changing much over time—is
approximated by the following expression:

Prevalence = Incidence X Average duration of the discase

Example Table 4.3 shows approximate annual incidence and prevalence
rates for asthma. Incidence falls with increasing age, illustrating the fact that
the disease arises primarily in childhood. But prevalence stays fairly stable
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over the entire age span, indicating that asthma tends to be chronic and is
especially chronic among older individuals. Also, because the pool of preva-
lent cases does not increase in size, about the same number of patients are
recovering from their asthma as new patients are acquiring it.

If we use the following formula, we can determine that asthma has an
average duration of 10 years:

Average duration = Prevalence + Incidence

Whoen the duration of asthma is determined for each age category by divid-
ing the prevalences by the incidences, it is apparent that the duration of
asthma increases with increasing age. This reflects the clinical observation
that childhood asthma often clears with Bme, whereas adult asthma tends
to be more chronic.

Bias in Prevalence Studies

Prevalence studies can be used to investigate potentially causal relation-
ships between risk factors and a discase or prognostic factors and an out-
come. For this purpose, they are quick but inferior alternatives to incidence
studies. Two characteristics of prevalence studies are particularly trouble-
some: uncertainty about the temporal sequence and biases associated with
the study of cases of longer duration—"old” cascs.

UNCERTAINTY ABOUT TEMPORAL SEQUENCES

In prevalence studies, disease and the possible factors responsible for
the disease are measured simultaneously, and so it is often unclear which
came first. The time sequence js obscured, and if it is important to the
interpretation it must be inferred. If the risk or prognostic factor is certain
to have preceded the onset of disease or cutcome—e.g., family history or
a genetic marker —interpretation of the cause-and-effect sequence is less
worrisome. If the risk or prognostic factor can be a manifestation of the

Table 4.3
The Relationships among Incidence, Prevalence, and Duration of Disease: Asthma
in the United States®

Purahon — Provatence

Age Annual Incidence Prevalence Annual Incidences
0.5 61000 291000 4.5 vears
G- 16 341000 321000 107 years
17--44 241000 281000 180 years
A5 G4 171000 33000 33.0 vears
Bh+ b 361000 S0 years
351000 301000 10D yoars

*Approximated trom soveral sources.
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discase or outcome—e.g., an abnormal laboratory test or a psychological
statc—determining the sequence of events is rruch more difficult. In con-
trast, studies of incidence have a built-in sequence of events because possi-
ble causes of disease are measured initially, before discase has occurred.
These relationships are illustrated in Figure 4.4.

BIASES STUDYING “OLD” CASES

The difference between cases found in the numerator of incidence rates
and of prevalences rates is illustrated in Figure 4.5. In an incidence study, all
cases are new and most cases occurring in the population at risk can be
ascertained if followed carefully through time. Tn contrast, a prevalence study
includes a mixture of old and new cases that are available at the time of the
single examination—that is, they identify cases that happen to be both active
(i.c., diagnosable) and alive at the time of the survey. Obviously, prevalence
rates will be dominated by those patients who are able to survive their disease
without losing its manifestations. The differences between the kinds of cases
included in the numerator of an incidence and the kinds of cases included
in the numerator of a prevalence may influence how the rates are interpreted.

Possible Causes Disease or Qutcome

Incidence Study

Measurement is
development of
new cases of

disease over time

Prevalence Study

Measurement is
past or present <|—
exposure to JQ

possible causes

Figure 4.4. Temporal relationship between possible causal factors and disease for
incidence and prevalonce studies.
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Figure 4.5. The difference in cases for incidence and prevalence studies.

Prevalence is affected by the average duration of disease. Rapidly fatal
episedes of a disease would be included in an incidence study, but most
would be missed by a prevalence study. For example, 25-40% of all deaths
from coronary heart disease occur within 24 hr of the onset of symptoms
in people with no prior evidence of disease. A prevalence study would,
therefore, underestimate cases of coronary heart disease. On the other
hand, diseases of long duration are well represented in prevalence surveys,
even if their incidence is low. For example, although the incidence of
Crohn's disease is only about 2 to 7 per 100,000/ year, its prevalence is
more than 100 per 100,000, reflecting the chronic nature of the disease (11}.

Prevalence rates also selectively include more severe cases of nonfatal
diseases. For example, patients with quiescent rheumatoid arthritis might
not be diagnesed in a study based on current symptoms and physical
findings. Similarly, patients with recurrent but controllable illnesses, such
as congestive heart failure or depression, may be well at a given point in
time and, therefore, might not be discovered on a single examination.
Unremitting discase, on the other hand, is less likely to be overlooked
and, therefore, would contribute disproportionately to the pool of cases
assembled by a prevalence study.

Uses of Incidence and Prevalence

What purposes do incidence and prevalence serve? Clinicians use them
in three different ways: predicting the future course of a patient, assigning
a probability fo a patient, and making comparisons.
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PREDICTING THE FUTURE

Incidence is a description of the rate at which a diseasc or a disease
outcome has arisen over time in a group of people known to be free of
the disease at the beginning of follow-up. It can be used to predict the
probability that similar people will develop the condition in the future.

Example  The probabilitics of outcomes following TURP, needed to de-
cide the most appropriate treatment for the man with BPH described at the
opening of this chapter, were estimated from a large cohort study of older
men in New England (12). Interviews with more than 300 men undergoing
TURP revealed that symptom resolution varied with the severity of symp-
toms before surgery; 93% of men with severe symptoms improved with
surgery while only 79'% of those with moderate baseline symptoms improved.

On the other hand, prevalence studies offer no sound basis for pre-
dicting the future. Tf a prevalence study finds that 30% of patients with
stroke are depressed, this does not mean that 30% of nondepressed stroke
patients will become depressed in the future. It may be that depression
predisposes to stroke, that stroke predisposes to depression, or that nonde-
pressed stroke patients recover quickly. To find out the percentage of stroke
patients who become depressed, new stroke patients must be followed
over fime with repeat measures of depressive symptoms.

ASSIGNING A PROBABILITY THAT A PATIENT HAS THE CONDITION

Prevalence studies are particularly useful in guiding decisions about
diagnosis and treatment. As pointed out in Chapter 3, knowing that a
patient with a combination of demographic and clinical characteristics has
a given probability of having a disease influences the use and interpretation
of diagnostic tests. [t may also may affect the selection among various
treatment options.

A patient with pharyngitis illustrates how variations in prevalence or
prior probability can influence the approach to a clinical problem.

Example A study compared three approaches to the treatment of phar-
yngitis. The value of the approaches was judged by weighing the potential
benefits of preventing rheumatic fever against the costs of penicillin allergy.
The three options were to obtain a throat culture and treat only those patients
with throal cultures positive for group A fi-hemolytic streptococeus, treat all
patients without obtaining a culture, and neither culture nor treat any paticent.

The analysis revealed that the optimal strategy depended on the likelihood
that & patient would have a positive culture, which can be estimated from
the prevalence of streptococcal infection in the community at the time and
the presence or absence of fever. The authors concluded that if the probability
of a positive culture for an individual patient exceeds 20%, the patient should
be trealed; il it is less than 5%, the patient should not be cultured or treated;
and if the probabkility lies between 5 and 20%, the patient should be cultured
first and treated based on the result (13}

This study represents a rational approach to the use of prevalences as




CHAPTER 4 / FREQUENCY 89

indicators of individual probabilities of disease in guiding clinical decision
making.
MAKING COMPARISONS

Although isolated incidences and prevalences are useful descriptions,
they become much more powerful tools in support of decision making
when used to make comparisons. 1t is the comparison between the frequen-
cies of disease among individuals with certain characteristics and individu-
als not sharing those characteristics that provides the strongest evidence.
For example, the risk (incidence) of lung cancer among males who smoke
heavily is of the order of 0.17% per year, hardly a common event. Only
when this incidence is contrasted with the incidence in nonsmokers {ap-
proximately 0.007% per year) does the devastating effect of smoking
emerge. Clinicians use measures of frequency as the ingredients in compar-
ative measures of the association between a factor and the disease or dis-
case outcome. Ways of comparing rates are described in more detail in
Chapter 5.

Clinical Decision Analysis

Quantitative approaches to assisting in decision making have been used
to define the most effective and efficient way to deal with specific problems
in individual patients {clinical policy) or for allocating resources to larger
groups of people, such as communities or political jurisdictions (public
policy}.

In decision analysis, one sets out alternative courses of action (e.g., surgery
versus medical treatment for BPIH or culture then treat or treat everybody
for streptococcal pharyngitis) and then calculates which choice is likely to
result in the most valued outcome, based on estimates of frequencies for
cach branch in the sequences of events and judgments about the relative
valuc of the possible outcomes. The basic steps are clearly presented else-
whoere (14) and are described only briefly below.

1. Create a decision Hree. Clinical decision analysis begins with a patient who
poses a dilemma. Which of the possible courses of achon should be
taken? The tree begins with these alternative decisions, then branches
out to inctude all of the important consequences of those decisions,
and ends with the clinically important outcomes. Branch points involve
either patient care decisions (“choice nodes,” indicated by squares) or
spontanecus events (“chance nodes,” indicated by circles). Although
there is an infinite number of sequences of events and outcomes, usually
only a small number arc truly important and are reasonably likely fo
occur. To make the analysis manageable, it is necessary to “prune’ the
tree so that only the most important branches are included —typically
no more than several branch points.
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. Assign probabilities to chance nodes. These probabilities are assessments

of the frequency of clinical events, which are usually derived from the
medical literature.

- Assign uhilities to the onilcomes. Ultilitics are quantitative expressions of

the relative value of the various outcomes considered. They are best
obtained from patients who may confront the decision. The units are
arbitrary, but must be on an interval scale, e.g., 0 to 100, It may seem
awkward to put a number on the respective values of the various oul-
comes (death, suffering, loss of function), especially when they are mea-
sured in different units, such as the length and quality of life. But pa-
tients attach values to outcomes in any case, and the numbers only
make the values explicit.

Calcudate the expected utilities for the alternative courses of action. Starting
with utilities (at the end of the branches, to the right), multiply utilities
by probabilities for each branch and add branches at each node in suc-
cession until the expected utility at the main branch point, the decision
that has to be made, is rcached.

Select the choice with the highest expected utility.

Sensitivity analysis. Estimates of probabilities and utilities are uncertain
in the first place. The final step in decision analysis is to sce how the
results of the analysis change as these estimates are varied over a range
of plausible values. That is, onc must find out how “‘sensitive’” the
decision is to imprecision in the estimates, Sensitivity analysis indicates
which point in the sequence of events have the most effect on the deci-
sion and how large the effect might be.

Example The therapeutic options facing the older man with urinary
symptoms from benign prostatic hyperplasia (described at the opening of
this chapter} have been evaluated using decision analysis (15). Before drugs
and laser prostatectomy made the decision more complicated, the options
were surgery (transurethral resection of the prostate, TURP) or careful follow-
up, called “watchful waiting,” Figure 4.6 shows the decision tree that the
authors used to evaluate the options, The frequencies of the various outcomes
were derived in the incidence study of New England men described earlier
in the chapter (12) and other published sources (15}, Note that the optimal
decision in this case is surgery {net utility 0.94). In this case, TURP is the
favored treatment because the risk of operative death is low and the utilities
assigned to incontinence or impotence are the same as that assigned to living
with stable moderate urinary symptoms. If stable moderate symptoms were
preferred over incontinence or impotence, the balance would shift.

Summary

Most clinical questions are answered by reference to the frequency of

events under varying circumstances. The frequency of clinical events is
indicated by probabilities or fractions, the numerators of which include
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Incantinent or

Symptoms impotert (0.08) l@
improved (0.80)

No complications (.94
P (0.94}
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TURP Die 0.00
(0.01} Symptoms improved (0.02)
WATCHFUL P P .
WAITING@/ Symptoms stable (0.93)
0.89
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Figure 4.6. A decision tree. Management of a 70-year-old man with moderate
symptoms from benign prostatic hyperplasia. (Data adapted from Barry MJ, Mulley
AG, Fowler FJ, Wennberg JW. Watchiul waiting vs. immediate transurethral resection
for symptomatic prostatism. JAMA 1988,;259(20):3010-3017}

the number of cases and the denominators of which include the number
of people from whom the cases arose.

There are two measures of frequency: prevalence and incidence. Preva-
lence is the proportion of a group with the discase at a single point in
time. Incidence is the proportion of a susceptible group that develops new
cases of the disease over an interval of time,

Prevalence is measured by a single survey of a group containing cases
and noncases, whereas measurement of incidence requires examinations
of a previously disease-free group over time. Thus prevalence studies iden-
tify only those cases who are alive and diagnosable at the time of the
survey, whereas cohort (incidence} studies ascertain all new cases. Preva-
lent cases, therefore, may be a biased subset of all cases because they do
not include those who have already succumbed or been cured. In addition,
prevalence studies frequently do not permit a clear understanding of the
temporal relationship between a causal factor and a disease.

To make sense of incidence and prevalence, the clinician must under-
stand the basis on which the disease is diagnosed and the characteristics
of the population represented in the denominator. The latter is of particular
importance in trying to decide if a given measure of incidence or prevalence
pertains to patients in one’s own practice.
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Tncidence is the most appropriate measure of frequency with which to
predict the future. Prevalence serves to quaatitate the likelihood that a
patient with certain characteristics has the disease at a single point in time
and is used for decisions about diagnosis and screening, The most powertul
use of incidence and prevalence, however, is to compare different clinical
alternatives.

Measures of disease or outcome incidence are essential ingredients in
methods for quantitative decision making. Approaches such as decision
analysis define alternative clinical strategies and then evaluate those strate-
gies quantitatively by comparing their expected utilities determined from
the frequencies and values assigned to the major outcomes associated with
cach strategy.

Postscript

Counting clinical events as described in this chapter may seem to be
the most mundane of tasks. Tt seems s¢ obvious that examining counts of
clinical events under various circumstances is the foundation of clinical
science. [t may be worth reminding the reader that Pierre Louis introduced
the “numerical method” of evaluating therapy less than 200 years ago.
Louis had the audacity to count deaths and recoveries from febrile illness
in the presence and absence of blood-letting. He was vilified for allowing
lifeless numbers to cast doubt on the healing powers of the leech, powers
that had been amply confirmed by decades of astute qualitative clinical
observation.

RIEFERENCES

L. Bryant GD, Norman GR. Expressions of probabilily: words and numbers. N Engl ] Med
1980;302:411.

2. Toogood JH. What do we mean by “usually”? Lancet 1980;1:10%4.

3. McConnell D, Barry M], Bruskewits. RC. Benign proslatic hyperplasia: diagnosis and
treatment. Clin Pract Guide Quick Ref Guide Clin 1994;8:1-17.

4. Friedman GD. Medical usage and abusage, “prevalence” and “incidence.” Ann Intern
Med 1976, 84:502 - 303.

5. O'Connor DW, Politt PA, Hyde JB, Fellows JL, Miller ND, Brook CPB, Reiss BB, Roth M.
The prevalence of dementin as measured by the Cambridge Mental Disorders of the
Lilderty Fxaminiation. Acta Psychiatr Scand 1989;7%:190- 198,

6. Paykel ES, Brayne C, Huppert FA, Gill C, Barkley C, Gehlhaar F, Beardsall 1., Girling
DM, Tollitt P, (¥Connor D. Incidence of dementia in a population older that 75 years in
the United Kingdom. Arch Gen Psychiatry 1994;51:325-332.

7. Sanders BS. Have morbidity surveys been oversold? Am | Public Health 1962;52:1648—
1659,

8. Case definitions for public health surveillance. MMRW 1990;(RR-13):19-21.

9. Matteson EL, Beckett VL, O'Fallon WM, Meltom L] 1L, Duffy |. Epidemiology of Lyme
disease in Olmsted County, MN, 1975-1990, | Rheumatol 1 992:19:1743— 1745,

1% Spilzer WO, Harth M, Coldsmith Cil, Norman GR, Dickie CL, Bass M], Newell JP. The
arthritic complaint in primary care: prevalence, related disability, and costs. | Rheumatol
1976;3:85-99,



CHAPTER 4 / FREQUENCY 93

11. Sedlack RE, Whisnant |, Llveback 1.R, Kurland LT. Tncidence of Crohn’s disease in Olmsted
County, Minnesota, 1935-1975. Am | Epidemiol 1980;112:75%-763.

12. Fowler F], Wennberg JE, Timothy RT, Barry M], Mulley AG, Hanley D. Symptom status
and quality of life following prostatectomy. JAMA 1988;259:3018-3022.

13. Tompkins RK, Burnes DC, Cable WE. An analysis of the cost-effectiveness of pharyngitis
management and acute theumatic fever prevention. Ann Intern Med 1877,86:481-492.

14. Sox HC, Blatt MA, Higgins M, Marton KL Medical decision making. Stoncham, MA:
Butterwaorth, 1988,

15, Barry M, Mulley AG, Fowler F), Wennberg |W. Watchful waiting vs. immediale fransure-
thral resection for symptomatic prostatism. |JAMA 1988;259:3010-3017.

SUGGESTELD READINGS
Ellenberg JH, Nelson KB. Sample selection and the ratural history of discase: studies of febrile
seizures, JAMA 1980,243(1):377 - 1340
Iriedman (D, Medical usage and abusage, “prevalence’” and “incidence.” Ann Intern Med
1976, 84:502-- 303,
Morgenstern H, Kleinbaurn DG, Kupper 1L Measures of disease incidence used in epidemio-
logic research. Tnt | Epidemiol 1980;9:97 104,



5

RISK

Risk generally refers to the probability of some untoward event. In this
chapter, the term risk is used in a more restricted sense to indicate the
likelihood that people who are exposed to certain factors (“risk factors’)
will subsequently develop a particular discase.

People have a strong interest in their risk of disease. This concern has
spawned many popular books about risk reduction and is reflected in
newspaper headlines about the risk of breast cancer from exposure to toxic
chemicals, of AIDS from blood transfusions, or of prostatic cancer after
vasectomy.

This chapter describes how investigators obtain cstimates of risk by
observing the relationship between exposure to possible risk factors and
the subsequent incidence of discase. We discuss several ways of comparing
risks, as they affect both individuals and populations.

Risk Factors

Characteristics that are associated with an increased risk of becoming
diseased are called risk fuctors. Some risk factors are inherited. For cxample,
having the haplotype HLA-B27 greatly increases one’s risk of acquiring the
spondylarthropathies. Work on the Human Genome Project has identified
severa) other discases for which specific genes are risk factors, including
colon cancer, osteoporosis, and amyotropic lateral sclerosis. Other risk
factors, such as infectious agents, drugs, and toxins, are found in the physi-
cal environment, 5till others are part of the social environment. For exam-
ple, bereavement due to the loss of a spouse, change in daily routines,
and crowding all have been shown to increase rates of disease—not only
emotional illness but physical illness as well. Some of the most powerful
risk factors are behavioral; examples are smoking, drinking alcohol to ex-
cess, driving without seat belts, and engaging in unsafe scx.

Exposure to a risk factor means that a persen has, before becoming ill,
come in contact with or has manifested the factor in question. Exposure
can take place at a single point in time, as when a community is exposed

94
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to radiation during a nuclear accident. More often, however, contact with
risk factors for chronic disease takes place over a period of time. Cigarette
smoking, hypertension, sexual promiscuity, and sun exposure are
examples.

There are several different ways of characterizing the amount of expo-
sure or contact with a putative risk factor: ever exposed, current dose,
Jargest dose taken, total cumulative dose, years of exposure, years since
first contact, etc. (1). Although the various measures of dose tend to be
related to each other, some may show an exposure-disease relationship,
whereas others do not. For example, cumulative doses of sun exposure
constitute a risk factor for nonmelanoma skin cancer, whereas episodes of
severe sunburn are a better prediclor of melanoma. Choice of an appro-
priate measure of exposure to a risk factor is usually based on all that is
known about the biologic effects of the exposure and the pathophysiclogy
of the disease.

Recognizing Risk

Large risks associated with effects that occur rapidly after exposure are
easy for anyone to recognize. Thus it is not difficult to appreciate the
relationship between exposure and disease for conditions such as chick-
enpox, sunburn, and aspirin overdose, because these conditions follow
exposure relatively rapidly and with obvious effects. But most morbidity
and mortality is caused by chronic diseases. For these, relationships be-
tween exposure and disease are far less obvious. It becomes virtually im-
possible for individuat clinicians, however astute, to develop estimates of
risk based on their own experiences with patients. This is true for several
reasons, which are discussed below.

LONG LATENCY

Many diseases have long latency periods between exposure to risk
factors and the first manifestations of disease. This is particularly true
for certain cancers, such as thyroid cancer in adults after radiation treat-
ment for childhood tonsillitis. When patients cxperience the conse-
quence of exposure to a risk factor years later, the original exposure
may be all but forgotten. The link between exposure and disease is
thereby obscured.

FREQUENT EXPOSURE TO RISK FACTORS

Many risk factors, such as cigarette smoking or eating a diet high in
cholesterol and saturated fats, are so common in our society that for many
years they scarcely scemed dangerous. Only by comparing patterns of
disease among people with and without these risk factors or by investigat-
ing special subgroups—e.g., Mormons (who do not smoke) and vegetari-
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ans (who eat diets low in cholesterol)—did we recognize risks that are, in
fact, large.

LOW INCIDENCE OF DISEASE

Most diseases, even ones thought to be “common,” are actually quite
rare. Thus, although lung cancer is the most common cause of cancer
deaths in Americans, the yearly incidence of lung cancer even in heavy
smokers is less than 2 in 1000. In the average physician’s practice, years
may pass between patients with new cases of lung cancer. 1t is difficult to
draw conclusions about such infrequent events.

SMALL RISK

If a factor confers only a small risk for a discase, a large number of
people are required to observe a difference in disease rates between
exposed and unexposed persons. This is so even if both the risk factor
and the disease occur relatively frequently. For example, it is still uncer-
tain whether birth control pills increase the risk of breast cancer, because
estimates of this risk are all small and, thercfore, easily discounted as
resulting from bias or chance. In contrast, it is not controversial that
hepatitis B infection is a risk factor for hepatoma, because people with
hepatitis B infection arc hundreds of imes more likely to get liver cancer
than those without it.

COMMON DISEASE

If a disease is common—heart disease, cancer, or stroke—and some of
the risk factors for it are already known, it becomes difficult to distinguish
a new risk factor from the others. Also, there is less incentive to look for
new risk factors. For example, the syndrome of sudden, unexpected death
in adults is a common way to die. Many cases scem related to coronary
heart disease. However, it is entirely conceivable that there arc other im-
portant causes, as yct unrecognized because an adequate explanation for
most cases is available.

On the other hand, rare diseases and unusual clinical presentations
invite efforts to find a cause. AIDS was such an unusual syndrome that
the appearance of just a few cases raised suspicion that some new agent
(as 1l turned out, a retrovirus) might be responsible. Similarly, physicians
were quick to notice when several cases of carcinoma of the vagina, a very
rare condition, began appearing. A careful search for an explanation was
undertaken, and maternal exposure to diethylstilbestrol was found.

MULTIPLE CAUSES AND EFFECTS

There is usually not a close, one-to-one relationship between a risk
factor and a particular disease. The relationship between hypertension and
congestive failure is an example (Fig. 5.1). Some people with hypertension
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and congestive heart failure (CHF). Hypertension causes many diseases, including
congestive heart failure, and congestive heart failure has many causes, including
hypertension.

develop congestive heart failure and many do not. Also, many people who
do not have hypertension develop congestive heart failure, because there
are several different causes. The relationship is also obscured because hy-
pertension causes scveral diseases other than congestive heart failure.
Thus, although people with hypertension are about 3 times more likely
than those without hypertension to develop congestive heart failure and
hypertension is the leading cause of the condition, physicians were not
particularly attuned to this relationship until the 1970s, when adequate
data became available after careful study of large numbers of people over
many years.

For all these reasons, individual clinicians are rarcly in a position to
confirm associations between exposure and disease, though they may sus-
pect them. For accurate information, they must turn to the medical litera-
ture, particularly to studies that are carefully constructed and involve a
large number of patients.



98 CLINICAL EPIDEMIOLOGY

Uses of Risk
PREDICTION

Risk factors are used, first and foremost, to predict the occurrence of
disease. In fact, risk factors, by definition, predict some future event, The
best available information for predicting disease in an individual person
18 past experience with a large number of people with a similar risk factor.
The quality of such predictions depends on the similarity of the people
on whom the estimate is based and the person for whom the prediction
is made.

It is important to keep in mind that the presence of even a strong risk
factor does not mean that an individual is very likely to get the disease.
For example, studies have shown that a heavy smoker has a 20-fold greater
risk of lung cancer compared with nonsmokers, buit he or she still has only
a1l in a 100 chance of getting lung cancer in the next 10 years.

There is a basic incompatibility between the incidence of a disease in
groups of people and the chance that an individual will contract that
disease. Quite naturally, both patients and clinicians would like to answer
questions about the future occurrence of disease as precisely as possible.
They are uncomfortable about assigning a probability, such as the chances
that a person will get Tung cancer or stroke in the next 5 years. Moreover,
any one person will, at the end of 5 years, cither have the disease or not.
S0 in a sense, the average is always wrong because the two are expressed
in different terms, a probability versus the presence or absence of discase.
Nevertheless, probabilities can guide clinical decision making. Even if a
prediction does not come true in an individual patient, it will usually be
borne out in many such patients.

CAUSE

Just because risk factors predict discase, it does not necessarily follow
that they cause disease. A risk factor may mark a disease outcome indi-
rectly, by virtue of an association with some other determinant(s) of dis-
ease, i.e., it may be confounded with a causal factor. For example, lack of
maternal education is a risk factor for low birth weight infants. Yet, other
factors related to education, such as poor nutrition, less prenatal care,
cigarette smoking, ete., are more directly the causes of low birth weight.

A risk factor that is not a cause of disease is called a marker, because it
“marks” the increased probability of disease. Not being a cause does not
diminish the value of a risk factor as a way of predicting the probability
of disease, but it does imply that removing the risk factor might not remove
the excess risk associated with it. For example, as pointed out in Chapter
1, although there is growing evidence that the human papillomavirus
(HPV) is a risk factor for cervical cancer, the role of other sexually transmit-
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ted diseases, such as herpes simplex virus and Chlamydia, is not as clear.
Antibodies to these agents are more common among patients with cervical
cancer than in women without cancer, but the agents may be markers for
risk of cervical cancer rather than causes, If so, curing them would not
necessarily prevent cervical cancer. On the other hand, decreasing promis-
cuity might prevent the acquisition of both the causative agent for cervical
cancer and other sexually transmitted diseases {2).

There are several ways of deciding whether a risk factor is a cause or
merely a marker for disease. These are covered in Chapter 11.

DIAGNOSIS

Knowledge of risk can be used in the diagnostic process, since the pres-
ence of a risk factor increases the prevalence (probability) of discase among
patients—one way of improving the positive predictive value of a diagnos-
tic test.

However, in individual patients, risk factors usually are not as strong
predictors of discase as are clinical findings of carly diseasc. As Rose (3)
put it:

Often the best predictor of future major diseases is the presence of existing
minor disease. A low ventilatory function today is the best predictor of its
future rate of decline. A high blood pressure today is the best predictor of

its future rate of rise. Farly coronary heart disease is better than all of the
conventional risk factors as a predictor of future fatal disease.

Risk factors can provide the most help with diagnosis in situations
where the factor confers a substantial risk and the prevalence of the disease
is increased by clinical findings. For example, age and sex arc relatively
strong risk factors for coronary artery disease, yet the prevalence of diseasc
in the most at risk age and sex group, old men, is only 12%. When specifics
of the clinical situation, such as presence and type of chest pain and re-
sults of an electrocardicographic stress test, are considered as well, the
prevalence of coronary disease can be raised to 99% (4).

More often, it is belpful to use the absence of a risk factor to help rule
out disease, particularly when one factor is strong and predominant. Thus
it is reasonable to consider mesothelioma in the differential diagnosis of a
pleural mass in a patient who is an asbestos worker, but mesothelioma is
a much less likely diagnosis for the patient who has never worked with
asbestos.

Knowledge of risk factors is also used to improve the efficiency of
screening programs by selecting subgroups of patients at increased risk.
PREVENTION

Tf a risk factor is also a cause of disease, its removal can be used to
prevent disease whether or not the mechanism by which the disease ta kes
place is known. Some of the classic successes in the history of epidemiology
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illustrate this point. For example, before bacterla were identified, Snow
found an increased rate of cholera among people drinking water supplied
by a particular company and controlled an cpidemic by cutting off that
supply. More tecently, even before HIV had been identified, studies
showed that a lifestyle of multiple sexual partners among homosexual men
was a risk factor for acquiring AIDS (5). The concept of cause and its
relationship to prevention is discussed in Chapter 11,

Studies of Risk

The most powerful way of determining whether exposure to a potential
risk factor results in an increased risk of disease is to conduct an experi-
ment. People currently without disease would be divided into groups of
equal susceptibility to the disease in question. One group would be ex-
posed to the purported risk factor and the other would not, but the groups
would otherwise be treated the same. Later, any difference in observed
rates of disease in the groups could be attributed to the risk factor.

Unfortunately, the cffects of most risk factors for humans cannot be
studied with experimental shudies, in which the researcher determines who
is exposed. Consider some of the questions of risk that concern us today.
How much are inactive people at increased risk for cardiovascular disease,
everything else being equal? Do cellular phones cause brain cancer? Does
alcohol increase the risk of breast cancer? For such questions as these, it
is usually not possible to conduct an experiment. First, the experiment
would have to go on for decades. Second, it would be unethical to impose
possible risk factors on a group of the people in the study. Finally, most
people would balk at having their diets and behaviors determined by
others for long periods of time. As a result, it is usually necessary to study
risk in less obtrusive ways,

Clinical studices in which the researcher gathers data by simply observ-
ing cvenis as they happen, without playing an active part in what takes
place, are called observational studies. Most studies of risk are observational
studies, cither cohort shudies, described in the rest of this chapter, or case
control studies, described in Chapter 10.

COHORTS

The term cohert is used to describe a group of people who have some-
thing in common when they are first assembled and who are then observed
for a period of time to see what happens to them. Table 5.1 lists some of
the ways in which cohorts are used in clinical research. Whatever members
of a cohort have in common, observations of them should fulfill two criteria
if they are to provide sound information about risk.

First, cohorts should be observed over a meaningful period of time in
the natural history of the disease in question. This is so there will be
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Table 5.1
Cohorts and Their purposes
o Assess

Characteristic in Commaon Effiect o Example

Age Age Life expectancy for people age
70 (regardless of when born)

Diale of birth Calandar time Tuberculosis rates for people
born in 14910

Exposure Risk factor Lung cancer in pecple who
smake

Disease Prognosis Survival rate far patients with
breast cancer

Prensentive intenyention Prevention Reduction in incidence of

pewmonia atter
pneumococsal vaccination
Therapeutic intervention Treatment Irprovernent in survival for
patients with Hodgkin's
disease given combination
chemotherapy

sufficient time for the risk to be expressed. 1f we wish to learn whether
neck irradiation during childhood results in thyroid neoplasms, a 5-year
follow-up would not be a fair test of the hypothesis that thyroid cancer is
associated with irradiation, because the usual time period between irra dia-
tion exposure and the onset of disease is considerably longer.

Second, all members of the cohort should be observed over the full
period of follow-up. To the extent that people drop out of the study and
their reasons for dropping out are related in some way to the outcome,
the information provided by an incomplete cohort can be a distortion of
the true state of affairs.

COHORT STUDIES

In a cohort study (Fig. 5.2), a group of people (a cohort) is assembled,
none of whom has experienced the outcome of interest, but all of whom
could experience it. (For example, in a study of risk factors for endometrial
cancer, each member of the cohort should have an intact uterus.) On entry
to the study, people in the cohort are classified according to those character-
istics (possible risk factors) that might be related to outcome. These people
are then observed over time to see which of them experience the outcome.
It is then possible to see how initial characteristics relate to subsequent
outcome events. Other names for cohort studies are longitudinal (cmphasiz-
ing that patients arc followed over time), prospective (implying the forward
direction in which the patients are pursucd), and incidence {calling attention
to the basic measure of new disease events over time).
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No Disease Exposure to Disease
Risk Factor

Exposed

Not exposed

Figure 5.2, Design of a cohort study of risk.

The following is a description of a dlassical cohort study, which has
made important contributions to our understanding of cardiovascular
discase.

Example The Framingham Study (6) was begun in 1949 to identify fac-
tors associated with an increased risk of coronary heart disease (CHD). A
representative sample of 5,209 men and women, aged 30-59, was selected
from approximately 10,000 persons of that age living in Framingham, a small
town near Boston. Of these, 5,127 were (ree of CHID when first examined and,
therefore, were at risk of developing CHD. These people were reexamined
biennially for evidence of coronary disease. The study ran for 30 years and
demonstrated that risk of developing CHD is associated with elevated blood
pressurc, high serum cholesterol, cigarette smoking, glucose intolcrance, and
left ventricular hypertrophy. There was a large difference in risk between
those with none and those with all of these risk (actors.

HISTORICAL COHORT STUDIES

Cohort studies can be conducted in two ways (Fig. 5.3). The cohort can
be assembled in the present and followed into the future (a concurrent
cohort study), or it can be identificd from past records and followed forward
from that time up to the present {an #istorical cofiort study).

Most of the advantages and disadvantages of cohort studies discussed
below apply whether the study is concurrent or historical. However, the
potential for difficulties with the quality of data is different for the two.
In concurrent studies, data can be collected specifically for the purposes
of the study and with full anticipation of what is needed. Tt is thereby
possible to avoid biases that might undermine the accuracy of the data.
On the other hand, data for historical cohorts are often gathered for other
purposes—usually as part of medical records for patient care. These data
may not be of sufficient quality for rigorous research.
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Figure 5.3. Historical and concurrent cohort studies.

ADVANTAGES AND DISADVANTAGES CF COHORT STUDIES

Some of the advantages and disadvantages of cohort studics, for the
purpose of describing risk factors, are summarized in Table 5.2. Cohort
studies of risk are the best avatlable subshtutes for a true experiment when
experimentation is not possible. They follow the same logic as a clinical
trial, and they allow determination of exposure to a possible risk factor
while avoiding any possibility of bias that might occur if exposure is deter-
mined after the outcome is already known.

The principal disadvantage is that if the outcome is infrequent (which
is usually the case) a large number of people must be entered in a study
and remain under observation for a long time before results are available.
For example, the Framingham Study of coronary heart disease—onc of
the most frequent of the chronic diseases in America—was the largest

Table 5.2

Advantages and Disadvantages of Cohort Studies

Advontages

Digadvantages

The only way of establishing incidence (i.e.,
absolute risk) directly

Follows the same logic as the clinical
guestion: If persons exposed, then do
they get the disease?

Exposur can be elicted without the bias
that might ocewr if cutcome wern already
known

Can assess the refationship botwesn
axposure and many diseases

Inefficient because many more subjects
rmust be enrolled than expenence the
avent af interest; therefore, cannat be
usedd lor rare diseases

Expensive because of resources necessary
to study many people over time

Results not available tor a long time

Assesses the relalionship between discase
and exposure to only relatively few tactors
li.c., those recarded at the outset of the
stucy)
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study of its kind when it began. Nevertheless, more than 5000 people had
to be followed for several years before the first, preliminary conclusions
could be published. Only 5% of the people had experienced a coronary
cvent during the first 8 years!

A related problem with cohort studies results from the fact that the
people being studied are usually “free living” and not under the control
of researchers. A great deal of effort and money must be expended to keep
track of them. Cohort studies, therefore, are expensive, sometimes costing
many millions of dollars.

Because of the time and money required for cohort studies, this ap-
proach cannot be used for all clinical questions about risk. For practical
reasons, the cohort approach has been reserved for only the most important
questions. This has led to cfforts to find more efficient, yet dependable,
ways of assessing risk. (The most common of these, case control studics,
is discussed in Chapter 10.)

The most important scientific disadvantage of observational studics,
including cohort studies, is that they are subject to a great many more
potential biases than are experiments. People who are exposed to a cerfain
risk factor in the natural course of events are likely to differ in a great
many ways from a comparison group of people not exposed to the factor.
If these other differences are also related to the disease in question, they
could account for any association observed between the putative risk factor
and the disease.

This leads to the main challenge of observational studics: to deal with
extraneous differences between exposed and nonexposed groups to mimic
as closely as possible an experiment. The differences are considered “extra-
neous” from the point of view of someone trying to determine cause-
and-cffect relationships. The following example illustrates one approach
to handling such differences.

Example  Allhough the presence of sickle~cell trait (HbAS) is generally
regarded as a benign condition, several studies have suggested that it is
associated with defects in physical growth and cognitive development. A
study was undertaken, therefore, to see if children born with HbAS experi-
cneed problems in growth and development merc frequently than children
with normal hemoglobin (HbAA}, everything else being equal (7). It was
recognized {hat a great many other factors are related to growth and develop-
ment and alse to having EIbAS, Among these are race, sex, birth date, birth
weight, gestational age, 5-min Apgar score, and sociveconomic status. If these
other factors were not taken into account, one or more of them could bias
the results of the study, and it would not be possible to distinguish the effects
of HbAS, in and of itself, from the effects of the other factors. The authors
chose to deal with these other factors by matching. For each child with HbAS,
they selected a child with HbAA who was similar with respect to the seven
other factors. A total of 100 newborns -—50 with HbAS and 50 with HbAA—




CHAPTER 5 / RISK 105

were followed from birth to 3-5 years old. No differences in growth and
development were found.

Maijor biases in observational studies and ways of dealing them are
described in Chapter 6.

Comparing Risks

The basic expression of risk is incidence, defined in Chapter 4 as the
number of new cases of discase arising in a defined population during a
given period of time. But usually we want to compare the incidence of
disease in two or more groups in a cohort that differ in exposure to a
possible risk factor. To compare risks, several measures of the association
between exposure and disease, called measures of effect, are commonly used.
They represent different concepts of risk and are used for different pur-
poses. Four measures of effect are discussed below {(Tables 5.3 and 5.4).

ATTRIBUTABLE RISK

First, onc might ask, “What is the additional risk (incidence) of disease
following exposure, over and above that experienced by people who are
not exposed?’” The answer is expressed as attributable risk, the incidence
of disease in exposed persons minus the incidence in nonexposed persons.
Atiributable risk is the additional incidence of disease related to exposure,
taking into account the background incidence of disease, presumably from
other causes. Note that this way of comparing rates implies that the risk
factor is a cause and not just a marker. Because of the way it is calculated,
attributable risk is also called risk difference.

Table 5.3
Measuras of Effect
Expression Cluesticn Definition®
Attributable risk What is the incidence of disease ARt =1, — It
{risk difference) attribulable to exposure?

Relative risk (risk ratic) How many times mare ikely ars B - ‘[i
axposcd persons to become =
diseased, relative to nonexposed
persens?

Popuiation attributable risk Whal is the incidence of disease in a AR = AR x P

population, associated with the
occurrence of a risk factor?
Population attnbutable What fraction of disease in a A, — AR
fraction population is attributable to i fe

exposure 1o a nsk factor?

