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Preface

Over the 10-year period between 1995 and 2005, DNA sequencing costs decreased fifty-
fold, primarily as a result of increasing throughput due to incremental advances in tools,
technologies and process improvements. As impressive as that accomplishment is the fact
that the current outlay for sequencing the three billion base pairs of the DNA found in
human or mammal genomes is $10 million dollars (sources: The National Human Genome
Research Institute (NHGRI), The National Institute of Health, and genomics.energy.gov).
When new high-throughput techniques and the computational machinery needed to analyze
data generated are created and implemented, further cost reductions are expected.

Increasing the capacity to capture and analyze proteomic data is paramount on the re-
search scene. To the casual observer, it would appear that proteomic researchers could
simply adopt automation technology developed for genomics research. However, technol-
ogy transfer between genomics and proteomics would need to be modified to account for
post-transitional modifications (PTM), which are specific to proteomics. Also, proteomic
datasets are expanding exponentially while genomic datasets are saturated. Managing a
much larger, and continually growing database presents its own set of organizational op-
portunities.

The inspiration for ‘Automation in Genomics and Proteomics: An Engineering Case-
Based Approach’, was two Massachusetts Institute of Technology (MIT) and Harvard
interdisciplinary special studies courses, Bioinformatics and Proteomics: An Engineering-
Based Problem Solving Approach and numbered 6.092/HST.480, respectively, and the arti-
cle ‘Automation, parallelism, and robotics for proteomics’ created by Alterovitz, Liu, Chow
and Ramoni. Bioinformatics and Proteomics: An Engineering-Based Problem Solving Ap-
proach focused on bioinformatics and proteomics with engineering-based approaches.
While the ‘Automation, parallelism and robotics for proteomics’ [1] article discussed var-
ious technologies and methods being applied within the proteomics field that facilitate
automation to achieve cost- and time-saving benefits and link proteomics-based informa-
tion with germane research areas.

ix
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x Preface

The book, ‘Automation in Genomics and Proteomics: An Engineering Case-Based Ap-
proach’, is the product of an international effort that spanned six countries and involved 18
public, private and academic institutions. The textbook addresses automation technology
currently in the areas of analysis, design and integration and describes current technolog-
ical limitations. The underlying biology concepts are also delineated. By disseminating
knowledge of leading experts in the field, the textbook underscores that a collaborative
effort across many disciplines is required to advance automation. This book’s distinctive
engineering-oriented coverage makes the material more intuitive for a technical audience,
and is intended for an upper-level undergraduate elective or as a graduate-level foundation
class. It can also be used as an industry reference tool. This book is an excellent stand-alone
text for an introductory/motivational seminar or course on the subject, or it can serve as a
complementary text to traditional texts.

‘Automation in Genomics and Proteomics: An Engineering Case-Based Approach’, is
divided into four sections. In Section 1, the fundamental biology is introduced from an
engineering perspective. The first chapter, The Central Dogma: from DNA to RNA, and to
Protein, presents the needed molecular and cellular biology background and can be treated
within a review session, if an introductory biology course is a prerequisite. Molecules and
bioprocesses that are related to protein biosynthesis are the focus of this chapter, where
DNA is the source of genetic information and amino acids are the raw materials. In the
second chapter, Genomes to Proteomes, the book moves from the genomics to proteomics
by discussing the automatic annotation and the generation of high-quality gene models, the
set-up and execution of quantitative and statistically rigorous global proteomic experiments,
and proteomics in a biological context.

Sections 2 and 3 focus on design and analysis via automation:

� Chapter 3, High-Throughput DNA Sequencing, reviews the current state of traditional
dideoxy sequencing workflows and the development of next-generation technologies that
are poised to revolutionize genomics.

� Chapter 4, Modeling a Regulatory Network using Temporal Gene Expression Data: Why
and How?, introduces methodologies to classify genes according to their expression
measurements across a set of conditions, and presents sophisticated procedures to infer
regulatory networks from gene expression data.

� Chapter 5, Automated Prediction of Protein Attributes and Its Impact on Biomedicine
and Drug Discovery, systematically explores recent progress in computational methods
and, for those prediction methods with web-servers currently available, a step-by-step
instruction is presented.

� Chapter 6, Molecular Interaction Networks: Topological and Functional Characteriza-
tions, introduces both basic concepts and current research trends in network biology.

� Chapter 7, DNA Synthesis, evaluates the standard methods, chemistry and instrumentation
of DNA and gene synthesis and the applications, strategies and the trends of applying
high-throughput gene synthesis in synthetic biology to design and engineer biological
systems.

� Chapter 8, Computational and Experimental RNA Nanoparticle Design, discusses some
of the recent advances in the ability to computationally design RNA nanoparticles,
drawing upon a wide array of known structural motifs as well as the issues that are
involved in experimentally constructing and testing their validity.
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Preface xi

� Chapter 9, New Paradigms in Droplet-Based Microfluidics and DNA Amplification,
addresses the confluence of new genetic and microfluidic technologies that will be used
to automate in vitro evolution, genomics and molecular and cellular screening on a scale
that was previously impractical.

� Chapter 10, Synthetic Networks, demonstrates several interesting synthetic networks and
provides valuable engineering tools to study motifs, modularity and robustness of cellular
networks. Also in this chapter, the current understanding of cellular networks, synthetic
network construction and remaining challenges towards automating biochemical pro-
cesses using synthetic circuitry are reviewed.

Chapters 11 and 12 are included in Integration, the fourth and final section of Automation
in Genomics and Proteomics: An Engineering Case-Based Approach. In this section,
Chapter 11, Molecular Modeling of CYP Proteins and Its Implication for Personal Drug
Design, addresses the existing computational methods for modeling 3-D protein structures
with Shanghai Molecular Modeling (SAMM), the molecular modeling software developed
at Shanghai Jiaotong University, while Chapter 12, Recent Progress of Bioinformatics in
Membrane Protein Structural Studies, examines the recent progress of computational work
and automation process in membrane protein structural studies.

In Chapter 13, Trends in Automation for Genomics and Proteomics, the book concludes
with a field summary and an exploration of future avenues of research. For those interested
in additional resources, source code and related materials: the book’s internet site can be
accessed at: http://bcl.med.harvard.edu/proj/automation.

As an international effort, there are many people whose contributions were critical to
the publication of this work. The editors would like to thank the contributing authors to
the text, including: Masahiko Sisido and Takashi Ohtsuki (Chapter 1); Scott E. Baker,
Ellen A. Panisko, Igor Grigoriev, Don S. Daly and Bobbie-Jo Webb-Robertson (Chapter
2); Tarjei S. Mikkelson (Chapter 3); Sophie Lebre and Gaelle Lelandais (Chapter 4); Kou-
Chen Chou (Chapters 5, 11 and 12); Jake Chen and Xiaogang Wu (Chapter 6); Jingdong
Tian (Chapter 7); Isil Severcan, Cody Geary, Luc Jaeger, Eckart Bindewald, Wojciech
Kasprzak and Bruce A. Shapiro (Chapter 8); Jonathan Rothberg, Michael Samuels, John
Leamon, Ronald Godiska, Thomas Schoenfeld and David Mead (Chapter 9); Jongmin
Kim (Chapter 10); Cheng-Cheng Zhang, Jing-Yi Yan, Jing-Fang Wang and Dong-Qing
Wei (Chapter 11); Hong-Bin Shen, Jun-Feng Wang, Li-Xiu Yao and Jie Yang (Chapter 12);
and Dmitriy Sonkin (Chapter 13). The editors would especially like to thank the Wiley
commissioning editor, Paul Deards, who invited us to write this book.

Thank you to William H. Down and Jonathan Dreyfuss for reviewing and editing the
manuscript. A special thanks also to the anonymous book proposal and book draft reviewers.

Gil Alterovitz, PhD
Roseann Benson

Marco F. Ramoni, PhD
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1
The Central Dogma: From DNA to

RNA, and to Protein

Takashi Ohtsuki and Masahiko Sisido
Department of Bioscience and Biotechnology, Okayama University, Japan

Within a single cell – the minimum unit of every living organism – many millions of different
types of molecule are working to maintain the cell, to promote its replication, or even to
cause its suicide. The bioprocesses conducted within the cell are chemical reactions that
proceed under the control of a highly organized network of molecular interactions between
relevant biomolecules.

Among these biomolecules, three types of biopolymer are crucial, namely nucleic acids,
proteins and polysaccharides. Nucleic acids preserve, replicate and transform the genetic
information that serves to design a number of different proteins and low-molecular-weight
biomolecules. Proteins function at almost all stages of the bioprocesses, from the birth to the
death of a cell. Polysaccharides play important roles in communicating molecular network
information and in storing chemical energy. Biopolymer concentrations are regulated to
optimum levels for each stage of the bioprocess, but decompose when their roles are
complete. This chapter will focus on the molecules and bioprocesses that are related to
protein biosynthesis, where DNA is the source of genetic information and the amino acids
are the raw materials.

1.1 Chemistry of DNA

Deoxyribonucleic acid (DNA) is a biopolymer that is located inside the nucleus of mam-
malian cells or in the cytosol of bacterial cells. DNA stores the genetic information that
will be converted into the amino acid sequences of protein molecules in the cell.

Automation in Proteomics and Genomics: An Engineering Case-Based Approach

Edited by Gil Alterovitz, Roseann Benson and Marco Ramoni

©   2009 John Wiley & Sons, Ltd. ISBN: 978-0-470-72723-2
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4 Automation in Proteomics and Genomics
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Figure 1.1 The chemical structure of DNA and its monomer unit

DNA, as shown in Figure 1.1, is a polyester made through condensations between a
deoxyribose as the diol unit and a phosphoric acid as the bivalent acid unit. The nega-
tively charged phosphates make the DNA molecule water-soluble. Due to the asymmetric
arrangement of the 5′-OH and 3′-OH groups on the deoxyribose unit, DNA is a directional
biopolymer. The chain end with the 5′-OH or 5′-O-phosphate unit is called the 5′-end,
while the end with the 3′-OH or 3′-O-phosphate unit is called the 3′-end.

DNAs are characterized by the sequences of base groups that are linked to the deoxyri-
bose units. There are four types of base group: adenine (A), thymine (T), guanine (G) and
cytosine (C). Different DNAs carry different sequences of nucleobases that are read from
the 5′ end to the 3′ end.

Nucleobases form hydrogen bonds between A and T and between G and C exclusively,
as shown in Figure 1.2. With few exceptions, the A-T/G-C pairing is a basic rule common
to all organisms. As a result of this exclusive pairing, a DNA strand that has a 5′-A-T-G-C-
A-T-G-C-3′ sequence, for instance, forms a stable hybrid only with a DNA strand of a 5′-
G-C-A-T-G-C-A-T-3′ sequence. Note that the two DNA strands hybridize in an antiparallel
manner, as shown in Figure 1.3. The two DNA strands that carry fully matched sequences
are called a complementary pair. Watson and Crick discovered that the complementary
DNA strands form a double-helical structure, as shown in Figure 1.4.

As the base sequences are kept safely inside the cylinder of negatively charged, double-
helical chains, the genetic information has been stored securely for many generations in
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Figure 1.3 Chemical structure of double-stranded DNA

the form of the sequences of nucleobases. The double-helical structure, however, is not
absolutely stable, and unfolds at high temperatures or by the action of an enzyme called a
helicase.

1.2 Replication of DNA

In order for genetic information to be transferred to the next generation, DNA must first be
copied to replicate itself. DNA replication is conducted with an aid of an enzyme called
DNA polymerase. The basic chemistry of the replication proceeding inside the enzyme is
illustrated in Figure 1.5.

First, the double-helical chain is unfolded and one of the DNA chains is copied to create
its complementary chain. The monomer units involved in this polymerization are activated
nucleotide units, dATP, dTTP, dGTP and dCTP. The triphosphate unit of the dNTP units is
very susceptible to the attack of the 3′-OH group, and forms a diphosphate linkage. Guided

minor groovemajor groove

base stacking

Figure 1.4 Double-helical structure of a complementary pair of two DNA strands
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Figure 1.5 Replication of one of the DNA chains to create a complementary chain

by the enzyme, a correct monomer binds to the template DNA chain and reacts with the
3′-OH group of the growing chain. In this way, the new chain grows from the 5′ end to the
3′ end.

1.3 Transcription from DNA to RNA

Although the stable and inflexible DNA double-helical structure is suitable for the storage
of genetic information, its large size necessitates that a smaller, more flexible biopolymer,
is used to translate the stored genetic code into proteins. To that end, the base sequences are
copied into another type of biopolymer nucleic acid, specifically ribonucleic acid (RNA).

RNA is structurally different from DNA in two ways (see the left part of Figure 1.6).
The first difference is that an OH group is attached to the 2′C atom of deoxyribose unit; the
2′-OH derivative is called a ribose unit. The second difference is that a methyl group is
removed from the thymine unit to make a uracil unit, U. The introduction of a 2′-OH
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phosphate

unit

1'
2'
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part of a single RNA chain

Figure 1.6 Chemical structure of RNA (left) and typical hydrogen-bonded structure of a
single RNA chain
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Figure 1.7 Transcription of one of the double-stranded DNA chains to a complementary
RNA chain with the aid of RNA polymerase

group causes a small conformational change on the ribose unit such that the RNA chain
will favor single-stranded conformations. The single-stranded RNAs, however, often
assume an intramolecularly hydrogen-bonded structure, such as a stem-loop structure (see
Figure 1.6, right).

Similar to DNA replication, one of the double-stranded DNA chains is copied to a single
RNA chain of the complementary nucleobase sequence, except for the alteration of T to U,
as shown schematically in Figure 1.7. This procedure is known the transcription process,
and is conducted with an enzyme called RNA polymerase. The chemistry of transcription
is similar to the replication process, and the monomers are ATP, UTP, GTP and CTP.

1.4 Translation of the Nucleobase Sequence of mRNA to the
Amino Acid Sequence of Protein

The information stored in the form of a nucleobase sequence along an RNA chain is
translated to an amino acid sequence of a protein, as shown schematically in Figure 1.8.
RNAs that serve the translation process are called messenger RNAs (mRNAs). In the
translation process, three consecutive nucleobases on a mRNA are taken together and
converted to a specific amino acid. The set of three nucleobases is called a codon. As four
possibilities (A, U, G and C) exist for each nucleobase, there are 43 = 64 different codons.

Adapter molecules bridge the codons and the amino acids. A class of small RNAs, called
transfer RNAs (tRNAs), serve as those adapters. The base sequence of a yeast tRNA that
bridges between a codon UUC and an amino acid, phenylalanine, is shown in Figure 1.9.

tRNAs commonly have stem-loop structures with three loops and four stems. Among
the loops, the anticodon loop contains three consecutive nucleobases that bond specifically
to its complementary codon; thus, a tRNA of a specific anticodon binds to a specific codon
on an mRNA. If a particular amino acid is linked to a specific tRNA of specific anticodon,
the amino acid will be called up by the codon. In this way, the sequence of nucleobases is
translated to the sequence of amino acids.
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Figure 1.8 Translation of a nucleobase sequence on an mRNA to an amino acid sequence
of a protein. A set of three consecutive nucleobases (codon) corresponds to a specific amino
acid. The amino acids will be linked together to produce a polypeptide chain

1.5 The Codon Table

A list that correlates between the base sequences of codons and the amino acids is called a
codon table (see Figure 1.10). The codon table is common to almost all organisms on the
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Figure 1.9 Yeast transfer RNA (tRNA) that bridges between a codon UUC and an amino
acid, phenylalanine. Nucleobase sequence (left), crystal structure (center) and a schematic
illustration of the codon/anticodon pairing. The tRNA contains modified nucleobases, such as
m2G, m2C, Cm, Gm, � and D
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Figure 1.10 The codon table

earth, except for several violations found in mitochondria. The codon table is, therefore,
the second basic rule of living organisms.

Because 64 codons correspond to 20 amino acids, there is redundancy in the use of
codons. For example, phenylalanine is coded by both UUU and UUC, while leucine is
coded by six codons. It must be noted that UUA, UAG and UGA do not correspond to
any amino acid, and so are called stop codons. Thus, if they appear on an mRNA, the
protein synthesis will cease. Compared with the stop signal, the mechanism of the start of
protein synthesis is a little complicated, and is different in bacteria and eukaryotic cells. In
prokaryotic bacteria, mRNA has a special region, called the Shine–Dalgano (SD) sequence,
and the first AUG codon after the SD sequence works as the start codon. In eukaryotic
cells, the first AUG codon from the 5′ terminal of an mRNA is the start codon. In any case,
the N-terminal amino acid of a newly synthesized protein will be methionine.

1.6 The Twenty Amino Acids

The types of amino acid that constitute proteins, again, are common to all organisms; the
chemical structures of the 20 amino acids are listed in Figure 1.11.

Amino acids are classified into five types, depending on chemical and physical properties
of their side groups. The first group (Gly, Ala, Val, Leu, Ile, Met and Pro) has hydrophobic
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Figure 1.11 Amino acids that constitute proteins

side groups, while the second group (Ser, Cys, Thr, Asn and Gln) has nonionic polar side
groups. The third group (Asp and Glu) has anionic side groups, and the fourth (Arg and Lys)
has cationic groups. The fifth group (His, Phe, Tyr and Trp) has aromatic groups. Protein
conformations depend on the combination of the different groups along a polypeptide chain,
such as water-soluble globular proteins, membrane-penetrating hydrophobic proteins, and
so on.

1.7 Aminoacylation of tRNA

The process of linking a specific amino acid to a specific tRNA is called the aminoacylation
of tRNA, and is governed by a single enzyme, aminoacyl tRNA synthetase (ARS) for
each amino acid. For example, phenylalanine (Phe) is charged onto a tRNA that has an
anticodon UUU or UUC, with an enzyme PheRS. Aminoacylation consists of two stages,
as illustrated in Figure 1.12 (top). First, a particular amino acid is bound to its specific ARS
and is activated with adenosine triphosphate (ATP) to form an adenylated amino acid. In
the second stage, a particular tRNA is bound to its specific ARS that holds the adenylated
amino acid. The latter then reacts with the 3′-terminal OH group of the tRNA to form an
ester linkage between the amino acid and the tRNA.

ARS is a ‘super’ enzyme that recognizes three different substrates: ATP, a specific
amino acid, and a specific tRNA. In the first stage of aminoacylation, the formation of
an adenylated amino acid activates an amino acid. The mixed anhydride of carboxylic
acid and phosphoric acid of the adenylated amino acid is very susceptible to water. Inside
the enzyme, however, the mixed anhydride is kept safe, until a correct tRNA is bound in
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Figure 1.12 Schematic illustration (top) and chemical processes (bottom) of tRNA aminoa-
cylation

proximity so as to induce the aminoacylation. The accuracy of the ARS/amino acid/tRNA
selection is very high, and the probability of an erroneous aminoacylation is less than 10−4.

1.8 Protein Synthesis in Ribosomes

Codon/anticodon pairing consists of only three base pairs, and is not strong enough to
hold the tRNA/mRNA hybrids. Consequently, aminoacyl tRNAs do not bind to mRNA
in solution, even if they have correct anticodons against the codons on mRNA. The
codon/anticodon pairing takes place only inside a huge molecular assembly, called a
ribosome, which is constructed from RNAs and proteins (Figure 1.13). Inside a ribosome,
there are two ‘rooms’ – one for an aminoacyl tRNA (A site) and the other for a tRNA
linked with the growing peptide (P site). There are also two ‘tunnels’ – one for an mRNA
and the other for the growing peptide. Protein synthesis proceeds inside a ribosome, as
illustrated in Figures 1.13 and 1.14.

After a tRNA has been aminoacylated with the relevant ARS, it is brought into the A site
of the ribosome by the aid of an enzyme, elongation factor-Tu (EF-Tu). In the A site, the
aminoacyl tRNA is oriented to locate its amino group in close proximity to the C-terminal
ester group of the growing peptide on the tRNA in the P site (see Figure 1.14, top, left). The
amino group then attacks the ester group, leading to the formation of a new peptide bond.
As the result of this peptide bond formation, the growing peptide transfers to the tRNA in
the A site (peptidyl transfer; see Figure 1.14, top, right). The A site tRNA, carrying the
growing peptide, is then translocated to the P site, leaving the A site vacant (Figure 1.14,
bottom). Finally, the next aminoacyl tRNA will be brought into the vacant A site. This
polymerization cycle will be repeated until one of stop codons (UAA, UAG and UGA)
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Figure 1.13 Schematic illustration of the course of protein synthesis inside a ribosome

appears on the mRNA. The polypeptide synthesis proceeds at a rate of about two amino
acids per second in eukaryotic cells, and about 20 amino acids per second in bacteria.

1.9 The Total Process of Protein Synthesis: ‘The Central Dogma’

The entire bioprocess – from DNAs to proteins and from amino acids to polypeptides – is
summarized in Figure 1.15. The protein biosynthetic process is essentially the same in all
organisms and is referred to as the ‘central dogma’, although several important differences
exist between bacterial and eukaryotic systems.

The central dogma consists of two paths: one path for a flow of information from the
nucleobase sequences of DNAs to the amino acid sequences of proteins, and a second path
for a flow of materials from amino acids to polypeptides.
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Figure 1.14 Chemistry of protein synthesis occurring inside a ribosome
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Figure 1.15 The central dogma: The protein biosynthetic process

It is counterintuitive that all organisms from bacteria, to plants and to animals, share
essentially the same biosynthetic mechanism, due to the obvious differences in their phys-
ical appearances. As no organism lives with only 18 types of amino acid or with six types
of nucleobase, it can be deduced that all living organisms are descendants from a single
common cell that was comprised of 20 types of amino acid, four types of nucleobase and,
essentially, the same protein-biosynthesizing system, as shown in Figure 1.15. Currently,
a number of chemists are attempting to expand the central dogma and to create a ‘new
life’ that lives with more than 20 types of amino acid or with more than four types of
nucleobase.

1.10 Proteins: Polypeptides with a Variety of Specialty Side Groups that
are Spatially Arranged to Achieve Biological Functions

Proteins are constructed from polypeptide chains along which a variety of functional
groups are rationally arranged to play individual roles. Unlike most synthetic polymers,
the polypeptide main chain is relatively stiff; such rigidity is due to amide groups favoring
a planar and trans geometry resulting from the partial shift of an electron from nitrogen to
oxygen (Figure 1.16).
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Cα δ+
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Figure 1.16 Planar and trans geometry of an amide group
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Figure 1.17 Three-dimensional X-ray crystallographic structure of bacterial phenylalanyl
tRNA synthetase (PheRS). PheRS consists of two polypeptide chains. In this figure only the
phenylalanine binding part (A chain) is shown. The bound phenylalanine is shown by a
space-filling model. The main chain is shown by rods. The dark gray portions are in α-helical
conformation, while the light gray portions are in β-sheet forms. The side chains are shown
with fine lines

Moreover, because of the electronic polarization, the N–H group is an excellent proton
donor, while the oxygen atom, in turn, is an excellent proton acceptor. As a result, the amide
groups in a polypeptide chain are able to build a strong hydrogen bond network with each
other. If the hydrogen bonds were formed between amide groups that are separated by every
three α-carbon atoms along a single polypeptide chain, then the latter will take a right-
handed α-helical conformation. If hydrogen bonds form to assemble several antiparallel-
running chains together, then the polypeptide chains will assume a β-sheet structure.

By combining these structural motifs, such as α-helices and β-sheets, proteins may take
a variety of main chain conformations. As an example, a main chain structure of a bacterial
phenylalanyl tRNA synthetase (PheRS) is shown in Figure 1.17. The α-helical parts of
the main chain are shown in dark gray, and the β-sheet parts in light gray. The bound
phenylalanine is presented by a space-filling model.
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As amino acid side groups appear in every three atoms along a polypeptide chain, se-
vere crowding is expected between them. Thus, the orientations of the side groups are
very constrained and, if they were properly arranged, the side groups would form a three-
dimensional space for the effective binding of external molecules, or build a functional
region for achieving enzymatic reactions. Figure 1.17 shows how a substrate (pheny-
lalanine, shown by the space-filling model) is bound to its binding site that is made of
constrained orientations of the side groups located nearby.

1.11 Genetic Engineering

The central dogma tells us that the amino acid sequences of proteins are determined solely
by the nucleobase sequences of protein-coding DNA. Therefore, if new DNA can be
synthesized, or if some nucleobases can be substituted with other nucleobases, and the new
DNA is introduced into the protein-biosynthesizing system, then new or partially mutated
proteins will be created. This technique is known as ‘genetic engineering’, and is widely
applied in agricultural, pharmaceutical and medical fields.

In order to introduce new or mutated DNAs into living organisms, for example Es-
cherichia coli, a small cyclic double-helical DNA, called a plasmid, is used as the trans-
porter or a vector of the gene (Figure 1.18). The plasmid contains functional units, as
depicted in the figure. The new gene is inserted into the protein-coding region by cutting
off a portion by restriction enzymes, EcoRI and HindIII (see Figure 1.18) and pasting a
new gene in place of the missing portion by an enzyme called a DNA ligase.

Restriction enzymes cleave double-stranded DNA chains at their specific sites, as typi-
cally exemplified for EcoRI and HindIII in Figure 1.19.

Start 
d

SD

Protein-coding 
region 

EcoRI site
HindIII site

Plasmid
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Stop codon

5’-- TAATACGACTCACTATA --3’ 
3’-- ATTATGCTGAGTGATAT --5’ 

5’-- GAATTC --3’ 
3’-- CTTAAG --5’ 

5’-- ATG --3’ 
3’-- TAC --5’ 

5’-- AGGAGGT --3’ 
3’-- TCCTCCA --5’ 

5′-- TAG --3′
3′-- ATC --5′

5′-- AAGCTT --3′ 
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5′--CTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTT--3′
3′--GATCGTATTGGGGAACCCCGGAGATTTGCCCAGAACTCCCCAAAAAA--5′

Figure 1.18 Arrangement of functional components along a plasmid. The plasmid is a cyclic
double-helical DNA of several thousand base pairs. The promoter sequence determines the
start point of RNA polymerization. The Shine–Delgado (SD) sequence determines the point
of ribosome attachment. Protein synthesis starts from the start codon (ATG) to one of the stop
codons (TAG, TAA, TGA). The terminator sequence determines the end of transcription. The
plasmid contains two restriction sites (EcoRI site and HindIII site in the above example) for
inserting new genes. In the above example, the promoter and terminator sequences are taken
from those of T7-phage, because of their high efficiencies
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Figure 1.19 DNA cleavage with restriction enzymes (downward arrows) and ligation with
DNA ligase (upward arrows). EcoRI cleaves a double-helical DNA at the GAATTC/CTTAAG
site. HindIII cleaves at the AAGCTT/TTCGAA site, leaving cohesive ends, respectively. The
cohesive ends can be ligated again with the DNA ligase

The cleavage leaves a pair of short complementary chains (cohesive ends) which will be
linked again with an enzyme, DNA ligase. Ligation also takes place between the cohesive
ends that are produced from different double-stranded DNAs, cleaved by the same type of
restriction enzyme. Therefore, if the same set of restriction sites were to exist on a plasmid
(Figure 1.20, top) and on a DNA fragment that included the protein-coding region (bottom),
the latter would be inserted into the plasmid after cleavage by restriction enzymes, followed
by the ligation with DNA ligase (Figure 1.20).

1.12 Large-Scale Production of Engineered Proteins

The complete procedure for obtaining a target protein from the plasmid is illustrated
in Figure 1.21. The plasmid inserted with the protein coding region is introduced into

EcoR I site Hind III site

Plasmid 
Hind III
EcoR I

Protein-coding 
region 

EcoR I site Hind III site

Hind III
EcoR I

DNA ligase

Figure 1.20 Insertion of a protein-coding region on a fragment of double-stranded DNA into
a plasmid by the use of a pair of restriction sites on both the plasmid and the DNA
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Figure 1.21 Total procedure for the large-scale production of proteins by using E. coli trans-
formed with a plasmid

E. coli cells, the cell walls of which are temporarily made permeable to DNAs (competent
cells). These transformed cells are cultivated first in suspension, and then transferred onto
a cultivation plate with an antibiotic (ampicillin). On the cultivation plate, only those cells
that are successfully producing the target protein, together with an ampicillin-resistant
protein, can survive and grow to form colonies. Next, one of the colonies is picked up
and cultivated in large quantity. After harvesting cells by centrifugation, the cells are lysed
by ultrasonic agitation and the insoluble components precipitated by centrifugation. The
protein in the supernatant is then purified using column chromatography.

1.13 Cell-Free Protein Synthesis and its Automated Process

Protein synthesis using living cells is advantageous for producing a large quantity of any
single type of protein, because the transformed cells can be stored and used repeatedly.
However, this approach is not appropriate for synthesizing many different types of protein
as, usually, it takes a week (or even longer) to obtain a large quantity of transformed
cells. Another drawback of the living cell system is that the expressed proteins often form
insoluble aggregates (inclusion bodies) inside the host cells, that are not easily resolved. It is
also clear that proteins which are toxic to the host cells cannot be synthesized. Nonetheless,
these limitations can be avoided if all of the macromolecules that are functioning in the
central dogma are extracted from living cells and then assembled in a test tube to conduct
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Figure 1.22 Procedure for preparing E. coli S30 lysate and cell-free protein synthesis

protein synthesis. The technique is referred to as cell-free protein synthesis, and protein-
synthesizing mixtures, taken from E. coli for example, are now commercially available.

The procedure for preparing a cell-free protein-synthesizing system (E. coli S30 lysate)
is illustrated in Figure 1.22. The frozen cells are mechanically destroyed and suspended
in aqueous solution. After removal of the insoluble components, the soluble portion is
centrifuged at 30 000 × g for 30 min. The supernatant is then removed and dialyzed
against phosphate-buffered saline to remove any low-molecular-weight components. The
remaining solution contains tRNAs, ARSs, ribosomes and other enzymes that are necessary
for protein synthesis. Following centrifugation, this protein-synthesizing mixture is known
as an S30 mixture.

By adding DNA or mRNA and an amino acid mixture, together with energy sources
(ATP and GTP) to the S30 mixture, protein synthesis starts rapidly such that within 30 min
the target protein is obtained in quantities of approximately 1 µg ml−1 lysate.

As the cell-free synthesis will cease when one of amino acids or NTPs is exhausted, the
materials must be fed continuously in order to continue the synthesis. In addition, waste
materials such as diphosphates, nucleotide diphosphates (NDPs) and nucleotide monophos-
phates (NMPs) must be removed from the reaction mixture. This can be accomplished by
using a reaction chamber equipped with an autofeeder separated with a semipermeable
membrane, as illustrated in Figure 1.23.

By using such a continuous reaction system the protein yield can be increased to 10-fold
that obtained when using a batch system.
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Figure 1.23 Schematic representation of a continuous protein-synthesizing chamber
equipped with an autofeeder for amino acids and NTPs

One of the limiting factors of widespread cell-free synthesis is the cost of S30 or other
cell lysates. In order to prepare the S30 lysate, a large quantity of E. coli cells is required,
together with processes that are not suited to large-scale production. However, when the
cell-free system becomes less cost-prohibitive, it is poised to become a major protein-
producing procedure. Due to the flexibility of the system to synthesize a variety of protein
types, the cell-free system is more suited for automated processes than for conventional
protein synthesis using living cells.
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2.1 Introduction

Today, biologists are ‘awash’ with genomic sequence data, due in large part to the rapid
acceleration in the generation of DNA sequences that has occurred during the race between
public and private research institutes to sequence the human genome. In parallel with the
large Human Genome Project effort, smaller genomes of other important model organisms
have been sequenced. Subsequent projects have effectively utilized both the technological
advances and the DNA sequencing infrastructure developed for the human and other
organism’s genome projects. As a result, the genome sequences of many organisms are
today available in high-quality draft form.

Although the availability of draft data is a promising treasure trove of information, there
are limitations to the biological insights that can be gleaned from DNA sequences alone,
as genome sequences offer only a ‘bird’s eye view’ of the biological processes endemic
to an organism or community. Fortunately, the genome sequences now being produced at
record pace can serve as the foundation for other global experimental platforms such as
proteomics.

Proteomic methods offer a ‘snapshot’ of the proteins present at any one point in time
for a given biological sample. Current global proteomic methods combine enzymatic
digestion, chromatographic separations, mass spectrometry and database searching for
peptide identification. One key aspect of proteomics is the prediction of peptide sequences
from mass spectrometry data. ‘Global’ proteomic analysis uses the computational matching
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of experimental mass spectra with predicted spectra based on databases of gene models
that are often generated computationally. Thus, the quality of gene models predicted from
a genome sequence is crucial in the generation of high quality peptide identifications. Once
peptides are identified they can be assigned to their parent protein. Proteins identified as
expressed in a given experiment are most beneficial when compared to other expressed
proteins in a larger biological context or biochemical pathway.

This chapter discusses the automatic annotation and the generation of high-quality gene
models, the set-up and execution of quantitative and statistically rigorous global proteomic
experiments, and proteomics in a biological context.

2.2 Gene Modeling

Genome sequencing has evolved dramatically during the past few years. The sequence of
the first bacterial genome of Haemophilus influenzae was published in 1995 [1], shortly
followed by the first sequenced eukaryotic genome of Saccharomyces cerevisiae [2]. Sev-
eral large genome sequencing centers were established around the world for large-scale
production sequencing, and have an average sequencing capacity of three giga bases per
month, or roughly an equivalent of the human genome size. New short-read sequenc-
ing technologies promise to make genome sequence affordable for small laboratories and
research groups. The substantial amounts of sequence data anticipated require adequate
efforts and tools for analysis and interpretation. Genome annotation is one of the first steps
in the analysis of a genome sequence, and includes finding genes and then describing their
structures and functions. Approaches used for gene prediction in prokaryotes and eukary-
otes are different. Finding genes in prokaryotes is a relatively straightforward task because
of the simple gene structure (uninterrupted open reading frames; ORFs) and high gene
density, with almost the entire DNA used for coding; therefore, automated approaches to
predict gene models in prokaryotes genomes is feasible. In contrast, eukaryotic genes have
complex exon–intron structures, and a significant fraction of eukaryotic genome sequence
corresponds to noncoding DNA (e.g. ‘gene deserts’ in human [3]).

Despite the significant efforts made by many research groups, there are as yet no com-
pletely automated methods to predict gene models in eukaryotic genomes. Most of the
eukaryotic gene predictors that have been developed and tuned for human or other higher
eukaryote genomes are not applicable to another genome, and show low accuracy even
between vertebrate genomes [4]. Eukaryotic gene predictors require training for every or-
ganism on a set of known genes from that organism’s genome. This information is used
to derive genome-specific parameters that then are utilized to predict genes in the whole
genome. Several benchmarks have been developed to evaluate current gene predictors for
human (EGASP [5]), fruit fly (GASP [6]), maize [7] and other genomes (e.g. NGASP,
www.wormbase.org).

2.2.1 Gene Predictors

Eukaryotic gene predictors can be roughly described as ab initio (e.g. Fgenesh [8];
Augustus [9]; SNAP [10]; GeneMark [11]), homology-based (GeneWise [12]; Fgenesh+
[8]), expressed sequence tag (EST)-based (GrailEXP [13]; PASA [14]), synteny-based
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(Twinscan [15]) and hybrid methods (EuGene [16]; Combiner [17]; TWAIN [18]). They
differ in balance between content-based (distinguishing exons from introns or intergenic
regions by, for example, nucleotide composition) and signal-based parameters (defining
starts and ends of exons and genes) [19]. The content information can come from homology
to proteins, ESTs and genome conservation, as well as coding potentials derived from a
training set of genes. Signals, while mostly conserved, can be refined based on homology
gene models and ESTs aligned to genomic sequence. In general, the predicted models will
be highly inaccurate if the genome to which the gene-finding algorithm is applied differs
in gene structure from the genome on which the algorithm was trained [10].

Given a sufficient number of known genes or full-length cDNAs for a particular genome,
gene prediction parameters can be computed and used for genome wide gene prediction.
Often, for most newly sequenced genomes, full-length cDNA sequence is not available;
however, some characteristics of gene structure in a given genome can be inferred from
ESTs. They can be directly mapped to genome assembly or used in EST-based gene predic-
tors such as PASA [14]. Reliable homology-based gene models built with GeneWise [12]
or Fgenesh+ [8] offer another source of information for training gene predictors. While
these predictions lack untranslated regions (UTRs), close protein homologues often retain
very similar exon–intron structures. In addition, genomes of closely related organisms can
help to recover content and signal information using synteny-based gene prediction meth-
ods. These methods have been used successfully in human, mouse and rat (SLAM [20]),
Caenorhabditis elegans (TwinScan [21]), Aspergillus genomes (TWAIN [18], Cryptococ-
cus neomorphans (TwinScan [15]) and Phytophthoras [22]. Although these methods predict
exons with a reasonable quality, they suffer from chimerism in genome scale applications
and so are often used mostly to correct models of orthologous genes.

2.2.2 Annotation Pipelines

As each gene prediction method has its own advantages and drawbacks, combining different
methods can improve the overall quality of gene models. Methods to select entire gene
models such as Bayesian framework [23], to assemble model fragments into de novo models
(e.g. EuGene [16]), or to combine multiple sources of information such as gene models and
ESTs [17], have been proposed. Annotation pipelines employed at the genome-sequencing
centers normally use several gene predictors. In addition to increasing the overall accuracy
of annotations, they offer scalable solutions. The ENSEMBL pipeline was used for most
vertebrate genomes [24], while the US DOE Joint Genome Institute (JGI) Annotation
Pipeline includes Fgenesh [8], GeneWise [12] and Fgenesh+ [8] with a number of in-
house developments that use ESTs and select a best representative model for every locus
among the number of predicted genes. The Broad Institute used similar set of tools for the
annotation of fungal genomes. The Institute for Genome Research (TIGR)/J. Craig Venter
Institute (JCVI) annotation team trains several gene predictors, but use a subset of them for
final annotations. Genome-sequencing consortia use additional gene predictors [25–27].

When the gene models have been predicted, the corresponding predicted proteins are
functionally annotated. Functions can be inferred by sequence similarities to other proteins
from, for example, UniProt or GenBank, as determined by protein sequence alignments
using Blast [28]. InterProScan [29] combines several domain-search methods to predict
domains, including SignalP and TargetP [30] for more specialized analysis. Comparison
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with the specialized databases (e.g. KEGG [31]) allows one to map the predicted proteins
onto metabolic pathways; Gene Ontology [32] and KOG [33] categories provide the user
with multiple entry points into the annotation data.

The overall workflow is similar between the different pipelines, and includes the follow-
ing major steps that are common to all:

1. Repeat masking to exclude transposons from the final set of gene models
2. Mapping ESTs and homologues as seeds for gene predictors
3. Gene prediction using several methods
4. Gene annotation via domain prediction and homology searches.

Additional experimental data available at the time of genome annotation is becoming
more often an integral part of validation modules of these pipelines.

2.2.3 Experimental Validation and Annotation of Predicted Gene Models

The accuracy of predicted genes depends on derived parameters, and varies from genome
to genome. A significant fraction of predicted genes with no similarity to any protein in
GenBank lacks annotation. Experimentally derived data (ESTs, microarrays, proteomics)
may not only validate predicted gene structures but also add annotation by describing
the conditions under which a particular gene or protein was expressed. Predicted gene
models can be validated using gene-expression data. Evidence for predicted transcripts
can be collected from ESTs/cDNAs overlapping with a gene model, microarrays with
oligonucleotide probes corresponding to the predicted transcripts, and tiling arrays where
probes are evenly distributed throughout the genome sequences. In addition, the compar-
ative analysis of ESTs from different libraries or microarray probe hybridization levels
under different conditions provides biological insights and annotation information. These
resources are stored in genome databases, as well as larger repositories (e.g. ArrayEx-
press [34]; GEO [35]). In addition to a wide variety of proteomics biomedical studies,
other examples include secreted proteins in fungi that degrade biomass [36–38], or have
symbiotic relationships with plants [39]. For example, 10,048 genes were predicted for
the genome of Phanerochaette crysosporium using a 10.6× genome sequence assembly
processed with the JGI Annotation Pipeline. The processing of mass spectroscopy data re-
sulted in the identification of 4697 peptides supporting 1489 genes, including 193 peptides
supporting splice sites. The genome browser of the JGI Genome Portal illustrates peptide
support for predicted gene models (Figure 2.1) [40].

2.2.4 Challenging Genes that Require Validation with Proteomics

While proteomics is valuable in validating the predictions of protein-coding genes, an
additional value is derived from its ability to distinguish between protein-coding and
noncoding genes, transcripts for both of which can be equally supported by ESTs or
microarrays.

2.2.4.1 Pseudogenes

Remnants of genes that are no longer transcriptionally active are called pseudogenes.
Based on their origin, they are subdivided into either processed (emerged through the
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Figure 2.1 Peptides mapped to genome assembly provide experimental support for pre-
dicted gene models in the Phanerochaete chrysosporium genome

retrotransposition of processed transcripts back into genomic sequence) or nonprocessed
(duplicated, not active and therefore mutated genes). Pseudogenes often have features that
make them appear to be genes and, at times, are expressed based on EST or microarray
evidence. Increased rates of mutation can introduce either stop codons or frameshifts; the
frameshifts can be the result of either sequencing error or genomic mutation, especially for
nonexpressed genes, and possibly be resolved with proteomics.

2.2.4.2 Seleno Proteins

Selenocysteine (Sec) is a rare amino acid that significantly increases the enzymatic activity
of a protein. A nucleotide triplet, UAG, which normally is interpreted as a stop codon,
codes for Sec. In the presence of a cis-acting mRNA structure, called the selenocysteine
insertion sequence (SECIS) element, this codon is recognized by selenocysteinyl tRNA,
which integrates a Sec amino acid into the protein sequence. The presence of a stop codon in
the middle of a predicted gene/transcript sequence makes it a viable pseudogene candidate.
However, as some pseudogenes are expressed in the form of RNA, only protein expression
can support this type of protein.

2.2.4.3 Noncoding Genes

Often, clusters of ESTs suggest missing genes in places where no gene model was predicted.
The lack of a gene model indicates a lack of significant coding potential, and/or homology
in that locus, which could be due to incorrect training or specific genes. The identification
of an ORF does not necessarily mean that coding genes are present, as a long ORF can be
found even in noncoding RNAs.

2.2.4.4 Polycystronic Genes

Proteomics data can resolve conflict between the different ORFs found in the same genes,
either in genes with low GC and without any stops, or in polycystronic genes, where several
genes are expressed as the same transcript to be processed before translation.
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2.2.4.5 Caveat

The resolution of mass spectra requires a database of protein sequences derived from
predicted gene models. In order to support predicted gene models, the same gene models
are used to resolve mass spectra. One option is to use all ORFs in a six-frame translation
derived directly from a genomic sequence, although the exon–intron structure of eukaryotic
genes makes this difficult. Only peptides that align entirely within a single exon can be
resolved in this way, and peptides aligned across a splice site will be lost.

2.3 Proteomics: Experimental Design

In the majority of proteome studies, investigators are interested in comparing the proteins
expressed in a cell or tissue under one condition versus another (i.e. normal versus diseased).
Originally, proteome studies were conducted using two-dimensional polyacrylamide gel
electrophoresis (2D-PAGE [41]), where the proteins are separated first by isoelectric point
and then by size. After running the sample, the gel is stained with a protein-binding dye,
and an image analysis is then performed to compare each stained gel from the two (or more)
conditions. A ‘spot’ of interest can be excised from the gel and the protein identified using
mass spectrometry [42]. Today, the technology has been developed to allow two samples
to be analyzed on a single gel by labeling each sample with a different fluorescent dye [43].
However, the field of proteomics is currently dominated by relatively high-throughput mass
spectrometry based approaches.

In these methods, high pressure liquid chromatography (HPLC) is coupled directly with
mass spectrometry (MS). As the peptides are eluted from the chromatographic column
they are converted to the gas phase by electrospray ionization (ESI) [44,45] and drawn into
the inlet of the mass spectrometer. Currently, different types of MS and HPLC platforms
are used across proteomics laboratories. For the basic ‘shotgun’ approach to proteomics,
peptides isolated from cells are digested with a protease (typically trypsin) having defined
cleavage sites and the resultant peptides are then analyzed using HPLC/MS techniques. An
example of the complexity of the resulting sample can be found in the worm C. elegans, the
genome of which encodes approximately 20,000 ORFs that, in theory, can produce close
to one million tryptic peptides [46]. Given that the tryptic digest samples are too complex
to resolve each individual peptide in time by HPLC, an identical sample run through a
HPLC/MS system will have a limited number of overlap of peptide identifications (this is
often referred to as ‘under-sampling’; see Figure 2.2).

Determining differences in protein expression between samples is less intuitive than
with the 2D-PAGE method, and several such techniques are currently in use in research
projects (for reviews, see Refs [47, 48]). Perhaps the most straightforward approach is
that of spectral counting, which entails counting the number of spectra that a peptide
(or peptides) from a protein produce during a full HPLC/MS analysis [49]. The counts
from two different sample types are compared to identify proteins that are differentially
expressed.

For model systems with defined growth media, stable isotope-labeling strategies are
often utilized [50]. Here, one cell condition (normal) may be grown in a baseline medium,
while the other cell is grown in a medium in which stable, heavy isotope-labeled amino
acids are substituted. Equivalent amounts of cells or protein extracts from the two cells are
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Figure 2.2 Peptides observed from NADP-dependent isocitrate dehydrogenase in total sol-
uble proteome analyses of Trichoderma reesei. Each column represents an individual LC/MS
injection of sample, while each row represents a peptide from isocitrate dehydrogenase that
has been observed at some time in previous experiments. The white blocks indicate that the
peptide was observed in the sample; gray blocks indicate that the peptide was not observed.
The blue lines separate the five different samples examined. Each sample has three bench-top
replicates, each of those replicates had three LC/MS technical replicates, resulting in nine
injections for each of the five samples

combined and processed for analysis, after which the ratio of the mass spectral intensities
between the heavy and light isotopically labeled peptides are used for relative quantitation.
For cells with undefined growth media, such as human tissue samples, a similar strategy
can be used with affinity labels (e.g. ICAT [51], iTRAQ [52]). The affinity tag is produced
in two versions – heavy and light. The protein extract from one condition is treated with
the heavy reagent, while the extract from the other condition of interest is treated with the
light reagent. Equivalent amounts of labeled extract are then combined for processing. One
advantage of affinity labeling methods is that they can isolate specific peptides (with ICAT,
only cysteine-containing peptides), thereby reducing the overall sample complexity.

Software such as MASIC [53] is used to determine the mass spectral intensities of
peptides. The process begins with the parent ion (mass-to-charge ratio) that was identified
for a peptide, and extracts the elution profile (extracted ion chromatogram) of that ion from
the mass spectra collected for that HPLC/MS injection. Essentially, this is a plot of parent
ion intensity over time, after which the peak area and maximum peak intensity can be
calculated and used for quantitation.
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The same method can be applied to nonisotopically labeled samples for relative quanti-
tation. The number of heavy isotopically labeled amino acids or affinity tags available does
not limit nonlabeled experiments. Regardless of the method utilized, all experiments ben-
efit from a strong experimental design. However, caution must be taken to reduce sample
preparation variability and to prevent any experimental processing from biasing the data.
Experimental bias can result from preparing all ‘like’ samples together and separated from
the remaining conditions of an experiment, or including only one replicate per sample.

2.4 Proteomics Sample Processing

A myriad of approaches is available for sample processing. Often, an investigator will focus
on isolating a specific type of protein from a sample. For example, if they are interested in
isolating only phosphorylated proteins, they can choose from an affinity labeling technique
(phosphoprotein isotope-coded affinity tag; PhIAT [54]) or a chromatographic method
(immobilized metal affinity chromatography; IMAC [55]). Although the sample processing
methods are too numerous to discuss at this point, they are excellently reviewed elsewhere
[56, 57]. However, a basic procedure for total soluble protein proteome sample processing
is outlined as follows.

After harvesting the cells or tissues, the samples are typically stored frozen until all
biological replicates can be processed in parallel (or according to the experimental de-
sign). Depending on the sampling techniques used, experimental (bench) replicates can
be initiated either before or after cell lysis. For instance, if the cell number can be easily
determined, then placing equal numbers of cells into separate tubes can produce replicate
samples, with each tube being processed separately throughout the entire method. The cells
may be lysed either chemically or mechanically, depending on the model system employed.
Lysis is often performed in the presence of a high-molarity chaotrophic salt, such as urea
or guanidine, so that the proteins are denatured as soon as the cell contents are released.
Protease inhibitors may also be added to the lysis buffer. The cell debris is then removed
from the sample by centrifugation and the supernatant reserved for further processing. The
cell lysate is subsequently assayed to determine protein concentration, usually using the
bicinchoninic acid (BCA) [58] method, due to its tolerance of high salt concentrations.
Experimental replicates may also be introduced at this stage for those systems where the
cell number is not easily assayed, simply by aliquoting equivalent amounts of protein to
separate tubes. Many investigators also denature the protein sample by incubating with
tris(2-carboxyethyl) phosphine) (TCEP), after which the cysteines are chemically modi-
fied by incubation with iodoacetamide to prevent disulfide bond formation. The samples
are now ready for tryptic digestion.

For effective digestion, the samples must be diluted with buffer to reduce the concen-
tration of salt to a level which is tolerated by the enzyme, and to ensure that the sample
is at the appropriate pH. Trypsin is added to the sample at a ratio of anywhere from one
part trypsin to between 20 and 100 parts of the sample protein. The trypsin is prepared
according to the manufacturer’s instructions, added to the sample, and incubated at 37 ◦C
for 4 hours upto overnight.

Before processing by HPLC/MS, peptides from the sample are separated from salts and
concentrated using solid-phase extraction. This procedure uses a matrix of silica beads to
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which are attached chains of hydrocarbons that are 18 carbons in length (reverse-phase).
Solid-phase extraction cartridges are typically made to attach to a vacuum manifold that
allows the liquid to be pulled through the column and provide a place to collect the final
eluate of peptides. Adding two to four column volumes of methanol first activates the resin
(after activation, the column must not be allowed to run dry). Water (2–4 column volumes)
is then added to equilibrate the resin to aqueous conditions. The sample is then added
to the column and washed with six to eight column volumes of water or volatile buffer
(ammonium bicarbonate). The peptides are eluted with two column volumes of organic
solvent (often 80–100% acetonitrile). The samples are dried using a centrifugal vacuum
concentrator, and can be stored frozen until HPLC/MS analysis.

It is difficult to describe a ‘typical’ HPLC/MS experiment, as the development of tech-
niques to improve the chromatographic separation of peptides and detection by MS cur-
rently form a very active area of research. Usually, reverse-phase chromatography (essen-
tially a separation of peptides by hydrophobicity) is used, and the eluate from the HPLC
column is injected directly into the mass spectrometer, in real time. Multidimensional sep-
arations can also be performed where the sample is separated in one dimension by strong
cation exchange into fractions that are then subjected to reverse-phase separation. It is
possible to perform this ‘on-line’, with a single biphasic column [59].

The columns used are fused silica with inner diameters of 75–150 µm that are packed
with reverse-phase particles of 3–5 µm in size. When the column has been equilibrated in
an aqueous form with a dilute volatile acid (this ensures that the peptides will be positively
charged), the samples can be injected onto the column. The peptide samples isolated by
solid-phase extraction are resuspended in the same solvent used to equilibrate the column.
The peptides are eluted from the column by adding increasing amounts of organic solvent
containing the same concentration of acid. Gradient profiles used vary across investigators;
an example is shown in Figure 2.3.
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Figure 2.3 An example of a solvent gradient used for eluting peptides from a HPLC column.
For 15 min after sample injection the column remained at 100% solvent A (0.1% formic acid).
There followed a linear gradient, from 100% to 20% solvent B (90% acetonitrile, 0.1% formic
acid) over 5 min, followed by another linear gradient from 20% solvent B to 50% solvent B
over 55 min, and finally a linear gradient from 50% solvent B to 95% solvent B over 5 min.
Note that the column must be re-equilibrated with solvent A before the next sample is injected
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Mass spectrometers are typically operated in a data-dependent mode, choosing the most
intense ions observed in a survey (MS) scan and isolating those ions for fragmentation
(MS/MS scan) in subsequent scans. Thousands of scans can be collected for a single
HPLC/MS injection. As the manner of peptide fragmentation is predictable, the mass-
to-charge ratio from the survey scans and the ions produced by fragmentation are used
for identification. Software programs such as Sequest [60] and X!tandem [61] perform
probability-based identification by utilizing the data from the mass spectrometer and com-
paring it to the expected peptide fragmentation for all tryptic peptides from an in silico
tryptic digest of all proteins from a defined protein database (i.e. SwissPro or the predicted
proteins from an organism the genome of which has been sequenced).

Data analysis is an extremely important aspect of proteome studies, which deserves more
than the cursory mention included here. Often, an experiment will involve dozens (if not
hundreds) of HPLC/MS injections, and consequently the data files are very large. Indeed,
thousands of peptides may be identified in a single analysis, such that laboratories which
specialize in proteomics often have their own data management systems [62].

2.5 Statistical Modeling of Proteomics Data

A biological study of peptides by HPLC coupled with MS produces a large and complex
but somewhat sparse dataset due to the design of the study, the HPLC/MS queuing plan
for study samples, and the (often incomplete) observation of numerous peptides across the
study’s sample collection. As an example, consider a study of cells grown with exposure
to five different concentrations of pesticide, with each condition having multiple samples
with replicate HPLC/MS injections. The realized design has an intricate structure spanning
thousands of peptide measurements perforated with missing observations. To ensure valid
and objective biological conclusions, a statistical method for a HPLC/MS-based biological
study should formulate a design-complementing queuing plan that complements the ex-
perimental design to ensure that those data suitable for the appropriate statistical modeling
are collected. A matching statistical analysis can then be performed.

Statistical modeling relates to the defining, fitting and interpreting of a probability model.
The simplest statistical algorithm is an exercise in statistical modeling if the intention is
to make inferences about problems behind the data. A (potentially invalid) probability
model implicitly looms under each application, such that the validity of this exercise
depends upon an understanding and application of basic statistical concepts that underpin
the designing, fitting and interpreting of probability models. Numerous Internet resources
offer quick, outstanding refreshers about important basic statistical concepts; these include
Wikipedia [63], NIST SEMATECH e-Handbook of Statistical Methods [64], Electronic
Statistics Textbook [65], EBook [66] and MathWorld Probability and Statistics [67].

2.5.1 Mixed-Effects Modeling

Mixed-effects linear statistical modeling [68] is an established statistical methodology
for the analysis of comparative, screening and time-course experiments. A mixed-effects
model includes terms for both fixed effects such as researcher-set treatments, and ran-
dom effects due to subject response, instrument variability or other nuisance factors. The
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mixed-effects modeling approach is uniquely suited to producing a HPLC/MS sample
queuing plan and statistical analysis complementary to the often complex realized design
of a biological study. Whilst a detailed discussion and example is described in Ref. [69],
we offer here a brief overview of the topic.

The basic steps are to:

1. Identify the HPLC/MS nuisance factors
2. Evaluate the design of the biological study
3. Formulate the HPLC/MS queuing plan
4. Explore the HPLC/MS dataset
5. Define and fit protein-level mixed-effects models
6. Group proteins based on estimates of biological parameters
7. Draw biological conclusions about individual proteins and protein groups
8. Alternatively, to draw conclusions about the quality and performance of the HPLC/MS

process.

The mixed-effects statistical model is characterized by three important elements:

� The model describes a HPLC/MS abundance measurement as a multiplicative function
of study and processing factors. To facilitate modeling fitting, this multiplicative model
is log-transformed so that log(peptide abundance) is expressed as an additive model of
study and processing factors. The model generates estimates of model goodness-of-fit,
treatment and peptide effects, standard errors and confidence intervals. Pertinent results
are then transformed back to the original scale for biological interpretation.

� The model has two disparate sets of terms – one set represents the biological design,
while a second set represents the HPLC/MS sample processing plan.

� The relative difference in HPLC/MS measurability between peptides is represented by a
component measurability factor.

A biologically induced difference between two conditions is often inferred from the ratio
of a peptide’s HPLC/MS abundance estimates (i.e. a component’s relative abundance). The
acceptance of forming this ratio to eliminate or to significantly minimize the systematic ef-
fects of HPLC/MS processing, coupled with the common assumption that any measurement
error is relative (i.e. MS measurement errors increase with measurement values), suggests
that any variation in MS abundances may be explained adequately with a multiplicative
error probability model. Further, sample effects due to dilution/titration, fractionation and
so on, are often multiplicative in nature. Consequently, an additive statistical model may
effectively describe log-transformed MS abundances (i.e. in matrix notation, model terms
and coefficients are separable).

Restricted maximum likelihood estimation (REML) is the method used for model fit-
ting. REML was developed and refined to estimate more accurately variance components
in random and mixed-effects models [70–72]. REML correctly tabulates the degrees of
freedom for unbalanced data, improving error estimates and inferences, and is better suited
to fitting linear models to the often-incomplete HPLC/MS datasets than other techniques,
such as ordinary least-squares analysis or analysis of variance.
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2.5.2 Data Quality Issues

Variance in HPLC/MS analysis represents a significant challenge. Ideally, each protein
processed would be extracted, digested, purified, separated by HPLC and observed by
MS with equal efficiency. Proteins that are equimolar in a sample would have comparable
MS abundances proportional to their concentration. In particular, abundance peptides from
their parent protein would be replicate measurements of the parent protein’s abundance. In
reality, however, some peptides are more easily measured (i.e. identified and quantified) by
HPLC/MS than others [73]. Whether caused by peptide digestion efficacy, hydrophobicity
or ionization potential, these nuisance factors directly affect the quantification of a compo-
nent’s abundance. This HPLC/MS peptide measurability effect varies across peptides due
to the cumulative – yet differential – effects of nuisance factors. Relative HPLC/MS peptide
measurability, however, is very reliable across samples measured under similar conditions
on the same HPLC/MS platform; that is, unique peptides of a given protein most often
display similar MS abundance profiles randomly perturbed by measurement error across
a biological study. Differences in the HPLC/MS peptide measurability can be estimated
and removed by mixed-effects modeling to eliminate this source of variability and allow
pooling of data from peptides of the same parent protein [69]. The mixed-effects modeling
produces one model for each fitted protein. A single study may result in hundreds to a few
thousand acceptable individual protein models.

HPLC/MS processing introduces many nuisance factors that are unrelated to the biolog-
ical factors of greatest interest, such as variability in instrument performance (‘instrument
drift’), the use of different HPLC columns and electrospray emitters. Often, one group
in one location at one time executes a biological study, while an independent group in
a separate location at a later time analyzes the resultant samples using HPLC/MS. The
study designers are advised to include various quality control samples and to use a com-
plementary HPLC/MS sample queuing plan to guard the validity and objectivity of their
study. Here, the important statistical principles are randomization, replication and blocking,
where blocking is key.

A block is a set of samples spanning the interesting factors over which the nuisance
factors are assumed to have a constant effect (although the nuisance effect may vary
from block to block). The nuisance factor combinations determine the block size, or
number of samples in a block. Consider a study investigating protein expression in diabetic
tissue, where age, gender and body mass index (BMI) could be nuisance factors. A block
in the diabetes design would be a sample from the diabetic tissue of interest with one
combination of all nuisance factors – one tissue sample each from a nondiabetic, prediabetic
and diabetic subject matched on age, gender and BMI. In its simplest form, a block is one
replicate of the full biological design, or a complete mini-experiment containing one sample
from each treatment combination. Blocking is quite common in biological studies, and an
experiment’s blocks are the natural blocks for HPLC/MS processing. If the study design
does not feature blocks, then study blocks solely for queuing HPLC/MS samples may be
formed. It is necessary to select one sample at random from each treatment combination
in order to fill a block (Figure 2.4).

The general stability of an HPLC/MS processing line, HPLC column or MS instru-
ment may be assessed with a controlled experiment featuring the sequential processing
of numerous replicates of the same quality control sample across one or more processing
lines. Here, the objective is to identify the longest run of injections, or block size, over
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Figure 2.4 A simple example of a HPLC/MS queue. Shown is a partial HPLC/MS queue for
an experiment where a cell line is exposed to four different concentrations of pesticide. Here,
a block contains five HPLC/MS injections, one from each sample type-control, and those
exposed to concentrations B, C and D. Note that within each block the five different samples
of peptides are in random order within each block

which the nuisance effects of a HPLC/MS processing line are relatively constant. Suppose
the HPLC/MS block size is larger than the study block size, then the study blocks effec-
tively become the HPLC/MS blocks. That said, the samples within each existing study
block should be randomly ordered, and then these blocks should be randomly queued for
HPLC/MS processing. The aim of the HPLC/MS sample queuing plan is to control the con-
founding of nuisance HPLC/MS processing factors with the biological factors of interest
(Figure 2.5). Although specific HPLC/MS nuisance factors are many in number, most can
be sufficiently controlled by grouping under the major categorical variables, namely sample
preparation set, HPLC column internal diameter and HPLC/MS data acquisition start time.
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Figure 2.5 Advantages of proper HPLC/MS queuing. A boxplot of MS peptide abundance
(y-axis) for 162 HPLC/MS injections of 27 separate total soluble digests of Trichoderma reesei.
The red trend line is the median peptide abundance across all samples. The red dots lie below
six HPLC/MS injections that were well below the median observed for the remaining samples.
All six were HPLC/MS technical replicates (injections) from a single bench-top replicate,
suggesting that there was a problem in the processing of this sample
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The mixed-effects model may also include terms that reflect a more complex design of
the biological experiment, and terms that break out other HPLC/MS processing effects,
such as differences in sample preparations and time of MS acquisition. Those terms which
are not supported by measurements, such as peptides only observed in one HPLC/MS
injection, are excluded. The effectiveness of this modeling is limited by the amount and
pattern of missing observations. In effect, only the information in the observed abundances
is retained, while the information in missing observations is discarded. However, this need
not be the case; if the abundance data are converted to observation presence/absence (or
binary 1/0) data, then the differences in the probability of a peptide observation across
treatments may be modeled using additional statistical methods.

Overall, the goal is to draw valid, objective, statistically defensible conclusions. As in
the first examination of the data, visual and tabular summaries are very effective. Here,
however, the strength of the evidence need not be anecdotal, because an appropriate
analysis produces valid estimates of standard errors and confidence intervals, although
careful interpretation is required. It is important that the interpreter knows the statistically
valid interpretation of standard errors and confidence intervals (each parameter estimate,
or contrast of parameter estimates, has its own standard error and confidence interval).

2.6 Integrating Proteomic Data with Other High-Throughput Data

In recent years, technological advances in high-throughput technologies have fueled a rev-
olution in biology, enabling the analysis of entire systems on a global scale (e.g. whole
cells, tumors or environmental communities). Thus far, the discussion has focused on the
global profiling of proteins using high-throughput MS (e.g. normalization approaches). In
the context of systems biology, however, this proteome information must be integrated
with a plethora of additional information, both from other high-throughput ‘omic’ tech-
nologies (e.g. transcriptomics and metabolomics), and supplementary information (e.g.
functional annotations, cellular location predictions, regulatory elements). This task of
data integration, with an eye on systems biology, requires multiple layers of computational
tasks, including linking to data management systems, bioinformatics tools and statistical
and visualization methods.

2.6.1 Data Management and Connectivity to Bioinformatics Tools

There are many challenges with managing data from heterogeneous data sources, ranging
from simple access to the data to performing complex queries and workflows on the data
to answer targeted questions of interest. In practice, the need to integrate and perform
complex analyses on heterogeneous data sources results in ad hoc connections between
databases and software tools by writing small scripts, cutting and pasting queries, and
basic manual labor. As a result, the recent years have seen a surge in the development of
new software tools which focus on automating and simplifying these tasks. These bioin-
formatics resource tools tend to fall into four categories: semantic mapping; interoperation
of heterogeneous bioinformatics databases; automated workflow analyses; and programs
that integrate the data with bioinformatics software. Semantic mapping approaches, such
as ToolBus [74] and Taverna [75], focus on defining translation engines which ensure
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that entities across environments are appropriately related. Alternatively, other approaches
focus on the capability to access heterogeneous databases and merge directly on the data
sources, such as BRIDGE [76]. These investigations have led to subsequent tools, such as
BioWarehouse [77] and GenFlow [78], that offer a combination of semantic mapping and
database access capabilities. Alternatively, one can focus on the goal of integration and
define specialized workflows [79,80]. In some cases, these methods are linked to statistical
and visualization tools [81, 82].

Some current approaches, such as BRM [83], Gaggle [84] and FACT [85], focus on
facilitating all of these capabilities (object mapping, database access and generic work-
flows) into a single environment. As both of these systems biology environments are built
in JAVA, they can be easily installed and run by biologists and bioinformatics experts
on publicly available web sites: BRM (http://www.sysbio.org/dataresources/brm.stm) and
Gaggle (http://gaggle.systemsbiology.net). These two integration and analysis tools have
commonalities, and the underlying programming languages allow them to work together.
The BRM working environment (Figure 2.6) is given as an example of the multilayer
analyses allowed by these multicapability software programs. At the top left is the project
browser, which allows the user to manage multiple heterogeneous datasets in a single space
that provides information on each source, such as the number of rows and columns. The

Figure 2.6 A collage of the Bioinformatics Resource Manager (BRM) working environment,
including the project browser (top left), dataset browser (bottom) and data retrieval panel
(top right) capabilities
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dataset browser at the bottom allows the user to evaluate multiple data types in one view,
and codes each data source by color. To retrieve additional information associated with
one or more data source, the data retrieval panel (top right) allows direct access to bioin-
formatics resources, such as protein interactions [86, 87], pathways [88] and annotation
data [89–91]. In addition, from this retrieval data panel, visualization software [92, 93]
associated with different types of data can be launched directly, without any additional
installations from the user.

2.6.2 Statistical Integration

There are many levels of integration that can be performed when evaluating multiple
omics data sources, as well as ancillary information (e.g. gene ontologies). The task is
often complicated due to the heterogeneity of the data; for example, quantitative variables
on multiple scale and categorical information. Although many reviews have also been
completed on the integration of omics’ data focused towards systems biology [94–96], these
tend to spotlight a generalized need and not the specifics of the statistical methods that may
be employed. A comprehensive discussion of the guiding principles of integration, such
as balancing sensitivity and false discovery rates, global versus query specific analyses,
supervised versus unsupervised methods and sequential versus concurrent methods, is
provided elsewhere [97].

In general, statistical methods tend to fall into two categories: unsupervised (exploratory)
analyses; or supervised learning. Unsupervised methods, such as principal component
analysis (PCA) [98], optimize some features of the data, such as variance, which may
reveal clustering tendencies of the data in a lower dimensionality. These methods are for
exploration purposes and try to identify underlying structure in the data. Alternatively,
supervised learning assumes that the response is known, or has been measured, and the
goal is to find a correlative model between the set of features and the response, such as
with regression [99]. These methods are predictive in the sense that, if one attains the set
of features for a new observation, then the response can be predicted from the model.

In respect to statistical data integration, which is irrelevant to the actual statistical model
employed, there are generally three basic approaches to merge the data for statistical
analysis; these are highly dependent on the type of data being considered. The first approach
is that of feature integration, where the individual datasets are merged into a global dataset
and then evaluated using either supervised or unsupervised learning. The second approach is
to evaluate each dataset individually with methods, such as clustering, and then statistically
to merge the results. The final method is to transform each dataset into an alternate
representation, such as a network or kernel, and to merge the data in this new dimensional
space: these methods are normally used in conjunction with supervised learning. Here,
these three strategies are described briefly, as well as the benefits and caveats of each
approach.

2.6.3 Feature Integration

One of the most common approaches in data integration is simply feature integration.
If dataset A consists of m features, DA = [ f1, f2, . . . , fm] and dataset B consists of n
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features, DB = [g1, g2, . . . , gn], then the integrated dataset is simply:

DAB = [ f1, f2, . . . , fm, g1, g2, . . . , gn]. (2.1)

This can be achieved by merging the two datasets such that each observation in one
dataset matches that in another. For example, each protein corresponds to a gene, or by
attempting to separate specific events, such as the toxicity of a compound so that the
biological samples are the observations and the biomolecular molecules are the features.
The task of merging data for the goal of integrating microarray and proteomic data has been
reviewed [100], and can be accomplished using tools such as those described previously.
Additionally, Cox et al. [101] review clustering and correlation-based approaches for
merged datasets. This approach is only feasible when the variables are of a common type
(e.g. qualitative), as normalization is typically a necessity to place each variable on the same
scale. However, given the appropriate scaled dataset, most multivariate statistical methods
(such as clustering or regression) could be employed to analyze trends or relationships
in the data. In the field of proteomics, this approach is most commonly used to merge
ancillary information with peptide identification results to improve the quality of the
results – that is, to improve sensitivity [102,103]. These approaches describe a peptide as a
set of disparate features associated with identification metrics, such as the cross-correlation
score from SEQUEST [60] and fraction of matched peaks, and use the supervised learning
algorithm support vector machine (SVM) [104, 105] to determine correct from incorrect
identifications.

