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Preface

This book is about integrated hierarchical modeling, simulation, and design of mi-
croelectrofluidic systems (MEFS). The goal of the book is to position top-down mod-
eling and simulation in the context of MEFS design, as well as to generate interest
and motivate research on this important topic.

Composite microsystems integrating microelectromechanical and microelectroflu-
idic components with electronics are emerging as the next generation of system-
on-a-chip (SOC) designs. MEFS increasingly are being used for automated drug
dispensing and micro-chemical analysis (DNA analysis and lab-on-a-chip). Nev-
ertheless, there remain several roadblocks to rapid and efficient composite system
integration. Primary among these is the need for modeling techniques, and simula-
tion and optimization tools. This book responds to a pressing need for a structured
methodology for MEFS design automation. In this book, the reader will find in one
integrated volume, top-down design automation approaches for MEFS. Readers with
a background in electronic design automation will use this book to apply their ex-
pertise to composite system design. On the other hand, readers from the fluidics
domain, who have thus far been developing bottom-up inflexible and custom mi-
crosystems, will find this book invaluable in adopting a more top-down and generic
design methodology.

The book is based on the premise that top-down modeling, simulation and opti-
mization offer promising solutions to the problems encountered in MEFS design.
It includes MEFS hierarchical modeling, a hierarchical design environment, perfor-
mance evaluation, and hierarchical optimization. A definition of basic variables and
elements needed to describe MEFS behavior is first presented. MEFS behavior is
modeled across three layers of abstraction: low-level component layer, high-level re-
configurable architecture layer, and bio/chemical application layer. In addition, the
suitability of several existing simulation languages is evaluated for hierarchical de-
sign, and a hierarchical integrated design environment with SystemC is developed.
Its architecture and associated functional packages are presented.

MEFS performance analysis is difficult because coupled-energy behavior creates
strong links between high-level architecture and low-level component design param-
eter variations. This problem is addressed by trading-off behavioral fidelity with
analysis efficiency to develop a hierarchical modeling and simulation methodology.
This methodology encompasses both architectural system simulation with stochastic
macromodeling and component simulation with lumped-element nodal modeling.

xiii
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Using the integrated design environment based on SystemC, this methodology is
evaluated by applying it to a micro-chemical handling system.

Due to growing design complexity, fabrication process variations, and the harsh
operating environments of MEFS, there is a need for hierarchical design optimiza-
tion to support all aspects of product development. Several MEFS design optimiza-
tion methodologies are demonstrated in this book. They include a statistical re-
sponse analysis strategy for on-target design and process optimization, a robust de-
sign methodology, and a new application flexibility design methodology to leverage
the hardware/software co-design principle. A number of representative MEFS de-
vices are designed to illustrate these optimization algorithms. Finally, a performance
comparison is presented between two types of microfluidic systems—continuous-
flow systems and droplet-based systems. The comparison is based on a specific
microfluidic application—a polymerase chain reaction (PCR) system. The modeling
and simulation of PCR are based on the SystemC design environment. The com-
parison includes throughput, processing capacity, correction capacity, and design
complexity.

To the best of our knowledge, this is the first book that presents a comprehensive in-
tegrated MEFS design strategy. It combines top-down and bottom-up design philoso-
phies, and it supports hierarchical modeling and simulation from the component level
to the system level. In addition, it leads to multi-objective optimization tools that
address design tasks from conceptualization to final manufacturing. Moreover, by
using a unique modeling and simulation language—SystemC, this design approach
potentially leads to a decrease in design time and life-cycle maintenance costs.

This book grew out of an ongoing research project on composite microsystems
at Duke University. The results of this research have been published as papers in a
number of journals and conference proceedings. The chapters in this book present all
these results as a research monograph in a single volume. It can be used as a textbook
for a graduate course, with a course title such as “Design Automation of Composite
Microsystems.” While the book is primarily directed at researchers and graduate
students in electrical and biomedical engineering, it will also be useful as a reference
for academic and industrial researchers in microelectrofluidics and electronic design
automation.

In summary, this book is expected to pave the way for integrated top-down design
of hierarchical MEFS. The framework described in this book will reduce design time
and design cost, and increase system reliability.
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2 MICROELECTROFLUIDIC SYSTEMS: MODELING AND SIMULATION

Composite microsystems that incorporate microelectromechanical and microelec-
trofluidic devices are emerging as the next generation of system-on-a-chip (SOC)
designs. These systems combine microstructures with solid-state electronics to inte-
grate multiple energy domains. The combination of microelectronics and microstruc-
tures, and the integration of electrical, mechanical, and fluidic domains enable new
classes of integrated systems targeted at environmental sensing, control actuation,
biomedical analyses, agent detection, and precision fluid dispensing [2, 10, 11].

Microelectrofluidic systems (MEFS) is an area of research that addresses the minia-
turization of composite devices and systems, and the study of new applications asso-
ciated with the handling of liquids and gases. Microfluidics not only offers the obvi-
ous advantage of size reduction (small medical implants [12] and minimally invasive
surgery [13]), but it also reduces power dissipation and increases system reliability.
Microfluidics offers unique new possibilities in controlling small amounts of fluids
for precision dispensing (micro dosing [14]), and reducing reagent consumption for
on-line chemical analysis and real-time process monitoring. By scaling down the
concentrations of chemical samples, simpler sensing techniques can be utilized to
replace present, more costly, practices. These practices involve batch analysis, sam-
ple pre-treatment, and frequent calibration. Smaller sample volumes reduce stor-
age costs, facilitate uninterrupted use, and benefit medical procedures in numerous
ways [10].

Significant progress has been reported recently in the design of individual MEFS
components. For example, switches [15], valves [16], channels [17], pumps [18],
etc. have been designed, built, and studied extensively. A fluidic mixer and mi-
cro glass channels, designed and manufactured by Kymata Netherlands, Livingston,
Scotland, are shown in Figure 1.1 and 1.2, respectively [1]. Small systems that com-
bine existing components into useful devices have also been designed and built. For
instance, Figure 1.3 shows the prototype of a DNA analysis device built at the Uni-
versity of Michigan [2], and Figure 1.4 shows a liquid analysis system developed by
Sandia National Laboratories [3].

1.1 Modeling and Simulation Issues

It is useful to identify analogies between microelectronics and microfluidics in or-
der to position microfluidics on a maturation path that best exploits microelectron-
ics technology. Just as progress in component-level digital logic design enabled
and motivated the development of computer architecture, similar developments in
component-level microfluidic devices are enabling and motivating the microfluidic
molecular systems (microflumes) architecture. Though significant progress has been
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FIGURE 1.1
An example of microelectrofluidic systems: A micromixer (Kymata Nether-
lands, Livingston, Scotland [1]).

FIGURE 1.2
An example of microelectrofluidic systems: Micro glass channels (Kymata
Netherlands, Livingston, Scotland [1]).
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FIGURE 1.3
An example of microelectrofluidic systems: DNA analysis device (University of
Michigan [2]). (Reprinted with permission from M. A. Burns et al, An inte-
grated nanoliter DNA analysis device, Science, vol. 282, pp. 484-487, 1998.
Copyright 2002 American Association for the Advancement of Science.)

FIGURE 1.4
An example of microelectrofluidic systems: A user injects a sample into the
liquid analysis system of the hand-held, integrated device for analyzing liquid
and gas mixtures (under development at Sandia National Laboratories [3]).
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made in exploring elemental microfluidic devices, little progress has been made in
understanding how the capability of these devices can be exploited and utilized to
address system applications involving fluid acquisition, storage, transport, reactions,
and dispensing. Examples of microfluidic systems built to date involve either highly
specialized applications, such as immunobiosensing, or more general-purpose appli-
cations addressing primarily only one aspect of fluidics processing, such as transport.
Thus, to establish a maturation growth path (technology and commercialization) for
microfluidics similar to the maturation growth path for microelectronics, there is a
need to define basic architectural organization and execution concepts for assembling
various microfluidic devices into a network. This network can perform a variety of
tasks supporting a diverse set of applications. To address the need to define basic ar-
chitectural organization and execution concepts for microelectrofluidics, as shown in
Figure 1.5, new architectural concepts must be developed across the following three
layers of abstraction. These layers integrate the state-of-the-art microfluidic compo-
nents into a more encompassing microliquid handling system. This system can be
readily reconfigured and reused to enact a variety of biomedical chemical detection,
analysis, diagnostic, and dispensing applications.

1. Biomedical/Chemical Application Layer

2. Reconfigurable Microliquid Handling Architecture Layer

3. Microfluidic Component Layer

Biomedical/Chemical
Application

Microfluidic Component

Handling Architecture

   Equations (DAEs)
* Differential and Algebraic
* Physical Principles

   Contention
* Stochastic Behavior/Resource
* System Performance

   and Reaction
* Continuous Fluid Movement
* Process Flow

Reconfigurable Microliquid

Fluidic domain

Mechanical domainElectrical domain
Thermal domain

Optical domain

FIGURE 1.5
MEFS integrated hierarchical system perspective includes three levels of ab-
straction. Each level of abstraction presents unique model fidelity, domain rep-
resentation, and simulation efficiency requirements.
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In addition, system complexity—measured by the growing number of devices and
the increasing levels of heterogeneity due to the new coupled-energy or composite
designs—necessitates a scalable design method to address both the application com-
plexity and the component capacity. The application complexity is a measure of
how the performance of the reconfigurable microliquid handling system architecture
scales with increasingly complex chemical and biological analyses. The component
capacity investigates how the performance of the reconfigurable microliquid han-
dling system scales with advances in constituent microfluidic device technology.

In order to facilitate scalable design and the subsequent evolution of MEFS, more
extensive system modeling and simulation capabilities are required, as shown in
Figure 1.5. Each layer of abstraction presents challenges involving model fidelity,
domain representation, and simulation efficiency. The biomedical application layer
is the highest level of abstraction. It involves process flow modeling, as well as the
simulation of continuous fluid movement and chemical/biological reactions directed
towards an application, such as microdialysis, chemotherapy, genetic analysis, or cell
filtration. The evaluation of biomedical applications requires lower-level informa-
tion, such as channel pressure drops and pump throughput, which are associated with
the second level of abstraction—the reconfigurable microliquid handling architec-
ture. This level of abstraction involves performance modeling and simulation of the
stochastic behavior of the major component/resources and their aggregate operation
in executing a biomedical application. Evaluating the architectural performance in-
volves, in turn, lower-level information, such as microfluidic transport and the device
operation, which are associated with the lowest level of abstraction—microfluidic
components. This level of abstraction involves detailed circuit simulation requiring
integro-differential and algebraic equations, which characterize physical properties
and processes. Here, the microfluidic component layer of abstraction is defined as
the circuit level, while the biomedical/chemical application and reconfigurable mi-
croelectrofluidic system architecture are defined as the system level.

1.2 Modeling and Simulation Needs

While MEMS design tools have reached a certain level of maturity, MEFS CAD
is still in its infancy. Since the concept of special CAD systems for MEMS was
first proposed at Transducer’87 [19], several research groups have reported signifi-
cant progress in this area, and some commercial microsystem CAD tools have now
been developed [20, 21, 22, 23, 24, 25]. The MEMCAD system from Coventor, Inc.,
the IntelliSuiteTM system from IntelliSence Corporation, the VULCAINTM generic
MEMS engineering design platform from MEMSCAP, and the ANSYS system from
ANSYS, Inc., are focusing on MEMS design. Many commercial CFD (Computa-
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tional Fluid Dynamics) tools, such as CFD-ACE+ from CFD Research Corporation
and FlumeCAD from Coventor, Inc. are also available. These tools mainly focus on
the thermal and structure modeling and design, thus new solutions are necessary for
the design of current and next generation MEFS.

1.2.1 Computational Architectures for MEFS

The limitation of present designs is that devices tend to be application/analysis spe-
cific. There is no one system capable of performing a collection of differing anal-
yses or procedures. In addition, in a number of systems, only the analysis device
is microfluidic in nature. The remaining pre-/postprocessing is performed by nor-
mal macroscopic, possibly automated, methods. It is easy to recognize the potential
of a universal architecture, one in which multiple, differing procedures may be per-
formed with simple reconfiguration, and possibly in parallel. Current MEMS CAD
techniques are not focused on such reconfigurable and reusable computational MEF
architectures, the design of such an architecture, and simulation and performance
modeling.

1.2.2 Hierarchical Modeling and Simulation

The close integration of devices is associated with strong energy-coupling issues. In
order to support the growing complexity of MEFS design and to carry out global per-
formance optimization, system-level performance analysis methodologies and tools
are needed. These methods and tools must not only incorporate phenomenological
laws from multiple disciplines, but they must also characterize dynamical behav-
ior ranging from overall application execution to individual component operation.
Moreover, the levels of abstraction need to be linked to correlate the multiple anal-
yses in both the top-down design and the bottom-up verification. In other words,
the multiple levels of abstractions/analyses need to be hierarchically integrated. Ex-
isting MEMS CAD tools and the underlying hierarchical modeling and simulation
techniques lack hierarchical modeling and simulation capabilities for MEFS design.
They mainly focus on low-level components, and pay insufficient attention to anal-
ysis methodologies that are necessary to understand how the capabilities of these
devices can be exploited and utilized at the system level. These capabilities are
needed to represent the system design perspective of composite microsystems from
functional unit level to system performance level.
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1.2.3 Advanced Hierarchical Design Methodology

MEFS design methods should exploit state-of-the-art reconfigurable SOC system de-
sign techniques. These techniques rely on a combination of top-down decomposition
and bottom-up aggregation. Moreover, hardware/software co-design methodologies
are necessary, which emphasize system functional unit reusability to achieve short
design cycle time. These are the key methods for significantly pushing performance
envelopes for a wider range of applications. However, the current MEMS CAD
tools only emphasize the component oriented bottom-up design methodology, and
the popularly used hardware description languages for microfluidic device modeling
limit the advanced top-down system design.

1.2.4 Hierarchical Design and Simulation Optimization

As the number of pilot applications of integrated MEFS grows, there is a need for
design optimization to support all aspects of product development, including design,
manufacturing, and operational use from the component level to the system level.
Current design optimization strategies focus on improving manufacturing yield via
time-consuming statistical models. They lack robust optimization and hierarchical
verification capabilities for different optimization objectives. In addition, the single-
component-oriented design perspective prevents the extension of the optimization
methods to hierarchical multiple-device system-level optimization.

1.2.5 System Design Language Uniformity

Traditionally, different modeling and simulation languages are used for describing
the unique set of representational conventions and simulation methodologies for each
level of hierarchy. The logic modeling languages, for instance VHDL/VHDL-AMS
and Verilog, are used for the low-level functional unit design [18]. For the higher-
level of abstractions, e.g. biomedical application level and microelectrofluidic sys-
tem architecture level, process-interaction and continuous-perspective-oriented mod-
eling and simulation languages have been used. These include SIMSCRIPT II.5 [26],
SLAM [27], and general-purpose software programming languages, such as C and
Ada. However, this system design approach requires extensive human interaction. It
also leads to problems of misinterpretation of concept specifications in the transla-
tion between different data models and tools. Thus, it is beneficial to use a modeling
and simulation environment using a common language and a coordinated set of sim-
ulation engines to support each level of abstraction. The potential benefits of this
approach include improvements in design time and life-cycle maintenance costs.
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1.3 Overview

The Gasjki and Kuhn’s Y-chart [28] has long been used as a conceptual framework
for VLSI design. It has three domains of design description: Behavioral, Structural
and Physical. Each domain has three levels of abstraction, individually. The design
process is represented by step-wise refinement in all the three domains from outer
levels towards the center. On the analogy of this Y-chart in microelectronics CAD,
we present a MEFS CAD closed-loop integration strategy, as shown in Figure 1.6.
It includes three domains for system design: the integrated microsystem conceptu-
alization, modeling and simulation; the microsystem design optimization; and the
microsystem validation and fabrication. In addition, the system design is extended
from component level to system level. All of these design domains have their unique
characteristics, but they are also tightly coupled to each other. The designer first
transfers the design idea into a model, which captures the most important proper-
ties of a microsystem and provides a good behavioral approximation that shortens
simulation time. The optimization task is to design the system to match the differ-
ent optimization objectives. The goal of the validation task is to verify the optimal
design results, so that they can be used for further product fabrication. The system
model and associated system simulation provide useful data for design optimization.
A high degree of system model accuracy and simulation efficiency are required in
this task. System optimization not only considers the performance objective, but it
is also concerned with the fabrication environment so that the manufactured prod-
uct can match the design requirement. With a product sample, the accuracy of the
models and the validation of optimization results can be tested. The MEFS design
environment must support this closed-loop integration.

Thus, as shown in Figure 1.7, the goal of this book is to present a new approach for
integrated modeling and simulation of MEFS. To the best of our knowledge, this is
the first attempt to develop a comprehensive integrated MEFS design environment.
This new approach includes four aspects: hierarchical modeling, hierarchical inte-
grated design environment, hierarchical simulation and performance evaluation, and
hierarchical optimization. This perspective on MEFS design combines top-down and
bottom-up design philosophies. It also supports hierarchical modeling and simula-
tion from the component level to the system level. In addition, it leads to multi-
objective optimization tools that address design tasks from conceptualization to final
manufacturing. Moreover, by using a single modeling and simulation language, it is
possible to make improvement in design time.

The contributions of this book include the following:

1. A definition of the basic variables and elements needed to describe MEFS be-
havior from the low component level to the architectural and biomedical/chemical
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FIGURE 1.6
System perspective of the composite microsystem closed-loop design integra-
tion.

FIGURE 1.7
Research content consists of hierarchical modeling, hierarchical simulation and
performance evaluation, hierarchical optimization, and hierarchical integrated
design environment.
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application levels.

2. A comparison of the suitability of several simulation languages for hierarchi-
cal design. A hierarchical integrated design environment with SystemC. This
environment models the system at each level without losing information.

3. MEFS hierarchical modeling and simulation methodologies that are tailored to
the design requirements and the system performance goals. Additionally, the
application of this methodology is illustrated for a special MEF system with
SystemC design environment.

4. An on-target statistical approach that finds the design solution more efficiently.
As a case study, a microvalve modeled with SystemC is presented.

5. A robust design methodology to reduce device performance sensitivity on the
design parameter variations. An electrostatic-comb microresonator, as a repre-
sentative of MEMS, and a microvalve are used to illustrate this methodology.

6. An application-flexibility design methodology that extends the use of MEFS
to more application areas. This methodology makes devices match the cus-
tomer’s different design requirements, and helps address the problem of low
manufacturing volume. A microvalve is used to illustrate this methodology.

7. A more general microelectrofluidic system computational architecture involv-
ing a multi-drop bus, and a pipelined structure for continuous-flow systems.
Functional requirements are explained, and results of performance modeling
and analysis of the microfluidic processor architecture are presented.

8. A performance comparison of two types of microfluidic systems—continuous-
flow systems and droplet-based systems—based on the SystemC design envi-
ronment. The comparison is based on a special microfluidic application—a
polymerase chain reaction (PCR) system. The comparison metrics includes
the system throughput, processing capacity, correction capacity, and design
complexity.

9. An architectural design and optimization methodology for performing bio-
chemical reactions using two-dimensional electrowetting arrays. As a case
study, the optimization method is applied to a polymerase chain reaction (PCR)
system.

In the following chapters, each of these contributions is described in more detail.
The organization of the book is as follows.

A MEFS hierarchical modeling strategy is presented in Chapter 2. A circuit-level
and system-level performance modeling and simulation strategy is developed. These
strategies are useful to represent the MEFS component behavior, the reconfigurable
architecture and biomedical/chemical applications in detail.
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Next, depending on the generic requirements of MEFS hierarchical modeling and
simulation, an integrated MEFS design environment is developed in Chapter 3. At
first, the suitability of several existing simulation languages is evaluated for hier-
archical design problems. These languages include VHDL/VHDL-AMS, Matlab,
C/C++, SLAM, and SystemC. Then, an approach is presented that uses SystemC
as a potential candidate to build a complete system modeling and simulation envi-
ronment. This environment represents system behavior at each level without losing
information. In addition, based on the proposed MEFS CAD strategy, the archi-
tecture and the associated functional packages of this unique hierarchical integrated
design environment are discussed.

Hierarchical modeling and simulation methodologies are presented in Chapter 4.
These methodologies combine a high-level stochastic queuing network approach
with low-level nodal conservative differential equations. A more general microelec-
trofluidic system computational architecture for continuous-flow systems is intro-
duced, which involve a multi-drop bus and pipelined structure. Based on this generic
reconfigurable architecture, a MEFS reconfigurable architecture optimization strat-
egy is developed that addresses system performance bottlenecks. The system is de-
signed to operate in the saturation mode using the traffic variation method [29]. Us-
ing the SystemC integrated design environment, these methodologies are evaluated
by applying them to a special MEFS case—a micro-chemical handling system.

In addition to MEFS modeling and simulation methodologies, novel simulation-
based design and process optimization algorithms are also parts of the integrated
design framework. These algorithms are described in Chapter 5. At first, two compu-
tationally efficient simulation-based design strategies are discussed. These method-
ologies have been used to provide simulation data for the design optimization algo-
rithms. A validation strategy is presented to verify the optimization algorithms. To
make the design solution match the design performance requirement efficiently, an
optimal on-target design algorithm was presented. After meeting the system perfor-
mance requirement, the second task for MEFS optimization involves operation relia-
bility and design robustness. By leveraging several advanced optimization methods,
a MEFS optimization methodology is proposed based on the Taguchi robust design
method [30] and the statistical response analysis method [31]. In addition, to extend
a MEFS design to a wider application area, a novel design approach for application-
flexibility is proposed using the analogy to hardware/software co-design methodol-
ogy [32]. Special MEFS and MEMS devices are used as case studies to illustrate
these optimization algorithms.

A performance comparison between two types of microfluidic systems—continuous-
flow systems and droplet-based systems—is presented in Chapter 6. The comparison
is based on a special microfluidic application—a polymerase chain reaction (PCR)
system. The modeling and simulation of PCR are based on the SystemC design envi-
ronment. Physical implementation and the system performance issues are discussed.
It is shown that the droplet-based microfluidic system possesses higher performance
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capacity, as well as lower design and integration complexity. Then, an architectural
design and optimization methodology is presented for performing droplet-based bio-
chemical reactions using two-dimensional electrowetting arrays. Integer linear pro-
gramming is used to perform optimization objectives. As a case study, the optimiza-
tion method is applied to a polymerase chain reaction (PCR) system.

Finally, in Chapter 7, we present conclusions and outline future direction for MEFS
CAD.

The appendices contain useful information about the VHDL-AMS and SystemC
software that were developed to evaluate the proposed methodologies.
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MEFS complexity arises due to the growing number of devices and the increasing
levels of heterogeneous coupled-energy domains. As a result, system design is evolv-
ing into a multidisciplinary field. This broad design scope requires a comprehensive
model to study the dynamic behavior of the system. This model should capture the
most important properties of the microsystem, and provide an accurate behavioral
approximation. Although it is theoretically possible to build a single complicated
model to describe the MEFS behavior, the overall system is still too complex to be
handled as one entity. Thus, modeling MEFS behavior consists of two integral parts:
system-level modeling and component modeling.

System-level modeling involves performance modeling and behavioral simulation
for specific biomedical and chemical applications. For a chemical handling system,
system modeling primarily considers the system throughput and latency. It neglects
detailed implementation issues. In contrast, component modeling investigates the
individual microfluidic component behavior, and emphasizes the definition of phys-
ical properties and relationships at the circuit level. Component modeling therefore
offers an approach that is complementary to system-level simulation.

In this chapter, fundamental variables and elements needed to describe MEFS char-
acteristics are defined from the lower component level to the higher system level. The
basic variables for the circuit-level dynamic behavior of multiple energy domains are
presented in Section 2.1. Then, based on the characteristics of MEFS architecture
and the stochastic nature of an application’s behavior, the fundamental variables are
defined for these system-level features in Section 2.2. These fundamental variables
capture the MEFS behavior, and they are critical requirements for the MEFS model-
ing and simulation language. A summary of MEFS modeling issues is presented in
Section 2.3.

2.1 MEFS Dynamic Modeling and Simulation at Circuit Level

Direct numerical simulation of the dynamic behavior of MEFS devices requires
three-dimensional, distributed nonlinear models. These models are computation-
ally difficult, and very expensive to use. Therefore, as illustrated in Figure 2.1, the
behavior macro-model needs to be built.

� Direct numerical dynamical simulation of fully-meshed distributed nonlinear
devices is computationally difficult, and very expensive. Device level energy-
coupling modeling and simulation are done in the quasi-state model, which
does not give information about dynamic behavior characterizations.

� In order to study the system dynamic behavior, it is necessary to reduce the
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number of degrees of freedom, from the meshed device three-dimensional
models to two-dimensional lumped-element models, which presents the over-
all system behavior as a function of time.

� In addition to 3D component level energy-coupling modeling and simulation,
building the 2D circuit level behavior macro-model is necessary to obtain the
global optimal solution.

� Moreover, the use of marco-model of microsystem devices results in compact
and efficient representations, and it avoids convergence problems due to the
coupling of heterogeneous simulators.

3-D Mechanical CAD

2-D Electrical CAD

Fabrication Level

Device Level

Circuit Level

FIGURE 2.1
Abstracting composite microsystem dynamical models to higher levels of ab-
straction

The circuit level representation abstracts three-dimensional, distributed effects into
a two-dimensional network of lumped parameter elements governed by a system of
ordinary differential and algebraic equations (ODAEs). To establish the microsystem
dynamic modeling and simulation at the circuit level, several research questions need
to be addressed:

� Is it appropriate to describe MEFS dynamic behavior with lumped-element
model by using ODAEs?
Although it is necessary to abstract the three-dimensional model to the two-
dimensional network of lumped parameter model by ODAEs, a study is needed
to understand this abstraction’s possibility, accuracy and limitation.

� What are the fundamental variables to simulate the multiple-energy domain
behavior?
Different energy domain components possess various fundamental elements
to describe their unique characteristics. Hence it is necessary to recognize the
fundamental variables to describe system dynamic behavior in multiple-energy
domains: electrical, mechanical, fluidic and thermal. Additionally, coupled-
energy domain characteristics show that energy is always transferred from one
energy domain to another. It is necessary to understand the modeling and
simulation requirement for describing the transduction behavior.
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� What methodology should be used to represent the relationships between these
fundamental elements?
After the definition of system variables, the next step is to formulate a dy-
namic model of the physical system in the form of mathematical relationships.
Depending on the microsystem coupled-energy domain situation, energy-law
based methods are used to study the conservative relations between different
element components.

In Section 2.1.1, the fundamental physical principles for different energy domains are
discussed, and it is shown that the lumped-element models with ordinary differential
and algebraic equations (ODAEs) can provide a common characterization spanning
multiple energy domains. In addition, in Section 2.1.2, the fundamental variables of
multiple energy domains are described. Their constitutive relations are presented in
Section 2.1.3. Based on these fundamental variables and their relations, Section 2.1.4
discusses the circuit network topology defining the global structure of the equations,
and also presents element constitutive relations defining specific terms within the
global structure. The differential and algebraic equations are formed within a sys-
tematic framework recognizing linear independence and energy conservation. In
Section 2.1.5, an equivalent circuit approach for MEFS circuit-level modeling and
simulation is presented.

2.1.1 Classification of Dynamic System Models

Mathematical models are needed to study the dynamic behavior of composite mi-
crosystems. These models can always be classified into two categories based on the
nature of the underlying differential equations [33]:

� Distributed-element models
When the dynamic behavior of the system requires more than one indepen-
dent variable to describe, partial differential and algebraic equations (PDAEs)
are used. These types of mathematical models are called “field” models or
distributed-element models. Distributed-element models with PDAEs allow
“complete freedom” in the description of dynamic systems. They behave al-
most exactly like the real systems.

� Lumped-element models
In order to reduce the complexity of the mathematical expressions, and reduce
the time needed to obtain numerical solutions for distributed-element mod-
els, simpler lumped-element models with ODAEs are often used. In contrast
to the characteristics of distributed-element models, lumped-element models
concentrate matter and energy into discrete “lumps”, and the variables at a
given spatial location in each lump are used to represent the variables of other
regions in this lump. The number of lumps and the lump size must be decided
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when lumped-element models are used. With more lumps, lumped-element
models can become more accurate and closer to the distributed-element model.

A wavelength/physical size concept can be used to explain the rationale of building
lumped-element models for any physical system that exhibits wave propagation, such
as electromagnetic systems, mechanical vibrating systems and acoustic systems [33].
The wavelength/physical size criterion is shown in (2.1). The key concept here is that
if the physical size of a device is small compared to the wavelength associated with
signal propagation, the device may be considered lumped, and a network lumped-
element model can be employed.

Wavelength � =
velocity V of wave propagation

signal frequency f
(2.1)

The propagation velocity of electrical waves in free space is 300000 kilometers per
second, and assuming a representative value of 200MHz for the system operating
frequency, the wavelength of the system is 1:5 meters per cycle. Typically, electrical
components are much smaller than 1.5 meters, thus microelectrical systems can be
treated with the simple lumped-element approach.

In addition, the essential solid body characteristics allow micromechanical systems
to be analyzed as lumped-element models [34]. The variables at a given spatial
location in a solid body can always be used to represent the variables of other regions.
In order to account for the elasticity and tortures of deformation, the solid body has
to be cut into several lumps. Then, by applying a pertinent physical law to the solid
body, a set of simultaneous ODAEs are generated. The solution of these equations
describe the system dynamic behavior.

However, in contrast to the electrical and mechanical energy domains, matter and en-
ergy may not be continuously distributed over the space within some fluidic systems.
In addition, due to the generally less well-defined shapes of bodies of fluid (as com-
pared to solid bodies), microfluidic systems appear to be less suited for the lumped-
element viewpoint. Since every spatial location has its own flow rate and direction
of flow, using a given spatial point to be representative of the local environment may
cause behavioral description errors. Nevertheless, using a lumped-element model
to describe microfluidic systems is appropriate when the fluidic flow is laminar, the
fluid is incompressible, and the fluid shape is well defined [33]. For instance, when
a fluidic sample flows in a channel whose diameter is very small (mm), the fluidic
flow can be described using the lumped-element model. Within a given element there
is no variation, but behavior such as pressure and velocity, usually change between
different elements. It is clear that when a model is made up of a number of smaller el-
ements, the stepwise variation nearly approximates the true smooth variation. Based
on several researchers’ experience [16, 33, 35], it is accepted that when studying flu-
idic movement in a microfluidic system, lumped-element models can provide good
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results if the fluidic element is concentrated into 10 elements per wavelength at the
highest operating frequency.

Therefore, after considering the fundamental characteristics and their relationships to
multiple energy domains, we conclude that lumped-element models with ODAEs are
appropriate for describing and studying dynamic MEFS behavior involving multiple,
coupled energy domains.

2.1.2 Fundamental Variables

The formulation of state-determined system models requires the selection of a set
of fundamental variables. These variables represent the energy interaction within a
system, between systems, and with its environment. In addition, these variables pro-
vide the basic definition for lumped-element model energy sources, energy storage,
energy dissipation, and energy transformation. A uniform classification of variables
associated with power and energy is necessary to conveniently model the system’s
coupled-energy domain behavior. MEFS modeling and simulation methodologies
are always based on analogies between these variables in different energy domains.
The principle of energy-conservation provides the basic methodology to character-
ize and define the fundamental variables in mechanical, electrical, fluid, and thermal
energy domains [34].

The physical quantities in multiple energy domains can be viewed as types of single-
port element variables: across and through. These two variables are used to describe
the power and energy flow variables respectively. An across variable denotes a differ-
ence in a physical condition across the terminals of an element. A through variable
denotes a physical quantity transmitted through the terminals of an element. Ta-
ble 2.1 lists examples of across and through variables for several energy domains.
Note that transmission of a through variable does not necessarily imply motion, as
with mechanical through variables of force and torque.

� Mechanical translational system
The dynamics of mechanical systems are governed by the laws of mechanical
energy conservation and are described by Newton’s laws of motion. There
are two mechanisms for energy storage and one energy dissipation within a
mechanical system:

– kinetic energy —associated with moving elements of finite mass.

– potential energy —stored through elastic deformation of springlike ele-
ments

– dissipated energy —frictional losses of damper elements

These three elements form the basis to describe the lumped-element modeling
of mechanical translation systems [34].
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Table 2.1 Through and Across Variables for Energy Domains

Energy Domain Through Variable Across Variable

Electrical Current i =
q

t
Voltage v =

�

t

Mechanical - Translational Force F =
p

t
Velocity u =

x

t

Mechanical - Rotational Moment M =
h

t
Angular Velocity 
 =

�

t

Fluidic Fluid Flow Q =
V

t
Pressure P =

�

t

Thermal Heat Flow q =
	

t
Temperature T

q - electric charge � - flux linkage
p - translational momentum x - translational displacement
h - angular momentum � - angular displacement
V - volume � - pressure momentum
	 - heat energy

By using the through variables and the across variables in Table 2.1, the in-
crement of energy (�E) performed on the mechanical system by the external
sources over the period dt can be expressed in the following three forms:

�E = F (udt) = Fdx = d"potential (2.2)

�E = u(Fdt) = udp = d"kinetic (2.3)

�E = (Fu)dt = (uF )dt = d"dissipated (2.4)

These three forms illustrate three basic fundamental elements in lumped-element
models of mechanical systems—the spring, mass, and damper elements.

� Mechanical rotational systems
In rotational systems, power is transmitted and energy is stored by rotary mo-
tion about a single axis. By using the across variable and the through variable
in Table 2.1, the rotational energy (�E) crossing the system boundary over
time dt can be expressed in the following three forms:

�E = M(
dt) = Md� = d"potential (2.5)

�E = 
(Mdt) = 
dh = d"kinetic (2.6)

�E = M
dt = 
Mdt = d"dissipated (2.7)
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The mechanical rotational power flow may make a system stored energy change
in angular displacement d� associated with a rotational spring, or may result
in change in angular momentum dh associated with a rotational mass or iner-
tia, or may be dissipated by conversion of rotational work to heat in a rotational
damper.

� Electrical systems
In the electrical energy domain, the across variable and the through variable
are a pair of wires: current (i) and voltage drop (v), as shown in Table 2.1.
The electrical energy passing through a system boundary in time dt may also
be written in terms of the following three forms:

�E = i(vdt) = id� = d"potential (2.8)

�E = v(idt) = vdq = d"kinetic (2.9)

�E = ivdt = vidt = d"dissipated (2.10)

Electrical energy crossing a system boundary may result in a change in the
magnetic flux d� associated with the system through electromagnetic energy
storage in inductors, a change in the total charge dq in a system associated
with the electrostatic energy storage in capacitors, or dissipation in resistors
through the generation of heat with no electrical energy storage.

� Fluidic systems
Although complex fluidic phenomena involve flow variables in continuous
functions of both space and time, based on the conclusion in Subsection 2.1.1,
MEFS can be adequately modeled with lumped-element models. The power
flow through a port into a fluid system can be expressed with the through vari-
able and the across variable: volume fluid flow rate Q and fluid pressure drop
P . As shown in Table 2.1, the volume V (t) represents the total volume of fluid
passing through the port over a given time period. The pressure momentum
�(t) is the time integral of pressure, which is analogous to the momentum in
mechanical systems. The increment in energy passing through a fluid port in
time dt may be written in the following three forms:

�E = Q(Pdt) = Qd� = d"potential (2.11)

�E = P (Qdt) = PdV = d"kinetic (2.12)

�E = PQdt = PQdt = d"dissipated (2.13)

Work done by a fluid crossing a system boundary may result in a change in
pressure momentum d� in the system associated with energy storage in a fluid
inertance. It also may result in the energy stored in a fluid volume dV as-
sociated with fluid capacitance. In addition, it may result in a change on the
pressure drop and the flow rate representing the dissipation in a fluid resis-
tance. At this stage, there is no energy storage but fluid energy converts to
heat.
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� Thermal systems
Unlike the mechanical, electrical, and fluidic systems, the thermal system’s
power flow is not commonly described as a product of two variables: the across
variable and the through variable. As shown in Table 2.1, thermal systems have
historically been characterized in terms of the thermal energy 	 and the heat
flow q and the relationships of these variables to temperature T .

2.1.3 Relationships between Fundamental Variables

Based on the above multiple energy domain definitions, the relationship between two
variables (across and through) can be defined by three general element constitutive
relations:

across variable / through variable (2.14)

across variable /
d

dt
(through variable) (2.15)

across variable /

Z
(through variable) t (2.16)

For linear element constitutive relations, the across and through variables are related
by constants of proportionality that depend on geometric configurations and material
properties.

Table 2.2 Element Constitutive Relations - Energy Dissipation
("dissipated)

Energy Domain Constitutive Coefficient
Relation

Electrical v = R � i R - resistance

Mechanical - Translational F = b � u b - damping coefficient

Mechanical - Rotational M = B � 
 B - damping coefficient

Fluidic P = Rf � Rf - fluid resistance
(Poiseuille’s Law)

Thermal T = Rt � q Rt - thermal resistance
(Fourier’s Law)

Constitutive relations form constraints that must be satisfied at every instance in time.
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The three general element constitutive relations form templates for phenomenologi-
cal laws commonly used in many physical disciplines. For instance, the first relation
given in (2.14) denotes energy dissipation conditions in multiple energy domains.
Specific examples are given in Table 2.2.

The second and third relations given by (2.15) and (2.16) denote energy storage
conditions. These energy storage conditions are analogous to the kinetic energy and
potential energy in mechanical systems. Specific examples are given in Tables 2.3
and 2.4. The differential element constitutive relations provide basic time-dependent
operations, introducing causality via a rate term describing a nonzero delay between
stimulus and response.

Table 2.3 Element Constitutive Relations - Energy Storage ("kinetic)

Energy Domain Constitutive Coefficient
Relation

Electrical v = L
di

dt
L - inductance

(Faraday’s Law)

Mechanical - Translational u =
1

k

dF

dt
k - translational stiffness

(Hooke’s Law)

Mechanical - Rotational 
 =
1

K

dM

dt
K - rotational stiffness

Fluidic P = I
dQ

dt
I - fluid inertance

The constitutive relations given in Table 2.3 share the property that the supplied
kinetic or inertial energy is a function of only the through variable.

E =

Z
K � through variable (through variable)

The constitutive relations given in Table 2.4 (with the exception of thermal) share
the property that the supplied potential or capacitive energy is a function of only the
across variable, i.e.

E =

Z
K � across variable (across variable)

The constitutive relations of the fundamental elements discussed above make sev-
eral simplifying approximations, such as the time-invariance of physical properties.



HIERARCHICAL MODELING 25

Table 2.4 Element Constitutive Relations - Energy Storage (d"potential)

Energy Domain Constitutive Coefficient
Relation

Electrical i = C
dv

dt
C - capacitance

Mechanical - Translational F = m
du

dt
m - mass

(Newton’s Second Law)

Mechanical - Rotational M = J
d


dt
J - mass moment of inertia

Fluidic Q = Cf

dP

dt
Cf - fluid capacitance

Thermal q = Ct

dT

dt
Ct - thermal capacitance

Nevertheless, these fundamental across and through variables and their constitutive
relations are adequate to describe the MEFS dynamic behavior.

Because of the MEFS coupled-energy effect, system energy is always transferred
from one energy domain to another, such as the micropump, mechanical energy is
converted to fluid movement energy, and the electrical energy in electrowetting array
is converted into droplet fluid sample move energy. Another example is Ampere’s
Law relating electrical current in the presence of a magnetic field and the induced
Lorentz force.

F = qu�B (2.17)

The process of energy conversion between different domains is known as transduc-
tion. Figure 2.2 shows the transduction between different energy domains. In addi-
tion, elements that convert the energy are defined as transducers. Here, we introduce
two types of ideal energy transduction elements. These elements can be used to
represent the process of energy transmission.

The basic energy transduction processes can be represented by a two-port element,
as shown in Figure 2.3. Energy is transferred from one port to another port. Each
port has a through variable (f1; f2) and an across variable (v1; v2) defined in its own
energy domain.

The two-port transducer illustrated in Figure 2.3 identifies a power flow P1 into port
1 and another power flow P2 into port 2:

P1 = f1V1; P2 = f2V2 (2.18)
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FIGURE 2.3
Two-port transducer consists of two energy domains.