#\Where I, = incidonce in exposed persons; I — incidence in nonexposed persona; £ — prevalence of
exposure to a nsk factor; and f; — total incidence of discase in a population,
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Table 5.4
Caleulating Measures of Effect: Cigarette Smoking and Death from Lung Cancer*

Simgie risks

Death rate from lung cancor in cigaretie smokers 0.96/1000/vear
Death rate from lung cancer in nonsmokers 0.07/1000year
Prevalence of cigarette smoking 56%
Tedal death rate from lung cancer (.56/1000/vcar

Comparex! risks

Attributable risk = 0.96/1000/ear — 0.07/1000/vear
= (1.89/1000/vear
Relalive risk = 0.96/1000/ear = Q.07 1000/ ar
=137
Population attributable risk = 0.89/1000/ear % 0.56
= 0.50/1000 year
Fopulation attributable fraction = 0.50/1000/ear ~ 0.56/1000/vear
= (.89

* bstimated data trom Doll R, Hil AB. Br Med J 1964 113991414,

RELATIVE RISK

On the other hand, onc might ask, “How many times are exposed per-
sons more likely to get the disease relative to nonexposed persons?”’ To
answer this question, we speak of relative risk or risk ratio, the ratio of
incidence in exposed persons to incidence in nonexposed persons. Relative
risk tells us nothing about the magnitude of absolute risk {incidence). Even
for large relative risks, the absolute risk might be quite small if the disease
is uncommon. Tt does tell us the strength of the association between expo-
sure and diseasc and so is a useful measure of effect for studies of disecase
ctiology.

INTERPRETING ESTIMATES OF INDIVIDUAL RISK

The clinical meaning attached to relative and attributable risk is often
quite different, because the two expressions of risk stand for entirely differ-
ent concepts. The appropriate expression of risk depends on which ques-
tion is being asked.

Example  Risk factors for cardiovascular disease are generally thought
to be weaker among the elderly than the middlc-aged. This assertion was
examined by comparing the relative tisks and attributable risks of common
risk factors for cardiovascular disease among different age groups (8). An
example is the risk of stroke from smoking (Table 5.5). The relative risk
decrcases with age, from 4.0 in persons ages 45--49 to 1.4 in persons aged
65-69. However, the attributable risk increases slightly with age, mainly
because stroke is more common in the clderly regardless of smoking status.
Thus, although the causal link between smoking and stroke decreases with
age, an elderly individual who smokes increases his or her actual risk of
stroke to a similar, indeed slightly greater, degree than a younger person.
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Table 5.5
Comparing Relative Risk and Attributable Risk in the Relationship of Smoking,
Stroke, and Age®

Incidence (per 10000

— Relative Attributabile
Ayge MNorsmiokers Grmokers Risk: Risgk
45-49 7.4 29.7 4.0 22.3
50-54 17.2 37.0 22 19.8
55-59 279 g4.7 23 367
BO-64 47 .4 76.9 1.6 28.5
65-69 80.2 110.1 1.4 30.2

* Adapted from Psaty BM et al. J Clin Epidernial 1980, 43:961-970.

In most clinical situations, because attributable risk represents the actual
additional probability of diseasc in those exposed, it is a more meaningful
expression of risk for individuals than is relative risk. On the other hand,
relative risk is more useful for expressing the strength of a causal
relationship.

POPULATION RISK

Another way of Jooking at risk is to ask, “How much does a risk factor
contribute to the overall rates of disease in groups of people, rather than
individuals?” This information is useful for deciding which risk factors
are particularly important and which are trivial to the overall health of a
community, and so it cap inform those in policy positions how to choose
priorities for the deployment of health care resources. A relatively weak
risk factor {i.e., one with a small relative risk) that is quite prevalent in a
community could account for more disease than a very strong, but rare,
risk factor.

To estimate population risk, it is necessary to take into account the
frequency with which members of a community are exposed to a risk
factor. Population attributable risk is the product of the attributable risk and
the prevalence of the risk factor in a population. It measures the excess
incidence of disease in a community that is associated with a risk factor.
One can also describe the fraction of disease occurrence in a population
that is associated with a particular risk factor, the population attributable
fraction. 1t is obtained by dividing the population attributable risk by the
total incidence of disease in the population.

Figure 5.4 illustrates how the prevalence of a risk factor determines the
relationship between individual and population risk. Figure 544 shows
the attributable risk of death according to diastolic blood pressure. Risk
increases with increasing blood pressure. However, few people have ex-
tremely high blood pressure (Fig. 5.4B). When hypertension is defined as
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Figure 5.4. Relationships among attributable risk, prevalence of risk factor, and
population risk for hypertension. (Adapted from The Hypertension Detection and
Follow-up Cooperative Group. Mild hypertensives in the hypertension detection and
follow-up program. Ann N'Y Acad Sci 1978;304:254-266.)

having a diastolic blood pressure »90 mm Hyg, most hypertensive people
are just over 90 mm Hg, and very few are in the highest category (=115 mm
Hg). As a result, the greatest percentage of excess deaths in the population
(58.4%) is attributable to relatively low-grade hypertension, 9-105 mm
Hg (Fig. 54C). Paradoxically, then, physicians could save more lives by
effective treatment of mild hypertension than severe hypertension. This
fact, so counterintuitive to clinical thinkin g, has been termed “the preven-
tion paradox™ (9).

Measures of population risk are less frequently encountered in the clini-



CHAPTER & / RISK 109

cal literature than are measures of individual risk, c.g., attributable and
relative risks. But a particular clinical practice i¢ as much a population
for the doctor as is a community for health policymakers. Also, how the
prevalence of exposure affects community risk can be imporiant in the care
of individual patients. For instance, when patients cannot give a history or
when exposure is difficult for them to recognize, we depend on the usual
prevalence of exposure to estimate the likelihood of various discases. When
considering treatable causes of cirrhosis in a North American patient, for
example, it would be more profitable to consider alcohol than schistosomes,
inasmuch as few North Americans are exposed to Schistosoma mansoni. Of
course, one might take a very different stance in the Nile delta, where
schistosomes are prevalent and the people, who are mostly Muslims, rarely
drink alcohol.

Summary

Risk factors are characteristics that are associated with an increased risk
of becoming diseased. Whether or not a particular risk factor is a cause
of disease, its presence allows one to predict the probability that disease
will oceur,

Most suspected risk factors cannot be manipulated for the purposes of
an experiment, so it is usually necessary to study risk by simply observing
people’s experience with risk factors and discase. One way of doing so 15
to select a cohort of people, some members of which are and some of which
arc not exposed to a risk factor, and observe the subsequent incidence of
discase. Although it is scientifically preferable to study risk by means of
cohort studies, this approach is not always feasible because of the time,
effort, and expense it entails.

When disease rates are compared among groups with different expo-
sures to a risk factor, the results can be expressed in several ways. Attribut-
able risk is the excess incidence of discase related to exposure. Relative
risk is the number of times more likely exposed people are to become
discased relative to nonexposed people. The impact of a risk facter on
groups of people takes into account not only the risk related to exposure
but the prevalence of exposure as well.
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PROGNOSIS

When people become sick, they have a great many questions about how
their illness will affect them. Is it dangerous? Could [ die of it? Will there
be pain? How long will 1 be able to continue my present activities? Will
it ever go away altogether? Most patients and their families want to know
what to expect, even if little can be done about their illness.

Prognosis is a prediction of the future course of disease following its
onset. In this chapter, we review the ways in which the course of disease
can be described. We then consider the biases that can affect these descrip-
tions and how these biases can be controlled. Our intention is to give
readers a better understanding of a difficult but indispensable task— pre-
dicting patients’ futures as closely as possible. The object is to avoid ex-
pressing prognosis with vagueness when it is unnecessary, and with cer-
tainty when it is misleading,.

Doctors and patients think about prognosis in several different ways.
First, they want to know the general course of the illness the patient has.
A young patient suffering from postherpetic neuralgia associated with
herpes zoster can be assured that the pain usually resolves in less than a
month. Second, they usually want to know, as much as possible, the prog-
nosis in the particular case. Even though HIV infection is virtually univer-
sally fatal, individuals with the infection may live from a few months to
more than a decade; a patient wants to know where on this continuum
his or her particular case falls. Third, paticnts especially are interested to
know how an illness is likely to affect their lives, not only whether it will
or will not kill them, but how it will change their ability to work, to walk,
to talk, how it will alter their relationships with family and friends, how
much pain and discornfort they will have to endure.

Prognosis Studies

Studies of prognosis tackle these clinical questions in ways similar to
cohort studies of risk. A group of patients having something in common
(a particular medical disease or condition, in the case of prognostic studies)

111
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are assembled and followed forward in time, and clinical outcomes are
measured. Often, conditions that are associated with a given outcome of
the disease, i.c., prognostic factors, are sought.

CLINICAL COURSE/NATURAL HISTORY OF DISEASE

Disease prognosis can be described for either the clinical course or
the natural history of illness. The term clinical course has been used to
describe the evolution {prognosis} of disease that has come under medi-
cal care and is then treated in a variety of ways that might affcct the
subsequent course of events. Patients usually come under medical care
at some time in the course of their illness when they have diseases that
cause symptoms such as pain, failure to thrive, disfigurement, or un-
usual behavior. Examples include type 1 diabetes mellitus, carcinoma
of the lung, and rabies. Once disease is recognized, it is also likely to
be treated.

The prognosis of disease without medical intervention is termed the
natural history of disease. Natural history describes how patients will
fare if nothing is done for their disease. A great many medical condi-
tions, even in countries with advanced medical care systems, often do
not come under medical care. They remain unrecognized, perhaps be-
cause they are asymptomatic or are considered among the ordinary
discomforts of daily living. Examples include mild depression, anemia,
and cancers that are occult and slow growing {e.g., some cancers of the
thyroid and prostate).

ZERC TIME

Cohorts in prognostic studies are observed starting from a point in time,
called zero fime. This point should be specified clearly and be the same
well-defined location along the course of discase (e.g., the onset of symp-
toms, time of diagnosis, or beginning of treatment} for cach patient. The
lerm inception coliort is used to describe a group of people who are assem-
bled near the onset (inception} of disease.

If observation is begun at different points in the course of disease for
the various patients in the cohort, description of their subsequent course
will lack precision. The relative timing of such events as recovery, recur-
rence, and death would be difficult to interpret or misleading.

For example, suppose we wanted to describe the clinical course of pa-
tients with ung cancer. We would assembie a cohort of people with the
disease and follow them forward over time to such outcomes as complica-
tions and death. But what do we mean by “with diseasc”? If zero time
was detection by screening for some patients, onset of symptoms for others,
and hospitalization or the beginning of treatment for still others, then
observed prognosis would depend on the particular mix of zero times in
the study. Worse, if we did not explicitly describe when in the course of
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disease patients entered the cohort, we would not know how to interpret
or use the reported prognosis.

DESCRIBING QUTCOMES OF DISEASE

Descriptions of prognosis should include the full range of manifestations
that would be considered important to patients. This means not only death
and disease but also consequences of discase such as pain, anguish, and
inability to care for one’s self or pursue usual activities. {The Five Ds listed
in Table 1.2 are a simple way to summarize important clinical outcomes.)

In their efforts to be “scientific,” physicians sometimes value certain
kinds of outcomes over others, at the expense of clinical relevance. Clinical
effects that carmot be directly perceived by patients (e.g., reduction in
tumor size, normalization of blood chemistrics, or change in serology)
are not ends in themselves, Tt is appropriate to substitute these biologic
phenomena for clinical outcomes only if the two are known to be related
to each other. Thus hypercalcemia is an important clinical outcome of
hyperparathyroidism only if it causes symptoms such as drowsiness or
thirst or if there is reason to believe that it will eventually lead to complica-
tions such as bone or kidney disease. If an outcome cannot be related to
something patients will recognize, the information should not be used to
guide patient care, although it may be of considerable value in understand-
ing the origins and mechanisms of disease.

HEALTH-RELATED QUALITY-OF-LIFE MEASURES

There is growing recognition that “hcalth” involves more than the
avoidance of negative aspects such as death and disease. Clinical activities
should have a positive impact on how a person functions and lives. This
concept has been referred to as health-related quality of life, health status, or
functional status, Questionnaires have been developed to measure patients’
quality of life. Sometimes their use strengthens arguments for certain clini-
cal interventions. For example, a study showed that erythropoietin treat-
ment of patients with chronic renal failure not only increased patients’
hematocrits but improved their health-related quality of life (1). On the
other hand, sometimes quality-of-life measurements reveal complicated
trade-offs. A study of zidovudine (AZT) treatment in patients with mildly
symptomatic HIV infection showed that although the drug delayed pro-
gression to AIDS by an average of 0.9 months, the positive result was
offset by adverse effects of the drug. Thus patients receiving the drug had
an average of 14.5 months without disease progression or severe symptom-
atic adverse effects from AZT compared with an average of 14.7 months
for patients not receiving the drug (2). What looked like a small benefit in
delayed progression to AIDS was not so clear when quality-of-life mea-
surcs were added to the study.
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Prognostic Factors

Although most patients are interested in the course of their discase in
general, they are even more interested in a prediction for their given case,
Prognostic factors help identify groups of paticnts with the same disease
who have different prognoses.

DIFFERENCES BETWEEN PROGNOSTIC FACTORS AND RISK FACTORS

Studies of risk factors usually deal with healthy people, whereas prog-
nostic factors —conditions that are associated with an outcome of disease—
are, by definition, studicd in sick people. There arc other important differ-
ences as well, outlined below.

Different Factors

Factors associated with an increased risk are not necessarily the same
as those marking a worse prognosis and are often considerably different
for a given diseasc. For example, low blood pressure decreases one’s
chances of having an acute myocardial infarction, but it is a bad prognostic
sign when present during the acute event (Fig. 6.1). Similarly, intake of
exogenous estrogens during menopause increases women's risk of endo-
metrial cancer, but the associated cancers are found at an earlier stage and
scem to have a better-than-average prognosis.

Well Onset of Acute QOutcomes
Myocardial Infarction

Death
Reinfarction
Other

Risk Factors Prognostic (Poor) Factors
TAge TAge

Male Female

Cigarette smoking Cigarette smoking
Hypertension Hypotension

TLDL / JHDL Anterior infarction
Inactivity Congestive heart failure

Ventricular arrhythmia

Figure 6.1. Differences between risk and prognostic factors for acute myocardial
infarction.
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Some factors do have a similar cffect on both risk and prognosis. For
example, both the risk of experiencing an acute myocardial infarction and
the risk of dying of it increase with age.

Different Qutcomes

Risk and prognosis describe different phenomena. For risk, the event
being counted is the onset of disease. For prognosis, a variety of conse-
quences of disease are counted, including death, complications, disability,
and suffering.

Different Rates

Risk factors generally predict low probability events. Yearly rates for
the onset of various discascs are on the order of 1/100 to 1/10,000. As a
result, relationships between exposure and risk usually elude even astute
clinicians unless they rely on carefully executed studies, often involving a
large number of people over extended periods of time. Prognosis, on the
other hand, describes relatively frequent events. Clinicians often can form
good estimates of prognosis on their own, from their personal expericnce.
For example, they know that few patients with lung or pancreatic cancer
survive as long as 5 years, whercas most with chronic lymphocytic leuke-
mia survive much longer.

MULTIPLE PROGNOSTIC FACTORS AND PREDICTION RULES

A combination of factors may give a more precise prognosis than each
of the same factors taken one at a time. Clintcal prediction ritles estimate the
probability of outcomes according to a set of patient characteristics.

Example Once patients with HIV infection develop AIDS, the prognosis
is poor and survival time is short. Even so, and before antiviral and prophy-
lactic therapy for opportunistic infections became standard treatment, it was
clear that some patients with AIDS survived much longer than others. A
study was done to determine which patient characteristics predicted survival
(3). Tlach of several physiologic characteristics was found to be related to
survival. Using these factors in combination, the investigators developed a
prognostic staging system, with 1 point for the presence of cach of 7 factors:
severe diarrhea or a serum albumin <2.0 gm/dL, any neurclogic deficit, PO,
fess than or equal to 50 mm Hg, hematocrit <30%, lymphocyte count <2150/
mL, white count <22500/ml., and platelet count <140,000/ mL. The total score
determined the prognostic stage (I, 0 points; I, 1 point; 1ll, greater than or
equal to 2 points). Figure 6.2 shows the survival of AIDS patients in cach
prognostic stage. Using mulliple prognostic factors together, the authors
noted that prcdlctlon for median length of survival varied from 11.5 months
for patients in stage I to 2.1 months for paticnts in stage 111,

Describing Prognosis
PROGNOSIS AS A RATE

[t is convenient to summarize the course of disease as a single number,
or rate: the proportion of people experiencing an event. Rates commonly
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Figure 6.2. Survival of AIDS patients according to prognostic stage. Median sur-
vival times (in months): stage |, 11.6; stage I, 5.1; stage lll, 2.1. {Adapted from
Justice AC, Feinstein AR, Wells CK. A new prognostic staging system for the acquired
immunodeficiency syndrome. N Eng J Med 1969: 320:1388- 1393 )

used for this purpose are shown in Table 6.1. These rates have in common
the same basic components of incidence, events arising in a cohort of
patients over time.

All the components of the rate must be specified: zero time, the specific
clinical characteristics of the patients, definition of outcome events, and
length of follow-up. Follow-up must be long enough for all the events to
occur; otherwise, the observed rate will understate the true one.

A TRADE-OFF: SIMPLICITY VERSUS MORE INFORMATION

Expressing prognosis as a rate has the virtue of simplicity. Rates can be
committed to memory and communicated succinetly. Their drawback is
that relatively little information is conveyed, and large differences in prog-
nosis can be hidden within similar summary rates.

Figure 6.3 shows 3-year survival for patients with four conditions. For
each condition, about 10% of the patients are alive at 5 years. But similar
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Table 6.1
Rates Gommonly Used to Describe Prognosis
Fiater Desfiition

S-year sunvival Percent of patients surviving & years from some point in the
course of their disease

Case fatality Percent of patients with a disease who die of it

Nisense-specific mortality Number of people per 10,000 {or 100,000} population dying
of a specific discase

Response Percent ol patients showing some evidence of improvement
following an intervention

Remission Percent of patients entering a phase in which disease is no
langer detectable

Recurrence Percent of patients who have return of disease after a

disease-free interval

* Tirne under observation is cither stated or assumed 1o be sufficiently lang so that all events that will ooaur
have been abserved,

summary rates of approximately 10% survival obscure differences of con-
siderable importance to patients. Carly survival in patients with dissecting
aneurysms is very poor, but if they survive the first few months, their risk
of dying is not affected by having had the aneurysm {Fig. 6.34}. On the
other hand, HIV positive patients who develop AIDS die throughout the
5 years {Fig. 6.38). Chronic granulocytic leukemia is a condition that has
relatively little effect on survival during the first few years after diagnosis
{(Fig. 6.3C). Later, there is an acceleration in mortality rate until nearly all
patients are dead 5 years after diagnosis. Tigure 6.3D is presented as a
benchmark. Only at age 100 do people in the general population have a
5-year survival rate comparable to that of patients with the three diseases.

SURVIVAL ANALYSIS

When interpreting prognosis, we would like to know the likelihood, on
the average, that patients with a given condition will experience an out-
come at any point in time. When prognosis is expressed as a summary
rate it does nol contain this information. However, there are methods for
presenting information about average time to event for any point in the
course of discase.

SURVIVAL OF A COHORT

The most straightforward way to learn about survival is 1o assemble a
cohort of patients with the condition of interest at some point in the course
of their illness (e.g., onset of symptoms, diagnosis, or beginning of treat-
ment) and keep them under observation until all could have experienced
the outcome of interest. For a small cohort, one might then represent the
experience with these patients’ course of disease as shown in Figure 6.4A4.
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Figure 6.3. A limitation of S-year survival rates: four conditions with the same 5-
year survival rate of 10%. (Data from Anagnostopoulos CD et al. Aortic dissections
and dissecting aneurysms. Am J Cardiology 1972:30:263-273; Saah JA, Hoover
DR et al. Factors influcncing survival after AIDS: report from the Multicenter AIDS
Cohort Study (MACS). J Acquir Immune Defic Syndr 1904, 7:287-295: Kardinal
CG el al. Chronic granulocytic leukemia, Review of 536 cases. Arch Intern Med
1976, 136:305-313; and American Collage of | ife Insurance. 1979 life insurance
fact book. Washington, DC: ACU 1979.)

The plot of survival against time displays steps, corresponding to the death
of each of the 10 patients in the cohort. If the number of patients were
increased (Fig. 6.48), the size of the steps would diminish. If a very large
number of patients were represented, the figure would approximate a
smooth curve. This information could then be used to predict the vear-by-
year, or even week-by-week, prognosis of similar patients.
Unfortunately, obtaining the information in this way is impractical for
several reasons. Some of the patients would undeoubtedly drop out of the
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study before the end of the follow-up period, perhaps because of another
illness, a move to a place where follow-up was impractical, or dissatisfac-
tion with the study. These patients would have to be excluded from the
cohort, even though considerable cffort may have been exerted to gather
data on them up to the peint at which they dropped out. Also, it would
be necessary to wait until all of the cohort’s members had reached each
point in time before the probability of surviving to that point could be
calculated. Because patients ordinarily become available for a study over
a period of time, at any point in calendar time there would be a relatively
long follow-up for patients who entered the study first, but only brief
experience with those who entered recently. The last patient who entered
the study would have to reach each year of follow-up before any informa-
tion on survival to that year would be available.

SURVIVAL CURVES

To make efficient use of all available data from each patient in the
cohort, a way of estimating the survival of a cohort over time, called
strvival analysis, has been developed. {The usual method is called a Kaplan-
Meir analysis, after the originators.) The purpose of survival analysis is
not (as its name implics) only to describe whether patients live or die. Any
outcome that is dichotomous and occurs only once during follow-up—
e.g., time to coronary event or to recurrence of cancer—can be described
in this way. When an event other than survival is described, the term fine-
to-cvent analysis is sometimes used.

Figure 6.5 shows a typical survival curve. On the vertical axis is the

100 A.10 patients  100f B. 100 patients

80 80

60 60
40 40

20 20

Number of Patients

0 1T 2 3 4 5 0 1 2 3 4 5
Time (years)

Figure 6.4. Survival of two cohorts, small and largs, when all members are ob-
served for the full period of follow-up.
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Figure 6.5. A typical survival curve, with detall for one part of the curve,

probability of surviving, and on the horizontal axis is the period of time
following the beginning of observation. Often, the numbers of patients at
risk at various points in time are shown to give some idea of the contribu-
tion of chance to the observed rates.

The probability of surviving to any point in fime is estimated from the
cumulative probability of surviving each of the ime intervals that preceded
it. Time intervals can be made as small as necessary; in Kaplan-Meir analy-
ses, the intervals are between each new event (death) and the preceding
one. Most of the Hime, no one dies, and the probability of surviving is 1.
When one or more patients die, the probability of surviving is calculated
as the ratio of the number of patients surviving to the number at risk of
dying at that time. Patients who have already died, dropped out, or have
not yet been followed-up te that point are not at risk of dying and so are
not used to estimate survival for that time. When patients are lost from
the study at any point in time, for any reason, they are censored, i.c., they
are no longer counted in the deneminator. The probability of surviving
does not change during intervals in which no one dies; so in practice, the
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probability of surviving is recalculated only for times when there is a
death. Although the probability assigned at any given interval is not very
accurate, because of the small number of events involved, the overall prob-
ability of surviving up to each point in time {(which is the product of all
preceding probabilities) is remarkably accurate,

A part of the survival curve in Figure 6.5 (from 3 to 5 years after zero
time) is presented in detail te illustrate the data used to estimate survival:
patients at risk, patients no longer at risk (censored), and patients experi-
encing cutcome events at each point in time.

INTERPRETING SURVIVAL CURVES

Several points must be kept in mind when interpreting survival curves.
First, the vertical axis represents the estimated probability of surviving for
members of a hypothetical cohort, not the percent surviving for an actual
cohort.

Second, points on a survival curve are the best estimate, for a given set
of data, of the probability of survival for members of a cohort. However,
the precision of these estimates depends, as do all observations on samples,
on the number of observations on which the estimate is based. One can
be more confident that the estimates on the left-hand side of the curve are
sound, because more patients are at risk during this time. But at the tail
of the curve, on the right, the number of patients on whom estimates of
survival are based often becomes relatively small because deaths, dropouts,
and late entrants to the study result in fewer and fewer patients being
followed for that length of time. As a result, estimates of survival toward
the end of the follow-up period are imprecise and can be strongly affected
by what happens to relatively few patients. For example, in Figure 6.5, the
probability of surviving is 8% at 5 vears. If at that point the one remaining
patient happens to die, the probability of surviving would fall to zcro.
Clearly, this would be a too literal reading of the data. Estimates of survival
at the tails of survival curves must, therefore, be interpreted with caution.

Finally, the shape of some survival curves, particularly those in which
most patients experience the event of interest, gives the impression that the
event occurs more frequently early on than later, when the slope reaches a
plateau and it appears that the risk of outcome events is considerably less.
But this impression is deceptive. As time passes, rates of survival are being
applied to a diminishing number of pecple, causing the slope of the curve
to flatten even when the rate of outcome events does not change.

Variations on the basic survival curve are found in the medical literature
(Fig. 6.6). Often the proportion with, rather than without, the outcome
event is indicated on the vertical axis; the curve then sweeps upward and
to the right. Other variations increase the amount of information presented
with the curve. The number of patients at risk at various points in time
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Figure 6.6. Survival curve showing comparison of two cohorts, number of people
at risk, and 85% confidence intervals for observed rates. These curves show the
cumulative probability of a cerebral ischemic event from time of diagnosis, according
to the initial degree of carotid stencsis. (Data from Chambers BR, Norris, JW. Out-
come in patients with asymptomatic neck bruits. N Engl J Med 1986, 315:860-865.)

can be included under the horizontal axis; the precision of estimates of
survival, which declines with time because fewer and fewer patients are
still under cbservation as time passes, can be identified by confidence
intervals {see Chapter 9); and survival curves for patients with different
characteristics (e.g., patients with different prognostic factors or treat-
ments) can be compared in the same figure. Sometimes tics (not shown in
Fig. 6.6) are added to the survival curves, to indicate each time a patient
is censored.

Survival curves can be constructed for combinations of prognostic fac-



CHAPTER 6 / PROGNOSIS 123

tors. This can be done by stratifying patients accarding te the presence or
absence of a sct of prognostic factors, as shown eavlier in this chapter. A
statistical technique called the Cox proportional hazards regression model can
be used to identify a combination of factors that best predicts prognosis
in the group of patients under study or the effect of individual factors
independently (Chapter 9).

Bias in Cohort Studies

Potential for bias exists in any observation. Bias in cohort studies—
whether to study risk or prognosis—can create apparent differences when
they do not actually exist in nature or obscure differences when they really
do exist,

Bias can be recognized more casily when one knows where it is most
likely to occur in the course of a study. First, it is important to determine
if bias could be present under the conditions of the study. Second, deter-
mine if bias is actually present in the particular study being considered.
Third, decide if the consequences of bias are sufficiently large that they
distort the conclusions in a clinically important way. If damage to the
study’s conclusions is not very great, then the presence of bias will not
lead to misleading results. Some of the characteristic locations of bias in
cohort research are illustrated in Figure 6.7 and described below.

SUSCEFTIBILITY BIAS

A form of selection bias, called susceptibifity bins, occurs when groups
of patients assembled for study differ in ways other than the factors under
study. These extraneous factors, not the particular factors being studied,
may determine the outcome. A comparable term is assembly bias. Groups

Prognostic Outcomes
Factor

Present

Absent

_ Selection |
Potential Sampling Measurement
Biases

Figure 6.7. Locations of potential bias in cohort studies.
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Figure 6.8. Disease-free survival accarding to CEA levels in colorectal cancer pa-
tients with similar pathological staging (Dukes B). (Redrawn from Wolmark N et
al. The prognostic significance of precperative carcincembryonic antigen levels in
coiorectal cancer. Results from NSABP clinical trials. Ann Surg 1984; 180:375-382.)

being compared are not equally susceptible to the outcome of interest,
other than the factor under study.

Susceptibility bias in prognosis studies may be due to one or more
differences among cohorts, including the extent of disease, the presence of
other diseases, the point of time in the course of disease, and prior treat-
ment. The following illustrates how susceptibility bias was assessed in a
study of the prognostic value of carcinoembryonic antigen results in pa-
tients with colorectal cancer.

Example [ncreased levels of carcinoembryonic antigen (CEA), a tumor-
associated fetal antigen, are found in several types of tumors, including colo-
rectal cancer. A study was undertaken to determine if preoperative CEA
levels predict relapse of disease after surgical resection with the intent to cure
(4). CEA levels were found to correlate with the extent of disease (frequently
categorized according to “Dukes classification’: A, tumors confined to the
bowel wall; B, tumors extending through the bowel wall but not to the lymph
nodes; €, tumors involving regional lymph nedes; and D, tumors having
distant metastases). Mean CEA levels varied with extent of diseasc: 4 for
Dukes A, 9 for B, 32 for C, and 251 for D. Both Dukes classification and
CEA level strongly predicted discasc relapse. But did the CEA level predict
independently of the Dukes classification or was susceptibility of relapse
explained by Dukes classification alone? To answer this question, the associa-
tion of preoperative CHA levels to disease relapse was examined for paticnts
in each Dukes classification. Figure 6.8 shows that for Dukes B classification,



CHAPTER 6 / PROGNOSIS 125

CEA levels independently predicted rclapse. Similar results were found for
patients with Dukes C tumors. Therefore, the association between CEA levels
and likelihood of relapse could not be explained by susceptibility bias for
patients with Dukes B and C colorectal cancers, and CEA is an important
independent prognostic factor.

SURVIVAL COHORTS

True cohort studies should be distinguished from studies of survival
cohorts in which patients are included in a study because they both have
a disease and are currently available—perhaps because they are being
seen in a specialized clinic. Another term for such groups of patients is
available patient cohorts. Reports of survival cohorts are misieading if they
are presented as true cohorts. Tn a survival cohort, people are assembled
at various times in the course of their disease, rather than at the beginning,
as in a true cohort study. Their ¢clinical course is then described by going
back in time and seeing how they have fared up to the present (Fig. 6.9).

The experiences of survival cohorts are sometimes presented as if they

Observed True
True Cohont Improvement Improvement
Assemble Measure outcomes
o
cohort + Improved: 75 50% 50%
(N=150) Not improved: 75
Survival Cohort
Assemble
{— patients
Begin
follow-up | Measure outcomes 80% 50%
" Improved: 40
{N=50) Not improved: 10
: Not !
'i observed :_ -
1
_AN=100)
Dropouts
Improved: 35

Not improved: 65

Figure 6.9. Comparison of a true and a “'survival” cohort; in the survival cohort,
some of the patients present at the beginning are not included in the follow-up.
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were descriptions of the course of discase from its inception. However,
they may represent a biased view, because they include only those patients
who are available for study some time after their disease began. For lethal
conditions, the patients in a survival cohort are the ones who are fortunate
enough to have survived and so are available for observation years later.
For diseases that remit, the patients are the ones who are unfortunate
enough to have persistent disease. In effect, survival cohorts describe the
past history of prevalent cases and not what one would expect over the
time following the onset of disease. Thus a survival cohort is a special case
of assembily bias.

Reports of survival cohorts are relatively common in the medical litera-
ture, particularly in the form of “case series” {discussed in Chapter 10).
Such reports can make an important contribution, primarily by describing
carly experiences with newly defined syndromes, but they represent tenta-
tive, not conclusive, observations.

Example Concern has been raised about the possibility that silicone
breast implants may cause autoimmune symptoms of rheumatic disease. A
study was, therefore, done of 156 women with silicone breast implants and
rheumatic discase complaints (5). The patients were consecutive referrals to
three rheumatologists who were known for their interest in silicone implants
and rheumatic disease. Serologic tests in the women were compared to those
of women without implants but with fibromyalgia and to tests in women
with implants but no rheumatic symptoms. The clinical findings in the
women with implants and complaints were described; most did not fulfill
criteria for rheumatoid arthritis and most had normal immunologic tests.
However, 14 patients had scleroderma-like illness and abnormal serology
that was not found in the comparison groups. Because of the possible biases
that can occur in the assembly of patients for this case series, the authors
were cautious about their findings, concluding that “the hypotheses raised
in this study and others should be tested in large, population-based studics.”
Publication of the first such study does not support the hypothesis (6).

MIGRATION BIAS

Migration bigs, another form of selection bias, can occur when patients
in one group leave their original group, dropping out of the study alto-
gether or moving to one of the other groups under study. If these changes
take place on a sufficiently large scale, they can affect the validity of
conclusions.

In nearly all studies, some members of an original group drop out over
time. If these dropouts occur randomly, such that the characteristics of lost
subjects in one group arc on the average similar to those lost from the
other, then no bias would be introduced. This is so whether or not the
number of dropouts is large or the number is similar in the groups. But
ordinarily the characteristics of lost subjects arc not the same in various
groups. The reasons for dropping out—death, recovery, side effects of
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treatment, etc.—are often related to prognosis and may also affect one
group more than another. As a result, groups in a cobort that were compa-
rable at the outset may become less so as time passes.

As the proportion of people in the cohort who are not followed up
increases, the potential for bias increases. It is not difficult to estimate how
large this bias could be. All one needs is the number of people in the
cohort, the number not accounted for, and the observed outcome rate.

Example Thompson et al. described the long-term outcomes of gastro-
gastrostomy {7). A cohort of 123 morbidly obese patients was studied 19-47
months after surgery. Success was defined as having lost more than 30% of
excess weight.

Only 103 paticnts (84%) could be located. In these, the success rate of
surgery was 60/103 (58%). To determine the range within which the true
success rate must lie, the authors did a best casefworst case analysis. Success
rates were calculated, assuming that all of the patients losi to follow-up were,
on the one hand, successes {best case) and, on the other hand, failures (worst
case). Of the total cohort of 123 patients, 103 were followed up and 20 were
lost to follow-up. The obscrved success rate was 60/ 103, or 58%. In the best
case, all 20 patients lost to follow-up would be counted as successes, and the
success rate would be (60 + 203/ 123, or 65%. In the worst case, all 20 patients
would be counted as failures, and the success rate would be 60/123, or 49%.
Thus the truc rate must have been between 49 and 65%; probably, it was
closer to 58%, the observed rate, because patients not followed up are unlikely
to be all successes or all failures.

Patients may also cross over from one group to another in the cohort
during their follow-up. Whenever this cccurs, the original reasons for pa-
tients being in one group or the other no longer apply. Tf exchange of
patients between groups takes place on a large scale, it can diminish the
observed difference in risk compared to what might have been observed
if the original groups had remained intact. Migration bias due to crossover
is more often a problem in risk than in prognosis studies, because risk
studies often go on for many years. On the other hand, migration from
one group to another can be used in the analysis of a study.

Example The relationship between lifestyle and mortality was studied
by classifying 10,269 Harvard College alumni by physical activity, smoking
status, weight, and blood pressure in 1966 and again in 1977 {8). Mortality
rates were then observed over a 9-year period from 1977 to 1985. It was
recognized that original classifications might change, obscuring any relation-
ship that might exist between lifestyle and mortality. To deal with this, the
investigators defined four categories: men who maintained high-risk life-
styles, those who changed from low- to high-risk Jifestyles, those who
changed from high- to low-risk lifestyles, and those who maintained low-
risk lifestyles. After adjusting for other risk {actors, men who increased their
physical activity from low to moderate amounts, quit smoking, lost weight
to normal levels, and /or became normotensive all had lower mortality than
men whe maintained or adopted high-risk characteristics, but not as low as
the rates for alumni who never had any risk factors.
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MEASUREMENT BIAS

Measiirement bias is possible if patients in one yroup stand a better chance
of having their outcome detected than those in another group. Obviously,
some outcomes, such as death, cardiovascular catastrophes, and major
cancers, ate so obtrusive that they are unlikely to be missed. But for less
clear-cut outcomes—the specific cause of death, subclinical disease, side
effects, or disability —measurement bias can occur because of differences
in the methods with which the outcome is sought or classificed.

Measurement bias can be minimized in three general ways. One can
ensure that those who make the observations are unaware of the group to
which each patient belongs, can set careful rules for deciding whether or
not an outcome event has occurred {and follow the rules), and can apply
efforts to discover events equally in all groups in the study.

Example Chambers and Norris studied the outcome of patients with
asymptomatic neck bruits (9). A total of 500 asymptomatic patients with
cervical bruils were observed for up to 4 years. Patients were classified ac-
cording to the degree of initial carotid artery stenosis by Doppler ultrasonog-
raphy. Qutcomes were change in degree of carotid stenosis and incidence of
cerebral ischemic events,

To avoid biased measurements, the authors estimated carotid stenosis
using established, explicit criteria for interpreting Doppler scans and made
the readings without knowledge of the auscultatory or previous Doppler
findings. Clinical and Doppler assessments were repeated every 6 months,
and all noncomplying patients were telephoned to determine whether out-
comes had occurred.

This study showed, among other things, that patients with =75% carotid
stenosis had a =20% incidence of cerebral ischemic events in 3 years, more
than 4 times the rate of patients with <230% stenosis (see Fig. 6.6).

Dealing with Selection Bias

To determine how a factor is related to prognosis, ideally we would
like to compare cohorts with and without the factor, everything ¢lse being
equal. But in real life “everything else’” is usually not cqual in cohort
studies.

What can be done about this problem? There are several possible ways
of wmrw’hng for differences during cither designing or analyzing research
(Table 6.2).! For any observational study, if one or more of these strategies
have not been applied, the reader should be skeptical. The basic question
is, ”Are the differences in prognosis in the groups related to the particular
factor under study or to some other factor(s)?”

" Controf has several meanings in research: £2 general term for any process —-restriction, matching, stralifi-
cation, adjustment—aimed ab removing the effects of extrancous variables while examining the indepen:
dent effects ol ane variable, (B) the nonexposed people ina cohort study (a contusing use of the term),
fe the nentreated paticnts ina clinical trial, and () nondiseased people (noncases) in a case control study
(see Chapder 0]
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Table 6.2
Methods for Controlling Selection Bias

Phase of Study

Method Description Diexsican Analyss

Randamization Assign patients to groups in a way that e
gives sach patient an equal chance
of falling into one or the other group

Restrction Limit the range of characteristics of i
patients in the study
Matching For each palient in one group, select +

one or more patients with the same
characteristics {excep! for the one
under study) for a comparison group
Stratification Compare rates within subgroups +
{strata) with otherwise similar
probability of the outcome

Adjustment
Simple Mathematically adjust crude rates for 1
ane or a few characteristics so that
equal weight is given to strata of
similar risk
Multipte Adjust for differences in a large number +
of factors related to outcome. using
mathematical madeling techniques
Best case/’ Describe how different the rasults +
worst case could be under the most extreme (or
simply very unlikely} conditions of
sglection bias
RANDOMIZATION

The only way to equalize all extraneous factors, or “everything ¢lse,” is to
assign patients to groups randomly so that each patient has an equal chance
of falling into the exposed or unexposed group. A special feature of random-
ization is that it not only equalizes factors we think might affect prognosis,
it also cqualizes factors we do not know about. Thus randomization goes a
long way in protecting us from incorrect conclusions about prognostic factors.
However, it is usually not possible to study prognosis in this way. The special
situations in which it is possible to allocate exposure randomly, usually to
study the effects of treatment on prognosis, will be discussed in Chapter 7.