The primary caveats of feature integration are the need for a one-to-one correspondence
between objects in each dataset, and that variable types (such as categorical information)
are difficult to merge. In addition, the contribution of each feature is often not evident but
is of interest. Thus, feature selection methods typically follow the initial analyses. Overall,
with feature integration, care must be taken to assure that the data are appropriate to merge
and properly normalized.

2.6.4 Individual Analyses Followed by Integration

An alternative approach to integration is to evaluate each dataset individually and then to
merge the results of each analysis. An unsupervised approach to this task is to cluster each
dataset into some number of clusters and then to merge the clusterings; this is commonly
referred to as metaclustering [106, 107]. These methods have been shown to be of use in
biology [108–110]. If each observation is treated as a probability of being associated with a
specific cluster, then a simple Bayesian approach can be taken to merge these results. Two
primary benefits of this approach are the capability to integrate multiple data formats (e.g.
qualitative and quantitative), and that the low dimensionality of the results is conducive
to visualization [111]. Figure 2.7 provides an example of three types of experimental data
(Powerblot, FTICR proteomics and microarray) over a time-course. For each dataset at
each time point the datasets are clustered into three classes (upregulated, downregulated,
neither). The top and bottom axes demonstrate which colored lines belong to each data
type, and their respective results at each time point. As seen in the figure, common trends
among the three datasets can be easily observed. In addition, the bottom metaclustering is
a merged result over the entire time-course to highlight statistical trends among the data.
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Figure 2.7 The Juxter visualization tool demonstrates the capability to integrate individual
datasets (in this case, Powerblot, FTICR and Microarray data), each at an individual time point.
The top and bottom tiers represent the data type that each layer in the visualization shows
when genes or proteins fall into the categories of up-, down- or nonregulated at each time
point. The last layer in the visualization gives the statistically merged results over the entire
time-course

As an alternative to classifying or clustering the data (as seen in Figure 2.7), in proteomics
and biology the end goal is often to find a set of biomolecules that are relevant to the question
of interest – for example, which proteins are associated with a virulent versus nonvirulent
pathogen. In this case, the most common approach is to use statistical tests of significance
and to assign p-values, or normalized false discovery rates, to each biomolecule. Thus,
all of the datasets can be reduced down to a set of p-values, which can then be merged
into a level of significance associated with related entities. In recent years these methods
have become much more robust by accounting for biological nuances and using multiple
statistics to evaluate the significance of individual biolomolecular species (e.g. genes,
proteins, metabolites). In Ref. [112] each dataset is first evaluated using PCA to visualize
relationships in each data source and reduce the dimensionality of the integration task. A
coinertia analysis is then used to evaluate correlations across the datasets, which better
accounts for any biological issues that arise in direct correlation analyses from post-
transcriptional and post-translational regulations. POINTILLIST [113] uses a weighted
version of several statistical metrics of significance to derive a network model where the
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integrated p-value measure indicates the degree of confidence in a node or edge, being a
true component of the system of interest where a node represents a biomolecular species.

The benefit of these methods – both integration of clusters and statistical levels of
significance – is that they can better handle datasets of vastly different sizes and types.
Additionally, a normalization need only be performed within each dataset. Even further,
as seen in Figure 2.7, there is no need for one-to-one mapping between datasets under the
condition that clusterings are the end goal. Although some of the statistical significance
integration approaches can account for missing data (a common problem in proteomics),
the caveat is that, in many cases, there may not be a one-to-one mapping between the
datasets, and the interpretation may be both difficult and time-consuming.

2.6.5 Integration in Feature Space via Data Transformation

In supervised learning it is often the case that the data are transformed into an alterative
representation, such as a relationship or a kernel matrix. In biology, data are often repre-
sented as the relationship between biomolecular entities, for example correlations between
genes that might relate to a common regulation, or links between proteins that represent
possible interactions. These relationship matrices can be merged into a more accurate view
of the system by using methods such as Bayesian networks, where the relationship matrices
are the input [114–116]. This approach is slightly different from that described above as
the relationship matrix itself is not typically the final result for an individual dataset, but an
intermediate representation used for the task of learning. Seeing as the data are merged at
an intermediate form, a major benefit of this approach is that the data do not have to have
a one-to-one mapping. The largest caveat is that these methods are often computationally
intensive in learning the parameters of the model.

A more abstract approach to the integration of transformed data is that of kernel fusion.
A kernel function is a transformed projection of the data that, in principle, enhances linear
separability. Kernel functions are especially powerful for datasets that are not linearly
separable by mapping the data into a space that can be linearly separated by a SVM.
Individual kernel functions for each dataset can be merged into an integrated kernel
[117],

KInt = m1 K1 + m2 K2 + · · · + mn Kn, (2.2)

where Ki is the kernel associated with the i-th dataset. KInt can be used to build a
supervised model in the same manner as for a single data source. Although this is a very
powerful statistical approach, it possesses the same limitations as the feature integration
method, namely a one-to-one mapping between biomolecular entities. However, with this
approach it is much easier to integrate information from other computational tools, such
as similarity between entities by protein domains or sequence similarity.

2.7 Summary

In 1958, Francis Crick laid out the ‘Central Dogma’ of biology:

. . .once ‘information’ has passed into protein it cannot get out again. In more detail, the
transfer of information from nucleic acid to nucleic acid, or from nucleic acid to protein may
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be possible, but transfer from protein to protein, or from protein to nucleic acid is impossible.
Information means here the precise determination of sequence, either of bases in the nucleic
acid or of amino acid residues in the protein. [118]

In other words, proteins are an end-point for the information encoded within the genome,
and thus they should – and do – merit a strong research focus. The structure of proteins,
however, makes their study at a global scale more challenging than that of nucleic acids,
for which high-throughput sequencing and hybridization approaches already exist. The
study of all proteins encoded by the genome, or the ‘proteome’ (this term was coined by
the Australian biochemist, Marc Wilkins, in 1994), relies on protein or peptide separation
followed by MS. In the past, this has proven to be the most efficient method for identifying
protein sequences en masse; however, given the complex mixtures and the nature of the
approach, there are several caveats associated with modern proteomics.

This chapter has explored the many limitations associated with current proteomics meth-
ods. Gene models are crucial to proteomics, because they serve as the basis for database
searching algorithms used to match mass spectra generated by global proteomics. Indeed,
incorrect models lead to both false-positive and false-negative peptide sequence informa-
tion. The processing of samples for proteomic analysis is also important as, while the
development of a method for protein isolation can be generalized, sample handling can
vary with the breadth of organisms being studied. Also crucial to processing is the devel-
opment of a statistically rigorous experimental design, this being integral to downstream
analysis and to the identification of samples that have failed due to processing or instrument
errors. The correct design of an experiment also translates to an ability to apply statisti-
cal modeling approaches, which moves proteomics from a qualitative to a quantitative
method. Finally, the tools and methods for the integration of proteomic and other high-
throughput global analyses, such as microarrays and metabolomics, are needed because the
proteome is only one tool of several required to build hypotheses and models of biological
systems.

Today, whilst the field of proteomics continues to advance rapidly, further advances in
gene modeling, MS, rigorous statistical approaches and bioinformatics tools for proteomics
are needed to secure the robustness of those methods currently in use for genome sequencing
and transcriptome analysis. Although, undoubtedly, improvements and refinements will be
made as we move forwards, there is still much to be gained from the currently available
proteome analysis approaches.
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3
High-Throughput DNA Sequencing

Tarjei S. Mikkelsen
Broad Institute of MIT and Harvard, Cambridge, USA

Today, the determination of the complete DNA sequence of an organism has become
a fundamental part of biological inquiry. Initially motivated by the Human Genome
Project, tremendous effort has been expended into the development of cost-efficient, high-
throughput DNA sequencing instruments capable of decoding any genome of interest. In
this chapter, we review the current state of traditional dideoxy sequencing workflows, and
the development of next-generation technologies that are poised to revolutionize genomics.

3.1 Traditional Dideoxy (Sanger) Sequencing

Efficient methods for determining the nucleotide sequence of a DNA polymer were first
demonstrated in 1977, when Allan Maxam, Walter Gilbert and Fred Sanger independently
published descriptions of sequencing methods that relied on gel electrophoresis to re-
solve DNA fragments encoding sequence information at base pair resolution [1, 2]. While
Maxam–Gilbert sequencing initially became the most widely used methodology, Sanger’s
dideoxy sequencing method eventually proved to be more practical, and has been used in
the vast majority of sequencing projects over the past three decades.

The classic implementation of dideoxy sequencing requires four separate reactions
each containing multiple copies of a single-stranded DNA template, short DNA primers
complementary to one site in the template, DNA polymerase, four radiolabeled deoxy
nucleotides (dATP, dCTP, dGTP and dTTP), and a relatively low concentration of one
of four dideoxy nucleotides (ddATP, ddCTP, ddGTP or ddTTP). The primer initiates the
polymerase synthesis of DNA strands complementary to the template. Dideoxy nucleotides
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lack the 3′-hydroxyl group required to form phosphodiester bonds between adjacent nu-
cleotides during extension, and therefore serve as chain terminators. In each of the four
sequencing reactions, the end products will be an ensemble of radiolabeled DNA strands
with lengths that correspond to the locations of one of the four nucleotides in the original
DNA template. After heat denaturation, the different products can be separated by length
and visualized by gel electrophoresis, allowing inference of the template sequence over
several hundred base pairs following the primer site.

3.2 Automated Dideoxy Sequencing

Initially, a highly informative – but labor intensive – process that yielded at most a few
hundred bases of sequence information per experiment, dideoxy sequencing has been suc-
cessfully scaled to a level where reading every one of the three billion bases in the human
genome several times over in a matter of months has become feasible, at least at special-
ized sequencing centers. Getting to this point involved the extensive modifications of the
original chemistry to make it more amenable to automation. In particular, an avoidance of
radiolabeling by introducing fluorescently labeled dideoxy terminators [3] and compatible
DNA polymerases [4] proved to be a key innovation. Major investments were also made
in robotics and parallelized sample preparation.

Because, in practice, the dideoxy sequencing process is limited to reading less than 1000
base pairs from any one template, indirect strategies are required to infer the contiguous
sequence of larger, naturally occurring DNA polymers, such as each chromosome in
a genome. At present, the dominant strategy for sequencing a new genome is whole-
genome shotgun (WGS) sequencing [5,6], where mechanical shearing is used to fragment
a genome and each fragment is then ligated into a common plasmid vector. DNA templates
correctly inserted into the vectors are selected and amplified by bacterial cloning, isolated,
subjected to the dideoxy reaction using universal primers annealing to the plasmid, and
then sequenced using automated gel electrophoresis. Obtaining ∼650 bp of information
from 20–40 million such fragments is sufficient to infer, computationally, the contiguous
sequence of a human-sized genome. Variations of this workflow have also recently been
developed for the high-throughput generation and sequencing of targeted PCR (polymerase
chain reaction) products (e.g. to sequence only the coding exons in a particular genome).
Today, all of the key steps in this workflow can be automated [7, 8].

3.2.1 Colony Picking

DNA templates to be sequenced are typically generated in a complex library, for example
by mechanical shearing of genomic DNA. The isolation and amplification of individual
DNA templates can be achieved by dispersing individual bacteria transformed or infected
with template-containing vectors on agar plates with growth medium and allowing clonal
colonies to form. An automated system consisting of a CCD camera, a robotic arm and a
plate-handling device is then used to pick colonies, using disposable or sterilized pins, and
to deposit such colonies into 96- or 384-well sample collection plates containing liquid
media. Sophisticated image analysis algorithms are used to automatically identify the
correctly sized and useful colonies, such that typical systems can operate unattended and
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isolate thousands of colonies each hour. Following isolation, each individual DNA template
is next amplified by clonal expansion of the picked colonies, typically in overnight cultures.

3.2.2 Template Preparation and Sequencing Reactions

The preparation of pure DNA templates for the sequencing reactions can be performed
by robotic workstations that combine automated injection systems to deliver lysis buffers
and other reagents, filter systems or magnetic separators to capture purified DNA, plate
washers and sealers, and pick-and-place robots in various configurations to minimize
manual intervention.

A recent alternative amplification and template preparation approach is the TempliPhi
system (GE Healthcare), which uses ϕ29 DNA polymerase to isothermally amplify circular
DNA templates, such as plasmids, by using rolling circle amplification. This system can be
applied directly to isolated bacterial colonies, or to saturated cultures, in principle without
the need for separate DNA isolation or purification.

Amplified DNA templates can next be prepared for sequencing by robotic plate and
liquid-handling systems that automatically aliquot templates into 96- or 384-well sequenc-
ing plates, add primers, polymerase, nucleotides and other required reagents for a total
reaction volume of a few microliters, and finally heat-seal the plates.

The actual sequencing reactions are carried out in the prepared plates on automated
thermocyclers. Multiple rounds of primer annealing, extension and denaturation linearly
increase the number of terminated strands, to maximize downstream sensitivity. Specialized
thermostable polymerases have been engineered to efficiently incorporate dye-labeled
dideoxy nucleotides through these cycles. The products of the reaction cycles are finally
transferred to the actual sequencing instrument.

3.2.3 Sequencing

During the two decades following the invention and commercial development of automated
fluorescence DNA sequencers in the mid-1980s, there was a steady evolution of increasingly
sophisticated and robust dideoxy-based sequencing instruments. In the first decade, the most
commonly used automated instruments were based on slab gel electrophoresis, where each
instrument was loaded with a large gel plate, with multiple samples being separated in
parallel on the gel in either one or four lanes, depending on the fluorescence system used.
At their peak, slab gel systems yielded throughput from tens of thousands to a few hundred
thousand bases of sequence information per day. However, the manual loading of new
gel slabs proved to be a common bottleneck, and eventually the slab gel approach was
largely replaced by instruments that process individual samples in capillaries filled with
gel polymers. This method not only reduced reagent consumption dramatically but was
also amenable to automated gel replenishment and unattended operation over extended
time periods.

In all recent implementations of the dideoxy process, each sequencing sample is prepared
in a single primer extension reaction with four species of dideoxy nucleotides labeled
with one of four different fluorescent dyes that have identical excitation wavelengths, yet
unique emission spectra (Figure 3.1). As the sequencing reaction fragments pass through
the capillaries in the order determined by their sizes, a single-wavelength laser excites the
dyes, and the resulting emission spectra are analyzed to infer the corresponding nucleotides.
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Figure 3.1 Overview of the dideoxy (Sanger) sequencing process. DNA polymerase is used
to synthesize complementary copies of the template from a common primer sequence. Ran-
dom incorporation of dye-labeled dideoxy terminators generates a pool of differently sized
extension products. Gel separation of the extension products allows inference of the template
sequence

Currently, the de facto standard dideoxy sequencing instrument in most large academic
and commercial sequencing centers is the Applied Biosystems 3730xl capillary elec-
trophoresis sequencer. This system features parallel, four-color gel electrophoresis and
laser interrogation in 96 capillaries, and can produce up to 2.1 million bases of sequence
information per day, depending on its configuration. Automation features include tempera-
ture control, reagent handling and gel replenishment for up to 48 h of unattended operation,
integrated robotics and a barcode reader for handling of up to 16 different 384-well sample
plates, and integrated base calling.

3.2.4 LIMS and Supply Chain Management

While being far less visible than the robotic platforms and sequencing instruments in a typ-
ical automated genome center or core facility, laboratory information management systems
(LIMS) and supply chain management systems are essential for the effective management
of these complex sequencing processes and the resulting data that are generated.
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For example, at the Broad Institute of MIT and Harvard – which is one of the world’s
largest sequencing centers – approximately 2.2 million individual dideoxy sequencing
reactions were carried out per week in 2007, generating data for more than 30 distinct
scientific projects. Preparing these reactions and performing the related work required the
availability over 900 different types of reagent and other materials, including the weekly
preparation of more than 500 l of different solutions and 2000 agar plates, and the labeling
of approximately 1.0 × 104 384-well plates. If run-out of any one critical reagent were
to occur, the production loss would be on the order of $100 000–$200 000 per day. Given
that the center operates at full capacity, it would not be possible to recover this lost output;
accordingly, the center relies heavily on customized inventory tracking systems and the
long-range forecasting and material planning capabilities provided by such systems to
maintain consistent costs and throughput.

3.3 Next-Generation Sequencing Technologies

Dideoxy-based sequencing has displayed remarkable staying power and capacity for opti-
mization. Similar to the production of semiconductors, the cost of sequencing has decreased
exponentially over the past two decades [9]. However, with the stated post-Human Genome
Project goal of sequencing any human genome for $1000 [10], the consensus in the DNA
sequencing field is that, in order to achieve the additional orders of magnitude improve-
ments in throughput and cost required to reach this milestone, an entirely new generation
of automated sequencing technologies must be developed. Driven by this goal and the
ever-increasing demand for sequencing capacity, commercially available sequencing
technologies have recently undergone a not-so-quiet revolution. Few of these technolo-
gies were technically ‘novel’ at the time they were picked up for commercialization, in the
sense that they had been developed and explored in varying detail in academic settings,
in some cases for several decades. However, significant engineering challenges must be
overcome and workflow optimization must be carried out to achieve the full potential of
any given technology. These improvements are typically driven by commercial demand.
While the state of next-generation sequencing technology is expected to be in flux for a
number of years, some trends are emerging today.

3.3.1 Cyclic Array Sequencing

All commercially available non-Sanger sequencing instruments at the time of writing
are based on a single unifying principle termed cyclic array sequencing (Figure 3.2)
[11]. In this approach, high throughput and decreased costs are achieved by using a single
reagent volume to simultaneously infer the sequence of millions (potentially billions)
of DNA features immobilized on a two-dimensional array. Depending on the specific
implementation, each DNA feature may be a single molecule, or an ensemble of identical
molecules in close spatial proximity generated by an in vitro amplification step. The DNA
features may be deposited on the array either in an ordered grid, or be randomly dispersed.
Sequencing takes place in progressive cycles where, in each cycle, an enzymatic process
is used to interrogate one nucleotide position in each of the DNA features in parallel. The
outcome of each interrogation cycle is reported by the production of light or incorporation
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Figure 3.2 Overview of cyclic array sequencing. Template DNA to be sequenced is first
immobilized to a two-dimensional (random or ordered) array. In sequencing by synthesis
(top row), DNA polymerase extends a common primer sequence by cyclically incorporating
labeled nucleotides. In sequencing by ligation (bottom row), DNA ligase is used to incorporate
oligonucleotides with a dye-label that corresponds to the nucleotide at the specific position to
be interrogated. The template sequences are inferred from images taken after each extension
or ligation step

of a fluorescent group, and captured by CCD-based imaging of the array. After multiple
sequencing cycles, the location and composition of each DNA feature can be inferred from
analysis of the full series of imaging data.

The specific details of DNA feature generation, deposition and interrogation differ
significantly between current instrument designs.

3.3.2 Pyrosequencing of Emulsion PCR Features

Developed by 454 Life Sciences and later Roche, this was the first next-generation se-
quencing approach to become commercially available [12].

The DNA features are generated by emulsion PCR and immobilized on the surface of
micrometer-scale beads. Emulsion PCR [13] works on the same principle as traditional
PCR, but is performed in a water-in-oil emulsion that serves to generate millions of isolated
reaction chambers. A library of DNA templates are fitted with common flanking adapters
and titrated in the emulsion such that each reaction chamber can be expected to contain a
single DNA template. Two universal primers, one of which is attached on paramagnetic
beads, initiate the PCR reactions. The end result after thermal cycling is that each reaction
chamber contains one bead to which a large number of identical DNA templates are
attached.
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In order to facilitate sequencing, the bead-attached amplification products are deposited
across millions of picoliter-scale wells etched into the surface of a fiber optic bundle. The
concentration of beads is titrated to maximize throughput while minimizing the number of
wells with multiple beads. Sequence interrogation is completed using the pyrosequencing
method [14]. In each cycle, a single nucleotide is introduced into the common reaction vol-
ume and polymerase-mediated incorporation events are detected by monitoring luciferase-
based light generation upon pyrophosphate release. Parallel incorporation across identical
templates on a single bead amplifies the signal for robust detection. Any unincorporated
nucleotides are then removed and the process is repeated.

Instruments using this pyrosequencing approach have been shown routinely to generate
several million sequence reads of 100–200 bp each, and have been used in multiple different
scientific applications. One known limitation of this approach is a relatively low accuracy
on sequence intervals where the same base is repeated several times (homopolymers). This
stems from the fact that every base in this interval will be filled in by the polymerase in the
same cycle. While the amount of light generated from each well is quantitatively correlated
with the number of incorporation events, it has proven difficult to achieve accuracies
comparable to dideoxy-sequencing in such intervals. The cost per read is roughly an order
of magnitude lower than for capillary-based sequencing, although the shorter read length
means that the cost per high-quality base is less dramatic.

3.3.3 Sequencing of Emulsion PCR Features by Ligation

This approach has been used in the design of both commercial (the Agentcourt/Applied
Biosystem SOLiD system) and ‘open-source’ sequencing instruments (Harvard University/
Danaher). Like the 454/Roche system, DNA features are initially prepared by bead-based
emulsion PCR, after which the amplified beads are randomly distributed on a glass slide
and immobilized by a thin layer of polyacrylamide gel, or by direct covalent attachment to
the surface.

In contrast to other cyclic array approaches, sequencing is achieved by sequence-specific
ligation rather than polymerase-based extension [15]. In each cycle, an anchor primer is
first hybridized to a universal adapter sequence on each DNA template. Next, the slide is
exposed to a population of fluorescently labeled degenerate nonamers (single-stranded 9 bp
DNA sequences). The nonamer population is designed such that the attached fluorophore
identifies the base at one particular position within it. The ligase discriminates for sequence
complementarily up to some distance from the ligation site, ensuring that nonamers with
one of the fluorophores are preferentially ligated to each DNA feature. After ligation, the
array is imaged in four colors; the ligation products of the anchor primers and 9-mers are
then stripped from the beads and the process is repeated.

This sequencing-by-ligation approach has been shown to yield accurate sequence data
for at least 6–7 bp next to a ligation site. By reading each adapter-flanked DNA template
from both ends, this yields at least 12–14 bp of sequence information. Via sequencing
paired end-tags from circularized DNA templates, at least 24–28 bp of information can be
obtained from each DNA fragment in a library of interest. Sophisticated ligation chemistry
improvements on the ABI/SOLiD system promise to improve the contiguous read length
to at least 35 bp. Due to the small features sizes (1 µm) the system has the potential to
interrogate more than one billion features on a single slide, which would represent at
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least one order of magnitude improvement in throughput beyond that already realized by
next-generation instruments.

3.3.4 Sequencing of Bridge PCR Features by Synthesis

Commercialized by Solexa and later Illumina, this was the second next-generation se-
quencing approach to become available on a commercial basis.

The DNA features are generated by bridge PCR directly on a glass slide that has been
separated into multiple lanes for parallel sample handling. Bridge PCR [16] works by
immobilizing two universal primers to the glass surface. The primers are complementary
to adaptors ligated onto each DNA fragment to be sequenced, and serve to capture the
fragments on the surface. Upon thermal cycling with all non-DNA reagents moving freely
in the aqueous phase, DNA features corresponding to a cluster of ∼1000 identical DNA
templates are ‘grown’ on the surface. After amplification, one of the two primers is released
from the slide, resulting in only one of the two amplicon strands remaining in each cluster.

Sequencing is achieved by the cyclic polymerase-based incorporation of fluorescently
labeled nucleotides, starting from a universal sequencing primer. Reversible terminators
ensure that only one nucleotide is incorporated in each cycle. After the removal of any
unincorporated nucleotides, the array is imaged in four colors, allowing identification of
the identity of one base in each cluster. The reversible terminator group is subsequently
cleaved from the clusters, and the process is repeated by extending the previous synthesis
products, allowing interrogation of the next base in each of the DNA features.

The Illumina system has been demonstrated routinely to generate 27 to 50 bp sequence
reads from at least 40 million features in a single instrument run. The sequence accuracy
tends to decrease rapidly beyond this length due to a loss of template after each cycle,
and dephasing with clusters. However, read lengths on the order of 100 bp are thought to
be realistic with improved chemistry and optimized image-analysis algorithms. Improved
optics and brighter fluorophores are also expected to improve throughput by increasing the
feature density and reducing the run times.

3.3.5 Sequencing of Single-Molecule Features by Synthesis

The ultimate realization of high-density cyclic array sequencing will be the interrogation of
single-molecule DNA features. Variations of this approach are currently at various stages
of commercial development by companies such as Helicos and Pacific Biosciences.

In the approach developed by Helicos [17], individual adapter-flanked DNA templates
are first immobilized on a quartz slide. To sequence each template, fluorescently labeled
universal primers are first hybridized to the templates and imaged to identify the location
of each DNA feature. In the subsequent cyclic steps, fluorescently labeled nucleotides are
incorporated by a polymerase, imaged, and then inactivated by photobleaching. Observa-
tions of single-molecule fluorescence are made with a conventional microscope equipped
with total internal reflection illumination, which reduces background fluorescence. In ad-
dition, single-pair fluorescence resonance energy transfer (spFRET) is used to minimize
noise. The first incorporated nucleotide is labeled with a donor fluorophore (Cy3), and
subsequent nucleotides by an acceptor (Cy5). Excitation of the donor leads to fluorescence
from acceptors within a limited spatial range that avoids any unincorporated nucleotides
on the slide. Photobleaching of the incorporated acceptors does not affect the donor
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fluorophore, rendering it active for the next cycle. At the time of writing, proof-of-concept
demonstrations of this approach had reached read lengths of 5–6 bp.

In the approach developed by Pacific Biosciences [18], conventional microscopy-based
observation is eschewed in favor of zero-mode waveguides consisting of subwavelength
holes in a metal film placed on a fused silica slide. The enzymes are absorbed on the
bottom of the waveguides in the presence of a high concentration of fluorescently labeled
nucleotides. The unique optical properties of the waveguides allow polymerase-based
sequencing by synthesis to be carried out and observed with a low background in zeptoliter
volumes. If successful, this method – or variations of it – have the potential for massive
parallelization.

In addition to cyclic array sequencing, a number of other sequencing technologies are
currently being explored and have reached varying stages of maturity and throughput.

3.3.6 Dideoxy Sequencing-Based Microfluidics

While many truly alternative approaches to sequencing are being explored, significant ef-
forts have also been put into adapting microfabrication technology developed by the semi-
conductor industry to miniaturize the traditional dideoxy sequencing process. The goal of
this approach is to increase throughput and achieve significant cost savings over traditional
sequencing instruments by increasing analysis speed, minimizing reagent consumption,
simplifying sample preparation, and reducing the physical footprint of the instruments.

Traditional capillary sequencers typically perform reactions in microliter volumes. Using
polymer-filled channels cut into silicon wafers, gel electrophoresis has been performed at
the nanoliter scale, which translates to a significant reduction in sample requirements [19].
More integrative approaches involve the combination of all three dideoxy-sequencing steps:
thermal cycling, sample-purification and capillary electrophoresis in one microfabricated
bioprocessor capable of sequencing 556 contiguous bases at >99% accuracy from only one
femtomole of DNA template [20]. Subsequent improvements in polymer chemistry have
facilitated the sequencing of >600 nucleotides on an integrated chip in a few minutes [21],
which is significantly faster than the 1–2 h typical of commercially available instruments. It
is projected that a further optimization of this approach may achieve a 400-fold decrease in
reagent consumption and an 800-fold decrease in DNA template requirements over current
dideoxy sequencing processes.

While the commercialization of novel microscale sequencing has lagged behind cyclic
array sequencing technologies, significant progress has been made and a large potential
market remains open. A major advantage of the dideoxy sequencing-based microfluidics
approach over current cyclic array sequencers is the retention of well-understood and proven
chemistry, and the demonstrated capability to achieve read lengths and raw sequence quality
comparable that achieved with traditional sequencing instruments. Extended read lengths
simplify the downstream analysis of virtually all sequencing-based assays, and may be es-
sential for some applications. Simplified ‘lab-on-a-chip’ sequencing instruments may also
allow individual laboratories to acquire high-throughput DNA sequencing capabilities that
are at present largely limited to specialized centers and core facilities, thereby improving
turnaround times and accelerating the scientific process. Such systems may also be suitable
for diagnostic sequencing at the point-of-care for clinical applications, and in the field for
biodefense and environmental monitoring applications.
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3.3.7 Sequencing by Hybridization

This approach relies on the specific pairing between complementary DNA strands [22].
The identity of an unknown DNA sequence is inferred from its pattern of hybridization
against a collection of probes with known sequence. Because molecular specificity can
be achieved for DNA polymers as short as 11 bp [23], the known probe set can easily
be synthesized on a solid support by using established oligonucleotide array technology.
Chemically labeled DNA fragments of unknown sequence can then be hybridized to
such arrays, and their binding patterns read using automated, quantitative laser scanning
microscopy.

While de novo sequencing by hybridization to custom-designed ‘universal’ arrays has
been demonstrated on a limited scale [24], the most promising implementation of the
approach has been the ‘resequencing’ of genomic DNA to discover genetic variation
between individuals of the same species [25]. In this implementation, hybridization probes
are designed based on a known reference genome. For each position that is to be queried,
four probes that differ only at their central position (one for each possible nucleotide) are
deposited on the sequencing array. The base(s) at that position in an unknown sample can
be inferred from differential hybridization to the four probes.

The current limitations of hybridization-based methods include the poor resolution of
insertion and deletion mutations, difficulties arising from heterozygosity and repetitive
sequences in diploid animal and plant genomes, and the inability to improve accuracy
through redundant sequence coverage. Nonetheless, the rapidly decreasing costs and in-
creasing density achieved for array syntheses may preserve sequencing by hybridization
as a viable alternative for some high-throughput DNA resequencing applications.

3.3.8 Sequencing by Mass Spectrometry

Another alternative technology explored for DNA sequencing is that of matrix-assisted laser
desorption/ionization time-of-flight mass spectrometry (MALDI-ToF MS) [26]. The use
of MS has been extended to a variety of DNA-based assays, including de novo sequencing,
genotyping and the quantification of allele ratios, the detection of insertion and deletion
mutations associated with microsatellite repeat instability and short tandem repeats, and
the quantification of DNA methylation.

In the context of DNA sequencing, MALDI-TOF MS would serve as an alternative frag-
ment separation method, analogous to the gel electrophoresis step in traditional dideoxy
sequencing. Single-stranded polymers are fragmented to 3–29 bp, deposited on a crystal
matrix, ionized by a laser, and then passed to a detector. Separation is achieved based on
the mass-dependent time of flight, and the original sequence is inferred from the fragment
ensemble detected. The potential advantages of MALDI-TOF MS over electrophoresis are
an increased resolution, high speed, and an absence of the ‘compression zone’ artifacts that
are common in the gel electrophoresis analysis of repetitive sequences. Current disadvan-
tages include short read lengths (<100 bp) without any significant increase in throughput,
and the relatively low stability of DNA under MALDI conditions (which is usually ad-
dressed by in vitro reverse transcription of the template into RNA prior to analysis). Unless
novel approaches are developed to address read length and throughput, sequencing by mass
spectrometry is likely to remain a small-niche application.
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3.3.9 Sequencing by Exonuclease Digestion

In this approach, the DNA molecules to be sequenced would be transcribed with a poly-
merase that allows the incorporation of fluorescently-labeled nucleotides (one color for
each base) [27]. The resultant DNA products would then be trapped in a capillary with
continuous buffer flow and digested with an exonuclease. As the released nucleotides flow
downstream from the trapped polymer, their identity and sequence would be identified in
real time by single-molecule fluorescence. The main engineering challenges to be over-
come before this method becomes practical is the achievement of complete incorporation
of the fluorescent bases and the removal of fluorescent impurities; alternatively, it might
be possible to implement the direct detection of unmodified nucleotides.

3.3.10 Sequencing by Nanopore Threading

Nanopore-based sequencing is an elegant concept whereby a single DNA strand is threaded
through a protein-based or synthetic membrane pore by electrophoresis [27]. The expected
base-specific fluctuations in conductance or other membrane properties are registered and
used to infer sequence information.

In theory, nanopore sequencing offers tremendous advantages over the above-described
technologies, as it would be essentially reagent-free, very rapid, and also provide extremely
long, contiguous reads from single molecules. However, beyond simple demonstration
experiments this approach has yet to be used successfully for DNA sequencing. Two
fundamental engineering challenges remain: (i) the robust discrimination of different bases
as they pass through the pore; and (ii) a reduction of the threading rate to a level where this
discrimination can be performed for individual bases in a complex DNA sequence.

One proposed solution to improve base discrimination and resolution in nanopore se-
quencing is to introduce an intermediate step where the original DNA template is replaced
by a ‘design polymer’ (LingVitae). This would be achieved by converting each base to a
longer string of bases, and perhaps further derivatizing the polymer with bulky side groups.
However, the introduction of extra enzymatic steps would inevitably reduce both yield and
throughput; in addition, the ability to sequence single molecules directly from a biological
sample would be required in order to realize the full potential of this nanopore sequencing
technology.

3.3.11 Sequencing by Scanning Probes

Scanning probe microscopy can also be used to provide atomic resolution data. It has been
proposed that the primary sequence could be read directly from a DNA polymer using
this technology, although practical success has been elusive [28]. Since current scanning
probe technology is not capable of resolving the internal structure of biomolecules, the
majority of informative base pairs cannot be read from a double-stranded DNA helix,
and single-stranded DNA is notoriously difficult to maintain in conformations that do not
obscure the secondary structure. In one recently proposed hybrid scanning probe/threading
implementation, atomic force microscopy was used to pull individual DNA strands through
a probe-mounted ring, and sequence information inferred from base-specific fluctuations
of the resulting molecular friction. If ever successfully developed, scanning probe
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technology would allow the reading of single-molecule DNA sequences, in the most literal
sense possible.

3.4 The DNA Sequencer as a General-Purpose Laboratory Tool

The launch – and continued improvement – of commercial and academic next-generation
sequencing instruments have generated tremendous excitement in the DNA-sequencing
field. New applications that were effectively out of reach with traditional dideoxy se-
quencers are now continually being developed and explored. These include the deep se-
quencing of viral quasi-species (such as the population of HIV viruses in a single infected
patient), the meta-genomic identification and monitoring of difficult-to-culture microbes
in the soil, sea or human gut, and comprehensive discovery of rare genetic variants in
case-control cohorts for disease gene mapping, and in tumor samples for the identification
of mutations underlying carcinogenesis.

Importantly, the promise of next-generation sequencing technologies extends far beyond
the deeper and more comprehensive cataloging of genomes and genetic variation. Auto-
mated sequencing can, in principle, be used to capture the result of any assay for which
the end product is a collection of DNA molecules that encodes its outcome. It does not
matter whether the DNA is naturally occurring or is the product of a designed enzymatic
or chemical process. As long as the sequence reads are long enough to capture the in-
formation encoded in each DNA molecule, and the throughput is sufficient to sample the
collection to the required depth, then a sequencing instrument could a high-resolution dig-
ital measurement of the assay result. Because, in the past, throughput has been the limiting
factor for most such assays, the next-generation sequencing instruments will be poised to
transform DNA sequencing from specialized instruments to a general-purpose laboratory
tool in much the same way that a microscope or a gel electrophoresis apparatus is used
to visualize the results of a wide variety of different assays. Current applications typically
fall into one of a few major categories (Figure 3.3).

3.4.1 Counting

In this application category, DNA fragments in the sequenced library are identified and
grouped by comparing their partial – or, in some cases, complete – primary sequence to
a reference database. Depending on the particular assay, the database may contain known
genome sequences, transcripts or even pools of synthesized DNA sequences. The end
result is a digital count of the number of DNA fragments in the library representing each
subinterval or entity in the reference database. The interpretation of these counts depends
on the particular assay.

The simplest counting applications involve the enumeration of DNA sequences in a nat-
urally occurring sample – for example, reverse-transcribed messenger RNA or microRNA
isolated from one or more cells or tissues of interest. In this case, the number of times that
each transcript is represented in the sequenced library provides a measure of its expression
level in the assayed cells. The obtained sequence information may be used exclusively for
counting known transcripts, or also for the discovery of novel transcripts or splice variants.

Other counting applications involve enumerating DNA sequences in a sample that has
been enriched using affinity-based selection from a natural or synthetic fragment pool,
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Figure 3.3 Examples of applications for high-throughput DNA sequencers. Sequencing a
complex pool of DNA molecules, such as a cCNA library (a), can be used to identify the
relative abundance of each species. Sequencing a pool of ligation products generated in
proximity assays (b) can be used to infer the presence or absence of specific molecular
interactions. Sequencing chemically treated DNA can be used to infer the location epigenetic
modifications, such as cytosine methylation (c)

or other types of manipulation. The quantitative enrichment of some DNA sequences
relative to the preselected pool provides information about genomic location or molec-
ular specificity. Examples include sequencing the free ends of genomic DNA exposed
after nuclease treatment to identify accessible regions in chromatin (DNAse-Seq [29]);
sequencing DNA enriched after immunoprecipitating fragmented chromatin with antis-
era specific to a particular histone modification or DNA-binding protein (ChIP-Seq; see
Section 3.6); and sequencing DNA fragments or aptamers which are selectively bound
by a particular transcription factor or which recognize a specific target molecule in vitro
(SELEX-SAGE; [27]).

3.4.2 Ligation Product Identification

This is a variation of the counting application category that involves generating and enu-
merating DNA sequences that did not necessarily exist as contiguous fragments prior to
the assay. Information is encoded in the particular ligation products created by the assay.
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Two demonstrated examples are chromosome conformation capture and protein–protein
proximity ligation assays.

3.4.2.1 Chromosome Conformation Capture

Chromosome conformation capture represents a promising method for interrogating the
three-dimensional structure of genomic DNA within cells [30]. Such structural information
can yield valuable insight into the functional organization of chromosomes and long-
range interactions between genes and regulatory elements. In this assay, genomic DNA is
chemically crosslinked while still inside intact nuclei; the DNA is then isolated, digested
with a restriction enzyme, and diluted in a large volume of buffer. Ligase is next introduced,
which has the effect of preferentially ligating any DNA ends that are in close proximity
within the large buffer volume (i.e. those that were crosslinked to each other because
they were in close proximity in the original nuclei). In the traditional implementation,
quantitative PCR with site-specific primers is then used to query for the presence or
absence of a limited number of possible interactions from a predetermined set. By using
high-throughput DNA sequencing, all ligation products can – in principle – be enumerated,
thus making it possible to infer the complete set of interacting DNA segments.

3.4.2.2 Protein–Protein Proximity Ligation

Protein–protein proximity ligation is an analogous method designed to detect protein inter-
actions [31]. In this assay, synthetic DNA segments are covalently attached to antibodies
that are specific to proteins of interest. The DNA–antibody constructs are used to probe a
fixed tissue sample or cell extract. When the ligase is subsequently introduced, it prefer-
entially connects DNA segments that have been brought into close proximity because the
antibodies to which they are attached have bound the same molecular complex. Identifica-
tion of the ligation products by sequencing provides information about the presence and
relative abundance of different protein–protein interactions.

3.4.3 Footprinting

This application category involves changing the sequence of DNA fragments by chemical
modification prior to sequencing. Information is derived by comparing the modified DNA
sequence to the original known reference sequence. Also known as ‘chemical sequencing’,
this method is closely related to the Maxam–Gilbert method of DNA sequencing that was
developed in parallel with Sanger dideoxy sequencing during the 1970s.

The most widely used footprinting assay is DNA methylation analysis by bisulfite
treatment [32]. The covalent modification of nucleotides, in particular by addition of a
methyl group to the cytosine moieties, is a common epigenetic regulatory mechanism
across a wide range of species. An understanding of the distribution and functional impact
of DNA methylation in the human genome is an important challenge in developmental
biology and cancer research. Treating genomic DNA with sodium bisulfite has the effect
of converting all cytosines to uracils by deamination, unless they are protects by a methyl
group. DNA methylation therefore leaves a ‘footprint’ in bisulfite-treated DNA, which can
be located and analyzed by sequencing (uracils are usually converted to thymines by PCR
to facilitate the use of unmodified DNA sequencing processes).
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Footprinting can also be used to detect protein–DNA interactions in vivo [33]. In one
common implementation, the cells are first exposed to strong ultraviolet (UV) light. The
exposure of chromatin to UV light leads to DNA damage and strand breakage in predictable
patterns, but proteins bound to the DNA can provide site-specific protection. Thus, the lo-
cation of protein–DNA interactions can be inferred by the location of the DNA breakpoints.
Traditionally, this has been accomplished with the ligation-mediated PCR amplification
of a single site, followed by gel electrophoresis, but high-throughput sequencing provides
the option of identifying breakpoints by sequencing the end of each isolated fragment.
Although UV footprinting does not reveal the identity of the bound proteins, it provides a
far higher resolution of the binding events than can be obtained by immunoprecipitation
assays.

3.4.4 Combination Assays

The applications described above are not mutually exclusive and can be mixed and matched
as necessary. For example, DNA fragments enriched by a protein-specific antibody could
subsequently be subjected to bisulfite treatment, in order to analyze specifically any DNA
methylation patterns at molecules bound by the protein. Alternatively, sequence-specific
circularization by the ligation of DNA constructs with known tags, followed by the degra-
dation of linear molecules and quantification by sequencing of the remaining tags, could
be used for the extremely sensitive detection of mutations or pathogens [34]. Clearly, many
additional variations and novel applications are likely to emerge as the next-generation
sequencing market matures.

3.5 Case Study: ChIP-Seq

One of the first counting applications to be developed for the next-generation sequencing
technologies was that of ChIP-Seq (Figure 3.4) [35]. In this assay, chromatin (the genomic
DNA and proteins bound to it in the nucleus) is first extracted from the cells or tissues,
and fragmented. An antibody or other affinity reagent is then used to enrich for fragments
containing an epitope of interest (such as a histone variant or a transcription factor) by
immunoprecipitation. The constituent DNA is then isolated from the enriched chromatin
fraction, sequenced, and aligned to a reference genome sequence. A genomic region is
inferred to be associated with the targeted epitope if the number of aligned reads across it
is significantly higher than would be expected if the total number of reads obtained were
randomly distributed across the genome.

ChIP-Seq has been used successfully to map histone modifications and transcription
factors across large mammalian genomes in various cell types and states. These maps
can be used to annotate active functional regions, such as cell type-specific cis-regulatory
elements, to elucidate the molecular basis of developmental potency and commitment, and
to identify epigenetic lesions in cancer and other disease states. Two key parameters for the
assay are the number of sequence reads required to comprehensively map a given epitope
across a genome, and the fraction of the genome that can support unique alignments of
reads of a given size.
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Figure 3.4 Overview of the ChIP-Seq process. Chemically crosslinked chromatin (consisting
of genomic DNA and closely bound histones) is first mechanically or enzymatically sheared.
Genomic DNA fragments bound to a protein epitope of interest (such as a covalent histone
modification) are enriched by immunoprecipitation, isolated, and identified by sequencing

The number of sequence reads required to map epitope enrichment can be estimated
from a simple model. Suppose that the reference genome is divided into N nonoverlapping
bins of fixed size, that a fraction f of these bins contains the epitope, and that one performs
ChIP-Seq with an antibody that enriches the sequence in these bins by a factor of e relative
to a nonspecific background. If one collects a total of R sequence reads, then the number
of reads in a bin should approximately follow a Poisson distribution, with mean eM for
bins containing the epitope and M for the other bins, where M is given by Equation 3.1:

M = R

N (e f + (1 − f ))
(3.1)

The specificity and sensitivity of ChIP-Seq, conditional on the total number of reads
obtained, can be estimated from the overlap of the two Poisson distributions. For
example, suppose that an epitope is present across 1% of the human genome (total length
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ca. 3 × 109 bases), and can be enriched 20-fold relative to the nonspecific background
by an antibody. Mapping this epitope with 95% specificity and 95% sensitivity into bins
of 500 bp would require approximately 2 × 106 reads. Increasing the resolution to 200 bp
would require approximately 5 × 106 reads. Epitopes that enrich less efficiently require
more reads (e.g. a 10-fold enrichment and 200 bp resolution would require ∼10 million
reads). Fortunately, the high throughput of the next-generation sequencing technologies
will make obtaining such coverage a feasible prospect.

Most animal and plant genomes, including human, contain large amounts of transposable
elements, microsatellites and other repetitive sequences. A short sequence read from a
fragment of such a genome cannot always be unambiguously aligned back to a unique
location. The effective genome coverage of ChIP-Seq – that is, the fraction that can be
interrogated for enrichment by uniquely aligning reads – depends on the length k of the
sequence reads, the amount of repetitive sequences, and the alignment algorithm used. In
one ChIP-Seq alignment algorithm the first- and second-best alignment of each read are
identified (as measured by the number of mismatches between the read and the reference
sequence). Reads are considered uniquely aligned and kept for analysis if they have no
alternative alignment with ≤d additional mismatches. The exact ‘coverable’ regions can be
determined empirically by aligning every fragment of length k in the reference sequence
back to the entire genome, and marking those that are uniquely aligned. For example, if
k = 27 and d = 2 and any 500 bp interval in which at least half of the constituent 27-mers
are unique is considered coverable, then ∼70% of the human genome can be interrogated.
Slightly longer read lengths (36 bp) or paired reads can provide over 80% coverage.

Although ChIP-Seq and related assays are already relatively mature applications for the
next-generation sequencing technologies, a number of technical challenges and opportuni-
ties for improvement remain. First, the number of sequence reads required – and hence the
cost-effectiveness of the ChIP-Seq assay – is heavily dependent on the enrichment level
obtained by the affinity reagent used. The lack of specific, strong or renewable affinity
reagents has long been a barrier to study novel proteins or chromatin modifications, and
automated screening or novel technologies and reagent classes may be required to over-
come this limitation. Second, the efficient preparation of enriched DNA is challenging due
to the low yield of current immunoprecipitation techniques (often, only 1 ng or less can
be obtained from millions of cells), while many biologically interesting cell populations –
such as specific regions of developing embryos, adult stem cells and early-stage tumors –
are difficult to obtain in large numbers. Thus, automated and miniaturized technologies
may help to improve yields. Finally, improved engineering solutions are required to reduce
the equipment, reagent and labor costs.

It follows that, as these challenges are met, the ability to map any given protein–DNA
interaction, both cheaply and quickly, in any cell type, in any laboratory, using off-the-shelf
sequencers as a general-purpose tool, promises to revolutionize developmental biology,
cancer research and regenerative medicine.
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4.1 Introduction

In recent years, the rapid development of sequencing methods and computer technology has
led to the complete DNA sequencing and annotation of many important model organisms
[1]. In order to understand the functioning of an organism, the next major step is to
identify which genes are expressed, under which conditions, and to what extent. Gene
expression is a complex process that is regulated at several stages in the synthesis of
proteins; hence, the identification of genes, the products of which function together in
the cell, is a major task of postgenomic approaches. Fundamental questions regarding the
topology of networks such as the protein interactome [2], metabolome [3] or transcriptional
regulation networks [4, 5] have been addressed. As traditional gene-by-gene approaches
have proved to be insufficient, new methods and technologies have been developed such
that all of these components can be analyzed simultaneously. This chapter focuses on the
analysis of transcriptional regulatory networks, as they play an essential role in the cell.
In order to control the expression of specific genes according to specific environmental
conditions, multiple regulatory systems that comprise many components and are connected
through interlocking positive and negative feedback loops, are required. In this chapter,
we describe the experimental approaches used to measure whole-genome expression,
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and outline the methods used to analyze gene expression profiles, focusing mainly on
the clustering algorithms used to identify groups of coexpressed genes. More refined
mathematical approaches to model regulatory networks based on graphical modeling are
also presented, and a distinction is made between static and dynamic modeling applications.
Modeling assumptions are also discussed, suggesting how results may differ according to
the method used. The chapter concludes with an introduction to the various dimension
reduction approaches and their corresponding software for regulatory network inference,
when the number of genes far exceeds the number of measurements.

4.2 Experimental Approaches to Measure Whole-Genome Expression

4.2.1 RNA: Gene Expression

‘Gene expression’ can be defined as the process by which the DNA sequence of a gene is
converted into a functional gene product, such as mRNA and, ultimately, into a protein.
A central goal of molecular biology is to understand the regulation of mRNA and protein
synthesis, and their reactions to external and internal cellular signals. This regulation
incorporates several mechanisms at each step of the gene expression process, including
mechanisms for controlling transcription initiation, RNA splicing, mRNA transport, trans-
lation initiation, post-translational modifications, or the degradation of mRNA/protein. In
this context, the regulation of mRNA transcription represents an important preliminary
step towards the precise coordination of all these regulatory processes. Specific proteins –
known as transcription factors – are able to bind to regulatory regions along the DNA and
hence play a key role by modulating the transcription of the genes that they control. An
understanding of the nature of these complex biological processes thus requires the precise
observation of spatiotemporal gene expression patterns. The experimental approaches
that have been developed to measure mRNA levels on a quantitative basis can be divided
into two categories, namely low-throughput and high-throughput. Low-throughput
technologies allow the expression of one gene to be measured at a time, using Northern
blot analysis or real-time polymerase chain reaction (RT-PCR). Although the study of
gene expression on a one-by-one basis provides a wealth of biological insights, the desire
to fully understand genomic sequences in an organism led in time to the development
of high-throughput technologies, whereby the expression of all genes could be studied
at once. The term ‘genomic’ differs from ‘genetic’, in that it does not relate to a gene in
isolation, but rather at how many genes work together to produce phenotypic effects. In that
respect, DNA microarrays serve as high-capacity systems for monitoring the expression of
many genes in parallel [6]. Although other parallelization technologies do exist (examples
include SAGE (Serial Analysis of Gene Expression) [7] or SuperSAGE technologies [8]),
for the sake of clarity only DNA microarrays will be presented in the following section.
Finally, whichever technology is used to obtain quantitative measurements of gene
expression, all of the bioinformatical methodologies presented in this chapter can be
applied to analyze the data and identify regulatory associations between genes.

4.2.2 Whole-Genome Expression Profiling Through Microarray Technology

More than ten years after its initial development, DNA microarray technology is still
undergoing a rapid evolution [6, 9]. Indeed, today it is one of the essential approaches for
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Figure 4.1 An overview of the major steps in using a microarray. (a) Array production consists
of spotting the DNA probes (either PCR products or oligonucleotides) onto the glass surface of
the array with a spotting robot; (b) mRNAs are first extracted from the cell cultures (or tissues)
of interest. Two samples are obtained and labeled with two fluorescent molecules, usually Cy3
and Cy5. The samples are finally hybridized to the array simultaneously; (c) An image of the
surface of the hybridized array is produced using a scanner. DNA probes that are bound with
labeled nucleic acid molecules fluoresce, when excited by light of an appropriate wavelength.
The measured fluorescence should be proportional to the quantity of mRNA initially situated in
the studied samples; (d) The final step consists of analyzing and interpreting the fluorescence
measures obtained for each DNA probes located on the array. A normalization procedure is
generally required to resolve the systematic errors and bias introduced during the experiment

high-throughput analysis for the provision of a rough ‘snapshot’ of the transcriptome state –
that is, the expression level of all genes expressed in a cell at any one given time. An
overview of the major steps in using a microarray is presented in Figure 4.1 (a complete
description of DNA microarray technology can be found in Ref. [10]).

A DNA microarray consists of a solid surface, onto which DNA molecules (either
oligonucleotides or cDNAs) are immobilized in a predefined organization (Figure 4.1a).
Each DNA molecule is specific to one gene, the expression of which must be monitored.
Thus, the purpose of a microarray is to detect the presence and abundance of labeled
nucleic acids in a biological sample (Figure 4.1b and c). Today, thousands – or even tens
of thousands – of DNA molecules can be spotted onto a microscope slide, and the relative
expression levels of each gene can be determined by measuring the fluorescence intensity
of labeled mRNA hybridized to the arrays, allowing the measurement of RNA levels for the
complete set of transcripts of an organism. A specific feature of microarray technology is
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the level of statistics and bioinformatics required at all stages of the procedure and, in par-
ticular, the interpretation of quantitative expression measurements obtained for each gene
(Figure 4.1d) when using specific methodologies and automation approaches to answer bi-
ological questions. These particular issues are highlighted in the following sections, namely
to identify expression relationships between genes, and to model regulatory networks using
temporal gene expression data.

4.3 Temporal Gene Expression Data and Analysis of Relationships
Between Genes

4.3.1 Principle

DNA microarrays provide the opportunity of measuring, simultaneously, the expression of
several thousand genes within a cell, and thus to observe transcriptome states under various
cellular conditions. If a single microarray experiment is performed, then a ‘static view’ of
transcriptome states under particular cellular conditions is obtained. However, if several
microarray experiments are performed over time, it is possible to follow the modifications
of the gene expression measurements, such that a ‘dynamic view’ of transcriptome states is
acquired. Each gene is characterized by a ‘gene expression profile’ – the successive expres-
sion measurements observed with a series of microarrays (Figure 4.2a). When describing
the chronology of transcriptional events, time series microarray experiments represent a
valuable sources of information for the study of a wide range of biological processes,
including cell cycle analyses [11, 12], responses to environmental stresses [13, 14] and
developmental studies [15]. A variety of temporal gene expression data mining methods
exist, in addition to approaches aimed at understanding their biological meaning. One of
the most successful of these methods is based on the assumption that genes with similar
expression profiles are more likely to be involved in the same biological process. For ex-
ample, if a single regulatory system controls two genes, then the genes would be expected
to be coexpressed – that is, to exhibit similar expression profiles. In fact, there is evidence
that functionally related genes are often coexpressed [16], and the identification of genes
which behave in a similar or coordinate manner is a challenging task. In this section, we
present details of several analytical techniques designed to identify patterns of expression
and to create biologically relevant clusters of genes. The section is organized into three
parts:

1. ‘Similarity of gene expression profiles’, examines different methods for quantifying
resemblances between two sets of gene expression measurements (Figure 4.2b).

2. ‘Clustering methods’ introduce the most commonly used approaches for identifying
groups of closely related genes (Figure 4.2c). Hierarchical approaches link genes with
similar expression profiles to form a ‘tree structure’ (much like a phylogenetic tree),
whereas partitioning approaches are methods of nonhierarchical clustering that require
the number of clusters in advance.

3. ‘Specificities for temporal gene expression data’ discusses the limitations of classical
clustering approaches when analyzing temporal gene expression data, and hence, the
need to use more sophisticated approaches that take into account the temporal depen-
dency between gene expression measurements.
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Figure 4.2 Analysis of relationships between gene expression profiles. (a) Using data ob-
tained with successive microarray experiments, expression profiles can be drawn up for each
gene located on the microarray. These expression profiles provide a dynamic view of the
transcriptional changes that occur in a particular cellular process. As an illustration, five gene
expression profiles are represented here. Genes 1, 2 and 3 (g1, g2, g3) exhibit similar variations
of expression measurement among time, whereas genes 4 and 5 (g4, g5) exhibit similar pat-
terns of expression together but are different from these of genes 1, 2 and 3; (b) Distance matrix
between all gene pairs. The distance measure (Euclidean or correlation distances) quantifies
the ‘resemblance’ between pair wise gene expression profiles; (c) Clustering methods allow
the classification of genes according to their expression profiles, using the distance measures
calculated in (b). Two types of approaches are illustrated here: hierarchical and partitioning
methods (see the main text for details)
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4.3.2 Notations

By using a series of n microarray experiments, a ‘gene expression matrix’ can be drawn up
where the rows correspond to individual genes, the columns are individual experiments,
and the cells contain a measure of the gene activity. It should be noted that the series of ex-
periments are either time-course gene expression data or gene expression values measured
under different experimental conditions. In this matrix, denoted by X = (Xi

t ) 1≤i≤p
1≤t≤n

, let Xi
t

be the gene expression level of the i-th gene in the t-th experiment, for i = 1, 2, . . . , p
and t = 1, 2, . . . , n; where p denotes the total number of genes (e.g. the entire genome
of an organism) and n the number of experiments (or time points). Therefore, each gene
can be given a coordinate (its expression profile), which is, for the i-th gene, the vector
Xi = (Xi

1, . . . , Xi
t , . . . , Xi

n) and for the j-th gene the vector X j = (X j
1 , . . . , X j

t , . . . , X j
n ).

4.3.3 Similarity of Gene Expression Profiles

One of the main advantages of microarrays is their ability to be used to identify rela-
tionships between genes – that is, to classify genes that behave in a similar or coordinate
manner. To perform computational analysis, the prerequisite is to transform the intuitive
notion of ‘similarity’ into quantitative measures, and to do this, classically a distance
measure between expression profiles is applied. Two types of distances are presented here
(‘correlation distance’ and ‘Euclidean distance’), although many others have been reported
in the literature [17].

4.3.3.1 Correlation Distance

The correlation distance derives from the correlation coefficient – that is, a statistical
concept that quantifies the strength and direction of a linear relationship between two sets of
measurements. More precisely, if we denote two sets of gene expression measurements by
Xi = (Xi

1, . . . , Xi
t , . . . , Xi

n) and X j = (X j
1 , . . . , X j

t , . . . , X j
n ), the correlation coefficient r

is given by the following formula:

r (Xi , X j ) =
n

n∑
t=1

Xi
t X j

t −
n∑

t=1
Xi

t

n∑
t=1

X j
t√√√√(

n
n∑

t=1

(
Xi

t

)2 −
(

n∑
t=1

Xi
t

)2
)(

n
n∑

t=1

(
X j

t

)2−
(

n∑
t=1

X j
t

)2
) (4.1)

To satisfy some theoretical properties required to define a distance measure [10], the
correlation distance (d) between gene expression profiles Xi and X j is finally set by:

d(Xi , X j ) = 1 − r (Xi , X j ) (4.2)

It should be noted that the correlation coefficient r only takes a value from between −1
and +1, implying that correlation distance (d) takes a value from between 0 and 2. A value
of 0 represents a perfect positive correlation between the gene expression profiles (Figure
4.3a), a value of 1 indicates no correlation, and a value of 2 indicates anticorrelation – that
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Figure 4.3 Distance measures between gene expression profiles. Distance calculation be-
tween two gene expression profiles (colored in green and blue), using correlation distance
(a) or Euclidean distance (b) (see main text for more details). This example highlights the
specific properties for each distance. The green and blue profiles are two different profiles
with the same shape, but with different magnitudes. They appear to be identical using correla-
tion distance (d = 0), whereas they appear to be distant with the Euclidean distance (d > 0);
(c) Clustering of temporal gene expression profiles, using k-means algorithm and Euclidean
distance as similarity measure. The microarray measurements were obtained from the study
of the sporulation process in yeast Saccharomyces cerevisiae [18]

is, opposite expression profiles. When expression is high for one gene (respectively low),
the other gene also exhibits high expression (respectively low).

4.3.3.2 Euclidean Distance

The Euclidian distance is another measure of the relationship between two gene expres-
sion profiles, and is based on the sum of the squared distances of two vector values
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(Figure 4.3b). Using the same notations as before, the Euclidean distance between two
profiles Xi and X j is given by the following equation:

d(Xi , X j ) =
√√√√ n∑

t=1

(
Xi

t − X j
t

)2
(4.3)

The Euclidean distance takes a value from between 0 and +∞. A value of 0 means that
the two profiles are identical (Figure 4.3b).

4.3.3.3 Differences Between Correlation Distance and Euclidean Distance

Unlike the correlation distance, the Euclidean distance is not scale invariant. Two gene ex-
pression profiles with the same shape, but different magnitudes, will appear to be different
with the Euclidean distance (d > 0), whereas they will appear to be identical with the corre-
lation distance (d = 0) (Figure 4.3a and b). One the other hand, when using the correlation
distance, flat patterns – that is gene expression profiles for which it is difficult to distin-
guish expression signal from microarray background noise – can be strongly correlated
with highly variable (and hence biologically meaningful) gene expression profiles. Such an
erroneous association is not possible using Euclidean distance. The choice of an appropriate
distance is therefore a critical step in the computational analyses of gene expression profiles,
and depends on the intuitive biological notion of ‘coexpression’ between two genes.

4.3.4 Clustering Methods

4.3.4.1 Principle

Clustering can be defined as the process of separating a set of objects into several subsets,
on the basis of their similarity (see Figure 4.3c for an illustration). When analyzing gene
expression data, the ‘objects’ are the genes, while ‘similarity’ is based on the distance cal-
culation between their corresponding gene expression measurements (see Section 4.3.3).
The aim of clustering methods is therefore to identify clusters of genes that exhibit both
internal cohesion (the intracluster variability is low) and external isolation (the intercluster
distances are high). In the literature, two major types of clustering methods have been pro-
posed, namely ‘hierarchical’ and ‘partitioning’. Hierarchical methods start with each gene
considered as a separate cluster after which, at each successive step in the clustering proce-
dure, two of the clusters are merged together until only one cluster, which then comprises
the entire dataset, remains (Figure 4.4a). In contrast, partitioning methods produce distinct
nonoverlapping clusters where each gene is allocated to the cluster with which it is most
similar, using a distance criterion between gene expression measurements (Figure 4.4b).

4.3.4.2 Hierarchical Methods

Hierarchical clustering is a methodology that arranges the gene expression profiles into a
tree structure (much like a phylogenetic tree), so that similar profiles appear close together
in the tree and dissimilar profiles are farther apart. The hierarchical clustering procedure is
summarized by five steps (Figure 4.4a):
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d(min)

(a) – Hierachical clustering algorithm

(a) – k-means clustering algorithm
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Figure 4.4 Illustration of two clustering algorithms. (a) Hierarchical clustering algorithm and
(b) k-means algorithm. Complete descriptions of the hierarchical and k-means algorithms can
be found in the main text

1. Distances between all genes pairs are calculated using distance measures such as ‘cor-
relation distance’ or ‘Euclidean distance’.

2. The resulting distance matrix is inspected in order to find the smallest distance value
between expression profiles.

3. The corresponding genes are joined together in the tree and form a new cluster.
4. Distances between the newly formed cluster and the other genes are recalculated.
5. Steps 2, 3 and 4 are repeated until all genes and clusters are linked in a final tree.

The analysis of microarray data using the hierarchical clustering algorithm quickly
became one of the preferred clustering approaches, due to an original representation of
the results, initially proposed in Ref. [19]. The idea is to represent the reordered gene



P1: JYS

c04 JWBK327-Alterovitz December 18, 2008 22:20 Printer: Yet to come

78 Automation in Proteomics and Genomics

Before clustering

Upregulated
gene

Downregulated
gene

After clustering

Co-expressed genes

3.0 1:1

1:11:13.0 3.0

4 
m

in

10
 m

in

20
 m

in

40
 m

in

80
 m

in

4 
m

in

2 
m

in

10
 m

in

20
 m

in

40
 m

in

80
 m

in

−3.0

−3.0

Figure 4.5 Graphical representation of hierarchical clustering results. Gene expression pro-
files are represented using the color code described in Ref. [19]. The color scales range from
saturated green (maximum negative value) to saturated red (maximum positive value). Cells
with an expression measurement of 0 (genes unchanged) are colored black, increasingly posi-
tive values with red intensity, and increasing negative values with green intensity. Each gene is
represented by a single row of colored boxes; each time is represented by a single column. Two
separate clusters are indicated by colored bars and by identical coloring of the corresponding
region of the dendogram. These comprised genes for which expression is very similar during
the time course

expression profiles using a color code that quantitatively and qualitatively reflects the
original microarray measurements: green for negative values (down-regulated genes) and
red for positive values (up-regulated genes) (Figure 4.5). The tree structure represents
complex gene expression data that, through statistical organization and graphical display,
allows biologists to assimilate and explore the data in a natural and intuitive manner.

4.3.4.3 Partitioning Methods

The objective of partitioning methods is to produce distinct nonoverlapping clusters. For
a given number of genes, p, and a given number of clusters, q, the number of possible
partitions is finite but extremely large. As it is unworkable to investigate each possible
partition to find the most advantageous, a solution consists of choosing a clustering
criterion or ‘cost function’ that will guide the search for a better partition. In that spirit, the
k-means algorithm has been proposed [20]. This is summarized by the following six steps
(Figure 4.4b):
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1. The number of clusters q is chosen.
2. Each gene expression profile is randomly assigned to one of the q clusters.
3. Centroids are calculated for each cluster; these correspond to the average expression

values, taking into account the gene repartitions proposed in step 2.
4. For each gene to be classified, the distances between its gene expression profile and the

centroids of each cluster are calculated.
5. Genes that exhibit a smaller distance with a centroid of a different cluster from the

cluster to which it belongs are assigned to a new cluster.
6. Centroids are recalculated, taking into account the new gene partition, and steps 4 and 5

are finally repeated until no gene changes cluster membership. In the k-means algorithm,
the cost function is related to the intracluster variability and decreases at each repetition
of the partitioning process [20].

4.3.4.4 Differences Between Partitioning Methods and Hierarchical Clustering

Partitioning methods can be distinguished from hierarchical clustering on the basis of
several characteristics. First, the number of clusters must be specified in advance, which
implies that the user must perform several attempts to correctly estimate the number of clus-
ters. Second, partitioning methods require the selection of an initial starting partition. Some
algorithms (e.g. k-means) use randomly selected data elements as starting partitions [20],
while others allow the user to specify starting seeds [21]. As a consequence, different runs
of the k-means procedure can produce slightly different results, whereas hierarchical clus-
tering approach is completely deterministic. Finally, there is no hierarchy or relationship
between clusters; the clusters are simply groups of similar gene expression profiles.

4.3.4.5 Other Methods

In the past, numerous approaches to cluster gene expression profiles have been proposed
[22]. Yet, despite there being differences between algorithms, the clustering process can
be reviewed, taking into account the following five major steps:

Step 1: Selection of the genes to be clustered according to their gene expression mea-
surements. Among all genes for which expression data are available (generally more
than several thousand with microarray technology), only those for which significant
changes in mRNA levels are observed for several microarray experiments are analyzed.
Other genes, the expression of which varies only slightly (or not at all) across the set of
conditions, may reflect microarray background noise rather than any relevant biological
expression variations. Their elimination simplifies the downstream analyses (there are
less genes to classify) and precluded inconsistent clustering results, as these flat patterns
can exhibit significant correlation with almost anything.

Step 2: Choice of a distance measure to quantify the similarity between gene expres-
sion profiles. In the previous section, several distance measures that reflect the degree
of closeness or separation between gene expression profiles were introduced. As two
gene expression profiles can be more or less similar when using one or the other dis-
tance measure, the choice of an appropriate distance criterion is a critical step that can
influence the final clustering results. Which distance will provide the best similarity
measure in uncertain; different measures have different strengths and weaknesses, and
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can be combined to produce different results (some frequent distances are described in
Section 4.3.3).

Step 3: Choice of a clustering algorithm. Several clustering approaches were presented
in the previous subsections, all of which have been designed to identify different types
of cluster structures. Hence, the concept of ‘cluster’ is fundamental at this stage of the
analysis [23]. Several definitions exist, and each can be valid under particular conditions
[24]. As each method attempts to find the best partition, using a specific definition
of cluster structure, there is no guarantee that a given algorithm will find the optimal
partition in the data. Evaluating the biological relevance of the results obtained using a
particular clustering algorithm is therefore a challenging task and generally needs further
information than expression measurements (see Step 5).

Step 4: Determination of the number of clusters required for optimal partition of genes.
This problem has received increased attention in the clustering literature in recent years.
For example, procedures exist to test whether a significant cluster structure has been
found in the gene expression dataset in comparison with a randomly generated cluster
partition [25].

Step 5: Interpret, test and replicate the resulting cluster analysis. Interpretation of the cluster
within the applied context requires biological knowledge and expertise. In that respect,
the use of functional gene annotation such as gene ontology (GO) can be particularly
useful. GO is a structural network consisting of defined terms and relationships which,
between them, describe three attributes of gene products: molecular function, biological
process and cellular components [26]. The identification of a cluster of genes in which
a particular GO term is over-represented has raised interesting questions for further
experimental analyses [27].

Although variations on this five-step procedure may be necessary to fit a particular
application, this sequence represents the critical steps in a cluster analysis.

4.3.4.6 Specificities for Temporal Gene Expression Data

Clustering methods based on pairwise distance calculations may yield many biological
insights, but are not optimal for analyzing temporal gene expression datasets. Indeed,
correlation and Euclidean distances make the implicit assumption that the data at each
time point are collected independent of each other, thus ignoring the sequential nature
of temporal gene expression data. In order to overcome this major limitation, a number
of clustering algorithms designed specifically for time series gene expression data have
been suggested [28–30]. These include clustering based on dynamics of the expression
patterns [31] or clustering using continuous representation of the profiles [32]. In one
case [33], a time translational matrix is used to model the temporal relationships between
different modes of the singular value decomposition (SVD). In Ref. [32], Bar-Joseph
et al. used a statistical spline estimation to represent time-series gene expression profiles as
continuous curves, taking into account the actual duration that each time point represents.
The major drawback of such algorithms is that relatively long time series datasets are
required (generally more than ten time points), these algorithms not being appropriate
for shorter time series. As more than 80% of all time series datasets available in the
Standford MicroArray Database [34] contain less than eight points [35], specific clustering
approaches were recently proposed. For instance, Ernst et al. [35] proposed a methodology
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that focuses on modeling and analyzing the temporal aspects of short time series. The main
idea is first to select a set of profiles covering the entire space of possible gene expression
profiles that can be generated in the experiment. Next, each gene is assigned to one of the
profiles, and an enrichment of genes in each of the profiles is finally computed to determine
profile significance. Short time series expression datasets present unique challenges due to
the large number of genes sampled and the small number of values for each gene, but have
raised fascinating biological questions. The coexpression of genes of known function with
poorly characterized or novel genes may provide interesting information concerning the
function of many genes for which information is not available currently.