An ideal energy transduction process is lossless, and power is transmitted with no
energy storage or dissipation associated with the transduction process. Therefore,
the net instantaneous power sums to zero for all time t:

P1(t) + P2(t) = f1V1 + f2V2 = 0 (2.19)

Additionally, the relationship between the across variable and the through variable
are represented by constant coefficients and are linear. The most general linear rela-
tionship may be written in the following matrix form

�
V1
f1

�
=

�
c11 c12
c21 c22

��
V2
f2

�
(2.20)

where c11, c12, c21, and c22 are constants that depend on the particular transducer.
By appropriately selecting these constants, (2.20) yields two possible ideal two-port
transducers:
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� Transforming Transducer

c12 = c21 = 0 and c22 = �
1

c11

� Gyrating Transducer

c11 = c22 = 0 and c21 = �
1

c12

These two general solutions are the only nontrivial solutions for the ideal two-port
transduction. Many physical transduction elements cannot be modeled directly with
the ideal two-port element. They may have energy dissipation and storage phenom-
ena associated with the transduction. Therefore, additional lumped-element models
must also be incorporated into the transduction system.

2.1.4 Kirchhoffian Networks

Once a collection of fundamental elements have been defined, the elements can be
connected in a network to model larger physical systems. These systems have more
complex and/or distributed dynamical behavior. The interconnection of elements im-
poses constraints on the variation of system variables. These variables are described
via a set of equilibrium equations, also called equations of motion, where motion
refers to a change in a physical variable. Equilibrium equations describing the en-
ergy interactions between elements can be systematically generated using continuity
conditions and compatibility conditions. Continuity and compatibility conditions are
instances of the law of conservation of energy.

Continuity conditions conserve the transmission of certain physical properties with
respect to a vertex or node. The sum of such physical properties having a direction
of transmission incident to the node must equal the sum of physical properties hav-
ing a direction of transmission emanate from the node. Table 2.5 lists examples of
continuity conditions for several energy domains.

Compatibility conditions conserve the association of certain physical properties with
respect to a closed path or loop. The sum of such physical properties around a closed
path must be zero. In other words, the accumulated influence of conditions encoun-
tered in traversing a closed path of network elements must have no net effect. Com-
patibility, also called connectedness, conditions reflect various physical constraints
of geometry, kinematics, and potential fields. Table 2.6 lists examples of compatibil-
ity conditions for several energy domains.

The application of the continuity and compatibility conditions generates a set of equi-
librium equations. The equilibrium equations are often formed as a set of second-
order ordinary differential and algebraic equations, due to the basic definitions of the
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Table 2.5 Continuity Conditions

Energy Domain Continuity Conditions Conservative Principle

Electrical

X
i = 0

node

Kirchhoff’s Current Law

Mechanical - Translational

X
F = 0

node

D’Alembert Law

Mechanical - Rotational

X
M = 0

node

D’Alembert Law

Fluidic

X
Q = 0

node

Conservation of Mass

Thermal

X
q = 0

node

First Law of

Thermodynamics

general element constitutive relations given in (2.14), (2.15), and (2.16). Note that
(2.21) is called the configuration form of the equilibrium equations; q is a general-
ized coordinate denoting any set of physical quantities that can collectively define
system state, or configuration.

�q = f(qT ; _qT ; t) (2.21)

�q1 = f1(q1; q2; � � � ; qn; _q1; _q2; � � � ; _qn; t)

�q2 = f2(q1; q2; � � � ; qn; _q1; _q2; � � � ; _qn; t)

...

�qn = fn(q1; q2; � � � ; qn; _q1; _q2; � � � ; _qn; t)

The second-order differential and algebraic equations can be combined into a smaller
set of equations of higher order

y(n)+a1y
(n�1)+� � �+an�1 _y+any = b0u

m+b1u
m�1+� � �+bm�1 _u+bmu m � n

or expanded into a larger set of equations of lower (first) order.

_x = f (x;u) (2.22)

y is the system output, u is the system input, ai is the state coefficient, and bi is the
input coefficient. x is a state vector x = [x1; x2; : : : ; xn]

T and u is a input vector
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Table 2.6 Compatibility Conditions

Energy Domain Compatibility Conditions Conservative Principle

Electrical

X
v = 0

closed path

Kirchhoff’s Voltage Law

Mechanical

X
x = 0

closed path

X
u = 0

closed path

Geometric Kinematics

- Translational

Mechanical

X
� = 0

closed path

X

 = 0

closed path

Geometric Kinematics

- Rotational

Fluidic

X
P = 0

closed path

r�FP = 0

Thermal

X
T = 0

closed path

First Law of

Thermodynamics

u = [u1; u2; : : : ; un]
T . If u is defined as an n-dimensional state-space, f defines a

vector field on u with x(t) defining a specific trajectory or orbit in the plane having
tangent f(x) at x. If the mathematical state vector x possesses the property of
invariance, it also denotes a physical vector.

(2.22) can be reformulated using the Taylor series expansion and neglecting higher-
order terms yields the linear approximation

_x =
@f(x;u)

@x1

�
�
�
�x = x0

u = u0

x1 +
@f(x;u)

@x2

�
�
�
�x = x0

u = u0

x2 + � � � +
@f(x;u)

@xn

�
�
�
�x = x0

u = u0

xn

+
@f(x;u)

@u1

�
�
�
�x = x0

u = u0

u1 +
@f(x;u)

@u2

�
�
�
�x = x0

u = u0

u2 + � � � +
@f(x;u)

@un

�
�
�
�x = x0

u = u0

un

rewritten as

_x = Ax+Bu state equation (2.23)

A is the state matrix and B is the input matrix.

Additionally, with the linearity approximation, any system variable can be repre-
sented as a combination of state variables and system inputs, yielding

y = Cx+Du output equation (2.24)
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_y1 = c11x1 + � � �+ c1nxn + d11u1 + � � �+ d1mum

_y2 = c21x1 + � � �+ c2nxn + d21u1 + � � �+ d2mum

...

_yp = cp1x1 + � � �+ cpnxn + dp1u1 + � � �+ dpmum

y is the output vector,C is the output matrix, andD is the direct transmission matrix.
The system dynamical modeling using bond graphs typically generates state-space
equilibrium equations.

Kirchhoffian network theory is not the only approach to formulating a set of equi-
librium equations. For instance, Hamilton’s principle using energy and coenergy
form the basis for an alternate formulation, called Lagrangian equations. These net-
work theories formulate the dynamic modeling of MEFS by using the fundamental
variables of different energy domains. By solving these equations analytically or
numerically, the system behavior can be studied.

2.1.5 The Equivalent Circuit Modeling Method

Because of the coupling effect between different energy domains, MEFS models
must be simulated simultaneously. It is very hard to avoid convergence problems
arising from coupling of heterogeneous simulators. It is beneficial to model all
MEFS energy domain phenomena with a common description language, and simu-
late the complete system dynamic behavior by one simulator. The electrical analogy
method has been used in acoustics for transducer modeling for a long time [36]; this
method consists of describing a system by a network of mechanical impedances, pos-
sibly nonlinear, and subsequently carrying out an analysis with electrical simulation
tools such as SPICE [37] and SABER [38].

The process of building an equivalent network consists of subdividing the complete
device structure into lumped elements, and each element is then described on the ba-
sis of analogies between relevant physical parameters of the phenomenon and elec-
trical parameters. Table 2.7 shows the electrical analogs for fluidic and mechanical
parameters.

The equivalent circuit approach can be applied to many coupled-energy domain
problems, and its use is strongly supported by modern electric network theory. In
addition, the equivalent circuit approach is particularly useful for the analysis of sys-
tems consisting of complex structural elements and coupled subsystems with mul-
tiple ports [39]. Moreover, the equivalent circuit approach appears to be a better
visualization of the system, and it is very useful in the field of microsystems ow-
ing to the strong coupling between all constitutive parts of the system [40]. Sec-
tion 5.1.1.2 shows its application on a microelectromechanic device: a comb-drive
microresonator.
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Table 2.7 Fluidic and Mechanical Parameters and Electrical Similarity

Mechanical parameters Fluidic parameters Electrical parameters
u velocity � flow rate I current
F force P pressure v voltage
p translational momentum V volume Q charge
m mass m/S2 L inductance
� friction coefficient �/S2 R resistance
k stiffness k/S2 C capacitance

Note: S is the area normal to the direction of motion.

However, the choice of limited circuit elements in the SPICE library reduces the
flexibility of the equivalent circuit approach. Additionally, it is difficult to find the
equivalent circuit when the components become complex, especially when higher-
order differential equations are needed to model nonlinear behavior [41].

The primary difficulties with the equivalent circuit approach may be avoided by the
use of modern hardware description languages. For example, VHDL-AMS can be
used to provide a form to study the dynamic behavior of the system. This form is
associated with ODAEs. The detail VHDL-AMS modeling and simulation approach
will be discussed in Section 3.1.1.

2.2 MEFS System-level Modeling and Simulation

MEFS system-level modeling includes the architectural-level stochastic modeling
and biomedical/chemical process flow modeling. Stochastic modeling and simula-
tion provide a level of abstraction for studying architectural performance issues, and
statistical methods are used to analyze the results. Queuing theory is used to model
resource contention where service requests exceed service capacity and processing
must be interrupted and delayed [42]. Process flow modeling and simulation provide
an additional level of abstraction for studying biomedical application execution is-
sues. In addition, performance simulation models use a functional modeling style,
commonly called macro modeling [41]. Macro modeling emphasizes computational
execution efficiency by describing the “black box” behavior of a component. The
input/output transformation is described, but information about how the transforma-
tion is performed is not described. The macro models focus on performance-related
information, such as the throughput, capacity, and overall execution times.
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Several unique system-level modeling factors need to be studied. These factors
are necessary to describe the system-level bio/chemical application behavior and
MEFS architecture. They are also critical parts of a MEFS modeling and simula-
tion language. Factors that relate to the MEFS system-level modeling are defined
in Section 2.2.1, which consists of multiple system description perspectives, object-
oriented and dynamic data structures, and the system specification capacity. In Sec-
tion 2.2.2, factors reflecting the system-level simulation are presented. They include
the time-advanced mechanism [43] which is useful for keeping track of the simulated
time, and system design scalability. Moreover, due to the runtime nondeterminism
of stochastic systems, MEFS system-level statistical analysis factors are defined in
Section 2.2.3.

2.2.1 MEFS System-level Modeling

2.2.1.1 MEFS Behavior Modeling Perspectives

System behavior can be modeled with either discrete or continuous representation.
These representations are commonly classified into three categories, named “world-
views,” which are commonly used by modeling and simulation languages to concep-
tualize a domain or system [44]:

� Discrete Event-Scheduling

� Discrete Process-Interaction

� Continuous

Though the event-scheduling worldview is convenient for describing transforma-
tions for low-level digital systems, the process-interaction worldview is often con-
venient for describing the queuing nature of higher-level stochastic systems. Ad-
ditionally, the process-interaction worldview can be used more easily to describe
object-oriented system behavior [45]. Multiple worldviews can be combined, al-
lowing portions of the dynamical behavior to be described by a discrete modeling
paradigm and other portions of the dynamical behavior to be described by a contin-
uous modeling paradigm.

Although the basic MEMS dynamic behavior is described using event-scheduling,
continuous or both perspectives, this modeling paradigm can not directly repre-
sent MEFS behavior. MEFS behavior not only requires a combination of discrete
and continuous perspectives, but it also requires the discrete representation includ-
ing event-scheduling, process-interaction, and a combination of both. For instance,
the event-scheduling perspective is necessary to model a microfluidic sample arrival
event. The continuous perspective is used to describe a thermal reaction involving so-
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lution mixtures, and the energy-conservative queuing nature of a biochemical DNA
analysis system must be described with a process-interaction perspective [46].

2.2.1.2 Object-oriented and Dynamic Data Structure

In contrast to the MEMS processor-oriented modeling perspective, the MEFS system
level design mainly focuses on the change of fluidic sample characteristics. There-
fore, the process-interaction worldview is popularly adopted to describe this fluidic-
sample-oriented MEFS behavior. In addition, in order to more effectively represent
the features of each fluidic sample in MEFS, a complex but flexible data structure is
necessary. The features are defined in the following.

� Fluidic Sample Property
This item presents fluidic sample physical and chemical features, such as the
fluidic sample volume and the sample temperature, etc. These features may be
changed during the fluidic sample processing period.

� System Resource Utilization
This item records the status of each fluidic sample using system resources.
For instance which processor is used by that fluidic sample? Which channel is
used to deliver that fluidic sample from the storage buffer to the processor or
from the processor to outlet?

� Fluidic Sample Simulation Clock
This item records the simulated time value of each process event for a certain
fluidic sample. For example, the time value when that fluidic sample arrives
at the input to the handling system, the time value when that fluidic sample
arrives at a storage buffer, the thermal reaction time for that fluidic sample,
etc.

By definition, stochastic systems exhibit runtime nondeterminism; any particular
simulation is simply one observation of the random behavior. Thus, data structures
associated with random variables cannot generally be predefined at model develop-
ment or instantiation, and dynamic data structures are required that can be modified
during runtime of the model, i.e. simulation. A dynamic data structure, such as a
linked-list [43], can be an effective data representation for a set of objects or data
values, where set membership can vary during simulation by creating and destroying
objects. For instance, a linked-list is often used to represent a set of fluidic sam-
ples waiting for service or a set of jobs waiting for execution [47]. In addition, this
dynamic data structure can describe more complicated queuing behavior, involving
priorities, preemptions, redistributions, and terminations [27].
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2.2.1.3 User-definable Behavior

One of the most effective ways to address the difficulties of MEFS design complex-
ity is to create abstractions at the system level. These abstraction highlight relevant
system characteristics and deemphasize or hide all other information. They also
reveal how a designer views the intent and operation of a complex system. Thus
system performance modeling languages are required to provide a basic set of pre-
defined functions and behaviors to construct application-specific, user-definable ab-
stractions [48]. In addition, because of the complexity of MEFS architecture, the
different functional blocks can be connected to each other sequentially or in par-
allel, as shown in Figure 2.4, either the sequential process contains the concurrent
procedure, or the concurrent procedure embodies the sequential process.

Sequential process containing concurrent procedure Concurrent procedure embodying sequential process

process n+2process A process B

process D

process n

process n+1

process B1

process B2

process C1

process C2

process C3

process A1

process A2

process A3

FIGURE 2.4
Mixed sequential and concurrent execution includes either the sequential pro-
cess containing the concurrent procedure, or the concurrent procedure embody-
ing the sequential process.

This aspect of system-level modeling can be realized using a variety of constructs
and statements supporting both sequential and concurrent executional semantics for
procedural and parallel tasking and methodologies, respectively. In this manner, a
system performance modeling language is molded to fit an application rather than the
counter situation of contorting an application to fit an inflexible system performance
modeling language.
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2.2.1.4 System Specification

Based on the state-of-the-art top-down design methodology, MEFS modeling and
simulation present new requirements for the initial conceptual design at the system-
level and supporting computer-aided tools. This system-level specification is always
represented with a sequential process. At the beginning of a design flow, the accurate
executable system design specification at system level is created. It helps validate the
MEFS bio/chemical application and functionality, and creates the system application
performance model. With the top-down decomposition, the application-level design
is slowly refined into different functional blocks depending on the system structure.
At the end, the detail functional units are implemented which match the MEFS com-
ponent capability design, and fulfill the system application requirement.

2.2.2 MEFS System-level Simulation

2.2.2.1 Time-Advanced Mechanisms

Due to the stochastic nature of MEFS application behavior, a variable is necessary
to keep track of the current value of simulated time when the simulation proceeds.
This variable is called the simulation clock. It is also useful to advance simulated
time from one value to another for the event-scheduling worldview. In addition, it
is necessary to synchronize events in the simulation. Clocks order events in time
so that parallel events are properly modeled by simulator on a sequential computer.
There is generally no relationship between simulated time and the time needed to run
a simulation on a computer.

2.2.2.2 Scalability of Simulation

Because of the hierarchical structure of MEFS, MEFS simulation requires the study
of design scalability. Existing MEMS hierarchical modeling and simulation tech-
niques focus on low-level components. The entire MEMS component as a single be-
havior entity forms the top level of hierarchy, and the constituent MEMS elements,
such as plate masses and beam springs, form the hierarchical lower level [25]. How-
ever, this approach is not efficient for MEFS. A scalable methodology for MEFS
must handle heterogeneous, multiple-component systems, and address complex fluidic-
application and mixed-level component simulation. It is important to investigate how
the performance of a microliquid handling system architecture scales with increas-
ingly complex chemical and biological analyses, and what types of biomedical ap-
plications can be practically miniaturized via microfluidic molecular processing. In
addition, it is also necessary to investigate how the performance of the microliquid
handling system scales with advances in constituent microfluidic device technology.
Therefore, the MEFS system-level modeling and simulation languages must possess
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a hierarchical scalable-design capacity.

2.2.3 Statistical Analysis Capacity

The purpose of simulation is to imitate the operation of a real-world system, and then
to use the resulting simulation output data to infer the real-world system function-
ality and performance. MEFS high-level system performance models are generally
stochastic because either the system is too complex to be analytically characterized,
design details are unknown, or overall performance depends on ambient factors that
are nondeterministic [49]. Stochastic systems dynamically vary over time because
the system operation is dependent on one or more random variables. Hence, the re-
sulting simulation output data exhibit random variability. Consequently, the statisti-
cal analysis approach is very important [27]. Statistical analyses require the language
capacity to compile various usage information during system execution to estimate
the mean, variation, correlations, and confidence intervals of the sampled random
results. Probabilistic and statistical analysis also require multiple data types, pow-
erful mathematical resources (function libraries), and operating system storage (file)
input/output.

2.3 Conclusion

The lumped-element models with ODAEs are appropriate to describe the MEFS
circuit-level dynamic behavior coupled with multiple energy domains. An equiv-
alent circuit approach can be used for MEFS circuit level device modeling and sim-
ulation, and its primary difficulties may be avoided by the use of modern hardware
description languages. In addition, the MEFS system-level hierarchical modeling
and performance evaluation require the description capacity of simulation languages
for MEFS system-level hierarchical modeling, simulation, and statistical analyses.

System design includes two phases: the conceptual phase and the product-level
phase [50]. Based on these two phases, there are two different types of behavior
description capacity requirements. In the conceptual phase of a new device, the
design objective is to build the practical configuration of the system. Accurate but
abstract information is necessary. After system analysis and design refinement, de-
tailed functional requirements for each device are obtained. System design turns into
the second phase, product-level phase. In this phase, detailed physical behavior and
parasitic phenomena are studied. Right now, our MEFS system-level research mainly
focuses on the behavior modeling at the conceptual phase. Therefore, it is assumed
that the MEFS system-level performance is the accumulation of performance of each
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microfluidic component. For instance, the overall flow rate � of two parallel con-
nected micropumps is the sum of each micropump flow rate �1;�2: � = �1 +�2.
In particular, it is assumed that there are no parasitic phenomena existing between
microfluidic components. For example, because the micropumps are independent
even though they are interconnected, their behavior can be studied independently.
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Simulation applications are becoming major software systems, at par with the com-
plexity of databases or operating systems. This can be attributed to the increasing
complexity of the systems being analyzed and the need to conduct the analysis across
a wide range of abstraction levels. System design is evolving into a multidisciplinary
field requiring expertise in electrical, mechanical, and chemical engineering, as well
as in computer science and manufacturing technology. This broad scope makes it
nearly impossible to understand complicated factors influencing and limiting system
performance. It often requires the collaborative efforts of several teams and organi-
zations, typically using different modeling languages and simulators.

Traditionally, for complex heterogeneous system design, several modeling languages
and simulators are used to support various phases of system specification, architec-
tural design, and functional unit design. Performance modeling languages such as
SIMSCRIPT II.5, SLAM II, and general purpose software programming languages
such as C and Ada are used for the high-level stochastic architectural design and
the biomedical/chemical process flow simulation [27], [51]. On the other hand,
logic modeling languages, for instance VHDL/VHDL-AMS and Verilog, are used
for low-level functional unit design [52]. In addition, array modeling languages such
as Matlab are used to model the dynamic behavior of the system. One of the major
problems in simulation is the need for human intervention during the information
transfer between different simulation languages and simulators. For instance, the
prevalent top-down system design methodology starts with C or C++ to model the
system at the system level. This step is used to verify basic design concepts and
algorithms. Following this step, the hardware components of the system are manu-
ally converted from a C/C++ model to VHDL or Verilog descriptions for the actual
hardware implementation. The discontinuous design flow requires multiple levels
of repetitive verification. In addition, different tools and host platforms can lead to
problems in misinterpretation of concept specifications, misunderstanding of data,
and loss of information during translation. Such interoperability problems increase
the probability of errors, redesign costs, and design cycle times.

Thus, it is necessary to construct a hierarchical system modeling and simulation
environment using a common system description language and associated simula-
tion engine, rather than multiple languages and simulators that span the different
abstraction level. In this chapter, a hierarchical modeling and simulation environ-
ment based on SystemC is presented. In Section 3.1, we examine the suitability
of several simulation languages for MEFS hierarchical design. These languages in-
clude VHDL/VHDL-AMS, SLAM, C/C++, Matlab, and SystemC. Next, SystemC
is proposed as a potential candidate for complete system modeling and simulation.
In Section 3.2, a hierarchical modeling and simulation environment based on Sys-
temC is presented. The architecture of the environment and the associated functional
packages are discussed. Finally, conclusions are presented in Section 3.3.
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3.1 Suitability of Modeling Languages for Hierarchical Design

3.1.1 VHDL-AMS Suitability for Circuit-level Modeling and Simula-
tion

The VHSIC (Very High Speed Integrated Circuits) Hardware Description Language
VHDL was originally designed to describe the structure and behavior of discrete
time systems [43]. Recently, VHDL has been extended to enable descriptions of
continuous-time systems. The combination of discrete- and continuous-time lan-
guage constructs are collectively referred to as VHDL-AMS, where the suffix AMS
stands for analog and mixed signal. VHDL-AMS provides, for the first time, an in-
tegrated capability via a single simulation language for describing discrete systems,
continuous systems, and their combinations [53].

VHDL-AMS provides additional semantics to describe continuous-time systems with
behaviors governed by a set of simultaneous equations. These sets of equations in-
clude simultaneous ordinary differential and algebraic equations (ODAEs). ODAEs
are described in a denotational style using “simultaneous statements”. These state-
ments define conditions or relations that must always hold over time. Whereas
VHDL uses an imperative dynamical model of loosely-coupled concurrent processes
communicating by signals, VHDL-AMS uses a declarative dynamical model of tightly-
coupled simultaneous relations influencing each other’s solution by linked unknowns.

Unknowns are continuous, analytical functions of time, determined by repeatedly
invoking an “analog solver” to solve the equations over a series of intervals denoting
a period of time. The unknowns are called quantities and constitute a new class of
objects in VHDL. Quantities are like signals and they denote a waveform or a time
series of values. However, quantities are very different from variables or signals in
that they do not participate in assignment statements; quantities take their values as a
result of solving the set of simultaneous ODAEs. This update mechanism is unique
to quantities and is the principal reason for their role as a distinct object class.

Various operations associated with a quantity that yields related quantities, such as
its derivative and integral, are defined in VHDL-AMS as predefined attributes. For
example, the time derivative of a quantity representing translational velocity, named
VELOCITY, is denoted by VELOCITY’DOT, where DOT is a predefined attribute
for differentiation. The time derivative of the quantity VELOCITY is automatically
computed based on the sequence of values of VELOCITY computed by the analog
solver at various analog solution points (ASPs).

The ODAEs governing MEFS possess a global structure reflecting the fact that phys-
ical systems obey laws of conservation of energy. A set of equations exhibiting such
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a global structure is called a conservative set of ODAEs. To facilitate generating
conservative ODAEs, VHDL-AMS provides a set of language constructs, involving
terminals, natures, and branch quantities.

Constitutive relations are defined using branch quantities and simultaneous state-
ments. Branch quantities possess additional semantics to reflect the additional con-
straints that govern conservative simultaneous ODAEs. There are two kinds of
branch quantities: across and through. Examples of across and through variables
are given in Table 2.1.

As defined on Table 2.5 in Chapter 2, an across physical concept in VHDL-AMS
obeys a conservation of energy law in which the summation of across quantities
around any closed path (loop) equals zero.

X

CLOSED PATH

ACROSS QUANTITIES = 0

Across quantities are often gradient potentials within a given energy domain and thus
they can be viewed as energy.

As defined on Table 2.6 in Chapter 2, a through physical concept in VHDL-AMS
obeys a conservation of energy law in which the summation of through quantities at
any node (point) equals zero.

X

NODE

THROUGH QUANTITIES = 0

Through quantities are analogous to the movement of state under an applied gradient
potential field within a given energy domain; thus they can be viewed as power flow.

Note that the product of across and through quantities can, but need not, denote
power. The through quantity for thermal energy domain (heat flow) has units of
power. Across and through quantities are computationally defined to ensure correct
formulation of the system of dynamical equations.

The types of branch quantities are indirectly defined via the definition of the ter-
minals. Terminals provide connection points for conservative equations. Terminals
hold no values; their only role is to facilitate the formation of conservative equa-
tion sets that, in turn, constrain the associated branch quantities. ELECTRICAL and
TRANSLATIONAL are not types; they are natures. Natures can be considered simi-
lar to types—both of them define data templates or structures for objects. The nature
declarations for ELECTRICAL and TRANSLATIONAL are supplied by the pack-
ages ELECTRICAL_SYSTEMS and MECHANICAL_SYSTEMS, respectively. Na-
tures can be viewed as abstract descriptions of an energy domain in that they define
the fundamental energy/power flow concepts of a physical discipline.
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3.1.1.1 Common Declarations

To exchange MEFS component models as intellectual property, an infrastructure is
required establishing common terminology, declarations, styles, and practices [53].
The infrastructure supports the common use of specialized applications of a base lin-
guistics. This increased level of specificity is required to ensure MEFS models can
be interoperated. Candidate elements of a common VHDL-AMS modeling infras-
tructure for MEFS are listed below:

� Package Architecture and Format,

� Types and Subtypes,

� Natures and Subnatures,

� Physical Constants,

� Simulation Controls, and

� Design Unit Formats.

Package architecture refers to how the physical concepts and principles of the domain
of MEFS can be mapped to a set of VHDL-AMS packages. Packages provide the
ability to group declarations together into an encapsulation to represent a convenient
abstraction. Additionally, packages can use the abstraction for easily creating new
component models. The base package ENERGY_SYSTEMS contains declarations
common across energy domains and is used by the derived packages representing
individual energy domains and disciplines. The VHDL-AMS package architecture
provides the advantage of a simple strategy for constructing a component model of
a MEFS involving multiple energy domains; the appropriate packages representing
each energy domain are included via use clauses. The proposed VHDL-AMS pack-
age architecture also provides separate tools for each major engineering discipline
to develop the data representations and operations respectively. Such declarations
can reflect established terminology and notational conventions. In addition, these
declarations are consistent with recognized design practices and analysis methods
pertinent to each discipline.

In considering a common typing/subtyping structure for modeling MEFS, it is im-
portant to note that VHDL-AMS quantities are restricted to be of a floating-point
type so they can represent analytical functions of time. This restriction implies that
across types and through types defined via nature declarations must also be floating
point types.

The new types are declared as subtypes of the common parent or base floating point
type REAL. In addition, these types facilitate the implementation of numerical al-
gorithms for solving ODAEs. Moreover, these types can avoid the complexity of
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providing a large number of overloaded operators to support dimensional analysis.
The new types for across and through branch quantities can be used to declare a com-
mon set of natures. It is important to point out that a given energy domain may not
necessarily be characterized by a single nature declaration, since the definitions of
across and through physical phenomena may be satisfied in multiple ways. Compat-
ibility relations defined in Table 2.5 for mechanical systems offer a simple example.
In addition to displacement differentials, the time derivative of displacement also has
physical significance in mechanics, namely velocity.

3.1.1.2 Micropump lumped-element nodal modeling

In order to illustrate the VHDL-AMS modeling and simulation methodology, lumped-
element constitutive relations and conservative Kirchhoffian network theory are used
to build a micropump model [18]. The resulting set of simultaneous ODAEs are de-
scribed using VHDL-AMS.

actuation chamber

pump diaphragm

pump chamber

inlet outlet

counterelectrode

actuation
layer

valve unit

FIGURE 3.1
Schematic view of an electrostatically-driven diaphragm pump [4].

Micropumps provide the pressure gradient for moving liquid in channels, reservoirs,
and chambers. Micropumps typically consist of an actuation unit. Piezoelectric, ther-
mopneumatic and electrostatic actuation are often used [4]. The check microvalves
control fluid movement through the inlet and outlet ports. Microchannels connect
the inlet and outlet ports to the large channel network.

Figure 3.1 shows the schematic view of an electrostatically-driven diaphragm bi-
directional micropump [4]. The operation of the micropump can be divided into two
stages. During the pump stage, the condenser is biased, the pump diaphragm deflects
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upward, and an amount of fluid (�V ) flows in the inlet port to the pump chamber,
the input microvalve is open and the output microvalve is closed. During the supply
stage, the biasing voltage is turned off, the pump diaphragm is released to return to its
equilibrium position, the �V fluid is ejected out of the pump chamber to the outlet
port, the output microvalve is opened and the input microvalve is closed. Varying
the actuation frequency changes the pump direction. The mechanical resonance of
the check microvalves causes a phase shift between the movement of the microvalve
and the pressure difference driving the fluid.

Three coupled differential equations, (3.1)-(3.3), are used to describe the transient
behavior of the electrostatically-driven micropump and the passive check valve move-
ment [16].

_p =
�iv(p; xiv)��ov(p; xov)

dVo(p)
dp

�
dVgas(p)

dp

(3.1)

where

iv – inlet valve xiv – inlet valve displacement
ov – outlet valve xov – outlet valve displacement
�iv – inlet flow V0 – volume of the pump chamber
�ov – outlet flow Vgas – volume of gas bubble
p – pressure

The dynamics of the microvalves are described by second-order ordinary differential
equations. The driving force (F ) is the product of the pressure difference and the
area of the microvalve.

miv�xiv + div _xiv + kivxiv = Fiv(t) = Siv(p1 � p) (3.2)

mov�xov + dov _xov + kovxov = Fov(t) = Sov(p� p2) (3.3)

where

m – effective mass d – damping constant
k – elasticity p – pressure in chamber
F – force p1 – pressure in inlet
S – area p2 – pressure in outlet

The micropump is partitioned into five parts: an inlet channel, an inlet valve, a pres-
sure chamber, an outlet valve, and an outlet channel. The five parts are modeled and
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simulated using VHDL-AMS. Figure 3.2 shows the general VHDL-AMS model for
a micropump [54].

library ieee;
use
work.electrical_system.all;

use
work.fluidic_system.all;

use
ieee.math_real.all;

entity MICROPUMP is
....

end entity MICROPUMP;

architecture CONFIGURATION of
MICROPUMP is

....
begin
-- VALVE
InLetValve :
entity work.Valve

port map ( .... );
OutLetValve :
...

-- InLet Channel
InChannelResistor :
entity work.FluidResistor

port map ( .... );
InChannelInductance:
...

-- OutLet Channel
OutChannelResistor:
entity work.FluidResistor

port map ( .... );
OutChannelInductance:
...

-- Chamber
Diaphragm:
entity work.FluidCapacitance

port map ( .... );
end architecture CONFIGURATION;

FIGURE 3.2
The VHDL-AMS model of a micropump includes five functional parts.

In summary, VHDL-AMS supports circuit-level modeling and simulation of contin-
uous and discrete systems with conservative and non-conservative semantics. The
equations describing the conservative aspects of a system does not need to be explic-
itly notated by the user. The VHDL-AMS solver automatically verifies the conser-
vation of energy. A micropump is used as a special case study to illustrate the MEFS
component modeling with VHDL-AMS.

However, the processor-oriented modeling perspective of VHDL-AMS limits its ap-
plicability for MEFS fluidic-sample-oriented analysis. For example, it can not pro-
vide a complex and flexible data structure to describe the fluidic sample characteris-
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tics. In addition, VHDL-AMS, which supports the conservative ODAEs, may not be
suitable to directly describe the more complex fluidic PDAEs modeling requirement
for MEFS.

3.1.2 VHDL Suitability for System-level Modeling and Simulation1

In the following sections, the suitability of VHDL is discussed for supporting an in-
tegrated approach for modeling and simulation of system-level discrete, continuous,
and combined discrete/continuous dynamical behavior of stochastic systems. At first
the description capability of VHDL is discussed for MEFS performance modeling.
The next section explains the role of VHDL in stochastic discrete system perfor-
mance evaluation and presents experimental results. Then, the use of VHDL for
continuous system performance evaluation is presented along with supporting ex-
perimental results. Finally, an example is given combining stochastic discrete and
continuous system performance simulation to illustrate overall VHDL system-level
modeling and analysis capacities. A summary of key observations makes up the
conclusion.

3.1.2.1 System Performance Modeling Simulation

VHDL supports a broad range of constructs describing detailed logic to abstract
algorithm and thus, provides the semantics for supporting an integrated modeling
and simulation capability. Work has been reported on investigating applications of
VHDL to high-level design, including performance modeling and simulation [55,
56]. These efforts focused on specific representational paradigms, such as Petri nets,
and emphasized single energy domain (electronic) systems [57, 58]. Our work fo-
cuses on a more general resource-contention representational paradigm and empha-
sizes coupled-energy domains.

� Worldviews
The basic runtime or dynamic semantics of the VHDL simulation microkernel
uses event-scheduling to record the results of invoking processes and promul-
gating the results to affect causal behavior. Signals are the primary medium
for information exchange between VHDL processes. Though signals provide
basic time sequencing for values, signals do not directly possess queuing prop-
erties for values [59]. Thus, to model and simulate the process-interaction
worldview with VHDL, queuing facilities need to be developed using addi-
tional data abstractions and operations. In addition, to model and simulate

1Reprinted from Microelectronics Journal, Vol. 31, T. Zhang, A. Dewey, and R. B. Fair, A Hierarchical
Approach to Stochastic Discrete and Continuous Performance Simulation Using Composable Software
Components, pp. 95-104, Jan. 2000. c
 2000, with permission from Elsevier Science.
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continuous worldview with VHDL, differential equations with respect to time
must be discretized and transformed into corresponding difference equations.
In this manner, evaluation of a continuous differential problem is approximated
by simulation of a corresponding finite-difference problem.

� User-Definable Behavior
VHDL possesses both concurrent execution semantics to reflect the low-level
parallelism of hardware and sequential execution semantics to reflect the high-
level ordering of procedures and functions. This description capacity supports
exploration of alternative system designs and incremental refinement of a par-
ticular system design. Additionally, the basic set of VHDL predefined func-
tions and behaviors can be enhanced by user-defined data types and overloaded
operators. User-defined attributes can also be defined for system annotation.

� Dynamic Data Structures
This aspect of system performance modeling can be realized using the pointer
data type, called access type [59]. The use of access types in VHDL has limi-
tations in that signals may not be declared to be of an access type—signals are
statically defined. Only variables can be declared as an access type, which lim-
its their application in global information exchange. Variables are constrained
to have scope within a process; shared variables are constrained to have scope
across processes within an architecture [60]. Thus, there is a need to extend
these base simulation microkernel capacities by additional data abstractions
and operations to provide the desired capabilities of dynamic data structures
for performance simulation.

� Output Analysis and Report
This aspect of system performance modeling can be realized in VHDL using
real data types and arithmetic operators augmented by the VHDL Math pack-
age (IEEE Standard 1076.2) for mathematical computations. Files provide a
logical interface to the physical storage capabilities of an underlying operat-
ing system to support output reporting [60]. Also, shared variables provide
a medium for implementing global accounting practices to collect usage data
for statistical analysis.

3.1.2.2 Stochastic Discrete-Event Performance Simulation

The salient aspects of stochastic discrete-event performance simulation will be dis-
cussed by illustrating the modeling and simulation of a single-server queuing system
[61]. This queuing system involves gating a fluidic sample into a chamber for a mix-
ing operation within a larger protocol. The strategy for realizing this performance
simulation capability by defining a set of data abstractions is proposed. In addition,
services to augment a core simulation microkernel are also discussed. Experimen-
tal performance simulation results comparing the new composable component-based
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simulation strategy with a more traditional dedicated performance simulator are pre-
sented.

For the microfluidic mixing model, the interarrival time of fluidic samples, denoted
by Ta1 ; Ta2 ; : : :, are assumed to be independent, identically distributed (IID) random
variables with a uniform probabilistic distribution. Without loss of generality, the
lower and upper bounds of the uniform distribution are arbitrarily chosen to be 10
seconds and 19 seconds, respectively. A fluidic sample that arrives and finds the
mixing chamber (service) idle enters service immediately. Due to the variability
in fluidic samples (amount and composition), the mixing times of individual fluidic
samples, denoted by Ts1 ; Ts2 ; : : :, are also assumed to be IID random variables. The
mixing times are assumed to be independent of the interarrival times, and their prob-
ability distribution is also uniform, having lower and upper bounds of 11 seconds and
17 seconds, respectively. A fluidic sample that arrives and finds the mixing cham-
ber busy is queued into a set of reservoirs. When the mixing process completes for
a fluidic sample, another fluidic sample is gated (valved) into the chamber, using a
first-in, first-out (FIFO) discipline.

Performance statistics for the arrival, possible queuing, service time, and departure
of a fluidic sample are collected in a VHDL record defined below.

type FLUIDIC_SAMPLE;
type NODE_PTR is access FLUIDIC_SAMPLE;
type FLUIDIC_SAMPLE is

record
ARRIVAL_TIME : TIME;
SERVICE_TIME : TIME;
LEAVING_TIME : TIME;
NXT : NODE_PTR;

end record;

A first-in-first-out queuing discipline is used, represented by a linked list of records
using VHDL access types. The linked list is encapsulated within an entity or a con-
current procedure and provided as a high-level data abstraction for ease of model-
ing [62]. Figure 3.3 shows the general structure of the VHDL stochastic discrete-
event performance model and the principal data abstractions/services. Interarrival
times and service times are generated from a uniform probability distribution and
implemented using process suspension/activation [43]. Statistical reporting is im-
plemented via text files. In addition, Table 3.1 presents the results of simulating the
operation of the stochastic MEFS for mixing fifty (50) fluidic samples. ( Simulations
were conducted using the Synopsys VHDL simulator.) The VHDL simulation results
were checked by developing a comparable model for the commercial performance
simulator SLAM and equivalent simulation results were obtained.
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package QUEUING_PKG is
...

end package QUEUING_PKG;

entity QUEUE_FIFO is
...

end entity QUEUE_FIFO;

use STD.TEXTIO.all;

use IEEE.MATH_REAL.all;
-- Stochastic Discrete Event
-- Simulation Services

use QUEUING_PKG.all;

entity MEFS_PROTOCOL is
...

end entity MEFS_PROTOCOL;

architecture MIXING of
MEFS_PROTOCOL is

....
begin
ARRIVAL: process
...

end process ARRIVAL;

RESERVOIR: QUEUE_FIFO
port map (...);

MIXING: process
...

end process MIXING;

STATISTICS: process
...

end process STATISTICS;
end architecture MIXING;

FIGURE 3.3
Structure of VHDL stochastic discrete-event performance model. There are
four concurrent processes at the top-level architecture.

3.1.2.3 Continuous Time System Simulation

Continuous-time simulation evaluates the behavior of a system’s state as a contin-
uous or piecewise continuous function of time. Behavior can be defined directly
by means of state equations or indirectly by means of differential equations. Though
state equations explicitly represent system behavior over time, they are generally dif-
ficult to derive [63]. Differential equations use the derivatives of state variables, rep-
resenting the relationship of the rate of change of state variables. Thus, continuous
time simulation concerns evaluation methods to solve a defining set of simultaneous
equations; the present focus is on ODAEs.

To solve differential equations based on the discrete-event simulation kernel, the con-
tinuous differential equations need to be transformed into finite difference equations
and solved via numerical integration. For example, the Improved Euler or second-
order Runge-Kutta numerical integration method [64] can be used for this purpose.

The Runge-Kutta numerical integration algorithm is a member of the class of Taylor
series integration methods. It solves a differential equation by using a trapezoidal
approximation to a Taylor series expansion of the desired function. Using the Fun-
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Table 3.1 Statistical Analysis of Stochastic Microfluidic Mixing VHDL
Performance Simulation

Statistical Analysis: Microelectrofluidic Mixing
Date : 02/08/99
Run Number 1 of 1
Current Simulation Time : 740

Average Variation Min Max Observation
Time in 23.5 6.923 11 37 50
Mixing

Average Variation Min Max Average
Length Length Length Wait Time

Queue 0.63 0.631 0 2 9.26
Current Efficiency Max Max

Utilization Idle Time Busy Time
Mixing 1 0.96 19 158
Chamber

damental Theorem of Calculus, the differential equation

dy

dt
= y0 = f(t; y) (3.4)

can be rewritten as a finite difference,

y0(tn + ��t) =
y(tn+1)� y(tn)

�t
; 9�; 0 < � < 1 (3.5)

which in turn yields the following equation:

y(tn+1) = y(tn) + �tf(tn + ��t; y(tn + ��t)): (3.6)

The term f(tn+��t; y(tn+��t)) is called the mean gradient in the region [tn; tn+1]
and is denoted by K�. The second-order Runge-Kutta integration method computes
the mean gradient by the weighted mean of the gradientsK1 andK2 at the two points

t1 = tn

t2 = tn+p = tn + p�t; 0 < p � 1:

The mean gradient becomes

K� = �1K1 + �2K2 (3.7)

with the constraints that

�1 + �2 = 1

�2p =
1

2
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to ensure second-order precision. Normally, �1 = �2 = 0:5, and p = 1.