RESTRICTION

Patients who are enrolled in a study can be restricted to only those
possessing a narrow range of characteristics, to equalize important extranc-
ous factors. For example, the effect of age on prognosis after acute myocar-
dial infarction could be studied in white males with uncomplicated anterior
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myocardial infarctions. However, one should keep in mind that although
restriction on entry to a study can certainly produce homogeneous groups
of patients, it does so at the expense of generalizability. In the course of
excluding potential subjects, cohorts may be sclected that are unusual and
not representative of most patients with the condition,

MATCHING

Patients can be matched as they enter a study so that for cach patient
in one group there are one or more patients in the comparison group with
the same characteristics except for the factor of interest. Often patients are
matched for age and sex, because these factors are strongly related to the
prognosis of many diseases. But matching for other factors may be called
for as well, such as stage or severity of disease, rate of progression,
and prior treatments. An example of matching in a cohort study of sickle-
cell trait was presented in the discussion of observational studies in
Chapter 5.

Although matching is commonly used and can be very useful, it controls
for bias only for those factors involved in the match. Also, it is usually not
possible to match for more than a few factors, because of practical difficul-
ties in finding patients who meet all the matching criteria. Moreover, if
categories for matching are relatively crude, there may be room for sub-
stantial differences between matched groups. For example, if a study of
risk for Down’s syndrome were conducted in which there was matching
for maternal age within 10 years, there could be a neatly 10-fold difference
in frequency related to age if most of the women in one group were 30
and most in the other 39. Also, once one restricts or matches on a variable,
its effects on outcomes can no longer be evaluated in the study.

STRATIFICATION

After data are collected, they can be analyzed and results presented
according to subgroups of patients, or sirafa, of similar characteristics,

Example Let us suppose we want to compare the operative mortality
rates for coronary bypass surgery at hospitals A and B. Overall, hospital A
noted 48 deaths in 1200 bypass operations (4%), and hospital B experienced
64 deaths in 2400 operations (2.6%).

The crude rales suggest that hospital B is superior. Or do they? Perhaps
patients in the two hospitals were not otherwise of comparable prognosis.
On the basis of age, myocardial function, extent ol occlusive disease, and
other characteristics, the patients can be divided inte subgroups based on
preoperative risk (Table 6.3); then the operative mortality rates within each
category or stratum of risk can be compared.

Table 6.3 shows that when patients are divided by prevperative risk, the
operative mortality rates in each risk stratum are identical in two hospitals:
6% in high-risk patients, 4% in medium-risk patients, and 0.67% in low-
risk patienls. The obvious source of the misleading impression created by
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Table 6.3
Example of Stratification: Hypothetical Death Rates after Coronary Bypass Surgery
in Two Hospitals, Stratified by Preoperative Risk

Haospital A Huospital B
Preﬁperati\"ﬂ _ . . . -
Flirsk. Patiarts Dieathe Rate (%) Patients DCeaths Rate (%)
High 500 a0 4] 400 24 3]
Mediurm 400 16 4 800 32 4
Lo 300 2 067 1200 8 .67
Total 1200 48 4 2400 G4 2.6

examining only the crude rates is the important differences in the risk charac-
teristics of the patients treated at the two hospitals: 42% of hospital A’s
patients and only 17% of hospital B’s paticnts were high risk.

Stratification is one of the most common and most revealing ways of
examining for bias.

STANDARDIZATION

Two rates can be compared without bias if they are adjusted so as to
equalize the weight given to another factor that could be related to out-
come. This process, called standardization (or adjustment), shows what the
overall rate would be if strata-specific rates were applied to a population
made up of similar proportions of people in each stratum. In the previous
example, the mortality rate of 6% for high-risk patients receives a weight
of 500/1200 in hospital A and a much lower weight of 400/2400 in hospital
B, and s0 on, such that the crude rate for hospital A = (500/1200 X 0.06)
+ {400/1200 x 0.04) + {300/1200 — 0.0067) = 0.04 and the crude rate for
hospital B equals (40072400 % 0,06) + (800/2400 x 0.04) + (1200/2400 X
0. 0067) = 0.026.

If equal weights are used, let us say 1/3 (but they could be based on
one or the other hospital or any reference population), then the standard-
ized rate for hospital A = (1/3 x 0.06) + (1/3 X 0.04) + (1/3 X 0.0067)
= {.036, which is exactly the same as the standardized rate for hospital B.
The consequence of giving equal weight to strata in each group is to remove
totally the apparent excess risk of hospital A.

The difference between the crude operative mortality rates in the two
hospitals results from the bias introduced by the differences in patients’
preoperative risk. We are only interested in differences attributable to the
hospitals and their surgeons, not to the patients per se. The difference in
the crude mortality rates is confounded by the differences In patients,
whereas standardized mortality rates equalize the weight of patients’ pre-
operative risk in the two hospitals. Standardization is found much more
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commonly in studies of risk (in which rates are frequently standardized
for age, sex, and /or race) than in studies of prognosis. In contrast to strati-
fication (which is often used in prognosis studies), standardization removes
the effect of the extraneous factor. With stratification, the effect can still be
examined, even if controlled for. Thus, with standardization, we found
that patients had similar prognoses in hospitals A and B. With stratification,
we also learncd the mortality rates among patients in different risk strata.
MULTIVARIABLE ADJUSTMENT

In most clinical situations, many factors act together to produce effects.
The associations among these variables are complex. They may be related
to each other as well as to the outcome of interest, the effect of one might
be modified by the presence of others, and the joint effects of two or more
might be greater than the sum of their individual effects.

Multivariable analysis is a method for simultancously considering the
effects of many variables (Chapter 9). It is used to adjust (control) simulta-
neously for the effects of many variables to determine the independent
effects of one. Also, the method can select from a large set of variables a
smaller subset that independently and significantly contributes to the over-
all variation jn outcome and can arrange variables in order of the strength
of their contribution. Cox’s proportional hazard analysis is a type of multivari-
able analysis used when the outcome is the time to an event (as in survival
analyses).

Multivariable analysis is the only feasible way to deal with many vari-
ables at one time during the analysis phase of a study. (Randomization
also controls for multiple variables, but during the design and conduct
phases of a study.) Simpler methods, such as stratification or matching,
can only consider a few variables at a time and then enly by sacrificing
statistical power.

SENSITIVITY ANALYSIS

When data on important prognostic factors are not available, it is possi-
ble to estimate the potential effects on the study by assuming various
degrees of maldistribution of the factors between the groups being com-
pared and seeing how that would affect the results. The general term
for this process is sensitivity analysis. The best case/worst case analysis,
described earlier in this chapter, is a special type of sensitivity analysis in
which one compares results assuming the best and worst possible maldis-
tribution of a prognostic variable.

Assuming the worst is a particularly stringent test of how a factor might
affect the conclusions of a study. A less conservative approach is to assume
that the factor is distributed between the groups in an unlikely way.

? Sensitivity imalysis can alsa be used to assess the putential cffects of inaccuracies in the data used in
decision analysis as discussed in Chapter 4.
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Example A study of treatment for mild diabetes found that patients
given the sulfonylurea tolbutamide experienced a greater risk of dying from
cardiovascular disease than those given insulin or dict alone. The results
were ¢riticized because data on smoking—known to be associated with car-
diovascular death—were not collected and not taken into account in the
analysis. 1t was suggested that if cigarette smokers were unequally distrib-
uted among the groups, such that there were more smokers among, those
receiving tolbutamide than in the other groups, then the difference in death
rales might be related to smoking, not tolbutamide. However, Cornfield {10)
pointed out that cven if cigarette smokers in the tolbutamide group exceeded
those in the control group by 20%, a situation that would have been extremely
unlikely by chance (1/50,000, an increased risk in the tolbutamide group
would have persisted. Thus bias in the distribution of smokers was unlikely
to have accounted for the observed differences.

OVERALL STRATEGY

Except for randomization, all ways of dealing with extrancous differ-
ences between groups have a limitation: They are effective against only
those factors that are singled out for consideration. They do not deal with
prognostic factors that are not known at the time of the study or arc known
but not taken inte account.

Ordinarily, one does not rely on only ene or another method of control-
ling for bias; one uses several methods together, layered one on another.
Thus in a study of whether the presence of ventricular premature contrac-
tions decreases survival in the years following acute myocardial infarction,
one might () restrict the study to patients who are not very old or young
and do not have unusual causes (e.g., mycotic aneurysm) for their in-
farction; (b} match for age, a factor strongly related to prognosis but extra-
neous to the main question; (¢} examine the results separately for strata of
differing clinical severity {e.g., the presence or absence of congestive heart
failure or other diseases, such as chronic obstructive pulmonary disease);
and (4) using multivariable analysis, adjust the crude results for the effects
of all the variables other than the arrhythmia, taken together, that might
be related to prognosis.

Generalizability and Sampling Bias

Published accounts of disease prognosis that are based on experience in
special centers can paint a misleading picture of prognosis in less selected
patients. This is so even if a study is well done, biases are carefully con-
trolled for, and the reported prognosis for a medical condition is correct
for the particular sample of patients. Because of the sample of patients
used, it may be that the study findings are not gencralizable to most other
patients with the condition, or to your patient.

Sometimes, patients in randomized controlled trials who are assigned
to the control group are studied to better determine the usual clinical
course of a discase. But such patients may not be representative of most
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patients because volunteers for studies tend to do better than patients who
do not volunteer. For example, in a large Canadian study of breast cancer
screening among women in their 40s, 90% of women who were in the
control group and had invasive breast cancer werc alive 7 years later, and
the number of deaths from breast cancer were lower than for Canadian
women generally (11).

Summary

Prognosis is a description of the course of disease from its onset. Com-
pared to risk, prognostic events arc relatively frequent and often can be
estimated by personal clinical experience, However, cases of disease ordi-
narily seen in medical centers and reported in the medical literature are
often biased samples of all cases and tend to overcstimate severity.

Prognosis is best described by the probability of having experienced an
outcome cvent at any time in the course of disease. In principle, this can
be done by observing a cohort of patients until all who will experience
the outcome of interest have done so. However, because this approach is
inefficient, another method —called survival, or time-to-event analysis—
is often used. The onset of events over time is estimated by accumulating
the rates for all patients at risk during the preceding time intervals.

As for any observations on cohorts, studies comparing prognosis in
different groups of patients can be biased if differences arise because of
the way cohorts arc assembled, if patients do not remain in their initial
groups, and if outcome events are not assessed equally. A varicty of strate-
gies arc available to deal with such differences as might arise, so as to
allow fair (unbiased) comparisons. These include restriction, matching,
stratification, standardiration, multivariable anal ysis, and sensitivity analy-
sis. One or more of thesc strategies should be found whenever comparisons
are madc.
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TREATMENT

Once the nature of a patient’s illness has been established and its ex-
pected course predicted, the next question is, What can be done about it?
Is there a treatment that improves the outcome of disease? This chapter
describes the evidence used to decide whether a well-intentioned treatment
is effective.

Ideas and Evidence

The discovery of new treatments requires both rich sources of promising
possibilities and ways of establishing that the treatments are in fact useful,

IDEAS

Ideas (hypotheses) about what might be useful treatment arise from
virtually any activity within medicine. Some therapeutic hypotheses are
suggested by the mechanisms of disease at the cellular or molecular level.
Drugs against antibiotic resistant bacteria are developed through knowl-
cedge of the mechanism of resistance. Hormone analogues are based on the
structure of native hormones. The effectiveness of afterload reduction in
congestive heart failure was suggested by studies of the importance of
afterload in the pathophysiology of heart failure.

Other hypotheses about treatments have come from astute observations
by clinicians. Two examples are the discovery that patients with Parkin-
son’s disease who are given amantadine to prevent influenza show im-
provement in their neurologic status and the reports that colchicine, given
for gout, reduces the frequency of attacks of familial Mediterrancan fever.
The value of these treatments was not predicted by an understanding of
the mechanism of these diseases, and the ways in which these drugs work
are not yet understood. Similarly, folk remedies from throughout the
world, bolstered by centuries of experience but few scientific studies, are
potentially useful treatments.

Other ideas come from trial and error. Some anticancer drugs have been
found by methodically screening huge numbers of substances for activity.

136
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Ideas about treatment, but more often prevention, also come from epide-
miologic studies of populations. Burkitt observed that colonic diseases are
less frequent in African countries, where dict is high in fiber, than in
developed countries, where intake of dietary fiber is low. This observation
has led to efforts to prevent bowel diseases—irrilable bowel syndrome,
diverticulitis, appendicitis, and colorectal cancer—with high-fiber diets.
Comparisons across countries have also suggesled the value of red wine
to prevent heart disease and flueride to prevent dental caries.

TESTING IDEAS

Some treatment effects are so prompt and powerful that their value is
self-evident even without formal testing. Clinicians do not have reserva-
tions about the value of penicillin for pneumonia, surgery for appendicitis,
or colchicine for gout. Clinical experience has been sufficient.

Usually, however, the effects of treatment are considerably less dra-
matic. Tt is then necessary to put ideas about treatments to a formal test,
through clinical research, because a variety of conditions—coincidence,
faulty comparisons, spontaneous changes in the course of disease, wishful
thinking—can obscure the true relationship between treatment and effect.

Sometimes knowledge of mechanisms of discase, based on work with
laboratory models or physiologic studics in humans, has become so exten-
sive that it is tempting to predict effects in humans without formal testing.
However, relying solely on our current understanding of mechanisms,
without testing ideas on intact humans, can lead to unpleasant surprises
because the mechanisms are only partly understood.

Example Many strokes are caused by cerebral infarction in the arca distal
to an obstructed segment of the internal carotid artery. Tt should be possible
to prevent the manifestations of disease in people with these lesions by
bypassing the diseased segment so that blood can flow to the threatened area
normally. It is technically feasible to anastamose the superficial temporal
artery to the internal carotid distal to an obstruction. Becausce its value secmed
scif-evident on physiologic grounds and because of the documented success
of an analogons procedure, coronary artery bypass, the surgery became
widely used.

The EC/IC Bypass Study Group (1) conducled a randomized controlled
trial of temporal artery bypass surgery. Patients with cerebral ischemia and
an obstructed internal carotid artery were randomly allocated to surgical
versus medical treatment. The operation was a technical success; 96% of
anastomoses were patent just after surgery. Yet, the surgery did not help the
patients. Mortality and stroke rates after 5 years were nearly identical in
the surgically and medically treated patients, but deaths occurred earlier in
the surgically treated patients.

This study illustrates how treatments that make good scnse, based on
what we know about the mechanisms of disease, may be found ineffective
in human terms when pul to a rigorous test. Of course, it is not always the
casc that ideas are debunked; the value of carotid endarterectomy, suggested
on similar grounds, has been confirmed (2). '
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Therefore, it is almost always necessary to test therapeutic hypotheses
by means of clinical research, in which data are collected on the clinical
course of treated and untreated patients. As one author (3) put it, treat-
ments should be given “not because they ought to work, but because they
do work.”

Studies of Treatment Effects

Treatment is usually considered to be what physicians prescribe for
patients with cstablished disease: surgery, drugs, diet and exercise. But
there are a great many other ways of intervening to improve health. Among
these are efforts to prevent disease in individual patients {counseling and
early detection with treatment, discussed in Chapter 8), intervention on
communities and changes in the organization and financing of health care.
Regardless of the nature of a well-intentioned intervention, the principles
by which it is judged superior to its alternatives are the same.

There are two general ways to establish the effects of trecatment: observa-
tional and experimental studics. They differ in their scientific strength and
feasibility.

Observational studies of treatment are a special case of studies of prog-
nosis in general, where the prognostic factor of interest is a therapeutic
intervention. What has been said about cohort studies (Chapters 5 and 6)
applies to observational studics of treatment as well. The main advantage
of these studies is that they are feasible. The main drawback is the likeli-
hood that there are systematic differences in treatment groups other than
the treatment itself, which lead to misleading conclusions about the effects
of treatment.

Clinical trials arc a special kind of cohort study in which the conditions of
study—selection of treatment groups, nature of interventions, management
during follow-up, and measurement of outcomes—are specified by the inves-
tigator for the purpose of making unbiased comparisons. Clinical trials are
more highly controlled and managed than are cohort studies. The investiga-
tors are conducting an experiment, analogous to those done in the laboratory.
They have taken it upon themselves {with their patients’ permission) to isolate
for study the unique contribution of one factor by holding constant, as much
as possible, all other determinants of the outcome, Hence, other names for
clinical trials are experimental and intervention studies.

Randemized controlled trials are the standard of excellence for scientific
studies of the effects of treatment. We will consider them in detail first,
then consider alternative ways of answering the same question.

Randomized Controlled Trials
The structure of a clinical trial is shown in Figure 7.1. The patients to

be studied are first selected from a larger number of patients with the
condition of interest. They are then divided, using randomization, into two
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Qutcomes

Experimental
intervention

Comparison
intervention

Figure 7.1. The structure of a clinical trial.

groups of comparable prognosis. One group, called the experimental or
treated group, is exposed to an intervention that is believed to be helpful.
The other group, called a control or comparison group, is treated the same
in all ways except that its members are not exposed to the intervention.
The clinical course of both groups is then observed and any differences in
outcome are attributed to the intervention.

The main reason for structuring clinical trials in this way is to avoid
bias (systematic error) when comparing the respective value of the two or
more kinds of treatments. The validity of clinical trials depends on how
well they result in an equal distribution of all determinants of prognosis,
other than the one being tested, in treated and control patients.

Tn the following discussion, we will describe the design and interpreta-
tion of clinical trials in detail, with reference to Figure 7.2.

SAMPLING

The kinds of patients that are included in a trial determine the extent
to which conclusions can be generalized to other patients. Of the many
reasons why patients with the condition of interest may not be part of a
trial, three account for most of the losses: They do not meet specific entry
criteria, they refuse to participate, or they do not cooperate with the con-
duct of the trial. '

The first, entry criteria, is intended to restrict the heterogeneity of pa-
tients in the trial. Common exclusion criteria are atypical disease, the pres-
ence of other diseases, an unusually poor prognosis (which may cause
patients to drop out of the assigned treatment group), and evidence of
unreliability. Patients with contraindications to one of the treatments arc
also excluded, for cbvious reasons. As heterogeneity is restricted in this
way, the internal validity of the study is improved; there is less opportunity
for differences in outcome that are not related to treatment itself. Also,
generalizing the results is more precise because ene knows exactly to whom
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analysis

Figure 7.2. Bias in clinical trials.

the resuits apply. But exclusions come at the price of diminished scope of
generalizability, because characteristics that exclude patients occur com-
monly among those ordinarily scen in clinical practice, limiting generaliz-
ability to these patients, the very ones for whom the information is needed.

Second, patients can refuse to participate in a trial. They may not want
a particular type of treatment or to have their medical care decided by a
flip of a coin or by someone other than their own physician. Patients who
refuse to participate are usually systematically different—in socioeconomic
class, severity of discase, other health-related problems, and other ways—
from those who agree to enter the trial.

Third, patients who are found to be unreliable during the early stages
of the trial are excluded. This avoids wasted cffort and the reduction in
internal validity that would occur if patients moved in and out of treatment
groups or out of the trial altogether.

For these reasons, patients in clinical trials are usually a highly selected,
biased sample of all patients with the condition of interest (Fig. 7.3). Be-
cause of the high degree of selection in trials, it often requires considerable
faith to generalize the results of clinical trials to ordinary practice settings.
INTERVENTION

The intervention itself can be described in relation to three general char-
acteristics: generalizability, complexity, and strength.

First, Is the intervention in question one that is likely to be implemented
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Population Sampled

Patients with noninsulin-
dependent diabetes mellitus in one
hospital

Inclusion Criteria

Age >40 years

Diabetes diagnosed after 30 years old
Require medication for hyperglycemia
Plan to remain in practice >2 years
Other illness, disability, etc.

Eligible

Uncooperative

Refused to participate

Did not keep appointments
Randomized

Dropped Out

Death
Change of residence
lliness, etc.

Completed Study

Figure 7.3. Sampling for a clinical trial. A study of the effectiveness of a program
to reduce lower extremity problems in patients with diabetes. (Data from Litzelman
DK, Slemenda CW, Langfeld CD, Hays LM, Welch MA, Bild DE, Ford ES, Vinicor F.
Reduction in lower extremity clinical abnormalities in patients with non-insulin depen-
dent diabetes melilus. A randomized controlled trial. Ann Intern Med 1983;119:

36-41.)
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in usual clinical practice? In an effort to standardize therapy so it can be
easily described and reproduced in other settings, some investigators end
up studying treatments that are so unlike those in usual practice that the
results of the trial are not useful.

Second, single, highly specific interventions make for tidy science, be-
cause they can be described precisely and applied in a reproducible way.
However, clinicians regularly make choices among alternative treatments
that involve many elements. Multifaceted interventions arc amenable to
careful evaluation as long as their essence can be communicated and repro-
duced in other scttings.

Example Falls are a major problem in the elderly, have a variety of
causes, and tend to recur. Rubenstein et al. (4) studied the effects of a program
to prevent falls in the elderly. Elderly people in a long-term residential care
facility were randomized after a fall to a special program or to usual care.
The program included a detaiied examination, laboratory tests, and environ-
mental assessment; therapeutic recommendations were given to the patient’s
primary physician. Over the next 2 years, the intervention group had fewer
falls, 26% fewer hospitalizations, and a 52% reduction in hospital days com-
parcd with controls.

Third, s the intervention in question sufficiently different from alterna-
tive managements that it is reasonable to expect that outcome will be
affected? Some diseases can be reversed by treating a single, dominant
cause, e.g., treating hyperthyroidism with radioisotope ablation or surgery.
But most diseases arise from a combination of factors acting in concert.
Interventions that change only one of them, and only a small amount,
cannot be expected to show strong treatment effects. If the conclusion of
a trial evaluating such interventions is that a new treatment is not effective,
it should come as no surprise.

COMPARISON GROUPS

The value of a treatment can only be judged by comparing the results
of the treatment to those of some alternative course of action. The question
is not whether a point of comparison is used, but how appropriate it is,
Results among patients receiving an experimental treatment can be mea-
sured against one or more of several kinds of comparison groups.

Mo Intervention

Do patients receiving the cxperimental trcatment end up better than
those receiving nothing at all? Comparing treatment with no treatment
measures the total effects of health care, both specific and nonspecific.
Observation

Do treated patients do better than other patients who are simply ob-
served? A great deal of special attention is directed toward patients in
clinical trials, and they arc well aware of it. People have a tendency to
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change their behavior because they are the target of special interest and
attention in a study, regardless of the specific nature of the intervention
they might be receiving, a phenomenon called the Hawthorne effect. The
reasons for this changed behavior are not clear. Patients are anxious to
please their doctors and make them feel successful. Also, patients who
volunteer for trials want to do their part to see that ““good” results are
obtained. Thus comparison of treatment with simple chservation measures
treatment effect over and above the Hawthorne effect.

Placebo Treatment

Do treated patients do better than similar patients given a placebo, an
intervention that is intended to be indistinguishable from the active treat-
ment—in physical appearance, color, taste, and smell—but does not have
a specific, known mechanism of action? Sugar pills and saline injections
are examples of placebos. [t has been shown that placebes, given with
conviction, relieve severe, unpleasant symptoms, such as postoperative
pain, nausea, or itching, of about one-third of patients, a phenomenon
called the placebo effect.

Example Tatients with chronic severe itching were entered in a trial of
antipruritic drugs. During each of 3 weeks, 46 patients received in random
order either cyproheptadine HCI, trimeprazine tartrate, or placebo. There
was a 1-week rest period, randomly introduced into the sequence, in which
no pills were given. Results were assessed without knowledge of medication
and expressed as “itching scores”; the higher the score, the worse the itching.
Ttching scores for the various treatments were cyproheptadine HC, 28; trime-
prazine tartrate, 35; placebo, 30; and no treatment, 50. The two active drugs
and placebo were all similarly cffective and all gave much better results than
no treatment (5).

Placebo effects have different meaning for researchers and clinicians.
Rescarchers are more likely to be interested in establishing specific of-
fects—ones that are consistent with current theories about the causes of
disease. They consider the placebo effect the baseline against which to
measure specific effects. Clinicians, on the other hand, should welcome
the placebe effect and attempt to maximize if or any other way of helping
patients.

Many clinical interventions have both specific and nonspecific effects
(Fig. 7.4). What is important to clinicians and their patients is the total
effect of the intervention bevond what would have otherwise occurred in
the course of disease without treatmment. However, 1t is also useful to know
what part of the total effect is specific and what is nonspecific so as to
avoid dangerous, uncomfortable, or costly interventions when relatively
little of their effect can be attributed to their specific actions.
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Action Examples
Mostly Antimicrobials
specific Antimetabolites
Narcotics
Mi Pha logi
ixed \armacologic Antidepressants
Mnoosgly Antipruritics
specific 1 Injection of

trigger points

Figure 7.4. The sffects of most drugs are partly attributable to the placebo effect.
(Redrawn from Fletcher RH. The clinical importance of placebo effects. Fam Med
Rewv 1983;1:40—48.)

E ffects

Specific
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Natural
history

Figure 7.5. Total effects of treatment are the sum of spontaneous improvement,
nonspecific responses, and the effects of specific treatments.

Usual Treatment

Do patients given the experimental treatment do better than those re-
ceiving usual treatment? This is the only meaningful (and ethical) question
if the usual treatment is alrcady known to be efficacious.

The cumulative effects of these various reasens for improvement in
treated patients are diagrammed in Figure 7.5.
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ALLOCATING TREATMENT

To study the effects of a clinical intervention free of other effects, the best
way to allocate patients to treatment groups is by means of randomization.
Patients are given either the experimental or the control treatment by one
of a variety of disciplined procedures—analogous to flipping a coin—
whereby each patient has an equal (or at least known} chance of being
assigned to any one of the treatment groups.

Random allocation of patients is preferable to other methods of alloca-
tion, because randomization assigns patients to groups without bias. That
is, patients in one group are, on the average, as likely to possess a given
characteristic as patients in another. Only with randomization is this so
for all factors related to prognosis, whether or not they are known before
the study takes place.

In the long run, with a large number of patients in the trial, randomization
usually works as described above. However, random allocation does not
guarantee that the groups will be similar. Although the process of random
allocation is unbiased, the results may not be. Dissimilarities between groups
can arise by chance alene, particularly when the number of patients random-
ized is small. To assess whether this kind of “bad luck’ has occurred, authors
of randomized controlled frials often present a table comparing the frequency
of a variety of characteristics in the treated and control groups, especially
those known to be related to outcome. Tt is reassuring to see that important
characteristics have, in fact, fallen out nearly equally in the groups being
compared. If they have not, it is possible to see what the differences are and
atternpt to contrel them in the analysis (sce Chapter 6).

Some investigators believe it is best to make sure, before randomization,
that at least some of the characteristics known to be strongly associated
with outcome appear equally in treated and control groups, to reduce the
risk of bad luck. They suggest that patients first be gathered into groups
(strata) of similar prognosis and then randomized scparately within each
stratum—a process called strafified randomization. The groups are then
bound to be comparable, at least for the characteristics that were used to
create the strata. Others argue that whatever differences arise by bad luck
are unlikely to be large and can be dealt with mathematically after the
data are collected.

DIFFERENCES ARISING AFTER RANDOMIZATION

Not all patients in a clinical trial participate as originally planned. Some
are found not to have the disease they were thought to have when they
entered the trial. Others drop out, do not take their medications, are taken
out of the study because of side effects or other illnesses, or somehow
obtain the other study treatment or treatments that are not part of the
study at all. The result is comparison of treatment groups that might have
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been comparable just after randomization but have become less so by the
time outcomes are counted.

Patients Do Not Have the Disease

Tt may be necessary to decide which treatment to give {in a clinical trial
or in practice) before it is certain the patient actually has the disease for
which the treatment is designed.

Example To study whether a monoclenal antibody against endotoxin im-
proves survival from sepsis, 543 patients with sepsis and suspected Gram-
negative infection were randomized to reccive antiendotoxin or placebo (6). In
the subgroup of patients who actually had Gram-negative bacteremia, death
rate was reduced from 49 to 3, a large difference that was well beyond what
could be accounted for by chance. However, onty 200 patients (37%) had Gram-
negative bacteremia, confirmed by blood culture. There is no known reason
why the other 63% would be helped by the drug. For all patients with sepsis
{some of whom had bacteremia and others did not) mortality rate was 43% in
the placebo group and 39% in the group receiving antiendotoxin, a small differ-
ence that was not beyond that expected by chance alone.

Thus, from this trial, there was evidence that the drug was effective against
Gram-negative bacteremia, but not for sepsis. Both are important questions:
the former for researchers, who are interested in the biclogic effect of antien-
dotoxin in bacteremia, and the latter for clinicians, who needed to know the
clinical effects of their decision to give the drug to patients with sepsis-—a
decision that must be made before it is known whether or not bacteremia is
actually present.

When patients suspected of having the specific disease in queston later
turn out not to have it, there is a price to pay. Studying additional patients
who could not benefit from the specific action of the treatment decreasces
the efficiency of the trial; more patients must be studied to see the effect.
Looked at another way, because patients experiencing the specific effect
are mixed with others who cannot, the effect size is reduced relative to a
trial including only patients with the discase. This decreases the chances,
for a given number of patients in the trial, that an effect will be found (see
Chapter 9). However, this kind of trial has the important advantage of
providing information on the consequences of a decision as the clinician
encounters it (see “‘Management and Explanatory Trials,” later in this
chapter).

Compliance

Compliance is the extent to which patients follow medical advice. Some
prefer the term adherence, because it connotes a less subservient relationship
between patient and doctor. Compliance is another characteristic of pa-
tients that can arise after randomization. Although noncompliance sug-
gests a kind of willful neglect of good advice, in medicine other factors
also contribute. Patients may misunderstand which drugs and doses are
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intended, run out of preseription medications, confuse various prepara-
tions of the same drug, or have no money or insurance to pay for drugs.
Taken together, these may limit the usefulness of treatments that have
been shown to work under specially favorable conditions.

Compliance is particularly important in medical care outside the hospi-
tal. In the hospital, many factors act to constrain patients” personal behavior
and render them compliant. Hospitalized patients are generally sicker and
more frightened. They are in strange surroundings, dependent on the skill
and attention of the staff for everything—even their life. What is more,
doctors, nurses, and pharmacists have developed a well-organized system
for ensuring that patients receive what is ordered for them. As a result,
clinical experience and a medical literature developed on the wards may
underestimate the importance of compliance outside the hospital, where
most patients and doctors are and where doing what clinicians advise is
more difficult.

Comparing responses among, compliant and noncompliant patients in
a randomized trial can be misleading.

Example During a large study of the effects of several lipid-lowering
drugs on coronary heart discase, 1103 men were given clofibrate and 2789
men were given placebo. The 5-year mortality rate was 20.0% for the <lofi-
brate group and 20.9% for the placebo group, indicating that the drug was
not cffective,

It was recognized that not all patients took their medications. Was clofi-
brate effective among patients who actually took the drug? The answer ap-
pearcd to be ves. Among patients given clofibrate, 5-year mortality (or pa-
tients taking most of their prescribed dru$ was 15.0%, compared with 24.6%
for the less cooperative patients {p <2 10 7). However, taking the prescribed
drug was also related to lower mortality rates among patients prescribed
placebo. For them, 5-year mortality was 15.1% for patients taking most of
their placebo medication and 28.3 for patients whe did not (p < 107"%), Thus
there was an association between drug taking and prognosis that was nol
related to the active drug itself.

The authors (7) cautioned against evaluating treatment effects in sub-
groups determined by palient responses to the treatment protocel afler
randomization.

Cointerventions

After randomization, patients may receive a varicty of interventions
other than the ones being studied. If these occur unequally in the two
groups and affect outcomes, they can introduce systematic differences
{bias) between the groups compared.

Example The care of AIDS is emotional, in part because it affects young
adults and is universally fatal within a few years of the onset of symptoms.
[Hfarts to study the effectiveness of treatment have been hindered by disrup-
tion of the usual procedures of randomived trials, as patients try to maximize
their chances of survival. Patients in randomized trials sometimes exchange
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the drugs being studied in the trial (researchers cail the exchange of treatment
regimens amony study participants “contamination”) or obtain drugs that
are not part of the trial through “drug clubs.” Information about this behavior
is usually not shared with the researchers and so cannot be accounted for in
the study. The result is to bias the study toward observing no eflect, since
the contrast between the (reatment of the “treated” group and the comparison
group is diminished.

Comparing Responders with Nonresponders

[n some clinical trials, particularly those about cancer, the outcomes of
patients who initially improve after treatment (responders) are compared
with outcomes in those who do not (nonresponders). The implication is
that one can learn something about the efficacy of treatment in this way.

This approach is scientifically unsound and often misleading, because
response and nonresponse might be associated with many characteristics
related to the ultimate outcome: stage of disease, rate of progression, com-
pliance, dose and side effects of dru gs, and the presence of other diseases.
If no patient actually improved because of the treatment, and patients were
destined to follow various clinical courses for other reasons, then some
(the ones who happened to be doing well) would be called “responders”
and others (the ones having a bad course) would be considered “‘nonre-
sponders.”” Responders would, of course, have a better outcome whether
or not they reccived the experimental treatment.

BLINDING

Participants in a trial may change their behavior in a systematic way
(i.e., be biascd) if they are awarc of which patients receive which treatment.
One way to minimize this effect is by blinding, an attempt to make the
various participants in a study unaware of which treatment patients have
been offered, so that the knowled go does not cause them to act differently,
thereby damaging the internal validity of the study. “Masking” is a more
appropriate metaphor, but blinding is the time-honored term.

Blinding can take place at four levels in a clinical trial. First, those
responsible for allocating patients to treatment groups should not know
which treatment will be assigned next so that the knowledge does not
affect their willingness to enter patients in the trial or take them in the
order they arrived. Second, patients should be unaware of which treatment
they are taking; they arc thereby less likely to change their compliance or
their reporting of symptoms because of this information. Third, physicians
who take care of patients in the study should not know which treatment
each patient has been given; then they will not, perhaps unconsciously,
manage them differently. Finally, if the rescarchers who assess outcomes
cannot distinguish treatment groups, that knowledge cannot affect their
measurements.

The terms single-biind (patients) and double-blind (patients and research-



CHAPTER 7 / TREATMENT 149

ers) are sometimes used, but their meaning is ambiguous. Tt is better simply
to describe what was done. A trial in which there is no attempt at blinding
is called open or open label.

When blinding is possible, mainly for studies of drug effects, it is usually
accomplished by means of a placebo. However, for many important clinical
questions—the effects of surgery, radiotherapy, diet, or the organization
of medical care—blinding of patients and managing physicians is not
possible.

Even when blinding appears to be possible, it is more often claimed
than successtul. Physiologic effects, such as lowered pulse rate with beta-
blocking drugs, or bone marrow depression with cancer chemotherapy,
are regular features of some medications. Symptoms may also be a clue.

Example  In the Lipids Research Clinics (8) trial of the primary preven-
tion of cardiovascular diseasc, a nearly perfect placebo was used. Some peo-
ple received cholestyramine and others a powder of the same appearance,
odor, and taste. However, side effects were substantially more common in
the cholestyramine group. At the end of the 1st year of the trial, there were
much higher rates in the experimental (cholestyramine) group than the con-
trol group for constipation (39 versus 10%), heartburn (27 versus 10%),
belching and bloating (27 versus 16%), and nausea (16 versus 8%). Patients
might have been prompted by new symptoms to guess which treatment they
were getting,

There is also objective evidence that patients and physicians in some
blinded trials can guess who received what treatment.

Example A double-blind, randomized trial was conducted to see if pro-
pranclol could prevent another myocardial infarction in patients who had
alrcady had one (9). At the conclusion of the trial, but before unblinding,
patients and clinic personnel were asked to guess the treatment group assign-
ment of each patient. For patients, 79.9% guessed propranolol correctly and
57.2% placebo correctly. Physicians and clinic personnel were similarly accu-
rate. Clinical personnel seemed to be aided in their guessing by observation
of heart rate; it was unclear how patients knew.

ASSESSMENT OF QUTCOMES

When the outcome of a trial is measured in unequivocal terms, such as
being alive or dead, it is unlikely that paticnts will be misclassified. On
the other hand, when outcomes are decided by the opinion of one of
the participants, there is much greater opportunity for bias. For example,
although the fact of death is usually clear, the cause of death is often not.
Most people die for a combination of reasons or for obscure reasons,
allowing some room for judgment in assigning cause of death. This judg-
ment can be influenced by knowledge of what went before, including the
treatments that were given. Opportunities for bias are even greater when
assessing symptoms such as pain, nausca, or depression. Bias in assessing



150 CLINICAL. EPIDEMIOLOGY

outcomes is aveided by scarching for outcome events equally in all pa-
tients, using explicit criteria for when an outcome has occurred, and by
blinding.

Short-term, easily measurable “outcomes” may be substituted for clini-
cal ones 50 as to speed the rate at which ftrials can be completed and
reported. For example, it has been common in clinical trials of treatment
of HIV infecticn to take as the main outcome measures biologic tests that
reflect the extent of infection (such as CD4+ counts and p32 antigen) rather
than clinical progression of disease {opportunistic infections and death).
However, it has been shown that CD4+ counts are an imperfect marker
of clinical treatment effect. As discussed in Chapter 1, the practice of substi-
tuting biologic outcomes for clinical ones instudies that are to guide patient
care is defensible only if the proxy is known to be itself strongly related
to the clinical outcome.

There are several options for summarizing the relative effects of two
treatments (Table 7.1). It has been suggested that the most clinically rele-
vant expression is number needed fo Freat, the number of patients that must
be treated to prevent one oulcome event (10). Number needed to treat is
the reciprocal of absolute risk reduction.

Perception of the size of a treatment effect, both by patients and clini-
cians, is influenced by how the effect is reported. In general, cffects reported
as relative risks seem larger than the same cffects described as attributable
risks, which in turn seem larger than reports of the number needed to treat
(11,12). Also, patients told their probability of survival believe they have
a better chance than those teld the complement, their probability of dying
{13). Thus, to understand and communicate treatment effects, it is neces-
sary to examine the main results of a trial in several ways. [t is moot which
is the ““correct” statistic.

’

Table 7.1
Summarizing Treatment Effects®

Surmmiary Moasurc® Diesfiriticon

Contrel event rate -- Treated event rate
Control event rate

Absolute risk reduction Cantrol event rale — Treated event rate
1

Control evont rote — {roated event rate

Relative risk reduction

Number needed to treat

*aupaces A, Sackedl O, Robers BS. An assessment of olinically useful rmeasures of the consequences of
treatmont. Mow Engl J Med 1988; 3181728 - 1730

" For continuous data, when there are measurements at haseline and alter treatmont, anakigous messuras
dre based] on the mean values for treated and contral groups either after treatment ar for the differenco
botweon bascline and posttreatmeont values.
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MANAGEMENT AND EXPLANATORY TRIALS

The results of a randomized controlled trial can be analyzed and pre-
sented in bwo ways: according to the treatment to which the patients were
randomized or to the one they actually reccived. The correct presentation
of results depends on the question being asked.