4.4 Modeling a Regulatory Network

4.4.1 Principle

Gene expression programs depend on the recognition of specific promoter sequences by
transcriptional regulatory proteins called transcription factors. A ‘regulatory network’ can
be defined as the set of genes, the expression of which is modulated by one (or several)
transcription factor(s). The deciphering of a regulatory network consists of: (i) identifying
genes that compose the network; (ii) defining the interaction between regulators and
target genes; and (iii) understanding the functioning of the network under physiological
conditions.

Today, the elucidation of the dynamic behavior of transcriptional regulatory networks
represents one of the most significant challenges in systems biology. This is clearly a
challenging problem, because biological processes are controlled by multiple interactions
over time, between hundreds of genes. Clustering approaches based on similarity measures
between gene expression profiles are useful for discovering genes that are coregulated, and
represent an important preliminary step towards elucidating the transcriptional regulation
processes. However, a more ambitious goal consists of modeling and recovering gene reg-
ulation phenomena, by seeking genetic relationships such as ‘gene i activates (or inhibits)
the expression of gene j’. It is also desirable to capture more complex scenarios [5] such
as auto-regulations, feed-forward or multicomponent regulatory loops (see Figure 4.6a for
an illustration of this point).

Methods for inferring and modeling regulatory networks must strike a balance between
the model complexity and the limitations of the available data. For instance, microarray data
alone provides only a partial picture of the regulatory events, as it does not reflect effects
such as post-translational modifications or cellular localizations. The ideal model must be
sufficiently complex to accurately describe the system, dealing with a number of genes,
which is extremely large compared to the number of available expression measurements. A
simple genetic network modeling (static or dynamic) is exposed in the aim of extracting the
underlying genetic interactions. References to more complex models are also mentioned.

4.4.2 Static Modeling

In the literature, regulatory gene networks were initially described by using static modeling
approaches – that is, approaches that do not take into account the temporal dependency
between gene expression measurements. Each expression measurement is considered
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(a)

(b) (c)

(d)

Figure 4.6 Static modeling of regulatory networks. (a) An example of a regulatory network
with both transcriptional activation and inhibition. Genes 1 and 2 (g1, g2) are transcription
factors, as they are able to modulate the expression of other genes. This regulatory motif will
serve as an illustration for the presentation of several static and dynamic network models; (b)
Correlation network expected from the regulatory motif presented in (a). An edge is drawn
between X 1 and X 3 as these variables are expected to be correlated and are both correlated
with variable X 2 (indirect dependency); (c) Concentration graph expected from the regulatory
motif shown in (a). The advantage of the concentration graph is that there is no edge between
X 1 and X 3. Concentration graphs only describe conditional dependencies given all the vari-
ables represented in the graph. Here, variables X 1 and X 3 are expected to be conditionally
independent given the variable X 2; (d) Left: an example of a directed graph containing no
cycle. Such directed acyclic graph (DAG) structure is necessary to define a Bayesian network.
The associated moral graph allowing the derivation of conditional independencies between
variables is also represented. For instance, the conditional independence X 3⊥X 4|X 2 can be
derived from this moral graph, as node X 2 blocks all paths from node X 3 to node X 4. Right:
two different DAGs describing the conditional independence between variables X 1 and X 3

given variable X 2 (P(X 1|X 2, X 3) = P(X 1|X 2)). Indeed, the joint distribution factorizes both as
P(X 1, X 2, X 3) = P(X 3|X 2)P(X 2|X 1)P(X 1) or as P(X 1, X 2, X 3) = P(X 1|X 2)P(X 2|X 3)P(X 3)
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as a sample of the same process, and repeated time measurements are assumed to be
independent. Even though the temporal information of the data is not exploited as fully
as possible, static modeling remains of interest when analyzing expression dependency
between genes.

4.4.2.1 Correlation Networks

One of the first tools used to describe interaction between genes is the ‘correlation
network’ [36]. Also referred to as ‘relevance network’ [37] or ‘covariance graph’ [38], the
correlation network is a nondirected graph which describes the pairwise correlation between
variables. In the case of gene regulatory network modeling, each gene i is represented by a
node. An undirected edge is then drawn between two genes, i and j , whenever their expres-
sion levels Xi and X j are correlated – that is, when their correlation coefficient r (Xi , X j )
(Equation (4.1)) significantly differs from zero. As an illustration, Figure 4.6b displays the
correlation network expected from the regulatory motif presented Figure 4.6a. Assuming
that each variable Xi follows a Gaussian distribution, the correlation network describes
the set of the dependency relationships between expression levels of the p genes. There
is no edge between two variables whenever these two variables are independent.

A major drawback of correlation network models is that the observation of correlation
between two variables may come from the linkage with other variables. Two variables can
be correlated when considering them separately, but not correlated conditionally on some
other variables. Such indirect correlation relationships may generate spurious edges in the
correlation network. As an illustration, the correlation network displayed in Figure 4.6b
has a spurious edge between the variables X1 and X3. Indeed, given that the expression
levels of gene 1 (g1) and gene 3 (g3) are both correlated with the expression level of gene
2 (g2), the correlation between X1 and X3 is expected to be significant but is not relevant
considering the underlying regulatory motif shown Figure 4.6a.

4.4.2.2 Concentration Graphs (Graphical Gaussian Models)

Assuming that the vector variable (Xi )1≤i≤p representing the expression levels of p genes
follows a multivariate Gaussian distribution of mean µ and covariance matrix �,

(Xi )1≤i≤p ∼ N (µ,�) (4.4)

graphical Gaussian models (GGMs) describe conditional independency between the vari-
ables through the ‘concentration graph’ [39]. Also known as the ‘covariance selection
model’, the concentration graph describes only the direct dependency relationships be-
tween gene expression measurements, given the whole set of observed genes. An undi-
rected edge is drawn between two genes i and j whenever their expression levels Xi

and X j are conditionally dependent, taking into account the remaining gene expression
levels; this means that there is an edge between genes i and j whenever the partial corre-
lation pi j = r (Xi , X j |{Xk ; k �= i, j}) between the variables Xi and X j given the (p − 2)
remaining variables {Xk ; k �= i, j} differs significantly from zero.

The matrix of partial correlation coefficients P = (pi j ) is related to the inverse �−1 of
the covariance matrix �. The partial correlation coefficient between variables Xi and X j

given the (p − 2) remaining variables is null whenever the element �−1
[i, j] in the i th row
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and j th column of the inverse of the covariance matrix is null,

r (Xi , X j |{Xk ; k �= i, j}) = 0 ⇔ �−1
[i, j] = 0. (4.5)

Contrary to the correlation network, the concentration graph enables elimination of the
spurious edges due to indirect relationships between variables. As a result, the concentration
graph inferred from the regulatory motif of Figure 4.6a is expected not to have an edge
between variables X1 and X3 as these variables are conditionally independent given X2 (see
Figure 4.6c). However, the concentration graph does not offer a fully accurate description
of the interactions; in particular, no direction is given to the interactions and some motifs
containing cycles (see Figure 4.6a for instance) cannot be properly represented.

4.4.2.3 Bayesian Networks

Unlike previous graphical models, ‘Bayesian networks’ model directed relationships be-
tween genes [40,41]. Based on a probabilistic measure, a Bayesian network representation
of a model is defined by a ‘directed acyclic graph (DAG)’, that is, a graph G that does
not contain cycles (Figure 4.6d, left). Let us call the ‘parents’ of a node Xi in graph G,
denoted by pa(Xi , G), the set of variables having an edge pointing towards the node Xi .
A Bayesian network is entirely defined by a DAG G and the set of conditional probability
distributions of each variable given its parents in G. To summarize, a stochastic process X
admits a Bayesian network representation according to a DAG G, whenever its probability
distribution P(X ) factorizes as a product of the conditional probability distribution of each
variable Xi given its parents in G; that is,

P(X ) =
p∏

i=1

P(Xi |pa(Xi , G)). (4.6)

However, the acyclicity constraint in static Bayesian networks is a serious restriction
given the expected structure of genetic networks. Moreover, interpretation of the edges
and their directions must be made carefully. Indeed, some differing DAG structures are
equivalent in terms of dependency between the represented variables. For example, a
Bayesian network model for three variables X1, X2, X3 such that the variables X1 and X3

are ‘conditionally independent’ given X2, denoted by X1⊥ X3
∣∣ X2 (as expected from the

regulation motif of Figure 4.6a), can be defined by any of the two DAGs shown in Figure
4.6d (right). Moreover, it is important to bear in mind that, for any Bayesian network model
defined by a DAG G, the dependency properties must be derived from the ‘moral graph’
Gm . The moral graph Gm is obtained from G by first ‘marrying’ the parents; that is, an
undirected edge is drawn between each pair of parents of each variable Xi , after which the
directions of the original edges of G are deleted (Figure 4.6d, moral graph). We call a ‘path’
any succession of nodes linked by an edge (for instance X2, X3, X4 in the moral graph of
Figure 4.6d). Conditional independencies are then derived from Gm as follows: whenever
all paths from node X3 to node X4 proceed via node X2 in the moral graph Gm , then
variables X3 and X4 are conditionally independent given variable X2 (for more details, see
the directed global Markov property in Ref. [39]). The interpretation of the edges in a DAG
G defining a Bayesian network must be made carefully, although this modeling enables
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Figure 4.7 Dynamic network equivalent to the regulation motif in Figure 4.6a. Each vertex
X i

t represents the expression level of gene i at time t. The transcriptional activation of gene 2
by gene 1 in Figure 4.6a is described by edges pointing out from nodes X 1

t−1 towards nodes
X 2

t for all t > 1. The direction according to time guarantees the acyclicity of this graph and
hence allows the definition of a DBN

the derivation of conditional independencies in static modeling. Nevertheless, dynamic
modeling methodologies, such as dynamic Bayesian networks (DBNs) (as presented in
Section 4.4.3) take into account time dependencies between gene expression measurements
and allow the modeling of cyclic regulatory motifs. Moreover, the interpretation of the edges
of DBNs is straightforward.

4.4.3 Dynamic Bayesian Network (DBN) Modeling

Until now, many dynamic approaches have been proposed to model genetic regulatory
networks, such as Boolean networks [42, 43], differential equations [42, 44], DBNs [45]
or neural networks [46]. Among these approaches, DBNs – which have attracted great
interest in the field of systems biology – were first introduced for the analysis of gene
expression time series by Friedman et al. [45] and Murphy and Mian [47]. In DBNs, each
gene is no longer represented by a single node, but rather by a node for each time point
of the experiment. Moreover, the regulatory relationships are assumed to be time-delayed:
a dynamic network (Figure 4.7) is obtained by unfolding in time the initial cyclic motif
in Figure 4.6a. The direction according to time guarantees the acyclicity of this dynamic
network, and consequently this ‘directed acyclic graph’ (DAG) allows the definition of a
Bayesian network (see Section 4.4.2 for more detail). In the DAG defining such a DBN, an
edge is drawn between two successive variables, for example X1

t−1 and X2
t , whenever these

two variables are conditionally dependent given the remaining variables observed at time
t − 1: {Xi

t−1; 2 ≤ i ≤ p} (see Definition – Theorem 1 below). This property is derived from
the theory of graphical models for DAGs [39], and allows an extension of the principle of
the concentration graph (describing conditional independencies) to a dynamic framework.
Although the nature (activation or inhibition) of the regulation in the biological motif does
not appear in the DAG, it can nonetheless be derived from the sign (positive or negative) of
the model parameter estimates. It should be noted, however, that dynamic modeling is very
dependent on the time point measurements sampling. Indeed, a regulatory relationship that
actually occurs at a time scale that is shorter than the time sampling may be not detectable
from the data or could be misinterpreted.
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4.4.3.1 Assumptions

Here, sufficient conditions are introduced such that the probability distribution of process
X admits a DBN representation defined by a DAG G (e.g. as in the dynamic network of
Figure 4.7). The first assumption is that the observed process X is first-order Markovian;
that is, given the past of the gene expression level process X1:t−1, the expression level of
a gene at time t depends only on the gene expression levels observed at the previous time
(t − 1).

Assumption 1: The stochastic process X is first-order Markovian, that is for all t ≥ 3, the
variables Xt are conditionally independent from the past variables X1:t−2 given the vari-
ables observed at the previous time point Xt−1, which is written: ∀t ≥ 3, Xt ⊥ X1:t−1|Xt−1.

The second assumption is that the variables observed simultaneously are condition-
ally independent, given the past of the process; in other words, time measurements are
considered close enough so that a gene expression level Xi

t measured at time t is better
explained by the previous time expression levels Xt−1 than by some current expression
level X j

t .

Assumption 2: For all t ≥ 1, the random variables {Xi
t ; ∀1 ≤ i ≤ p} are conditionally

independent given the past of the process X1:t−1, that is, ∀t ≥ 1,∀1 ≥ j, Xi
t ⊥X j

t |X1:t−1.

Shortly, Assumptions 1 and 2 allow the existence of a DBN representation according to a
DAG G that only contains edges pointing out from a variable observed at some time (t − 1)
towards a variable observed at next time t (no edges between simultaneously observed
variables). All in all, to restrict the dimension, this DBN model assumes a constant time
delay for all regulatory relationships (defined by the time points sampling). It is possible
to add simultaneous interactions, or a longer time delay by allowing the existence of edges
between variables observed either at the same time (i.e. X1

t → X2
t ) or with a longer time

delay (i.e. X1
t−2 → X2

t ). However, the dimension of the model increases exponentially with
the number of authorized time delays, which we can hardly afford given the amount of
time points. Finally, DAG G is unique whenever the expression profiles of the p genes are
linearly independent (see Assumption 3) – that is, whenever none of the profiles can be
written as a linear combination of the others.

Assumption 3: The expression profiles of the p genes form a set of linearly independent
vectors.

Whenever these three assumptions are satisfied, the probability distribution of process
X admits a DBN representation as exposed in the following theorem.

Definition-Theorem 1: (DBN representation [48]) Whenever Assumptions 1, 2 and 3 are
satisfied, the probability distribution of process X admits a DBN representation according
to DAG G, the edges of which describe exactly the full order conditional dependencies
between successive variables X j

t−1 and Xi
t given the remaining variables observed at time

t − 1 denoted by X− j
t−1 = {Xk

t−1; 1 ≤ k ≤ p, k �= j}. For Gaussian variables, the set of
edges of DAG G defining a DBN is

G =
{

X j
t−1 → Xi

t ; ∀1 ≤ i, j ≤ p, r
(

X j
t−1, Xi

t

∣∣ X− j
t−1

)
�= 0

}
. (4.7)
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A large majority of gene expression time series contain no or very few repeated measure-
ment(s) of the expression level of the same gene at a given time. Hence, to carry out an
estimation it is often assumed that the process is homogeneous across time (Assumption 4).

Assumption 4: The process is homogeneous across time: any edge is present during the
whole process.

This consists of considering that the system is governed by the same rules during the
whole time course. Then, (n − 1) is observed in repeated measurements of the expression
level of each gene at two successive time points. Note that this is a strong assumption,
which is not always satisfied but is necessary for estimation in most cases.

4.4.3.2 DBN Modeling for a Multivariate Auto-Regressive Process

A particular case of the DBN modeling discussed in the previous section is introduced here
when considering linear relationships – that is, the following first order auto-regressive
model (AR(1)).

AR(1) model with diagonal error covariance matrix:

∀t > 1, Xt = AXt−1 + B + εt , εt ∼ N (0, �). (4.8)

where A = (ai j )1≤i, j≤p is a p × p matrix, B = (bi )1≤i≤p is a p-dimensional real vector and
εt = (εi

t )1≤i≤p is a p-dimensional Gaussian vector with zero mean and covariance matrix
� = (σi j )1≤i, j≤p such that σi j = 0 for all i �= j . The errors εi

t and ε
j
t of two different

variables i and j are not correlated.
For an illustration, this AR(1) model was used by Opgen Rhein and Strimmer [49] to

analyze starch metabolism of Arabidopsis thaliana. Multivariate AR(1) modeling assumes
homogeneity across time (constant matrix A) and linearity of the dependency relationships.
Moreover, conditional on the past of the process, the random vector Xt only depends on
the random vector Xt−1 observed at time (t − 1), then Assumption 1 is satisfied. Finally,
Assumption 2 is satisfied whenever the error covariance matrix � is diagonal. Considering
noncorrelated measurement errors between distinct genes is a strong assumption, especially
since microarray data contain several sources of noise. Nevertheless, assuming � to be
diagonal is still reasonable after a normalization procedure.

For an illustration, any AR(1) process whose error covariance matrix � is diagonal
and where matrix A has the following form (where a11, a12, a21 and a32 refer to nonzero
coefficients),

A =

 a11 a12 0

a21 0 0
0 a32 0




admits a DBN representation according to the dynamic network of Figure 4.7a (p = 3).
Thus, the nonzero coefficient a21 corresponds to the edges pointing out from X1

t−1 toward
X2

t for all t ≥ 2. Indeed, according to the AR(1) model defined by matrix A, we have
X2

t = a21 X1
t−1 + ε2

t .
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4.4.3.3 More DBN Approaches

Various other DBN representations based on different probabilistic models have been
proposed in the literature. Both, Ong et al. [50] and Zou and Conzen [51] used discrete
DBN models: the level expression of each gene is assigned to a binary variable (each gene
is considered to be either ‘On’ (1) or ‘Off’ (0); that is, transcribed or not). Perrin et al.
[52] and Wu et al. [53] added hidden states to describe gene regulation (Hidden Markov
Models (HMMs), also called State Space Models (SSMs). Rangel et al. [54] and Beal
et al. [55] also used SSMs but added feedback from the previous time step gene expression.
Other researchers such as Imoto et al. [56] and Kim et al. [57] used nonparametric additive
regression models, while Sugimoto and Iba [58] applied nonparametric additive regression
to the difference expression levels between successive time points in an approach called
‘Dynamic Differential Bayesian networks’ (see also Kim et al. [57] for a review of several
of these methods).

4.5 Automation Methods for Inferring Regulatory Networks: the
Curse of Dimension

4.5.1 Problem

In most microarray gene expression data, there is a small number of measurements n and
a large number of variables p. The inference of either the correlation network or the con-
centration graph requires computation of the covariance matrix, �. However, the standard
theory to estimate � can be exploited only when n � p (which ensures that the sample
covariance matrix is positive definite [39]). In the same way, for DBN inference assuming
an AR(1) model, standard parameter estimation methods can only be used when n � p.
Then, the use of regularized estimators is absolutely essential. The dimension reduction
approaches discussed here improve estimation efficiency, which allows the ‘curse of di-
mension’ inherent to gene expression data (n � p) to be handled. First, a positive definite
estimate of � can be computed with shrinkage estimation. ‘Shrinkage’ estimates of partial
correlation coefficients and regression coefficients can also be derived. A standard proce-
dure (‘Lasso’ regression) and an heuristic approach based on ‘partial order dependencies’
can be exposed, both of which allow selection to be carried out within the putative edges
of either a concentration graph or a DBN model.

4.5.2 Shrinkage Estimation

4.5.2.1 Definition

Assuming centered data X = (X1, . . . , X p) for p variables (columns), the unbiased empir-
ical estimator of the covariance matrix is S = 1

n−1 X T X , where X T refers to the transpose
of matrix X. S = (si j ) is known to be inefficient for a small number of observations
(n � p). An efficient estimator of � can be furnished by shrinking the empirical corre-
lations ri j = si j√

sii s j j
between gene expression levels towards 0 and the empirical variances

sii against their median smedian = Median
1≤i≤p

(sii ). This guarantees the positive definiteness of

the estimated covariance matrix [59]. The components of a shrinkage estimates S∗ are
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obtained as follows,

s∗
i j = r∗

i j

√
s∗

i s∗
j with

{
r∗

i j = (1 − λ∗
1)ri j

s∗
i = λ∗

2smedian + (1 − λ∗
2)sii

(4.9)

where the particular choice of the shrinkage intensities λ∗
1 and λ∗

2 is aimed at minimizing
the overall mean squared error.

4.5.2.2 Usage

4.5.2.2.1 Correlation Network
Shrinkage estimates of both covariance and correlation matrix can be computed with the
function ‘cov.shrink’ of the R package ‘corpcor’ implemented by Schäfer and Strimmer
[59]. Further information about the R programming language can be found in Ref. [60].

4.5.2.2.2 Concentration Graph
By basing on the shrinkage estimates S∗, Schäfer and Strimmer [59] propose a model
selection procedure for concentration graph. The whole procedure (shrinkage estimation
of the partial correlation matrix and edge selection) is implemented in the R package
‘GeneNet’ [61].

4.5.2.2.3 DBN
Small sample shrinkage estimates of the coefficients of a multivariate AR(1) process can be
obtained by appropriately substituting the empirical covariance by the shrinkage covariance
( [49], the R code is available at http://strimmerlab.org/software.html).

4.5.2.3 Conclusions

The shrinkage approach improves the global estimation precision of the correlation, partial
correlation or partial regression coefficients in comparison with standard methods. Then,
by ordering the edges by decreasing coefficients, edge selection can be carried out. Multiple
testing correction can be performed with the local false discovery rate (FDR) approach
introduced by Schäffer and Strimmer [59].

4.5.3 Lasso Regression

4.5.3.1 Definition

The ‘LASSO’ for Least Absolute Shrinkage and Selection Operator [62] is a constrained
estimation procedure, which tends to produce some coefficients that are exactly zero.
Variable selection is then straightforward: only nonzero coefficients define significant de-
pendency relationships. When considering the DBN modeling for AR(1) (Equation (4.8)),
the gene expression level of each gene i is described by the next linear regression model,

∀t ≥ 2, Xi
t = bi +

p∑
i=1

ai j X j
t−1 + ei

t , where ei
t ∼ N (0, σi i ). (4.10)
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The LASSO estimates
(
b̂i , (âi j )1≤ j≤p

)
are obtained by minimizing the residual sum of

squares subject to the sum of the absolute values of the coefficients being less than a
constant c, as follows,

(
b̂i , (âi j )1≤ j≤p

) = arg min


 n∑

t=2

xi
t − bi −

p∑
j=1

ai j x
j
t−1




2

. (4.11)

The value of constant c is usually chosen by cross-validation.

4.5.3.2 Usage

LASSO estimation can be carried out with the LARS software, as developed by Efron
et al. [63] for R and Splus programming languages. The LASSO estimates are used
straightforwardly to infer dynamic Bayesian networks for an AR(1) process: nonzero
coefficients correspond to an edge of the DAG defining the DBN.

LASSO regression also allows concentration graphs inference, as proposed by Mein-
hausen and Bühlmann et al. [64], given that the regression coefficient satisfies,

|r (Xi , X j |{Xk ; k �= i, j})| = √
ai j a ji (4.12)

where ai j (resp. a ji ) refers to the regression coefficient defined by the following ‘static’
linear regression model explaining gene i (resp. gene j) expression level at time t , by
considering all gene j �= i expressions observed at the same time t ,

∀t ≥ 1, Xi
t = bi +

p∑
j=1
j �=i

ai j X j
t + ei

t , where ei
t ∼ N (0, σi i ). (4.13)

Note also that the ‘Inferelator’ is a procedure proposed by Bonneau et al. [65] for deriving
regulatory networks which combines LASSO regression with the integration of genome
annotation. The R code for the Inferelator is freely available upon request from the authors.

4.5.3.3 Conclusions

The LASSO is very easy to use and allows straightforward edge selection (nonsignificant
coefficients are automatically set to zero). It should be noted, however, that the LASSO
regression is performed successively for each gene (using Equation (4.10)), and tends to
maintain the number of parents of each node uniformly small (instead of keeping small
the comprehensive number of edges only). Indeed, the regulatory network to be inferred is
globally sparse, but not uniformly sparse.

4.5.4 Partial-Order Conditional Independencies

4.5.4.1 Definition

Another powerful approach that recently attracted much attention for inferring both con-
centration graphs and DBNs is based on the consideration of zero- and first-order con-
ditional independencies. The idea is to approximate the concentration graph (describing
full-order conditional independencies) by the graph G(0−1) describing zero- and first-order
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conditional independence [66]. In the graph G(0−1), an edge between the variables Xi and
X j is drawn if – and only if – together correlation r (Xi , X j ) and all first-order correlations
r (Xi , X j |Xk) between these two variables differ from zero – that is, the graph G(0−1)

contains the following set of undirected edges,

G(0−1) = {(Xi , X j ); ∀1 ≤ i, j ≤ p, r (Xi , X j ) �= 0 and ∀k �= i, j, r (Xi , X j |Xk) �= 0}
(4.14)

where r (Xi , X j |Xk) = r (Xi ,X j )−r (Xi ,Xk )r (X j ,Xk )√
[1−(r (Xi ,Xk ))2][1−(r (X j ,Xk ))2]

is the partial correlation between Xi

and X j given Xk .
Hence, whenever the possible correlation between two variables Xi and X j can be en-

tirely explained by the effect of some variables Xk , no edge is drawn between the nodes i
and j . This procedure allows a drastic dimension reduction: by using first-order conditional
correlations, estimation can be carried out accurately even with a small number of obser-
vations. Even though the graph of zero- and first-order conditional independence differs
from the concentration graph in general, it still reflects some measure of conditional inde-
pendence. Consequently, several automated procedures for regulatory network inference
use low-order independence. Wille and Bühlmann [66] have shown, through simulations,
that the graph G(0−1) offers a good approximation of sparse concentration graphs. Castelo
and Roverato [67] extended the approach to q-th order partial independence graphs for
(q > 1). In such q-th order partial independence graphs G(q), there is no edge between
two genes i and j if, for all subsets of l variables (0 ≤ l ≤ q), the l-th order partial cor-
relation r (Xi , X j |{Xk1, . . . , Xkl }) is null. More recently, this approach using low-order
independence has been adapted for DBN inference (see Chapter 3 in Ref. [48]).

4.5.4.2 Usage

4.5.4.2.1 Concentration Graph
Castelo and Roverato [67] exposed both a sharp analysis of their properties and an efficient
estimation based on q-th order partial correlation inference which is available in the R
package ‘qp’.

4.5.4.2.2 DBN
Using a first-order partial dependency approximation, the R package ‘G1DBN’ developed
by Lebre and Chiquet [68] allows the inference of DBNs through a two-step procedure:
(i) infer the first-order partial dependency DAG G(1); and (ii) infer the full-order dependency
DAG G from G(1).

4.5.4.3 Conclusions

The consideration of low-order partial independence is an heuristic approach based on
an approximation. However, basing on low-order conditional independence represents a
drastic dimension reduction in comparison with full-order independence testing, and makes
testing much more accurate.
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4.5.5 Further Graph Inference Approaches

The growing interest in genetic regulatory networks modeling has instigated the
development of numerous modeling alternatives. Among others, Toh and Horimoto [69]
have introduced a method which combines cluster analysis with GGM modeling, while
Wu et al. [69] have proposed an interactive analysis of gene interactions based on GGM
where the user may interactively analyze, modify and explore the inferred concentration
graph. Wang et al. [70] proposed first, to predict genetic regulatory networks with a GGM,
and second to quantify the effects of different experimental treatment conditions on gene
expression by using a graphical log-linear model (GLM). This approach is implemented in
the Matlab toolbox Mgraph.

Liang et al. [71] introduced the REVEAL algorithm for Boolean networks inference
based on mutual information, while Murphy [72] has proposed several Bayesian structure
learning procedures for Bayesian network (static or dynamic) in the open-source Matlab
package BNT (Bayes Net Toolbox).

Eventually, for DBN inference, Ong et al. [50] reduced the dimension of the problem
by considering prior knowledge on operons; Zou and Conzen [51] limited the potential
regulators to the genes with either earlier or simultaneous expression changes and estimate
the transcription time lag; Nachman et al. [73] have modeled regulatory relationships with
sigmoids (instead of linear regression); Stuart et al. [74] proposed to infer module networks,
where variables in each module share the same parents; and Beal et al. [55] and Luna
et al. [75] respectively have proposed a variational Bayesian method for DBN inference.

4.6 Conclusions

While deciphering the structure and organization of gene regulatory networks is still in its
infancy, one of the main obstacles is the difficulty of choosing the appropriate experimental
data, together with the appropriate computational approaches. Functional genomics has
yielded experimental techniques that allow interactions between genes to be elucidated
in a large-scale manner. An example is the use of DNA microarrays to monitor gene
expression over time. In this chapter, methodologies dedicated to the analysis of temporal
gene expression data were presented, together with their application, in order to answer
several biological questions. Whilst each of these approaches has its merits, none of them
is sufficient in and of itself. In the future, regulatory network models will benefit from
improvements in experimental data diversity (transcriptome, proteome, metabolome, etc.).
The trend is clearly towards the aggregation of multiple sources of biological information in
an effort to foster an understanding of the biology of studied systems. Indeed, the integration
of these sources represents one of the greatest challenges faced by computational biologists
today.

List of Abbreviations

RNA ribonucleic acid
mRNA messenger RNA
DNA deoxyribonucleic acid
cDNA complementary DNA
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RT-PCR real-time polymerase chain reaction
SAGE serial analysis of gene expression
GO gene ontology
GGMs graphical Gaussian models
BNs Bayesian networks
DAG directed acyclic graph
DBNs dynamic Bayesian networks
AR auto-regressive model
HMM hidden Markov models
SSM state space models
FDR false discovery rate
LASSO least absolute shrinkage and selection operator.
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Automated Prediction of Protein

Attributes and Its Impact on
Biomedicine and Drug Discovery

Kuo-Chen Chou
Gordon Life Science Institute, San Diego, California, USA

5.1 Introduction

Recent advances in large-scale genome sequencing have generated a huge number of
protein sequences. For example, whilst the Swiss-Prot database contained only 3939 protein
sequence entries in 1986, the number has now increased to 405 506, according to version
56.6 of the UniProtKB/Swiss-Prot released on 16 December 2008. In other words, the
number of protein sequences now known is more than 102 times that known about 20
years ago! With such an ‘avalanche’ of gene products in this post-genomic age, the critical
challenge is how to characterize these new-found proteins, both timely and accurately,
according to their functional, locational and structural features. This is because these
types of features or attributes [1, 2] are very useful for both basic research and drug
discovery. For example, when given an uncharacterized protein sequence, how can it
be identified as an enzyme or a nonenzyme? And, if it is an enzyme, to which main
functional class and subfunctional class does it belong? Is it a membrane protein or a
nonmembrane protein? If the former, to which membrane protein type does it belong?
Which subcellular location site does the protein reside? Does the protein remain in a single
subcellular location, or can it exist simultaneously in or move between two and more
subcellular locations? Which part of the protein serves as its signal sequence, and where
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might it be cleaved by proteases such as HIV protease and SARS enzyme? The list of
questions is vast.

Although the answers to such questions can be determined by conducting a variety of
biochemical experiments, the straightforward approach of performing experiments is not
only time-consuming but also very costly. Consequently, the gap between the number of
newly discovered protein sequences and knowledge of their attributes continues to expand.
In order to use these new-found proteins for basic research and drug discovery in a timely
manner [3–5], it would be highly desirable if such a gap could be bridged by develop-
ing effective automated methods for predicting the various attributes of uncharacterized
proteins, based on their sequences.

In this chapter, we systematically introduce the recent progress of automated methods
with various computational approaches and models. In particular, for those automated
methods where web-servers are available, step-by-step instructions are provided describing
how these can be used to obtain the requisite data.

5.2 Locational and Functional Characterization

5.2.1 Subcellular Localization

Referred to by many as the ‘building block of life’, the cell is deemed the most basic
structural and functional unit of all living organisms. According to cellular anatomy, a cell
is constituted by many different components, compartments or organelles (Figure 5.1), all
of which carry out different, specialized tasks. For example, the cell nucleus contains the
genetic material (DNA) that governs all functions of the cell, while the cytoplasm, a jelly-
like material, takes up most of the cell volume, filling the cell and serving as a ‘molecular
soup’ in which the cell organelles are suspended. The cytoskeleton functions as the cell’s
scaffold, organizing and maintaining its shape, as well as anchoring the organelles in place.
The cell membrane functions as a boundary layer to contain the cytoplasm, the cell wall
provides protection from physical injury, and the mitochondrion serves as the cell’s ‘power
generator’ playing a critical role in generating energy in the eukaryotic cell.

The most critical survival functions of the cell, however, are effected by its proteins [6,7].
Within it divided by many different compartments or organelles – which usually are
referred to as ‘subcellular locations’ (Figure 5.1) – a cell typically contains approximately
one billion (109) protein molecules. Each protein molecule has its own location (for a
single-location protein) or locations (for a multiple-location or multiplex protein). Thus,
one of the fundamental goals in cell biology and proteomics is to identify the subcellular
localization and function of those proteins which serve as the cell’s ‘primary engines’.
Information regarding the subcellular locations of the proteins can provide useful insights
about their functions. Likewise, in order to understand the intricate pathways that regulate
biological processes at the cellular level, knowledge of protein subcellular localization is
indispensable.

During the past 16 years, a variety of predictors have been developed to deal with
the challenge [8–52]. This section focuses on those predictors that can be used by the
vast majority of experimental scientists to easily generate practically more useful data.
In order to meet such a requirement, the predictors should have the following features:
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Figure 5.1 Schematic illustration to show many different components or organelles in a
eukaryotic cell. (Reproduced, with permission, from Ref. [59]. Copyright 2007, American
Chemical Society)

(i) a user-friendly web-server that is freely accessible to the public; (ii) a powerful prediction
engine to achieve very high accuracy; (iii) a rigorous dataset with wide coverage scope to
train and test the prediction engine; and (iv) a considerable flexibility to deal with proteins
with multiple location sites or for various specific organisms.

A web-server package called ‘Cell-PLoc’ [53] was established recently at the web site
of http://chou.med.harvard.edu/bioinf/Cell-PLoc/. This is an automated and computational
tool that identifies the subcellular locations of uncharacterized proteins based on their se-
quences, without the need to understand the detailed mathematics. The web-server package
contains six predictors, formulated as follows:

Cell-PLoc =




Plant-PLoc,for plant proteins covering 11 sites
Gpos-PLoc,for Gram positive proteins covering 5 sites
Gneg-PLoc,for Gram negative proteins covering 8 sites
Virus-PLoc,for virus proteins covering 7 sites
Hum-mPLoc,for human proteins covering 14 sites
Euk-mPLoc,for eukaryotic proteins covering 22 sites

(5.1)

Plant-PLoc in Equation 5.1 is specialized for predicting the subcellular localiza-
tion of plant proteins [45]. To access the Plant-PLoc predictor, open the web page
http://chou.med.harvard.edu/bioinf/Cell-PLoc/, and click on the button Plant-PLoc. Fig-
ure 5.2 shows the top page of the web server for Plant-PLoc. By clicking the relevant



P1: JYS

c05 JWBK327-Alterovitz December 24, 2008 14:56 Printer: Yet to come

100 Automation in Proteomics and Genomics

Plant-PLoc: Predicting plant protein subcellular location

Read Me Data Citation Download

Contact© Hongbin (2006)

Please enter the plant protein sequence in Fasta format (Example):

Submit Clear All

Plant-PLoc: Predicting plant protein subcellular location

Read Me Data Citation Download

Contact© Hongbin (2006)

Please enter the plant protein sequence in Fasta format (Example):

Submit Clear All

Figure 5.2 Illustration showing the top page of the web server Plant-PLoc at
http://chou.med.harvard.edu/bioinf/plant/

button, it is possible to browse the desired information; for example, clicking the Read
Me button will pop a screen to show the ‘Caveat’ in using the predictor and its coverage
scope. The current version of Plant-PLoc can cover the following 11 subcellular locations:
(1) cell wall; (2) chloroplast; (3) cytoplasm; (4) endoplasmic reticulum; (5) extracellular;
(6) mitochondrion; (7) nucleus; (8) peroxisome; (9) plasma membrane; (10) plastid; and
(11) vacuole. This is illustrated by the figure inserted in the ‘Caveat’ panel in the Read Me
slot at the web site.

By clicking the Citation button, it is possible to find the relevant reports that document
the detailed development of Plant-PLoc.

By clicking the Data button, one can find the benchmark dataset used to develop Plant-
PLoc predictor.

By clicking the Download button, one can download the results predicted by Plant-PLoc
for all the plant protein entries (except those annotated with ‘fragment’ or those with
less than 50 amino acids) in Swiss-Prot database that do not have subcellular location
annotations, or are annotated with uncertain terms such as ‘probable’, ‘potential’, ‘likely’,
or ‘by similarity’. The large-scale predicted results have been deposited in a downloadable
file prepared in ‘Microsoft Excel’ format and ‘PDF’ format, respectively. To download the
former, click Tab Plant-PLoc.xls; to download the latter, click Tab Plant-PLoc.pdf. In order
to support the plant genome sequencing projects [54, 55], the large-scale predicted results
have been categorized according to their species into these 16 groups: (1) Arabidopsis;
(2) barley; (3) Chlamydomonas; (4) liverwort; (5) maize; (6) mesostigma; (7) pea; (8)
potato; (9) rape; (10) rice; (11) soybean; (12) spinach; (13) tobacco; (14) tomato; (15)
wheat; and (16) others. To download the categorized results, simply click Tab Plant-PLoc
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category.xls. Note that the above large-scale results predicted by Plant-PLoc will be updated
periodically to include new entries of plant proteins and reflect the continuous development
of Plant-PLoc. The large open window at the center of Figure 5.2 is for users to type or
paste in the sequence of a query protein for prediction. The sequence should be in FASTA
format, as can be seen by clicking the Example button. After entering the input into the
window, click the Submit button to obtain the predicted result. For a step-by-step guide on
how to use the web server, see Ref. [53].

Gpos-PLoc [56] is specialized for predicting the subcellular localization of Gram-
positive bacterial proteins, and its current version covers the following five sites:
(1) cell wall; (2) cytoplasm; (3) extracellular; (4) periplasm; and (5) plasma membrane.

Gneg-PLoc [57] is specialized for predicting the subcellular localization of Gram-
negative bacterial proteins, and its current version covers the following eight sites:
(1) cytoplasm; (2) extracellular; (3) fimbrium; (4) flagellum; (5) inner membrane;
(6) nucleoid; (7) outer membrane; and (8) periplasm.

Virus-PLoc [58] is specialized for predicting the subcellular localization of virus pro-
teins within host and virus-infected cells. The current version encompasses the following
seven sites: (1) cytoplasm; (2) endoplasmic reticulum; (3) extracellular; (4) inner capsid;
(5) nucleus; (6) outer capsid; and (7) plasma membrane.

By following the same procedures as described for Plant-PLoc above, users can access
and draw on Gpos-PLoc, Gneg-PLoc and Virus-PLoc, respectively, according to their
needs.

Hum-mPLoc and Euk-mPLoc are specialized for predicting the subcellular localization
of human proteins [46] and eukaryotic proteins [59], respectively. The ‘m’ right before
‘PLoc’ stands for the first character of ‘multiple’, meaning that the corresponding predictor
can be used to deal with proteins with both single and multiple subcellular locations. Al-
though most proteins reside in one subcellular location, some may simultaneously exist at,
or move between, two or more different subcellular locations [60]. For instance, according
to the Swiss-Prot database (version 50.7, released 19 September 2006), among the 6408
human protein entries that have experimentally observed subcellular location annotations,
973 (≈15%) have multiple location sites; among the 33 925 eukaryotic protein entries
that have experimentally observed subcellular location annotations, 2715 have multiple
location sites, meaning about 8% bearing the multiplex feature. Proteins with multiple
locations or dynamic features of this type are particularly interesting, as they may have
some very special biological functions intriguing to both basic research and drug discovery
investigators.

Only two of the previously discussed predictors been developed for dealing with the
multiplex proteins because, to date, the observed percentages of multiple-location proteins
in the other organisms are still less than 5%. It is anticipated that as more experimental
annotation data become available in the future, predictors also capable of dealing with
multiplex proteins for other organisms, such as Plant-mPLoc, Gpos-mPLoc, Gneg-PLoc
and Virus-mPLoc, will be developed in response.

Hum-mPLoc [46] was developed from Hum-PLoc [61] by enabling it also to deal with
multiplex proteins. The current version of Hum-mPLoc covers the following 14 subcellu-
lar locations: (1) centriole; (2) cytoplasm; (3) cytoskeleton; (4) endoplasmic reticulum; (5)
endosome; (6) extracellular; (7) Golgi apparatus; (8) lysosome; (9) microsome; (10) mito-
chondrion; (11) nucleus; (12) peroxisome; (13) plasma membrane; and (14) synapse.
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Euk-mPLoc [59] was developed from Euk-OET-PLoc [62] and Euk-PLoc [47] by en-
abling it also to deal with multiplex proteins. The current version of Euk-mPLoc spans
the following 22 subcellular location sites: (1) acrosome; (2) cell wall; (3) centriole;
(4) chloroplast; (5) cyanelle; (6) cytoplasm; (7) cytoskeleton; (8) endoplasmic reticu-
lum; (9) endosome; (10) extracellular; (11) Golgi apparatus; (12) hydrogenosome; (13)
lysosome; (14) melanosome; (15) microsome; (16) mitochondrion; (17) nucleus; (18) per-
oxisome; (19) plasma membrane; (20) plastid; (21) spindle pole body; and (22) vacuole,
as illustrated in Figure 5.1.

For the detailed principles and mathematics of Hum-mPLoc and Euk-mPLoc, the reader
is referred to the original reports [46, 59] and to a recent review [52]. By following the
same procedures as described for Plant-Ploc, both Hum-mPLoc and Euk-mPLoc can be
accessed. Now, the difference is that the predicted result for a query protein by Hum-mPLoc
or Euk-mPLoc may contain one or more than one location, but a predicted result by any
other predictor in Equation 5.1 will always contain one – and only one – location.

Although the establishment of the aforementioned predictors has involved much com-
plicated mathematics and other knowledge, the corresponding web servers are extremely
simple and easy to use. By simply typing or pasting in the query protein entry, the user
can secure the desired result in less than 5 seconds [53]. This is particularly useful for the
vast majority of experimental scientists who wish to obtain their desired results, without
the need to understand the detailed mathematics.

In addition to the user-friendly web-server, each of the six predictors in the Cell-PLoc
package has the following features that distinguish themselves from the other existing
predictors:

� Wide-coverage and stringent benchmark datasets which cover up to 22 subcellular loca-
tion sites [59] and in which none of protein samples included has ≥25% sequence identity
to any other in a same subcellular location to avoid homology bias [46, 56, 57, 61–63];

� Very sophisticated and powerful techniques, such as optimized evidence-theoretic K-
nearest neighbor (OET-KNN) classifier [2,64] and fusion approach [52,65], were intro-
duced to enhance the prediction accuracy.

� The large-scale predicted results are available through a downloadable file in the web
site, as illustrated below.

In order to maximize the convenience for the people working in germane disciplines,
each of the six predictors in the Cell-PLoc package has been used to identify all of the
Swiss-Prot database protein entries in the corresponding organism (except those annotated
with ‘fragment’, or those with fewer than 50 amino acids) that do not have subcellular
location annotations or are annotated with uncertain terms such as ‘probable’, ‘potential’,
‘likely’, or ‘by similarity’. These large-scale predicted results can be directly downloaded
by clicking the Download button on the top page of each of the six web-servers. These
results can serve two purposes: (i) that they are available directly to the users for immediate
use; and (ii) to set a preceding mark for future experimental results to examine the accuracy
of these web-server predictors.

In total, 334 eukaryotic proteins are listed in Appendix A (Section 5.6) as examples.
Their experimental annotated subcellular locations were not available before Swiss-Prot
53.2 was released on 26 June 2007; however, according to the large-scale predicted results
by Euk-mPLoc that were submitted for publication on 12 November 2006 as Supporting



P1: JYS

c05 JWBK327-Alterovitz December 24, 2008 14:56 Printer: Yet to come

Automated Prediction of Protein Attributes 103

Information B in Ref. [59], they were also simultaneously placed in the downloadable file
called Tab Euk-mPLoc at http://chou.med.harvard.edu/bioinf/euk-multi/Download.htm.
The subcellular locations of the 334 eukaryotic proteins are presented in column 4 of
Appendix A where, in order to facilitate comparison, the corresponding experimental re-
sults which became available about seven months later are also listed, in column 5. The
data in the table illustrate the following. Of the 334 eukaryotic proteins, 309 are with single
location site and 25 with multiple location sites. Of the 309 single location proteins, only
22 were incorrectly predicted; of the 25 multiple location proteins, two (i.e. No. 104 and
No. 322) were incorrectly predicted. It is interesting to see that the predicted result for
No. 104 was ‘Centriole; Nucleus’, while the experimental observation was ‘Cytoplasm;
Nucleus’. The significance is that only one of its two location sites was incorrectly pre-
dicted. The predicted result for No. 322 was ‘Centriole; Cytoplasm; Nucleus’ while the
experimental observation was ‘Nucleus; Cytoplasm’, meaning that both of its observed
location sites were correctly predicted, although the site of ‘Centriole’ was overpredicted.
As proved later experimentally, the overall success rate for the 334 proteins is over 93%.

5.2.2 Membrane Protein Type

Given an uncharacterized protein sequence, how can one identify whether it is a membrane
protein, or not? And, if it is a membrane protein, to which membrane protein type does it
belong? It is important to address these problems quickly, because they are closely relevant
to the query protein’s biological function and to its molecular interaction process within a
biological system. Most of the functional units, or organelles, are ‘enveloped’ by one or
more membranes, which form the structural basis for many important biological functions.
Although the lipid bilayer is the basic structure of membranes, most of the specific functions
of the cell membrane are performed by the membrane proteins (see, e.g. Refs [6, 7]). For
example, it is through membrane proteins that molecules can be transported into and out
of cells by such methods as proton pumps (see Refs [66a, 66b, 67]) and ion pumps (see
Refs [68,69]), channel and carrier proteins (see Refs [70]); that various chemical messages
such as nerve impulses and hormone activity can be passed between cells (see Ref. [71]);
that cells can be attached to an extracellular matrix in grouping cells together to form
tissues; that parts of the cytoskeleton can be attached to the cell membrane in order to
provide shape; and that the metabolism process and the body’s defense mechanisms can
be completed.

The function of a membrane protein is correlated with the type to which it belongs,
and membrane proteins possess different types. For instance, transmembrane proteins can
either transport molecules across the membrane or function on both of its sides, whereas
proteins that function on only one side of the lipid bilayer are often associated exclusively
with the lipid monolayer or the protein domain on that side. Therefore, information about
membrane protein type can provide useful hints for determining the function of an unchar-
acterized membrane protein. Furthermore, because of the fluid nature of their infrastructure,
membrane proteins can move around the cell membrane to reach where their function is
required. Identifying the membrane protein type can shed light upon its brand of motion,
which is indispensable for studying the biological process at the cellular level from the
dynamic point of view. Consequently, if acquiring the knowledge of the membrane protein
type is timely, the pace in determining the function of uncharacterized membrane proteins



P1: JYS

c05 JWBK327-Alterovitz December 24, 2008 14:56 Printer: Yet to come

104 Automation in Proteomics and Genomics

will be expedited, and it will also help in understanding their action process. With the
deluge of protein sequences entering into databanks, and the fact that membrane proteins
are encoded by 20–35% of genes [72], it remains a challenge to develop a sequence-based
automated method to quickly and effectively identify a new-found protein according to the
following two questions: (1) Is it a membrane protein? and (2) if it is, to which type does
it belong?

Stimulated by the encouraging results in predicting the structural classification of pro-
teins based on their amino acid composition (AAC) [73–81], the covariant discriminant
algorithm was introduced in 1999 [82] to predict the types of membrane protein according
to their AAC. However, the AAC does not contain any sequence order information. In
order to avoid completely losing the sequence order information, the pseudo amino acid
composition (PseAAC) was introduced [20], since which time various prediction methods
have been proposed in this area [63, 64, 83–95].

As the concept of PseAAC has been widely used by many investigators to improve
the prediction quality of various protein attributes [1, 27, 32, 34, 40, 44, 47–50, 63–65,
87, 89, 90, 92, 93, 95–113], a web-server called PseAAC [114] was recently established
at http://chou.med.harvard.edu/bioinf/PseAAC/. With this web-server, users are able to
generate different types of PseAACs for a given protein sequence.

In this section, we focus on a recently developed powerful predictor called ‘MemType-
2L’ [115], which covers eight membrane types (most other predictors cover only five to
six membrane types) (Figure 5.3). The high success rates yielded by MemType-2L are due
to: (i) taking into account the evolution information by representing the protein samples
with the pseudo position-specific score matrix (Pse-PSSM) vectors derived from the results
generated by PSI-BLAST [116]; and (ii) operating by fusing many powerful individual
OET-KNN classifiers [62], so as to minimize both the information-missing problem and the
overfitting problem (Figure 5.4a). MemType-2L is a two-layer predictor (Figure 5.4b): the
first layer prediction engine identifies a query protein as membrane or nonmembrane; if it
is membrane, the process will be automatically continued with the second-layer prediction
engine to further identify its type among the following eight categories (Figure 5.3):
(1) type I; (2) type II; (3) type III; (4) type IV; (5) multipass; (6) lipid-chain-anchored;
(7) glycophosphatidylinositol (GPI)-anchored; and (8) peripheral.

In order to support the people working in the relevant area, the user-friendly, freely
accessible web-server for MemType-2L is provided at http://chou.med.harvard.edu/
bioinf/MemType.

5.2.3 Enzyme Functional Class

Given a protein sequence, how is it identified as an enzyme or nonenzyme? Also, if
it is an enzyme, to which main functional class does it belong? And does it have a
subfunctional class? It is important to address these problems because they are closely
correlated with the biological function of an uncharacterized protein and its acting object
and process [117]. Although the answers to these questions can be found by conducting
various biochemical experiments, such an approach is both time-consuming and costly.
Hence, during the past five years a number of predictors have been developed to deal with
these problems [88, 107, 118–123].
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Figure 5.3 Schematic illustration showing the eight types of membrane protein. (1) Type I
transmembrane; (2) type II; (3) type III; (4) type IV; (5) multipass transmembrane; (6) lipid-
chain-anchored membrane; (7) GPI-anchored membrane; and (8) peripheral membrane. As
shown in the figure, types I, II, III and IV are all of single-pass transmembrane proteins; see
Ref. [252] for a detailed description concerning their difference. (Reproduced, with permission,
from Ref. [115])
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Figure 5.4 A flowchart to show: (a) the Pse-PSSM OET-KNN ensemble classifier; and (b) the
MemType-2L. (Reproduced, with permission, from Ref. [115])
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Figure 5.5 A schematic drawing using tree branches to classify enzyme and nonenzyme, as
well as the six main functional classes of enzymes and their subclasses. (Reproduced, with
permission, from Ref. [123])

Among the aforementioned predictors, the recently developed ‘EzyPred’ [123] distin-
guished itself with the following features:

� Wider and deeper coverage. EzyPred covers not only all six enzyme main-functional
classes [124], but also many of their subfunctional classes (see Figure 5.5).

� Higher expected accuracy. EzyPred is formed by fusing many powerful individual OET-
KNN classifiers [62] based on the FunD (functional domain) approach and the Pse-PSSM
approach, respectively (Figure 5.6a). The former is closely related to the functions of
proteins [125], while the latter can incorporate their evolution information [116]. This
type of hybridization approach yields very high success rates [123].
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� A user-friendly web-server, which is freely accessible at http://chou.med.harvard.
edu/bioinf/EzyPred/ by the public. EzyPred is very easy to use, being designed with
a top-down approach scheme. It is a three-layer predictor: the first layer prediction
engine serves to identify a query protein as enzyme or nonenzyme; the second layer
identifies the main functional class, and the third layer the subfunctional class (Fig-
ure 5.6b). Within 90 s of submitting the sequence of a query protein into its input box,
EzyPred will determine whether the query protein is an enzyme or nonenzyme and, if it
is an enzyme, to which main-functional class and subfunctional class it belongs. For a
detailed description and algorithm of EzyPred, the reader is referred to Ref. [123].

5.2.4 Protease Type

Proteases, which are also referred to as proteinases or peptidases [126], are proteolytic
enzymes that are essential for the synthesis of all proteins. They control protein size,
composition, shape, turnover and ultimate destruction, and account for approximately 2%
of the human genome and 1–5% of the genomes of infectious organisms [127]. According
to the recent inference by Rawlings [128], the number of proteases might actually be at
least double what has previously been believed. In regulating most physiological processes
by controlling the activation, synthesis and turnover of proteins, proteases play pivotal
regulatory roles in the conception, birth, digestion, growth, maturation, aging and death of
all organisms (see Refs [3, 129–136]). Proteases are also essential in viruses, bacteria and
parasites for their replication and the spread of infectious diseases; in all insects, organisms
and animals for the effective transmission of disease; and in human and animal hosts for the
mediation and sustenance of diseases. The actions of proteases are exquisitely selective (see
Refs [137,138]), with each protease being responsible for splitting very specific sequences
of amino acids under a preferred set of environmental conditions. According to their
catalytic mechanisms, proteases are classified into the following six types: (1) aspartic; (2)
cysteine; (3) glutamic; (4) metallo-; (5) serine; and (6) threonine. As the different types
of proteases have different functions and biological processes, it is important for both
basic research and drug discovery to consider the following two problems. First, given the
sequence of a protein, how is it identified as a protease or nonprotease? Second, if it is a
protease, then to which protease type does it belong?

Although the two problems can be solved by various experimental means, again, this
will be both time-consuming and costly. Recently, two approaches were developed to
rectify these problems. The first method is called ‘FunD-PseAA’ [139], and is based on
a strategy that involves hybridizing the functional domain composition [25] and PseAA
composition [20]; the other method – known as ‘GO-PseAA’ [140] – is based on a strategy
of hybridizing the gene ontology database [141] [119, 142] and PseAA composition [20].
Both methods have shown much promise. For GO-PseAA [140], the overall expected
success rate in identifying a protein as protease or nonprotease was about 91%, and that of
a protease type about 85%. For FunD-PseAA [139], the corresponding rates were 92 and
94%, respectively.

5.2.5 GPCR Type

One of the largest gene families in the human genome is that encoding the G-protein-
coupled receptors (GPCRs), with approximately 450 genes identified to date. GPCRs
are plasma membrane receptors with a trademark of seven-transmembrane helices
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Figure 5.7 Schematic representation of a GPCR with a trademark of seven-transmembrane
helices, depicted as cylinders and connected by alternating cytoplasmic and extracellular
hydrophilic loops. The seven-helix bundle thus formed has a central pore on its extracellular
surface. The red entity located in the central pore represents a ligand messenger. (Reproduced,
with permission, from Ref. [147])

(Figure 5.7), and play a key role in cellular signaling networks that regulate various physio-
logical processes, such as vision, smell, taste, neurotransmission, secretion, inflammatory,
immune responses, cellular metabolism and cellular growth. These proteins are important
for understanding human physiology and disease and, indeed, much effort in pharmaceuti-
cal research have been targeted at understanding their structure and function. The pathways
involving GPCRs are the targets of hundreds of drugs, including antihistamines, neurolep-
tics, antidepressants and antihypertensives. GPCRs also mediate the actions of certain
medications used to treat disorders as diverse as cardiovascular disease, drug dependency
and mental illness [143].

As membrane proteins GPCRs are difficult to crystallize, and most will not dissolve in
normal solvents. Hence, at this juncture very few GPCR structures have been determined.
In contrast, more than thousand GPCR sequences are known, and many more are expected
to be known in the near future. Likewise, the functions of many GPCRs are not known,
and determining their ligands and signaling pathways is both time-consuming and costly.
These difficulties have both motivated and challenged the development of an ‘evolutionary
pharmacology’, where we need a computational method which can predict the classification
of the families and subfamilies of GPCRs based on their primary sequences to enable drug
classification.

During the past five years or so, several methods have been proposed in this re-
gard [144–149]. Some have been developed to identify the main functional classes of
GPCRs (see Ref. [147]), and others for the subfunctional classes (see Ref. [145]) although,
owing to a lack of sufficient statistical data, the prediction coverage is quite limited. For
instance, according to the G protein-coupled receptor database (GPCRDB) [150, 151],
GPCRs are classified into the following six main functional classes: ‘rhodopsin like’;
‘secretin like’; ‘metabotrophic/glutamate/pheromone’ class; ‘fungal pheromone’; ‘cAMP
receptors’; and ‘Frizzled/Smoothened family’. The prediction method in Ref. [147] can
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Figure 5.8 Schematic drawing to show three different main families of GPCRs. (a) Class A-
‘rhodopsin like’; (b) class B-‘secretin like’; (c) class C-‘metabotrophic/glutamate/pheromone’.
(Reproduced, with permission, from Ref. [147])

cover only the first three main functional classes (see Figure 5.8), while in Ref. [145]
only seven subfunctional classes of the rhodopsin-like GPCR family are covered (as
shown in Figure 5.9). Very recently, based on the cellular automaton image [238a, b]
and the gray-level-co-occurrence matrix approach, a web-server known as ‘GPCR-CA’
was established at the web site http://218.65.61.89:8080/bioinfo/GPCR-CA. This is able
to identify whether a query protein is GPCR or nonGPCR and, if it is a GPCR, which of
the six main-functional classes to which it belongs will also be identified as documented
in [239].

1 2 3 4

655 7

Figure 5.9 Schematic drawing showing the different subtypes of rhodopsin-like GPCR,
where the receptors binding with ligands 1, 2, 3, 4, 5, 6 and 7 represent the adrenoceptor-
type, chemokine-type, dopamine-type, neuropeptide-type, olfactory-type, rhodopsin-type and
serotonin type, respectively. (Reproduced, with permission, from Ref. [145])
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5.3 Signal Peptide and Protease Cleavage Site

The identification of cleavage sites in proteins is an important topic, because it is closely
relevant to both basic research and drug discovery problems, as illustrated below.

5.3.1 Signal Peptide

A large number of proteins with various essential functions are constantly being constructed
within cells and, as nascent proteins, must be transported either out of the cell or to the
different compartments (the organelles) within the cell. The main question is, how are
these newly made proteins transported across the membrane surrounding the organelles,
and how are they directed to their correct location? It has become clear now that, whether
a protein will pass through a membrane into a particular organelle, become integrated
into the membrane, or be exported out of the cell, is determined by a signal peptide.
This is a short sequence of amino acids in a particular order that forms an integral part
of the protein. Signal peptides are usually N-terminal extensions that are between three
and 60 amino acids long, although they can also be located within a protein or at its C-
terminal end [152,153]. All secreted proteins, as well as many transmembrane proteins, are
synthesized with N-terminal signal peptides. Functioning as an ‘address tag’ or ‘zip code’
for directing proteins to their correct cellular and extracellular locations (Figure 5.10),
signal peptides control the entry of virtually all secretory proteins to the pathway, both

Nucleus

Plasma membrane

Cytoplasm

Mitochondrion

Endoplasmic
reticulum

Cytoskeleton

Peroxisome

Lysosome

Golgi
apparatus

Centriole

Extracell
Microsome

Signal protein

NucleusNucleus

Plasma membrane

Cytoplasm
Cytoskeleton

Peroxisome

Lysosome

Golgi
apparatus

Extracell
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Signal protein

Figure 5.10 Schematic diagram showing how the signal peptides of secretory proteins func-
tion as an ‘address tag’ in directing the proteins to their proper cellular and extracellular
locations. The signal peptide sequence is colored in purple, and the mature protein sequence
in blue. (Reproduced, with permission, from Ref. [167])
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in eukaryotes and prokaryotes [154, 155]. If the signal peptide for a nascent protein were
to be changed, the protein in the incorrect cellular location would cause a variety of
unusual diseases. For example, a very high level of cholesterol in the blood in some forms
of familial hypercholesterolemia is due to deficient transport signals, whereas hereditary
diseases such as cystic fibrosis are caused by proteins that do not reach their correct
destination. Knowledge of signal peptides can also be used to reprogram cells in a desired
way for future cell and gene therapy. To realize this, it is important to identify the signal
peptide for a nascent protein. With the ‘avalanche’ of nascent protein sequences entering
into databanks in the post-genomic age, it is desirable to develop an automated method
for the rapid and reliable prediction of signal peptides for timely use in basic research and
drug discovery [3], and many efforts have been made in this regard [156–166]. Recently,
two new signal peptide predictors were developed, and details of these will be briefly
introduced below. However, as very few studies have been completed in predicting the
signal peptide within a protein or at the C-terminal end, the focus here will be only on the
N-terminal signal peptide prediction.

5.3.1.1 Signal-CF

Signal-CF [167] is a two-layered predictor. The first-layer prediction engine is to identify
a query protein as secretory or nonsecretory; if it is secretory, then the process will be
automatically continued with the second-layer prediction engine to further identify the
cleavage site of its signal peptide (Figure 5.11). As mentioned above, the signal peptide
of a secretory protein is usually located at its N-terminal end, and will be cleaved off by
a signal peptidase once the protein is translocated through a membrane. The cleavage site
is commonly symbolized by (−1, +1), namely the position between the last residue of the
signal peptide and the first residue of the mature protein, as illustrated in Figure 5.12. It

Given a query protein 
sequence P

Stop further 
computation

Identify whether P is secretory 

Secretory Non-secretory

Predict the signal 
peptide cleavage site

Given a query protein 
sequence P

Stop further 
computation

Identify whether P is secretory 
or nonsecretory

Secretory Nonsecretory

Predict the signal 
peptide cleavage site

Figure 5.11 Flowchart showing how the Signal-CF predictor functions in identifying a query
protein as secretory or nonsecretory, and in predicting its signal peptide cleavage site if the
protein is secretory
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Figure 5.12 Schematic diagram showing the signal sequence of a protein and how it is
cleaved by the signal peptidase. An amino acid in the signal part is depicted as a red circle
with a white number to indicate its sequential position, while that in the mature protein
depicted as an open circle with a blue number. The signal sequence contains Ls residues and
the mature protein Lm residues. The cleavage site is at the position (−1, +1) – that is, between
the last residue of the signal sequence and the first residue of the mature protein. (Reproduced,
with permission, from Ref. [167])

can also be seen from the figure that, once the cleavage site is identified, the corresponding
signal peptide is automatically known, and vice versa. However, for different secretory
proteins the signal peptides are also quite different – not only in sequence components
and sequence orders but also in sequence lengths. This was an unavoidable difficulty for
all previous methods, and in order to deal with this type of situation the flexible scaled
window approach was introduced in Signal-CF by fusing the results derived from many
width-different scaled windows through a voting system. Signal-CF has also distinguished
itself from many of the previous predictors by explicitly incorporating the subsite coupling
effects along a protein sequence. These two remarkable features have defined the name of
Signal-CF, where C stands for ‘coupling’ and F for ‘fusion’.

Designed for predicting signal peptides in eukaryotic proteins as well as in Gram-positive
and Gram-negative proteins, Signal-CF is freely available as a web-server at http://www.
csbio.sjtu.edu.cn/bioinf/Signal-CF or http://chou.med.harvard.edu/bioinf/Signal-CF/. As
it can yield highly accurate predicted results in a very short computational time, Signal-CF
is particularly useful for large-scale prediction tasks.

5.3.1.2 Signal-3L

Signal-3L [168], which was developed in order to further increase the prediction power
and the coverage scope, is a three-layer predictor designed for identifying the signal pep-
tides of human, plant, animal, eukaryotic, Gram-positive and Gram-negative proteins. The
target of the first-layer is to identify a query protein as secretory or nonsecretory with the
OET-KNN classifier [62] in a Pse-AA composition space [20]. If the protein is identified
as secretory, the process will be automatically continued by entering into the second-
layer, where a set of candidates for its signal peptide cleavage site are to be selected
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Figure 5.13 Flowchart showing how the three-layer predictor functions to identify a query
protein as secretory or nonsecretory, selecting the candidates of its signal peptide cleavage
site if the protein is secretory, and determining the final cleavage site

with a subsite-coupled discriminator by sliding a scaled window along the protein se-
quence. The role of the third-layer is finally to determine the unique cleavage site by
fusing the global sequence alignment outcome for each of the selected candidates through
a voting system. The flowchart in Figure 5.13 shows the process of how the three-layer
predictor functions in identifying the signal peptide of a query protein. Signal-3L is ac-
cessible to the public as a web-server at http://chou.med.harvard.edu/bioinf/Signal-3L/ or
http://www.csbio.sjtu.edu.cn/bioinf/Signal-3L/. Compared to Signal-CF, the computational
time of Signal 3-L may be longer, but it will yield slightly more accurate results. In order to
maximize convenience for the people working in relevant areas, Signal-3L has been used
to predict the signal peptide cleavage sites for all those protein entries in the Swiss-Prot
database that are classified as secretory proteins by Signal-3L, but that do not have signal
peptide annotations or are annotated with uncertain terms. The results obtained at present
have filled the blank area of signal peptide for 4080 human proteins, 3124 plant proteins,
13 527 animal proteins, 6165 other eukaryotic proteins, 5418 Gram-positive proteins and
13 790 Gram-negative proteins. The large-scale results have been deposited in a download-
able file prepared with Microsoft Excel and named ‘Tab Signal-3L.xls’. To download these
results, open the web-server Signal-3L, and then click on the Data button. The large-scale
results can also be obtained from the Online Supporting Information B of [168].

Both, Signal-CF and Signal-3L can be used to refine the results by other predictors in
this area. For instance, listed in Table 5.1 are the signal peptides that were mis-predicted
by SignalP-NN and/or SignalP-HMM in the SignalP package [165], yet were corrected by
Signal-3L.
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Table 5.1 List of examples showing that signal peptides miss-predicted by SignalP-NN
and/or SignalP-HMM are corrected by Signal-3L

Proteina
Experimentally verified

signal peptidea
SignalP
3.0-NN

SignalP
3.0-HMM Signal-3L

AAF91396.1 1-40 1-37 1-37 1-40
DKK1 HUMAN 1-31 1-22 1-28 1-31
MIME HUMAN 1-20 1-19 1-19 1-20
NP 0,57466.1 1-21 1-19 1-19 1-21
NP 0,57663.1 1-35 1-30 1-46 1-35
NP 4,43122.2 1-21 1-22 1-22 1-21
NP 4,43164.1 1-26 1-33 1-33 1-26
Q6UXL0 1-28 1-29 1-29 1-28
STC1 HUMAN 1-17 1-21 1-18 1-17
TRLT HUMAN 1-25 1-24 1-27 1-25
CD5L HUMAN 1-19 1-18 1-19 1-19
EDAR HUMAN 1-26 1-28 1-26 1-26
FZD3 HUMAN 1-22 1-17 1-22 1-22
IBP7 HUMAN 1-26 1-26 1-29 1-26
KLK3 HUMAN 1-17 1-17 1-23 1-17
NMA HUMAN 1-20 1-20 1-26 1-20
NP 0,64510.1 1-22 1-22 1-23 1-22
NP 0,68742.1 1-24 1-24 1-25 1-24
NTRI HUMAN 1-33 1-30 1-33 1-33
SY01 HUMAN 1-23 1-23 1-18 1-23
TIE1 HUMAN 1-21 1-21 1-22 1-21
TL19 HUMAN 1-26 1-23 1-26 1-26
TR14 HUMAN 1-38 1-36 1-38 1-38
TR19 HUMAN 1-29 1-29 1-25 1-29
XP 1,66856 1-17 1-17 1-20 1-17
XP 2,09141 1-22 1-23 1-22 1-22

a Data taken from Ref. [251]. The signal peptides experimentally verified and correctly predicted are in bold-face type
colored in blue; those incorrectly predicted are in red.

5.3.2 HIV Protease Cleavage Sites

During the past 15 years, two strategies have often been utilized to identify drugs to treat
acquired immunodeficiency syndrome (AIDS). The first strategy targets the HIV (human
immunodeficiency virus) reverse transcriptase (see Refs [169–175]), while the second
strategy is aimed at the design of HIV protease inhibitors [138, 176–181].

Functioning as a dimer, HIV protease consists of two identical subunits, each having 99
residues, but with only one active site [138, 179]. The essential function of HIV protease
is to cleave the precursor polyproteins; a loss of cleavage-ability will halt the life cycle of
infectious HIV, which is the culprit [182, 183] of AIDS.