Thus, the difference equation in (3.6) becomes

y(tn+1) = y(tn) + �tK�

y(tn+1) = y(tn) + �t(�1K1 + �2K2) (3.8)

with

K1 = f(tn; y(tn))

K2 = f(tn+p; y(tn) + p�tK1)

Integration precision increases with decreasing stepsize �t. However, decreasing
stepsize�t increases calculation complexity, and can decrease intersection accuracy.
Thus, selecting an appropriate stepsize �t is important. To that end, precision can
be measured as the difference between the integration result with stepsize �t and the
integration result with half-stepsize �t=2, i.e.

� = jy
�t

2 (tn+1)� y�t(tn+1)j (3.9)

To illustrate the modeling and simulation of a continuous-time system using VHDL,
consider a biological system of parasites/hosts, also called predators/prey [61]. There
are several examples in nature of parasites that reproduce by infesting host animals
and, in the process, kill the hosts. This relationship causes the host and parasite pop-
ulation sizes to fluctuate. When the parasite population grows, the host population
declines. The decline in the number of host, in turn, causes a decline in the birth rate
of parasites and, consequently, the population of the host begins to increase. This
process oscillates indefinitely.

Let H(t) and P (t) respectively denote the population of hosts and parasites at time
t. Also, let r denote the growth rate of hosts (excess of birth rate over death rate from
natural causes) in the absence of the parasites. Then, the overall rate of change of
the host population is given by

dH

dt
= rH(t) � C1H(t)P (t)

where, the death rate of hosts (C1) is proportional to the product of the numbers of
parasites and hosts, H(t)P (t). Assuming the death rate of hosts is the birth rate of
parasites, the overall rate of change of the parasite population is given by

dp

dt
= C1H(t)P (t)� C2P (t)

where, C2 is the natural death rate of the parasites. This set of differential equa-
tions is solved via the second-order Runge-Kutta method, and implemented using the
general-purpose programming language capabilities of the VHDL process statement.
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Figure 3.4 shows the general structure of the VHDL continuous time performance
model and the principal data abstractions/services. The architecture is composed of
a single process that solves the set of differential equations, using the Runge-Kutta
method supplied via the NUMERICAL_INTG_PKG package. The inner loop solves
the differential equations for a given time step per a desired accuracy. The outer loop
increments the time step. Simulation time is advanced with integration time steps
via a wait statement. Solutions are reported via text files. The simulation services
provided via the VHDL NUMERICAL_INTG_PKG package and implemented as a
software component enables a particular simulation capability which can be assem-
bled by using a relatively light-weight base kernel.

package NUMERICAL_INTG_PKG is
procedure RUNGE_KUTTA ( ... );
....

end package NUMERICAL_INTG_PKG;

use STD.TEXTIO.all;

use IEEE.MATH_REAL.all;
-- Continuous Time DAE
-- Simulation Services

use NUMERICAL_INTG_PKG.all;

entity PRED_PREY is
....

end entity PRED_PREY;

architecture CONFIG of PRED_PREY is
....

begin
-- initialization

DIFF_SOLVE: process
STEP_NUM: while loop
....
STEP_SIZE: while loop

-- Compute new time point
-- using step size
RUNGE_KUTTA( ...... );
-- Compute new time point
-- using half step size
RUNGE_KUTTA( ...... );
-- Check difference

end loop STEP_SIZE;
-- Record integration values
-- Increment step count
....
wait for PERIOD;
end loop STEP_NUM;

end process DIFF_SOLVE;
end architecture CONFIG;

FIGURE 3.4
Structure of a VHDL continuous-time performance model (The Runge-Kutta
method is coded in a process).

Figure 3.5 shows the result of continuous time simulation, using a variable step size
within the range 0.025 to 0.25 units for 500 time units. The coupled oscillatory
behavior is demonstrated.
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FIGURE 3.5
Result of continuous time system simulation with VHDL. The population sizes
of parasites and hosts are continuously changing with time.
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3.1.2.4 Combined Discrete-Continuous System Simulation

Some systems exhibit both stochastic discrete and continuous behavior and thus,
require a combination of the modeling and simulation strategies presented in the
previous sections. The ability to model a combination of stochastic discrete and
continuous system performance behavior with a single design capture and analysis
strategy emphasizes the utility of an integrated performance analysis methodology.

Again, drawing from the domain of microfluidics, consider a biomedical application
involving heating drug samples to enable subsequent chemical/biological analysis.
The arrival time of drug samples is modeled as a random variable having a proba-
bility density function uniformly distributed between 2.5 minutes and 3.5 minutes.
The initial temperature of each arriving drug sample is also a random variable that is
uniformly distributed between 60oF and 80oF. The initial temperature of the heating
process is taken as the average of the initial temperature of the drug sample and the
ambient temperature that is assumed to be 300oF.

Let O(t) and U(t) respectively denote the temperature of the heating stage (oven)
and drug sample (unit) at time t and be defined by the following differential equations
describing Newton’s law of cooling. The time rate of change of the temperature of
a body is proportional to its temperature and the temperature of the surrounding
medium.

dO

dt
= 0:12� (300�O)

dU

dt
= 0:04� (O � U)

A drug sample is removed from the heating stage when it reaches 250oF. Then, the
drug sample at the head of the queue of reservoirs is selected for the next heating
cycle.

There are two kinds of state variables in the described MEFS: discrete and contin-
uous. The arrival of drug samples occurs at discrete points in time, whereas the
temperature of a drug sample during the heating process changes continuously with
time. The combined behavior is modeled using the representational strategies for
stochastic queuing and numerical integration, along with the associated software
components, as discussed in the previous sections.

Performance simulation results are shown in Figures 3.6 and 3.7. The operation of
the MEFS is simulated for 60 drug samples, using a variable step size within the
range of 0.4 to 4.0 seconds. The maximum single-step error is 1oF. Figure 3.6 shows
the temperature of the ambient heating stage with respect to time. Solution of the
differential and algebraic equations (DAEs) is shown using both Matlab and VHDL;
the results are identical. Figure 3.7 shows the temperature of the drug sample with
respect to time.
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FIGURE 3.6
Temperature change with time during heating. The VHDL solution and the
Matlab differential equation solutions coincide.

In summary, VHDL supports a broad range of constructs to describe detailed logic
and abstract algorithms. It also provides both concurrent execution semantics and se-
quential execution semantics for parallelism and ordering procedures and functions.
However, MEFS are object-oriented, and possess the queuing nature of higher-level
stochastic behavior. The VHDL’s event-driven perspective does not directly possess
the capacity to represent this behavior. In addition, the language syntax prevents
VHDL wider application from system-level modeling. Although the VHDL’92 ver-
sion adds shared variables to enhance the VHDL’s system-level design capability,
the shared variable’s constrained scope limits its application from the scalable sys-
tem design objective, and there is still some controversy about the rationale of shared
variables. Some research groups suggest extending the VHDL language syntax for
system-level modeling [56], [65]. However, these extensions focus more on the elec-
trical energy domain, and they can potentially destroy the integrity of VHDL. Hence,
it is now well accepted that existing hardware description languages cannot be effec-
tively expanded to support system-level modeling and simulation [66].
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FIGURE 3.7
Temperature change process of drug sample from 80oF to 250oF

3.1.3 Performance Language—SLAM

With the increasing complexity of MEFS system architecture, and its impact on sys-
tem performance, it is becoming increasingly important to build a macro model for
system architectural analysis. Such a model can improve computational efficiency,
and lead to a better understanding of the system performance with different architec-
tural configurations. Using an advanced simulation language to study system archi-
tecture performance can reduce model complexity, shorten model development time,
and facilitate visualization of the system specification.

Advanced simulation languages, such as SIMAN [45], SLAM II [27] and SIM-
SCRIPT II.5 [26], are popularly used for system modeling and performance eval-
uation. These languages have the same basic modeling constructs due to language
cross-fertilization over years of development. The first three languages are more
suitable for queuing problems. SIMSCRIPT II.5 possesses more general process-
oriented description capabilities, while it requires more lines of code for “standard”
queuing problems. Table 3.2 shows the comparison between these simulation lan-
guages [67].

SLAM is an acronym for Simulation Language for Alternative Modeling. It is a
FORTRAN-based simulation language. SLAM II is the latest release of SLAM, its
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newest PC version is Awesim [27]. It provides easy input procedures and output
reports with hundreds of components. In addition, Awesim provides a more flexi-
ble system architectural description capability to develop a single simulation model.
Moreover, Awesim provides sophisticated control statements and data structures to
describe system behavior. Visual Basic and C++ can be coded in Awesim models. In
particular, procedures are included to adaptively define files, entities, and collection
variables. Alternative search procedures for locating entities are also provided. There
are many new modeling capabilities in Awesim, and it is therefore more suitable for
“complicated” simulation models. We next describe Awesim in more detail.

Table 3.2 Comparison of Several General Purpose Simulation Languages

Feature GPSS/H SIMAN SIMSCRIPT II.5 SLAM II
Event (E) P E.P. E.P. E.P.
or Process(P)
Graphical model NO YES NO YES
input
Combined discrete YES YES YES YES
and continuous
simulation
Standard Ex, N,T,U Be,Er,Ex, Be,Bi,Er Be,Er,Ex
Distribution Ga,L,N, Ex,Ga,L, Ga,L,N
Functions P,T,U,W N,P,T,U,W P,T,U,W

Be: Beta Bi: Binomial Er: Erlang
Ex: Exponential Ga: Gammar L: Lognormal
N: Normal P: Poisson T: Triangular
U: Uniform W: Weibull

3.1.3.1 Network Modeling

Awesim provides a process-oriented framework for modeling the flow of entities
through processes. The framework is a network structure consisting of specialized
nodes and branches that are used to model resources, queues for resources, activities,
and entity flow decisions. An Awesim network model is a representation of a process
and the flow of entities through the process.

To illustrate the network modeling of a system, a simple queuing system with a
single-server is shown in Figure 3.8. Items arrive, wait, are processed by a single
server, and then depart the system. There are three nodes and one activity. Creating
node generates entities and routes them into the system. The interarrival time be-
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tween entities is specified by a variable or a function. Queue node is a location in the
network where entities wait for service. When an entity arrives at a queue node, it
passes through the queue node and goes immediately into the service activity if the
server is idle. If no server is available, the entity waits at the queue node. Queue node
is a storage buffer with certain volume to store entities. Activities represent server
activities. Terminate node is used to destroy or delete entities from the network. It
can specify the number of entities to be processed on a simulation run. An entity can
be assigned attribute values that enable a modeler to distinguish between individual
entities of the same type or between entities of different type.

T

Server Activity

Create Queue
Operationsthe

Customer

for

Server for
Customer

Terminate

FIGURE 3.8
A simple network model consists of a creation node, a queue node, a terminal
node, and an activity branch.

3.1.3.2 Event, Continuous and Combined Modeling

An important aspect of Awesim is that alternate worldviews can be combined within
the same simulation model.

� Process Orientation
The process orientation provides a concise and easy-to-learn modeling frame-
work, but it lacks flexibility. As illustrated in Figure 3.8, Awesim employs
a network structure to represent a framework model. This model pictorially
represents the systems of interest, and the entities in the system flow through
the network model.

� Event Orientation
Event orientation provides difficult but highly flexible modeling framework.
Awesim defines the events and the potential changes to the system when an
event occurs. Mathematical and logical relationships are used to prescribe
the changes associated with each event type. Awesim provides a set of stan-
dard subprograms to perform common discrete event functions, such as event
scheduling, statistics collection, and random sample generation. Awesim pro-
vides time-advanced mechanisms to control the simulation. Additionally, Awesim
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provides the initiating calls to the appropriate event subroutines at the proper
points in simulated time. Hence, the modeler is completely relieved of the task
of sequencing events to occur chronologically.

� Continuous Model
Awesim codes the continuous model by specifying the differential or differ-
ence equations that describe the dynamic behavior of the state variables. These
equations are coded by the modeler in Visual Basic and Visual C. When differ-
ential equations are included in the continuous model, they are automatically
integrated by Awesim to calculate the values of the state variables within an
accuracy prescribed by the modeler.

3.1.3.3 User-Defined Function Interface

Awesim provides nodes to describe the entity flow to build the network model. In ad-
dition, Awesim supports user-written Visual Basic and Visual C inserts. The EVENT
and ENTER nodes provide the key interface points between the network model and
user codes. Awesim also provides the capability for allocating and freeing units of re-
sources, altering resource capacities and specifying selection rules from user-written
subprograms.

3.1.3.4 Simulation Analysis

Awesim provides several standard distribution functions to modelers. These include
the Beta, Erlang, Exponential, Gammar, Lognormal, Normal, Poisson, Triangular,
Uniform and Weibull functions. Awesim also supports special user-defined func-
tions. Moreover, Awesim provides several statistical reports for final data analysis.
Awesim also provides simulation data for system performance evaluation. Examples
of a system performance analysis are shown in Figure 3.9 and Figure 3.10. Figure 3.9
presents the detail simulation information for the number of jobs in the system when
the kth job finished. Figure 3.10 shows the number of jobs in the system along
the simulation time. Awesim also provides the animation to express the simulation
results and the resulting status of the system.

In summary, SLAM is a high-level performance modeling language, which provides
the capability to describe the overall system as a stochastic system, and provides a
useful simulation methodology for performance evaluation. However, it lacks the
capability to model and simulate hierarchical multiple-level MEFS behavior. Its
modeling capability is limited to abstract high-level models, and it does not support
component-level coupled-energy descriptions.
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FIGURE 3.9
The number of jobs in the system when the Kth job finished.

3.1.4 C/C++ and Matlab

3.1.4.1 General Purpose Language - C/C++

C/C++ is a powerful and flexible language. In addition, C/C++ is a popular language
preferred by professional programmers, and a wide variety of C/C++ compilers and
helpful accessories are available. Moreover, C/C++ is a portable language. A C/C++
program written on a specific computer system can be compiled and run on another
system with little or no modification. C/C++ provides very powerful dynamic data
structures, such as pointers, linker and structure arrays. The flexible semantics and
adequate mathematic functions make it possible to build any system model. C/C++
code can (and should) be written in routines called functions. These functions can
be reused in other applications or programs. By passing pieces of information to the
functions, the modeler can create useful, reusable code.

However, standard C/C++ does not possess the description capacity to directly study
MEFS component-level coupled-energy behavior. For example, C/C++ does not
have a natural way to represent constrained data types, concurrency and clocks.
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FIGURE 3.10
The number of jobs in the system at time t.

3.1.4.2 High Array Simulation Language - Matlab

Matlab is a powerful high-level language that is especially suitable for demonstrating
mathematical concepts [68]. Matlab offers a useful working environment for model
quick calculation and full simulation tasks. Additionally, Matlab, which is named
as an array-based language, excels in the area of matrix computation; it has func-
tions for nearly every type of matrix calculation. A variety of data types, such as
matrices, data arrays, structures, character arrays, and cell arrays, can be created and
loaded into Matlab. Moreover, the data can be analyzed and graphically visualized
in numerous ways.

The Matlab C Math Library makes the mathematical core of Matlab available to
application programmers. This library is a collection of approximately 300 math-
ematical routines written in C. Programs written in any other language capable of
calling C functions can call these routines to perform mathematical computations.
Matlab possess plentiful components and provides lots of powerful tools for special
engineering calculation, which is very useful for system modeling and simulation.

Despite these advantages, Matlab lacks the capacity to describe the MEFS architec-
ture. It does not support concurrent execution semantics and sequential execution
semantics needed. In addition, Matlab does not possess the lower-level component
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modeling capability. For instance, Matlab does not support discrete event driven
modeling, concurrent simulation, and multiple logical values. Moreover, there is
general consensus among most Matlab users that certain Matlab programs run ex-
tremely slowly.

3.1.5 SystemC

Since C and C++ are the dominant programming languages, and C++ provides the
capability to extend the language through classes without adding new syntactic con-
structs, a C++-based approach for hardware modeling is especially attractive. Sys-
temC is a new open source library in C++. It supports the hardware-software co-
design and the description of the architecture of complex systems consisting of both
hardware and software components. It has been widely used in electronic hard-
ware/software codesign [69], system-level design [70], and hardware synthesis [71].
SystemC and standard C++ development tools can be used to create a system model
from the system level to the component level, quickly simulate to validate and opti-
mize the design, explore various algorithms, and provide the hardware and software
development team with an executable specification of the system. Based on the main
features of SystemC version Beta v1.1 [72], the suitability of SystemC is discussed
for building a hierarchical MEFS modeling and simulation environment.

3.1.5.1 Module and Process

SystemC carries the notion of a container class called a Module. Process is used to
describe functionality. This is a hierarchical entity that can have other Modules or
Processes contained in it. Module and Process can have a functional interface, which
allows us to hide implementation details and, in this fashion, include blocks of IP.
In addition, Process can be stand-alone entities or can be contained inside a Module.
SystemC provides Module and Process to describe the complex MEFS hierarchical
architecture.

3.1.5.2 Rich Set of Port, Signal, and Data Types

To support modeling at different levels of abstraction, from the system level to the
component level, SystemC supports a rich set of port and signal types. They are very
useful to describe the communication between different fluidic components. Addi-
tionally, SystemC supports a rich set of data types for describing the different fluidic
sample properties, and multiple energy domains and abstraction levels. In contrast
to VHDL/VHDL-AMS, which limit their variables’ scope in single functional block,
the scope of variables in SystemC is in the complete system. In addition, the fixed
precision types allow fast simulation. The arbitrary precision types can be used for
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computations with large numbers and to model large buses. SystemC also includes
a rich set of overloaded operators and type conversion mechanisms for those data
types.

3.1.5.3 Clocks and Reactivity

SystemC has the notion of clocks as special signals. Clocks are the timekeepers
of the system during simulation. Multiple clocks, with arbitrary phase relationships,
are supported. Besides the simulation clocks, SystemC includes an ultra light-weight
cycle-based simulation kernel that allows high-speed simulation. Moreover, for mod-
eling reactive behavior, SystemC provides mechanisms for waiting on clock edges,
events, and signal transitions. SystemC also supports watching for a certain event,
regardless of the execution stage of the process (the most common example is the
watching of a reset signal).

3.1.5.4 Enhanced Communication Protocols

SystemC provides multi-level communication semantics that enable designers to de-
scribe system I/O protocols at different levels of abstraction. In addition, SystemC
supports a communication primitive called channel. A channel is a special type of
signal that synchronous and asynchronous processes may use to communicate with
each other. It can support complex communication protocols. Moreover, SystemC
provides abstract ports that include communication semantics defined in the form of
protocols.

3.1.5.5 Multi-level Hierarchical Modeling and Simulation

The multiple-level abstraction design methodology is one of the most important
properties of SystemC, ranging from the higher system level to the lower component
level. SystemC provides the higher-level system specification to enhance MEFS top-
down design process. In addition, SystemC’s process-interaction worldview pos-
sesses the description capacity for MEFS higher-level queuing nature. Moreover,
SystemC supports the event-scheduling representation, and the continuous perspec-
tive to describe the component behavior. To model and simulate continuous world-
view with SystemC, differential equations with respect to time can be discretized
and transformed into corresponding difference equations. Moreover, in contrast to
the simulated event for the event-scheduling perspective of VHDL/Verilog, which
means the simulation of program has to be connected with a simulator, SystemC
provides the compiled event, which means the program can be compiled, then run
independently of other simulators. The compiled event provides better simulation
performance for large systems.
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3.1.5.6 Language and Associated Simulator

Due to the complexity of MEFS designs, it is necessary to relieve the system designer
of the burden of simulator development. Designers mainly focus on the system mod-
eling using related modeling and simulation languages. The associated simulator can
automatically solve the system model with sophisticated mathematical methods, and
it offers a flexible and standard interface for a user-defined program. Since SystemC
does not provide an associated simulator, the designer is required not only to model
the system behavior, but also to build the model solver.

Table 3.3 Comparison between Different Simulation Languages

Languages SystemC VHDL and SLAM Matlab C/C++
VHDL-AMS

Associated Simulator Poor Good Normal Good Poor

ODAEs Description Good Normal Poor Poor Good
Capability

Multi-level Description Good Poor Poor Poor Good
Capacity

Concurrency/Timing Good Good Good Poor Poor
Mechanism

Data Structure Good Poor Normal Normal Good

Analysis Capability Normal Normal Good Good Normal

In summary, as shown in Table 3.3, after evaluating the suitability of these languages
for MEFS hierarchical design, we conclude that SLAM II, VHDL/VHDL-AMS,
C/C++, and Matlab are not suitable to handle the complete MEFS modeling and
simulation. In contrast, SystemC is a viable candidate to develop a MEFS hierarchi-
cal modeling and simulation environment. This motivates the work reported in the
rest of this chapter.
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3.2 Building Design Environment with SystemC

In this section, a hierarchical modeling and simulation environment based on Sys-
temC is presented. At first, in Section 3.2.1, the general characteristics of a hier-
archical integrated design environment are discussed. Then, a MEFS system-level
hierarchical modeling package with SystemC is presented in Section 3.2.2, and a
MEFS circuit-level component modeling package with SystemC is discussed in Sec-
tion 3.2.3. Finally, the numerical simulation package and the optimization/verification
package are described in Section 3.2.4 and Section 3.2.5, respectively.

3.2.1 Hierarchical Design Environment

As mentioned in Chapter 1, on the analogy of the Gasjki and Kuhn’s Y-chart in
microelectronics CAD, as shown in Figure 3.11, a MEFS closed-loop integration
design environment should extend the system design from the component level to
the system level, and includes the following three functional blocks:

� Hierarchical Modeling and Simulation

� Hierarchical Design Optimization

� Hierarchical Design Verification

Therefore, the design environment consists of four different functional packages:
system-level modeling package, circuit-level component modeling package, numer-
ical simulation package, and optimization/verification package. These functional
packages are discussed in the following sections.

3.2.2 System-level Modeling Package

System-level modeling involves the system performance modeling and the simula-
tion of stochastic behavior in executing a specific biomedical and chemical applica-
tion. In addition, system-level modeling studies the reconfigurable system architec-
ture performance, scheduling, and throughput, etc. Therefore, it includes the follow-
ing four functional blocks. As a special case study, a SystemC behavior model of a
micro-chemical handling system is presented in Chapter 4.
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FIGURE 3.11
MEFS closed-loop integrated design environment. It extends the system de-
sign from the component level to the system level, and includes three functional
blocks.

3.2.2.1 Fundamental Elements

Depending on the system-level characteristics of MEFS, the fundamental elements
for system modeling are:

� Storage part
The storage part, such as a fluidic input buffer, is used to temporarily store the
fluidic samples. When the fluidic sample enters the microfluidic system and
the fluidic processor is busy, the fluidic sample is stored in the fluidic input
buffer. Storage buffers are the independent functional blocks. The module
construct can be used to model storage buffers. Modules include ports, con-
structors, data, and function members. In addition, processes, as the basic unit
of execution, are used to emulate the behavior of the target device and system.

� Transportation part
The transportation part, such as fluidic channels in the continuous flow sys-
tem, or the two dimensional electrode arrays in the fluidic droplet movement
system, is used to deliver fluidic samples from one site to another. The trans-
portation time for each fluidic sample depends on the fluidic sample charac-
teristics and the performance of actuators, such as micropumps or electrodes.
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Processes can be used to model the functionality of the transportation part.

� Processor part
Processors, such as fluidic analyzers, and mixers, etc., are the key parts for a
MEFS bio/chemical application. Different processors have various processing
properties. The processing time is based on the fluidic sample features and the
processing function. Module is used to model the complete processor group.
The individual processor functionality is defined with Process.

3.2.2.2 Timing Clock

SystemC has the notion of clocks as special signals, which are the timekeepers of
the system during simulation. In addition, clocks generate timing signals to synchro-
nize simulation events. This allows parallel events to be properly modeled by the
simulator on a sequential computer.

A clock object has a number of data members and methods to perform clock func-
tionality. An example of a clock object is as follows.

sc_clock system_clock("System-clock", 20, 0.5, 1, false)

This declaration creates a clock object named “System-clock” with a period of 20
time units (The default time unit for SystemC is second), a duty cycle of 50%, the
first edge occurring at 1 time units, and the first value being false.

3.2.2.3 Fluidic Sample Declaration

MEFS system-level modeling is object-oriented, and it studies the change of fluidic
sample characteristics. A complex and flexible fluidic sample data structure is built
with SystemC. Table 3.4 shows the simulation result of a certain fluidic sample based
on this data structure. It consists of the fluidic sample physical properties, and sim-
ulation procedure records. Each fluidic sample has a unique identification number.
For instance, the ID of the fluidic sample shown in Table 3.4 is 12. The volume of
the fluidic sample 12 is 30 units. Its processing purpose is for analyzing, and the
analyzer 2 did it. At 56 time units, this fluidic sample enters the system (also called
the generating time). At 70 time units, it arrives at the system storage buffer. At
107 time units, it arrives at the processor (analyzer 2). Total processing time is 30
time units, and the fluidic sample completes the processing at 137 time units. Fluidic
sample 12 uses channel 1 for transportation from the inlet to the processor, and uses
channel 2 for dispersing from the processor to outlet. The leaving system activity
happens at 167 time units.
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Table 3.4 Fluid Sample Simulation
Record

Fluid sample:
Fluid ID = 12
Volume = 30
...
Processing Purpose = Analyzing
Processor ID = Analyzer 2
Generating Time = 56
...
Arriv. Buffer Time = 70
...
Pre Channel ID = Channel 1
Arriv. Processor Time = 107
Finish Process Time = 137
...
Post Channel ID = Channel 2
Terminate Time = 167

3.2.2.4 Fluidic Sample Transaction between Different Functional Blocks

The Master and Slave processes, which can perform data transactions based on an
address, are used to perform fluidic sample transaction between different functional
blocks. Using this mechanism, a Master process can write to or read from an address
in a memory block. This memory block is in a Slave process. The syntax for Master
and Slave processes is shown below

Syntax:
sc_outmaster<fluid_type,

sc_fullHandshake<fluid_type> > fluid_out;
sc_inslave<fluid_type,

sc_fullHandshake<fluid_type> > fluid_in;

where the “fluid type” is the name of a fluidic sample structure. It consists of features
of a fluidic sample shown in Table 3.4. The “fluid out” and “fluid in” are two vari-
ables possessing the “fluid type” structure. Additionally, SystemC provides different
communication protocols at different abstraction levels, from the abstract functional
level to the detailed bus-cycle accurate (BCA) level.
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3.2.3 Circuit-level Component Modeling Package

The goal of MEFS component modeling and simulation is to study individual mi-
crofluidic components at the circuit-level of abstraction, emphasizing the definition
of physical properties and their relationships across multiple energy domains. There-
fore, the circuit-level component modeling package includes the following four func-
tional blocks. A special case studying for MEFS circuit-level modeling with Sys-
temC is presented in Chapter 4.

3.2.3.1 Energy Domain Behavior Declarations

Based on the microfluidic component modeling common characteristics discussed in
Chapter 2, coupled energy component modeling requires the declaration of the com-
mon across variables and through variables to represent individual energy domains
and disciplines. Therefore, by using signal, SystemC provides the declarations for
the across and through variable for each energy domain. Figure 3.12 shows this
declaration. They are grouped according to the energy domain.

-- ENERGY_SYSTEMS
signal <float> ENERGY;
signal <float> POWER;
signal <float> PERIODICITY;

-- MECHANICAL_SYSTEMS
signal <float> TRANSLATION;
signal <float> FORCE;
signal <float> ROTATION;
signal <float> TORQUE;

-- ELECTRICAL_SYSTEMS
signal <float> VOLTAGE;
signal <float> CURRENT;

-- FLUIDIC_SYSTEMS
signal <float> PRESSURE;
signal <float> FLOW_RATE;

-- THERMAL_SYSTEMS
signal <float> TEMPERATURE;
signal <float> HEAT_FLOW;

FIGURE 3.12
The declaration of the common across variables and through variables for each
energy domain using SystemC.
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3.2.3.2 Coupled-energy Modeling

The special coupled-energy problems in MEFS require simultaneous statements de-
scribing concurrent events. These events can represent the dynamic behavior of com-
ponents, processing events or transportation parts. Besides the standard C/C++ syn-
tax, SystemC provides additional concept of Process, which includes three different
types: Methods, Threads, and Clocked Threads to model the simultaneous activities
in a system. Process is started or suspended when a certain condition is true, and
returns control back to the calling mechanism when complete. The condition can be
a clock edge, a variable, or a signal expression. As in VHDL, the concurrent pro-
cesses in SystemC are loosely-coupled. The sensitivity list for each process has to
be expressed explicitly.

3.2.3.3 Conservative ODAEs Description Capability

As mentioned previously, lumped-element models are appropriate for describing the
MEFS dynamic behavior with a conservative set of simultaneous ODAEs. These
ODAEs governing composite microsystems possess a global structure reflecting the
fact that physical systems obey laws of conservation of energy. In contrast to VHDL-
AMS, SystemC does not directly provide constructs for defining sets of simultaneous
ODAEs. Additionally, it is the user’s responsibility to write and verify the energy-
conservative models. However, its procedures provide powerful ODAEs description
and solving capability.

3.2.3.4 Analytical Modeling

An analytical model for MEFS has several advantages: rapid development (as com-
pared to numerical model with FEM), adjustable parameters, and ease of system
optimization. The analytical model of MEFS is described with the mathematical ex-
pression. SystemC provides a powerful and flexible description capability to build
the analytical model within Process.

3.2.4 Numerical Simulation Package

In order to study MEFS stochastic behavior for a reconfigurable system architecture
and a biomedical/chemical application, and to study the coupled-energy behavior of
MEF components, a numerical simulation package is necessary. This numerical sim-
ulation package includes two parts: a real mathematical function, and mathematical
solvers for DAEs.
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3.2.4.1 Mathematical Function

Some MEFS behavioral models can be solved analytically [16]. Therefore, a math-
ematical package with SystemC is required to provide the internal function to solve
these analytical models. Moreover, MEFS system-level stochastic behavior requires
this mathematical package contain the common real constants and common real
probability functions. SystemC supports the capacity to build this mathematical
package with the regular function procedures or Process.

3.2.4.2 DAEs Solvers

MEFS component behaviors are associated with the ODAEs. Because these DAEs
are coupled and some of them are inherently non-linear, they must be solved numer-
ically and simultaneously with system simulation. Unlike VHDL-AMS, SystemC
language does not directly provide an associated simulator to solve simultaneous
ODAEs over a series of intervals denoting a period of time. Nevertheless, by us-
ing the regular function procedures or Process, users can code various DAEs solvers
with SystemC, such as derivative and integral, and add them into a SystemC compo-
nent behavior model. Moreover, besides the original simulation clock, SystemC can
supply a higher-frequency clock to provide a series of time interval for more accurate
ODAEs function solutions.

3.2.5 Optimization/Verification Package

With growing design complexity, fabrication process variation, and the harsh oper-
ating environment of MEFS, there is a need for hierarchical design optimization to
support all aspects of product development, including design, manufacturing, and op-
erational use. In addition, design optimization methodologies are required to match
multiple design optimization objectives. Therefore, research is needed to investigate
how to utilize the state-of-the-art optimization design methodologies in a hierarchical
integrated design environment. As a part of integrated MEFS design environment,
MEFS design optimization/verification includes two packages: a system-level op-
timization package, and a circuit-level optimization package. In combination with
the state-of-the-art hierarchical design methodology, the detailed system-level hierar-
chical optimization and performance evaluation methodology is discussed in Chap-
ter 4. The detailed circuit-level MEFS hierarchical design optimization/verification
methodology is discussed in Chapter 5.
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3.3 Conclusion

In this chapter, the suitability of several popular simulation languages is discussed
for MEFS hierarchical modeling and simulation. Then, SystemC is demonstrated as
a strong candidate for this purpose. The architecture of a hierarchical modeling and
simulation environment based on SystemC consists of three tasks. Additionally, this
design environment extends from lower-level component modeling and simulation to
higher-level system modeling and simulation. Four functional packages have been
described.
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Current microelectrofluidic processors (e.g. biochips) have largely dedicated archi-
tectures supporting relatively specialized applications. A more general microelec-
trofluidic system computational architecture is required for performing a collection
of differing analyses or procedures. However, the close integration of devices into
this computational architecture is associated with strong energy-coupling issues. In
order to support the growing complexity of MEFS design and to carry out global per-
formance optimization, system-level performance analysis methodologies and tools
are needed. These methods and tools should not only incorporate phenomenological
laws from multiple disciplines, but they should also characterize dynamical behavior
ranging from overall application execution to individual component operation.

In this chapter, we present the rationale, design, and simulation of next-generation
microelectrofluidic system computational architectures for the emerging field of bioin-
formatics. In addition, we propose a hierarchical modeling and simulation method-
ology for MEFS. We also apply our architecture and methodology to the design of a
micro-chemical handling system (MCHS). The modeling and simulation of MCHS
is based on the SystemC design environment previously discussed.

The chapter is organized as follows. First, we presents a general microelectroflu-
idic system computational architecture involving a multi-drop bus, pipelined struc-
ture in Section 4.1. Next, the hierarchical modeling and simulation methodology is
presented in Section 4.2. A micro-chemical handling system based on our general
computational architecture is described in Section 4.3. Stochastic system-level and
nodal component-level modeling based on SystemC are also presented. Hierarchical
simulation results and system performance analysis optimization are then presented
in Section 4.4. They address the system throughput, channel bus utilization, and
reservoir capabilities. Finally, conclusions are presented in Section 4.5.

4.1 MEFS Computing and Architecture1

The purpose of the architectural study of a microelectrofluidic system is to de-
velop design, analysis, and pilot implementation technologies for a reconfigurable
microliquid handling system with biomedical applications. The goal here is to lever-
age component-level technology involving (e.g., pumps, valves, and reservoirs) to
develop a microliquid handling system that can be reconfigured and reused for a va-
riety of applications in biomedical miniature chemical analysis and precision fluid

1Reprinted from Proc. 3rd Int. Conf. Modeling and Simulation of Microsystems (MSM2000). A. Dewey,
R. B. Fair, J. Jopling, J. Ding, T. Zhang, F. Cao, B. Schreiner, and M. Pollack, Towards Microelectrofluidic
System (MEFS) Computing and Architecture, pp. 142-145, 2000. c
 2000, with permission from Applied
Computational Research Society (ACRS).
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dispensing. The aim of analysis is to investigate a robust, hierarchical verification
and optimization capability that encompasses both architectural system simulation
with functional macro modeling, and circuit component simulation with lumped-
parameter nodal modeling. Finally, pilot implementation investigates continuous and
unit flow manufacturing strategies for cost-effectively constructing reconfigurable
microliquid handling system prototypes. In Section 4.1.1, we discuss the general
microelectrofluidic system architectural concepts. Next, based on the architectural
proposal in Section 4.1.2, we present reconfigurable architectural functional require-
ments in Section 4.1.3. Then in Section 4.1.4, we propose a potential continuous-
flow architecture. Unit-flow based architecture will be presented in Chapter 6. Sec-
tion 4.1.5 discusses the system performance modeling and simulation methodology
for microelectrofluidic systems.

4.1.1 Architectural Concepts

A microelectrofluidic architecture provides an integration framework for elemental
computational components. Sample elemental computational components include:

Pumps Valves
Reservoirs Chambers
Channels Nozzles

Filters Ports
Flow Sensors Diagnostic Structures

In developing initial architectural concepts for microelectrofluidics, it is instructive
to attempt to “map” microelectrofluidic architectural concepts into microelectronic
architectural concepts to gain insight into potentially useful organizational structures.
For instance, reservoirs are similar to registers in that both components hold/store in-
formation across computational time-based boundaries. Channels are similar to wire
networks in that both structures provide interconnection between components and
the means to transport information. Valves are similar to gates in that both compo-
nents provide selective connectivity to larger communication networks. Pumps are
similar to voltage sources in that both components serve as power sources, activating
components and moving information.

With this linkage, issues of optimal ways to sequence data (electric charge) move-
ment through a computer to affect the execution of an instruction potentially apply
to the movement of liquid through a microfluidic molecular system to affect the ex-
ecution of a recipe. For example, issues of the design of power distribution for a
computer apply to the design of pump apportionment for a microfluidic molecular
system. Within such a conceptual framework, many of the organizational aspects of
high performance register transfer data path and control flow computer architecture
design can be profitably investigated for microfluidic molecular system architecture.
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Conceptual electronic and fluidic architectural analogies are summarized in Table 4.1.
Liquid is the “data” and is oriented primarily horizontally, whereas process control
manages the sequencing of liquid movement and is oriented primarily vertically.
Process control involving pump and valve activation provides the ability to enact
several different fluidic-based process sequences (recipes) using the same canonical
hardware. Acquisition (input) and dispensing (output) processing is decoupled by
allocating separate reservoirs (register banks). Reservoirs are connected by a bus
structure of channels and liquid storage. Similar to Arithmetic Logic Units (ALUs)
or Memory Management Units (MMUs) for computers, various units that perform
specific fluidic processing operations, such as agent detection or composition mea-
surement, can also be connected to the channels. Fluidic analogies to electronic
accelerator functions, such as floating point computation or network protocol en-
code/decode, are catalysts.

Table 4.1 Microelectronic and Microfluidic Architecture Analogies

Resource Computer Architecture Microelectrofluidic Architecture
Storage Register Reservoir
Transport Wires Channels
Effort Voltage Pressure
Flow Current Volume
Switching Gates Valves
Power Apportionment Power Networks Pressure Lines
Processing Instruction Sequencing Task Sequencing
Resource Utilization Register Allocation Reservoir Allocation

4.1.2 Architecture Proposal

Building on the general discussion of microelectrofluidic architectural concepts dis-
cussed in the previous section, this section presents the structure of a preliminary
microelectrofluidic architecture for reconfigurable computational microelectrofluidic
systems. To understand the rationale for microfluidic system architectures, several
key functional requirements and implementation constraints influencing the archi-
tecture design need be discussed. First, though the emphasis is on biomedical mi-
croliquid handling applications of agent detection and precision drug dispensing,
the microelectrofluidic architecture should be able to support a wide array of mi-
croliquid handling processes involving sample and reagent acquisition, preparation,
routing, transport, handling, and dispensing. These applications are typically con-
tinuous flow or analog operations, often involving highly custom microfluidic struc-
tures. This functional requirement implies a continuous flow “datapath” composed
of a family of operations provided by a suite of multiple, possibly customizable,



SYSTEM-LEVEL SIMULATION AND PERFORMANCE EVALUATION 79

units. Different datapaths can be realized by instantiating different combinations of
operational units. Conversely, control-oriented operations of input (acquisition) and
output (dispensing) routing of fluid through the datapath and possible storage of in-
termediate results are often common across microliquid handling processes and, as
such, represent opportunities for a common and consolidated “control path”.

Another functional requirement involves the need to support multiple microfluidic
recipes, with each recipe involving multiple steps. Multiple steps implies a level
of component integration greater than two or three units. Multiple recipes implies
the need for reconfigurability, meaning that flow networks connecting various mi-
crofluidic components can be changed to route different liquids through different
sequences of operations. Additionally, reuse is important to avoid the limitations
of one-time disposable units. The functional requirement of reuse implies system
flushing strategies to prevent problems of contamination or errant chemical reac-
tions. Finally, there is a need for throughput performance scalability, supporting a
wide range of liquid volume flow rates with high precision.

Implementation constraints also have a significant influence on architecture design.
For instance, microvalves are expensive and micropumps are even more expensive.
Designing miniature analogs of macro valves in a manner conductive to microfab-
rication technology (lithography or micromolding) is presently a major technology
challenge and an active research area. Present prototypes report moderate switching
capabilities. Micropumps rely on microvalves for input and output rectifying flow
and present additional energy consumption challenges related to realizing periodic
pressure activation. Another implementation constraint concerns accommodating
the wide array of microvalve and micropump actuation techniques, involving piezo-
electric, thermopneumatic, electrostatic, electromagnetic, and bimetallic. Ideally, the
microelectrofluidic architecture should not bias a particular manufacturing strategy.

4.1.3 Reconfigurable Architectural Functional Requirements

The much revered goal of such fludic systems is the much touted laboratory-on-a-
chip, or micro-total analysis system (�TAS). Such a system must be versatile enough
to handle a range of procedures for any laboratory or environment in which it would
be employed, anywhere from a research laboratory to a crime scene to on-site emer-
gency medical care to the front line of battle. This being the case, it is clear the
potential applications are wide ranging.