If the question is which treatment policy is best at the time the decision
must be made, then analysis according to the assigned (randomized) group
is appropriate —whether or not some patients did not actually receive the
treatment they were supposed to receive. Trials analyzed in this way are
called intention to treat or management trials (14). The advantages of this
approach are that the question corresponds to the one actually faced by
clinicians and the patients compared are really randomized. The disadvan-
tage is that if many patients do not receive the treatment to which they
were randomized differences between experimental and control groups
will tend to be obscured, increasing the chances of a negative study. Then
if the study shows no difference, it is uncertain whether the experimental
treatment is truly ineffective or was just not received.

Another question is whether the experimental treatment itself is better?
For this question, the proper analysis is according to the treatment each
patient actually received, regardless of the treatment to which they were
randomized. Trials analyzed in this way are called explanatory trinfs because
they emphasize the mechanism by which cffects are exerted. The problem
with this approach is that unless most paticnts receive the treatment to
which they are assigned the study no longer represents a randomized
trial; it is simply a cohort study. Therefore, one must be concerned about
dissimilarities between groups, other than the experimental treatment, and
must use one or more methods (restriction, matching, strafification, or
adjustment) to achieve comparability, just as one would for any nonexperi-
mental study. These two approaches are illustrated in Figure 7.6.

EFFICACY AND EFFECTIVENESS

A trial’s results are judged in relation to two broad questions. Can
the treatment work under ideal circumstances? Does it work in ordinary
settings? The words efficacy and ¢ffectivencss have been applied to these
concepts (Fig. 7.7).

The question of whether a treatment can work is one of efficacy. An
efficacious treatment is one that has the desired ecffects among those who
receive it. Efficacy is established by restricting patients in a study to those
who will cooperate fully with medical advice.

In contrast, a treatment is effective if it does more good than harm in those
to whom it is offered. Effectiveness is established by offering a treatment or
program to patients and allowing thern to accept or reject it as they might
ordinarily do. Only a small proportion of ¢linjcal trials set out to answer
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Figure 7.6. Intention to treat and explanatory trials.

questions of effectiveness. This is in part because of the risk that the result
will be inconclusive. If a treatment is found to be ineffective, it could be
because of a lack of cfficacy, lack of patient acceptance, or both.

Tailoring the Results of Trials to Individual Patients
Clinical trials involve pooling the experience of many patients who are
admittedly dissimilar and describing what happens to them on the average.
How can we obtain more precise estimates for individual patients? Two
ways are to examine subgroups and to study individual patients using
rigorous methods similar to those in randomized trials.
SUBGROUPS
The principal result of a clinical trial is a description of the most im-
purtant cutcome in each of the major treatment groups. But it is tempting
to examine the results in more detail than the overall conclusions afford.
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Figure 7.7. Efficacy and effectiveness.

We look at subgroups of patients with special characteristics or with partic-
ular outcomes. In doing so, however, there are some risks of being misled
that are not present when examining the principal conclusions alone, and
these should be taken into account when interpreting information from
subgroups. (Some of the concepts on which this section is based are dis-
cussed in Chapter 9.)

One danger in examining subgroups is the increased chance of finding
cffects in a particular subgroup that are not present, in the long run, in
nature. This arises because multiple comparisons lead to a greater chance
of a false-positive finding than is estimated by the individual p value for
that comparison alone (see Chapter 9). Table 7.2 lists some guidelines for
deciding whether a finding in a subgroup is real.

A second danger is of a false-negative conclusion. Examining subgroups
in a clinical trial —either certain kinds of patients or specific kinds of out-
comes—involves a great reduction in the data available, so it is frequently
impossible to come to firm conclusions. Nevertheless, the temptation to
look is there, and some tentative information can be gleaned.

Example The Physicians” Health Study (15) is a randomized controlled
trial designed {o assess whether daily aspirin prevents mortality from cardio-
vascular discase in healthy male physicians. Another aspect of the trial is to
study the effect of S-carotene on the incidence of cancer. The aspirin part of
the study was stopped long before there were enough deaths to determine
if aspirin affected mortality, because the physicians had a much lower than
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expected death rate. The trial was also stopped because there were fewer
myocardial infarctions in the treated than the control group. The authors
thought that the effect on myocardial infarction, although not the answer to
a main study question at the outset, was real because it was biologically
plausible, because it was found in other studies, and because the chance of
a false-positive conclusion was cstimated to ke very small (1/10,000). On the
other hand, although the authors observed a small increasc in risk of stroke
in the treated group, they could not be certain whether this effect was real
or not, as there were too few physicians with this end point. Thus, in a study
that could not address the main research question, the authors interpreted
the validity of findings in subgroups (both positive and negative) in relation
to the totality of information that might bear on the validity of these findings.

EFFECTIVENESS IN INDIVIDUAL PATIENTS

A treatment that is effective on the average may not work on an individ-

ual
beg

patient. The results of valid clinical research provide a good reason to
in treating a patient, but experience with that patient is a better reason

to continue therapy. Therefore, when conducting a treatment program it

is u

seful to ask the following series of questions:

* [s the treatment known to be efficacious for any patients?

* Js the treatment known tc be effective, on the average, in patients like
mine?

¢ Are the benefits worth the discomforts and risks?

* Is the treatment working in my patient?

By

asking these questions, and not simply following the results of trials

alone, one can guard against ill-founded choice of treatment or stubborn
persistence in the face of poor results.

Table 7.2
Guidelines for Deciding Whether Apparent Differences in Effects

with

in Subgroups Are Real

From the stucly itself

5 the magnitude of the observed difference clinically imporlant?

= How likely is the effect to have arisen by chance, taking into account;

The number of subgroups examned?
The: magnitudde of the p value?

» Was a hypothesis that the effect would be observed

Fror

Made before its discovery (or was justification for the effect argued far after it was
found)?

One of a small number ot hypotheses?

1 other information

= Was the difference suggested bty comparisons within rather than between studies?
» Has the effect been abserved in other studies?
» |5 there indirect evidence that supports the existence of the effect?

" Adanted from Oxrman AMNL Guyatt GH. A consumer’s guide to subgroup anabysis. Ann Intern Merd

1942

CHIETE 841,
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TRIALS OF N = 1

Rigorous clinical trials, with proper attention to bias and chance, can
be done with individual patients, one at a time (16). The method —called
trigls of N = 1—is an improvement in the more informal process of trial
and error that is so common in clinical practice. A patient is given one or
another treatment (e.g., active treatment or placebo) in random order, each
for a brief period of time, such as a week or two. Patients and physicians
are blind to which treatment is given. Quicomes (c.g., a simple preference
for a treatment or a symptom score) are assessed after each period and
subjected to statistical analysis.

This method is useful when activity of disease is unpredictable, response
to treatment is prompt, and there is no carryover effect from period to
period. Examples of diseases for which the method can be used include
migraine, bronchospasm, fibrositis, and functional bowel disease.

N of 1 trials can be useful for guiding clinical decision making, although
for a relatively small proportion of patients. It can also be used to screen
interesting clinical hypotheses to select some that are promising enough
to be evaluated using a full randomized controlled trial involving many
patients.

Alternatives to Randomized Trials

Randomized, controlled, blinded trials are the standard of excellence
for comparisons of treatment effects over time. They should be given prece-
dence over other information about treatment cffects whenever they are
available. However, it is not always possible to rely on clinical trials.

LIMITATIONS OF RANDOMIZED TRIALS

Clinical trials are limited for several reasons. There may not be enough
patients with the discase of interest, at one time and place, to carry out a
scientifically sound trial. Clinical trials are costly, more than $50-100 mil-
lion for some large trials. Years pass before results are available, which
may be politically unacceptable for severe, emotion-laden diseases such as
AIDS.

Sometimes a practice may have become so well established, in the ab-
sence of conclusive evidence of its benefit, that it is difficult to convince
physicians and potential participants that a trial is needed. 1t could be
argued that if the trcatment effect is not really known then the only ethical
thing is to do the study (and it is unethical to continue to use treatments
of uncertain benefit), but this argument demands a level of analytic reason-
ing that is uncommon among patients and their physicians. Because of this
problem, some physicians have advocated “randomization from the first
patient,” beginning trials just after a new treatment is introduced. Others
argue that it is better to conduct rigorous clinical trials somewhat later,



156 GLINICAL EPIDEMIOLOGY

after the best way to deliver the treatment has been worked out, so that a
good example of the intervention is tested. I any case, it is generally
agreed that if a controlled trial is postponed too long, the opportunity to
do it all may be lost.

For these reasons, guidance from clinical trials is not available for many
treatment decisions. But the decisions must be made nonetheless. What
are the alternatives and how credible are they?

ADVANTAGES AND DISADVANTAGES

Alternatives to randomized trials usually make use of large databases
such as those collected for patient care, billing, or administration. Sometime
data collected to answer another research question are used. A rescarch
question, and a study to answer it, can be devised after the data have been
collected so that most of the resources needed for the study go into analyses
of the data. This process is called secondary data analysis, because answering
the research question was not the primary reason for collecting the data.

Using secondary data for research has several advantages, all of them
practical. First, if the database includes experience from a large number of
patients, as is often the case, then the research question can be answered
with a high degree of confidence that the results are not just by chance. 1t
may even be possible to examine subgroups (e.g., elderly women taking
estrogens or young men with a first anterior myocardial infarction) with
statistical confidence. Most clinical trials arc not designed with such an
abundance of patients because of the cost; the best trials are sufficient to
answer the main rescarch question for all patients in the study but are
rarely sufficient to answer questions about subgroups of patients,

Second, these databases are collected in more natural settings than clini-
cal trials. They reflect experience in health care organizations or perhaps
entire regions or nations, rather than a highly selected group of experimen-
tal subjects. Therefore, the results are more generalizable.

Third, it costs less to use existing data than to collect new data in a clinical
trial. Randomized trials cost thousands of dollars per patient to recruit, evalu-
ate, enroll, and follow up each patient, whereas analyses of existing data can
be relatively inexpensive.

Finally, by using existing data, it is possible to have an answer to an
important question in a relatively short time. Clinical trials often take years
from enrollment of the first patient to the end of follow-up. Sometimes
clinicians need an answer, however imperfect, sooner because they are

making high-stakes decisions on alternative treatments every day.

Balanced against all of these practical advantages are disadvantages.
The data are usually not collected and classified with as much care as they
would be for a well-run clinical trial. For example, a claims data diagnosis
of “hypertension” stands for whatever the responsible physicians believes
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hypertension is, whereas a research definition of hypertension would spec-
ify a level of blood pressure, method, and frequency, perhaps adjusted for
age. Some important variables may be missing from the database because
they were not important for the database’s original purposes, though they
arc important for the research. Of course, there is also the problem of
making unbiased comparisons.

The trade-off between speed and ease, on the one hand, and validity,
on the other, will be discussed for each alternative design in the next
sections.

COMPARISONS ACROSS TIME AND PLACE

Control patients can be chosen from a time and place different from the
experimental patients. For example, we may compare the prognosis of
recent patients treated with current medications to experience with past
patients who were treated when current medications were not available.
Similarly, we may compare the results of surgery in one hospital to results
in another, where a different procedure is used. This approach is conve-
nient. The problem is that time and place are almost always strongly related
to prognosis. Clinical trials that attempt to make fair comparisons between
groups of patients arising in different eras, or in different settings, have a
particularly difficult task.

The results of current treatment are sometimes compared with experi-
ence with similar patients in the past, called historical or nonconcurrent
controls. Although it may be done well, this design has many pitfalls.
Methods of diagnosis change with fime, and with them the average prog-
nosis. It has been shown that new diagnostic technologies have created
the impression that the prognosis of treated lung cancer have improved
over time when it has not {17). With better ability to detect occult metasta-
ses, patients are classified in a worse stage than they would have been
earlicr, and this “stage migration” has resulted in a better prognosis in
each stage than was reported in the past. Supporting treatments {c.g.,
antibiotics, nutritional supplementation and peptic ulcer prevention) also
improve with time, creating a general improvement in prognosis that might
not be attributable to the specific treatment given in a later time period.

Example Sacks et al. (18) reviewed clinical trials of six therapies to see
if trials with concurrent controls produced different results than studies of
the same treatments with historical controls. They studied 50 randomized
trials and 56 studices with historical controls. A total of 79% of trials with
historical centrols but only 20% of trials with a concurrent, randomized con-
trol group found the experimental treatment to be better. Differences between
the two kinds of trials occurred mainly because the control patients in the
historical trials did worse. Adjustment for prognostic factors, when possible,
did not change the results, ie., the differences were probably because of
general improvements in therapy or to sclection of less ill patients.
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Therefore, if concurrent, randomized controlled trials are taken as a
standard of validity it seems that published historical trials are biased in
favor of the experimental treatment and that the bias cannot be overcome
by adjusting for known prognostic variables.

If historical controls are used, the shorter the period of time between
sclection of treated and control groups and the less other aspects of medical
care have changed during the interval, the safer the comparison. Thus
some oncology centers study a succession of chemotherapeutic regimens
by comparing results of the newest regimen with those of the immediately
preceding one, often given as recently as the previous year. In general,
however, choosing concurrent controls (i.e., patients treated during the same
period of time} is a better way of avoiding bias.

Experience in other setlings, using different treatments, can serve as a
standard of comparison. However, it is preferable to choose both treated
and contrel patients from the same setting, because a variety of factors—
referral patterns, organization and skill of staff, etc.—often result in very
different prognoses in different settings, independently of the treatment
under study.

Example The mortality rate for hospitals where coronary bypass surgery
was done varied almost threefold across hospitals in central Pennsylvania
(Fig. 7.8) (19}. The severity of illness, and therefore prognosis, of patients in
these hospitals varied too. After taking into account the number of deaths
expected, by considering patients’ prognostic factors, one hospital had fewer
than expected deaths, another the expected number, and a third more than
expected. Any fair comparison of treatment effects across these hospitals
would have to take into account not only the differences in severity of the
patients in these hospitals but also the skills of the surgeons.

UNCONTROLLED TRIALS

Uncontrolled trials describe the course of disease in a single group of
patients who have been exposed to the intervention of interest. Another
naree for this design is a “’before-after study.” The assumption of this
approach is that whatever improvement is observed after treatment is
because of treatment. This assumption may be unwarranted for several
reasons.

Unpredictable Outcome

When the clinical course of a diseasc is quite predictable, a separate
control group is less important. We know that subacute bacterial endocar-
ditis without antibiotics and rabies without vaccine invariably lead to
death, that most patients with hypothyroidism will only get worse without
exogenous thyroid hormone, and that bowel infarction will rarely improve
without surgery.

However, most therapeutic decisions do not involve conditions with
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Figure 7.8. Severity of ilness and skill of surgeons vary by location. Observed and
expected (taking into account case mix} death rate from coronary bypass surgery
in three hospitals. (Data from Topol EJ, Califf BM. Scorecard cardiovascular medicing,
lts impact and future direction. Ann Intern Med 1984;120:65-70.}

such predictable outcomes. In situations where the clinical course is ex-
tremely variable for a given patient and from one patient to another, as-
sessing treatment cffects by observing changes in the course of disease
after treatment is unreliable.

Many severe diseases that are not self-limited may nevertheless undergo
spontaneous remissions in activity that can be misinterpreted as treatment
effects. Figure 7.9 shows the clinical course of a patient with systemic lupus
erythematosus over a 10-year period, 1955-1964 (20). Although powerful
treatments were not given (because none was available during most of
these years), the disease passed through dramatic periods of exacerbation,
followed by prolonged remissions. Of course, exacerbations, such as those
illustrated, are alarming to both patients and doctors, so there is often a
feeling that something must be done at these times. If treatment were
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Figure 7.9. The unpredictable course of disease. The natural history of systemic
lupus erythematosus in a patient observed before the advent of immunosuppressive
drugs. {Redrawn from Ropes M. Systemic lupus enythematosus. Cambridge, MA:
Harvard University Press, 1976.)

begun at the peak of activity, improvement would have followed. Without
any better comparison than the previous activity of the disease, the treat-
ment would have received credit for the improvement.
Nonspecific Effects

In uncontrolled trials, there is no way of separating Hawthorne and
placebo effects from treatment effects. But if there are control patients who
receive the same attention as the treated ones and a placebo, then these
effects cancel out in the comparison.
Regression to the Mean

Treatments are often tried because a manifestation of disease, eg., a
particularly high blood pressure or fever, is extreme or unusual. In this
situation, subsequent measurements are likely to show improvement for
purcly statistical reasons. As discussed in Chapter 2, patients selected be-
cause they represent an extreme high value in a distribution are likely, on
the average, to have lower values for later measurements. If those patients
are treated after first being found abnormal and the effects of treatment
are assessed by subsequent measurements, improvernent could be ex-
pected even if treatment were ineffective.
Predictable Improvement

The usual course of some diseases is o improve; if so, therapeutic efforts
may coincide with improvement but not cause it. For example, patients
tend to seek care for many acute, self-limited diseases, such as upper
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respiratory infections or gastroenteritis, when symptoms are at their worst.
They often begin to recover after secing the doctor because of the natural
course of events regardless of what was done.

NCNRANDOM ALLOCATION OF TREATMENT

One way to allocate patients to treated and control groups is to have
the physicians caring for the patients decide. When this is done, the study
has all the advantages and disadvantages of cohort studies.

Studies of treated cohorts take advantage of the fact that therapeutic
decisions must be made for sick patients regardless of the quality of ex-
isting evidence on the subject. In the absence of a clear-cut consensus
favoring one mode of treatment over others, various treatments are often
given. As a result, in the course of ordinary patient care large numbers of
patients receive various treatments and go on to manifest their effects. H
experience with these patients can be captured and properly analyzed, it
can be used to guide therapeutic decisions.

Unfortunately, it is often difficult to be sure that observational studies
of trecatment involve unbiased comparisons. Decisions about treatment are
determined by a great many factors—severity of illness, concurrent dis-
cases, local preferences, patient cooperation, etc. Patients receiving the
different treatments are likely to differ not only in their treatment but in
other ways as well. Efforts to determine the results of treatment alone, free
from other factors, are thereby compromised.

Phases of Studies of Treatment

For studies of drugs, it is customary to define three phases of trials, in
the order they are undertaken (21). Phase ! trials are intended to identify
a dose range that is well tolerated and safe (at least for high-frequency,
severe side effects) and include very small numbers of patients {perhaps
a dozen), without a control group. Phase II trials provide preliminary infor-
mation on whether the drug is cfficacious and the relationship between
dose and efficacy; these trials may be controlled but include too few pa-
tients in treatment groups to detect any but the largest treatment effects.
They may not be blinded. Phase I trials provide definitive evidence of
efficacy and the presence of common side effects. They include encugh
patients—dozens to thousands—to detect clinically important treatment
effects and are commonly published in clinical journals and vsed by regula-
tory agencies to decide whether to license drugs.

Phase lil trials are not large enough to detect differences in the rate-——or
cven the existence—of uncommon side effects. (See discussion of statistical
power, Chapter 9.) For this, it is necessary to follow up very large numbers
of patients after a drug is in general use, a process called “postmarketing
surveillance” or, sometimes, phase 1V of drug development.
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Summary

Promising ideas about what might be good treatment should be put to
a rigorous test before being used as a basis for clinical decisions. The best
test is a randomized controlled trial, a special case of a cohort study in
which the intervention is allocated randomly and, therefore, without bias.
Patients in clinical trials are usually highly selected, reducing generalizabil-
ity. They are randomly allocated to receive cither an experimental interven-
tion or some comparison management: usual treatment, a placebo, or sim-
ple observation. On the average, the compared groups have a similar
prognosis just after randomization (and before the interventions). How-
ever, differences not attributable to treatment can arise later, including not
taking the assigned treatment, dropping out of the study, receiving the
other treatment, being managed differently in other ways, or getting treat-
ments that are not part of the study. Blinding all participants in the trial
can help minimize bias in how patients are randomized, managed, and
assessed for outcomes but is not always possible or successful,

The results of randomized trials can be summarized according to the
treatment assigned; an intention-to-treat analysis, which is a test of the
clinical decision and maintains a randomized trial design; or according to
the treatment actually received, which bears on the biology of disease, but
not directly on the clinical decision, and has the disadvantage that patients
may not remain with the treatment they were originally assigned. To obtain
information more closely tailored to individual patients than the main
results of randomized trials afford, clinicians can use results in subgroups
of patients, which carry the additional risk of being misleading, or do trials
on their own patients, one at a time.

For many clinical questions it is not possible, or not practical, to rely
on a randomized controlled trial. Compromises with the ideal include
making comparisons to experience with past patients, to past experience
with the same patients, or to a concurrent group of patients who are not
randomly allocated. When these compromises are done, the internal valid-
ity of the study is weakened.
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8

PREVENTION

Live sensibly—amony a thousand people, only one dies a natural
death, the rest succunth to irrational modes of living.
Maimonides 1135-1204 a.n.

Most doctors are attracted to medicine because they look forward to
curing disease. But all things considered, most patients would prefer never
to contract a diseasc in the first place—or, if they cannot avoid an illness,
they prefer that it be caught early and stamped out before it causes them
any harm. To accomplish this, procedures are performed on patients with-
out specific complaints, to identify and medify risk factors to avoid the
onset of discase or to find disease carly in its course so that by intervening
patients can remain well. Such activity is referred to as health mainteince
or the periodic health examination.

Health maintenance constitutes a large portion of clinical practice (1).
Often, health maintenance activities can be incorporated into the ongoing
care of patients, as when a doctor checks the blood pressure in a patient
complaining of a sore throat; sometimes, a special visit just for health
maintenance is scheduled.

Physicians should understand the conceptual basis and content of the
periodic health examination. They should be prepared to answer questions
from patients such as “Why do I have to get a Pap smear again this year,
Doctor?”’ or “My neighbor gets a chest x-ray every year; why aren’t you
ordering one for me?”

This chapter concentrates on prevention activities clinicians undertake
with individual patients. However, prevention at the community level is
also effective. Immunization requirements for students, ne-smoking regu-
lations in public buildings, and legislation restricting the sale of fircarms
are examples of communitywide prevention. For some problems, such as
injury prevention from fircarms, community prevention works best. For
others, such as colorectal cancer, screening in clinical settings works best.
For still others, clinical cfforts can complement communitywide activities,
as in smoking prevention efforts by which clinicians help individual pa-
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tients stop smoking and public education, regulations, and taxes prevent
teenagers from starting to smoke.

Much of the scientific approach to prevention in clinical medicine, par-
ticularly the principles underlying the use of a diagnostic tests, diseasc
prognosis, and effectivencess of interventions, has already been covered in
this book. This chapter expands on those principles and strategies as they
specifically relate to prevention,

Levels of Prevention

Webster's (2) dictionary defines prevention as “the act of keeping from
happening.” With this definition in mind, almost all activities in medicine
could be defined as prevention. After all, clinicians’ efforts are aimed at
preventing the untimely occurrences of death, disease, disability, discom-
fort, dissatisfaction, and destitution {Chapter 1}. However, in ¢linical medi-
cing, the definibion of prevention is usually restricted, as outlined below.
Although more prevention is practiced than ever before, clinicians still
spend most of their time in diagnosing and treating rather than in pro-
venting disease.

Depending on when in the course of disease interventions are made,
three types of prevention arc possible (Fig. 8.1).

PRIMARY PREVENTION

Primary prevention keeps discase from occurring at all, by removing its
causes. Folic acid administration to prevent neural tube defects, immuniza-
tions for many communicable diseases, and counseling patients to adopt
healthy lifestyles {e.g., helping patients to stop smoking, to eat foods low
in saturated fats and cholesterol and high in fiber, to excreise appropriately,
and to engage in safe sexual practices) are examples of primary prevention.

Clinical
Onset Diagnosis

ASYMPTOMATIC
DISEASE CLINICAL COURSE

PRIMARY SECONDARY TERTIARY
Remove risk Early detection Reduce
factors and treatment complications

Figure 8.1. Levels of prevention.
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Primary prevention is often accomplished outside the health care system
at the community level, as noted above. Chlorination and flugridation of
the water supply and laws mandating seat belt use in automobiles and
helmets for motorcycle use are examples. Certain primary prevention activ-
ities occur in specific occupational settings {use of ear plugs or dust masks),
in schools (immunizations), or in specialized health care settings (use of
tests to detect the hepatitis B or HIV in blood donations in blood banks).

SECONDARY PREVENTION

Secondary prevention detects disease early when it is asymptomatic and
when early treatment can slop it from progressing; Pap smears, mammo-
grams, and fecal occuli blood tests are examples. Most secondary preven-
tion is done in clinical settings, and all physicians, especially those caring
for adults, undertake secondary prevention. There are a few community-
wide programs {shopping mall fairs for glaucoma screening are an
example}.

SCREENING

Screening is the identification of an unrecognized discase or risk factor
by history taking (c.g., asking if the patient smokes), physical examination
(c.g., a prostate examination), laboratory test {c.g., a serum phenylalanine
determination), or other procedure (e.g., a sigmoidoscopy) that can be
applied rapidly. Screening tests sort out apparently well persons who have
a disease or a risk factor for a disease from those who do not. Tt is part of
many primary and all sccondary prevention aclivitics. A screening test is
not intended to be diagnostic. If the clinician is not committed to further
investigation of abnormal results and treatment, if necessary, the screening
test should not be performed at all.

TERTIARY PREVENTION

Tertiary prevention refers to those clinical activities that prevent further
deterioration or reduce complications after a disease has declared itself.
An example is the use of beta-blocking drugs to decrease the risk of death
in patients who have recovered from myocardial infarction. The bound-
aries of tertiary prevention blend inte curative medicine, but well-
performed tertiary prevention goes beyond trealing the problems patients
present with. For examplt in diabetic patients, tertiary prevention requires
more than good control of blood glucose; patients need regular ophthalmo-
logic examinations for early diabetic retinopathy, education for routine
foot care, scarches for and treatment of other cardiovascular risk factors,
and monitoring for urinary protein so thal angiotensin-converting enzyme
inhibitors can be used to prevent renal failure.

Terliary prevention is particularly important in the management of pa-
tients with fatal disease. The goal here is not to prevent death but to
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maximize the amount of high-quality time a patient has Jeft. For example,
presently there is no specific therapy for patienis with amyotrophic lateral
sclerosis, a neurologic condition ending in paralysis of respiratory and
swallowing muscles. But careful medical management can lead to carly
intervention with a gastrostomy for administering food and liquids to
prevent dehydration and weakness from starvation, a tracheostomy for
better suctioning to prevent pneumonia for as long as possible, and if the
patient wishes, a portable respirator to rest respiratory muscles. Without
such a proactive approach, the patient may present with acute respiratory
failure due to the combined effects of the underlying disease, dehydration,
and pneumonia. Patient, family, and physician are then faced with endotra-
cheal intubation and admission to the intensive care unit, with the hope
of reversing enough of the processes to reestablish decent quality of life
for a little longer. Tertiary prevention can help avoid this scenario.

There are few, if any, tertiary prevention programs outside the health
care system, but many health care prefessionals in addition to physicians
are active in these programs.

Approach to the Periodic Health Examination

When considering what to do routinely for patients without specific
symptoms for a given disease, the clinician must first decide which medical
problems or discases he or she should try to prevent. This statement is so
straightforward that it would seem unnecessary. But the fact is that many
preventive procedures, especially screening tests, are performed without
a clear understanding of what is being sought. For instance, a urinalysis
is frequently ordered by physicians performing routine checkups on their
patients. However, a urinalysis might be used to search for any number
of medical problems, including diabetes, asymptomatic urinary tract infec-
tions, and renal calculi. Tt is necessary to decide which, if any, of these
conditions is worth screening for before undertaking the test.

Three criteria are important when deciding what condition to include
in a periodic health examination (Table 8.1): (a) the burden of suffering
caused by the condition, (b) the quality of screening test if onc is to be
performed, and (c) the effectiveness of the intervention for primary preven-
tion {e.g., counseling patients to practice safe sex) or the effectiveness of
treatment for secondary prevention after the condition is found on screen-
ing (c.g., prostate cancer treatment).

Burden of Suffering

Is sereening justified by the severity of the medical condition in terms
of mortality, morbidity, and suffering caused by the condition? Only condi-
tions posing threats to life or health (the six Ds) should be sought. The
severity of the medical condition is determined primarily by the risk it
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Table 8.1
Criteria for Deciding Whether a Medical Condition Should Be Included in Periodic
Health Examinations

1. How great is the burden of sutfering caused by lhe condition in terms of;

Death Discomfart
Discase Dissatisfaction
Disability Destitution
2. How good is the screening test, if onc is to be performed, in terms of:
Sensitivity Crost Labeling effects
Specificity Safety
Simplicity Acceptability
3. a. For primary prevention, how cftective: is the intervention’?
or

bv. For secandary prevention, if the condition is found, how eftective is the ensuing
lreatment in terms of:
Efficacy
Fatient compliance
Farly treatment being more efleclive than later treatment

poses or its prognosis {discussed in Chapters 5 and 6). For example, except
during pregnancy and before urologic surgery, the health consequences
of asymptomatic bacteriuria arc not clear. We do not know if it causes
renal failure and/or hypertension. Even so, bacteriuria is frequently sought
in periodic health examinations.

Burden of suffering takes into account the frequency of a condition.
Often a particular condition causes great suffering for individuals unfortu-
nate enough to get it, but occurs too rarcly—perhaps in the individual's
particular age group—for screening to be considered. Breast cancer and
colorectal cancer are two such examples. Although both can occur in much
younger people, they primarily occur in persons older than 50 years. For
women in their early 20s, breast cancer incidence is 1 in 100,000 (one-fifth
the rate for men in their early 70s) (3). Although breast cancer should be
sought in periodic health examinations in women over 50, it is too uncom-
mon in 20-year-old women (or 70-year-old men) for screening. Screening
for very rare diseases means not only that at most very few people will
benefit but, because of false-positive tests, that many people may suffer
harm from labeling and further workup (sce below).

A particularly difficult dilemma faced by clinicians and patients is the
situation in which a person is known to be at high risk for a condition,
but there is no evidence that early treatment is effective. What should the
physician and patient do? For example, there is evidence that people with
Barrett’s esophagus (a condition in which the squamous mucosa in the
distal esophagus is replaced by colummar cpithelium) run a 30- to 40-fold
greater risk of developing esophageal cancer than persons without Barrett’s
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esophagus (4). However, the effectiveness of screening such people with
periodic endoscopic examinations followed by early treatment if cancer
occurs is unknown.

There is no easy answer to this dilemma. But if physicians remember
that screening will not work unless early therapy is effective, they can
weigh carefully the evidence about therapy with the patient. If the evidence
is against effectiveness, they may hurt rather than help the patient by
screening,.

Which Tests?

The following criteria for a good screening test apply to all types of
screening tests, whether they are history, physical examination, laboratory
tests or procedures.

SENSITIVITY AND SPECIFICITY

The very nature of searching for a disease in people without symptoms
for the disease means prevalence is usually very low, even among high-
risk groups sclected because of age, sex, and other characteristics. A good
screening test must, therefore, have a high sensitivity, so it does not miss
the few cases of discase that are present, and a high specificity, to reduce
the number of people with false-positive results who require further
workup.

Sensitivity and specificity are determined for screening tests much as
they are for diagnostic tests, except that the gold standard for the presence
of discase usually is not another test but rather a period of follow-up. For
example, in a study of fecal occult blood tests for colorectal cancer, the
sensitivity of the test was determined by the ratio of the number of colo-
rectal cancers found during screening to that number plus the number of
interval cancers, colorectal cancers subsequently discovered over the follow-
ing year in the people with negative test results (the assumption being that
interval cancers were present at screening but were missed, ie., the test
results were false negative) (3). Determination of sensitivity and specificity
for screening tests in this way is sometimes referred to as the defection
method,

The detection method for calculating sensitivity works well for many
screening tests, but there are two difficulties with the method for some
cancer screcning tests. First, it requires that the appropriate amount of
follow-up time is known; often it is not known and must be guessed. The
method also requires that the abnormalities detected by the screening test
would go on to cause trouble if left alone. This second issue is a problem
in screening for prostate cancer. Because histologic prostate cancer is so
common in men (it is estimated that 25% of 50-year-old men have histologic
foci of prostate cancer, and by the age of 90, virtually all men do}, screening
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tests can find such cancers in many men, but for most, the cancer will
never become malignant. Thus, when the sensitivity of prostate cancer
tests such as prostate-specific antigen (I'SA) is determined by the detection
method, the test may look quite good, since the numerator includes all
cancers found, not just those with malignant potential.

To get around these problems, the incidence method, a new method,
calculates sensitivity by using the incidence in persons not undergoing
screening and the interval cancer rate in persons who are screened. The
rationale for this approach is that the sensitivity of a test should affect
interval cancer rates but not disease incidence. For prostate cancer, the
incidence method defines sensitivity of the test as 1 minus the ratio of the
interval prostate cancer rate in a group of men undergoing periodic screen-
ing to the incidence of prostate cancer in a group of men not undergoing
screening (control group). The incidence method of calculating sensitivity
gets around the problem of counting “benign” prostate cancers, but it may
underestimate sensitivity because it excludes cancers with long lead times.
True sensitivity of a test is, therefore, probably between the estimates of
the two methods.

Because of the low prevalence of most diseases, the positive predictive
value of most screcning tests is low, even for tests with high specificity.
Clinicians who practice preventive health care by performing screening
tests on their patients must accept the fact that they will have to work up
many patients who will not have disease. However, they can minimize
the problem by concentrating their screening efforts on people with a
higher prevalence for discase.

Example The incidence of breast cancer increases with age, from approx-
imately 1 in 100,000/ year at age 20 to 1 in 200/year over age 70. Therefore,
a lump found during screening in a young woman'’s breast is more likely lo
be nonmalignant than a lump in an older woman. In a large demonstration
project on breast cancer screening, biopsy results of breast masses varied
markedly according, o the age of women (6); in women under age 40, more
than 16 benign lesions were found for every malignancy, but in women over
age 70 fewer than 3 benign lesions were found for every malignancy (Fig.
8.2). Scnsitivity and specificity of the clinical breast examination and mam-
mography are better in older women as well, because of changes in breast
tissue as women grow older.

The yield of screening decreases as screening is repeated over time in
a group of people. Figure 8.3 demonstrates why this is true. The first time
that screening is carried out—the prevalence screen—cases of the medical
condition will have been present for varying lengths of time. During the
second round of screening, most cases found will have had their onset
between the first and second screening. (A few will have been missed by
the first screen.) Therefore, second and subsequent screenings are called
incidence screens, Figure 8.3 illustrates how, when a group of people are
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Figure 8.2. Yicld of a screening test according to patients’ age. Ratio of nonmalig-
nant:malignant bicpsy results among women screened for breast cancar. {Data from
Baker LH. Breast Cancer Detection Demonstration Project: five-year suUmmary report,
CA 1982;32:195-231)

periodically rescreened, the number of cases of disease present in the group
drops after the prevalence screen. This means that the positive predictive
value for test resuits will decrease after the first round of screening.

SIMPLICITY AND LOW COST

An ideal screening test should take only a few minutes to perform,
require minimum preparation by the patient, depend on no special ap-
pointments, and be inexpensive.

simple, quick examinations such as blood pressure determinations are
ideal screening tests. Conversely, complicated diagnostic tests such as co-
lonoscopy, which are expensive and require an appointment and bowel
preparation, are reasonable in patients with symptoms and clinical indica-
tions but may be unacceptable as screening tests, especially if they must
be repeated frequently. Other tests, such as visual field testing for the
detection of glaucoma and audiograms for the detection of hearing loss,
fall between these two extremes. Even if done carefully, such tests, al-
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Figure 8.3. The decreasing vield of a screening test after the first round of screen-
ing. The first round {prevalence screening) detects prevalent cases. The second and
third rounds {incidence screanings) detect incident cases. It is assumed that the test
detects all cases and that all people in the population are screened. If not, cases
not detected in the first round are available for detection in subsequent rounds —
and the yiedd can be higher. Dx, diagnosis.

though not as difficult as colonoscopy, are probably too complex to be
used as screening tests.

The financial “cost” of the test depends not only on the cost of (or
charge for) the procedure itself but also on the cost of subsequent evalua-
tions performed on patients with positive test results. Thus sensitivity,
specificity, and predictive value affect cost. Cost is also affected by whether
the test requires a special visit to the physician. Screening tests performed
while the patient is sceing his or her physician for other rcasons (as is
frequently the case with blood pressure measurements) are much cheaper
for patients than tests requiring special visits, extra time off from work,
and additional transportation.

SAFETY
Tt is reasonable and ethical to accept a certain risk for diagnostic tests

applied to sick patients seeking help for specific complaints. The paticnt comes
asking for help, sometimes with a problem about which little is known.
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The physician cannot postpone actien and does his or her best. [t is quite
another matter to subject presumably well people to risks when there is
no known problem. In such circumstances, the procedure should be espe-
cially safe. This is partly because the chances of finding discase in healthy
people arc so low. Thus, although colonoscopy is hardly thought of as a
“dangerous” procedure when used on patients with gastrointestinal com-
plaints, it may be too dangerous to use as a screcning procedure because
of the possibility of bowel perforation. In fact, if colonoscopy, with a perfo-
ration rate of 0.2%, were used to screen for colorectal cancer in women in
their 50s, almost two perforations would occur for every cancer found. For
women in their 70s, the ratio would reverse, because colorectal cancer is
so much more common (7).

ACCEPTABLE TO BOTH PATIENTS AND CLINICIANS

The importance of acceptability is illustrated by experience with tests
for early cervical cancer and early colon cancer. Women at greatest risk
for cervical cancer are least likely to get routine Pap smears. The same
preblem holds true for colorectal cancer. Studies indicate there is a strong
reluctance among asymptomatic North Americans to submit to periedic
examinations of their lower gastrointestinal tracts—a finding that should
be no surprise to any of us!

Table 8.2 shows acceptance of screening for colorectal cancer by various
kinds of pecople. People who voluntarily attended a colorectal cancer
screening clinic were very cooperative; they were willing to collect stool
samples, smear the samples on guaiac-impregnated paper slides, and mail
the slides to their doctors for clinical testing. Patients who did not volunteer
were less willing to participate. Older persons, who arc at greatest risk for
colorectal cancer because of their age, were least willing to be screened.

Table 8.2
Patients’ Acceplance of Screening Tests: Reported Response Rates for Returning
Guaiac-impregnated Slides in Different Sefttings®

Farticipants
Fetuming Slicdes
Setting [Percant}
Colorectal cancer screening program 85
Broast cancer scrocning program 70
HMO members aged 50- 74 years 27
HMO members aged 50-74 years sent kit, reminder letter, and seli- 448*

hely booklet and who were calfed with instructions and remindeors

" Data from Myers TE. Ross BA Woll TA, Malshom A, Jepson C, Millner L. Behaviaral inlerventions to
increase adberence in colorectal sorocning. Mad Cars 199 1:29: 1039-1060: and Helcher SW, Dauphines
WL Bhowld coloractal carcinamis be sought in poncdic health examirations? An approach o the evidonco,
Clin Irvest Medd 1981:4:23-31.
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Substantial extra effort can result in getting more people (but still fewer
than half) to participate.