In order to identify effective inhibitors against HIV protease, it is very helpful to un-
derstand the polyproteins cleavage mechanism and the ‘distorted key’ theory [138] ap-
proach to the problem, as described below. HIV protease is a member of the highly
substrate-selective and cleavage-specific aspartyl proteases. The HIV protease-susceptible
sites in a given protein extend to an octapeptide region [184], with its amino acid residues
sequentially symbolized by eight subsites, R4, R3, R2, R1, R1′ , R2′ , R3′ , R4′ [185], as shown
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Figure 5.14 Schematic representation of substrate bound to HIV protease based on the
analysis of protease–inhibitor crystal structures. The active site of enzyme is composed of
eight extended ‘subsites’, S4, S3, S2, S1, S1’, S1′ , S2′ , S3′ , S4′ , and their counterparts in a substrate
extended to an octapeptide region, sequentially symbolized by R4, R3, R2, R1, R1′ , R1′ , R2′ , R3′ ,
R4′ , respectively. The scissile bond is located between the subsites R1 and R1′ . (Reproduced,
with permission, from Ref. [138])

in Figure 5.14. The scissile bond is located between the subsites R1 and R1′ . According
to the ‘lock-and-key’ mechanism in enzymology, an HIV protease-cleavable peptide must
satisfy the substrate specificity – that is, a good fit for binding to the active site. How-
ever, such a peptide, after a modification of its scissile bond with a chemical procedure,
will completely lose its cleavability but still be capable of binding to the active site of an
enzyme. The molecule, thus modified, can be compared to a ‘distorted key’, which can
be inserted into a lock but can neither open the lock nor be pulled out from it. It is in
this way that a molecule modified from a cleavable peptide can spontaneously become a
competitive inhibitor against the enzyme. A concept illustration is shown in Figure 5.15,
where panel (a) shows the effective binding of a cleavable peptide to the active site of
HIV protease, while panel (b) shows that the peptide has become noncleavable after its
scissile bond has been modified, even though it can still tightly bind to the active site. Such
a modified peptide, or ‘distorted key’, will automatically become an inhibitor candidate of
HIV protease. Even for nonpeptide inhibitors, this can also provide useful insights about
the key binding groups, hydrophobic or hydrophilic environment, fitting conformation,
and so on. Accordingly, in the search for the potential inhibitors, it is important to discern
the type of peptides that can and cannot be cleaved by HIV protease. Although limited
within the range of an octapeptide, it is not easy to answer such a question, due to the vast
number of possible octapeptides that can be formed from 20 amino acids (approaching
208 = 108log20 � 2.56 × 1010). Whilst the experimental testing of such an astronomic num-
ber of octapeptides would be prohibitive, if an effective computational method were to be
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Figure 5.15 Schematic illustration to show: (a) a cleavable octapeptide is chemically effec-
tively bound to the active site of HIV protease; and (b) although still bound to the active site,
the peptide has lost its cleavability after its scissile bond is modified from a hybrid peptide
bond [253] to a single bond by some simple routine procedure. The eight residues of the
peptide is sequentially symbolized R4, R3, R2, R1, R1′ , R2′ , R3′ and R4′ . The scissile bond is
located between R1 and R1′ . (Reproduced, with permission, from Ref. [13])

found for predicting the cleavage sites in proteins by HIV protease, then the pace of quest for
HIV protease inhibitors would be significantly expedited. During the past decade, a variety
of predictive methods have been developed in this regard [137,178,186–191], and recently,
based on the discriminant function algorithm [138], a web server called HIVcleave [192]
was established at the web site http://chou.med.harvard.edu/bioinf/HIV/ or the web site
http://www.csbio.sjtu.edu.cn/bioinf/HIV/. For a given protein sequence, HIVcleave can be
used to predict its cleavage sites by HIV-1 and HIV-2 proteases, respectively.

5.3.3 SARS Coronavirus Protease Cleavage Sites

SARS (severe acute respiratory syndrome), which was first reported in Asia in February
2003, is a viral respiratory illness caused by a previously unrecognized coronavirus. Patients
suffering from SARS present initially with a high fever, sometimes associated with chills or
other symptoms, such as headache, body aches and diarrhea, followed by the development
of a dry, nonproductive cough that might be accompanied by, or progress to, hypoxia –
a condition where insufficient oxygen is being transported to the blood. Most patients
subsequently develop pneumonia. It is well known that the life cycle of the replicating
SARS coronavirus – the culprit of SARS – is required to pass through a stage in which
the viral polyproteins are cleaved by an enzyme known as SARS coronavirus protease
[3, 5, 135, 193]. The functional importance of this enzyme in the viral life cycle makes
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it an attractive target for drugs developed to combat the condition. As the role of the
coronavirus protease in SARS is comparable to that of HIV protease in AIDS, the ‘distorted
key’ theory [138] is equally applicable here, and knowledge of the SARS coronavirus
protease-mediated cleavage sites in proteins may be valuable when developing anti-SARS
drugs. As a consequence, methods to predict such cleavage sites have been developed
(see Ref. [194]) and, based on the ‘distorted key’ theory [138] and predictions of the
cleavage sites, several drug candidates have recently been proposed against AIDS and
SARS (see Refs [135, 136, 195–205].

5.4 Systems Biology

The field of systems biology, a new and expansive topic, is focused on the systematic study
of complex interactions in biological systems. In this brief introduction to the subject, the
preliminary discussion is limited to protein–protein interactions and networking couples.

5.4.1 Protein–Protein Interactions

Just as life is full of interactions, proteins – one of the most important elements in living
organisms – rarely function in isolation. In order to understand the ‘molecular under-
pinnings’ of life, it is first essential to examine the protein–protein interactions through
which many functions that are essential to life are manifested. Examples include interac-
tions between different protein subunits as the basis of allosteric changes in oligomers;
structural connections between cells being formed through protein–protein interactions;
and proteins being directed to the ‘correct’ compartments of cells by binding to other
proteins. In addition, some inhibitors of enzymes are proteins, proteins are modified and
degraded by enzymes, protein messengers bind to protein receptors on the outer surfaces
of cell membranes to send signals between cells, and protein–protein interactions under-
lie very large-scale movements in organisms, such as muscle contraction. Protein–protein
interactions do indeed affect all processes in a cell!

It has been proposed that all proteins in a given cell are connected through an extensive
network, where noncovalent interactions are continuously forming and dissociating [206].
Virtually all cellular processes depend on the precisely orchestrated interactions between
proteins.

Imagine a cell in which the specific interactions between proteins suddenly disappeared –
the deprived cell would become ‘blind’ and ‘deaf’, completely paralytic, and would finally
perish. Also, imagine a cell in which many abnormal interactions between proteins suddenly
occurred – the unfortunate cell would completely lose control, leading to network confusion
and breakdown, because specific and normal protein–protein interactions are involved in
almost all physiological processes (see Refs [147, 207]). Thus, the characterization of
protein–protein interactions, and an understanding the interaction network, are important
with regards to problems ranging from rational drug design (see Refs [3, 208]) to the
analysis of metabolic and signal transduction networks (see Refs [209, 210]).

In recent years, much effort has been made in this regard [211–216]. Indeed, the aim
of one study [216] was to develop an automated method to identify protein–protein in-
teractions from sequences on a genomic scale. In this study [216], the protein–protein
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interactions were classified as high, medium and low confidence (note here that ‘interac-
tions’ should not be interpreted as ‘physical binding’, but rather as a ‘functional associa-
tion’). The type of work in classifying protein–protein interactions is especially useful when
attention moves from traditional methods of investigating individual proteins towards the
new frontiers of ‘systems biology’ and/or ‘cellular networking’. In that study [216], the
GO-PseAA approach [142, 216, 217] was introduced to formulate the descriptor for
the sample of a protein pair, and some encouraging results were obtained.

5.4.2 Networking Couples for Metabolic Pathways

A living organism must be an open and steady-state system rather than a closed and
equilibrium system. To maintain order – and hence life – in a universe bent on maximizing
disorder, a continuous influx of free energy is indispensable. Metabolism (which is Greek
for ‘change’ or ‘overthrow’) is the biochemical modification of chemical compounds in
living organisms and cells by a series of chemical reactions in order to maintain cell life,
growth and division. It is through such metabolic processes that living systems acquire and
utilize the free energy they need to perform various functions. Clearly, without metabolism,
we would not survive!

Metabolic processes are generally classified as anabolism and catabolism [218]. An-
abolism includes the biosynthesis of complex organic molecules and the production of
new cell components, usually through processes that demand energy and reducing power
obtained from nutrient catabolism, whereas catabolism includes the obtaining of energy
and reducing power from nutrients.

Metabolism comprises a set of sophisticated metabolic pathways, which are a series
of consecutive enzymatic reactions that produce specific products, and through which the
steady state in a living system is maintained. Cell metabolism covers all chemical processes
within a cell, while total metabolism comprises all of the biochemical processes of an
organism. Because a living system utilizes many metabolites (i.e. reactants, intermediates
and products), the number of metabolic pathways is very large, reflecting the fact that ‘life
is extremely complicated’. The most important metabolic pathways for humans are [218]:

� Glycolysis, which involves the oxidation of glucose to produce ATP.
� Citric acid cycle (Krebs’ cycle) [219], in which acetyl-CoA is oxidized to produce GTP

and other valuable energy-intermediates.
� Oxidative phosphorylation, involving the disposal of electrons released by glycolysis

and the citric acid cycle (much of the energy released in this process can be stored as
ATP).

� Pentose phosphate pathways, in which pentoses are synthesized to release the reducing
power needed for anabolic reactions.

� Urea cycle, which involves the disposal of NH4
+ in less toxic forms.

� Fatty acid β-oxidation, where fatty acids are broken down into acetyl-CoA for use in the
Krebs’ cycle

� Gluconeogenesis, which involves the synthesis of glucose from smaller precursors for
use by the brain.

One of the most important characteristics of metabolic pathways is that they are highly
exergonic – that is, they have large negative free energy changes, which provides them
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with a distinct direction to complete their reactions. Accordingly, if two metabolites are
metabolically interconvertible, the pathway from the first to the second must differ from
the pathway from the second back to the first. Also, in order to exert control on the
flux of metabolites through a metabolic pathway, it is necessary to use enzymatic control
to realize various regulations, such as regulating glycolysis, gluconeogenesis, the citric
acid cycle [219], urea cycle, glycogen metabolism, fatty acids metabolism and pentose
phosphate pathway [218].

A knowledge of metabolic pathways is indispensable for understanding a living system
at the level of molecular networks. However, owing to the extreme complexity of the
problem, it is both time-consuming and costly to determine metabolic pathways, and the
network interactions therein, purely by means of biochemical experiments even for a very
simple living system. Yet, even where the details of a metabolic pathways are known,
our knowledge might still be incomplete, and the details of some network interactions
between enzymes and substrates/products might be missing. In view of these problems, the
development of an automated method, or a complementary tool, to provide rapid predictions
of the network relationship between enzymes and substrates/products in a living system,
would be highly desirable.

Interaction in metabolic pathways includes both enzymatic and hormone control. In one
study [220], attention was focused on the enzyme control category, where the metabolic
pathway is the network which links the various chemical reactions of compounds (substrates
or products) catalyzed by enzymes. To cope with the problem, an approach combining GO
[141], FunG (chemical functional group [221]) and PseAA composition [20] was adopted
to represent the samples of enzyme–compound couples. For this, two basic identifiers were
formulated: one was called ‘GO-FunG’, and the other ‘PseAA-FunG’. The prediction was
operated by hybridizing these two basic identifiers into one. As a showcase, the networking
couples between enzymes and compounds in the 72 metabolic pathways of Arabidopsis
thaliana (a small flowering plant widely used as a model organism for studies of the cellular
and molecular biology of flowering plants) were investigated. The results thus obtained
were quite encouraging, and suggested that the pioneer approach adopted in Ref. [220],
although rather preliminary, might be used to study metabolic pathways as well as many
other related problems in the cellular networking areas.

It is instructive to point out that the use of graphical approaches to study complicated bio-
logical systems can provide an intuitive picture and help gain useful insights. For example,
a variety of graphical approaches have been used successfully to study enzyme-catalyzed
systems (see Refs [222–231]), protein folding kinetics [232, 233], codon usage [234–237]
and HIV reverse transcriptase inhibition mechanisms [169–171,175]. Meanwhile, the cellu-
lar automaton images [238a,b, 239] have been used to represent biological sequences [240]
for analyzing the fingerprint of SARS coronavirus [241], for predicting protein subcellular
localization [40], transmembrane regions in proteins [242] and the effect on replication
ratio by HBV virus gene missense mutation [243], as well as studying hepatitis B viral
infections [244]. Recently, similar graphical approaches have also been used to represent
DNA sequences (see Ref. [245]), to investigate p53 stress response networks [246], to
analyze the network structure of amino acid metabolism [247], study cellular signaling
network [248] and proteomics (see the recent review by González-Dı́az et al. [249]), as
well as to conduct a systems biology analysis of the Drosophila phagosome [250].

It is said that ‘life is complicated’, and in order to understand life at a deeper level, one
must deal with an open system that comprises many complicated interactions, not only
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Table 5.2 List of the web servers introduced in this chapter and their web site addresses

Web server
predictor Web site Description

(1) Cell-PLoc http://chou.med.harvard.edu/bioinf/Cell-PLoc/ or
http://www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc/

Predicting subcellular
localization of
proteins in various
organisms [53]

(2) Euk-OET-PLoc http://chou.med.harvard.edu/bioinf/euk-oet/ Predicting subcellular
localization of
Eukaryotic
proteins [62]

(3) Euk-mPLoc http://chou.med.harvard.edu/bioinf/euk-multi/ or
http://www.csbio.sjtu.edu.cn/bioinf/euk-multi/

Predicting subcellular
localization of
Eukaryotic proteins
with single or multiple
location sites [59]

(4) Hum http://chou.med.harvard.edu/bioinf/hum/ Predicting subcellular
localization of human
proteins [61]

(5) Hum-mPLoc http://chou.med.harvard.edu/bioinf/hum-multi/ or
http://www.csbio.sjtu.edu.cn/bioinf/hum-multi/

Predicting subcellular
localization of human
proteins with single or
multiple location
sites [46]

(6) Plant-PLoc http://chou.med.harvard.edu/bioinf/plant/ or
http://www.csbio.sjtu.edu.cn/bioinf/plant/

Predicting subcellular
localization of plant
proteins [45]

(7) Gpos http://chou.med.harvard.edu/bioinf/Gpos/ or
http://www.csbio.sjtu.edu.cn/bioinf/Gpos/

Predicting subcellular
localization of
Gram-positive
proteins [56]

(8) Gneg-PLoc http://chou.med.harvard.edu/bioinf/Gneg/ or
http://www.csbio.sjtu.edu.cn/bioinf/Gneg/

Predicting subcellular
localization of
Gram-negative
proteins [57]

(9) Virus http://chou.med.harvard.edu/bioinf/virus/ or
http://www.csbio.sjtu.edu.cn/bioinf/virus/

Predicting subcellular
localization of virus
proteins [58]

(10) PseAAC http://chou.med.harvard.edu/bioinf/PseAAC/ or
http://www.csbio.sjtu.edu.cn/bioinf/PseAAC/

Generating PseAA
composition [114]

(11) MemType-2L http://chou.med.harvard.edu/bioinf/MemType/ or
http://www.csbio.sjtu.edu.cn/bioinf/MemType/

Predicting membrane
protein type [115]

(12) EzyPred http://chou.med.harvard.edu/bioinf/EzyPred/ or
http://www.csbio.sjtu.edu.cn/bioinf/EzyPred/

Predicting enzyme
functional class [123]

(13) Signal-CF http://chou.med.harvard.edu/bioinf/Signal-CF/ or
http://www.csbio.sjtu.edu.cn/bioinf/Signal-CF/

Predicting protein signal
peptide [167]

(14) Signal-3L http://chou.med.harvard.edu/bioinf/Signal-3L/ or
http://www.csbio.sjtu.edu.cn/bioinf/Signal-3L/

Predicting protein signal
peptide [168]

(15) HIVcleave http://chou.med.harvard.edu/bioinf/HIV/ or
http://www.csbio.sjtu.edu.cn/bioinf/HIV/

Predicting HIV protease
cleavage sites [192]

(16) Protease http://www.csbio.sjtu.edu.cn/bioinf/Protease/ Predicting protease type
[254]
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within the system itself but also with its external environment. Although the aim of systems
biology is laudable, what has been achieved so far is clearly preliminary in nature.

5.5 List of Web Servers

Finally, for reader’s convenience, a brief description of each of the web servers introduced
in this chapter, as well as its web site address, is given in Table 5.2.

Recently, a web server, called “ProtIdent”, was developed [254] for identifying proteases
and their types by fusing functional domain and sequential evolution information. The web
server is freely accessible to the public at http://www.csbio.sjtu.edu.cn/bioinf/Protease/.
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5.6 Appendix A

A comparison between the predicted results by Euk-PLoc and the experimental results
reported latter. Listed in column 4 are the predicted results (marked in blue); those in
column 5 are the experimental results. The comments in column 6 indicate whether the
proteins concerned are with single location or multiple locations; the comment content is
colored in red when the prediction is inconsistent or partly inconsistent with observation.
See the text for further explanation.
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No.
Accession
number

Subcellular
location
annotated in
Swiss-Prot 50.7
released on 19
September 2006

Subcellular location
predicted prior to
experimental reports
by Euk-mPLoc before
November 2006

Subcellular location
observed by
experiments later and
annotated in Swiss-Prot
53.2 released on 26
June 2007 Comment

1 O13674 Unknown Cytoplasm Cytoplasm Single
2 O13699 Unknown Mitochondrion Mitochondrion Single
3 O13715 Unknown Cytoplasm Cytoplasm Single
4 O13795 Unknown Cytoplasm; Nucleus Cytoplasm; Nucleus Multiple
5 O13826 Unknown Nucleus Nucleus Single
6 O13859 Unknown Cytoplasm; Nucleus Cytoplasm; Nucleus Multiple
7 O13894 Unknown Nucleus Nucleus (nucleolus) Single
8 O14013 Unknown Nucleus Nucleus (nucleolus) Single
9 O14015 Unknown Cytoplasm; Nucleus. Cytoplasm; Nucleus Multiple
10 O14019 Unknown Cytoplasm Cytoplasm Single
11 O14077 Unknown Cytoplasm Cytoplasm Single
12 O14140 Unknown Cytoplasm; Nucleus Cytoplasm; Nucleus Multiple
13 O14183 Unknown Cytoplasm Cytoplasm Single
14 O14185 Unknown Cytoplasm Cytoplasm (localizes to

the barrier septum)
Single

15 O14202 Unknown Mitochondrion Mitochondrion
(mitochondrial inner
membrane; single-pass
membrane protein)

Single

16 O14216 Unknown Cytoplasm; Nucleus Cytoplasm; Nucleus Multiple
17 O14235 Unknown Mitochondrion Mitochondrion Single
18 O14455 Unknown Cytoplasm Cytoplasm Single
19 O42654 Unknown Cytoplasm Cytoplasm (cell cortex) Single
20 O42980 Unknown Cytoplasm Cytoplasm Single
21 O43541 Unknown Nucleus Nucleus Single
22 O47950 Unknown Mitochondrion Mitochondrion Single
23 O60094 Unknown Nucleus Nucleus Single
24 O74317 Unknown Mitochondrion Mitochondrion Single
25 O74381 Unknown Cytoplasm; Nucleus Cytoplasm; Nucleus Multiple
26 O74405 Unknown Cytoplasm; Nucleus Cytoplasm; Nucleus Multiple
27 O74531 Unknown Cytoplasm Cytoplasm Single
28 O74783 Unknown Mitochondrion Mitochondrion Single
29 O74854 Unknown Cytoplasm; Nucleus Cytoplasm; Nucleus

(constantly expressed
throughout the cell
cycle; expressed in
nucleus except the
nucleolus and is
localized at cell tips on
both sides of the
septum in septated
cells)

Multiple

30 O74910 Unknown Cytoplasm; Nucleus Cytoplasm; Nucleus Multiple
31 O75251 Unknown Mitochondrion Mitochondrion Single
32 O80448 Unknown Cytoplasm Cytoplasm Single
33 O94334 Unknown Cytoplasm Cytoplasm Single
34 O94435 Unknown Cytoplasm Cytoplasm Single
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No.
Accession
number

Subcellular
location
annotated in
Swiss-Prot 50.7
released on 19
September 2006

Subcellular location
predicted prior to
experimental reports
by Euk-mPLoc before
November 2006

Subcellular location
observed by
experiments later and
annotated in Swiss-Prot
53.2 released on 26
June 2007 Comment

35 O94661 Unknown Endoplasmic
reticulum

Endoplasmic reticulum
(endoplasmic
reticulum membrane;
single-pass membrane
protein)

Single

36 O94665 Unknown Cytoplasm; Nucleus Cytoplasm; Nucleus Multiple
37 O94668 Unknown Cytoplasm; Nucleus Cytoplasm; Nucleus Multiple
38 P01014 Unknown Secreted protein Secreted protein Single
39 P01023 Unknown Secreted protein. Secreted protein Single
40 P01025 Unknown Secreted protein Secreted protein Single
41 P01026 Unknown Secreted protein Secreted protein Single
42 P01029 Unknown Secreted protein Secreted protein Single
43 P01031 Unknown Secreted protein Secreted protein Single
44 P01032 Unknown Secreted protein Secreted protein Single
45 P01034 Unknown Secreted protein Secreted protein Single
46 P01035 Unknown Secreted protein Secreted protein Single
47 P01036 Unknown Secreted protein Secreted protein Single
48 P01037 Unknown Secreted protein Secreted protein Single
49 P01038 Unknown Secreted protein Secreted protein Single
50 P01127 Unknown Secreted protein Secreted protein Single
51 P01356 Unknown Secreted protein Secreted protein Single
52 P02400 Unknown Cytoplasm Cytoplasm Single
53 P02405 Unknown Cytoplasm Cytoplasm Single
54 P02407 Unknown Cytoplasm Cytoplasm Single
55 P02735 Unknown Secreted protein Secreted protein Single
56 P02738 Unknown Secreted protein Secreted protein Single
57 P02739 Unknown Secreted protein Secreted protein Single
58 P02740 Unknown Secreted protein Secreted protein Single
59 P03952 Unknown Secreted protein Secreted protein Single
60 P04003 Unknown Secreted protein Secreted protein Single
61 P04085 Unknown Secreted protein Secreted protein Single
62 P04449 Unknown Cytoplasm Cytoplasm Single
63 P04551 Unknown Cytoplasm Cytoplasm Single
64 P05318 Unknown Cytoplasm Cytoplasm Single
65 P05319 Unknown Cytoplasm Cytoplasm Single
66 P05735 Unknown Cytoplasm Cytoplasm Single
67 P05736 Unknown Cytoplasm Cytoplasm Single
68 P05737 Unknown Cytoplasm Cytoplasm Single
69 P05738 Unknown Cytoplasm Cytoplasm Single
70 P05745 Unknown Cytoplasm Cytoplasm Single
71 P05747 Unknown Cytoplasm Cytoplasm Single
72 P05749 Unknown Cytoplasm Cytoplasm Single
73 P05753 Unknown Cytoplasm Cytoplasm Single
74 P06307 Unknown Secreted protein Secreted protein Single
75 P06684 Unknown Secreted protein Secreted protein Single
76 P06911 Unknown Secreted protein Secreted protein Single
77 P07279 Unknown Cytoplasm Cytoplasm Single
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No.
Accession
number

Subcellular
location
annotated in
Swiss-Prot 50.7
released on 19
September 2006

Subcellular location
predicted prior to
experimental reports
by Euk-mPLoc before
November 2006

Subcellular location
observed by
experiments later and
annotated in Swiss-Prot
53.2 released on 26
June 2007 Comment

78 P07280 Unknown Cytoplasm Cytoplasm Single
79 P07281 Unknown Cytoplasm Cytoplasm Single
80 P08607 Unknown Secreted protein Secreted protein Single
81 P08621 Unknown Nucleus Nucleus Single
82 P08649 Unknown Secreted protein Secreted protein Single
83 P09040 Unknown Secreted protein Secreted protein Single
84 P09240 Unknown Secreted protein Secreted protein Single
85 P09859 Unknown Secreted protein Secreted protein Single
86 P09932 Unknown Nucleus Nucleus Single
87 P0C0L4 Unknown Secreted protein Secreted protein Single
88 P0C0L5 Unknown Secreted protein Secreted protein Single
89 P0C0T4 Unknown Cytoplasm;

Mitochondrion
Cytoplasm Single

90 P0C0V8 Unknown Cytoplasm Cytoplasm Single
91 P0C0W9 Unknown Cytoplasm Cytoplasm Single
92 P0C0X0 Unknown Cytoplasm Cytoplasm Single
93 P10622 Unknown Cytoplasm Cytoplasm Single
94 P10664 Unknown Cytoplasm Cytoplasm Single
95 P12082 Unknown Secreted protein Secreted protein Single
96 P14127 Unknown Cytoplasm Cytoplasm Single
97 P14272 Unknown Secreted protein Secreted protein Single
98 P14605 Unknown Cytoplasm;

Membrane
Cytoplasm Single

99 P14796 Unknown Cytoplasm Cytoplasm Single
100 P14841 Unknown Secreted protein Secreted protein Single
101 P15638 Unknown Secreted protein Secreted protein Single
102 P17076 Unknown Cytoplasm Cytoplasm Single
103 P17079 Unknown Chloroplast;

Cytoplasm
Cytoplasm Single

104 P17157 Unknown Centriole; Nucleus Cytoplasm; Nucleus Multiple
105 P17248 Unknown Cytoplasm Cytoplasm Single
106 P17629 Unknown Nucleus Nucleus Single
107 P19313 Unknown Secreted protein Secreted protein Single
108 P19707 Unknown Secreted protein Secreted protein Single
109 P19708 Unknown Secreted protein Secreted protein Single
110 P19823 Unknown Secreted protein Secreted protein Single
111 P19827 Unknown Secreted protein Secreted protein Single
112 P20033 Unknown Secreted protein Secreted protein Single
113 P20851 Unknown Secreted protein Secreted protein Single
114 P21651 Unknown Nucleus Nucleus (localizes to

chromosomes
Single

115 P22227 Unknown Nucleus Nucleus Single
116 P22298 Unknown Secreted protein Secreted protein Single
117 P23023 Unknown Nucleus Nucleus Single
118 P23248 Unknown Cytoplasm Cytoplasm Single
119 P23362 Unknown Secreted protein Secreted protein Single
120 P23381 Unknown Cytoplasm Cytoplasm Single
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No.
Accession
number

Subcellular
location
annotated in
Swiss-Prot 50.7
released on 19
September 2006

Subcellular location
predicted prior to
experimental reports
by Euk-mPLoc before
November 2006

Subcellular location
observed by
experiments later and
annotated in Swiss-Prot
53.2 released on 26
June 2007 Comment

121 P23699 Unknown Acrosome Secreted protein Single
122 P24000 Unknown Cytoplasm Cytoplasm Single
123 P25328 Unknown Cytoplasm Cytoplasm (the virus

has no extracellular
transmission pathway;
it exists as a
ribonucleoprotein viral
particle in the host
cytoplasm and can be
transmitted through
mating or cytoplasmic
mixing, i.e.
cytoduction)

Single

124 P25355 Unknown Cytoplasm Cytoplasm Single
125 P25454 Unknown Nucleus Nucleus (localizes as

foci on meiotic
chromosomes)

Single

126 P25574 Unknown Endoplasmic
reticulum

Endoplasmic reticulum
(Endoplasmic
reticulum membrane;
single-pass type 1
membrane protein)

Single

127 P25586 Unknown Nucleus Nucleus (nucleolus) Single
128 P26262 Unknown Secreted protein Secreted protein Single
129 P26781 Unknown Cytoplasm Cytoplasm Single
130 P26782 Unknown Cytoplasm;

Mitochondrion
Cytoplasm Single

131 P28325 Unknown Secreted protein Secreted protein Single
132 P28576 Unknown Secreted protein Secreted protein Single
133 P29453 Unknown Cytoplasm Cytoplasm Single
134 P30183 Unknown Centriole; Nucleus Nucleus Single
135 P31532 Unknown Secreted protein Secreted protein Single
136 P32344 Unknown Mitochondrion Mitochondrion Single
137 P32452 Unknown Chloroplast;

Cytoplasm
Cytoplasm Single

138 P32769 Unknown Cytoplasm Cytoplasm Single
139 P32827 Unknown Cytoplasm Cytoplasm Single
140 P32841 Unknown Cytoplasm; Nucleus Nucleus (localizes to

chromosomes)
Single

141 P32921 Unknown Cytoplasm Cytoplasm Single
142 P33420 Unknown Cytoplasm Cytoplasm (localizes to

spindle poles
throughout the cell
cycle)

Single

143 P33442 Unknown Cytoplasm Cytoplasm Single
144 P34007 Unknown Secreted protein Secreted protein Single
145 P34217 Unknown Cytoplasm Cytoplasm Single
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No.
Accession
number

Subcellular
location
annotated in
Swiss-Prot 50.7
released on 19
September 2006

Subcellular location
predicted prior to
experimental reports
by Euk-mPLoc before
November 2006

Subcellular location
observed by
experiments later and
annotated in Swiss-Prot
53.2 released on 26
June 2007 Comment

146 P34241 Unknown Nucleus Nucleus (accumulates
in the immediate
vicinity of the dense
fibrillar component of
the nucleolus)

Single

147 P34544 Unknown Nucleus Nucleus Single
148 P35481 Unknown Secreted protein Secreted protein Single
149 P35541 Unknown Secreted protein Secreted protein Single
150 P35542 Unknown Secreted protein Secreted protein Single
151 P35735 Unknown Membrane Cell membrane

(multi-pass membrane
protein)

Single

152 P35997 Unknown Cytoplasm Cytoplasm Single
153 P36013 Unknown Mitochondrion Mitochondrion

(mitochondrial matrix)
Single

154 P36038 Unknown Mitochondrion Mitochondrion Single
155 P36056 Unknown Mitochondrion Mitochondrion Single
156 P36105 Unknown Cytoplasm Cytoplasm Single
157 P36138 Unknown Cytoplasm Cytoplasm Single
158 P36141 Unknown Mitochondrion Mitochondrion Single
159 P38175 Unknown Mitochondrion Mitochondrion Single
160 P38212 Unknown Endoplasmic

reticulum; Golgi
Endoplasmic reticulum
(endoplasmic
reticulum membrane;
single-pass type 1
membrane protein)

Single

161 P38260 Unknown Cytoplasm Cytoplasm Single
162 P38289 Unknown Mitochondrion Mitochondrion Single
163 P38324 Unknown Nucleus Nucleus Single
164 P38334 Unknown Golgi Golgi apparatus

(cis-Golgi network)
Single

165 P38339 Unknown Cytoplasm Cytoplasm (bud and
bud neck)

Single

166 P38344 Unknown Cytoplasm Cytoplasm Single
167 P38711 Unknown Cytoplasm Cytoplasm Single
168 P38754 Unknown Cytoplasm Cytoplasm Single
169 P38779 Unknown Nucleus Nucleus (nucleolus) Single
170 P38783 Unknown Mitochondrion Mitochondrion Single
171 P38813 Unknown Endoplasmic

reticulum; Golgi
Endoplasmic reticulum
(endoplasmic
reticulum membrane;
single-pass type 1
membrane protein)

Single

172 P38844 Unknown Cell wall; Secreted
protein

Cell wall (lipid-anchor;
GPI-anchored cell wall
protein

Single

173 P38961 Unknown Nucleus Nucleus (nucleolus) Single
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No.
Accession
number

Subcellular
location
annotated in
Swiss-Prot 50.7
released on 19
September 2006

Subcellular location
predicted prior to
experimental reports
by Euk-mPLoc before
November 2006

Subcellular location
observed by
experiments later and
annotated in Swiss-Prot
53.2 released on 26
June 2007 Comment

174 P39016 Unknown Cytoplasm Cytoplasm Single
175 P39729 Unknown Cytoplasm Cytoplasm Single
176 P39732 Unknown Cytoplasm Cytoplasm Single
177 P39741 Unknown Cytoplasm Cytoplasm Single
178 P39939 Unknown Cytoplasm Cytoplasm Single
179 P40005 Unknown Cytoplasm Cytoplasm Single
180 P40033 Unknown Mitochondrion Mitochondrion Single
181 P40048 Unknown Cytoplasm Cytoplasm Single
182 P40096 Unknown Nucleus Nucleus Single
183 P40186 Unknown Cytoplasm Cytoplasm Single
184 P40212 Unknown Cytoplasm Cytoplasm Single
185 P40213 Unknown Cytoplasm Cytoplasm Single
186 P40215 Unknown Mitochondrion Mitochondrion

(mitochondrial
intermembrane space)

Single

187 P40453 Unknown Cytoplasm; Nucleus Cytoplasm Single
188 P40496 Unknown Mitochondrion Mitochondrion Single
189 P40525 Unknown Cytoplasm Cytoplasm Single
190 P40530 Unknown Mitochondrion Mitochondrion

(mitochondrial matrix)
Single

191 P40558 Unknown Cytoplasm Cytoplasm Single
192 P40976 Unknown Chloroplast;

Cytoplasm
Cytoplasm Single

193 P41056 Unknown Cytoplasm Cytoplasm Single
194 P41057 Unknown Cytoplasm Cytoplasm Single
195 P41058 Unknown Cytoplasm Cytoplasm Single
196 P41229 Unknown Nucleus Nucleus Single
197 P41520 Unknown Secreted protein Secreted protein Single
198 P42027 Unknown Mitochondrion Mitochondrion Single
199 P42028 Unknown Mitochondrion Mitochondrion Single
200 P42819 Unknown Secreted protein Secreted protein Single
201 P42846 Unknown Nucleus Nucleus; nucleolus Single
202 P43565 Unknown Cytoplasm; Nucleus Cytoplasm; Nucleus Multiple
203 P46784 Unknown Cytoplasm;

Mitochondrion
Cytoplasm Single

204 P46990 Unknown Chloroplast;
Cytoplasm

Cytoplasm Single

205 P46995 Unknown Nucleus Nucleus Single
206 P47006 Unknown Nucleus Nucleus (nucleolus) Single
207 P47025 Unknown Mitochondrion Mitochondrion

(mitochondrial outer
membrane;
cytoplasmic side)

Single

208 P47076 Unknown Nucleus Nucleus Single
209 P47108 Unknown Nucleus Nucleus (nucleolus) Single
210 P47122 Unknown Cytoplasm Cytoplasm Single
211 P47141 Unknown Mitochondrion Mitochondrion Single
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No.
Accession
number

Subcellular
location
annotated in
Swiss-Prot 50.7
released on 19
September 2006

Subcellular location
predicted prior to
experimental reports
by Euk-mPLoc before
November 2006

Subcellular location
observed by
experiments later and
annotated in Swiss-Prot
53.2 released on 26
June 2007 Comment

212 P47150 Unknown Mitochondrion Mitochondrion Single
213 P48524 Unknown Cytoplasm Cytoplasm Single
214 P49166 Unknown Cytoplasm Cytoplasm Single
215 P49167 Unknown Cytoplasm Cytoplasm Single
216 P49591 Unknown Cytoplasm Cytoplasm Single
217 P49626 Unknown Cytoplasm Cytoplasm Single
218 P49631 Unknown Cytoplasm Cytoplasm Single
219 P50109 Unknown Cytoplasm Cytoplasm Single
220 P51401 Unknown Cytoplasm Cytoplasm Single
221 P51402 Unknown Cytoplasm Cytoplasm Single
222 P53030 Unknown Cytoplasm Cytoplasm Single
223 P53080 Unknown Cytoplasm Cytoplasm Single
224 P53088 Unknown Mitochondrion Mitochondrion Single
225 P53124 Unknown Cytoplasm Cytoplasm Single
226 P53188 Unknown Nucleus Nucleus (nucleolus) Single
227 P53292 Unknown Mitochondrion Mitochondrion Single
228 P53305 Unknown Mitochondrion Mitochondrion Single
229 P53552 Unknown Cytoplasm; Nucleus Nucleus Single
230 P53743 Unknown Cytoplasm; Nucleus Nucleus (nucleolus) Single
231 P53890 Unknown Cytoplasm Cytoplasm (arrives at

the bud site
approximately
coincident with bud
emergence and
dissociates from the
septin scaffold before
cytokinesis)

Single

232 P53908 Unknown Chloroplast;
Membrane

Membrane (multi-pass
membrane protein)

Single

233 P53964 Unknown Cytoplasm;
membrane

Membrane (single-pass
membrane protein)

Single

234 P54005 Unknown Cytoplasm Cytoplasm Single
235 P54867 Unknown Membrane Cell membrane

(single-pass type 1
membrane protein)

Single

236 P56628 Unknown Cytoplasm Cytoplasm Single
237 P79263 Unknown Secreted protein Secreted protein Single
238 P80110 Unknown Secreted protein Secreted protein Single
239 P80111 Unknown Secreted protein Secreted protein Single
240 P80344 Unknown Secreted protein Secreted protein Single
241 P81061 Unknown Secreted protein Secreted protein Single
242 P87054 Unknown Cytoplasm; Nucleus Cytoplasm; Nucleus Multiple
243 P87133 Unknown Mitochondrion Mitochondrion Single
244 P87262 Unknown Cytoplasm Cytoplasm Single
245 P87299 Unknown Cytoplasm Cytoplasm Single
246 P97278 Unknown Secreted protein Secreted protein Single
247 P97279 Unknown Secreted protein Secreted protein Single
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No.
Accession
number

Subcellular
location
annotated in
Swiss-Prot 50.7
released on 19
September 2006

Subcellular location
predicted prior to
experimental reports
by Euk-mPLoc before
November 2006

Subcellular location
observed by
experiments later and
annotated in Swiss-Prot
53.2 released on 26
June 2007 Comment

248 P97280 Unknown Secreted protein Secreted protein Single
249 P97430 Unknown Secreted protein Secreted protein Single
250 P98119 Unknown Secreted protein Secreted protein Single
251 P98121 Unknown Secreted protein Secreted protein Single
252 Q00420 Unknown Nucleus Nucleus Single
253 Q01163 Unknown Mitochondrion Mitochondrion Single
254 Q01448 Unknown Nucleus Nucleus Single
255 Q02326 Unknown Chloroplast;

Cytoplasm
Cytoplasm Single

256 Q02753 Unknown Cytoplasm Cytoplasm Single
257 Q03213 Unknown Nucleus Nucleus Single
258 Q03337 Unknown Golgi Golgi apparatus

(cis-Golgi network)
Single

259 Q03758 Unknown Cytoplasm Cytoplasm Single
260 Q03784 Unknown Golgi Golgi apparatus

(cis-Golgi network)
Single

261 Q04231 Unknown Centriole; Cytoplasm Nucleus Single
262 Q04235 Unknown Cytoplasm Cytoplasm Single
263 Q04264 Unknown Nucleus Nucleus Single
264 Q04806 Unknown Cytoplasm Cytoplasm Single
265 Q04949 Unknown Cytoplasm Cytoplasm

(concentrates at motile
dots in the cytoplasm
corresponding to the
plus ends of
cytoplasmic
microtubules)

Single

266 Q06033 Unknown Secreted protein Secreted protein Single
267 Q06078 Unknown Nucleus Nucleus (nucleolus) Single
268 Q06547 Unknown Nucleus Nucleus Single
269 Q07092 Unknown Secreted protein Secreted protein

(extracellular space;
extracellular matrix)

Single

270 Q09094 Unknown Centriole; Nucleus Nucleus Single
271 Q09792 Unknown Cytoplasm; Nucleus Cytoplasm; Nucleus Multiple
272 Q09796 Unknown Nucleus Nucleus (nuclear rim) Single
273 Q09815 Unknown Cytoplasm Cytoplasm (septum) Single
274 Q09855 Unknown Cytoplasm Cytoplasm Single
275 Q09868 Unknown Cytoplasm Cytoplasm Single
276 Q09884 Unknown Chloroplast;

Cytoplasm
Cytoplasm; Nucleus Multiple

277 Q09902 Unknown Cytoplasm; Nucleus. Cytoplasm; Nucleus Multiple
278 Q10168 Unknown Nucleus Nucleus (nuclear pore

complex; cytoplasmic
side. Nucleus; nuclear
pore complex;
nucleoplasmic side)

Single
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No.
Accession
number

Subcellular
location
annotated in
Swiss-Prot 50.7
released on 19
September 2006

Subcellular location
predicted prior to
experimental reports
by Euk-mPLoc before
November 2006

Subcellular location
observed by
experiments later and
annotated in Swiss-Prot
53.2 released on 26
June 2007 Comment

279 Q10180 Unknown Cytoplasm Cytoplasm (localizes to
the barrier septum and
cell tip)

Single

280 Q10223 Unknown Cytoplasm; Nucleus Cytoplasm; Nucleus
(associated with
vesicle-like and
endoplasmic reticulum
structures)

Multiple

281 Q10225 Unknown Cytoplasm Cytoplasm Single
282 Q10253 Unknown Cytoplasm Cytoplasm Single
283 Q10257 Unknown Nucleus Nucleus (nucleolus) Single
284 Q10271 Unknown Cytoplasm; Nucleus Nucleus; Cytoplasm

(localizes to a large
number of foci in both
the nucleus and
cytoplasm)

Multiple

285 Q10274 Unknown Cytoplasm; Nucleus Nucleus Single
286 Q10308 Unknown Mitochondrion Mitochondrion Single
287 Q10326 Unknown Cytoplasm Cytoplasm (localizes to

the barrier septum)
Single

288 Q10432 Unknown Nucleus Nucleus; Nucleoplasm Single
289 Q10434 Unknown Cytoplasm Cytoplasm (localizes to

cell tips during
interphase)

Single

290 Q10447 Unknown Cytoplasm Cytoplasm (located at
the cell tip)

Single

291 Q10474 Unknown Cytoplasm; Nucleus Cytoplasm; Nucleus Multiple
292 Q12087 Unknown Cytoplasm Cytoplasm Single
293 Q12213 Unknown Chloroplast;

Cytoplasm
Cytoplasm Single

294 Q12215 Unknown Membrane Membrane (multipass
membrane protein)

Single

294 Q12263 Unknown Cytoplasm Cytoplasm (bud neck) Single
295 Q12690 Unknown Cytoplasm Cytoplasm Single
296 Q14624 Unknown Secreted protein Secreted protein Single
297 Q20347 Unknown Cytoplasm Cytoplasm Single
298 Q22866 Unknown Cytoplasm Cytoplasm Single
299 Q28065 Unknown Secreted protein Secreted protein Single
300 Q28066 Unknown Secreted protein Secreted protein Single
301 Q3E754 Unknown Cytoplasm Cytoplasm Single
302 Q3E757 Unknown Cytoplasm Cytoplasm Single
303 Q3E792 Unknown Cytoplasm;

Mitochondrion
Cytoplasm Single

304 Q3E7X9 Unknown Cytoplasm Cytoplasm Single
305 Q42577 Unknown Mitochondrion Mitochondrion Single
306 Q43844 Unknown Mitochondrion Mitochondrion Single
307 Q61702 Unknown Secreted protein Secreted protein Single
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No.
Accession
number

Subcellular
location
annotated in
Swiss-Prot 50.7
released on 19
September 2006

Subcellular location
predicted prior to
experimental reports
by Euk-mPLoc before
November 2006

Subcellular location
observed by
experiments later and
annotated in Swiss-Prot
53.2 released on 26
June 2007 Comment

308 Q61703 Unknown Secreted protein Secreted protein Single
309 Q61704 Unknown Secreted protein Secreted protein Single
310 Q62261 Unknown Membrane Cell membrane

(peripheral membrane
protein; cytoplasmic
side)

Single

311 Q63514 Unknown Secreted protein Secreted protein Single
312 Q63515 Unknown Secreted protein Secreted protein Single
313 Q6NS38 Unknown Cytoplasm; Nucleus Nucleus (detected in

replication foci during
s-phase)

Single

314 Q86XK2 Unknown Nucleus Nucleus Single
315 Q8TCJ0 Unknown Cytoplasm; Nucleus Nucleus Single
316 Q96Q83 Unknown Cytoplasm; Nucleus Cytoplasm; Nucleus Multiple
317 Q96RK4 Unknown Centriole; Cytoplasm Centrosome (localizes

to the pericentriolar
region throughout the
cell cycle)

Single

318 Q9C0U3 Unknown Mitochondrion Mitochondrion Single
319 Q9C0W0 Unknown Nucleus Nucleus Single
320 Q9C104 Unknown Cytoplasm Cytoplasm Single
321 Q9C110 Unknown Cytoplasm Cytoplasm Single
322 Q9DB96 Unknown Centriole; Cytoplasm;

Nucleus
Nucleus; Cytoplasm
(detected in axons,
dendrites and
filopodia)

Multiple

323 Q9H7D7 Unknown Cytoplasm Cytoplasm Single
324 Q9NR20 Unknown Cytoplasm Cytoplasm Single
325 Q9P7N0 Unknown Cytoplasm; Nucleus Cytoplasm; Nucleus Multiple
326 Q9UPN7 Unknown Cytoplasm Cytoplasm Single
327 Q9US49 Unknown Cytoplasm; Nucleus Cytoplasm; Nucleus Multiple
328 Q9USR9 Unknown Nucleus Nucleus (nucleoplasm) Single
329 Q9USV4 Unknown Cytoplasm Cytoplasm Single
330 Q9UT31 Unknown Mitochondrion Mitochondrion Single
331 Q9UTR7 Unknown Cytoplasm Cytoplasm Single
332 Q9UU87 Unknown Cytoplasm; Nucleus Cytoplasm; Nucleus Multiple
333 Q9Y7V0 Unknown Endoplasmic

reticulum
Endoplasmic reticulum
(endoplasmic
reticulum membrane;
single-pass type 2
membrane protein)

Single

334 Q9ZNR6 Unknown Cytoplasm Cytoplasm Single
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Xiaogang Wu and Jake Y. Chen
Indiana University School of Informatics/Purdue University School of Science/

Indiana Center for Systems Biology and Personalized Medicine, Indianapolis, IN 46202, USA

In this chapter, both the basic concepts and current research trends in network biology –
an emerging study of molecular interaction networks in cells [1] – are introduced.
Recent breakthroughs in ‘Omics’ technologies [2], such as genomics, transcriptomics,
metabolomics, proteomics and glycomics in biological sciences have created new computa-
tional opportunities to help researchers understand how genes, messenger RNAs (mRNAs),
microRNAs (miRNAs), proteins, metabolites and chemical compounds function in the con-
text of one another, as well as together as a whole through biological pathways. ‘Omics’
technologies also create massive opportunities for engineering professionals to automate
the sifting and interpretation of Omics data and, therefore, to participate in postgenome
biological discoveries and applications. In contrast to conventional Omics studies, which
concentrate on the parallel or groupwise analysis of biomolecular structures and functions,
network biology concentrates on the study of structural and functional relationships be-
tween biological molecules – for example, ‘protein X binds to protein Y’, ‘transcription
factor X activates the expressions of a group of genes, A, B, C . . .’ or ‘chemical compounds
with a substructure feature of f can inhibit a subclass of protein kinases’. In spite of these
important differences, network biology studies have also been provided with an ‘Omics’
name – Interactomics – due primarily to its large genome-scale characteristics that are sim-
ilar to those of conventional ‘Omics’, and the high volumes of data being collected from
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both experimental and literature-based sources [3–5]. Whether it is referred to as network
biology or as Interactomics, the study of molecular interaction networks has been crucial
in determining relationships between molecular entities, understanding molecular signal-
ing events in cells, and finding new functional insights of complex biological processes.
Network biology is also an essential component of systems biology [6, 7], which aims to
integrate our Omics knowledge of cells and develop coherent computational models that
may be used for simulation and engineering purposes in future biomedical applications,
such as diagnostics and the treatment of complex human diseases.

In the study of molecular interaction networks (or network biology), many concepts –
as well as computational methods recently applied to the field – will be introduced. In this
chapter, we first describe knowledge representations for biomolecular interaction networks
with computer representation formats and methods, mathematical abstractions and visual
layout methods, after which commonly used network properties from topological, func-
tional and dynamical characteristics – which collectively lay the foundations for network
biology research – are introduced. Finally, computational methods – from both topological
and functional perspectives – that describe and predict network modules are presented. At
this point, related biological pathway analysis methods will not be explored, as that would
be a separate study in and of itself.

6.1 Network Representations

There are many ways to represent the molecular interaction networks and its most basic
components – biological molecules and molecular interactions. Over the past two decades,
the representation of biological molecules such as DNAs, genes, genomic sequences,
mRNAs, small nuclear RNAs (snRNA)s), microRNAs, proteins, structures, metabolites and
chemical compounds has been the main subject of bioinformatic study. During this time,
bioinformatic studies have evolved and matured. For example, the computer representation
of a DNA/RNA/protein molecule is also achieved with a one-dimensional sequence of
strings, with each character of the string representation being a basic biochemical unit of
the molecule. The structures of macromolecules and chemical compound are represented
as more complex three-dimensional (3D) coordinates of each atom’s position and the
chemical bonds that link them. Many international databases, including GeneBank for
DNA/RNA sequences, UniProt for protein sequences, PDB for protein structures and
PubChem for chemical compounds, have been developed and are currently widely used.
Biomolecular function annotation has been aided by the development of gene ontology (for
gene functions) and, most recently, of sequence ontology (for all biomolecular functions). In
this section, it is assumed that the reader is familiar with basic biological data representation
schemes and, therefore, the discussion will concentrate on the representation of molecular
interactions in the following sequence. First, the ontological representation, data exchange
formats and current database developed for biomolecular interaction network data will be
described. Second, both graph adjacency list and graph matrix abstraction of biomolecular
interaction network data will be explained. Finally, visual network layout methods such as
radial layout, hierarchical layout and force-directed layout and visualization software tools
will be illustrated.
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6.1.1 Computer Representation

6.1.1.1 Ontological Representation

To biological researchers, any molecular interaction data that merely capture a pair of
interaction relationship as ‘A–B’ – that is, molecule A interacting with molecule B – is
not useful for practical purposes. The experimental context of ‘A–B’ interactions is as
important as the collected interaction data itself in network biology. The requirement for
capturing additional experimental contexts is necessary, because molecular interaction data
are often generated from multiple sources and are of different types (e.g. high-throughput
yeast two-hybrid screening for binary protein interactions; immunoprecipitation-coupled
mass spectrometry (MS) for protein interactions; ChIP-Chip experiments for protein–DNA
interactions; text mining for molecular associations). These experimental platforms gener-
ate data of highly varying quality and coverage, making data preprocessing and integration
necessary. In order to assess whether or not a particular interaction collected is biologically
meaningful, one must examine all experimental details associated with the biomolecular
interaction before determining the reliability of the data. This examination reduces the risk
of making erroneous inference from data noise. Towards this purpose, molecular interac-
tion (MI) ontology was created as an international effort to integrate publicly available
biomedical ontology into a standardized collection of vocabulary and definitions to charac-
terize the terms and features used in molecular interactions [8]. An example is the Ontology
Lookup Service (OLS), that helps search current MI database (see Figure 6.1a). Although
MI provides a good framework that describes which information must be captured for each
molecular interaction data, the challenge remains as to how this information could be ap-
plied to annotate the growing accumulation of the molecular interaction data, which may be
several orders of magnitude larger than conventional sequence data for the same organism.

6.1.1.2 Data Exchange Format

With the rapid accumulation of Omics data in public databases, and the accelerated need
for interpreting experimental data from heterogeneous sources, there is a rising demand for
developing standardizing data exchange formats in network biology. The current systems
that provide integrated analyses of molecular interaction networks are still in their infancy,
and to facilitate bioinformatics software programs that exchange molecular interaction data
two primary data exchange format standards are proposed – the PSI-MI XML format and
the MIMIx format. The PSI-MI XML, with its current XML schema (see Figure 6.1b)
was developed by members of the Human Proteome Organization (HUPO) Proteomics
Standards Initiatives (PSI) to describe molecular interaction information in XML formats
that are compliant with the MI ontology. The members of the PSI-MI XML include major
molecular interaction database developers and researchers primarily from academia –
that is BIND, Cellzome, Dana Faber Cancer Institute, DIP, HPRD, IntAct, MINT and a
few other protein interaction data providers such as Hybrigenics [4]. As a complementary
standard, MIMIx is a structured data exchange format with the intent of providing minimal,
but essential, experimental information for molecular interactions [5]. Due to the general
similarity between molecular interaction data and the domain-neutral entity relationship
data found in many other domains (such as social networks and computer networks), many
applications (shown in Table 6.1) also support domain-neutral interaction data formats,
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including GML (Graph Markup Language), XIN (Extensible Interaction Network) and Tab-
delimited plain text file formats. Systems supporting domain-specific molecular interaction
standard formats have the highest likelihood of adoption by future user community, as users
usually prefer systems that can address specific biological questions to generic systems
directly borrowed from other domains.

6.1.1.3 Databases

The experimental collection and study of protein interactions have gained momentum in
recent years. As of 2006, high-throughput protein interaction mapping projects alone have
generated 6000 interactions for Saccharomyces cerevisiae [9, 10], 1465 interactions for
Helicobacter pylori [11], 20 405 for Drosophila melanogaster [12], 5500 interactions for
Caenorhabditis elegans [13] and approximately 18 000 interactions for Homo sapiens [14].
In these projects, high-throughput experimental techniques, for example high-throughput
yeast two-hybrid (Y2H) screenings [15], protein arrays and mass spectrometry (MS), have
been developed to measure physical bindings between proteins in parallel. By combining
data from existing experimental sources of more than 100 organisms, with curated interac-
tion data from PubMed literature, the Database of Interacting Proteins (DIP) records more
than 44 000 protein interactions [16]. The Biomolecular Interaction Network Database
(BIND) records an even broader range of protein complex and pathway information, to
reach 84 000 interactions. There are also other database development efforts similar to DIP
and BIND, such as GRID, MIPS, IntAct and MINT; or those which adopt a computa-
tional inference approach, such as OPHID [17]. Most recently, highly integrated database
software platforms such as UniHI have been developed to facilitate single gateway access
to organism-specific protein interaction data retrieval and network analysis [18]. (For an
updated comprehensive overview of these database resources, see Table 6.1. Most molec-
ular interaction databases can also be accessed at http://www.pathguide.org.) Additional
detailed information concerning these databases can be found in a recent review by Han
et al. [19]. Also worthy of mention here is that, although many molecular interaction
databases have been built, several comparisons have revealed a limited overlap between
different databases, which implies that these databases still suffer from considerable poor
data coverage and detection biases [20].

6.1.2 Mathematical Data Abstraction

6.1.2.1 Graph Abstraction

Collections of molecular interactions linking biological entities can be abstracted math-
ematically as a graph G(V, E) [21], where V is a set of nodes (or vertices, or points)
and E is a set of edges (or links, or lines). A graph abstraction is especially useful for
the analysis of molecular interaction networks, which may take many different forms in-
cluding protein–protein interaction networks, gene–gene coexpression networks, genetic
interaction networks, molecular coannotation networks, literature co-occurrence networks
and molecular entity association networks. Regardless of the form of the molecular inter-
action networks, graph abstraction simplifies the representation of network of interactions
by reducing all data related to molecular interactions into four basic types: nodes, edges,
node properties and edge properties. Depending on the particular characteristics of the
underlying molecular interaction networks, different forms of graph may be used. For
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example, directed acyclic graphs (DAGs) – directed graphs without looping – may be used
to represent gene regulatory networks, whereas Petri Nets – graphs with two different
classes of nodes (one representing original biomolecular entities and the other representing
transitional states of biomolecular entity complex in reaction) – may be used to represent
metabolic control networks. The biggest advantage of using graphs to represent biomolec-
ular networks is that many well-developed theorems and algorithms in graph theory can be
readily applied to the analysis of molecular interaction networks, once the graph abstraction
is made. Other basic concepts on graph representation of molecular interaction network
are shown in Table 6.2.

6.1.2.2 Graph Implementation: Adjacency List

An adjacency list is an implementation of graph abstraction, and represents each set of edges
connected to a node i in a graph as an unordered list of adjacent nodes J = { j | j in Ad j(i),
where Ad j(i) are the set of adjacent neighbors of i} of node i [22]. An adjacency list can be
used to represent a directed graph of n nodes with an array of n lists of nodes. An undirected
graph may be represented by having node j in the list for node i and node i in the list for
node j [23]. A weighted graph may also be represented with a list of node/weight pairs.
The biggest advantage of representing a network as an adjacency list is that combinatorics
can be used for problem solving. For example, combinatorics can be used for analyzing
the structure of regulatory interaction networks or gene regulation pathways [24, 25]; two
such examples are shown in Figure 6.2a,b.

6.1.2.3 Graph Implementation: Matrix

A matrix is another implementation of graph abstraction, and represents a network as a
two-dimensional (2D) adjacency matrix, in which each dimension of the matrix represents
a vector of nodes and the cells in the matrix contains binary values for a Boolean network
(1 for the presence of an edge between two nodes represented in each dimension of the
matrix, and 0 for absence of an edge), or numeric values for a probabilistic network
(numeric values representing edge weights). One can derive an adjacency matrix from
adjacency lists and an adjacency list from adjacency matrix. Two examples of graph matrix
implementations are shown in Figure 6.2c,d. In practice, an adjacency matrix has been
used successfully to predict protein functions globally from protein–protein interaction
networks [26], to correlate network data with gene expression data [27], and to perform an
evolutionary analysis of functional modules in the yeast interaction networks with near-
optimal efficiency [28]. The biggest advantage of representing a molecular interaction
network as an adjacency matrix is that many theorem and techniques in matrix theory can
be used for problem solving. For example, the graph spectrum of a network corresponds to
a set of eigenvalues λi (i = 1, 2, . . . , N ) of its adjacency matrix [29]. While the adjacency
matrix of a graph depends on the node labeling, its spectrum is a graph invariant. The
spectral density of the network can also be defined as:

ρ(λ) = 1

N

∑
i

δ(λ − λi ) (6.1)

where δ( ) is the Dirac delta function and ρ approaches a continuous function as N → ∞.
These features may also be useful when applied to the description of molecular interaction
networks.
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Table 6.2 Basic concepts on graph representation of molecular interaction network

Name Description

Graph Generally, network can be regarded as a graph G(V, E ). Here, V is a set of
nodes (or vertices, or points) and E is a set of edges (or links, or lines).

Node Node can denote DNA, RNA, gene, protein, peptide, small molecular or
protein complex, and so on. In some molecular interaction networks,
node can link itself.

Edge Edge can denote reaction, interaction, coexpression, coannotation,
association or literature co-occurrence, and so on.

Labeled Nodes in a graph can have different labels, which may represent different
subcellular localization, molecular function, biological process or other
annotations.

Directed/
undirected

Edge can be undirected or directed. If all the edges of a graph are
undirected, this graph is called an undirected graph. If at least one edge
of a graph is directed, this graph is called a directed graph. In signaling
pathways, directed edge with blunt end denotes inhibition, directed edge
with pointed denotes activation and dotted directed edge with pointed
end denotes causation. Directed edge also can be called arc.

Weighted/
unweighted

Edge can be unweighted or weighted. In some cases, the weight on an edge
can denote the confidence score of this interaction.

Order The number of nodes of a graph G is its order, written as |G| and its number
of edges is denoted by ||G||.

Degree The degree d(v) of a node v can be defined as the number of its nearest
neighbors N(v), which have at least one edge linked directly to this node.
If there are two or more edges between this node and one of its
neighbors, it only counts one when calculating the degree according to
this definition.

Average
degree

Average degree is the average value of degrees of all the nodes in a graph,
which is the most important concept used to compute topological
properties of molecular interaction network.

Degree
distribution

Degree distribution is the distribution about the occurrence number of
different node degrees in a graph, usually plotted in log–log coordinates
to study complex molecular interaction network.

Connectivity If no two nodes of a graph G are separated by fewer than k other nodes, G
is called k-connected. The greatest integer k such that G is k-connected is
the connectivity κ(G) of G.

Subgraph Subgraph is a subset of certain graph. A subgraph can also be regarded as a
node, in which the whole graph is called a supergraph. Subgraph can be
used to describe several different concepts in molecular interaction
network. In molecular biology, network module, protein complex and
pathway can be all regarded as subgraphs.

Path A path is a nonempty graph P (V, E ), where V = {v0, v1, . . . , vk},
E = {v0v1, v1v2, . . . , vk−1vk} and the nodes vi are all distinct.

Circle A circle is a graph C (V, E ), where V = {v0, v1, . . . , vk},
E = {v0v1, v1v2, . . . , vk−1vk, vkv0}, k ≥ 3 and the nodes vi are all distinct.

Length The length of a path is the number of edges in this path.
Shortest path The shortest path has smallest length in all possible paths in a graph.

Shortest path and shortest path length are the bases to define many other
useful graph properties.
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Figure 6.2 Examples of a mathematical representation of network. (a) The adjacency list of
an unweighted undirected graph; (b) The adjacency list of an unweighted directed graph;
(c) The adjacency matrix of an unweighted undirected graph; (d) The adjacency matrix of a
weighted directed graph

6.1.3 Visual Representation

6.1.3.1 Radial Layout

A radial layout is a simple way of visualizing a molecular interaction network, in which
all the molecules are drawn as equal size and placed at predetermined positions either
along circles (2D) or on spherical surfaces (3D). Several examples of different variants of
the radial layout of real networks, using proteins and protein–protein interactions derived
from Alzheimer’s disease as described in Ref. [30], are shown in Figure 6.3. Radial layouts
allow one to highlight the highly connected parts of the network and show how they relate
to the remainder of the network [31].

6.1.3.2 Hierarchy Layout

A hierarchy model is a good way of showing the hierarchical information which sometimes
is hidden inside the molecular interaction network. Usually, nodes at the same hierarchy are
shown on the same horizontal lines; a series of horizontal lines can be shown to indicate
the existence of multiple hierarchies, so that edges are directed from nodes on lower
horizontal lines to nodes on higher horizontal lines. A snapshot of the hierarchy layout of
real networks, using proteins and protein–protein interactions derived from Alzheimer’s
disease as described in Ref. [30], is shown in Figure 6.4. Hierarchical clusters of the nodes
or edges can be very useful for obtaining simplified views of large, complex networks.
Schwikowski et al. (2000) [32] showed that some levels of visual constraints, when applied
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(a) (b)

(c) (d)

Figure 6.3 Examples of the radial layout of an Alzheimer’s disease-related protein interaction
network. (a) Single circle circular layout generated by ProteoLens; (b) BBC compact circular
layout generated by ProteoLens; (c) BBC isolated circular layout generated by ProteoLens;
(d) Sphere layout generated by Interviewer (3D Engine).

to a yeast protein–protein interaction network, can be quite effective in revealing network
structures that previously were nonobvious [31]. Recent studies that have taken advantage
of both radial and hierarchy layouts in ‘hierarchical edge bundling’ visualizations have
been shown to further reduce visual clutter and to reveal implicit adjacency edges between
parent nodes, which are the result of explicit adjacency edges between their respective
child nodes [33].
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Figure 6.4 Example of the hierarchy layout of an Alzheimer’s disease-related protein inter-
action network (generated with the ProteoLens software tool). Only a small part of the layout
is shown here (the original is too large)

6.1.3.3 Force-Directed Layout

Force-directed layout is an effective and popular model to produce relatively good network
drawings that can highlight the ‘centrality’ of the network. Also known as ‘spring em-
beddings’, it builds a spring force model between each pair of nodes to pull linked nodes
together and push unlinked nodes apart, iteratively, until all the forces reach a mechan-
ical equilibrium, although this may take a very long time to achieve [31]. Examples for
the force-directed layout of an Alzheimer’s disease-related protein interaction network is
shown in Figure 6.5. Most biological network visualization tools implement a variant of the
initial force-directed layout algorithms as described by Frick, Sander and Wang [34], and
use either animation or resource-constrained incremental calculations to strike a balance
between an optimal equilibrium and a timely layout of the network.

6.1.3.4 Visualization Software Tools

Many visualization software tools are available that can support the user visual exploration
of biological networks. Examples include Cytoscape, Interviewer, Osprey, Pajek, Interac-
tionNetwork, Patika, VisANT and, most recently, ProteoLens [35]. A detailed review that
compares miscellaneous features of well-publicized tools was prepared by Suderman et al.,
in 2007 [31]. Whilst these tools complement each other in their respective performance,
user query capability, declarative query capability, flexibility and ease of integration of
network biology data management, the trend of future tools is to enable not only ‘dy-
namic’ or ‘integrative’ aspects of the visual networks but also ‘data-driven’ and knowledge
discovery-oriented tasks. In order to accomplish this goal, all visualization software tools
require significant further development.

6.2 Network Properties

The common concepts for the study of molecular interaction networks will be introduced
in this section. These concepts include network topological properties, network functional
properties and network dynamical properties. In this context, the basic concepts used to
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Figure 6.5 Examples of the force-directed layout of an Alzheimer’s disease-related protein
interaction network. The nodes colored pink are the key proteins (seed proteins)

characterize topological features of molecular interaction networks, which include graph
diameter, clustering coefficient, small-world property, scale-free property, centrality and
modularity, will be described. The basic concepts used to characterize network func-
tions, which include molecular function annotation, subcellular localization annotation,
biological process annotation, lethality/essentiality, date/party hub, protein complex and
biomolecular pathways, will then be explored. Finally, a few network dynamical properties
such as entropy, fractal, robustness and complexity will be introduced to provide the reader
with a ‘snapshot’ of active research in this topic.

6.2.1 Topological Properties

6.2.1.1 Graph Diameter

Graph diameter (GD) is a basic distance-related measurement, which is often used to
measure the size of a molecular interaction network represented with the graph abstraction
[36, 37]. Distance here is referred to the shortest path length between two nodes in a
connected graph. By definition, it is defined as the maximum distance among all the



P1: JYS

c06 JWBK327-Alterovitz December 16, 2008 20:29 Printer: Yet to come

Molecular Interaction Networks: Topological and Functional Characterizations 157

Figure 6.6 Examples of calculating the graph diameter d of network and clustering coefficient
ci of node i

shortest paths between all pairs of nodes in a connected graph [38], calculated with the
formula below, with examples further illustrated in Figure 6.6a–d:

GD = max[d(vi , v j )]

N
(6.2)

where d(vi , v j ) is the length of the shortest path between nodes i and j , and N is the
number of all the nodes in a graph. The GD is calculated for all pairs (vi , v j ), and reflects
the longest path. Other size measurements have been proposed and used in molecular
interaction network, including:

� The Wiener Index [39], which is the sum of distances between all pairs of nodes in a
connected graph.

� The average Graph Radius [36], which is the average of distances between all pairs of
nodes in a connected graph.

� The Index of Aggregation [30], which is defined as the ratio of the total number of nodes
in the largest connected subgraph existing in a graph to the total number of nodes in the
graph.

� Graph Node Eccentricity which, in contrast to GD, measures the greatest distance be-
tween a node and all other nodes in a connected graph. Graph radius can be defined as
the minimum eccentricity of any node in the graph. Graph diameter can also be defined
as the maximum eccentricity of any node in the graph [36].

6.2.1.2 Node Clustering Coefficient

The node clustering coefficient (CC) is a local density measurement of the presence of
loops in a network [40]. The CC of node i is calculated using Equation 6.3, with examples
illustrated in Figure 6.6e–h:

ci = 2li

ki (ki − 1)
(6.3)
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Here, li denotes the number of edges between neighbors of node i , and ki is the number
of neighbors of node i . The concept of clustering (also known as transitivity) is widely
used in nonbiological domains such as the acquaintance network, in which two individuals
with a common friend are believed to have a high likelihood of knowing each other. The
CC of nodes in a network, therefore, can reveal the presence or absence of a heightened
number of triangles in the network [41]. In order to measure the topological property of an
entire network, the average CC of the network may be calculated to gauge the tendency of
proteins in a network to form clusters or groups [42]. Other variants of the concepts also
exist, for example a cyclic coefficient that measures the cyclicity of a network [29]. Also
worthy of mention here is a less well-noted concept, the rich-club coefficient [29], which
measures the level of tendency of network hubs (highly connected nodes in a network;
this will be discussed in detail later) to be connected with one another. This phenomenon,
which is known as the rich-club [43], can also be traced back to social network studies,
which reveal that influential researchers in certain scientific areas tend to form collaborative
groups and to publish papers together.

6.2.1.3 Small-World

A small-world network, as described by Watts and Strogatz [44], refers to a network in
which most nodes can be reached from other nodes by a small number of hops or steps.
A small-world network is a type of complex network [29] with a smaller average shortest
path but with a significantly greater average CC than random networks. The small-world
property is commonly referred to as ‘six degrees of separation’ in social networks [41].
Biomolecular interaction networks exhibit the small-world property, which may reflect an
evolutionary advantage that this type of network is more robust to random attacks than are
other types of network [45].

6.2.1.4 Scale-Free

The scale-free property implies that the development of biological networks is likely
governed by robust self-organizing phenomena [46]. It is one of the key characteristics of
protein–protein interaction networks, in which node degree distributions obey a power-law
form shown in Equation 6.4:

P(k) = k−γ (6.4)

where P(k) is the node degree distribution of a network and γ is the slope of the dis-
tribution under log-log scale plot. Different types of network in the real world may have
different slopes, which could be used as network classifier [45]. Power-law distribution has
a particular role in complex systems because of their connections to fractals and phase tran-
sitions [47]. The scale-free property, which initially was described thoroughly by Barabasi
and Albert [45], has become one of the key properties of many types of complex net-
work [29]. In these networks, there are a small yet significant number of ‘highly connected
hubs’ (high degree), while there are a large number of sparingly connected proteins. Scale-
free networks are characterized by self-similarity – taking a constant γ and, therefore,
the same functional form at all network scales. Another important characteristic of scale-
free networks is the CC distribution, which decreases as the node degree increases; this
distribution also follows a power law [48]. The properties of scale-free networks suggest
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that the low-degree nodes form dense subnetworks, while subnetworks are connected to
each other through hubs. Although the emergence of a power-law degree distribution in
complex networks is interesting, the degree exponent γ is not universal and should not be
used solely for the basis of classifying scale-free networks.