This is where the use of analogies to the more developed electrical world are most
useful. A detailed look at a set of potential applications reveals that despite the
wide variety of procedures, there exists a fundamental ‘instruction set’ of fluidic and
biochemical operations that can be ‘reprogrammed’ to accomplish countless larger
scale operations (Figure 4.1). What ultimately makes each procedure unique is the
final analysis step. In turn, each of these ‘instructions’ requires that certain hardware
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units be present for execution, much the way an ADD operation could not execute
without an ALU.

Biomedical Fluidic Application
App.1, App.2,...…,App.n

Elemental Set of Operations
Op.1, Op.2,.........…,Op.i

Elemental Set of Components
Comp.1, Comp.2,….,Comp.j

System Integration
Reconfigurable Microfluidic Architecture

• Agent Detection
• Precision Dispensing
• Enzyme Analysis
• Electrochromatography
• Capillary Electrophoresis
• Molecular/Protein Analysis
• Isotachophoretic Separation

• Transport
• Mixing
• Flushing
• Filtering
• Analysis
• Detection
• Monitoring

• Buffers
• Reservoirs
• Channels
• Pumps
• Valves
• Nozzles

FIGURE 4.1
Microelectrofluidic applications

As mentioned above, the system must be fairly flexible in its programmability. This
reconfigurability can occur on two levels, either by electrical control or through phys-
ical instantiation. Electrical control is little different from that found in established
computational architectures, and is dictated by an overseeing program. Physical
instantiation involves modular components that can be removed and added to the
architecture to meet a specific demand.

4.1.4 Potential Architecture

Having identified the component set necessary to realize the instruction set, the ques-
tion remains as to how to organize and interconnect them to give the best perfor-
mance. Dealing in a fluidic/chemical domain rather than an electrical domain, the
key is the observation that each canonical operation will likely have differing exe-
cution times. This can depend on the operation, the overall procedure performed,
and the respective fluids involved. The simplest example is the execution of the final
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analysis step, which will typically last much longer than the preceding preparation
steps. In addition, unlike in modern computer architectures, these operations cannot
be further broken down into a series of small steps capable of being pipelined. The
lowest level of pipeline granularity occurs at the level of the canonical operation.

This observation of disparate execution times implies a bus oriented architecture,
where devices can be accessed in parallel with no requirement that one operation
completes before another operation initiates. Furthermore, more frequently accessed
and faster executing operations will necessitate more frequent use of the bus than
comparably longer and infrequent operations.
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FIGURE 4.2
Microfluidic architecture

These factors are reflected in the architecture of Figure 4.2. The design is one cen-
tered around multiple buses. The Fluidic Central Controller (FCC) is the central
storehouse, providing an interface into and out of the macroscopic world, as well
as intermediate storage for running processes. The Fluidic Processing Unit (FPU)
communicates with the FCC via the Primary Processing Bus. Units within the FPU
may communicate amongst each other via the Secondary Processing Bus without
having to occupy the primary bus. In addition, on the opposite side of the FCC, com-
municating via the Pre/Post Processing Bus, is the Pre/Post Processing Unit (PPU),
in which additional preparation and cleanup processes may occur. Similarly to the
FPU, the units of the PPU may communicate with each other via the Precipitate
Bus, where they may exchange reagents or expel waste by-products without having
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to occupy the Pre/Post Processing Bus.

4.1.5 Performance Modeling and Simulation

Figure 4.3 shows a Petri Net representation of the system architecture. The two major
buses that connect the FCC, PPU, and FPU together are represented as resources.
When a sample enters the system, it can take one of two branches, depending on
which resources are available. For example, if the FPU bus is free, the sample will
be transferred to storage units through the FPU bus. Once in the storage cell, it will
again wait for the needed bus resource to be available. This time it is transferred
to the PPU. This process will continue until the sample has finished all processing
steps and is sent back to the storage cells in the FCC. There it waits for a bus to be
available to be expelled from the chip.

A couple of notes about the model and simulation. First, it is necessary to observe
that the peripheral buses are considered internal components of the FPU and PPU
and, therefore, not explicitly in the Petri Net model. Second, this model assumes a
simple procedure that requires only one trip each to the PPU and FPU to complete
the operation. Input and output, of course, are the duty of the storage buffers in the
FCC. This model also assumes that input fluids are first stored before processing
occurs, and output fluids are stored before being expelled (as opposed to possibly
buffering from input/output directly to/from a processing unit).

Figure 4.4 shows the system level schematic network modeling of this sequential
Petri Net system, which benefits the study of system throughput, utilization, and the
analysis of the bottleneck in the system performance.

Based on the Petri Net representation in Figure 4.3, we can build a system model and
simulation to study the system performance. There are several fluidic and pre/post
processing units in the architecture. Each of them processes just one unit of incoming
fluid sample. Storage buffers include many cells of the same volume. There is only
one bus between the FPU and FCC (the primary FPU bus), and one between the PPU
and FCC (the PPU bus). The interarrival time of fluidic samples satisfies a certain
probabilistic distribution.

Figure 4.5 shows throughput simulation results. The horizontal axis denotes the sam-
ple input rate. The vertical axis represents what proportion of the inputs are accepted
and processed by the system. The straight line shows an ideal case when availabil-
ity of the system is guaranteed and all input samples are accepted and processed.
The other curve is actual system performance. When input rate is low, throughput is
nearly linear – the performance of the system approximates the ideal when input rate
is low. At increased input rates, actual throughput drops below the ideal and quickly
reaches saturation. At saturation, throughput remains constant regardless of input
rate variation. Saturation is a common phenomenon in the study of system perfor-
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Actual vs. ideal system throughput

mance – it tells us that the resource is limited with respect to demand. The closer to
the saturation point the system is operated, and the higher the saturation level of an
architecture, the more efficiently we use available resources.

System architecture optimization is the key for higher system performance. Figure
4.6 shows the bottleneck of the system. The horizontal axis shows processing time
normalized by bus transfer time. The vertical axis represents utilization. At low exe-
cution time ratios, transferring samples through the bus takes longer than processing
samples. Therefore, the system bus is heavily utilized and processing units are under
utilized (utilization below 0.1). There is a bottleneck at the point of communication.
On the other hand, when bus transfer time is 1

4
of processing time, processing be-

comes the bottleneck. More processing units would be needed to keep the system
running at full speed. The ideal case for this model is when bus transfer time is
exactly 1

3
of processing time, where both communication resources and processing

resources are well utilized.

Furthermore, the hardware design of microsystems is also related to the control soft-
ware design. Figure 4.7 shows the utilization of each functional unit with a certain
fluidic processing route control schedule. Although either bus (primary FPU or PPU)
may become the bottleneck to improving the system performance, the FCC is the
center of MEF systems. Its architecture and control scheduling should be carefully
designed, otherwise “deadlock” due to cycle resource requirements between the re-
lated functional units may happen to make the system collapse.

MEFs has advanced immensely in recent years. However, designs and devices are
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still largely application and function specific. Here, the design of a larger reconfig-
urable MEFS architecture has evolved from the demands that executing many appli-
cation sets require. The system has logical functional units (FCC, FPU and PPU)
and an interconnecting bus system that allows communication internally.

Performance simulation of such an architecture indicates that optimum performance
is highly dependent upon the relationship between transit time and actual processing
time. In addition, the distribution of process times associated within one functional
unit (FPU or PPU) will play a role in optimizing bus and system usage. Furthermore,
control scheduling is observed to also be a potential point for throughput bottleneck-
ing or system dead-locking. Armed with this new knowledge, further efforts plan on
implementing physical models, exploring these relationships and seeking out other
potential hazards and places for improvement. These discoveries are then fed back
onto the design of the architecture to successively move closer to the design of a true
laboratory on a chip.

4.2 Hierarchical Modeling and Simulation Methodology2

In this section, we introduce the main concepts underlying hierarchical modeling
and simulation for MEFS. These concepts are related to the MEFS hierarchy, the
hierarchical modeling and simulation strategy, and software implementation issues.

4.2.1 MEFS Hierarchical Perspective

Figure 4.8 illustrates the hierarchy inherent in MEFS. Each layer of abstraction
presents unique model fidelity, domain representation, and simulation efficiency re-
quirements and challenges. Stochastic modeling and simulation provides a level of
abstraction for studying architectural performance issues such as the architectural
bottlenecks and capacity. Process flow modeling and simulation provides an addi-
tional level of abstraction for studying biomedical application execution issues, such
as the throughput and overall execution times. Circuit-level component modeling
and simulation provides a level of abstraction for studying the microfluidic compo-
nent behavior in more detail. The ultimate objective of component modeling is to
find a common modeling style and analysis strategy for the electrical, mechanical,

2This section is based in part on “T. Zhang, F. Cao, A. Dewey, R. B. Fair and K. Chakrabarty, Performance
analysis for microelectrofluidic system using hierarchical modeling and simulation. IEEE Transactions
on Circuit and System II: Analog and Digital Signal Processing, vol. 48, no. 5, pp. 482-491, May 2001.”
c
 2001 IEEE. Reprinted by permission.
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and fluidic domains involved in MEFS. In addition, component simulation models
are based on the ODAEs underlying these domains. They are also based on a deeper
understanding of the physical principles governing the microfluidic device behaviors.

Biomedical 
Application

Component

Microfluidic
Architecture

•Process Flow
•Continuous Fluid Movement/Reactions

•Performance
•Stochastic Behavior/Resource Contention

•Physical Principles
•Differential and Algebraic Equations (DAEs)

FIGURE 4.8
Integrated modeling and simulation hierarchy for microelectrofluidic systems
(MEFS) consists of three levels of abstraction.

4.2.2 Hierarchical Performance Evaluation Strategy

MEFS performance analysis is difficult because coupled-energy behavior creates
strong links between high-level architecture and low-level component design pa-
rameters. For instance, micropump actuation frequency influences fluidic sample
transport rates, which, in turn, influences overall reaction and dispensing rates [4].
As another example, reservoir allocation, reaction scheduling, and time sequencing
of microvalve settings influence resource utilization and overall area requirements.
Therefore, a new MEFS hierarchical design strategy is required that incorporates
phenomenological laws from multiple disciplines to characterize dynamical behav-
ior ranging from overall application execution to individual component operation.

We adopt the strategy of trading-off behavioral fidelity with the efficiency of anal-
ysis, “blinding” unnecessary low-level detail, and paying more attention to cer-
tain tractable subsystems [73]. This encompasses architectural system simulation
with stochastic macro modeling, and circuit component simulation with lumped-
parameter nodal modeling. A hierarchical modeling and simulation methodology,
shown in Figure 4.9, can then be developed to deal with the performance analysis
challenges of MEFS. Each level of the modeling and simulation hierarchy possesses
a unique set of representational conventions and simulation methodologies that are,
for designer convenience, provided by a set of data and operator definitions. Differ-
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ent functional blocks are refined to different level based on the design requirements.
Some of them, such as A and B, are refined to the deeper level for providing more
detailed design information. Some of them, such as C and D, just provide abstract
information.

System

Subsystem

Component

Element

A
B

CD

FIGURE 4.9
Schematic view of hierarchical modeling and simulation; different functional
blocks are refined to a different level based on the design requirements.

4.2.3 Modeling and Simulation Language

Traditionally, different modeling and simulation languages are used for describing
the unique set of representational conventions and simulation methodologies for each
level of hierarchy. However, this multidisciplinary system design requires human
interaction. It also leads to problems of misinterpretation of concept specifications
in the translation between different data models and tools. Therefore, the SystemC
hierarchical design environment discussed in Section 3.2 is used for complete MEFS
hierarchical modeling and simulation.
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4.3 Micro-Chemical Handling System

With the MEFS device capabilities advancing and discrete components improving[17],
[16], small systems that combine existing components into a more useful device
have all been conceived and many have been built, for example, devices for DNA
analysis [2], chemical analysis [74], and more. The micro-chemical handling sys-
tem (MCHS) is a well-known promising microsystem technology application in the
chemical analysis area, which provides multiple processing functions, such as liquid
mixing, analyzing and catalyzing, on a single microsystem. Based on the reconfig-
urable microliquid handling system architectural design discussed in Section 4.1 and
the processing elements structure [75], the potential architecture of a micro-chemical
handling system is presented in Figure 4.10.

Bidirectional 
Micropump

Processor

Bus Storage Buffer

Plug in/out
Interface

reservoir

reservoir

reservoir

Post process

Analyzing Liquid

Mixing Liquid

Catalyzing Liquid

Micro Chemical Handling System

Bus Channel

FIGURE 4.10
Micro-chemical handling system consists of processing elements and a reconfig-
urable mother-board.

The architecture of MCHS is composed of processing elements and the reconfig-
urable mother-board. The reconfigurable mother-board contains the liquid entrances,
a bus storage buffer containing n equal volume cells, and a single bus channel con-
necting the bus storage buffer to the exit. A total of M standard I/O interface ports
are located along the bus channel to connect the processing elements. A standard
processing element has a standard I/O interface port, a bidirectional micropump pro-
viding pressure-driven flow throughout the system, and a reaction chamber involving
mixers, analyzers, and catalyzers. Liquid samples enter the system from three con-
tainment reservoirs. Samples entering the system are queued in a bus storage buffer.
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Micropumps intermittently draw liquid samples from the bus storage buffer to in-
dividual processors when the bus channel and related processor is available. After
processing, the sample is pumped from the processor to the output, again when the
bus channel is available. Due to the time spent transporting a liquid sample into a
processing element, executing the chemical reaction, and transporting the resulting
sample out of the system, chemical liquid samples initially input into a bus storage
buffer until applicable resources are available. Due to the limitation of small dis-
placement of the microvalves, sample solutions are filtered. Also, processors and the
bus channel are periodically flushed with filtered calibrant solution between proto-
cols.

System performance is related to fluid flow rate, liquid arrival traffic, the structure
of the channel bus, the number of different kinds of processing elements, fluidic
sample processing time, reservoir capabilities and processing scheduling, etc. The
micropump is one of the main components of a micro-chemical handling system; it
provides the liquid driving power in the channel and processors. It determines the
important characteristic of fluid flow rate. In addition, the special chemical reaction
functionality is also a key to system performance. The following sections show how
the performance of the MCHS can be evaluated under variations of the system design
parameters.

4.3.1 Stochastic Performance Modeling

The architectural simulation model of the micro-chemical handling system is devel-
oped using a combination of process, event, and continuous control paradigms. The
operation of the micro-chemical handling system is denoted by the flow of entities
(clients) through a network structure consisting of nodes and branches denoting re-
sources, queues for resources, activities, and entity flow decisions.

Figure 4.11 shows a diagram of the queuing network model of the micro-chemical
handling system. This model is built based on the SystemC design environment.
The chemical handling process can be separated into five stages, depending on the
liquid-process routine. The first stage—the initial sample creation, is coded in pro-
ducer.h. The second stage is initial sample acquisition—fluidic sample entering and
being stored in an appropriate containment reservoir. This stage is coded with reser-
voir.h. In stage three, a fluidic sample is moved from containment reservoirs into
the bus storage buffer that is not full. The behavior of this stage is coded in bus-
fifo.h, Then when the channel bus and a related processor are free, the fluidic sample
is transported to the appropriate processor. The procedure processor.h is used for
this stage. It consists of all the processors such as mixers, analyzers, and catalyz-
ers. Figure 4.12 shows its header and implementation code of one analyzer. After
processing, the processed liquid sample is moved out from the outlet when the bus
channel is available. This terminal stage is coded in terminal.h. Simulation results
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FIGURE 4.11
A stochastic network model of the micro-chemical handling system includes five
stages.

are also recorded in this stage for further data analyses.

Figure 4.13 shows the program structure of this micro-chemical handling system.
Each functional block is hierarchically connected to the higher-level program. The
connection between different functional blocks is defined on the higher level. Asso-
ciated numerical simulation packages and optimization packages support the system
modeling, simulation and optimization. Figure 4.14 shows the MCHS top-level pro-
gram structure based on SystemC.

Without loss of generality, the volume for each liquid sample is assumed to be the
same (800�l) and equal to the cell volume. The three containment reservoirs pro-
vide an interface between the synchronous micro-chemical handling system and its
asynchronous macro environment. The acquisition f(x) as a function of time x is
modeled by a traffic of liquid samples separated by interarrival times, denoted by
fT1; T2; :::g. They are independent, identically distributed (IID) random variables,
and are characterized by an exponential probabilistic distribution given by (4.1) hav-
ing a mean value of 15 seconds, that is � = 1

15
.

f(x) = �e
��x

x � 0 (4.1)

An input liquid sample enters the bus storage buffer immediately if the related pro-
cessor (one per sample) is idle and the bus storage is not full; otherwise, the input
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SC_MODULE (processor)
{// define interface

processor_buffer<fluid_type> 

// header file: processor.h

// implementation file: 
void processor:analzyer()
  {
  while (true)
    {wait();
     fluid_select=analyzing;

// occupy the channel
...

     //delivery
...

     //processing
...

     //delivery

     fluid_out = item;
...

     //release the analyzer
...

//release the channel

   }
     }

...

    item=fluid_in;

analyzer.cpp

};

}
sensitive << clk;
SC_THREAD(reactor);
sensitive << clk;
SC_THREAD(mixer);
sensitive << clk;
SC_THREAD(analyzer);

{
SC_CTOR(processor)

void reactor();
void mixer();
void analyzer();

sc_in_clk clk;

sc_outmaster<int> fluid_select;
sc_inmaster<fluid_type > fluid_in;
sc_outmaster<fluid_type> fluid_out; 

      Analyzer, Mixer, Reactor, ...;

FIGURE 4.12
Program structure for processor.h and analyzer.cpp.
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main.cpp

int sc_main(int ac, char *av[])
  {
  sc_link_mp<fluid_type> Inlet_reservoir;
  ...
  sc_start(simulation_length);
  }

   ...

   ...

terminal.h

SC_MODLE(terminal)
  {
  sc_inslave<fluid_type>

                 fluid_in;

  Postprocess(item);

  SC_CTOR(terminal)

  cout << item;

  };

...

 };

producer.h

SC_CTOR(producer)

   ...
  void producer_thread()

     fluid_in;
 sc_inslave<fluid_type>

     fluid_out;
 sc_outmaster<fluid_type>
{

SC_MODULE(producer)

Numerical Simulation Package

Optimization/Verification Package

(Mathematical Function, ODAE Solvers)

FIGURE 4.13
Description of the model of a micro-chemical handling system based on Sys-
temC. Each functional block is hierarchically connected to the higher-level pro-
gram.
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#include "systemc.h"

#include "fluid.h"
-- define fluidic features.

#include "config.h"
-- define system architecture.

#include "producer.h"
-- generate fluidic samples.

#include "busfifo.h"
-- define storage buffer

#include "reservoir.h"
-- define reservoir config.

#include "channel.h"
-- define channel config.

#include "processor.h"
-- define process elements
...

int sc_main(int ac, char *av[])
{
//Signals
sc_signal <int> bus_storage;

....
sc_link_mp<int> reservoir_select;
sc_link_mp<fluid_type>

producer_reservoir;
....

sc_clock genClk("genClk",
1, 0.5, 0.1, true);

....
// instantiate functional blocks.
producer fluid_producer("Master");

....
reservoir reservoir("Reservoir");

....
busFifo storage("StorageBuffer");

....
processor processors("Processor");

....
terminal Terminal("TerminalNode");

....
sc_start(simulation_length);
return 0;
}

FIGURE 4.14
Top-level structure of a micro-chemical handling system model based on Sys-
temC. It defines the communication protocol between the functional blocks.

liquid is queued into its respective containment reservoirs. The containment reser-
voirs are considered to be outside the micro-chemical handling system and they use
a first-in, first-out (FIFO) queuing discipline.

Depending on the basic architectural organization and execution concepts for assem-
bling various microfluidic devices into a network [76, 77], three general kinds of
chemical reactions are modeled to support a diverse set of applications: analyzing,
mixing, and catalyzing. The processing time is based on the fluidic sample proper-
ties and processing functionality. Here we assume the analyzing time and mixing
time are fixed as 20 seconds and 50 seconds for each fluidic sample, respectively.
The special catalyzing functionality is discussed in the next section. There are 3
analyzers, 4 mixers, and 2 catalyzers. Forty percent of the fluidic samples require
analyzing, 30 percent of the fluidic samples require mixing, and 30 percent of the
fluidic samples require catalyzing. There is one channel bus. When the channel bus
is free, a liquid sample waiting in the bus storage buffer can be transported to its
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associated processor when that processor is free. A first-request-first-occupy priority
protocol is used for channel assignment. Delivery time depends on the distance from
the bus storage buffer to the particular processor, modeled by a geometric distribu-
tion. The total length of the microchannelL is separated into several equal segments
based on M that is the number of standard I/O interface ports locating along the
bus channel. Each processor is located at each interface port sequentially. There-
fore, the distance from the bus storage buffer to analyzers, mixers, and catalyzers are
i
M
L (i = 1; 2; 3), i+3

M
L (i = 1; 2; 3; 4) and i+7

M
L (i = 1; 2), respectively. The total

number of processing elements is less than or equal to M . Here, we assume that M
is equal to 10, and the length of the channel bus is 12mm. After processing, liquid
samples are transported out of the micro-chemical handling system.

4.3.2 Thermal Catalyzing Process Functionality

Similar to the heating process discussed in Section 3.1.2.4, the catalyzing process is
a fluidic-sample thermal-reaction process. Its functionality is very useful for vari-
ous bio/chemical analyses, such as biochemical reactions with DNA [2]. After the
fluidic sample arrives at the reaction chamber, it is heated. When the fluidic sample
reaches a certain temperature, the catalyzing process finishes, and the fluidic sample
is pumped out.

Again, we assume that the initial temperature of each arriving fluidic sample is a
normally-distributed variable with mean � = 70oF, and the variance �2 as 0:8. The
initial temperature of the thermal reaction chamber is taken as the average of the
initial temperature of the fluidic sample and the initial chamber temperature assumed
to be 300oF. Let y(t) and x(t) respectively denote the temperature of the heating
stage (chamber) and the fluidic sample (unit) at time t. The temperature-changing
rate of a fluidic sample is proportional to its temperature and the temperature of the
surrounding medium.

dy(t)

dt
= 0:12� (300� y(t)) (4.2)

dx(t)

dt
= 0:04� (y(t)� x(t)) (4.3)

When a fluidic sample is removed from the reaction chamber after it reaches 250oF,
another fluidic sample at the head of the queue of the storage buffer is selected for the
next thermal catalyzing cycle. There are several numerical integration methods that
can be used to solve the ODAEs (4.2) and (4.3). Here, relaxation-based numerical
integration techniques [64] coded in SystemC are used to solve these ODAEs. In
order to improve the accuracy of the computed results, another simulation clock
with higher-frequency is used. Figure 4.15 shows the integration result of a certain
fluidic sample with the initial temperature at 54oF.
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FIGURE 4.15
Temperature change process of a fluidic sample from 54oF to 250oF
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4.3.3 Microvalve Lumped-element Nodal Modeling

Micropumps are the major components of microfluidic process system. Usually, they
consist of an actuation unit and two passive check valves, and microchannels are
used for connecting the inlet part and outlet part. The pressure-driven check valves
are very important to the behavior of the micropump since they determine the flow
rate of the micropump. The major parts of the check valve are a cantilever beam and
valve seats. Normally the cantilever lies against the valve seat, thus closing the port
to fluid flow. In operation, the fluid flow will exert pressure against the cantilever.
The cantilever, acting like a spring, will deflect and allow the fluid flowing through
the valve. The schematic view of a valve is shown in Figure 4.16 [16].
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FIGURE 4.16
Schematic view of the opening valve. The gap between the cantilever and the
valve seat is divided into five pieces.

Static flow rate is an important design consideration, and it is dependent on the struc-
tural parameters and the displacement of the valve. The displacement is determined
by the pressure difference between the ports

� = f(y; y1; y2; :::yn) = g(y1; y2; :::; yn; p) (4.4)

where � is the static flow rate, y is the displacement, and y1; y2; :::; yn stand for the
structure parameters, and p is the pressure difference between the inlet and the outlet.

The behavior of the cantilever can be described by a second-order differential equa-
tion,

m�y + d _y + ky = pA (4.5)

where m is effective mass of the cantilever, including the mass of the cantilever and
that of the liquid surrounding the cantilever. The parameter d is the damping constant



98 MICROELECTROFLUIDIC SYSTEMS: MODELING AND SIMULATION

determined by the geometry of the cantilever. The parameter k is the spring constant
described by the geometry of the cantilever and the product materials. Thus, based
on the (4.5), the relationship between the displacement y and the actuated pressure
difference p can be easily derived.

The extended Bernoulli Equation (4.6) can be used to describe the static fluid flow
in the gap between the cantilever and the valve seat

p1 + �
�

2
v
2
1 = p2 + �

�

2
v
2
2 + (pe)1�2 (4.6)

where p1,v1 and p2, v2 are the pressure and velocity at the beginning and the end of
the gap. � is a kinetic energy coefficient relevant to the velocity profile. It is assumed
to be 2.0 due to the laminar flow in a channel. The parameter (pe)1�2 describes the
friction loss.

To derive an analytical result, the gap between the cantilever and the valve seat is di-
vided into five pieces (Figure 4.16). In studying the functions of the pressure differ-
ence p and the displacement of cantilever beam at the individual regions, the overall
flow rate � can be treated as a function of pressure difference p and the displacement
y:

p =

VX
i=I

�pi(�; y) (4.7)

Therefore [16],

�(p; y) =
��

b2s2
[�

12�

b
(
l1

y3
+

l1

s3
) +

s
144�2

b2
(
l1

y3
+

l2

s3
)2 +

2�

b2

�p

s2
] (4.8)

By substituting y = f(p) , s = y + h in the above equation, it can be shown that
the static flow rate is fully determined by the actuated pressure difference and the
structural parameters, � = g(p; y1; y2; :::; yn) [16]. The analytical model of the
microvalve is studied with SystemC. Figure 4.17 shows the microvalve model coded
by VHDL-AMS and SystemC, respectively. Because SystemC does not provide an
associated simulator, the simultaneous ODAEs are combined with a ODAE solver
coded by users. These functions are solved by a Process: ODAEs().

Table 4.2 shows the microvalve determined design parameters and their design value.
In addition, the fluid density and viscosity for each fluidic sample are assumed to be
the same. By setting the microvalve operating frequency at 100Hz, the average flow
rate of the microvalve can be calculated to be 5.86 ml per minute.
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entity valve is
   generic (EffectiveMass: real;
                 area: real;

   port(terminal p, m: fluidic);
                 length: real);

...

end entity valve;
architecture config of ODAE is
   quantity valvepres across valveflow through p to m;

 begin
  ydot = y’dot;

end architecture config;

// VHDL-AMS model

  y == (area * valvepres - 
m * ydot’dot - d * y’dot) / k;

  end use;
  valveflow == ...

  else
  valveflow == 0.0;

  if y < o.o use

// SystemC model
SC_MODULE(valve)

{sc_in<float> EffectM;
  sc_in <float > area;

...
  sc_inout <float> valvepres;
  sc_inout <float> valveflow;

};
  }
   sensitive << clk;
   SC_THREAD(ODAEs);  {

SC_CTOR(valve)
  void ODAEs();

FIGURE 4.17
Microvalve model coded in VHDL-AMS and SystemC. The simultaneous
ODAEs in VHDL/AMS are combined with a ODAE solver, and are solved by
a process ODAEs().
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Table 4.2 Elemental Parameters and Initial Nominal Design
Values

Parameters Values Units
Length of the cantilever (L) 1600 �m

Width of the cantilever(b0) 1000 �m

Thickness of the cantilever (h0) 15 �m

Height of the valve seat (h) 50 �m

Length of the valve seat (l1) 5 �m

Width of the valve seat (b) 400 �m

Length of the cantilever over valve seat(l2) 100 �m

Young’s Modulus (E) 146.9 GPa
Air Pressure(Pa) 100000 Pa

4.4 System Performance Analysis and Design Optimization

We combine the system simulation with the stochastic macro model and component
level simulation as discussed in Section 4.3. The hierarchical simulation results with
SystemC are shown in Figures 4.18�4.20. These results show the system perfor-
mance when there are 100 fluidic samples entering the system for processing. The
performance analysis metrics include throughput, resource utilization, and execution
time distributions. These data are useful in identifying how component performance
metrics impact overall architectural performance, and they provide guidance for op-
timization.

Figure 4.18 shows the system throughput for three kinds of fluidic samples. Fig-
ure 4.19 shows the system resource utilization for processor elements: analyzers,
mixers, and catalyzers, as well as the microchannel. The total time for each fluidic
sample staying in the handling system consists of three periods: the time of wait-
ing for system resources, the processing time, and the microchannel delivering time.
Figure 4.20 shows the average values over three periods for each kind of fluidic sam-
ple.

4.4.1 Architectural Optimization

Table 4.3 shows storage utilization statistics for the containment reservoirs and the
bus storage buffer. Partitioning storage between “on/off chip” allows tradeoffs in
area, speed, and costs. The maximum number of occupied cells in channel bus stor-
age buffer is equal to Npr + 1, where Npr is the total number of processors, and
it is set to 9. The average number of occupied cells is 9.1584; this shows that the
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FIGURE 4.18
Micro-chemical handling system throughput for three kinds of fluidic samples.
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FIGURE 4.20
Average system time distribution for each kind of fluidic sample. The system
time includes: the time of waiting for system resources, the processing time,
and the microchannel delivering time.

scheduling scheme achieves good utilization.

Table 4.3 Microsystem Simulation Summary

Analyzing Mixing Catalyzing Storage
Reservoir Reservoir Reservoir Buffer

Average Number
of Occupied Cells 13.2326 7.9032 8.8889 9.1584
Maximum Number
of Occupied Cells 30 19 18 10

The arriving fluidic sample is stored in an appropriate containment reservoir and it is
processed by the associated processor depending on its purpose. Figure 4.19 shows
that the channel bus is fully utilized, and processor utilization shows resource avail-
ability. Figure 4.20 shows that the chemical fluidic sample waiting time occupies a
large proportion of the total cycle time. The channel bus is the principal bottleneck
preventing liquid samples from accessing processors and processed liquid samples
from being dispensed. The effects of increasing channel bus bandwidth by adding
another parallel channel bus are studied in Figures 4.21 and 4.22. Figure 4.21 com-
pares system throughput versus channel bus bandwidth, and Figure 4.22 compares
system resource utilization versus channel bus bandwidth. The improved architecture
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with the two-channel-bus architecture reduces system processing time and increases
resource availability.
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FIGURE 4.21
System throughput for each kind of fluidic sample versus channel bus band-
width. Two-channel-bus architecture reduces the system processing time.

4.4.2 Microsystem Performance Sensitivity Analysis

The variation of the microvalve actuation frequency can change the flow rate, which,
in turn, can affect microsystem performance. Typically miniature biomedical and
chemical applications involving small liquid volumes require high and stable pro-
cessing throughput. Thus, the micropump flow rate, based on the microvalve actu-
ation frequency, is an important system-level design parameter influencing perfor-
mance.

Considering the operating frequency tolerance, two frequencies are selected with
forward and backward tolerance 10Hz, respectively, assumed to be the worst-case
micropump actuation frequency (f ) variation. Table 4.4 shows the results of ana-
lyzing micro-chemical handling system performance sensitivity with three different
frequency combinations.

The above simulation results show that micropump flow rate is tightly correlated to
the micropump operating frequency, which, in turn, impacts the system performance
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Table 4.4 System Performance Comparison due to Different Operating
Frequency

Statistical Actuation Frequency Selection
Parameters f = 90Hz f = 100Hz f = 110Hz

Total System Time(t) Required
for 100 throughputs 5144 4690 4282

Analyzers Utilization (%) 5.7 5.9 6.2
Mixers Utilization(%) 8.1 7.6 7.8

Catalyzers Utilization (%) 5.7 6.3 6.9
Channel Utilization (%) 98.3 98.7 98.2

and throughput.

4.4.3 Microsystem Performance Estimation with Traffic Variation

Acquisition rate (workload) is another important system-level design parameter in-
fluencing system performance. For a given architecture, the micro-chemical handling
system has a saturation capacity, where resources are maximally utilized. Workloads
less than saturation capacity under-utilize resources, whereas workloads greater than
saturation capacity may decrease system quality or even cause system failure. Thus,
it is desirable to investigate saturation operating performance.

As explained in Section 4.4, liquid sample acquisition rate is modeled by an expo-
nential probabilistic distribution, governed by (4.1). Nominal mean interarrival time
is assumed to be 15 seconds, i.e. � = 1

15
. Figures 4.23 shows the micro-chemical

handling system performance under varying sample acquisition rates, � changing
from 1

100
to 1

5
.

Figure 4.23 shows the system processing capability versus different traffic rates. The
vertical axis presents the system processing capability, denoted by using the number
of processed fluidic samples per hour. Here the basic time unit is a second. The
horizontal axis represents the sample traffic rate, �, meaning the number of fluidic
samples arriving per second. The straight dash-point line shows an ideal case when
availability of the system is guaranteed and all input samples are accepted and pro-
cessed. The other curve is actual system performance. When the sample traffic rate
is low, system throughput is nearly linear – the performance of the system approxi-
mates the ideal. At increased input rates, meaning reduced interarrival time, actual
system processing capability increases and quickly reaches saturation. Figure 4.24
shows that increasing the acquisition rate (increasing �), but not beyond system sat-
uration capacity, improves performance by increasing system resource utilization.
At saturation, throughput remains constant regardless of input rate variation, but, as
shown in Figure 4.25, queuing demands increased the requirement for storage buffer
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FIGURE 4.23
System processing capability versus different traffic rate �. After the system
reaches saturation, system processing capability (throughput) remains constant
regardless of input rate variation.

capacity.

4.5 Conclusion

In this chapter, we have presented a hierarchical modeling and simulation method-
ology that combines high-level stochastic queuing networks with low-level nodal
conservative differential equations. The complete system modeling and simulation
for a micro-chemical handling system is presented depending on the SystemC inte-
grated design environment. Simulation results and performance analysis data have
been presented. Performance analyses investigate throughput, resource utilization,
and system architectural optimization. The influence of micropump actuation fre-
quency and input liquid sample acquisition rate have also been studied. The results
of this work assist in understanding the complexities of system performance and
serve to guide next-generation designs. The detailed circuit-level MEFS hierarchical
design optimization/verification methodology is discussed in Chapter 5.
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A hierarchical integrated design optimization approach for MEFS includes five main
components. The content is illustrated in Figure 5.1 and the components are listed
below.

1. Simulation design methodology

2. Optimization verification

3. On-target design methodology

4. Robust design methodology

5. Application flexibility optimization methodology

In the following sections, each of these components is described in detail. In Sec-
tion 5.1, two efficient simulation methods are studied: the bootstrap method and the
factorial design method. They are used in our optimization approaches. Section 5.2
discusses verification methods that verify the correctness of optimal design results.
From Section 5.3 to 5.5, three optimization methodologies are demonstrated for mi-
crosystem design and process optimization. A statistical response analysis strategy
is proposed in Section 5.3. This strategy can efficiently find an on-target design point
that meets the performance goals. It also benefits to the optimal control for fabrica-
tion and operation. In Section 5.4, by studying the relationships between the design
parameters and system performance, a robust design methodology is demonstrated
based on the Taguchi experiment method. Moreover, in order to overcome the lim-
itation of “custom microsystems”, and to extend the range of MEFS performance,
a reconfigurable microsystem design methodology is demonstrated along the lines
of hardware/software co-design to achieve functional unit reusability. This design
methodology for application flexibility is presented in Section 5.5.

5.1 Simulation Design Methodology

Due to the large number of design parameters and coupled-energy interactions, time-
consuming numerical methods for DAEs are necessary to study MEFS system be-
havior. Simulation cost is becoming one of the main obstacles for system designers.
Although traditional Monte Carlo simulation methods have been widely used in elec-
tronic design [78], it is infeasible for microsystem optimization due to the expensive
computational cost. The bootstrap method [79] and the factorial design method [31]
are more efficient for composite microsystems.
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FIGURE 5.1
Hierarchical integrated design optimization includes five components: Simula-
tion design methodology, Optimization verification, On-target design optimiza-
tion, Robust design methodology, and Application flexibility optimization.

5.1.1 Bootstrap Method

Some simulation techniques compute either the variance of parameter estimators or
confidence intervals for the true parameters. This approach requires a sufficiently
large sample size so that the “asymptotic” result can be applied to study the system
behavior accurately. However, large sample size increases computational complex-
ity. As an alternative to Monte Carlo simulation, the bootstrap method can be used
with a smaller sample space.

The bootstrap method is a well-established robust statistical methodology [79]. It
can assess the accuracy of a parameter estimator in situations where conventional
techniques are not feasible, and it is potentially superior to large-sample techniques.
With 10 simulation results, the bootstrap method can get the same accuracy with
around 100 runs of Monte Carlo simulation [80]. The bootstrap has already been
widely used in signal processing [81]. Composite microsystems is its new applica-
tion area.

The basic principle for the bootstrap method is the random replication of the original
sample. In order to obtain a parameter estimator S using a sample x, where x =

fx1; x2; :::; xng, the bootstrap method includes the following steps.

� Conduct the experiment to obtain the random sample x = fx1; x2; :::; xng.
The xi’s are independent and identically distributed random variables.

� Generate a bootstrap sample, called the bootstrap resample

X
B = fx1; x2; :::; xmg

where
x
b = fxb1; xb2; :::; xbng; b 2 f1; 2; :::;mg
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x
b has the same dimension as x, and the elements of xb are randomly drawn

from the original sample with replacement. For example, if we have a set x =

f1:0; 3:0; 4:3; 3:4g, one of the bootstrap sample might bexb = f1:0; 1:0; 4:3; 3:4g.

� Approximate the distribution of the mean and variance of x by the distribu-
tion of the mean and variance derived from X

B. A series of new statistical
estimates can be calculated fromX

B as follows:

SB = fS1; S2; :::; Sb; :::; Smg

and the robust estimate of S is

S� = E(SB):

In the following section, the application of the bootstrap method is illustrated with
a statistical parametric regression analysis of a special composite microsystem: mi-
croelectromechanical resonator.

5.1.1.1 Parametric Analysis With Bootstrap Method

With the number of applications of integrated composite microsystems growing,
there is a need to address issues of the performance, manufacturing yield, and opera-
tional reliability. These issues require detailed and systematic analyses of composite
microsystems. These analyses characterize the relationships between basic design
parameters and overall design function and performance. Due to the complexity of
composite microsystems in terms of the number of components and the coupled-
energy interactions, these analyses are investigated using a statistical parametric re-
gression analysis approach.

Microelectromechanical resonators are selected as representative of composite mi-
crosystems due to their broad and flexible use. In this special case study, the boot-
strap method is used to analyze complex systems by conducting sampled simula-
tions. The simulation result is compared with traditional Monte Carlo simulation
methods. In addition, various sets of input parameters and corresponding system
states are perturbed using deterministic or stochastic techniques. The resulting sys-
tem behavior forms a sampled envelope describing overall function and performance.
For microelectromechanical resonators, the effects of perturbing several electrical
and mechanical parameters on circuit operation are studied. The bootstrap method
reveals first order sensitivities and correlations that are useful in design optimization.

The following sections explain the physical principles governing a linear comb drive
microresonator and present the simulation model, based on equivalent circuit micro-
electromechanical systems modeling. Sample circuit simulation results are reported.
The concept of parametric regression analysis is explained and extensive bootstrap
method results are presented that characterize the influence of variations of basic me-
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chanical/electrical parameters on nominal microresonator performance. The estima-
tion of the variance of the parameter estimate of the regression process are compared.
Finally, findings of the parametric regression analysis are given.

5.1.1.2 System Modeling of Comb-drive Microresonator

Early work on microresonators and the folded-flexure electrostatic comb drive mi-
croelectromechanical resonator, as shown in Figure 5.2, was conducted by Howe and
Tang [82]. The device consists of a movable central shuttle mass that is suspended
above the substrate by folded flexure beams. The folded flexure beams are anchored
on the substrate at two central points, allowing the shuttle mass to move laterally -
parallel to the substrate surface. Transverse motion is also possible, but is restrained
by the folded flexure beam and ground planes. The folded flexure beams and shuttle
mass can be fabricated using basic integrated circuit lithographic processes involved
in surface micromachining. A sacrificial or spacing layer removed during fabrication
provides for suspension off the substrate surface for deflectional motion.
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FIGURE 5.2
Two-port, folded-beam, lateral comb-driven resonator consists of a movable
central shuttle mass, two folded flexure beams.