The acceptability of the test o clinicians is a criterion usually overlooked
by all but the ones performing it. After one large, well-conducted study
on the usefulness of screening, sigmoidoscopy was abandoened because the
physicians performing the procedure—gastroenterologists, at that— found
it too cumbersome and time-consuming to be justified by the yield (8).
(Patient acceptance, 38%, was not good either.)

LABELING

The labeling effect describes the psychological effect of test results or
diagnoses on patients. Studics of labeling suggest that test results can
sometimes have important psychological effects on patients.

Labeling can either help or hurt patients. A positive labeling effect may
occur when a patient is told that all the screening test results were normal.
Most clinicians have heard such responses as, ““Great, that means I can keep
working for another year.” If being given a clean bill of health promotes a
positive attitude toward one’s daily activities, a positive labeling effect has
occurred.

On the other hand, being told that something is abnormal roay have an
adverse psychological effect. A study of women who had false-positive
mammeograms (women with suspicious mammograms who on subsequent
evaluation were found not to have cancer) found that several months later
almost half reported mammography-related anxiety (47%) and worries
about breast cancer {(41%:); 17% said the worries affected their daily func-
tion (9).

Labeling effects of screening lests may become a major concern with
progress made in genetic screening. A gene has been identified for Hun-
tington's chorea, and relatives of affected individuals can be tested to see
if they carry the dominant, universally fatal gene. Such a test may help
people who wonder if they should marry and have children. More compli-
cated are the much more common situations in which genes are associated
with a risk, not a certainty, of future disease. For example, several genes
are known to be associated with colorectal and breast cancer. In these
situations, many people with the genes will not get cancer, and many
without the particular genes will get the cancer. Because the events are in
the future, persons who have been told they have one of these genes will
have to live with the possibility of a dire event for a long time.

Negative labeling effects are particularly worrisome ethically when they
occur among patients with false-positive tests. In such situations, screening
efforts might promote a serse of valnerability instead of health and might
do more harm than good.
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RISK OF A FALSE-POSITIVE RESULT

The previous discussion applies to each of the individual screening
tests that a clinician might consider performing during a periodic health
examination. However, most clinicians do not perform only cne or two
tests on patients presenting for routine checkups. In one study, practicing
internists believed that 57 different tests should be performed during peri-
odic health examinations (10). Modern technology, and perhaps the threat
of lawsuit, has fueled this propensity to “cover all the bases.” Automated
blood tests allow physicians to order up to scveral dozen tests with a few
checks in the appropriate boxes.

When the measurements of screening tests are expressed on interval
scales (as most are) and when normal is defined by the range covered by
95% of the results (as is usual), the more tests the clinician orders, the
greater the risk of a false-positive result. In fact, as Table 8.3 shows, if
the physician orders enough tests, ““abnormalities’”” will be discovered in
virtually all heaithy patients.

Effectiveness of Treatment

“Treatments” in primary prevention are immunizations, such as tetanus
toxoid to prevent tetanus; drugs, such as aspirin to prevent myocardial
infarction; and behavioral counseling, such as helping patients stop smok-
ing or adopt low-cholesterol diets. Whatever the intervention, it should be
efficacious (produce a beneficial result in ideal situations) and effective
{produce a beneficial result under usual conditions). Efficacy and effective-
ness of pharmaceuticals are usually better documented than they are for
behavioral counseling. Federal laws require rigorous evidence of efficacy
before pharmaceuticals are approved for use. The same is not true for
behavioral counseling methods, but clinicians should require scientific evi-
dence before incorporating routine counseling into health maintenance.
Health behaviors are among the most important determinants of health in
modern socicty; effective counseling methods could promote health more

Table 8.3
Relation between Number of Tests Ordered and Percentage of Normal People with
at Least One Abnormal Test Result®

Feople with at | gast One

Murmber of Tosts Abnormality {Percent)
1 5]
) 23
20 634
100 99.4

*From Sackett DL, Clinical diagnosis and the dlimcal aboratory. Clin imeest Med 19781537 -4,
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than most anything else a clinician can do, but counseling that does not
work wastes time, costs money, and may harm paticnts.

Example Two different smoking cessation counseling  strategies—
weekly hour-long group counseling sessions for 8 weeks and weekly 10- to
20-min individual counseling sessions for 8 weeks—were combined with
nicotine patch therapy and evaluated for their effectiveness in promoting
smoking cessation (11,12). Compared with patienls randomized to control
groups, the patients receiving the interventions did somewhat better, with a
third of patients in the group counseling sessions having stopped smoking
at 6 months follow-up. However, fewer than 20% of patients receiving indi-
vidual counseling had stopped smoking. Furthermore, the authors found
that most failures at 6 months could be predicted by patients smoking at
some time during, the first 2 weeks after trying to stop. These findings suggest
that counseling should be *“front loaded.”” By carefully evaluating behavioral
counseling, studies such as this are determining what approaches work.

Treatments for secondary prevention are generally the same as treat-
ments for curative medicine. Tike interventions for primary prevention,
they should be both efficacicus and effective. If early treatment is not
effective, it is not worth screening for a medical problem regardless of how
easily it can be found, because early detection alone merely extends the
length of time the disease is known to exist, without helping the patient.

Another criterion important for treatments in secondary prevention is
that patient outcome must be better if the disease is found by screening,
when it is asymptomatic, than when it is discovered later, after the condi-
tion becomes symptomatic and the person seeks medical care. If outcome
in the two situations is the same, screening is not necessary.

Example In a study of the usc of chest x-rays and sputum cytology to
screen for lung cancer, male cigarette smokers whe were screened every 4
months and treated promptly if cancer was found did no better than those
not offered screening (13); at the end of the study, death rates from lung
cancer were the same in the two groups—3.2 per 1000 person-years in the
screened men versus 3.0 per 1000 persons-years in men not offered screening,
Farly detection and treatment did not help patients with lung cancer morc
than treatment of people at the time they presented with symptoms.

BIASES

As discussed in Chapter 7, the best way to establish the efficacy of
treatment is with a randomized contrelled trial. This is true for all interven-
tions but especially for early treatment after screening. To establish that a
preventive intervention is effective typically takes years and requires large
numbers of people to be studied. For example, early treatment after colo-
rectal cancer screening can decrease colorectal cancer deaths by approxi-
mately one-third. But to show this effect, a study with 13 years of follow-
up was required (5). A “clinical impression” of the effect of screening
simply does not suffice in this situation.
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Figure 8.4. How lead time affects survival time after screening; shaded areas
indicate length of survival after diagnosis {Dx).

Careful studies arc also necessary because of biases that are specific to
studies of the effectiveness of screening programs. Three such biases are
described below.

Lead Time Bias

Lead time is the period of ime between the detection of a medical condi-
Hon by screening and when it ordinarily would be diagnosed because a
patient experiences symptoms and seeks medical care (Fig. 8.4). The
amount of lead time for a given disease depends on both the biclogic rate
of progression of the disease and on the ability of the screening test to
detect early disease. When lead time is very short, as is presently the case
with lung cancer, treatment of medical conditions picked up on screening
is likely to be no more effective than treatment after symptoms appear.
On the other hand, when lead time is long, as is true for cervical cancer
{on average, it takes approximately 30 years to progress from carcinoma
in situ to clinically invasive disease), treatment of the medical condition
found on screening can be very ctfective.

How can lead time cause biased results in a study of the efficacy of
early trecatment? As Figure 84 shows, because of screening, a disease is
found earlier than it would have been after the patient developed symp-
toms. As a result, people who are diagnosed by screening for a deadly
disease will, on average, survive longer from the time of diagnosis than
people who are diagnosed after they get symptoms, even if early treatment
is no more effective than treatment at clinical presentation. In such a situa-
tion screening would appear to help people live longer, when in a reality
they would be given not more “survival time”” but more “disease time.”
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Figure 8.5. Length time bias. Cases that progress rapidly from onset {O) to symp-
toms and diagnosis (Dx] are less ikely to be detected during a screening examination.

An appropriate method of analysis to avoid lead time bias is to study both
a screened group of people and a control group of people and compare age-
specific mortality rates rather than survival rates from the time of diagnoses.
We can be confident that early diagnoses and treatment of colorectal cancer
are effective, because studies have shown that mortality rates of screened per-
sons are lower than those of a comparable group of unscreened people {5).

Length Time Bias

Length Hime bias (see Figs. 8.5 and 8.6}, another bias that can affect studies
of screening, occurs because the proportion of slow-growing lesions diag-
nosed during screening programs is greater than the proportion of those
diagnosed during usual medical care. The effect of including a greater
number of slow-growing cancers makes it seem that screening and early
treatment are more effective than usual care.

Length time bias occurs in the following way. Screening works best
when a medical condition develeps slowly. Most types of cancers, how-
ever, demonstrate a wide range of growth rates. Some cancers grow slowly,
some very fast. Screening tests arc likely to find mostly slow-growing
tumors because they are present for a longer period of time before they
cause symptoms; fast-growing tumors are more likely to cause symptoms
that lead to diagnosis in the interval between screening examinations.
Screening, therefore, tends to find lumors with inherently better prognoscs.
As a result, the mortality rates of cancers found on screening may be better
than those not found on screening, but it is not because of the screening
itself.
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Compliance Bias

Compliance bins, the third major type of bias that can oceur in effective-
ness studies of presymptomatic treatment is the result of the extent to
which patients follow medical advice. Compliant patients tend to have
better prognoses regardless of screening. If a study compares disease out-
comes among voluntecrs for a screening program with outcomes in a group
of people who did not volunteer, better results for the volunteers might not
be due to treatment but be the result of other factors related to compliance.

Example In a study of the effect of a health maintenance program, one
group of paticnts was invited for an annual periedic health examination and
a comparable group was not invited (14). Over the years, however, some of
the control group asked for periodic health examinations. As seen in Flgure
8.7, those patients in the control group who actively sought out the examina-
tions had betler mortality rates than the patients who were invited for screen-
ing. The latter group contained not only compliant patients but also ones
who had to be persuaded to participate.

Biases due to length time and patient compliance can be avoided by
relying on randomized controlled trials that count all the outcomes in the
groups, regardless of the method of diagnosis or degree of participation.
Groups of patients that are randomly allecated will have comparable num-
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Flgure 8 6. Length time bias. Rapidly growing tumors come to medlcal attention
before screening is performed, whereas more slowly growing tumors allow time for
detection. D, diagnosis alter symptoms; S, diagnosis after screening.
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Flgure 8 7. Effect of patient compliance on a screening program. The control group
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included all patients offered screening. MHCs, multiphasic health checkups. {Re
drawn from Friedman GO, Collen MF, Fireman BH. Multiphasic health checkup evalu-
ation: a 18-year follow-up. J Chron Dis 1986, 32:453-463.)

bers of slow- and fast-growing tumors and, on average, comparable levels
of compliance. These groups then can be followed over time with mortality
rates, rather than survival rates to avoid lead Bme bias.

Because randomized controlled trials are difficult to conduct, take so
long, and are expensive, investigators sometimes try to use other kinds of
studies, such as cohort studies (Chapter 5) or case contrel studies (Chapter
10}, to investigate preventive maneuvers and coffectiveness of breatment
after screening,.

Example To test whether periodic screening with sigmoidoscopy re-
duces mortality from colorectal cancer within the reach of the sigmoidoscope,
Sclby et al. (15) investigated the frequency of screening sigmoidoscopy over
the previous 10 years among patients dying of colorectal cancer and among
well patients, matched for age and sex. To deal with lead time and length
time biases, they investigated screening only in people who were known to
have died (case group) or not to have died {controt group) from colorectal
cancer. To deal with compliance bias, they adjusted their results for the
number of general periodic health examinations cach persen had. They also
adjusted the results for the presence of medical conditions that could have
led to both increased screening and increased likelihood of colorectal cancer.
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Paticnts dving of colorectal cancer in the rectum or distant si},moid were less
likely to have undcrg,om, a screcning sigmoidoscopy in the previous 10 years
{8.8%) than thosc in the control group (24.2%), and sigmoidoscopy followed
by carly Ltherapy prevented almost 60% of deaths from distal colorectal cancer.
Also, by showing that there was no protection for colorectal cancers above
the level reached by sigmoidescopy, the authors suggested that “it s difficult
to conceive of how such anatomical specificity of effect could be explained
by confounding.”

Case series, in which a group of people participating in a screening
program arc followed over time, are a common but inappropriate method
of evaluating the effectiveness of screening programs; they are subject to
all the biases discussed (see Chapter 10 for more on case series).

How Much Harm for How Much Good?

Health premotion and disease prevention are becoming increasingly
popular. The goal of keeping people as healthy as possible is laudable, but
as this chapter points out, the concepts behind the goal are complex. Most
important, health promotion activities can cause harm. In fact, it is probably
fair to say that they usually do cause harm, even though totally unintended.
At the least, they cost money, patients” time and often discomfort. At the
worst, they can cause serious physical harm in the rare patient, either
because of complications of the screening test itself or because of adverse
consequences of subsequent tests or treatment, particularly in patients with
false-positive test results, False-positive tests can cause psychological dam-
age as well. Thus it is important that the clinician have solid evidence
about how much good and how much harm health promotion activities
accomplish. Goed intentions are not enough.

Before undertaking a health promotion procedure on a patient, espe-
cially if the procedure is controversial among expert groups, the clinictan
should discuss both the pros (probability of known and hoped-for health
benefits) and cons (probability of unintended eftects) of the procedure with
the patient.

Exasuple  Although clinical breast examinalions and mammography
screening for breasl cancer are universally recommended for older women,
there is controversy about screening for women ages 40 to 49; randomized
controlled trials show that screening does not work well in this age group,
but a protective effect of about 15% may still be possible after many years.
Expert groups are divided in their recommendations. When discussing this
dilemma with a patient, it is useful to demonstraie bolh benefits and harms
resulting from screening (Fig 8.8). Such an approach not only is more honest
with the patient but helps clarify the situation for her so that her consent for
whatever is chosen is truly informed. Cost effectivencss analysis formalizes
this approach for policymakers (16).
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Figure 8.8. Woeighing benefit and harm from screening. What happens during a
decade of annual mammography in 1000 women starting at age 40,

Current Recommendations

With progress in the science of prevention, current recommendations
on health maintenance are quite different from those of the past. Several
groups have recommended abandoning routine annual checkups in favor
of a selective approach in which the lests to be done depend on a person's
age, sex, and clinical characteristics (thereby increasing prevalence and



184 CLINICAL. EPIDEMIOLOGY

positive predictive value). They have also tended to recommend fewer
tests than previously (thereby decreasing the percentage of patients with
false-positive results). Several groups have turned their attention to the
selection process for deciding what medical conditions should be sought.
There is increasing concern for clear delineation of the criteria that tests
should meet before they are incorporated into periodic health examina-
tions. Groups with explicit criteria for selecting medical conditions are
more conservative in their recommendations than groups without such
criteria.

Summary

Disease can be prevented by keeping it from occurring in the first place
(primary prevention), with interventions such as immunization and behav-
loral counseling. Such interventions should be evaluated for effectiveness
as rigorously as other kinds of clinical interventions.

1 effects from disease can also be prevented by conducting screening
tests at a time when presymptomatic treatment is more effective than treat-
ment when symptoms occur (secondary prevention). A disease is sought
if the disease causes a substantial burden of suffering, if a good screening
test is available, and if presymptomatic treatment is more effective than
treatment at the usual time. Screening tests should be sensitive enough to
pick up most cases of the condition sought, specific enough that there are
not too many false-positive results, inexpensive, safe, and well accepted
by both patients and clinicians.

In secondary prevention, three potential biases threaten studies of the
effectiveness of presymptomatic treatment: failure to account for the lead
time gained by early detection, the tendency to detect a disproportionate
number of slowly advancing cases when screening prevalent cases, and
confounding the good prognosis associated with compliance with the ef-
fects of the preventive intervention itself.

Based on these criteria, a limited number of primary prevention inter-
ventions and screening tests for secondary prevention are recommended
for health maintenance, according to the age, sex, and clinical status of the
patient.
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CHANCE

When clinicians attempt to learn from clinical experience, whether dur-
ing formal research or in the course of patient care, their efforts are im-
peded by two processes: bias and chance. As we discussed (Chapter 1),
bias is systematic error, the result of any process that causes observations
to differ systematically from the true values. In clinical research, a great
deal of the effort is aimed at avoiding bias where possible and controlling
for and eslimating its effects when bias is unavoidable.

Random error, on the other hand, is inherent in all observations. Tt can
be minimized but never avoided altogether. Random variation can arise
from the process of measurement itself or the biologic phenomenon being
measured (Chapter 2). This source of error is called “random,” because
on average it is as likely to result in observed values being on one side of
the true value as on the other.

Most of us tend to overestimate the importance of chance relative to
bias when interpreting data. We might say, in essence, “If p is <0.001, a
little bit of bias can’t do much harm!” However, if data are assembled
with unrecognized bias, no amount of statistical elegance can save the day.
As one scholar put it, perhaps taking an extreme position, A well de-
signed, carefully executed study usually gives results that are obvious
without a formal analysis and if there are substantial flaws in design or
execution a formal analysis will not help” (1).

In this chapter, chance is discussed in the context of a controlied clinical
trial, because that is a simple way of presenting the concepts. However,
application of the concepts is not limited to comparisons of treatments in
clinical trials. Statistics are used whenever one makes inferences about
populations based on information obtained from samples.

Random Error

The observed differences between treated and control patients in a clini-
cal trial cannot be expected to represent the true differences exactly because
of random variation in both of the groups being compared. Statistical tests

186
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help estimate how well the observed difference approximates the true
one. Why not measure the phenomenon directly and do away with this
uncertainty? Because research must ordinarily be conducted on a sample
of patients and not all patients with the condition under study. As a result,
there is always a possibility that the particular sample of patients in a
study, even though selected in an unbiased way, might not be similar to
the population of patients as a whole.

Two general approaches are used to assess the role of chance in clinical
observations. The first, called hypothesis testing, asks whether an effect (dif-
ference) is present or not by using statistical tests to examine the hypothesis
that there is no difference (the “null hypothesis”). This is the traditional
way of assessing the role of chance, popular since statistical testing was
introduced at the beginning of this century and associated with the familiar
"p values.” The other approach, called estimation, uses statistical methods
to estimate the range of values that is likely to include the true value.
This approach has gained popularity recently and is now favored by most
journals for reasons that we describe below.

We begin with a description of the traditional approach.

Hypothesis Testing

In the usual situation, where the principal conclusions of a trial are
expressed in dichotomous terms (c.g., the treatment is considered to be
either successful or not) and the results of the statistical test is also dichoto-
mous (the result is either “statistically significant” —i.e., unlikely to ve
purely by chance—or not), there are four ways in which the conclusions
of the test might relate to reality (Fig. 9.1).

Two of the four possibilitics lead to correct conclusions: (@) when the
treatments really do have different effects and that is the conclusion of the
study and (b) when the treatments really have similar effects and the study
makes that conclusion.

There are also two ways of being wrong. The treatments under study
may actually have similar effects, but it is conclhuded that the study treat-
ment is better. Error of this kind, resulting in the ““false-positive” conclu-
sion that the trcatment is effective, is referred to as an o or Type | error.
Alpha is the probability of saying that there is a difference in treatment
effects when there is not. On the other hand, treatment might be effective,
but the study concludes that it is not. This “false-negative’ conclusion is
called a B or Type II error. Beta is the probability of saying that there is
no difference in treatment effects when there is one. “No difference” is a
simplified way of saying that the true difference is unlikely to be larger
than a certain size. It is not possible to establish that there is no difference
at all between two treatments.

Figure 9.1 is similar to the two-by-two table comparing the results of a
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TRUE
DIFFERENCE

Present Absent

CONCLUSION | Significant Correct

OF
STATISTICAL

EST Not
T Significant

Correct

Figure 9.1. The relatlonshlp between the results of a s‘ratlshcal test and the true
difference hetween two treatment groups. {dbsent is a simplification. It really means
that the true difference is not greater than a specitied amount.)

diagnostic test to the true diagnosis (Chapter 3). Here the “test” is the
conclusion of a clinical trial, based on a statistical test of results from a
sample of patients. Reality is the true relative merits of the trcatments
being compared —if it could be established, for example, by making obser-
vations on all patients with the illness under study or a large number of
samples of these patients. Alpha error is analogous to a falsc-positive and
£ error to a false-negative test result. [n the absence of bias, tandom varia-
tion is responsible for the uncertainty of the slatistical conclusion.

Because random variation plays a part in all observations, it is an over-
simplification to ask whether or not chance is responsible for the results.
Rather, it is a question of how likely random variation is ko account for
the findings under the particular conditions of the study. The probability
of error due to random variation is estimated by means of inferential statis-
ties, a quantitative science that, based on assumptions about the mathemati-
cal properties of the data, allows calculations of the probability that the
results could have occurred by chance alone.

Statistics is a specialized ficld with its own jargon—null hypothesis,
variance, regression, power, and modceling—lhat is unfamiliar to many
clinicians. However, leaving aside the genuine complexity of statistical
methods, inferential statistics should be regarded by the nonexpert as a
useful means to an end. Statistical tests arc the means by which the effects
of random variation are estimated.

The next two sections discuss a and g error, respectively. We will at-
tempt to place hypothesis testing, as it is used to estimate the probabilities
of these errors, In context. However, we will make no attempt to deal with
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these subjects in a rigorous, quantitative fashion. For that, we suggest that
readers consult any of a number of excellent textbeoks of biostatistics (see
“Suggested Readings,” later in this chapter).

CONCLUDING THAT A TREATMENT WORKS

Most of the statistics encountered in the current medical literature con-
cern the likelihood of an @ error and are expressed by the familiar p value.
The p value is a quantitative cstimate of the probability that observed
differences in treatment cffects in the particular study at hand could have
happened by chance alone, assuming that there is in fact no difference
between the groups. Another way of expressing this is that p is an answer
to the guestion, If there were no difference between treatments and the
trial was repeated many times, what proportion of the trials would
lead to the conclusion that a treatment is as or more effective than found
in the study?

We will call the p value “p,” to distinguish it from estimates of the
other kind of error due to random variation, S error, which we will refer
to as "‘p,.” When a simple p is found in the scientific literature it ordinarily
refers to what we call p,.

The kind of error estimated by p,, applics whenever it is concluded that
one treatment is more effective than another. If it is concluded that the p,
exceeds some limit and so there is no difference between treatments, then
the particular value of p, is not as relevant; in that situation, p, (probability
of 4 error) applies.

DICHOTOMOUS AND EXACT p VALUES

[t has become customary to attach special significance to p values falling
below 0.05 because it is generally agreed that less than 1 chance in 20 is a
small risk of being wrong. A rate of 1 in 20 is so small, in fact, that it is
reasonable to conclude that such an occurrence is unlikely to have arisen
by chance alone. It could have arisen by chance, and 1 in 20 times it will.
But it is unlikely.

Differences associated with p, less than (.05 are called “statistically
significant.”” Tt is important to remember, however, that setting a cutoff
point at 0.05 is entirely arbitrary. Reasonable people might accept higher
values or insist on lower ones, depending on the consequences of a false-
positive conclusion in a given situation.

To accommodate various opinions about what is and is not unlikely
enough, some researchers report the exact probabilities of p.s {e.g., 0.03,
0.07, 0.11, etc.), rather than lumping them into two categories, <2005 or
=0.05. The interpretation of what is statistically significant is then left to
the reader. However, p values greater than 1 in 5 are usually reported as
simply p = 0.20, because nearly everyone can agree that a probability of
an « error that is greater than one in five is unacceptably high. Similarly,
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below very low p values (such as p < 0.001) chance is a very unlikely
explanation for the observed difference, and little further information is
imparted by describing this chance more precisely.

STATISTICAL SIGNIFICANCE AND CLINICAL IMPORTANCE

A statistically significanl difference, no matter how small the p, does
not mean that the difference is clinically important. A p < 0.0001, if it
emerges from a well-designed study, conveys a high degree of confidence
that a difference really exists. But this p value tells us nothing about the
magnitude of that ditference or its clinical importance. In fact, entirely
trivial differences may be highly statistically significant if a large enough
number of patients was studied.

Example In the carly 1990s there was a heated debate aboat which
thrombolytic agenl, streptokinase or tissue plasminogen aclivalor (1PA), is
most effective during acute myocardial infarction. Large trials had shown a
difference in reperfusion rates but nol mortality. The two were compared
(aleng with subcutaneous or intravenous heparin) in a large randomized
controlied trial, called GUSTO, nvolving 41,021 patients in 15 countries (2).
t’A was given by a more aggressive regimen than in earlier studies. The
death rate at 30 days was lower among, patlents receiving A (6.3%) than
among, those receiving streptokinase (7.2 or 7.4%, depending on how hepa-
rin was given) and this difference was highly unlikely to be by chance
{(p =2 0001). Howoever, the difference is not large; one would have to treat
about 100 patients with tPA instead of with streptokinase to prevent one
short-term death. Because tPA is much mare expensive than streptokinase —
it would cest nearly $250 thousand to prevent that death (3)—and because
tPA 1s more I1keI\; to cause hcmorrhaplr_ strokes, some have guestioned
whether the marginal benefit of tI’A is worthwhile, e, whether the difference
in mortahty between tPA and streptokinase (reatment, all things considered,
is “clinically significant.”

On the other hand, very unimpressive p values can result from studies
showing strong treatment ¢ffects if there are few patients in the study (sce
the following scction).

STATISTICAL TESTS

Commoenly used statistical tests, familiar to many readers, are used to
estimate the probability of an « error. The tests are applied to the data to
give a test statistic, which in turn can be used to come up with a probabitity
of error (Tig. 9.2). The tests are of the null fiypothesis, the proposition that
there is no true difference in outcome between the two treatment groups.
This device is for mathematical reasons, not because 'no difference” is the

working scientific hypothesis of the study. One ends up rejecting the null
hypothesis (concluding there is a difference) or faiting to reject it (conclud-
ing there is no difference).

Some commonly used stalistical lests are listed in lable 9.1. The validity
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Data —————» Test —  » Estimate of
Statistical statistic pare 1o probability that
test standard observed value
distribution ~ could be by
(using tables, chance alone
etc.)

Figure 9.2. Statistical testing.

Table 9.1
Some Statistical Techniques Commonly Used in Clinical Research

To test the stafistical significance of a difference

Chi square {x™) Betwean two or more proportions fwhen there is a large number
of obsenvations)

Fisher's exact Between lwo proportions (when there is a small number of
ohservations)

Mann-wWhitrey tJ Between two medians

Student ¢ Between two means

f test Betweaen two or more means

To describe the extarnt of association

Regrezsion coefficient Botween an independent {predictorn) variable and a dependent
foutcome) variable
Pearson’s r Between two variables

To modet the effects of muftiple variables

Logistic regression On a dichotornous outcome
Cox proportional hazards  On a time-to-event outcome

of each test depends on certain assumptions about the data. If the data at
hand do not satisfy these assumptions, the resulting p, may be misleading,
A discussion of how these statistical fests are derived and calculated and
of the assumptions on which they rest can be found in any biostabistics
textbook.

Example The chi square (¥°) test, for nominal data (counts) is more easily
understood than maost and s0 can be used to illustrate how statistical testing
works. Consider the following data from a randomized trial of bwo ways of
initiating anticoagulation with heparin: a weight-based dosing nomogram
and standard care (4). The outcome was a partial thromboplastin time (PTT}
exceeding the therapeutic threshold within 24 hr of beginning anticoagula-
tion. In the nomogram group 60 of 62 (97%) did so; in the standard care
group, 37 of 48 (77%).
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Observed Rates

FIT Exceedng Thrashold

Yes Mo Tulal
Nomogram 60 ? 62
Slandard care 37 11 45
Total o7 13 110

How likely would it be for a study of this size to observe a difference
in rates as great as this or greater if there were in fact no differences in
effectivencss? That depends on how far the observed results depart from
what might have been expected if the treatments were of similar value
and only random variation caused them to differ in the samples studied.
If treatment had no effect on outcome, applying the success rate for the
patients as a whole (88%) to the number of patients in each treatment
group gives the expected number of successes in each group:

Expected Rates (Rounded to Nearest Integer)

FTT Exceeding Thiashold

e s} Taotal
Nomogram 55 7 62
Standard care 42 5] 48
Total o7 13 110

The x” statistic, which quantitates the difference between the observed
and expected numbers, is the sum for all four cells of:

(Observed number — Expected number)

Expected number

The magnitude of the x* statistic is determined by how different all of
the observed numbers are from what would be expected if there were no
treatment effect. Because they are squared, it does not matter whether the
obscrved rates exceed or fall short of the expected. By dividing the squared
difference in each cell by the expected number, the difference for that ccll
is adjusted for the number of patients in that cell.

The x? statistic for these data is

(60 - 55" @-7" (7-42° (-6

a5 7 42
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This %* is then compared to a table relating x* values to probabilities
(available in books and computer programs) for that number of cells, to
obtain the probability of a x* that large or larger. Tt is intuitively obvious
that the larger the x°, the less likely chance is to account for the observed
differences.The result in this case is p = 0.004, which is the probability of
a false-positive conclusion that the treatments had different effects.

CONCLUDING THAT A TREATMENT DOES NOT WORK

Some trials come to the conclusion that neither treatment is better than the
other. There are some very influential examples, including studies showing
that coronary artery bypass surgery does not prolong life in patients with
chronic stable angina {except for those with left main coronary artery obstruc-
tion), that antioxidents do not prevent cancer, and that antibodies against
endotoxin do not improve the prognusis of most patients with septic shock.

The question arises, could results like these have occurred by chance
alone? Could the findings of such trials have misrepresented the truth
because these particular studies had the bad luck to turn out in relatively
unlikely ways? Specifically, what is the probability of a false-negative result
(a B or Type 1l error)? The risk of a false-negative result is particularly
large in studies with relatively few patients.

Beta error has received less attention than e error for several reasons.
It is more difficult to calculate. Also, most of us simply prefer things that
work. Negative results arc unwelcome: authors are less likely to submit
negative studies to journals and if negative studies are reported at all, the
authors may prefer to emphasize subgroups of patients in which treatment
differences are found, even if the differences are not statistically significant.
Authors may also emphasize reasons other than chance for why true differ-
ences might have been missed, Whatever the reason for not considering
the probability of g error, it is the main question that should be asked
when the results of a study indicate no difference.

The probability that a trial will find a statistically significant difference
when a difference really exists is called the statistical power of the trial.

Statistical power = 1 — pg

Power and pf are complementary ways of expressing the same concept. Power
is analogous to the sensitivity of a diagnostic test. Tn fact, one speaks of u study
being powerful if it has a high probability of detecting as different trealments that
reatly are different.

HOW MANY PATIENTS ARE ENOUGH?

Suppose you are reading about a clinical trial comparing a promising
new therapy to the current form of treatment. You are aware that random
variation can be the source of whatever differences are observed, and you
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wonder if the number of patients (sample size) in this study is large enough
to make chance an unlikely explanation for what was found. How many
patients would be necessary to make an adequate comparison of the effects
of the two treatments? The answer depends on four characteristies of the
study: the magnitude of the difference in outcome between treatment
groups, p., ps, and the nature of the study’s data. These are taken into
account when the researcher plans the study and when the reader decides
whether the study has a reasonable chance of giving a useful answer.

Effect Size

Sample size depends on the magnitude of the difference to be detected.
We arc free to look for differences of any magnitude, and of course, we
hope to be able to detect even very small differences. But more patients
are needed to detect small differences, everything else being cqual. So it
is best to ask only that there is a sufficient number of patients to detect
the smallest degree of improvement that would be clinically meaningful.
On the other hand, if we are interested in detecting only very large differ-
ences between treated and control groups (i.c., strong treatment effects),
then fewer patients need be studied.

Alpha Error

Sample size is also related to the risk of an a error (concluding that
treatment is effective when it is not). The acceptable size for a risk of this
kind is a value judgment; the risk could be as large as 1 or as small as (.
If one is prepared to accept the consequences of a large chance of falsely
concluding that the therapy is valuable, one can reach conclusions with
relatively few patients. On the other hand, if one wants to take only a
small risk of being wrong in this way, a larger number of patients will be
required. As we discussed earlier, it is customary to set p, at 0.05 (1 in 20)
or sometimes 0.01 (1 in 100).

Beta Error

The chosen risk of a 8 ertor is another determinant of sample size. An
acceptable probability of this error is also a judgment that can be freely
made and changed, to suit individual tastes. Probability of 8 is often set
at 0.20, a 20% chance of missing true differences in a particular study.
Conventional  errors are much larger than a errors, reflecting the higher
value usually placed on being sure an effect is really present when we say
it is.

Characteristics of the Data

The statistical power of a study is also determined by the nature of the
data. When the outcome is expressed on a nominal scale and so is described
by counts or proportions of events, its statistical power depends on the
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rate of events: the larger the number of events, the greater the statistical
power for a given number of people at risk. As Petc et al. (5) put it,

In clinical trials of time to death (or of the time to some other particular
“event” —rclapse, metastasis, first thrombaosis, stroke, recurrence, or time to
death from a particular cause), the ability of the trial to distinguish between
the merits of two treatments depends on how many patients die (or suffer a
relevant event), rather than on the number of patients entered, A study of
100 patients, 50 of whom die, is about as sensitive as a study with 1000
patients, 50 of whom die.

If the outcome is a continuous variable, such as blood pressure or serum
cholesterol, power is affected by the degree to which patients vary among
themselves: The greater the variation from patient to patient with respect
to the characteristic being measured, the more difficult it is te be confident
that the observed differences {or lack of difference) between groups is not
because of this variation, rather than a true difference in treatment effects.
In other words, the larger the variation among patients, the lower the
statistical power.

In designing a study, the investigator chooses the size of treatment effect
that is clinically important and the Type [ and Type Il errors he or she
will accept. [t is possible to design studies that maximize power for a given
sample size—e.g., by choosing patients with a high event rate or similar
characteristics—as long as they match the research question. But for a
given data set and question the investigator cannot control the way that
the characteristics of the data determine statistical power.

INTERRELATIONSHIPS

The interrelationships among the four variables discussed above are
summarized in Table 9.2. The variables can be traded off against cach
other. Tn general, for any given number of patients in the study there is a
trade-off between a and £ error. Everything else being equal, the more

Table 9.2
Determinants of Sample Size

Datermined by

Irvsastigator The Data
M ovarics according to ! and ! or /
§ accordng AP P, =

Where n = number of patients studied; A = size of difference in outcome between groups:
P, = probabilty of an « (Type [} error, i.e., false-positive results;, P, = probability ofa g
(Type I} errar, i.e., false-negative result, ¥ variability of observations (for intervai dataj;
and £ = proportion of patients experiencing outcome af interest {for narninal datal
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one is willing to accept one kind of error, the less it will be necessary to
risk the other, Neither kind of error is inherently worse than the other. The
consequences of accepting erroncous information depend on the clinjcal
situation. When a better treatment is badly needed (e.g., when the disease
is very dangerous and no satisfactory alternative treatment is available)
and the propoesed treatment is not dangerous, it would be reasonable to
accept a rclatively high risk of concluding a new treatment is cffective
when it really is not (large « error} ko minimize the possibility of missing,
a valuable treatment (small 8 error). On the other hand, if the discase is
less serious, alternative treatments are available, or the new treatment is
expensive or dangerous, one might want to minimize the risk of accepting
the new treatment when it is not really cffective (low « error), even at the
expensc of a relatively large chance of missing an effective treatment {large
Berror). Tt is of course possible to reduce both « and /4 errors if the number
of patients is increased, outcome events are more frequent, variability is
decreased, or a larger treatment effect is sought.

For conventional levels of p, and p, the relationship betwcen the size
of the treatment effect and the number of patients needed for a trial is
llustrated by the following examples, one representing a situation in which
a relatively small number of patients was sufficient and the other in which
a very large number of patients was required.

Example Small sample size: Case series suggest that the nonsleroidal
antiinflammatory drug sulindac is active against colonic polyps. This possi-
bility was tested in a randomized trial (6), A tota] of 22 patients with familial
adenomatous polyposis were randomized; 11 received sulindac and 11 pla-
cebo. After Y months, patients receiving sulindac had an average of 44%
fewer polyps than those receiving placebo. This difference was statistically
significant (p = 0.014). Because of (he large effect size and (he large number
of polyps per patient (some had more than 100), few patients were needed
to establish that the effcct was beyond chance. (In (his analysis it was neces-
sary to assume hat treatmenl affected polyps independently of which patient
they occurred in-—an unlikely, but probably not damaging, assum plion.)

Example Large sample size: The GUSTO (rial, described above, was de-
signed to include 41,000 patients to have a 90% chance of delecting a 15%
reduction in mortality or a 1% decrease in mortality rate, whichever was
larger, between the experimental and control treatments with a per of 0.05,
assuming the mortalily rate in the control paticnts was at least 8% (2). The
sample size had to be so large because a relatively small proportion of pa-
tients experienced the outcome event (death), the effect size was small {15%),
and the investigators wanled a relatively high chance of detecting the effect
if it were present (909%).

For most of the therapeutic questions encountered today, a surprisingly
large number of patients is required. The value of dramatic, powerful
treatments, such as insulin for diabetic ketoacidosis or surgery for appendi-
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ciis, could be established by studying a small number of patients. But
such treatments come along rarely and many of them are already well
established. We are left with diseases, many of them chronic and with
multiple, interacting causes, for which the effects of new treatments are
generally small. This places special importance on whether the size of
clinical trials is adequate to distinguish real from chance effects.
Clinicians should be able to estimate the power of published studies.
Toward that end, Figure 9.3 shows the relationship between sample size
and treatment difference for several baseline rates for outcome events. If
is apparent that studies involving fewer than 100 patients have a rather
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Figure 9.3. The number of people required in each of two ireatment groups [of
equal size) to have an 80% chance of detecting a difference (p = 0.05) in a given
outcome rate (P) between treated and untreated patients, for various rates of out-
come events in the untreated group. (Calculated from formula in Weiss NS. Clinical
epidemiology. The study of the outcome of ilness. New York: Oxford University
Press, 1986.)



198 CLINICAL. EPIDEMIOLOGY

poor chance of detecting statistically significanl differcnces of even large
treatment effects. Also, it is difficult to detect offect sizes of less than 25%,.
Tn practice, statistical power can be estimated by means of readily available
formulas, tables, nomograms, or computer programs.

Point Estimates and Confidence Intervals

The effect size (e.g., trealment cffect in a clinical trial or relative risk in
a cohort study) observed in a particular study is called Lhe point estimate
of the cffect. 1t is the best estimate from the study of the true offect size
and is the summary statistic usually given the most emphasis in reports
of research.