6.2.1.5 Centrality

In molecular interaction networks, the greater the number of shortest paths in which
a molecule or interaction participates, the greater the importance of this molecule or
interaction for the network. The property regarding the importance of a molecule or an
interaction can be quantified as betweenness centrality [29], which is defined as:

BCu =
∑
i, j

σ (i, u, j)

σ (i, j)
(6.5)

where σ (i, u, j) is the number of shortest paths between nodes i and j that pass through
node or edge u, σ (i, j) is the total number of shortest paths between i and j and the
sum is over all pairs i , j of distinct nodes. The betweenness centrality of a scale-free
network also follows a power-law distribution, which has a more robust exponent that has
been used for analyzing protein interaction and metabolic networks [49]. Other centrality
measurements of a network, for example degree centrality, closeness centrality, stress
centrality, eigenvector centrality, subgraph centrality and graph centrality, are beyond the
scope of this chapter, although details are available in a review [50]. These topological
properties have also been applied successfully to the computational analysis of protein
interaction networks in tumors [37].

6.2.1.6 Modularity

Modular network structures, which are generally referred to as network modularity/
community or modularity/community, have been found in many types of bimolecular inter-
action network, as well as social and computer networks [51]. Most real-world networks
contain parts in which the nodes (units) are more highly connected to each other than to the
rest of the network. Therefore, an intuitive test of network modularity is to compare the edge
density inside the subnetwork group with the edge density outside the subnetwork group,
or, whether the sum of all node degrees inside the subgraph is larger than that outside. The
sets of such nodes are usually called clusters, communities or modules. The presence of
modules in networks implies the hierarchical nature of complex systems [52]. Although
many networks are found to divide naturally into communities or modules, their active
detection remains an outstanding research issue in the study of networked systems [53].
Module identification in large networks is particularly useful because nodes belonging to
the same module are more likely to share properties and dynamics. In addition, the number
and characteristics of existing modules provide subsidies for identifying the category of a
network, as well as understanding its dynamical evolution and organization of the entire net-
work [29]. Another fundamentally related problem involves how to divide a network into its
constituent modules. In real networks, the number of existing modules is usually unknown
and therefore a measurement of the quality of a particular division of networks is espe-
cially important [54]. Another approach to estimating modularity is the use of information
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entropy (also called a Network Information Bottleneck). This approach can achieve better
performance than the algorithm based on betweenness centrality [55].

6.2.2 Functional Properties

6.2.2.1 Molecular Function

Today, the functions of many genes remain uncharacterized. Although time-consuming
experimental or homology-based sequence analysis techniques to characterize gene func-
tions are still the primary techniques of choice, the increasing availability of molecular
interaction network data has made it possible to predict gene functions through guilt-
by-association [56]. By using molecular interaction networks, it is possible to under-
stand the function of biomolecules in their functional contexts. Hence, an expanded view
rather than the classic focused view of molecular functions, such as transcription factors,
may be assessed both precisely and holistically. This expanded view of function may
be achieved through different types of biomolecular interaction network data, including
protein–protein interaction networks, gene coexpression networks, gene regulation net-
works and microRNA-mRNA regulation networks. When the functional links between
pairs of biomolecules have been established, it is possible to begin understanding the bio-
logical connections including metabolic reactions, protein complexes or signaling cascade
events between the anonymous molecule and the known molecule, or by traversing the
links until significant clusters of molecules with common known functions are discovered.
Despite being an emerging computational technique, the use of networks of functional
linkages is expected to provide a new perspective for protein functions, and ultimately
widen our understanding of the functioning of cells [57].

6.2.2.2 Subcellular Localization

The analysis of high-resolution, high-coverage molecular localization data set in the context
of transcriptional, genetic and protein–protein interaction data, may help to reveal the
patterns of transcriptional coregulation and provide a comprehensive view of interactions
within and between organelles in eukaryotic cells [58]. For example, localization data
from the green fluorescent protein (GFP) library can confirm and extend predictions based
on trends within a single dataset, if proteins grouped together in a given dataset have a
common localization. Interacting proteins are known to be more likely to have the same
subcellular localization than proteins that do not interact. A recent study examined the
human interactome for the enrichment or depletion of interactions in which both partners
were localized to the same subcellular compartment. The study results showed a statistically
significant enrichment of interactions for most subcellular compartments studied [59].

6.2.2.3 Biological Process

The combination of different states of biomolecules and their interactions ensures that the
representation and subsequent analysis of biological processes is a clear challenge. A set of
notations for a process diagram has been proposed to enhance the formality and richness of
the information represented. A biological process diagram is a full state-transition-based
diagram that can be translated into machine-readable forms in a straightforward way [60].
Drawing diagrams with nodes and connecting arrows is a common practice for representing



P1: JYS

c06 JWBK327-Alterovitz December 16, 2008 20:29 Printer: Yet to come

Molecular Interaction Networks: Topological and Functional Characterizations 161

interacting biomolecules and, although such diagrams are useful, the information that they
contain is often imprecise, as the syntax and semantics of the symbols used are often too
limited to describe the real-world biological processes unambiguously. In the real-world
scenario, arrows would adopt multiple different meanings, making any correct interpreta-
tion of the diagram guesswork. For example, in a signal transduction network a directed
arrow could be interpreted in four different ways: activation, translocation, dissociation of
protein complex, and residue modification. Moreover, such problems would become mag-
nified as the number of genes, proteins and their interactions was scaled up. Therefore, the
most sophisticated diagrams, such as Petri Net and standard machine-readable codes such
as Systems Biology Mark-up Language (SBML) (http://www.sbml.org), may represent the
key to taking advantage of biological process information for subsequent computational
analysis [60].

6.2.2.4 Lethality/Essentiality

Lethality and centrality in a scale-free biomolecular interaction network have recently been
studied in a systematic manner [46]. This study revealed that highly connected proteins in
the cells (e.g. yeast cells) are likely to play pivotal roles in the cell’s survival. Therefore,
highly connected proteins would be particularly resistant to random node removal yet
be extremely sensitive to targeted manipulation, such as gene mutation, and even causing
lethal phenotypes upon targeted removal. Ongoing evolutionary comparisons of large-scale
biomolecular interaction networks have suggested that future systematic protein–protein
interaction studies could uncover similar network topology with evolutionarily preserved
essential proteins as network hubs. The correlation between the connectivity and essen-
tiality of a given protein confirms that the robustness of a cell could also be derived from
interaction organization and network topology, although individual biochemical function
and genetic redundancy are still very important. A comprehensive understanding of cell dy-
namics and robustness would benefit from an integrated approach combining the individual
and contextual properties of all constituents in complex cellular networks [46].

6.2.2.5 Party Hub and Date Hub

In scale-free protein interaction networks, most proteins interact with few partners, whereas
a small but significant proportion of proteins – the ‘hubs’ – interact with many partners [46].
Two types of network hub have been described in a protein interaction network: the
party hub, which refers to a highly connected protein that interacts with most of its
partners simultaneously; and the date hub, which refers to a highly connected protein
that binds its different partners at different times or locations [61]. The classification of
network hubs into party hubs and date hubs is useful when the network topology and
biological conditions for the static network structures has been determined. Additional
studies of network connectivity and genetic interactions described in vivo support a model of
organized modularity in which the date hubs organize the proteome, connecting biological
processes – or modules – to each other, whereas party hubs function inside modules [61]. In
contrast to previous studies which focused solely on the partners of a hub or the individual
proteins around the hub, a recent investigation [62] used the network motifs concept of
a hub or interactions among individual proteins, including the hub and its neighbors.
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Depending on the relationship between a hub’s network motifs and protein complexes, two
new types of hub – motif party hubs and motif date hubs – were defined by modeling based
on the original party hub and date hub concepts. The network motifs of these two types
of hub display significantly different features in subcellular localizations, coexpression in
microarray data, controlling topological structure of network and organizing modularity.
Such different features merit ongoing research.

6.2.2.6 Protein Complex

Many cellular processes involving proteins are carried out by protein complexes. The
identification and analysis of their components in protein interaction networks will provide
an insight into how the ensemble of expressed proteins is organized into functional units
in concert with each other [63]. The identification of protein–protein interactions often
provides clues as to which sets of proteins may be involved in forming protein complexes,
although such clues are often incomplete and noisy [64]. The challenges and opportunities
in deciphering protein complexes lie in the development of high-throughput computational
and experimental validation techniques.

6.2.2.7 Biomolecular Pathways

A biomolecular pathway (hereafter abbreviated as ‘pathway’) is a series of biochemical
reactions that are linked by sharing the product of one reaction in either a reactant or an
enzyme of a subsequent reaction. There are three major classes of pathway [65]:

� Metabolic pathways usually consist of a series of chemical reactions that provide basic
biochemical functions to maintain metabolite/protein synthesis and energy metabolisms
in cells.

� Signal transduction pathways act to send signals between cellular locations such as cell
membrane to cytoplasm and from the cytoplasm to the nucleus.

� Gene regulatory pathways are responsible for converting genetic information into pro-
teins (gene products) and controlling when and how genetic information is released in
response to intracellular signals.

Each pathway’s connections can be characterized as the collection of component molecules
(DNA, genes, proteins, snRNAs, metabolites and drug compounds) and component
molecule reaction/interactions. The study of biomolecular pathways is essential to both
network biology and systems biology. Biomolecular pathways are normally defined ac-
cording to the experimental evidence of signal transduction paths of a given biological
process (e.g. insulin binding to receptors are discovered and collected). As new evidence
linking biomolecules together, these pathways grow increasingly complex and are often
interconnected [19]. Yet, understanding what these pathways are – and how they relate to
each other – represents a major step forward for network biology to serve future systems
biology. This in turn holds great future promise for the development of in silico models
and engineering solutions for biomedical applications.
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6.2.3 Dynamic Properties

6.2.3.1 Entropy

As a key concept in thermodynamics, statistical mechanics and information theory, entropy
(also known as information entropy or Shannon entropy) is used to describe the amount
of ‘disorder’ and information present in a dynamic system, or how much randomness is
present in a signal or a process. The concept has been shown to be useful for the study of
complex networks [29], including molecular interaction networks [61]. There are different
definitions for the concept, including degree distribution entropy, search information, target
entropy and road entropy [29]. The entropy of the degree distribution provides an average
measurement of the heterogeneity of the network, which can be defined as:

H = −
∑

k

P(k)log P(k) (6.6)

The maximum value of entropy is obtained for a uniform degree distribution; for this
reason, complex networks – such as scale-free networks and small-world networks – may
occasionally also be known as nonuniform networks [66].

6.2.3.2 Fractal

Evidence exists that there is a close relationship between scale-free property and fractal fea-
tures in molecular interaction networks [67]. Fractals, which are also known as multiscale
self-similarity or self-repeating patterns, refer to objects or quantities that display self-
similarity in all scales. For complex small-world networks, the concept of self-similarity
under a length-scale transformation is not expected, mainly because the small-world prop-
erty implies that the average shortest path length of a network increases logarithmically
with the number of nodes [29]. However, Song et al. [68] analyzed complex networks
by using fractal methodologies, and verified that real complex networks may consist of
self-repeating patterns on all length scales. Intuitively, this can be interpreted by the power
law properties of node degree distribution and the CC distribution of a complex scale-free
network. Quantitatively, this can be measured by fractal dimensionality [69], which can
be obtained from a ‘box counting method’ used in fractal theory. If the network is covered
with NB boxes, and all nodes in each box are connected by a minimum distance smaller
than lB, the relationship between them is shown in Equation 6.7:

NB ∝ l−dB
B or dB = lim

lB→0

ln NB

ln lB
= lim

lB→0
logNB

lB
(6.7)

where dB is known as the fractal box dimension of the network. An example of fractal
network generated by self-repeating process is shown in Figure 6.7. The basic unit (motif)
of this fractal network is from Figure 6.6a.

6.2.3.3 Robustness

Molecular interaction networks with scale-free or small-world properties tend to be ro-
bust against external perturbations and evolutionary innovations, which makes the network
robust [70, 71]. The robustness of a molecular interaction networks can be related to



P1: JYS

c06 JWBK327-Alterovitz December 16, 2008 20:29 Printer: Yet to come

164 Automation in Proteomics and Genomics

Figure 6.7 An example of a fractal network (fractal box dimension dB = log(6)/log(3) ≈
1.63) generated by self-repeating process

network entropy – that is, their resilience to attacks [72] – and the contribution of nodes to
the network entropy has been correlated with lethality in protein interactions networks [73].
The scale-free nature of networks also has important consequences for network robustness.
For example, in a scale-free network, if the network nodes fail randomly then the network
should fall apart only after a significant fraction (rather than a finite small fraction) of the
nodes is eliminated. This robustness is accompanied by a relative vulnerability to system-
atic attacks through network hubs removal, unless the network hubs are replicated. For the
same reason, a scale-free network is more vulnerable to virus attacks, as electronic or bio-
logical viruses spread more quickly through hubs. In real-world biomolecular interaction
networks, the replication of genes/proteins encoding network hubs, and the local organiza-
tion of groups of nodes into tightly connected modules, may also help to improve network
robustness.

6.2.3.4 Complexity

Although the complexity of biological networks has been widely studied [36, 74, 75], the
theory of complex network only addresses the emergence and structural evolution of the
skeleton of a complex system, and is not a proxy for a theory of complexity. The overall
behavior of a complex system is nonetheless rooted in the nature of the dynamic processes
that take place [76]. The collective behavior of most processes occurring in scale-free



P1: JYS

c06 JWBK327-Alterovitz December 16, 2008 20:29 Printer: Yet to come

Molecular Interaction Networks: Topological and Functional Characterizations 165

networks is drastically different from their behavior in random or structured networks, and
this provokes new thoughts on network-based dynamical processes [76]. For example, why
do complex systems show patterns of organization without any central rules, and how is the
emergence generated only through local rules? In order to address these questions, complex
systems properties such as emergence and its behavior are currently under study [77].

6.3 Network Modules

In this section, both topological and functional network module identification techniques
will be described. A biomolecular network module is a subnetwork consisting of biomolec-
ular nodes that are highly interconnected, yet sparsely connected to the remainder of the
network. Computational methods to identify/predict network modules in two types of net-
work modules, topological modules and functional modules will be presented here. For
network topological module identification, graph-based partitioning and clustering methods
will be discussed, while for network functional module identification methods, to perform
clustering of genes/proteins in the network based on coexpression and/or coannotation
patterns to predict protein complexes and functional modules will be described.

6.3.1 Topological Module Identification

Computational methods for identifying network modules (or communities) based on topo-
logical features of the network can be categorized as two major types:

� Graph partitioning methods: these have been pursued primarily in computer science,
with conventional applications in parallel computing, data mining and integrated circuit
design. These methods aim to divide a graph into two or more large pieces, while
minimizing the size of the ‘interface’ between them is a fundamental combinatorial
problem, which is normally NP-complete.

� Graph clustering methods: these were initially developed by sociologists (they are also
called community detection) but have recently been adopted by biologists, physicists
and applied mathematicians to solve problems in social and biological networks [53].
Graph clustering is a commonly used computational technique to identify modules in
large-scale molecular interaction networks. Similar to traditional clustering techniques,
the graph clustering technique aims to group nodes into modules that are more densely
connected to each other within the module than to other nodes outside the module [66].
It addresses the computational problem of how to identify the best graph node distance
measure so as to group nodes into modules algorithmically. Unlike graph partitioning,
in graph clustering the number and size of the groups are determined by the network
topology itself, and users usually do not need to assume a good division of the network
beforehand [53].

Some common computational techniques to find network modules are explored next.

6.3.1.1 Graph Cuts

An intuitive approach for graph partitioning is to look for the best graph cuts in the
input graph. The concept of a graph cut, which can be naturally defined for directed and
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undirected graphs as well as weighted or unweighted graphs, refers to a partition of graph
nodes into two groups by ‘cutting through’ edges that connect the two groups of nodes. The
minimum cut (i.e. to find the smallest number of edges for such grouping) in a given graph
can be found efficiently with a maximum flow algorithm [78]. Spectral graph partitioning
is another method with conceptual simplicity and excellent overall performance [79].

6.3.1.2 Spectral Graph Partitioning

Spectral graph partitioning algorithm is based on spectral graph theory [80]. It tries to
divide the graph using the eigenvector associated with the second smallest eigenvalue of
the Laplacian matrix of a graph; hence, it is computationally demanding. A typical com-
putational task in graph partitioning is to use a ‘divide-and-conquer’ strategy to optimize
the parallel computational execution and to minimize interprocessor communication. Due
to computational resource constraints, the number and size of partitions are usually set in
advance; therefore, the goal is usually to find the optimal division of the network given
a specific partitioning parameters, regardless of whether a good solution even exists [53].
Many domain-neutral software tools can be used for this purpose, including CHACO,
GOBLIN, JOSTLE, LINK, METIS, PARTY and SCOTCH.

6.3.1.3 Hierarchical Clustering

In hierarchical clusters, the top level clusters have a hierarchical structure, each of which
can consist of subclusters with additional hierarchical structures. This representation is
useful in situations where the graph structure itself is hierarchical, and a single cluster can
naturally be composed further to obtain a more fine-grained clustering or, alternatively,
merged with another cluster to obtain a coarser division into clusters. The root cluster
contains at most all of the data, and each of the leaf clusters contains at least one data
element [66]. The principles used in spectral graph partitioning can also be used in graph
clustering; this is known as spectral graph clustering, and is also very time-consuming.

6.3.1.4 Spectral Graph Clustering

Spectral graph clustering is typically based on computing the eigenvectors corresponding
to the second-smallest eigenvalue of the normalized Laplacian, or certain eigenvectors
of matrices representing the graph structure. Possible matrices include modifications of
the adjacency matrix such as the transition matrix of a blind random walk on the graph.
The component values of the resulting eigenvector are used as node-similarity values to
determine the clustering [66, 80]. Quality measures (if feasible, the visual representation
of a network) will help to determine whether there are significant clusters present in the
graph, and whether a given clustering reveals them, or not. In fact, the spring-force or other
energy models for network visualization can naturally achieve the goal of graph clustering,
especially when the scale of a network is not too large [66].

6.3.1.5 Electrical Circuits-Based Clustering

Electrical circuits also provide a reasonable intuition for graph clustering. First, consider
the graph as a circuit that has a unit resistor on each edge, which is called a resistor network.
Then, calculate the potentials at all of the nodes (i.e. the voltages for all the edges), and
cluster the nodes based on the potential differences [54]. However, in order to have a current
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(this can be seen also as a flow-based method in this sense) in the circuit, a battery must be
introduced. The problem is not only the placement of the battery but also how to choose
the source and the sink of the current.

6.3.1.6 Markov Clustering

Based on flow simulation, Dongen presented an interesting graph clustering algorithm
named the Markov clustering algorithm (MCL) [81], which can be also seen as random
walk in a graph. The components of the eigenvector corresponding to the second eigenvalue
of the transition matrix of a random walk on a graph serve as ‘proximity’ measures for
how long it takes for the walk to reach each node [66].

6.3.1.7 Agent-Based Graph Clustering

Agent-based graph clustering is very similar to the method based on flow simulation, and
also can be regarded as a random walk model. However, in agent-based approaches, agents
walking in a graph or network could change their populations, leave some tracks, commu-
nicate, or learn from each other. As an example, ant colony optimization (ACO), which
also is known as the ant colony algorithm, is a dynamic stochastic searching algorithm
for finding optimal paths, that is based on the behavior of ants searching for food. In an
ACO-based clustering algorithm, ants roam all possible network paths iteratively. Yet, by
designing various strategies of ants for each step taken to walk in a network, the iteration
process can be manipulated to obtain the density distribution of ants crowding on each
node. According to this density distribution, the adjacency matrix of the network with
ranked nodes is shown as a map in order to reveal the system-level features of the network.

6.3.1.8 Relationship and Efficiency

Other interesting graph clustering algorithms have been found in a useful survey [66].
In general, many graph partitioning/clustering algorithms seem to be related. Spectral
graph partitioning is one of the cut-based methods. Spectral graph partitioning and spectral
graph clustering are both using the eigenvalue and eigenvector of the Laplacian matrix of
a graph. Spectral graph clustering is related to random walk, which can model the behavior
of both circuit networks and betweenness-like computations [53]. Circuits-based clustering
is a special form of flow simulation, which is the basis of Markov clustering. Random walk
can be also seen as a discrete flow simulation, while agent-based method can be regarded
as some kind of half-intelligent half-random walk. Although further study is required,
many graph-clustering algorithms are available for the general-purpose domain, including
GraphClust, Graclus, CCVisu and MCL.

One straightforward way to demonstrate the efficiency of a graph-clustering result is
to rerank the nodes according to the clustering result, and show the ordered adjacency
matrix of the network. The results from two-dimensional (2D) hierarchical clustering and
ACO-based clustering (with ant population increasing in each step) of an Alzheimer’s
disease-related protein interaction network are shown in Figure 6.8a and b, respectively.
By comparing the two results, it can be seen that an agent-based approach can reveal clearer
patterns in this type of disease-specific protein interaction network, although hierarchical
clustering is very efficient for analyzing gene expression profiles.
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6.3.2 Functional Module Prediction

Genes/gene products are organized on their functional interaction networks, which include
metabolic pathways, signaling pathways and myriad biomolecular regulatory networks.
Integrating the information from different types of network may lead new functional
insights of biomolecular interactions network and their functional modules [82]. Towards
this end, topological modules seem inefficient, as they need to be mapped to biological
knowledge beyond network topological features, due to the noise and incompleteness
inherent in network data. Based on coexpression and/or coannotation patterns, protein
complexes (splicing machinery, transcription factors, etc.) and dynamic functional units
(signaling cascades, cell-cycle regulation, etc.) can be well predicted by applying various
graph clustering methods into molecular interaction networks [83]. Two examples of this
technique are described in the following section.

6.3.2.1 Clustering Based on Coexpression

It remains a challenging task to interpret expression data in the context of known biomolec-
ular interactions. Systematic general-purpose approaches that integrate different genetic
information with expression profiles are required in the post-genomic era to understand
the functional context of genes/proteins, to predict functional modules and to expand bio-
logical pathways [82]. The correlation of protein complexes significantly overlapped with
interaction data appears to be a logical consequence of the necessity for cells to coexpress
tightly interacting and functionally dependent proteins. Recent studies have shown how
to combine protein interaction networks and gene expression data, including transitive
coexpression data, to reveal hypothetical functional modules from independent experi-
ments [82]. The method starts from different groups of proteins with known interacting
partners, and examines whether they are also significantly related in terms of other types
of experimental data. If correlations are found in a dense coexpression subnetwork, then
the genes/proteins in such a subnetwork become candidate components of the functional
modules. By calculating distribution of the correlation strength of all groups of gene ex-
pression profiles (nodes of the coexpression network), any module of a given size can be
evaluated [82].

6.3.2.2 Clustering Based on Coannotation

By integrating information from sequence analysis and gene ontology (GO) analysis into
a Bayesian inference framework, the results of a recent study have shown that functional
modules can be successfully predicted [84]. This study presented a computational method
for the prediction of functional modules encoded in microbial genomes. The researchers
developed a formal statistical measure and used it to quantify the degree of consistency
between predicted modules and known modules. They evaluated the functional relationship
between two genes from three different perspectives: phylogenetic profile analysis; gene
neighborhood analysis; and GO analysis. Next, they integrated three different sources of in-
formation using a Bayesian inference method, and applied the integrated information into
measuring the strength of biomolecular functional relationship. Finally, predicted func-
tional modules can be selected out by setting a certain functional relationship threshold.
When the method was applied to the genome of Escherichia coli K12, the results showed
that: (i) the predicted modules were consistent with known pathways; (ii) the neighborhood
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profiles or GO annotation significantly outperformed phylogenetic profiles in determining
functional modules; (iii) by combining GO annotation, phylogenetic and neighborhood
profile methods using Bayesian inference achieved higher degrees of consistency than sin-
gle methods for known functional module predictions; (iv) potentially new interesting gene
functional relationships that deserved further experimental investigations were discovered;
and (v) different threshold values could be used to predict functional modules at different
resolution levels. Methods in this direction are expected to play significant roles in the
accurate prediction of functional annotations.

6.4 Discussion

With the advancement of both high-throughput experimental data capturing methods for
identifying biomolecular interactions and computational methods for mining hidden rela-
tionships from biological literature and genomic/proteomic experimental data, there are
accelerated opportunities for understanding molecular function in the complex biological
context. At the same time, there have been significant challenges in using new network bi-
ology methods, including knowledge representation, concepts and analytical techniques, to
unravel the complexity of biomolecular interaction networks. The end goal is for researchers
to develop network biology models by moving from coarse and static protein interaction
network models to refined and dynamic gene regulatory network models. Towards this
goal, the concept of many methods used in network biology analysis has been introduced.

There are many potential applications of biomolecular interaction networks in transla-
tional systems biology, such as network biomarkers for disease molecular diagnosis and
network pharmacology for therapeutic drug developments. By using network biology data
and methods, several studies have already shown that it is possible to discover (or even
to ‘rediscover’) candidate disease-related genes/proteins from networks implicated in a
given complex condition such as the Alzheimer’s disease [30, 85]. Several recent studies
in network biology have also shown that network and pathway modeling might be the
‘enabling technology’ for identifying highly specific biomarkers in breast cancer [86, 87].
Another application is to introduce network concepts into computational pharmacology
studies, including drug target identification and drug discovery [88], which attempt to gain
an understanding of drug actions through various biochemical networks. With the con-
tinued discovery of new topological/functional network properties, and the development
of computational tools for network biology data representation, integration, analysis and
visualization, network biology will surely lead the way for ongoing systems biology studies
and future-generation personalized medicine applications.

Abbreviation List

ACO: Ant Colony Optimization
CC: Clustering Coefficient
ChIP-Chip: Chromatin Immunoprecipitation on Chip
DAG: Directed Acyclic Graphs
DNA: Deoxyribonucleic Acid
GD: Graph Diameter
GFP: Green Fluorescent Protein
GML: Graph Markup Language
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GO: Gene Ontology
HUPO: Human Proteome Organization
MCL: Markov Clustering
MI: Molecular Interaction
MIMIx: Minimum Information required for reporting a Molecular Interaction

experiment
miRNA: micro Ribonucleic Acid
mRNA: messenger Ribonucleic Acid
MS: Mass Spectrometry
OLS: Ontology Lookup Service
PSI: Proteomics Standards Initiatives
RNA: Ribonucleic Acid
SBML: Systems Biology Mark-up Language
snRNA: small nuclear Ribonucleic Acid
XIN: eXtensible Interaction Network
XML: eXtensible Markup Language
Y2H: Yeast 2-Hybrid
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7.1 Design Methods

7.1.1 Chemical Synthesis of Oligodeoxynucleotides

7.1.1.1 The Standard Phosphoramidite Chemistry

Chemical oligodeoxynucleotide synthesis is a cyclical process that elongates a chain of
nucleotides from the 3′-end to the 5′-end. Currently, the phosphoramidite four-step process,
which was developed during the early 1980s, is the method of choice and is used by all com-
mercial DNA synthesizers [1–3]. This process couples an acid-activated deoxynucleoside
phosphoramidite to a deoxynucleoside on a solid support.

A phosphoramidite is a nucleotide monomer that is fully protected at all reactive positions
on the ribose sugar, the phosphate group and the base. These reactive groups interfere with
the phosphate trimester reactions used to couple the nucleotide monomers, and should
be carefully blocked. The 5′ hydroxyl (5-OH) group of the ribose sugar is protected
with a dimethoxytrityl (DMT) ether moiety, which is removed by the action of a mild
acid at the start of each coupling cycle. The phosphate oxygen is usually protected by
diisopropylamine (iPr2N) and β-cyanoethoxy groups; all reactive sites on the bases are
also protected. The common protecting groups for the exocyclic amine are N-benzoyl on
deoxyadenosine (dA) and deoxycytidine (dC), and N-isobutyryl on deoxyguanosine (dG).
The deoxythymidine (dT) base does not need any protecting group. Other base-protecting
groups include N-acetyl dC (‘Fast C’) or N-dmf dG (‘Fast G’). Upon completion of
the synthesis cycles, the remaining protecting groups are easily removed to yield almost
lesion-free natural nucleic acids, with high efficiency.
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Figure 7.1 Schematic illustration of steps for oligonucleotide chemical synthesis using stan-
dard phosphoramidite chemistry. Shown here is the cycle of coupling the second nucleotide
to the first nucleotide attached to the bead (shaded sphere)

In the first synthesis cycle, the nucleotide chain grows from an initial protected nu-
cleoside tethered to a solid support via its terminal 3′ hydroxyl. The commonly used
supports include the controlled pore glass (CPG) or polystyrene beads. Chemicals and
solvents are pumped onto and through the support to induce the stepwise addition of nu-
cleotide monomers to the growing oligonucleotide chain. The addition of each nucleotide
monomer to the elongating oligonucleotide chain is carried out in four steps: deprotection;
activation/coupling; capping; and oxidation (Figure 7.1). When the synthesis is complete,
cleavage and deprotection results in the product being cleaved from the solid support, while
the remaining protection groups are removed to reveal the normal synthetic nucleic acid
product:

� Step 1 – Deprotection: The first step in the synthesis cycle is removal of the acid-labile
5′-O-DMT group from the first deoxynucleoside linked to the solid support or the 5′-end
deoxynucleoside on the growing oligodeoxynucleotide chain. This is achieved by using
a large excess of a weak acid, such as trichloroacetic acid (TCA) or dichloroacetic acid
(DCA), in an organic solvent. The resultant 5′-OH group becomes the only reactive
nucleophile capable of participating in the subsequent coupling step. The deprotection
step is kept short in order to prevent any possible acid-catalyzed depurination of DNA.
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A subsequent rinse with acetonitrile removes the acid from the support and prevents any
premature detritylation of the incoming phosphoramidite monomer.

� Step 2 – Coupling: In the coupling step, the 5′-OH group generated from the deprotection
step reacts with an activated monomer created by simultaneously adding the desired
phosphoramidite and an appropriate activator, the weakly acidic tetrazole (pKa = 4.8).
Because the activated phosphoramidite is very reactive, the coupling reaction is usually
complete within 30 s. An excess of tetrazole over phosphoramidite ensures complete
activation, while an excess of phosphoramidite over free 5′-OH of the growing chain
promotes efficient coupling (>99%).

� Step 3 – Capping: Even with high coupling efficiencies, a small proportion of the
5′-OH groups fails to couple to the incoming activated phosphoramidite. These remaining
reactive hydroxyl groups on the 5′ end of the growing oligonucleotide chains must
be rendered inactive to minimize deletion products. This is accomplished by adding
acetic anhydride and N-methylimidazole dissolved in pyridine and tetrahydrofuran (THF)
to create an acylating agent that ‘caps’ the free, unextended 5′-OH groups. After an
acetonitrile wash, the 5′-acetyl ester cap remains unreactive in all subsequent cycles and
is removed during the final ammonia deprotection step.

� Step 4 – Oxidation: After coupling and capping, the unstable phosphite triester internu-
cleotide linkages are oxidized to a more stable phosphotriester. This step is carried out
using 0.02 M iodine dissolved in water/pyridine/THF. Water in the oxidizer is thoroughly
removed with acetonitrile washes following the reaction.

This completes one cycle of monomer addition, whereupon the next cycle starts over
with removal of the 5′-DMT from the newly added nucleotide. The released trityl cation
chromophore can be quantitated to determine the coupling efficiency.

7.1.1.2 Cleavage/Deprotection

The four-step cycle is repeated for the addition of each nucleotide in the sequence and,
when the synthesis is complete, the oligonucleotide chain is cleaved from the solid support
and deprotected using concentrated ammonium hydroxide. All of the protection groups
on the bases and the phosphate backbone are removed with this treatment. Nonetheless, if
the final trityl group is left on (‘trityl-on’) at the end of the synthesis, it can be used for
purification purposes to enrich for the full-length products.

7.1.1.3 Purification

At this point the native oligonucleotide can be further purified by a variety of strategies.
While the method of choice will depend on the purity required, time considerations and
availability of resources, the following isolation methods may be considered, or even
combined:

� Methods for desalting: Contaminating chemicals can be quickly removed by direct
precipitation with ethanol or sizing columns. However, these methods do not separate
abortive synthesis products from their full-length counterparts. Purified oligonucleotides
can be used for routine molecular biology tasks, such as sequencing, cloning and PCR.
Lingering ammonium ions after precipitation may inhibit certain enzymatic reactions,



P1: JYS

c07 JWBK327-Alterovitz December 18, 2008 21:3 Printer: Yet to come

180 Automation in Proteomics and Genomics

such as phosphorylation by T4 polynucleotide kinase. A more thorough purification
procedure may be required for such applications.

� Methods for isolating full-length products: If the final trityl group is left on following
the final coupling reaction, the hydrophobically tagged full-length ‘trityl-on’ oligonu-
cleotide may be separated from failure sequences using a reversed-phase cartridge.
Failure sequences, which lack trityl groups, do not bind to the hydrophobic matrix effi-
ciently. Denaturing polyacrylamide gel electrophoresis (PAGE) or high-performance liq-
uid chromatography (HPLC) can be used to separate oligonucleotides with single-residue
resolution, and is the method of choice for purifying full-length oligonucleotides. HPLC
can also be used to purify full-length ‘trityl-on’ oligonucleotides by charge differences
through ion-exchange or hydrophobicity.

7.1.1.4 Alternative Synthesis Chemistry

Most recently, an alternative solid-phase phosphoramidite-based oligodeoxynucleotide
synthesis method has been developed that involves only two steps [4]. This approach
utilizes a peroxy anion as nucleophile during each synthetic cycle such that a 5′-carbonate
is removed and the internucleotide phosphite triester is oxidized, simultaneously. The cycli-
cal removal of the 5′-protecting group with a peroxy anion under mildly basic conditions is
essentially nonreversible and quantitative. This procedure can therefore completely elim-
inate depurination and reduce mutation frequencies in synthetic DNA. As the two-step
procedure also simplifies oligodeoxynucleotide synthesis by eliminating several reagents,
this should allow for a simpler – and potentially more robust – automation. It should also
result in dramatic cost savings for the large-scale synthesis of oligodeoxynucleotides.

7.1.1.5 Automation of Oligonucleotide Synthesis

A solid-phase synthesis makes automation possible because it eliminates the need to pu-
rify synthetic intermediates or unreacted reagents. Rather, the reagents are simply rinsed
from the column at the end of each step. Based on the four-step synthesis procedure,
fully automated DNA synthesizers have been developed with throughputs ranging from
one to 1536 sequences [5–8]. The first such machines were built and sold by Applied
Biosystems, but were capable of synthesizing only two to four independent sequences at
a time, using relatively large reaction volumes (ca. 1 ml). A parallel synthesis machine
capable of synthesizing oligonucleotides in a 96-well plate format was reported in 1995
at the Stanford Genome Research Center [7]. In order to synthesize a large number of
oligonucleotides in a multiplexed fashion using the phosphoramidite synthesis chemistry
with this design, the reagent bottles were connected by Teflon tubing to multiple solenoid
valves that were individually controlled by computer to deliver the reagents into wells of a
reaction plate. Individual valve control was essential in order to prepare oligonucleotides
of different lengths and sequences. Such a design allowed the highly parallel synthesis of
oligonucleotides by multiplexing the reagent delivery, and without any sacrifice of product
quality. Based on similar designs, additional parallelization further raised the through-
put of synthesis of these instruments to 192 and 384 (and more) independent reaction
wells.
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Figure 7.2 Commonly used methods for gene synthesis. (a) The ligation-based assembly
usually involves two steps, namely ligation and PCR amplification; (b) PCR-driven assembly
can be carried out in two PCR reactions or (c) in a one-tube, single-step reaction. In (b), the
gene-end primer pair is added after the first PCR assembly reaction

7.1.2 Gene Synthesis

Chemical DNA synthesis is typically used for the synthesis of oligonucleotide sequences
shorter than ∼150 bases. However, for the synthesis of longer, gene-sized DNA, a number
of enzymatic methods have been used over the past decades. Among these are included two
general techniques that are most often used today for the convenient synthesis of individual
genes, starting from short synthetic oligonucleotides (Figure 7.2).

7.1.2.1 Ligation-Based Assembly

The joining of oligonucleotides with DNA ligase to form longer genes was used in the
earlier examples of gene synthesis [9–13], and also in certain commercial solid-phase gene
synthesis set-ups. With the discovery of thermostable DNA ligases and development of the
ligase chain reaction (LCR) [14–16], thermoligase or LCR-based gene assembly methods
have become very convenient [17–19]. One advantage of using a thermoligase over T4
DNA ligase is that less oligonucleotide secondary structure will form at elevated ligation
temperatures.

In this approach (Figure 7.2a), carefully designed overlapping oligonucleotides that
completely cover both strands of the gene sequence are chemically synthesized and phos-
phorylated at the 5′-ends. The oligonucleotides are then mixed together in buffer with a
thermoligase and heat-denatured; the mixture is then cooled slowly to a temperature suit-
able for proper annealing and ligation. The denaturation and annealing/ligation steps can
be repeated for a number of cycles. In order to produce enough quantities of the full-length
gene product, the ligation reaction is usually coupled with a polymerase chain reaction
(PCR), using a pair of specific gene-end primers to amplify the full-length gene sequence.
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7.1.2.2 PCR-Driven Assembly

Without ligation, a procedure similar to PCR alone can also assemble overlapping oligonu-
cleotides into full-length gene constructs, either in two steps or in a single step [20–23].
These methods have been named variously ‘assembly PCR’, ‘overlapping PCR’, ‘poly-
merase chain assembly (PCA)’, and so on.

In the two-step procedure (Figure 7.2b), overlapping oligonucleotides that together cover
the whole construct are mixed together in equal, low concentrations with a PCR mixture,
including buffer, dNTPs and a polymerase. The thermal cycling steps are then carried out
similar as for a normal PCR. During the first PCR reaction, overlapping oligonucleotides
will anneal and extend, using each other as a template, to form increasingly longer DNA
fragments until eventually they reach full length. A second PCR is then necessary to
amplify the full-length construct; this second PCR will use a pair of end primers and a
small fraction of the first PCR mixture as template.

In the one-step procedure (Figure 7.2c), the pair of end primers is added from the start,
and at a higher concentration than the remainder of the oligonucleotides. Hence, extra
cycles may be needed to assemble and amplify the full-length construct.

Compared to the LCR-based approach, a difference may exist in the design of oligonu-
cleotides. In the PCR-driven assembly, gaps are allowed between adjacent oligonucleotides
that belong to the same sense or antisense strand. This gives the PCR-driven assembly a
slight advantage in terms of the amount of chemical DNA synthesis required over the
ligation-based assembly, where no gap is allowed. The speed and convenience of the
single-step PCR-driven assembly is another attractive feature. Unfortunately, however, not
all sequences can be assembled by PCR, and for some difficult constructs which involve
repetitive sequences or excessive DNA secondary structures, ligation may be the only
option.

7.1.3 Error Removal

Both chemical oligonucleotide synthesis and enzymatic gene assembly reactions will
introduce errors to the final synthetic gene product. Thus, a variety of error-removal
strategies must be in place to eliminate errors during the different stages of the gene
synthesis process.

7.1.3.1 Error Removal from Synthetic Oligonucleotides

Because the chemical reactions and washing steps are rarely 100% efficient, the coupling
efficiency for each monomer is typically 98.5–99.5% during chemical nucleic acid synthe-
sis. Deletions and insertions are the most frequent error types in oligonucleotide synthesis.
Typically, the deletion rate (which is due largely to incomplete capping) will be up to 0.5%
per position, while the insertion rate (which is due largely to DMT cleavage by tetrazole) is
approximately 0.4% per position. As a consequence, for an oligonucleotide which is 100
bases in length, only about 30–40% of the sequences will be correct.

Besides perfecting the DNA synthesis chemistry to improve oligonucleotide quality,
an effective method to reduce deletion/insertion is that of size selection, including HPLC
and PAGE purification (as discussed previously). Although approximately 90% of the
impurities can be removed by using these methods, they are not effective against other
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types of mutation that do not involve size change. Recently, a hybridization-based oligo
error reduction approach using DNA microarray was reported (this will be discussed
later) [24].

7.1.3.2 Error Removal from Synthetic Genes

The errors that remain in the synthetic oligonucleotides will be carried over and subse-
quently accumulate in longer synthetic DNA constructs. PCRs are also error-prone and
may introduce additional errors. The identification of error-free sequences by cloning
and sequencing is both time-consuming and costly, although in some cases expression or
functional screens can be implemented to eliminate errors that will cause frame shift or
function loss [19, 23, 25]. However, such targets are limited to protein-coding sequences
and functional DNA elements. A more general approach is to use DNA mismatch binding
or cleaving proteins, such as the MutS or MutHLS complex [26,27]; these proteins are able
to bind selectively to mismatches generated by hybridization between correct and incorrect
sequences. The resultant binding complex, which contains incorrect sequences, can then
be removed from the pool by using gel-shift assays or affinity columns.

7.1.4 Gene Design Tools

On the assumption that the goal of these investigations is to design and build a biological
system with predictable behavior(s), the complexity of biological systems requires the use
of design tools at several different levels.

7.1.4.1 The Organism or Whole-System Level

All of the components must function synchronously within the genetic and biochemical
context of the organismal chassis, without causing any unpredicted behaviors. Besides more
intelligent mathematical frameworks and tools for accurately predicting the behavior of
genome or gene circuits, better information is needed on genome function and regulation.

7.1.4.2 The Genetic Circuit Level

Better physical and mathematical models and tools need to be developed to design genetic
circuits with desired and predictable behaviors. Although some encouraging developments
have been made, significant limitations still exist, and these must be overcome in order for
the field to move forward [28]. Some major limitations include: (i) an incomplete list of
all the functional or structural components in most biological systems; (ii) an incomplete
understanding of the functions or physical characteristics of most genes, genetic elements
or proteins, and how these elements interact; and (iii) how to define and simulate complex
interactions and crosstalks in a noisy, crowded and compartmented environment such as
the cell.

7.1.4.3 The Component Level

The creation of better or novel genetically encoded components is an important goal for
the field of synthetic biology. Improving the function of existing parts or components is
achievable using molecular evolution approaches, with or without the aid of rational design.
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However, rational de novo design in order to create novel genetic elements, proteins or
enzymes is still a developing art. Today, most current designs are effected based on existing
sequence and structure information. One foundation for de novo design is an understanding
of the sequence–structure–function relationship of biological molecules, including mostly
proteins and RNAs, although this at present is far from being either complete or accurate.

7.1.4.4 The DNA Sequence Level

Unlike standardized mechanical or electrical components, which can be conveniently as-
sembled into different devices, sequence-specific genetic elements or genes usually do not
behave exactly as predicted in different hosts or genetic environments. Part of the reason
for this is the codon bias of different organisms or systems in which the genes are used. If
a designed gene does not express at all, or does not express at the desired level, then the
whole system may fail if there are no built-in redundancy or compensation mechanisms.
Our current understanding is still too patchy to provide any accurate predication of the
expression level of a gene in a specific host or system. In addition, a lack of comprehen-
sive understanding makes the development of reliable and effective ‘codon optimization’
algorithms difficult, if not impossible.

Once codon usage is selected, then a number of computer algorithms exist to design
oligonucleotide sequences for gene construction [24, 29, 30]. The main functions of these
programs include: (i) the integration of design features and the combination of building
blocks with protein-coding sequences, such as regulatory DNA elements, cloning strategies
and affinity tags; and (ii) to design oligonucleotide sequence sets for gene construction.

7.2 Applications

In the past, synthetic oligonucleotides have played a critical role in modern biotechnology
by enabling PCR, mutagenesis and cloning. Synthetic oligonucleotides have also been used
as building blocks for the construction of genes and longer DNA constructs. In principle, the
ability to design and write DNA blueprints freely from scratch will provide the opportunity
to create novel biological systems, and in so doing will revolutionize biomedical research.

7.2.1 DNA Microarray Synthesis

DNA microarray is a powerful technology in the study of genomics. Depending on the
type of probe printed on the surface, such arrays can be divided into two general cat-
egories, namely cDNA microarrays [31, 32] and oligonucleotide microarrays [33–35].
Oligonucleotide microarrays, being flexible in sequence design and more specific in hy-
bridization, are popular for gene expression profiling, mutation detection, genotyping,
sequencing and a variety of other applications [36]. Regular phosphoramidite chemistry,
with minor modifications, is used for the automated in situ synthesis of oligonucleotide
microarrays [33, 37–40].

Unlike oligo synthesis on a DNA synthesizer – where the reactions occur in separate
compartments – microarray synthesis takes place on the surface of a silicon chip or glass
slide, with the oligo growth being confined to specific spots or regions. This is achieved
through a variety of different mechanisms, including photolithography with physical masks,
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digital photolithography, and electrode array or inkjet printing. It is these mechanisms
which control whether or not a phosphoramidite monomer will be coupled to growing
oligonucleotide chains on a particular spot during each synthesis cycle, during which the
oligonucleotide chains are anchored to the surface via a special noncleavable chemical
linker.

7.2.1.1 Photolithography with Physical Masks

The earliest systems created to synthesize oligonucleotide microarrays included pho-
tolithography using physical masks and photolabile nucleoside monomers [33, 41, 42].
Here, the mask is used to generate a light pattern that dictates which areas on the array
are to be activated for chemical coupling. Consequently, a stack of masks needs to be pre-
fabricated according to the oligo sequences to be synthesized on the chip. Light exposure
in specified areas removes photolabile protecting groups from the growing chains and,
after deprotection, a selected phosphoramidite monomer is added onto the entire surface,
although the coupling reactions only occur in areas exposed to light. The cycle is then
repeated until the entire synthesis is complete.

When optimized, Affymetrix, Inc. applied this technology to the large-scale fabrication
of high-density GeneChip probe arrays for nucleic acid sequence analysis [36, 42–44].

7.2.1.2 Digital Photolithography

The cost of using large numbers of prefabricated photomasks is high, and is probably
justifiable only for large-scale, high-volume gene chip fabrication. A relatively low-cost and
flexible alternative is digital photolithography, using Texas Instrument’s digital micromirror
device (DMD), which is based on digital light processing (DLP) technology. DMD, which
is normally used in commercial projectors, is a reflective display device which consists of
an electromechanically controlled array of micromirrors. The resolutions may be as high
as 307 200 pixels (VGA) or 2 073 600 pixels (SVGA), with a 16 × 16 µm area per pixel.
One major advantage of using a DMD over a physical mask is that it is programmable,
with high-resolution, precisely controllable light patterns being generated in an automated
manner.

In an early version of the maskless array synthesizer (MAS), a DMD consisting of a
600 × 800 array of 16 µm-wide micromirrors was used [45,46]. The mirrors were individ-
ually controlled by computer signal, and could be used to generate any given pattern up to
480 000 pixels simultaneously. In theory, the device allowed the synthesis of almost half a
million different oligonucleotide sequences on the substrate.

Different photochemistry can be used with digital photolithography for DNA microarray
synthesis. Some designs have directly used a photolabile protecting group (PLPG), such
as (R,S)-1-(3,4-(methylenedioxy)-6-nitrophenyl)ethyl chloroformate (MeNPOC) or 2-(2-
nitrophenyl) propoxycarbonyl (NPPOC), to protect the hydroxyl groups on the linker or
on the phosphoramidite monomers [45, 46]. Other designs have used photogenerated acid
(PGA) in solution to perform the deprotection step in conventional nucleotide phospho-
ramidite chemistry [47]. At millimolar concentrations, the PGA solution can effectively
remove the DMT group to free the 5′-OH group of nucleosides or nucleotides.
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7.2.1.3 Electrode Array

Instead of using photochemical methods to generate acid for the deprotection step, lo-
calized electrochemical reactions can also be used for DNA microarray synthesis. Acid is
produced only at specified sites by electrochemical oxidation, using an array of individually
addressable microelectrodes. The electrolyte used in one design was 25 mM hydroquinone
and 25 mM benzoquinone with 25 mM tetrabutylammonium hexafluorophosphate in
anhydrous acetonitrile [48]. When current is applied to the microelectrodes, the elec-
trolyte is oxidized at the anodes; this causes acid to be released, which in turn diffuses
to the substrate in which the oligonucleotide was synthesized. The acid is confined in the
region by adjacent cathodes that consume it by reduction. Alternatively, the synthesis can
be performed on a porous polymeric layer, which slows down the diffusion of the acid gen-
erated from a local electrode and increases the amount of oligonucleotides synthesized per
unit area. The deprotection step can be completed in seconds, such that any side reactions
between the chemical and synthesized oligonucleotides are minimal.

7.2.1.4 Inkjet Printing

Inkjet printer heads can be used to deliver small drops of reagents to a chemically modified
slide surface, where they react to synthesize DNA. Piezoelectric jetting, high-quality motion
controllers and standard phosphoramidite oligonucleotide synthesis chemistry together
allow the synthesis of arrays of oligonucleotide sequences at specific, closely spaced
features on suitable solid substrates. This technology is primarily commercialized by
Agilent.

7.2.2 Multiplex Gene Synthesis from DNA Microchips

Today, at a current average price of US$ 1–2 per base pair, gene synthesis is still very
expensive and, perhaps more importantly, the process is also very difficult to automate. In
an initial attempt to reduce the cost and increase the throughput of synthesizing oligonu-
cleotide building blocks, special customized oligonucleotide arrays were adapted as an
economic source for large numbers of different oligonucleotide sequences [24, 46, 49].
Synthesis on DNA chips not only offers advantages in throughput, cost and speed but also
dramatically reduces the consumption of toxic organic solvents and reagents. The intro-
duction of microfluidic plumbing, which can be fabricated directly on top of, or adjacent
to, the synthesis reaction champers, will further reduce human handling and lead to savings
in reagent costs.

The strategy of using a chip-synthesized oligonucleotide pool for gene synthesis is
illustrated in Figure 7.3. In order to harvest oligonucleotides made on DNA microchips,
cleavable linkers were used in DNA microarray synthesis to anchor oligonucleotides on the
surface [24, 46, 49]. Following treatment with ammonium hydroxide or enzyme to release
the oligonucleotides from the chip, they were collected and purified. Current DNA microar-
rays are capable of synthesizing 103 to 106 different oligo sequences although at very low
yields (i.e. ∼106 molecules for each sequence). When using a microliter scale gene assem-
bly reaction, an oligo preamplification step is usually required in order to achieve optimal
oligo concentrations for the reaction. In this case, sequence features necessary for postsyn-
thesis enzymatic amplification must be designed into the oligo sequences to be synthesized
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Figure 7.3 Gene assembly from a DNA microchip. Gene-construction oligonucleotides
flanked by universal primer sequences are synthesized in situ on the microchip surface. After
cleavage, the oligonucleotides are amplified by PCR. The PCR primer sequences are removed
by digestion with type IIs restriction enzymes. Clean oligonucleotides are used for subsequent
gene construction steps

on the chip, an example being short universal PCR primers which flank the sequences.
Importantly, these primer sequences would need to be removed after amplification; one
way of achieving this would be to use a type IIs restriction enzyme digestion [24].

Subsequently, a chip hybridization-based method was designed as a preliminary means of
removing errors from chip-synthesized and PCR-amplified oligonucleotides [24]. For this,
two pools of error-correction oligonucleotides were synthesized from two DNA chips, with
each pool consisting of short oligonucleotides complementary to approximately one half of
the ‘gene-construction’ oligonucleotides released from the first chip. After hybridization
and appropriate washes, the mismatched sequences were selectively removed from the
pool and the correct sequences preferentially enriched. In this way, a multiplexed gene
assembly reaction could be used to assemble multiple genes from the same large pool of
oligonucleotides [24]. Moreover, these gene fragments could be further assembled into
increasingly longer sequences, either in vitro or in vivo.

A typical DNA chip with between 103 and 106 different oligonucleotides is capable
of constructing megabases of DNA sequence, equivalent to or surpassing the lengths of
microbial genomes. However, special measures must be taken to fully utilize this capacity.
In addition to multiplexing, a combination of spatial separation, selective releasing or
amplification, microfluidic or bioinformatic designs can all be explored.

7.2.3 Applications in Bioengineering

Conventional DNA synthesis, when combined with recombinant DNA techniques, has
been used in a wide range of applications, including biomolecular engineering, DNA nan-
otechnology and computing, gene circuit construction, metabolic engineering and genome
synthesis [50–54]. Due to the high cost and low throughput nature of conventional gene
synthesis, most applications mainly require oligonucleotide primers to be synthesized. Yet,
even in a complex gene circuit, pathway or metabolic engineering, the de novo synthesis
accounted for only a small fraction of the total sequence constructed. In fact, in such cases
most of the protein-coding genes were PCR-copied from natural sources.

Although, today, the de novo synthesis of error-free long DNA sequences remains a
major challenge, a number of successful attempts have been made in this respect. In
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2002, the chemical synthesis of a functional poliovirus genome was demonstrated using
conventional DNA synthesis and gene assembly technology [55], while in 2003 Smith and
colleagues reported the synthesis of a functional bacteriophage genome which took two
weeks to complete [55]. Today, attempts at the de novo synthesis of bacterial genomes are
underway and, with a further drop in price and increase in throughput, the time will surely
come when de novo DNA writing will become a routine and standard method in molecular
biology and bioengineering. Given time, de novo DNA writing should offer the freedom
of obtaining any DNA molecule in convenient manner and, in so doing, will transform
biomedical research in the near future.

Abbreviation List

DMT: dimethoxytrityl
iPr2N: diisopropylamine
CPG: controlled pore glass
DMT: 5′-O-dimethoxytrityl
TCA: trichloroacetic acid
DCA: dichloroacetic acid
THF: tetrahydrofuran
PAGE: polyacrylamide gel electrophoresis
LCR: ligase chain reaction
PCA: polymerase chain assembly
DMD: digital micromirror device
DLP: digital light processing
MAS: maskless array synthesizer
PLPG: photolabile protecting group
MeNPOC: (R,S)-1-(3,4-(methylenedioxy)-6-nitrophenyl)ethyl chloroformate
NPPOC: 2-(2-nitrophenyl) propoxycarbonyl
PGA: photogenerated acid
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8.1 Introduction

8.1.1 What is Ribonucleic Acid (RNA)?

Ribonucleic acid (RNA) is a polymeric chain that is found in nature and is composed of four
different bases, adenine, uracil, guanine and cytosine (A, U, G and C, respectively). RNA
is important for cell function; it is found in the ribosome, an important molecular machine
for producing proteins; in transfer RNA (tRNA), a component of the protein-generating
machinery; and as messenger RNAs (mRNAs), which are transient copies of DNA genes
that are translated into proteins by the ribosome. RNA is also found as the carrier of
the genetic information in many viruses; examples of RNA viruses include rhinovirus
(the common cold), influenza, HIV, and many others. More recently, numerous additional
noncoding RNAs have been discovered, expanding the functional scope of RNA to many
other fundamental cellular processes [1].

RNA is chemically similar to DNA except for two significant chemical differences: the
existence of a 2′-OH (a hydroxyl group) on the sugar of the RNA and the base uracil
instead of thymine (uracil is found in RNA, but not DNA, and is the unmethylated form of
thymine). While these differences are responsible for the greater chemical stability of DNA
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versus RNA, they typically confer a greater thermodynamic stability to RNA compared to
DNA by imposing different double-helical conformational properties. A double-stranded
RNA is normally found in an A-form helix, whereas double-stranded DNA is normally
found in the B form.

RNA molecules are normally thought of as single-stranded molecules, which fold back
onto themselves to form regions of helical double strands interspersed between loop-like
regions. RNA, like DNA, requires positive ions (e.g. magnesium, sodium) to neutralize the
negatively charged phosphate atoms associated with its backbone. Unlike DNA, RNA can
often be found folded into many different three-dimensional (3-D) conformations (for a
detailed comparison of RNA versus DNA properties, see Ref. [2]).

RNA folding and assembly is in part hierarchical [3–6]. The first step of RNA fold-
ing is the formation of secondary structure from the primary sequence of RNA; this step
occurs rapidly and is highly energetic. Following secondary structure formation, further
compaction of the RNA is achieved through metal ion condensation, which can be con-
trolled experimentally in vitro. The final collapse of an RNA into its native fold involves
a conformational search (on the millisecond time scale), and is highly dependent on the
sequence of tertiary contacts. The energies involved in the folding pathway of an RNA are
usually well separated, as are the salt dependences of each step of folding. RNA may also
fold cotranscriptionally or under the influence of small molecules, other RNAs, or proteins,
thus influencing the formation of collapsed intermediate or final states [7–12].

Because of its unique folding characteristics and chemistry, RNA has interesting func-
tional properties. For example, it can fold into structures that are capable of acting as
real enzymes (ribozymes) that can promote the catalysis of numerous different chemical
reactions [13,14]; RNA can also bind proteins and undergo editing [1,15]; RNA aptamers
can recognize small molecules [16], it can act as regulators, and can change conformations
as a function of its environment [1, 17].

8.1.2 RNA Synthetic Biology, Nanobiology and Architectonics

RNA synthetic biology and nanobiology are developing fields that aim to use RNA
molecules for the design of new biological metabolic pathways [18, 19], and for nan-
odevices [2, 20, 21] with novel properties and functions for the purpose of combating or
preventing disease or engineering new life forms for the biological fabrication of new
chemical or biochemical compounds [22]. The field seeks to tap into the unique properties
of RNA to enable the rational design of RNA nanoparticles for therapeutic devices, biosen-
sors, substrates for crystallography and nanowires, to name a few [19, 21, 23, 24]. The
primary rationale for choosing RNA as a polymer for this endeavor lies in its vast potential
for high structural complexity and diverse functionality, combined with its biodegradability
and apparent low immunogenicity [25]. One route to achieving these goals lies through
the experimental technique of RNA architectonics, a systematic method for characterizing
RNA motifs and engineering RNA nanoparticles [2, 23, 24].

8.1.3 General Concepts and Methodology Behind RNA Rational Design

In order to expedite the development of rational RNA design techniques, an automated
means is required whereby RNA-based building blocks are identified that ultimately can be
assembled in vitro or in vivo to accomplish a preconceived task, rapidly. Having knowledge
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of the structural and functional properties of the building blocks, as well as the final form that
would be prevalent in the presence of environmental factors, is very important. Therefore,
general experimental experiences combined with computational design methodologies
represent an approach that can greatly speed up the development of functional RNA-based
nanoparticles.

The goal of RNA rational nanodesign can be approached from at least two different
directions. The first direction assumes that one has in mind particular topological and
functional properties of the target structure, and then seeks to find the appropriate building
blocks (and associated sequences) that can assemble into the target structure(s). The second
approach, which involves more computation, involves a combinatoric search based on a
library of building blocks to pregenerate numerous structures; these can be deposited in
a database, later allowing a database search for structures that adhere to the required
properties. The advantage of the first approach is that one might be able to design a
very specific RNA particle based on a preconceived notion of what it should contain and
look like. The alternate approach leaves the door open for new structures that were never
conceived of before, and ultimately might act as useful functional particles or serve as
building components for more complex structures.

In order to rationally design RNA architectures, multiple considerations derived from
the understanding of how natural RNA molecules fold and assemble need to be taken
in account. The hierarchical folding process of natural RNA molecules is what makes
RNA an especially suitable polymer for inverse folding design. Therefore, the principles
and concepts that presently emerge from RNA architectonics [2] are at the root of RNA
nanodesign.

In this chapter, the general approach that has been defined over the past eight years to
rationally generate self-assembling RNA architectures is outlined. A general overview of
the methodology behind RNA nanodesign and a review of the necessary criteria that make
this approach feasible at an experimental level will be presented. Following this, some
of the state-of-the-art bioinformatics tools that presently facilitate the automation of RNA
rational design at a computational level will be discussed. After providing a framework that
allows the implementation of this technology at an experimental level, specific examples
of rationally designed RNA nanoparticles that have been successfully generated and tested
in the laboratory will be explored.

8.2 Rational Design of RNA Nanoparticles

8.2.1 Inverse RNA Folding Design Method: RNA Architectonics

The design of new RNA structures via the architectonics methodology is achieved through
inverse folding, a multistep process in its simplest form (see Figures 8.1 and 8.2):

1. Take a 3-D shape from an atomic resolution structure, treating it as a rigid building
block.

2. Attach helical stems to all branch points of the molecular building block.
3. Attach connection points to the ends of the stems to allow quaternary assembly. For

example, one half of a kissing loop motif when connected via inserted helices to other
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Figure 8.1 The general concept of RNA nanodesign (the RNA architectonics methodology
[2]). The process of engineering artificial tectoRNA architectures is a multistep procedure.
First, RNA fragments are extracted from the PDB database 1. The structural fragments are
then reassembled into artificial RNA molecules by computer 3◦ modeling 2. This process
involves optimizing the length of helices that connect motifs 2a and assigning connection
points for quaternary assembly 2b. The final tectoRNA model 3 can then be used for the
hierarchical assembly of multimeric RNA structures. The computer-generated tertiary models
are then used as scaffold to define consensus 2◦ diagrams 4, which are then used as blueprints
for designing RNA 1◦ sequences 5. During the sequence design process the 1◦ sequences are
optimized to maximize their thermodynamic stability. The RNA sequences are synthesized by
either chemical or enzymatic methods and characterized for their expected folding and self-
assembly properties 6. The rational design of tectoRNAs can be further optimized by returning
to the sequence design or 3◦ modeling steps based on experimental results (red arrows)

motifs serves as point for self-assembly into larger structures by docking with its partner
(the other half of the kissing loop) that is contained in another component, thus forming
a very stable, noncovalently linked interaction (see Refs [26, 27] for examples).

4. Generate a secondary structure diagram describing the 3-D model, where specific nu-
cleotides are fixed and other nucleotides are allowed to be variable.
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*see Rational 3D Design
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Figure 8.2 The various steps of RNA nanodesign that are presently facilitated by com-
puter programs. The majority of programs mentioned in the figure boxes are discussed in
Ref. [28], except NanoTiler (see text and Ref. [33]), FARNA [34], FR3D [35] and Nupack
(http://www.nupack.org; J.N. Zadeh, R.M. Dirks and N.A. Pierce, unpublished results)

5. Design sequences for the variable residues that stabilize the desired secondary structure
and incorporate the chosen nucleotide sequences into the 3-D structure.

6. Relax the structure using molecular mechanics, and test for 3-D structural stability using
molecular dynamics.

7. Further optimize the primary sequence through experimental testing.

Many of the steps of inverse folding (Figure 8.1), which originally were performed
by hand, can now be automated through an assortment of highly useful bioinformatics
computer programs (Figure 8.2) [28]. Computational methods derived from experimental
data gathered on RNA and DNA base pair (bp) energies have been developed over the years
which can predict with reasonable accuracy, especially for shorter sequences (<100 nt), the
secondary structure of an RNA [6, 28–31] and with much more difficulty the 3-D atomic
structure of an RNA (see Section 8.3) [28, 32].
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8.2.2 Necessary Criteria for Rational Design

The ability to rationally design RNA-based nanoparticles is grounded in part by the no-
tion that some sequences of RNA have the ability to fold autonomously into a precise
3-D structure outside of their natural context in Nature. These autonomous folding RNA
sequences are called motifs, and are often highly prevalent in the database of solved RNA
crystal and NMR structures. However, not all solved RNA structures are autonomous
folding domains; it is still not yet possible to tell if a sequence of RNA appearing in a
high-resolution X-ray structure will fold into the same shape in a different molecular con-
text simply by examining its structure. Thus, it is necessary to consider several criteria for
ranking RNA motifs during the initial stages of RNA design:

� Can a given structure of RNA be considered a motif?
� Is the motif recurrent within multiple RNA structures?
� Is the motif able to fold outside of its natural context?
� What is the stability of the motif outside of its natural context?
� What is the stability of the motif when associated with other motifs or helical connectors?
� What is the relative flexibility of a motif within the desired design framework?
� How do environmental factors such as temperature and ion concentration affect stability?

An important concern regarding the use of 3-D RNA motifs to form cyclic nanoparticles
is the number of helices that must be connected using a given motif. This is important,
since with an increasing number of 3-D constraints it becomes progressively more unlikely
that one can find an appropriate motif in a motif database, especially if motifs are seen
as rigid building blocks. As will be shown later, this is less problematic for motifs that
connect two helices (kissing loops, internal loops and bulges). Connecting three-way or
higher-order junctions can become difficult to the extent that the motif-approach might
have to be augmented or generalized, for example, through the use of synthetic motifs
computationally generated upon request or a facility to account for the flexibility inherent
in many motifs. As a rule of thumb, it can be said that the smaller the number of helices
emanating from the building blocks, the easier the design task. It is, however, important to
bear in mind that, rather than being extremely rigid, RNA structural motifs have an inherent
flexibility that allows room for adjustment (see Section 8.3.4.2).

8.2.3 Towards a Better Understanding of RNA Parts

A RNA motif is a structure of RNA that has a similar 3-D shape according to X-ray crystal
structure and nuclear magnetic resonance (NMR) data in ideally more than one example.
The motif corresponds to a specific set of nucleotides that define a sequence signature, or
the minimal information necessary for folding a nucleic acid sequence into a specific 3-D
structure.

A useful and simple criterion for choosing a RNA motif to test experimentally is its
recurrence within natural RNA molecules that have been solved either by X-ray crystallog-
raphy or NMR. Recurrence is defined as a motif found in multiple locations within a single
structure, or in different molecules, that seems to be naturally selected for a specific bio-
physical property, such as structural rigidity or flexibility. A higher recurrence of a motif,
especially within different structures, is evidence that a structure is robust in its surrounding
environment and will not likely deviate from its native fold in a new rationally designed
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environment. This is the case for numerous RNA interactions that have already been clas-
sified as motifs in the literature (11 nt motif, sarcin loop, T-loop, etc.) [36, 37]. However,
some motifs may be stabilized outside of their normal environment by the addition of
helical segments that emanate from their junction stubs.

The other criteria listed cannot easily be determined from the available atomic resolution
structures of RNA, as these structures cannot provide information about how an RNA
sequence will behave when removed from its native environment. Therefore, once a motif
is identified, experimental data must be acquired to address the additional criteria for
rational design [2]. Additionally, while experimental techniques may allow us to explore a
handful of new RNA motifs systematically, this is both very time-consuming and expensive.
Despite the prevalence of identified RNA motifs to work with, there are certainly numerous
RNA motifs that remain unidentified or untested. For this purpose, computerized algorithms
can aid us in identifying potential RNA motifs, saving both time and energy for the RNA
designer.

8.2.4 RNA Motif Detection and Search

Several tools are presently available to facilitate the identification of prevalent structural
motifs in atomic RNA structures. Backbone-based motifs are very useful for classifying
structural fragments that consist of only one RNA strand. Several methods have been
described for finding RNA structural motifs that are defined through their backbone con-
formation [38–42].

Other programs such as MC-Annotate and MC-Search, as developed by Major and
coworkers, can also be used to analyze and search RNA 3-D structures for structural
motifs. These programs are based on a 4 × 4 homogeneous transformation matrix (HTM)
that can store the relative position and orientation of any two base pairs [43, 44]. By using
the HTM formalism, it is possible to apply subgraph isomorphism algorithms to detect
3-D motifs. Harrison and coworkers [45] have used a similar approach to detect small
RNA motifs and non-Watson–Crick base pairs. JunctionScanner – a program that uses
HTMs to describe helix orientation – is used to identify the motifs that are present in the
RNAJunction database (see below) [46].

The alignment of RNA tertiary structures (ARTS) can be used to pair RNA or DNA
3-D structures [47], allowing the potential identification of new structural motifs. More
recently, a suite of Matlab programs, called FR3D, was developed to search for structural
motifs within X-ray structures, given a query motif that consists of a set of nucleotides in
addition to information about base pairing or base stacking [35].

8.2.5 RNA Parts Databases

Several databases are dedicated to providing and annotating RNA tertiary structures. For
example, SCOR is a database that contains RNA structures classified by either function,
3-D motif or tertiary interaction type [48]. Among other things, it contains internal loops,
hairpin loops, kissing loops, pseudoknots and several other types of motifs. Alternatively,
the nucleic acid database (NDB) contains annotated and categorized RNA and DNA
structures from X-ray crystallography and NMR experiments. NDB also contains several
RNA junctions [49].
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The ability to build RNA-based nanoparticles can be greatly facilitated, however, by
the existence of databases which focus more on the topological characteristics of RNA
building blocks, such as RNAJunction [46]. The RNAJunction database was built by
scanning the PDB database for various RNA building blocks (junctions, kissing loops,
internal loops and bulges). The extracted building block junctions are classified according
to the number of helices that emanate from the junction. Thus, two-way junctions are
derived from internal and bulge loop structures. The latter was further characterized in
Ref. [50]. Higher-order emanations give rise to three-way, four-way, and up to nine-way
junctions, while kissing loop structures are also found and included in the database. A very
important characteristic of these junctions is the angles that the emanating branches form
with one another. Whilst the dynamics of junctions or the range of angles that they can
accommodate are still not known, this forms a starting point for investigation. Building
blocks containing appropriate angles can be searched for in the database and then used
to form the desired shapes. Currently, the RNAJunction database contains over 13 000
entries, thus permitting the potential building of a very large number of structures over
a wide variety of shape characteristics. This large number of structural elements is also
due to redundancy between deposited PDB structures. The database contains a scheme
to reduce the redundancy to some extent by providing clusters of structural elements. All
elements of a cluster containing more than one element are required to consist of the same
sequences and to be no more then 3 Å DRMSD different from at least one cluster member.
This simple definition reduces the number of 13 108 structural elements to 2672 structure
clusters.