Linear comb drives are formed by interdigitated fingers placed on each half of the
shuttle mass. The resulting structure uses the relationship between electrostatic force
and capacitance to create sustained oscillation. Exciting a linear comb capacitor by
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a time varying voltage V (t) produces a time varying electrostatic force f(t) [83]

f(t) =
@U(V (t); x)

@x
(5.1)

where U denotes electric field energy. The time varying electrostatic force sets the
shuttle mass into vibratory motion, with the strongest fundamental mode setting the
resonating frequency. This motion excites another linear comb capacitor to produce
a time varying capacitance (C), which, in turn, yields a time varying current (i(t)).

i(t) = C(t)
@V (t)

@t
+ V (t)

@C(t)

@t
(5.2)

The time varying current is fed back in phase to produce the original time varying
voltage and closed loop oscillation is sustained.

The simulation model for the linear comb drive micromechanical resonator is given
in Figures 5.3 and 5.4. This model is based on the work reported by Howe [84, 85],
and built by using the equivalent circuit behavioral modeling technique.

fbi

C C

i i

L C R R C L

i i

oo

xo xo xo

xo

xi xi xi

xixo

oi

φφ io oi

xi

Ramp

vo

Current-to-Voltage
Amplifier

susv

FIGURE 5.3
Equivalent circuit for a two-port �resonator

The basic mechanical resonating property is given by the second-order actuation
force to resultant displacement transfer function shown in phasor notation

X(|!)

F (|!)
=

k�1
sys

1�
�

!

!0

�2
+ |

�
!

Q !0

� (5.3)
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FIGURE 5.4
Circuit schematic for sustaining amplifier, presenting the functionality of Ramp.

where X is the displacement, F is the force, ksys is the effective system spring
constant, ! is the radian frequency, !o is the resonance frequency, and Q is the
quality factor.

The displacement/force transfer function can be used to derive the transfer function
relating input drive voltage to resulting motional current Io=Vi by using the expres-
sions given in (5.4) and (5.5) and neglecting the effects of DC and higher-order fre-
quency components.

F (|!)

Vi(|!)
� �VPI @C

@x
(5.4)

Io(|!)

X(|!)
� VPO |!

@C

@x
(5.5)

The resulting transfer function yields the values for the series resonant circuit com-
posed of Lx, Cx, and Rx, given respectively by (5.6)-(5.8) [83].

Lx =
ksys

!2
o
V 2
PI

(@C
@x

)2
(5.6)

Cx =
V 2
PI

ksys
(
@C

@x
)2 (5.7)

Rx =
ksys

!oQV
2
PI

(@C
@x

)2
(5.8)
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The values of the L;C;R series resonant circuit elements are determined by res-
onator geometry and bias voltage.

Expressions for the fundamental lateral resonance frequency (!o) and quality factor
(Q) are given in (5.9) and (5.10) [86].

!o =

�
2Eh(W=L)3

(Mp + 0:3714M)

� 1

2

(5.9)

Q =
z

�Ap

(Mpksys)
1

2 (5.10)

Where E is the Young’s modulus, Mp is the mass of the shuttle plate, Ap is the
area of the shuttle plate, M is the mass of the supporting beams, � is the absolute
viscosity of air, and z is the separation distance between folded-flexure linear comb
drive resonator and the substrate. The dimensional definitions for h, W , and L are
illustrated in Figure 5.2.

Neglecting fringing fields, the total capacitance of the drive-side linear comb struc-
ture denoted by C1 is given by

C1(x) =
2N1"0h(L1 + x)

d1
(5.11)

where N1 is the number of comb drive fingers on the drive side (port 1), "0 is the
permittivity of free space, h is the finger thickness, L1 is the finger overlap, and d1
is the finger gap.

Combining (5.6)-(5.8) and 5.11, and realizing the symmetry of the linear comb drive
microresonator yields the expressions for Lxi; Lxo; Cxi; Cxo; Rxi, and Rxo given in
the following:

Coi =
2N1"0hL1

d1
Coo =

2N2"0hL2

d2

Lxi =
ksys

4

�
d1

!rN1"0hVP1

�2
Lxo =

ksys

4

�
d2

!rN2"0hVP2

�2

Cxi = 4k�1
sys

�
N1"0hVP1

d1

�2
Cxo = 4k�1

sys

�
N2"0hVP2

d2

�2

Rxi =
ksys

4!rQ

�
d1

N1"0hVP1

�2
Rxo =

ksys

4!rQ

�
d2

N2"0hVP2

�2

�oi =
d1N2VPO

d2N1VPI
�io =

d2N1VPI

d1N2VPO

The capacitors Coi and Coo denote conventional feeding through current due to the
DC capacitance of the linear comb drives. The current amplification factors �oi and
�io account for possible drive/sense asymmetries in bias voltages, number of digits,
and inter-digit gaps. Figures 5.5-5.7 show the simulation results of the microres-
onator.
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Steady state microresonator oscillation
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5.1.1.3 Simulation and Statistical Regression Analysis

The circuit model of the microelectromechanical resonator is used in the bootstrap
method to study the effects of basic parametric variations on microresonator opera-
tion. The basic design parameters and nominal values are listed in Table 5.1 [87].

Table 5.1 Elemental Parameters and
Nominal Design

Parameters Values Units
Width (W ) 2 �m
Length(L) 200 �m

Thickness of the fingers (h) 2 �m
Gap (d) 2 �m

Number of the fingers (N ) 12
Young’s Modulus (E) 150 GPa

Bias Voltage (VP ) 80 V

Microresonator operation is measured by the design metrics of resonant frequency!0
and linear comb drive motional transconductance gain Yx. The resonant frequency
is an important design performance. The linear comb drive transconductance gain is
also a critical design objective for operation in that, as a measure of the generated
sense current per a given drive voltage, motional transconduction gain indicates the
effectiveness of the overall transduction. A higher transconductance gain reflects a
better linear comb drive resonator.

The bootstrap method uses the statistical analysis to determine sensitivity gradients.
Sensitivity gradients give the degree of dependence of the system’s expected output
on input parameters. There are several gradient-estimation methods; the following
statistical analyses employ linear regression [88].

Linear regression conducts sample simulations, varying a parameter value over a
given range. Then, the derivative is estimated by noting the change in the perfor-
mance measure owing to the change in the corresponding parameter. Provided the
variation ranges of the electrical/mechanical parameters are small, the statistical re-
lationship between the input parameters and output performances can be considered
linear and thus, described with a regression line model. The validity of linear regres-
sion in representing the actual relationship between two variables can be checked
by computing the correlation. Correlation is a measure of the strength of the linear
relationship between two variables.

The parametric regression analysis is conducted in three stages. First, mechanical
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and electrical parameters of the microelectromechanical resonator are systematically
modified using a normal distribution and the effect on performance is examined using
the bootstrap method. Then, linear regression is computed by least-squares curve
fitting to obtain sensitivity gradient estimates. Finally, the correlation of the data is
computed to check the validity of the data analysis.

Making the constraints of single parameter variations and statistical independence
of parameter variations, the relationship between the input elemental parameters and
output performance metrics, such as the influence of the single parameter W on
resonant frequency !o, is given by

!o = f11(W ) +K (5.12)

where f11(W ) denotes the influence of W on !o and K represents the influence of
the other three parameters on resonant frequency. Given small variations of elemen-
tal parameters, (5.12) becomes a linear function

�!o = b0 + b1W (5.13)

and the coefficients can be estimated using the theory of linear regression. The re-
gression coefficients b0 and b1 indicate the relationship between the parameter W
and the performance !o, with the slope b1 indicating the degree of dependence.

Denoting the (!o;W ) observations from the statistical simulation as (!o1;W1) for
the first simulation, (!o2;W2) for the second trial, and (!oi;Wi) for the ith trail
(where i = 1; 2; : : : ;m), (5.14) and (5.15) respectively give the computation for b1
and b0 using the least-squares method [89].

b1 =

Pm

i=1(Wi � �W )(!ri � �!o)Pm

i=1(Wi � �W )2
(5.14)

b0 =
1

m
(

mX
i=1

!ri � b1 �
mX
i=1

Wi) (5.15)

Since the linear regression method approximately represents the relationship between
two variables with a straight line, it is necessary to check the validity of this linear
approximation using the correlation coefficient. (5.16) and (5.17) give the formulas
for calculating covariance and correlation, respectively [90].

Cov(X;Y ) =

P
n

i=1(xi � �x)(yi � �y)

n
(5.16)

Cor(X;Y ) =
Cov(X;Y )qP

n

i=1
(xi��x)2

n

P
n

i=1
(yi��x)2

n

(5.17)
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5.1.1.4 Output Analysis Report

Monte Carlo simulation analysis needs over 30 simulation results [87], while based
on the bootstrap method principle, six simulation results with 1000 resamplings are
used. Figures 5.8-5.11 show the simulation result of the bootstrap method comparing
to that of Monte Carlo in [87]. This comparison shows that the bootstrap method can
reduce the computational cost while providing good parameter estimates.

Table 5.2 presents the linear regression analysis and associated correlations for mi-
croresonator resonant frequency !o. Related figures are shown in Figures 5.8-5.11.

Table 5.2 Linear Regression Analyses for !o
Parameters Linear Correlation

Function
Width (W ) !o=-5.446424+ 12.0099W 0.9936
Length (L) !o=52.436760- 0.1605L 0.9024
Number of

the fingers (N ) !o=22.834774 - 0.27985N 0.8704
Young’s Modulus (E) !o=9.814833 + 0.05506E 0.999

Table 5.2 shows that the correlation for each parameter with the performance metric
!o is in an acceptable range, except N . Hence, the linear regressions appropriately
express the relationships between the input parameters and output performances, and
first-order sensitivities can thus be derived.

Tables 5.3 presents ranking of first-order parametric sensitivity gradients for the de-
sign metrics of resonant frequency. Most sensitive design parameters must be care-
fully controlled during design and fabrication. This information is very helpful to
develop CAD tools for yield optimization of complicated composite microsystems.

Table 5.3 Parametric Sensitivity Gradients for !o
Parameters Resonant Frequency

(!o)
Width (W ) 1
Length (L) 2

Number of the fingers (N ) –
Young’s Modulus (E) 3

The bootstrap method, as an alternative to Monte Carlo simulation, can be used to an-
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alyze the sensitivity gradient of key electrical/mechanical characteristics on system
performance. This first-order information about the trend of performance changes
due to the variance of input parameters is useful for engineering design and the man-
ufacturing process.

5.1.2 Factorial Design

Factorial design methods [91], which provide efficient techniques for systematically
conducting and categorizing experiments, are always used to study the influence of
multiple factors (design parameters) on the system performance. Factorial design
methods include the complete factorial design method and the fractional factorial
design method.

5.1.2.1 Complete Factorial Design Methodology

The 2k (or 3k) factorial design method limits each of the k factors to take on only
two (or three) levels: high and low (and nominal). By convention, +1 indicates
the high level, �1 indicates the low level, and 0 indicates the normal design point
for the three-level factorial design. Level values are specified based on the design
region, and they reflect the variance of the associated design parameters. Each possi-
ble factor-level combination defines a design point, and the collective design points
define a matrix simulations of the desired performance envelope.

After the factor levels have been set, matrix simulations are run at each design point
to determine the effect of various parameters. Matrix simulations use special or-
thogonal arrays [92], which allow the effects of several parameters to be evaluated
efficiently. Table 5.4 shows a complete factorial design matrix for k = 2.

Table 5.4 Design Matrix for Two Design
Parameters

No. x1 x2
1 -1 -1
2 -1 1
3 1 -1
4 1 1

The number of system simulations, n, is equal to 2k with k design parameters, and
these simulations are orthogonal to each other. Hence, the complete factorial design
methodology is often infeasible due to O(2k) computational complexity. The num-
ber of experiments increase exponentially with an increase in the number of design
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parameters. This motivates the fractional factorial design method.

5.1.2.2 Fractional Factorial Design Methodology

The number of simulations associated with factorial design can be reduced by using
fractional factorial design methods. Fractional factorial design methods use orthog-
onal arrays to screen experiments in a manner that provides equal representation to
all levels of each design parameter using less design points.

The Star design is one of two kinds of fractional factorial design approaches. It
requires the minimum number of simulations to build the regression model—k + 1

simulations to be done with k parameters, but there are no degrees of freedom to
estimate how well the full model is obeyed. The full model means that each param-
eter contributes significantly to the model, and there are k parameters in the final
regression model. To overcome this problem, another design approach is necessary.
Table 5.5 shows an orthogonal array L8 with four columns and two factor levels. We
use this design method in our research.

Table 5.5 L8 Orthogonal Array

No. x1 x2 x3 x4
1 -1 -1 -1 -1
2 -1 -1 1 1
3 -1 1 -1 1
4 -1 1 1 -1
5 1 -1 -1 1
6 1 -1 1 -1
7 1 1 -1 -1
8 1 1 1 1

Using two-level orthogonal arrays is based on the assumption that the multiple lin-
ear regression model without interaction is adequate to express the system behav-
ior within the variation of each design parameter. While the system response is
sometimes a curved surface, three-level orthogonal arrays are needed. The detailed
applications of fractional factorial design method with two-level and three-level or-
thogonal arrays are presented in the following sections.
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5.2 Optimization Verification

The optimization verification is to verify the correctness of the optimal design result.
Based on the optimization procedure shown in Figure 5.12, there are two approaches
for the optimization verification.

� Subjective Verification

� Objective Verification

Modeling and Simulation
Microsystem Conceptualization, 

Design Optimization
Microsystem

Microsystem 
Validation and Fabrication 

Model Validation

Algorithm Verification

Subjective Verification

Experiment

Objective Verification

FIGURE 5.12
Optimization procedure. Verification can be done either by experiments (sub-
jective verification), or by model validation and algorithm verification (objective
verification)

5.2.1 Subjective Verification

The subjective verification approach verifies the optimal results directly based on
existing product samples. This approach is independent of the system model and
the optimization algorithm, therefore, it is also called “independent verification and
validation (IV&V)” [93]. Rapid prototyping is one of the most potential subjective
verification approaches [94]. It can rapidly provide a sample system based on the op-
timal design solution, then verify the optimal design result. This verification method
can give accurate verification results; however, it is time-consuming, expensive, and
sometimes the experimental data is hard to obtain. In addition, it does not provide
any information for the improvement of the system model and the optimization al-
gorithm.



128 MICROELECTROFLUIDIC SYSTEMS: MODELING AND SIMULATION

5.2.2 Objective Verification

In objective verification, optimization results are verified based on the original design
optimization procedure. Since the optimization results depend on the accuracy of the
system model and the optimization algorithm, this verification approach includes two
steps (Figure 5.12):

� Model Validation
This is defined as “ensuring that a computerized model within its domain of
applicability possesses a satisfactory range of accuracy consistent with the in-
tended application of the model” [95].

� Algorithm Verification
This is defined as “ensuring that the algorithm and its implementation are cor-
rect” [95].

5.2.2.1 MEFS Model Validation

A commonly used model validation technique is the comparison validation method.
Three-dimensional numerical models developed using finite element method (FEM)
are typically used to verify MEFS behavioral models with analytical expressions in-
cluding differential and algebraic equations (DAEs). For instance, Figure 5.13 shows
a microvalve analytical behavioral model. A more detailed microvalve numerical
model based on FEM is shown in Figure 5.14. The validity of the microvalve behav-
ior model is verified by comparing the simulation results between these two models.

MEFS multi-parameter design requires model validation with respect to each design
parameter. This means that the model is considered valid only if it is accurate within
the scope of the variation of each design parameter, because a model may be valid
for one set of experimental conditions but invalid for another. However, complete
verification is costly and time-consuming. Figure 5.15 [93] shows the relationship
between cost of model validation and the value of the model to the user as a func-
tion of model confidence. The cost of model validation is usually quite significant,
particularly when high model confidence is required.

Several model verification techniques have been progressed in the literature [96, 31];
unfortunately, there is no set of specific tests that can easily be applied to determine
the “correctness” of the model. MEFS models we used in our thesis, microvalve,
micropump, and micromechanical resonator, have been verified by several research
effects [16, 4, 83] based on a single design parameter. We assume that the accuracy
of these models is within the scope for each design parameter, from the nominal
design point to the optimal design point.
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FIGURE 5.13
An analytical behavioral model of an open valve of a micropump.

FIGURE 5.14
A numerical model and simulation results of a microvalve. The model is built
based on FEM using ANSYS.
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5.2.2.2 Verification of Optimization Algorithms

Validation of MEFS optimization algorithms is critical to ensure that the optimization
is useful. This validation can always be done by comparing the system performance
between the nominal design solution and the optimal design solution. For exam-
ple, in order to check the correction of the robust design of the system, the system
robustness of the optimal design point can be compared with that of the nominal de-
sign point [97]. If the comparison shows the better robustness on the optimal design
point, that verifies the correctness of the robust design algorithm. The comparison
can be done based on the statistical analysis methodology. The detailed verification
approach is presented in the following sections.

5.3 On-target Design Optimization

The initial design usually does not match the system design performance require-
ment. A design optimization process is necessary to search an on-target design so-
lution that makes the system satisfy the design requirement. This searching process
may or may not be based on the existing design solution. With increasing design
complexity of composite microsystems, the search for a on-target design point in
the large solution space is becoming very difficult. Therefore, it is necessary to find
the most efficient direction of search (gradient) from the initial design point to the
optimal design point. This objective requires a study of statistical response analyses
that seek to characterize the relationships between the basic electrical/mechanical
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parameters and system performance. These relationships not only benefit the on-
target search process [31], but they also help to improve manufacturing yield and
product robustness [98]. Based on statistical response analyses, system performance
variability is studied within a region around a selected design point. This allows a
designer to understand how fluctuations in design parameters shift the design point
and the associated system behavior. This analysis indicates the direction of search
for the on-target performance design point and determines the factors that need to be
more carefully analyzed during design and more carefully controlled during manu-
facturing. Conversely, secondary factors can be eliminated, simplifying component
models, and manufacturing process control.

Performance data are a primary requirement for statistical analysis. High-level be-
havioral models with differential algebraic equations (DAEs) are used to generate
the statistical data. These models must be validated with FEM simulations. Some
of these DAEs are inherently non-linear and coupled, and they can only be solved
numerically. Therefore it is not feasible to compute performance metrics and sen-
sitivities directly from these equations. Statistical methods are thus useful in these
cases. We build and simulate these behavior models based on a MEFS hierarchical
modeling and simulation environment with SystemC. The steps of an algorithm for
on-target design with statistical response analyses are given below.

1. Create behavioral coupled-energy models with SystemC.

2. Define the initial design point.

3. Define simulation parameters.

(a) Identify factors and factor levels to be used in simulation for evaluating
performance variance.

(b) Construct orthogonal array of factors and levels to identify fractional fac-
torial factor level combinations defining the required simulations.

4. Perform simulations with SystemC models (obtain simulation results).

5. Build a linear regression model.

(a) Verify the model until the final regression model correctly presents the
relationships between the system performance and the basic design pa-
rameters.

6. Obtain gradient vector for searching an on-target design point.

7. Repeat steps 3 to 6 to reach the final target point.

8. Build linear regression model at the target point.

(a) Repeat step 3 to 5 to obtain the regression model.
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9. Data Analysis

(a) Sensitivity analysis for each design parameters.

In this section, multivariate linear regression modeling for design and process opti-
mization is illustrated for a microvalve, which serves as a sample MEFS device. In
Section 5.3.1, the fundamentals of multivariate linear regression modeling are intro-
duced. Based on the verified circuit-level behavior model with SystemC discussed
in Section 4.4, the sample performance data have been generated by using factorial
design methods. Section 5.3.2 presents the statistical modeling of the microvalve.
The path searching algorithm for on-target design is presented in Section 5.3.3, and
the sensitivity of each design parameter is analyzed in Section 5.3.4.

5.3.1 Statistical Modeling and Response Analyses

In general, response performance can be related to several design parameters, called
predictor variables or regressors. The number of regressors is presented by k. This
can be done using multivariate regression analysis. Multivariate regression analysis
characterizes the relationships between independent and dependent variables.

5.3.1.1 Multiple Linear Regression Model

Linear multivariate regression analysis assumes a regression equation of the form
given in (5.18) [89].

y = �0 + �1x1 + �2x2 + � � �+ �kxk + � (5.18)

The constants �0; �1; � � � ; �k, called regression coefficients, measure the expected
change in the dependent variable y per unit change in the associated independent
variables x0; x1; � � � ; xk. The term �, called the residual term or error term, accounts
for variability in y that cannot be accounted for by a strictly linear approximation.

Given n (n > k) statistical samples (simulation/experiments), the data set shown in
Table 5.6 is obtained. Regressor variable values are denoted by xij , with j identify-
ing the input parameter and i identifying the experiment. These regressor variables,
xij , cover an area that is defined as the experiment area. The response performance
variables are denoted by y1; y2; � � � ; yn.

Using the data in Table 5.6, the multivariate linear regression model can be rewritten
in the form

y =X� + � (5.19)

Where y = (y1; y2; � � � ; yn)T is an (n � 1) vector of the system performance ob-
servations, � = (�0; �1; � � � ; �k)T is a ((k + 1)� 1) vector of the partial regression
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Table 5.6 Simulation Data for Multiple
Regression Analysis

Performance Design Parameters
y x1 x2 x3 � � � xk
y1 x11 x12 x13 � � � x1k
y2 x21 x22 x23 � � � x2k
. . . . . .
. . . . . .
. . . . . .
yn xn1 xn2 xn3 � � � xnk

coefficients, and � = (�1; �2; � � � ; �n)T is an (n� 1) vector of the residuals. X is an
n� (k + 1) matrix of the values of the independent design parameters.

X =

2
6666664

1 x11 x12 � � � x1k
1 x21 x22 � � � x2k
: : : :
: : : :
: : : :
1 xn1 xn2 � � � xnk

3
7777775

(5.20)

With the least square estimation, the matrix form of the least square estimators of
partial regression coefficients � is given by [89]

b = (X
T
X)�1

X
T
y (5.21)

and the multivariate linear regression equation for the fitted value ŷ is given by

ŷ =Xb (5.22)

5.3.1.2 Verification of Statistical Models

Verification of statistical models involves evaluating the quality of the model in rep-
resenting the sample data. Quality refers to both regression error and its statistical
significance.

� Test for Efficiency of Regression
A measure of efficiency of a regression model is given by the coefficient of

determination, R2. The coefficient of determination is defined as the ratio of
the regression sum of squares (SSR) to the sum of squares (SY Y ), and is
given by [31]

R2 =
SSR

SY Y
(5.23)
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where, SY Y =
P

n

i=1 y
2
i
� (
P

n

i=1 yi)
2, and SSR = b

0
X

0
y� (

P
n

i=1 yi)
2=n.

To correct for dependencies on the number of regressor variables that may
statistically have no effect on regression efficiency, an adjusted coefficient of
determination is often used

R2
adj

= 1� (
n� 1

n� k � 1
)(1�R2) (5.24)

where, n is the sample size and k is the number of regressor variables. The
coefficient of determination has the range 0 � R2 � 1, with 0 denoting no
regression efficiency over using the regression model and 1 denoting a perfect
linear fit. The square root of the coefficient of determination is the coefficient
of correlation.

� Test for Significance of Individual Regression Coefficients
Since (5.21) is an estimate of the regression coefficients, �, there is a need

to test the statistical significance of each regression coefficient. This test is
useful in determining which regressor variable must be included/excluded in
the multivariate linear regression.

The ratio of the estimated regression coefficient to an estimate of its standard
error given by (5.25) follows a t distribution [31], i.e.

tH0
=

bj

sbj
=

bjq
�̂e

2cjj

(5.25)

where,
p
�̂e

2 is the estimate of the standard deviation of residuals, also called
the standard error of estimate [31].

p
�̂2 = se =

p
MSE =

q
(yTy � bTXT

y)=(n� k � 1)

The term cjj is the diagonal element of (XT
X)�1 corresponding to bj . If

jtH0
j exceeds t�=2;n�k�1, the regression coefficient is statistically greater than

zero, and the related regressor variable should be included in the multivariate
linear regression model. The 100(1� �)% confidence interval for the regres-
sion coefficients, �j ; j = 0; 1; 2; � � � ; k, follows directly from (5.25) and is
given by [31]

bj � (t�=2;n�k�1)(sbj ) � �j � bj + (t�=2;n�k�1)(sbj ) (5.26)

In repeated statistical response analyses using data samples of size n, the
confidence interval will contain the true (population) regression coefficient
100(1 � �)% of the time. The 100(1 � �)% confidence interval can also
be computed for the estimate ŷ of the mean of y for a given set of regressor
variable values, X
 = [1; x
1; x
2; x
3, � � � ; x
k].

ŷ(X
)� (t�=2;n�k�1)(sŷ) � y
 � ŷ(X
) + (t�=2;n�k�1)(sŷ) (5.27)

where sŷ =
q
�̂e

2
X
(X

T
X)�1X

T


 .
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� Outliers Analysis
Scaling algorithm generating studentized residuals is given by (5.28)

ri =
eiq

�̂e
2
(1� hii)

; i = 1; 2; � � � ; n (5.28)

Again, �2
e

is the estimate of residual variance. The ei is the ith element in e,

i.e. e = y � ŷ. The term hii is the ith diagonal element of the H matrix,
which is the projection matrix of y, with

H =X(X
T
X)�1

X
T

The studentized residuals have zero mean and approximately unity variance. It
is useful when looking for outliers, whose studentized residual value does not
lie in the interval �3 � ri � 3. These outliers must be carefully examined.
They may denote the fact that there is unusual change in the response surface,
and the fitted model is a poor approximation of the true response surface.

5.3.2 Statistical Modeling of a Microvalve

The verified circuit-level behavior model of a microvalve as discussed in Section 4.4
can be used for statistical response analyses. The design parameters affecting mi-
crovalve performance and their nominal design values are shown in Table 5.7. These
basic parameters are subject to disturbances due to the fabrication processes. Their
tolerances are assumed in Table 5.8. Again, tolerances are assumed to be constant
within the design envelope.

Table 5.7 Elemental Parameters and Initial Nominal Design
Values

Parameters Values Units
Length of the cantilever (L) 1600 �m
Width of the cantilever(b0) 1000 �m

Thickness of the cantilever (h0) 15 �m
Height of the valve seat (h) 50 �m
Length of the valve seat (l1) 5 �m
Width of the valve seat (b) 400 �m

Length of the cantilever over valve seat(l2) 100 �m
Young’s Modulus (E) 146.9 GPa

Air Pressure(p) 100000 Pa
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Table 5.8 Noise Factors for Microvalve

Tolerance Level
Noise Factors (-1) (0) (+1) Unit

L -0.2 0 0.2 �m
b0 -0.2 0 0.2 �m
h0 -0.2 0 0.2 �m
l1 -0.2 0 0.2 �m
b -0.2 0 0.2 �m
h -0.2 0 0.2 �m
l2 -0.2 0 0.2 �m
p -1 0 1 Pa

The Young modulus E is related to the design material, and is assumed to maintain
constant. Instead of a complete factorial design, a standard orthogonal arrayL16 with
8 columns and two factor levels is used to define sampled circuit simulations. The
L16 orthogonal array and simulation results for the microvalve performance metrics
of flow rate � are given in Table 5.9.

Table 5.9 Noise Factor Simulation Design and
System Response

No. L b0 h0 h l1 b l2 p Flowrate
(ml=min)

1 -1 -1 -1 -1 -1 -1 -1 -1 5.8570
2 -1 -1 1 -1 1 1 1 -1 5.8619
3 -1 1 -1 1 -1 1 1 -1 5.8652
4 -1 1 1 1 1 -1 -1 -1 5.8584
5 1 -1 -1 1 1 -1 1 -1 5.8585
6 1 -1 1 1 -1 1 -1 -1 5.8634
7 1 1 -1 -1 1 1 -1 -1 5.8667
8 1 1 1 -1 -1 -1 1 -1 5.8599
9 1 1 1 1 1 1 1 1 5.8660

10 1 1 -1 1 -1 -1 -1 1 5.8610
11 1 -1 1 -1 1 -1 -1 1 5.8577
12 1 -1 -1 -1 -1 1 1 1 5.8645
13 -1 1 1 -1 -1 1 -1 1 5.8645
14 -1 1 -1 -1 1 -1 1 1 5.8595
15 -1 -1 1 1 -1 -1 1 1 5.8563
16 -1 -1 -1 1 1 1 -1 1 5.8631

The regression model of microvalve flow rate � is shown in (5.29). It is obtained



CIRCUIT-LEVEL OPTIMIZATION 137

using the multivariate linear regression techniques discussed in previous sections.

�̂ = �20:4734+0:0037L+0:0058 b0�0:0023h0+0:0001h+0:0147 b+0:0004 p
(5.29)

The coefficient of determination R2 and the adjusted coefficient of determination
R2
adj

statistics show a very good fit, since

R2
= 1:000; R2

adj = 1:000

Table 5.10 shows significance testing for individual regression coefficients. As-
suming � = 0:05, t-statistics of these parameters are larger than the t-criterion
t0:025;9 = 2:262, verifying that these design parameters contribute significantly to
the regression model.

Table 5.10 Test for Individual Regression Coefficients for Sensitivity
Model

Regression Coefficients
t Distribution �1 (L) �2 (b

0) �3 (h
0) �4 (h) �5 (b) �6 (p)

tH0
2563 4077 1602 46 10228 307

The confidence intervals for the individual regression coefficients with � = 0:05 are
shown in Table 5.11.

Table 5.11 The 95% Confidence Interval for Individual Regression
Coefficients

Design Range Confidence
Parameters �(t�=2;n�k�1)(sbj ) Intervals

L �0:6482e� 6 0:3699e� 2 � �1 � 0:3706e� 2

b0 �0:6482e� 6 0:5794e� 2 � �2 � 0:5806e� 2

h0 �0:6482e� 6 �0:2306e� 2 � �3 � �0:2294e� 2

h �0:6482e� 6 0:0994e� 2 � �4 � 0:1006e� 2

b �0:6482e� 6 0:1464e� 2 � �5 � 0:1471e� 2

p �0:6482e� 6 0:0994e� 2 � �6 � 0:1006e� 2

Figure 5.16 compares the microvalve flow rate obtained from the simulation, repre-
sented by (+), and that from regression model, represented by (o). The standardized
residual r is within the acceptable range [�1:4541; 1:4541]. It shows a good match
between simulation data and the regression model.
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FIGURE 5.16
Comparison between results (+) by simulation data and results (o) by multiple
regression model shows a perfect match.

5.3.3 Search for On-target Design Point

The performance on the initial design point may not always match the design require-
ments. In such cases, the search for a new design point that matches the performance
requirements of the system is necessary. The method of steepest ascent/descent [31],
which maximizes the increase or decrease in system performance along a searching
path, can be used to find an optimal response point.

Using the regression model assumed in (5.18), the variation of the design variable xi
along the path of steepest ascent is proportional to the magnitude of the regression
coefficient, bi, with the direction taken being the sign of the coefficient. A steepest
descent search requires the direction to be opposite to the sign of the coefficient.

Table 5.12 lists the steepest ascent/descent increment 4 for the main design pa-
rameters. These numbers are representative of the gradient vector from the initial
design point to the performance on-target solution. The searching direction may be
changed depending on the regression model built along the on-target searching path.
In addition, the searching path is also characterized by a confidence region, which
determines how accurately a path is being estimated. Table 5.11 shows the confi-
dence intervals for the individual regression coefficients, which is a measure of the
accuracy of the coefficients. In order to obtain accurate gradient vectors for opti-
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mal on-target system search, the Range indicated in Table 5.11 has to be as small as
possible for a good confidence interval.

Table 5.12 Steepest Ascent/descent Increment

Design Parameters L b0 h0 h b p

Increment 4 1.600 2.545 -1 0.029 6.385 0.038

Usually, the increment along the path is based on a movement of one particular
variable. In order to avoid infeasible increments of the design parameters, a variable
from the regression model is selected as the basis for the increment, whose design
value is minimal. For example, h0 is selected at the nominal design point. The steps
of the searching algorithm with the adjustable increment are defined as the following:

1. Compute a path of steepest ascent if the target performance is larger than the
performance on the initial design point. If the target performance is less than
the performance on the initial design point, compute the path of steepest de-
scent.

2. Conduct simulations along the path. That is, do single or replicated runs and
observe the response value. The results should normally show the improve-
ment of performance.

3. At some region along the path, the improvement will decline or reverse. Then,
the new design before reversal should replace the initial design point. Another
first-order model fitting is carried out, and the new searching direction is cre-
ated. If the new design point possesses the maximum value of performance
(ascent design), or the minimum value of performance (descent design), it
means that there is no design solution in this local design space. The search-
ing algorithm stops, and another new initial design point is necessary.

4. At some region along the path, the improvement will pass the performance
target, such as the run 7 in Table 5.13. The new design point will replace the
original nominal design point. In addition, the direction of the increment is
reversed, and the increment is reduced by half. Go back to step 2.

5. After reaching the optimal design point, another first-order model fitting is
carried out. A test of lack of fit is made, and the sensitivity analysis for each
parameter is conducted.

At the nominal design point (Table 5.7), the microvalve flow rate is 5:86ml=min.
Table 5.13 shows the appropriates coordinate along the searching path in the de-
sign parameters. The target flow rate is 6:50ml=min. After 10 searching steps, the
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system performance matches the design target. The increment has been changed 4
times. Each block in Table 5.13 shows these changes.

Table 5.13 Coordinates on the Searching Path of Steepest Ascent in Design
Parameters

Run L b0 h0 h l1 b l2 p �

1) Base 1600 1000 15 50 5 400 100 100000 5.86
�̂ = �20:4734+ 0:0037L+ 0:0058b0 � 0:0023h0 + 0:0001h+ 0:0147b+ 0:0004p
4 1.60 2.55 -1 0.03 0 6.39 0 0.04
2) Base 1601.6 1002.55 14 50.03 5 406.39 100 100000 5.98

+ 4
3) Base 1603.2 1005.1 13 50.06 5 412.78 100 100000 6.09

+ 24
4) Base 1604.8 1007.6 12 50.09 5 419.15 100 100000 6.21

+ 34
5) Base 1606.4 1010.2 11 50.11 5 425.54 100 100000 6.32

+ 44
6) Base 1608 1012.7 10 50.14 5 431.92 100 100000 6.42

+ 54
7) Base 1609.6 1015.3 9 50.17 5 438.31 100 100000 6.51

+ 64
Base 1609.6 1015.3 9 50.17 5 438.31 100 100000 6.51
40 =4=2 0.8 1.27 -0.5 0.01 0 3.19 0 0.02
8) Base 1608.8 1014 9.5 50.16 5 435.12 100 100000 6.47

- 40

Base 1608.8 1014 9.5 50.16 5 435.12 100 100000 6.47
400 = 40=2 0.4 0.64 -0.25 0.01 0 1.6 0 0.01
9) Base 1609.2 1014.6 9.25 50.16 5 436.71 100 100000 6.49

+ 400

Base 1609.2 1014.6 9.25 50.16 5 436.71 100 100000 6.49
4000 = 400=2 0.2 0.32 -0.13 0.01 0 0.8 0 0.01
10) Base 1609.4 1015 9.12 50.17 5 437.51 100 100000 6.50

+ 4000

�̂ = �14:3406+ 0:0046L+ 0:0065 b0 + 0:034h0 + 0:0149 b

5.3.4 Sensitivity Analysis

A new regression model of microvalve flow rate at the optimal design point is shown
in (5.30).

�̂ = �14:3406+ 0:0046L+ 0:0065 b0 + 0:034h0 + 0:0149 b (5.30)
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The coefficient of determination R2 and the adjusted coefficient of determination
R2
adj

statistics show a very good fit.

R2 = 0:9994; R2
adj

= 0:9991

As shown in (5.31), the main effect �i of a regression variable xi is the average
change of system response when the variable xi fluctuates from its low-level value to
its high-level value, and all other variables hold constant. Thus, main effect denotes
the importance of a design parameter to system performance.

�i =
@�

@x1
�xi (5.31)

Having verified the multivariate linear regression model given in (5.30), the related
main effect analysis and resulting overall sensitivity ranking for the regression coef-
ficients are shown in Table 5.14, which indicates that the thickness of the cantilever
beam h0 should be carefully controlled to improve fabrication yield and system ro-
bustness.

Table 5.14 Main Effect Analysis for Sensitivity Model

Design Parameters L b0 h0 b

Main Effect 9.2e-4 13.1e-4 68e-4 29.7e-4
Sensitivity Ranking 4 3 1 2

Statistical modeling and response analyses are useful for developing macromodels
for composite microsystems. (5.29) and (5.30) represent complex physical models
with multivariate linear regression models, which can be used for efficient design
space exploration. By using the statistical response analysis, issues of designing for
on-target response, manufacturing yield and operational robustness can be addressed.
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5.4 Robust Design Optimization1

With the number of pilot applications of integrated composite microsystem grow-
ing, there is a need for robust design optimizations to support all aspects of product
development, including design, manufacturing, and operational use. New designs
that seek enhanced performance and function require an understanding of the perfor-
mance space and design issues. Studying statistical parametric performance relations
can aid in understanding the limits of present transduction mechanisms and explore
new transduction mechanisms. Due to the high levels of environmental sensitiv-
ity and small dimensions associated with integrated circuit fabrication, manufactur-
ing of composite microsystems is increasingly important in determining commercial
viability and affordability. Manufacturing yields are presently significantly lower
for MEMS and MEFS than comparable microelectronics [99]. Finally, operational
robustness requires understanding the environmental limits of transduction and the
effect on microsystem performance. The limitation is associated with component
aging and degradation that may cause unwanted drifts in nominal design settings.
Thus, there is a need for detailed and systematic analyses of the relationships be-
tween basic electrical/mechanical design parameters and overall design function and
performance.

Taguchi experimental design and statistical process control methods [30] provide ef-
ficient means for conducting performance variability reduction and parametric sen-
sitivity analyses. They are used for off-line parametric optimization control and high
performance design. The objective here is to identify the parameters or factors most
influential in determining a performance metric, and to compute the settings of the
parameters that yield both an acceptable performance metric and minimize the influ-
ence of parametric variations. In other words, by choosing levels of design parame-
ters, sensitivity to product design parameter variation due to the variance of a set of
noise factors is reduced. Experimental data is generated using the fractional factorial
design methodology.

Taguchi performance variability reduction and parametric sensitivity analyses intro-
duce design-for-manufacturing into behavioral modeling. Conducting off-line con-
trol modeling and simulation before actual fabrication is becoming an important as-
pect for composite microsystem design optimization, because of the high costs of
fabrication and the difficulties of controlling the inherent stochastic nature of fab-
rication processes. The emphasis is on maximizing the insensitivity of the design

1This section is based in part on “A. Dewey, H. Ren, and T. Zhang, Behavior Modeling of Microelectrome-
chanical Systems (MEMS) with Statistical Performance Variability Reduction and Sensitivity Analysis.
IEEE Transaction on Circuit and Systems II : Analog and Digital Signal Processing, vol. 47, no. 2, pp.
105-113, Feb. 2000.” c
 2000 IEEE. Reprinted by permission.
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to a known set of parametric variations, rather than on minimizing the parametric
variations themselves.

The organization of this section is as follows. Section 5.4.1 presents the formulation
of statistical noise sensitivity reduction for optimizing design performance stability,
followed by sensitivity or variance analysis to determine and rank-order the contri-
butions of the individual parameters to the optimized design performance stability.
Based on the behavioral models of a electrostatic-comb microresonator presented in
Section 5.1, Section 5.4.2 presents the results for Taguchi analyses.

5.4.1 Statistical Response Analysis

Statistical modeling and analyses, which can be profitably used to understand the
limits of present transduction mechanisms and explore new transduction, is crucial
to continued advancements in design, producting yield, scalability limits, and robust-
ness.

Due to the variance of elemental parameters, overall product performance fluctu-
ates around a nominal design point. Excessive fluctuation moves the nominal design
point outside of acceptable tolerance limits and results in unacceptable performance.
Hence, it is desirable to be able to select optimum settings or values for design param-
eters such that the product is functional, exhibits a high level of performance under a
wide range of conditions, and is robust against factors causing variability [87]. This
objective can be achieved by conducting statistical response analysis involving two
aspects: design optimization with performance variability reduction, and manufac-
turing/operating environment optimization control with sensitivity/variance analysis.

5.4.1.1 Performance Variability Reduction

Figure 5.17 illustrates the concept of performance variability or noise sensitivity re-
duction.

Design parameters are denoted by x1 and x2. Relationships between variability in
design parameters x1 and x2 and corresponding variability in system performance
are shown by the lefthand and righthand graphs, respectively. Due to the nonlinear
relationship between the design parameter x1 and system performance response f ,
the change of design point from x11 to x12 results in a performance variability re-
duction. A similar change in design point from x21 to x22 yields no performance
variability reduction due to the linear relationship between design parameter x2 and
system performance response f .