Flowever, the truc effect size is unlikely to be exactly that observed in
the study. Because of random variation, any one study is likely to find a
result higher or lower than the true value. Therefore, a summa ry measure
of the extent of variation that might be expected by chance is needed.

The statistical precision (stability of the estimate) of an observed coffect
size is expressed as a confidence interval, usually the 95% confidence interval,
around the point estimate. Confidence inlervals around an offect size are
interpreted in the following manner: if the study is unbiased, there is a
95% chance that the interval includes the Lrue effect size. The narrower
the confidence interval, the more certain one can be about the size of the
true effect. The true value is most likely to be close to the point cstimafte,
less likely to be near the outer limits of the inlerval, and could (5 times
out of 100) fall outside these limits altogether. Statistical precision increases
with the statistical power of the study.

Confidence intervals contain informalion similar to statistical signifi-
cance. If the value corresponding to no effect (such as a relative risk of 1
or a treatment difference of () falls outside the 95% confidence intervals
for the observed cffect, it is likely that the results are statistically sigmificant
at the 0.05 level. If the confidence intervals include this point, the results
are not statistically significant.

But confidence intervals have other advantages. They put the emphasis
where it belongs, on the size of the effect. Confidence intervals allow the
reader to sce the range of plausible values and so to decide whether an
effect size they regard as clinically meaningful is consistent with or ruled
out by the data (7). They also provide information about statistical power;
if the confidence interval barely includes the value corresponding to no
effect and is relatively wide, a significant difference might have been found
if the study had had morc power.

Example Figure 9.4 illustrales point estimates and confidence intervals
for the estimated relative risk of exogenous estrogens for three discascs:
endometrial cancer, breast cancer, and hip fracture. (Notice (hat the risk is
on a log scale, giving the superficial impression that confidence intervals for
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Figure 9.4. Point estimates (O] and confidence intervals {1): the risks and benefits
of exogenous estrogens Tfor postmenopausal women. {Data from Grady D, Rubin
SM, Petitti DB, Fox GS, Black D, Ettinger B, Ernster VL, Cummings SR. tlormonal
therapy to prevent disease and prolong life in postmenopausal women. Ann Intern
Med 1892;117:1016—1037; Colditz GA, Stampfer MJ, Willett WC, Hennekens CH,
Rosner B, Speizer FE. Prospective study of estrogen replacement therapy and risk
of breast cancer in postmenopausal women. JAMA 1980, 264:2648-2653; and
Paganini-Hill A, Ross RK, Gerkins VR, Flenderson BE, Arthur M, Magk TM. Meno-
pausal estrogen therapy and hip fractures. Ann Intern Med 1981;95:28-31)

the higher risks are narrower than they really are.) The estimate of risk lor
endometrial cancer (afler 8 or more vears of estrogens) is 8.22, but the true
value is not precisely estimated and could casily be as high as 10.61 or as
low as 6.25. In any case, it is unlikely to be as low as 1.0 (no Tisk). Tn contrast,
this one study suggesis Lhat estrogens are unlikely to be a risk factor for
breast cancer; the best estimate of relative risk is nearly 1.0, although the
data are consistent with either a small harmful or a small protective effect.
Finally, estrogens are likely to protect against hip fracture. That the upper
boundary of the confidence interval falls below 1.0 is another way of indicat-
ing that the protective cffeet is statistically significant at the 0.05 level.

Point estimates and confidence intervals are used to characterize the
statistical precision of any rate (incidence and prevalence), comparisons of
rates (relative and attributable risks), and other summary statistics. For
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example, individual studies have shown that 34% of U.S. adults have used
uncenventional therapy (95% confidence interval 31-37%) (8}, that inten-
sive treatment of insulin-dependent diabetes lowers the risk of develop-
ment of retinopathy by 76% (95% confidence interval 62-85%) relative to
conventional therapy {9), and that the sensitivity of clinical examination
for splenomegaly is 27% (95% confidence interval 19-36%) (10).

Confidence intervals have become the usual way of reporting the main
results of dlinical research because of their many advantages over the hy-
pothesis testing (p value) approach. The p values are still used because of
tradition and as a convenience when many results are reported and it
would not be feasible to include confidence intervals for all.

Statistical Power before and after a Study Is Done

Caleulation of statistical power based on the hypothesis testing approach
is done by the researchers before a study is undertaken to ensurc that
enough patients will be entered to have a good chance of detecting a
clinically meaningful effect if it is present. However, after the study is
completed this approach is no longer as relevant (11). There is no need to
estimate effect size, outcome event rates, and variability among patients;
they are now known.

Therefore, for researchers who report the results of clinical rescarch
and rcaders who try to understand their meaning, the confidence interval
approach is more relevant. One’s attention should shift from statistical
power for a somewhat arbitrarily chosen effect size, which may be relevant
in the planming stage, to the actual cffect size observed in the study and
the statistical precisicn of that estimate of the true value.

Detecting Rare Events

It is sometimes important to detect a relatively uncommon event (c.g.,
1/1000), particularly if that event is severe, such as aplastic anemia or life-
threatening arrhythmia following a drug. In such circumstances, a great
many people must be observed in order to have a good chance of detecting
even one such event, much less to develop a rclatively stable estimate of
its frequency.

Figure 9.5 shows the probability of detecting an cvent as a function of
the number of people under observation. A rule of thumb is as follows:
To have a good chance of detecting a 1/x event one must observe 3x people
(12). For example, to detect a 1/1000 event, one would need to observe
3000 people.

Multiple Comparisons

The statistical conclusions of research have an aura of authority that
defies challenge, particularly by nonexperts. But as many skeptics have
suspected, it is possible to “lic with statistics,”” even if unintentionally.
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Figure 9.5. The probability of detecting one event according 1o lhe rate of the
avent and the number of people observed, (From Guess HA, Rudnick SA. Use of
cast effectiveness analysis in planning cancer chemoprophylaxis trials. Control Clin
Trials 1983;4:89-100.)

What is more, this is possible even if the research is well designed, the
mathematics flawless, and the investigators” intentions beyond reproach.

Statistical conclusions ¢an be misleading because the strength of statisti-
cal tests depends on the number of rescarch questions considered in the
study and when those questions were asked. If many comparisens are
made among the variables in a large set of data, the p value associated
with ecach individual comparison is an underestimate of how often the
result of that comparison, among the others, is likely to arise by chance.
As implausible as it might scem, the interpretation of the p value from a
single statistical test depends on the context in which it is done.

To understand how this might happen, consider the following example.
Suppose a large study has been done in which there are multiple subgroups
of patients and many different outcomes. For instance, it might be a clinical
trial of the value of a treatment for coronary artery discase for which
patients are in several clinically meaningful groups {c.g., 1-, 2-, and 3-
vessel discase; good and bad ventricular function; the presence or absence
of arrhythmias; and various combinations of these) and several outcomes
are considered (c.g., death, myocardial infarclion, and angina). Suppose
also that there arc no true associations belween treatment and outcome in
any of the subgroups and for any of the outcomes. Finally, suppose that
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the effects of treatment are assessed separately for cach subgroup and for
each outcome—a process that involves a great many comparisons. As
pointed out earlier in this chapter, 1 in 20 of these comparisons is likely
to be statistically significant at the 0.05 level. In the general case, if 20
comparisons are made, on the average, 1 would be found to be statistically
significant; if 100 comparisons are made, about 5 would be likely to emerge
as significant, and so on. Thus, when a great many comparisons have been
made, a few will be found that are unusual enough, because of random
variation, to exceed the level of statistical significance even if no true associ-
ations between variables exist in nature. The more comparisons that are
made, the more likely that one of them will be found statistically
significant,

This phenomenon is referred to as the multiple comparisons problem.
Because of this problem, the strength of evidence from clinical research
depends on how focused its questions were at the outset.

Unfortunately, when the results of research are presented, it is not al-
ways possible to know how many comparisons really were made. Often,
interesting findings are selected from a larger number of uninteresting
ones. This process of deciding what is and is not important about a mass
of data can introduce considerable distortion of reality.

How can the statistical effects of multiple comparisons be taken into
account when interpreting research? Although ways of adjusting p, have
been proposed, probably the best advice is to be aware of the problem
and to be cautious about accepting positive conclusions of studies where
multiple comparisons were made. As one statistician (13) put it:

If you dredge the data sufficiently deeply and sufficiently often, vou will
find something odd. Many of these bizarre findings will be due to chance. |
do not imply that data dredging is not an occupation for honorable persons,
but rather that discoveries that were not initially postulated as among the
major objectives of the trial should be treated with extreme caution. Statistical
thcory may in due course show us how to allow for such incidental findings.
At present, | think the best attitude to adopt is caution, coupled with an
attempt to confirm or refute the findings by further studies.

An approach to assessing the validity of statistically significant findings
in subgroups was presented in Chapter 7.

Describing Associations

Statistics are also used to describe the degree of association between
variables, e.g., the relationship between body mass and blood pressure.
Familiar expressions of association are Pearson’s product moment correla-
tion (r) for interval data and Spearman’s rank correlation for ordinal data.
Each of these statistics expresses in quantitative terms the extent to which
the valuc of one variable is associated with the value of another. Each has
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a corresponding statistical test to assess whether the observed association
is greater than might have arisen by chance alone.

Multivariable Methods

Most clinical outcomes are the result of many variables acting together
in complex ways. For example, coronary heart discase is the joint result
of lipid abnormalities, hypertension, cigarette smoking, family history, dia-
betes, exercise, and perhaps personality. 1t is appropriate first to try to
understand these relationships by examining relatively simple arrange-
ments of the data, such as 2-by-2 tables (for one variable at a time) or
contingency tables (stratified analyses, examining whether the effect of
one variable is changed by the presence or absence of one or more other
variables), because it is easy to understand the data when they are dis-
played in this way. However, it is usually not possible to account for more
than a few variables using this method, because there are not enough
patients with each combination of characteristics to allow stable estimates
of rates. For example, if 120 patients were studied, 60 in each treatment
group, and just one additional dichotomous variables were taken into
account, there would only be at most about 15 patients in cach subgroup;
if patients were unevenly divided, there would be fewer in some.

What is necded then, in addition to contingency tables, is a way of
examining the cffects of several variables at a time. This is accomplished
by multivariable modeling, developing a mathematical expression of the cf-
fects of many variables taken together. It is “multivariable” because it
examines the effects of multiple variables simultaneously. Tt is ““modeling”
because it is a mathematical construct, calculated from the data but also
based on simplifying assumptions about characteristics of the data (e.g.,
that the variables are all normally distributed and have the same variance).

Mathematical models can be used in studies of cause, when one wants
to define the independent effect of one variable by adjusting for the effects
of several other, extraneous variables. They can also be used to give more
precise predictions than individual variables allow by including several
variables together in a predictive model.

The basic structure of a multivariable model is

Qutcome variable = constant + (3, X variable,) + (3, X variable;) +. . .

where 8y, £, . . . are coefficients that are determined by the data; and
variable,, variable,, . . . are the predictor variables that might be related
to outcome. The best eslimates of the coefficients are determined mathe-
matically, depending on the powerful calculating ability of modern
computers.
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Modeling involves several steps.

* Identify and measurc all the variables that might be related to the out-
come of interest.

* Reduce the number of variables to be considered in the model to a
manageable number, usually no more than several. Often this is done
by selecting variables that are, when taken one at a time, most strongly
related to outcome. If a statistical criterion is used at this stage, it is usual
to err on the side of including variables, e.g., by choosing all variables
showing an association with the outcome of interest at a cutoff level of
p < 0.10. Evidence for the biologic importance of the variable is also
considered in making the sclection.

* Some variables may be strongly related to each other. If so, only one is
included since both contain about the same information.

¢ The remaining variables are entered in the model, with the strategy for
the order in which they are tried determined by the research question.
For example, if some are to be controlled for in a causal analysis, they
are entered in the model first, followed by the variable of ptimary inter-
est. The model will then identify the independent effect of the main
variable. On the other hand, if the investigator wants to make a predic-
tion based on several variables, the variables can be entered in order of
the strength of their association to the outcome variable, as determined
by the model.

Modeling is now a regular feature of the medical literature, appearing
in about 18% of articles in major journals {14) and in nearly all large studies
of cause. Some commonly used kinds of the models are logistic regression
(for dichotomous outcome variables such as occur in case-control studies)
and Cox proportional hazards modecls {for time-to-event studies).

Multivariable modeling is an essential part of many clinical studies;
there is no other way to adjust for or to include many variables at the
same time. However, this advantage comes at a price. Models tend to be
black boxes, and it is difficalt to “get inside” them and understand how
they work. Their validity is based on assumptions about the data that may
not be met. They are clumsy at recognizing effect modification (different
effects in different subgroups of patients). An exposure variable may be
strongly related to outcome yet not appear in the model because it occurs
rarely —and there is little direct information on the statistical power of the
model for that variable. Finaily, model results are easily affected by quirks
in the data, the results of random variation in the characteristics of patients
from sample to sample. It has been shown, for example, that a model
frequently identified a different sct of predictor variables and produced a
ditferent ordering of variables on different random samples of the same
data set (15). To protect against this possibility, a rule of thumb is that
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there should be at least 10 outcome events for each predictor variable in
the model.

Eor these reasons, the models themselves cannot be taken as a standard
of validity; they must be independently validated. Commonly, this is done
by seeing if the model predicts what is found in another, independent
sample of patients {sce Chapter 12). The results of the first model are
considered a hypothesis, to be tested by new data. Tf random variation is
mainly responsible for the results of the first model, it is unlikely that the
same random effects will occur in the validating data set too. Other evi-
dence for the validity of a model is its biologic plausibility and its consis-
tency with simpler, more transparent analyses of the data such as stratified
analyses.

Summary

Clinical information is based on observations made on samples of pa-
tients. Even samples that are sclected without bias may misrepresent events
in a larger population of such patients because of random variation in its
members.

Two gencral approaches to assessing the role of chance in inical obser-
vations are hypothesis testing and estimation. With the hypothesis testing,
approach, statistical tests are used to estimate the probability that the ob-
served result was by chance. When two treatments are compared, there
arc two ways in which the conclusions of the trial can be wrong: The
treatments may be no different, and it is concluded one is better; or one
treatment may be better, and it is concluded there is no difference. The
probabilities that these errors will occur in a given situation are called p,
and py, respectively.

The power of a statistical test (1 — pp) is the probability of finding a
statistically significant difference when a difference of a given size really
exists. Statistical power is related to the number of patients in the trial,
size of the treatment effect, p,,, and the rate of outcome cvents or variability
of responses among patients. Everything else being equal, power can be
increased by increasing the number of patients in a trial, but that is not
always feasible.

Estimation involves using the data to define the range of values that is
likely to include the truce effect size. IPoint estimates (the observed effects)
and confidence intervals are used. This approach has many advantages
over hypothesis testing: Tt emphasizes effect size, not p value; indicates the
range of plausible values for the effect, which the user can relate to clini-
cally meaningful effects; and provides information about power.

Individual studies run an increased risk of reporting a faise-positive
result if many subsets of the data are compared; they are at increased risk
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of a false-negative result if they lack statistical power, usually because they
include too few patients or outcome events are uncommon,

Most clinical studics concern the effects of multiple interacting variables.

With multivariable modeling, it is possible to take all into account simulta-
neously, cither to control for extraneous variables in a causal study or to
provide a stronger prediction than would be possible by including one
variable at a time. However, these models must be interpreted with caution
because their inner workings are relatively inaccessible, they are sensitive
to random variation, and they are based on assumptions that may not
be met,
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10

STUDYING
CASES

Eacli case has its lesson—a lesson which may be but is not always
learned.
—5ir William Osler

Most medical knowledge has emanated from the intensive study of sick
patients. The exhausted but engrossed physician at the bedside of the
febrile child, chin in hand, is a favorite medical image. The presentation
and discussion of a “case” is the foundation of modern medical education.
Most clinicopathelogic conferences and grand rounds begin with the pre-
sentation of an interesting case and then use the case to illustrate general
principles and relationships. So, too, much of the medical literature is
devoted to studying cascs, whether narrative descriptions of a handful of
cases (case reports), quantitative analyses of larger groups of patients {case
series), or comparisons of groups of cases with noncases (case control
studies).

Case Reports

Cuase reports are detailed presentations of a single case or a handful of
cascs. They represent an important way in which new or unfamiliar dis-
eases, or manifestations or associations of disease are brought to the atten-
tion of the medical community. Approximately 20-30% of the original
articles published in major general medical journals are studies of 10 or
fewer patients.

USES OF CASE REFPORTS

Case reports serve several different purposes. First, they are virtually
our only means of describing rare clinical events. Thercfore, they are a rich
source of ideas thypotheses) about disease presentation, risk, prognosis,
and treatment. Case reports rarely can be used to test these hypotheses,
but they do place issues before the medical community and often trigger

208
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more decisive studies. Some conditions that were first recognized through
case reports include birth defects from thalidomide, fetal alcohol syndrome,
toxic shock syndrome, Lyme disease, and HANTA virus infection.

Case reports also serve to clucidate the mechanisms of disease and
treatment by reporting highly detailed and methodelogically sophisticated
clinical and laboratory studics of a patient or small group of patients. In
this instance, the complexity, cost, and often experimental nature of the
investigations limit their application to small numbers of patients. Such
studies have contributed a great deal to our understanding of the genetic,
metabolic, and physiologic basis of human diseases. These studies repre-
sent the bridge between laboratory research and ¢linical research and have
a well-established place in the annals of medical progress.

The following is an example of how a report of a single case can reveal
a great deal about the mechanism of a disease.

Example The anesthetic halothane was suspected of causing hepatitis.
However, because the frequency of hepatitis atler exposure to halothane was
low and there were many other causes ol hepatitis after surgery, “halothane
hepatitis” was controversial.

Experience with a single individual helped clarify the problem (1). An
anesthetist was found to have recurrent hepatitis, leading to cirrhosis. Attacks
of hepatitis regularly occurred within hours of his return to work. When he
was exposed to small doses of halothane under experimental conditions,
his hepatitis recurred and was well documented by clinical obscrvations,
biochemical tests, and liver histology.

Because of this unusual case, it was clear that halothane can cause hepa-
titis. But the case report provided no information as to whether this reaction
was rare or common. Subsequenl studies showed that it was not a rare
reaction, which contributed to the replacement of halothane with less hepa-
totoxic agents.

Another use of the case report is to describe unusual manifestations of
disease. Sometimes this can become the medical version of Ripley’s Belicve
It or Not, an informal compendium of medical oddities, with the interest
lying in the sheer unbelievability of the case. The larger the lesion and the
more outrageous the foreign body, the more likely a case report is to find
its way into the literature. Oddities that are simply bizarre aberrations
from the usual course of events may titillate, but usually are less clinically
important than other types of studics.

Some so-called odditics are, however, are the result of a fresher, more
insightful look at a problem and prove to be the first evidence of a subse-
quently useful finding, The problem for the reader is how to distinguish
between the freak and the fresh insight. There are no rules. When all else
fails, one can only rely on common sense and a well-developed sense of
skepticism.
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BIASED REPORTING

Because case reports involve a small and highly selected group of pa-
tients, they are particularly susceptible to bias. For example, case reports
of successful therapy may be misleading because journals are unlikely to
receive or publish case reports of unsuccessful therapy. Perhaps the wisest
stance to take when reviewing a case report is to use it as a signal to look
for further evidence of the described phenomenon in the literature or
among your patients.

Example A case report (2) described a 23-year-old woman who devel-
oped severe abdominal pain while on treatment with enalapril for essential
hypertension. An efevated serum lipase led to a diagnosis of pancreatitis.
Symptoms resolved, and the lipase returned to normal shortly atter discontin-
uing the drug. The investigators found only one published case and began
an exhaustive search of the published and unpublished literature. The search
revealed an additional 60 cases, the majority of which were unpublished
cases reported to the drug manufacturer. The additional cases lent strength
to the possibility of a causal association between enalapril treatment and
pancreakitis.

With very few exceptions, case reports on their own should not serve
as the basis for altering clinical practice because of their inability to estimate
the frequency of the described occurrence or the role of bias or chance.

THE JOINT OCCURRENCE OF RARE EVENTS

Case reports often describe the joint occurrence of uncommon events,
particularly if the observed association lends itself to an interesting biologic
explanation. But even rare events occur together by chance alone; simply
observing this occurrence does not mean they are biologically related. As
one author (3) put it, “In a large population the issue is not whether rare
events occur, but whether they occur more frequently than expected by
chance.”

Table 10.1 illustrates how often two relatively uncommeon conditions—
end-stage renal failure and use of a specific nonsteroidal antinflammatory
drug—might occur together by chance alone. If there were no biologic
association between the two {and, as discussed later in this chapter, there
may well be such an association), then the probability that they would
occur together is the product of their separate frequencies. In the United
States alone, 100 cases would occur annually, more than enough to spawn
several case reports,

There are also reasons why such cases might be seen in medical centers
and be reported in the literature out of proportion to their frequency in
the population at large. Patients with two severe diseases might be more
likely ko come to hospitals than those with cither disease alone, simply
because they arc sicker. It has also been shown that two diseases not
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Table 10.1

The Joint Qccurrence of Two Rare Conditions: An Estimate of the Frequency and
Number of Cases of Exposure to a Nonsteroidal Antiinflammatory Drug and End-
Stage Renal Failure Occurring Together if the Two Were Not Biologically Related”

Freguency separately

Prevalence of use of the drug fhypotheticaly 17100 persons
Incidence of end-stage renal discase 40/1.000,000/vcar
Incidence of joint occurrence 17100 > 4041,000,000/ear

= 4/10,000.000/vear

Population of the United States 260,000,000
Cases in the United States 410,000,000/ vear »x 250,000,000
100 vear

* [ata from Hiatt BA, Friedman GO Characteristics of patients referred far treatment of end-stage renal diseaze
n a defined population, Am J Publicc Health 1982, 72:8729-833.

associated in the general population can be associated in hospitals if pa-
tients with two diseases are admitted at different rates (4). Moreover, pa-
tients with two diseases are more interesting and so are more likely to be
written up in articles, submitted to journals, and accepted for publication.

Therefore, one should be skeptical about reports of association that are
based on case reports only. They are simply hypotheses to be tested by
stronger methods before being believed.

Case Series

A case series 1s a study of a larger group of patients (e.g., 10 or more} with
a particular disease. The larger number of cases allows the investigator to
assess the play of chance, and p values and other statistics often appear in
case serigs, unlike in case reports. A casc series is a particularly common
way of delineating the clinical picture of a disease and serves this purpose
well—but with important limitations.

Case series suffer from the absence of a comparison group. Occasionally,
this is not a major problem.

Example Between June 1981 and February 1983, a few years after AIDS
was first recognized and while its manifestations were being defined, re-
searchers from the Centers for Disease Control gathered information on 1000
patients living in the United States who met a surveillance definition for
the disease. They described demographic and behavioral characteristics of
patients and complications of the disease.

Prenmecystis carinii prenmonia (PCP) was found in 50%, Kaposi's sarcoma
in 28%, and both in 8% of patients; 14% had opportunistic infections other
than PCP. All but 6% of the patients could be classified into one or more of the
following groups: homosexual or bisexual men, intravenous drug abusers,
Haitian natives, and patients with hemophilia (5).



212 CLINICAL EPIDCMIOLCCY

This report includes no comparison group of people without AIDS.
Also, the definition of cases excluded some patients who have ALDS by
later standards. Nevertheless, because the complications are so uncommon
in otherwise well people and the pattern of at risk groups so striking, the
report clarified our view of ATDS and set the stage for more detailed studies
of its manifestations and risk factors.

On the other hand, often a relatively frequent association and the ab-
sence of a comparison group have led to erroneous conclusions,

Example Many physicians attribute low back pain to protrusion of one
or more intervertebral disks. Several case scries used magnetic resonance
imaging (MR} to define the anatomy of the lumbosacral spine in patients
with low back pain. These studies found that the majority of patients had
disk abnormalities, providing apparent support for the importance of disk
abnormalilics in low back pain. However, as described in Chapter 3, MRI
studies of asymplomatic individuals revealed similar prevalences of disk
abnormalities, undermining the argument that protruding disks seen on MRIT
are the cause of back pain (6).

Another limitation of case sceries is that they generally describe the clini-
cal manifestations of discase and ils treatments in a group of patients
asscmbled at one point in time, a survival cohort (see Chapter 6). They
must be distinguished, therefore, from cohort studies or trials of treatment
for which an inception cohort of paticnts with a disease is followed over
time with the purpose of looking for the outcomes of the discase. Case
series often look backward in time and that restricts their value as a means
of studying prognosis or cause-and-effect relationships.

Case-Control Studies

To find out whether a finding or possible cause really is more common
in patients with a given discase, one needs a study with several features.
First and foremost, in addition to a series of cases there must be a compari-
son group that does not have the disease. Second, there must be enough
people in the study so that chance is less likely to play a large part in the
observed results. Third, the groups must be similar enough, even though
one is nondiseased, to produce a credible comparison. Finally, if one wants
to show that a risk factor is independent of others—and, therefore, a
possible cause —it is necessary to control for all other important differences
in the analysis of the findings.

Case reports and case serics cannot take us this far. Neither can cohort
studies in many situations, because it is not feasible to accrue enough cases
to rule out the play of chance. Case-control studies, studies that compare
the frequency of a purported risk factor (generally called the “exposure’)
in a group of cases and a group of controls, have these features.
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Exposure to
Risk Factor Disease

Figure 10.1. The design of case-control studies.

DESIGN

The basic design of a case-control study is diagrammed in Figure 10.1.
Patients who have the discase and a group of otherwise similar people who
do not have the disease are selected. The researchers then look backward in
time to determine the frequency of exposure in the twe groups. These data
can be used to estimate the relative risk of disease related to the characteris-
tic of interest.

Example Does the use of nonsteriodal anttinflammatory drugs (NSATDs)
increase the risk of renal disease? Researchers have addressed this question
using a casc-control study (7). How did they go about it?

First, they had to define renal disease and find a sizable group of cases
available to be interviewed. For obvious reasons, they looked in tertiary care
hospitals, where many such cases are gathered. The cases, of course, included
only patients in whom the diagnosis had been made in the course of usual
medical care. For example, asymptomatic patients with mild renal failure
were much less likely to be included among the cases.

Once the cases were assembled and the diagnosis confirmed, a compari-
son, or conteol,' group was sclected. Before deciding which people to choose
as controls, the investigators considered the purpose of the study. They
wanted to ascertain whether patients with renal failure were more likely to
have received NSAID therapy in the past than a similar group of people with
no evidence of renal disease.

The investigators found that the estimated relative risk of NSAID exposure
for renal failure was 2.1, using data on the rates of exposure in cases and
controls, and that the excess risk was largely confined to older men.

' For uther uses of the wored comtrol, sec page 129



214 CLINICAL EPIDEMICLOGY

What is meant by similar? There is some controversy about this. In a
cohort study of the risk of NSAIDs for renal discase, similarity would
mean membership in the cohort from which the cases arose, all of whom
were initially free of renal disease at the inception of the study, e.g., people
residing in the same community or enrolled in the same HMO. Ts there a
natural cohort from which a group of cases receiving carc at a given tertiary
care hospital can emerge?

Because of referral practices, cases assembled at hospitals and other
treatment centers usually reside in many communities, receive their care
from many physicians, and belong to no commen group before becoming
ill. Therefore, there was no obviously similar group of people without
renal disease, and one had to be created.

This was dlone by randomly sampling people who resided in the vicinity
of each hospital. Tn this way, controls were assembled who, it was hoped,
would provide an accurate estimate of the likely prevalence of NSALLD use
amoeng the cases if there were no association between renal disease and
the use of the drugs (8).

Once the cases and controls were selected and their consent obtained,
the next step was to measure exposure to the risk factor of interest. The
drug-taking history of each case and cach control had to be reconstructed.
As opposed to a cohort study where drug taking can be tracked over time,
agsessment of drug exposure in this casc-control study relied on memory.

[t is often the past that is important in case-control studies, and therein
lies a potential for bias. 1t is difficult not to interpret the past in the light
of one’s present condition. For cases, this is particularly so when the present
includes a disease as serious as renal failure. Investigators can attempt Lo
avoid bias by using objective data such as computerized pharmacy records,
blinding subjects to the purpose of the study, blinding observers to case
status if possible, and by using carefully defined crileria to decide which
of the cases and controls received prior NSAID therapy.

COHORT VERSUS CASE-CONTROL RESEARCH

Cohort and case-control studies arc both observational studies of risk
factors. Sometimes the two are confused. A distinguishing feature of the
case-control design is that cases have the oulcome of interest at Lhe time
that information on risk factors is sought. In cohort research, on the other
hand, people are free of disease at the beginning of observation when
the measurement of the risk faclors is made. Figure 10.2 summarizes the
differences between case-control and cohort designs. Since the temporal
relationship between putative cause and effect is an important criterion
for causality {see Chapter 11), cohort studics provide a stronger basis for
a causal interpretation.

Table 1.2 suwrunarizes the essential characteristics of cohort, case-
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CASE-CONTROL STUDY

Exposure to
NSAIDs Renal Failure

COHORT STUDY

Exposure to Renal Failure
NSAIDs

YES

NO

Figure 10.2 A comparison of case-control and cohort studies. Studies of NSAIDs
as a nsk factor for renal failure.

control, and prevalence research designs and illustrates their differences.
As will be discussed later, it is these differences thal make the case-control
study particularly susceptible 1o bias.

THE ODDS RATIO

How do we decide whether there is an increased risk? Figure 10.3 shows
the caleulation of risk for cohort and case-control studies. In a cohort study,
the susceptible population s divided into two groups—exposed to
NSAIDs (A + B) and unexposed (C + D)—at the outset. Cases of renal
disease emerge naturally over time in the exposed group (A) and the
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Cases |Noncases

Exposed A+B
Not
exposed C+D
A+C B+D
Cahort Study Case-control Study
Relative risk = Qdds ratio =
A/ (A +B) A/{A+C)
C/{C+D) C/(A+C) A/C _AD
B/(B+D) " B/D BC
D/ (B + D)

Figure 10.3 Calculation of relative risk for a cohort study and odds ratio (estimated
refative risk) for a case-control study,

unexposed group (C). This provides us with appropriate numerators and
denominators to calculate the incidences of renal disease in the exposed
[A/{A + B)] and unexposed [C/(C + D)] cohorts. It is also possible to
calculate the relative risk.

Incidence of disease in the exposed ~ A/(A + B)

Relative risk = . =
Incidence of disease in the unexposed C/(C + 1Y)

Case-control studies, on the other hand, begin with the selection of a
group of cases of renal disease (A 4 () and another group of contrals
(B + D). There is no way of knowing discase rates because these groups
are determined not by nature but by the investigators” sclection criteria,
Therefore, an incidence rate of disease among those exposed to NSAIDs
and those not exposed cannot be computed. Consequently, it is not possible
to obtain a relative risk by dividing incidence among users by incidence
among nonusers. What does have meaning, however, are the relative fre-
quencies of people exposed to NSAIDs among the cases and controls.

It has been demonstrated that one approach for comparing the fre-
quency of exposure among cases and controls provides a measure of risk
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that is conceptually and mathematically similar to the relative risk. This is
the odds ratio, defined as the odds® that a case is exposed divided by the
odds that a control is exposed

[A/(A + C) + C/HA + Q)
[B/(B + D) = D/(B + D)]

The odds ratio simplifics to

A/C AD
— or —
B/D BC

As is seen in Figure 10.3, the odds ratio can be obtained by multiplying
diagonally across the table and then dividing these cross-products.

Note that if the frequency of exposure is higher among cases, the odds
ratio will exceed 1, indicating increased risk. Thus the stronger the associa-
tion between the exposure and disease, the higher the odds ratio. Con-
versely, if the frequency of exposure is lower among cases, the odds ratio
will be less than 1, indicating protection. The meaning of the odds ratio,
therefore, is analogous to the relative risk obtained from cohort studies.
The similarity of the information conveyed by the odds ratio and the rela-
tive risk has led some investigators to report odds ratios as “estimated
relative risks” or simply “relative risks.”

The odds ratio is approximately cqual to the relative risk only when
the incidence of disease is low, because of assumptions that must be made
in the calculations. How low must the rates be? The answer depends in
part on the size of the relative risk (9). In general, however, distortion of
the relative risk becomes large enough to matter at disease rates in unex-
posed people of greater than about 1/100. Fortunately, most diseases, par-
ticularly those examined by means of case-control studies, are considerably
less common than that rate.

ADVANTAGES OF CASE-CONTROL STUDIES

The case-control design has become a common and important method
used to study etiology and clinical questions. What are its advantages?
First, the investigators can identify cases unconstrained by the natural
frequency of disease and vet can still make a comparison. Cohort studies
are quite inefficient for this purpose. For example, to gather information
about the risk of NSAID use in 100 individuals with end-stage renal dis-
ease, one would have to follow a cohort of 1,000,000 for about 2'/, years
(see Table 10.1}. Obviously, because of the expense and logistic difficulties
of such a study, it would usually not be feasible. In contrast, it has been
relatively inexpensive and easy to assemble 100 or more cases from hospi-

2 For a teminder of what odds means, sec page 64.
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tals and other treatment facilities, find similar groups without the disease,
and compare frequencies of past NSAID use. Tn this way, several hundred
study subjects can be interviewed in a matter of weeks or months, and an
answer can be obtained at a fraction of the cost of a cohort study.

A real advantage of the case-control study in exploring the effect of
some causal or prognostic factors is that one need not wait for a long time
for the answer, Many diseases have a long latency —the period of time
between exposure to a risk factor and the expression of its pathologic
effects. For example, it has been estimated that at least 10-20 years must
pass before the carcinogenicity of various chemicals becomes manifest. 1t
would require an extremely patient investigator and scientific community
to wait s0 many years to see if a suspected risk to health can be confirmed.

Because of their ability to address important questions rapidly and effi-
ciently, case-contrel studies play an increasingly prominent role in the
medical literature. If one wants to study cause and effect using a relatively
strong method, the case-control approach is the only practical way to study
some diseases. Case-control studies comprise a growing percentage of all
original articles and the majority of epidemiologic articles. Their quickness
and cheapness justify their popularity as long as their results are valid;
and here is the problem, because case-control studies are particularly prone
to biased results. These biases are discussed in the next section.

Avoiding Bias in Case-Control Studies

In many case-control studies, the investigators create the comparison
groups rather than allow nature to determine who in a population becomes
a case and who remains a noncase or conirol as in cohort or prevalence
studies. This element of manipulation is a necessary evil because the valid-
ity of a case-control study depends on the comparability of cases and
controls.

Cases and controls are comparable if the contrels would have been
captured as cases if they developed the condition under study. In other
words, to be comparable, cases and controls must be members of the same
base population. A second, more controversial issuc is whether to be com-
parable, cases and controls must have an equal opportunity to receive the
exposure (10). For example, the opportunity to have received NSAIDs
(discussed earlier) would presumably be greater among those who have
received regular medical care and perhaps still greater among those with
joint symptoms. Should both cases and controls have similar symptoms
and medical care experiences. Opinions differ, but it is clear that if one
insists that cases and controls have the same degree of arthritic symptoms
and the same doctor, the opportunity to evaluate risk may be impossible
if the doctors involved tend to either prescribe or not prescribe NSAIDs
to most of their patients with common causes of musculoskeletal pain.
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Therefore, ensuring comparability between cases and controls requires
careful consideration of the circumstances under which an individual be-
comes exposed.

SELECTING CASES

In the past, most case groups in case-control studies were assembled
from among paticents receiving care in hospitals or other medical treatment
facilities. The proliferation of disease registries, such as the National Cancer
Institute’s Cancer Surveillance System, and computerized diagnostic data
from health plans has made it much more feasible to select all or a represen-
tative sample of all cases occurring in a defined population. Population-
based cases should be more typical and include a wider spectrum of disease
severity.

The cases in case-control research should, if possible, be new (incident)
cases, not existing (prevalent} ones. The reasons are based on the concepts
discussed in Chapter 4. The prevalence of a disease at a point in time is a
function of both the incidence and duration of that disease. Duration is in
turn determined by the rate at which patients leave the diseasc state (be-
cause of recovery or death) or persist in it because of a slow course or
successful palliation. Tt follows from these relationships that risk factors
for prevalent disease may be risk factors for either incidence and duration
or both; the relative contributions of the two cannot be distinguished. An
exposure that causes a particularly lethal form of the disease, thereby
lowering the proportion of prevalent cases that are exposed, would result
n a lowered relative risk if prevalent cases were studied. The reader can
be somewhat reassured that the results of a case-control study are not
biased by the sclection of prevalent cases if the odds ratios obtained are
similar in short- and long-duration cases.

SELECTING CONTROLS

A major potential for bias exists in many case-control studies because
the controls are not a naturaily occurring group, but one constructed for
the study by the investigators. Which controls are appropriate in relation
to the cases?

There are several strategies for choosing the right controls. First, the
best way to minimize selechion bias is by selecting both cases and controls
from the same defined population. If cases comprise all cases or an un-
biased sample of all cases arising in the population, whether accrued in a
cohort study or identified in a prevalence survey, then controls can be a
random sample of all the other people in the same population. This strategy
is called a population-based or nested (in a cohort) case-controf study. Controls
should meet the same general inclusion/exclusion criteria as the cases and
be sampled from the population or cohort at about the same times as the

CdSEs arose.
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Example Does habitual, vigorous physical activity protect against pri-
mary cardiac arrest in people without apparent heart disease? An cmergency
medical information system facilitated the conduct of a population-based
case-control study to answer this question (11). Cases were sclected from
1250 people living in Seattle and suburban King County, Washington, who
had suffered out-of-hospital primary cardiac arrest (PCA) during a defined
peried of time. Cases were chosen {rom paramedic reports; paramedics at-
tended nearly all instances of PCA in the area at the time.

Controls were selected by dialing randomly sclected telephone numbers
in the same area; most people in the arca had telephones in their homes.
Both cascs and controls had to meet criteria for entry: age 25-75 years; no
clinically recognizable heart disease; no prior disease that limited activity;
and a spouse who could provide information about habitual exercise, the
cxposure of interest. Controls were matched to cases on age, sex, marital
status, and urban or suburban residence. Spouses of both cases and controls
were asked about leisure-time activity. The entry criteria sought to ensurc
that cases and controls were members of the same base population and had
opportunities to engage in physical activity.

The results, based on 163 eligible cases and controls, confirmed previous
studies. The risk of PCA was 65-75% lower in persons with high-intensity
leisure-time activity than in more sedentary people.

Although selecting cases and controls from a defined population or
cohort is preferable, selecting both from hospitals or other health organiza-
tions is often more feasible. But studying people in health care settings is
also more fallible because patients are usually a biased sample of all people
in the community, the people to whom the results should apply.