Clearly, more investigations must be completed in order to further reduce the redundancy
of the RNAJunction database. The simple rule of requiring all structural elements of a
cluster to consist of the exact same sequences is arguably too strict, and might not reflect
the structure and sequence variability of an RNA motif. Categorizing motifs according to
their phylogenetically recurrent sequence patterns could facilitate this endeavor. Moreover,
some of the entries may not be stable if isolated from their environment. A computational
or experimental assessment of the stability and flexibility of a large set of RNA structural
elements would be highly beneficial for the rational design of RNA nanoscale structures.

8.3 Computational Approaches for Automation

Numerous computational tools have been developed to aid in the creation of RNA 3-D
structure models, and several of these are reviewed in Ref. [28]. The program ERNA-3D
allows the real-time interactive manipulation of protein and RNA structures, whereby an
RNA 3-D structural model can be generated using a secondary structure representation [51].
The Nucleic Acid Builder (NAB) is a programming environment for generating nucleic
acid structures [52], while the make-na web server uses the NAB functionality and provides
for user-friendly generation of simple tertiary structures (helices) from a primary structure
(sequence). The program MANIP can rapidly assemble motifs into a complex 3-D structure
[53], while the software S2S can display, manipulate and interconnect RNA 3-D structures,
multiple sequence alignments and secondary structures [54]. More recently, the Shapiro
laboratory developed RNA2D3D [55] (see below), an interactive program for generating,
visualizing, editing and comparing RNA 3-D structures (including RNA nanodesigns)
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generated from secondary structure representations. MC-SYM is a program that uses a
constraint satisfaction algorithm to generate sets of RNA 3-D structures that are compatible
with constraints defined through the RNA sequence and secondary structure [56]. FARNA
is a de novo RNA structure prediction method derived from the successful Rosetta protein
structure prediction program. It is based on the rapid assembly of RNA structural fragments,
combined with a relatively simple scoring function [34].

8.3.1 Computational Design Methodology

The design of RNA-based nanoparticles requires more than a programmatic means for the
user to place helices and structural elements in a 3-D workspace. Many steps of the design
process still require a high amount of human judgment. In order to expedite the design of
RNA-based nanoparticles, a software system called NanoTiler was developed [33]. This
program can be used in a variety of ways, including the two alternative approaches of
design mentioned, and it is intended to be very versatile in order to accommodate the
particular engineering needs of the user. NanoTiler assumes that each building block motif
is a rigid body, which greatly speeds up the processes involved as each atom of the building
block does not have to be considered.

Given that one has a rough specification of a target shape and the building blocks to
be used in its design, NanoTiler allows the user to specify which helical ‘stubs’ from the
RNAJunction database motif to connect to linker helices, as well as to specify the size
of the used helices. The program also allows the user to specify base pair constraints
within the design. NanoTiler then attempts to connect the helices to the stubs using a
simulated annealing algorithm [57] to optimize the attachment point connections while
maintaining proper steric properties. The simulated annealing algorithm optimizes the
distances between the connecting elements, and then allows uniform bending in the helices
to optimize steric interactions.

NanoTiler also allows RNA nanoparticles to be designed through the automatic combi-
natoric exploration of shapes generated from RNA motifs derived from the RNAJunction
database and variable-sized connecting helices. In this methodology, a list of motifs can
be specified, where linking helices of various sizes are attached to specified stubs of the
seeded motifs. These connectivity specifications are iterated, and a fitting process is ap-
plied to ensure reasonable steric qualities at the points of connection. As a result of the
process, various shapes are generated. Some resemble dendrameric structures, while others
produce closed rings. Additionally, a closure checking procedure can be activated to detect
structures that form rings or cycles within a specified tolerance level. Likewise, a related
methodology checks for general collisions, and then terminates the procedure. An example
of one of these generated structures is illustrated in Figure 8.3.

The process starts by applying the JunctionScanner program (part of the NanoTiler
package) to a set of RNA 3-D coordinate files in order to obtain a set of building blocks
(Figure 8.3; Detect Motifs). Alternatively, the NanoTiler program can read building blocks
that are downloaded from the web site of the RNAJunction database [46]. By using a
graphical user interface or a scripting language it is possible to allow the program to
perform a combinatorial search, for example, for ring structures (Figure 8.3; Ring Search).
Ring structures found in this manner often contain a gap or a small collision at one point
in the ring, but this can be improved by optimizing the fit of the helices using constraint
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Detect Motifs

Ring Search

Ring Closure

Sequence
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Sequence
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3D Base
Substitution

PDB

Figure 8.3 A real example of the workflow showing how RNA ring structures can be designed
in an automated fashion, starting from building blocks that are extracted from PDB coordi-
nate structures [33]. The steps are: Detect Motifs – molecular fragments representing junctions,
kissing loops, internal loops or bulges are extracted from RNA coordinate structures either man-
ually or with programs such as JunctionScanner; Ring Search – using molecular modeling or a
combinatorial search procedure to find a combination of motifs that together with connecting
helices can be assembled into approximately closing ring structures; Ring Closure – modify the
computational model to improve ring closure (interactive molecular modeling or constraint sat-
isfaction); Sequence Fusing – use interactive molecular modeling or an algorithm (NanoTiler)
to fuse the sequences of the molecular model in order to obtain building blocks that are
connected through either ‘sticky ends’ or kissing loop interactions; Sequence Optimization –
apply a sequence optimization algorithm to the set of sequences and target secondary struc-
ture; 3D Base Substitution – modify the 3-D coordinate model by mutating the bases according
to the optimized sequence; Minimization/Mol Dynamics – apply physics-based minimization
and simulation methods such as molecular dynamics in order to refine the structure. Copyright
(2008), with permission from Elsevier. Ref. [33]

satisfaction. The user can either specify these constraints individually or allow an algorithm
to suggest constraints that, in a subsequent step, can be used to improve the ring closure
by a constraint satisfaction approach (Figure 8.3; Ring Closure).

The sequences of the structure with improved ring closure still correspond to the initial
small fragments or the linker helices. The sequences can be fused or split individually using
the NanoTiler program, or an algorithm can be used to suggest a set of fused sequences
(result shown in Figure 8.3; Sequence Fusing).

Sequence optimization takes the initial sequences of the structure and optimizes them
as described in Section 8.3.2. The resulting changed nucleotides lead to an automatically
modified 3-D model (Figure 8.3; Sequence Optimization and Base Substitutions). This
model, when generated in various steps, should be of sufficient quality to be subjected
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to energy minimization and molecular dynamics with packages such as AMBER [58]
(Figure 8.3; Minimization/Mol Dynamics). Between the described steps it is possible for
the user to inspect the status of the current molecular model.

Whilst the structures generated by this process might lead to interesting nanoparticles,
it is clear that a careful evaluation of their assembly properties will need to be experimen-
tally assessed. For instance, the energies of the loop-closing connectors will need to be
considered in order to predict accurately which ensemble of closed rings will form in the
test tube.

8.3.2 From 3-D to 2-D Structure Design: Computational Sequence Optimization

One crucial component in the design of RNA nanostructures is the determination of
the sequences that will be used to fold into the designated structures. Correctly specified
sequences are important because a delicate balance must be struck between local intrastrand
interactions and the formation of hybrid cross-strand interactions that could impede the
formation of a correct structure. Several methods have been developed for the task of
RNA sequence design. The program RNAinverse, which is included in the Vienna RNA
package [59], uses a local search strategy to either minimize the distance between the
minimum free energy structure of the current sequence and the target structure or, in a
different mode, maximize the probability of folding of the current sequence into the target
structure. The program INFO-RNA uses two stages: in the first stage, an initial solution
in terms of the designed sequence is determined with the help of a dynamic programming
algorithm. In the second stage, a local search is applied using an objective function that
takes the structure distance between the current and target structure into account [60]. The
RNA Secondary Structure Designer (RNA-SSD) attempts to minimize a structure distance
based on a recursive stochastic local search [61].

The NanoTiler software also has a facility to optimize an RNA sequence to fold prefer-
entially into a given structure. Unlike the above-mentioned sequence design programs, it
is able to optimize a set of different RNA sequences simultaneously. The initial sequences
that are produced by piecing together the motifs and linker helices are, by the nature by
which they are produced, fragmented into their individual components. A first step in the
sequence generation process is to fuse together the individual fragmented strands into one
continuous fragment that will constitute a complete unit for self assembly. NanoTiler has
this facility, as well as the ability to specify where the 5′ and 3′ ends of the fused frag-
ments should be. In order to limit the degree of cross-talk between the fused fragments, an
optimization methodology is employed that uses in part the program RNAcofold [62], an
algorithm that when given a pair of sequences attempts to determine the degree to which the
two strands will fold independently or will interact. Energy measures are used to indicate
the strength of these interactions.

Part of the sequence optimization process is to generate random mutations to specified
parts of the sequence, and to declare other portions of the sequence off limits to change
because those bases may be involved in complex tertiary interactions which, if disrupted,
would cause the structural motif to degenerate. One might allow, for example, linker helical
regions and kissing loop interactions to vary, as long as base complementary is preserved.
Currently, a score is produced that measures the number of correct base-pair interac-
tions that occur versus the number of incorrect base-pair interactions that occur, including
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cross-strand interactions. Another term of the scoring function favors designed sequences
that have a specified G+C content. This prevents the algorithm from generating sequences
that have a very low energy but an impractically high G+C content. The sequence optimiza-
tion algorithm is run multiple times while continually recording the best scored sequences
such that, ultimately, the best sequences are produced.

Once the desired sequences have been generated, the mutated bases are substituted back
into the original 3-D structure produced by the above-described methods, using another
component of the NanoTiler software. Thus, on completion of this procedure the sequences
that were designed to fold into the self-contained assembly units with the appropriate motifs
as well as the 3-D model of the RNA nanostructure have been produced.

8.3.3 From 2-D to 3-D RNA Structure Design

Another software system, RNA2D3D [55], permits the modeling of RNA 3-D structures
given secondary structure descriptions. The system takes a planar secondary structure
layout and initially embeds 3-D representations of the bases perpendicular to the plane.
A winding procedure is then invoked, which imparts A-form helicity to the base-paired
regions. Various molecular editing facilities and molecular mechanics and dynamics can
then be used to interactively refine the model. Within RNA2D3D’s interactive environment
it is also possible to import motifs from the PDB database and create connectivities between
kissing loop structures and single-stranded regions. Thus, for example, it was possible to
produce tectosquare models including meshes (see Ref. [55]).

Because the building block elements are initially modeled as rigid bodies, issues con-
cerning ring closure are easily visualized. Interactive molecular editing allows for the
exploration of various rotations, base-pair manipulations, stacking and unstacking of he-
lices, all of which give the user very important insights into the structural make-up of the
modeled RNA nanoparticles.

RNA2D3D can be particularly useful at times when it may be necessary to construct RNA
nanostructural motifs de novo. Under these circumstances it can be used in conjunction
with secondary structure prediction programs to build a 3-D model of the desired motifs.
The design of the entire nanostructure can then proceed using a combination of the facilities
that are available in RNA2D3D, or those available in NanoTiler.

8.3.4 Further Optimization of Three-Dimensional RNA Designs

8.3.4.1 Structure Energy Minimization

The procedures that are described above ultimately yield fairly good 3-D all-atom models
of the desired RNA nanostructure. However, because the components of the structure
have been pieced together, portions of the structure at the joining points may be somewhat
distorted; the bond lengths and angles may not be correct. Because of the inherent flexibility
found in RNA helices, these distortions can – in principle – be relaxed out (Figure 8.4).
To accomplish this, the created sequence-optimized 3-D nanostructure is subjected to
molecular mechanics minimization using Amber [58], although other molecular dynamics
packages may also be used [63–68]. This process is based on principles derived from
Newtonian mechanics and the use of partial charges that are associated with each atom
that makes up the nucleic acid structure. It allows relaxation of the structure by optimizing
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(a) (b)
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Figure 8.4 The inherent flexibility of RNA. (a) Inherent flexibility and springiness of regular
RNA helices within the natural context of the ribosome. Fifteen helices taken from the 2.4 Å
Haloarcula marismortui 23S rRNA (PDB ID: 1FFK) were superimposed at one WC position.
The angle measured between the C1 position of the backbone at the two extremes (shown in
blue) was 25◦ over a 7 bp span of helix; (b) Inherent flexibility of a tectosquare (LT17) building
block monomer (A3s) explored with the help of a 30 ns molecular dynamics (MD) simulation.
Shown in gray is an idealized monomer created with the help of the program RNA2D3D. An
RNA tectosquare built out of such blocks does not close in 3-D modeling. Shown in red is
a version of the monomer with a 26◦ twist added to its 5′ helix. A tectosquare built out of
four monomers modified in this fashion does close in 3-D modeling. The modified monomer,
therefore, is used as a reference structure. Shown in blue is a structure selected from an MD
trajectory of an unmodified monomer (gray), based on its low RMSD value measured relative
to the backbone P atoms of the second closing base pairs of both hairpin loops in the reference
structure (indicated with black arrows). The flexibility of the monomer (twisting and bending
motions of its helices) brings it close to the reference structure at multiple points of the MD
trajectory

the bond lengths and bond angles, in principle moving atoms that are too far apart closer
together and moving those atoms that are too close further apart.

8.3.4.2 Molecular Dynamics

In some cases the structure derived from the previous step might be sufficient for use in
the next major stage, which is experimental verification (see below). However, as some
of the junction motifs that are used in the building process are derived from much larger
structures (e.g. the ribosome), there is some question as to the innate stability of the motif
out of its original context. In some cases, attaching stable constructs to the stubs of the
motif can ensure this stability. These stable constructs might include helical extensions
or known stable tetraloops (e.g. the GAAA and UUCG tetraloops). Another approach,
which can be applied to the stabilized structures, to the original motif itself or to the
entire nanostructure, is to apply molecular dynamics. Again, the Amber package is used to
accomplish this. During molecular dynamics, heat is applied to the system with water and
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ions, thus imparting kinetic energy; atomic molecular motions are then observable and can
be analyzed. From this, it is possible to discover points of weakness in the structure or motif
if, for example, the structure begins to fall apart and the bonds break. Properties such as the
maintenance of angles or planarity can also be observed. However, molecular dynamics,
because of the large number of atomic interactions that must be considered (this includes
the solvent, solute and ions) can be quite time-consuming and computationally intensive.
Structures consisting of hundreds of nucleotides can take several weeks of computing time
to observe a molecule’s behavior over just 30–50 ns.

Molecular dynamics can also be used to help analyze the inherent flexibility that exists
in the structural motifs. This can be important because the requirement that the individual
pieces comprising a structure be rigid bodies presents potential problems when trying to
determine whether ring structures will close. An example of this arose when building the
tectosquares described Section 8.5.3. Ring closure did not occur; however, when molecular
dynamics was employed to one right-angle building block (consisting of the ribosomal
right-angle motif with a concatenated HIV kissing loop motif), there was found to be
enough flexibility to induce closure of the ring (see Figure 8.4b).

8.4 Synthesis and Experimental Characterization of RNA Nanoparticles

8.4.1 RNA Nanoparticles Synthesis

RNA nanoparticles can be produced by either chemical or enzymatic synthesis. The chem-
ical synthesis approach offers the advantage of creating oligonucleotides with a large
variety of modified nucleobase analogues that can be incorporated within the sequence
with high precision. Presently, DNA oligonucleotides of up to 120 nucleotides can be
chemically synthesized using phosphoramidite technology; however, a lower coupling ef-
ficiency limits the length of single-stranded RNAs to 45–50 nucleotides [69]. On the other
hand, RNA of almost any size and sequence can be obtained by enzymatic synthesis. In
vitro enzymatic synthesis methods include cloning [70], in vitro RNA transcription of
plasmid and polymerase chain reaction (PCR) -generated DNA templates using T7 RNA
polymerase [71, 72]. DNA templates generated by PCR from synthetic DNA molecules
code for the antisense sequence of the desired RNA molecule, and are amplified using a
forward primer containing the T7 RNA polymerase promoter in combination with a reverse
primer. The forward and reverse primers are designed to hybridize to the template with a Tm

∼56 ◦C, and their sequences should be optimized to eliminate any alternative pairing within
themselves [71]. Additional sequence constraints are necessary, especially when the RNA
sequences need to be generated by in vitro transcription from PCR-generated templates.
For instance, most T7 polymerase-generated RNAs will begin with 5′-GGGAAA and end
with U-3′. Furthermore, the sequence that is chosen through the optimization procedure
needs to be successfully amplified through PCR in its DNA form. Therefore, in order to
prevent the formation of stable 2-D structures at the level of the DNA template, the regular
helical regions include one G-U wobble base pair for every 5–6 base pairs in the RNA
strand (much like in the helical regions of natural stable RNAs, where the maximal length
of fully regular Watson–Crick helices is rarely greater than 7 bp). The final RNA products
obtained after in vitro transcription are expected to fold into the predicted geometric shape
and assemble into the desired RNA nanoparticle, according to the design.
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8.4.2 Optimization of Folding Protocols

Even if the secondary structure of an RNA nanoparticle is stable and promotes a unique
fold, the assembly and folding protocols often must be optimized by empirical trials.
One important criterion is to optimize the metal ion concentration. Metal ions essentially
screen the negative charges on the phosphate backbone, thus forcing the loosely folded
intermediate to go through conformational rearrangements before adopting the final 3-D
structure [5, 73]. The presence of divalent metal ions such as magnesium are absolutely
required for efficient assembly and to stabilize the tertiary fold of RNA nanoparticles at
low monovalent salt concentrations [71, 74, 75]. For this purpose, native polyacrylamide
gel electrophoresis (PAGE) must be carried out at various magnesium concentrations to
estimate the magnesium dependency of the RNA nanoparticle, which greatly depends on
the particular RNA motif it contains.

8.4.3 RNA Programmable Self-Assembly

Programmable self-assembly is defined as the assembly process where molecules can be
controlled with high precision to fold and assemble into predefined 3-D architectures [2].
There are two main approaches in the assembly of nucleic acid architectures. The first
approach – known as the ‘one-pot assembly’ – is a single-step assembly process in which
all the units that make up the nanoparticle are mixed together and assembled via a slow
annealing process [76,77]. According to the different energetics of the secondary structure
pairings, the most stable substructures fold first. As lower temperatures are reached, larger,
complex architectures are formed through weaker interactions. The second approach –
‘step-wise assembly’ – is a hierarchical self-assembly strategy in which various subunits
(tiles) are first separately formed through the formation of long-range RNA interactions
such as loop–loop or loop–receptor interactions at low magnesium concentrations, and then
mixed together to form the final complex architecture at high magnesium concentrations
[26, 78, 79]. These long-range interactions have different thermodynamic strengths and
dependencies on divalent ions, thus allowing monitoring of the stepwise assembly of
architectures with increasing complexity. Although the stepwise assembly strategy is more
time-consuming, it offers the advantages of tuning the assembly protocols by adjusting the
magnesium ion concentration and temperature. Thus, it is possible to use a reduced number
of loop–loop or tail–tail interactions by uncoupling tile formation from the formation of the
supramolecular architecture [26]. For this purpose, the melting temperature of the tiles and
the resulting nanoparticle should be kept well separated. Another advantage of stepwise
assembly is that it can be used to generate programmable self-assemblies with a finite size
in which all the positions of the subunits are precisely known within the context of the
nanoparticle [26, 78].

8.4.4 Biochemical Characterizations

The characterization of RNA nanoparticle assemblies can be studied using classical bio-
chemical methods, such as nondenaturing PAGE or agarose gel electrophoresis to verify
that nanoparticle subunits can assemble into desired architectures. This step is also essential
to optimize folding and assembly protocols.
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The thermodynamic stability and robustness of RNA nanoparticles can be assessed
using thermal gradient gel electrophoresis (TGGE), a method used to separate different
assemblies based on their temperature-dependent conformational changes [80,81]. In brief,
during TGGE a linear temperature gradient is applied perpendicular to the electric field.
As the temperature is increased, supramolecular architectures first lose their quaternary
structures and finally disassemble into monomers. TGGE can be a very useful method
for investigating the thermodynamic contribution of a particular RNA motif to the overall
geometry and the stability of the resultant supramolecular architecture. This is possible by
introducing sequence mutations at key tertiary nucleotide positions within the RNA motif.
Mutated RNA assemblies are used as negative controls for comparison with nonmutated
assemblies. By performing TGGE with a linear temperature gradient applied parallel to
the electric field, it is possible to compare side-by-side the thermal stability of alternative
architectures. Thus, this approach represents a powerful means of investigating and char-
acterizing the structural properties of tertiary RNA motifs in their native state [26, 82, 83].

Probing RNA nanoparticles in solution and the mapping of secondary and tertiary
interactions provides valuable insights into the 3-D structure of RNA molecules. In this
approach, the RNA molecule is either 5′ or 3′-end labeled prior to RNase hydrolysis or
modification. The labeled RNA is then subjected to attack by a chemical or enzymatic
probe, thus allowing testing of the reactivity of every nucleotide. Some examples of
chemical probes include dimethylsulfate (DMS), which reacts primarily with N7-G, N1-A
and N3-C, and diethylpyrocarbonate (DEPC), which reacts primarily with N7-A [84]. Due
to their small size, chemical probes are not sensitive to steric hindrance. In contrast, due
to their bulky size, the enzymatic probes are sensitive to steric hindrance and thus can be
sterically blocked by the particular 3-D structure of the RNA nanoparticle. By comparing
the cleavage patterns of a combination of single and double-stranded specific ribonucleases
such as RNase T1 and RNase V, it is possible to obtain information on the accessibility
of the tertiary structure and the degree of protection towards RNase degradation [84, 85].
Alternatively, Pb(II)-induced cleavage experiments can be performed to monitor the folding
and assembly of RNA nanoparticles into the expected architecture [71,86]. In this approach,
end-labeled RNA subunits are subjected to Pb(OAc)2 cleavage after folding and assembly
in the presence of desired Mg(OAc)2 concentration.

8.4.5 Biophysical and Structural Characterizations

The two methods of choice for solving the structure of RNA molecules at atomic resolution
are X-ray crystallography and NMR. Whilst these techniques are widely applied to a
variety of RNA structures, they are still very time-consuming; moreover, the main limiting
factors are a requirement for good diffracting crystals for X-ray crystallography and the
need for large quantities of materials, for NMR. Therefore, less-resolving techniques
such as atomic force microscopy (AFM) and electron microscopy may be very useful
for validating the structure of rationally designed RNA nanoparticles. In recent years,
both AFM [26, 87] and transmission electron microscopy (TEM) [72] have been used
successfully to study the topology of small RNA nanoparticles that are fairly planar in
shape. AFM can be performed either in air or in solution after depositing the nanoparticle
onto a mica surface in the presence of magnesium ions. The overall geometric shape and
height information can be assessed from AFM characterization; however, the 3-D shape of
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the RNA nanoparticles may be lost when the molecules are deposited onto the mica surface,
or damaged under the force exerted by the AFM tip. Such flattening of 3-D structures
makes it difficult to characterize 3-D architectures. In TEM visualization, methods of
staining during sample preparation and beam damage represent some limitations that could
impede the determination of 3-D structures. At the present time, cryoelectron microscopy
(cryo-EM) coupled with single particle reconstruction seems to be one of the most powerful
techniques [88] for the structural characterization of polyhedral RNA nanoparticles at low
resolution [70]. In cryo-EM, the water is preserved in the specimen, such that the native
structure of the macromolecule is maintained, while damage from chemical staining is also
avoided. Recently, the cryo-EM technique has been successfully used to determine the 3-D
structures of several nucleic acid-based polyhedra [70, 89, 90].

Small-angle X-ray scattering (SAXS) experiments can be performed to obtain additional
information about the 3-D shape of RNA nanoparticles that are in the range of 5 to 50 nm
in size. For example, diffraction information obtained from nanoparticles can be used to
calculate the radius of gyration. Although one major advantage of using SAXS is that the
nanoparticles can preserve their native state in solution, large amounts of highly purified
RNA nanoparticles are required in order to obtain a good signal.

8.5 Examples of RNA Nanobiology

The rational design of RNA nanoparticles can be envisioned for a multitude of uses,
including therapeutic devices, biosensors, substrates for crystallography and nanowires to
name a few. Several examples of rationally designed RNA nanoparticles have been recently
published Figure 8.5), and some of these are described briefly in the following sections.

8.5.1 RNA Nanoparticles using Loop/Receptor Interfaces

The first RNA nanoparticles generated using RNA architectonics were self-assembled
through loop/receptor interfaces to form dimeric nanoparticles [71,82] (Figure 8.5a,b). The
assembly of these nanoparticles was mediated by the class GAAA tetraloop/11 nt receptor
interaction, which is a highly recurrent motif in large ribozymes. The loop/receptor-based
dimer was subsequently characterized by NMR and X-ray crystallography, corroborat-
ing at atomic resolution the validity of the initial model obtained by architectonics [93]
(Figure 8.6a). The assembling interface of these RNA nanoparticles was further used to
build up a more complex system that produced RNA filaments and trimeric particles by
combining multiple loop/receptor interactions with a four-way junction motif [72]. Ad-
ditionally, the loop/receptor dimer was used as a scaffolding for the in vitro selection of
new RNA tertiary interactions not yet found in Nature [86], as well as for creating new
assembling interfaces that would take advantage of the loop C motif [94].

8.5.2 Phi29 Packaging Motor Particles

An RNA nanoparticle designed from a natural RNA motif found in the phi29 packaging
motor was used as a therapeutic agent in regulating apoptosis in cell culture and in mice
[20, 92]. The motif includes an RNA hairpin bulge–loop interaction and can assemble
to form dimer and triangular shapes (Figure 8.5d,e). Each ‘corner’ of the triangle can be
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Figure 8.5 Examples of recently reported RNA nanoparticles. (a) Loop-receptor tectoRNA
dimeric particle using the 11 nt/GAAA interaction [71,82]; (b) Construct in (a) with an addi-
tional helical turn added (shown in gray) [71]; (c) H-shaped tectoRNA nanoparticle [72,82];
(d,e) pRNA dimeric and trimeric particles based on the phi29 packaging RNA [91, 92]; (f)
pRNA trimeric particle functionalized on each unit [92] (the blue color shows the aptamer for
the CD4 receptor, pink shows the siRNA (BIM) group, green shows the FITC fluorophore (star)
attachment); (g,h) Small and large tectosquares based on the ‘right-angle’ motif (in green) [26];
(i) Computationally designed hexagonal nanoring based on the RNAi/RNAii inverse complex
from Escherichia coli (orange motif) [27]

engineered to contain different components with specific targeting or therapeutic properties
(Figure 8.5f). For example, one of the nanoparticles had one corner containing a small
interfering RNA (siRNA) that targets a specific gene for silencing, thus enabling apoptosis
(cell death). A second corner contained an RNA aptamer that was used to target specific
cell receptors (e.g. the folate receptor found on cancer cells), while a third corner contained
a molecular beacon for visualizing the entry and location of the particle in a cell [92].

8.5.3 RNA Tectosquares

One of the first examples of RNA nanoparticle design incorporating numerous RNA
motifs to build up complex assemblies is the tectosquare (Figure 8.5g,h). The tectosquare
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Figure 8.6 Structural characterization of RNA nanoparticles. (a) Assembly of magnesium
dependent loop-receptor dimeric tectoRNA particle. The original tertiary structure model
[82] on the left is in remarkable agreement with the recent NMR solution structure [93];
(b) Hierarchical assembly of the first fully programmable RNA nanogrid with 16 distinct,
addressable positions. The stepwise assembly process can be controlled by the order of
molecule mixing, the temperature and, most importantly, the magnesium concentration [26].
AFM visualization of the nanoparticle assembly represents a means to confirm that RNA
molecules assemble into the intended design

is composed of four building blocks (tectoRNAs) that self-assemble through kissing loop
interactions [26,95,96]. The basic assembly unit consists of two helical stems capped with a
modified kissing loop derived from the HIV dimerization domain. At the junction between
the two helical stems is a 90◦ bend, comprising a small 11-nucleotide motif taken from the
crystallographic structure of the ribosome. The 90◦ bend motif, in addition to orienting the
two stems of the unit, also provides directionality to the 3′ tail that can be used for additional
supramolecular assemblies of multiple squares. The first fully programmable assembly of
multiple RNA squares was a four-square cross composed of 16 unique tectoRNAs [26]
(Figure 8.6b). Further variations on this molecular system permitted the construction of a
ladder shape made of RNA, which was further functionalized by binding positively charged
modified gold nanoparticles to the center of each tectosquare. The assembly of charged gold
nanoparticles to this RNA scaffolding resulted in a self-assembling gold nanowire [96].

8.5.4 Hexagonal Nanoring and Nanotube Design

An example illustrating the rational design process of an RNA hexagonal nanoring
(Figures 8.5i and 8.7) and nanotube will now be depicted [27]. Assuming that one wishes
to design an RNA nanostructure that is hexagonal (i.e. having six sides and corners) for the
potential attachment of functional units (e.g. aptamers, beacons therapeutic agents), the is-
sue becomes one of finding an RNA motif that might satisfy such an initial specification. It
transpires that the motif from the colE1 kissing loop structure (PDB entry: 2BJ2), satisfies
a requirement that the kissing complex forms an angle of about 120◦. Thus, one can use
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(a) (b)

Figure 8.7 Depiction of the hexagonal nanoring and nanotube [27]. (a) The hexagonal ring
with each color indicating the six building blocks. Note the single-stranded tails pointing in
opposite directions; (b) Hexagonal nanotube built from the hexagonal ring. Each tail forms
interlocking double-stranded fragments to permit stacking of the rings. Reprinted from [27]
with permission from the American Chemical Society

essentially six copies of this complex to form the corners of the hexagonal ring. Six helical
segments can in turn, connect these corners, with each segment having somewhat different
sequence compositions to reduce potential cross-talk between the fragments. Molecular dy-
namics experiments have shown that the 120◦ angle is reasonably maintained (see Ref. [27])
and in addition, the structure remains relatively planar. It has also been shown [97] that the
essential sequence elements of the kissing loop involve not only the loop bases that interact,
but also the two base pairs that are part of the helices flanking the kissing loops. Stacking
interactions involving these base pairs are important for maintaining the stability of the
structure. This exemplifies the importance of maintaining the sequences in the motifs, thus
leaving the sequence optimization to those fragments away from the motifs.

There are two ways in which the building blocks can be designed. As there are two
halves to the kissing loop, designated as RNAIi and RNAIIi (note the notation ‘i’ – which
actually indicates the inverse sequence which is more stable than the wild-type and was
used in the NMR structure), one building block may contain the RNAIi loop motif on both
ends while another may contain the RNAIIi loop motif on both ends. Alternatively, a single
building block may be used by placing an RNAIi loop on one end and an RNAIIi loop on
the other. The initial experimental data suggests that the second alternative works better
than the first (I. Severcan, L. Jaeger, Y.G. Yingling and B.A. Shapiro, unpublished results).

Further alterations can be made to the structure that contains dangling single-stranded
fragments that emanate from each side of the hexagonal ring. These fragments can be
designed so that they are oriented in alternate directions – that is, with some pointing up
and others pointing down (Figure 8.7a). Potential therapeutic agents can be attached to
these dangling ends, or alternatively elements (such as siRNAs) can be designed into the
hexagonal edges.

The dangling single-stranded fragments have yet another potential interesting use. One
can conceive of making multiple hexagonal rings each containing single-stranded fragments
that point in opposite directions and are complementary to the single strands on other rings.
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One can imagine the self-assembly of these individual rings with interlocking single strands
to form hexagonal nanotubes (Figure 8.7b). These nanotubes could potentially contain gold
particles in their centers forming nanowires, and carry cargo that could be delivered in a
controlled way by dissolution of the surrounding nanorings. Alternatively, they could serve
as scaffolds for the generation of molecular superstructures by, for example, laying down
proteins on the tubes.

The design process described above represents the beginning of a pipeline for the
production of RNA-based nanoparticles. Ultimately, the design process as discussed must
be used in conjunction with experimental verification, an issue which is best illustrated by
the design of hexagonal building blocks for nanorings. The single building block approach,
where the building block contained both the RNAIi and RNAIIi motifs, gave better initial
experimental results than the double building block approach, where one building block
contained the RNAIi loop motif on both ends and the other contained the RNAIIi loop
motif on both ends.

8.6 Conclusions and Future Developments

8.6.1 Towards Full Automation of RNA Rational Design

In this chapter, a methodology for the design of RNA nanostructures using 3-D motifs
as building blocks was outlined. Many of the steps (detection of 3-D structural elements,
sequence optimization, 3-D structure refinement) can be automated to a large extent,
while other steps – such as combinatorial searches for closed structures or automated
ring-closure – could be automated for the case of RNA ring structures. However, for more
complex structures, additional algorithm development will be necessary. One reason – as
outlined in Section 8.3.1 – is that for higher-order junctions it is increasingly unlikely
that an entry in a structural element database that fits the structural constraints imposed
by the designer could be found. One way to improve this situation would be to extend
the motif approach to synthetic (in silico) structural motifs that fit the target geometry. It
might also be possible to modify the 3-D structure of the building blocks and to relax the
approximation that they are rigid bodies. Lastly, it should be possible to connect helices
with short, noninteracting single-stranded regions in a manner used for DNA nanostructure
design [76–78, 98–101].

By using computational methodologies, it is now possible to generate 3-D models of
a large number of hypothetical RNA structures. In the future, it will become increasingly
important to be able to catalogue these structures, perhaps by their topology. It will also
become more important to characterize the designs computationally, which means that, for
a set of sequences, one would ideally have a computer program which generated a folding
protocol (one-pot or stepwise assembly), and computed estimates for the homogeneity of
the target RNA structure, as well as the stability and flexibility of the structure and its
components at a defined temperature and salt concentration.

8.6.2 Towards More Complex Nanoparticles for Biomedical and
Biological Applications

Today, the field of RNA nanobiology is still in its early stages of research and develop-
ment. Yet, because of the potential wide range of applications that might result from these
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(a)

(b)

Figure 8.8 Towards multifunctional RNA nanocages. (a) RNA units entering into the com-
position of a 3-D nanoparticle can potentially be functionalized with various RNA modules
(aptamers, ribozymes, siRNAs) that can be oriented either inward or outward; (b) A comple-
mentary RNA or DNA strand (in purple) binds to an RNA domain (gray blobs) within the RNA
cage, triggering its expansion and letting the cargo free. The concentration of purple strands
(e.g. intracellular mRNA triggers) controls the rate of release. The purple DNA or RNA strand
could be found only in a specific cell type. A similar approach has been recently used to
design expandable DNA-based 3-D nanostructures [101]

investigations, this is clearly an exciting area for pursuit, with many avenues still to be
explored [2, 18–22]. These include the expression of self-assembling RNA in vivo for the
eventual reprogramming of cellular pathways, and the functionalization of RNA-based
nanoparticles for potential biomedical and biological applications. As mentioned earlier,
aptamers, molecular beacons and siRNAs may be attached to these particles to facilitate
cell entry, visualization and therapeutic results. Functionality can be realized by tapping
into the many natural capabilities found in RNA. One can imagine RNA-based cages
containing multiple therapeutic agents (Figure 8.8) which, if designed properly, could
disassociate to release their cargo at predefined times. Functional nanotubes, nanowires
and even more complex scaffolds with catalytic and responsive properties might also be
realized in the not too distant future. For instance, combining RNA nanodesign with in
vitro selection and evolution approaches (e.g. [102–106]) might represent a powerful way
to create multifunctional catalytic nanofactories from predefined RNA structural scaffolds
(e.g. Refs [107–109]). It is, however, clear that more fundamental studies aimed at un-
derstanding the principles of nucleic acid architectonics must be conducted in order to
achieve better control over the movement, dynamics and responsiveness of these RNA-
based nanomachines. Rather than a thermodynamic control of RNA folding and assembly,
a critical step for achieving the expression of artificial RNA nanoparticles within a cell
would be to control the kinetics of RNA folding under isothermal conditions. Likewise,
due to the enzymatic instability of RNA towards ribonucleases, it would be necessary to
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develop the design and engineering of nanoparticles, taking advantage of RNA analogues
such as LNA [110] or 2′OMe RNA [111].

In order to accomplish these goals, the computational and experimental procedures
discussed above have still to be more fully automated to enable rapid design and exper-
imentation. To this end, a database of functional building blocks must be developed in
addition to the structural motif databases mentioned above: a combination of these two
databases should then significantly expedite the design process. Coarse-grained computa-
tional techniques must be pursued to improve the speed associated with the 3-D modeling
aspects of the described pipeline, as all atom molecular dynamics is very time-consuming.
Databases incorporating the functional, structural and toxicological characteristics of the
designed particles must also be established, and include information on the heterogeneity of
specified RNA nanoparticles as found in vitro or in vivo. Moreover, databases incorporating
information relative to nucleic acid structural analogues would be of prime importance in
order to increase the chemical stability of RNA-based nanoparticles towards ribonucleases.
The incorporation of human insights from experimentation into heuristic rules would also
ultimately aid in the design process, by permitting ‘educated guesses’ with regards to many
of the required properties. An important outcome of these studies would be a much wider
comprehension of the functional and folding properties of RNA which, by themselves,
are important if the general role that RNA plays in normal cellular function and disease
processes is to be understood.
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9.1 Introduction

Today, many complex problems in biology are essentially intractable without large-scale
manipulation and processing. For example, whole-genome sequence analysis and whole-
cell transcriptome or protein interaction analysis require >106 manipulation steps. High-
throughput screens that can process 106 reactions are possible using traditional 384-well
microtiter plate technology, but these require a room full of robotics, storage facilities
and measurement systems for handling the requisite thousands of plates. Reducing the
reactions to the picoliter–nanoliter scale would enable the manipulation of more than 106

events in a space as small as several hundred microliters, assuming that each ‘nanowell’
would remain separate from the others.

Essentially all of the devices that have been developed for performing submicroliter
manipulations of biological matter are based on microfluidic chips with chambers, inter-
connecting channels and valves to control the pneumatic flow of materials. This approach
has proven successful for miniaturizing DNA sequencing [1], for whole-genome ampli-
fication from single cells [2], for protein crystallization [3] and for DNA synthesis [4].
Microfluidic processing greatly reduces the analysis time and reagent consumption, and
also eliminates costly macroscale robotics and laboratory apparatus. However, the through-
put of current microfluidic devices is far too low for large-scale analyses.
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Recently, the use of mixed-phase emulsions to create nanoliter droplets has dramatically
increased the number of manipulations that can be achieved. Emulsions of water in oil can
be used to compartmentalize millions of discrete enzymatic reactions into individual mi-
crodroplets for protein selection and evolution [5,6]. The emulsion PCR (polymerase chain
reaction), where a single nucleic acid molecule is compartmentalized in a thermostable
synthetic micelle or in a water-in-oil droplet, has enabled the molecular evolution of variant
DNA polymerases on a scale not previously practical [7]. A number of other droplet-based
applications have emerged during the past few years, including the isolation of binding,
regulatory and DNA-modifying proteins [8–10], the evolution of catalytic RNA [11], and
cell-free translation [12].

Another droplet-based application is the construction of clone-free DNA libraries for
sequencing [13]. Traditional clone-based libraries contain numerous gaps due to the
large number of recalcitrant elements within a given genome. Examples include strong
Escherichia coli promoter regions, toxic protein-coding sequences, AT- or GC-rich se-
quences and regions rich in secondary structure [14]. Clone-free sequencing strategies
circumvent the challenges caused by such regions. The clone-free sequencing approach
pioneered by 454 Technologies involves randomly fragmenting DNA, ligating adapters
to facilitate their capture on beads (one fragment per bead), and placing one bead in one
emulsion droplet containing PCR reagents [13]. The anonymous molecules on each bead
are amplified using thermostable Taq DNA polymerase and primers specific to the adapters.
After amplification, the emulsion is broken, the DNA denatured, and the beads containing
multiple copies of a single species of DNA are distributed into the picotiter wells of a
fiber optic slide. Pyrosequencing is carried out in each well using a series of enzymes and
nucleotides, with the addition of each nucleotide generating light that is detected by a CCD
camera. A single 8 h run of this instrument can process 400 000 wells and generate read
lengths of 250 base pairs (bp), or approximately 100 million raw bases. This technology
not only displaces 50 conventional capillary sequencing instruments but also eliminates the
need to pick and prepare templates from 400 000 colonies. Alternative approaches achieve
similarly impressive results using a planar solid-phase reactor [15].

Thermostable DNA polymerases are indispensable for next-generation and traditional
Sanger sequencing, as well as for many nucleic acid amplification schemes. Notably, all
commercially available thermostable DNA polymerases are derived from one of two very
closely related groups of microbial polymerases, which are specific for DNA repair [16,17].
However, phage DNA polymerases represent an alternative source of improved enzymes
for sequencing and amplification as they are true replicase enzymes that are significantly
more diverse than those of their hosts [18]. They often possess unique and potentially
more useful biochemical properties than the host repair enzymes, such as higher fidelity,
higher processivity and improved nucleotide analogue incorporation [19–21]. These prop-
erties could be exploited to improve DNA amplification and sequencing in a number of
ways, the best example being F/Y substitution of the microbial Taq DNA polymerase
based on bacteriophage T7 DNA polymerase [22]. This modification allowed the incor-
poration of dideoxynucleotides that revolutionized DNA sequencing. Unfortunately, many
of the unique characteristics of phage polymerases are not due to simple amino acid
substitutions.

In spite of the abundance and diversity of phage in the environment [23, 24] and the
potential advantages of thermostable phage DNA polymerases, only two reports have been
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made of DNA polymerases from high-temperature phages [25, 26]. Surprisingly, neither
of these is stable enough for typical thermal cycling reactions. Traditional culture-based
methods are poorly suited for identifying thermostable phage and their hosts, especially
from extreme environments, and this has contributed to the lack of known thermostable
phage DNAPs. A metagenomic analysis of phages from thermal aquifers has uncovered a
large number of new polymerase genes, largely unrelated to any reported sequences [27].
Although the potential of these new enzymes is still being uncovered, a number of surprising
new attributes have been identified.

High-throughput technologies have already increased the scale of sequencing and
analysis by several orders of magnitude. For example, automated ‘next-generation’ DNA
sequencing instruments can now decode 107 to 109 bases per run [13, 28, 15, 29]. How-
ever, the technology to perform other essential molecular and cellular biology techniques
at similar high-throughput levels is currently lacking. An ideal instrument would allow
an individual research scientist to manipulate millions of discrete droplets containing any
combination of cells, molecules or beads. This would provide the flexibility to mix, heat,
split, combine and sort samples, and to detect molecular events at the picoliter scale. In
this chapter we will describe such a device – a new microfluidic platform capable of
manipulating single cells or molecules. Moreover, as an example of its potential, we will
discuss how this microfluidic technology could be used with novel DNA polymerases that
have improved properties to provide unique capabilities to automate molecular and cellular
biology tasks.

9.2 Droplet-Based Microfluidic Platform

RainDance Technologies (RDT; www.raindancetechnologies.com) has developed an in-
strument for the manipulation of microscopic water-in-oil droplets (Figure 9.1) whereby a
disposable chip can be configured with a number of different microfluidic droplet generat-
ing, mixing and sorting elements. This allows the construction, for example, of a microflu-
idic fluorescence-activated cell sorting (FACS) system where the droplets can be used for
the sensitive detection and sorting of fluorescently tagged markers. The microfluidic chip
serves as the ‘central processing unit’ of the instrument, with only pressure-driven fluidics
and electrical fields being required to control millions of droplets. In this way, molecules
and cells can be rapidly encapsulated and mixed with other compounds, molecules and
cells, such that a wide variety of microfluidic manipulations can be performed on the
silicone chips, permitting complex assay designs and screening protocols.

Each droplet created by this instrument is the equivalent of a well in a microtiter plate,
but is millions of times smaller (Figure 9.2). The droplets are formed by injecting water into
opposing immiscible oil streams, causing the break-off of aqueous droplets in a well-defined
size range, based on the nozzle design and the sample and oil flow rates. The droplets are
stabilized with inert surfactants capable of withstanding thermocycling, freezing or storage
at room temperature for several months, while preventing cross-contamination. The size
of the droplets can be precisely varied from 5 to 500 µm (0.5 to 100.0 nl in volume)
by adjusting the orifice of the generation chamber (Figure 9.3a). Each droplet can have
a single molecule, bead or cell placed within it at a rate of up to 1.0 × 104 droplets
per second. Premade droplet libraries can be loaded back onto a microfluidic circuit for
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Figure 9.1 The RainDance Technologies microfluidic instrument. The overview shows the
primary manipulation, detection and analytical components. A microfluidic sample chip is
shown being inserted into the machine

additional manipulations after incubation or storage off-chip (Figure 9.3b). They can be
mixed to create unique formulations via multiple inflow channels with variable flow rates
(Figure 9.3c), or individual droplets can be combined by controlled electrical charges
(Figure 9.3d). Many types of on-platform fluorescent readouts are possible [including
fluorescence intensity, fluorescence polarization and Förster resonance energy transfer

oil phase

aqueous interior

hydrophilic
head group hydrophobic tail

oil
phase

aqueous
interior

surfactant molecules

5 to 500 µm diameter (0.5 picoliter to 100 nanoliter volume)

Figure 9.2 Schematic diagram of an aqueous droplet in an oil phase. The enlarged image
on the right shows the structure of the surfactant interface between the aqueous interior and
the external oil phase
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Figure 9.3 Droplet manipulation and detection modules. (a) In a microfluidic circuit the
aqueous sample stream is segregated into droplets by the force of opposing oil streams; (b)
Droplet libraries can be loaded onto the chip following off-chip incubation or manipulation;
(c) Multiple aqueous input streams can be infused at different flow rates to adjust component
concentrations; (d) Droplets are combined by first pairing-off droplets (upper panel), which
combine as they pass an electrical field (lower panel); (e,f) Detection by fluorescence or
fluorescence polarization can be used to screen and sort droplets using electronic control;
(g) The chip base can be heated in thermal zones for applications such as PCR, with droplets
rapidly changing temperature as they pass across the chip

(FRET)]. Quantitative detection of this fluorescence can be used to trigger the electrically
controlled sorting of droplets (e.g. FACS; Figure 9.3e,f). Droplets can also be heated in
thermal zones on the chip (Figure 9.3g), enabling PCR or hybridization-based applications
(also see Figure 9.4). Other microfluidic elements have been designed and tested for
additional applications.

The RDT instrument can assemble a broad range of components (live cells, proteins,
nucleic acids, small molecule compounds, etc.) precisely into each of millions of dispersed
microdroplets. The droplets can then be removed from the device for further manipulation
without cross-contamination and subsequently loaded back onto a chip for analysis and
processing. Single cells can either be encapsulated and screened or allowed to grow, while
reactants can be added to each droplet without contamination. This process can be repeated
several times such that approximately ten million cellular or molecular events can be
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Figure 9.4 Multiplex PCR using the RDT microfluidic chip. (a) Separate droplets of individual
primer pairs are formed and merged into droplets containing the common reagents (buffer,
template genomic DNA, nucleotides and DNA polymerase). The merged droplets are loaded
onto an amplification chip that moves them across the temperature zones on the plate. At
the end of the PCR cycle the droplets are collected, lysed and loaded on an agarose gel for
electrophoretic analysis; (b) Results from a direct comparison of droplet versus bulk multiplex
PCR using 10 primer pairs
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manipulated in one day, using only a few hundred microliters of solution. A few examples
of the capabilities of the RDT instrument are described below.

9.3 PCR in Droplets

DNA amplification, particularly PCR, is one of the most widely used tools in molecular
biology. Traditionally, one primer pair is used to produce one amplicon per 50–100 µl
reaction mix. Multiplex PCR was developed to decrease costs and increase throughput
by using more than one pair of primers to amplify multiple target sequences in a single
reaction. Multiplex PCR is an essential cost-saving technique for large-scale genotyping,
gene expression, whole-genome sequencing and the diagnosis of infectious diseases. How-
ever, the presence of multiple primers pairs and their targets, combined with differential
amplification efficiencies, leads to spurious amplification that may compromise the results.
Thus, true multiplexing beyond 10–20 amplicons is inherently difficult when using bulk
approaches [30].

In contrast, robust multiplex PCR can be achieved using droplet-based microfluidics.
Here, the primer pairs are individually packaged into single droplets, and a library of
different primer pairs is merged with a series of droplets containing template DNA and the
other amplification reagents (see top of Figure 9.4). Although only one primer pair is used to
produce one amplicon per droplet, hundreds to thousands of different primer pair reactions
can be performed in up to ten million droplets, which provides a significant increase in
multiplicity. Droplet-based PCR can be performed on-chip (as shown), or alternatively the
combined primers and templates can be amplified off-chip.

A direct comparison was performed using ten different primer pairs in conventional bulk
multiplex PCR versus a droplet-based multiplex PCR approach. No attempt was made to
optimize the simultaneous use of 20 different primers. The droplet-based multiplex reaction
produced the expected ten unique bands, whereas the bulk PCR reaction generated a single
broad band (Figure 9.4). This technique offers great promise for genomic and proteomic
analysis; for example, it should scale uniformly to amplify the ∼250 000 exons present
in the human genome, enabling efficient resequencing of the annotated protein-coding
portion.

The physical separation of each primer pair into separate droplets minimizes any non-
specific priming. Alternatively, the surface immobilization of oligo pairs has also been
used to segregate the reactions in multiplex PCR, although the drawbacks include a loss
of reactants from the surface, inefficient amplification, and considerable primer–dimer
formation within pairs of primers [31–33]. Multiplex droplet PCR also saves time by only
having to validate that a given primer pair produces the correct amplicon, without having
to balance the amplification from competing primers.

Single cell genetic analysis from bacterial and mammalian cells has been demonstrated
using a droplet-based microfluidic device similar to that described above (see Figure 9.5)
[34]. In these experiments, a dilution series of human lymphocyte or E. coli cells were
mixed with beads conjugated to a reverse PCR primer and a bulk solution containing a
fluorescent forward primer, as well as the other amplification reagents (mammalian single
cell, shown in Figure 9.5a). As a result, emulsion droplets of approximately 2.5 nl diameter
were formed, the temperature was cycled 40 times and the beads recovered for fluorescence
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(a)

(b)

(c)

Figure 9.5 Single-cell genetic analysis. (a) Comparison of the numbers of mammalian
cells (human lymphocyte cell line) before and after pumping at different cell concentra-
tions. The inset shows an optical micrograph of an emulsion droplet containing a single
bead and a single mammalian cell; (b) Flow cytometry analysis of beads from emulsion
droplet bead PCR, starting with 0.1 human lymphocyte cell per droplet (upper) and 0
human lymphocyte cell per droplet (lower). Agarose beads are conjugated with reverse primer
targeting the human GAPDH gene, while the corresponding forward primer is labeled with
TAMRA; (c) Flow cytometry analysis of beads from emulsion droplet bead PCR, starting with
1 Escherichia coli K12 cell per droplet (upper) and 0 E. coli K12 cell per droplet (lower).
Reverse-primer targeting the gyr B gene of E. coli is linked to agarose beads, and the forward
primer is labeled with FAM. With permission from Dr Richard Mathies at UC Berkley
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analysis using a flow cytometer with a 488 nm excitation source. A Poisson distribution
predicted that 9.5% and 63% of the processed beads should fluoresce, using an average
concentration of 0.1 and 1 cell per 2.5 nl droplet, respectively. The mammalian gene
amplification experiment shown in Figure 9.5b showed 8.5% of the total bead population
to be strongly fluorescent when using 0.1 cell per droplet, while the bacterial E. coli
experiment in Figure 9.5c showed that 57% of the beads fluoresced at the one cell per
droplet level. These results were consistent with single cell amplification of single copy
genes.

9.4 Transcription and Translation in Droplets

Genomic sequence information provides detailed information about local and global regu-
latory sequences, coding regions and homology relationships. However, functional analysis
ultimately requires the expression and characterization of the protein. Standard methods
for functional analysis include heterologous protein expression in microbial hosts, or
in vitro transcription and translation (IVT) systems [35]. Classic examples of IVT systems
include wheat germ or rabbit reticulocyte extracts, which contain all of the protein and RNA
components required for IVT, as well as fully characterized reconstituted systems [36].

A massively parallel approach to the functional analysis of gene libraries can be
achieved by using the microfluidic capabilities of the RDT instrument. The encapsulation
of individual genes (either cDNA or genomic) inside droplets containing IVT reagents is
easily achievable using limiting dilutions, and rare or enhanced functional proteins can be
detected after transcription and translation if a fluorescence assay is available to monitor
the protein’s function. The catalytic efficiency of several enzymes has been improved
by using a bulk double emulsion-based system (water-in-oil-in-water droplets) [5, 6],
while further studies using microfluidic water-in-oil approaches have demonstrated the
functional analysis of beta-galactosidase activity using a limiting dilution of the lacZ gene
in droplets (RDT, unpublished data). Ultimately, the development of IVT-based functional
screens in droplets should greatly accelerate the discovery of gene functions, by elimi-
nating host transformation steps and allowing for functional screening without sequence
information.

9.5 Screening Libraries of Host Cells for Secreted Enzyme
Activity and Evolution in Droplets

Currently, there is a great need for improving the catalytic properties of enzymes for both
industrial and academic purposes. Present molecular biology practices enable the cloning
of genes that encode the desired enzyme, with a variety of mutational techniques permitting
the generation of a large number (>106) of enzyme variants. In addition, transformation of
the mutant library into a range of host organisms enables screening for improved protein
function. Enzyme evolution strategies are based on successive rounds of improved enzyme
selection, followed by additional rounds of mutagenesis and further screening. However,
a key bottleneck in this process is the limited number of screening techniques that allow
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sufficient throughput to examine protein function on a clone-by-clone basis. Today, the
standard procedures in industry rely on placing individual clones on agar plates for halo-
based assays, these being typically scored qualitatively by color or zonal clearing. In this
way it is possible to resolve approximately 1000 individual colonies on large agar plates,
while 1000 plates are required to screen a million-member library. Secondary screening
for enzyme variants is onerous, mandating expensive robotic infrastructure and material
handling.

RDT’s droplet-based microfluidic platform provides the workflow and screening
methodology to screen up to ten million events per day (see Figure 9.6). For this, a
mutant gene library containing millions of transformed cells is produced using standard
molecular biology techniques. To avoid capturing more than one cell per droplet, the library
is diluted such that only one in ten droplets is expected to contain a cell (Poisson distribution
regime). The droplets provide both the medium for cell growth and an encapsulated space
to contain the secreted enzyme. Fluorogenic substrates can be coencapsulated with the
cells for detection and quantitation of the enzyme, followed by sorting of the fluorescent
cell droplets on the RDT instrument.

Bacteria that express both a green fluorescent protein (GFP) and a secreted enzyme were
used to test the expression and sorting capabilities (Figure 9.6). Single bacteria expressing
GFP were seen in droplets generated at limiting dilution, after which the droplets were
collected and incubated overnight at 37 ◦C to allow for bacterial growth and enzyme
secretion. After incubation, the droplets were reinjected for analysis and sorting on-chip.

DNA
Library

Host Cell

Substrate Generate
Droplets

Replication

Overnight

Replication Sort

Overnight

Re-inject
Droplets

Detect
Reaction Sort/Recover

Droplets Sorted
for Recovery

Overlay of Assay
& Cell Fluorescence

Single Bacterium
in Droplet

Figure 9.6 Massively parallel screening of microdroplet libraries containing mutant enzymes.
A mutant gene pool is created, transformed into a host cell, and dispersed into a droplet li-
brary containing a fluorogenic substrate. Limiting dilution is used initially to generate droplets
containing single host cells. Those droplets containing host cells can be enriched from empty
droplets by FACS. The mutant enzyme library can be screened for catalytic activity by fluo-
rescent probes and sorted for recovery and analysis
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Although the fluorogenic substrate for the secreted enzyme was present in all droplets, the
red assay signal was seen only in those droplets that contained bacteria (bacteria are seen
as yellow, when overlaying the red assay and green cell images).

When using this technique, the current sorting throughput is approximately 106 droplets
per hour. Quantitative analysis enables sorting at any desired threshold stringency, and
the entire screen requires less than 1 ml of bacterial culture. Positively sorted cells can be
recovered onto agar plates for subsequent validation and further rounds of mutagenesis and
screening.

The success of next-generation sequencing clearly demonstrates the advantages of a
high-throughput format, not only with regards to the amount of data obtained but also in
the scope of possible research projects. Whilst the RDT instrument is expected to have a
similar impact on other conventional molecular biology reactions, additional advances can
be made by combining such instrumentation with improved enzymes. In the next section
we will discuss how a search for novel DNA polymerases has yielded enzymes which
not only have unique activities but may also be combined with microfluidics to achieve
additional advances.

9.6 The Ideal DNA Polymerase

DNA polymerases are key reagents in nucleic acid amplification, sequencing and geno-
typing applications. Indeed, these enzymes – and the associated technology – comprise
a market which currently is approaching US$ 2 billion per year. To date, more than 100
DNA polymerases have been cloned, expressed and characterized, and approximately 20
have been commercialized. All of the thermostable polymerases utilized in vitro fall into
one of two closely related groups based on amino acid alignment, namely bacterial en-
zymes or archaeal enzymes [18]. These enzymes function as DNA repair enzymes, but are
not true DNA replicases (the latter are complex, multigene, multisubunit proteins that are
prohibitively expensive to produce commercially).

Taq DNA polymerase derivatives, ThermoSequenase, or AmpliTaq FS, have certain
important attributes, including thermostability and a reasonable incorporation of dye ter-
minators [37, 38], although they retain many of the deficiencies inherent in the parent
enzyme. They have a low processivity, a lack of strand displacement activity, a high er-
ror rate, a high level of slippage, a relatively low affinity for DNA-primer templates,
problems with certain sequence contexts, and detectable discrimination against nucleotide
analogues [16, 39–41]. These restrictions become especially apparent when certain diffi-
cult sequences are encountered (G/C- or A/T-rich, direct or inverted repeats), and when
limiting amounts of template are sequenced. The low fidelity of Taq DNA polymerase
results in mutant amplification products, which complicates the cloning of genes from rare
samples [42]. The efficient extension of mispaired bases [43] can also impair cloning and
complicate the results of single nucleotide discrimination assays. The inconsistent addition
of a nontemplated nucleotide to amplification products results in a measurable source of
error in genotyping studies [44], and this same activity can also interfere with certain
cloning and mutagenesis applications [45, 46]. Genetic analysis of the small nucleotide
repeats associated with a number of human diseases is compromised by the PCR stutter
and slippage-induced expansion artifacts [40, 47–49].
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Significant efforts to ameliorate these activities have met with only partial success. One
promising development was the introduction of proofreading thermostable enzymes such
as Pfu [50, 51] DNA polymerases. However, these enzymes unfortunately have strong
exonuclease activities that can rapidly degrade the amplification primers unless they are
chemically modified [52]. In addition, Pfu induces mutations at levels considered excessive
for genetic analysis [53]. Whilst Taq DNA polymerase and other available enzymes are cer-
tainly adequate for many applications, they all have activities that will compromise certain
results.

An alternate source of DNA polymerases is bacteriophage or archaeaphage (collectively,
‘phage’). In contrast to the complex cellular DNA replicases, phage replicases are often
simple, single-protein enzymes that are amenable to cloning, overexpression and production
in large quantities. DNA replicases have been cloned from a handful of nonthermal-stable
phages (e.g. bacteriophages T4, T7 and phi29). These phage DNA polymerases are superior
to their bacterial counterparts in areas crucial to DNA sequencing and amplification,
such as improved nucleotide analog incorporation, read length, copy accuracy and strand
displacement activity. However, the phage enzymes are not suitable for high-throughput
DNA sequencing or amplification, as they are not thermostable. The primary biochemical
attributes of the most widely used commercial DNA polymerases are summarized in
Table 9.1.

The ‘ideal’ DNA polymerase would possess attributes that are optimal for many different
applications. For example, amplifying or sequencing templates with strong secondary
structure would require an enzyme with high strand displacement activity and processivity;
a repetitive template would require high processivity and no replication slippage or terminal
transferase activity; amplifying DNA templates >50 kb would require high affinity for
primed templates and high processivity. The bottom portion of Table 9.1 shows the activities
that facilitate the efficient amplification or sequencing of a given type of template. An
enzyme that incorporates all of these qualities would be ideal for conventional and next-
generation sequencing platforms, as it would greatly reduce the gaps in the draft sequence
that require finishing. Although an ideal enzyme has not been identified to date, there is
ample evidence to suggest that improved enzymes exist among the thermophilic phage
DNA polymerases.

9.7 The Physiological Role and Characteristics of Phage Versus
Bacterial DNA Polymerases

The physiological role of phage DNA polymerases is fundamentally different from that
of commercially available bacterial or archaeal polymerases. The current reagent DNA
polymerases (including Taq) are DNA repair enzymes that primarily fill in short gaps,
whereas the phage enzymes are replicases that are under selective pressure to rapidly repli-
cate entire genomes with high fidelity. Phage polymerases are typically highly processive,
have high rates of extension, high affinities for templates and nucleotides, and are able to
deal with torsional constraints inherent in replicating long sequences. Microbial replicases
employ various accessory proteins, such as processivity factors, fidelity factors, helicases
and primase, in order to function this effectively.
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The T4 phage replicates its genome ten times faster than does its E. coli host, while T7
incorporates 300 nucleotides per second, six times faster than Pol I [54]. The T7, T4, T5
and phi29 DNA polymerases all have extraordinarily high levels of processivity, with phi29
polymerase, in particular, having the highest measured level of processivity measured to
date (>70 kb) [55]. In fact, phi29 polymerase can amplify a 20-kb template 1000-fold in
1 h [55]. Importantly, the phi29 and T5 polymerases are highly processive without the aid
of host proteins [54], suggesting a high affinity for the template.

Interestingly, the DNA polymerases of phages T5 and phi29 are able to strand
displace without the aid of helicases or other accessory proteins [55,56], a property which
is rare among bacterial or archaeal polymerases. The processivity and strand displacement
are inversely related to slippage [47]; accordingly, phi29 and T4 DNAPs have no detectable
slippage during extension through repetitive DNA in vitro, unlike available thermostable
DNA polymerases. Lacking terminal transferase activity, the phage DNA polymerases do
not produce ‘stutter’ bands [44].

DNA polymerases are specialized for various types of templates: repair polymerases
most efficiently use nicked double-stranded (ds) DNA templates, but they are less effective
in extending long stretches of primed single-stranded (ss) DNA [54]. Phage polymerases,
including those of T4, T7 and phi29, are highly efficient at extending long stretches
of primed ssDNA. The efficient primer extension of single-stranded templates is a key
requirement for sequencing and amplification. In some cases, phage DNA polymerases, in
addition to any proofreading activities, have a higher discrimination than Pol I at the initial
incorporation step [57, 58], further increasing their fidelity.

9.8 Diversity among Phage DNA Polymerases

Whereas the commercially available thermophilic bacterial or archaeal DNA polymerases
fall into either of two groups, the polymerases of phage T4, T5, T7, Spo1, Spo2, PRD1,
phi29 and M2 are distinct [18]. The phage polymerases as a group are also far more diverse
than the bacterial and archaeal DNA polymerases. Surprisingly, T4 DNA polymerase
appears more similar to eukaryotic than prokaryotic enzymes [19].

New DNA polymerases traditionally have been identified by isolating the abundant repair
polymerases from cultured microbes. However, due to the similarity of these enzymes and
difficulties in culturing extremophiles [59], it is unlikely that novel enzyme activities will be
discovered in this way. Uncultured thermostable phage clearly represent a large, untapped,
currently inaccessible resource of diversity, although accessing these enzymes will require
novel approaches be developed.

9.9 Phage Metagenomics of Thermal Aquifers

In order to circumvent the difficulties of culturing thermophilic phage, a metagenomics
approach was initiated. Phage particles were isolated from hot springs (74–93 ◦C) in
Yellowstone National Park and purified from microbial cells [27]. Representative phage
particles were imaged using transmission electron microscopy (TEM) (Leo 912AB, operat-
ing at 80 KV) (Figure 9.7). Direct phage enumeration by epifluorescence microscopy [60]
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(a)

(d) (e) (f)

(c)

(b)

Figure 9.7 TEM images of phage-like particles directly isolated from Yellowstone National
Park hot springs. The scale bar in each figure represents 200 nm. (Image courtesy of Sue
Brumfield and Mark Young, Montana State University)

showed phage abundances ranging from 105 to 106 particles per milliliter, which was
consistent with previous studies of thermophilic viruses and lower than concentrations in
typical temperate waters [61].

The phage nucleic acid was extracted and physically sheared to 3–6 kb using a Hy-
droShear device (Genomic Solutions, MI, USA). The ends were made blunt using the
DNATerminator end repair kit (Lucigen, WI, USA), and the fragments ligated to double-
stranded asymmetric linkers and PCR-amplified. The amplification products were cloned
into the transcription-free pSMART vector (Lucigen) and used to transform E. coli 10G
cells (Lucigen). In collaboration with the Department of Energy’s Joint Genome Institute
(Walnut Creek, CA, USA), a total of approximately 29,000 sequence reads was determined
(∼30 Mb total).

The longest contig from these reads was 16.5 kb, assembled at 50% identity, which in-
cluded 187 reads. GeneMark [62] predicted 26 open reading frames (ORFs) of greater than
100 nucleotides, including an apparent replication operon. The genes with the strongest sim-
ilarity to these ORFs encode primase, uracil DNA glycosylase, Family B DNA polymerase,
nucleotide excision repair nuclease (dnaG, udg, polB and ERCC4 genes, respectively) and
homologues to a zinc finger-like protein and a transposase. Homologues of these ORFs
belong to crenarchaeal DNA replication/repair complexes [63–65]. Sequences from three
discrete clones homologous to the polB gene in this contig have been expressed in E. coli
as functional thermostable DNA polymerases (data not shown).

In total, the ∼30 Mb of sequence data contained several hundred apparent pol gene
homologues, 59 of which appeared full length. Genes with similarity to essentially every
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type of known DNA polymerase type were identified, with BLASTx E values as low as
10−140 being seen, indicating a very high degree of similarity. The similarity was strongest
in the highly conserved catalytic domains of the polymerase genes, ten of which have
been expressed to produce thermostable DNA polymerase, while seven were completely
sequenced.

The predicted amino acid sequences were compared, using clustalW [66], to those of
commonly used thermostable DNA polymerases, including Taq, Tth, Bst, Vent and Pfu
(Figure 9.8). Also included were representatives of each of the viral DNA polymerase
families. By this analysis, the diversity of the PyroPhage DNA polymerases appeared to be
much higher than that of the available thermostable DNA polymerases. Taq and Tth were
seen to be 85% identical, while Vent and Pfu were 75% identical. PyroPhage 4110, 2323
and 2783 formed a clade of >90% identity. Likewise, PyroPhage 3173 was 48% identical
to 488 and 82% identical to 967. Otherwise, the PyroPhage enzymes were very distinct
(<20% identical) from all known thermostable DNA polymerases, and also from one

PyroPhage 4110

PyroPhage 2783

PyroPhage 2323

Vent

Pfu
Pyrobaculum
aeroophilum

h. herpesvirus

cytomegalovirus

chlorellavirus

vaccinia virus

baculoviurs

phi29 phage

RM378 phage

human Pol alpha

T4 phage

E. coli Pol III

E. coli Pol I

77 phage

Aquifex aeolicus

Taq

Tth

Bst
Thermatoga
maritima

PyroPhage 3063

PyroPhage 488

PyroPhage 3173

PyroPhage 967

Figure 9.8 Amino acid alignment of microbial and phage DNA polymerases. The seven
complete PyroPhage genes are shown in red. Selected viral and cellular DNA polymerases
include several commercial thermostable DNA polymerases (Taq, Tth, Bst, Vent and Pfu)



P1: JYS

c09 JWBK327-Alterovitz December 16, 2008 15:24 Printer: Yet to come

New Paradigms in Droplet-Based Microfluidics and DNA Amplification 237

another. PyroPhage 3063 showed the closest association to a microbial enzyme, Aquifex
aeolicus DNAP [67], at 63% amino acid identity.

The degree of molecular diversity suggested a substantial biochemical diversity. Py-
roPhage 3173 DNAP has been most fully studied, and it does indeed have several novel
properties that may make it especially useful for a variety of applications.