Performance variability reduction concerns identifying design parameters that have
the most influence on performance variability. It also concerns setting the values of
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FIGURE 5.17
The way to performance variability reduction. The figure on the left shows
the non-linear relationship between a design parameter and the system perfor-
mance. The figure on the right shows the linear relationship between the system
performance and a design parameter

the design parameters to move the design point into the region where performance
sensitivity to parametric variations is minimized. In addition, design parameters
having the least influence on performance variability are employed to perform func-
tional tuning to ensure overall system performance meets target specifications. For
example, assume in Figure 5.17 an initial design point of (x11; x22). After moving
the design parameter x1 from x11 to x12 to reduce performance variability, design
parameter x2 could be adjusted from value x22 to value x21 as a tuning factor to
maintain the performance target. In this scenario, design parameter x1 is used to
improve variability reduction at the expense of nominal system performance. Unde-
sirable shifts in nominal system performance are, in turn, compensated for via design
parameter x2.

Performance variability is computed based on a statistical metric suggested by Taguchi,
signal-to-noise ratio (SNR) [30]. System performance is considered a “signal” and
parametric fluctuations are considered “noise”. Signal-to-noise ratio isolates para-
metric fluctuations from the performance mean. Three common formulations of the
signal-to-noise ratio (SNR) objective function are given below:

� Minimizing the performance response.

SNR = �10 log10

"
1

n

nX
i=1

1

y2
i

#
(5.32)

� Maximizing the performance response.

SNR = �10 log10

"
1

n

nX
i=1

y2i

#
(5.33)
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� Target a special performance specification while minimizing performance vari-
ance.

SNR = �10 log10

�
�2

�2

�
(5.34)

where

� n is the number of simulation replicate corresponding to each setting of design
parameter combination.

� � is the mean of overall performance response: � = 1
n

Pn

i=1 yi

� �2 is the sample variance of performance response: �2 = 1
n�1

P
n

i=1(yi��)2

SNR transforms the performance response into the log domain and provides a stan-
dard representation of different design performance variability reduction objectives;
the objective functions are generally constructed such that the larger the signal-to-
noise ratio, the better the performance. For instance, when the design objective is
to maximize a performance metric, the larger the performance response, the larger
its associated SNR (5.32). In a similar manner, when the design objective is to
minimize a performance metric, the smaller the performance response, the larger its
associated SNR (5.33). When SNR is applied to on-target design, the smaller the
performance variance to the target, the larger the associated SNR (5.34).

Performance variability reduction computes the effect of each design parameter at
several settings or levels on SNR and uses the results to determine the best combi-
nation of parameter settings for optimal performance stability. Parameters are called
factors and a particular parameter value is called a level. Combinations of parameters
and values (factor levels) are delineated using orthogonal arrays [92]. Parameters are
listed horizontally, forming the columns, and experiments or combinations of values
of the parameters are listed vertically, forming the rows. An orthogonal array pos-
sess the property that all columns are mutually orthogonal in that, for any pair of
columns, all combinations of factor levels occur and they occur an equal number of
times.

The effect of a design parameter at a particular setting (factor level), called the factor
main effect, is defined as the deviation the factor level causes from the overall mean
of the performance response and is given by

M
j

A
=

1

n

nX
i=1

SNRi (5.35)

where,

� M j

A
denotes the effect of factor A at level j on SNR, and
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� n is the number of experiments (simulations) involving the factor A set to level
j.

For instance, the factor main effect of factorA at level j = 3 on SNR is computed as
the average of the SNRs corresponding to each performance response where factor
A is set to level j = 3.

Since the factor main effect represents how close the performance response caused
by a factor level is to the design objective, parameter settings having the largest factor
main effect are desirable. That is, levels that maximize the signal-to-noise ratio result
in minimization of performance variability. When the target performance responses
are taken into account, however, the actual combination of design parameter levels
should be adjusted before the final selection of parameter settings. The adjustment
is based on the effect of factors on SNR and performance mean.

Model (DAEs)
Composite Microsystem

(Taguchi Method)

Control Optimization 
Manufacturing 

Satisfy

No Satisfy

Sensitivity Analysis

(Analysis of Variance)

Optimal 
Design Parameters

Noise Sensitivity
Reduction

(Taguchi Method)

Design Process Manufacturing Process

System Statistical Analysis

Modeling and Simulation 

FIGURE 5.18
Composite microystem statistical modeling, simulation, and analysis procedure

consists of the design process and the manufacturing process.

Figure 5.18 shows the behavioral modeling approach for robust design in more de-
tail. The summary design and optimization process steps with an on-nominal-target
design objective function are listed below:

1. Build circuit-level model

(a) Create the verified behavioral coupled-energy circuit-level model of the
system.

2. Define simulations
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(a) Identify factors and factor levels used in simulation for evaluating per-
formance variance.

(b) Construct orthogonal array of factors and levels to identify fractional fac-
torial factor level combinations defining required simulations.

3. Conduct simulations

4. Optimal design analysis

(a) Calculate the mean and variance for each factor level combination of
design parameters.

(b) Compute the influence of design parameters on SNR.

(c) Compute the influence of design parameters on performance mean.

(d) For design parameters having a significant influence on SNR, select lev-
els that maximize SNR.

(e) Select any design parameter(s) having negligible effect on SNR, but
significant effect on the performance mean, as tuning factor(s) to bring
the performance mean on target. The nominal value(s) of the adjustment
factor(s) can be determined during design via simulation and precisely
set during manufacturing via final acceptance testing/inspection.

5.4.1.2 Sensitivity Analysis

After obtaining the optimum setting of design parameters to minimize overall perfor-
mance variability, the second part of statistical response analysis assesses the relative
contribution of each design parameter to the optimized performance variability. Rel-
ative design parameter sensitivity identifies which parameters’ variations (noise fac-
tors) are limiting factors in the manufacturing process and, consequently prioritizes
statistical processes monitoring and control efforts.

The sum-of-squared values [98] of performance response can be used for system
sensitivity or variance analysis. Sensitivity analysis decomposes the total variability
of response into separate elements representing the variance of each factor and their
interaction.

Let Yij denote the performance response when factor x1 is set to its ith level and fac-
tor x2 is set to its jth level, as shown in Table 5.15. The deviation of the performance
response at a particular factor level from the overall mean performance response (Y )

computed with all factors set to their nominal levels is denoted by (Yij � Y ) and
estimated by the additive effects of the following elements:

� The deviation of the mean performance response at the ith level of factor x1
from the overall mean performance response estimated as (Y i+ � Y ), where
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Table 5.15 Performance Response
for Two Factors/Two Levels

Factor x2
+1 �1

Factor +1 Y11 Y12
x1 �1 Y21 Y22

Y i+ is given by

Y i+ =
1

2

2X
j=1

Yij

� The deviation of the mean performance response at the jth level of factor x2
from the overall mean performance response estimated as (Y +j � Y ), where
Y +j is given by

Y +j =
1

2

2X
i=1

Yij

� The deviation of the mean performance response at the (i; j)th interaction of
x1 and x2 from the overall mean performance response estimated as (Yij �
Y i+ � Y +j + Y ).

Thus, deviation of the performance response at a particular factor level from the
overall mean performance response can be expressed as

Yij � Y = (Y i+ � Y ) + (Y +j � Y ) + (Yij � Y i+ � Y +j + Y ) (5.36)

Squaring both sides of (5.36) and summing over the indices i; j yields the following
partition of the total sum of squares (SST ) of the performance response for example
in Table 5.15.

SST = SSX1 + SSX2 + SSX1X2 (5.37)

Where,

SST =

2X
i=1

2X
j=1

(Yij � Y )2 (5.38)

SSX1 =

2X
i=1

2X
j=1

(Y i+ � Y )2 = 2

2X
i=1

(Y i+ � Y )2 (5.39)

SSX2 =

2X
i=1

2X
j=1

(Y +j � Y )2 = 2

2X
j=1

(Y +j � Y )2 (5.40)

SSX1X2 =

2X
i=1

2X
j=1

(Yij � Y i+ � Y i+ � Y +j + Y )2 (5.41)
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The total sum of squares (SST ) of the performance response for the general case of
n design parameters can be inferred as:

SST = SS(1)+SS(2)+; � � � ; SS(n)+SS(1; 2)+SS(1; 3); � � � ;+SS(1; 2; : : : ; n)
(5.42)

The total sum-of-squares (SST ) indicates overall performance variability due to the
variance of factors or design parameters. It is also used as a verification criterion
to verify the system robust design algorithm. Whereas the partition of the sum-of-
squares indicates how much of the total variability (SST ) in performance response
can be attributed to individual factors and the interaction of factors. In addition, the
relative importance of each factor and cross product factor interactions is assessed
by dividing the appropriate additive term by the total sum of squares SST . For
instance, in Table 5.15, SSX1=SST is the relative influence (sensitivity) of factor
x1, and SSX1X2=SST is the relative influence (sensitivity) of the interaction of
factors x1 and x2. Additive terms with the largest percentages are considered the
most important in affecting response variability.

5.4.2 Statistical Response Analysis of Microresonators

A microresonator is selected as a representative example of composite microsys-
tems. Use of electrostatic linear comb drive microresonators has been reported in
building filters, oscillators [100], and pressure sensors. Electrostatic transduction is
commonly used for microresonators because it offers a simplified fabrication pro-
cess. The circuit-level behavioral models of a electrostatic-comb microresonator is
presented in Section 5.1.

The design objectives for the statistical response analysis of the microresonator are
as follows:

� Minimize resonant frequency (!o) variability while maintaining on-target re-
sponse, and

� Maximize motional transconductance Yx

The behavioral model of the microelectromechanical resonator presented in the pre-
vious section defines the set of design parameters. Nominal values for the elemental
design parameters are listed in Table 5.16. Factor levels are defined using a knowl-
edge of the standard deviation � of the statistical variance distributions due to manu-
facturing disturbances and are often estimated as �3� [101]. Assumed noise factors
with mean and tolerance are listed in Table 5.17.

Hence, a standard three-level orthogonal array L18 [92] shown in Table 5.18 with
seven columns and three levels can be used to define a partial factorial set of simu-
lations instead of a complete factorial or exhaustive set of simulations. The partial
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Table 5.16 Elemental Design Parameters and Initial
Nominal Values

Parameters Values Units
Folded Flexure Beam Width (W ) 2 �m
Folded Flexure Beam Length (L) 200 �m
Number of Interdigitated Fingers (N ) 12
Thickness of the Fingers (h) 2 �m
Gap Between the Fingers (d) 2 �m
Young’s Modulus (E) 150 GPa
Bias Voltage (VP ) 80 V

Table 5.17 Noise Factors for
Microresonator

Tolerance Level
Noise Factors (-1) (0) (+1) Unit

W -0.1 0 0.1 �m
L -1 0 1 �m
h -0.2 0 0.2 �m
d -0.2 0 0.2 �m
E -5 0 5 GPa

factorial set of simulations yield the data required for performance variability reduc-
tion and sensitivity analysis.

To measure the effect of performance variability reduction, an initial analysis of vari-
ance is conducted for the performance metrics or responses of resonant frequency!o
and motional transconductance Yx; the results are given in Tables 5.19 and 5.20. The
relatively high values of the sum of squares of the performance response, calculated
as

sum of squares = 3(�y(+1)� �y)2 + 3(�y(0)� �y)2 + 3(�y(�1)� �y)2

indicates low design robustness.

To determine the settings of the microresonator design parameters (control factors),
at which the noise factor influence is minimized, performance variability reduction
assumes the levels given in Table 5.21. Three levels are computed for each control
factor. Level 0 denotes the nominal (initial) design point settings. Levels -1 and
+1 bracket the level 0 settings and define a parametric range sufficient to exercise
the nonlinear relationships between factor variances and performance response vari-
ances, i.e. resonant frequency and motional transconductance.

The performance variability reduction procedure is illustrated in Figure 5.19. Each
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Table 5.18 Orthogonal Array for
Resonant Frequency !o and Motional
Transconductance Yx

No. W L E d h e e
1 -1 -1 -1 -1 -1 -1 -1
2 0 0 0 0 0 0 -1
3 +1 +1 +1 +1 +1 +1 -1
4 -1 -1 0 +1 0 +1 -1
5 0 0 +1 -1 +1 -1 -1
6 +1 +1 -1 0 -1 0 -1
7 -1 0 -1 +1 +1 0 0
8 0 +1 0 -1 -1 +1 0
9 +1 -1 +1 0 0 -1 0
10 -1 +1 +1 -1 0 0 0
11 0 -1 -1 0 +1 +1 0
12 +1 0 0 +1 -1 -1 0
13 -1 0 +1 0 -1 +1 +1
14 0 +1 -1 +1 0 -1 +1
15 +1 -1 0 -1 +1 0 +1
16 -1 +1 0 0 +1 -1 +1
17 0 -1 +1 +1 -1 0 +1
18 +1 0 -1 -1 0 +1 +1

Table 5.19 Initial Analysis of Variance for Resonant Frequency !o
Level Mean (kHz) Sum of

Parameters lower (-1) normal (0) high (+1) Squares Percentage Order
W 15.907 17.183 18.495 10.054 32.90% 1
L 17.350 17.178 17.057 0.131 0.43% 4
E 16.895 17.188 17.502 0.553 1.81% 3
h 16.320 17.208 18.058 4.529 14.82% 2
Total - - - 30.561 100% -
Overall mean 17.195 - - -

Table 5.20 Initial Analysis of Variance for Motional Transconductance Yx

Level Mean (10�9s) Sum of
Parameters lower (-1) normal (0) high (+1) Squares Percentage Order
d 3.7253 3.0182 2.4818 2.3340 23.92% 1
h 2.4655 3.0595 3.7003 2.2883 23.45% 2
Vp 2.9057 3.0487 3.2710 0.2033 2.08% 3
Total - - - 9.7575 100% -
Overall mean 3.0751 - - -



152 MICROELECTROFLUIDIC SYSTEMS: MODELING AND SIMULATION

Table 5.21 Control Factors
for the Microresonator

Parameter Levels
(-1) (0) (+1)

W 1 2 4
L 100 200 400
d 1 2 4
h 1 2 4
N 6 12 24
Vp 40 80 160

row of the control orthogonal array represents a different trial design. For each trial
design, the eighteen (18) test conditions are determined and exercised using the cir-
cuit microresonator simulation model.

Test
  No.

Noise Factors

1

3

2

18

-1     -1        -1       -1       -1    

W       L         E          d          h      

   0        0          0          0          0      
+1      +1       +1        +1        +1      

+1        0       -1        -1          0    

Test
  No.

Noise Factors

1

3

2

18

-1     -1        -1       -1       -1    

W       L         E          d          h      

   0        0          0          0          0      
+1      +1       +1        +1        +1      

+1        0       -1        -1          0    

  No.

-1    -1     -1    -1    -1    -1

+1     +1     +1    +1     +1      0

+1       0     -1    -1       0    +1

W     L        d       h      N    Vp

   0       0       0       0       0      0

1

3

2

18

Control FactorsExpt.

 YxW

YzW

FIGURE 5.19
Experiment design. Each row of the control orthogonal array represents a dif-
ferent trial design.

Simulation results provide the data for computing the applicable signal-to-noise ratio
SNR for the resonant frequency !o and motional transconductance Yx performance
responses. Performance variability reduction results are tabulated in Tables 5.22,
5.23, and 5.24 and plotted in Figures 5.20, 5.21, and 5.22.

Based on the results of the performance variability reduction, the following obser-



CIRCUIT-LEVEL OPTIMIZATION 153

Table 5.22 Analysis of SNR Ratio for Resonant
Frequency !o

Parameter Average SNR� by level
lower (-1) normal (0) high (+1)

W 17.1537 21.5687 24.5025
L 20.7956 20.8601 21.5692
h 18.7551 21.5486 22.9212
N 21.5145 20.8627 20.8477
Overall mean SNR =21.0750

*SNR = �10log10
h
�
2

�2

i

Table 5.23 Analysis of Mean for Resonant
Frequency !o

Parameter Average � by level (kHz)
lower (-1) normal (0) high (+1)

W 9.153 26.614 63.180
L 64.749 24.518 9.678
h 26.893 38.129 33.924
N 29.556 37.249 32.141
Overall mean � =32.982

Table 5.24 Analysis of SNR Ratio for Motional
Transconductance Yx

Parameter Average SNR� by level
lower (-1) normal (0) high (+1)

d -39.5983 -51.1616 -63.0754
h -63.9759 -51.0591 -38.8003
N -63.3196 -51.2784 -39.2372
Vp -63.3196 -51.2784 -39.2372
Overall mean SNR =-51.2784

*SNR = �10log10
h
1
n

Pn

i=1
1
y2
i

i
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FIGURE 5.20
Plot of control factor effects of SNR on resonant frequency

vations can be made concerning robust microelectromechanical resonator behavioral
modeling and design:

� Folded flexure beam width (W ) has a significant effect on both SNR ratio
and mean of resonant frequency; this result is consistent with the observation
that the folded flexure beam is the principal mechanical vibratory structure.
The W3 level is the “optimal” design parameter setting as the corresponding
SNR is maximal and, conversely, the design performance response variability
is minimal.

� Folded flexure beam length (L) has little effect on SNR ratio for resonant
frequency, but a significant effect on the mean of resonant frequency. Hence,
the folded flexure beam length is a good candidate parameter to use to tune the
performance resonant frequency target.

� Thickness of the finger (h) has a significant effect on both the SNR of reso-
nant frequency and motional transconductance; h3 is the “optimal” parameter
setting to maximize both performance metric SNRs.

� The gap between the comb drive interdigitated fingers (d) has a significant
effect on SNR of motional transconductance; d1 is the “optimal” parameter
setting.
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FIGURE 5.21
Plot of control factor effect of mean on resonant frequency

� The number of fingers in the comb drive (N ) has considerable effect on SNR
of motional transconductance, but little effect on resonant frequency.

� Bias Voltage (VP ) has a significant effect on SNR of motional transconduc-
tance; VP3 is the “optimal” parameter setting.

Taking into consideration the above tradeoffs and additional issues concerning man-
ufacturability, an optimal design parameter setting is given in Table 5.25. Tables 5.26
and 5.27 show results on conducting the analysis of variance for the optimal design
point. Comparing the final analysis of variance for the optimal design point with the
initial analysis of variance given in Tables 5.19 and 5.20 reveals an improvement in
both design objectives. The less SST in Table 5.26, 12:282, comparing to that in Ta-
ble 5.19, 30:561, verifies the correctness of the system robust design algorithm. The
motional transconductance has been significantly increased, as shown by the higher
means values. Also, the variability of the resonant frequency has been significantly
decreased, as shown by the decrease in the total sum of squares, indicating improved
design robustness. The partitions of the sum of squares of the final analysis of vari-
ance defines the relative contributions of the design parameter variance to overall
design performance variance. This data is a measure of design parameter sensitivity
and is graphically shown in Figures 5.23 and 5.24.
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FIGURE 5.22
Plot of control factor effect of SNR on motional transconductance Yx

Table 5.25 Optimal Design

W L E d h N Vp Frequency (kHz) Transconductance (10�9s)
3 378 150 1 4 20 80 17.195 133

Table 5.26 Analysis of Variance for Noise Factors on Resonant Frequency !o
Based on Optimal Design

Parameter Level Mean (kHz) Sum of
lower(-1) Normal(0) high(+1) Squares Percentage Order

W 16.338 17.192 18.063 4.4595 36.31% 1
L 17.277 17.190 17.126 0.0343 0.28% 4
E 16.906 17.196 17.491 0.5133 4.18% 3
h 16.762 17.200 17.631 1.1318 9.22% 2
Total - - - 12.282
Overall mean 17.195
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Table 5.27 Analysis of Variance for Noise Factors on Motional Transconductance
Yx Based on Optimal Design

Level Mean (10�9s) Sum of
Parameters lower(-1) Normal(0) high(+1) Squares Percentage Order
d 208.3625 133.3545 92.3757 20758 45.70% 1
h 129.4642 145.0317 159.5968 1362 3% 2
Vp 136.8362 143.3260 153.9305 447 0.98% 3
Total - - - 45419 100% -
Overall mean 144.6976 - - -
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FIGURE 5.23
Parameter contributions to resonant frequency variance. The resonant fre-
quency is most sensitive to the variance of the w.
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FIGURE 5.24
Parameter contributions to transconductance variance. The transconductance
sensitivity to the variation of d is maximum.

This section addresses a robust design methodology for composite microsystem de-
sign based on Taguchi robust parameter design and statistical process control meth-
ods. Behavioral models are used to conduct sample simulations. The resulting data is
analyzed and used to determine model parameter settings that minimize the variabil-
ity in overall performance response to fluctuations in design parameters. The relative
contributions of the individual model parameters to the minimized design variability
is also determined. In addition, the correctness of the system robust design algorithm
has been verified using the statistical total variability (SST ).

5.4.3 Design Optimization of Microvalves

Sum-of-squared values of performance response decomposes the total variability of
response into separate elements representing the variance of each factor and their
interaction, and could present the useful performance variability information [97],
but the variance analyses could not directly represent the geometric relationships
between the system performance and the design parameters. Statistical response
analyses can be studied using multivariate linear regression modeling. This study
helps the designer to understand the casual relationships between how fluctuations
in design parameters shift the design point and associated system behavior, and in-
dicates which factors need to be more carefully analyzed during design and more
carefully controlled during manufacturing and operating [31]. This study can help to
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solve the optimal design tradeoff to find the appropriate design solution, and verify
the efficiency of the statistical analysis.

Depending on the system modeling of the microvalve, the design parameters which
influence performance responses, and their nominal design values are shown on Ta-
ble 5.28.

Table 5.28 Elemental Parameters and Initial Nominal
Design Values

Parameters Values Units
Length of the cantilever (L) 1600 �m
Width of the cantilever(b0) 1000 �m

Thickness of the cantilever (h0) 15 �m
Height of the valve seat (h) 50 �m
Length of the valve seat (l1) 5 �m
Width of the valve seat (b) 400 �m

Length of the cantilever over valve seat(l2) 100 �m
Young’s Modulus (E) 146.9 GPa

Air Pressure(Pa) 100000 Pa

The design objective of microvalve performance is to minimize the variation of the
static flow rate � due to the fluctuation of design parameters, while maintaining the
on-target performance. Note that since L; b0; h0; l1; b; h; l2; p are subject to manu-
facturing variations, the values of each variable is bounded by �3�, where � is the
standard deviation for the parameter. The resulting noise factors with mean and tol-
erance are listed in Table 5.29.

Table 5.29 Noise Factors for
Microvalve

Tolerance Level
Noise Factors (-1) (0) (+1) Unit

L -0.2 0 0.2 �m
b0 -0.2 0 0.2 �m
h0 -0.2 0 0.2 �m
l1 -0.2 0 0.2 �m
b -0.2 0 0.2 �m
h -0.2 0 0.2 �m
l2 -0.2 0 0.2 �m
p -1 0 1 Pa
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The Young’s modulus (E) is related to the design material, and is assumed to main-
tain constant. Moreover, in order to reduce the sensitivity to manufacturing variations
of the structural etch, some of the design parameters are correlated, for instance the
design parameters of the vantilever, hence their variance is the same.

To determine the design parameter setting for the microvalve robust design, at which
the noise factor influence is minimized, depending on the microvalve design enve-
lope and its characteristic resonance frequency, which is related with the microvalve
geometric value, three design levels are set shown in Table 5.30, the initial normal
design points are defined at level 0. Parametric wider range is defined to identify
the nonlinearity of the relationship between the control factors and performance re-
sponse, and to avoid the operating microvalve near the resonance frequency, which
could make the flow rate unstable.

Table 5.30 Control Factors for
the Microvalve

Parameter Levels
(-1) (0) (+1)

L 1280 1600 1920
b0 800 1000 1200
h0 12 15 18
h 40 50 60
l1 4 5 6
b 320 400 480
l2 80 100 120

Therefore, a standard orthogonal array L18 with seven columns and three factor lev-
els defined as fractional factorial design instead of a complete factorial simulation
can be used to derive the inner and outer array simulation.

At the normal design point, (5.43) shows the multivariate linear regression model of
the microvalve static flow rate �(ml=min), obtained using the statistical response
analysis techniques.

� = �15083:42+2:407�L+2:407�b0+2:407�h0+0:065�h+14:654�b+0:088�p
(5.43)

The coefficient of determination R2 and the adjusted coefficient of determination
R2
adj

statistic show an very good linear fit.

R2 = 1:00 R2
adj = 1:00 (5.44)
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Table 5.31 Array Simulation Design for the Static Flow
Rate �

No.(Outer Array) L b0 h0 h l1 b l2
1 -1 -1 -1 -1 -1 -1 -1
2 0 0 0 0 0 0 -1
3 +1 +1 +1 +1 +1 +1 -1
4 -1 -1 0 +1 0 +1 -1
5 0 0 +1 -1 +1 -1 -1
6 +1 +1 -1 0 -1 0 -1
7 -1 0 -1 +1 +1 0 0
8 0 +1 0 -1 -1 +1 0
9 +1 -1 +1 0 0 -1 0
10 -1 +1 +1 -1 0 0 0
11 0 -1 -1 0 +1 +1 0
12 +1 0 0 +1 -1 -1 0
13 -1 0 +1 0 -1 +1 +1
14 0 +1 -1 +1 0 -1 +1
15 +1 -1 0 -1 +1 0 +1
16 -1 +1 0 0 +1 -1 +1
17 0 -1 +1 +1 -1 0 +1
18 +1 0 -1 -1 0 +1 +1

No.(Inner Array) (L; b0; h0) h l1 b l2 p e

Using the regression model on the (5.43), Table 5.32 shows the analysis of variance
for noise factors on the static flow rate �. The main effect, @�=@xi, presents the
average variation of the performance response due to the unit fluctuation of the in-
dividual design parameter. Total sensitivity shows the system performance robust.
Because of the correlation between design parameters, L; b; h0, their order-rank is
the same.

Table 5.32 Analysis of Variance for Noise Factors on Flow
Rate �

Parameters L b0 h0 h b p
@�=@xi 2.407 2.407 2.407 0.065 14.654 0.088
Order 2 2 2 6 1 5

Unit Robust 22.028
SST 2.8485e-06

** The effects of l1; l2 are too small and can be ignored.

With the VHDL-AMS modeling, simulation results provide the data to compute the
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applicable signal-to-noise ratio SNR for the static flow rate. Table 5.33, 5.34, and
Figure 5.25, 5.26 show the control factor effect of SNR and the performance mean
value, and some observations can be made concerning the robust system design.

Table 5.33 Analysis of SNR Ratio for the
Static Flow Rate �

Parameter Average SNR� by level
lower (-1) normal (0) high (+1)

L 66.55 66.02 64.75
b0 65.34 65.64 66.34
h0 64.18 66.24 66.91
h 65.36 65.67 66.30
l1 66.04 65.37 65.92
b 64.75 65.81 66.76
l2 65.97 65.89 65.47

*SNR = �10log10
h
�
2

�2

i

Table 5.34 Analysis of Mean for the Static
Flow Rate �

Parameter Average � by level (ml/min)
lower (-1) normal (0) high (+1)

L 4644.37 5818.98 7116.86
b0 4657.49 5811.72 7111.01
h0 5964.13 5756.31 5859.78
h 5955.16 5749.83 5875.23
l1 5962.17 5747.58 5870.46
b 4654.85 5811.43 7113.93
l2 6097.36 5743.05 5739.81

� Cantilever length (L) has a significant effect on both SNR ratio and the mean
of flow rate �. The L1 level is the “optimal” design parameter setting as
the corresponding SNR is maximal and, conversely, the design performance
response variability is minimal.

� Cantilever width (b0) also has a significant effect on SNR ratio, but unlike can-
tilever length (L), it has the opposite effect on the mean of flow rate �, hence,
it can be used as a good candidate parameter to tune the system performance
target.
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� Cantilever thickness (h0) has a huge effect on SNR ratio but little effect on
the mean of flow rate �, h03 is the “optimal” parameter setting to maximize the
SNR.

� Height of the valve seat (h) has a significant effect on SNR ratio but little
effect on the mean of flow rate �, h3 is the “optimal” parameter setting to
maximize the SNR.

� Length of the valve seat (l1) has two design levels, l1 or l3, possessing the
nearly same SNR, and having little effect on the mean of flow rate �, it also
can be used as a candidate parameter to tune system performance.

� Width of the valve seat (b) has a significant effect on both SNR ratio and the
mean of flow rate �, the b3 level is the “optimal” design parameter setting to
maximize the corresponding SNR.

� Length of the cantilever over valve seat(l2) has considerable effect on SNR
ratio and little effect on flow rate.

Taking into consideration the above observations, and additional issues concerning
the manufacturability, a comparison of parameter settings for the nominal design
point and a potential optimal design is given in Table 5.35. Both designs possess the
same static flow rate, 5861:58(ml=min).

Table 5.35 Optimal Design

L b0 h0 h l1 b l2
Nominal Design Point 1600 1000 15 50 5 400 100
Optimal Design Point 1280 1145 18 40 4 440 80

With the coefficient of determination R2 and the adjusted coefficient of determina-
tion R2

adj
statistic being equal to 1, results show the very good linear fit between the

microvalve static flow rate �(ml=min) and the design point at the optimal design
point.

� = �15083:42� 1:200� L� 1:200� b0 � 1:200� h0 + 0:072� h

�0:002� l1 + 13:321� b� 0:002� l2 + 0:440� p (5.45)

Using the regression model on the (5.45), Table 5.36 shows the analysis of variance
for noise factors on the static flow rate �.

Comparing the final analyses in Table 5.32 and Table 5.36, the decrease of the main
effect, @�=@xi, the unit robust and the total sum of square of static flow rate show
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Table 5.36 Analysis of Variance for Noise Factors on Flow Rate �

Parameters L b0 h0 h l1 b l2 p
@�=@xi 1.200 1.200 1.200 0.072 0.002 13.321 0.002 0.440
Order 2 2 2 6 7 1 7 5

Unit Robust 17.085
SST 2.0332e-06

that the system stability has been significantly enhanced. The comparison of main
effects of individual design parameters, which measures the disturbing influence of
each design parameter, and the comparison of unit robust and SST are graphically
shown in Figure 5.27 and 5.28.
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FIGURE 5.27
Comparison of the main effect of the individual design parameter

By the Taguchi robust parameter design method and sensitivity analysis approach,
this section presents a novel application approach of experimental method in the
statistical simulation area, which decreases the period of design, increases feed-back
speed of the enterprise, and is a novel application of advanced concurrent engineering
on MEFS. Meanwhile, (5.43) and (5.45) reasonably represent the complex physical
models with the multivariate linear regression models, which can be used to con-
duct efficient sensitivity information to understand the manufacturing process and
operational limits, then suggest the optimal control strategy for further workshop
fabrication and operating environment, and it also will benefit new generation de-



166 MICROELECTROFLUIDIC SYSTEMS: MODELING AND SIMULATION

1 2
0

5

10

15

20

25

30

35
Comparison of the Unit Robust and SST

(N)ominal Design Point
(O)ptimal Design Point

Unit Robust SST 

(N)
22.03 

(O)
17.08 

(N)
2.84e−06 

(O)
2.03e−06 

FIGURE 5.28
Comparison of the unit robust and SST

sign.

5.5 Application Flexibility Optimization2

A number of design methodologies for microsystems have recently been proposed [97],
[98], [102]. These methods lead to robust microsystems that meet performance goals
but are relatively insensitive to design parameter variations. However, they are tai-
lored towards “custom microsystems” whose components are designed to operate
within a narrow range of system performance. This leads to expensive and inflexible
systems that are not amenable to large-volume production. This is one of the main
obstacles facing composite microsystems development [99].

We propose a reconfigurable composite microsystem design methodology that lever-
ages hardware/software co-design principles to achieve functional unit reusability.

2Reprinted from Proc. 4th Int. Conf. Modeling and Simulation of Microsystems (MSM2001). T.
Zhang, K. Chakrabarty and R. B. Fair, Design of Reconfigurable Composite Microsystems based on
Hardware/Software Co-design Principles pp. 148-152, 2001. c
 2001, with permission from Applied
Computational Research Society (ACRS).
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The hardware/software co-design method provides design flexibility by allowing
software to be compiled efficiently for a modular hardware platform [32]. By focus-
ing on the specific characteristics of composite microsystems, an analogy is devel-
oped between microsystem components and the hardware and software components
of a microelectronic system.

By partitioning the design parameters of microsystems into two categories: nonre-
configurable “hardware” and reconfigurable “software” design parameters (referred
to asNRDP s and RDP s, respectively), we can make the microsystem performance
meet the flexibility requirement and be suitable for a wider range of applications.
While the values of the NRDP s are determined at fabrication time, the values of
the RDP s are configured (programmed) during operation. This allows the system
to conform to a wider range of performance specifications. The key challenges here
include the following: (i) partition the set of design parameters to NRDP s and
RDP s; (ii) determine the values of the NRDP s to make the system performance
less sensitive to variation of NRDP s; (iii) exploit the synergy between NRDP s
and RDP s to increase performance flexibility. Thus, given a range of values that the
RDP s can take, the goal here is to determine the values of the NRDP s such that
the range of system performance is maximized under the constraint that the perfor-
mance is relatively insensitive to the variation of the NRDP s. Table 5.37 illustrates
the partitioning example for a generic microelectrofluidic system (MEFS).

Table 5.37 Design Parameters for a Microfluidic System.

Abstraction Nonreconfigurable Design Reconfigurable Design
Level Parameters (Hardware) Parameters (Software)
System Number of I/O Interface Ports Plug in/out Strategy
Level Number of Delivery Channel Buses Process Scheduling

Component Beam Dimension Pressure
Level Channels Diameter Electrical Voltage

Fabrication Materials Operating Frequency

The Taguchi experimental design method [30] provides an efficient method for per-
formance variability reduction, and it is often used for off-line parametric optimiza-
tion control and high performance design. The basic idea of this method is to identify
the parameters or factors most influential in determining a performance metric and to
compute an appropriate setting of the parameters. This is done using orthogonal ar-
rays and design of experiments. We use the Taguchi method to ensure that the system
performance lies within an acceptable range, and the influence of parametric varia-
tions on the system performance is minimized. Statistical response surface analysis
studies the system performance variability within a region. Thus, it characterizes the
relationships between the basic electrical/mechanical parameters and system perfor-
mance. This allows a designer to understand how fluctuations in design parameters
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shift the design point and the associated system behavior, and then to explore the
maximal system performance range.

Therefore, the procedure of the application flexibility design optimization is that,
at first, on the analogy of the hardware/software co-design principles, we partition
the set of design parameters into NRDP s and RDP s for application flexibility.
Then, we use the Taguchi experimental design method to determine the values of
NRDP s that make the system performance robust, that is, less sensitive to variation
of NRDP s. Next, we increase the application flexibility of composite microsys-
tems using the response surface methodology. Finally, given a range of values that
RDP s can take, we design the system such that the range of system performance is
maximized under the constraint that the performance is relatively insensitive to the
variation of NRDP s.

The organization of this section is as follows. The general problem statement and
design approach are presented in Section 5.5.1. The Taguchi experiment design
method [30], which is described in Section 5.3, is used to determine the value of the
NRDP s for robust design. We also present the response surface methodology [31],
which is used to maximize the performance range for a given programmable set of
RDP s. Section 5.5.3 further describes the design procedure for achieving applica-
tion flexibility. Section 5.5.4 presents a case study based on the microvalve, which
serves as a case study for an electrostatic microfluidic device.

5.5.1 Design Approach

5.5.1.1 RDPs and NRDPs Partitioning

The overall microsystem cost and performance are affected by the partitioning of
the design parameters into NRDP s and RDP s. Based on the characteristics of
composite microsystems, theNRDP s/RDP s partitioning algorithm can be induced
into two categories

� Explicit Partitioning
It means that the partitioning of design parameters is explicit, such as the geo-
metric design parameters, which must be determined at the fabrication time.

� Implicit Partitioning
It means that the design parameters can be categorized intoNRDP s orRDP s,
the final partitioning is based on the different design objectives.

The partitioning decision depends on the relationship between design parameters,
system reliability and cost. Some of the issues influencing the partitioning decision
are as follows:
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1. Correlation
Correlated parameters must be placed in the same category. These correlations
and dependencies are generally determined by the designer. Alternatively, a
design rule can be used to automatically extract these correlations. For exam-
ple, there is significant correlation between the beam width and the perimeter
of the moving electrode in accelerometers [103]. Therefore, these two param-
eters (beam width and perimeter of the electrode) must be placed in the same
category.

2. Ease of control
Some design parameters, e.g. fluid pressure and electrical voltage, are rela-
tively easy to control during operation. Therefore, these can be placed in the
RDP set to increase application flexibility.

3. Cost
The cost of reconfiguration can also be a driving factor. For example, the
channel length in a microvalve is expensive to alter after fabrication. Hence it
is preferably placed in the NRDP set to reduce cost.

Depending on the particular feature of composite microsystems, there exist the non-
configurable design parameters, e.g. mechanical design parameters. Therefore, at the
initial state of partitioning, all design parameters can be a complete nonconfigurable
design parameter set, then with the partitioning criterion, reconfigurable design pa-
rameter set can be abstracted from the complete nonreconfigurable design parameter
set.

Initial :
NRDP(init) = U
RDP(init) = ;

Partitioning :
+

Final :
NRDP(final)

S
RDP(final) = U

NRDP(final)
T
RDP(final) = ;

Where

� U : the complete set of design parameters.

� NRDP(init) : the initial NRDP set.

� RDP(init) : the initial RDP set.

� NRDP(final) : the final NRDP set.

� RDP(final) : the final RDP set.
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The NRDP values are determined at manufacturing time, and this provides a non-
reconfigurable “hardware” platform. The RDP s constitute the “re-programmable
software” that run on this platform. In this way, composite microsystems provide
design flexibility for product evolution and different application purposes.

5.5.1.2 Nonreconfigurable Platform Design Robustness

One of the system optimization objectives is to find an optimal setting of theNRDP s
that makes the system performance less sensitive to the fluctuation of the manufactur-
ing process and the operating environment. The Taguchi parameter design method,
which is widely used for off-line parametric optimization control and high reliability
design [30], is used here to achieve this objective.

By choosing levels of the design parameters, we can make the system performance
less sensitive to variation of the set of noise factors. Performance variability is com-
puted using a statistical metric signal-to-noise ratio (SNR). System performance is
considered a “signal” and parametric fluctuations are considered “noise”. Our per-
formance variability reduction method computes the effect of each setting of design
parameters on SNR and uses the comparison results to determine the best combina-
tion of parameter settings to optimize performance stability [97]. The detail Taguchi
experiment design method is discussed in Section 5.4.1.

5.5.1.3 Degree of “Programmability” of a Reconfigurable Design Parameter

The next design objective is to determine the degree of “programmability” of the
RDP s. Therefore, when RDP s run on the robust nonreconfigurable “hardware”
platform, a composite microsystem can provide the design flexibility for product
evolution and different application purpose. The following factors must be consid-
ered in this context:

� Microsystem energy requirement
The energy supply availability for composite microsystems is limited due to
miniaturization and integration. Hence, the energy requirement of the RDP s
must conform to this restriction. For example, the adjustable range of the
electrical voltage must lie within the available voltage range.

� Limitation of physical implementation
The limitation of physical implementation is also a key for “programmability”
of RDP s. For example, the operating frequency of a micropump chamber
may be limited by the feasibility of physical implementation.

� Fabrication technology and integration level
As composite microsystems become smaller, the fabrication technology and
integration levels also limit the range of RDPs.
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� Operational reliability
Higher degree of “programmability” of RDP s may lead to operational relia-
bility problems, hence it may be more difficult to maintain the accurate control
at a wider range.

Therefore, designers should consider the above constraints to determine the degree
of “programmability” for the RDP s.

5.5.2 Determining the Performance Flexibility

Based on the certain setting of NRDP s and the determined programmability of
RDP s, the composite microsystem performance flexibility can be obtained. The
performance range is from the lowest performance to highest performance, and the
response surface methodology can be used to identify this performance flexibility.

The response surface methodology can be used to directly represent the geometric
relationships between the system performance and design parameters. This helps
the designer to understand the causal relationships between how design parameters
shift the design point and associated system behavior. Since the adjustable variation
scope of RDP s is usually limited, we assume that the relationship between RDP s
and system response can be represented as a unimodal function. This implies that on
the system response surface, there is exactly one point possessing the minimum per-
formance value and exactly one point possessing the maximum performance value,
as shown in Figure 5.29. Therefore, the local optimal design point is also the global
optimal design point in this design space. While we make the unimodal function
assumption here to illustrate our approach, we can handle a system with multimodal
response surfaces through piecewise approximation techniques. In this case, as well
as for the case where the system performance is not a continuous function of the
RDP setting, we can use iterative search over subintervals, in which the perfor-
mance is a unimodal and continuous function, then we compare the performance
upon each subinterval to get the optimal solution.