A second set of strategies for having controls who are comparable to
cases include the ones illustrated by the examples in this chapter and
presented in Chapter 6: restriction, matching, stratification, and adjust-
ment. Matching poses the greatest challenges and wili be discussed here,

Cases can be mutched with controls so that for each case one or more
controls are selected that possess characteristics in common with the case.
Researchers commeoenly match for age, sex, and residence, because these
are frequently related to discase. But matching often extends beyond these
demographic characteristics when other factors are known to be important.
Matching increases the useful information obtainable from a set of cascs
and controls because it reduces differences between groups in determi-
nants of disease other than the one being considered and thereby allows
for a more powerful (sensitive) test of association. But matching carries a
risk. If the investigator happens to match on a factor that is itself related
to the exposure under study, there is an increased chance that the matched
case and control will have the same history of exposure. For example, if
cases and controls were matched for the presence of arthritic symptoms,
which are commonly treated with NSAIDs, more matched pairs would
likely have the same history of NSAID use. This process, called overmutch-




222 CLINICAL EPIDEMIOILOGY

ing, will bias the odds ratio toward 1 and diminish the ability of a study
to detect a significantly increased or decreased cdds ratio.

A third strategy is to choose more than one contrel group. Because of
the difficulties attending the selection of truly comparable control groups,
a systematic error in the odds ratio may arise for any one of them. One
way to guard against this possibility is to choose more than one control
group from different sources.” One approach used when cases are drawn
from a hospital is to choose one control group from other patients in the
same hospital and a second control group from the neighborheods in which
the cases live. 11 similar odds ratios are obtained using different control
groups, this is evidence against bias, because it is unlikely that bias would
affect otherwise dissimilar groups in the same direction and to the same
extent, If the estimates of relative risks arc different, that is a signal that
one or both are biased, and an opportunity exists to investigate where the
bias lies.

Example In a casc-control study of estrogen and endometrial cancer,
cases were identified from a single teaching hospital. Twe control groups
were selected: one from among gynecologic admissions to the same hospital
and the second from a random sample of women living in the area served
by the hospital.

The presence of other diseases, such as hypertension, diabetes, and gall-
bladder diseasc, was much more common among the cases and the hospital
control group, presumably reflecting the various forces that lead to hospital-
ization. Despite these differences, the two control groups reported much less
long-term estrogen use than did the cases and yielded very similar odds
ratios (4.1 and 3.6).

The authors (12} concluded that “this consistency of results with two very
different comparison groups suggests that neither is significantly biased and
lhat the results . . . are reasonably accurate.”

Options for selecting cases and controls are summarized in Figure 10.4.
If cases are all occurring in a defined populalion (or a representative sample
of all cases), then controls should be too. This is the optimal situation. If
cases are a biased sample of all cases, as they are in most hospital samples,
then controls should be selected with similar biases.

MEASURING EXPOSURE

Even if selection bias can be aveoided in choosing cases and controls,
the investigator faces problems associated with validly measuring expo-
surc after the disease or outcome has occurred, i.c., avoiding measurement
bias. Case-control studies are prone to three forms of measurement bias

P Chuosing two or more control groups per ease groups is differont from choosing bwo or more controls
per case. The latter is done to increase statis=Heal power (o7 precision of Lhe estimate of relative risk). To
general, using more than ene control subject per case results in smwadl bul useful gains in power, bul there
is litthe useful advantge o adding more controls per case bevond hiree or four.
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Samples

Random |nvestigator Selected
Population {unbiased)  (matching biases)
“All.cases. :
cora
- fandom.
sample.

noncases

Figure 10.4 Two strategies for selocting cases and controls from the general popu-
lation: unbiased samples and samples with matching biases.

because the exposure is measured after the onset of the disease or outcome
under study.

1. The presence of the outcome directly affects the exposure;

2. The presence of the outcome affects the subject’s recollection of the
exposure; and

3. The presence of the outcome affects the measurement or recording of
the exposure.

The first bias is particularly problematic if the exposure under study is
a medical treatment, since the carly manifestations of the illness may lead
to treatment. This is sometimes referred to as confounding by indication.
Tor example, a case-control design was used to determine whether beta-
blocker drugs prevented first myocardial infarctions in patients being
treated for hypertension (13). Because angina is a major indication for use
of beta-blockers, the investigators carefully excluded any subjects with a
history suggesting angina or other manifestation of coronary heart discase.
They found that hypertensive patients treated with beta-blockers still had
a significantly reduced risk of nonfatal myocardial infarctions, even after
those with angina or other evidence of coronary discase were carefully
excluded.

Second, people with a discase may recall exposure differently from those
without the disease. With all the publicity surrounding the possible risks
of various environmental exposures or drugs, it is entirely possible that
victims of disease would remember their previous exposures more acutely
than nonvictims or cven overestimate their exposure. The influence of
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disease on memory status, called recall bias, must be considered when
measurement of exposure relies on memory.

There are two protections against biased remembering. First, there
should be alternative sources of the same information, whether written
documents, such as medical or other records, or interviews with rela-
tives or other knowledgeable individuals. Secend, the specific purpose
of the study should be concealed from the study subjects. Tt would be
unethical not to inferm subjects of the general nature of the study ques-
tion. But to provide detailed information to subjects about the specific
hypotheses could so bias the resulting information obtained as to com-
mit another breach of ethics—involving subjects in a worthless rescarch
project.

The third problem, whether the presence of the outcome influences
the way in which the exposure is measured or recorded, should be
understandable to all students of physical diagnosis. if a resident admit-
ting a patient with renal disease to the hospital is aware of a possible
link between NSAID use and renal failure one could expect the resident
to question the patient more intensely about previous analgesic use and
to record the information more carefully. Interviewers who are aware
of a possible relationship between exposure and disease and also the
outcome status of the interviewee would be remarkable indeed if they
conducted identical interviews for cases and controls. The protections
against these sources of bias are the same as those mentioned above:
multiple sources of information and blinding the data gatherers, i.c.,
keeping them in the dark as to the hypothesis under study.

SCIENTIFIC STANDARDS FOR CASE-CONTROL RESEARCH

Tt has been suggested that once should judge the validity of a case-
control study by first considering how a randomized controlled trial of
the same question would have been conducted (14). Of course, one could
not actually do the study that way. But a randomized controlled trial
would be the scientific standard against which to consider the effects
of the various compromises that are inherent in a case-control study.

One would enter into a trial only those patients who could take the
experimental intervention if it were offered, so in a case-control study
one would select cases and controls who could have been exposed. For
cxample, a study of whether NSAIDs are a cause of renal failure would
include men and women who had no contraindications to taking
NSAIDs, such as peptic ulcer. Similarly, both cases and controls should
have been subjected to equal efforts to discover renal disease if it were
present. These and other parallels between clinical trials and case-con-
trol studies can be exploited when trying to think through just what
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could go wrong, how serious a problem is it, and what can be done
about it.

There have also been efforts lo set out criteria for sound case-control
studies (15). To apply these guidelines requires an in-depth understand-
ing of the many possible determinants of exposure and disease, as well
as the detection of both, in actual clinical situations.

USING CASE-CONTROL STUDIES TO EXAMINE HEALTH CARE

The major use of case-controi studies has been to test hypotheses about
the etiology of diseasc. More recently, investigators have exploited the
advantages of the case-control design to study questions related to the
provision and quality of health care.

Example s cercbral palsy and fetal death preventable? British investiga-
tors (16) used a case-control design to compare the antepartum care received
by 141 babies developing cercbral palsy and 62 dying intrapartum or ncona-
tally. Fach case was matched with two healthy babies born at the same time
and place. A failure to respond to signs of severe fetal distress was more
common among cases than controls but only accounted for & very small
percentage of babies with cerebral palsy.

Because most serious adverse effects of peor-quality medical care are
relatively rare, the case-control design provides an cfficient strategy for
examining the relationship between deviations from guidelines or other
protocols and poor outcomes.

Summary

Much of medical progress is derived from the careful study of sick
individuals, Case reports are studies of just a few patients, e.g., -=10. They
are a useful means of describing unusual presentations of disease, examin-
ing the mechanisms of disease, and raising hypotheses about causes and
treatments. However, case reports are particularly prone to bias and
chance. Case series—studies of larger collections of patients—still suffer
from the absence of a reference group with which to compare the experi-
ence of the cases and from sampling cases at various times in the course
of their disease.

In case-control studies, a group of cases is compared with a similar
group of noncases (controls). A major advantage resides in the ability to
assemble cases from treatment centers or discase registries as opposed to
finding them or waiting for them to devclop in a defined population at
risk. Thus casc-control studies are much less expensive and much quicker
to perform than cohort studies and the only feasible strategy for studying
risk factors for rare diseases. Relative risk can be estimated by the odds
ratio, although it is not possible to compute incidences or relative risk
directly. The disadvantages of the case-control design all relate to its con-
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siderable susceptibility to bias. This problem is most related to two charac-
teristics of case-control research. First, the groups to be compared are com-
monly constructed by the researcher and are not constituted naturally;
second, the exposure is measured after the disease has already occurred.

Given the vulnerability of case-control studies to bias, what place do
they have in clinical epidemiologic research? To some, case-control studies
are unscientific, illogical, and a curse. To others, they are viewed as the
essential first step in studying many medically important questions. There
is nearly universal agreement that cohort studies provide stronger, more
valid evidence and, if feasible, are the design of choice. But with appro-
priate attention to possible sources of bias, case-control studies can provide
a valid and efficient method to answer many clinical and health services
questions,
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CAUSE

Example Some years ago, medical students were presented a study of
the relationship between the cigarette smoking habits of obstetricians and
the vigor of babies they delivered. Infant vigor is measured by an Apgar
score; a high score (9-10) indicates that the baby is healthy, whereas a low
score indicates the baby might be in trouble and require close monitoring.
The study suggested that smoking by obstetricians (not in the delivery suitel)
had an adverse effect on Apgar scores in newborns. The medical students
were then asked to comment on what was wrong with this study. After
many suggestions, someone finally said that the conclusion simply did not
make sense.

It was then acknowledged that, although the study was real, the “expo-
sure” and ““discase” had been altered for the presentation. Instead of compar-
ing smoking habils of obstetricians with Apgar scores of newborns, the study,
published in 1843 by Oliver Wendell Holmes {then professor of anatomy
and physiclogy and later dean of Harvard Medical Schaal), concerned hand
washing habits by obstetricians and subsequent puerperal sepsis in mothers,
The observations led Holmes (1) te conclude: “The disease known as puer-
peral fever is so far contagious, as lo be frequently carried from patient to
patient by physicians and nurses.”

One mid-19th century response to Holmes's assertion that unwashed
hands caused puerperal fever was remarkably similar to that of the medical
students: The findings made no sense. I prefer {o attribute them [puerperal
sepsis cases| to accident, or Providence, of which | can form a congeption,
rather than to contagion of which ! cannot form any clear idea, at least as to
this particular malady,” wrole Dr. Charles 12. Meigs, professor of midwifery
and the diseascs of women and children at Jefferson Medical College (1).

Holmes and Meigs were confronted with a question about cause.
Holmes was convinced by his data that the spread of pucrperal sepsis was
caused by obstetricians not washing their hands between deliveries. He
could not, however, supply the pathogenctic mechanism by which hand
washing was related to the disease, as bacteria had not yet been discovered.
Meigs, therefore, remained unconvinced that the cause of puerperal sepsis
had been established (and presumably did not bother to wash his hands).

Clinicians frequently arc confronted with information about possible

228
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causal relationships. Tn fact, most of this book has been about methods
used to ecstablish cause, although we have not called special attention to
the term.

Tn this chapter, we review concepts of causce in clinical medicine. We
then outline the kinds of cvidence that, when present, strengthen the likeli-
hood that an association represents a causal relationship. We also deal
briefly with a kind of rescarch design not yet considered in this book:
studies in which exposure to a possible cause is known only for groups
and not specifically for individuals in the groups.

Concepts of Cause

Webster's {2) defines canse as “'something that brings about an effect or
a result.” In medical textbooks, cause is usually discussed under such
headings as “‘etiology,” “pathogenesis,” “mechanisms,” or “risk factors.”

Cause is important to practicing physicians primarily in guiding their
approach to three ¢linical tasks: prevention, diagnosis, and treatment. The
clinical example at the beginning of this chapter illustrates how knowledge
of causc-and-effect relationships can lead to successful preventive strate-
gies. Likewise, when we periodically check patients’ blood pressures, we
are reacting to evidence that hypertension causes morbidity and mortality
and that treatment of hypertension prevents strokes and myocardial in-
farction. The diagnostic process, especially in infectious disease, frequently
involves a search for the causative agent. Less directly, the diagnostic
process often depends on information about cause when the presence of
risk factors is used to identify groups of patients in whom disease preva-
lence is high (see Chapter 3). Finally, belief in a causal relationship under-
lies every therapeutic maneuver in clinical medicine. Why give penicillin
for pneumococcal pneumonia unless we think it will cause a cure? Or
advise a patient with metastatic cancer to undergo chemotherapy unless
we believe the antimetabolite will cause a regression of metastases and a
prolongation of survival, comfort, and/or ability to carey on daily
activities?

By and large, clinicians are more interested in treatable or reversible
than immutable causecs. Researchers, on the other hand, might also be
interested in studying causal factors for which no efficacious treatment
or preventon exists, in hopes of developing preventive or therapeutic
interventions in the future.

SINGLE AND MULTIPLE CAUSES

iF

In 1882, 40 ycars after the Holmes-Meigs confrontation, Koch set forth
postulates for determining that an infectious agent is the cause of a disease.
Basic to his approach was the assumption that a particular disease has one
cause and a particular cause results in one disease. He stipulated that:
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1. The organism must be present in every case of the discasc;

2. The organism must be isolated and grown in pure culture;

3. The organism must cause a specific disease when inoculated into an
animal; and

4. The organism must then be recovered from the animal and identified.

Interestingly, he did nol consider the effect of treatment in establishing
cause, somcthing he might have added a century later when effective
treatments had become more common in medicine.

Koch’s postulales contributed greatly Lo the concept of cause in medi-
cne. Before Koch, it was believed that many different bacteria caused any
given disease. The application of his postulates helped bring order out of
chaos. They are still useful today. That a given organism causes a given
disease was the basis for the discovery in 1977 that Legionnaire’s discase
18 caused by a Gram-negative baclerium, and the determination in the
1980s that the newly discovered HIV causcs ATDS,

For most diseases, however, cause cannot be established simply by
Koch’s rules. Sometimes, too much reliance on Koch's approach has gotten
the medical community into trouble by narrowing our perspectives. Would
that disease was so simple that we always had a single cause—single disease
relationship. Smoking causes lung cancer, chronic obstructive pulmonary
disease, peptic ulcers, bladder cancer, and coronary artery disease. Coro-
nary artery discase has multiple causes, including cigarette smoking, hy-
pertension, hypercholesterolemia, and heredity. [t is also possible to have
coronary artery disease without any of these known risk factors.

Usually, many faclors act together to cause discase in what has been
called the “web of causation” (3). A causal web is well understood in
conditions such as coronary artery disease, but is also true for infeclious
diseases, where presence of the organism is secessary for disease to occur
but not necessarily sufficient. AIDS cannot occur without exposure to TNV,
but exposure to the virus does not necessarily result in disease. For exam-
ple, exposure to HIV rarely results in AIDS after needlesticks (3 or 471000,
because the virus is not nearly as infectious as, say, the hepatitis B virus.
PROXIMITY OF CAUSE TO EFFECT

When biomedical scientists study cause, they usuvally search for the
underlying pathogenetic mechanism or final common pathway of disease.
Sickle-cell anemia is an example, with the genetic change associated with
hemoglobin 5 (HbS) leading to polymerization and crythrocytic sickling
when FIBS gives up its oxygen. Elucidating pathogenesis of discase has
playced a crucial part in the advancement of medical science in this century.

However, disease is also determined by less specific, more remote
causes, or risk faclors, such as people’s behavior or characteristics of their
environments. These factors may be even more important causes of disease
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than are pathogenetic mechanisms. For example, a large proportion of
cardiovascular and cancer deaths in the United States can be traced to
behavioral and environmental factors; the spread of AIDS is due primarily
to sexual behaviors and drug use; and deaths from violence and acci-
dents are rooted in social conditions, access to guns, and alcohol and
scatbelt use.

To view cause in medicine exclusively as cellular and subcellular pro-
cesses restricts the possibilitics for useful clinical interventions. Tf the patho-
genetic mechanism is not clear, knowledge of risk factors may still lead to
very effective treatments and preventions. Thus Holmes was right in his
assertion that obstetricians should wash their hands, even though he had
little notion of bacteria.

For many discases, both pathogenetic mechanisms and nonspecific risk
factors have been important in the spread and control of the diseases.
Sometimes the many different causces interact in complicated ways.

Example Koch's postulates were originally used to establish that tuber-
culosis is caused by inoculation of the acid-fast bacillus Mycobacterium tuber-
cufosis into susceptible hosts. The final common pathway of tuberculosis is
the invasion of host tissue by the bacteria. I'rom a pathogenetic perspective,
conquering the discase required antibiolics or vaccines that were effective
against the organism. Through biomedical research cfforts, both have been
achicved.

However, the development of the discase tuberculosis is far more com-
plex. Other important causes are the susceptibility of the host and the degree
of exposure (Fig, 11.1}. In facl, thuse causes determing whether invasion of
host tissue can occur.

5 Exposureto .
Crowding MYCOBACTER"UM
Mainutrition I
Vaccination

Genetic Tissue Invasion and Reaction

INFECTION | TUBERCULOSIS

Risk Factors for Mechanisms of
Tuberculosis Pathogenesis Tuberculosis

«——- Distant from Outcome —» 4—— Proximai to Qutcome —*
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Some clinicians would be hesitant to label host susceptibility and level
of exposure as causes of tuberculosis, but they are very important com po-
nents of cause. Tn fact, social and economic improvements influencing host
susceptibility, such as less crowded living space and better nutrition, may
have played a more prominent role in the decline in tuberculosis rates in
developed countries than treatments developed through the biomedical-
pathogenctic research model. Figure 11.24 shows that the death rate from
tuberculosis had dropped dramatically long before antibiotics were intro-
duced. {The vaccine came even later.)

Since 1985 the number of TB cases in the United States has increased
{4} (Fig. 11.28). Why is this s0? A total of 60% of the increase occurred in
foreign-born persons. HIV infections arce also a factor, with an increasing
number of susceptible people, as AIDS spreads and weakens the immunce
systems of its victims. These susceptible hosts are more likely than the
genceral population to be exposed to tuberculosis, because both AIDS and
tuberculosis are more common in economically depressed populations.
Finally, changes have occurred in the bacillus itself, with the evolution of
multidrug resistant strains. To complicate the picture further, multidrug
resistance also is caused by a web of circumstances. Genetic changes in
the Mycobacterium are more likely to occur with medication nencompliance
(5), which is more likely among intravenous drug users, an important risk
group for AIDS. Changes in the bacterium’s genctic makeup may also be
related to high replication rates in immunodcficient hosts. Thus the inter-
play of environment, behavior and subcellular biology may be incredibly
complex when thinking about cause.

Another example of the importance of both pathogenetic and epidemio-
logic approaches to cause is the recent decline in deaths from coronary
artery disease in the United States,

Lxample During the past two decades, the death rate from coronary
artery disease has dropped more than a third. This decline accompanied
decteased exposure, in the population as a whole, to several risk factors for
cardiovascular disease: A larger proportion of people with hypertension are
being treated effectively, middle-aged men are smoking less, and fat and
cholesterol consumption has declined. These developments were, at least in
part, the result of both epidemiologic and biomedical studies and have spared
tens of thousands of lives per year. It is doubtful that they would have
occurred without understanding of both the proximal mechanisms and the
more remote origing of cardiovascular diseasc (6).

INTERPLAY OF MULTIPLE CAUSES

When more than one cause act together, the resulting risk may be greater
or less than would be expected by simply combining the effects of the
scparate causes. Clinicians call this phenomenon synergism if the joint
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Figure 11.3. Interaction of multiple causes of disease. The risk of developing car-
diovascular disease in men according to the level of several risk factors alone and
in combination. Abnormal values are in shaded boxes. (Redrawn from Kannel WB.
Preventive cardiology. Poslgrad Med 1977,61:74-85)

effect is greater than the sum of the effects of the individual causes, and
antagonism if it is less.'

Example Figure 11.3 shows the probability of developing cardiovascular
disease over an 8-year period among men aged 40. Men who did not smoke
cigarettes, had low serum cholesterol values, and had low systolic blood
pressure readings were at low risk of developing disease (12/1000). Risk
increased, in the range of 20 to 61/1000, when the various factors were
present individually. But when all three factors were present, the absolute
risk of cardiovascular disease (317,/1000) was almost three times greater than
the sum of the individual risks (7).

Elucidation of cause is more difficult when many factors play a part
than when a single onc predominates. However, when multiple causative

" Statistical inferaction 15 present when combinations of variables in a mathematical model add to the
madel’s explanatory power atler the net effects of the individual predictor variables have been taken into
aceount. It s conceptually related to biologic synergy and antagenism but is a mathematical construct,
ol an observable phenomenon in nature.
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factors are present and interact, it may be possible to make a substantial
impact on a patient’s health by changing only one, or a small number, of
the causes. Thus, in the previous example, getting patients to give up
smoking and treating hypertension might substantially lower the risk of
developing cardiovascular disease in men, even in the continuing presence
of other causative factors.

EFFECT MODIFICATION

Effect modification is a special type of interaction. Tt is present when the
strength of the relationship between two variables is different according
to the level of some third variable, called an effect modifier.

Example Because of conflicting results of studies evaluating the cffec-
tiveness of thiazide diuretics in preventing coronary heart disease, a study
was done to examine whether Lhere was a relationship between the dose of
thiazide and the risk of sudden death, and whether adding potassium-
sparing therapy modificd the effect. Figure 11.4 summarizes the resuits. The
dose of thiazide determines its effect, with a low dose, 25 mg, protecting
against sudden death and a high dose, 100 mg, increasing the chances of
sudden death. Adding potassium-sparing therapy modifies the effect at sev-
eral doses, adding a protective cffect {8).

Establishing Cause

In clinical medicine, it is not possible to prove causal relationships be-
yond any doubt. It is only possible to increase one’s conviction of a cause-
and-effect relationship, by means of empiric evidence, to the point at which,
for all intents and purposes, causc is established. Conversely, evidence
against a cause can be mounted until a cause-and-cffect relationship be-
comes implausible. The possibility of a postulated cause-and-effect rela-
tionship should be examined in as many different ways as possible. This
usually means that several studies must be done to build evidence for or
against cause.

ASSOQCIATION AND CAUSE

Two factors—the suspected cause and the effect—obviously must
appear to be associated if they are to be considered as cause and effect.
However, not all associations are causal. Figure 11.5 outlines other
kinds of associations that must be excluded. First, a decision must be
made as to whether an apparent association between a purported cause
and an effect is real or merely an artifact becausc of bias or random
variation. Selection and measurement biases and chance are most likely
to give rise to apparent associations that do not exist in nature, If these
problems can be considered unlikely, a true association exists. But
before deciding that the association is causal, it is necessary to know
if the association occurs indirectly, through another {confounding) fac-
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Figure 11.4. Example of effect moditication: how the risk of cardiac arrest in pa.
tierts using thiazide divretics {compared with the risk of cardiac arrest in patients
using beta-blockers) changes according to use of potassium-sparing diuretics. Odds
ratios—with 95% confidence intervals {Ci}-—increase with increasing dose of diuretic,
suggesting that it is safer to use beta-blockers than thiazide diuretics. However, with
the addition of potassium sparing diuretics, thiazide diuretics cause a lower risk of
cardiac arrest than beta-blocker therapy. (Redrawn from Siscovick DS, et al. Diuretic
therapy for hypertension and the risk of primary cardiac arrest. N Engl J Med
1994,330:1852-1857 )

tor, or directly. If confounding is not found, a causal relationship is
likely.

At some future time another factor may be found that is more di-
rectly causal. Tor example, several studies found that women fared
more poorly than men after coronary bypass surgery and it was
thought that sex was related to postoperative prognosis. On further
study, small body surface arca— which correlated with small-diameter
corenary arteries—was found to be an important variable leading to
heart failure and death, not being female per se (9). Thus factors that
are considered causes at one time are sometimes found to be indirectly
related to diseasc later, when more evidence is available.
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Figure 11.5. Association and cause.

RESEARCH DESIGN

When considering a possible causal relationship, the strength of the
research design used to establish the relationship is an important piece of
evidence.

Of the rescarch designs so far discussed In this book, well-conducted
randomized controlled trials, with adequate numbers of patients; blinding
of therapists, patients, and researchers; and caretully standardized meth-
ods of measurement and analysis are the best evidence for a cause-and-
offect relationship. Randomized controlled trials guard against differences
in the groups being compared, both for factors already known to be im-
portant, which can be overcome by other methods, and for unknown con-
founding factors.

We ordinarily use randomized controlled trials to provide cvidence
about causal relationships for treatments and prevention, However, as
pointed out in Chapter 6, randomized controlled trials are rarcly feasible
when studying causes of disease. Obscrvational studies must be used
instead.

In general, the further une must depart from randomized trials, the less
the research design protects against possible biases and the weaker the
evidence is for a cause-and-effect relationship. Well-conducted cohort stud-
ies are the next best design, because they can be performed in a way that
minimizes known confounding, selection and measurement biases. Cross-
sectional studics are vulnerable because they provide no direct evidence
of the sequence of events. True prevalence surveys— cross-sectional stud-
ies of a defined population—guard against sclection bias but are subject
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to measurement and confounding biases. Case-control studics are vulnera-
ble to selection bias as well. Weakest of all arc cases series, because they
have no defined population and no comparison group.

This hicrarchy of research designs is only a rough guide, based on
extent of susceptibility to bias. The manner in which an individual study
is performed can do a great deal to increase or decrease its validity, regard-
less of the type of design used.

POPULATION STUDIES

Up until now, we have discussed evidence for cause when exposure
and diseasc status are known for cach individual in the study. In a different
kind of rescarch, most often used for epidemiologic studies of large popula-
tions, exposure is known only for the groups, not for the individuals in
the groups.

Studies in which exposurc to a risk factor is characterized by the average
exposure of the group to which individuals belong are called aggregate risk
studies. Another term is ecological stiidies, because people are classified by
the general level of exposure in their environment.

Example  What factors are associaled with cardiac mortality in developed
countries? 5t. Leger et al. (10) gathered dala on rates of ischemic heart disease
mortality in 18 developed countries to explore the contribution of various
economic, health services, and dietary variables. One finding that was not
anticipated was a strong negative association between ischenic hearl disease
death and wine consumption (Fig. 11.6).

This study raises the hypothesis that alcohol protects against ischemic
heart disease. Since then, studies on individuals have shown thal levels of
serum high-density lipoprotein, a protective factor for cardiovascular discase,
are increased by alcohol consumption.

Aggregate risk studies are rarely definitive in and of themselves. The
main problem is a potential bias called the ccological fallacy: Affected indi-
viduals in a generally exposed group may not lhemselves have been ex-
posed to the risk. Also, exposure may not be the only characleristic that
distinguishes people in the exposed group from those in the nonexposcd
group, ie., there may be confounding factors. Thus aggregate risk studies
are most useful in raising hypotheses, which must then be tested with
more rigorous rescarch.

TIME SERIES STUDIES

Evidence from aggregatc risk studics that a factor is actually responsible
for an effect can be strengthened if observations are made at more than
two points in time (beforc and after) and in more than one place. Tn a time
series study, the effect is measured at various points in time before and
after the purported cause has been introduced. It is then possible to see if
the effect varies as expected. If changes in the purported cause are followed
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Figure 11.6. Example of an aggregate risk study: relationship between wine con-
sumption and cardiac mortality in developed countries. {Drawn from St. Leger AS,
Cochrane AL, Moore F. Factors associated with cardiac mortality in developed coun-
tries with particular reference to the consumption of wine. Lancet 1979;1:1017 -
1020.)

by changes in the purported effect, the association is less likely to be
spuricus.

Example The risk of Clostridium difficile-associated diarrhea and pseudo-
membranous colitis has been shown to be related to the use of antibiotics,
particutarly clindamycin, ampicillin, and cephalosporins. An cpidemic of C.
difficite diarrhea broke out in a hospital in 1990 after use of clindamycin
increased sharply (J4g. 11.7) (11}. Education, infection control, and environ-
mental hygiene cfforts were immediately instituted, but the epidemic contin-
ued unabated. Clindamycin was then removed from the hospi tal formulary,
and its use plummeted, along with the number of cases of C. difficile-diarrhea.
To investigate the association further, the authors conducted a case-control
study, which corroborated the findings of the time series analysis.

In a multiple time sevies study, the suspected cause is introduced into
several different groups at various times. Mcasurements of cffect are then
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made among the groups to determine if the effect occurs in the same
sequential manner in which the suspected cause was introduced. If the
effect regularly follows introduction of the suspected cause at various times
and places, there is stronger evidence for cause than if this phenomenon
is observed only once, because it is even more improbable that the same
extraneous factor(s) occurred at the same time in relation to the cause in
many different places and eras.

Example Because there were no randemized controlled trials of cervical
cancer screening programs before they became widely accepted, their effec-
tiveness must be evaluated by means of observational studies. A multiple
time series study has provided some of the most convincing evidence of their
effectiveness (12). Data were gathered on screening programs begun in the
various Canadian provinces at various times during a 10-year period in the
1960s and 1970s. Reductions in mortality regularly followed the introduction
of screening programs regardless of time and location. With these data, it
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Figure 11.7. Atime-serias study of the relationship of clindamycin use and Closirid-
ium difficile-associated diarrhea. {Redrawn from Pear SM, Williamson TH, Bettin KM,
Gerding DN, Galgiani JN. Decrease in nosocomial Clostridium difficile-associated
diarrhea by restricting clindamycin use. Ann Intern Med 1194,120:272--277 )
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was concluded that “‘screening had a significant effect on reduction in mortal-
ity from carcinoma of the uterus.”

ELEMENTS FOR OR AGAINST CAUSE

In 1965, the British statistician Sir Austin Bradford Hill (13) proposed a
sct of features that should be sought when deciding whether a relationship
between a sickness and some environmental factor is causal or just an
association. His proposals have been widely used, sometimes with modifi-
cations (Table 11.1). We will comment briefly on the individual elements.
They are not all of equal weight in deciding about cause.

Temporal Relationships between Cause and Effect

Causes should obviously precede effects. This fundamental principle
seems self-cvident, but it can be overlooked when interprefing most cross-
sectional studies and case-control studies, in which both the purported
cause and the effect are measured at the same point in time. It is some-
times assumed that one variable precedes another without actually estab-
lishing that this is so. In other cases, it may be difficult to cstablish which
came first.

Example It has long been noted that overweight persons are at higher
risk of death, especially cardiovascular death, than pcople with normal
weight. Thus it is reasonable to assume thal weight loss would be protective
among overweight people. However, several cohort studies have found ex-
cess mortality among people who lose weight, even among people without
any apparent preexisting disease. These distressing findings may be ex-
plained if a subtle, preclinical effect of fatal illness is weight loss (14). Thus
fatal conditions may precede and cause weight loss, not vice versa. (This
possibility could be excluded if it was known whether the weight loss was
voluntary in those losing weight.}

Table 111
Evidence That an Association s Cause and Effect’
Criteria Comments

Tempaorality Cause precedes effect

Strenglh Large relative risk

Dose-response Larger exposures to cause associaled with higher rates of disease

Reversibility Reduclion in exposure associated with lower rates of disease

Consistency Repeatedily cbserved by different porsons, in different places,
circumstancos, and tirmes

Biclogic plausibility Makes sense, aceording 10 biologic knowledge of the time

Specificity One cause leads to one effect

Analogy Cause-and-effect relationship already established tor a similar

exposure or disease

T Maoditiod from Bradford-Hill AR, The ervironmend and disease: associalion and causation. Prac B Soc Med
1965, 58205 -000.
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Although it is absolutely necessary for a cause to precede an effect in
clinical medicine~—and, therefore, the lack of such a sequence is powerful
evidence against causec—an appropriate temporal sequence alone is weak
evidence for cause.

Strength of the Association

A strong association between a purported cause and an effect, as ex-
pressed by a large relative or absolute risk, is better evidence for a causal
relationship than a weak association. Thus the 4- to 16-fold higher incidence
of lung cancer among smokers than nensmokers in many different prospec-
tive studies is much stronger evidence that smoking causes lung cancer
than the findings in these same studies that smoking may be related to
renal cancer, for which the relative risks are much smaller (1.1-1.6) (15).
Similarly, that the relative risk of hepatitis B infection for hepatocellular
cancer is nearly 300 leaves little doubt that the virus is a cause of liver
cancer (16). Bias can sometimes result in large relative risks. However,
unrecognized bias is less likely to produce large relative risks than to
proeduce small ones.

Dose-Response Relationships

A dose-response relationship is present when varying amounts of the
purported causc are related to varying amounts of the effect. If a dose-
response relationship can be demonstrated, it strengthens the argument
for cause and effect. Figure 11,8 shows a clear dose-response curve when
lung cancer death rates (responses} are plotted against number of cigarettes
smoked (doses}.

Although a dose-response curve is good evidence for a causal relation-
ship, cspecially when coupled with a large relative or absolute risk, its
existence does not exclude confounding factors.

Example Both the strong association between smoking and lung cancer
and the dose-response relationship have been dismissed by the tobacco in-
dustry as examples of confounding. According to this argument, there is
some unknown variable that both causes people to smoke and increases their
risk of developing lung cancer. The more the factor is present, the more both
smoking and lung cancer are found —hence, the dose-response relationship.
Such an argument is a theorctically possible explanation for the association
between smoking and lung cancer, although just what the confounding factor
might be has never been clarified. Short of a randomized controlled trial
{which would, un the average, allocate the people with the confounding
factor equally to smoking and nonsmoking groups) the confounding argu-
ment is difficult to refute completely.

Reversible Associations

A factor is more likely to be a cause of discase if its removal results in
a decreased risk of disease, i.e, the association between suspected cause
and effect is reversible. Figure 11.9 shows that when people give up smok-
ing they decrease their likelihood of getting lung cancer.
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Figure 11.8. Example of a dose-response relaticnship: ung cancer deaths ac.
cording to dose of cigareties in male physicians. {Drawn from Doll R, Peto R, Mortality
in relation to smoking: 20 years' observations on male British doctors. Br Med J
1976,2:1525-1536 )

Reversible associations are strong, but not infallible, evidence of a causal
relabionship. Confounding could conceivably explain a reversible associa-
tion. For example, in Figure 11.9 it is possible (but unlikely) that people
willing to give up smoking have smaller amounts of the unidentified factor
than those who continue to smoke.

Consistency

When several studies conducted at different times in different settings
and with different kinds of patients all come to the same conclusion, evi-
dence for a causal relationship is strengthened. That screening for colorectal
cancer is effective becomes more plausible when a randomized controlled
trial of fecal occult blood testing (17) and a case-control study of sigmoidos-
copy (18) both find a protective effect. Causation is particularly supported
when studies using several different research designs all lead to the same
result, because studies using the same design can all make the same
mistake.

It is often the case that different studies produce different results. Lack
of consistency does not necessarily mean that the results of a particular
study arc invalid. One good study should outweigh several poor ones.




244 CLINICAL ERPIDEMIOLOGY

Biologic Plausibility

Whether the assertion of cause and effect is consistent with our knowl-
edge of the mechanisms of disease as they are currently understood is
often given considerable weight when assessing causation. When we have
absolutely ne idea how an association might have arisen, we tend to be
skeptical that the association is real. Such skepticism often serves us well,
For example, the substance Laetrile was touted as a cure for cancer in the
early 1980s. However, the scientific community was not convinced, because
they could think of no biologic rcason why an extract of apricot pits not
chemically related to compounds with knewn anticancer activity should
be effective against cancer cells. To nail down the issue, Laetrile was finally
submitted to a randomized controlled trial in which it was shown that the
substance was, in fact, without activity against the cancers studied (19).

It is important to remember, however, that what is considered biologi-
cally plausible depends on the state of medical knowledge at the time. In
Meig’s day, contagious diseases were biologically implausible. Today, a
biologically plausible mechanism for puerperal sepsis, the effects of strep-
tococcal infection, has made it easier for us to accept Holmes's observations.

g 20~
S X
o E_ 15.8
[
o 0
T
£ 9
K 10.7
£ Z 10-
0 am
=92
— g 5.9
Q o 4.7
Y-
g UI) 2.0
» r"'"]
w ¢
0 <5 5-9 10-14 15+

Years Since Stopped Smoking

Figure 11.9. Reversible association: declining mortality from lung cancer in ex-
cigarette smokers. The data exclude people who stopped smoking after getting
cancer. (Drawn from Doll R, Petro R. Mortality in relation to smoking: 20 years'
observations on male British doctaors. Br Med J 1976, 2:1525-1536.)
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On the other hand, the mechanism by which acupuncture causes anesthesia
is far less clear. To many scientists in the Western world, the suggestion
that anesthesia is caused by sticking needles into the body and twirling
them scems biologically implausible, and so they do not belicve in the
effectiveness of acupuncture.

In sum, biclogic plausibility, when present, strengthens the case for
causation. When it is absent, other evidence for causation should be sought.
If the other evidence is strong, the lack of biologic plausibility may indicate
the Hmitations of medical knowledge, rather than the lack of a causal
association. '

Specificity

Specificiby—one cause, one effect—is more often found for acute infec-
ticus diseases (such as poliomyelitis and tetanus) and for inborn errors of
metabolism (such as gout, ochronosis, and familial hypercholesterelemia).
As we pointed out, for chronic, degenerative diseases there are often many
causes for the same effect or many effects from the same cause. Lung
cancer is caused by cigarette smoking, asbestos, and radiation. Cigarettes
cause not only lung cancer but also bronchitis, peptic ulcer disease, peri-
odontal discase, and wrinkled skin. The presence of specificity is strong
evidence for cause, but the absence of specificity is weak cvidence against
a cause-and-effect relationship.

Analogy

The argument for a cause-and-cffect relationship is strengthened if there
are examples of well-established causes that are analogous to the one in
question. Thus if we know that a slow virus can cause a chronic, degenera-
tive central nervous system discase (subacute sclerosing panencephalitis),
it iy easicr to accept that another virus might cause degeneration of the
immunologic system {acquired immunodeficiency syndrome). Tn general,
however, analogy is weak evidence for causc.

Weighing the Evidence

Mot of this chapter has been a discussion of what to look for in individ-
ual studies when considering the possibility of a causal relationship. But,
when deciding about cause, one must consider all the available evidence,
from all available studies. After examining the pattern of evidence, the
case for causality can be strengthened or eroded. This calls for a good deal
of judgment, especially when the evidence from different studies is con-
flicting. In such cases, clinicians must decide where the weight of the
evidence lies.

Figure 11.10 summarizes the different types of evidence for and against
cause, depending on the research design, and features that strengthen or
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Randomized controlled trial Randomized controlled trial
Multiple time series Multiple time series
Nonrandomized trial DESIGN Nonrandomized trial
Cohort Cohort
Case-control Case-control
Cross-sectional Cross-sectional

Case sertes  Case series

Case report
Strong AGAINST Weak
Not specific Temporal sequence
Not reversible Small effect
No dose-response Specificity
No analogy Analogy
Not biclogically plausible  FINDING Biologic plausibility
No effect Consistency
Incorrect temperal sequence Large effect
Dose response
Reversibility

Figure 11.10. Relative strength of evidence for and against a causal effact. Note
that with study designs, except for case reports and time series, the strength of
evidence for a causal relationship is a miror image of that agaist. Wilh findings,
evidence for a causal effect doos not mirror evidence against an eftect.

weaken the evidence for cause. The figure roughly indicates relative
strengths in helping to establish or discard a causal hypothesis. Thus a
carefully done cohort study showing a strong association and a dose-
response relationship is strong evidence for cause, while a cross-sectional
study finding no effect is weak evidence against cause.