9.10 Biochemical Characteristics of PyroPhage 3173 DNA Polymerase

PyroPhage 3173 DNA polymerase has a unique combination of characteristics (see
Table 9.2 and below). For example, it is the only known phage DNA polymerase that
is thermostable to 95 ◦C, and it effectively amplifies most templates up to 4 kb using PCR.
Perhaps, due to its high strand-displacement activity, PyroPhage DNA polymerase is more
effective than current PCR enzymes in amplifying certain difficult templates, in particu-
lar, templates containing a high GC content, repetitive sequences and secondary structure
(Figure 9.9). The wild-type version of PyroPhage 3173 DNA polymerase demonstrates a
strong proofreading activity, while its fidelity is among the highest measured for enzymes
used in PCR (Figure 9.10). Following site-directed mutation of 3173 to disable the 3′–5′

exonuclease, the fidelity was comparable to that of nonproofreading microbial enzymes.

9.11 Reverse Transcription

The detection and amplification of RNA, rather than DNA, is vital for many types of
analyses, as the characterization of RNA provides additional insight into gene structure
and expression. In addition, several phage genomes consist only of RNA. The conventional
method for RNA amplification is that of reverse-transcription PCR (RT-PCR), where the
RNA is first copied to cDNA by a viral reverse transcriptase. The cDNA is subsequently
amplified in a separate PCR step using a standard thermostable DNA polymerase and
PCR buffer. This two-step method is acceptable for microliter-scale reactions, although a

Table 9.2 Biochemical characteristics of PyroPhage 3173 DNA polymerase

3173 DNA polymerase Wild-type Exo-minus

3′-5′ exonuclease Strong None
5′-3′ exonuclease None None
Strand displacement Strong Strong
Extension from nicks Strong Strong
T1/2 @ 95◦ 10 min 10 min
Km dNTPs 40 µM 40 µM
Km DNA 5.3 nM 5.3 nM
Processivity n.d. 47 nt
Fidelity 8 × 104 1.5 × 104

3′ ends of amplicons Blunt Single base A and G overhangs
Template DNA or RNA DNA or RNA
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Figure 9.10 PyroPhage 3173 fidelity. Fidelity measurements, shown as the ratio of correct to
incorrect nucleotide incorporations, are based on the LacIq forward mutation assay (Hogrefe).
PyroPhage 3173 DNAP (Wild-Type or Exo Minus) was compared to various commercially
available enzymes

single-tube reaction would be preferable. For high-throughput applications, a single-
enzyme, single-tube method of RT–PCR would be very valuable.

The RT–PCR activity of 3173 DNAP was tested by attempting to amplify the mouse
actin gene from liver RNA. A single band of expected size was detected, indicating that
this enzyme could efficiently amplify RNA into dsDNA (Figure 9.11).

1 2

Actin

Figure 9.11 RT–PCR activity of PyroPhage 3173 DNA polymerase. Mouse liver RNA was
purified and used as a template for single-tube RT–PCR with 3173 DNAP and actin-specific
primers. A strong band at the expected size of 283 bp was detected
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template
primer uM

--ssM13-- ---pUC--- none M gDNA plasmid bl

555 0.50.5

10kb-
6kb-
3kb-

1kb-

Figure 9.12 Isothermal whole-genome amplification. PyroPhage 3173 DNA polymerase was
used to amplify 10 ng each of circular ssDNA (ssM13) and dsDNA (pUC) in the presence of
the indicated concentrations of random decamer primers (left panel). The same enzyme was
used to amplify E. coli gDNA and a supercoiled plasmid in the absence of exogenous primers,
but in the presence of the site-directed nicking enzyme, Nt.BstNBI (right panel). In both cases,
the reactions were incubated for 2 h at 55 ◦C, and one-tenth of the total product was resolved
on the gel. A negative control without template is shown

9.12 Isothermal DNA Amplification using PyroPhage
3173 DNA Polymerase

PyroPhage 3173 DNA polymerase (wild-type and exonuclease-minus) is effective in the
isothermal replication of linear, circular or supercoiled DNA, either single- or double-
stranded (Figure 9.12, left panel). In general, a greater than 10 000-fold amplification is
regularly achieved in 2 h at 55 ◦C. A typical DNA synthesis was initiated using exoge-
nous primers; in addition, this enzyme initiated synthesis efficiently from genomic or
plasmid DNA that had been nicked using single-strand nicking enzymes (Figure 9.12,
right panel). In the absence of template DNA, no amplification product was observed in
these assays. In conjunction with its thermostability, this enzyme can therefore perform
single-cell DNA amplification following just a heat lysis step for template preparation,
thus significantly simplifying the process of genomic amplification and reducing the pos-
sibility of sample contamination. This attribute is most important for single-cell DNA
amplification.

9.13 Single-Cell Genomics

Determining the genomic sequence of microbes is complicated by technical challenges,
with only a small minority of microbes capable of being cultured for the isolation of large
amounts of genomic DNA (gDNA). The metagenomic sequencing of a mixed uncultivated
community provides a snapshot of relatively small fragments that cannot be readily related
to any given species. Assembling a contiguous genome from these fragments requires
very deep sequencing [68], and is computationally and realistically impractical. The bias
of oversampling abundant species and heterogeneity within species also complicates this
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approach. Single-cell genomics – the sequence analysis of single individual genomes –
could overcome these limitations by providing insight into rare species, and into the genetic
heterogeneity of the population, the composition of phage and viral populations, and the
presence of eukaryotic and archaeal microorganisms. It could also be used to demonstrate
the complete sequences of large operons and neighboring genes from long contiguous
stretches of DNA.

Several recent reports have outlined different strategies for partially sequencing the
genome of a single cell [15, 2, 69–71]. The genomic content of a prokaryotic or archaeal
cell is approximately 2 fg of DNA [72]; because current sequencing technologies require
microgram quantities of template DNA, an amplification process must faithfully replicate
this single DNA molecule 5 × 109-fold, ideally with high fidelity, low bias and com-
plete coverage. The technique of multiple displacement amplification (MDA) is indispens-
able for generating sufficient nucleic acid from limiting amounts of sample [73, 74]. The
MDA reaction combines random primers, a strand-displacing DNA polymerase and ge-
nomic DNA, in an isothermal reaction. Due to an efficient strand displacement by the
enzyme, replicons from upstream primers displace ssDNA from downstream regions; the
displaced ssDNA can then hybridize to additional random primers, with the amplifica-
tion process repeating itself. In this way, MDA is able to generate a series of staggered
duplications of the original template.

The efficient isolation of individual cells from other microorganisms and extracellular
DNA is critical for single-cell amplification. Single prokaryotic cells have been isolated
by micromanipulation [75], serial sample dilution [15], microfluidic chambers [76] and
FACS [77]. A nanoscale device for microfluidic sample processing of single cells is
an important recent advance [2, 76]. Here, a microfluidic chip using 60-nl chambers
was used to carry out MDA reactions on eight isolated bacteria. However, because
the small initial reaction volume yielded only a few nanograms of material, a second
amplification was employed to generate the microgram amounts of DNA required for
sequencing.

The most commonly used MDA enzymes are phi29 DNA polymerase [78] and Bst
DNA polymerase. Bst DNA polymerase has a strong constitutive strand-displacement
activity [79], it does not suffer from replication slippage (as do most polymerases) [40],
it has a high affinity for DNA-primer complexes [80], and it demonstrates high proces-
sivity [81]. The strand displacement activity of Bst DNA polymerase can extend primed
templates beyond 50 Kb [79, 82, 83], and can amplify DNA by as much as 1012-fold
[79, 84, 85].

Bacteriophage phi29 DNAP is the only other enzyme with many of these properties
[47, 86]. Phi29 DNA polymerase has been used to amplify plasmid DNA from single
colonies 10 000-fold via multiply primed rolling circle amplification (RCA) [87]. RCA has
also been used to amplify trace amounts of human and bacterial genomic DNA [88–90]
and DNA from single cells [78]. Unfortunately, amplification by phi29 DNA polymerase
leads to a significant bias in whole-genome sequence analysis, as demonstrated by the
sequence analysis of microbial genomes. An AT-rich template showed a 19-fold bias
towards particular regions, whereas a GC-rich genome showed an over 100-fold bias
[73]. Other pitfalls included excessive genomic sequence gaps, chimeras and nonspecific
amplification due to primer dimers [15].
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DNA in Cell Equivalents 
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Figure 9.13 Strand displacement amplification using PyroPhage 3173 DNA polymerase. A
dilution series of E. coli DNA was incubated at 70 ◦C for 16 h in a 10-µl MDA reaction

9.14 PyroPhage 3173 DNA Polymerase for Single-Cell Genomics

The use of a DNA polymerase that is thermostable and capable of strand displacement
amplification could overcome several of these problems. Both, phi29 and Bst DNA poly-
merases are readily inactivated above 65 ◦C. PyroPhage 3173 DNAP may be suitable for
single-cell amplification, as it is capable of withstanding thermal conditions for lysis of
cells, and its sensitivity is sufficient for single cell amplification (Figure 9.13).

Primer auto-amplification was reduced to undetectable levels by using a small reaction
volume and limited amounts of primer. These conditions also were correlated with a
very high molecular weight of the amplified DNA (Figure 9.13). Compared to the broad
smear typically seen with phi29 amplifications, the high-molecular-weight DNA may
contain longer stretches with fewer branches. To date, we have cloned and sequenced
DNA amplified by PyroPhage 3173 using strand displacement, and found no sequence
differences compared to unamplified DNA. However, pretreatment of the reagents with
thermolabile nucleases was essential to eliminate contaminating DNA.

9.15 Thermophilic Phage DNA Polymerases and Cell-Free
Droplet-Based Biology

Clone-free metagenomics, massively parallel single-cell genomics, whole-genome mul-
tiplex PCR, single-cell transcriptional analysis and additional improvements to DNA se-
quencing are just a few of the applications that will be enabled by these new technologies.
The enzymes may provide DNA amplification tools that simplify single-cell genomics,
while the droplet-based platform may be used to manipulate single cells and their genomes.
A schematic example workflow for automating single-cell, whole-genome amplification
using a microfluidic droplet instrument is shown in Figure 9.14.
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Figure 9.14 Workflow for droplet-enabled, single-cell, whole-genome amplification using
PyroPhage 3173 DNA polymerase. By eliminating the requirement for a separate addition
step after thermal lysis, a simplified workflow is provided utilizing a homogeneous droplet.
This example includes sorting of prestained cells for enrichment of a rare subpopulation for
genome amplification

Eliminating the need for a host cell for transformation, cloning, expression and screening
of enzymes represents a new frontier in automating molecular and cellular biology. An
important advantage of this approach is the removal of numerous incompatibilities between
the host cell and the gene, such as toxicity of the encoded ORFs, codon bias, instability
due to structure-rich sequences, selection against large genes or membrane proteins, and
the insolubility of heterologous proteins in vivo.

An example of the utility of this technology is sequencing the ‘second’ human genome,
consisting of the trillions of uncultivated microbes harbored by our bodies. This com-
plex community is estimated to contain about 100 times as many genes as the human
genome [91]. Although the mammalian microbial community has a profound impact on
the metabolism and immune status of the host [92–96], surprisingly little is known about
them. The emerging picture is that of the human as a ‘supraorganism’ which is influenced
by the amalgam of microbial and host cellular metabolic features. Understanding the con-
nection between the human microbiome and human health could transform biomedical
research over the next decade, leading to new therapies and diagnostics.

The migration away from cell-based cloning to amplification-based cloning presents a
number of new challenges. First, the highly efficient replication mechanism inherent in
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microbial hosts must be replaced by a reliable, unbiased, high-fidelity in vitro replication
system capable of amplifying large fragments. Second, miniaturization of the reaction
volume to nanoliters or picoliters presents its own set of challenges. The emulsion droplets
being used for PCR in the current high-throughput sequencing platforms are limited to
amplifying small fragments, with the efficiency of amplification dropping off dramatically
above 1 kb [13]. The ability to precisely control the size of the droplet will be critical in
optimizing the amplification of large DNA fragments, as well as whole genomes. It also
requires the efficient replication of templates that typically are refractory to synthesis (e.g.
those with regions of secondary structure or high GC content).

Phage replicases hold great promise for advanced applications, compared to the more
commonly used microbial DNA polymerases. Phage DNA polymerases are much more
molecularly diverse than microbial enzymes, and their remarkable biochemical character-
istics enable several moderate temperature applications. Viral enzymes such as retroviral
reverse transcriptase and DNA polymerases from phages T7, Phi29 and T4 have been
indispensable for DNA and RNA amplification and analysis.

Unfortunately, even the known viral enzymes have limitations, foremost among which
is the absence of a thermostable phage DNA polymerase. Many of the most important
amplification and thermocycle sequencing applications rely on thermal denaturation, and
therefore thermostable DNA polymerases are essential. Even isothermal applications that
do not depend on thermal denaturation can be improved at higher temperatures, resulting
in higher stringency and suppression of background artifacts. The compelling attributes
found in phage DNA polymerases, in combination with thermostability, should prove espe-
cially advantageous when addressing these needs. Serious technical challenges associated
with the discovery of new thermophilic phage DNA polymerases by traditional microbial
culturing have been overcome using a metagenomic approach. The combination of these
enzymes and their derivatives with advances in the microfluidic handling of large numbers
of nanoliter droplets should lead to extraordinary advances for cell-free systems.

To summarize, the droplet-based microfluidic instrument developed by RDT has been
used to demonstrate a new level of high-throughput biology in the few examples presented
here. Yet, the exploitation of the many capabilities of droplet-based biology will require
optimization of existing technologies and the evolution of new molecules and tools.

Acknowledgments

The authors thank Palani Kumaresan and Richard Mathies for kindly supplying Figure 9.5.

References

1. Blazej, R.G., Kumaresan, P. and Mathies, R.A. (2006) Microfabricated bioprocessor for inte-
grated nanoliter-scale Sanger DNA sequencing. Proceedings of the National Academy of Sciences
of the United States of America, 103, 7240–5.

2. Marcy, Y., Ouverney, C., Bik, E.M. et al. (2007A) Dissecting biological “dark matter” with
single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth.
Proceedings of the National Academy of Sciences of the United States of America, 104, 11889–94.



P1: JYS

c09 JWBK327-Alterovitz December 16, 2008 15:24 Printer: Yet to come

New Paradigms in Droplet-Based Microfluidics and DNA Amplification 245

3. Anderson, M.J., DeLabarre, B., Raghunathan, A. et al. (2007) Crystal structure of a hyperactive
Escherichia coli glycerol kinase mutant Gly230 → Asp obtained using microfluidic crystalliza-
tion devices. Biochemistry, 46, 5722–31.

4. Huang, Y., Castrataro, P., Lee, C.C. and Quake, S.R. (2007) Solvent resistant microfluidic DNA
synthesizer. Lab on a Chip, 7, 24–6.

5. Tawfik, D.S. and Griffiths, A.D. (1998) Man-made cell-like compartments for molecular evolu-
tion. Nature Biotechnology, 16, 652–6.

6. Griffiths, A.D. and Tawfik, D.S. (2006) Miniaturizing the laboratory in emulsion droplets. Trends
in Biotechnology, 24, 395–402.

7. Ghadessy, F.J., Ong, J.L. and Holliger, P. (2001) Directed evolution of polymerase function
by compartmentalized self-replication. Proceedings of the National Academy of Sciences of the
United States of America, 98, 4552–7.

8. Sepp, A., Tawfik, D.S. and Griffiths, A.D. (2002) Microbead display by in vitro compartmental-
isation: selection for binding using flow cytometry. FEBS Letters, 532, 455.

9. Bernath, K., Hai, M., Mastrobattista, E. et al. (2004) In vitro compartmentalization by dou-
ble emulsions: sorting and gene enrichment by fluorescence-activated cell sorting. Analytical
Biochemistry, 325, 151–7.

10. Zheng, Y. and Roberts, R.J. (2007) Selection of restriction endonucleases using artificial cells.
Nucleic Acids Research, 35(11), e83.

11. Agresti, J.J., Kelly, B.T., Jaschke, A. and Griffiths, A.D. (2005) Selection of ribozymes that
catalyse multiple-turnover Diels–Alder cycloadditions by using in vitro compartmentaliza-
tion. Proceedings of the National Academy of Sciences of the United States of America, 102,
16170–5.

12. Dittrich, P.S., Jahnz, M. and Schwille, P. (2005) A new embedded process for compartmentalized
cell-free protein expression and on-line detection in microfluidic devices. ChemBioChem, 6,
811–14.

13. Margulies, M., Egholm, M., Altman, W.E. et al. (2005) Genome sequencing in microfabricated
high-density picolitre reactors. Nature, 437, 376–80.

14. Godiska, R., Patterson, M., Schoenfeld, T. and Mead, D.A. (2005) Beyond pUC: Vectors for
cloning unstable DNA, in DNA Sequencing: Optimizing the Process and Analysis (ed. J. Ki-
eleczawa), Jones and Bartlett Publishers, Sudbury, MA.

15. Zhang, K., Martiny, A.C., Reppas, N.B. et al. (2006) Sequencing genomes from single cells by
polymerase cloning. Nature Biotechnology, 24, 680–6.

16. Perler, F.B., Kumar, S. and Kong, H. (1996) Thermostable DNA polymerases. Advances in
Protein Chemistry, 48, 377–435.

17. Hogrefe, H.H., Cline, J., Lovejoy, A.E. and Nielson, K.B. (2001) DNA polymerases from
hyperthermophiles. Methods in Enzymology, 334, 91–116.

18. Braithwaite, D.K. and Ito, J. (1993) Compilation, alignment, and phylogenetic relationships of
DNA polymerases. Nucleic Acids Research, 214, 787–802.

19. Karam, J.D. (ed.) (1994) Molecular Biology of Bacteriophage T4, American Society for Micro-
biology, Washington.

20. Tabor, S. and Richardson, C.C. (1987) DNA sequence analysis with a modified bacteriophage
T7 DNA polymerase. Proceedings of the National Academy of Sciences of the United States of
America, 8414, 4767–71.

21. Tabor, S. and Richardson, C.C. (1995) A single residue in DNA polymerases of the Escherichia
coli DNA polymerase I family is critical for distinguishing between deoxy- and dideoxyribonu-
cleotides. Proceedings of the National Academy of Sciences of the United States of America,
9214, 6339–43.

22. Reeve, M.A. and Fuller, C.W. (1995) A novel thermostable polymerase for DNA sequencing.
Nature, 376, 796–7.



P1: JYS

c09 JWBK327-Alterovitz December 16, 2008 15:24 Printer: Yet to come

246 Automation in Proteomics and Genomics

23. Angly, F.E., Felts, B., Breitbart, M. et al. (2006) The marine viromes of four oceanic regions.
PLoS Biology, 411, e368.

24. Suttle, C.A. (2007) Marine viruses–major players in the global ecosystem. Nature Reviews
Microbiology, 510, 801–12.

25. Hjörleifsdottir, S.H., Hreggvidsson, G.O., Fridjonsson, O.H. et al. (2002) U. S. Patent 6,492,161.
26. Naryshkina, T., Liu, J., Florens, L. et al. (2006) Thermus thermophilus bacteriophage phiYS40

genome and proteomic characterization of virions. Journal of Molecular Biology, 364, 667–77.
27. Schoenfeld, T., Patterson, M., Richardson, P.M. et al. (2008) Assembly of viral metagenomes

from Yellowstone hot springs. Applied Environmental Microbiology, 74, 4164–74.
28. Bentley, D.R. (2006) Whole-genome resequencing. Current Opinion in Genetic Development,

16, 545–52.
29. Rusk, N. and Kiermer, V. (2008) Primer: Sequencing – the next generation. Nature Methods, 5,

15.
30. Rachlin, J., Ding, C., Cantor, C. and Kasif, S. (2005) Computational tradeoffs in multiplex PCR

assay design for SNP genotyping. BMC Genomics, 6, 102.
31. Adessi, C., Matton, G., Ayala, G. et al. (2000) Solid phase DNA amplification: characterization

of primer attachment and amplification mechanisms. Nucleic Acids Research, 28, e87.
32. Shapero, M.H., Leuther, K.K., Nguyen, A. et al. (2001) SNP genotyping by multiplexed solid-

phase amplification and fluorescent minisequencing. Genome Research, 11, 1926–34.
33. Pemov, A., Modi, H., Chandler, D.P. and Bavykin, S. (2005) DNA analysis with multiplex

microarray-enhanced PCR. Nucleic Acids Research, 33, e11.
34. Kumaresan, P., Yang, C.J., Cronier, S.A. et al. (2008) High-throughput single copy DNA ampli-

fication and cell analysis in engineered nanoliter droplets. Analytical Chemistry, 80, 3522–9.
35. Jagus, R. and Beckler, GS. (2003) Overview of eukaryotic in vitro translation and expression

systems. Current Protocols in Cell Biology, Chapter 11, Unit 11.1.
36. Hoffmann, M., Nemetz, C., Madin, K. and Buchberger, B. (2004) Rapid translation system: a

novel cell-free way from gene to protein. Biotechnology Annual Review, 10, 1–30.
37. Peterson, M.G. (1988) DNA sequencing using Taq polymerase. Nucleic Acids Research, 1622,

10915.
38. Slatko, B.E. (1994) Thermal cycle dideoxy DNA sequencing. Methods in Molecular Biology,

31, 35–45.
39. Chen, J., Sahota, A., Stambrook, P.J. and Tischfield, J.A. (1991) Polymerase chain reaction

amplification and sequence analysis of human mutant adenine phosphoribosyltransferase genes:
the nature and frequency of errors caused by Taq DNA polymerase. Mutation Research, 2491,
169–76.

40. Viguera, E., Canceill, D. and Ehrlich, S.D. (2001) In vitro replication slippage by DNA poly-
merases from thermophilic organisms. Journal of Molecular Biology, 3122, 323–33.

41. Ji, J., Clegg, N.J., Peterson, K.R. et al. (1996) In vitro expansion of GGC:GCC repeats: identifi-
cation of the preferred strand of expansion. Nucleic Acids Research, 2414, 2835–40.

42. Flaman, J.M., Frebourg, T., Moreau, V. et al. (1994) A rapid PCR fidelity assay. Nucleic Acids
Research, 22(15), 3259–60.

43. Huang, M.M., Arnheim, N. and Goodman, M.F. (1992) Extension of base mispairs by Taq DNA
polymerase: implications for single nucleotide discrimination in PCR. Nucleic Acids Research,
2017, 4567–73.

44. Smith, J.R., Carpten, J.D., Brownstein, M.J. et al. (1995) Approach to genotyping errors caused
by nontemplated nucleotide addition by Taq DNA polymerase. Genome Research, 53, 312–17.

45. Clark, J.M. (1988) Novel nontemplated nucleotide addition reactions catalyzed by procaryotic
and eucaryotic DNA polymerases. Nucleic Acids Research, 1620, 9677–86.

46. Mead, D.A., Pey, N.K., Herrnstadt, C. et al. (1991A) A universal method for the direct cloning
of PCR amplified nucleic acid. Biotechnology, 9, 657–63.



P1: JYS

c09 JWBK327-Alterovitz December 16, 2008 15:24 Printer: Yet to come

New Paradigms in Droplet-Based Microfluidics and DNA Amplification 247

47. Canceill, D., Viguera, E. and Ehrlich, S.D. (1999) Replication slippage of different DNA poly-
merases is inversely related to their strand displacement efficiency. Journal of Biological Chem-
istry, 27439, 27481–90.

48. Virtaneva, K., Paulin, L., Krahe, R. et al. (1998) The minisatellite expansion mutation in EPM1:
resolution of an initial discrepancy. Mutations in brief no. 186. Online. Human Mutation, 123,
218.

49. Walsh, P.S., Fildes, N.J. and Reynolds, R. (1996) Sequence analysis and characterization of stutter
products at the tetranucleotide repeat locus vWA. Nucleic Acids Research, 2414, 2807–12.

50. Lundberg, K.S., Shoemaker, D.D., Adams, M.W. et al. (1991) High-fidelity amplification using
a thermostable DNA polymerase isolated from Pyrococcus furiosus. Gene, 1081, 1–6.

51. Mattila, P., Korpela, J., Tenkanen, T. and Pitkänen, K. (1991) Fidelity of DNA synthesis by the
Thermococcus litoralis DNA polymerase – an extremely heat stable enzyme with proofreading
activity. Nucleic Acids Research, 19, 4967–73.

52. Skerra, A. (1992) Phosphorothioate primers improve the amplification of DNA sequences by
DNA polymerases with proofreading activity. Nucleic Acids Research, 2014, 3551–4.

53. Andre, P., Kim, A., Khrapko, K. and Thilly, W.G. (1997) Fidelity and mutational spectrum of
Pfu DNA polymerase on a human mitochondrial DNA sequence. Genome Research, 78, 843–
52.

54. Kornberg, A. and Baker, T. (1992) DNA Replication, 2nd edn, W. H Freeman and Co., New
York.

55. Meijer, W.J., Horcajadas, J., Salas, M. (2001) Phi29 family of phages. Microbiology and Molec-
ular Biology Reviews, 652, 261–87.

56. Andraos, N., Tabor, S. and Richardson, C.C. (2004) The highly processive DNA polymerase of
bacteriophage T5. Role of the unique N and C termini. Journal of Biological Chemistry, 279(48),
50609–18.

57. Patel, S.S., Wong, I. and Johnson, K.A. (1991) T7 DPOL is kinetically distinct from E. coli pol
I Pre-steady-state kinetic analysis of processive DNA replication including complete characteri-
zation of an exonuclease-deficient mutant. Biochemistry, 302, 511–25.

58. Bebenek, A., Dressman, H.K., Carver, G.T. et al. (2001) Interacting fidelity defects in the
replicative DNA polymerase of bacteriophage RB69. Journal of Biological Chemistry, 276(13),
10387–97.

59. Robb, F.T. and Place, A.R. (1995) Thermophiles, in Archaea: A Laboratory Manual, 1st edn
(eds F.T. Robb, K.R. Sowers, H.J. Shreier, S. DasSarma, and E.M. Fleischmann) Cold Spring
Harbor Laboratory Press, Cold Spring Harbor, NY.

60. Noble, R.T. and Fuhrman, J.A. (1998) Use of SYBR Green I for rapid epifluorescence counts of
marine viruses and bacteria. Aquatic Microbial Ecology, 14, 113–18.

61. Breitbart, M., Salamon, P., Andresen, B. et al. (2002) Genomic analysis of uncultured marine
viral communities. Proceedings of the National Academy of Sciences of the United States of
America, 99, 14250–5.

62. Lukashin, A. and Borodovsky, M. (1998) GeneMark.hmm: new solutions for gene finding.
Nucleic Acids Res., 26, 1107–15.

63. Barry, E.R. and Bell, S.D. (2006) DNA replication in the archaea. Microbiology and Molecular
Biology Reviews, 704, 876–87.

64. Dionne, I. and Bell, S.D. (2005) Characterization of an archaeal family 4 uracil DNA glycosylase
and its interaction with PCNA and chromatin proteins. Biochemical Journal, 387, 859–63.

65. Roberts, J.A., Bell, S.D. and White, M.F. (2003) An archaeal XPF repair endonuclease dependent
on a heterotrimeric PCNA. Molecular Microbiology, 482, 361–71.

66. Thompson, J.D., Higgins, D.G. and Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity
of progressive multiple sequence alignment through sequence weighting, position-specific gap
penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–80.



P1: JYS

c09 JWBK327-Alterovitz December 16, 2008 15:24 Printer: Yet to come

248 Automation in Proteomics and Genomics

67. Chang, J.R., Choi, J.J., Kim, H.K. and Kwon, S.T. (2001) Purification and properties of Aquifex
aeolicus DNA polymerase expressed in Escherichia coli. FEMS Microbiology Letters, 201, 73–7.

68. Venter, J.C., Remington, K., Heidelberg, J.F. et al. (2004) Environmental genome shotgun
sequencing of the Sargasso Sea. Science, 304, 66–74.

69. Raghunathan, A., Ferguson, H.R. Jr., Bornarth, C.J. et al. (2005) Genomic DNA amplification
from a single bacterium. Applied Environmental Microbiology, 71, 3342–7.

70. Geigl, J.B. and Speicher, M.R. (2007) Single-cell isolation from cell suspensions and whole
genome amplification from single cells to provide templates for CGH analysis. Nature Protocols,
2, 3173–84.

71. Kvist, T., Ahring, B.K., Lasken, R.S. and Westermann, P. (2007) Specific single-cell isolation and
genomic amplification of uncultured microorganisms. Applied Microbiology and Biotechnology,
74, 926–35.

72. Bakken, L.R. and Olsen, R.A. (1989) DNA content of soil bacteria of different cell size. Soil
Biology and Biochemisrty, 21, 789–93.

73. Pinard, R., de Winter, A., Sarkis, G.J. et al. (2006) Assessment of whole genome amplification-
induced bias through high-throughput, massively parallel whole genome sequencing. BMC Ge-
nomics, 7, 216.

74. Spits, C., Le Caignec, C., De Rycke, M. et al. (2006) Whole-genome multiple displacement
amplification from single cells. Nature Protocols, 1, 1965–70.

75. Frohlich, J. and Konig, H. (1999) Rapid isolation of single microbial cells from mixed natural and
laboratory populations with the aid of a micromanipulator. Systematic and Applied Microbiology,
22, 249–57.

76. Marcy, Y., Ishoey, T., Lasken, R.S. et al. (2007B) Nanoliter reactors improve multiple displace-
ment amplification of genomes from single cells. PLoS Genetics 3, 1702–8.

77. Stepanauskas, R. and Sieracki, M.E. (2007) Matching phylogeny and metabolism in the uncul-
tured marine bacteria, one cell at a time. Proceedings of the National Academy of Sciences of
the United States of America, 104, 9052–7.

78. Lasken, R.S. (2007) Single-cell genomic sequencing using multiple displacement amplification.
Current Opinion in Microbiology, 10, 510–16.

79. Thomas, D. C., Nardone, G.A. and Randall, S.K. (1999) Amplification of padlock probes for DNA
diagnostics by cascade rolling circle amplification or the polymerase chain reaction. Archives of
Pathology and Laboratory Medicine, 123, 1170–6.

80. Mead, D., McClary, J.A., Luckey, J.A. et al. (1991B) Bst polymerase permits rapid sequence
analysis from nanogram amounts of template. BioTechniques, 11, 76–87.

81. McClary, J., Ye, S.Y., Hong, G.F. and Witney, F. (1991) Sequencing with the large fragment
of DNA polymerase I from Bacillus stearothermophilus J. DNA Sequencing and Mapping, 1,
173–80.

82. Faruqi, A.F., Hosono, S., Driscoll, M.D. et al. (2001) High-throughput genotyping of single
nucleotide polymorphisms with rolling circle amplification. BMC Genomics, 2, 4.

83. Voisey, J., Hafner, G.J., Morris, C.P. et al. (2001) Isothermal amplification and multimerization
of DNA by Bst DNA polymerase. Biotechniques, 30, 852–6.

84. Lizardi, P.M., Huang, X., Zhu, Z. et al. (1998) Mutation detection and single-molecule counting
using isothermal rolling-circle amplification. Nature Genetics, 19, 225–32.

85. Zhang, D.Y., Brandwein, M., Hsuih, T. and Li, H.B. (2001) Ramification amplification (RAM):
a novel isothermal DNA amplification method. Molecular Diagnosis, 6, 141–50.

86. Blanco, L., Lazaro, J.M., de Vega, M. et al. (1994) Terminal protein-primed DNA amplification.
Proceedings of the National Academy of Sciences of the United States of America, 91, 12198–202.

87. Dean, F.B., Nelson, J., Giesler, T.L. and Lasken, R.S. (2001) Rapid amplification of plasmid
and phage DNA using Phi 29 DNA polymerase and multiply-primed rolling circle amplification.
Genome Research, 11, 1095–9.



P1: JYS

c09 JWBK327-Alterovitz December 16, 2008 15:24 Printer: Yet to come

New Paradigms in Droplet-Based Microfluidics and DNA Amplification 249

88. Dean, F.B., Hosono, S., Fang, L. et al. (2002) Comprehensive human genome amplification
using multiple displacement amplification. Proceedings of the National Academy of Sciences of
the United States of America, 99, 5261–6.

89. Lage, J.M., Leamon, J.H., Pejovic, T. et al. (2003) Whole genome analysis of genetic alterations
in small DNA samples using hyperbranched strand displacement amplification and array-CGH.
Genome Research, 13, 294–307.

90. Detter, J.C., Jett, J.M., Lucas, S.M. et al. (2002) Isothermal strand-displacement amplification
applications for high-throughput genomics. Genomics, 80, 691–8.

91. Backhed, F., Ley, R.E., Sonnenburg, J.L. et al. (2005) Science 307, 1915–20.
92. Backhed, F., Ding, H., Wang, T. et al. (2004) The gut microbiota as an environmental factor that

regulates fat storage. Proceedings of the National Academy of Sciences of the United States of
America, 101, 15718–23.

93. Dumas, M.E., Barton, R.H., Toye, A. et al. (2006) Metabolic profiling reveals a contribution
of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proceedings of the National
Academy of Sciences of the United States of America, 103, 12511–16.

94. Turnbaugh, P.J., Ley, R.E., Mahowald, M.A. et al. (2006) An obesity-associated gut microbiome
with increased capacity for energy harvest. Nature, 444, 1027–31.

95. Kitano, H. and Oda, K. (2006) Robustness trade-offs and host-microbial symbiosis in the immune
system. Molecular Systems Biology, 2, 2006–22.

96. Nicholson, J.K., Holmes, E. and Wilson, I.D. (2005) Gut microorganisms, mammalian
metabolism and personalized health care. Nature Reviews Microbiology, 3, 431–8.



P1: JYS

c10 JWBK327-Alterovitz December 16, 2008 21:15 Printer: Yet to come

10
Synthetic Networks

Jongmin Kim
CbsBioscience Inc., Daejeon, Korea

10.1 Introduction

In order to understand and utilize the diverse functionality displayed by biological organ-
isms, it is first necessary to comprehend the regulatory network underlying such com-
plex behavior. Fortunately, biological networks share certain properties of engineered
networks [1], and thus are potentially amenable to automated design and characteriza-
tion. Recent advances in both metabolic and genetic engineering have made feasible the
investigation of novel biological functionality through the design and implementation of
synthetic biological networks. Well-characterized ‘parts’ would be essential for stream-
lining synthetic network design processes, such that complex functionality can be created
without reinventing all details of the molecules involved. One example of such an effort
towards standardized parts for abstraction is the Registry of Standard Biological Parts
(http://parts.mit.edu). Another important research venue is mathematical modeling includ-
ing quantitative analysis, which allows for the circuit behavior to be explored with uncertain
parameter sets and external disturbances. Today, several software tools are available to aid
biochemical kinetic simulations [2]. In this chapter, the current understanding of cellular
networks, synthetic network construction and the remaining challenges towards automating
biochemical processes using synthetic circuitry are reviewed.

10.2 Cellular Network: Functional Design

Cells live in a complex environment and can sense many different signals, whether physi-
cal, chemical or biological. Cells also have the ability to process information for survival
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and reproduction, such as detecting nutrients and avoiding harmful chemicals, by using
functional circuits composed of many interacting molecular species [1]. Hence, informa-
tion processing through regulatory networks lies at the heart of all living systems. By taking
a ‘top-down’ view of protein–protein interactions, signaling pathways and gene regulatory
pathways, the basic architecture of biological networks has been analyzed [3]. The net-
work description of cellular circuits allows the application of tools and concepts which have
been developed in fields such as graph theory, physics, sociology and engineering [4]. Re-
markably, biological networks share the design principles of engineered networks, namely
modularity, robustness and recurring circuit elements. A module in a network is a set of
nodes that have strong interactions and a common function [1]. Modules in engineering –
and presumably also in biology – have special features that make them easily embedded
in almost any system. The robustness of a cellular network design requires that the de-
sign must function under plausible fluctuations and interferences due to the components
and to the environment [5]. Recurring network motifs for signal processing tasks, such
as filtering out input noise, accelerating throughput of the network or temporal program-
ming, can be found in biological networks [6]. The fact that a biological organism must
function and compete for resources imposes severe constraints on the regulatory network
design, which could have shaped the biological networks with characteristics analogous to
human-engineered networks. These design principles of cellular networks will help delin-
eate system architecture with limited data, such that researchers can focus on modular and
robust patterns. Indeed, some of these patterns are already known as network motifs.

10.2.1 Network Motifs

Alon and colleagues studied the transcription network of Escherichia coli to identify
meaningful patterns on the basis of statistical significance. The transcription network was
compared to an ensemble of randomized networks, with similar characteristics such as the
same number of nodes and edges but with random connections between nodes and edges.
Patterns that occur in the real network significantly more often than in randomized networks
were termed network motifs [6, 7]. One network motif is that of negative autoregulation,
where a protein product binds to its own promoter and represses its own transcription.
Negative autoregulation has two useful features – the speed-up of response time and
robustness to fluctuation. The response time, which is defined as the time to reach halfway
between the initial and final levels in a dynamic process, depends simply on degradation and
dilution rates in unregulated transcription and translation processes. In order to achieve
the same steady-state value, negative autoregulation employs a stronger promoter than
its unregulated counterpart; therefore, the initial build-up of signals is fast with negative
autoregulation, cutting down the response time. Moreover, the steady-state protein level
is stable with negative autoregulation, albeit with fluctuations in the production rate. An
important three-node motif – termed the feedforward loop – is defined by a transcription
factor X that regulates a second transcription factor Y, such that both X and Y jointly regulate
an operon Z (Figure 10.1a). Most of the feedforward loops are coherent; that is, the direct
regulation of X on Z and indirect regulation of X on Z through Y are of the same sign.
Mathematical analysis suggests that the coherent feedforward loop can act as a persistence
detector, rejecting short pulses of activation signals from the general transcription factor
responses. Consider the case where both X and Y transcription factors are required for the



P1: JYS

c10 JWBK327-Alterovitz December 16, 2008 21:15 Printer: Yet to come

Synthetic Networks 253

(a)

(b)

(c)

(d)

(e)

(f)

Figure 10.1 Network motifs found in the E. coli transcriptional network. (a) Feedforward
loop: a transcription factor X regulates a second transcription factor Y , and both jointly
regulate one or more operons Z1 . . . Zn; (b) L-arabinose utilization network; (c) SIM motif: a
single transcription factor, X , regulates a set of operons Z1 . . . Zn; (d) Arginine biosynthesis
network; (e) DOR motif: a set of operons Z1 . . . Zm are regulated by a combination of a set
of input transcription factors, X 1 . . . X n; (f) Stationary phase response network. (Reprinted by
permission from Macmillan Publishers Ltd. Ref. [6])
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activation of Z in a feedforward loop. Upon arrival of activation signal for X, the activation
of Z is delayed because Y takes time to build up to a threshold level. Thus, if the activation
signal for X has a short duration, Y cannot reach the threshold level needed to activate
Z. Response to signals such as nutrients that activate X incurs production cost for the
final enzyme Z, but no significant benefit can be gleaned if the nutrients disappear by the
time enzyme Z level is sufficiently high. A cost–benefit analysis indicates that a coherent
feedforward loop offers more benefit over the simple regulation of X and Y on Z under a
fluctuating environment where transient activation signal is common [8].

Two other larger motifs are called the single-input module (SIM) and the dense over-
lapping regulon (DOR). The SIM network motif – a simple pattern in which one regulator
controls a group of genes – can generate temporal programs of expression, in which genes
are turned on one by one in a defined order (Figure 10.1c). In contrast, the DOR network
motif is a layer of overlapping interactions between operons and a group of input tran-
scription factors, in which the signal inputs are integrated and the output genes are under
a combinatorial control (Figure 10.1e). Other network motifs appear in a developmental
transcription network [9], such as a positive feedback loop and a long cascade. A positive
feedback loop can serve as a memory, locking in the cell fate if an early developmental
signal ever reaches a threshold level. Long cascades are uncommon in sensory information
processing due to significant delays, but prove useful in developmental timing that spans
several cell generations. Transcription regulatory networks operate on the timescale of
tens of minutes to hours, whereas signal transduction networks rely on protein–protein
interactions to process sensory signals on the timescale of seconds to minutes. A more
complete picture of cellular networks requires an analysis of the interaction of different
network components operating at different timescales and searching for novel regulatory
mechanisms operating on such interfaces.

Network motifs provide a powerful tool to understand cellular organization from a
functional point of view, bypassing the biochemical details. The spontaneous evolution of
modularity and network motifs has been demonstrated in computational evolution models
of electronic circuits and neural networks [10]. Many such models use networks in a
population explored by means of mutations, crossover and duplication to be selected
for a defined goal. The evolved systems typically result in intricately wired nonmodular
solutions because these are more optimized than their human-engineered counterparts. A
lack of modularity has been cited as one of the reasons why computational evolution can
generate design patterns for simple tasks, but cannot be scaled-up to more complex tasks.
If the network evolution is constrained to fulfill modularly varying goals, then the achieved
architecture is built of more computational units solving subproblems; this framework has
an increased modularity but is suboptimal. Modularity decreases quickly when the network
is trained on a single goal or nonmodularly varying goals. Kashtan and Alon [10] have
suggested that modularity allows a higher adaptability to be achieved, and is therefore a
characteristic that a biological network must have in order to evolve in a constantly changing
environment that requires a certain set of basic functions in different combinations.

10.2.2 Network Architecture

An alternative approach is to abstract features from the overall architecture of cellular
networks. The architecture of a network places boundaries on its performance capabilities,
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and also explains its possible evolutionary path [3]. Clearly, cellular networks differ from
regular networks, where nearest neighbors are linked in a regular fashion, or from random
networks, where randomly selected nodes are joined together. In cellular networks, a
few nodes have a large number of connections, while most of the nodes have relatively
few connections – this is a feature of a ‘scale-free’ network. ‘Scale-free’ means that the
number of molecules (N ) with a given number of connections (k) falls off as a power law,
N (k) ∼ k−g , where no characteristic peak value can be found. In a scale-free network, the
average distance between any two nodes is almost as small as the random network, while
the extent to which neighbors of a node are themselves connected (known as its clustering
coefficient) is almost as large as in a regular network. Protein–protein interaction maps have
the features of a scale-free network, with their degree sequences (number of edges per node)
often following a long-tailed distribution [11]. However, the fact that a network has scale-
free properties is of limited use, since power laws occur widely in nature, possibly with
different mechanistic origins. Thus, a much closer examination of small-scale networks,
such as subnetworks or molecular complexes, should complement the top-down network
description [3].

It has been suggested that biological networks have additional constraints that are be-
yond simple scale-free networks [12]. Networks that are simple connection networks, such
as the Internet, are able to grow in an unconstrained way, whereas regulatory networks –
such as genetic regulatory networks in biology – must be able to operate in a globally
responsive way. In order to maintain global connectivity, the number of connections must
be scaled quadratically with the network size. As a consequence, the need for an increased
number of connections at the regulatory level naturally imposes a limit on the size of
the network and its complexity [12]. Although dedicated hierarchies could solve such
a scalability problem, each level of regulatory hierarchy will introduce time delays and
increase stochastic noise [13]. Regulatory proteins scale almost quadratically with genome
size in prokaryotes [14], and the extrapolation of this relationship suggests that prokary-
otes have reached their complexity limit by their reliance on a protein-based regulatory
architecture. Eukaryotes have a far more developed RNA processing and signaling system
than prokaryotes, which appears to be linked to a more sophisticated pathway of gene
regulation. Recently it was suggested that, in addition to being a digital storage medium,
noncoding RNA themselves are actually transmitting digital signals [15]. In contrast, regu-
latory proteins act mainly as analogue components because their signals are transmitted as
their concentrations. Following the comparison with electronic circuits, it is possible that
the cellular network complexity limit was lifted by the use of both digital and analogue
signals.

In summary, biological networks present different features at different scales, be-
having like scale-free networks on a large scale, and consisting of recurring network
motifs and basic functionalities on a smaller scale. Network motifs found in tran-
scriptional networks illustrate that the network design has functional consequences.
Other modalities of regulatory strategies such as RNA processing and post-translational
modifications, although sophisticated regulatory examples are known, have not been
discussed here. Investigating the cellular networks at different levels of complexity
starting from basic network motifs merits future research efforts that would lead
to an understanding of the complexity of regulation strategies and provide useful
insights.
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10.3 Synthetic Approaches to Understand Cellular Networks

A network description in an abstract sense is not enough to understand cellular networks
with quantitative details and to construct predictive models. Rather, the investigation of de-
tailed kinetics and reaction mechanisms among the constituent macromolecules is required.
The reductionist approach attempts to explain the behavior of cellular networks in terms
of the behavior of the components. Despite many molecular components of biological or-
ganisms being identified and characterized using genetic and biochemical techniques, it is
still not possible to predict system behavior, except in the simplest systems. This indicates
that the great complexity of cellular network hinders the prediction of system behavior
from characterized components, and that alternative approaches for understanding cellular
network behavior and design principles may be necessary.

Synthetic biology provides an alternative to the study of cellular networks, by construct-
ing increasingly complex analogues of natural circuits. This is a ‘bottom-up’ approach that
attempts to test the sufficiency of mechanistic models by actively synthesizing them: this
allows insights to be gained that observation and analysis alone do not provide [16]. A
synthetic biology approach shares the spirit of engineering community in that a successful
model system should operate upon synthesis. For engineering purposes, parts are most suit-
able when they contribute independently to the whole. This ‘independence property’ allows
one to predict the behavior of an assembly by characterizing parts. In terms of satisfying
independence property, the DNA molecules described by the Watson–Crick model stand
out because each nucleotide pair contributes independently to the stability of a duplex, to
a good approximation [17]. However, the DNA molecule is rather an exception than the
rule; for instance, the behavior of a protein is generally not a function of the behavior of
its constituent amino acids.

Although amino acids may be a poor unit for the application of independence property,
natural folded proteins can be treated as interchangeable parts. Several synthetic networks
constructed by rearranging the regulatory components in a cell have been characterized,
including autoregulators [18,19], feedforward cascades [13,20], bistable memory element
[21] and oscillators [22,23]. In order for this type of network design to lead to an improved
understanding of naturally occurring networks, detailed studies of the synthetic systems
are needed [16], for example, through a systematic examination of the effects of parameter
variations with quantitative modeling and analysis [24]. Some example networks and their
design principles will be discussed.

10.3.1 Synthetic Networks In Vivo

A bistable memory was constructed by Gardner et al. [21] by employing a mutual repression
system which used two genes that each coded for a transcriptional repressor of the other
gene. These authors used combinations of the lac repressor (LacI), tetracycline repressor
(TetR) and the temperature-sensitive lambda repressor (cI). An external stimulus inhibits
the activity of a specific repressor and pushes the system to one steady state. For the
mutual repression system shown in Figure 10.2a, isopropyl-β-d-thiogalactopyranoside
(IPTG) inhibits the lac repressor, while a high temperature inhibits the cI repressor. Thus,
the addition of IPTG pushed the system to a lac-off/lambda-on state and a concomitant
increase in the green fluorescent protein (GFP) signal. This system demonstrated hysteresis,
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Figure 10.2 Engineered in vivo networks. (a) A genetic toggle switch uses a mutual repres-
sion motif. Two genes, lac repressor and lambda repressor, repress the expression of the other
gene. Transient exposure to either heat or IPTG will shift the steady-state of the system to
the expression of only one repressor; (b) A circular arrangement of repressors comprises the
genetic ring oscillator. Oscillatory output was observed via GFP expression regulated by the
tetracycline repressor; (c) The RNA ‘anti-switch’ relies on ligand-binding regions of RNA that,
when bound to ligand, induce changes in RNA structure. When bound to an inducer lig-
and, the anti-switch hides an antisense region of RNA that hybridizes to the 5′-UTR of target
mRNA, encompassing the translational start site; (d) An allosteric switch based on the natural
N-WASP allosteric switch. A PDZ-binding domain is used with a C-terminal PDZ ligand, result-
ing in autoinhibition of N-WASP output domain. When an exogenous PDZ ligand is added,
the intramolecular PDZ interaction is disrupted, and the output domain stimulates actin poly-
merization. (Reprinted by permission from Macmillan Publishers Ltd. Refs. [21,22,26,27])

such that once the switch was flipped toward one steady state it remained there, even in the
absence of the original stimulus. Several plasmid constructs with different promoters and
ribosome-binding sequences were shown to be bistable, except for one construct. Thus,
bistability can be achieved for a wide range of parameter space, if two repressor strengths
are balanced. Furthermore, a toggle switch design can be embedded in a larger system.
Kobayashi et al. [25] used a lac repressor/lambda repressor toggle switch as a memory
subsystem within the DNA damage sensor. The lambda repressor is naturally cleaved upon
DNA damage and induction of the SOS response, leading to a lac-on/lambda-off state. The
engineered cells also contained the traA gene, which activates biofilm formation under the
control of lambda repressor. Consequently, exposure of the cells to DNA-damaging agents
resulted in biofilm formation.

The first synthetic oscillator was a ring oscillator constructed by Elowitz and Leibler [22],
where three repressors (the lac, lambda and tetracycline repressors) regulated the expres-
sion of the next repressor in the cycle (Figure 10.2b). A GFP reporter protein under the
control of tetracycline repressor was used to monitor periodic changes of output. An im-
portant part of the design process was a rough quantitative model of the system to explore
parameter spaces. A tightly regulated promoter and a shorter protein half-life improved
the performance in the mathematical analysis, which was implemented in the experimental
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design. The authors described a single plasmid construct, which suggests that the ap-
proximate calculation used to design the ring oscillator was enough to achieve oscillatory
behavior in engineered E. coli cells. Interestingly, the oscillation period showed much
more variability than did natural oscillators, with only 40% of the cells exhibiting oscilla-
tion. These findings suggested that the stability properties observed in wild-type circadian
oscillators might result from the coupling of these clocks to other cellular processes. Al-
ternatively, the architecture of the oscillator itself may dictate the stability of oscillation.
In fact, the models of circadian oscillators fall in the class of relaxation oscillators [28],
where a positive feedback loop and a negative feedback loop operate with slow and fast
time scales. The synthetic oscillator design of Elowitz and Leibler does not fall into this
category, but is a phase oscillator [29]. The oscillator design of Atkinson et al. [23] in-
volved a positive autoregulatory circuit linked to a repressor module, analogous to the
relaxation oscillator model of Barkai and Leibler [28]. Atkinson and colleagues used the
components of a nitrogen-regulated response system for the activation signal and LacI for
the inhibitory signal. This design did not involve a degradation sequence, as was used by
Elowitz and Leibler [22], to shorten the protein lifetime, and the experiments were per-
formed in a continuous bioreactor under constant cell density. Surprisingly, this oscillator
displayed oscillation dynamics at population level, despite the oscillation being damped.
Through mathematical analysis, the authors suggested a variety of parameter changes, such
as messenger RNA stability and protein stability, to achieve sustained oscillation. Yet, an
experimental exploration of such parameter change was not achieved and the mechanism
for synchronization was unclear [30].

RNA molecules play important and diverse regulatory roles in the cell by virtue of their
interaction with other nucleic acids, proteins and small molecules. For instance, diverse
cis and trans gene regulation by noncoding RNA molecules such as microRNAs [31]
and antisense RNAs [32] have been characterized in natural organisms. Researchers have
engineered RNA molecules with new biological functions realized in bacteria and yeast
[26, 33]. Isaacs et al. [33] achieved the repression of a target gene by forming a hairpin
structure in the 5′ untranslated region (UTR) of the mRNA (cis-regulator), sequestering
the ribosome-binding sequence. The expression of a targeted trans-RNA activator allowed
translation from modified mRNA by exposing the ribosome-binding sequence. Bayer
and Smolke [26] developed RNA regulatory molecules that have an aptamer domain to
recognize specific effector molecules and an antisense domain to control gene expression,
analogous to naturally found riboswitches (Figure 10.2c). The specific and dose-dependent
switching responses of these regulatory RNA molecules have been demonstrated; for
example, theophylline and tetracycline were each used to control the expression of GFP
and yellow fluorescent protein (YFP) reporter proteins, without significant crosstalk. The
stem stability of the designed RNA regulators turned out to be an important parameter that
shifted switching thresholds. These results point to an intriguing possibility where designed
RNA switches can be employed as cellular sensors and effectors to create programmable
cells [34]. However, the engineered synthetic RNA regulation systems mainly demonstrated
switching behavior rather than general network construction; consequently, quantitative
models for the dynamics of RNA regulators need to be developed.

The signal transduction cascades composed of multiple proteins with enzymatic
and structural interactions mediate many cellular functions and interactions with the
environment. The interaction domains within signaling proteins can be rearranged to create
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novel interactions. For example, when Dueber et al. [27] described the modular reprogram-
ming of an allosteric protein signaling switch in yeast, their hybrid protein was constructed
with an N-WASP-regulated actin polymerization output domain, a PDZ domain and a PDZ
ligand (Figure 10.2d). This synthetic design has autoinhibitory architecture because the
binding of a PDZ domain and a PDZ ligand blocks actin polymerization output, analogous
to its natural counterpart GTPase-binding domain that represses actin polymerization. An
external supply of PDZ ligand releases this autoinhibition in a dose-dependent manner.
Furthermore, a library of hybrid proteins was created using PDZ- and SH3- binding
domains with a variety of ligand affinities. Exploiting novel protein–protein interactions
in addition to transcriptional regulation will enlarge the design space of synthetic
networks.

10.3.2 Synthetic Networks In Vitro

An in vitro reconstruction with known components offers a unique opportunity to investi-
gate how system behavior derives from reaction mechanisms. The first nontrivial system
behavior created by an in vitro chemical system was the Belousov–Zhabotinsky oscilla-
tor [35], although it was difficult to see how these reaction mechanisms could support a
wide variety of chemical logic, as is found in biochemistry. An excellent example of in vitro
reconstruction using biochemical components is the cyanobacterial circadian clock, the op-
eration of which has been shown to be independent of transcription and translation [36].
Operating and characterizing biochemical circuits in a cell-free system present some chal-
lenges, partly due to the complexity of synthesis machinery. A reconstituted cell-free
transcription–translation system requires almost 100 purified components [37] or poorly
characterized cell extracts [38]. Yet, several research groups were able to successfully
construct a variety of interesting circuits within cell-free transcription–translation systems.
For instance, Noireaux et al. [38] constructed transcriptional activation and repression cas-
cades, where the protein product of each stage activated or inhibited the following stage.
Isalan et al. [39] constructed a transcription–translation network that emulated Drosophila
embryonic patterns and, by utilizing regulatory interaction mediated by previously char-
acterized zinc-finger proteins, different network connections were tested. The patterning
behavior was qualitatively correct and more mutual repression led to an overall lower ac-
tivity, but with sharper patterns. Moreover, the addition of a protease stabilized the pattern
over time. Thus, these bare-bone in vitro systems can be used to illustrate design principles,
although further refinement of model systems and quantitative characterization would be
required.

Nucleic acid-based networks greatly reduce the complexity of the production machin-
ery. For example, feedback circuits modeled after predator–prey dynamics have been
constructed as a much simpler in vitro system containing only three enzymes – T7 RNA
polymerase, M-MLV reverse transcriptase and E. coli RNase H [40, 41]. The reaction
scheme is based on self-sustained sequence replication, an isothermal amplification scheme
for the coupled amplification of both DNA and RNA oligomers [42]. Mathematical
modeling suggests that coupling prey and predator cycles (where the prey cycle provides
a primer for the predator cycle) with an appropriate flow rate in a chemostat can lead to
oscillation. Yet, a quantitative agreement of models and experiments was not achieved,
possibly because of unmodeled dead-end side reactions and further couplings of reaction
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rates by the common use of enzymes. Kim et al. [43] presented an alternative approach
which relied on the transcription and degradation of RNA signals rather than replication and
dilution. These authors constructed and analyzed feedforward circuits and a bistable mutual
repression circuit with reasonable agreement to a mathematical model. However, it remains
to be seen whether such nucleic acid-based networks can be utilized for regulating cellular
behavior.

10.4 Challenges in Synthetic Networks

10.4.1 Saturation of Degradation Machinery In Vivo

Predictions about network behaviors through computational modeling and analytical theory
is central to computational and systems biology. Many models of biological systems use
simplifying assumptions [22, 44, 45] such as no spatial dependency of molecular species
and no crosstalk between promoters. It is a widely accepted abstraction to view translation,
transcription and degradation as composite processes, neglecting the detailed underlying
reactions; however, these simplifying assumptions turned out to be inappropriate in some
cases.

The transcriptional regulatory networks of Guet et al. [46] used three repressors – the
lac repressor, lambda repressor and tetracycline repressor – with combinatorially assigned
promoters; this allowed for a total of 27 different network topologies. The output of the
network was monitored using GFP under control of the lambda repressor. Experimentally,
GFP outputs were measured under four conditions: (1) without effector; (2) with IPTG,
which inhibits LacI; (3) with anhydrotetracycline (aTc), which inhibits TetR; and (4) with
both effectors. Kim and Tidor [47] studied the behavior of these combinatorial circuits by
assuming a monotonic dependency of transcription, translation and degradation reactions to
substrates and effectors, without detailed functional description or parameterization. Thus,
without any detailed measurements of regulatory functions, it was possible to predict – for
certain network topologies – the network output as upregulation, downregulation, or no
change. Interestingly, two networks of equivalent topology (but with interchanged regula-
tory elements) showed different behavior in the study conducted by Guet and coworkers.
According to the model, the addition of IPTG to the first network led to an increased
production of both LacI and TetR, as the effect of LacI autorepression was decreased.
Consequently, the model predicted that the cI level would decrease and the GFP output
level would increase, in contrast to the experimental observations (Figure 10.3a). However,
the addition of aTc in network 2 showed an increase of GFP output level, as predicted by
the model (Figure 10.3b).

After ruling out some of the potential weakness of their model, such as not accounting for
cell growth and stochastic noise, Kim and Tidor proposed that the saturation of degradation
machinery could be one possible mechanism to reconcile the experimental results and
model predictions. As all three repressors of the synthetic network were known to carry
ssrA tags, they would be degraded by a special cellular machinery, the Clp system [48].
Because the components of Clp system are at fairly low cellular concentrations, this
degradation machinery could be saturated. In network 1, IPTG released the LacI repression
on both LacI and TetR production, which in turn reached high cellular concentrations and
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Figure 10.3 Experimental and predicted behavior of synthetic repressor networks consisting
of lac, lambda and tetracycline repressors. The two networks shown in (a) and (b) have
identical topologies but with lac repressor and tetracycline repressor interchanged. In the rows
titled IPTG, aTc and IPTG/aTc, the GFP level changes are shown as + (increase), − (decrease),
0 (no change). (Reproduced by permission of Cold Spring Laboratory Press. Ref. [47])

outcompeted cI for degradation. Consequently, under saturating degradation conditions cI
could potentially accumulate, even with basal expression rates. A direct measurement of
cellular repressor levels could answer the question of the validity of this scenario. The
results of this study show that care must be taken for a seemingly general assumption such
as the monotonic dependency of production and degradation functions on substrates and
effectors, particularly with synthetic networks that introduce new components and novel
interactions among the cellular machinery.

10.4.2 Saturation of Production Machinery In Vitro

Noireaux and colleagues [38] characterized the cell-free genetic circuits constructed in a
transcription–translation extract by engineering transcriptional activation and repression
cascades in which the protein product of each stage was the input required to drive or
block the following stage. The protein expression reactions were carried out in batch
mode, without any continuous exchange of nutrients and byproducts. In order to boost
protein production, 5′-polyguanylic acid was used to increase the mRNA lifetime [49]
from 20–30 min to 2 h. At the same time, both the creatine phosphate concentration (for
ATP regeneration) and the magnesium concentration were adjusted to optimal levels.

A single-level cascade was constructed as a T7-luc plasmid composed of T7 RNA
polymerase promoter site and firefly luciferase gene. Upon the addition of T7 RNA poly-
merase, this single-level cascade began to accumulate luciferase protein after 15 min,
reaching a maximum concentration of 500 nM after 6 h. A two-stage cascade, constructed
with the plasmids T7-SP6RNAP and SP6-luc, used SP6 RNA polymerase produced from
T7-SP6RNAP plasmid to drive the production of luciferase output from the luciferase gene
downstream of SP6 polymerase promoter (Figure 10.4a). The two-stage cascade started
to produce luciferase after a 1 h delay, such that the final luciferase level was 100 nM –
fivefold less than for a single-stage cascade. A three-stage cascade constructed with the
plasmids T7-SP6RNAP, SP6-rpoF and Ptar-luc using E. coli sigma factor F from the rpoF
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Figure 10.4 Two- and three-stage cascades. (a) Kinetics of expression of the cascade with T7
RNA polymerase, and both T7-SP6rnap and SP6-luc plasmids (filled circles) or SP6-luc plasmid
only (open circles); (b) Kinetics of expression of the cascade with T7 RNA polymerase and
all three plasmids (filled circles) or two plasmids, SP6-rpoF and Ptar-luc (open squares) or
Ptar-luc only (open triangles). (Copyright National Academy of Sciences, U.S.A. Ref. [38])

gene as a new relay signal (Figure 10.4b) produced luciferase after about a 3 h delay,
reaching a final concentration of only 1 nM after 6 h. Interestingly, substantial time delays
and dramatic decreases in output were observed with each additional stage.

A detailed characterization of the two-stage cascade with various RNA polymerase
and plasmid concentrations revealed that the translation machinery was saturated for the
combinations of polymerase and plasmid concentrations which resulted in high transcript
concentrations. Above the first-stage transcription rate, that maximized luciferase
production, the overproduced first-stage mRNA occupied translation machinery and
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inhibited luc mRNA translation. In contrast, luciferase production did not show saturation
for similar RNA polymerase and plasmid concentrations if short-lifetime mRNAs without
polyG modification were transcribed. The results of the study indicated that a conventional
approach of maximizing single-protein synthesis in cell-free systems must be reconsidered
for in vitro gene circuits. The authors suggested that a rapid turnover of mRNA might
avoid saturation of the translation machinery and that implementing gene autoregulation
would prevent overproduction.

In a follow-up study of the cell-free expression system, Noireaux and Libchaber [50]
employed the phospholipid encapsulation of synthesis machinery to construct a vesicle
bioreactor. Without access to nutrients outside, the vesicle bioreactor could not prolong
the expression of reporter proteins by more than 5 h. In order to solve the material and
energy limitation, the α-hemolysin pore protein from Staphylococcus aureus was expressed
inside the vesicle to create a selective permeability for nutrients. Subsequently, the vesicle
bioreactor thus created could take up nutrients from a feeding solution containing amino
acids and nucleic acids, and maintained protein expression for up to four days. This study
proved to be an important step towards the synthesis of a minimal, self-reproducing cell.

10.4.3 Saturation in a Mutual Repression Circuit

The saturation of production and degradation machinery has a significant impact on the
network dynamics. Take an example of a mutual repression circuit where two repressors,
X and Y , downregulate the synthesis rates of each other (Figure 10.5a). By assuming
equivalence of the two repressors, the behavior of the circuit can be understood using the
following dimensionless model (Equation 10.1):

dx

dt
= α

1 + yn
− x,

dy

dt
= α

1 + xn
− y,

(10.1)

where x and y are the concentrations of the repressors, α is the effective synthesis rate of
repressors, and n is the cooperativity of repressor binding. The repressor binding to pro-
moter is fast compared to transcription, translation and degradation processes. Therefore,
it is assumed that the promoter–repressor binding is already at steady state when consid-
ering repressor production and degradation dynamics. Thus, the fraction of active gene x
with an unoccupied promoter region can be described by 1/(1 + yn), and similarly for the
fraction of active gene y. With the repressor cooperativity >1 and for a large synthesis
rate, the two nullclines (dx/dt = 0 and dy/dt = 0) were seen to intersect at three points,
producing one unstable and two stable steady states [21]. The nullclines for the circuit with
cooperativity of two and maximum production rate of five indicates such bistable behavior
(Figure 10.5b).

Consider the case where the production machinery is saturated for the mutual repression
circuit. Assuming that α is the maximum synthesis rate for the system, and that the sharing
of synthesis machinery is strictly between two repressor genes with unoccupied promoters,
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Figure 10.5 Dynamics of a mutual repression system. (a) A mutual repression system con-
structed from two repressors, X and Y , that repress the expression of each other; (b, c)
Dynamics of mutual repression system without saturation of synthesis machinery (b) or with
saturated synthesis machinery (c). Nullclines are drawn for both dx/dt = 0 (dotted line) and
dy/dt = 0 (solid line) with vector flow (arrows). The parameters are α = 5 and n = 2

the behavior of the circuit can be described using the following dimensionless model
(Equation 10.2):

dx

dt
= α ·

1
1+yn

1
1+yn + 1

1+xn

− x = α · 1 + xn

2 + xn + yn
− x,

dy

dt
= α ·

1
1+xn

1
1+xn + 1

1+yn

− y = α · 1 + yn

2 + xn + yn
− y.

(10.2)

The nullclines for the circuit intersect at three points with a cooperativity of two and
a maximum synthesis rate of five, analogous to the previous example (Figure 10.5c).
However, the circuit dynamics around the unstable steady state is different: the approach
towards the unstable steady state is slower, while the exit from the unstable steady state
is faster than the previous example. The production of repressor X, in effect, inhibits the
production of repressor Y because the two promoters compete for the same synthesis
machinery. Thus, it is expected that saturated production leads to bistability even when
the repressor cooperativity is relatively low. For example, bistability is achieved for the
repressor cooperativity of 1.4 and a maximum synthesis rate of five with saturated synthesis
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(Equation 10.2), but bistability is not achieved for the same parameters in the other model
(Equation 10.1).

On the other hand, saturation of the degradation machinery would be detrimental to the
bistability of a mutual repression circuit because the accumulation of one repressor would
allow an accumulation of the other repressor. In natural organisms, it is rarely the case that
a few proteins dominantly occupy the synthesis and degradation machinery. However, for
synthetic networks in vivo or in vitro, inducing the overproduction of network elements
can lead to the saturation of such machinery. Hence, saturation effect must be carefully
modeled, depending on the context, and can potentially be exploited for circuit operation.

10.4.4 Waste Product in an In Vitro Oscillator

Kim and colleagues developed an experimental analogue to a genetic regulatory circuit
that uses only T7 RNA polymerase and E. coli RNase H in addition to synthetic DNA
templates regulated by RNA transcripts [43]. A synthetic template – a gene analogue –
consists of a regulatory domain, a promoter and an output domain. Each synthetic template
requires a DNA oligonucleotide activating signal that complements the promoter region for
a strong transcription of its output. The addition of an RNA inhibitor complementary to the
DNA-activating signal hybridizes to – and consequently eliminates – the DNA-activating
signal from the target synthetic template and greatly reduces transcription rates. At the
same time, the degradation of RNA signals by RNase H releases the DNA signals from a
functionally inert DNA–RNA hybrid state. Thus, the difference of activating and inhibitory
signals determines the transcription speed of outputs. Consequently, a sigmoidal response
curve with adjustable thresholds is achieved through a competitive binding of nucleic acid
species.

A two-node oscillator was constructed as follows. An RNA activator (rA) activates the
production of an RNA inhibitor (rI) by regulating a synthetic template (gene I), while
the RNA inhibitor, in turn, inhibits the production of RNA activator by controlling gene
A (Figure 10.6a). These two genes form a negative feedback loop and can potentially
show oscillatory behavior. By measuring RNA signals, up to six oscillation cycles were
observed before the production rate could no longer be sustained due to exhaustion of the
NTP fuel (Figure 10.6c). Interestingly, the concentration of rI was seen to build up after
each cycle, although it was expected that the RNA inhibitor signal would oscillate around
a fixed threshold, the concentration of DNA-activating signal. One hypothesis was that
the short fragments of rI generated by degradation process might interfere with the correct
hybridization reaction of rI signals to its regulatory target, gene A, and therefore, more
signals would be needed to overcome the interference. The short fragments of rI produced
by RNase H processing would encompass the toehold binding sequence of rI because
RNase H cannot process several bases on the 5′ side of the RNA strand on an RNA/DNA
hybrid substrate [51]. Thus, the short fragment of rI could block the (otherwise freely
available) toehold region that was essential for providing a fast kinetic pathway [52]. The
concentration of short degradation products estimated from the gel showed a linear build-
up over time (Figure 10.6b). Intriguingly, subtracting a fraction of short products from rI
signal resulted in an oscillation around a fixed threshold (Figure 10.6c). A mathematical
model taking account of the interference from short products was able to reproduce
these experimental observations qualitatively. Taken together, the in vitro oscillator
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Figure 10.6 A synthetic in vitro oscillator. (a) The synthetic oscillator is composed of two
gene analogues, an activator and a repressor; (b) Gel measurement of oscillator outputs up
to 4 h. The leftmost lane contains size markers, while the rightmost lane contains purified rA
and rI products. It is assumed that the band of ∼35 nucleotides in the gel is representative
of accumulating short products; (c) The rI signal, the short product level normalized to be of
similar scale to rI, and rI signal minus the normalized short product level are shown

demonstrated sustained oscillations and was robust to the build-up of interfering signals to
some extent. However, for a sustained and reliable operation of oscillators the incomplete
degradation products need to be further processed, ultimately to the mononucleotide
level.