The minimum and maximum performance points can be formed via iterative search
algorithms. When there is just one RDP , the relationship between system perfor-
mance and the RDP can be represented with a curve in the X-Y plane, and a one-
dimensional iterative search method, such as Golden section, or Fibonacci search
method can be used to find the minimum and maximum performance points [101].
If the number ofRDP s is greater than one, the response surface can be used to repre-
sent the relationship between system performance and RDP s. An iterative gradient
search method, such as Steepest ascent/descent [31], can be used to find the optimal
points.
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Unimodal function for two and three dimensions.
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5.5.3 Optimization Procedure

The goal ofNRDP s/RDP s co-design is to obtain wider system performance within
the feasible programmability range of RDP s and a robust setting of the nonrecon-
figurable “hardware” platform. Since this optimization problem involves multiple
objectives, designers need to trade off each objective to get an appropriate design
result. Therefore, the proposed optimization procedure includes six steps:

1. Depending on the partitioning criterion, the design parameters are grouped
into RDP and NRDP sets.

2. Select a series of settings of NRDP s as a “hardware” platform.

3. Determine the degree of programmability of RDP s.

4. Using the response surface method and an iterative search algorithm, the min-
imum and maximum system performance values and related RDP values are
found within the determined programmability of RDP s.

5. The system robustness (insensitivity to the variation of NRDP s) is repre-
sented using SNR, and optimized using the Taguchi robust design methodol-
ogy. Since the SNR value for a certain setting of NRDP s also depends on
the setting of RDP s within their programmability range, the SNR for this
setting of NRDP s may vary with the individual value of RDP s. However,
with the unimodal assumption, it is reasonable to estimate the robustness for
a certain setting of NRDP s using the average of SNRs which are calculated
at the RDP nominal setting value, and the RDP values corresponding to the
minimum and maximum performance values. The average of SNR value,
SNRi, for the ith setting of the NRDPs is given by

SNRi =
SNRi

�
+ SNRi

�
+ SNRi




3
; i = 1; 2; :::; n (5.46)

where:

� SNRi
� : SNR value for the ith setting of the NRDP s with the RDP

setting at the minimum performance value.

� SNRi

�
: SNR value with the nominal setting of RDP s on the ith

NRDP setting.

� SNRi



: SNR value with the RDP setting possessing the maximum
performance value on the ith NRDP setting.

� n is the total number of the setting of NRDP s.

6. Calculate the main effect for each design parameter at a particular setting.
Based on these main effect values, we can obtain the desired performance
flexibility and robustness.
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5.5.4 Case Study: Microvalve Modeling and Optimal Design

In this section, a case study is presented for an electrostatic microfluidic device, the
microvalve. Based on the physical principles of operation of the microvalve and the
verified circuit-level model discussed in Section 4.4, a microvalve behavior model is
developed using SystemC. The final optimized design result ensures robustness and
a wider performance range for application flexibility.

5.5.4.1 Optimal Design

Depending on the physical principles of the microvalve and the partitioning crite-
ria, the design parameters can be grouped into the NRDP s and RDP s sets. The
geometric design parameters are grouped into the set of NRDP s, and the pressure
difference p is placed in theRDP set. The partitioning is shown in Table 5.38, where
L is the length of the cantilever, b0 is the width of the cantilever, h0 is the thickness
of the cantilever, h is the height of the valve seat, l1 is the length of the valve seat, b
is the width of the valve seat, l2 is the length of the cantilever over valve seat, and E
is Young’s Modulus.

Table 5.38 NRDP s and
RDP s.

NRDP s RDP s
L, b0, h0, h, l1, b, l2, E p

Our design objective is to minimize the variation of the overall flow rate � due to
the fluctuation of design parameters. Here, we assume that the design parameter
tolerances are �0:2�m.

Table 5.39 Tolerance for NRDPs.

NRDP s L b0 h0 h l1 b l2
Tolerance �0:2 �m

To determine the NRDP settings for robust design, we use the three design levels
for each NRDP as shown in Table 5.40. Since the fabrication material is always
silicon, the Young’s Modulus E equals 146:9GPa. In addition, the RDP (pressure
difference p) is assumed to be a sinusoidal pressure at a frequency of 100Hz. The
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amplitude of p is limited in the range of 5; 000 to 15; 000Pa, the nominal design
setting value is set to 10; 000Pa.

Table 5.40 Design Levels for NRDP s (units:
�m).

NRDP s L b0 h0 h l1 b l2
(-) 1280 800 12 40 4 320 80

Level (0) 1600 1000 15 50 5 400 100
(+) 1920 1200 18 60 6 480 120

An exhaustive search to find optimal NRDP setting for robust design is very dif-
ficult. The complexity of exhaustive search is O(3n), where n is the number of
NRDP s. However, most practical systems are dominated by some of the design
parameters, and most higher order interactions are negligible. Therefore, a 1=3p

fraction of the original orthogonal array is used for experimental designs with re-
duced O(3(n�p)) complexity, where p is related to the order of interactions. We
use the inner orthogonal array L8 with two levels (-1, 1) for NRDP tolerance, and
the outer orthogonal arrayL18 (Addelman-Kempthorne construction [92]) with three
levels (-1, 0, 1) forNRDP s setting to directly evaluate the contribution of individual
parameters to overall design robustness [31].

Therefore, by using the one-dimensional iterative Fibonacci search method, the set-
ting points of Pa, Pa(min:) and Pa(max:), with the minimum flow rate and the
maximum flow rate, respectively, can be obtained for each NRDP setting. In ad-
dition, by calculating the average SNR value at the Pa nominal setting Pa(nom:),
Pa(min:) and Pa(min:), the average robustness of a setting of nonreconfigurable
“hardware” platform is obtained. The design procedure is illustrated in Figure 5.30,
and explained as follows.

1. Design the outer array
Based on the orthogonal array L18, and the three design levels for each
NRDP shown in Table 5.40, the outer array is obtained as in the Figure 5.30,
each row represents a setting of NRDP s. For instance, in the first row, the L
value, �1, means that the length of the cantilever is 1280�m in this setting.

2. Design the inner array
Depending on the NRDP tolerance shown in Table 5.39 and the L8 orthogo-
nal array structure [92], we can obtain the inner array for each row of the outer
array, meaning each setting of NRDP s. For example, if the inner array shown
in Figure 5.30 is developed depending on the ith setting of the outer array, the
value of L at the first row in the inner array, �1, implies that the value of L is
1599:8�m.
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3. Search the design performance
Within the degree of “programming” of the RDP (pressure difference Pa),
we can obtain three performance values for ith NRDP setting by the iterative
searching method: minimum flow rate (�i

min
), normal flow rate (�i

nom
), and

the maximum flow rate (�i
max).

Table 5.41 Average SNR Ratio for the Design
Parameters.

Parameter Average SNR� by level
lower (-1) normal (0) high (+1)

L 66.67 65.90 64.95
b0 65.42 65.67 66.43
h0 64.26 66.36 66.90
h 65.86 65.87 65.79
l1 65.85 65.85 65.82
b 64.47 65.97 67.08
l2 65.86 65.84 65.83

Table 5.42 Flow-rate Range �� [�l=min]for
the Design Parameters.

Parameter �� = �max ��min by level
lower (-1) normal (0) high (+1)

L 218.26 272.64 326.58
b0 218.54 272.53 326.42
h0 272.50 272.80 272.18
h 272.42 272.49 272.57
l1 272.47 272.50 272.51
b 217.83 272.47 327.18
l2 272.33 272.49 272.66

4. Calculate the robustness for each setting of design parameters
Based on the SNR objective functions, the related system robustness for three
design performances can be calculated as SNRi

�
, SNRi

�
, and SNRi



, respec-

tively. The overall robustness of a setting of design performance (SNRi) is
the average of each SNRs, as given in (5.46).

SNRi
�
=

P8

i=1 SNRi
�

8
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SNRi

�
=

P8

i=1 SNRi

�

8

SNRi


=

P8

i=1 SNRi



8

5. Calculate the main effect
As shown in the Table 5.41, the main effect for design levels of each design
parameter is the average of the SNR with the same setting for the whole
design solutions. For example, the main effect for the length of the cantilever
L at lower level (�1), M�1

L
= 66:67, is the average of SNR for the design

solutions where L is set to �1.

6. Calculate the flow-rate for design levels
The application flexibility of the system, the range of the flowrate for each de-
sign parameter setting can also be calculated, as shown in Table 5.42. The ��

is the difference between the maximum flowrate and the minimum flowrate
within the Performance table in Figure 5.30. For example, regardless of other
design parameter settings, with L set at the lower level (1280�m), the system
flow-rate range �� is 218:26�l=min

Additionally, the following important observations can be made concerning the op-
timal system design:

� Figures 5.31 and 5.32 illustrate that the microvalve robustness and the flow-
rate range for different NRDP setting within the range of RDP s, respec-
tively. The setting of NRDP s is dependent on the design objectives (robust-
ness versus performance range); there does not exist a unique design point that
satisfies conflicting design requirements.

� In studying robust design, we note that the length of the cantilever (L), the
width of the cantilever (b0), the thickness of the cantilever (h0), and the width of
the valve seat (b) have a significant effect on SNR. Except h0, they also have a
significant effect on the average flow-rate range. The setting with L(�1), b0(+1),
h0
(+1)

, h(0), l1 (0), b(+1), l2 (�1) is clearly the most robust. The robustness of

this setting of the design parameters, SNR, is the average of the main effects
for each design parameter.

� In attempting design for wider flow-rate range design, we note that the length
of the cantilever (L), the width of the cantilever (b0), and the width of the valve
seat (b) have a significant effect on the average flow-rate range. The setting
with L(+1), b0(+1), h

0

(�1)
, h(+1), l1 (�1), b(+1), l2 (+1) possesses the widest

flow-rate range.

Figure 5.33 and Table 5.43 present the optimal design results: the optimal design for
the widest flow-rate range, and the optimal design for the robustness. In addition,
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Figures 5.31 and 5.32 also directly provide very useful information for related per-
formance improvement. For example, increasing the value of L, b0 and b increases
the range of flow rate, while decreasing the value of L and increasing the value of
b improves the microvalve robustness. Based on these performance analyses, other
feasible design solutions can also be obtained.

Table 5.43 Design Results

L b0 h0 h l1 b l2 Range (��) (SNR)
Nominal Design 1600 1000 15 50 5 400 100 272.86 66.66

Most Robust 1280 1200 18 50 5 480 80 314.00 69.13
Widest Range 1920 1200 15 60 6 480 120 469.86 63.45
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FIGURE 5.33
Plot of optimal design points: the nominal design point, the optimal design for
the widest flow-rate range, and the optimal design for the robustness.

We have leveraged the principles of the hardware/software co-design methodology to
develop a novel design approach for enhancing the application flexibility of compos-
ite microsystems. This methodology is also useful for rapid prototyping and CAD
tool development. The future work is to extend the proposed co-design approach
to higher-level design optimization, including system architecture and performance
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evaluation.

5.6 Conclusion

In this chapter, several simulation-based design and process optimization algorithms
were developed. The more efficient simulation methodologies, the bootstrap method
and the factorial design method, are introduced. Case studies on a comb drive mi-
croresonator and a microvalve illustrate that these simulation design methods can
reduce the computational cost while providing good parameter estimates. Then, a
validation strategy is discussed. The objective verification method is used to verify
the optimization results. To make the design solution match the design performance
requirement efficiently, an optimal on-target design algorithm was developed based
on a statistical response analysis strategy. A design for a microvalve is studied to il-
lustrate this methodology. In addition, by investigating Taguchi experimental design
and statistical process control methods, we demonstrated a robust design methodol-
ogy. Two examples are given for the robust design, an electrostatic-comb microres-
onator and a microvalve. Moreover, on the analogy to a hardware/software co-design
methodology, a novel application-flexibility design methodology is demonstrated.
This method can leverage the design for additional applications based on the Taguchi
robust design and the response surface methodologies. A case study of a microvalve
is presented.
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Microfluidic devices that combine existing components into a system are now being
routinely developed [17], [16]. These systems are usually based on continuous-flow
components, such as microvalves, micropumps and channels. There are several prob-
lems inherent in such designs. These problems include complex system architecture,
dead-volumes, and integration complexity. On the other hand, new microfluidic sys-
tems may be based on droplet actuation, which uses electrowetting-based actuation
to move fluidic samples. Droplet-based technology has been proposed for micro-
reactor application [104], and chemical analysis [105].

In this chapter, a performance comparison is presented between two types of mi-
crofluidic systems—continuous-flow systems and droplet-based systems. The com-
parison is based on a specific microfluidic application—a polymerase chain reaction
(PCR) system. The modeling and simulation of PCR are based on the SystemC de-
sign environment previously discussed. Section 6.1 introduces the principles of PCR
amplification, as well as the detection of amplification and the purification of the
PCR product. Section 6.2 discusses three continuous-flow PCR systems and their
physical implementation. These continuous-flow PCR systems include a sequen-
tial, continuous-flow PCR system [7], a detectable PCR system [8], and a reusable
continuous-flow PCR system. This reusable PCR system is based on a reconfig-
urable microliquid handling system architectural design [76]. Section 6.3 presents a
PCR system based on droplet technology. Its physical implementation is also pro-
posed. The comparison between these four types of microfluidic systems is dis-
cussed in Section 6.4. The comparison is based on the system design complexity
and system performance. In Section 6.5, we present an architectural design and opti-
mization methodology for performing biochemical reactions using two-dimensional
electrowetting arrays.

6.1 Introduction

In this section, the principle of PCR is introduced. Several important functional units
are also studied using typical values from the literature.

6.1.1 Polymerase Chain Reaction (PCR)

Since the first report of specific DNA amplification using the polymerase chain re-
action (PCR) in 1985 [106], PCR has become a powerful tool for the detection of
pathogens, where the amount of sample is often small and direct detection would
be impossible. Its specific application is for rapid enzymatic amplification of spe-
cific DNA fragments. PCR can amplify genomic DNA exponentially using temper-
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ature cycles. Considering a DNA duplex consisting of regions ABCDE, as shown in
Figure 6.1, if the sequences of B and D are known, then millions of copies of C
(the target) can be obtained by the PCR. One strand of this duplex is denoted with
a�b�c�d�e, and the complementary strand is denoted with a0�b0�c0�d0�e0.
PCR is carried out by adding the following components to a solution containing the
target sequence: (1) a pair of primers, b and d0; (2) all four deoxyribonucleoside
triphosphates (dNTPs); and (3) a heat-stable DNA polymerase. As shown in Fig-
ure 6.1 [106], a PCR thermal cycle consists of three steps:

1. Strand separation.
The two strands of the parent DNA molecule are separated by heating the

solution to 95oC for 45 seconds.

2. Hybridization of primers.
The solution is then abruptly cooled to 54oC to allow each primer to hybridize

to a DNA strand. Primer b hybridizes to b0 on one strand, and primer d0 hy-
bridizes to d on the complementary strand. This annealing process takes 30
seconds.

3. DNA synthesis.
The solution is then heated to 72oC, the optimal temperature for Taq DNA

polymerase. This allows the Taq DNA polymerase to attach at each priming
site (where primers have annealed) and extend (synthesize) a new DNA strand.
Elongation of both primers occurs in the direction of the target sequence be-
cause the 30 end of primer d0 faces c, and the 30 end of primer b faces c0. One
of the new DNA strands is b� c� d� e and the other is a0� b0� c0� d0. The
process takes 90 seconds.

PCR can successfully amplify target DNAs for mutation analysis, genetic mapping
and sequencing [106]. However, before subsequent analysis of the amplicon, the tar-
get DNA concentration of the PCR product has to be detected, and the PCR product
has to be purified to remove unwanted salts, primers and enzymes.

6.1.2 PCR Detection for DNA Concentration

An attractive method for PCR is based on conductivity detection. The analytical
response (G, conductivity) is related to the concentration of species [5], i.e.

G =
(�+ + ��)C

1000K
(6.1)

where �+ and �� are the limiting ionic conductances of cations and anions in solu-
tion, respectively. C is the concentration and K is the cell constant calculated from
L=A, where L is the distance between the electrode pairs, and A is the electrode
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FIGURE 6.1
Polymerase chain reaction (PCR). A cycle consists of three steps: strand sepa-
ration, hybridization of primers, and extension of primers by DNA synthesis.
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area. As long as the analyte has a conductance different from that of the carrier
solution, the DNA can be analyzed in its native state [5]. Conductivity can poten-
tially offer several advantages compared to other common detection schemes used
for DNA detection, such as UV absorbance or fluorescence [8]. These latter meth-
ods suffers from poor detection limits. The advantage of conductivity detection is
that it is amenable to small column detection. Figure 6.2 shows the schematic of
the conductivity cell [5]. The conductivity cell is constructed from Pt wires [107],
where the diameter of each wire is 360�m. The wires are inserted into opposite ends
of a glass tee, the spacing distance between them is 60�m. Two capillaries, 75�m
in diameter, are inserted into the tee. The bipolar-pulsed technique for conductance
measurements is used for obtaining the solution conductivity [108]. The frequency of
the pulses is typically 5000Hz. A flow-injection system needs to be built to conduct
the solution to the conductivity detector. The flow rate ranges from one to several
microliters per minute.

Platinum electrode
fused-silica
capillary

A

C

B

quartz microtee

µ
µ

A = 75    m
B = 60    m
C = 360    mµ

FIGURE 6.2
Schematic of the conductivity cell [5]. The conductivity cell is constructed from
Pt wires, quartz microtee and fused-silica capillary.

6.1.3 PCR Purification

After amplification and conductivity detection, the DNA product needs to be pu-
rified to remove unwanted salts, primers, and enzymes for future analysis. There
are several strategies proposed to perform purification of PCR-generated DNA. The
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purification technique used here is a reversed-phase separation, which can readily
purify PCR products with high recoveries [5]. For most reversed-phase separations
of DNA amplified via PCR, the ion-pairing agent is used. The common ion-pairing
agents are tertiary or quaternary ammonium salts, for instance triethylammonium ac-
etate or tetrabutylammonium phosphate. The chromatography of the PCR product is
carried out using ion-pairing reversed-phase liquid chromatography (RPLC) with the
mobile phase consisting of acetonitile-water (pH 7.0) and 50mM triethylammonium
acetate. The full description of the PCR reverse-phase purification can be found
in [109]. The volumetric flow ranges from one to several microliters per minute.

6.1.4 Acquisition Assumption

The PCR system can process a series of DNA solutions. The DNA solutions are
sequentially moved into the system, amplified, detected, and purified, At the end, the
processed DNA solutions are moved out for future processing. Without loss of gener-
ality, the volume for each DNA solution is assumed to be the same and equal to 30�l.
In addition, the acquisition function, f(x), for the DNA solution to the PCR system
is modeled by a traffic of liquid samples separated by interarrival times, denoted by
ft1; t2; :::g. These interarrival variables are independent, identically distributed (IID)
random variables, and they are characterized by an exponential probabilistic distri-
bution given by (6.2), with a mean value of 4 minutes. That is � = 1

240
(Note the

basic system time unit is a second). The incoming DNA solution is moved into the
system until the associated system resources are available.

f(x) = �e��x x � 0 (6.2)

6.2 Continuous-flow PCR System

Continuous-flow MEFS [11] use pressurized flow with mechanical flow control de-
vices such as microvalves and micropumps. Continuous-flow MEFS can be inte-
grated using two methods: (i) hybrid methods, where the elements are fabricated on
different chips and set on a common substrate having microchannel interconnection;
(ii) monolithic methods, where every element is fabricated on a single chip. In prac-
tice, most systems consist of a combination of these two forms. In this section, a
three-way microvalve is introduced in Section 6.2.1. In addition, three continuous-
flow PCR systems are discussed from Sections 6.2.2 to Section 6.2.4, respectively.
Their physical implementations are also presented.
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6.2.1 Three-way Microvalve

The three-way microvalve is one of most important parts for continuous-flow PCR
system implementation. The structure of an advanced three-way microvalve is shown
in Figure 6.3 [6]. The area of this three-way microvalve is about 8:5mm � 4.2mm.
The valve consists of two mechanically fixed parts: a channel part and an actuator
part. A pneumatic actuator is chosen because of its large displacement and high
available pressure. The dimensions of the internal microchannel are 800�m in width,
8mm in length, and 30�m in thickness [110]. The typical flow rate in the microvalve
ranges from one to tens of microliters per minute. The flow channel is divided into
three zones having one inlet/outlet port, each of which is driven by the pneumatic
actuator. The channel part has an oval cavity and three through-holes. The actuator
part has right and left C-shaped chambers, and a center oval chamber. There are
three different operation modes, as shown in Figure 6.4. In the first mode, the right
chamber is actuated so that the right hole is closed, leaving a flow path between the
left hole and the center hole. In the second mode, the center chamber is actuated,
thus the center port is closed and a flow path is opened between the left and right
ports. In the third mode, the left chamber is actuated. Therefore, the center port and
the right port are connected along the channel, while the left hole is closed. Since
each zone of the flow channel is covered entirely with the flexible membrane, dead
volume is minimized and a good seal is obtained.

Table 6.1 shows the design parameters for a state-of-the-art three-way microvalve.

Table 6.1 Three-way Microvalve Design
Parameters and Their Nominal Values

Parameters Values
Area size 8:5mm� 4:2mm

Internal channel width 800 �m
Internal channel thickness 30 �m

Internal channel length 8 mm
Flow rate 1 � 60 �l/min

6.2.2 Sequential Continuous-flow PCR System

The continuous-flow PCR system is based on a single channel passing repetitively
through the three temperature zones, as shown in Figure 6.5 [7]. The pattern of
the chip layout determines the relative time that a fluid element is exposed to each
temperature zone. In addition, the chip layout also defines the number of temperature
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The three-way microvalve consists of a flow channel and a pneumatic actua-
tor [6].
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Operation modes of a three-way microvalve consists of three modes: the left
port connecting with the right port, the center port connecting with the right
port, and the center port connecting with the left port [6].
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cycles, n, performed per run through the chip. The theoretical DNA amplification
factor is 2n. We assume the use of a chip that generates 20 identical cycles, each
having a time ratio of 4 : 4 : 9 (melting : annealing : extension). Therefore, the
amplification factor is 220. Two of three inlets of the chip are used for a continuous
buffer-fluid flow and for sample injection (the third inlet was not used). All fluids are
pumped by hydrostatic pressure. The dimensions of the microchannel for a existing
chip [7] are 40�m in width, 2:2m in length, and 90�m in height, The whole flow-
through time is 4 min for the 20 cycles.
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FIGURE 6.5
Chip layout [7]. (A) Schematic of a chip for flow-through PCR. Three well-
defined zones are kept at 95oC, 77oC, and 60oC. The channel passing through
the three temperature zones defines the thermal cycling process. (B) Layout of
the device. The device has three inlets on the left side and one outlet to the right.

Figure 6.6 shows the sequential continuous-flow PCR system with a detection pro-
cess and a purification process. The carrier pump brings a constant carrier flow
through the system. The carrier solution can intermittently clean the processor, and
it also is a carrier for the fluidic sample. A three-way microvalve [6] is used to switch
the product flow to an analysis chamber or to a waste chamber.

Because these three process elements are connected to each other sequentially, the
flow rate of each processor has to be the same. Based on the dimensions of the PCR
chip, total volume of the microchannel, Vchannel, is

Vchannel = W � L� h

= 40�m� 2:2m� 90�m

= 40�m� 2200mm� 90�m

= 7:9�l (6.3)
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FIGURE 6.6
Sequential continuous-flow PCR system consisting of three process elements:
PCR, a detector, and a purifier. The carrier-flow pump brings a constant carrier
flow through the system. A three-way microvalve is used to switch the product
flow to an analysis chamber or to a waste chamber.

where W is the channel width, L is the channel length, and h is the channel height.
Therefore, the flow rate � is as follows.

� = V=t = 7:9�l=4min = 1:975�l=min (6.4)

The distance between two processors, which is always several millimeters, is much
shorter than the length of the microchannel of the PCR, 2.2 meters. Therefore, the
transportation time between two processors can be neglected. Table 6.2 shows the
critical processing time for a 30�l sample.

Table 6.2 Design Parameters and Their
Nominal Value for a Sequential Continuous-flow
PCR System

Parameters Values
Processing time for PCR 30/1.975 = 15 min

Detection time 30=1:975 = 15 min
Purification time 30=1:975 = 15 min

Figure 6.7 shows the system throughput. Figure 6.8 shows the system resource uti-
lization for process elements: the PCR, the concentration detector, and the DNA
purifier. Due to the sequential connection between these process elements, each pro-
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cessor is under-utilized, and the system yield is low. In addition, the concentration
of DNA solution can only be detected at the end of the PCR process. That is, the un-
satisfied DNA solution cannot be fed back for reprocessing due to the uni-directional
fluidic flow. The sequential, continuous-flow PCR system lacks the process-monitor
capacity.
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FIGURE 6.7
System throughput of the sequential continuous-flow PCR system.

6.2.3 Detectable PCR System

The detectable PCR system can continuously monitor the change of DNA concentra-
tion during the PCR process. The closed-chamber PCR chip with optical detection
belongs to this category. Advantages of the PCR chip are its small size (6 mm � 4
mm � 1.5 mm) and the sealing of the chamber with a Pyrex wafer using the anodic
bonding method. The transparent surface of the Pyrex makes it possible to incorpo-
rate optical readout methods [8].

Figure 6.9 shows the layout of a closed-chamber PCR chip [8]. The heaters and
the temperature sensor are made of platinum 200 nm thick with an adhesion layer



PERFORMANCE EVALUATION 195

1 2 3
0

10

20

30

40

50

60

System Resources

U
til

iz
at

io
n 

(1
00

%
)

System Resource Utilization

PCR Detector Purifier 

FIGURE 6.8
System resource utilization of the sequential continuous-flow PCR system, each
processor is under-utilized.
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of 20 nm of titanium. The sensor is designed to have four contact pads, and it is
located under the bottom of the chamber. The two heaters are placed directly under
the chamber side walls and can be connected in parallel or in series.

FIGURE 6.9
Topview of the layout of a PCR chip. There are two heaters and one T-size
temperature sensor [8]. c
 2000 IEEE. With permission.

Figure 6.10 shows the picture of a packaged PCR chip. The modified hypoder-
mic needles of 0:6mm diameter are glued into the trenches of the Pyrex. The PCR
solution can be conveniently introduced on the chip with a standard syringe or an
injection pump.

In order to make optical detection more efficient, fluorescent dyes are added into
the reaction mixture. This method is termed homogeneous reporting chemistry [8].
With these chemistries, fluorescence is detected using fluorimeters that are relatively
simple. Fluorimeters collect the signal from the whole sample rather than at a spe-
cialized surface. The only requirement is that an optical window is available in the
PCR chamber to allow the passage of visible light in and out of the reaction mixture.
The pre-processor is needed to mix fluorescent dyes with DNA solution.

6.2.3.1 Mixing Group

The basic structure of a mixing group is shown in Figure 6.11 [111]. The inlet
unit connects the microsystem with the macroscopic environment. The micropump
delivers a constant flow rate for liquids. There are two microvalves located at the
input and the output of each micropump, which can prevent the reverse flow of the
liquid. In addition, each micropump must connected with a flow sensor to measure
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FIGURE 6.10
Picture of a packaged PCR chip [8]. c
 2000 IEEE. With permission.

the flow rate [112]. [113] shows a flow sensor connected with a micropump based
on the microfluidic circuitboard.

Due to the mixing process, the average flow rate for both liquids is about 10�l/hour.
We assume the flow rate in our system is 10�l/min due to small volume of fluorescent
dyes. The mixing of fluids in small channels is a technical challenge. In a very
small channel, the liquid exhibits only laminar flow. A good mixing of different
liquids requires turbulence in the flow. A simple solution is to coil the route of the
microchannel in the mixer.

Table 6.3 shows the critical design parameters for the mixing group based on a state-
of-the-art design.

Table 6.3 Design Parameters and Their
Nominal Value for a Mixer

Parameters Values
Flow rate 10�l/min

Internal pump size 7mm � 7mm [4]
Internal valve size 2 mm � 2 mm [16]
Shut-off flow rate � 0.1�l/min
Mixing unit size 1mm - 4mm



198 MICROELECTROFLUIDIC SYSTEMS: MODELING AND SIMULATION

inlet
/filter

pump flow
sensor

mixing
coilsCarrier

Sample

Reagent 1

Reagent 2

Controller

glass-bonded silicon ground plate
containing fluid channels

FIGURE 6.11
The PCR mixer consists of inlet units, actuation pumps, flow sensors, and mix-
ing coils.

6.2.3.2 Transportation Expense

Transportation time is a very important factor influencing the continuous-flow system
performance. In contrast to the sequential continuous-flow PCR system, the closed-
chamber PCR chip begins thermal cycling after the whole DNA solution is moved
into the chamber. We have to be concerned about the transportation time from the
mixer to the PCR chip.

Since the internal channel length of a three-way microvalve is 8mm, the viable length
of the channel between two processors is approximately equal to the number of three-
way microvalves multiplied by the length of the internal channel. For instance, there
are two three-way microvalves between the mixing unit and the PCR chip, thus the
channel length L between them is at least 16mm. The regular cross-section area A
of the microchannel is 1600�m2 [114]. The volume of the channel between two
processors is given by

V olume = A� L = 1:6� 10�3 � 16 = 0:0256�l (6.5)

Although the maximum flow rate of a micropump can be 1000�l/min, the realistic
flow rate vliquid is around 10�l/min due to the limitation of the three-way microvalve
and the mixer flow rate. Therefore, depending on (6.5), the transportation time for
the mixed liquid, whose volume V is equal to 30�l, between the mixer and the PCR
chip is

t =
V

vliquid
=

30�l+ L�A

10�l=min
' 3 minutes (6.6)
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FIGURE 6.12
Closed-chamber continuous-flow PCR system consists of four process elements:
a mixer, a PCR, a detector, and a purifier. The mixing-liquid cycle consists
of the mixer, the carrier chamber x1 and the associated pump, as well as the
three-way valve A and the waste chamber y1. The PCR-liquid cycle consists of
the PCR/Detector/Purifier, the carrier chamber x2 and the associated actuation
pump, three-way valves B and C, as well as the waste chamber y2. Based on
the mixing-liquid cycle, the DNA solution can be moved into the mixer. By con-
trolling the three-way microvalvesA and B, the solution can be moved from the
mixer into the PCR. Using the PCR-liquid cycle, the solution can be moved from
the PCR through the detector, to the purifier and on to the outlet. The three-way
microvalve C can direct the unqualified solution into the waste chamber.

where L is the distance between the mixer and the PCR chip. L� A is too small to
be counted when compared to the liquid volume V .

6.2.3.3 Closed-chamber continuous-flow PCR System

Figure 6.12 shows the closed-chamber continuous-flow PCR system with a mixer, a
PCR, a detector and a purifier. Carrier pumps bring a constant carrier flow through
the system. Three-way microvalves are used to switch the flow direction. The three-
way microvalves in the pre-processor switch the carrier solution or DNA solution
from the previous process to the processor. Three-way microvalves in the post-
processor switch the DNA solution to the next step analysis chamber or to the waste
chamber.

Because the mixer performs an independent flow cycle, the mixing time tmixing of
DNA solution with the reagent for a continuous-flow PCR system is determined by
the mixer flow rate.

tmixing = Vsolution=�mixer = 30=10 = 3min (6.7)

where the volume of the DNA solution Vsolution is 30�l, and the mixer design flow
rate �mixer is 10�l/min.



200 MICROELECTROFLUIDIC SYSTEMS: MODELING AND SIMULATION

However, the three process elements (PCR, detector, and purifier) are connected se-
quentially, the flow rate of each processor has to be the same. Based on (6.4), the
flow rate � of these processors is 1:975�l/min.

Table 6.4 shows the critical processing time for a 30�l sample.

Table 6.4 Design Parameters and Their Nominal Value of Detectable
Continuous-flow PCR System

Parameters Values
Mixing time 3 min

Transportation time from the mixer to the PCR 3 min
Processing time for PCR 4 min

Detection time 30=1:975 = 15 min
Purification time 30=1:975 = 15 min
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FIGURE 6.13
System throughput of the detectable continuous-flow PCR system.

Figure 6.13 shows the system throughput, and Figure 6.14 shows the system resource
utilization for the mixer, the PCR, the concentration detector, and the DNA purifier.
The detectable PCR system can detect the PCR product simultaneously with the PCR
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FIGURE 6.14
System resource utilization of the detectable continuous-flow PCR system.

processing. The DNA solution is moved out of the PCR only when the concentration
of the target DNA matches the analysis requirement. The detectable PCR system
reduces the PCR processing time, provides the process-monitor capacity, and im-
proves system yield. However, due to the sequential connection between the process
elements, each processor is still under-utilized.

6.2.4 Reconfigurable PCR System

In order to address the under-utilization of system resources, and improve the system
yield, a reusable and reconfigurable PCR system is proposed, Its potential architec-
ture is presented in Figure 6.15. The system is based on a reconfigurable microliquid
handling system architectural design [76].

The design principle is based on the following factors.

� Independent Functional Groups
As discussed previously, because of the sequential flow between microfluidic
components—the PCR, the detector, and the purifier, the system performance
is limited by the worst part of the system. For instance the conductivity detec-
tor’s flow rate that can be 7:5�l/min must be reduced to 1:975�l/min to meet
the PCR process requirement. Therefore, a redesigned architecture is required
in which each functional group of components can be operated independently.



202 MICROELECTROFLUIDIC SYSTEMS: MODELING AND SIMULATION

FIGURE 6.15
Reconfigurable continuous-flow PCR system consists of three functional blocks:
the pre-processing block, the processing block, and the post-process block. The
combination of the carrier chamber x1 and the waste chamber y1 form the
mixing liquid transportation path. Other fluidic paths include the PCR 1 cycle
with the x2 carrier and the y2 waste chamber, the PCR 2 path with the x3

carrier and the y3 waste chamber, and the post-process path with the x4 carrier
and the y4 or y5 waste chambers.

� Independent Fluidic-Flow Cycle
In order to make each functional block operate independently, an independent
fluidic-flow cycle has to be built for each functional group. For instance, as
shown in Figure 6.15, the combination of the carrier chamber x1 and the waste
chamber y1 form the mixing fluid-flow cycle. This cycle not only carries the
incoming DNA solution and associated reagent into the mixer, but it also car-
ries the solution mixture from the mixer to a PCR chip.

� Temporary Storage Buffer
Due to the performance difference between functional groups, temporary stor-
age buffers are necessary between certain function groups. For example a
chamber is inserted between the PCR chips and the detector shown in Fig-
ure 6.15. The conductivity process requires a flow rate of 7:5�l/min. That rate
is much less than the flow rate of the transportation channel between microflu-
idic components of 20�l/min. Therefore, a chamber is necessary to temporar-
ily store the PCR processed product. In addition, temporary storage buffers
can separate the sequentially connected processors into several independently
operating functional groups, thus benefiting system performance. For exam-
ple this temporary chamber shown in Figure 6.15 can separate the processing
chain into the processing block and the post-processing block. Therefore, the
system performance has been improved from low throughput, as shown in Fig-
ure 6.13, to higher throughput shown in Figure 6.16.
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� Reusability
A fundamental facet of the reconfigurable architecture is that of reusability.
Reusability implies a number of issues with regards to cross-contamination
and cleanliness. The carrier flow is necessary for each functional group. When
there is an incoming fluidic solution, the carrier flow takes the solution through
the process. Between the interval of two fluidic solutions, the carrier flow with
constant flow rate can function as a cleaning solution.

Table 6.5 shows the values of the design parameters for the reconfigurable continuous-
flow PCR system. Based on (6.6), the transportation time from the mixer to the PCR
chip is 3 minutes, while the transportation flow rate between the PCR and the cham-
ber can be 20�l/min. Therefore, the transportation time between the PCR and the
chamber is 1:5 minutes.

Table 6.5 Design Parameters for the Reconfigurable
Continuous-flow PCR System

Design Parameters Values
Mixing time 3 min

PCR time 4 min
Detection time 3 min

Purification time 3 min
Transportation time between 3 min

pre-processing block and the processing block
Transportation time between 1:5 min

the processing block and the post-processing block

Figure 6.16 illustrates the system throughput for a reconfigurable continuous-flow
PCR system. Figure 6.17 shows the system resource utilization. There are 100 in-
coming DNA samples. The solution acquisition rate is modeled by an exponential
probabilistic distribution, governed by (6.2). Nominal mean interarrival time is as-
sumed to be 4 minutes, i.e. � = 1

240
. Because of the limitation of UV absorbance

and fluorescence [8], the backup detector using the conductivity technique may de-
tect that the PCR product does not match the concentration requirement, this DNA
solution is called an “unqualified solution”. We assume that the amount of unquali-
fied DNA solution is 10% of the total DNA solutions. The processed fluidic samples
include qualified fluidic samples and unqualified fluidic samples.

The unqualified solutions are detected by the conductivity detector. The system cor-
rection capability is that if there is an unqualified solution detected by the conduc-
tivity detector, and one of the PCR units is available, the system can send this un-
qualified liquid back for additional thermal cycling. Because of the uni-directional
fluidic flow, the processed fluid sample cannot be sent back, and the reconfigurable
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FIGURE 6.16
System throughput of the continuous-flow PCR system. The total processed
fluidic samples include qualified fluidic samples and unqualified fluidic samples.
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System resource utilization of the continuous-flow PCR system. The flow con-
trol group is one of the system performance bottlenecks.
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FIGURE 6.18
Schematic view of the droplet-based PCR system.

continuous-flow PCR system lacks a system-correction capability.

6.3 Droplet-based PCR System

Another physical implementation method for microeletrofluidic systems (MEFS) is
based on droplet technology. It is based on electrically-driven liquid handling with-
out mechanical elements. Section 6.3.1 introduces a droplet-based PCR, and its
physical implementation is presented in Section 6.3.2.

6.3.1 A Droplet-based PCR System

The electrostatic actuation method has been proposed for manipulating microdroplet
movement [104]. A potential architecture of a droplet-based PCR system is based
on the electrowetting-based actuation presented in [105]. The rapid actuation of
discrete liquid droplets is based on direct electrical control of their surface tension.
The droplet-based PCR is presented in Figure 6.18.

The droplet-based PCR system has the same architecture as the reconfigurable continuous-
flow PCR system. Both systems have the same fluidic processing blocks. The differ-
ence between them being the flow control subsystem. The DNA solution is moved
into the PCR system through inlet units. The mixing units and other processor cham-
bers are developed with electrode arrays. These arrays are used to control the flu-
idic flow. The transportation chain is used to connect different fluidic processing
blocks. Because there are no big mechanical elements in the transportation chain,
the distance between any two functional components is decreased. The direction of
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FIGURE 6.19
Schematic cross-section of the electrowetting microactuator.

movement of fluidic samples is reversible.

6.3.2 Physical Implementation

6.3.2.1 Electrowetting microactuator

The electrowetting microactuator is presented schematically in Figure 6.19 [105]. A
droplet of polarizable and conductive liquid is sandwiched between two sets of planar
electrodes. The upper plate consists of a single continuous ground electrode, while
the bottom plate consists of an array of independently addressable control electrodes.
The distance between two sets of planar electrodes is 300�m, and the edge of a con-
trol electrode is 150�m. The control electrodes are square, as shown in Figure 6.20.
The upper limit of the droplet speed is 15cm/second. With each electrode indepen-
dently controlled, multiple fluidic droplets can be moved simultaneously. There must
be at least one electrode between two droplets in order to maintain isolation.

Table 6.6 shows the critical design parameters for the electrowetting actuator.

Table 6.6 Design Parameters for the
Electrowetting Actuator

Design Parameters Values
Thickness between two planes 300�m

Width of control electrodes 150�m
Maximum droplet speed 15 cm/second
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FIGURE 6.20
Video frames of a moving droplet at 33 ms intervals [9].

6.3.2.2 Droplet Mixer

Figure 6.21 shows the concept of a “droplet mixer” [104]. Two sample droplets
are fed from different inlet units, mixed with each other, and moved to the outlet.
The droplet mixer concept offers the advantages of simple construction, no moving
control devices, and no dead-volume. The concept of a mixer can be used for the
droplet reactor design [104]. Because of the agitation during the droplet movement,
the mixing time can be largely reduced. Normally the time for one �l droplet mixing
is several seconds. Because electrodes can be controlled independently, large size
droplet can be separated into several smaller droplets, and mixed simultaneously.
Thus the mixing time of a droplet is not related to its volume. We assume that the
mixing time for a 30�l sample is 10 seconds.