Summary

Cause-and-effect relationships underlie diagnostic, preventive, and ther-
apeutic activities in clinical medicine.

Diseases usually have many causes, although occasionally one might
predominate. Often, several causes interact with one another in such a
way that the risk of disease is more than would be expected by simply
combining the etfects of the individual causes taken separately. In other
cases, the presence of a third variable, an effect modifier, modifies the
strength of a cause-and-effect relationship between two variables.

Causes of disease can be proximal pathogenetic mechanisms or more
remote genetic, environmental, or behavioral factors. Medical interventions
to prevent or reverse disease can occur at any place in the development
of disease, from remote origins to proximat mechanisms.
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The case for causation is usually built over time with several different
studies. [t rests primarily on the strength of the rescarch designs used to
establish it. Because we rarely have the oppeortunity to establish cause
using randomized controlled trials, observaticnal studies are necessary.
Some studies of populations (time series and multiple time series studies)
may suggest causal relationships when a given exposure of groups of
people is followed by a given effect.

Features that strengthen the argument for a cause-and-effect relation-
ship include an appropriate temporal relationship, a strong association
between purported cause and efiect, the existence of a dose-response rela-
tionship, a fall in risk when the purported cause is removed, and consistent
results among several studics. Biologic plausibility and coherence with
known facts are other features that argue for a causal relationship.
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SUMMING UP

Where is the knowledge we have lost in information?
T. S. Eliot, “The Rock”

The usefulness of clinical research depends on its scientific credibility —
its believability to thoughtful, unbiased scientists—and its relevance to
the problems faced by clinicians and their patients. Both clinicians, who
base their decisions on the medical literature, and researchers, who creale
it, need to understand what adds to and subtracts from the strength of
scientific research.

To judge scientific credibility, readers must take an active role. They
must decide what they wanl to discover from the medical literature and
then see if the information is present and meets their standards of scientific
credibility. By just reading passively, without considering the basic scien-
tific principles systematically and in advance, they will be less likely to
notice shortcomings and more likely to be misled.

This chapter describes how the methodologic principles discussed in
previous chapters can be applied by busy clinicians to the lifelong task of
trying to practice evidence-based medicine, First, we discuss how research
articles pertaining to a given clinical question are identified and how their
numbers can be reduced to managceable proportions without sacrificing
needed information. Next, we summarize basic rules for judging the
strength of individual articles; that section deals with concepts that have
been discussed throughout the book. Third, we consider how the many
articles on a given research question, as a group, are summarized to dis-
cover where the best available eslimate of the truth lies. Tt is on this estimate
that clinicians must base their clinical decisions until better information
becomes available. Throughout the chapter we consider how these steps—
article identification, study evaluation, and evidence synthesis—relate to
strategies for keeping abreast of the literature throughout one’s life as a
clinician,

Whatever the strength of the best available evidence, clinicians must
use it as a basis for action—sometimes rather bold action—yet regard it as

249



250 CLINICAL EPIDEMIOLOGY

fallible and subject to revision. One scholar (1) has distinguished between
“decisions” and “conclusions.” We decide something is true if we will act
as if it is so, for the present, until better information comes along. Conclu-
sions, on the other hand, are settled issues and are expected to be more
durable. Clinicians are mainly concerned with decisions, The integrity of
the scientific enterprise rests on the willingness of its participants to engage
in open-minded, well-informed arguments for and against a current view
of the truth, to accept new evidence, and to change their minds.

Approaches to Reading the Literature

Clinicians examine the medical literature from different perspectives,
depending on their purpose. They browse to see what is interesting, they
read articles of clinical interest to keep up, they look up the answers to
specific clinical questions, and they systematically review the literature
about a clinical issue to develop or change a clinical policy. We mainly
deal with the full review of the literature. We understand that clinicians
rarely have the time to do a full-blown review of existing information.
However, if they understand the basic principles by which literature
scarches are done, they are in a better position to identify credible articles
efficiently and judge the results for themselves when they browse, keep
up, or look up infermation.

WHICH ARTICLES ARE IMPORTANT FOR CLINICAL
DECISION MAKING?

All articles are not equally important for clinical decision making.
Thoughtful clinicians must find and value the soundest articles in the face
of an almost overwhelming body of available information.

Figure 12.1 summarizes an approach to distinguishing articles of funda-
mental importance to clinical decision making from thosce that are not.
Many articles—reviews, teaching articles, editorials—are written to de-
scribe what is generally believed to be true but are not themselves reports
of original rescarch aimed at establishing that truth. These articles are a
convenient source of summary information, but they are interpretations
of the true knowledge base and are not independent contributions to it.
Moreover, they are usually written by people with an established point of
view, so that there is the potential for bias.

Example lHow well do review articles and textbook chapters summarize
the available body of scientific evidence about a clinical question? Investiga-
tors produced estimates of the effectiveness of various interventions to reduce
morbidity and mortality from myocardial infarction (MI) by performing
meta-analyses (described later in this chapter) of randomized clinical trials
{RCTs) (2). The estimates were compared with expert recommendations pub-
lished at the same point in time in review articles and textbook chapters.
They found that “expert opinion” generally lagged behind the cumulative
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Contribution to Answering
the Clinical Question

Secondary

Laboratory (“bench,”
“hasic”) research

Analogy
Primary Weak

Direct

Strong

Figure 12.1. The literature on a ressarch guestion: the refative value of various
kinds of articles for answering a ¢linical question.

evidence by scveral years and not infrequently disagreed with it. For exam-
ple, by 1980 there were 12 RCTs in the literature that had examined the
efficacy of prophylactic lidocaine in the treatment of acute ML Essentially,
afl showed that treatment with lidocaine was no better and often worse than
placebo, yet the majority of review articles and chapters published during
the 19805 continued to recommend routine or selective use of lidocaine.

Other articles describe original research done in laboratories for the
purpose of understanding the biology of disease. These studies provide
the richest source of hypotheses about health and disease. Yet, “bench”
rescarch cannot, in itself, cstablish with certainty what will happen in
humans, because phenomena in actual patients, who are complex organ-
isms in a similarly complex physical and social environment, involve vari-
ables that have been deliberately excluded from laboratory experiments.

Research involving intact humans and intended to guide clinical deci-
sion making (“clinical research”) is, of course, conducted with varying
degrees of scientific rigor. Even by crude standards, most studies are rela-
tively weak. For example, a recent review of the methods of clinical studics
in three surgical journals revealed that more than 80% had no comparison
group, much less a randomized control group (3).

Throughout this book we have argued that the validity of clinical re-
scarch depends on the strength of its methods (internal validity) and the
extent to which it applics to a particular clinical setting (generalizability}.
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If this is s0, a few good articles are more valuable than many weak or
inappropriate ones. Thus the overall conclusion frem the medical literature
often depends on how a relatively few articles are interpreted. A review
of the literature should involve selecting these articles carefully, identifying
their scientific strengths and weaknesses, and synthesizing the cvidence
when their conclusions differ.

FINDING USEFUL ARTICLES

When systematically reviewing the literature, the first task is to locate
articles that may be useful. This is most challenging when reviewing the
literature, where it is first necessary to sort through a large number of
titles, often thousands, to find the small number of articles that are useful.
The objective is to reduce the literature to manageable proportions with-
out missing important articles. The task can be intimidating and time-
consuming. We describe a plan of attack, starting first with the full review
of the literature.

The first step is to develop a set of criteria for screening titles to select
articles that may be relevant while excluding a much Jarger number that
clearly are not. The criteria should provide a sensitive test for the articles
that one hopes to find in the same sense as a screening test should be
sensitive for a diseasce, i1.e., few useful articles should be missed. Initially,
specificity can be sacrificed to achieve sensitivity, with the understanding
that it will be necessary to cvaluate many “false-positive’ articles in more
detail for each onc that meets the final criteria. Often a useful screening
algorithm is defined by the joint occurrence of a few key words in the
titic, c.g., sarcoidosis, pulnionary, and corticosteroid or cancer, pancreatic, and
diagnusis,

Second, the sereening criteria are applied to a list of journal titles, gener-
ally the list maintained by the National Library of Medicine, MEDLINE.
Although available in bound volumes, many clinicians are currently ac-
cessing the medical literature electronically via modem, CID-ROM, or other
computer-based systems. Because computer searching usually misses some
important articles, one should also identify articles from other sources of
titles such as recent review articles, other articles on the same topic, text-
books, and suggestions from experts in the ficld. The result of this search
15 a large number of tities, some of which represent relevant articles and
many of which do not.

Third, one must apply specific criteria to identify the articles that are
actually appropriate for the question at hand. Three kinds of criteria are
often used:

* Does the article address the specific clinical question that was the reason
for the search in the first place?
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» Docs the article represent original research, not secondary information
or opinion?
e |s the rescarch based on relatively strong methods?

Many inappropriate articles can be excluded by examination of the full
title. Often, however, more information is required, and the abstract serves
this purpose well. Perusal of abstracts should reveal to the reader whether
a study of treatment used a comparison group and random allocation, a
study of prognosis was on an inception cohort, whether a study has sutfi-
cient statistical power or precision, and so on.

Structired abstracts (4), which have been adopied by many of the leading
medical journals, provide a better opportunity to judge potentially useful
articles. The structured abstract summarizes in outline format those ele-
ments of a study—the research question, study design, setting, patients,
interventions, measurements, results, and conclusions—required to distin-
guish valid and informative studies from the larger number that are not
original or are inadequately rigorous.

Finally, one must actually look at the articles that remain to sce which
meet the final criteria. By this time, the number of articles should have
been reduced enough that the task is feasible. Figure 12.2 summarizes
these steps and illustrates the search process for a specific question: the
outcome of total knee replacement (5).

If there is not sufficient time for a full, broadly basced search for articles
or the reader is browsing or trying to stay abreast of important develop-
ments, the carly steps of this process must be abbreviated, One can examine
only those journals that publish original research with high methodologic
standards. However, this is an insensitive strategy: one would have to
examine at Teast 11 of the world’s best journals just to find 80% of the best
articles on a question {6).

Another approach, is to have the screening of articles done by others.
One would want them to be experts in both clinical medicine and clinical
research methods, to examine all of the world’s articles, and to make their
criteria for inclusion explicit. The journal ACP Journal Club presents struc-
tured abstracts for the scientifically strong, clinically relevant original re-
search in internal medicine, selected by explicit criteria published in each
issue. The results of selection in this way are powerful: in 1993, there were
more than 6 miltlion articles published in clinical journals, of which about
350—a manageable number—met the criteria. Another option, the Coch-

rane Collaboration, is being developed. Expert groups from throughout
the world are working together to select the best studies of clinical interven-
tions, summarize them in a standard form, disseminate the information
electronically, correct the database when errors arce found, and keep it up
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Articles Reasons for
Remaining Exclusion
L0000 1631
BiRE{RE 369 no original dates
HREER 362 non—English language

70 with 10 or fewer patients
27 no outcomes reported

ANREE 803

bod 115 not a cohort undergeing the replica
\. 98 no pertinent outcomes reported
37 different surgical procedures

todoo 553
336 inadequate outcome assessment
(1] 217
87 other exclusions
(10 130

Figure 12.2. Lliterature search: identifying the few rmost impartant articles from the
medical literature as a whole. (Callahan CM, Drake BG, Heck DA, Dittus RS. Patient
autcome following tricompartmental total knee replacement. JAMA 1894,271:1349-
1357.)

to date. The results, at least for some clinical questions, should be available
in the mid-1990s.

Judging Individual Articles

Once individual articles of interest have been identified, the next task
is to evaluate the quality of the evidence they contain. The approach uses
the scientific principles described in this book.
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We have outlined basic criteria for the scientific credibility of specitic
research designs in the appendix to this chapter. We summarized a set of
questions that should be asked of most studics —by investigators and read-
ers alike. They concern the nature of the research question, the generaliz-
ability and clinical usefulness of the results, and two processes that can
affect internal validity: bias and chance. We considered ground rules for
studics of diagnosis, frequency, prognosis, treatment, and cause. The ap-
pendix describes basic issues that should be considercd when deciding
whether an article might be sufficienily strong to be useful in a literature
review and in setting criteria to assign weights to articles when preparing
a synthesis of the results of several articles.

DOES THE DESIGN FIT THE QUESTION?

One cannot speak of “good” or “bad”" rescarch designs in general with-
out reference to the question they are intended to answer. Many clinically
oriented methodologic assessment schemes give lower grades to observa-
tional designs such as the prevalence survey. This may be justified if the
clinical question concerns preventive or therapeutic interventions, but in-
approptiate if considering studies of diagnostic tests. Table 12.1 matches
clinical questions to the best research designs used to answer them. The
table is meant to offer a guideline; it should not preclude creative but
scientifically sound approaches other than those listed. For example, the
best available evidence that periodic screening sigmoidoscopy may reduce
deaths from colorectal cancer came from a rigorous case-control study (7).
Because of the large numbers of patients and lengthy follow-up period
required to test the efficacy of sigmoidoscopy in a randomized trial, this
may be the only form of evidence available for some time.

Table 12.1
Matching the Strongest Research Designs to Clinical Questions

Chusstion eiqn
Diagnosis Prevalence
Prevalence Prevalenca
Incidence Cohort
Risk Cohort

Case control
Prognasis Cohorl
Treatment Clinicl trial
Presvention Climical trial
Cause Cohort

Case conlrol
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Table 12.2
Characteristics of a Study That Determine Whether It Can Test
or Only Raise Hypotheses

Oharacteristic: Hypothesis Raising Hypohesis Testing
Design Weak Strong
Hypotheses MNone {or after data collecled  Statod before study begun
and analysed)
Compariscns Many Few
£ walue Large Small
Results confirmed on separale No Yns
data set

RAISING OR TESTING A HYPOTHESIS

The conclusions of an individual piece of research fall on a spectrum
of believability according to the decisiveness of the scientific strategy used
(see Chapter 11). At one end of the spectrum are reports that only suggest
relationships, albeit potentially useful ones, without putting these ideas to
the test. Most case reports serve this function. The conclusions of these
studies are tentative; many are later refuted. At the other end of the spec-
trum are studies—e.g., large randomized controlled trials—that have put
ideas to a rigorous test. Conclusions from these studies are more definitive.
Most studies fall between these extremes.

A priori hypotheses are important. Without them, false-positive findings
can make their way into the literature in the following way. Suppose one
examines a large number of variables in a data set none of which is associ-
ated with any of the others in nature. As discussed in Chapter 9, if a large
number of associations between variables are examined, some of them will
be extreme enough to appear “real,” even though the associations are only
by chance. At a conventional level of statistical significance, p < 0.05, about
1 in 20 such comparisons will be statistically significant, by definition. Of
course, the observed associations are “real” for the particular data sct at
hand—but not necessarily in the population—because the current sample
may misrepresent all such samples from the population of interest.

Now suppose that one of these comparisons is selected out of the larger
set of all possible comparisons and given special emphasis, perhaps be-
cause it fits well with existing biomedical theories. Suppose the other com-
parisons are minimized in the final report. Then the association, taken out
of context, can appear very important. This process—random (chance)
occurrence of associations followed by biased selection of interesting
ones—is not unusual in published rescarch.

There are several clues that signal the degree to which a given study is
hypothesis testing rather than hypothesis raising (Table 12.2).
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The first, a strong rescarch design, is not a strictly scparate factor from
the others. Making hypotheses in advance and limiting the number of
comparisons examined reduce the number of apparently “significant”
comparisons that emerge from a study. The exploration for effects in vari-
ous subgroups of a larger study population is a common analytic strategy
that may result in chance or spurious associations. When hypotheses made
in advance, a priori hypotheses, are confirmed, one can place more confi-
dence in the findings. Alternatively, inveshigators can simply limit the
number of comparisons made after the fact, so that there is less chance of
false-positive findings for the study as a whole. Or they can insist on a
particularly small p value before ruling out the role of chance in explaining
particular findings.

Another strategy to protect against the acceptance of spurious or chance
associations is to raise hypotheses on one set of data and test them on a
separate one (Fig. 12.3). The availability of large data sets and stakistical
computer software makes it relatively casy for the analysis to include
multiple variables, considered either separately or together in modeis. The
analysis of multiple variables should be viewed as raising hypotheses, as
the investigators rarely specify in advance what the mode! will find, much
less the weight given to each finding. If the data set is large enough, it can
be divided randomly in half, with one half being used to develop the
model and the second half used to confirm it. Or it can be tested in a
different setting. This latter process is illustrated in the following example.

Example Investigators developed an index, including sceven physical
signs, for predicting the carly recurrence of acute asthma after discharge
from an emergency department (8). Among 205 patients at the investigators’
medical center, patients from whom the index was developed, the index had
a sensitivity of 95% and a specificity of 97'%. The results were so striking that
the index began to be put into clinical practice elsewhere.

Later, two other groups of investigators independently tested the index
in other settings (9,10). The results were disappointing. The sensilivity and
specificity were 40% and 71%, respectively, in one study, and 18.1% and
82.4% in the other.

Process Hypothesis Hypothesis
Raising Testing

Validation

Data Set ' D_e:riy'atidnf_

Figure 12.3. Developing a hypothesis on one data set and testing it on anolher.
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These studies illustrate the dangers of placing too much confidence in
a relationship that has been suggested in onc data set but not tested in
another, independent one. There are several possible reasons for the differ-
ence in performance. Patients in the original sample might have been sys-
tematically different, the index might have been applied differently, or
chance might have resulted in unusual findings in the initial study.

Whatever the strategies used to increase the hypothesis-testing character
of a study, itis the author’s responsibility to make it clear where a particular
study stands on the hypotheses-raising, hypothesis-testing spectrum and
why. The readers’ task is to seck out this information or reconstruct it, if
it is not apparent. However, one should not eschew studies that mainly
raise hypotheses; they are important, just not definitive.

Summarizing the Results of Many Studies

The current state of knowledge on a question is usually decided by the
pattern of results from all studies addressing the question, rather than by
one definitive study. Until recently, the commonest way of establishing
this pattern was by implicit judgment, i.e., opinion, without having stated
in advance the ground rules by which the contributions of individual
studies would be weighted. Judgments of this sort often take the form of
a traditional (“narrative”) review article by an expert in the relevant ficld
or a consensus of scholars representing the many points of view that bear
on a question, e.g., the National Tnstitutes of Health’s Consensus Develop-
ment Conferences.

A variety of more structured methods of summarizing published re-
search is now used. These methods have the advantage of making explicit
the assumptions behind the relative weights given to the various studies.
They also follow the scientific method more directly: setting criteria in
advance, gathering data (in this case, the results of individual studies),
analyzing the data, and allowing the conclusions to follow from the criteria
and data.

The process of summing up the research on a question, using structured
mcthods, is referred to as meta-analysis—literally, analysis of analysis—or
information synthesis. This approach is particularly useful when there is one
specific question and at least a few relatively strong studies with apparently
different conclusions. The use of these methods has exploded in the last
few years. MEDLINE listed nearly 2000 articles under the subject heading
“meta-analysis” between 1990 and mid-1994.

There are three general steps in performing a meta-analysis. First is to
identify the best articles from all possible articles, as described carlier in
this chapter. Second is to evaluate each study according to how well it
meets methodological criteria, which are decided on in advance. In some
meta-analyses, this evaluation results in the assignment of an overall qual-
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Relative Risk

Type of Study or Odds Ratio
Treatment Treatment
“-——— Better Worse —*
Randomized trials
RCT 1 0.41 X
RCT 2 0.20 X
RCT 3 0.26 X
RCT 4 0.24 X
RCT 5 0.20 X :
RCT6 1.01 : X
RCT7 0.63 - X
Nonrandomized trials :
Study 1 0.80 : X
Study 2 0.46 X -
Study 3 0.25 X . .
Study 4 1.56 : X
Study 5 0.71 X :
Study 6 0.98 ; X
Overall relative risk  0.49 >
95% ClI 0.34-0.70 :
10 Case-control studies :
Overall odds ratio 050 »>
95% Cl 0.39-0.64 :
0.5 1.0 1.5

Figure 12.4. Results of a meta-analysis of the effectiveness of BCG vaccination
to prevent tubercuiosis. Cf, confidence interval. (Based on Colditz GA, Brewer TF,
Berkey CS, Wilson ME, Burdick E, Fineberg HV, Mosteller . Efficacy of BCG vaccine
in the prevention of tuberculosis: meta-analysis of the published literature, JAMA
1994, 271,698-702.)

ity score; in others, quality-related study characteristics of design, number
and source of patients, and data collection methods are considered sepa-
rately. The third step is to summarize, with numbers, the results of many
studies to form, in effect, one large study with more statistical power than
any of the individual studies alone. Each individual study is weighted by
its sample size, i.c., large studics get more weight than ones with smaller
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numbers of patients. In addition, many meta-analyses also include the
quality score as a weighting factor. Statistical methods, usually some form
of regression analysis, arc then used Lo estimate an overall effect measure,
such as a relative risk or percentage reduction in mortality. Reports of
meta-analyses include graphical displays of the results of the individual
studies as well as the overall measure of cffect.

Although meta-analysis has become the standard against which other
appreaches to literature synthesis are judged, there continues to be contro-
versy about many of its elements, particularly the evaluation of quality
and its inclusion in the overall assessment. But quality measures, while
lumping disparate methodologic features in a single number, may help
explain differences among studics.

Example Although Bacille Calmette-Guerin {BCC) vaccine has been used
lo prevent tuberculosis for more than 50 years and is required in many
countries, its cfficacy {s controversial. In part this is because the several large-
scale clinical trials to evaluate BCG have reported conflicting results. An carly
meta-analysis compared the methods used in these trials to their results (11).
The mvestigators found thatl the unbiased detection of tuberculosis in BCG
and control groups was available only for the threc trials reporting 75% or
greater efficacy.

A morc recent meta-analysis of the same question summarized the re-
sults of studies examining vaccine efficacy (12). Figure 12.4 shows the
results of the seven randomized trials, six nonrandom trials, and the overall
findings of the 10 case-control studies published as of 1994. Overall, in
studics using cach of the three designs, the risk of tuberculosis was found
to be reduced by about half for those receiving the vaccination compared
with those who did not. To help explain differences in observed magnitude
of effect, the investigators developed overall scores for the quality of each
study’s methods. Using regression analysis, they found that better quality
scores predicted findings of greater vaccine effect. The meta-analyses
clearly cstablish the efficacy of BCG vaccine.

Often, however, there is no clear relationship between global quality
ratings and their results. In this case, the meta-analysts must look at the
specific methodologic features of studies to see why they are reaching
disparate conclusions (13).

POOLING

Not uncommonly, the results of various individual studies are indeci-
sive because each study describes too few patients or too few outcome
cvents to have sufficient statistical power or precision. Conseq uently, esti-
mates of rates from these studies are unstable, and cach study’s comparison
of rates runs an unacceptably high risk of missing true cffects (Type II
CITOr),
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Pooling refers to the process of aggregating the data from several rela-
tively small studies of the same question to form, in effect, one large one.
It is permissible when it can be shown that the studies are sufficiently
similar to each other (in patients, intervention and outcome measures) to
treat them as if they are part of a single study. Pooling attempts to assemble
enough observations to generate a precisc overall estimate of effect, not to
account for differences in conclusions among studies. The advantage of
pooling is that it can result in adequate statistical power to detect meaning-
ful differences, if they exist. Pooling is particularly useful when the discase
and/or the outcome events of interest occur infrequently. Under these
circumstances there are no other feasible ways to achieve statistical power.

Example There arc many reports of peptic ulcer discase during cortico-
steroid therapy. Yet, it has been difficult to establish by means of observa-
tional studies whether corticosteroids cause ulcers, because many of the situa-
tions in which they are given—e.g., during stress and in conjunction with
gastric-irritating drugs—may themselves predispose o peptic ulcer disease.
Also, ulcers may be sought more diligently in patients receiving corticoste-
roids and go undetected in other patients.

Randomized controlled trials are the best way to determine cause and
effect. There have been many randomized trials in which corticosteroids were
used to treat various conditions and peptic ulcer disease was a side effect.
None of these studies was large enough in itself to test the corticosteroid/
ulcer hypothesis. But together they provide an opportunity to examine the
rate of rare event.

In one review of 71 controlled trials of corticostervids in which patients
were randomized (or its equivalent) and peptic ulcer discase was considered,
there were about 86 patients and 1 case of peptic ulcer disease per study;
only 31 of the trials reported any patients with ulcers (14). The investigators
pooled the results of these 71 trials to increase statistical power. In the pooled
study, there were 6111 patients and about 80 ulcers. The rate of peptic ulcer
disease was 1.8 in the corticosteroid group and 0.8 in the control group
{relative risk, 2.3; 95% confidence interval, 1.4-3.7). The results were similar
when examined separately according to the presence and absence of other
risk factors; various doses, routes of administration, and duration of therapy;
and whether the disease was suspected, defined as bleeding, or specilically
diagnosed.

Thus the combined results of many studies, each with relatively sound
design but toe small to answer the question, gave sufficient statistical power
to detect risk.

Advocates of pooling point out that examination of the pattern of evi-
dence, effectively summarized, can give new insights into the strengths
and weaknesses of the evidence. For example, a single figure can show
the number of strong studies, the point estimate and statistical precision
of each study’s observed effect size, the relationship between effect size
and precision, and the point estimate and precision of their pooled effect
(see Fig. 12.4).
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Opponents of pooling argue that the ways in which patients, interven-
tions, and outcomes were selected in the various studies are so dissimilar
that it is not reascnable te combine them. “‘Splitters” are not as satisfied
with pooling as “lumpers.” Also, pooling deals only with statistical power.
It does not correct for whatever biases existed in the designs of the various
individual studies, nor can it be assumed that these biascs cancel each
other out when the studics are aggregated. In any case, meta -analyses only
supplement and do not replace the insights gained by examining each of
the best studies of a clinical question carefully.

Publication and Bias

Clinicians prefer good news, as does everyone clse. Thus such words
as efficacy, predicting, and correlation are the order of the day in journal
titles. It is considerably less appealing to contemplate things Lhat do not
work. In fact, such observations arc often considered failures. Researchers
with the bad fortune to make such observations are likely to be advised
by their friends, with gentle malicc, to seck publication in the Journal of
Negative Results.

Tt may be that our penchant for positive results leads to bias in the kinds
of articles selected for publication in medical journals.

Example The final disposition of 285 studies that had been reviewed by
an [inglish Rescarch Flhics Committee and brought to conclusion by ihe
investigators was studied (15). Statistically significant results were found in
34% of studies, a nonsignificant trend in 16%, and null results in 30%. Of the
studies with significant results, 85% were either published or presented as
opposed to only 56% of studies with negaiive results (odds ratio, 4.54; 95%
confidence interval, 2.4-8.6). Studics with null resulls were not of poorer
quality, nor were they more likely (o be unpublished because of editorial
rejection.

Articles actually reaching publication arc a biascd sample of all research
findings, tending to represent efforts to find causcs, diagnostic tests, and
treatments as being more cffective than they actually are. For example, a
meta-analysis of the relative effectiveness of single versus multiple drugs
in ovarian cancer found a large survival advantage with multiple drugs
in published data. When the investigator (16) added unpublished results,
the difference disappeared. There is no reason to assert that biased judg-
ments are made deliberately. Everyone does his or her part to put the
“best’”” work forward, but publication is not a random process. There are
forces favoring positive over negative results that are quite independent
of the relative proportions of these results among all research projects
undertaken. Readers should be aware of this bias lest they become unrealis-
tically impressed with the many new and promising findings that appear
in medical journals.
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One way to avoid this bias is 1o give more credibility to large studies
than to small ones. Most large studics, having required great effort and
expense in their exceution, will be published regardless of whether they
have a positive or negative finding. Smaller sludies, on the other hand,
require less investment and so are more easily discarded in the sclection
pI"OCL‘SS.

Different Answers: The Same Questions?

Until now, we have emphasized how studies can come to different
conclusions because they have different methods, better for scme than for
others. But there is an alternative explanation: The research questions,
although superficially the same, may actually be fundamentally different.
Rather than one or the other study being misleading, both might be right.
It may be that human biology, not rescarch methods, accounts for the
difference.

Example Several authors (17,18) have performed meta-analyses as-
sessing the effectiveness of drug treatment for hypertension. Early trials dem-
onstrated substantial and statistically significant reductions in strokes but
smaller and often not statistically significant reductions in corenary heart
discase (CHD) (Fig. 12.5). The confidence interval for the pooled relative risk
for CHD across all trials includes 1.

More recent trials have {ocused on or at least included older adults. These
newer trials, also summarized in Figure 12.5, showed the same degree of risk
reduction for stroke but larger and consistently significant reductions in the
risk of coronary heart disease. While the larger cffectiveness of treatment
observed in more recent trials suggests that drug therapy for hypertension
is more effective in older patients than was previously believed, these newer
trials tended to use diuretics and beta-blockers, the principal drugs in the
trials, in lower deses, This may also have contributed to the greater cftect of
treatment on CHD.

Studics of cause and cffect that seem to be asking similar questions
can in fact present diffcrent questions in at least four ways: The patients,
interventions, follow-up, and end results may not be the same. Differences
among studies in any one of these may be enough Lo give different results.

Other Sources of Information

Until now the main source of information we have considered is journal
articles reporting original rescarch and meta-analyses based on them. What
about other sources of information?

Textbooks are convenient and trustworthy for reporting well-estab-
lished facts. But they have the disadvantage of being out of date (as much
as 1 year old at time of publication) and reflecting the opinions of single
authors, with little external review. Colleagues, especially those specialized
in the area of the clinical questions, are also practical sources of informa-
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Relative Risk {and Intervals)

Outcome 95% Confidence
Treatment Treatment
=—— bhetter worse ———*
Stroke (fatal and nonfatal)
Middle-aged subjects
HOFP 0.64 DX
MRC-younger 0.55 X
10 other trials 0.67 : X
Pocled RR 0.62 :
(0.53-0.73) ->
Older subjects
STOP 0.55 - X
MRC-older 0.76 : X
SHEP 0.65 - X
3 other trials 0.43 X.
Pooled RR 0.61 .
(0.53-0.70} :
Coronary heart disease
(fatal and nonfatal)
Middle-aged subjects
HDFP 0.90 X
MRC-younger 0.94 : X
10 other trials 0.92 : X
Pooled RR 0.92 : -
(0.82-1.04)
Older subjects
STOP 0.90 : X
MRC-older 0.74 : ¥
SHEP 0.82 : X
3 other trials 0.76 :
Pooled RR 0.78 : X
(0.68-0.90) . -
0.5 1.0 1.5

Figure 12.5. Results of a meta-analysis of the efficacy of hypertension control on
the risk of stroke and coronary heart disease. {Adapted from Cutler JA, Pstay BM,
MacMahon &, Furberg CD. Public health issues in hypertension control. What has
been leamed from dlinical trials? In: Laragh JH, Brenner BM, eds. Hypertension:
physiology, diagnosis, and management. 2nd ed. New York: Raven Prass, 1995)
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tion, but their opinions are only as good as the consultant, who may be
biased by the beliefs and financial interests of his or her field. For example,
it is natral for gastroenterologists to believe in endoscopy meore than
radiologic contrast studies and surgeons to believe in surgery over medical
therapy.

A growing number of databases are corplete, up to date, and widely
available by telephone, fax, floppy disks, CD-ROM, and e-mail, the In-
ternet, and compter bulletin board. Examples include a 24-hr telephone
connection to the Centers for Disease Control and Prevention for informa-
tion about discase prevention offered to those traveling to any part of the
world; Toxline for information on poisonings; PDQ for current recommen-
dation for cancer chemotherapy; and an array of databases on drugs, their
toxicities, and adjustment of dose in renal failure. These databases contain
information that is essential to the practice of medicine but are too infre-
quently needed and too extensive for clinicians to carry around in their
heads. Clinicians should find ways to access them in their location. They
should also use these databases with the lessons of this book in mind: The
data are only as good as the methods used to select them. Many of the
databases, such as guidelines of the Agency for Health Care Policy and
Rescarch, the U.S. Preventive Services Task Foree, and the American Col-
lege of Physicians, are created by excellent methods and make the process
clear. Some are the results of individuals or industries with conflict of
interest, and they should be used with skepticism.

Clinical Guidelines

Throughout the book we have argued that clinical research provides
the soundest grounds for establishing one’s approach to clinical practice
and making decisions about patients. The shift away from anecdote and
personal experience has been called “evidence-based medicine” (19). An
important element in evidence-based medicine is the translation of research
findings into clear, unambiguous recommendations for clinicians. Practice
guidelines are systematically developed statements to assist cliniciang in
deciding about appropriate health care for specific clinical problems (19).
Their development and use are now commonplace in many organized
medical settings. At their best, the validity of guidelines is established by
including in the panel that prepares them people who represent all relevant
aspects of the question {ranging from highly specialized researchers to
clinicians, economists ,and patients) to cover all important aspects of the
question and to balance, if not climinate, the vested interests of any one
or another participant. The best guidclines are based on rescarch evidence,
not just expert opinion, and so often use formal processes of literature
review and synthesis, as described in this chapter (20).
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Guidelines are meant to guide, not prescribe clinical judgment. There
are good reasons not to follow guidelines in the care of some individual
patients,

Do guidelines change physicians’ behavior? A meta-analysis identified
and summarized 59 published articles that evaluated the impact of explicit
guidelines using more rigorous research designs—randomized trials, non-
randomized comparative trials, and interrupted time series designs (21).
More than 90% of the studies demonstrated significant changes in care in
accordance with the guidelines, and 9 out of the 11 studics examining
patient outcomes showed improvements.
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APPENDIX 12.1. BASIC GUIDELINES FOR DETERMINING THE VALIDITY
OF CLINICAL STUDIES

ALL STUNIES

1. What kind of clinical question is the rescarch intended to answer?

The rescarch design should match the clinical question (see Table 12.1)
2. What patients, variables, and outcomes were studied?

These determine the generalizability of the results.
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g

- How likely is it that the findings arc Lhe result of bigs?

Systematic differences between compared groups (e.g., in patients’ char-
acteristics, interventions, or risk factors; outcomes; or measurement
methods) diminish internal validity.

. How big is the effect?

Clinical decisions depend on the magnitude (not just on the existance)
of effect.

- How likely is it that the findings occurred by chance?

Clinicians need to know the range of values within which the true
effect is likely to fall (confidence interval) or (less uscful) how likely the
observed effect is by chance alone (p value for “positive” results and
power for “negative’ results).

UDIES OF DIAGNQOSTIC TESTS

« Is the test clearly described (inchuding the point at which it is considered

abmormal)?
If the test result can take on a range of values, the performance varies
according to the choice of cutoff point,

. Is the true presence or absence of discase (gold standard) established for

all patients?
It is possible to know all important aspects of test performance only if
there are data for all four cells of the 2 by 2 table,

- Does the spectrum of patients with and without disease match the charac-

teristics of paticnts for whom the test will be used?

Sensitivity is oflen affected by the severity of disease and specificity by
the characteristics of those in the study without the discase.

Is there an unbiased assessment of test and disease status?

Bias can occur if the test result is determined with knowledge of discase
status and vice versa.

- Is test performance summarized by sensitivity and specificity or likelihood

ratio?

This information is necded to decide whether to use the test.

For tests with a range of values, how does nioving the crtoff point affect
test performance?

The information conveyed by the test depends on the degree of
abnormality.

It predictive value is reported, is it in relation to a clinically sensible
prevalence?

Predictive value depends on prevalence (as well as the sensitivity and
specificity of the test). If people with and without the disease are chosen
separately, without relation to the clinicaly occurring prevalence, the
resulting predictive value has no clinical meaning,.
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PREVALENCE STUDIES

1.

2.

3.

What arc the criteria for being a case?

Prevalence depends on what one calls a case.

In what population arc the cases found?

Prevalence depends on the group of people in which it is described.
Is prevalence described for an unbiased sample of the population?
Prevalence for the sample estimates prevalence for the population to
the extent that the sample is unbiased.

COHORT STUDIES

1.

Are all members of the cohert:

a. Entered at the beginning of follow-up (inception cohori)?
Otherwise people who do unusually well or badly will not be
counted in the result.

h. At risk for developing the outcome?
1t makes no sense to describe how outcomes develop over time in
people who alrcady have the disease or cannot develop it.

c. At a similar point (zero fime) in the course of disease?
Prognosis varics according to the point in the course of discase at
which one begins counting outcome events.

. Is there complete follow-up on all members?

Drop-outs can bias the results if they on average have a better or worse
course than those who remain in the study.

. Are all members of the cohort assessed for outconies with the same intensity?

Otherwise differences in outcome rates might be from measurement
bias, not true differences.

Are comparisons unbigsed? (would members of the cohorts have the same
outcome rate except for the variable of interest?)

To attribute outcome to the factor of interest other determinants of
outcome must occur equally in the groups compared.

RANDOMIZED TRIALS

1.

Are the basic guidelines for cohort studies satisfied?

Clinical trials are cohort studies

Were patients randomly allocated to treated and control groups?

This is the only cffective way to make a completely unbiased comparison
of treatments.

. Were patients, caregivers, and researchers unaware of the treatment

group (masked) to which each patient belonged?

Masking participants in a trial helps assure that they are unbiased.
Were coinferventions the same in both groups?

Treating patients differently can destroy the comparability that was
achieved by randomization.
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5.

Were results described according to the treatiment allocated or the Freatrent
actually received?

If not all patients receive the treatment assigned to them there are two
kinds of analyses with different objectives and scientific strengths. “Tn-
tention to treat” analyses arc for management decisions and are of the
randomly constituted groups. “Efficacy” analyses are to explain the
effect of the intervention itself, are of the treatmont actually received,
and are a cohort study.

CASE-CONTROL STUDIES

1.

Were cases entered at the onset of discase?
Risk factors for prevalent cases may be related to onset or duration of
disease.

- Were controls similar to cases except for exposure?

A valid estimate of relative risk depends on an unbiased comparison.

- Were there similar and unbiased efforts to delect exposure in cases and

controls?
Biased measurement of exposure can increase or decrease the estimate
of relative risk.

META-ANALYSES

1.

Is all relevant research (both published and unpublished studics) found?
The objective is to summarize the results of all completed rescarch, not
a biased sample of it,

Does the meta-analysis include only scientificatly strong studies (those
with a low probability of bias)?

The objective is to summarize the most credible evidence.

- If a summary estimate of effect is caleulated

a. Are the studies homogeneous (are patients, interventions, and out-
comes similar)?
It is inappropriate to seck a single, overall measure of effect from
inherently dissimilar studies.

b. Are the studies weighted by their size?
Larger {more precise) studies descrve more weight than smaller (less
precise) ones.

Are study quality and result related?

Better studies arc more belicvable.
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