Lessons can be learned from the degradation machinery of natural organisms. For
example, E. coli has a high-molecular-weight complex called the degradosome which
consists of RNase E, polynucleotide phosphorylase (PNPase), an ATP-dependent helicase,
RhlB and enolase, a glycolytic enzyme [53]. When the decay of mRNA is initiated via
endonucleolytic cleavage by RNase E, the newly formed 3′ end can be attacked by PNPase,
which performs processive exonucleolytic digestion. The ATP-dependent RNA helicase
in the degradosome presumably helps the degradation by unwinding RNA structures that
impede the cleavage by RNase E and PNPase. The concerted action of these enzymes
would explain the observation that, once initiated, the decay of mRNA proceeds without any
accumulation of the decay intermediates. Although many mRNAs are subject to alternative
decay processes, the existence of a highly orchestrated multienzyme complex such as the
degradosome indicates that a complete degradation of messages without byproducts is an
essential regulatory step.
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10.5 The Minimal Cell

On a larger scale of synthetic efforts, the assembly of a type of cell – that is, a self-
replicating, membrane-encapsulated collection of biomolecules – would be the next major
challenge [54]. However small, a cellular gene set must be self-sufficient in the sense
that cells generally import metabolites, but not functional macromolecules. Mycoplasma
genitalium, a parasitic bacterium with a small genome size, is recognized as an attractive
model in the search for the minimal genome. After comparing the 468 predicted M.
genitalium protein sequences with the 1703 Haemophilus influenzae protein sequences,
Mushegian and Koonin [55] suggested 256 genes as a minimal genome set, including 234
M. genetalium genes. Most of the proteins encoded by genes from the minimal set suggested
by these authors had eukaryotic or archaeal homologues, whereas the key proteins of DNA
replication did not, which led these authors to speculate that the last common ancestor
had an RNA genome. The estimated gene number could be further reduced by eliminating
cofactors and regulatory genes, and by applying the parsimony principle [56].

A recent estimate suggested that the minimal genome would comprise 151 genes,
38 RNAs and 113 proteins [54]. Lipids alone have been shown to be sufficient for the
formation of rudimentary membranous compartments capable of both the transmembrane
transport of small molecules and autocatalytic fission [57]. A bare-bones genome
would perform basic DNA replication, transcription and translation processes, in which
alternative approaches for essential mechanisms such as the adaptation of rolling circle
amplification for DNA replication were employed to reduce the number of genes. A
surprisingly large fraction (96%) of the minimal gene set is devoted to translation
mechanisms, including ribosome components, a set of transfer RNAs (tRNAs), a set
of translational initiation, elongation and release factors, and a few chaperones. In light
of this, the simplest approach for creating a minimal cell may be to evolve an RNA
polymerase made exclusively from RNA that would replace all of the protein components
of the in vitro replicating and evolving systems [57]. An exciting development in this
direction is the templated assembly of RNA products catalyzed by ribozymes [58];
these ribozymes used nucleoside triphosphates and the coding information of an RNA
template to extend an RNA primer by the successive addition of up to 14 nucleotides, with
high accuracy. These findings support the ‘RNA-world’ hypothesis regarding the early
evolution of life – the main tenet of which is that ribozymes would have been far easier to
duplicate than proteinaceous enzymes. Given that most of the minimal gene set is devoted
to translation, a nucleic acid-based artificial cell would certainly be attractive, justifying
a search for different sets of ribozymes through in vitro evolution approaches.

Estimates of the minimal genome typically do not include catabolism (nucleases and
proteases), the active conversion or removal of waste products (energy-regenerating
enzymes and membrane transporters) and regulatory feedback. It is unclear whether a
minimal cell could sustain growth and replication without such regulatory mechanisms. At
any rate, a much simpler purified system based on a real cell would be easier to model and
understand, and it could certainly answer questions that cannot be answered in vivo, such as
which set of macromolecules would be sufficient for a functional cellular subsystem [54].
The iterative synthetic process in which the performance of an in vitro model system is con-
tinuously improved may, in time, culminate in viable minimal cells as complex analogues
of cells.
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10.6 Conclusions

Today, synthetic biology provides the ability to study cellular regulation and behavior using
de novo networks, with future applications of synthetic systems extending also to the fields
of medicine and biotechnology. Yet, challenges remain that call for novel approaches and
creative solutions. Synthetic networks in vivo have recycled previously used parts because
a single point mutation may alter the in vivo activity of the network, and it is difficult
to predict how redesigned molecules such as synthetic promoters would behave [59].
Mutations and the loss of synthetic network control can be a serious problem, especially
when a large population of cells is considered. A ‘population control’ circuit [60] has been
described which utilized a bacterial quorum-sensing system linked to a cell death signal to
regulate the cell density of an E. coli population. Here, the steady-state cell density in the
regulated cell culture was about tenfold lower than that of the control culture. However,
due to the disadvantage in growth rate, cells that acquired mutations to disrupt the synthetic
circuit control easily outgrew the regulated cells. A microfluidic microreactor was used to
alleviate this problem by greatly reducing the population size [61], and allowed the synthetic
circuit behavior to be monitored over hundreds of hours. Engineered cells would retain
the synthetic network design that conferred a selective advantage in cellular growth rate,
allowing further observation and analysis. For in vitro networks, the lack of any complex
feedback regulation for the production and degradation machinery can lead to a high
variability and a lack of robustness in their performances. As observed previously, dead-end
side reactions, the saturation of the enzyme machinery and interference from incomplete
products must be correctly addressed for successful in vitro network construction. Further
developments of in vitro networks, accompanied by effective encapsulation in membranous
compartments and ensuing growth and fission, will provide a good starting point for a
minimal cell.

These synthetic approaches have successfully demonstrated several interesting net-
works, and have provided valuable engineering tools to study motifs, modularity and the
robustness of cellular networks. Nonetheless, the development of new frameworks for
regulatory costs, trade-offs and energy consumption of network structures remains a major
problem, the solution of which could eventually lead to the construction of viable minimal
cells.
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11.1 An Introduction to CYPs

Cytochrome P450s (CYPs), which belong to a superfamily of hemoproteins, can be found
in virtually all types of organism, including Bacteria, Eukaryotes and even Archaea [1].
In animals, CYPs are located in either the endoplasmic reticulum or the inner membrane
of the mitochondrion. Cytochrome P450s – so named because the heme pigment that they
contain absorbs light at a wavelength of 450 nm when complexed with carbon monoxide –
are mainly membrane-associated.

During drug metabolism, both Phase I and Phase II reactions occur:

� In Phase I reactions, polar groups may be introduced or unmasked, leading to more
water-soluble metabolites, such that drugs are either activated or inactivated. In humans,
the CYPs are the most important enzymes responsible for Phase I drug metabolism.

� Phase II reactions usually include detoxication processes, where mainly conjugation
reactions take place.
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The common reaction of CYPs in Phase I metabolism is that of a monooxygenase
(Equation 11.1); such a reaction generally makes the substrates more water-soluble such
that they can be excreted in the urine:

RH + O2 + 2H+ + 2e− → ROH + H2O (where R is a substrate) (11.1)

CYPs are found throughout the body, the highest concentrations being associated
with liver proteins, and have specialized roles in controlling the levels of endogenous
compounds; examples include vitamin D metabolism, cholesterol synthesis and hormone
synthesis and breakdown. CYP enzymes are also involved with vascular autoregulation,
especially in the brain, and are vital to the synthesis of cholesterol, steroids and arachidonic
acid metabolites. They also clear metabolic products from the body, an example being the
breakdown product of hemoglobin, bilirubin.

11.1.1 CYP Nomenclature

In order to explain the system of nomenclature for CYPs, we will take CYP3A4 as an
example. Virtually all enzymes of the CYPs are designated with the root ‘CYP’, followed
by an Arabic numeral for the gene family (CYP3), a capital letter for the subfamily
(CYP3A), and another Arabic number for a particular gene (CYP3A4). The enzymes
in the same family share at least 40% amino acid identity, whereas enzymes in the same
subfamily share at least 55% amino acid identity. There is, however, no correlation between
nomenclature and enzyme function.

11.1.2 CYP Isoforms and Single Nucleotide Polymorphism (SNP)

To date, more than 7700 distinct CYP sequences have been identified. Many antidepressant
and antipsychotic drugs are metabolized by CYP2D6 or CYP2C19, while CYP3A4 alone
metabolizes more than 50% of all drugs; clearly, a mutation of the latter enzyme could
result in clinical disaster. As CYP1A2, 2C9, 2C19, 2D6, 2E1 and 3A4 metabolize more
than 90% of all known drugs, members in the CYP1, 2, 3 families have achieved most
recognition among biochemists.

CYPs are also notable for their pharmacogenetic characteristics [2]. Typically, humans
carry a series of CYP gene alleles, which have only minimal variation in terms of their
genetic sequence that is attributable to nucleotide changes or polymorphisms (SNP). These
polymorphic variations may lead to inter-individual and within-population differences in
the tolerance to toxins and drugs and, as CYPs are specific with regards to which drugs
they clear from the body (and which they activate), SNP variations in different CYP
genes may lead to different effects. Consequently, because of these possible variations the
possible design of ‘personal’ drugs for individuals with the same illness is a daunting task.

11.2 Computational Methods

Protein structure modeling is of major for understanding and explaining CYP functions.
In the case of CYPs for which details of crystal structures are available, a convenient
approach is to perform docking studies and molecular dynamic simulations in order to
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model the drug–protein and protein–protein interactions. However, for those CYPs lacking
any high-resolution structure data, it is essential that these structures are predicted by using
computational methods, the target being to deduce the three-dimensional (3-D) protein
structure from the amino acid sequence.

Currently, three main (theoretical) methods are available for protein structure prediction,
namely homology modeling, fold recognition (threading) and ab initio/de novo methods.

� Homology modeling, which is the oldest and most widely used method for protein
structure prediction, requires a known protein structure, the sequence of which must show
about 30% similarity to that of the protein under study. In recent years, the method’s
accuracy has rapidly improved due to an availability of expanding protein structure
databases and structure analysis algorithms.

� The fold recognition method serves as a supplement to homology modeling for detect-
ing remote homologues, and has also improved rapidly in recent years. The method
focuses on the element of folds, and can be applied to both 2-D and 3-D structures, and
considerable progress has been made in all aspects of protein-fold predictions.

� The ab initio/de novo method is based on the force fields of atomic details, such that
the protein structure is built using sequence-only information. Although advances in
simulation methodology and forces that drive protein folding have had a major impact
on this method, it is very time-consuming, for two reasons: first, there are often too many
conformations to sample; and second, the time scale of protein motion is measured in
seconds, whereas atomic motion is measured in femtoseconds.

Since 1994, the performance of these methods has been assessed biannually using critical
assessment of structure prediction (CASP) experiments. (Additional CASP information is
available at http://www.predictioncenter.org/), while the overlap between the three methods
has increased dramatically.)

11.2.1 Homology Modeling

For homology modeling the most frequently used techniques are segment matching or
coordinate reconstruction, both of which require a crystal structure as a template. This
type of approach is based on the realization that most hexapeptide segments of protein
or enzymes structures can be clustered into only 100 structurally different classes. Thus,
comparative models can be prepared by using a subset of atomic positions from a selected
template structure as guiding positions, as well as by identifying and assembling short, all-
atom segments, which are suitable for the guiding positions. The template structure should
be homologous to the target protein, and preferably have a high structural resolution.
However, in recent years remote homologue detection has become the major goal of this
method. From a practical viewpoint, the entire homology modeling process comprises four
steps.

11.2.1.1 Homology Modeling: Step 1

In this first step, the target protein is broken into a series short sequence segments, and
a known structure having a good sequence identity with the target sequences is searched.
Considerable increases in sensitivity over traditional pairwise alignment methods have led
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to sequence profiling methods becoming the optimal approach in homologue detection
in recent years. The Basic Local Alignment Search Tool (BLAST) is an algorithm for
comparing the amino acid sequences of different proteins, or the nucleotides of DNA
sequences. BLAST compares a query sequence with a database of sequences to identify
similar subsequences to those in the query, using an heuristic approach that approximates
the Smith–Waterman algorithm for high-scoring sequence alignments. Its relatively good
accuracy and speed make BLAST the most popular bioinformatics search tool. A more
recently developed version – PSI-BLAST – is used to identify any distant relatives of
a protein. PSI-BLAST operates in stepwise fashion: first, a list is created of all closely
related proteins, after which these proteins are combined into a profile which is an average
sequence. A query is then run against the database, using this profile to identify a larger
group of proteins, and another profile is then constructed using this larger group of proteins.
The whole process is then repeated. Consequently, PSI-BLAST is much more sensitive
at detecting distant homologues than is the standard BLAST. Another method worthy of
mention here is the hidden Markov model (HMM). This is similar to PSI-BLAST, but
an initial HMM is created from a single given query sequence, after which a database of
potential homologues of the query sequence is constructed by searching a large protein
database using WU-BLAST. New sequences with good local alignment scores to the
HMM from the database of potential homologues are selected, and a new HMM and a
new multiple alignment for the query sequence is created. This step is repeated several
times, whereupon the final HMM can be used to search a selected database for homologues
of the query sequence. Both, PSI-BLAST and HMM methods have greatly improved the
accuracy of sequence alignments and increased the ability of remote homologue detection.
Unfortunately, there is an inherent shortcoming in sequence alignment technology, as a good
linear sequence alignment does not directly reflect good 3-D thermodynamic relationships;
however, this difficulty is the subject of ongoing research.

11.2.1.2 Homology Modeling: Step 2

In step 2, the segments are matched according to the template protein or, in other words,
target–template alignment. Differences in the target and template structures in certain
regions can result in alignment mistakes, particularly where the sequence similarity is not
sufficiently high to identify structurally equivalent residues. However, three strategies have
greatly improved the probability of generating correct target–template alignments. First, a
3D-shotgun builds multiple models from fragments of the initial models and constructs a
final model based on a measure of structural similarity. The fragments used to build into
the final model are the most often observed. Second, the final model is evaluated using
Verify3D, where low-scoring regions of the alignments are shifted to obtain better scoring
models. In a third approach – the Robetta method – alternate alignments are constructed
by sampling different parameters that reflect various measurements of similarity, and by
enumerating suboptimal alignments directly.

11.2.1.3 Homology Modeling: Step 3

In step 3, in order to construct a model, the coordinates of the matched segments are fitted
into the growing target under the monitor, in order to avoid any van der Waals overlap
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until all atomic coordinates of the target have been gained. The methods used in this step
involve the assembly of rigid bodies, segment matching or coordinate reconstruction, sat-
isfaction of spatial restraints, loop modeling and side-chain modeling. Several programs
are available to construct a 3-D model, including SWISS-MODEL, MODELLER, HHpred
and 3D-JIGSAW. Although each of these programs produces models that are as similar as
possible to the templates, they are inadequate for the important features of a model that
are structurally distinct from their templates; examples include different conformations
of the side chains and loops between the secondary structure elements and between the
target and template structures. For side-chain conformation calculations, a rotamer library
generated from a database of known structures is used to observe the relationship between
side-chain conformation and backbone conformation. The side-chain torsional angles for
the preferred conformations of a specific side chain define the rotamer library. The accuracy
of side-chain modeling is close to experimental level in many cases. For loop modeling,
the programs construct the loop model in an open conformation, where one end of the loop
is disconnected to the succeeding residue. The loop is then connected using different algo-
rithms. The process is then repeated using various starting conformations, and the resulting
conformations evaluated using the energy function. Although, in terms of computer and
server capabilities, the computational demands are heavy, the suggestion is that remarkably
accurate results can be obtained when extensive sampling and conformational energy eval-
uation are combined. Both, side-chain and loop modeling should be based on the correct
backbone conformation, as different orientations and secondary structure element numbers
are recognized as potential fundamental problems of the two methods. Indeed, attempts to
resolve such problems constitute an expanding area of research.

11.2.1.4 Homology Modeling: Step 4

By repeating Steps 1 to 3 ten times to generate an average model and minimize global
energy, the final structure can be created and a model can be assessed. Although, to
date, there are no reliable procedures to assess a model, many programs are available to
observe whether the model possesses good stereochemistry and overall conformational
energy. A scoring function, Very3D, is commonly used to assess models; this evaluates
how well residues in the segments of the model fit into the environments. Another strategy
is to measure the conformational stability of all atoms under molecular mechanics force
fields in an aqueous solvent; the case study in Section 11.3.5 is an example of such an
investigation.

11.2.2 Fold Recognition

In addition to homology modeling, fold recognition (threading) represents another type of
comparative protein modeling. This concentrates on the element of folds rather than amino
acid sequences in the homology modeling technique. There are fewer classes of folds than
sequences, as explained by computer scientist Adam Zemla:

Because there are 20 different amino acids, a medium-size protein with 300 amino acids would
theoretically have 20300 possibilities in sequence. In nature, not all combinations of amino
acids can exist. Scientists estimate that the number of different protein sequences is close to a
few million.
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Fold recognition can be used to supplement homology modeling to detect remote homo-
logues when proteins share the same fold category and no relationship of the sequences can
be detected. Bioinformatics methods have been developed to identify the fold category to
which a protein belongs, and can be divided into two groups: (i) sequence-based methods;
and (ii) structure-based methods.

� Sequence-based methods use the amino acid sequence or predicted secondary structure
information for alignments, and determine whether proteins share the same fold, or
not. PSI-BLAST and HMM techniques (see above), along with genetic algorithms
and support vector machines techniques, are applied to obtain amino acid sequences
or secondary structure information. Interestingly, one group [3] developed a fold
recognition approach based on secondary structure information and solvent accessibility
that outperformed methods which take information on the 3-D structure (fold) into
account.

� In structure-based methods (threading), energy functions are used to evaluate how well
a probe sequence matches a target known 3-D protein structure (a fold). Recently, the
Skolnick team have developed and successfully applied threading methods in CASP
experiments [4, 5].

The major challenges which face fold recognition methods include the acquisition of a
better understanding of the intermolecular forces and folding mechanism–solvation inter-
actions. Currently, computer algorithms of fold recognition are able to predict accurately
the structure of small proteins, which in turn will shed light on the predictions for larger,
more complicated proteins.

11.2.3 Ab initio/de novo Methods

The ab initio/de novo method is usually based on force fields of atomic details, which
builds the protein structure by using sequence-only information. The most outstanding
feature of this method is the ability to render the backbone of protein flexible in the
protein structure prediction process. In many computational methods the backbone of the
protein is kept rigid; this means that the 3-D coordinates of all the α-carbon atoms are
fixed in order to reduce to a remarkable extent the computation steps, the search space
and, consequently, the time required for reaching the minimum energy state. Keeping
the backbone of proteins rigid is a dubious practice, however, as actual proteins exhibit
great flexibility. For example, there are eight CYP2A6 crystal structures available, and the
backbone of each varies substantially one from another. A case in point [6] shows that a
CYP3A4 backbone undergoes a dramatic shift when a ligand is introduced to the active
site of the protein.

One way to allow for backbone flexibility is through an ensemble of related backbone
conformations close to the protein, and which are generated randomly using genetic
algorithms and Monte Carlo sampling. The sequences will then be designed for these con-
formations using rigid backbones assumptions, with the lowest energy backbone-sequence
combination being selected [7]. A natural way to allow for backbone flexibility is to
make every position in the protein variable, using an integer linear optimization technique
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with a distance-dependent force field in the sequence selection stage, as introduced in
Ref. [8].

Unfortunately, the ab initio/de novo method is too time-consuming for two reasons:

1. There are too many conformations to sample.
2. The time scale of protein motion is on the order of seconds, while atomic motion is

measured in femtoseconds.

In addition, only small proteins with less than 100 residues have been successfully
predicted, and improvements of better force fields, scoring functions and more accurate
search methods are needed for predicting larger proteins. This will, in turn, bring about
vast opportunities, making the de novo method an active area of research.

11.3 Crystal Structures of CYPs

Although, both nuclear magnetic resonance (NMR) and X-ray crystallography are capable
of providing high-resolution structural information, the CYP proteins usually contain more
than 400 residues and hence are too large for NMR methods to be applied. Consequently,
in recent years X-ray crystallography has been the main technique for obtaining structural
information for the CYPs.

As CYPs are mainly membrane-associated proteins, it is necessary to modify the
N-terminal transmembrane domain or to truncate the N-terminal hydrophobic domain
in order to increase the solubility of the enzymes, thus facilitating crystallization. In the
case of CYP2C9, the N-terminal transmembrane domain (residues 1–29) was replaced by
a hydrophilic polypeptide sequence MAKKTSSKGR and a histidine tag introduced in the
C-terminus. It is generally accepted that such changes do not alter the enzyme function, be-
cause the kinetic parameters of the mammalian CYPs remain unaltered. A recent study on
the heterologous expression of CYP1A2 without the conventional N-terminal modification
in Escherichia coli further confirmed this conclusion [9].

At the time of writing this chapter (March 2008), a total of 30 crystal structures of eight
CYP enzymes (CYP 1A2, 2A6, 2B4, 2C5, 2C8, 2C9, 2D6 and 3A4) have been published
(see Table 11.1). As a milestone in CYPs structure studies, the first crystal structure of
a mammalian CYP – the rabbit CYP2C5 – was reported in 2000 [10]. Since that time,
many computational tools – including homology modeling, docking, molecular dynamic
simulations and quantitative structure–activity relationships (QSARs) – have been used to
analyze or predict structural information based on crystal structures. With the publication of
the CYP1A2 crystal structure in 2007, the structures of all of the major drug-metabolizing
enzymes had been obtained, while homology modeling methods were able to predict the
3-D structures of all other members in the CYP1, 2 and 3 families [11, 12]. This, in turn,
makes personalized drug design more feasible.

As crystal structures provide only static structural information, they are insufficient for
the study of enzyme flexibility. Crystal structures do, however, facilitate molecular dynamic
simulations such that, when combined with experimental techniques, such as high-pressure
UV/visible spectroscopy, the mechanism of the CYPs’ metabolism and details of their
flexibility and stability CYPs should be acquired.



P1: JYS

c11 JWBK327-Alterovitz December 16, 2008 18:5 Printer: Yet to come

Ta
bl

e
11

.1
Th

e
cr

ys
ta

ls
tr

uc
tu

re
s

of
m

am
m

al
ia

n
C

YP
s

C
Y

P
PD

B
co

de
Pu

bl
is

he
d

ye
ar

Su
bs

tr
at

e
O

rg
an

is
m

R
es

ol
ut

io
n

(Å
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Figure 11.1 A typical structure of CYPs, monomer of CYP2C9 (PDB code: 1OG2) with
labeled secondary elements, where the red, yellow and green colors represent helices, β sheets
and loops, respectively, and the molecule-with-stick representation is the heme cofactor

11.4 Common Features of CYPs

In recent years, the structural features of several mammalian CYPs have been identified
(a typical CYP structure is shown in Figure 11.1). According to the CATH classifica-
tion,1 the structures of mammalian CYPs are mainly α-helical with an orthogonal bundle
architecture [28]. The F and G helices and F/G-loop along with the B/C-loop form the
access to the active site of CYPs [29]. The highly conserved parts of the CYP structures
include: the proline-rich cluster, which is close to the N-terminus [30]; the loop following
the A helix; the C and I helices; parts of the K helix; and the proton-transfer groove [29,31].
In addition, inserted helices (F′ and G′) between the F and G helices, in which the outer

1 CATH is a hierarchical classification of protein domain structures, which clusters proteins at four major levels: Class (C),
Architecture (A), Topology (T) and Homologous superfamily (H). The boundaries and assignments for each protein domain are
determined using a combination of automated and manual procedures which include computational techniques, empirical and
statistical evidence, literature review and expert analysis (http://www.cathdb.info/).
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surface is hydrophobic, are presented in some CYPs; these two helices form interactions
with the membrane.

A prosthetic group (heme b), inserted between the I and L helices, is present in the
center of all CYPs and is close to the active site. The role of this group is to link the
sulfur atom of a cysteine to form a S–Fe bond (cys-pocket). Although CYPs have different
orientations and conformations of the heme side chains, the overall porphyrin geometry
is basically the same [32]. Heme alters its oxidation state when interacting with various
substrates, typically O2, CO and NO [33]. The highly ordered solvent serves as a direct
proton donor to the iron-linked substrates, particularly O2 [34]. The heme iron takes part
in the electron transport for oxygen cleavage and substrate oxidation from different redox
partners [35]. The electron transport systems can be divided into two major classes: the
adrenal mitochondrial P450 system; and the liver microsomal P450 system [36].

11.5 Diversity of the Substrates of CYPs

CYPs metabolize a wide range of structurally dissimilar substrates, including steroids,
fatty acids, vitamin D, cholesterol, carcinogens, retinoic acid and nitrogenous organic
bases. The volume, shape and flexibility of the active sites determine the diversity in
recognizing substrates, while the access/egress path is a rigid, narrow funnel that controls
the regioselectivity of the CYPs.

CYP3A4, as a major member of the P450 superfamily, metabolizes more than 50% of
all drugs – a proportion far greater than for any other CYP isoform [37]. This interesting
feature of CYP3A4 is due its overall size and the shape of the active site (there is, however,
no standard definition for calculating active site volumes, so these cannot be strictly
compared). It is generally suggested that the CYP3A4 active site is relatively large, and
has been proved to metabolize not only many small molecules but also large substrates
such as bromocryptine, erythromycin and cyclosporine [38]. The active site of CYP3A4
also contains multiple substrate-binding sites that could be occupied by small substrates
simultaneously [20, 39–41]. The binding of two molecules of a large substrate (such as
ketoconazole; C26H28Cl2N4O4) to the active site of CYP3A4 serves as a good example of
both a large active site and multiple substrate binding (Figure 11.2). Here, the flexibility
of the CYP3A4 should be taken into account, since evidence suggests that CYP3A4 is
readily denatured to the inactive P420 form under high pressure, this being attributed to the
flexibility of the active sites. The results of recent studies have shown that such flexibility
also occurred when substrates such as ketoconazole and erythromycin were bound to
CYP3A4, with dramatic conformational changes also taking place [6].

11.6 Critical Amino Acids in the Active Sites

Based on the available crystal structures, the homology modeling technique was used to
predict many other CYP superfamily protein structures. As a result, many conserved and
essential amino acids have been identified in the active sites of these CYPs. It has also been
shown that lipophilicity relationships, hydrogen bonding and π–π stacking interactions
play important roles in substrate selectivity and binding affinity [12, 42, 43].
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Figure 11.2 Illustration of CYP3A4 (PDB code: 2V0M) binding with two molecules of ke-
toconazole, which is shown in stick presentation with colors of blue and magenta. The red,
yellow and green colors represent helices, β sheets and loops, respectively, and the molecule-
with-stick representation in the center is the heme cofactor

At this point, we will discuss the critical amino acids of the active site of CYP2D6,
which metabolizes about 30% of all known drugs – second only to CYP3A4. However,
whilst CYP3A4 metabolizes a diverse range of substrates, CYP2D6 prefers substrates with
a planar aromatic ring and a basic nitrogen atom [29]. It has been suggested that Phe120,
Asp301, Thr309, Glu216 and Phe483 are the most important residues in the CYP2D6
active sites. An example of metoprolol binding with CYP2D6 (obtained from Autodock
studies) is illustrated in Figure 11.3, where Phe120 forms π–π stacking and the Asp301,
Glu216 and Ala305 form hydrogen bonds with the substrate. The topological roles of
Asp301 and Thr309 have been identified. Mutating this residue into any other amino acid
(except glutamate) can have a severe detrimental influence on substrate oxidation [18].
In the T309V mutation, Thr309 was shown to play a pivotal structural role in the active
site crevice [44], while docking studies have confirmed that Glu216 is a binding residue
which recognizes the ligands [45]. Finally, Phe120 and Phe483 have been identified as two
important aromatic residues in the active site, since almost all known drugs metabolized
by CYP2D6 have an aromatic ring. In many cases, the substrate has been shown to form
π–π stacking interactions with Phe120 and/or Phe483.
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Figure 11.3 Illustration of CYP2D6 (2F9Q), bonds with metoprolol. The enlarged part shows
the interaction between metoprolol and CYP2D6 active site amino acids, E216, D301, A305
and F120. This interaction is obtained using Autodock 3.05. The molecules with the stick
representation are the ligand and residues close to the ligand, where the red, yellow-green,
blue and light-gray colors represent oxygen, carbon, nitrogen and hydrogen, respectively

11.7 SNP Studies of CYP2C19: A Case Study

CYP2C19 is one of the key drug-metabolizing enzymes in the CYP superfamily, having
been shown capable of metabolizing proton-pump inhibitors, phenytoin, tricyclic antide-
pressants, propranolol and benzodiazepines. CYP2C19 is noted for its polymorphisms,
from CYP2C19*1 to CYP2C19*21, which induce variability in drug metabolism. Poly-
morphisms can also lead to adverse drug reactions, to drug–drug interactions, and also
constitutes a major factor in drug toxicity.

In order to study the CYP2C19 SNP, two SNP 3-D structures based on the CYP2C19
computational structure have been modeled using structural bioinformatic methods. First,
the backbones were the same as the template, but with amino acid residues Trp120 and
ILe331 mutated to arginine and valine, respectively. Second, the new structures were
optimized by energy minimization. Third, the computational structures obtained were used
for further docking and molecular dynamic studies [46].

Molecular docking, using the Metropolis algorithm, was employed to identify the
most favorable binding interaction; the Shanghai Molecular Modeling (SIMM) program
was used to perform this function. In the docking studies, the ligands 3-cyano-7-
ethoxycoumarin (CEC), fluvoxamine, fluvastatin (LescolTM) and ticlopidine, were
flexible. The program generates a diversified set of conformations by making random
changes to the ligand coordinates. When a new conformation of the ligand was generated,
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the search for favorable binding configurations was conducted within a specified 3-D
docking box, using either simulated annealing or a Tabu search. Both of these methods
seek to optimize the purely spatial contacts, as well as the electrostatic interactions. The
interaction energy was calculated using the electrostatic and van der Waals potential fields.
In all computations, the CHARMM22 force field parameters were used. The computational
structures of two SNPs were taken as the receptor, where four ligands – CEC, fluvoxamine,
fluvastatin and ticlopidine – were docked. CYP2C19 has a multifaceted and flexible
dynamic structural feature which may be reflected by using molecular dynamics (MD)
tools. Such MD simulations can be used to solve the classic motion equations for a system
formed by target protein (SNPs) and small ligands (CEC, fluvoxamine, fluvastatin and
ticlopidine) under specified ensembles.

In the current case, the energy-favorable structures derived by the docking operation
mentioned above were further studied with MD simulations triggered by hydrogen bond
braking and making of the ligand and receptor interactions. In this way, the final results
obtained would provide further conformational searching information in space. The MD
simulations were performed at a constant temperature (300 K) and under normal pressure.
With the side chains being allowed to move freely, all of the backbone atoms were fixed
to maintain the correct protein 3-D structure. In order to preferably represent the motions
of heat in and out of the system, some fictitious degrees of freedom were added to the
system. This operation could generate a series of conformations in the important phase
space area, which can in turn provide configuration and momentum information for each
relevant atom, such that the system thermodynamic properties can be calculated.

In the computational 3-D structure of CYP2C19, two binding pockets – named A and
B – were considered to be more energy-favorable (Figure 11.4). The binding pocket B is
also the active site of wild-type CYP2C19 for drug metabolism [12]. In order to identify
the most energy-favorable binding pocket, all four ligands were docked to the two pockets
A and B of the two SNPs, respectively. The binding energies obtained by docking CEC,
fluvoxamine, fluvastatin and ticlopidine to the SNPs W120R and I331V, are listed in
Table 11.2. For SNPI331V, the binding pocket B appeared to be superior, although the

Figure 11.4 Illustration of a 3-D structure of CYP2C19 which was obtained by homology
modeling. The molecules with sphere representation are W120 and I331 with colors of blue
and magenta, respectively. The two SNPs generate two binding pockets: A for novel compet-
itive binding pocket; and B for wild-type binding pocket



P1: JYS

c11 JWBK327-Alterovitz December 16, 2008 18:5 Printer: Yet to come

288 Automation in Proteomics and Genomics

Table 11.2 Binding energies (kcal mol−1) obtained by docking CEC, fluvoxamine,
fluvastatin and ticlopidine to CYP2C19 wild-type, SNP W120R pocket A and B, SNP I331V
pocket A and B, respectively

Ligand E (binding)

Wild-type W120R (A) W120R (B) I331V (A) I331V (B)

CEC −19.05 −15.0080 −18.2248 −14.9860 −19.1012
Fluvoxamine −18.09 −19.4766 −19.1819 −15.8665 −22.5504
Fluvastatin −20.59 −20.3081 −20.0519 −21.3289 −24.9472
Ticlopidine −19.17 −14.4633 −17.3532 −15.1186 −16.7373

(a) (b)

(c) (d)

Figure 11.5 Illustrations showing the surfaces of the binding pockets of SNP W120R for (a)
CEC, (b) fluvoxamine, (c) fluvastatin and (d) ticlopidine with stick representation, where the
colors light gray, red, blue, orange and pink represent hydrogen, oxygen, nitrogen, sulfur and
fluorine, respectively. Carbon atoms are colored yellow within the molecules, and green on
the surfaces
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(a) (b)

(c) (d)

Figure 11.6 Illustrations showing the surfaces of the binding pockets of SNP I331V for (a)
CEC, (b) fluvoxamine, (c) fluvastatin and (d) ticlopidine with stick representation, where the
colors light gray, red, blue, orange and pink represent hydrogen, oxygen, nitrogen, sulfur and
fluorine, respectively. Carbon atoms are colored yellow within the molecules, and green on
the surfaces

same situation was not apparent for SNP W120R. For fluvoxamine and fluvastatin, binding
pocket A was preferred, which meant that these compounds could not be metabolized by
SNP W120R; however, for CEC and ticlopidine the binding pocket B was still preferred.

The surfaces of the two SNPs with the four ligands – (a) CEC; (b) fluvoxamine; (c)
fluvastatin; and (d) ticlopidine – are shown in Figures 11.5 and 11.6. The lipophilicity, which
can be ascertained from Figures 11.5 and 11.6, is a significant factor for designing orally
active drugs due to the complementary lipophilic and hydrophilic interactions between
proteins and ligands, and the harmony between lipophilicity and water-solubility. Notably,
the latter property is essential for absorption to occur via the intestinal tract.

Whilst it is difficult to understand the hydrophobic effects at the molecular level, re-
markable changes in the docking free energies between proteins and ligands might be a key
relevant factor. The different lipophilicities in the binding pockets or active-site cavities of
SNPs W120R and I331V might also be the main factors behind receptor-binding pockets
being identified for CEC, fluvoxamine, fluvastatin and ticlopidine. In addition, for SNP
W120R, fluvoxamine and fluvastatin may not be metabolized as they do not bind to the



P1: JYS

c11 JWBK327-Alterovitz December 16, 2008 18:5 Printer: Yet to come

290 Automation in Proteomics and Genomics

active sites. Nonetheless, all of these findings should prove useful when conducting muta-
genesis investigations to identify drug treatments based on the characteristics of individual
patients, not only to improve efficacy but also to reduce the extent and severity of adverse
reactions.
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12.1 Introduction

As a ‘building block of life’, a cell is deemed the most basic structural and functional unit
of all living organisms. It is highly organized with many functional units or organelles
according to cellular anatomy, with most such units being ‘enveloped’ by one or more
membranes, which form the structural basis for many important biological functions.
Although the lipid bilayer is the basic structure of membranes, most of the specific functions
of the cell membrane are performed by the membrane proteins [1, 2]. For example, it is
through membrane proteins that molecules can be transported into and out of cells by
such methods as ion pumps, channel proteins and carrier proteins; that various chemical
messages such as nerve impulses and hormone activity can be passed between cells; that
parts of the cytoskeleton can be attached to the cell membrane in order to provide shape; that
cells can be attached to an extracellular matrix in grouping cells together to form tissues;
and that metabolic processes and the body’s defense mechanisms can be completed.

Membrane-embedded α-helical, polytopic proteins constitute the majority of ion chan-
nels, transporters and receptors in living organisms. This class of proteins, which accounts
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for approximately 40% of all membrane proteins, is infamously difficult to target for high-
resolution structural studies. Due to the intrinsic structural plasticity associated with many
of these proteins, the chance of obtaining crystals suitable for X-ray or electron diffraction
studies is small. Although helical membrane proteins pose a higher degree of experimental
difficulty, their conformation is, in a number of ways, more predictable than that of water-
soluble proteins. For example, the transmembrane helices must span the hydrophobic layer
of membrane or membrane-mimetic detergent micelles, whereas the amphipathic helices
or loops are either associated with the head group region or exposed to bulk solvent.
These conditions effectively reduce the search problem in the three-dimensional (3-D)
conformational space to that in a much more restricted pseudo-two-dimensional (2-D)
space.

The knowledge gap between known membrane protein sequences and their structures
cries out for automated efforts, as automated efforts that can augment our membrane pro-
tein structures knowledge rapidly will expedite closing the knowledge gap. For example,
automation robots have been successfully applied in automating the crystallization of mem-
brane proteins during the past few years [3, 4]. Indeed, during the past decade automated
computational intelligence algorithms have also been widely studied in membrane protein
research, such as membrane protein type prediction [5–11], membrane transmembrane
segment prediction [12–23], and so on. In this chapter, we review the recent progress of
bioinformatics researches in membrane protein structural studies.

12.2 Automated Membrane Protein Type Prediction

Membrane proteins comprise different types, the function of a membrane protein being
closely correlated with the type to which it belongs. For instance, transmembrane proteins
can function on both sides of a membrane or transport molecules across it, whereas proteins
that function on only one side of the lipid bilayer are often associated exclusively with
either the lipid monolayer or a protein domain on that side. Therefore, information about
membrane protein type may offer important clues towards determining the function of an
uncharacterized membrane protein. Furthermore, owing to the fluid nature of their infras-
tructure, membrane proteins can move around the cell membrane to where their function
is required. Knowing the type of a membrane protein can provide insight into this kind of
motion, which is indispensable for studying the biological process at the cellular level from
a dynamic point of view [24]. Therefore, the pace at which the function of uncharacterized
membrane proteins could be determined, and their action processes understood, would be
clearly expedited if knowledge of their type could be timely ascertained. Notably, in recent
times the number of sequences entering into databanks has rapidly increased. For example,
in 1986 the number of total protein sequence entries in SWISS-PROT was only 3939 but,
according to the version 52.4 released on 1 May 2007 at http://www.ebi.ac.uk/swissprot/,
this number has now leapt to 265 950. In other words, the number of the entries now is
more than 67 times the number listed in 1986! When combining the explosion of protein
sequences entering into databanks with the fact that membrane proteins are encoded by
20–35% of genes, but represent less than 1% of known protein structures to date [25], it
becomes clear that it would be highly desirable to develop a sequence-based automated
method for the fast and effective identification of newly-found proteins according to the
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following two questions. (1) Is it a membrane protein? (2) If it is, to which type does it
belong?

During the past few years, although a wide variety of predictive methods have been
proposed in this area [8–11, 26], most of these have exhibited the following problems that
need to be addressed:

1. They were developed based on a prerequisite that the query protein was already known
that belonged to the membrane proteins, without any effort being made to identify
whether the query protein was a membrane protein or a nonmembrane protein. To make
the case logically more reasonable and practically more useful, such a procedure is
indispensable.

2. None of the methods was based on a benchmark dataset with a clear data-culling
operation to avoid redundancy and homologous bias. Hence, the reported success rates
therein might be overestimated.

3. Only five membrane types were covered; with the development of the Swiss-Prot
database, more types should be included to increase the scope of practical appli-
cation.

4. None of these methods has provided a Web server for public use and, conse-
quently, their practical application value is quite limited. In view of this, Chou
and Shen recently developed a new membrane protein-type prediction tool called
MemType-2L [5]; this is an online prediction tool and can be freely accessed through
http://chou.med.harvard.edu/bioinf/MemType or http://www.csbio.sjtu.edu.cn/bioinf/
MemType/.

Protein sequences in the benchmark training dataset of the MemType-2L predictor were
collected from the Swiss-Prot database at http://www.ebi.ac.uk/swissprot/ (version 51.0,
released on 6 October 2006). In order to collect as much desired information as possible,
while ensuring optimal quality for the benchmark dataset, the data were screened strictly
according to the following criteria and order.

1. Sequences annotated with ‘fragment’ were excluded; also, sequences with less than 50
amino acid residues were excluded because they may possibly be fragments.

2. Sequences annotated with ambiguous or uncertain terms, such as ‘potential’,
‘probable’, ‘probably’, ‘maybe’ or ‘by similarity’, were removed for further consid-
eration.

3. For the sequences left after the preceding two screen procedures, those annotated with
‘membrane protein’ were stored in the membrane protein reservoir Rmem; while the rest
were stored in the nonmembrane protein reservoir Rnon-mem.

4. Eight different membrane protein types (Figure 12.1) were found in Rmem; to reduce the
homology bias, a redundancy cut-off was operated by an in-house program to winnow
sequences down to those which have ≥80% sequence identity to any other in a same
membrane type.

5. A similar cut-off procedure was operated for the sequences in Rnon-mem from the data
obtained after such a redundancy-reducing cut-off procedure. Sequences were randomly
picked to form the benchmark dataset for nonmembrane proteins.

MemType-2L is a two-layer predictor (Figure 12.2): the first layer prediction engine is
to identify whether a query protein is membrane or not; the second layer is to identify its
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Figure 12.1 Schematic illustration to show the eight types of membrane proteins. (1) type
I transmembrane; (2) type II; (3) type III; (4) type IV; (5) multipass transmembrane; (6)
lipid-chain-anchored membrane; (7) GPI-anchored membrane; (8) peripheral membrane. As
shown in the figure, types I, II, III and IV are all single-pass transmembrane proteins (see
Ref. [24] for a detailed description of differences in these proteins)
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type if the outcome from the first layer turns out to be positive. Compared with the existing
predictors which cover only five to six membrane protein types, MemType-2L can cover
eight types. Experimental results on the benchmark dataset show that:

� The overall jackknife success rate by the current MemType-2L in discriminating mem-
brane and nonmembrane proteins is 92.7%, which is about 13–16% higher than those
by the least Euclidean algorithm [27] and ProtLoc [28] based on the conventional amino
acid composition.

� The overall jackknife success rate by MemType-2L in identifying the membrane protein
type is 85.0%, which is about 33% higher than those by the other methods.

� The overall independent dataset test success rate is 91.6%, which is about 30–54%
higher than those by the other methods. All these indicate that MemType-2L is indeed
very useful in identifying membrane proteins and their types. The high success rates
obtained by MemType-2L is that: (i) it takes into account the evolution information by
representing the protein samples with the Pse-PSSM (pseudo-position-specific scoring
matrix) vectors derived from the results generated by PSI-BLAST; and (ii) it operates
by fusing many powerful individual OET-KNN (optimized evidence theoretic K-nearest
neighbor) classifiers so as to minimize both the information-missing problem and the
overfitting problem.

12.3 Predicting 2-D Structures

12.3.1 Automated Transmembrane Helix Prediction

Two overall transmembrane (TM) fold types have been observed in membrane pro-
teins, namely α-helix bundle and β-barrel, indicating that the TM segments can be ei-
ther TM helix (TMH) or TM β-strand [29, 30]. Until now, β-barrel membrane proteins
have been observed only in Gram-negative bacterial outer membrane proteins and their
relatives [31].

Membrane-embedded α-helical, polytopic proteins constitute the majority of ion chan-
nels, transporters and receptors in living organisms. These classes of proteins, which
account for approximately 40% of all membrane proteins, are difficult targets for high-
resolution structural studies. Although experimentally determined structures of integral
membrane proteins have been increasing rapidly in recent years, they only sum to less
than 1% of the structures in the Protein Data Bank (PDB). Usually, the first analysis that
researchers perform when studying a helical membrane protein, whether it is for functional
or structural characterization, is a prediction of the transmembrane helix (TMH) from the
protein amino acid sequence. Knowledge of the TMH is very useful in an initial elucidation
of the overall topology of the protein, as well as in the rational design of protein constructs
for structural studies.

Computational tools for TMH prediction are widely available. In general, residues
of TMH are mostly hydrophobic; hence, earlier TMH prediction programs (such as
TOP-PRED [32]) compute sequence hydrophobicity from amino acid hydrophobicity
scales assigned by biophysical and chemical measurements [13, 33, 34], and predict TMH
propensity based on the average hydrophobicity score of a sliding prediction window of N
successive residues along the sequence. Later predictors have used more statistics-based,
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Table 12.1 TMHs predictors that widely used in the literature, and their web sites

TMH predictor Web site address

THUMBU [30] http://sparks.informatics.iupui.edu/Softwares-Services files/thumbup.htm
SOSUI [41] http://bp.nuap.nagoya-u.ac.jp/sosui/
DAS-TMfilter [19] http://mendel.imp.ac.at/sat/DAS/DAS.html
TOP-PRED [32] http://bioweb.pasteur.fr/seqanal/interfaces/toppred.html
TMHMM [21] http://www.cbs.dtu.dk/services/TMHMM/
Phobius [18] http://phobius.cgb.ki.se/
PHDhtm [22] http://rostlab.org/predictprotein/submit adv.html
Split4 [37] http://split.pmfst.hr/split/4/
TMAP [38] http://bioinfo.limbo.ifm.liu.se/tmap/index.html
MEMSAT3 [36] http://bioinf.cs.ucl.ac.uk/psipred/

machine learning techniques. For example, PHDhtm [22] is based on neural networks,
while TMHMM [21] and Phobius [18] are based on the hidden Markov model. The
available TMH predictors are used routinely in membrane protein characterization and, in
most cases, are sufficiently reliable in providing qualitative information about the number
of TMHs in a membrane protein [35]. The TMHs predictors that are most widely used in
the literature, together with their web addresses, are listed in Table 12.1.

Generally speaking, in order to cross the membrane, the TMH requires at least 15
amino acids [36–38]. However, as more high-resolution structures of helical membrane
proteins become available, it was discovered that TMH has a wide length distribution.
About 5% of the TMHs in the known structures are very short (<15 residues) and only
span the membrane partially. These helices are known as the ‘half-TMHs’ (see an example
in the structure of the glycerol-conducting channel [39]). Very long TMHs (>40 residues)
have also been found in the membrane proteins, such as the metalloenzyme protein [40].
Figure 12.3 shows the TMH length distribution in 70 known high-resolution membrane
protein structures as shown in Table 12.2, where it is clear that some ‘half-TMHs’ are
around ten amino acids long, although there are also very long TMHs in the structures
(>40 residues). None of the existing TMH predictors perform satisfactorily in detecting
TMHs of irregular lengths. For example, TOP-PRED [32] predicts all of the TMHs to
be 21 residues long, TMHMM [21] cannot predict TMHs shorter than 16 residues or
longer than 35 residues, and SOSUI [41] cannot predict TMHs longer than 25 residues.
Hence, there is a great opportunity for improving the sensitivity and accuracy of predicting
TMHs.

12.3.2 Automated Methods for Predicting N-Terminal Signal Peptide

A signal peptide is a short sequence chain, which functions as an ‘address tag’ that directs
nascent proteins to their proper cellular and extracellular locations, and also controls the
entry of virtually all proteins to the secretory pathway, both in eukaryotes and prokaryotes
[42]. If the signal peptide for a nascent protein were to be changed, the protein could end
up in the wrong cellular location, resulting in a variety of weird diseases. All secreted
proteins, as well as many transmembrane proteins, are synthesized with N-terminal signal
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Figure 12.3 TMH length distribution of 70 known high-resolution membrane protein struc-
tures

peptides (Figure 12.4). According to statistics, approximately 20% of membrane proteins
have N-terminal signal peptides and, since the signal peptide also has a ‘hydrophobic core’
of 7–15 residues in the h-region [43], they are often falsely predicted as the TMH by most
of the current predictors. In fact, most of the TMH prediction servers do not have modules
to detect N-terminal signal peptides [29]. Signal peptides are usually N-terminal extensions
of 3–60 amino acids length, although they can also be located within a protein or at its
C-terminal end [44]. The correct prediction of N-terminal signal peptides is very helpful for
improving the sensitivity of predicting membrane topology [45, 46]. It should be stressed
that, on the one hand, a TMH predictor could falsely predict the signal peptide as TMH
yet, on the other hand, a signal peptide predictor could also falsely consider the TMH as
a signal peptide. Hence, in order to discriminate effectively the N-terminal signal peptide

Table 12.2 The PDB accession codes of the 70 membrane proteins

1AP9 A 1AR1 A 1AT9 A 1BCC C 1EHK A 1EYS L
1EYS M 1EYS H 1FX8 A 1IH5 A 1IWG A 1JGJ A
1KQG B 1KQG C 1L7V A 1LGH A 1LGH B 1NEK C
1NEK D 1NKZ A 1OCC D 1OCC G 1OCC J 1OCC K
1OCC L 1OCC M 1OED A 1OED B 1OED C 1OED E
1OKC A 1PRC M 1PSS L 1PSS M 1PV7 A 1PW4 A
1Q90 D 1QHJ A 1QLB C 1RC2 B 1RHZ A 1RWT A
1SOR A 1U7G A 1UAZ A 1VF5 C 1VF5 D 1VGO A
1XIO A 1XQF A 1YCE A 1ZCD A 2A65 A 2AHZ A
2B2J A 2B5F A 2BBJ A 2BL2 A 2BRD A 2H8A A
2HI7 B 2IRV A 2IUB A 2J7A C 2JO1 A 2NQ2 A
2ONK C 2PNO A 2Q7M A 2QTS A
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Figure 12.4 A schematic diagram showing the signal sequence of a protein and how it is
cleaved by the signal peptidase. An amino acid in the signal part is depicted as a red circle
with a white number to indicate its sequential position, while that in the mature protein is
depicted as an open circle with a blue number. The signal sequence contains Ls residues and
mature protein Lm residues. The cleavage site is at the position (−1, +1); that is, between the
last residue of the signal sequence and the first residue of the mature protein

from the TMHs, many efforts are underway to automate a reliable process to predict the
signal peptide [46–56]. A brief introduction for most of these methods can be found in
several reviews [43, 57].

Recently, Shen and Chou [58] proposed another signal peptide predictor called Signal-
3L, and which has three layers. The target of the first-layer is to identify a query protein as se-
cretory or nonsecretory with the powerful OET-KNN (optimized evidence-theoretic K near-
est neighbor) classifier in a PseAAC (pseudo amino acid composition) space. If the protein is
identified as secretory, the process will be automatically continued by entering into the sec-
ond layer, where a set of candidates for its signal peptide cleavage site are to be selected with
a subsite-coupled discriminator, or {−3,−1,+1} coupling model (Figure 12.5), by sliding a
scaled window along the protein sequence. The third layer is to finally determine the unique
cleavage site by fusing the global sequence alignment outcome for each of the selected can-
didates through a voting system. Figure 12.6 illustrates the working flowchart of Signal-3L
(which is freely available as a web server at http://chou.med.harvard.edu/bioinf/Signal-3L/
or http://www.csbio.sjtu.edu.cn/bioinf/Signal-3L/).

PrediSi [54] and SignalP [53] are two popular web-server predictors developed for
identifying the signal peptide and its cleavage site. Compared to PrediSi, Signal-3L [58]
can achieve 5–18% higher success rates on the benchmark datasets by the jackknife test.
Because SignalP is a predictor with a built-in training dataset covering only three different
organisms, in order to compare it with the current predictor Signal-3L, Shen and Chou
used both SignalP and Signal-3L to deal with the proteins, the signal peptides of which
have been experimentally verified. The results showed that many protein signal peptides
predicted incorrectly by SignalP were successfully corrected by Signal-3L. It was also
shown that some of the results predicted by SignalP 3.0-NN and SignalP 3.0-HMM – two
important signal peptide predictors in the SignalP package – were often inconsistent. For
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Figure 12.5 A 3-D histogram showing the frequency of the 20 native amino acids that occur
at the subsites proximal to the cleavage site. As shown, the occurrence frequencies of Ala
at subsites −3, −1 and +1 are overwhelming in comparison with the other 19 amino acids,
suggesting a high selectivity of Ala at the three key subsites. The data used to derive this figure
are from the 4184 secretory proteins [53]

example, the signal peptide of FZD3 HUMAN predicted by SignalP 3.0-NN was 1–17, but
that by SignalP 3.0-HMM was 1–22. This type of inconsistency might cause confusion if no
experiment results were timely available. Nevertheless, the predicted result by Signal-3L
supported the latter, and was fully consistent with the experimental observation. However,
for a different protein, such as IBP7 HUMAN, Signal-3L supported the result obtained by
SignalP 3.0-NN rather than SignalP 3.0-HMM, which also was fully consistent with the
experimental observation.

The above results and discussion indicate that the Signal-3L is a powerful tool for
predicting signal peptides, and can at least play an important complementary role to
SignalP and PrediSi, which are widely used in the relevant areas. It is also expected that,
by combining both the powerful TMHs predictors and the signal peptide predictors, more
reliable and robust membrane protein secondary structure predictors can be developed.

12.4 Predicting 3-D Structures

As for the prediction of membrane protein 3-D structures, the methods can be generally
classified into two classes, namely homology modeling and ab initio and de novo methods.
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Figure 12.6 Flowchart showing how the three-layer predictor is able to identify a query
protein as secretory or nonsecretory, selecting the candidates of its signal peptide cleavage
site if the protein is secretory, and determining the final cleavage site

12.4.1 Homology Modeling

Homology modeling attempts to construct the 3-D model of a given membrane protein
sequence according to the high-resolution 3-D structure of a similar protein sequence that
has been determined experimentally [59–62]. The general steps of homology modeling are
as follows:

� Identify homologous proteins and determine the extent of their sequence similarity with
one another and the unknown.

� Align the sequences.
� Identify structurally conserved and structurally variable regions.
� Generate coordinates for core (structurally conserved) residues of the unknown structure

from those of the known structure(s).
� Generate conformations for the loops (structurally variable) in the unknown structure.
� Build the side-chain conformations.
� Refine and evaluate the unknown structure [63–65].

The performance of homology modeling is heavily dependent on the ‘homology sim-
ilarity’ between the target sequence and the template sequence. Past research projects
have revealed that, if the identity between the two sequences is below 30%, then the
accuracy of the obtained model will decrease dramatically [66–68]. Although homology
modeling has been successfully applied to predicting the 3-D structures of globular pro-
teins [66, 67, 69, 70], it is still a very challenging problem in membrane protein structure
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prediction for the following reasons:

� Few high-resolution membrane protein structures are available in the database currently.
According to Stephen White’s membrane protein database at http://blanco.biomol.uci.
edu/Membrane Proteins xtal.html, there are only 154 unique high-resolution membrane
protein structures that have been solved and deposited into the protein data bank. This
accounts for approximately 1% of all the protein structures solved to date, although
membrane proteins account for approximately 20–35% of all the proteins.

� The loop regions of integral membrane proteins exhibit remarkable structural variability,
which makes modeling in these regions unreliable. Although it is very difficult to apply
homology modeling techniques to predict the whole-membrane protein 3-D structures
currently, research results still show much progress in this field. For example, less than
2 Å of the RMSD (root mean-square deviation) between the modeled and template
structures have been obtained in the transmembrane regions when the corresponding
sequence identity is >30% [71].

12.4.2 Ab Initio or De Novo Methods

Ab initio or de novo methods are very useful when minimal experimental information and
homology structures are available for target membrane protein sequences. The methods
include prediction of the 2-D structures, such as TMH [21], and prediction of the helix-
helix interactions [72–75]. Although ab initio or de novo methods and software have been
successfully applied in the prediction of globular protein 3-D structures, the success in
membrane proteins has been quite limited until recently. The reasons for this are twofold.
First, the membrane proteins and globular proteins belong to different environments, and
it is difficult to directly apply those methods that are suitable for the globular proteins to
membrane proteins. Second, the size of membrane proteins are larger than the globular
proteins that have been correctly predicted by using ab initio methods. In view of this,
there is still a long way to go to develop effective ab initio or de novo methods to directly
predict membrane protein 3-D structures [76].

12.5 Conclusions and Future Directions

Membrane proteins are encoded by 20–35% of genes, and approximately 40% of such
membranes are polytopic in nature. Yet, solved membrane protein structures represent less
than 1% of known protein structures to date, which makes the investigation of membrane
protein structures a most challenging problem. Although, helical membrane proteins pose
a higher degree of experimental difficulty, their conformation is, in many ways, more
predictable than that of water-soluble proteins. For example, the transmembrane helices
must span the hydrophobic layer of membrane or membrane-mimetic detergent micelles,
whereas the amphipathic helices or loops are either associated with the head group region
or exposed to bulk solvent. These conditions effectively reduce the search problem in a
3-D conformational space to that in a much more restricted pseudo-2-D space. During the
past few decades, a large number of bioinformatics methods and tools have been developed
and successfully applied to predict membrane protein structures and functional features.
At the same time, an increasing amount of evidence has shown that the prediction of
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membrane protein structures is more difficult than once was imagined, as the resolved high-
resolution membrane protein structures have exhibited significant structural differences.
For example, current TMHs predictors cannot accurately predict half-TMHs and very long
TMHs. Some new structural features have also been observed in membrane proteins, an
example being the large number of helices found at the membrane-water interface [77].
Another intriguing observation, made from known membrane protein structures, was that
there are often homologous domains with opposite or parallel membrane orientations,
leading to proteins with a quasi-twofold axis in the plane of the membrane [78]. All
of these situations call for the development of more automated bioinformatics research
methods to help further our understanding of membrane proteins and their structures. It is
believed that, as an increasing number of high-resolution membrane protein structures are
resolved by structural biologists, the resultant expansion of membrane protein knowledge
will enable the prediction of membrane protein structures to be much more successful.
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Initially motivated by the Human Genome Project, tremendous effort was expended to
develop cost-efficient, high-throughput DNA sequencing instruments capable of decod-
ing any genome of interest. In order for DNA sequencers to become more amenable to
automation, extensive modification of the original chemistry was required, an avoidance
of radiolabeling was introduced (and indeed proved to be a key innovation), while major
investments were made in robotics and parallelized sample preparation. Hence, the next-
generation sequencing technologies included cyclic array sequencing, pyrosequencing of
emulsion polymerase chain reaction (PCR) features, and the sequencing of emulsion PCR
features by ligation, of bridge PCR and single molecule features by synthesis, of dideoxy
sequencing-based microfluidics, and of sequencing by hybridization, by mass spectrometry,
by exonuclease digestion, by nanopore threading and by scanning probes.

As expected, next-generation proteomics and genomics instruments are continuing to
increase the amount of data generated – a situation which makes the evaluation of new
methods for pipelining laboratory automation [1] paramount. A well-conceived infor-
mation technology strategy, including improved integration with laboratory information
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management systems (LIMS), is becoming an integral part of this approach. Unfortunately,
the supply of an appropriate application-programming interface (API) for integration with
LIMS is often, at best, an afterthought. For example, whilst next-generation sequencers
provide integrated mechanisms to copy run results to network storage, many of them omit
a convenient API to use a LIMS-generated run name and sample unique identifiers. As a
result, instrument integration with LIMS becomes all the more challenging.

There is a great deal of anticipation regarding the development of a sub-$1000 sequencer
that will allow human genome sequencing for sequence lengths over 1000 base pairs. It
is hoped that these sequencers will also include a mechanism for integration with LIMS.
Indeed, the establishment of a solid and widely used open-source LIMS framework could
help manufacturers meet the LIMS/instrument integration challenge by making integration
point and ready-to-use modules [2] widely available.

In practice, the need to integrate and perform complex analyses on heterogeneous data
sources results in ad hoc connections between databases and software tools by writing small
scripts, cutting and pasting queries, and basic manual labor. As a result, the recent years
have witnessed a surge in the development of new software tools focused on automating
and simplifying these tasks. These bioinformatics resource tools tend to fall into four
categories; semantic mapping; interoperation of heterogeneous bioinformatics databases;
automated workflow analyses; and programs that integrate the data with bioinformatics
software.

Open-source software solutions have been a boon to the industry. An example is the
ability to satisfy the demand for using existing computational tools in the identification of
uncharacterized proteins subcellular locations based on their sequences without the need
for detailed mathematical understanding. The details of a web-server package called ‘Cell-
PLoc’ are provided in Chapter 5. One disadvantage of open-source software has been the
lack of usable user interfaces for freely available code, although good progress has recently
been made in this area [3]. However, as has been the case with clinical trials, the necessary
financial resources are, on occasion, available only through commercial enterprises.

A number of hybrid solutions exist where software initially developed in academia has
been commercialized but remains available – free of charge – to educational institutions and
nonprofit organizations. It is conceivable that instrument manufacturers could support the
widespread availability of bioinformatics software as a viable business model, since such
software – especially for new types of arrays – might increase the new product adoption
rate. For example, gene expression arrays manufacturers could provide complementary
integrated data analysis tools, with such tools being based on open-source solutions and
providing fundamental types of analysis.

Systems biology frameworks for exchanging data between independently developed soft-
ware tools and databases to enable interactive exploration of systems biology data, such
as Gaggle [4], are very exciting developments in the bioinformatics field. However, many
laboratories – and especially the smaller ones – will, potentially, have difficulty in taking
advantage of these new tools due to constraints of human resources, as applied bioin-
formaticians are scarce even in large institutional settings. The applied bioinformatician,
rather than solely developing new algorithms, will work alongside the biologist to grapple
with a diverse range of bioinformatics tasks. In order to function effectively in this role, the
applied bioinformatician must possess a solid understanding of bioinformatics algorithms
and resources, while remaining aware of current developments in the field. He or she must
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also be knowledgeable of biological research in order to understand the biologist’s goals
and requirements. Bioinformatics, as a discipline, is a burgeoning field that has had to ac-
climatize to rapid changes in research priorities and, as bioinformatics academic programs
mature, an overall increase in the quality of bioinformatics education can be expected.
Yet, old-fashioned, two-way communication also appears to foster optimal cooperation be-
tween biologists and bioinformaticians. To that end, new advances in automation systems
are being directed towards facilitating biologist–bioinformatician interaction within the
automated laboratory pipeline [5] so that as much information as possible can be extracted
from well-designed and well-executed experiments.

Automation in fields outside genomics and proteomics enables relevant biological data
to be generated. For example, one biopharmaceutical company is currently detecting syn-
ergistic effects by using dose-specific combinations of various FDA (Food and Drug
Administration)-approved drugs. Here, testing is conducted in an automated manner using
cell-based assays. The benefits of this research include not only the potential of finding
useful combinations of drugs but also the provision of insights into affected pathways and
crosstalk between pathways. Another application is to introduce network concepts into
computational pharmacology studies, including drug target identification and drug discov-
ery, both of which are aimed at improving our understanding of drug actions through a
variety of biochemical networks. Other ongoing studies include automated, system-wide
searches for disease biomarkers in peripheral tissues, the ultimate aim being that diagnoses
can be effected using less invasive procedures [6].

Functional genomics, including DNA microarrays to monitor gene expression over time,
has led to the development of experimental techniques that allow interactions between
genes to be elucidated on a large scale. In that respect, information obtained from DNA
microarrays is of great interest, because these are high-capacity systems for monitoring
the expression of many genes in parallel. Moreover, they also provide the opportunity
to measure simultaneously the expression of several thousand genes within a cell. Thus,
microarray gene expression does indeed represent a popular and powerful technique.
There is also a possibility that interpretation of the intensities of such arrays could be
improved with a better understanding of on-chip hybridization kinetics [7]. Although the
effects of sequence complementarities and base composition are well known, they do
not completely explain differences in intensities between probes for the same gene, and
this is especially evident in exon level-type arrays. Taken together, these studies provide
interesting insides on other potential influences on hybridization signals. Indeed, if it were
possible to better adjust hybridization signals from microarrays, this would not only help
future experiments but also help in the acquisition of better information from a significant
number of microarrays data accumulated in public databases.

Gene set enrichment analysis (GSEA) [8] permits gene expression changes to be ex-
plored, not only on an individual gene level but also on a number of related genes, known as
gene sets. Examples of possible gene sets include genes from the same pathway or related
pathways, genes from a response to particular substance, genes related to a particular
disease, and genes from the same chromosomal region. GSEA allows the identification
of modest – but related – changes that are difficult to detect by investigating differentially
expressed genes on an individual basis. As GSEA depends on the availability and accuracy
of gene sets, the expert curation of gene sets is essential, and the Broad Institute’s free, pub-
licly available GSEA implementation and gene set database represents a highly valuable
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resource for this type of analysis. GSEA and other tools can also be used to determine
clusters of significant biological categories that are responsible for certain gene expression
activities. These programs often rely on standard categorization schemes – namely
ontologies – that hierarchically categorize biological information and assign genes to
categories based on experimental or computationally determined information. The results
thus depend on the organization and content of these ontologies. Today, efforts are ongoing
to determine the optimal design and utilization of such ontologies for automated, optimal
inference [9, 10].

The results of recent studies have shown that some phenotypes cannot be explained by
one or two genes, but rather by a complex interplay of many genes [11]. Currently, new
automated network-based methods, from Bayesian networks to random walks, are being
used to further elucidate the relationships between genes, as well as using existing rela-
tionships to determine those phenotypes that are associated with genes and their associated
proteins [12–15].

Pathways-based analyses, in general, represent a very important technique. Today, sev-
eral commercial options are available, as well as open-source tools such as Cytoscope [16]
and VisANT [17], all of which allow the visualization of pathways, as well as the overlying
of other data. This type of functionality is especially useful in cancer research, where the
ability to easily overlay pathways with gene expression, DNA mutations and epigenetic
data from the same samples represents a welcome addition to pathway tools. The ability to
determine easily which cancer-related mutations are known in general on genes of a partic-
ular pathway(s) could also focus research by correlating the proposed effect of mutations
with observed gene expression in pathway(s). Most biological network visualization tools
implement a variant of the initial force-directed layout algorithms, and use either animation
or resource-constrained incremental calculations to strike a balance between optimal equi-
librium and the timely layout of the network. Whilst these tools complement each other in
terms of their respective performance, user query capability, declarative query capability,
flexibility and ease of integration of network biology data management, the trend of future
tools is to enable not only ‘dynamic’ or ‘integrative’ aspects of the visual networks but also
‘data-driven’ and knowledge discovery-oriented tasks performed with user query scripts.
Towards this goal, all visualization software tools require significant further development.

Based on the tools developed during the past few decades, and on those currently under
development, a detailed molecular understanding of most biological processes is within
reach, and the design of such processes is no longer considered ‘science fiction fodder’.
The ability to design and write DNA blueprints freely from scratch will provide the
opportunity to create novel biological systems and to revolutionize biomedical research.
Today, synthetic biology is an emerging automation area where the goal is to synthesize
sequences, proteins and even entire cells in an automated manner [18, 19]. Synthetic
biology currently offers the ability to study cellular regulation and behavior using de novo
networks, while future applications of synthetic systems will surely extend to the fields
of medicine and biotechnology. Unfortunately, the overall development of DNA synthesis
technology has, so far, lagged behind that of DNA sequencing and, consequently, has been
unable to meet current and future demands from synthetic biology. Yet, the development
of new frameworks for regulatory costs, trade-offs and the energy consumption of network
structures represents a major challenge that might eventually lead to the construction of
viable minimal cells. In 2003, a functional bacteriophage genome was synthesized in two
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weeks, and attempts at the de novo synthesis of bacterial genomes are currently under
way. With further falls in price and increases in throughput, however, the time will surely
come when de novo DNA writing will become a routine and standard method for molecular
biology and bioengineering. The capability for de novo DNA writing will offer the freedom
to obtain any DNA molecule with convenience, and will undoubtedly transform biomedical
research.

A foundation for de novo design is the understanding of the sequence–structure–function
relationship of biological molecules, focusing mostly proteins and RNAs. In this respect,
small interfering RNA (siRNA) has become a very effective research tool, as it may be
used to selectively suppress the expression of proteins, one at a time, while providing
valuable information on gene function. Some siRNA experiments have been conducted
using cell lines which allow a higher degree of automation. It may also be possible to
use a combination of well-characterized siRNAs to affect multiple genes in a pathway, in
particular parts of a pathway, or even multiple pathways. Such experiments may provide
a better understanding of individual pathways, of pathway redundancies and of pathways
crosstalk.

The incorporation of next-generation cell-free metagenomics capabilities to screen for
unusual new polymerases should result in a self-reinforcing cycle of discovery and evolved
polymerases that promise significant changes in the biochemical capabilities of existing en-
zymes. A knowledge of metabolic pathways is indispensable to understand a living system
at the level of molecular networks. Moreover, an automated method, or a complementary
tool, for the rapid prediction of network relationships of enzymes and substrates/products
in a living system, would surely expedite this understanding.

Today, the deciphering of the structure and organization of gene regulatory networks
remains in its infancy. However, in order to better understand the biology of the systems
under investigation, the trend is clearly towards the aggregation of multiple sources of
biological information and, to that end, it is challenging to choose appropriate experimental
data and computational approaches. The modeling of a static and dynamic regulatory
network remains an open-ended problem that has yet to be solved; therefore, the choice of
a procedure that agrees with the initial biological question is imperative.

Clearly, this is a fascinating time in which to be involved in biological research. A
comprehensive understanding will benefit from an integrated approach that simultane-
ously incorporates the individual and contextual properties of all constituents. Progress
in research requires successful collaboration between by biologists, engineers, bioinfor-
maticians, biophysicists, mathematicians and physicians in this exciting and ever-evolving
field.
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