6.3.2.3 Transportation Expense for Droplet-based PCR System

The topology of the grid array influences the route that a droplet must take in moving
from one port to another. Hence the definition of the distance between two ports must
consider the structure of the droplet-based PCR system. The distance between two
ports is defined as the number of the electrodes between them, n. The number of
droplets, ndroplet, whose volume Vdroplet is 1�l, existing in the 30�l liquid sample
is

ndroplet =
Vliquid

Vdroplet
=

30�l

1�l
= 30 (6.8)
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FIGURE 6.21
Concept of the “droplet mixer.” Two sample droplets are fed from different inlet
units, mixed with each other, and moved to the outlet

where, Vliquid is the volume of a sample. Since the droplets can be moved si-
multaneously at a maximum speed of vdroplet 15cm/s (which is equal to 8:2 elec-
trodes/second, the width of the electrode is 1:82mm), the transportation time, t, of
the liquid through n electrodes is given by

t = (n+ 3+ 2� (ndroplet � 2))=vdroplet (6.9)

Since the distance between any two ports is within several millimeters, the number
of electrodes, whose width is 1:82mm, between two ports can be assumed as 10.
The transportation time of a 30�l sample between any two ports is approximately as
follows:

t = (n+ 3 + 2� (ndroplet � 2))=vdroplet

' (10 + 3 + 2� (30� 2))=8:2

'

69

8:2
' 8 seconds (6.10)

Table 6.7 shows the values of the design parameters for the droplet-based PCR sys-
tem. We assume each droplet-based processor has the same processing time as that
of the continuous-flow PCR system except the mixer.

6.3.2.4 System Throughput

Figure 6.22 shows the system throughput of a droplet-based PCR system. Fig-
ure 6.23 shows the system resource utilization. There are 100 incoming DNA so-
lutions, and their interarrival time is with an exponential probabilistic distribution,



210 MICROELECTROFLUIDIC SYSTEMS: MODELING AND SIMULATION

Table 6.7 Design Parameters for the Droplet-based PCR System

Design Parameters Values
Mixing time 10 seconds

PCR time 4 min
Detection time 3 min

Purification time 3 min
Transportation time between any two functional groups 8 seconds

the mean is 4 minutes. Because the direction of movement of fluidic samples is re-
versible, the droplet-based PCR system possesses the system correction capability.
The unqualified solution detected by the conductivity detector may be sent back for
additional thermal cycling when one of the PCR units is available.
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FIGURE 6.22
System throughput of the droplet-based PCR system. The total processed fluidic
samples include qualified fluidic samples and unqualified fluidic samples.
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System resource utilization of the droplet-based PCR system. The detec-
tor/purifier group and the PCR group are the performance bottlenecks. The
utilization of the mixer and the transportation chain show their availability.
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6.4 Comparison between Continuous-flow PCR and Droplet PCR

In this section, we compare two types of PCR systems—continuous-flow PCR sys-
tems and droplet-based PCR systems. The evaluation is based on the system design
complexity, system throughput, system resource utilization, and system correction
capacity.

6.4.1 System Design Complexity

A reconfigurable continuous-flow PCR system needs a total of 16 mechanical flow
control devices: 10 three-way microvalves and six actuation micropumps, as shown
in Figure 6.15. In addition, each micropump must be connected to a flow sensor to
measure the flow rate [112]. Five independent fluid-flow cycles dramatically increase
the complexity of the system design and fabrication. Based on the basic design size
for each device, the size of the flow control devices for the continuous-flow PCR is

Size � 10� (8:5� 4:2) + 6� (7� 7) ' 700mm2

However, the droplet-based PCR system requires smaller and more convenient elec-
tronic control components. The fluidic flow is easy to control. Because the dimen-
sion of electrodes ranges from hundreds of micrometers to one millimeter, the size
of flow control devices for the droplet-based PCR system is around several mm2.

6.4.2 Performance Evaluation

6.4.2.1 System Throughput

Figure 6.24 shows the system throughput comparison between the continuous-flow
PCR system and the droplet-based PCR system. The droplet-based PCR system
provides higher system throughput.

Table 6.8 shows the system throughput comparison between the four PCR systems
described in this chapter. It demonstrates that the popularly used continuous-flow
systems such as the sequential continuous-flow system and the detectable continuous-
flow system have very poor system throughput. Although the reconfigurable continuous-
flow system improves the system throughput, the slow transportation speed and the
complex structure limits its wider application. The droplet-based system improves
the system throughput, and also enhances the system yield.
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FIGURE 6.24
System throughput comparison between the continuous-flow PCR system and
the droplet-based PCR system. The droplet PCR system shows higher system
throughput.

Table 6.8 System Throughput Comparison with 100
DNA Solutions

PCR system Finished time
Sequential continuous-flow PCR 211820
Detectable continuous-flow PCR 270000

Reconfigurable continuous-flow PCR 69533
Droplet-based PCR 37730
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6.4.2.2 System Correction Capability

Because of the limitations of UV absorbance and fluorescence in analysis [8], the
backup detector using the conductivity technique may determine that the PCR prod-
uct does not match the concentration requirement. In contrast to the continuous-flow
PCR system, there are no limitations for droplet flow movement. Therefore, if one
of the PCR units is available, the unqualified liquid is sent back for another thermal
cycling. System correction capability is an important measure of the system per-
formance. Table 6.9 compares the system correction capacity between two systems
when the interarrival time between fluidic samples is an exponential probabilistic dis-
tribution, the mean is 12 minutes. Droplet-based systems show very good correction
capability.

Table 6.9 System Correcting Capacity

Continuous-flow Droplet-based
PCR PCR

Total number of processed samples 90 90
Number of internal unqualified samples 11 13

Number of post-process samples 0 10
Number of qualified sample after post-process 0 8

Number of final unqualified samples 11 5
Unqualified sample percentage 12.2% 5.5 %

Correction Percentage 0 % 61.5%

The continuous-flow PCR system and the droplet-based PCR system have nearly the
same percentages of unqualified fluidic samples after reaction: 12:2% and 14:4%, re-
spectively. The continuous-flow PCR system does not have the correction capability.
However, in the droplet-based PCR system, 10 out of 13 unqualified DNA solutions
go back for one more thermal cycling, and 8 out of 10 unqualified fluidic samples are
corrected after re-processing. The correction percentage of the droplet-based PCR is
61:5%, and the final percentage of unqualified fluidic samples is reduced to 5:5%.

6.4.2.3 System Processing Capacity

Acquisition rate (workload) is another important system-level design parameter in-
fluencing system performance. As discussed in Section 4.3, for a given architecture,
the microfluidic system possesses a saturation processing capacity where resources
are maximally utilized. Workloads less than saturation capacity under-utilize re-
sources, whereas workloads greater than saturation capacity may decrease system
quality. For instance, incoming fluidic samples have to wait longer if the system is



PERFORMANCE EVALUATION 215

saturated.

We assumed previously that the liquid sample acquisition rate is modeled by an ex-
ponential probabilistic distribution, governed by (6.2). Figure 6.25 shows the system
processing capacity of the continuous-flow PCR system and the droplet-based PCR
system, respectively. The acquisition rate ranges from 1
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FIGURE 6.25
System processing capability versus different traffic rate �. After the system
reaches the saturation, system processing capability (throughput) remains con-
stant regardless of input rate variation.

Figure 6.25 shows the system processing capability versus different traffic rates. The
vertical axis presents the system processing capability, denoted by using the number
of processed fluidic samples per hour. The horizontal axis represents the sample
traffic rate, �, meaning the number of fluidic sample arriving per second. When the
sample traffic rate is low, the system throughput is nearly linear – the performance of
the system approximates the ideal. At increased input rates, i.e. reduced interarrival
time, the actual system processing capability increases and soon reaches saturation.
Figure 6.25 shows that the droplet-based PCR system has higher processing capacity.
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6.4.2.4 Performance Enhancement

Figures 6.26 and 6.27 show the average time that each process takes in the continuous-
flow PCR system and the droplet-based PCR system, respectively. The total time
for each fluidic sample staying in the handling system consists of five periods: the
mixing time, the PCR time, the delivery time, the analyzing time, and the time of
waiting for system resources. Both figures show that the DNA solution spends too
much time waiting for system resources. Figure 6.26 shows that the transportation
part is performance bottleneck in a continuous-flow PCR system. Figure 6.27 shows
that the PCR block and the detection/purification block are two principal problems
for the droplet-based PCR system. As we mentioned previously, the droplet-based
PCR system still uses the same processing blocks as the continuous-flow PCR sys-
tem, the difference is only in the flow control blocks. Therefore, if the performance
of the transportation block and the mixing block in the continuous-flow system do
not improve, the performance of the droplet system is inherently better than that of
the continuous-flow system. In addition, even though the improved architecture can
enhance the continuous-flow system performance, it increases the system design and
fabrication complexity.

6.5 Scheduling of Microfluidic Operations for Reconfigurable Two-
Dimensional Electrowetting Arrays1

In the previous sections, we have presented a performance comparison between
two types of microfluidic systems—continuous-flow systems and droplet-based sys-
tems. We have also demonstrated that the droplet-based microfluidic system pro-
vides higher performance, as well as lower design and integration complexity. In
this section, we present an architectural design and optimization methodology for
performing biochemical reactions using two-dimensional electrowetting arrays. We
define a set of basic microfluidic operations and leverage electronic design automa-
tion principles for system partitioning, resource allocation, and operation scheduling.
Fluidic operations are carried out through the electrostatic configuration of a set of
grid points. While concurrency is desirable to minimize processing time, the size of
the two-dimensional array limits the number of concurrent operations of any type.
Furthermore, functional dependencies between the operations also limit concurrency.
We use integer linear programming to minimize the processing time by automatically

1This section is based in part on “J. Ding and K. Chakrabarty and R. B. Fair, Scheduling of Microflu-
idic Operations for Reconfigurable Two-Dimensional Electrowetting Arrays. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 20, no. 6, pp. 1463-1468, Dec. 2001.”
c
 2001 IEEE. Reprinted by permission.
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FIGURE 6.26
Average time values for each process of the continuous-flow PCR system. The
total time for each fluidic sample staying in the handling system consists of five
periods. The DNA solution spends too much time waiting for system resources.
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FIGURE 6.27
Average time values for each process of the droplet-based PCR system. The
total time for each fluidic sample staying in the handling system consists of five
periods. The PCR block, and the detection purification block are two principal
problems for system performance.
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extracting parallelism from a biochemical assay. As a case study, we apply our op-
timization method to the polymerase chain reaction, which is an important step in
many lab-on-a-chip biochemical applications.

6.5.1 Introduction

Electrowetting-based actuation for microelectrofluidics systems has recently been
proposed for optical switching[115], chemical analysis [105], and rotating yaw rate
sensing [116]. Pollack et al. recently demonstrated that by varying the electrical
potential along a linear array of electrodes, electrowetting techniques can be used to
move liquid droplets along this line of electrodes [105]. By carefully controlling the
electrical potential applied to the electrodes, fluid droplets can be moved as fast as
3cm=sec [105].

Electrowetting can also be used to move droplets in a two-dimensional electrode
array. By controlling the voltage on the electrodes, fluid droplets can be moved
freely to any location on a two dimensional plane [105]. Fluid droplets can also be
confined to a fixed location and isolated from other droplets moving around it.

Using two-dimensional electrowetting arrays, many useful microfluidic operations
can be performed, such as storing, mixing and droplet splitting. The store operation
is performed by applying an insulating voltage around the droplet. This is analo-
gous to a well. The insulating voltage prevents this droplet from mixing with other
droplets around it. The mix operation is performed by routing two droplets to the
same location, where they are merged into one droplet. Since the size of a droplet
is kept small, effective mixing can be achieved by fluid diffusion after merging. Fi-
nally, the split operation is performed by creating opposite surface tension at the two
ends of a fluid droplet and tearing it into two smaller droplets.

While two-dimensional electrowetting arrays are especially useful for biochemical
analysis, system level design methodologies are required to harness this exciting new
technology. In this section, we leverage electronic design automation techniques to
develop the first system-level design methodology for reconfigurable MEFS-based
lab-on-a-chip.

Reconfigurable computing systems based on field-programmable gate-arrays (FP-
GAs) are now commonplace [117]. However, the “programmability” of FPGAs is
limited by the well-defined roles of interconnect and logic blocks. Interconnect can-
not be used for storing information, and logic blocks cannot be used for routing.
In contrast, the MEFS architecture that we are developing offers significantly more
programmability. The grid points between electrodes can be used for storage, func-
tional operations, as well as for transporting fluid droplets. Therefore, partitioning,
resource allocation, and scheduling have emerged as major challenges for system-
level MEFS design targeted at a set of biochemical applications.
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We have developed the syntax and semantics of microfluidic operations such as
MOVE, MIX, and SPLIT that can be used to describe biochemical processes such
as Polymerase Chain Reaction (PCR) [118]. The various fluid samples represent the
operands. Such a microfluidic program must then be mapped to the two-dimensional
array that represents the datapath of a microfluidic computer. (A separate electronic
control unit drives the electrodes.) The execution of microfluidic operations requires
the availability of datapath resources (set of grid points) that can be appropriately
configured. For example, the MIX operation requires that a set of grid points be
properly configured to act as a mixer. The size of the two-dimensional array limits
the number of concurrent operations of any type that can be carried out. Furthermore,
functional dependencies between the operations in a microfluidic program also limit
concurrency.

In Section 6.5.2, we describe the two-dimensional electrowetting array and introduce
the concepts of virtual microfluidic components and partition maps. Section 6.5.3
presents the scheduling problem for biochemical analysis and describes an inte-
ger linear programming approach for scheduling under resource constraints in two-
dimensional electrowetting arrays. Finally, Section 6.5.4 investigates the PCR re-
action as a case study. The PCR reaction is an important step in LOC biochemical
processing. Processing time must be minimized for a number of critical LOC ap-
plications such as the detection and identification of biochemical agents and health
monitoring during surgery. Efficient scheduling techniques not only reduce process-
ing time, but they also offer better resource utilization in two-dimensional electrowet-
ting arrays.

6.5.2 Two-dimensional Electrowetting Array

A two-dimensional electrowetting array consists of a grid of electrodes on a two-
dimensional plane (Figure 6.18). Fluid droplets are introduced to the device from the
I/O ports on the boundary of the array. Droplets in the array have identical volumes.
Hence, this type of device is also called a unit-flow device. It is desirable to maintain
the unit-flow constraint since the rate of chemical and biomedical reactions grows
exponentially with the growth of droplet volume [105].

Operations such as STORE, MOVE, MIX, and SPLIT are performed by controlling
the electrical potential applied to the electrodes. It is easy to see that some of these
operations violate the unit-flow assumption. For example, the fluid droplet size is
likely to double as a result of a mixing operation. Therefore, we always perform a
split operation after mixing to maintain the droplet volume.

In a continuous-flow MEFS system, mixing is performed using a micromixer. This
is a specific device located at a fixed place in the microfluidic system. In unit-flow
systems however, mixing operations can happen anywhere on the array, not neces-
sarily at a specific location. If we define a mixer as the location where fluids mix,
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then a unit-flow mixer can be located at any arbitrary cell in the electrode grid. This
property is referred to as reconfigurability, and it is in many ways similar to the
reconfigurability provided by FPGAs. However, as discussed previously, unit-flow
devices allow a higher degree of reconfigurability than FPGAs. Storage cells, mixers
and splitters can be created, removed, and relocated at runtime. This allows us to
create extremely flexible and efficient biochemical analysis systems.

An abstract model of the unit flow system with a two-dimensional grid of electrodes
is shown in Figure 6.18. A ground plane is positioned above the electrode array at
a spacing that is less than the diameter of the droplets. I/O ports are placed at the
boundary of the system.

6.5.2.1 Virtual Devices and Partition Maps

In the unit-flow environment, the routes that droplets travel and the rendezvous points
of fluid droplets are programmed into a micro-controller that controls the voltages
of electrodes. The storage and interconnect on the datapath are viewed as virtual
devices by the controller.

A virtual device is defined to have three regions. The first is the functional region,
where a particular function is performed. The second type of region is called the
segregation region, which wraps around the functional region. This insulates the
functional region from its environment. The outer-most region of the device is the
inherited communication path. This provides a one-cell wide communication path
for fluid droplet movement. Figure 6.28 shows a unit-flow storage cell. One droplet
of a fluid sample is stored in each functional cell.

A partition map shows the time-varying positions of all the virtual devices inside the
defined area. It is generated by the designer, and pre-loaded into the microcontroller,
which then controls the electrode voltages according to partition map.

A partition map is similar to a virtual device, in that it is also a virtual map, and it
only exists in the microcontroller specification. It is also dynamic in nature since it
may change with time. Reconfiguration occurs when a new partition map is loaded
into the controller. Figure 6.29 shows a partition map containing two storage cells,
one input cell, and one mixer. (The labels A, B,..., J, K will be explained later.) The
inherited communication paths of adjacent devices are combined to form a single
channel in the electrode array. This channel is used for fluid droplet transfer, and
is called a communication path. It forms the main network for fluid movement.
Researchers have recently shown that it is possible to move the fluid droplets at
a speed of 20 grids/second along this communication path [2]. The actual route
along which a droplet moves is pre-determined and loaded into controller. If the
routes of several consecutive droplets do not overlap, they are called compatible
routes. Movements along compatible routes can be performed in parallel. If the
routes are not compatible, the corresponding droplet movements must be performed
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sequentially.

FIGURE 6.28
A unit-flow storage device.

We define the following operations that can be performed by virtual devices on a
partition map.

� MIX mixer-name, where mixer-name is a reference to a particular mixer in the
partition map.

� SPLIT mix-name, where mixer-name is a reference to a particular mixer in the
partition map.

� INPUT port-name, fluid name, where port-name is a reference to a port in the
partition map.

� MOVE source-name, destine-name, route-name, where route-name is a refer-
ence to a pre-defined path.

� PATH route-name, P1-P2-...-Pn, defines a path for droplet movement.

We next present a scheduling method for minimizing the processing time for fluid
samples. We determine an optimal sequence of fluidic operations to minimize com-
pletion time under resource constraints (availability of virtual devices) and depen-
dencies between operations.

In contrast to droplet movement, fluidic operations such as MIX and SPLIT are slow
processes. The mixing by diffusion at the nanometer level takes about 1 minute for
completion. During the same time period, a droplet can move along 1800 grid points.
Therefore, we ignore droplet movement time for operation scheduling.
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In order to schedule microfluidic operations such as MIX and SPLIT, we divide the
time span between two consecutive reconfigurations into equal length time slots. The
length of a time slot equals the greatest common divisor of all the operations. For
example, if a MIX operation takes 3 minutes and a SPLIT operation takes 2 minutes,
then the time slot is set to 1 minute. In this case, the MIX operation will take 3 slots,
and the SPLIT operation will take 2 slots. In this way, we digitize the continuous
fluid operation and the controller starts or completes an operation at the end of each
time slot.

FIGURE 6.29
Partition map with two storage units, one input cell, and one mixer.

6.5.3 Schedule Optimization

The order of execution of microfluidic operations must be determined after care-
fully considering the dependencies between the operations and the availability of
resources. While dependencies are imposed by the biochemical application, the re-
source constraints are imposed by the size of the two-dimensional electrowetting
array and the availability of virtual devices. In this section, we use the dataflow
graph model of high-level synthesis [119] to represent the scheduling problem and
solve it using integer linear programming (ILP). The motivation for using ILP lies
in the fact that it is a well-understood optimization method and we can leverage a
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number of public domain solvers [120].

First, each step of a biochemical process is represented using either a single microflu-
idic operation or a series of basic microfluidic operations. Each such instance of an
operation forms a node in the dataflow graph. A directed edge from node u to node
v indicates a dependency between the operations corresponding to u and v, i.e. the
operation corresponding to u must be carried out before the operation corresponding
to v. The goal of the scheduling problem is to determine the start times (time slots)
of each operation so that the total completion time is minimized.

Let xi;j be a binary variable defined as follows:

xi;j =

�
1; if operation i starts at time slot j

0; otherwise

where 1 � i � N , the number of operations (nodes in the dataflow graph), and
1 � j �M , the maximum possible index for a time slot. Note thatM can be trivially
obtained by adding up the number of time slots required for all the operations. Note
also that since each operation is scheduled exactly once,

P
M

j=1 xi;j = 1; 1 � i �

N .

The starting time Si for operation i can now be expressed in terms of the set of
variables xi1; xi2; :::; xim. Assuming that each time slot is of length 1 unit, we get
Si =

P
M

j=1 jxij .

Each operation i has an associated execution time di. If there exists a dependency
edge between operation i and operation j, then sj � si + di. Such dependencies
generally arise from the fluid samples that are used in each step of the biochemi-
cal reaction. These fluid samples are similar to variables in traditional architectural
synthesis.

Finally, we add resource constraints to the ILP model. Let ak be an upper bound on
the number of operations of type k. We now have the following set of constraints for
each k:

P
i2T (k)

P
l

j=l�di+1
x)ij � ak; 1 � l �M .

The objective of this optimization problem is to minimize the completion time of
the last operation, i.e. minimize maxif

P
M

j=1 jxij + dig. This can be linearized as:

minimize C subject to C �

P
M

j=1(jxij) + di; 1 � i � N .

The ILP model can be easily solved using public-domain solvers. In our work,
we used the lpsolve package from Eindhoven University of Technology in Nether-
lands [120].
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6.5.4 Droplet-based PCR Systems

In this section, we present a case study for operation scheduling using the PCR reac-
tion. The PCR reaction includes three basic steps. The first is the input section. In
this part, a number of fluid samples are input into the system. Next, these samples
are combined using a pre-determined set of MIX operations. Note that these are im-
plemented by interleaving MOVE, MIX, and SPLIT operations. Finally, the sample
mixture is sent off-chip for a series of heating steps.

The input samples for PCR include Tris-HCl (pH 8.3), KCl, gelatin, bovine serum
albumin, beosynucleotide triphosphate, a primer, AmpliTaq DNA polymerase, and
lambdaDNA. The PCR procedure consists of the following series of steps:

1. Introduce Tris-HCl (pH 8.3) to storage.

2. Introduce KCl.

3. Wait until KCL mixes with Tris-HCl.

4. Introduce gelatin.

5. Wait until it mixes.

6. Introduce bovine serum albumin.

7. Wait until it mixes.

8. Introduce beosynucleotide triphosphate.

9. Wait until it mixes.

10. Introduce primer to the storage.

11. Wait until it is well mixed with the mixture.

12. Introduce AmpliTaq DNA polymerase.

13. Wait until it is well mixed with the mixture.

14. Introduce lambdaDNA to the storage.

15. Wait until it is well mixed with the mixture.

6.5.4.1 System configuration

The first example system we use is shown in Figure 6.29. The system can perform
moving, mixing and splitting for the PCR reaction. It consists of 9-by-9 array of
grid cells. A dedicated I/O port is located at the edge of the system. We assume that
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the mixing of two fluid droplets takes 2 minutes, while the input operation takes 0.4
minutes. Since the mix operation is always followed by a split operation, the latter is
not explicitly considered here. Instead, we assume that the time for a split is included
in the time for a mix operation. The speed of fluid movement is assumed to be 20
grid cells per minute.

The partition map for this example is given by Figure 6.29. In addition to the partition
map, the droplet route plan and schedule of operations (to be determined next) must
be loaded into the controller.

6.5.4.2 Optimal Scheduling

We now describe how an optimal schedule can be derived to minimize the processing
time. First, we represent the PCR reaction as a series of basic steps. This corresponds
to a specification outlined by a lab technician, and serves as a user program. The user
program can either be a sequential enumeration of steps, or it can contain a limited
amount of hand-extracted concurrency. We then generate the dataflow graph based
on the functional dependencies between the operations (Figure 6.30). An optimized
PCR reaction for the datapath of Figure 6.18 and the dataflow graph of Figure 6.30
is given below:

The optimized PCR program of Table 6.10 was easy to derive since there is only one
mixer in the system. The total processing time using this schedule is 14.8 minutes.
We next show how the processing time can be decreased further and an optimal
schedule derived using ILP.

Consider the partition map shown in Figure 6.31 with two mixers. This allows
greater parallelism and demonstrates the advantage is using ILP to minimize the
processing time. The following discussion presents the ILP model for this example
in more detail.

The PCR program contains a total of 15 INPUT and MIX operations. From Ta-
ble 6.10, we note that an upper bound on the processing time is 15 minutes. Each
time slot is of length 0.4 minutes (the assumed time for an INPUT operation); hence
an upper bound on the number of time slots is 37. There are 37 lots needed for the
schedule. To build the ILP model for this partition map, we define a set of decision
variables as discussed in Section 6.5.3. Thus our ILP model uses x1;j :::x15;j as the
decision variables, where j = 1; 2; :::; 37. The start time of each operation can be
expressed as follows:

S1 = x1;2 + 2x1;3 + :::+ 29x1;37
S2 = x2;2 + 2x2;3 + :::+ 29x2;37
:::

S15 = x15;2 + 2x15;3 + :::+ 29x15;37
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Table 6.10 Optimized PCR Reaction Based on the Datapath of
Figure 6.30

Time (minutes) Operations Representation
Definition section Definition
Path path1, C-E-F-G-D
Path path2, C-E-F-H-D’
Path path3, C-E-I-A
Path path4, C-E-J-B
Path path5, D’-F-H-K
Path path6, A-G-F-D’
Path path7, B-H-F-D’

0 Load partition map
INPUT Tris-HCl I1

0.4 MOVE C, D, path1
INPUT KCl I2

0.8 MOVE C, D’, path2
INPUT gelatin I3
MIX D and D’ M1

1.2 MOVE C, A, path3
INPUT bovine serum albumin I4

1.6 MOVE C, B, path4
2.8 MOVE D’, K , path5

MOVE A, D’, path6
INPUT beosynucleotide triphosphate I5
MIX D and D’ M2

3.2 MOVE C, A, path3
4.8 MOVE D’, K, path5

MOVE A, D’, path6
INPUT primer I6
MIX D and D’ M3

5.2 MOVE C, A, path3
6.8 MOVE D’, K, path5

MOVE A, D’, path6
INPUT AmpliTaq DNA polymerase I7
MIX D and D’ M4

7.2 MOVE C, A, path3
8.8 MOVE D’, K, path5

MOVE A, D’, path6
INPUT � DNA I8
MIX D and D’ M5

9.2 MOVE Move C, A, path3
10.8 MOVE D’, K, path5

MOVE A, D’, path6
MIX D and D’ M6

12.8 MOVE D’, K, path5
MOVE B, D’, path7
MIX D and D’ M7

14.8 MOVE D’, K, path5
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FIGURE 6.30
Dataflow graph with input and mix operations.

The dependency between instructions can be denoted using the following set of in-
equalities:

S9 � S1; S2
S10 � S3; S4
S11 � S5; S6
:::

S15 = S13; S14

Finally, the resource constraints can be represented as:

x1;1 + x2;1 + :::+ x15;1 � 2

x1;2 + x2;2 + :::+ x15;2 � 2

:::

x1;37 + x2;37 + :::+ x15;37 � 2

We solved this ILP model using lpsolve. It took 10 minutes of CPU time on a Sun
Ultra Sparc with a 333 MHz processor and 128 MB of RAM. The optimum pro-
cessing time is 9.6 minutes, 50% faster than the PCR program of Table 6.10. The
optimized schedule is given below:

This can be represented using the annotated dataflow graph shown in Figure 6.32.
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FIGURE 6.31
Partition map with two mixers for PCR reaction.
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Dataflow graph showing an optimized schedule for 2-mixer partition map.
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Table 6.11 Optimized PCR Reaction

Time (minutes) Operations Representation
Definition section Definition
Path path1, C-E-F-G-D
Path path2, C-E-F-H-D’
Path path3, C-E-I-A
Path path4, C-E-A’
Path path5, D’-F-H-K
Path path6, A-F-H-K
Path path7, A-G-F-D’

0 Load partition map
INPUT Tris-HCl I1

0.4 MOVE C, D, path1
INPUT KCl I2

0.8 MOVE C, D’, path2
INPUT gelatin I3
MIX D and D’ M1

1.2 MOVE C, A, path3
INPUT bovine serum albumin I4

1.6 MOVE C, A’, path4 I5
INPUT beosynucleotide triphosphate M2
MIX A and A’

2.8 MOVE D’, K , path5
MOVE A, D’, path1
MIX D and D’ M3
INPUT primer I6

3.6 MOVE A’, K, path6
MOVE C, A’, path4
MIX A and A’
INPUT AmpliTaq DNA polymerase

4.8 MOVE D’, K, path5
MOVE C, D’, path1
MIX D and D’ M5
INPUT �DNA I8

5.6 MOVE D’, K, path5
MOVE C, D’, path1
MIX D and D’ M6

6.8 MOVE A’, K, path6
7.6 MOVE D’, K, path5

MOVE A, D’, path7
MIX D and D’ M7

9.6 MOVE D’, K, path5
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Consider next the partition map shown in Figure 6.33 with four mixers. This allows
even greater parallelism and decreases processing time further. In the ILP model, we
reformulated the resource constraints as follows:

x1;1 + x2;1 + :::+ x15;1 leq 4

:::

x1;37 + x2;37 + :::+ x15;37 leq 4

The partition map for this implementation is shown in Figure 6.33.

FIGURE 6.33
Partition map with four mixers for PCR reaction.

We solved this ILP and obtained the optimum processing time of 9.2 minutes, roughly
5:2% faster than the 2-mixer version. Since the speed-up from two mixers to four
mixers is insignificant, we conclude the maximum amount of parallelism in the PCR
reaction has already been achieved.

We have presented a novel architectural design and optimization methodology for
performing biochemical reactions using two-dimensional electrowetting arrays. We
have defined a set of basic microfluidic operations and leveraged electronic design
automation principles for system partitioning, resource allocation, and operation
scheduling. While concurrency is desirable to minimize processing time, it is limited
by the size of the two-dimensional array and functional dependencies between oper-
ations. We have used integer linear programming to minimize the processing time
by automatically extracting parallelism from a biochemical assay. As a case study,
we have applied our optimization method to the polymerase chain reaction. The
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proposed technique leverages known scheduling algorithms from electronic design
automation for lab-on-a-chip (LOC) design, and it is expected to aid several LOC
applications such as the rapid detection of biochemical agents, and reliable health
monitoring during surgery.



Chapter 7

Conclusion

In this book, we presented a MEFS CAD closed-loop integration strategy along the
line of microelectronics CAD. This strategy extends system design from the compo-
nent level to the system level, and includes hierarchical modeling, hierarchical design
environment, hierarchical performance evaluation, and hierarchical optimization.

In Chapter 2, we first defined basic variables needed to describe MEFS behavior at
the low-level component layer. We have shown that lumped-element models with
ODAEs are appropriate to describe MEFS dynamic behavior coupling with multiple
energy domains. The equivalent circuit approach can be used for MEFS circuit-
level device modeling and simulation, and its main drawbacks can be avoided by
using modern hardware description languages. Next, we defined the description ca-
pacity requirements for MEFS system-level hierarchical modeling and performance
evaluation. These requirements encompass system-level modeling, simulation, and
statistical analysis.

In Chapter 3, we have developed a hierarchical integrated design environment with
SystemC. First, we evaluated the suitability of several existing simulation languages
for MEFS hierarchical design. These languages include VHDL/VHDL-AMS, SLAM,
C/C++, Matlab, and SystemC. Then we showed that SystemC is a viable candidate
for this purpose. Our design environment includes lower-level component modeling
and simulation, as well as higher-level system modeling and simulation. The design
environment consists of four different functional packages: system-level modeling
package, circuit-level component modeling package, numerical simulation package,
and optimization/verification package. These functional packages have been de-
scribed in detail in the book.

We have presented a hierarchical modeling and simulation methodology in Chapter
4. This methodology combines high-level stochastic queuing networks with low-
level nodal conservative differential equations. First, a more general microelectroflu-
idic system computational architecture for continuous-flow systems is introduced.
Based on this generic reconfigurable architecture and the proposed modeling and
simulation methodology, we have presented a complete system model and simula-
tion results for a micro-chemical handling system based on the SystemC integrated
design environment. By identifying the potential bottlenecks in the system, we have
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developed an improved MCHS architecture that reduces system processing time and
increases resource availability. In addition, using the traffic variation method, we
have investigated the system saturation process capacity. Moreover, we have ana-
lyzed the system-level performance sensitivity due to the variation of low-level com-
ponent design parameters. Simulation results and performance analysis data have
been presented for each case.

Due to growing design complexity, fabrication process variations, and the harsh op-
erating environments of MEFS, there is a need for hierarchical design optimization to
support all aspects of product development. To address this issue, we have demon-
strated several MEFS design optimization methodologies in Chapter 5. First, we
have proposed a statistical response analysis strategy. This strategy is useful to effi-
ciently find an on-target design point that meets the performance goals, and it is also
beneficial to find design parameters that need to be more carefully controlled during
manufacturing. In addition, by leveraging Taguchi experimental design and statis-
tical process control methods, we have demonstrated a robust design methodology.
Moreover, on the analogy to a hardware/software co-design methodology, we have
demonstrated a novel application flexibility design methodology. This method can be
leveraged to extend the design and reuse it for additional applications. Several spe-
cial MEMS and MEFS devices have been designed to illustrate these optimization
algorithms.

Finally, based on the differences in flow control mechanisms, in Chapter 6, we have
compared the performance of two types of microfluidic systems—continuous-flow
systems and droplet-based systems. The comparison is based on a special microflu-
idic application—a polymerase chain reaction (PCR) system. The comparison in-
cludes system throughput, processing capacity, correction capability, and design
complexity. We have demonstrated that the droplet-based microfluidic system pro-
vides higher performance, as well as lower design and integration complexity. Then,
an architectural design and optimization methodology is presented for performing
droplet-based biochemical reactions using two-dimensional electrowetting arrays.

In summary, this book is expected to pave the way for integrated top-down design of
hierarchical MEFS. The framework described in this book will reduce design time
and design cost, and increase system reliability.

The contents of this book open up a number of exciting directions for research. They
are summaried below.

� Platform Transfer
The physical implementation of MEFS reconfigurable architecture with the
continuous-flow mechanism is very difficult, and several questions still re-
main unanswered. For instance, how can we evaluate the parasitic phenomena
between microfluidic components? The droplet-based microfluidic system us-
ing electrowetting-based actuation mechanism is emerging as a promising ap-
proach to overcome these difficulties. This book provides an overview of an
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integrated hierarchical design strategy for continuous-flow MEFS. The appli-
cation platform to move from a continuous-flow system to a droplet-based
system is left as a future research topic.

� Identification Applications
It is important to identify a wider range of applications that can benefit from
droplet-based technologies. Some of the applications that can be explored
include polymerase chain reaction (PCR) [121], array population [21], and
chemical analysis [105].

� Combination with ODAE Solvers
Since SystemC does not provide an associated simulator, the designer is re-
quired not only to model the system behavior, but also to build the model
solver. The problem of connecting ODAE models with the sophisticated ODAE
solvers needs to be addressed. This linkage can relieve the system designer
from the burden of simulator development.

� Multi-step Optimization
Due to the complex design space, the proposed on-target design methodol-
ogy may only lead to local optimal results. Therefore, alternative multi-step
optimal on-target design methodologies need to be considered. The two-step
heuristic/statistical on-target design method is especially promising. At first,
the design solution space is divided into several sections. Then, a heuristic
method such as generic algorithms (GA), simulation annealing (SA), or fuzzy
logic is used to pre-select a solution area that contains the globally optimal
solution. Next, using the statistical steepest ascent/descent method, the final
globally optimal result can be obtained.

� Model Verification
MEFS multi-parameter design requires model validation with respect to each
design parameter. This means that the model is considered valid only if it is
accurate within the scope of the variation of each design parameter. This is
especially important since a model may be valid for one set of experimental
conditions but invalid for another. In this book, the accuracy of these models
are based on our initial assumptions. Therefore, finding a more efficient model
verification method is necessary. This method must verify the accuracy of the
model within the scope for each design parameter, from the nominal design
point to the optimal design point. Such validation is critical for linking design
optimization with device fabrication and field operation.





Appendix A

VHDL Queuing Model

List of some functional models.

� M
¯

athematical Package MATH REAL

– Model name:
Package MATH REAL (math package.vhd)

– Functionality:
VHDL declarations for mathematical package MATH REAL which con-
tains common real constants, common real functions, and real transcen-
dental functions.

– Interface definition:
Related to each function parameter definition.

� S
¯
tochastic discrete-event model

– Model name:
Queue (queue model.vhd)

– Functionality:
This model presents a queuing system with a single server using VHDL.
The customer arrival rate is an exponential distribution with � = 60. The
server service rate is an Erlang distribution with � = 48

– Interface definition:
No interface I/O port.

� C
¯
ontinuous system model

– Model name:
Biology (biolo model.vhd)

– Functionality:
This is a program used to solve a biology system which is a continu-
ous system. Here, we use the second-order Runge-Kutta method with
variable step size to solve the differential equations.

dx=dt = rx(t) �Kx(t)y(t);
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dy=dt = Kx(t)y(t)�Dy(t);

x is the population of the host, and y is the population of the parasites.

– Interface definition:
No interface I/O port.

� C
¯
ombined discrete-continuous system model

– Model name:
Ingot (Ingot model.vhd)

– Functionality:
This model is used to solve a continuous and discrete combined system.
The ingot arrival rate is an Uniform distribution between 10 to 15. The
heating processing is based on differential equations.

dF=dt = 1:2 � (300� F );

dP=dt = 0:3 � (F � p);

where F is the temperature of the oven, and P is the temperature of the
ingot.

– Interface Definition:
No interface I/O port.
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Hierarchical Environment with SystemC

List of some functional models.

� T
¯
op-level model

– Model name:
sc main(int ac, char *av[]) (main.cpp)

– Functionality:
This program is used to describe a biomedical system hierarchical mod-
eling with SystemC language. The top level is used to define the com-
munication protocol between several functional blocks.

– Interface definition:
No interface I/O port.

� L
¯
iquid sample creation model

– Model name:
SC MODULE(producer) (producer.h)

– Functionality:
This model is used to generate a series of fluid samples

– Interface Definition:

// port declaration
sc_outmaster<fluid_type > fluid_out_1; //
sc_outmaster<fluid_type > fluid_out_2; //
sc_in_clk clk;

� L
¯
iquid reservoir model

– Model name:
SC MODULE(reservoir) (reservoir.h)
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– Functionality:
This model is used to define a liquid reservoir which is a first-in-first-out
(FIFO) buffer.

– Interface definition:

// the connection to producer.
sc_inslave<fluid_type > fluid_write_1;
sc_inslave<fluid_type > fluid_write_2;

// the connection to mixer groups.
sc_outslave<fluid_type > fluid_read_1;
sc_outslave<fluid_type > fluid_read_2;

// two clock signal definition.
sc_in_clk wclk;
sc_in_clk rclk;

� L
¯
iquid mixer model

– Model name:
SC MODULE(mixing unit) (ppu.h)

– Functionality:
This model is used to describe the behavior of the mixer in a microfluidic
system.

– Interface definition:

// input and output port definition.
// take fluid type 1
sc_inmaster<fluid_type > fluid_write_1;

// take fluid type 2
sc_inmaster<fluid_type > fluid_write_2;

// send fluid to processors
sc_outslave<fluid_type > fluid_out;

// used for check the status of the mixer.
sc_outslave<int > fulltest;

sc_in_clk clk; // clock
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� P
¯
rocessor group model

– Model name:
SC MODULE(processor) (processor.h)

– Functionality:
This is the behavioral description of the processor block, we put all pro-
cessors and bus sources in this module.

– Interface definition:

// declare ports
// get the fluidic sample from the pre-processor.
sc_inmaster<fluid_type > fluid_write;

// send the fluidic sample out
sc_outmaster<fluid_type > fluid_out;

// check the pre-processor status
sc_inmaster<int > fulltest;

sc_in_clk clk; // clock.
sc_in_clk mathclk;

� R
¯
eactor model

– Model name:
void processor::Reactor() (reactor.cpp)

– Functionality:
This is the behavioral description of a reactor. The interface definition
for several processors is the same, the difference between them is just
about processing behavior definition.

– Interface definition:

// declare ports
sc_inmaster<fluid_type > fluid_write;
sc_outmaster<fluid_type > fluid_out; //
sc_inmaster<int > fulltest;
sc_in_clk clk;
sc_in_clk mathclk;

� T
¯
erminal node model

– Model name:
SC MODULE (terminal) (terminal.h)
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– Functionality:
This model is used to define a terminal node which can be used to record
the statistical information.

– Interface definition:

// port definition
sc_inslave<fluid_type > fluid_write;
sc_in_clk wclk;

� D
¯

ata process package

– Model name:
Data Function (general.cpp)

– Functionality:
This is a general package to define several data processing functions.

– Interface definition:
Related to different functions.

� M
¯

athematical package

– Model name:
Math Package (math package.cpp)

– Functionality:
The is the mathematical package which contains common real constants,
common real functions, and real transcendental functions.

– Interface definition:
Related to different functions.
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